
ENERGY AND RELIABILITY MANAGEMENT IN

PARALLEL REAL-TIME SYSTEMS

by

Dakai Zhu

B.E, Xi’an Jiaotong University, P.R.China, 1996

M.E, Tsinghua University, P.R.China, 1999

M.S, University of Pittsburgh, 2001

Submitted to the Graduate Faculty of

Arts and Science in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12209663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Dakai Zhu

It was defended on

November 12, 2004

and approved by

Dr. Rami Melhem

Dr. Daniel Mossé

Dr. Bruce R. Childers

Dr. Raj Rajkumar

Dissertation Advisors: Dr. Rami Melhem,

Dr. Daniel Mossé

ii

Copyright c© by Dakai Zhu

2004

iii

ABSTRACT

ENERGY AND RELIABILITY MANAGEMENT IN PARALLEL

REAL-TIME SYSTEMS

Dakai Zhu, PhD

University of Pittsburgh, 2004

Historically, slack time in real-time systems has been used as temporal redundancy by roll-

back recovery schemes to increase system reliability in the presence of faults. However, with

advanced technologies, slack time can also be used by energy management schemes to save

energy. For reliable real-time systems where higher levels of reliability are as important as

lower levels of energy consumption, centralized management of slack time is desired.

For frame-based parallel real-time applications, energy management schemes are first

explored. Although the simple static power management that evenly allocates static slack

over a schedule is optimal for uni-processor systems, it is not optimal for parallel systems

due to different levels of parallelism in a schedule. Taking parallelism variations into con-

sideration, a parallel static power management scheme is proposed. When dynamic slack is

considered, assuming global scheduling strategies, slack shifting and sharing schemes as well

as speculation schemes are proposed for more energy savings.

For simultaneous management of power and reliability, checkpointing techniques are first

deployed to efficiently use slack time and the optimal numbers of checkpoints needed to min-

imize energy consumption or to maximize system reliability are explored. Then, an energy

efficient optimistic modular redundancy scheme is addressed. Finally, a framework that en-

compasses energy and reliability management is proposed for obtaining optimal redundant

configurations. While exploring the trade-off between energy and reliability, the effects of

voltage scaling on fault rates are considered.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . 1

1.0 INTRODUCTION . 2

2.0 BACKGROUND AND RELATED WORK 6

2.1 REAL-TIME SYSTEMS . 6

2.2 ENERGY AWARE COMPUTING . 8

2.3 FAULT TOLERANCE . 10

2.4 ENERGY EFFICIENT FAULT TOLERANCE 12

3.0 SYSTEM MODELS AND PROBLEM DESCRIPTION 13

3.1 APPLICATION AND SYSTEM MODELS 13

3.1.1 AND Application Model . 14

3.1.2 AND/OR Application Model . 15

3.1.3 System Models . 18

3.2 POWER MODEL AND ITS EFFECTS ON ENERGY MANAGEMENT 19

3.2.1 Dynamic Power for CMOS Based Processors 19

3.2.2 A Simple Power Model . 20

3.2.3 Effects of Power Model on Voltage Scaling 24

3.3 FAULT AND RECOVERY MODELS . 25

3.3.1 Fault Models . 25

3.3.2 Rollback Recovery and Checkpoints 26

3.4 PROBLEM DESCRIPTION AND RESEARCH OVERVIEW 26

4.0 PARALLEL ENERGY AWARE SCHEDULING 29

4.1 SCHEDULING IN PARALLEL REAL-TIME SYSTEMS 29

v

4.1.1 Earliest Ready Longest Task First Heuristic (ER-LTF) 30

4.1.2 Canonical Schedules . 32

4.1.3 Importance of Execution Order 33

4.1.3.1 Independent Tasks . 34

4.1.3.2 Anomaly of List Scheduling for Dependent Tasks 38

4.1.3.3 List Scheduling with Fixed Priority 39

4.2 STATIC POWER MANAGEMENT (SPM) 41

4.2.1 Greedy Static Power Management (G-SPM) 42

4.2.2 Uniform Static Power Management (U-SPM) 42

4.2.3 Static Power Management with Parallelism (SPM-P) 44

4.2.3.1 SPM-P for Dual-Processor Systems 44

4.2.3.2 SPM-P for M-Processor Systems 46

4.2.4 SPM for AND/OR Applications 47

4.3 DYNAMIC POWER MANAGEMENT (DPM) 47

4.3.1 Infeasibility of Simple Greedy Slack Reclamation (GSR) 48

4.3.2 Shared Slack Reclamation (SSR) for AND-model Applications . . 49

4.3.2.1 Two Examples . 49

4.3.2.2 Offline Phase of SSR Scheme 51

4.3.2.3 On-line Phase of SSR Scheme 52

4.3.2.4 Analysis of SSR Algorithm 53

4.3.3 Shifted/Shared Slack Reclamation (S/SSR) 56

4.3.3.1 Offline Phase of S/SSR Scheme 56

4.3.3.2 On-line Phase of S/SSR Scheme 59

4.3.3.3 Analysis of S/SSR Algorithm 61

4.4 SPECULATIVE SCHEMES . 62

4.4.1 A Static Speculation Scheme . 62

4.4.2 An Adaptive Speculative Scheme 63

4.5 PRACTICAL CONSIDERATIONS IN ENERGY MANAGEMENT . . . 63

4.5.1 Overhead of Frequency Adjustment 64

4.5.1.1 Time Overhead and Slack Reservation 64

vi

4.5.1.2 Energy Overhead . 67

4.5.2 Discrete Frequency Levels . 68

4.5.3 Shared Memory Access Contention 69

4.6 EVALUATIONS OF ENERGY MANAGEMENT SCHEMES 69

4.6.1 Simulation Setup . 70

4.6.2 Effects of Frequency Change Overhead 74

4.6.3 Effects of Discrete Frequency Levels 75

4.6.4 Energy Savings of SPM-P . 76

4.6.5 Energy Savings of S/SSR and Speculative Schemes 77

4.6.5.1 Trace Based Simulations for AND-model Applications . . 77

4.6.5.2 Synthetic AND/OR-model Applications 78

4.6.6 Effects of The Minimum Energy Efficient Frequency 79

4.7 THEORETICAL BOUNDS: HOW MUCH BETTER CAN WE DO? . . 81

4.8 CHAPTER SUMMARY . 84

5.0 ENERGY EFFICIENT FAULT TOLERANCE 87

5.1 ENERGY EFFICIENT ROLL-BACK RECOVERY 88

5.1.1 Simple Scheme of Re-execution (Retry) 89

5.1.1.1 Pessimism Level: The Number of Expected Faults 89

5.1.1.2 Performability of Retry Scheme 90

5.1.1.3 Expected Energy Consumption of Retry Scheme 91

5.1.2 Checkpointing and Its Applicability 92

5.1.3 Optimal Number of Checkpoints for Maximizing Performability . 95

5.1.4 Optimal Number of Checkpoints for Energy Minimization 99

5.1.4.1 Expected Energy Consumption 99

5.1.4.2 Fault-Free Energy Consumption 101

5.1.5 Evaluations of Roll-Back Recovery with Checkpoints 102

5.1.5.1 Optimal Number of Checkpoints 103

5.1.5.2 Energy Efficient Regions 104

5.1.5.3 System Performability . 105

5.2 OPTIMISTIC MODULAR REDUNDANCY 106

vii

5.2.1 Optimal Frequency Setting for OTMR 106

5.2.1.1 Expected Energy Consumption 107

5.2.1.2 Fault Free Energy Consumption 109

5.2.2 Performability of OTMR . 112

5.2.3 Comparison of OTMR and Traditional TMR 112

5.2.4 Optimistic N-Modular Redundancy (ONMR) 115

5.3 ENERGY EFFICIENT REDUNDANCY CONFIGURATION 117

5.3.1 Recovery Schemes with Parallel Slack 119

5.3.1.1 Restricted Serial Recovery 119

5.3.1.2 Parallel Recovery . 120

5.3.1.3 Adaptive Parallel Recovery 121

5.3.1.4 Arbitrary Number of Tasks 123

5.3.1.5 Maximum Number of Tolerated Faults 124

5.3.2 Parallel Recovery and Modular Redundancy 125

5.3.3 Optimal Redundant Configurations 126

5.3.3.1 Minimize Energy with A Given Performability Goal . . . 126

5.3.3.2 Maximize Performability with Fixed Energy Budget . . . 128

5.3.4 Analysis Results . 130

5.3.4.1 Optimal Configuration for Energy Minimization 131

5.3.4.2 Optimal Configuration for Performability Maximization . 134

5.4 INTERPLAY OF ENERGY MANAGEMENT AND PERFORMABILITY 135

5.4.1 Voltage Scaling and Fault Rates 135

5.4.1.1 Exponential Fault Rate Model 137

5.4.2 Trade-off between Energy and Performability 137

5.4.2.1 Some Numeric Results . 139

5.5 CHAPTER SUMMARY . 140

6.0 CONCLUSIONS . 142

7.0 FUTURE WORK . 147

BIBLIOGRAPHY . 149

viii

LIST OF TABLES

3.1 Power consumption at different frequencies for Intel XScale processors. 23

4.1 Offline variables of an AND/OR-model application 58

4.2 Frequency/voltage settings for Transmeta 5400 73

4.3 Frequency/voltage setting for Intel XScale processors 73

4.4 Energy savings vs. U-SPM using trace data 78

5.1 The maximum number of faults that can be tolerated. 124

5.2 The optimal redundant configurations for different recovery schemes 131

5.3 The effects of pessimism levels on optimal redundant configuration 134

ix

LIST OF FIGURES

3.1 AND-model application examples. 15

3.2 AND/OR structures . 16

3.3 Loop expansion in AND/OR-model applications. 17

3.4 An example of AND/OR-model applications. 18

3.5 The illustration of a simple power model . 22

3.6 Power model validation using power and frequency numbers of Intel XScale . 23

3.7 Summary of solutions and research overview. 27

4.1 Canonical schedules of an AND-Model application 32

4.2 Canonical schedule of an AND/OR-Model application 33

4.3 The canonical schedule and one running of an independent task set 34

4.4 The canonical schedule and one running of one dependent task set 38

4.5 Fixed-priority list scheduling for dependent tasks 39

4.6 A simple example and its canonical schedule 42

4.7 Two simple static energy management schemes 43

4.8 Parallelism in the schedule for a simple application 44

4.9 The simple greedy scheme . 48

4.10 SSR for independent tasks . 50

4.11 SSR for dependent tasks . 51

4.12 The shifted canonical schedules for an AND/OR application 58

4.13 An actual execution of the AND/OR application 61

4.14 Slack reservation for incorporating frequency adjustment overhead. 65

4.15 Slack is not enough for an additional frequency change. 67

x

4.16 Slack sharing with frequency change overhead. 67

4.17 Dependence graph for a synthetic AND/OR-model application. 70

4.18 ATR and its execution time . 71

4.19 MPGE-1 and its execution time . 72

4.20 The effects of frequency change overhead on energy savings. 75

4.21 The effects of discrete frequencies on energy savings. 76

4.22 The normalized energy vs. LDR for different SPMs. 77

4.23 Energy savings vs. execution time variations 79

4.24 Effects of the minimum energy efficient frequency 80

4.25 The theoretical bounds on energy savings. 83

5.1 The retry scheme . 90

5.2 Checkpoints and recovery sections . 94

5.3 Performability and number of recovery sections. 98

5.4 Optimal number of checkpoints for Duplex; α = 0.1. 103

5.5 Energy efficient regions for Duplex and TMR 104

5.6 The probability of failure (1−performability) for Duplex and TMR. 105

5.7 Optimal frequency settings for OTMR . 107

5.8 Optimal frequencies for OTMR and TMR . 114

5.9 The energy consumption of OTMR and TMR 114

5.10 The performability of OTMR and TMR . 115

5.11 Slack and temporal redundancy in parallel systems 118

5.12 Different recovery schemes. 119

5.13 The faults tolerated by different recovery schemes 120

5.14 The minimum expected energy consumption for different recovery schemes. . 132

5.15 The minimum expected energy consumption under different system load . . . 133

5.16 The faults tolerated with limited energy budget 134

5.17 The performability and expected energy consumption for different values of d. 139

xi

ACKNOWLEDGEMENTS

This dissertation is the fruit of years of hard work as a member of the Power Aware Real-

Time Systems (PARTS) research group. It is the result of much time and great effort not

only on my part, but also on the part of my advisors, committee members, colleagues and

my family. I would like to take this chance to express my sincere thanks to all of them!

First of all, I am grateful to my advisors, Prof. Rami Melhem and Prof. Daniel Mossé

for their guidance, encouragement and support throughout my Ph.D. studies. Despite their

busy schedules, they were always willing to discuss and provide help on every matter. Having

selected an academic career, I cannot help thinking how much I would be happy if I were

able to contribute to my (future) students as much as they did to me.

Special thanks to Dr. Bruce R. Childers for his help and valuable suggestions, especially

during the early stages of my study, as well as for serving on my committee. I would also

like to thank Dr. Raj Rajkumar for agreeing to serve on my committee and for providing

many helpful comments.

During the different stages of my stay at the University of Pittsburgh, I had the chance

to meet several noteworthy research colleagues. I would like to thank Libin Dong and Hakan

Aydin for their advice, Nevine AbouGhazaleh and Cosmin Rusu for sharing work space and

discussing different issues, Ramesh Mishra and Namrata Rastogi for the implementation of

my proposed schemes and too many others to name for their kind help. The wonderful time

I spent here is always memorable.

Finally, I cannot emphasize enough the support of my parents and my wife to my long

education that culminates in this Ph.D. degree. Without their help and sacrifice, none of

these achievements would have been possible. While acknowledging that their support was

priceless, I dedicate this work to my family.

1

1.0 INTRODUCTION

The performance of modern computing systems has increased at the expense of drastically

increased power consumption. The increased power consumption either reduces the opera-

tion time for battery powered systems, such as hand-held mobile systems and remote solar

explorers, or generates excessive amount of heat and requires expensive sophisticated packag-

ing and cooling technologies, especially for complex systems that consist of many processing

units. The generated heat, if not effectively removed, can also decrease system reliability,

since hardware failure rate increases with higher temperature.

To reduce system power consumption, many hardware and software techniques have been

proposed and energy aware computing has become an increasing research interest. A system

can be turned off when it is idle. However, powering a system up may incur very long latency

(e.g., a few minutes [21]). Instead, we can put a system into a power saving state that needs

relatively shorter latency for switching back to an active state. For example, Pentium-M

processors only take a few cycles for the transition from sleep to active [19].

