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ABSTRACT

MANAGING QUERY AND UPDATE TRANSACTIONS UNDER QUALITY

CONTRACTS IN WEB-DATABASES

Huiming Qu, PhD

University of Pittsburgh, 2007

In modern Web-database systems, users typically perform read-only queries, whereas all

write-only data updates are performed in the background, concurrently with queries. For

most of these services to be successful and their users to be kept satisfied, two criteria need

to be met: user requests must be answered in a timely fashion and must return fresh data.

This is relatively easy when the system is lightly loaded and, as such, both queries and

updates can be executed quickly. However, this goal becomes practically hard to achieve in

real systems due to the high volumes of queries and updates, especially in periods of flash

crowds. In this work, we argue it is beneficial to allow users to specify their preferences

and let the system optimize towards satisfying user preferences, instead of simply improving

the average case. We believe that this user-centric approach will empower the system to

gracefully deal with a broader spectrum of workloads.

Towards user-centric web-databases, we propose a Quality Contracts framework to help

users express their preferences over multiple quality specifications. Moreover, we propose a

suite of algorithms to effectively perform load balancing and scheduling for both queries and

updates according to user preferences. We evaluate the proposed framework and algorithms

through a simulation with real traces from disk accesses and from a stock information website.

Finally, to increase the applicability of Quality Contracts enhanced Web-database systems,

we propose an algorithm to help users adapt to the Web-database system behavior and

maximize their query success ratio.
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1.0 INTRODUCTION

The wealth of information online has led to a myriad of data-intensive services and applica-

tions. Typical application of online information services include banking, shopping, booking

travel, monitoring and trading of stock portfolios, aggregating blogs and news on specific top-

ics, computer network monitoring (especially for intrusion detection), personalized weather

forecasts, environmental monitoring (for example, USGS’ National Water Information Sys-

tem Web Site), and many more. The Web has become an indispensable information portal.

Before we present our work, we introduce the architecture (in Section 1.1), the perfor-

mance bottlenecks (in Section 1.2), and the challenges (in Section 1.3) of online information

services through typical data-intensive web sites. Next, we advocate user preferences in solv-

ing the presented challenges in Section 1.4, then we present the contributions of this work

along with the outline in Section 1.5.

1.1 ARCHITECTURE

A typical information portal has a front-end Web server and a back-end database (i.e., Web-

database) as in Figure 1.1. Let us assume a stock information web-site, Quote.com, as an

example. A user wants to check Dow Jones Industrial Average (INDU) and display it in real

time. Once the user hits the “Go” button, the browser sends an HTTP request to the Web

server containing the URL of the script and some parameters (INDU, real-time chart, etc.).

The Web server then executes the script which involves (a) sending queries to the database

server to create results from real-time feeds of INDU, and (b) assembling the results into an

HTML page. Finally, the Web server sends the HTML page back to the client’s browser.

1



Figure 1.1: Typical Web Site Architecture

1.2 PERFORMANCE BOTTLENECKS OF DATA INTENSIVE WEB

APPLICATIONS

In order to improve the user satisfaction, we have to identify and eliminate any performance

bottlenecks. In this architecture, the performance bottleneck can occur anywhere: from the

communication, to the Web server or the database server itself. The Web server and the

database server may be connected with a high-speed LAN, whereas remote users may use

a Dial-up internet which makes HTTP transmission a potential bottleneck, provided the

server workload is low. In terms of the Web server and the database server, both the type

of applications [9] and the mechanisms of implementing the Web server [23] affect where

the longest delay happens. Applications that require complex business logic like an auction

web site can easily stress the server front-end with a limited size of relational data, whereas

data-intensive applications, such as benchmark TPC-W [1] for e-commerce applications, will

give the back-end database server a much higher burden.

As the proliferation of networks and sensor devices is only going to make the volumes

of collected data even more massive, resulting in what is being referred to as High-Fan-In

systems [39], data-intensive web sites are expected to become even more data-intensive in

the near future. As such, the corresponding back-end databases are going to face more

intense challenges and are expected to become increasingly critical to the performance of

online information services. In this work, we focus on the performance enhancement of web-

databases so as to eliminate the possibility of over-stressing the back-end database server.

2



1.3 CHALLENGES: BALANCING QOS AND QOD

In web applications, Quality of Service (QoS) and Quality of Data (QoD) are of paramount

importance to the end users. Quality of Service is essentially used to measure server through-

put levels, such as response time. Quality of Data is used to measure the staleness of the

requested data, such as the time elapsed since the last update. As we will see next, it is very

hard to guarantee both qualities to the highest levels under the pressure of high loads.

Let us look at the challenge of balancing QoS and QoD as it materializes in two prevalent

web applications that affect people’s everyday lives.

1.3.1 Application 1: stock information web sites

Stock information web sites, such as E*Trade and Quote.com, receive stock ticks (i.e., up-

dates on stock prices) on a regular basis, and users query current1 stock prices (for example,

a moving average of the stock price over the last half hour). Clearly, in such an environment,

it is imperative to: (1) compute the results to a user’s query based on fresh data and (2) give

the user results as fast as possible. Results computed on old data can lead to misleading

values (the market may have changed dramatically) and results that are delivered late can

also lead to missed opportunities and financial losses. Although both high QoS and high

QoD are desirable, these two performance metrics are always at a direct trade-off with each

other. Answering queries without establishing the updates to the relevant stocks may speed

up the response, whereas waiting until all updates are established will make answers fresher.

When the server is lightly loaded, the response delay or freshness degradation may not be

noticeable by the users. However, when there is a burst of updates, not only data gets stale

very fast, but also queries wait longer to access fresh data. In this case, the server has to

choose between maintaining high QoS (fast response) or high QoD (fresh data). In an un-

realistic scenario, if the server could foresee when the queries and updates arrive as well as

the read/write pattern on the stock information, balancing QoS and QoD could have been

facilitated by delaying all the irrelevant updates. As a result, high QoD can be sustained

1For US stock market data, SEC regulations mandate giving only delayed data, by 15 to 20 minutes, to
anonymous users. Registered users can receive up-to-update without restrictions.
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without hurting much of QoS. However, as the workloads that Web servers are facing are

unpredictable, balancing QoS and QoD is a real challenge with dynamic access patterns over

data/time.

1.3.2 Application 2: travel reservation web sites

Online travel reservation web sites are utilized in order to get the best price and/or schedule

from a vast amount of available options. Websites include official information portals for

airline companies and hotel chains (such as United Airlines and Holiday Inn), as well as third

party agents (such as Expedia and Hotwire). It is crucial that user queries on flight, car,

and hotel information are answered in a timely fashion, using the most recent data possible.

However, high QoS is hard to achieve because such dynamic information takes time to

compile (e.g., pull updates from data sources and establish the changes in databases). The

time it takes to return a ticket search result is especially long for those third party agents

that try to obtain information from all kinds of sources. Users easily get frustrated by staring

at the progress bar or the repeating patterns. At the same time, high QoD is also challenging

to achieve because the data may get stale while being aggregated.

With the fast changing data at the sources and limited computing resources at the server,

it is difficult to meet high demands on both QoS and QoD. As a result, the server may

appear to have random performance degradation in terms of delays and stale information.

Such uncharacteristic performance may seriously impair user satisfaction, thus reducing the

website’s popularity. The challenge of providing a consistent performance lies in balancing

QoS and QoD according to the current system resources and user demands.

1.4 HOW CAN USER PREFERENCES HELP?

Commercial websites have started to realize the jeopardy of having unpredictable perfor-

mance on both QoS and QoD. Some of them choose to consciously optimize either QoS or

QoD by having fixed thresholds or guarantees on one metric and offer best effort on the
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other metric. For example, Quote.com sets the QoD bar for unregistered general users by

delivering stock trades that happened at least 15 minutes ago [83], whereas E*Trade offers

guarantees on QoS by promising the user transactions to be completed within 2 seconds [36].

However, users may have different tolerance levels and perceive query qualities differently.

For example, when checking on flight information, some users would prefer fast response

times, while tolerating slightly stale results (e.g., when they just want to find out about

flight schedules). However, other users would instead prefer to get the most accurate query

results, even if the response time was a bit higher (e.g., when they are ready to purchase a

ticket).

Considering user preferences helps the server allocate the limited computing resources to

enhance the most perceivable performance aspect to the users. Thus, the server is able to

survive a large range of workloads without diminishing user satisfaction.

The importance of user preferences, although has received little attention in web-databases,

has been recognized in many other areas, such as the utility functions in real-time sys-

tems [87, 16] and Service Level Agreements (SLAs) in web services [104] and Grid comput-

ing [20]. As prevailing as the user preferences in the above areas are, we believe that user

preferences will improve the performance of web-databases and increase the effectiveness and

the usability of web-databases even with increasing challenges from bursts of user requests

or from the high volumes of information generated on the Web.

1.5 CONTRIBUTIONS AND OUTLINE

Towards embedding user preferences into web-databases, we propose the Quality Contracts

(QC) framework, which enables users to express their preferences and to have the web-

database performance optimization influenced by these individual user preferences. Specifi-

cally, the contributions of this dissertation are as follows:

• Quality Contract framework We introduce Quality Contracts (QCs), a unifying frame-

work for expressing user preferences for QoS and QoD [59]. QCs are based on the micro-

economic paradigm [38, 96], which allow users to specify their preferences among different
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quality metrics by assigning the amount of “worth” for the corresponding performance

expectation of each query.

• UNIT load management As a first step towards incorporating user preferences into

the server optimization process, we first studied the load management of web-databases

under a simplified QC framework. The load management layer can be used with any

existing database system provided with sufficient log information. We proposed a suite

of algorithms, UNIT [81], to maximize user satisfaction according to user specified QCs.

UNIT guards the underlying web-databases so that the performance degradation due to

the dynamic surges of high loads is minimized. Specifically, UNIT filters out the queries

that are prone to hurt user satisfaction with limited system capacity, and discards the

updates that are irrelevant to the users’ interests. An experimental study using real disk

traces showed that our algorithms outperform the current state of the art.

• QUTS scheduling To fully support the QCs framework, we further studied scheduling

schemes within web-databases. We identified that the single-priority-queue scheduling

is not feasible when both QoS and QoD preferences have to be considered. We pro-

posed using a two-level scheduler, Query Update Time Share (QUTS), to separate the

incomparable quality metrics of the QCs in a lower level and allocate CPU to queries

and updates dynamically according to the comparable “worth” in QCs [80] in a higher
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level. We compared QUTS with two other scheduling schemes with the same lower-level

priority schemes and fixed CPU allocation on the higher level. Our extensive experimen-

tal study using real stock information web data show that QUTS performs better than

baseline algorithms under the entire spectrum of QCs, QUTS adapts fast to changing

workloads, and have little sensitivity of its own parameters.

• QuiX system We implemented the QCs framework with a functional user interface on

the front end, and with both admission control and scheduling components simulated

on the back end. To enhance the applicability of the QCs framework, we also explored

various user strategies with the freedom of specifying their preferences and influence the

server behavior. We demonstrated the QuiX prototype system in [82].

• AQC user adaptation We identified two important issues in how users should adapt

their QC selections to maximize the number of queries executed within their satisfac-

tion: payment expectation and savings ability. We propose the Adaptive Quality Contract

(AQC) strategy, which monitors a user’s queries and the server’s responses and auto-

matically adapts the QCs of subsequent user-submitted queries. AQC switches between

two modes: Overbid mode, which maximizes the utility of the user’s budget with the

empirical expectation of QC expenditure; and Deposit mode, which gracefully builds up

user savings. AQC consistenly outperforms compared algorithms by up to 233%.
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2.0 RELATED WORK

There is a plethora of papers that focus on improving the performance of user requests to

database-driven web sites, using caching [34, 64, 66] or materialization [60]. These approaches

save the time to generate pages dynamically by returning the result that was served for

similar queries. The challenge is how to keep the cache or materialized view up-to-date:

some approaches only invalidate the cache entry and recompute it upon the request of the

next query [51], while others constantly update the cached materialized view if the base data

changes [27, 60, 74]. This previous work usually provides a best-effort solution in terms of

either QoS or QoD [61, 62], but it typically ignores the various individual user preferences.

To the best of our knowledge, our work is the first to combine individual web-database

users’ preferences for both QoS and QoD. However, despite their “absence” from web-

databases, user preferences have been considered in many other areas, which have greatly

inspired our work.

In the following, we first introduce existing frameworks that incorporate user preferences

(in areas other than web-databases) and then discuss how work in these areas inspired our

work, along the different system components,

2.1 USER PREFERENCES

Beyond web-databases, user preferences have played an important role in many other areas

in different forms.
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2.1.1 Distributed services

Mariposa [93, 96] was one of the earliest distributed systems which explored an economic

model for trading and managing resources by taking into account users’ QoS requirements

in a distributed environment. Later, the main concepts from Mariposa were repurposed for

Service Level Agreements (SLAs) [32, 58] in Grid applications [7, 10, 18, 19, 20, 21, 101]

and Web-services [8, 10, 31, 55, 73, 104] which consider users’ QoS requirements as well as

resource availability, capability and cost for effective resource management and application

scheduling in a Grid computing environment. Clearly our work has different applications

from the above systems.

2.1.2 User profiles

Another important class of user preference frameworks are the user profiles proposed in [25,

57]. By analyzing users’ data requirements, profiles are generated. The profile-driven data

management framework then provides services to thousands of clients by interpreting, con-

solidating and processing user profiles. It is especially useful to “compile” users’ data needs

in mobile data management applications and information services [56, 72]. Our Quality

Contracts framework focuses on how best to execute user queries, instead of which data are

of interest (and thus need to be made available to mobile users).

2.1.3 Data stream management systems

Data stream management systems (DSMS) [3, 24, 30, 42, 70] deal with continuous queries

and give results based upon the never-ending flood of data. DSMS face challenges similar

to web-database systems in that: (1) massive data streams come into the system at a very

fast rate; (2) (near) real-time monitoring and analysis of incoming data streams is required.

To maximize the utilization of system resources, some DSMS, such as in Aurora project

[3, 14] and Borealis project [2], allow QoS functions and QoD functions, where performance

is mapped to values of importance. However, the different components of the QoS (i.e., the

Vector of Metrics) are aggregated into a single, global QoS score, using universal weights.
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In other words, the same QoS components are used for all queries and the same relative

importance to each QoS component is assigned for all queries via system-wide weights. These

system-wide weights have another negative side-effect: the benefit of the overall system can

often overweigh the benefit of the individual user or query (even by just a little), who/which

can be “penalized” repeatedly for the benefit of the others. In our work, we give emphasis

to individual user preferences.

2.1.4 Real-time systems

In real-time systems user preferences can be expressed on the time criticality of tasks through

deadlines. In many real-time systems, utility functions [16, 87] are used to map the task

response time to the value of the performance. The system thus concentrates on how to

manage resources or schedule tasks, so that the most critical tasks are accomplished first and

the overall performance generates the most value according to the utility functions [4, 16, 49,

94]. A general model for satisfying requirements of multiple quality dimensions in a resource-

constrained environment has been proposed in [85], and solutions have been given to the

problem of allocating a single resource to meet multiple independent quality constraints [86].

However, the two quality constraints in web-databases are not independent since QoS and

QoD are at a trade-off of each other. Similar trade-offs have also been seen in the power-aware

real-time systems, where energy and QoS are also at a trade-off of each other. Reward-based

scheduling in power-aware real-time systems has been studied extensively in [69, 79, 89, 95,

105]. Web-databases differ from those real-time systems essentially because the updates in

web-databases are not associated with any user preferences (or utility functions), whereas

each task in real-time systems is associated with a deadline or utility function. Hence, prior

work in real-time systems can only be applied on managing user queries and not updates.
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2.2 SYSTEM OPTIMIZATION

In order to maximize user satisfaction while having limited system resources, we utilize user

preferences to guide the system optimization through (1) load management to prevent the

system from overloading, and (2) query and update scheduling according to the criticality

of different user queries over multiple quality metrics. Previous work, especially those from

real-time databases, has greatly influenced our work as we describe shortly.

2.2.1 Load management

Data Stream Management Systems (like Web-databases) are usually challenged by irregular

data feeds. Under transmission and storage constraints, active load shedding is necessary to

prevent losing important data or to reduce the response time without sacrificing much of the

result accuracy. Multiple load shedding techniques have been proposed to address bursty

data streams. For example, [13, 33, 35] focus on the accuracy of the query answers, whereas

[97] provides a mechanism to optimize on either latency, value-difference, or loss-tolerance.

[99] proposed a control-based load shedding scheme to deal with the busty data input and

variable unit processing cost. In the LoadStar system [26], statistical models are utilized to

maximize the quality of stream mining results when load shedding has to be performed. The

major task of load management in DSMS is to prevent the data from overflowing through

the DSMS. However, web-databases are facing the challenges from both user queries and

data updates. When necessary, admission control on both queries and updates has to be

performed, which we address in this work.