Moreover, when peak performance is not required, a processing unit can be put into a

low performance state that consumes less power. For example, the power consumption of

CMOS-based processors is dominated by dynamic power dissipation, which is quadratically

related to the supply voltage and linearly related to the processing frequency [13]. Thus,

different levels of performance can be delivered with different levels of power consumption

by changing processor’s frequency and supply voltage, which makes power management at

the processor level possible. Based on frequency and/or voltage scaling techniques, energy

aware scheduling has been proposed [88], especially for real-time systems, with the goal of

using “the right energy at the right place at the right time” [36].

Although timeliness is crucial for real-time systems, finishing a real-time application well

2

ahead of its deadline is not required. When the worst case execution time (WCET) of an

application is less than its deadline or an application uses less time than its WCET1, slack

time exists. For example, an automated target recognition algorithm (ATR) detects the

region of interest (ROI) in one image frame and compares the ROIs with some templates

[75]. When ATR is used in military systems (e.g., missiles), the comparison of ROIs with the

templates needs to be done in real-time. However, in most cases, the number of detected ROIs

in an image frame may be less than what can be processed. With advanced technologies,

slack time in a system can be used by energy management schemes for energy savings.

Many energy aware scheduling algorithms have been proposed for uni-processor systems

due to the popularity of mobile systems (i.e., PDAs and cell phones) that generally have

one processing unit [6, 62, 67, 72]. However, there is relatively less research focusing on

energy management for parallel systems that consist of multiple processing units [28, 54, 86].

Energy management through frequency and/or voltage scaling may change the mapping and

scheduling of tasks to processing units, which could cause a violation of the timing constraints

even though an application can meet its timing constraints in the worst case scenario when

no energy management schemes are employed.

In mission critical real-time systems, such as space-based control systems or life mainte-

nance systems, where a failure may cause catastrophic results, reliability is as important as

timeliness. Traditionally, high levels of reliability are achieved through hardware redundancy,

such as triple modular redundancy (TMR) [69], where the redundant hardwares consume

large amounts of energy. In addition, roll-back recovery and checkpointing have also been

proposed to achieve high levels of reliability by exploring slack time as temporal redundancy

in the presence of transient faults [45].

Although massive research has been conducted on fault-tolerance and energy aware com-

puting in real-time systems separately, there is relatively less work addressing the combina-

tion of energy and reliability management. The complexity of managing them together is

partially due to the fact that there is a trade-off between energy consumption and reliability.

When more resources are dedicated to fault tolerance schemes for higher levels of system

reliability, less resource is left for energy management schemes to save energy. In the domain

1Real-time tasks usually take 10% to 40% of their WCET [23].

3

of energy and reliability management, especially for parallel systems, some problems of great

practical as well as theoretical interest remain open and challenging.

The goal of this dissertation is to address some open problems in the area of energy

aware computing for reliable parallel real-time systems, where both energy efficiency and

higher levels of reliability are important. For shared memory parallel real-time systems, we

first focus on energy management and propose several energy aware scheduling algorithms.

Through simulations, we demonstrate the effectiveness of the proposed algorithms on en-

ergy savings. Then, when considering simultaneous management of energy and reliability,

we address the interplay between energy consumption and reliability in parallel systems. A

few energy efficient fault tolerance schemes are proposed and their performances on energy

savings and reliability are analyzed.

In summary, the contributions of this work are as follows:

• Considering all the power consuming components in a system, a simple power model is

proposed and its effects on energy management are addressed. Specifically, a minimum

energy efficient frequency is developed when the system power has a constant component

that can be efficiently removed by putting the system into a sleep state. Based on the

simple power model, some theoretical bounds on the maximum energy savings for parallel

systems are developed;

• For shared memory parallel real-time systems, several energy management schemes are

proposed and proved to meet the timing constraints of an application while achieving

considerable amount of energy savings. More specifically, a scheme of static power man-

agement with parallelism (SPM-P), which takes a schedule’s parallelism into considera-

tion when carrying out power management, is proposed. Considering the application’s

run-time behavior, we propose a shifted/shared slack reclamation (S/SSR) scheme that

shares slack among processing units in a system appropriately for energy savings. Spec-

ulation schemes are further explored by considering the statistical timing information

about an application;

• To efficiently incorporate the overhead of frequency and voltage changes into our energy

management algorithms, a slack reservation scheme is proposed. The effects of other

4

practical issues, such as discrete frequency levels and shared memory access contention

are also addressed. We find that a few frequency levels are as good as continuous fre-

quency for energy savings obtained by energy management schemes;

• For multiple recovery fault tolerance, we introduce a scheme for computing the opti-

mal numbers of checkpoints to minimize the expected energy consumption for a given

reliability goal or to maximize the system reliability for limited energy budget.

• Extending the idea of an optimistic triple modular redundancy (OTMR) scheme [22], an

energy efficient optimistic N -modular redundancy (ONMR) scheme is introduced. The

optimal frequency settings to minimize the energy consumption of ONMR are analyzed.

The energy consumption as well as reliability of ONMR and traditional NMR schemes

are compared;

• For fully parallel applications executing on a given number of processing units, the sys-

tem can be configured with different levels of modular redundancy for fault tolerance,

which can tolerate different numbers of faults and consume different amounts of energy.

Considering the parallel nature of the slack in parallel systems, an efficient adaptive par-

allel recovery scheme is proposed and optimal redundant configurations for minimizing

energy consumption or for maximizing system reliability are addressed.

• We incorporate the effects of frequency/voltage scaling on the fault rates when studying

the trade-off between reliability and energy management. To the best of our knowledge,

this is the first work to consider the effects of energy management on reliability.

The organization of this dissertation is as follows. In Chapter 2, the basic definitions are

given and the current research status is examined in the area of real-time systems, energy

aware computing, fault tolerance and energy efficient fault tolerance. The system models,

problem descriptions and research overview are presented in Chapter 3. Chapter 4 reports

our research results of energy management for parallel real-time systems and Chapter 5

addresses the energy efficient fault tolerance schemes. Chapter 6 concludes the thesis and

Chapter 7 elaborates the research prospects to extend this work in the future.

5

2.0 BACKGROUND AND RELATED WORK

2.1 REAL-TIME SYSTEMS

The distinguished feature of real-time systems is their timeliness requirements. That is,

applications running on such systems have to start execution after their ready time (defined

as the time at which an application becomes available for execution) and finish the execution

correctly before their deadline. A real-time application generally consists of a set of tasks

and each task has a worst case computation requirement, which can be obtained through

profiling or analysis [23, 79].

The tasks in an application may share a common deadline or have individual deadlines.

For periodic or frame-based applications, deadlines are generally relative and coincide with

the start time of the next period or frame. When tasks in an application have precedence

constraints (i.e., dependent tasks), a partial order on the execution of tasks is imposed. In

addition, tasks can be preemptive or non-preemptive. While the execution of a preemptive

task can be interrupted by another task and resumed later, a non-preemptive task can not

be interrupted before its completion.

The scheduling in real-time systems is to decide which task is executed where (i.e., on

which processing unit for systems consisting of multiple processing units) at what time. A

schedule is said to be feasible if the precedence constraints, timing constraints (i.e., tasks

start after their ready times and finish before their deadlines) as well as any other constraints

(e.g., resource constraints that may limit the execution of some tasks on specific processing

units) are satisfied.

For parallel real-time applications running on systems consisting of multiple processing

units, there are two major strategies to schedule tasks in an application: partition and global

6

scheduling [20]. In partition scheduling, each task is assigned to a specific processor and

processors can only execute tasks that are assigned to them. This assignment simplifies

the complex parallel scheduling problems. In particular, for applications that consist of

independent tasks, simple uni-processor scheduling algorithms can be applied to individual

processor after partitioning the tasks, and each processor may even have different scheduling

algorithms. This strategy is useful for resource restricted systems, where task migration cost

is prohibitive or for distributed systems where the cost of migration is very high.

In global scheduling, all tasks are put in a shared global queue and each processor fetches

ready tasks from the queue for execution. That is, a task may be executed on any processing

unit depending on the dynamic run-time behavior of previous tasks. One good property

of global scheduling is that it can automatically balance the actual workload among all

processing units, which is especially beneficial for energy management as demonstrated in

Chapter 4. The global strategy is useful for shared memory systems where task migration

is implicit and the cost is very low.

For tasks with precedence constraints that are represented by directed acyclic graphs

(DAG), list scheduling is the standard scheduling technique. Specifically, tasks are put into

a ready queue as soon as they become ready and are dispatched to processing units from

the front of the queue [20]. The priority assignment for tasks affects which task goes where

as well as the total execution time of an application.

In general, the optimal solution of assigning task priority to get the minimum execution

time is NP-hard [20]. Thus, many heuristics have been proposed for that problem, such as

critical path based heuristics and cluster based heuristics [87]. The longest-task-first (LTF)

heuristic adds tasks to the ready queue in the order of their maximum computation re-

quirements. It has been shown that, for independent tasks, the ratio of the schedule length

under LTF heuristics over the one under optimal priority assignment is bounded by a certain

constant [65].

For independent periodic tasks running on a single processing unit, the seminal work of

Liu and Layland [53] has established the optimality of earliest deadline first (EDF) and rate

monotonic scheduling (RMS) for dynamic and fixed priority policies, respectively. However,

they are not optimal for the case of multiple processing units [20]. For restricted harmonic

7

task sets, where tasks’ periods are multiples of each other, several optimal scheduling algo-

rithms have been proposed [43].

For ideal systems, where the allocation can be infinitesimally small, the idea of generalized

processor sharing (GPS) has been proposed to allocate processor bandwidth fairly to tasks

in proportion to utilization requirements [64]. When the allocation time unit is fixed, the P-

fair (proportional fairness) scheduling for parallel periodic systems was proposed by Baruah

et al. in [8], which enforces proportional progress for each task with the allocation error

within one time unit. P-fair is optimal in the sense that it can achieve up to 100% system

utilization. The P-fair algorithm has been further extended in [2, 3, 4, 9, 33, 61].

2.2 ENERGY AWARE COMPUTING

High system performance is always desired to ensure satisfying the peak computation require-

ment or meeting the timing constraints for real-time applications. However, maintaining the

peak performance all the time in a system may not be a wise decision since the computation

requirement in a system generally has big variations and high performance generally implies

high power consumption. For example, the average workload for web servers is only 10% to

20% of their peak workload [21]. Thus, it is preferred to tune system performance according

to run-time computation requirement while lowering the system power consumption. It is

specially useful to extend the operation time of battery operated devices (e.g., cell phones,

PDAs and solar explorers) or reduce the operation cost of energy hungry systems (e.g., server

farms) and increase their reliabilities.

In order to manage the power consumption in a computing system, many hardware and

software techniques have been proposed, such as low energy circuit design and energy aware

scheduling. Energy aware computing is to exploit the management schemes that control

system performance and energy consumption with the goal of using “the right energy in

the right place at the right time” [36]. For example, when a system is (and likely going to

stay) idle, we can turn it off and remove the power consumption completely [56]. However,

powering a system up may take a few minutes [21] which may not be tolerable, especially for

real-time applications. Instead, considering the power saving states in the modern processors

8

[19] and low power memory [24, 73], we can put the system into a power saving state while

keeping relatively shorter response time.

Since processors consume substantial energy in most systems, especially in embedded

systems, many techniques have been proposed to reduce the energy consumption for proces-

sors. For CMOS based processors, the power consumption is dominated by dynamic power

dissipation, which is quadratically related to supply voltage and linearly related to processing

frequency [13]. In addition, the processing frequency also has an almost linear relation with

supply voltage. Therefore, for lower system performance requirements, we can reduce the

processing frequency and the corresponding supply voltage to reduce the power consumption

cubically.

The idea of trading processing speed for energy savings was first proposed by Weiser et

al. in [85], where processor frequency (and corresponding supply voltage) is adjusted using

utilization based predictions. Yao et al. described a polynomial-time static off-line scheduling

algorithm for independent tasks running with variable frequencies, assuming worst-case exe-

cution time [88]. Based on dynamic voltage scaling (DVS) technique, Mossé et al. proposed

and analyzed several schemes to dynamically adjust processor speed with slack reclamation

[62], where statistical information about task’s execution time was used to slow down pro-

cessor speed evenly and save more energy. In [80], Shin et al. set processor speed at branches

according to the ratio of the taken path to the longest path. Kumar et al. predict task

execution time based on statistics gathered about execution time of previous instances of

the same task [47]. Using stochastic data while taking into consideration actual run-time

behavior about tasks, Gruian proposed a two-phase (offline and on-line) algorithm for hard

real-time systems with fixed priority assignment for tasks [29]. The best scheme is an adap-

tive one that takes an aggressive approach while providing safeguards that avoid violating

application deadlines [6, 58].

When considering limited voltage/speed levels in real processors, Chandrakasan et al.

have shown that, for periodic tasks executing on uniprocessor systems, a few voltage/speed

levels are sufficient to achieve almost the same energy savings as infinite voltage/speed lev-

els [17]. Pillai et al. also proposed a set of scheduling algorithms (static and dynamic) for

periodic tasks based on EDF/RM scheduling policy, simulations (assuming 4 speed levels)

9

as well as the prototype implementation show that their algorithms effectively reduce energy

consumption from 20% to 40% [68]. AbouGhazaleh et al. have studied the effect of volt-

age/speed adjustment overhead on choosing the granularity of inserting power management

points (PMP) in a program [1].

For systems with several processors running at different fixed speeds and thus with dif-

ferent power profiles, several task assignment and scheduling schemes have been proposed

to minimize system energy consumption while still meeting timing constraints of applica-

tions (usually represented by directed acyclic graphs) [30, 44, 86]. When variable voltage

processors are used, for fixed task sets and predictable execution times, static power man-

agement (SPM) can be accomplished by deciding beforehand the best voltage/speed for each

processor [28]. For periodic task graphs and aperiodic tasks in distributed systems with a

given static schedule for periodic tasks and hard aperiodic tasks, Luo et al. proposed a static

optimization algorithm by shifting the static schedule to re-distribute static slack according

to the average slack ratio on each processor element. This reduces energy consumption and

response time for soft aperiodic tasks at run time [54]. They improved the static optimiza-

tion by using critical path analysis and task execution order refinement to get the maximal

static slow down factor for each task [55]. In [55], a dynamic voltage scaling scheme is also

proposed.

For tasks with precedence constraints and a given task assignment, Gruian et al. proposed

a priority based energy sensitive list scheduling heuristic to determine the amount of time

allocated to each task, considering energy consumption and critical path timing requirement

in the priority function [31]. In [92], Zhang et al. proposed a mapping heuristic for fixed

task graphs to maximize the opportunities for voltage scaling algorithms, where the voltage

scaling problem was formulated as an integer programming (IP) problem.

2.3 FAULT TOLERANCE

During the execution of an application, a fault may occur due to various reasons, such

as hardware failures, software errors and electro-magnetic effects. Thus, fault tolerance is

an inherent requirement of real-time systems when correct results are needed even in the

10

presence of faults [40].

A fault is a defect, imperfection, or flaw of a particular hardware/software component.

An error is the manifestation of a fault, and it is a property of the state of a system. A failure

occurs when one system performs its functions incorrectly as a result of an error. According

to their temporal behaviors, faults can be divided into permanent faults, which may result

in total failure of a processing unit, and transient faults, which affect a processing unit

temporarily and disappear after a relatively short period. Between these two categories, the

intermittent faults are the most troublesome ones since they appear and disappear randomly

in time.

To tolerate faults, the first step is fault detection. Faults can be discovered through self-

coding programming or by comparing results from replicated execution [40]. Fault tolerance

schemes generally rely on some form of redundancy. This means that extra resources (e.g.,

hardware, software or time) are needed in addition to what is required to perform the normal

operation. Hardware redundancy, software redundancy, time redundancy and information

redundancy are the main types of redundancy used in contemporary reliable systems.

Permanent faults are generally tolerated by hardware redundancy, which is also known

as modular redundancy (MR), where cloned tasks are running concurrently on multiple pro-

cessing units [69]. To further prevent software errors, N-version programming [5], a software

redundancy technique, can be combined with modular redundancy to execute several dif-

ferent versions of the same task on multiple processing units. The well known software

redundancy technique is the recovery block approach proposed by Randell [74].

For real-time tasks to tolerate transient faults, temporal redundancy can be explored.

The rollback recovery scheme restores the system state to a previous safe state (e.g., start

a system from scratch and re-load a task) and repeats the computation [45]. However, it

is inefficient to repeat the computation from scratch, especially for long execution of large

tasks. Checkpointing techniques have been proposed to efficiently use temporal redundancy

by periodically saving the important system information to stable storage and run an error-

detection routine simultaneously [10]. If errors are detected, the correct state in previous

checkpoint is restored and the computation within these two checkpoints is repeated. The

optimal checkpoint interval is explored in [49]. Instead of rollback and re-executing a faulty

11

section immediately, roll-forward schemes are proposed, where the processing units that

detected faults continue execution while an additional processing unit is used to locate the

fault and to synchronize the correct state among processing units later [70].

In parallel systems, many scheduling algorithms for fault tolerance have been proposed

[50, 51, 57, 63]. The primary/backup recovery scheme explicitly schedules a backup task

for every task using space and/or temporal redundancy [25]. Instead of executing the same

computation, a recovery block with identical or similar functionality may be substituted. For

the case where several recovery blocks exist, the recovery blocks are run one after another

as long as the error persists. Obviously, the functionality and the number of recovery blocks

are limited by the amount of temporal redundancy available [5].

2.4 ENERGY EFFICIENT FAULT TOLERANCE

Fault-tolerance schemes through redundancy have energy implications and different tech-

niques have different effects on energy consumption.

For a set of independent periodic tasks, using the primary/backup recovery scheme, Un-

sal et al. proposed an energy-aware software-based fault tolerance scheme, which postpones

as much as possible the execution of backup tasks to minimize the overlap of primary and

backup execution and thus to minimize energy consumption [84]. Checkpointing was ex-

plored to tolerate a fixed number of faults while minimizing the energy consumption for a

periodic task set [91], and the work was further extended in [90] by considering faults within

checkpoints.

For a single task application to tolerate one fault, the optimal number of checkpoints,

evenly or unevenly distributed, to achieve minimal energy consumption was explored in

[59]. Assuming a Poisson fault model, Zhang et al. proposed an adaptive checkpointing

scheme that dynamically adjusts checkpoint intervals to tolerate a fixed number of faults

[89]. Elnozahy et al. proposed an Optimistic TMR scheme to reduce the energy consumption

for traditional TMR systems by allowing one processing unit to slow down provided that

it can catch up and finish the computation before the application deadline if the other two

processing units do encounter faults [22].

12

3.0 SYSTEM MODELS AND PROBLEM DESCRIPTION

In this dissertation, we focus on the energy and reliability management for parallel real-time

systems. Section 3.1 will first present the application and system models. Then the power

model and its effects on energy management are discussed in Section 3.2. Section 3.3 presents

the fault and recovery models and Section 3.4 describes the problems and summarizes our

research results.

3.1 APPLICATION AND SYSTEM MODELS

We concentrate on frame-based real-time applications, which consist of a set of independent

or dependent real-time tasks [50]. With a common deadline, D, which is also the size of an

application frame, all tasks within an application need to finish their execution before D.

Although we focus on the case where all tasks share a common deadline, it is easy to extend

some of our main results to the case where each task has its individual deadline as mentioned

in Chapter 7.

The task set of an application is defined as Γ = {T1, . . . , Tn} and each task Ti is repre-

sented by its two attributes, c′i and a′i, which are the maximum and average computation

requirement (in terms of number of cycles). Given that variable frequency/voltage proces-

sors are considered, the number of cycles needed to execute a task may also depend on its

processing frequency when the memory access time is fixed [79]. However, when the pro-

cessor cache has a reasonable size, c′i has been shown to have very small variations with

different processing frequencies [59]. In this dissertation, for simplicity, we assume that c′i

and a′i are constants and correspond to the worst case and average number of cycles needed

13

to execute task Ti at the maximum processor frequency fmax, respectively. Notice that, this

is a conservative model. When memory effects are considered, the number of cycles needed

to execute a task decreases when executing at lower frequencies since memory access time is

fixed [79].

For ease of presentation, we further define ci and ai as the worst case execution time

(WCET) and the average case execution time (ACET) of task Ti at frequency fmax, re-

spectively. With c′i and a′i assumed constants, the execution time of a task Ti increases

proportionally when processor frequency is reduced. For example, with half of the maxi-

mum processor frequency, fmax

2
, the WCET of task Ti is assumed to be 2 · ci.

Based on whether all tasks in an application are executed during any execution of the

application, we consider two different application models: the AND-model and the AND/OR-

model. For AND-model applications, all tasks are executed during any execution instance

of an application. However, only a subset of tasks will be executed during one execution

instance of an AND/OR-model application.

3.1.1 AND Application Model

If an application consists of independent tasks, there is no constraint on the order of tasks

to be executed. However, the precedence constraints of dependent tasks impose a partial

order on the execution of tasks. In this work, a directed acyclic graph (DAG) G is used to

represent the precedence constraints among tasks [87].

A DAG that represents the precedence constraints of an AND-model application is de-

fined as G = {Ṽ , Ẽ}, where each vertex vi ∈ Ṽ corresponds to a task Ti ∈ Γ and Ẽ ⊆ Ṽ × Ṽ

represents the data dependencies between tasks. For the case of independent tasks, there is

no dependency between tasks and Ẽ is empty. There is an edge eij :: vi → vj ∈ Ẽ if task Ti

is an immediate predecessor of task Tj, which means that Tj needs the output data from Ti

as its input data. In other words, Tj becomes ready for execution only after Ti finishes its

execution.

Each vertex vi in a DAG G is labeled by the corresponding task Ti and its two at-

tributes, ci and ai, which are the maximum and average case execution time, respectively.

14

T5

6,6

T4

6,6

1T
10,7 2T

8,4

T3

6,6

TT

1T

2 T4T

T5

3 6

2,2 3,3

3,1

4,4 6,6

6,6

a. Independent Tasks b. Dependent Tasks

Figure 3.1: AND-model application examples.

For independent tasks as illustrated in Figure 3.1a, all tasks are ready to be executed at

the beginning of a frame. When precedence constraints exist between tasks, only root tasks,

which are defined as tasks that have no predecessor (e.g., tasks T1 and T2 in Figure 3.1b),

are ready at the very beginning of a frame. For tasks with more than one predecessors, they

are ready to be executed only after all their predecessors finish execution. For example, task

T6 is ready only after T1 and T3 finish their execution (see Figure 3.1b).

Tasks may be executed in parallel if they are ready and there are available processing

units. For example, for a system consisting of three processing units, the independent tasks

T1, T2 and T3 (Figure 3.1a) can be executed in parallel on three processing units. However,

for the dependent tasks (Figure 3.1b), only the root tasks T1 and T2 can be executed at the

very beginning since other tasks are not ready.

3.1.2 AND/OR Application Model

Although the AND-model is sufficient to represent applications that have only data depen-

dencies, it cannot describe control dependencies. The OR structures exist in the control

flow of most practical applications, where the structure of if-then-else is employed and the

execution of sub-paths depends on the results of previous tasks. In some applications, the

probability of a path to be executed may also be known a priori or can be obtained from

profiling. To represent all these features, for applications where a task is ready when one

or more of its predecessors finish execution, and one or more of its successors become ready

15

after the task finishes execution, we extend the AND/OR-model developed in [26].

In addition to computation nodes as in the AND-model, to represent control flow and

parallelism in an application, we define two other types of nodes: AND and OR synchro-

nization nodes. That is, vertices in a DAG that represents an AND/OR-model application

will include task nodes as well as synchronization nodes.

T 2
T 4T 3

T 5

T 1

T 2 T 3

T 4

T 1
30% 70%

b. OR structurea. AND structure

4/28/5 5/3 8/6 5/3

Figure 3.2: AND/OR structures

An AND node is represented by a diamond, which depends on all its predecessors (that

is, it can start execution only after all its predecessors finish execution) and all its successors

depend on it (that is, all its successors can execute only after it finishes execution). It is

used to explore the parallelism in parallel applications as shown in Figure 3.2a, where tasks

T2, T3 and T4 can be executed in parallel after the AND node T1 finishes execution.

An OR node is represented by a dual-circle, which depends on only one of its predecessors

(that is, it is ready for execution as soon as any one of its predecessors finishes execution)

and only one of its successors depends on it (that is, exactly one of its successors is executed

after it finishes execution). It is used to explore the different execution paths in applications

as shown in Figure 3.2b. To represent the probability of taking each branch after an OR

synchronization node, a number is associated with each successor of an OR node. For

example, in Figure 3.2b, the path along task T2 has the probability of 30% to be executed,

while the path along task T3 has the probability of 70% to be executed.

As in the AND-model, a computation node Ti is represented by a circle and labeled by its

two attributes ci and ai. The AND/OR nodes are considered as dummy tasks with the worst

case execution time being 0 (it is easy to transform a synchronization node with non-zero

16

computation requirement to a synchronization node and a computation node).

For simplicity, we only consider the case where an OR node cannot be processed concur-

rently with other paths. In other words, all processing units will synchronize at every OR

node. We define a segment as a set of tasks that are separated by two adjacent OR nodes.

There will be several segments, one for each branch, between two OR nodes.

Notice that there is no back-edge in DAGs. For a loop in an application, given the

maximum number of iterations, q, and the corresponding probabilities to execute a specific

number of iterations, we can either treat the whole loop as a single task that has a specific

ci and ai computed as the worst and average execution time needed for the entire loop,

respectively, or we can expand the loop into several tasks as described next.

E

L

S
1

p p
q

q:p :...:p
q1

S

L

L

L

L

L

L

E

q:p :...:p
1 q

p
1

p
q

L

S

E

S

L L L L L

E

q

a. Expand loop serially b. Expand loop in parallel

Figure 3.3: Loop expansion in AND/OR-model applications.

Based on whether there is dependence between iterations, there are two ways to expand

a loop. If there is dependence between iterations (i.e., iteration i + 1 depends on iteration i,

i = 1, · · · , q − 1), the loop can only be expanded serially (Figure 3.3a), where each branch

represents the case of a specific number of iterations to be executed. If there is no dependence

between iterations (represented by two parallel lines across the back edge of a loop), the loop

can be expanded in parallel as shown in Figure 3.3b. In Figure 3.3, the probability, pj, of

17

having j iterations is associated with the corresponding successor of the OR node.

An example of AND/OR-model applications is shown in Figure 3.4. Notice that the

AND-model is a special case of the AND/OR-model. However, due to its relative simplicity,

we present the AND-model separately for ease of discussion later. As shown in Chapter 4, it

is easier to present the energy management schemes for AND-model applications and then

extend them appropriately to AND/OR-model applications.

T 3
1/1

T 5
3/1.5

T 6
2/2

T 7
2/1.3

T 4T 1

T 8

T 9

T 12
T 20

T 21
T 11

T 16
1/0.5

T 15
1/1

T 13
4/4

T 18

T 19

T 22
2/1

T 23
1/1

T 24
1/1

T 25
1/1

T 26

T 27

T 28 T 30

T 29

T 17

T 33

T 32
1/1

T 31
2/1.3

T 2
2/1.5

T 10
T 14
3/3

40%

60%

30%

70%

Figure 3.4: An example of AND/OR-model applications.

3.1.3 System Models

We consider shared-memory parallel systems in this work. In shared-memory systems, the

inter-processor communication is implicit by writing/reading the same memory location.

Unless specified otherwise, it is assumed that the inter-processor communication cost is neg-

ligible. That is, if dependent tasks run on different processing units in a shared-memory

system, the data generated by predecessor tasks is available to their successor tasks imme-

diately after they finish execution.

We further assume that the systems considered are homogeneous. That is, the processing

units in such systems are identical. Tasks in a parallel application can be executed by any one

of the processing units, which have the same processing capability and power characteristics.

Task migration among processing units is implicit and is assumed to be free.

We further assume that the performance and power consumption of the systems consid-

ered are manageable. That is, the hardware subsystems have the capability of changing their

18

working states. For example, RDRAM, an energy efficient memory, can be put into differ-

ent power saving states that have different response times [73]. Moreover, variable voltage

processors, such as Transmeta [37], Intel Xscale [34] and AMD K6+ [68], can change their

power consumption by adjusting processing frequency and supply voltage within certain

ranges. For simplicity, unless specified otherwise, we use normalized processing frequency

and supply voltage. The maximum processing frequency is assumed to be fmax = 1 with

the corresponding supply voltage Vmax = 1. The minimum processing frequency is fmin with

supply voltage Vmin. The system power model is further discussed in the next section.

3.2 POWER MODEL AND ITS EFFECTS ON ENERGY MANAGEMENT

In a computing system, the power is consumed mainly by processors, memory, disks, network

interface, clock generator and underlying circuits. While the power consumption of some

components can be controlled in a fine granularity (e.g., processors and memory), other

components (e.g., disks and underlying circuits) can only be turned on or off. In this section,

we first address the dynamic power model for CMOS based processors, then we propose a

simple power model considering all power consuming components in a computing system.

The effects of the simple power model on energy management are also discussed.