Load management has also been applied in many real-time applications [65, 84]. In [17],

authors proposed to treat periodic real-time tasks as springs, so the period (and also the

workload) can be adjusted by changing the elastic coefficients to better conform to the actual

load conditions. In [103], a deferrable schedule for update transactions is used to minimize

update workload while maintaining freshness (temporal validity) of real-time data. QMF is

proposed in [54] for real-time databases to main a global target on freshness and miss ratio

with a feedback control loop. The work mentioned above either considers only individual
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QoS in terms of the task deadline, or considers both QoS and QoD but with a global quality

goal. Our work differs from their work in considering individual user preferences on both

QoS and QoD.

2.2.2 Scheduling

Scheduling queries and updates under Quality Contracts in web-databases is closely related

to transaction scheduling in real-rime databases systems due to the similarity between utility

functions and the QoS part of Quality Contracts.

Real-time databases [87, 94] are where real-time systems meet databases. Traditional

databases usually schedule transactions to minimize the average response time while ignoring

the individual real-time constraint (deadline) for each transaction. Real-time systems have

strong support for deadlines, but typically ignore the data consistency problems. Research

in real-time databases is trying to address both real-time scheduling and data consistency.

Deadline-driven scheduling There are three kinds of real-time systems: hard real-

time systems, where the deadlines have to be met for all transactions otherwise catastrophic

effect entails; firm real-time systems, where transactions have no value to the system if their

deadline are missed, thus those transactions are discarded when their deadline expires; and

soft real-time systems, where transactions still have some value to the systems although they

miss their deadlines, thus transactions are kept alive even after they miss their deadlines.

Because of the unpredictable data access patterns, it is usually very hard to guarantee that

all the deadlines are met. Thus, real-time databases normally adopt firm or soft deadlines.

There is a lot of prior work that attempts to match the response time to a value function,

called utility functions [102, 85, 106]. [88] provides a comprehensive survey on recent ad-

vances in time/utility function real-time scheduling and resource management. The basic

idea of scheduling under utility functions is to consider both deadlines and values (or profit)

of the tasks, such as assigning higher priorities to the transactions that have higher values

and tighter deadlines [4]. Existing work on real-time transaction scheduling [4, 16, 46, 49, 76]

can be applied in real-time databases provided that each transaction is associated with a

utility function (or a deadline).
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Concurrency control In conventional databases, there are two prevailing concurrency

schemes: Two Phase Locking (2PL) and Optimistic Concurrency Control (OCC). People

have extended the concurrency control schemes in both firm-deadline and soft-deadline real

time database systems [4, 43, 44, 50, 67, 68, 90, 91]. Earlier studies [44] have shown that OCC

schemes perform better than 2PL-based schemes in firm deadline systems, because in such

systems tasks that miss their deadlines are discarded immediately, which is very beneficial to

OCC’s late conflict resolution. On the other hand, [43] showed that 2PL-HP [4] (Two Phase

Locking - High Priority, which solves any conflict in favor of high priority tasks) outperforms

others with finite resources in real-time database systems that keep tasks continue to run

even after deadlines.

Update management Compared with real-time systems, Web-databases face one more

challenge: managing the write-only updates in addition to read-only queries. Traditionally,

real-time scheduling makes use of time critical value functions or simply deadlines to decide

transaction priorities. However, only query transactions are associated with those weighted

constraints in Web-databases which makes traditional scheduling useless for the update pri-

ority assignment. An effective and efficient update scheme has to be established to facilitate

query scheduling.

There is prior work that deals with only the scheduling of updates [61], especially in the

context of web crawling [28, 75]. Other prior work has focused on how to reduce the update

workload [6, 17, 54, 103] as we introduced in Section 2.2.1, but very few have addressed

scheduling updates and queries together. Adelberg has studied some basic techniques in

[5] which showed that there are two promising schemes: update first (update always have

higher priority than queries) and update on-demand (relative updates are executed only

when queries find the needed data items are stale). These static schemes, although have

predictable performance (both guarantee 100% query freshness), do not have the flexibility

to consider user preferences and adapt to the changing system workload.

Other than real-time databases, query scheduling has also been studied extensively in

DSMS. [12] concentrates on minimizing the inter-queue memory, whereas others (that are

either operator based [22] or tuple based [11, 98]) aims at improving response time. Sharaf et

al. have also developed scheduling policies [92] that are shown to optimize the average case

13



of different criteria (response time, stretch, etc) and also introduced policies that successfully

strike a balance between the average and worst case. The focus of this dissertation is in Web-

databases and in scheduling for ad-hoc queries instead of continuous queries as in DSMS.
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3.0 QUALITY CONTRACTS FRAMEWORK

3.1 WEB DATABASE SYSTEM MODEL

For highly scalable information portals like stock information web sites or travel reservation

web sites, real time response is critical. We believe that a main-memory database system

[53] is the most suitable back-end support type for such web sites because:

1. main-memory database systems avoid having disk accesses in the critical path of serving

user requests which is a well known bottleneck for database systems; and

2. although the source information (e.g., stock ticks) are vast and fast changing, the infor-

mation services usually only need to provide a snapshot of the source instead of the full

history of all source data and, as such, storage requirements are not as big.

3.1.1 Data model

We assume that data items are hash-based accessed [15] and updated periodically or ape-

riodically by external sources. External sources are obligated for maintaining the master

copy and the whole history of updates on each data item. For example, in the case of stock

information websites, the external sources are the service providers like NYSE and Nasdaq

where the trades are executed. These external sources are responsible for maintaining the

entire history of updates of each stock as well as pushing the updates (as stock ticks) to the

registered information portals like Stock.com. We assume that data items are independent

of each other and only the most recent updates need to be maintained in the web-database

(i.e., data items are independently refreshed).
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3.1.2 Workload

Typical web-database systems receive read-only queries that generate dynamic web pages as

a response and write-only updates, that keep information up to date.

3.1.2.1 Queries In general, a web page with dynamic content is created from the results

of one or more queries [78]. These queries are either executed serially one at a time or

concurrently and in groups after parsing the entire web page [77]. In this work, without loss

of generality, we assume that the content of a web page is generated by a single query. In

other words, we assume that each user request is fulfilled through one user query. Each query

can be attached with its user preference in the form of a quality contract, which we describe

in Section 3.2. The Web server needs to provide the users with the appropriate interface to

set up the quality contracts or choose the QC adaptation schemes. Queries in our system

can be selection, projection, join, or aggregation queries on multiple data items. Each user

query can be associated with user preferences corresponding to the expected quality of the

query.

3.1.2.2 Updates Updates in our system are assumed to be blind, since the update stream

is coming directly from external sources. As a result, no examination of the data state is

needed before performing the updates. We also assume that updates are idempotent and

contain no order constraints. Each update refreshes one data item. Users are only interested

in the most recent value, thus, we do not need to process all pending updates on the same

data item. In other words, the arrival of a new update automatically invalidates any pending

update on the same data item. This is done by maintaining an update register table which

maps data items to the current pending updates. Invalidated updates are simply dropped

from the system without violating data correctness.

3.1.3 Performance metrics

3.1.3.1 Quality of Service (QoS) QoS is used to collectively represent metrics that

measure the system throughput of the web-database server, such as response time and stretch.

16



Response time is the delay from the time the query is issued to the web-database to the time

the query result is returned1 (i.e., time elapsed while the query is within the web-database).

Response time has been widely accepted as the primary QoS metric in on-line scheduling

systems. In systems with highly variable job sizes, stretch has also been adopted to relate

the waiting times to user demands [71]. The stretch (also known as the slowdown) of a

request is the ratio of the response time of the request to the processing time of the request.

Intuitively, it reflects users’ psychological expectation that in a system with highly variable

job sizes, users are willing to wait longer for larger requests. In our system, we use response

time to measure QoS of a user query.

3.1.3.2 Quality of Data (QoD) In our model, web-databases maintain data replicated

from external sources, and, as such, it may get stale if the synchronization is not performed in

time. The query result becomes stale when the query is computed based on stale data. QoD

denotes the staleness/freshness of the query result. There are two types of measurements

of staleness: (a) binary, where the staleness of a query result either 0 or 1 depending on

whether it accessed stale data items; and (b) staleness degree, where the staleness of a query

result is a real number depending on how many stale data items the query accessed and how

stale each accessed data item was. We use the fine-grained staleness degree in this work. As

we can see, query staleness depends on data staleness. Two questions need to be answered

for measuring query staleness:

1. How to measure the staleness/freshness of the individual data items that were accessed

by the query?

2. How to aggregate the data staleness over the multiple data items that are accessed to

compute the query result?

In the following, we first discuss the computation of data staleness (to answer the first

question), followed by the query freshness (to answer the second question). Last, we define

the counter part of the staleness: data freshness and query freshness.

1We do not include the network component in the response time measurement. As we have discussed in
the introduction, this dissertation is focused on the performance of the web-database server.
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• Data staleness: Suppose query qi is computed based on data set Di. The staleness

of data item dj, where dj ∈ Di, can be computed in multiple ways. The computation

basically falls into three distinct classes: time-based, lag-based, and divergence-based [62].

Time-based methods use the time elapsed from the previous update to quantify how

stale a data item is. Such time duration includes both the communication time between

the main databases (i.e., the external sources) and replication databases (i.e., the web-

databases) and the processing time of the updates in the replication databases. Since

web-databases have no control over the communication time, time-based methods appear

to be inappropriate for measuring QoD in web-databases. Lag-based methods use the

number of unapplied updates to quantify how stale a data item is. The assumption is that

the more updates pending (or missing) for a data item, the more stale the current data

item is. Finally, divergence-based methods compare the current version of a data item

with the most up-to-date version and quantify the difference in values. The assumption

is that the bigger the difference, the more stale the current data item is. Both lag-based

and divergence-based approaches are applicable in measuring QoD in web-databases. The

choice is application depended. We adopt the lag-based approach in this dissertation for

its simplicity. Specifically, the staleness of a data item is measured as:

staleness(dj) = UUdj
, (3.1)

where UUdj
is the number of updates that are dropped since the last successful update,

i.e., the number of unapplied updates. This can be tracked in the update register table

which is used for invalidating the pending update for each data item.

• Query staleness: Once we have the staleness of each data item computed, computing

the query result staleness is up to the aggregation function which can be the average, the

minimum, or the weighted sum of the individual data staleness values. The choice of the

aggregation function is application-specific. In this work, we take a strict approach by

using the maximum staleness over all the recorded staleness of the accessed data items.

Formally,

staleness(qj) = max
j

(UUdj
), ∀dj ∈ Di, (3.2)
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where UUdj
is the number of unapplied updates for data item dj, and Di denotes the

accessed data set of query qi. Using the maximum provides a strong guarantee that all

data items accessed in order to compute the query result have no greater staleness than

the overall staleness for the query.

• Data freshness: Data freshness is basically the reverse of data staleness. Formally, the

freshness of data item dj is computed as:

freshness(dj) =
1

1 + UUdj

. (3.3)

The staleness of a data item is normalized to a real number within (0, 1]. When an

enormous number of updates are missed as the data item is accessed, the data freshness

value is near 0; whereas in a case of missing no updates, the data freshness reaches its

maximum value of 1.

• Query freshness: To guarantee that the query freshness is at least as fresh as any data

item it accesses, query freshness uses the minimum freshness of all accessed data items.

Specifically,

freshness(qi) = min
j

(
1

1 + UUdj

), ∀dj ∈ Di. (3.4)

In the following chapters, we use the notation freshness/staleness interchangeably due to

the fact that both freshness and staleness are computed based on the number of unapplied

updates.

3.2 QUALITY CONTRACTS (QCS)

3.2.1 Existing schemes and motivation

In general, if we have two incompatible performance metrics, such as response time and

staleness, there are two ways to combine them:

(a) Introduce a constraint on one metric (typically freshness) and optimize on the other

metric (typically response time), such as [62, 54]. However, this approach is somewhat
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limited, as it is “hard-wiring” the metric to optimize and therefore cannot change it

according to users’ preferences.

(b) Combine them into a single metric and optimize on the aggregate metric as in [2, 3], where

the individual metrics are combined using a set of weights to embody the importance of

different metrics. However, this approach usually follows a system-wide standard which

does not consider the different preferences of individual users over the importance of

different quality metrics (e.g., the importance of response time versus staleness).

We believe that user preferences on the trade-off between Quality of Service (QoS) and

Quality of Data (QoD) are going to be different among users. For example, if it is not possible

to have fresh data fast, some users may prefer getting fresh data slightly late (i.e., prefer

high QoD), whereas others may prefer getting answers very fast, even if they correspond to

slightly stale data (i.e., prefer high QoS). As such, we advocate for a way to extend prior

approaches for aggregating QoS and QoD in order to incorporate individual user preferences.

Towards this, we propose a unifying framework for specifying QoS and QoD requirements,

which we call Quality Contracts, or QCs for short. Quality Contracts are based on the

microeconomic paradigm [96, 38, 29, 63] and can effectively merge all dimensions of Quality

into a single, unifying concept. The QC framework allows users to specify their preferences

among different quality metrics by assigning the amount of “worth” for the corresponding

performance expectation of each query. In this way, users can specify the relative importance

of QoS over QoD and also specify the relative importance among their different queries. The

system, on the other hand, can infer the relative importance of different users’ queries along

with their quality concerns and allocate the system resources to maximize the worth to the

user, or, the “profit” to the system. With QCs, we can now cast the problem of system

optimization according to user preferences into the problem of maximizing the total profit

for the system.

3.2.2 Quality Contract illustrations

In our framework, users are allocated virtual money, which they “spend” in order to execute

their queries. Servers, on the other hand, execute users’ queries and get virtual money in
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Figure 3.1: General form of a Quality Contract

return for their service. In order to execute a query however, both the user and the server

must agree on a Quality Contract (QC). The QC essentially specifies how much money the

server that executes the query will get. The amount of money allocated for the query is not

fixed. Instead, the amount of money the server receives depends on how well it executes

the user’s query. In the general case, QCs can also include refunds; a very poorly executed

query can result in the user being reimbursed instead of paying for its execution (accumulated

refunds can improve the odds of the user’s query being executed properly later).

Under the proposed scheme, a user can specify how much money he/she thinks the server

should get at various levels of quality for the posed query, whereas the server, if it accepts the

query and the QC, essentially “commits” to execute the queries, or face the consequences.

In this model, servers try to maximize their income, whereas users try to “stretch” their

budget to run successfully as many queries as they can.

A Quality Contract (QC) is essentially a collection of graphs, like the one in Figure 3.1.

Each graph represents one quality requirement from the user. The X-axis corresponds to

an attribute that the user wants to use for different quality measurements, which could be

response time, query staleness, or others of interest to the users. The value of the attribute
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could either be continuous or discrete. The Y-axis corresponds to the virtual money the

user is willing to pay to the server in order to execute his/her query. Notice that in order

to specify more than one QC, the user must provide additional virtual money to the server.

The server optimization aims at obtaining the sum of all max amounts of the different QC

graphs that a user submits along with a query. Nonetheless, if the query is not satisfactory

completed, the server has to issue refunds based on the query-specific performance. Next,

we present examples of QC graphs in order to illustrate their features and advantages. For

simplicity, we will use the dollar sign ($) to refer to virtual money for the remainder of this

paper.

3.2.3 Quality Contract example
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Figure 3.2: Quality Contract example

Figure 3.2 is an example of Quality Contract (QC) for a query submitted by a user.

This QC consists of two graphs: a QoS graph (Figure 3.2a) and a QoD graph (Figure 3.2b).

QCs allow users to combine different aspects of quality. In this example, the user has set

the budget for the query to be $100; $70 are allocated for optimal QoS, whereas $30 are

allocated for optimal QoD. QoS is measured in response time (seconds), whereas QoD is

measured in number of unapplied updates (UUs). Each graph (or function) has at least

two critical values: max worth and zero worth quality constraint (i.e., $70, 150sec for QoS

function and $30, 5UUs for QoD function). With a virtual money economy, users can now

easily specify the relative importance of each component of the overall quality by allocating

the query budget accordingly.
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Having described the individual profit functions for QoS and QoD, the question remains

on how to combine these into a single overall profit for the system. There are two practical

ways to do this for our target environment:

• QoS-Dependent: QoD profit is added to the total profit of a query only if the QoS

profit is more than zero (i.e., the query commits within the zero worth constraint).

This appoints QoS as the prerequisite of considering QoD. The server adopting the QoS-

Dependent scheme has no gain in keeping a query around if the query exceeds its maximal

allowed response time defined in its QoS function.

• QoS-Independent: QoD profit is added regardless of the value of QoS profit, but the

query still has to be completed by a maximum lifetime deadline to avoid keeping queries

in the system forever. The server adopting the QoS-Independent scheme may not drop

queries even if they no longer have QoS profit.

3.2.4 Usability of Quality Contracts

We envision that a system which supports Quality Contracts will provide a wide assortment

of possible types of QoS/QoD metrics to the users. Making QCs easy to configure is funda-

mental to their acceptance by the user community. Towards this we expect service providers

to support parameterized versions of QC graphs that the users can easily instantiate. In fact,

a simpler scheme is one where the service provider has already identified a certain class of

QCs for each type of user (such as a pre-determined cell phone plan) and a user will simply

have to turn a “knob” on whether she prefers higher QoS or higher QoD (a local plan with

more minutes or a national plan with fewer minutes under the same budget). Using QCs

in this way, service providers can better provision their systems, provide different classes of

service, and allow end users to specify their preferences with minimal effort.