3.2.1 Dynamic Power for CMOS Based Processors

The power consumption for CMOS based processors is dominated by dynamic power dissi-

pation Pd, which is given by [13, 18]:

Pd = Cef · V 2
dd · f (3.1)

where Cef is the effective switch capacitance, Vdd is the supply voltage and f is the processor

clock frequency. That is, Pd is quadratically related to supply voltage and linearly related

to processor frequency. Since the circuit delay is also determined by supply voltage, there is

19

an almost linear relation between processor frequency f and supply voltage Vdd as shown in

the following equation:

f = k · (Vdd − Vt)
2

Vdd

(3.2)

where k is a constant and Vt is the threshold voltage [13, 18].

Voltage scaling technique reduces supply voltage for lower processor frequencies when

non-peak performance is required [66]. This reduces processor dynamic power consumption

cubically at the expense of linearly decreasing processor frequency and linearly increasing

the execution time of an application. In this work, we use frequency changes to stand for

changing both frequency and supply voltage simultaneously.

3.2.2 A Simple Power Model

Although dynamic power dominates processor power dissipation, static leakage power in-

creases very fast with technology advancements and will probably be comparable to dynamic

power dissipation within a few technology generations, especially with sub-micron technol-

ogy. For example, the processor static leakage power for 1µm technology was 0.01% of total

power, but is approaching 10% for 0.1µm technology [83].

In addition to processors, there are other components that consume power in a system.

Since energy is defined as the integral of power over time, the energy consumption E of

a system to execute an application at power level P for time t is E =
∫

P (t)dt. While

scaling down frequency and voltage can save dynamic energy, it may not save the total

system energy to execute a specific application since the application will take more time and

consume more energy in other components. Thus, it is necessary to incorporate the power

consumed by other components into the power model when applying frequency and voltage

scaling techniques for energy savings.

The static leakage power may be removed by putting processors into a sleep state when

a system is idle. For example, the maximum active power for Intel Pentium-M processors is

around 25W and minimum active power is around 4W . However, they only consume around

0.5W in sleep state and need a few cycles for returning back to active working state [19].

20

Thus, when there is no computation requirement, we can put a system into a power saving

sleep state, from which a system can quickly (e.g., in a few cycles) respond to computation

requirement. Moreover, for the maximum power savings, we can also power off a processing

unit when it is and will possibly remain idle for a while and power it up when needed.

However, turning on/off a system incurs large time and energy overheads [11].

To incorporate all power consuming components in a processing unit and keep the power

model simple, we assume that a processing unit has three different states: active, sleep and

off. The active state is defined as having computation in progress. Depending on different

processing frequencies, all static power and different amounts of dynamic power are consumed

in the active state. The sleep state is a power saving state that removes all dynamic power

and most of the static power. Processing units in sleep state can act quickly (e.g., in a few

cycles) to new computation requirement. The transition timing overhead from sleep state to

active state is assumed to be negligible. A processing unit is assumed to consume no power in

the off state. For processing units that support automatic powering on (e.g., wake-on-LAN),

the corresponding component (e.g., the network interface) needs to be in a working state

while a processing unit is off. However, the power consumption to maintain that component

is small and assumed to be negligible.

Thus, the power consumption of a processing unit at frequency f can be modeled as:

P (f) = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceff
m) (3.3)

where Ps is the sleep power; Pind and Pd are frequency-independent and frequency-dependent

active powers, respectively. h̄ equals 1 if the system is active and 0 if the system is in the sleep

state. Cef and m (> 2) are system dependent constants and f is the processing frequency.

The sleep power Ps includes (but is not limited to) the power to keep basic circuits active,

to keep the clock generator running, and to maintain processor and memory in a sleep mode

[19, 48]. Active power is further divided into two parts: the frequency-independent active

power and the frequency-dependent active power. Frequency-independent active power con-

sists of part of the memory and processor power as well as any power that can be efficiently

21

removed by putting the processing units to sleep and is independent of the processing fre-

quency and supply voltage. Frequency-dependent active power includes processor’s dynamic

power and any power that depends on the processing frequency and supply voltage [13, 82].

t 3 t 4t 1

Ps

Ps Pind+

Pd
max

t 2

ACTIVE: fmax ACTIVE: fmin

Pd
min

���
���

���
���
���
���
���

���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������
���������������������������������������

���������������
���������������
���������������
���������������

�������������������������������	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�������������������
�������������������

P

Time

OFF ON

SLEEP

Figure 3.5: The simple power model: power consumption in different states.

The simple power model is further illustrated in Figure 3.5, where the power consumption

for different states in a processing unit is shown. In the figure, the Y-axis is the total power

in a processing unit and the X-axis represents time. Initially, the processing unit is off and

consumes no power. From time t1 to time t2, it is powered on and runs at frequency fmax.

Thus, the maximum power (Ps + Pind + Pmax
d) is consumed. After t2, the processing unit

is put to sleep since there is no computation and only sleep power Ps is consumed. During

period of (t3, t4), it is active again and runs at fmin. While the frequency-dependent active

power is reduced to Pmin
d , Ps and Pind remain the same during active state.

Notice that, for simplicity, the transition from the off state to the on state is not shown

in the figure. However, it takes considerable amount of time and consumes a certain level

of power to turn a processing unit on. For example, up to one minute has been reported to

turn on a PC running Windows [11].

To validate the effectiveness of our power model when modeling the power consumption

in a system, we analyze the power consumption for Intel XScale processors and determine the

parameters in our power model [34]. The frequencies and corresponding power consumption

for Intel XScale processors are shown in Table 3.1. Notice that, part of the power for each

frequency level is the sleep power Ps and frequency independent active power Pind. Consid-

22

ering the power characteristics of other components in a systems, their power consumption

contributes mostly to Ps and Pind. However, due to the lack of such real measured power

numbers, we validate our power model considering processors only.

Table 3.1: Power consumption at different frequencies for Intel XScale processors.

f(GHz) 1 0.8 0.6 0.4 0.15
P (W) 1.6 0.9 0.42 0.14 0.05

Using curve fit nonlinear regression techniques [35], we fit the powers and frequencies of

Intel XScale processors with our simple power model. Notice that, for different values of Ps

and Pind, after fitting the frequency and power number with our power model, we will get

different standard errors and correlation coefficients. The smaller standard errors and larger

correlation coefficients indicate better fit between the model and the power and frequency

pairs. Figure 3.6 shows the standard errors and correlation coefficients for different vaules

of Ps + Pind when applying nonlinear regression curve fitting of the powers and frequencies

with our power model.

 0.015

 0.0155

 0.016

 0.0165

 0.017

 0.0175

 0.018

 0.0185

 0.019

 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
 0.99966

 0.99968

 0.9997

 0.99972

 0.99974

 0.99976

 0.99978

 0.9998

st
an

da
rd

 e
rr

or

co
rr

el
at

io
n

co
ef

fi
ci

en
t

Ps+Pind

correlation coefficient
standard error

Figure 3.6: The standard errors and correlation coefficients for different values of Ps + Pind

when fitting the powers and frequencies of Intel XScale into our power model.

From the figure, we can see that when Ps + Pind = 0.028W , we get the best fit with the

minimum standard error 0.01517 and the maximum correlation coefficient 0.99979. For all

the values of Ps + Pind from 0.01 to 0.04 when fitting the powers and frequencies with our

23

power model, the coefficient Cef has a range from 1.592 to 1.566 and the exponent m has a

range from 2.644 to 2.767, respectively. For the case of best fit (i.e., Ps + Pind = 0.028W),

there are Cef = 1.577 and m = 2.717. Notice that, if the power is modeled as a 3rd degree

polynomial relation with frequency, we can get P = 0.121− 0.7664f + 1.8978f 2 + 0.3475f 3

with the standard error as 0.000778 and correlation coefficient as 0.999999. Considering the

small diffence (0.02% on correlation coefficient) between these two models, we will adhere

our simple power model in the thesis.

3.2.3 Effects of Power Model on Voltage Scaling

As we mentioned in Section 3.2.1, scaling down system processing frequency and supply volt-

age can save frequency-dependent active energy, but it takes longer to execute an application

and consequently it will consume more sleep energy and frequency-independent active en-

ergy. Therefore, there should be an energy efficient frequency fee to minimize system energy

consumption [22, 24, 38, 76].

For ease of discussion, the maximum frequency-dependent active power is assumed to

be Pmax
d = Ceff

m
max = 1. Moreover, Ps and Pind are assumed to be αPmax

d and βPmax
d ,

respectively. An application that needs L time units at fmax = 1 will take L
f

time units

when running at frequency f . Therefore, the system energy consumption to execute the

application at frequency f is:

E = (Ps + Pind + Ceff
m)

L

f
(3.4)

Differentiating Equation (3.4) with respect to f and setting the result to zero, we find that E

is minimized when f = m

√
α+β
m−1

, which is defined as the energy-efficient frequency fee. Notice

that an application cannot run faster than the maximum frequency fmax. If fee > fmax, that

is, α + β > m− 1, all applications would run at fmax to minimize their energy consumption

and no voltage scaling is necessary.

For systems that do not support turning on/off processing units or when the overhead

of turning processing units on/off is prohibitive [11], the system is assumed to be always on

and the sleep power Ps is not manageable (i.e., always consumed). In this case, the energy

efficient frequency can be easily found as fee = m

√
β

m−1
.

24

Given that fmin is the minimum supported processing frequency, we define the minimum

energy efficient frequency as flow = max{fmin, fee} and κ = flow

fmax
. That is, we may be forced

to run at a frequency higher than fee to meet the deadline of an application or to comply

with the lowest frequency limitation, but we should never run at a frequency below fee, since

doing so consumes more energy. Unless specified otherwise, we assume that fee ≥ fmin in

this work. That is, fee = κ.

Thus, when the system power has a constant component that can be efficiently

removed by putting the system into a sleep state when the system is idle, its

effect on voltage scaling for energy saving is equivalent to imposing a lower bound

on the processing frequency.

3.3 FAULT AND RECOVERY MODELS

Since transient and intermittent faults occur much more frequently than permanent faults

[16], in this work, we consider only transient faults and focus on exploring slack time in a

system as temporal redundancy for increasing reliability.

3.3.1 Fault Models

Two different fault models will be considered: a deterministic model and a probabilistic

model. For the deterministic model, we explore recovery schemes to tolerate a fixed number

(e.g., k) of faults during the execution of an application. That is, the system can recover

from at most k faults and the application will finish its execution in a correct and timely

fashion. If more than k faults occur, then the application will fail.

For the probabilistic model, as usual, faults are assumed to follow a Poisson distribution

with an average fault arrival rate λ. That is, for an application with execution time t, if

there is no recovery, the probability of failure (i.e., having fault(s) during its execution) is:

ρ = 1− e−λ·t (3.5)

The average fault arrival rate λ may change under different environments. The effects of

voltage scaling on λ will be further addressed in Chapter 5.

25

3.3.2 Rollback Recovery and Checkpoints

Faults are assumed to be detected through replicating the execution of an application on

multiple processing units and comparing their results. If results are the same, there is no

fault. That is, we do not consider correlated faults that result in the same error on every

processing unit. If the results are not the same, faults are detected. If the faults can not be

masked through majority voting in a modular redundant system, recovery is needed.

In this work, we consider rollback recovery [45] and explore checkpointing techniques for

efficient usage of temporal redundancy. At a checkpoint, the important system information

is saved to stable storage and a fault-detection process is executed [10]. If a fault is detected,

the correct state stored during the previous checkpoint is restored and the computation

within these two checkpoints is repeated [45].

The time overhead of one checkpoint is assumed to be r, which includes the time for sav-

ing system states, running the fault detection process and restoring previous correct states

if needed. With different checkpointing techniques, the overhead of taking a checkpoint has

large variations [71]. We will explore the effects of checkpointing overhead on our manage-

ment schemes in Chapter 4.

3.4 PROBLEM DESCRIPTION AND RESEARCH OVERVIEW

For a parallel frame-based real-time application, which consists of independent or dependent

tasks, we first consider the problem of minimizing energy consumption while guaranteeing the

timing constraints of the application when it is executed on a homogeneous shared-memory

system that has multiple processing units. When system reliability is also a major concern,

the problem becomes exploring the optimal fault tolerance scheme that either minimizes

energy consumption for a given system reliability target or maximizes system reliability

within limited energy budget while the application’s timing constraints are still satisfied.

Figure 3.7 shows the research scope and summarizes the solutions proposed in this work.

We first consider the energy minimization problem for applications being executed in a

26

Energy

Reliability
Minimization

MaximizationCheckpointing

ONMR

Speculation

Sharing
SPM−P

AND/OR−model

AND−model

Shifting Parallel Recovery

Figure 3.7: Summary of solutions and research overview.

fault-free environment. Then, focusing on tolerating transient faults, energy efficient fault

tolerance schemes are proposed.

As the first part of this work, static power management is addressed. It is well known that

the uniform static power management (U-SPM), which evenly scales down the processing

frequency when executing an application by proportionally distributing static slack over

the schedule, is optimal for uniprocessor systems. However, we found that U-SPM is not

optimal for parallel systems where the degree of parallelism in a schedule, defined as the

number of processing units that have tasks for execution at a given moment, may vary.

With the observation that more energy can be saved by allocating more slack to schedule

sections with higher levels of parallelism, a static power management scheme with parallelism

(SPM-P) is proposed (see Section 4.2.3).

When the dynamic behavior of tasks is considered, energy management for parallel sys-

tems becomes more complicated. This is because the mapping and/or scheduling of tasks

to processing units may change and cause timing constraint violations due to the varia-

tions of tasks’ execution time. Based on a global scheduling strategy, we first propose a

slack sharing scheme for AND-model applications to reclaim dynamic slack for energy sav-

ings (Section 4.3.2). Considering the slack time resulting from executing different paths in

AND/OR-model applications, an extended slack shifting/sharing scheme is proposed (Sec-

tion 4.3.3). Moreover, speculation schemes, which use the statistical timing information of

applications, are proposed with the intention of saving more energy by reducing the number

27

of voltage/frequency changes and the related overheads (Section 4.4).

Taking reliability into consideration, checkpointing techniques are first explored to effi-

ciently use the slack time in a system when roll-back recovery schemes are used for fault

tolerance. We propose the concept of level of pessimism, which denotes the number of faults

expected to occur in the analysis. Based on this concept, we explore the optimal number

of checkpoints to minimize expected energy consumption with a given reliability goal. We

also devise the optimal number of checkpoints to maximize system reliability with limited

energy budget (Section 5.1).

Extending the idea of an optimistic triple modular redundancy (OTMR) scheme [22], we

consider an energy efficient optimistic modular redundancy (ONMR) scheme. For that, we

assume that faults are rare and some processing units in a modular redundant system are

turned off or scaled down for energy savings, provided that they can catch up and finish the

computation before the application’s deadline if other processing units do encounter faults.

The optimal frequency setting for the processing units in an ONMR system is explored

(Section 5.2).

For an application being executed on a system that consists of a certain number of

processing units, an efficient parallel recovery scheme is proposed and the optimal redundant

configuration problem is addressed. Here, the redundant configuration is defined by the

level of modular redundancy employed, the number of processing units used, the frequency

of the active processing units and the number of backup time units needed. Furthermore,

we discuss a framework for finding the optimal redundant configuration to minimize the

expected energy consumption for a given reliability target as well as to maximize system

reliability for a given energy budget (Section 5.3).

Finally, the trade-off between energy consumption and system reliability is addressed

while considering the effects of energy management on fault rates. We illustrate that ignoring

the effects of voltage scaling on fault rates (i.e., fault rates increase when voltage is reduced)

may lead to unsatisfied system reliability when voltage scaling is used for energy savings

(Section 5.4).

28

4.0 PARALLEL ENERGY AWARE SCHEDULING

In this chapter, we focus on exploring slack time for energy saving for frame-based parallel

real-time applications that are executed on systems consisting of multiple processing units.

We will first illustrate the importance of task priority assignment on meeting an application’s

timing constraints in parallel systems and explain why we choose fixed-priority list scheduling

in this work (Section 4.1). Then we consider energy management schemes that explore static

as well as dynamic slack in Section 4.2 and Section 4.3, respectively. The evaluations of the

proposed energy management schemes are presented in Section 4.6. Section 4.7 develops some

theoretical bounds on the energy savings that can be obtained through energy management

and Section 4.8 summarizes this chapter.

As a first step, when presenting the energy management schemes, we focus on frequency-

dependent active power Pd = Ceff
m (see Section 3.2) and ignore sleep power and frequency-

independent active power (i.e., we assume that Ps = Pind = 0). However, for systems

where Ps and Pind are significant, the energy management schemes can be easily adapted

by imposing a minimal energy-efficient frequency limitation as discussed in Section 3.2. The

effects of Ps and Pind on energy management are further evaluated in Section 4.6.6. Moreover,

unless specified otherwise, we assume that m = 3.

4.1 SCHEDULING IN PARALLEL REAL-TIME SYSTEMS

We start by illustrating the importance of execution order on meeting the timing constraints

of an application. Although there is no power management addressed in this section, the

results presented here will be used by power management schemes in the following sections.

29

There are two major strategies for mapping tasks in parallel applications on multiple

processing units: global and partition scheduling [20]. In global scheduling, all ready tasks are

put into a global queue and each idle processing unit fetches from the queue the task with the

highest priority for execution. In the partition scheduling strategy, ready tasks are mapped

to individual processing unit and each processing unit fetches the highest priority task from

its own queue for execution. Although the simple uni-processor energy management schemes

[62] can be applied directly on each processing unit in partition scheduling, global scheduling

has the merit of automatic balancing the actual workload among processing units [20], which

implies the possibility of uniformly scaling down all processing units for more energy savings.

Thus, in this work, we focus on global scheduling. Moreover, we consider only non-preemptive

scheduling, in which a scheduled task run to completion before a processing unit fetches

another task for execution.

List scheduling is a well-known technique to schedule dependent tasks represented by

DAGs on multiple processing units [65, 87]. It puts tasks into a ready queue as soon as they

become ready and dispatches the task at the head of the ready queue to an idle processing

unit. Notice that, the case of independent tasks can be considered as a special case of

dependent tasks, where there is no precedence constraint and all tasks are ready at the

beginning of a frame.

4.1.1 Earliest Ready Longest Task First Heuristic (ER-LTF)

We can see that the priority assignment of tasks affects which task is executed on which

processing unit, the workload of each processing unit, and the schedule length (defined as

the total time needed to finish executing all tasks). When tasks are ready at the same

time, in general, the problem of finding the optimal solution of assigning task priority to

minimize schedule length is NP-hard [20]. Moreover, as we show in [95], the optimal priority

assignment that minimizes schedule length of an application may not lead to the minimum

energy consumption due the application’s run-time behaviors.

In this work, we consider the longest task first (LTF) heuristic when determining the

priority of tasks that are ready at the same time. In general, we expect that longer tasks

30

(based on tasks’ WCET) generate more dynamic slack at run-time, which can be used by

future tasks, and thus more energy savings could be obtained. It also has been shown that,

for independent tasks, the ratio of the schedule length under LTF heuristic over the one

under optimal priority assignment is bounded by a certain constant [65]. In addition, LTF

heuristic is simple and easy to be implemented.

Due to the precedence constraints among tasks, the ready times of tasks may be different.

In order to obtain a total order on tasks’ priorities, we extend LTF and use the earliest ready

longest task first (ER-LTF) heuristic to assign tasks’ priorities. That is, tasks with earlier

ready time have higher priorities. If tasks’ ready time is the same, longer tasks have higher

priorities. If there is a tie, it can be broken arbitrarily (e.g., by task ID). Therefore, the

priority of a task Ti is defined as a tuple (rti, ci), where rti is the ready time of task Ti and

ci is Ti’s WCET.

A schedule is a list of events that specify the mapping, as well as start and end times

of tasks for an application running on a specific system. A schedule is feasible if it meets

all the precedence and timing constraints of an application. An application is schedulable

if there exists a priority assignment such that there is a feasible schedule even in the worst

case scenario. Note that the ER-LTF heuristic is not optimal. That is, an application may

not be able to meet all its precedence and timing constraints under ER-LTF heuristic even

if the application is schedulable. In this work, for the applications we considered, a feasible

schedule is assumed to exist under ER-LTF priority assignment heuristic in the worst case

scenario.

However, it is worth to point out that the energy management schemes proposed later

in this chapter do not depend on specific priority assignment heuristics. For any priority

assignment algorithm, if it can generate a feasible schedule for an application in the worst

case scenario, our energy management schemes can be applied for energy saving and still

guarantee that the application’s precedence and timing constraints are met.

31

4.1.2 Canonical Schedules

Under a certain scheduling policy, if all tasks use their worst case execution time and meet

the precedence and timing constraints during an execution of an application, the execution

is defined as canonical execution. A schedule that has the same mapping, as well as start

and end times for all tasks as those in a canonical execution is called a canonical schedule of

an application.

For AND-model applications, all tasks will be executed during any execution and there

is only one canonical execution, which corresponds to one canonical schedule. For example,

suppose that the application in Figure 3.1a has a single deadline at time 20, under ER-LTF

priority assignment heuristic, the application’s canonical schedule on two processing units is

shown in Figure 4.1a.

Queue T 4T3

T1

T T T

T

2 3

4

5

20

1P

Time

1T 2T 5T

2P

T T T T T1 3 4 52

20 Time

T T

T T T

1 2

3 4 5

a. LTF priority assignment b. Optimal priority assignment

0 0

Figure 4.1: Canonical schedules of an AND-Model application

In the figure, the order of tasks in the queue follows their priorities. For the schedules

discussed in this work, the height of the rectangles represents processor frequency and the

X-axis represents time. The area of a rectangle represents the worst case computation re-

quirement (e.g., the number of cycles) needed to execute the corresponding task. Notice that

the optimal priority assignment could result in a shorter schedule as shown in Figure 4.1b.

For AND/OR-model applications, only a subset of tasks will be invoked in any specific

execution. An execution path is defined as a distinguished subset of tasks that are invoked in

one execution and there are generally more than one execution path in an AND/OR-model

application. Notice that any task in an application will be in at least one execution trace.

32

An integrated segment of an application is defined as the tasks that are between two adjacent

OR nodes and in the same execution path. The tasks in an integrated segment, as a whole,

will be executed or will not be executed. Notice that, there may be more than one integrated

segments between two adjacent OR nodes. The concept of canonical schedule can be applied

to integrated segments in an AND/OR application and a canonical schedule section can be

obtained for each integrated segment under a given priority assignment heuristic. In what

follows, we use canonical schedule to refer to all canonical schedule sections along the longest

path in an AND/OR-model application.

For the AND/OR-model application shown in Figure 3.4, the canonical schedule on two

processing units under ER-LTF priority assignment heuristic is illustrated in Figure 4.2.

Note that the synchronization nodes are considered as dummy tasks and are shown as bold

vertical lines. The dotted rectangles represent the integrated segments.

S 0
T 3

T 2 T 5

T 6 T 7

T 13

T 14

T 15

T 16

T 22

T 23

T 24

T 25

T 32

T 31

D

14121086420

Time (ms)

Figure 4.2: Canonical schedule of an AND/OR-Model application

4.1.3 Importance of Execution Order

Intuitively, if all tasks use no more than their WCET during an execution instance, an appli-

cation should finish earlier than the canonical schedule in which all tasks use their WCET.

However, for dependent tasks, due to priority inversion caused by tasks’ dynamic behavior,

an application may use more time than its canonical schedule, as will be demonstrated in

Section 4.1.3.2.

33

4.1.3.1 Independent Tasks Recall that we define the priority of a task Ti as a tuple of

its ready time rti and WCET ci. For independent tasks, all of them are ready at the same

time (e.g., the beginning of a frame) and their priorities are solely determined by their WCET

under ER-LTF priority assignment heuristic. Thus, the order of tasks being dispatched and

executed (i.e., the order of tasks in the global queue) does not depend on tasks’ run-time

behavior and are the same for all executions. However, due to the run-time behavior of

tasks, they may be dispatched to and executed on processing units that are different than

the ones in the canonical schedule.

Queue T T T T T T41 2 3 5 6 T T T T T T1 2 3 4 5 6

9 Time

2P

1P T T T

TTT

1

2 3

4 5

6

0 0 9 Time

T T T

T T T

1

2

3

4

5

6

b. Actual execution with NPMa. Canonical Execution

Figure 4.3: The canonical schedule and one running of an independent task set

Consider an independent task set that has six tasks: Γ = {T1, T2, T3, T4, T5, T6} and a

common deadline D = 9, where T1 = (5, 2), T2 = (4, 4), T3 = (3, 3), T4 = (2, 2), T5 = (2, 2),

T6 = (2, 2). When they are executed on a shared memory system that has two processing

units, Figures 4.3a and 4.3b show the canonical schedule and one actual execution where

tasks take their average case execution time (ACET), respectively. From the figures, we

can see that the order of tasks in the global queues are the same (i.e., tasks have the same

priorities) in both cases. Moreover, both cases can finish executing all tasks before the

deadline.

However, for the case where tasks take their ACET, T1 finishes earlier at time 2 and the

first processing unit fetches from the global queue the next highest priority task, which is

T3. Without reclaiming the slack, T3 will finish its execution at time 5. It is different from

the canonical schedule, where T3 runs on the second processing unit from time 4 to time

7. Since both start and end time of task T3 become earlier, it in turn leads to earlier start

34

and completion of the remaining tasks. Thus, the actual running takes less time than the

canonical schedule.

In what follows, we prove that, for independent tasks that have fixed priorities (i.e., the

order of tasks being dispatched and executed is fixed), if the timing constraints can be met

in the canonical schedule, any execution of an application where tasks take no more time

than their WCET can meet the timing constraints.

First, we define some notations. In addition to the ready time rti of task Ti, sti and fti are

defined as Ti’s start time and finish time during one execution of an application, respectively.

For the canonical execution, rtci , stci and ftci are correspondingly defined as the canonical

ready time, canonical start time and canonical finish time of Ti. The actual execution time

of Ti during an execution is denoted by aeti. Furthermore, the estimated finish time of task

Ti is defined as efti = sti + ci. We denote ectk by the estimated completion time of the kth

processing unit, which is the estimated finish time of the task that is currently running on

that processing unit.

From the assumption of tasks’ WCET, if all tasks can begin their execution no later

than their canonical start time during an execution instance, they will finish their execu-

tion no later than their canonical finish time. This means that the execution can meet an

application’s timing constraints if the canonical execution could.

Lemma 1. For an application consisting of a set of independent tasks Γ = {T1, . . . , Tn}, if

the priorities of tasks are fixed, the start time of tasks during an execution instance in which

tasks use no more than their WCET will be no later than their canonical start time. That

is, sti ≤ stci (i = 1, . . . , n).

Proof. Suppose there are M (≥ 1) processing units. If the number of tasks is no more than

the number of processing units (i.e., n ≤ M), all tasks will start their execution at time 0

during any execution instance, that is sti = stci = 0 (i = 1, . . . , n). The result is trivial.

Next, we consider the case where n > M . The proof is by induction on Ti, i = 1, . . . , n.

Without loss of generality, we assume that the priority of task Ti is higher than that of Ti+1

(i = 1, . . . , n − 1). That is, tasks with lower identification numbers have higher priorities

and are closer to the front of the global ready queue.

35

Base case: When n > M , initially, each of the M processing units fetches one task for

execution. Thus, for the first M tasks, there is sti = stci = 0 (i = 1, . . . , M).

Induction step: Assume that Tj−1 (j − 1 ≥ M) is the most recently started task and

sti ≤ stci for i = 1, . . . , j − 1. The next highest priority task (i.e., the header task in the

global ready queue) to be fetched and executed will be Tj.

From the definition, for the first j − 1 tasks, we have:

fti = sti + aeti

efti = sti + ci

ftci = stci + ci

When tasks use no more time than their WCET, that is, aeti ≤ ci, we will have:

fti ≤ efti ≤ ftci ; i = 1, . . . , j − 1

From the algorithm and definitions, after Tj−1 starts and before any other task finishes,

the estimated completion time of one processing unit equals the estimated finish time of the

active task that currently runs on that processing unit. That is,

ectk = eftki

where k = 1, . . . , M and ki = 1, . . . , j − 1. Tki
is the task currently running on the kth

processing unit. Define the active task set Γ̂ to be the set of tasks currently running on all

processing units (i.e., Γ̂ = {Tki
}). Moreover maxM{X1, . . . , Xn} (M ≤ n) is defined as the

set that contains the M largest elements in {X1, . . . , Xn}.
Without loss of generality, suppose task Tli on the lth processing unit (l = 1, . . . , M and

li = 1, . . . , j− 1) is the next task that finishes its execution. Under global scheduling, the lth

processing unit will fetch and execute task Tj. From the algorithm and the fact that tasks

use no more time than their WCET, we have:

stj ≤ min{efti|Ti ∈ Γ̂}

36

Notice that,

min{efti|Ti ∈ Γ̂} ≤ min{max
M
{efti|i = 1, . . . , j − 1}}

Thus,

stj ≤ min{max
M
{efti|i = 1, . . . , j − 1}}

For the case of canonical execution, we have:

stcj = min{max
M
{ftci |i = 1, . . . , j − 1}}

From above discussion, efti ≤ ftci (i = 1, . . . , j − 1). Thus,

min{max
M
{efti|i = 1, . . . , j − 1}} ≤ min{max

M
{ftci |i = 1, . . . , j − 1}}

Therefore, stj ≤ stcj. That is, the start time of task Tj is no later than its canonical start

time.