Although in this work we align QoS to response time and QoD to staleness, the Qual-

ity Contracts framework is general enough to allow for any quality metric including virtual

attributes. Virtual attributes are computed over other attributes, possibly with statistics of

the entire system. For example, user can specify QoS as the delay his/her queries received

when compared to the average delay in the system. Such “comparative” QoS metrics some-
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times is more intuitive: it is probably harder for a user to specify exact timing requirements,

but it is easier to specify that he/she wants the submitted query to be executed within the

top 20% of the fastest queries in the entire system.

Furthermore, we believe that the notion of Quality of Data can be extended in multiple

ways. First, it can be used to measure the level of precision of the result (i.e., similar to data

freshness, but using the values to determine the amount of deviation from the ideal, instead

of time since last update). Similarly, we can use approximate data to answer questions

and this can be “penalized” accordingly by the user (while it also poses a clear trade-off

between response time and accuracy of results). Secondly, it can be used in systems that

support online aggregation [48], where user queries can return results at various level of

confidence. In such a case, QoD can be represented as a function over the confidence metric.

Finally, QoD can be used to refer to Quality of Information, where, for example, a measure

of trustworthiness of the provided information can be computed and users may express how

much they are willing to “pay” for high-quality results.
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4.0 LOAD BALANCING (SERVER)

As mentioned earlier, Web servers are often characterized by their unpredictable access

patterns over data/time, which typically translates to periods of peak request load. Web-

database servers must be prepared to deal with such bursty accesses and balance the trade-off

between query timeliness and data freshness.

In order to effectively utilize the resources of the Web-database server in times of peak

load, we need to shed some of the load on the server. Since load on the server is due to both

user queries and background updates, shedding load can be done in two ways: by dropping

some of the user queries or by reducing the amount of the updates. Although performing

all updates will guarantee the highest level of freshness for any user query, dropping some

of the updates does not necessarily lead to decreased query freshness because data access

pattern is usually not uniform. Revisiting the earlier stock monitoring example, if a stock

receives hundreds of updates within a second and is only accessed once through a user query,

we could easily ignore all updates until the last one before the access, without losing query

freshness from the user’s point of view.

In this chapter, we apply the idea of Quality Contracts to perform load shedding on

queries and updates according to user preferences. Specifically,

• We use the User Satisfaction Metric (USM), a parameterized version of the general Quality

Contracts, to represent user preferences over the different outcomes of user queries.

• We propose a suite of algorithms to maximize USM when system resources are not enough

to guarantee a hundred percent of both freshness and timeliness. Specifically, we provide

two algorithms: an admission control algorithm and an update frequency modulation

algorithm. The admission control algorithm adjusts the user query workload by dropping
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those transactions which threaten the system USM. The update frequency modulation

algorithm adjusts the update workload by intelligently reducing the frequency of updates

to data that have minimal harm to the overall user-perceived freshness. When and which

workload to adjust depends on the decisions made by a general feedback control loop.

• We compare our proposed algorithms to two baseline algorithms and the current state

of the art [54] with an extensive simulation study using workloads generated from real

disk traces.

4.1 BACKGROUND AND DEFINITIONS

4.1.1 User Satisfaction Metric - simplified Quality Contract

We use the User Satisfaction Metric (USM) to study admission control. USM is a simplified

version of Quality Contracts (introduced in Section 3.2.2). Under USM, users still specify their

preferences for difference dimensions of quality (i.e., rejections, response time, and freshness).

However, the preferences are parameterized using weights instead of being mapped through

functions or graphs as in the full-fledged QCs. The reason of the simplification is to have

an admission control that is general enough to work with database servers that do not

support Quality Contract graphs. The admission control layer takes the responsibility of

minimizing the disparity caused by the dynamic load challenges when the system cannot

fully satisfy the user preferences indicated in USM. Web-databases only need to provide the

log information and execution statistics for the admission control to take the appropriate

and prompt reaction.

USM can been seen as generated from three Quality Contract functions: Admission func-

tion, QoS function, and QoD function, as shown in Figure 4.1. The QoS function depends

on Admission function, meaning that only if a query is admitted can the system get any

QoS profit from the query. Similarly, the QoD function depends on QoS function, meaning

that only if a query generates positive QoS profit can the system get any QoD profit from

the query. Since we are only using step functions, the dependency among functions actually
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complicates the expression of user preferences. As summarized in the following, we find that

a query can only have four outcomes under the circumstance. Thus, instead of having three

functions with dependencies, we can just use a set of weights to express user preferences.
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Figure 4.1: USM in the form of Quality Contracts with a discrete Admission function, a

continuous QoS function, and a discrete QoD function.

Given the QoS and QoD constraints and function dependencies, we identify four possible

outcomes for a user query:

• Rejection A query may be rejected from the system (i.e., the query did not pass the

admission control phase). We refer to this case as a rejection.

• Deadline-Missed Failure A user query returns later than the maximal allowed response

time, rtmax . We refer to this case as Deadline-Missed Failure (DMF).

• Data-Stale Failure Even if a query returns before rtmax , it will fail if it returns with

staleness bigger than the maximal allowed staleness uumax . We refer to this case as

Data-Stale Failure (DSF).

• Success If a user query does not fail (for any of the above three reasons), it is considered

successful.

Correspondingly, each outcome is associated with a weighting parameter. Thus, the User
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Satisfaction of user query qi, US(qi), could have four possible values as follows:

US(qi) =





G
(i)
s if qi meets both rtmaxand uumax

−C
(i)
r if qi is rejected

−C
(i)
fm if qi fails to meet rtmax

−C
(i)
fs if qi fails to meet uumax

(4.1)

where G
(i)
s is the success gain of qi, C

(i)
r is the rejection penalty of qi, C

(i)
fm is the DMF

(Deadline-Missed Failure) penalty of qi, and C
(i)
fs is the DSF (Data-Stale Failure) penalty of

qi. In this work, the penalties (C
(i)
r , C

(i)
fm, C

(i)
fs ) are normalized to G

(i)
s . Thus, G

(i)
s is 1.

We define the total User Satisfaction Metric of the system (over the set of all queries

submitted by the users) as the sum of the User Satisfaction of each user query, US(qi):

USMtotal =
∑
qi∈Q

(US(qi)) (4.2)

If we have Ns user queries that succeed, Nr that get rejected, Nfm that exhibit a deadline-

missed failure, and Nfs that exhibit a data-stale failure, then by combining Equations 4.2

and 4.1 we have that:

USMtotal =
Ns∑

k=1

G(k)
s −

Nr∑

k=1

C(k)
r −

Nfm∑

k=1

C
(k)
fm −

Nfs∑

k=1

C
(k)
fs (4.3)

Now we have the four parts representing the gain and penalty according to the four

outcomes of the transactions. If we divide the total USM by the total number of submitted

user queries, we have the following average USM:

USM = S −R− Fm − Fs (4.4)

which is the average success gain (S), deducted by average rejection cost (R), the average

DMF cost (Fm), and the average DSF cost (Fs).
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4.1.1.1 USM Range Higher values for the USM as defined in Equation 4.4, correspond

to higher levels of user satisfaction. The maximum attainable value for USM is 1, for the case

that all user queries are successful. The lowest possible USM value is −
PN

i max
�
C

(i)
r , C

(i)
fm, C

(i)
fs

�

N
.

In other words, the worst case scenario is when all the user queries fail and the type of failure

matches what the users consider to be the most annoying (and have thus assigned to it the

highest penalty).

Table 4.1: Table of Symbols for UNIT Load Balancing

Symbol Description

rtmax relative deadline of qi, i.e., maximal response time allowed to prevent DMF

uumax freshness requirement of qi, i.e., maximal staleness allowed to to prevent DSF

DMF Deadline Missed Failure

DSF Data Stale Failure

USMtotal total user satisfaction

USM average user satisfaction

US(qi) user satisfaction of qi

Ns total number of successful transactions

Nr number of rejected transactions

Nfm number of DMFs

Nfs number of DSFs

Rs average success ratio

Rr average rejection ratio

Rfm average DMF ratio

Rfs average DSF ratio

G
(i)
s success gain for qi, which is 1.

C
(i)
r rejection cost for qi, normalized to G

(i)
s

C
(i)
fm DMF cost for qi, normalized to G

(i)
s

C
(i)
fs DSF cost for qi, normalized to G

(i)
s
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4.1.2 Queries and Updates

There are some additional facts about the characteristics of queries and updates in addition

to what we have described in the system model (Section 3.1.2).

Each query is associated with three weighting parameters from USM (Cr, Cfm, Cfs) and

two requirement parameters (the maximum allowed response time rtmax and maximum al-

lowed staleness uumax ). Query qi will be aborted if its running time exceeds rtmax .

We only consider periodic updates for the load management (Chapter 4), since most

Web servers periodically pull updates or subscribe to update “feeds” being pushed from the

source (e.g., NYSE, www.nyse.com). Notice that the work can be easily extended to sporadic

updates because the staleness computation is lag-based. Essentially, increasing/decreasing

updates allowed into the system is well aligned with decreasing/increasing data staleness.

For example, to decrease the staleness of a data item, increasing the probability of admitting

the updates of this data item (with sporadic updates) has similar effect with decreasing the

update period of this data item (with periodic updates).

4.2 UNIT LOAD MANAGEMENT

Given the system USM as defined in the previous section, our goal is to maximize it by

employing an adaptive load control scheme. This load control scheme should be able to sit

upon general databases provided with query execution statistics. The idea is inspired by

Kang’s work [54] in which they use a feedback control loop to monitor the freshness and

deadline miss ratio. We provide detailed comparison of our work to Kang’s in Section 4.3.1.

4.2.1 System Overview

Figure 4.2 shows the overview of the feedback control system in UNIT, which is short for

User-ceNtrIc Transaction management. There are two interrelated parts in this system:

data flow, which corresponds to how queries and updates propagate through the system;

and control flow, which corresponds to how the control process interacts with the data flow.
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Figure 4.2: UNIT Feedback Control System

4.2.1.1 Data flow User queries and updates are submitted into the system and put into

the ready queue if admitted. In general, the underlying databases can use any dispatch-

ing scheme. Without loss of generality, we assume the dispatching discipline used in the

underlying database is a dual-priority queue: updates have higher priorities than queries,

whereas within each group, preemptive EDF (Earliest Deadline First) is applied. When

a query completes successfully (i.e., within deadline and freshness constraints), the query

result becomes available in the success queue. The underlying database can also choose any

concurrency control policy. We assume that Two-Phase Locking - High Priority (2PL-HP) [4]

is adopted, since 2PL-HP is shown to outperform others with finite resources in real-time

database systems that keep tasks continue to run even after deadlines [43].

4.2.1.2 Control flow The Load Balancing Controller (LBC) is responsible for regulating

control flow. Specifically, it can tighten/loosen admission control by sending signals to the

Query Admission Control module to allow less/more user queries into the system. LBC can
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also increase/decrease the update frequency of updates by sending signals to the Update

Frequency Modulation module to carry out more/less updates. The control flow is triggered

periodically or when the USM shrinks by more than a certain threshold. The LBC also

monitors queries for further load shedding. Since we assume firm deadlines, if a query

deadline is missed while the query is in the ready queue or during its execution, the query

has to be aborted. Similarly, query results with stale data items (DSF) can be discarded or

returned to the user with a special notice.

4.2.2 Load Balancing Controller (LBC)

The Load Balancing Controller monitors the system statistics and initiates the Adaptive

Allocation periodically or when there is a big drop of USM, that is, when ∆USM is greater

than a specified threshold; the threshold is usually 1% of the range of USM.

Algorithm 4.1: Adaptive Allocation Algorithm

Input : Rr Rfm, Rfs

Output: control signals

if ∆USM > USMt or ∆time >= Grace Period then1

//handle cases where all costs are zero

if Cr, Cfm,Cfs all equal 0 then2

R = Rr; Fm = Rfm; Fs = Rfs3

//break ties randomly

switch max(R, Fm, Fs) do4

//rejection cost is highest

case R Loosen Admission Control [Section 4.2.3]5

//DMF cost is highest

case Fm6

Degrade Update [Section 4.2.4.1]7

Tighten Admission Control [Section 4.2.3]8

//DSF cost is highest

case Fs Upgrade Update[Section 4.2.4.2]9
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The policy executed by the LBC to decide on what to do (admit more/less user queries or

improve/deteriorate the freshness through updates) is described in the Adaptive Allocation

Algorithm (see Algorithm 4.1). The algorithm takes as input the rejection ratio Rr, the

DMF ratio Rfm and the DSF ratio Rfs, and triggers a new control signal as the result. The

main idea is to reduce the dominant penalty cost at the time a drop in the USM is detected.

If Cr, Cfm, and Cfs are all 0, the system will focus only on reducing the failure with highest

ratio to maintain a high success gain.

4.2.3 Query Admission Control (AC)

Query admission control filters out two types of user queries: those that have little chance

to succeed by performing a query deadline check, and those that can significantly hurt the

system performance by performing a system USM check.

4.2.3.1 Query deadline check We assume the average execution time for each query

can be determined by the existing monitoring techniques that most database systems utilize

for query optimization. These average execution times are used to check how promising a

query is to finish on time before it is accepted. More specifically, for each query, the system

keeps the Earliest-possible Start Time (EST). The system will check if ESTi + ei < rtmaxi

before accepting the user query qi, where ei is the average execution time of qi and rtmaxi
is

its relative deadline. Moreover, we also bring in a lag ratio Cflex to allow some flexibility to

the scheduling; in other words, we check if Cflex · ESTi + qei < rtmax . All the queries pass

this test are called promising queries.

4.2.3.2 System USM check Usually, not all the promising queries are admitted, since

they may overload the system. The system USM check considers the global impact of admit-

ting a query, since the new query may delay the existing queries, which may lead to DMFs.

We compute the consequence to the USM cost, by counting the total DMF cost of the en-

dangered queries (i.e., the queries that might miss their deadlines due to the new incoming

query). If the DMF of endangered queries is higher than the cost of rejecting the new query,

the system rejects the incoming query.
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The complexity of the admission control algorithm (query deadline check and system

USM check) is O(Nrq) for each query, where Nrq is the length of the ready queue.

4.2.3.3 Tighten/Loosen Admission Control The LBC will send TAC/LAC (Tighten

/ Loosen Admission Control) signals to adjust Cflex when needed. Notice that the larger the

Cflex is, the tighter the Admission Control is. The initial value of Cflex is set to 1 and a

TAC/LAC signal is to increase/decrease Cflex by 10%.

4.2.4 Update Frequency Modulation (UM)

We use Update Frequency Modulation (UM) to control the number of updates that are

processed in the system by increasing or decreasing the frequency of updates. The reduction

of updates is carried out on those data that have relatively little effect on query quality,

upon receiving the Degrade Update control signal from LBC. Conversely, we increase the

frequency of all degraded updates to help with the freshness, upon receiving the Upgrade

Update control signal from LBC.

4.2.4.1 Degrading Updates Next, we answer the following two questions:

(1) Which update to degrade?

(2) How aggressively to degrade the updates?

Which update to degrade? Intuitively, we want to degrade the updates for the data item

that the system spends too much time updating, yet only few queries need to access. The

probability a data item is chosen depends on its access pattern and update frequency.

We use Lottery Scheduling [100] to choose which data item to degrade, that is, whose

update to make less frequent. Each data item is associated with a certain ticket value. The

larger the ticket value a data item has, the higher the probability it will be chosen as the

victim, and its update frequency will be decreased. The ticket value is decided as follows.
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• Query effect on ticket values: The ticket value of dj is decreased every time there

is a query access to dj. The amount of decrease depends on the CPU utilization of the

access query. Intuitively, we do not want to degrade those data items which are needed

by the queries with high CPU utilization, because if the query’s freshness requirement is

not met, there will be less slack time for an additional update transaction to be issued

to retrieve the fresh data item. Since the larger the ticket value is, the more chance it

has to be degraded, for each query, the amount of decrease should be proportional to the

CPU utilization. Formally, the amount by which the value will decrease for each query

qi accessing dj is defined as:

DTj =
ei

rtmaxi

(4.5)

where ei is the average execution time of qi and rtmaxi
is its relative deadline.

• Update effect on ticket values: The system increases the ticket value of dj whenever

there is an update on dj. The longer the execution time of the update, the larger the

amount of increase on the ticket value. The idea is that we want to degrade those data

items that have been updated relatively too often, and given two data items having the

same number of updates, we want to obtain as much CPU time saving as possible by de-

grading the data item with longer update execution time. Among many choices to relate

the ticket value to execution time, we use the sigmoid function. Using the information

of average execution time among all the updates, the sigmod function smoothly converts

the execution time to the (0, 1) range, and it nicely takes care of the effect of outliers.