In summary, if independent tasks in an application have the same priorities as in canonical

execution and use no more than their WCET, they will start their execution no later than

their canonical start time during any execution instance.

From Lemma 1, it is trivial to prove the following theorem.

Theorem 1. For an application consisting of independent tasks that have the same priorities

during any execution, if the timing constraints can be met in the application’s canonical

execution, any execution of the application can meet the timing constraints.

For independent tasks, there is no precedence constraint and all tasks are ready at the

very beginning of a frame. That is, rtci = rti = 0 (i = 1, . . . , n). Thus, the priorities of tasks

under ER-LTF heuristic only depend on their WCET and are the same for all execution

instances. Therefore, under ER-LTF heuristic, an application that consists of independent

tasks finishes its execution no later than the case of canonical execution if tasks use no more

than their WCET.

37

4.1.3.2 Anomaly of List Scheduling for Dependent Tasks For dependent tasks,

recall that list scheduling puts a task into the global queue whenever all its predecessors

finish their execution. Due to the run-time behavior of tasks, the ready time of a task may

be different in different execution instances, which results in different priorities and different

orders of tasks being added to the global queue. Therefore, an application that consists of

dependent tasks may not be able to meet the timing constraints even if the application’s

canonical schedule does.

Consider the application with precedence constraints as shown in Figure 3.1b, when it

is executed on two processing units, its canonical schedule is shown in Figure 4.4a. When

all tasks use their WCET, we can see that T1 and T2 are root tasks and ready at time 0. T3

and T4 are ready at time 2 when their predecessor T1 finishes execution. T5 is ready at time

3 and T6 is ready at time 6. Suppose that the application has a deadline at time 12.

0

T1 T T T T3 4 5 6T2

2 3 6

0 12 Time

T T

TTT

T1

2 3

4 5

6

P

P

1

2

Ready Time

Queue T4T3T5

T5

T3 T4

T6

Ready Time

Queue T T1 2

0 6

6T

0 Time12

T

T

1

22P

1P

21

a. The canonical schedule b. An actual running with tasks’ ACET

Figure 4.4: The canonical schedule and one running of one dependent task set

If every task uses its average case execution time (ACET), Figure 4.4b shows the exe-

cution instance of the application. From the figure, it is clear that the execution does not

finish by the application’s deadline. This comes from the fact that T5’s priority is different

from the one in the canonical schedule due to the earlier completion of T1. When T5 is put

into the global queue and is executed before T3 and T4, which is different from the canonical

execution, it causes the mapping and scheduling of T3, T4 and T6 to be different from the

canonical schedule and in turn leads to the late completion of tasks and a deadline miss.

38

4.1.3.3 List Scheduling with Fixed Priority Notice that the priorities of independent

tasks do not depend on the tasks’ run-time behavior and, the scheduling for independent tasks

does not exhibit the anomaly of using more time than their canonical schedule. Based on

this observation, we will use fixed-priority list scheduling to prevent scheduling of dependent

tasks from the run-time uncertainties and anomalies. That is, during run-time, the priorities

of tasks are kept the same as the ones in the canonical schedule.

Define the canonical priority of a dependent task Ti as a tuple (rtci , ci), where rtci is the

canonical ready time of Ti in the canonical schedule and ci is Ti’s WCET. Since the canonical

schedule of an application can be determined statically, the canonical priorities of tasks are

fixed and do not dependent on tasks’ run-time behaviors. Thus, instead of waiting until tasks

are ready before putting them into the global queue, we can add all tasks into the global

queue in the order of their canonical priorities at the very beginning of a frame. Whenever a

processing unit is free, it will check the readiness of the task at the head of the queue, which

has the highest priority among all remaining tasks. If the task at the head of the queue is

ready, the free processing unit will fetch and execute it; otherwise, the free processing unit

will go to idle although ready tasks with lower priorities may exist.

For the example in Figure 4.4, with each task using its ACET and canonical priority, the

execution is illustrated in Figure 4.5. By keeping the same priorities as in canonical schedule,

the execution meets the application’s deadline. Notice that the first processing unit is idle

during the second time unit since the header task T3 is not ready when the processing unit

is free at time 1.

T4 T5

T6

Fixed Priority

Queue T T1 2 6T

0 Time12

T

T

1

22P

1P

T3 T4 T5

T3

Idle Time

Figure 4.5: Fixed-priority list scheduling for dependent tasks

For an application that consists of a set of dependent tasks, if the tasks are executed

39

according to their canonical priorities and use no more time than their WCET, we will prove

that any execution under list scheduling can meet the timing constraints if these timing

constraints can be met in the canonical schedule.

Lemma 2. Consider an application that consists of a set of dependent tasks. For any task Ti

during any execution under fixed-priority list scheduling with each task keeping its canonical

priority and using no more time than its WCET, there is a point in time ti that is no later

than Ti’s canonical start time stci , and at which the following two conditions are satisfied: (a)

Ti is the first task in the global queue and is ready (i.e., all its predecessors finished execution);

and (b) a free processor is available to fetch and execute Ti. That is, sti = ti ≤ stci .

Proof. Suppose that the application consists of n tasks, that is, Γ = {T1, . . . Tn}. Without

loss of generality, we assume that the canonical priority of task Ti is greater than that of

task Ti+1 (i = 1, . . . , n−1). That is, the order of tasks in the global queue follows the inverse

order of tasks’ identification number. Tasks with smaller identification are closer to the front

of the global queue and thus are dispatched and executed earlier.

The proof then proceeds by induction on i, for task Ti in the application.

Base case: Suppose that h (≤ M) root tasks of the application begin execution at

time 0, where M is the number of processing units in the system. Hence, sti = stci = 0 for

i = 1, . . . , h.

If h < M , this means that there are only h root tasks and M − h processing units will

be idle at time 0; otherwise, if h = M , the number of root tasks is at least M , the number

of processing units.

Induction step: Assuming that Tj−1 is the most recently started task and sti ≤ stci for

i = 1, . . . , j − 1.

(a) From the scheduling algorithm and tasks’ priorities, after the first j − 1 tasks are

dispatched, task Tj becomes the header task in the global queue. For any predecessor, Tq,

of task Tj (i.e., Tq → Tj ∈ E), we have 1 ≤ q ≤ j − 1.

Hence, in the canonical schedule, task Tq finishes no later than stcj, that is, ftcq ≤ stcj.

During actual runnings, task Tq starts execution at stq ≤ stcq and finishes no later than

ftq = stq + cq ≤ stcq + cq = ftcq ≤ stcj. Therefore, task Tj is ready no later than stcj.

40

(b) Next, for the canonical schedule, before task Tj starts at time stcj, there are at

most x = M − 1 tasks (among the first j − 1 tasks) that are running and will finish later

than stcj (since at least one processing unit is free and fetches Tj at time stcj). For task Ta

(1 ≤ a ≤ j − 1) that finishes no later than stcj in the canonical schedule, we have ftca ≤ stcj.

During actual runnings, we have fa = sta + ca ≤ stca + ca = ftca, that is, Ta will finish no

later than ftca ≤ stcj. Thus, there are at most x = M − 1 tasks that could finish later than

stcj. That is, at or before time stcj, at least M − x = 1 processors are idle and free.

Thus, one free processor will fetch and execute task Tj no later than stcj. That is,

stj ≤ stcj.

Therefore, under fixed-priority list scheduling with tasks taking their canonical priorities

and use no more time than their WCET, for any task Ti in an application, there is sti ≤
stci .

From Lemma 2, it is straightforward to prove the following theorem.

Theorem 2. For an application that consists of a set of dependent tasks, if tasks use at

most their WCET and the application’s canonical execution can meet the timing constraints,

any execution of the application under fixed-priority list scheduling with each task keeping its

canonical priority can meet the application’s timing constraints.

4.2 STATIC POWER MANAGEMENT (SPM)

We will start discussing power management schemes for the AND-model applications and

then extend them to the AND/OR-model applications. If the length of an application’s

canonical schedule is less than the application’s deadline, we can take advantage of the static

slack, which is defined as the difference between the deadline and the canonical schedule

length. For example, there are 2 time units of static slack for the cases of both Figure 4.1b

and Figure 4.2.

Assuming that tasks use their WCET, static energy management explores static slack

to scale down the processing frequency and supply voltage to save energy. The slack can

be allocated to one task or to all tasks [62, 88, 28] in different static energy management

41

schemes. For illustration purpose, we consider a simple example that only has three tasks as

shown in Figure 4.6a. Suppose that the application is executed on two processing units and

has a deadline at time 6. The canonical schedule is shown in Figure 4.6b, where the static

slack is S0 = 2.

S 02/2
A B

1/1

3/3

C

a. An application

3 4 521

t

b. Canonical schedule for the application

C

D

A

B

0

Figure 4.6: A simple example and its canonical schedule

4.2.1 Greedy Static Power Management (G-SPM)

G-SPM allocates all static slack to the first task running on each processing unit. It can be

implemented in two steps. First, the schedule is shifted forward (that is, toward the deadline)

by a time equal to the amount of slack. That is, the start and end times for tasks are all

delayed by the same amount of time and the precedence and synchronization constraints are

maintained. Then, the first task on each processing unit can claim the time between the

beginning of a frame and its start time while obeying any timing constraints.

Applying G-SPM to the application in Figure 4.6a, both tasks A and B will get 2 units

of slack and can scale down their processing frequencies and voltages proportionally. The

static schedule is shown in Figure 4.7a where each task is labeled by its processing frequency.

4.2.2 Uniform Static Power Management (U-SPM)

As discussed in [39], because of the convex relation between processor dynamic power and

processing frequency, the optimal schedule that results in the minimum energy consumption

for uniprocessor systems is to run all tasks with the same processing frequency. That is,

42

1/2 f max

fmax 2/3 f max2/3 f max

2/3 f max

3/5 f max

3 4 521

t

3 4 521

t

C

D

6

B

A

D

CB

A

6

a. G−SPM b. U−SPM

0 0

Figure 4.7: Two simple static energy management schemes

the optimal static slack allocation is to proportionally distribute static slack among all task

according to their WCET. Following this idea, a uniform static power management (U-SPM)

scheme for parallel systems is proposed in which static slack is distributed over a schedule

evenly [28]. Therefore, tasks under the U-SPM scheme will run at the same frequency, which

is the ratio of an application’s canonical schedule length over its deadline.

For the above example, the schedule under the U-SPM scheme is shown in Figure 4.7b.

Here, the canonical schedule length is 4 and there are 2 units of slack time. Thus, all tasks

run at frequency f = 2
3
fmax. Recall that m is assumed to be 3. Therefore, the energy

consumption is quadratically related to processing frequency (see Equation 3.4) and the

energy consumed will be 4
9
E, where E is the energy consumed when no power management

(NPM) is applied.

Although U-SPM is optimal for uni-processor systems in terms of static energy savings

[39], it is not optimal for parallel systems. The reason is that, gaps may exist in a schedule

due to dependence between tasks and not all processing units have tasks for execution all

the time.

Notice that a schedule can be divided into many schedule sections separated by the

canonical start and end times of the tasks. The degree of parallelism (DP) of a schedule

section is defined as the number of processing units that have tasks for execution during

that section. By uniformly stretching the whole schedule, U-SPM does not consider different

DPs of different schedule sections. In fact, in the above example, U-SPM consumes even

more energy than G-SPM, which consumes only 29
150

E units of energy. This is because G-

SPM happens to allocate more slack to schedule sections that have higher DPs (and thus

more energy efficient as discussed in Section 4.2.3).

43

4.2.3 Static Power Management with Parallelism (SPM-P)

Intuitively, more energy savings can be obtained by giving more slack to schedule sections

that have higher DPs because the same amount of slack could be used to scale down more

computation. In this section, we propose a scheme named static power management with

parallelism (SPM-P) which takes into consideration the different DPs of different sections in

a schedule when allocating static slack.

4.2.3.1 SPM-P for Dual-Processor Systems Starting from the simplest parallel sys-

tems that have only two processing units, the DP in a schedule could range from 1 to 2.

Notice that, excluding the slack time at the end of a schedule, there is no schedule section

that has DP = 0 since inter-processor communication is assumed to be instantaneous for

shared-memory systems.

For efficient allocation of static slack, an application’s canonical schedule will first be

partitioned into sections. For the schedule in Figure 4.6b, the first two time units have

DP = 2, and the third and fourth time units have DP = 1. We define Lij as the length of

the jth section that has DP = i. The total length of schedule sections that have DP = i in a

schedule is defined as TLi =
∑

j Lij. The schedule in Figure 4.6b for the simple application

will be partitioned as shown in Figure 4.8. Here, we have TL1 = 2 and TL2 = 2.

L11L21

C

S
D

0 3 4 5 621

tA

B
0

Figure 4.8: Parallelism in the schedule for a simple application

In general, suppose that an application running on a dual-processor system has static

slack of S0. The total length of schedule sections with parallelism of i is TLi (i = 1, 2). With

si defined as the amount of static slack allocated to sections that have DP = i (i = 1, 2),

44

the total energy consumption E after allocating the static slack S0 will be:

E =
∑

i

Ei =
∑

i

(i · Cef · f 3
i · (TLi + si))

=
∑

i

(
i · Cef

(
TLi

TLi + si

fmax

)3

(TLi + si)

)

= Cef · f 3
max

∑
i

(
i · TL3

i

(TLi + si)2

)
(4.1)

where fi is the frequency for executing schedule sections that have DP = i (i = 1, 2). From

last equation, we can see that E decreases monotonically when si increases. Therefore, all

the slack of S0 should be allocated. To efficiently allocate S0, we need to minimize E subject

to:

0 ≤ si (4.2)
∑

i

si = S0 (4.3)

where i = 1, 2. The constraints put limitations on how to allocate the static slack S0. Setting

∂E
∂s1

= ∂E
∂s2

= 0, we can get the following solutions:

s1 =
TL1(S0 − (21/3 − 1)TL2)

TL1 + 21/3TL2

; (4.4)

s2 =
TL2(2

1/3S0 + (21/3 − 1)TL2)

TL1 + 21/3TL2

; (4.5)

From the solutions, if S0 ≤ (21/3 − 1)TL2, we set s1 = 0 since there is a constraint that

si ≥ 0. Thus, s2 = S0, that is, all the static slack will be allocated to the sections with

parallelism of 2.

For the application in Figure 4.6a, we have s1 = 0.6550 and s2 = 1.3450. The energy

consumption is computed as 0.3083E. Compared with the energy consumption when using

U-SPM 4
9
E = 0.4444E, an additional 30% energy is saved by SPM-P.

45

4.2.3.2 SPM-P for M-Processor Systems The above idea can be easily extended

to M-processor systems. Assuming that there are M processors in a system, the degree of

parallelism (DP) in a schedule will range from 1 to M . Suppose that schedule sections with

DP = i have total length of TLi (which may consist of several sub-sections Lij, j = 1, . . . , ui,

where ui is the total number of sub-sections that have DP = i) and the static slack in the

system is S0. The amount of slack allocated to schedule sections with DP = i is defined

as si. The total energy consumption E after allocating S0 would be the same as shown in

Equation (4.1) with i = 1, . . . ,M .

The problem of finding an optimal allocation of S0 to TLi in terms of energy consumption

will be to find s1, . . . , sM so as to

minimize(E)

subject to:

0 ≤ si (4.6)
∑

i

si = S0 (4.7)

where i = 1, . . . , M .

Solving the above problem is similar to solving the constrained optimization problem

presented in [7]. We can also approximate the solution by dividing slack S0 into small

shares with length δS (i.e., there will be S0

δS
slack shares) and allocate the shares to different

schedule sections. For each allocation, one slack share δS is allocated to schedule sections

with DP = i such that energy reduction ∆Ei (i = 1, . . . , M) is maximized:

∆Ei = Ei − E ′
i

= i · Cef

(
f 3

i TLi −
(

TLi

TLi + δS
fi

)3

(TLi + δS)

)

= i · Ceff
3
i

TLiδS(2TLi + δS)

(TLi + δS)2
(4.8)

where Ei and E ′
i are the energy consumptions for sections with DP = i before and after

getting δS, respectively.

46

The precision of this approximation process can be controlled by varying the size of each

slack share. In general, the smaller δS is, the more accurate the solution would be. However,

there will be more allocation steps and consume more time. In Section 4.6, compared with

G-SPM and U-SPM, we will evaluate the effectiveness of SPM-P on energy savings.

4.2.4 SPM for AND/OR Applications

The difference between AND/OR-model applications and AND-model applications lies in the

number of execution paths they have. While there is only one execution path in AND-model

applications, more than one execution path generally exist in AND/OR-model applications.

In addition to static slack, the amount of slack expected from executing the shorter-than-

longest paths can also be determined statically by examining the difference on the canonical

schedule length of different segments between adjacent OR nodes.

For those slacks, the scheme discussed above could be applied to each schedule segment to

reclaim the slack statically. However, for applications that have nested OR nodes, reclaiming

such slack could be an iterative process and may be computationally expensive.

Dynamic slack is generated when tasks of a real-time application use less than their

WCET or shorter-than-longest paths are taken during the application’s actual execution.

Considering the large variations in the run-time behavior of real-time tasks, which only

consume a small fraction (e.g., 10% to 40%) of their WCET in many cases [23], excessive

amount of dynamic slack is expected. Thus, dynamic slack reclamation is necessary and the

slack from executing different paths can also be considered as dynamic slack and reclaimed

on-line. The on-line reclamation of such slack is discussed in Section 4.3.3.

4.3 DYNAMIC POWER MANAGEMENT (DPM)

In this section, we address the problem of reclaiming dynamic slack and propose several

energy management schemes that scale down the processing frequency of processing units

for energy savings without extending an application’s schedule length. That is, if a specific

scheduling algorithm can generate a feasible schedule for an application, applying our en-

47

ergy management schemes upon the scheduling algorithm will still ensure that all timing

constraints of the application are met.

4.3.1 Infeasibility of Simple Greedy Slack Reclamation (GSR)

In [62], Mossé et al. proposed one greedy slack reclamation for uni-processor systems that

allocates any available slack to the next ready task to be executed. However, when we apply

the same idea to parallel systems that have multiple processing units, that is, any available

slack on one processing unit is given to the next task running on that unit, it turns out that

an application may miss its deadline even if the deadline can be met by the application’s

canonical schedule.

For the independent task set discussed in Section 4.1.3.1, Figure 4.9a shows that, when

tasks use their ACET, task T1 finishes its execution at time 2 on the first processing unit

with 3 time units of slack. With GSR scheme, this slack is given to the next task T3 that

runs on that processing unit. Thus, T3 gets 6 units of time in total including its WCET and

the processor frequency is scaled down to 3
6
fmax accordingly. When T3 uses up its allocated

time, T6 misses the deadline D as illustrated in Figure 4.9b.

Queue T T T T T T41 2 3 5 6 T T T T T T1 2 3 4 5 6

1P

2P

Time0 9

T

T

1

2

0

T

T T T

TT1

2

3

4 5

6

9 Time
(a) (b)

Figure 4.9: The simple greedy scheme

Therefore, even if an application’s canonical schedule can meet the application’s timing

constraints, global scheduling with the simple greedy slack reclamation cannot guarantee

that all timing constraints are met during actual executions. Note that this is true even if

the tasks’ priorities (as defined in Section 4.1) do not change. The reason for this anomaly

is because the run-time mapping is different from the canonical mapping.

48

To ensure the timing constraints are met, in addition to canonical priorities of tasks,

we can further fix the mapping of tasks to processing units as the one in an application’s

canonical schedule. However, fixing the mapping is equivalent to partition scheduling with

individual ready task queues, where each processing unit could reclaim the slack for energy

savings. As we mentioned earlier in Section 4.1, expecting that global scheduling can au-

tomatically balance the actual workload among processing units in a system and result in

more energy savings, we focus on global scheduling in this work. In what follows, we propose

new energy management schemes that provide a set of safeguards to prevent this anomaly

from happening without fixing the mapping.

4.3.2 Shared Slack Reclamation (SSR) for AND-model Applications

To prevent slack reclamation from violating the timing constraints of an application, we first

propose a shared slack reclamation (SSR) scheme for AND-model applications. By sharing

slack among processing units appropriately before reclaiming it, SSR guarantees to meet

an application’s timing constraints while saving energy. Then, considering different execu-

tion paths in an AND/OR-model applications, an extended shifted/shared slack reclamation

(S/SSR) scheme is proposed in Section 4.3.3.

There are two phases for the SSR scheme: an offline phase and an on-line phase. The

offline phase is used to check the feasibility of an application’s canonical schedule under list

scheduling with certain priority assignment heuristic and, if feasible, to obtain the canonical

priorities for all tasks in the application. Recall that fixed-priority list scheduling is needed

to guarantee that an application’s timing constraints are met during any execution (see

Section 4.1.3). The on-line phase employs fixed-priority list scheduling and slack is shared

and reclaimed appropriately for energy savings while meeting the application’s timing con-

straints. Before formally presenting the algorithm, we first illustrate how SSR works with

two examples.

4.3.2.1 Two Examples Notice that, if the tasks in Figure 4.9 use their WCET, T2

should finish its execution earlier than T1, and T3 should follow T2 and be executed on the

49

second processing unit as shown in the canonical schedule (Figure 4.3). However, when T1

finishes its execution earlier, T3 is dispatched to the first processing unit, which is different

from the canonical schedule and leads to different mappings of remaining tasks to processing

units as shown in Figure 4.3b. When T3 reclaims all the 3 units of slack coming from the

early completion of T1 on the first processing unit following GSR scheme, it starts execution

at time 2 at frequency 3
6
fmax and finishes execution at time 8. After T4 and T5 start and

finish their executions, there is only 1 time unit left, which causes T6 to miss the deadline at

time 9 (Figure 4.9b).

In this case, it would be better to share the 3 units of slack, which comes from T1’s early

completion, by splitting it into two parts: 2 units are given to T3 on the first processing

unit and 1 unit (which is the difference between the finish time of T1 and T2 in the canonical

schedule) is shared with T4 on the second processing unit. With slack sharing, T3 starts at

time 2, executes for 5 time units at the frequency of 3
5
fmax and ends at time 7. T4 starts at

time 4, executes for 3 time units at the frequency of 2
3
fmax and also ends at time 7. Thus,

both T5 and T6 can meet the deadline.

Figure 4.10 demonstrates the operations of the SSR scheme. When the first processing

unit finishes T1 at time 2, it finds that it has 3 units of slack, but only 2 units of them are

before the expected finish time of T2 on the second processing unit based on T2’s WCET.

After fetching T3, the first processing unit gives 2 extra units (the amount of slack before

T2’s expected finish time) to T3 and shares the remaining slack with the second processing

unit.

Queue T T T T T T41 2 3 5 6 T T T T T T1 2 3 4 5 6

P1

2P

T

T

1

2

Time90 Time90

1T

T2 T

T6

5T

T3

4

(b)(a)

Figure 4.10: SSR for independent tasks

From a different point of view, sharing the slack may be looked at as T1 being allocated

50

4 time units on the first processing unit instead of 5, while T2 being allocated 5 time units

on the second processing unit instead of 4. Thus, T1 has 2 units of slack when it finishes

early and T2 will have 1 unit of slack when it finishes (since its WCET is 4). So, in some

sense, the situation is similar to T1 being assigned to the second processing unit and T2 being

assigned to the first processing unit, and all tasks that are assigned to the first processing unit

in the canonical schedule will now be assigned to the second processing unit and visa versa.

Ready Time

Queue T T1 2

0 6

6T

0 Time12

T T

T

1

22P

1P

T3 T4 T5

2

T3

T64

T5 Slack reclaimed

Slack wasted

1

Figure 4.11: SSR for dependent tasks

For the case of dependent tasks, slack sharing under fixed-priority list scheduling for the

application in Figure 3.1b is shown in Figure 4.11. As discussed in Section 4.1.3.3, in order

to wait for the readiness of tasks T3 and T4, the first processing unit becomes idle (or goes

to sleep) during the second time unit and wastes part of its slack. However, by keeping the

same priorities of tasks as in the application’s canonical schedule, all tasks finish on time.

4.3.2.2 Offline Phase of SSR Scheme As discussed in Section 4.1.3, to ensure that

an application’s timing constraints are met, fixed-priority list scheduling is considered. For

AND-model applications that consist of independent tasks, under ER-LTF heuristic, tasks’

priorities can be determined by their WCET. However, to obtain tasks’ priorities for applica-

tions that consist of dependent tasks, the emulation of the application’s canonical execution

is needed. Moreover, to collect the canonical timing information, it is also necessary to

emulate an application’s canonical execution.

In the offline phase of SSR scheme, the canonical execution of an application under list

scheduling with ER-LTF heuristic on a specific system is emulated. Recall that, as one of

51

our assumptions, an application can meet its timing constraints in the canonical schedule.

To facilitate the on-line phase of the SSR scheme, task Ti’s canonical ready time is collected

(as rtci) and is used to determine task Ti’s canonical priority. In addition, for each task Ti,

the canonical start time and canonical finish time are recorded as stci and ftci , respectively.

Notice that, for frame-based applications, the offline phase of the SSR scheme is done

only once. Then, the offline information can be used during the on-line phase of the SSR

scheme for the execution of every frame.

4.3.2.3 On-line Phase of SSR Scheme After obtaining tasks’ canonical priorities, at

the beginning of SSR’s on-line phase, all tasks are added into the global queue in the order of

their priorities with higher priority tasks being closer to the front of the queue. To determine

the readiness of tasks, we define the number of unfinished immediate predecessors for task Ti

as uipi. uipi will decrease by 1 when any predecessor of task Ti finishes execution. Task Ti is

ready when uipi = 0. Recall that ectk is the estimated completion time of the kth processing

unit.

Whenever a processing unit is free, it will check the header task of the global queue to see

whether the task is ready or not. If the header task is ready, the processing unit will fetch

and execute it; otherwise the processing unit becomes idle (or goes to sleep). The details of

the algorithm are described below.

Algorithm 1 shows the on-line phase of the SSR scheme to process the tasks of an

application in one frame. Each processing unit (PUk) invokes the algorithm independently.

Recall that the control information about tasks and processing units (e.g., the array of uipi

and ectk) are kept in the shared memory and must be updated within a critical section. For

simplicity, the mutual exclusive access to the critical section is not shown in the algorithm.

The algorithm is invoked on the kth processing unit when a task finishes execution on

PUk, or when PUk is sleeping and signaled by another processing unit. We use the function

wait() to put an idle processing unit to sleep and another function signal(PU) to wake up a

processing unit PU .

Initially, all tasks are put into Global-Q following the order of their canonical priorities

52

Algorithm 1 SSR on-line algorithm invoked by the kth processing unit PUk

1: Add all tasks into Global-Q with the priority of task Ti being (rtci , ci) ;
2: while (Global-Q is not empty) do
3: if (Head(Global-Q) is ready) then
4: Ti = Dequeue(Global-Q);
5: Find a processing unit PUr such that:

ectr = min{ect1, . . . , ectN};
6: if (ectk > ectr) then
7: ectk ↔ ectr;
8: end if
9: ectk = stci + ci = ftci ; /*as proved below t ≤ stci*/

10: fg
i = ci

ftci−tfmax ;
11: if ((Head(Global-Q) is ready) AND (PUs is sleep)) then
12: Signal(PUs);
13: end if
14: Execute Ti at frequency fg

i ;
15: for (Each Tj such that Ti → Tj ∈ E) do
16: uipj = uipj − 1;
17: end for
18: else
19: wait();
20: end if
21: end while

(line 1). Recall that, under ER-LTF heuristic, the canonical priority of a task is defined as a

tuple of the task’s canonical ready time and its WCET. As discussed earlier in Section 4.1, it

is important to have the fixed priority to ensure that the timing constraints of an application

are met. The values of uipi (i = 1, . . . , n) are set to the number of predecessors of task Ti

and ectk (k = 1, . . . , N) are set to 0 (not shown in the algorithm).

If the algorithm is invoked by a signal from another processing unit, it will begin at the

’waiting for signal’ point (line 19). If the algorithm is invoked at the very beginning or when

PUk finishes executing a task, it starts from line 3. If the header task Ti of Global-Q is ready,

PUk fetches task Ti from Global-Q (line 4). Since t ≤ stci (as proved later), PUk reclaims the

slack of stci − t (line 9) and calculates the frequency f g
i to execute task Ti. If the new header

task of Global-Q is ready, it signals one sleeping processing unit PUs if any (line 11 and 12).

Finally, PUk executes Ti at the frequency of f g
i (line 15).

4.3.2.4 Analysis of SSR Algorithm In Section 4.1, we have proved that, under fixed-

priority list scheduling, an application can meet its timing constraints as in its canonical

53

schedule when no slack is reclaimed. Following the same approach, we prove in this section

that SSR algorithm that reclaims slack and scales down the processing frequency of pro-

cessing units for energy savings can also meet the timing constraints as in an application’s

canonical schedule.