Formally, the amount by which the ticket value will increase for each update accessing

dj is defined as follows:

ITj =
1

1 + eueavg−uej
(4.6)

where ueavg is the average update execution time of all updates in the system, and uej is

the average execution time of update uj. Note that the increase of the ticket value is the

sigmoid function of the difference between execution time and average execution time.

• Forgetting: In order to concentrate on current system status, we apply a forgetting

factor Cforget to the computation of ticket values. With Cforget = 1, all historical accesses

and updates are effective to the ticket values. The smaller Cforget is, the faster it forgets.

We set Cforget = 0.9 in this paper, following the current practice in the literature [47].
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• Overall ticket value computation: The overall ticket value for data item dj is com-

puted as described below.

Tj =





Tj · Cforget −DTj from query qi

Tj · Cforget + ITj from update uj

(4.7)

In order to have non-negative ticket values for the Lottery Scheduling, we subtract the

smallest ticket value, Tmin, from all ticket values (i.e., ∀j, Tj = Tj − Tmin). Then, we use

Lottery Scheduling [100] that randomly picks a data item with probability proportional to

the ticket value of the data item. The complexity of applying the Lottery Scheduling is

O(logNd) [100], where Nd is the total number of data items.

How to degrade the update? Once dj is chosen to be degraded, its current update period

pcj is increased with a certain percentage as specified in the following:

pcj = pcj · (1 + Cdu) (4.8)

Cdu is set to 0.1 in our experiments to gradually reduce the number of updates on dj.

4.2.4.2 Upgrading Updates Upgrading updates needs to be done when degrading up-

dates affects the query freshness and the average DSF cost Fs becomes the leading cost in

the USM. The periods of all degraded updates should be decreased as in Equation 4.9, until

they are restored to the original period pij.

pcj = min(pij, pcj − Cuu · pij) (4.9)

where Cuu = 0.5, in our experiments, to essentially cut the update period by half of original

period and quickly restore the original update routines.
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4.3 EXPERIMENTS

We evaluated UNIT by comparing it to different algorithms under various performance

metrics and workloads (generated from real traces). Section 4.3.1 explains the experimental

setup as well as the baseline algorithms. Section 4.3.2 evaluates UNIT’s Update Frequency

Modulation under different workloads. Section 4.3.3 quantifies the performance gain of UNIT

to other algorithms. Section 4.3.4 evaluates how sensitive the algorithms are to the different

weight settings. Finally, Section 4.3.5 provides further insight into the influence of cost

factors over the different algorithms.

4.3.1 Experimental Setup

User Query Trace We generated user queries based on the HP disk cello99a [40] access

trace, which captures typical computer system research disk workloads, collected at HP Labs

in 1999. The trace lasts for 3,848,104 seconds and includes 110,035 reads. Each recorded

entry in cello99a has its arrival time, response time, and location on the disk. We take the

arrival time and response time of reads from the original trace and map their accessed logical

block number (lbn) into our data set. The disk location was partitioned into 1024 consecutive

regions, where each region represents a data item in our simulation. The deadline for each

query was generated randomly and ranged from the average response time to 10 times of the

maximal response time. We set freshness requirement for all user queries at 90%. Through

the above process, we generate the user queries with each of them containing the arrival

time, accessed data, estimated execution time, deadline and freshness requirements.

Update Trace Update workloads are classified into low, medium, and high workloads with

6144, 30000, and 61440 total updates, respectively, representing a 15%, 75%, and 150%

CPU utilization. In general, we need to specify the spatial distribution (what data item to

be accessed or updated) and temporal distribution (at what time it happens) of updates.

The spatial distribution essentially decides how many updates each data item gets, given
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Table 4.2: Update Traces

Updates Traces

Total Number Distribution

uniform low − unif

6144 positive correlation low − pos

(or 15% workload) negative correlation low − neg

uniform med− unif

30000 positive correlation med− pos

(or 75% workload) negative correlation med− neg

uniform high− unif

61440 positive correlation high− pos

(or 150% workload) negative correlation high− neg

the total number of updates on all data. The update workload could be uniformly spread

out over all base data items, meaning that every data item has equal amount of updates.

The update workload could also have some correlation with the user queries. We gener-

ate positively correlated updates to simulate a perfect correlation between the number of

updates and the number of user queries on each data item, which means the total number

of updates on each data item is proportional to the total number of accesses on that data

item. Also, we generate negatively correlated updates to simulate the situation when more

frequently queried data get relatively less updates. Since there is no direct way to generate

the negative correlation between updates and queries, we assume the updates follow the

power-law distribution [37]. Specifically, we rank the data items according to the ascending

order of the numbers of queries on them. Then, based on this ranking, we generate the

numbers of updates using the 80-20 rule [41] (i.e., 80% of the updates are generated for

20% of the data items). In short, we experimented with uniform, positive correlation and

negative correlation on each update workload.
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Once the number of updates for each data item are generated, we look at the temporal

distribution of these updates to construct the update traces. Since we only consider periodic

updates, the temporal distribution is uniform. Thus, the period for updating dj is the ratio

of the total number of updates for dj over the whole simulation time.

With low, medium, high workloads and three types of spacial distributions, we generated

nine update traces listed in Table 4.2. We generated estimated execution time for updates

randomly in the range of the response time of writes in cello99a. Each entry contains an

estimated execution time and an update period for a particular data item.

Baseline Algorithms We compared our scheme, UNIT, to two baseline algorithms (IMU

and ODU) and the current state-of-the-art (QMF [54]).

• IMU (Immediate Update): All the updates are executed immediately; no admission

control on queries. IMU achieves 100% freshness, but may suffer from low query success

ratio for the high update load.

• ODU (On-demand Update): updates are executed only when a query finds that a needed

data item is stale; no admission control on queries. ODU also achieves 100% freshness,

but the additional update issued may also delay the query and lead to missed deadlines.

• QMF: [54] uses a feedback control loop to adjust admission control and adaptive update

policy. With the CPU underutilized, QMF tries to update more often if the target

freshness is not met, otherwise admits more queries. With the CPU overloaded, QMF

updates less often if current freshness is higher than target freshness, otherwise drops

incoming queries until the system recovers. The adaptive update policy controls how

many updates to be dropped, and whose updates to be dropped (based on the ratio of

number of accesses over number of updates on each data).

4.3.2 Update Frequency Modulation Evaluation

First, we want to verify if our Update Frequency Modulation can intelligently choose to drop

updates that contribute little to the user query freshness. We show both the query access

39



Figure 4.3: Distribution of Queries over Data ID

distribution over data and the update distribution over data. The results are from user query

trace with update traces med-unif and med-neg.

Figure 4.3 shows the number of queries per data item, illustrating a skewed distribution

of requests over data items. Some data item has more than 650 query accesses, while some

others almost get no query during the whole simulation time. Potentially, the web-database

server can stop updating those data items that no query is interested in because they would

not affect the user perceived QoD.

Case Study 1: med-unif Updates In this case study, the original update requests

are distributed uniformly over all the data as indicated by the grey area in Figure 4.4(a).

Intuitively, the system should cut down the updates on the less frequently queried items

when necessary, which is exactly what UNIT does (see black lines in Figure 4.4(a)). By

comparing black lines in Figure 4.3 and Figure 4.4(a), we can see that UNIT can adaptively

follow the query distribution to select the important data items to update.

Case Study 2: med-neg Updates The grey area in Figure 4.4(b) (i.e., the update

volume) shows that the number of updates over data is negatively correlated to the query

distribution in Figure 4.3. This update trace has two prominent groups: hot updated and

cold updated data. As shown in Figure 4.4(b) with the tiny black dots close to x-axis, more

than 95% of the updates are dropped and the updates dropped concentrate on hot updated
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(a) med-unif trace (b)med-neg trace

Figure 4.4: Distribution of Updates over Data ID (Original vs. UNIT Degraded)

data which is also the data with less frequent accesses (smaller IDs). What we can also

roughly see from the black dots in Figure 4.4(b) is that the hot accessed data has about

the same number of updates than cold accessed data, instead of the big difference in Figure

4.4(a). The reason is that for the hot accessed data in Figure 4.4(b), originally the number

of updates is very small, i.e., a relative small number of updates is enough to guarantee the

freshness of the data.

We make the following observations: (1) It is not true that hot accessed data should

always get more updates than other data. When the data are inherently stable, a small

number of updates is enough. (2) Updates on cold accessed and hot updated data will be

dropped more often than those on hot accessed and cold updated data.

4.3.3 Naive USM: Quantitative Evaluation

We now quantitatively compare UNIT to other algorithms. In order to be fair, we set all

the weights Cr, Cfm, Cfs to 0, which means USM equals the traditional success ratio in this

naive setting.

Figure 4.5 shows the naive USM over 3 different update distributions (unif/pos/neg) and
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(a) Uniform (b) Positive correlation (c) Negative Correlation

Figure 4.5: Performance Comparison when USM = Success Ratio

three different update volumes (low/med/high). We can clearly see that UNIT has much

higher USM (success ratio) over all of the different settings in Figure 4.5.

Specifically, UNIT outperforms other algorithms ranging from 17% to 39% improvement

in Figure 4.5(a), from 13% to 28% improvement in Figure 4.5(b), and 6% to 58% improve-

ment in Figure 4.5(c) in absolute values for USM. These differences translate to a 30%, 50%

and 10% minimum relative improvement over the competitor algorithms and multiple orders

of magnitude improvement in the best case (since some of the other algorithms produce near

zero USM).

It is interesting to note that in Figure 4.5(a), QMF performs even worse than the sim-

ple on-demand update scheme (ODU), because QMF is trying to reduce the Miss Ratio

(number of deadline misses over number of admitted queries), which makes QMF reject

more aggressively to secure the admitted queries. As a result, QMF has fewer successful

queries than ODU. In Figure 4.5(b), immediate updates (IMU) performs almost identical to

ODU, because the query and update distributions are positively correlated. In Figure 4.5(c),

ODU performs close to UNIT, because most of updates are “irrelevant” under the negative

correlation. ODU by itself tries to minimize updates.
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4.3.4 Normal USM: Sensitivity Evaluation

With UNIT, it is possible to assign different penalties for different type of failures (i.e., assign

different values for Cr, Cfm, Cfs). In this set of experiments, we evaluate how sensitive UNIT

is to the different cost functions. The main result is that UNIT is fairly stable in terms of

USM, even when the cost functions change dramatically.

Table 4.3: USM weights with penalties < 1 for Figure 4.6(a)

Cs Cr Cfm Cfs

high Cr 1 0.5 0.1 0.1

high Cfm 1 0.1 0.5 0.1

high Cfs 1 0.1 0.1 0.5

Table 4.4: USM weights with penalties > 1 for Figure 4.6(b)

Cs Cr Cfm Cfs

high Cr 1 5 1 1

high Cfm 1 1 5 1

high Cfs 1 1 1 5

Figure 4.6(a) and 4.6(b) show the performance (measured as USM) of different methods

(under the query trace and update trace med unif ) with penalties less than 1 and greater

than 1, respectively. The 3 values along the x-axis (high Cr, high Cfm, high Cfs) refer to

the cases where the corresponding cost factor is higher than the other two costs. The exact

weights for Figure 4.6(a) are shown in Table 4.3, and the weights setup for Figure 4.6(b) are

shown in Table 4.4.

Figure 4.6 clearly shows that UNIT performs best in both cases: penalties < 1 and

penalties > 1. Some interesting observations are: (1) QMF performs worse with high Cr,

because it rejects many queries to favor the miss ratio; (2) IMU and ODU are worse with

high Cfm, because they fail to finish many queries on time.
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(a) Penalties < 1 (b) Penalties > 1

Figure 4.6: Non-zero Penalty Cost (med-unif trace)

4.3.5 Insight into behavior of UNIT

After showing the performance gain of UNIT in a variety of settings, we now elaborate on why

UNIT gives a better and more stable USM than the other methods. User queries could have

four outcomes: Success, Rejection, DMF, and DSF. We can collect how many queries fall

into each group by having the number of Success/Rejection/DMF/DSF divided by the total

number of queries, denoted as Success/Rejection/DMF/DSF ratio (i.e., Rs/Rr/Rfm/Rfs).

By visualizing the ratio decompositions of the outcome of queries, we can have an insight

about the results in the previous sections.

Figure 4.7(b) plots the four ratios for UNIT under the setup from Table 4.4. Figure 4.7(a)

plots the four ratios for IMU, ODU, and QMF. Since these algorithms are insensitive to the

weight variations, the four ratios are the same under all settings in Table 4.4. We observe

the following: (1) Regardless of the penalty settings, UNIT gives a much higher success ratio

than the others. (2) The ratio distribution of UNIT changes a lot with different cost setups.

With the rejection cost smallest with high Cr setup and DMF cost smallest in the high Cfm

setup, it can be explained why the USM for UNIT remains stable along different cost setups:

UNIT effectively minimizes the portion that dominates the cost. (3) IMU, ODU and QMF
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(a) Compared Algorithms (b) UNIT

Figure 4.7: Ratio Distribution

are not affected by the cost parameters and hold the same success ratio. Comparing the

three algorithms, we find QMF’s rejection ratio very high. The reason is that when there

is a burst of requests, QMF is being conservative and drops many queries to guarantee the

admitted queries to be successfully executed. Although within those admitted queries, the

miss ratio is minimized, the overall success ratio is low too.

4.4 SUMMARY

Web-based database systems of today are challenged by unpredictable surges of request

load. To optimize the system resource allocation towards users’ most interests, we proposed

a suite of load balancing algorithms, UNIT, to filter out the queries and the updates that

may hurt the overall user satisfactions. UNIT uses a feedback control mechanism and relies

on an intelligent admission control algorithm along with a new update frequency modulation

scheme in order to maximize USM (a simplified version of Quality Contracts). Our evaluation

showed that UNIT performs better than two baseline algorithms and the current state-of-

the-art when tested using workloads generated from real traces.
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5.0 SCHEDULING (SERVER)

The memory-residency of the types of systems we are interested in (as described in Sec-

tion 3.1) eliminates the problems of complex buffer management and I/O scheduling that are

crucial in traditional, disk-based database systems. Instead, in our system, CPU scheduling

is the primary means of improving performance1. QoS and QoD have always been trade-off of

each other. For example, if updates are scheduled before queries, users will perceive highest

QoD, but with less QoS than the case if updates are scheduled after queries. When the server

is under the challenge of the high load, the performance degradation on QoS/QoD will be

exaggerated and easily perceived by the end users. In such cases, the order by which queries

and updates are executed is expected to play a crucial role in affecting user satisfaction. We

will further illustrate the impact of CPU scheduling in Section 5.1.1.

This chapter focuses on query and update scheduling under user preferences through

Quality Contracts. We advocate that a single global scheduling policy is not feasible when

both QoS and QoD preferences have to be considered, and propose using a two-level scheduler

instead. Specifically, we propose QUTS, a two-level scheduler that addresses the problem of

prioritizing the scheduling of updates (associated with QoD) over queries (associated with

both QoS and QoD) in the presence of user-specified Quality Contracts. QUTS supports

both linear QC functions and step QC functions (explained in Section 5.1.2).

1Beyond CPU scheduling, concurrency control is also expected to play an important role in determining
performance, as is the case with traditional database systems. However, developing new concurrency control
schemes is outside the scope of this work. In the experiment, we adopt Two Phase Locking - High Priority
(2PL-HP) [4] concurrency control. With 2PL-HP, when there is a read-write conflict, the lower priority
transaction will restart and release the lock to the higher priority transaction. On the other hand, for a
write-write conflict, the older update will be dropped from the system, since only the most up-to-date update
is needed for each data item. Hence, there is no issue of deadlocks.
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5.1 MOTIVATION AND DEFINITIONS

5.1.1 Impact of CPU Scheduling

To further illustrate the impact of query and update scheduling on response time and stal-

eness and the ensuing trade-off, we ran a simple experiment with the following three naive

scheduling policies2.

(a) First In First Out (FIFO): a non-preemptive single priority queue with both queries and

updates, where queries and updates are executed according to their arrival times.

(b) FIFO Update High (FIFO-UH): a dual priority queue (one for updates and one for

queries) where the FIFO update queue has a higher priority than the FIFO query queue.

The arrival of an update may preempt the execution of a query.

(c) FIFO Query High (FIFO-QH): a dual priority queue (one for updates and one for queries)

where the FIFO query queue has a higher priority than the FIFO update queue. The

arrival of a query may preempt the execution of an update.

All three scheduling policies used the 2PL-HP (Two Phase Locking-High Priority) con-

currency control scheme [4]. The plain FIFO could be seen as the most “fair” policy (to

both queries and updates), which, however does not provide any guarantees. The FIFO-UH

guarantees zero staleness, since all the updates are applied as soon as possible, and there will

not be any pending updates when queries get to execute. Finally, the FIFO-QH is expected

to give the best response time for queries among the three policies, since queries always get

top priority, running ahead of updates.

Figure 5.1 shows the average staleness and average response time from running a sim-

ulation experiment using a real stock information web server trace. We measured average

staleness as the number of unapplied updates, uu, and averaged over all queries; the trace

consists of about 80,000 user queries with about 490,000 updates arriving during the same

time. In Figure 5.1, the impact of the three scheduling policies on performance is clear:

FIFO-UH has the lowest staleness, but the worst response time; FIFO-QH has the lowest

2There was no load shedding on updates nor admission control on queries in this setup.

47



FIFO       
[0.07, 322]

FIFO-UH      
[0, 11591]

FIFO-QH
[0.26, 23]

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

0 0.2 0.4

Staleness (uu)

R
es

p
o

n
se

 T
im

e 
(m

s)

Figure 5.1: Impact of Scheduling on the Trade-off between Response Time and Staleness.

response time, but the worst staleness; the plain FIFO policy is somewhere in between the

two extremes.

It is not clear which of these policies is better, since all three points are dominating

points (i.e., for each point, no other point exists with smaller values on both dimensions).

Without proper choice of scheduling, the server may easily go against the users’ will and

optimize towards opposite especially when user preferences changes dynamically.

5.1.2 Linear/Step Quality Contracts

In Chapter 3, we have proposed Quality Contracts (QCs) as a unifying framework for spec-

ifying QoS and QoD preferences. In the general case of Quality Contracts, users specify a

number of non-increasing functions over the QoS/QoD metrics of interest, along with the

amount of “worth” to them, for the query to have a certain QoS or QoD when it finishes. In

this way, users can specify the relative importance of QoS over QoD as well as the relative

importance among their different queries.

Although QCs can be defined with any non-increasing functions, in this work, we look

into two types: (a) step functions and (b) linear functions.

Figure 5.2(a) has an example of QCs with step functions (or step QCs for short), with
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Figure 5.2: Quality Contract examples

only two functions specified: one for QoS, using response time, and one for QoD, using

staleness. Notice that, the QoD function is discrete because we compute the query staleness

with the maximum number of unapplied updates of all the data items the query accesses.

We can uniquely identify such QCs using four parameters:

• qosmax , is the maximum QoS profit that the server can possibly get from executing

this query,

• rtmax , is the maximum response time (i.e., the relative deadline) that the query may

have for the server to get any (QoS) profit from executing this query,

• qodmax , is the maximum QoD profit that the server can possibly get from executing

this query,

• uumax , is the maximum number of unapplied updates that the query may have for

the server to get any (QoD) profit from executing this query.

Figure 5.2(b) has an example of QCs with linear functions (or linear QCs for short),

with the same setup as in Figure 5.2(a). In this work, we consider both step QCs and linear

QCs and adopt QoS-Independent QCs where QoD profit is collected even if QoS profit is

zero (see Section 3.2.3 for details).
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5.2 BASELINE ALGORITHMS

As we have shown with the three naive algorithms (FIFO, FIFO-UH, and FIFO-QH in

Section 5.1.1), there are two basic types of policies on scheduling queries and updates [5]:

single priority queue (e.g., FIFO) and dual priority queue (e.g., FIFO-UH and FIFO-QH).

Let’s look at these two categories respectively.

5.2.1 Single Priority Queue

With a single priority queue, the simplest scheduling policy is FIFO. However, since each

user query has a preference on QoS and QoD (with corresponding profit functions) and our

optimization goal is to maximize the system profit, the question is whether we can do better

than FIFO.

Query Priority: QoS functions in quality contracts are similar to utility functions, or

soft/firm deadlines with rewards, which have been studied extensively in real time sys-

tems [16, 49, 76, 45]. The general guideline is to consider both dimensions (the time con-

straints and the profit) of the QoS functions. However, deadline and profit pressure are only

helpful to prioritize queries and maximize the profit from QoS functions.

Update Priority: Updates determine data freshness. Thus, they have an indirect impact

on query freshness and therefore on QoD profit. Suppose we let updates inherit the QoD

functions associated with the corresponding queries, then the update priority should consider

both dimensions (staleness constraints and profit) of the QoD functions.

Combining Query and Update Priority: Now the problem is that the query priority

(based on time and profit) is not really comparable to the update priority (based on staleness

and profit) because staleness (measured in number of unapplied updates3) is not comparable

to response time. On the other hand, if we only consider the profit, which is commonly

3Even if we use time since last update to measure data staleness, this time value will still not be comparable
with query response time.
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expressed across all metrics, we lose the time information for queries and the staleness

information for updates. Thus, it is impossible to have a global priority scheme that considers

all the information provided by the QCs. In other words, query and update priorities are not

directly comparable under the QC framework, or any other framework that combines user

preferences on QoS and QoD. Our baseline algorithm for a single priority remains FIFO:

• First In First Out (FIFO) orders transactions according to their arrival time. Because

of the random arrival and interleaving of queries and updates, FIFO may achieve better

QoS/QoD than the policies with dual priority queues that favor either updates (such as

FIFO-UH) or queries (such as FIFO-QH). Nonetheless, due to the same reason, FIFO’s

performance is not as predictable as the dual-priority-queue policies.

5.2.2 Dual Priority Queue

The benefit of a dual priority queue is that updates and queries can have their own priority

scheme and we only need to compare the query queue and update queue instead of individual

queries and updates. We present two baseline algorithms with dual priority queue:

• Update High (UH) UH forms a preemptive dual priority queue, where updates have

higher priority than queries. For queries, we use Value over Relative Deadline (VRD) [45]

which, with our QC framework, equals to the ratio of the query’s total maximal profit

over its maximal response time, or qosmax+qodmax
rtmax

. For updates, we adopt FIFO for its

simplicity, because the priority of updates can hardly affect the queries’ performance

with separate priority queues. UH guarantees zero staleness and highest QoD regardless

of the order of updates4. UH guarantees zero data staleness, but if a surge of updates

arrives, it will push behind all queries without distinction.

• Query High (QH) QH forms a preemptive dual priority queue, with queries having

higher priorities than updates. Similar to UH, VRD is used for queries and FIFO is used

for updates. QH is in favor of query execution, thus is expected to have better QoS

4Update scheduling in UH can potentially affect query QoS in a subtle way. The reason is that the order
of updates may cause different number of updates to be invalidated due to the newly arriving updates. As a
result, the whole CPU time consumed by the updates is slightly different. Nonetheless, the benefit of using
a more complex algorithm can barely cover the overhead.
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performance than UH. Yet, its delayed execution of updates may accumulate too many

unapplied updates for data items, and thus increase query staleness.

The deficiency of UH and QH is that they have fixed priorities between queries and

updates, which leads them to either always favor QoS or always favor QoD. However, not all

users will have the same preferences, which may also change over time, thus making these

two policies unsuitable for the general case.

5.3 QUTS SCHEDULING

The discussion in the last section reveals that it is impossible to have a single priority queue

for both queries and updates because the QoS and QoD profit functions (i.e., the metrics

on time and staleness) are fundamentally incomparable. On the other hand, the baseline

algorithms with dual priority queues focus exclusively on either QoS or QoD, because of the

fixed priority between update queue and query queue. Thus, we need a policy with a dual

priority queue that adapts the priority between the two queues according to user preferences

on QoS and QoD.

Specifically, we propose the Query Update Time Sharing (QUTS) scheduling algorithm.

QUTS is a two-level scheme that at the high level, dynamically adjusts the query and update

share of CPU, so as to maximize overall system profit, and at the low level, allows queries and

updates to have their own priority queues. This means that QUTS can utilize any priority

scheme that considers both time and profit constraints for queries, as well as staleness and

profit constraints for updates. Similarly to the baseline algorithms, queries are scheduled via

VRD and updates are scheduled via FIFO.

The rest of the section mainly focuses on the high level scheduling, which is the central

component of the algorithm. Essentially, we want to answer the following two questions:

• Theoretically, how much CPU allocation should we assign to queries to optimize the

system profit from QCs?

• Practically, how to establish the CPU allocation?
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Table 5.1: Symbol Table of QUTS Scheduling

Symbol Meaning Definition

Nq total query set

z(i) value of symbol z for the ith query

zk value of symbol z for the kth adaptation period

ω adaptation period

τ atom time

ρ CPU percentage for queries, or query share; 0 ≤ ρ ≤ 1

QOSmax maximal QoS profit
∑

i∈Nq
qos

(i)
max

QODmax maximal QoD profit
∑

i∈Nq
qod

(i)
max

QOS gained QoS profit
∑

i∈Nq
qos(i)

QOD gained QoD profit
∑

i∈Nq
qod(i)

Q total total gained profit from both QoS and QoD
∑

i∈Nq
(qos(i) + qod(i))

5.3.1 Theoretical CPU Allocation

In order to see when (or for how long) we should have the priority of queries higher than

that of updates, we must find out the relationship between CPU allocation and the total

profit that the system can gain. Furthermore, we want to determine the CPU allocation that

maximizes the total profit. Please refer to Table 5.1 for the symbols used in this section.

5.3.1.1 Model the total profit with Query CPU allocation ρ Suppose the total

CPU to be allocated is 1, queries share ρ (0 ≤ ρ ≤ 1) of the CPU, and updates share the

rest, 1 − ρ. The goal is to have the right ρ such that the total gained profit Q total from all

queries is maximized. Since Q total comprises of two parts: QoS profit (denoted as QOS)

and QoD profit (denoted as QOD), we will look at the relationship between ρ and these two

parts respectively.
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Total QoS profit, depends on (1) the maximum QoS profit for each query, and (2)

the response time for each query, r. With linear QCs, higher query CPU allocation leads to

better response time, thus higher QoS profit. With step QCs, more query CPU allocation

leads to higher chances to finish within the maximum response time, thus more QoS profit

as well. In other words, the higher the ρ, the more profit the system can gain from the total

maximal profit of all queries in terms of QoS, QOSmax. Thus, the total gained QoS profit

QOS can be approximated as:

QOS = QOSmax · ρ (5.1)

Total QoD profit, similarly, relies on (1) the maximum QoD of each query, and (2)

the staleness for each query. In general, higher update CPU allocation leads to lower data

staleness, but queries also have to finish in time (before the maximum query lifetime) for the

system to get any QoD profit. In other words, the possible QoD profit gains (from the total

maximal profit of all queries in terms of QoD, QODmax.) require a fair amount of update

CPU share as well as the query CPU share. Thus, the total gained QoD profit QOD can be

approximated as:

QOD = QODmax · ρ · (1− ρ) (5.2)

Total profit is, thus, modeled as:

Q total ≈ QOSmax · ρ + QODmax · (1− ρ) · ρ, 0 ≤ ρ ≤ 1. (5.3)

5.3.1.2 The optimal ρ to maximize the total profit The above quadratic function

with linear constraints usually requires expensive quadratic programming to find the optimal

solution. However, since there is only one variable ρ in Equation 5.3, we can simplify it into

a gradient descent problem. The optimal solution is:

ρ = min(
QOSmax

2 ·QODmax

+ 0.5, 1) (5.4)

Notice that since both QOSmax and QODmax are positive, the minimal value of ρ is actually

0.5, which indicates that we should always keep more than 50% of time giving queries higher

priority than updates under this model.
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Adaptively adjusting ρ: With the workload and user preferences changing over time, ρ

should be adjusted adaptively. QUTS tries to find the optimal ρ periodically. The adaptation

period ω decides how often ρ is adjusted. The default value for ω is 1000 milliseconds. At

the beginning of each ω, ρ is computed and smoothed with an aging scheme [52] which is

similar to standard conjugate gradient optimization:

ρnew = min(
QOSmaxk−1

2 ·QODmaxk−1

+ 0.5, 1) (5.5)

ρk = (1− α) · ρk−1 + α · ρnew 0 < α < 1 (5.6)

where QOSmaxk−1/QODmaxk−1 is the maximal sum of submitted QoS/QoD values during

the previous adaptation period. Those QCs that change over time (e.g., linear QCs) will

incur more overhead when QOSmax/QODmax is recomputed. In general, α should be a small

value, but the exact α does not matter much [52].

5.3.2 Implementation of CPU allocation ρ

Based on the previous discussion, the probability of a query running (or the query queue

preceding the update queue) should be ρ within the current ω. We pick for execution the

head of the query queue with probability ρ and the head of the update queue with probability

as 1− ρ.

Figure 5.3: QUTS Scheduling

The problem is how often we select the next queue to execute. We can choose from as

small a duration as one CPU cycle, or as large as ω. We do not want it to be too often, not

only to avoid the overhead, but also because the data contention can be potentially increased
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Table 5.2: Pseudo-code of QUTS (Query-Update Time-Sharing) two-level Scheduling Algo.

for each adaptation period ω (Section 5.3.1)

Adjust ρ according to Equation 5.5, 5.6

High for each atom time period τ (Section 5.3.2)

Level (or the current running queue is empty)

Generate a random number ξ ∈ [0, 1]

if ξ < ρ

query queue is chosen.

else

update queue is chosen.

Low query priority queue: update priority queue:

Level VRD (Section 5.2) FIFO

with more and more unfinished transactions. On the other hand, we also cannot afford to

wait too long, especially for the queries with stringent time constraints and high profit.

We define atom time τ to be the minimal time we keep running queries or updates if

both queues are nonempty. Specifically, there are two possible states : if queries have higher

priority than updates in τ , we call it query state and label it with τ · q, otherwise, we call

it update state and label it with τ · u. Each time when τ expires, the system chooses from

queries and updates for the next τ , as the example shown in Figure 5.3. A state change may

happen every τ time, or if the picked queue is empty at any instant of time. The pseudo-code

for the QUTS two-level scheduling algorithm is given in Table 5.2.

The complexity of QUTS in its uppper level is O(N ′ + M) for each adaptation window,

where N’ is the number of queries appeared in an adaptation window, and M is the number of

atom times in an adaptation window. In general, the lower level of QUTS can use any query

scheduling scheme and update scheduling scheme. In particular, VRD has a complexity of

O(N log N), where N is the total number of queries.
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5.4 EXPERIMENTS

We have acquired access traces from a popular stock market information web site, Quote.com.

We combined these access traces with the NYSE (New York Stock Exchange) update traces

at the same time period, which enabled us to accurately generate both query and update

workloads for our experiments, without having to resort to generating synthetic data. Our

goal is to evaluate how well the proposed methods perform under the entire spectrum of

Quality Contracts, and also gauge the adaptability and sensitivity of our proposed algorithm.

5.4.1 Experimental Setup

5.4.1.1 Query and Update Traces We used real trading queries from Stock.com for

the date of April 24, 2000. Query types include, but are not limited to: (1) look-up, (2)

computing moving average of stock prices, and (3) comparison among stocks. All queries

are read-only. Each query has an arrival time and a stock symbol set to be accessed. Query

execution time (CPU occupation) ranges from 5 to 9 milliseconds.

Table 5.3: Workload Information

Trace A (9:30am-10:00am) Trace B (10:30am-11:00am)

number of queries 82,129 120,000

number of updates 496,892 396,291

number of stocks 4,608 4,108

query execution time 5 ∼ 9ms

update execution time 1 ∼ 5ms

Our source, Stock.com, is an online trading platform which provides various types of real-

time queries and data analysis tools for stocks. The server is online 24 × 7, however, most

activity is occurring during normal trading hours (9:30am - 4:00pm). Thus, we concentrate

on queries during those hours for our experiments, when the server is challenged by the

flood of stock updates as well as the avalanche of queries from jittery investors. The results
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(a) Query Distribution over Time (b) Update Distribution over Time

Figure 5.4: Trace A characteristics: (a) query distribution has small changes over time

despite one spike; (b) update distribution has downward trend over time with some fluctu-

ations.

presented in this chapter are based on two 30-minute intervals. In particular, trace A is

from 9:30am to 10:00am with 82,129 queries, and trace two is from 10:00am to 10:30am with

120,000 queries. Both query traces access more than 4,000 different stocks.

To match our query workload, we extracted the actual trades on all securities listed on

the NYSE during 9:30am-10:00am and during 10:30am-11:00am on April 24, 20005. The

update trace includes the stock ticker symbol, record date, trade time, and trade price per

share. Update execution times range from 1 to 5 milliseconds. In particular, trace A has

496,892 updates, and trace B has 396,291 updates on different stocks which share the same

indexing scheme with query traces, the stock ticker symbol. The workload information of

the two traces is summarized in Table 5.3. Next, we illustrate the characteristics of the two

traces.

Trace A (9:30am-10:00am): Figure 5.4(a) and (b) show the distributions over time for

trace A’s queries and updates respectively. The statistics are collected on each second. On

5The original trace was acquired from Wharton Research Data Services of the University of Pennsylvania.
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(a) Trace A (b) Trace B

Figure 5.5: Query vs. Update for each Stock: log-log plot of the query and update

frequency for each stock (depicted as circles). Stocks are concentrated below the diagonal

because both traces have more updates than queries.

average, there are more updates than queries. Yet, the intensity of the updates reduce during

the second half of the trace. Query distribution is rather stable over time despite one spike

during the second half of the trace. Update distribution has downward trend over time with

some fluctuations. Overall, the number of updates is almost 6 times of the number of the

queries. Figure 5.5(a) presents the number of updates and queries over all the stocks (each

point corresponds to a stock). Notice that many of the updates occur on the stocks with

very few queries (i.e., most points are below the diagonal in Figure 5.5(a)). These updates

could be reduced (or postponed) to save processing time without diminishing much of QoD,

especially when QCs show that QoS is more important to users.

Trace B (10:30am-11:00am): Trace B is taken from the late morning and has less fluctu-

ations than trace A. However, trace B concentrates on a heavier query workload, since the

stock activities are generally increasing in the morning. We plot the query distribution over

time in Figure 5.6(a). The distribution does not have any obvious spikes as in the earlier

interval plotted in Figure 5.4(a) although the total number of queries is higher than the
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Figure 5.6: Trace B characteristics: (a) both query and update distributions are more

stable than trace A; (b) the ratio between the number of queries and the number of updates

is smaller than that of trace A (3.3 in B vs. 6 in B).

earlier interval. The update distribution over time is plotted in Figure 5.6(b). Dislike the

downward trend shown in trace A, updates in trace B is relatively more stable. Overall, the

ratio between the number of queries and updates is around 3.3, which is smaller than the

ratio in trace A (at around 6). We also plot the number of updates and queries over all the

stocks in Figure 5.5(b). Similar to trace A, stocks are shown to be concentrated below the

diagonal (i.e., most stocks have more updates than queries).

5.4.1.2 System Parameters: τ and ω We have two parameters in our system: (1) the

atom time τ (i.e., the minimal time quantum before QUTS switches the priority between

the query queue and update queue), and (2) the adaptation period (i.e., the minimal time

before a rescheduling occurs). The default values of τ and ω are 10 and 1000 milliseconds.

As we will show in Section 5.4.4, the parameters can be chosen from a large range without

having much influence on the performance.
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Table 5.4: Setup Indicators and Performance Metrics

QOSmax maximal QoS profit
∑

i∈Nq
qos

(i)
max

QODmax maximal QoD profit
∑

i∈Nq
qod

(i)
max

Qmax total maximal profit from both QoS and QoD
∑

i∈Nq
qos

(i)
max + qod

(i)
max

QOSmax% maximal QoS gained profit percentage QOSmax

Qmax

QODmax% maximal QoD gained profit percentage QODmax

Qmax

QOS gained QoS profit
∑

i∈Nq
qos(i)

QOD gained QoD profit
∑

i∈Nq
qod(i)

Q total total gained profit from both QoS and QoD
∑

i∈Nq
qos(i) + qod(i)

QOS% QoS gained profit percentage QOS
Qmax

QOD% QoD profit percentage QOD
Qmax

Q% total profit percentage Qtotal

Qmax

where Nq is the total query set; z(i) is the value of symbol z for the ith query.

5.4.1.3 Performance Metric The performance is measured by how much profit from

all queries each algorithm gains. Depending on the goal of each set of experiment, we present

either the profit or the profit percentage (i.e., the ratio of gained profit over the maximal

profit). The profit can be denoted in terms of Q total, QOS , and QOD . The profit percentage

can be described using Q%, QOS%, and QOD%. Please refer to Table 5.4 for the detail

explaination and formal definition. For all metrics, the higher, the better.

We also define a couple of setup indicators (QOSmax% and QODmax% in Table 5.4)

to express the over all user preferences over QoS and QoD. QOSmax% and QODmax% are

defined as the maximal profit percentages that the system can gain from the users in terms of

QoS and QoD. In the following experiments, we vary the user preferences by setting Quality

Contracts with different ranges and achieving different QOSmax% and QODmax%.
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5.4.2 Performance Comparison

We compare QUTS with three baseline algorithms FIFO, UH, and QH under various quality

contracts (QCs). We test QCs with step functions and linear functions, and for each type of

functions, we vary one of the four characteristic parameters of QCs (qosmax, qodmax, rtmax,

or uumax) each time. Next, we present results from evaluating QUTS’ performance under

step QCs and linear QCs with both trace A and trace B (Section 5.4.2.1), and also with

changing qosmax and qodmax (Section 5.4.2.2). Please refer to Table 5.4 for the notations

used in explaining the following experimental results.

Table 5.5: Quality Contract Setup for Figure 5.7

QODmax% 0.5

QOSmax% 0.5

qodmax $10 ∼ $99

qosmax $10 ∼ $99

rtmax 50ms ∼ 100ms

uumax 1

5.4.2.1 Step QCs vs. Linear QCs

Experiment Design (Table 5.5): We have four traces in this experiment: trace A with

step QCs, trace A with linear QCs, trace B with step QCs, and trace B with linear QCs. For

all four traces, we use the same setup for QCs (as shown in Table 5.5): qosmax and qodmax

are randomly chosen from a same range, $10 ∼ $99. Thus, user preferences are equally

distributed over QoS and QoD, which means the maximal gained QoS profit over the the

maximal total profit, QOSmax%, equals to 0.5. Similarly, the maximal gained QoD profit

percentage, QODmax%, equals to 0.5 too. rtmax is randomly chosen from 50ms ∼ 100ms,

and uumax is set to 1 (i.e., QoD profit is gained only when no update is missed).
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Results (Figure 5.7): Figure 5.7 shows the performance of trace A with step functions and

with linear functions. For both plots, we show the gained QoS and QoD profit percentage.

The total height of each bar is the total profit percentage gained (i.e., the sum of QoS profit

percentage and QoD profit percentage). In Figure 5.7, the maximal QoS percentage is 0.5,

since QoS and QoD share the same amount of profit in this setup.
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Figure 5.7: Trace A: Profit Percentage with step and linear QC functions.
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Figure 5.8: Trace B: Profit Percentage with step and linear QC functions.

Looking at the performance with step QCs in Figure 5.7(a), we see that QUTS gains the

highest profit percentage with both QoS and QoD profit percentage close to the maximal.
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Table 5.6: Quality Contract Setup for Figure 5.9

QODmax% 0.1 0.2 . . . 0.9

QOSmax% 0.9 0.8 . . . 0.1

qodmax $10 ∼ $19 $20 ∼ $29 . . . $90 ∼ $99

qosmax $90 ∼ $99 $80 ∼ $89 . . . $10 ∼ $19

rtmax 50ms ∼ 100ms

uumax 1

As expected, QH has low QoD profit percentage, since it favors queries; UH has low QoS

profit percentage, since it favors updates; FIFO has the lowest total profit percentage, with

the worst QoS profit percentage among the four algorithms. Essentially QUTS is able to

take the “best” profit dimension of the other policies: high QoS from QH and high QoD

from UH.

Performance with linear QCs in Figure 5.7(b) shows similar trends with step QCs de-

spite a slightly lower total profit percentage. This is due to the fact that the maximal QoS

profit in the linear function is actually unrealistic (no transaction can be returned in literally

zero time), whereas there is no profit degradation with step functions. Overall, the per-

formance difference among the compared algorithms is similar between step functions and

linear functions.

Figure 5.8 shows the gained QoS and QoD profit percentage of trace B with step functions

and with linear functions. As we can see, the performance of the four compared algorithms

in trace B resembles that of trace A to a great extend. The biggest difference is that FIFO in

trace B gains up to 4% better QoS% than FIFO in trace A. This performance enhancement

may be caused by the relative stable query and update workload in trace B (e.g., no spike

as in A’s query trace). The variations of other algorithms are less than 2%.

Due to the similarity of the performance shown in both traces with step functions and

linear functions, we only show the results of trace A with step functions in the rest of the

experimental results.
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Figure 5.9: Profit Percentage with Various QCs (FIFO and QUTS)

5.4.2.2 Performance under different QCs

Experiment Design (Table 5.6): In the above experiments, we used the same range to

set qosmax and qodmax in QCs. This set of experiments is designed to show the performance

of QUTS with various qosmax and qodmax. We prepared nine different QC sets, which we

list in Table 5.6. Uniform distribution is adopted for all ranges listed in Table 5.6.

Results (Figure 5.9): Figure 5.9 shows the profit percentage from the FIFO, UH, QH,

and QUTS policy over the different QC setups, respectively. The actual QoS and QoD profit

percentages are shown by bars in each plot, whereas the diagonal line corresponds to the

maximum QoS profit percentage (QOSmax%). We see in Figure 5.9(a) that FIFO gains

the worst QoS profit percentage because it ignores the time constraints that users specified.

Thus, although FIFO has a decent QoD profit, it still cannot avoid to have the worst total

profit percentage. In Figure 5.9(c), the Update-High policy gains almost the maximal QoD

profit percentage (the light colored bars), but performs poorly on QoS. In Figure 5.9(d), the
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Figure 5.10: QoS/QoD Profit over Time

Query-High policy gains almost the maximal QoS profit percentage (the dark colored bars),

but performs relative poorly on QoD. In Figure 5.9(b), QUTS gains almost the maximal

QoS and QoD profit percentage with all QC sets. In fact, QUTS performs up to 101.3%

better than UH and up to 40.1% better than QH, consistently performing better or as good

as the best of the two policies. Clearly, the main weakness of both UH and QH is their

fixed preferences over queries (QoS) or updates (QoD) which are detrimental in a mixed-

preferences workload.

5.4.3 Adaptability to User Preferences

Having shown that QUTS is much better and robust than the baseline algorithms in various

QC setups, we now illustrate how quickly QUTS adapts to changing QCs.

Note that user preferences are reflected by quality contracts: if users indicate their

preference more on the QoS, the system should try to answer the queries as fast as possible

by increasing the CPU query share ρ; while if users care more on QoD, the system should

provide as accurate answers as possible by reducing ρ (hence increasing the update share).

Experiment Design: We use the same traces, but instead of a static QC setup, we vary
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Figure 5.11: Total Profit and Query CPU Share ρ over Time

qosmax and qodmax over time. Specifically, we divide the experiment period evenly into 4

intervals, and have rtmax = 50ms ∼ 100ms (uniformly distributed), uumax = 1, and vary the

qosmax to qodmax ratio from 1:5 to 5:1 (i.e., qosmax = 5× qodmax or vice versa). We inten-

tionally create sudden changes on user preferences during small time intervals (75 seconds)

in order to test the performance of QUTS in a challenging scenario. The goal is to show how

quickly QUTS can react to the changes and adjust ρ accordingly.

Results (Figure 5.10 and Figure 5.11): We plot the actual and maximal profit of sub-

mitted queries over time in Figure 5.10. As expected, the maximal line in Figure 5.10(a)

shows the QoS profit trend along time: low-high-low-high, and the maximal line in Fig-

ure 5.10(b) shows the QoD profit trend along time: high-low-high-low. The maximal line

in Figure 5.11(a) shows the total maximal profit which is the sum of the profits from Fig-

ure 5.10(a) and Figure 5.10(b). The solid line in all three figures is actual profit “gained”

by QUTS, which is closely following the maximal line (sometimes higher due to the late

completion of previously submitted queries). Note that the figure is plotted after applying

a filter with the moving-window size of 5 seconds, to smoothen the data. Overall, QUTS

performs very close to the ideal case.
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Figure 5.12: Sensitivity of QUTS over ω and τ

Figure 5.11(b) shows the ρ over time. ρ is the system’s probability of queries having

higher priority than updates. According to the solution that optimizes the total actual

profit given by Equation 5.4, ρ should be a number between 0.5 and 1, and should “track”

the total maximal QoS profit. In Figure 5.11, it is very easy to observe four regions where

the ρ follows the QoS profit trend: low-high-low-high; it ranges from around 0.6 to around

1. With ρ = 1, updates are still executing, but only when no queries are waiting. This

automatic adaptation behavior agrees with the actual scenarios.

5.4.4 Sensitivity of QUTS to ω and τ

In this section, we evaluate the impact of two system parameters of QUTS: atom time τ and

adaptation period ω. We use the same setup with that of Table 5.5.

Sensitivity of Adaptation Period ω (Figure 5.12(a)) The adaptation period determines

how often the top-level rescheduling of QUTS occurs. If the adaptation period is too small,

QUTS may make wrong decisions, if it is too large, the performance may suffer. However, as

we see in Figure 5.12(a) the overall performance varies little for a wide range of adaptation

periods.
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Sensitivity of Atom Time τ (Figure 5.12(b)) Atom time is the minimal time unit

before the system can switch between the query queue and the update queue. Small τ values

can potentially lead to more conflicts; bigger τ values may also hurt performance. In this

set of experiments, we fix the adaptation time to 1000ms and vary τ from 1ms to 1000ms.

Figure 5.12(b) shows the total profit percentage gained by QUTS with different τ . The best

performance is gained at around 10ms, which is close to the maximum execution time of our

queries (5ms ∼ 9ms). As such, a simple rule of thumb for setting τ is to set it above the

maximum execution time of most of the queries in the system.

5.5 SUMMARY

In this chapter we addressed the problem of scheduling queries and updates in data-intensive

web sites, in the presence of linear/step Quality Contracts (QCs). Specifically, we have

proposed a two-level scheduling algorithm, QUTS, that allocates CPU resources to maximize

the overall system profit (and, as such, the overall user-satisfaction). We compared QUTS to

three baseline algorithms, using real traces collected from a popular stock market information

web site. Our extensive experimental study has shown that QUTS outperforms all competitor

algorithms under the entire spectrum of QCs, adapts very well under changing workloads,

and has little sensitivity to its parameters.
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6.0 QUALITY CONTRACTS ADAPTATION (USER)

In previous chapters, we have illustrated the trade-off between Quality of Service (QoS)

and Quality of Data (QoD) in web-database systems and advocate using user preferences to

guide system resource allocation. Specifically, we proposed Quality Contracts framework in

Chapter 3 to empower users to indicate their preferences over multiple quality requirements

and different queries. In our framework, users are allocated with virtual money. A QC

essentially specifies how much virtual money the user is willing to pay to have his/her query

executed. The actual money that the server will get in the end (i.e., the system profit) will

depend on how well the query was executed. To take these user preferences into account, we

have developed load balancing policy UNIT in Chapter 4 to filter out the transactions that

are to the least interest to users according to a simplified version of QCs. To support the

full-fledged QCs, we also developed a query/update scheduling algorithm QUTS in Chapter 5

which maximizes the overall system profit through a two-level scheduling mechanism.

In this chapter, we combine the load balancing policy and the scheduling scheme and

focus on the applicability of the Quality Contract enhanced web-databases. Notice that

when users get the freedom to specify their preferences using Quality Contracts, they also

take the responsibility of assigning their virtual money in the framework. How to spend

the virtual money could become complicated with the presence of other competing users.

To eliminate the burden from users and take a step further in popularizing the Quality

Contracts framework, we build a demo system and explored multiple mechanisms of user

side adaptation on Quality Contract selection. Specifically,

• We combined our previous work on load balancing management and query/update schedul-

ing and implement QuiX (QUality-aware Integrated admission Control and Scheduling)
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system and evaluated different QC adaptation strategies in various settings with real

data traces.

• We identify two important issues in QC selection schemes: payment expectation and

savings amount.

• We propose the Adaptive Quality Contract (AQC) strategy, which monitors a user’s

queries and the server’s responses and automatically adapts the QCs of subsequent user-

submitted queries. AQC1 switches between two modes: Overbid mode, which maximizes

the utility of the user’s budget with the empirical expectation of QC expenditure; and

Deposit mode, which gracefully builds up user savings.

• We experimentally illustrate the effects of user population distribution and knowledge

scope in adapting QCs.

6.1 SYSTEM ARCHITECTURE
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Figure 6.1: System Architecture

We assume a web-database server architecture like the one in Figure 6.1. The system

consists of two parts: the user module and the web-database server. Before describing these

two parts, we discuss the basic concepts behind the QC economy.

1AQC is pronounced AQuaC, which sounds like AFLAC; however, we do not have a fancy mascot.
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6.1.1 The Quality Contract (QC) Economy

Users are allocated virtual money, which they spend in order to execute their queries ac-

cording to their preferences, which are described via QCs attached to each submitted query.

Servers, on the other hand, execute users’ queries and get virtual money in return for their

service.

The virtual money is “paid” upon submission of a query to the server as part of the

bidding (i.e., Qmax ); any refund is given back along with the query results (i.e., Qmax−Qpaid).

We adopt Quality Contracts as shown in Figure 6.1.

In the presence of Quality Contracts (QCs), the users and the server have distinct ob-

jectives: servers try to maximize their income, whereas users try to “stretch” their budget

to run successfully as many queries as they can.

6.1.2 Server View

The web-database server is responsible for processing both updates and queries in order to

meet the service requirements specified in the QC of each query.

Server Objective: Profit Maximization. The server objective is to maximize its

profit, gained from each QC, through admission control and scheduling.

Admission Control Scheme: We employ a variant of our UNIT scheme as described

in Chapter 4. UNIT eliminates those updates that have the least interests from queries

and rejects those queries that threaten the overall user satisfaction. UNIT was originally

designed to be used with non profit-driven scheduling schemes. To work with a profit-driven

scheduling algorithm as QUTS, we expect admission control layer takes less responsibility.

For example, load shedding on updates becomes redundant when unimportant updates can

be automatically postponed (and possibly dropped due to invalidation) without hurting user

satisfaction. In the QuiX system, we allow all updates entering the web-databases but keep

the query admission control from UNIT. A query has high chance to be rejected if it is too

demanding and/or has a small profit potential for the server, especially in periods of high

load. Thus, a higher bid will increase the chance of a query being admitted.
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Scheduling Scheme: We employ our QUTS scheduling scheme as described in Chap-

ter 5 to maximize the server profit. QUTS is a two-level scheduling scheme: it keeps a

separate priority queue for queries and another one for updates (each with its own schedul-

ing mechanisms). QUTS dynamically allocates CPU resources between the two queues

according to submitted QCs. The higher the bid, the higher the chance a query gets better

QoS/QoD when executing.

Concurrency Control: We use Two Phase Locking - High Priority (2PL-HP) [4] where

the lower priority transaction releases the lock to the higher priority transaction at a conflict.

6.1.3 User View

The user module must include an interface for specifying QCs and the ability to monitor the

execution of QC-enabled queries, while keeping track of the current budget. Although the

QC framework empowers the users to influence resource allocation decisions at the server,

to better meet their preferences, it also places the burden on the users to choose QCs (and

adapt them over time).

Quality Contract Adaptation Problem: In this work, we adopt QCs with linearly

decreasing positive functions as in Figure 6.1 (although our proposed algorithm can be

extended to other QC types). For each QC, users need to set four parameters: qosmax , the

maximum QoS profit, rtmax , the maximum bearable response time, qodmax , the maximum

QoD profit, and uumax , the maximum bearable staleness. We assume that users know

the quality constraints of their queries (i.e., rtmax and uumax ), and the relative importance

between QoS and QoD (i.e., qosmax
qodmax

). What users do not know is how to allocate and adapt

their budget to maximize the queries with valuable results returned, or, in other words, how

to choose Qmax , the budget for each query.

Query Outcomes: We define two outcomes for a query:

• Success: A query succeeds if it is returned with valuable answers, meaning that the

response time is shorter than the QoS constraint, rtmax , and the staleness is smaller than

the QoD constraint, uumax . Successful queries give to the server a nonzero payment,

Qpaid > 0. The actual value of Qpaid depends on how well the server executes the query,

given the QC.
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• Failure: If a query fails either the QoS or the QoD constraint, we call the query a failure,

and Qpaid = 0.

User Objective: Success Ratio Maximization. The users’ goal is to adapt Quality

Contracts (e.g., by changing Qmax ) to get as many as possible of his/her queries executed

successfully, within the given total budget.

6.1.4 Analysis of Baseline QC Adaptation Schemes

Before introducing our proposed scheme, we look into three baseline strategies. Given N

queries and a total budget B, the strategies compute Q
(i)
max , the total bid for the QC of query

i, as follows:

• Fixed (FIX): Q
(i)
max = B

N
. FIX is a static policy, which assigns each query an equal

share of the total budget.

• Random (RAN): Q
(i)
max =uniform[B

N
− c, B

N
+ c], where c is a constant. This strategy

uses B
N

as the mean, and [B
N
− c, B

N
+ c] as the range to pick Qmax uniformly.

• Dynamic (DYN): Q
(i)
max = Bi

N−i
. This scheme monitors the current budget left Bi and

the number of queries left N − i before query i is issued.

Problems with existing schemes: We evaluate the above three schemes with a

30-minute trace containing 120,000 queries and 396,000 updates and set the initial budget

per query to be $10. Figure 6.2(a) shows the average Qmax and Qpaid of FIX users for each

2-minute time period. We can see that Qmax is always set to $10. However, the actual

payment is less than half of the budget. In other words, FIX does not make full use of the

budget, because it ignores the refunds from the previous failed queries. The behavior of the

RAN scheme is similarly problematic.

DYN addresses the issue of ignored refunds by dynamically updating the available budget.

As shown in Figure 6.2(b), DYN users set Qmax to $10 at the beginning and increase it over

time, as refunds accumulate. As a result, DYN favors the queries issued later than earlier,

thus creating an uneven distribution of the total budget.
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Figure 6.2: Performance of Baseline Algorithms

If we know we will have a refund in the future, it makes sense to be aggressive and

bid more than the current budget per query. Having this in mind, we ran another set

of experiments with one DYN user and seven other users that used the FIX scheme, but

with the addition of an overbid factor, as follows: Qmax = B
N
× overbid factor. We ran the

experiment with overbid factors of 0.6 (=under-bidding), 1 (=regular FIX), 1.4, 1.8, 2.2, 2.6,

and 3. As Figure 6.3 shows, there is a peak in the success ratio when the overbid factor is

1.4. Also, both overbid factor 1.4 and 1.8 outperform DYN, because DYN is too conservative

at the beginning.
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Figure 6.3: Effect of Overbid with FIX

Although the FIX policy with the overbid factor outperforms the DYN policy in some

cases, clearly such a policy is not a viable option, because it relies heavily on the choice of
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the overbid factor. However, this policy brings out an interesting idea: overbidding can have

a very positive effect on the success ratio of queries. This is one of the ideas that we exploit

in our proposed AQC scheme, which we describe next.

6.2 ADAPTIVE QUALITY CONTRACT SCHEME (AQC)

In this section, we present our proposed Adaptive Quality Contract Scheme (AQC), which

addresses the problems and limitations of the baseline algorithms that were presented in

the previous section. Our AQC scheme switches between two modes: Overbid mode (pre-

sented in Section 6.2.1) and Deposit mode (presented in Section 6.2.2); we discuss how AQC

chooses between the two modes in Section 6.2.3. The symbols used for illustrating AQC is

summarized in Table 6.1.

Table 6.1: Table of Symbols

Symbol Explanation

B total budget

Bi current budget when the user issues the ith query

N total number of queries

qosmax , qodmax max $ promised in QC for QoS, QoD

qospaid , qodpaid $ paid to server for QoS, QoD after query completion

rtmax max response time specified in QC

uumax max # of unapplied updates in QC

Qmax qosmax + qodmax

Qpaid qospaid + qodpaid

z(i) value of symbol z for the ith query

z(s) value of z for last successful query
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6.2.1 Overbid Mode

The Overbid mode of the AQC scheme addresses DYN’s problem of unfairly “favoring”

later queries by monotonically increasing Qmax as time progresses (and previously submit-

ted queries have refunds). This behavior is roughly equivalent to last-minute spending by

companies at the end of the fiscal year, since at that time, any of the remaining money in

the current year’s budget will effectively disappear unless spent immediately.

AQC solves this problem by setting the budget of the submitted quality contracts for

each query to be such that the expected payments sum up to the overall budget. In contrast,

the DYN scheme sets the bid per query to be such that the individual bids sum up to the

total budget (which clearly results in under-utilization of the budget, only to be recognized

at the last minute).

In order to make the expected payments sum up to the overall budget, we merely have

to make sure that the expected payments for the ith query sum up to its fair share of the

budget:

Ep[Q
(i)
paid(x, y)] = budget per query =

Bi

N − i
(6.1)

Then, in order to find how to set the QC for the query, we have to essentially express Qpaid

in terms of Qmax , and solve Equation 6.1 for Qmax . Qpaid depends on the QoS function S,

QoD function D, and how well the server returns the query (response time x and staleness

y). Thus, as we show next, the expectation of Qpaid over the probability distribution of

response time (x) and staleness (y) can be expanded as the sum of expected expenditure

from QoS function and from QoD function respectively:

Ep[Q
(i)
paid(x, y)] = Ep[S(x)] + Ep[D(y)] (6.2)

If we combine Equation 6.1 with Equation 6.2, we have that:

Ep[S(x)] + Ep[D(y)] =
Bi

N − i
(6.3)
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In this work, we adopt linear segmented QCs where the QoS function can be represented

as in Equation 6.4 and the QoD function can be represented as in Equation 6.5. If other

formats of QC functions are adopted, Equation 6.4 and Equation 6.5 should be modified

accordingly.

S(x) =





qosmax (1− x
rtmax

) if x ∈ [0, rtmax ]

0 otherwise
(6.4)

D(y) =





qodmax (1− y
uumax

) if y ∈ [0, uumax ]

0 otherwise
(6.5)

We compute the expectation of QoS profit using empirical expectation, as shown in Equa-

tion 6.6.

Ep[S(x)] =

∫
S(x)p(x) dx

= qosmax

∫ rtmax

0

p(x) dx− qosmax

rtmax

∫ rtmax

0

xp(x) dx

≈ qosmax (P(x < rtmax )− x̄

rtmax

) (6.6)

where P(x < rtmax ) is the percentage of cases that the response time of the user query is

smaller than its response time constraint rtmax , and x̄ is the average response time. Both

P(x < rtmax ) and x̄ can be computed based on the query execution history. We introduce α

to denote this part of computation and summarize the expected QoS profit as follows:

Ep[S(x)] ≈ qosmax · α (6.7)

α = P(x < rtmax )− x̄

rtmax

Similarly, we compute the expectation of QoD profit:

Ep[D(y)] =

∫
S(y)p(y) dy

= qodmax

∫ uumax

0

p(y) dy − qodmax

uumax

∫ uumax

0

xp(y) dy

≈ qodmax (P(y < uumax )− ȳ

uumax

) (6.8)
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where P(y < uumax ) is the percentage of cases that the staleness of the user query is smaller

than its staleness constraint uumax , and ȳ is the average staleness. Both P(y < uumax ) and ȳ

can be computed based on the query execution history. We introduce β to denote this part

of computation and summarize the expected QoD profit as follows:

Ep[D(y)] ≈ qodmax · β (6.9)

β = P(y < uumax )− ȳ

uumax

As described in Equation 6.3, the total expected profit from both QoS (Equation 6.7)

and QoD (Equation 6.9) should be set to the current budget per query Bi

N−i
:

qosmax · α + qodmax · β =
Bi

N − i
(6.10)

where α and β are computed based on query execution history (as shown in Equation 6.7

and Equation 6.9). We assume that the relative importance between QoS and QoD for the

same user and query is known by the user. Let the ratio between QoS and QoD be γ, we

have:

Qmax = qosmax + qodmax

qodmax = γ · qosmax (6.11)

We solve Equation 6.11 and Equation 6.10 to get the final solution of Qmax :

Q(i)
max =

Bi

N − i
· 1

α + γ · β (6.12)

In the above solution, 1
α+γ·β is essentially the overbid factor.
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6.2.2 Deposit Mode

Although Overbid mode successfully utilizes as much of the budget as possible (and in a fair

manner across all queries), it will not detect cases of “overpayment” because of the server

having a light load. In such cases, there is not much “competition” from other users, and as

such the user could have paid less than what Overbid mode would suggest.

The benefit of detecting these cases comes from the inherent dynamic nature of typical

web-database servers. The load at such servers can fluctuate from very high (e.g., in periods

of flash crowds), where queries would require a high budget or they will not be able to

execute, to relatively low, where queries would require less than usual budget to execute.

In order to make sure that the AQC scheme can successfully react to the inherent dynamic

nature of web-database servers, we introduce a budget savings scheme which we call Deposit

mode. The main idea behind Deposit mode is to recognize cases when users can spend less

of their budget (because of a less competitive situation), so that they are ready to spend

more when facing stronger competition from other users.

To implement Deposit mode, the user will need to reduce Qmax when he/she recognizes

a “string” of consecutive successful query executions. Towards this, we record the number

of failures f within a window size w. If Q
(s)
max , Q

(s)
paid are the budget and the payment for the

most recent successful query, then we can set the new Q
(i)
max in Deposit mode as follows:

Q(i)
max = Q(s)

max · (1−
Q

(s)
paid

Q
(s)
max

) (6.13)

The idea is that the closer Q
(s)
paid is to Q

(s)
max , the further the actual response time is to the

response time constraint (and similarly for the staleness constraint). In other words, the

server can still satisfy the user requirements even if it gave slightly lower priority to that

query, and thus the user might have paid too much. Therefore, the decrease of Qmax should

be positively correlated to the ratio of Q
(s)
paid and Q

(s)
max .
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6.2.3 How to switch between Deposit and Overbid mode

At the beginning, the system is set to default mode, which is the overbid mode. AQC keeps

track of the number of consecutive query successes (successQ.size) and uses it to decide the

current system mode.

If the number of successes is significantly large (i.e., larger than a threshold c in line 1 of

Algorithm 6.1), the system is set to deposit mode. This is because a consecutive successful

history indicates a less competitive environment or a lightly loaded web-database server,

thus the bid can potentially be decreased without hurting the success ratio.

Notice that successQ.size only includes those queries that are completed within the time

window w. Thus, successQ.size can decrease due to two reasons: (1) there are no more

queries to be completed (i.e., neither query success nor query failure), thus successQ.size

decreases as the moving window w moves on. If successQ.size drops below c, the system

mode will be set to overbid because of the lack of successful feedbacks; (2) there is a query

failure, which will reset successQ.size to zero immediately. In both cases, system mode is

set to overbid promptly to utilize the user’s budget as much as possible so that the server is

motivated to execute the users queries with high priorities.

Algorithm 6.1: Adaptive Quality Contract Mode Selection

Input: successQ.size - number of consecutive query successes within time window w

if successQ.size > c then1

Deposit Mode [See Equation 6.12]2

else3

Overbid Mode [See Equation 6.13]4

By switching between the overbid and deposit modes according to the query success/failure,

the AQC scheme naturally follows the law of supply and demand.

81



6.3 EXPERIMENTS

6.3.1 Experimental Setup

As we have illustrated in Section 5.4.1.1, we acquired query traces from a popular stock

information web site, Quote.com and combined them with the NYSE (New York Stock

Exchange) update traces for the same time period. Section 5.4 shows that QUTS gives

consistent high performance under both trace A (9:30am-10:00am) and trace B (10:30am-

11:00am). To study how user strategies affect their query success ratio, in this experiment,

we use trace B because it has a higher query concentration than trace A.

Comparison Algorithms: To evaluate our proposed QC adaptation strategy, we per-

formed an extensive simulation study using the FIX (without overbid), RAN, DYN schemes

(Section 6.1.4) and our proposed AQC strategy (Section 6.2).

Experiment Design: We designed three sets of experiments:

1. performance comparison of different algorithms under various workloads settings, and

2. evaluation of how different populations of users using various algorithms will affect the

algorithm performance, and

3. evaluation of how the amount of knowledge the users can use will affect the algorithm

performance.

We attach user information with each query, which includes the user preference on the

QC and the adopted QC adaptation strategy. Detailed setup information is provided at the

beginning of each set of experiments.

6.3.2 Performance Comparison

To create environments for a fair comparison, we generated three sets of traces: solo, duet,

and quartet. In solo, each trace contains only one class of users (i.e., one algorithm), sim-

ulating a naive environment where no competitors exist. In duet, each trace contains two
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classes of users (i.e., two algorithms), creating an one-on-one confrontation to show directly

which algorithm performs better. In quartet, we put all four algorithms into the trace, where

they all interact and compete with each other.
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Figure 6.4: Solo Environment: Success Ratio

6.3.2.1 Solo

Experiment Design: We created four traces for the four algorithms respectively. Each

class of users has 120,000 queries (i.e., the whole trace) with initial budget per query to be

$10. The total budget for each user is the budget per query times the number of queries

he/she has.

Results (Figure 6.4) We measure the query success ratio for each adaptation strategy

in Figure 6.4. As we expected, the performance difference from each algorithm is small,

because no other competitors exist in the system. We expect the performance of a single

strategy highly depend on the server capacity, arrival patterns of the queries/updates, and

the read/write conflicts. In this set of experiments, FIX performs the best among all because

FIX gives constant bids, thus incurs least preemptions among its own queries. DYN performs

the worst since it naturally increases the bid by taking refunds from previous queries. Such
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monotonic increasing generates the most preemptions which result in the most restarts and

waste of system resources. Our proposed AQC algorithm performs very close to the best

algorithm in this naive environment.

Solo Over time Results (Figure 6.5 and Figure 6.6) To show how different adaptation

strategies perform over time, we record the bid Qmax and the money actually paid Qpaid for

each query. We plot their moving averages over time with a window size of 10 seconds. The

upper line is Qmax and lower line is the money actually paid Qpaid .

It is obvious that FIX gives the constant bid ($10, the budget per query) for each query

as shown in Figure 6.5(a). Due to the linear shape of the QC functions, usually Qmax will

not be fully spent because of unavoidable CPU time and unpredictable queuing time. Thus,

we see a much lower actual expenditure (around $5 on average) than Qmax . RAN has Qmax

varying from $9 to $11 since the budget per query is $10 as shown in Figure 6.5(b). Similar

to FIX, RAN’s actual money expenditure Qpaid is also much smaller than Qmax .

DYN, as shown in Figure 6.6(a), adaptively sets Qmax as the future budget per query,

which picks up all previous savings since the actual expenditure is usually much smaller.

However, the saving also causes Qmax booming at an increasing speed and finally skyrockets

in the end. DYN is still being conservative on early issued queries, which not only jeopardizes

the fairness of queries coming at different times, but also hurts its overall success ratio because

of the preemptions and restarts generated by the monotonic increase of bids.

AQC, as in Figure 6.6(b), shows its characteristics with its overbid and deposit mode,

although there is no other competitors in this solo environment. We can see that the actual

money paid Qpaid is on average $10 (the budget per query) which confirms that AQC realizes

its goal to raise the bids as much as possible but still not overspending the budget. The over

time plot also shows that AQC occasionally decreases Qmax when AQC tries to save money

after a sequence of successful records, so that it can bid higher to survive a tough situation

with a much higher chance.
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Figure 6.5: Solo over Time (FIX and RAN)
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Figure 6.7: Duet Environment: Success Ratio

6.3.2.2 Duet

Experiment Design: We compare AQC with each baseline algorithm individually to elim-

inate unnecessary interactions from multiple algorithms. We create three traces: (FIX,

AQC), (RAN, AQC), and (DYN, AQC). Each query from the trace is randomly associated

with one of the two algorithms in the experiment.

Results (Figure 6.7) We run each trace 20 times and report the average query success ratio

for the three comparisons in Figure 6.7. The performance difference is much more obvious

compared to the solo environment. AQC users perform 183% better than FIX users, almost

100% better than RAN users, and more than 30% better than DYN users. Another expected

observation is that AQC’s performance is better when competing with weaker competitors

such as FIX.

Duet Over time Results (Figure 6.8) With the same set of experiment, we record the

bid Qmax and the money paid Qpaid for each query as well as the query success ratio for each

2-minute window.

In Figure 6.8(a), FIX gives a constant bid ($10) for each query. When running against
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(a) FIX: Money Expenditure (b) FIX: Success Ratio
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(c) RAN: Money Expenditure (d) RAN: Success Ratio
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(e) DYN: Money Expenditure (f) DYN: Success Ratio
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(g) AQC: Money Expenditure (h) AQC: Success Ratio

Figure 6.8: Duet over Time
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AQC in the duet environment, FIX’s success ratio is less than 1/3 of FIX running solo. As

a result, FIX’s real expenditure in duet is also much smaller than FIX in solo. FIX also

has the smallest expenditure among all algorithms, leaving FIX with smallest success ratio

shown in Figure 6.8(b). RAN, shown in Figure 6.8(c) and (d), has not much improvement

over FIX. Qmax varies around $10 and Qpaid is around $4 on average. Comparing with FIX,

RAN only gains less than 50% better successes with more than 100% expenditure than FIX.

In Figure 6.8(e), we see DYN dynamically adjust the current available budget and in-

crease Qmax over time. As a result, DYN’s success ratio increases along time too, as shown

in Figure 6.8(d). However, similar to DYN’s solo over time, it is still too conservative on

early issued queries.

Finally, Figure 6.8(g) and (h) show AQC’s improvement from two sides. First, average

Qpaid is around $10, thus the budget is fully used to increase the quality of query results.

AQC is able to set Qmax higher than $10 because of foreseeing the expected expenditure

from its overbid mode. Second, AQC tries to save money after consecutive successes from its

deposit mode, so that the user can bid higher to survive a more competitive situation later.

This is why we see a few decreasing bids on Figure 6.8(g). Both the expenditure expectation

and saving with deposit mode help AQC achieve significantly better results when it competes

with other algorithms.

6.3.2.3 Quartet

Experiment Design: Having observed different algorithms’ behavior respectively (i.e.,

solo) and pairwise (i.e., duet), we mix the four user algorithms in one trace; each class of

users has 30,000 queries with a mean Qmax of $10. In this set of experiments, we focus on

(1) varying quality constraints (Figure 6.9(a)), and (2) showing both the user view and the

server view (Figure 6.9(b)).

Results (Figure 6.9(a)) We change the user constraints on QoS to be tight, medium, and

loose to generate three traces with High, Medium, and Low workload in Figure 6.9(a). As

expected, for all algorithms, the success ratio is higher with Low system workload (which

has loose quality constraints). Compared to the other algorithms, AQC performs the best
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Figure 6.9: Quartet Environment: 4 algorithms under different workload settings.
User view: the lighter the workload, the higher success ratio. Under high workload, AQC achieved
233% better performance than FIX, 155% than RAN, and 28% better than DYN. Server view:
DYN and AQC utilized almost all their money, whereas FIX and RAN had a large portion wasted.

under the whole spectrum of workloads. Another observation is that a high system workload

also exaggerates the performance differences among the algorithms. Under high workload,

AQC outperforms FIFO by 233%. AQC also achieves 155% better performance than RAN

and 28% better than DYN.

Results (Figure 6.9(b)) After watching different algorithms from the users’ point of view,

we show the server profit gains from each user algorithm under medium workload. Similar

trends can be found with both high and low workload. Figure 6.9(b) shows that the server

gains much more profit from DYN and AQC, thus tends to serve them better than FIX and

RAN. Making full use of the budget is a win-win strategy from both users’ and server’s point

of view.

To summarize, AQC not only gives the best success ratio under various workloads, but

also makes the users most “popular” from a system’s point of view, as the system can make

much more profit from users utilizing AQC.
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Figure 6.10: Average performance for AQC and RAN with different populations.
As the percentage of AQC users increases, the performance of both algorithms decreases, since
competition is more severe.

6.3.3 Population

Experiment Design: Previous experiments assigned equal proportions of users to the

different algorithms when compared in a single experiment. In this set of experiments, we

pick AQC and RAN to evaluate the impact of different population distributions. We generate

three traces where the population of AQC and RAN varies from (90%, 10%), (50%, 50%) to

(10%, 90%) in each trace.

Results (Figure 6.10) From the average query success ratio for each user class in Fig-

ure 6.10, we can see that no matter how small our algorithm’s user population is (e.g., 10%),

we can easily beat RAN by up to 227%, which well supports our hypothesis, that changing

population will not affect the performance of our algorithm. Another observation is that as

the population of AQC increases, the average query success ratio of both AQC and RAN

decreases and the performance difference increases. The reason is that as the population

of smart/aggresive users increase, the environment becomes more competitive. All users’

performance get affected and decreased, and RAN suffers more than AQC.
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Figure 6.11: Performance of AQC with different knowledge scope (Group Number
shows how many groups exist). AQC is stable; the performance improves (variance is
eliminated) as the amount of sharing increases (i.e., the number of groups decreases).

6.3.4 Knowledge Scope

Experiment Design: The advantage of our algorithm is that we use historical information,

such as previous query bid and if they succeeded, to adapt the new query bids based on

current system status. One of our hypotheses is that the more information we have, the

more precise our prediction will be, and the better our algorithm will perform. On the other

hand, we hope that our algorithm is stable enough so that the performance will not be

compromised even if we do not have that much information, which is important to ad-hoc

users with sporadic queries. In order to verify our hypothesis, we tested how our algorithm

performs under a varying knowledge scope.

We inject two classes of users, AQC and RAN, into each trace. Each class has 60,000

queries with a mean Qmax of $10. We divide AQC users into different number of groups, 1,

10, 100, 1000 and 10000, thus generating 5 testing traces. Within each group, the AQC users

have all other users’ historical information. As such, the smaller the number of groups is,

the larger the size of each group is, and the more knowledge those AQC users have.
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Table 6.2: Relative Performance of AQC/RAN in Knowledge Scope. With only
0.01% knowledge, AQC beats RAN by 30%. With 1% knowledge, AQC performs 85% better.

Group Number 1 10 100 1,000 10,000

success ratio(AQC)

success ratio(RAN)
1.96 1.89 1.85 1.30 1.29

Results (Figure 6.11 and Table 6.2) We report the average query success ratio and their

95% confidence intervals for AQC users with different knowledge scopes in Figure 6.11. We

present the relative performance (AQC’s divided by RAN’s success ratio) in Table 6.2.

Figure 6.11 clearly demonstrates that the more information we have, the larger success

ratio our algorithm can achieve and the less variance among results of different groups.

When we have 1,000 and 10,000 groups (or 0.1% and 0.01% knowledge), the results have

large variance. At a 95% confidence interval, the query success ratio will fall in [40%,

84%]. However, when we have less than 100 groups (> 1% knowledge), the results are

almost deterministic. Another observation is that as the knowledge scope becomes larger, the

performance does not increase linearly. After our information reaches 1%, the performance

encounters the plateau, which means that 1% of the global information available is good

enough to support our algorithm running at peak performance.

Our hypothesis is also confirmed by Table 6.2 which shows the success ratio of AQC

divided by the success ratio of RAN. With only 0.01% and 0.1% knowledge, our algorithm

outperforms RAN by around 30%. With more than 1% information, our query success ratio

is 85% larger than RAN users.

6.4 SUMMARY

In this chapter, we turn our attention to the user side of the equation and propose user

strategies to adapt Quality Contracts over time. Towards this, we identified two important

issues in QC adaptation schemes: payment expectation and savings ability. Specifically, we
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proposed the Adaptive Quality Contracts (AQC) strategy, which monitors a user’s queries

and the server’s responses in order to automatically adapt the QCs of subsequent user-

submitted queries. We performed an extensive simulation study with real traces, which

showed that AQC consistently outperforms baseline algorithms by up to 233%.

94



7.0 CONCLUSIONS AND FUTURE WORK

We propose Quality Contracts (QCs) as a unifying framework for specifying QoS and QoD

preferences. In the general case of Quality Contracts, users specify a number of non-

increasing functions over the QoS/QoD metrics of interest, along with the amount of “worth”

to them, for the query to have a certain QoS or QoD when it finishes. In this way, users can

specify the relative importance of QoS over QoD as well as the relative importance among

their different queries.

Given the Quality Contracts framework, we developed load management and scheduling

techniques to optimize the overall system performance. As the first step, we proposed a load

management scheme, UNIT, which optimizes USM (a simplified version of Quality Contracts)

to lower the requirement of in-database scheduling so that UNIT load management can be

applied on top of most general web-databases. UNIT uses a feedback control mechanism

and relies on an intelligent admission control algorithm along with a new update frequency

modulation scheme in order to maximize the overall user satisfaction. Our evaluation shows

that UNIT performs better than two baseline algorithms and the current state-of-the-art

when tested using workloads generated from real traces.

To fully support the Quality Contracts framework, we proposed a scheduling scheme,

QUTS, to schedule updates along with queries (with Quality Contracts attached) in Web-

databases. QUTS is a two-level scheduling algorithm that adaptively allocates CPU resources

to maximize the overall system profit (and, as such, the overall user satisfaction). We

compared QUTS to three baseline algorithms, using real traces collected from Quote.com,

a popular stock market information web site. Our extensive experimental study has shown

that QUTS outperforms all competitor algorithms under the entire spectrum of QCs, adapts

very well under changing workloads, and has very little sensitivity to its two parameters.
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Furthermore, we combine the load management and scheduling work in our demo, QuiX

(QUality-aware Integrated admission Control and Scheduling). Admission control in QuiX

focuses exclusively on queries, to filter out infeasible queries and prevent the possible penalty

from failing an admitted transaction. QuiX does not need to perform load shedding on

updates, because useless updates will be postponed by QUTS scheduling and have few

chances to hurt the quality of queries.

To advocate the use of Quality Contracts, we also turned our attention to the user side

of the equation. Given competition from other users, a user will need to adapt his/her QCs

over time to maximize the number of queries executed within his/her satisfaction given a

certain amount of budget. Towards this, we identified two important issues in QC adapta-

tion schemes: payment expectation and savings ability. We proposed the Adaptive Quality

Contracts (AQC) strategy, which monitors a user’s queries and the server’s responses in

order to automatically adapt the QCs of subsequent user-submitted queries. AQC switches

between Overbid mode (according to the current payment expectation) and Deposit mode

(to sustain savings ability). We performed an extensive simulation study with real traces,

which showed that AQC consistently outperforms baseline algorithms by up to 233%.

In this work, we proposed Quality Contracts for users to specify their preferences over

multiple quality metrics. Towards “implementing” those preferences in system optimization,

we focused on quality metrics including response time and staleness. As part of our future

work, we plan to explore more dimensions of quality metrics, such as the virtual attributes

as we have discussed in Section 3.2.4. Virtual attributes can be defined over other attributes,

possibly including statistics of the entire system. Although it poses quite a challenge with

comparison of the individual query’s performance to system-wide measures, it might be very

appealing from users’ point of view: it is probably harder for a user to specify exact timing

requirements, but it is easier to specify that he/she wants the submitted query to be executed

within the top 20% of the fastest queries in the entire system.
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APPENDIX

QUIX SYSTEM DEMONSTRATION

We named our system QuiX, which is short for QUality-aware Integrated admission Control

and Scheduling. The QuiX system consists of two parts: the user console and the web-

database server simulation. In the presence of Quality Contracts (QCs), the users and the

server have distinct objectives. Users want to have most of their queries executed within

their satisfactions, whereas the server wants to maximize its profit earned by completing

user queries.

Figure A1 shows a screen shot of one user console. On the top is the user input panel,

where a user can specify his/her favorite QC adaptation algorithm, the number of queries,

and the amount of budget he/she wants to spend in the next batch. Supported QC adap-

tation algorithms include Fixed, Random, and Dynamic as described in Section 6.1.4 and

AQC as decribed in Section 6.2. To the right hand side of the user input panel shows the

Quality Contracts, where the users can specify the quality constraints of their queries as well

as the relative importance between QoS and QoD, through dragging the lines between the

axes. After these settings, the user clicks the “Start” button to send the information to the

server, where his/her queries will be concurrently running with other users’ queries as well

as the background updates.

After all his/her queries are done, the performance statistics will be sent back to the

user console and shown on the output panel at the bottom in Figure A1. The user will be

informed with how much money has been spent and how many queries have been successful.

There will also be over-time plot showing the money expenditure for each query. By dragging
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the vertical line on the over-time plot, the user can check out the performance of a individual

query shown on the right.

Our demonstration shows the power and flexibility of QuiX system. QuiX allows users

to interactively set their Quality Contracts, send queries, observe the performance, and then

adaptively modify their strategies to fit the environmental changes in the system so that

users can get the best service.

Figure A1: QuiX System Demonstration
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[89] C. Rusu, R. Melhem, and D. Mossé. Multi-version scheduling in rechargeable energy-
aware real-time systems. Journal of Embedded Computing, 1(2):271–283, 2005.

[90] L. Sha, R. Rajkumar, and J. P. Lehooczky. Concurrency control for distributed real-
time databases. SIGMOD Record, 17(1):82–98, 1988.

[91] L. Sha, S. H. Son, R. Rajkumar, and C. Chang. A real-time locking protocol. IEEE
Transactions on Computers, 40(7):793–800, 1991.

[92] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Efficient scheduling of
heterogeneous continuous queries. In VLDB ’06: Proceedings of the 32nd international
conference on Very large data bases, pages 511–522. VLDB Endowment, 2006.

[93] J. Sidell, P. M. Aoki, A. Sah, C. Staelin, M. Stonebraker, and A. Yu. Data replication in
mariposa. In ICDE ’96: Proceedings of the Twelfth International Conference on Data
Engineering, pages 485–494, Washington, DC, USA, 1996. IEEE Computer Society.

106



[94] R. M. Sivasankaran, J. A. Stankovic, D. Towsley, B. Purimetla, and K. Ramamritham.
Priority assignment in real-time active databases. The VLDB Journal, 5(1):019–034,
1996.

[95] J. A. Stankovic. Strategic directions in real-time and embedded systems. ACM Com-
puting Surveys, 28(4):751–763, 1996.

[96] M. Stonebraker, P. M. Aoki, W. Litwin, A. Pfeffer, A. Sah, J. Sidell, C. Staelin, and
A. Yu. Mariposa: a wide-area distributed database system. The VLDB Journal, 5(1),
1996.

[97] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. Load
shedding in a data stream manager. In VLDB ’03: Proceedings of the 29th International
Conference on Very Large Data BasesVLDB, 2003.

[98] F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In VLDB
’03: Proceedings of the 29th International Conference on Very Large Data Bases, 2003.

[99] Y. Tu, S. Liu, S. Prabhakar, and B. Yao. Load shedding in stream databases: a control-
based approach. In VLDB ’06: Proceedings of the 32nd international conference on
Very large data bases, pages 787–798. VLDB Endowment, 2006.

[100] C. A. Waldspurger. Lottery and stride scheduling: Flexible proportional-share resource
management. Technical Report MIT/LCS/TR-667, 1995.

[101] R. Wolski, J. S. Plank, J. Brevik, and T. Bryan. Analyzing market-based resource
allocation strategies for the computational Grid. The International Journal of High
Performance Computing Applications, 15(3):258–281, Fall 2001.

[102] H. Wu, B. Ravindran, E. D. Jensen, and P. Li. Time/utility function decomposition
techniques for utility accrual scheduling algorithms in real-time distributed systems.
IEEE Transactions on Computers, 54(9):1138–1153, 2005.

[103] M. Xiong, S. Han, and K. Lam. A deferrable scheduling algorithm for real-time trans-
actions maintaining data freshness. In RTSS ’05: Proceedings of the 26th IEEE Inter-
national Real-Time Systems Symposium, pages 27–37, Washington, DC, USA, 2005.
IEEE Computer Society.

[104] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng. Quality driven
web services composition. In WWW ’03: Proceedings of the 12th international confer-
ence on World Wide Web, pages 411–421, New York, NY, USA, 2003. ACM Press.
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