From the above examples, we can see that the start time sti of task Ti is no later than

its canonical start time stci with available slack stci − sti ≥ 0. Thus, the frequency to execute

task Ti is f g
i = ci

stci−sti+ci
fmax ≤ fmax (line 11 in Algorithm 1). Since f g

i is the frequency

that guarantees task Ti finishes no later than its canonical finish time ftci if the computation

requirement of Ti is no more than its worst case computation requirement, the application

will meet its timing constraints if the application’s canonical schedule does. Thus, to prove

the correctness of Algorithm 1, we first show that any task Ti starts its execution no later

than its canonical start time.

Lemma 3. Under Algorithm 1, the start time sti for any task Ti in an application is no

later than its canonical start time. That is, sti ≤ stci .

Proof. The proof is similar to the one for Lemma 2.

Suppose that there are n tasks in the application considered. We will prove the lemma

by shown that, for any Ti in the application, there is a time point that is no later than stci

and at which the following two conditions are satisfied: (a) Ti is header task of the global

queue and ready (i.e., all its predecessors finished execution); and (b) a free processor is

available for Ti.

Without loss of generality, we assume that the canonical priority of task Ti is greater

than that of task Ti+1 (i = 1, . . . , n − 1). That is, the order of tasks in the global queue

follows the inverse order of tasks’ identification number. Tasks with smaller identifications

are closer to the front of the global queue and are dispatched and executed earlier.

The proof then proceeds by induction on i, for task Ti in the application.

Base case: Suppose that h (≤ M) root tasks of the application begin execution at

time 0, where M is the number of processing units in the system. Hence, sti = stci = 0 for

i = 1, . . . , h.

If h < M , this means that there are only h root tasks and M − h processing units will

54

be idle at time 0; otherwise, if h = M , the number of root tasks is at least M , the number

of processing units.

Induction step: Assuming that Tj−1 is the most recently started task and sti ≤ stci for

i = 1, . . . , j − 1.

(a) From the algorithm, after the first j − 1 tasks are dispatched, task Tj becomes the

header task of the global queue. For any predecessor, Tq, of task Tj (i.e., Tq → Tj ∈ E), we

have 1 ≤ q ≤ j− 1. Hence, in the canonical schedule, task Tq finishes no later than stcj, that

is, ftcq ≤ stcj.

During the on-line phase, task Tq starts execution at stq ≤ stcq with frequency f g
q =

cq

stcq−stq+cq
fmax ≤ fmax. If the computation requirement of Tq is no more than its worst case

computation requirement, Tq will finish no later than stq + cq

fg
q

= ftcq ≤ stcj. Therefore, task

Tj is ready no later than stcj.

(b) Next, for the canonical schedule, before task Tj starts at time stcj, there are at

most x = M − 1 tasks (among the first j − 1 tasks) that are running and will finish later

than stcj (since at least one processing unit is free and fetches Tj at time stcj). For task Ta

(1 ≤ a ≤ j − 1) that finishes no later than stcj in the canonical schedule, we have ftca ≤ stcj.

At run time, we have f g
a = ca

stca−sta+ca
fmax = ca

ftca−sta
fmax ≤ fmax. That is, if the computation

requirement of task Tq is no more than its worst case computation requirement, Ta will finish

no later than sta + ca

fg
a

= ftca ≤ stcj. Thus, there are at most x = M − 1 tasks that could

finish later than stcj. That is, at or before time stcj, at least M − x = 1 processors are idle

and free.

Thus, one free processor will fetch and execute task Tj no later than stcj and stj ≤ stcj.

Therefore, under Algorithm 1, for any task Ti in an application, there is sti ≤ stci .

From Lemma 3, it is easy to get that, under the SSR algorithm, fti ≤ ftci for any task

Ti in an application. That is, the SSR algorithm can meet the timing constraints of an

application as in the application’s canonical schedule. Therefore, for the SSR algorithm, we

can have the following theorem.

Theorem 3. For an application with fixed task priorities, if the application’s canonical sched-

55

ule can meet the timing constraints, so can any execution under the SSR algorithm.

4.3.3 Shifted/Shared Slack Reclamation (S/SSR)

In the following, we consider energy management that further explores application’s dynamic

characteristics at the task set level (shorter-than-longest execution path) in addition to the

task level (less-than-maximum execution). As discussed in Section 4.2, the slack from execut-

ing shorter paths can be determined statically and reclaimed by static energy management

schemes. However, the static reclamation could be computation expensive. For applications

exhibiting large variations on tasks’ run-time behaviors, dynamic energy management is nec-

essary for better energy savings. Thus, on-line reclamation of the slack from different paths

is preferred.

In this section, we propose the shifted/shared slack reclamation that incorporates the

characteristics of AND/OR-model applications and show how it is correct with respect to

meeting an application’s timing constraints. As for the SSR scheme, there are two phases:

an offline phase and an on-line phase.

4.3.3.1 Offline Phase of S/SSR Scheme As for AND-model applications, the offline

phase of the S/SSR scheme is used to collect the timing and priority information about the

canonical execution of an AND/OR-model application that runs on a specific system. Again,

the offline phase is done only once and the offline information will be used during the on-line

phase of the S/SSR scheme for processing every frame of an application.

Notice that, compared with the AND-model where all tasks will be invoked during any

execution, the AND/OR-model has more than one execution path and tasks to be invoked

depend on which path is taken during an instance of execution. Thus, we cannot put all tasks

of an AND/OR-model application into the global queue at the beginning of its execution.

In order to determine the amount of slack from different paths, the maximum schedule

length for an application is computed as Πc, which is the canonical schedule length along

the longest path of the application. For each branch bi after an OR node, the maximum

remaining schedule length is computed as Πi
c, which is the canonical schedule length along

56

the longest remaining path after the OR node following branch bi. Moreover, to facilitate

the discussion of the speculation schemes presented in Section 4.4, Πa and Πi
a are computed

analogously as the weighted average schedule length, which assumes that tasks use their

average case execution time and takes the probabilities of executing different paths into

consideration.

For each task Ti, in addition to the canonical ready time rtci , canonical start time stci and

canonical finish time ftci , its canonical execution order is further recorded as eoc
i . Notice that,

the execution order of a task is determined by its priority. To ensure that an application’s

timing constraints are met, the priorities of tasks (i.e., the orders of tasks being executed)

are kept the same as those in the canonical execution of the application. The execution

order of an OR node is the maximum execution order of its predecessors plus 1. Tasks on

different branches after an OR node will have the same execution order since they will not

be executed during the same execution instance.

The offline phase is a two-pass process. To illustrate the concept and show how the

algorithm works, we consider the AND/OR application shown in Figure 3.4. Recall that the

synchronization nodes are considered as dummy tasks with zero execution time. In the first

pass, using list scheduling with ER-LTF heuristic, the canonical schedules for all segments

are generated as shown in Figure 4.2. The longest path of the application is shown bold in

Figure 3.4 and, from the canonical schedule, Πc = 12ms. Assuming that the application has

a deadline D = 14ms, the initial slack is S0 = D − Πc = 14− 12 = 2ms.

The canonical execution information is shown in Table 4.1. Notice that, the execution

order of T29 (an OR node) is larger than the maximum execution order of its predecessors, T17

(with eoc
17 = 14) and T28 (with eoc

28 = 20), with eoc
29 = max{eoc

17, eo
c
28}+1 = max{14, 20}+

1 = 21. T11 and T12 are on different branches after T10 (an OR synchronization node) and

will not be executed at the same time; they have the same execution order. The values of

stci are recorded as the time at which Ti starts execution.

The second pass of the offline phase prepares to steal the slack by shifting the canonical

schedule as late as possible toward the application’s deadline. For each task Ti, define the

shifted canonical start time (sstci) as the time at which Ti starts execution in the shifted

canonical schedule. It is the latest time Ti can start execution to meet the application’s

57

Table 4.1: Offline variables of an AND/OR-model application

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12 T13 T14 T15 T16 T17

eoc
i 1 2 3 4 5 6 7 8 9 10 11 11 12 13 12 13 14

stci 0 0 0 2 2 2 4 6 6 6 6 6 6 6 6 6 10

sstci 2 2 2 4 4 4 6 8 8 8 8 9 8 8 9 9 12

T18 T19 T20 T21 T22 T23 T24 T25 T26 T27 T28 T29 T30 T31 T32 T33

eoc
i 14 15 16 16 17 18 17 18 19 19 20 21 22 23 24 25

stci 7 7 7 7 7 7 7 7 9 8 9 10 10 10 10 12

sstci 10 10 10 11 10 10 11 11 12 12 12 12 12 12 12 14

timing constraints, provided that tasks in the same integrated segment have the same shifting

factor, which is defined as the difference between a task’s canonical start time and its shifted

canonical start time. That is, if task Tj is in the same segment as Ti, sstcj − stcj = sstci − stci .

Notice that the shifting is a recursive process when there are nested OR nodes. sstci will be

used to reclaim the slack for Ti at run time. The shifted canonical finish time for task Ti in

the shifted canonical schedule is correspondingly recorded as sftci = sstci + ci.

T 14

S 0

S 1

S 2

T 3

T 2 T 5

T 6 T 7

T 13

T 15

T 16

T 22

T 23

T 24

T 25

T 32

T 31

D

14121086420

Time (ms)

Figure 4.12: The shifted canonical schedules for an AND/OR application

The shifted canonical schedule for the example is shown in Figure 4.12, where S0, S1

and S2 comprise the slack stolen by the algorithm. Notice that the tasks in one integrated

segment are shifted together and have the same shifting factor. When there are nested OR

nodes, different segments may have different shifting factors. We did not consider shifting

tasks individually in a segment. For example, for the integrated segment consisting of task

T2, T3, T5, T6 and T7, we may shift T5 1ms more without violating the timing requirement.

58

But shifting single tasks increases the complexity of the offline algorithm and we do not

expect too much gain from it since that 1ms could be reclaimed by the subsequent tasks in

the on-line phase. After the schedule is shifted, sstci is computed for every task Ti and the

value of sstci is also shown in Table 4.1.

4.3.3.2 On-line Phase of S/SSR Scheme To keep tasks having the same execution

order as in an application’s canonical schedule, the execution order of the next expected

task (TNET) is denoted by NET EO. That is, EONET = NET EO. The current time is

represented by t. The frequency to execute task Ti under S/SSR is denoted as f g
i .

Suppose task Ti starts execution at time ti (i.e., the time at which one processor fetches

Ti and starts to execute it). Recall that the estimated finish time (efti) for a task Ti is the

time at which Ti is expected to finish its execution if it consumes all the time allocated to

it. We have efti = ti + ci

fg
i
.

Initially, the tasks that have no predecessor (i.e., root tasks) are put into a Ready-Q. For

any other task Ti, uipi is initialized as the number of predecessors of Ti if the corresponding

vertex is not an OR node, and 1 otherwise. The current time t is set to 0 and NET EO is

set to 1 (line 1).

The on-line algorithm of S/SSR scheme is shown in Algorithm 2. S/SSR is different

from SSR, which is for AND-model applications, in the sense that S/SSR needs to handle

the synchronization nodes and to add ready tasks to the global queue dynamically. For the

successors of computation tasks and AND synchronization nodes, their uips are updated

properly and any successor task Tj will be put into Ready-Q when it is ready (i.e., uipj = 0;

from line 17 to 24). When entering Ready-Q (line 22), tasks are ordered in their canonical

execution order eoc
i . For an OR synchronization node, the first task in the chosen branch is

put into Ready-Q (line 27 to 28). The same as SSR, the shared memory holds the control

information, such as Ready-Q and the structure of uip, which must be updated within a

critical section (not shown in the algorithm for simplicity).

For the AND/OR application in Figure 3.4, if an execution instance follows the lower

branch at T10 and upper branch at T19 and the tasks on this path use their average case

59

Algorithm 2 S/SSR on-line algorithm invoked by PUid

1: Add root tasks to Ready-Q and initialize uipi, t and NET EO;
2: while (Ready-Q is not empty) do
3: Ti =Head(Ready-Q);
4: if ((Ti is an OR node ‖ eoc

k == NET EO) && (uipi == 0)) then
5: Ti =dequeue(Ready-Q);
6: NET EO = NET EO + 1 ;
7: if (Ti is a computation node) then
8: /*Ti reclaims the slack sstci − t; as proved below, t ≤ sstci ;*/
9: /*total time allocated to Ti is sstci − t + ci = sftci − t*/

10: f g
i = ci

(sftci−t)
; /*compute the frequency to execute Ti*/

11: /*Let Tnext = Head(Ready-Q); */
12: if (PUy is asleep && eoc

next == NET EO) then
13: signal(PUy); /*Wake up one sleeping processor*/
14: end if
15: Execute Ti at frequency f g

i ;
16: end if
17: if (Ti is a computation node or an AND node) then
18: for (each successor Tj of Ti) do
19: uipj = uipj − 1; /*update successor’s variable*/
20: if (uipj == 0) then
21: /*put Tj into Ready-Q if it is ready*/
22: enqueue(Tj, Ready-Q);
23: end if
24: end for
25: else if (Ti is an OR node) then
26: NET EO = eoc

i + 1; /*update the next expected task*/
27: Let Ta be the first node in the path selected at the OR node

uipa = 0;
28: enqueue(Ta, Ready-Q); /*put Ta into Ready-Q*/
29: end if
30: else
31: wait();
32: end if
33: /*go back to fetch a new task to execute*/

34: end while

60

Actual Execution of TasksSlack Reclaimed

D

T 2

T 3 T 6

T 5 T 7

T 15

T 16

T
23

T 22

T 32

T 31

14121086420

Time (ms)

Figure 4.13: An actual execution of the AND/OR application

execution time, the single-instance execution trace is shown in Figure 4.13. Initially, both

T2 and T3 reclaim 2ms of static slack (the difference between sstci and the time they begin

execution). From Algorithm 2 line 9, the frequency for T2 and T3 will be fmax

2
and fmax

3
,

respectively, and we have eft2 = 4ms and eft3 = 3ms. Since T2 only uses 3
4

of the time

allocated to it and T3 uses all the time allocated to it, both T2 and T3 actually finish at time

3ms. T5 and T6 get 1ms of slack each (again, the difference between sstci and the time they

begin execution), and are supposed to finish at time 7ms and 6ms, at frequencies 3
4
fmax and

2
3
fmax, respectively. T7 is supposed to follow T6 on the upper processor. Since T5 only uses 1

2

of the time allocated to it and T6 uses all its time, T5 actually finishes earlier than T6 and T7

follows T5 on the lower processor and reclaims 1ms of slack. Finally, the application finishes

its execution at time 13ms, 1ms before its deadline.

4.3.3.3 Analysis of S/SSR Algorithm Recall that an execution path is defined as

a set of tasks that are executed during an execution instance of an AND/OR application.

Notice that the AND/OR synchronization nodes are dummy tasks with zero execution time.

After properly removing the synchronization nodes in one path, the remaining computation

tasks can be treated as a simplified AND-model application. For any execution path, the

computation tasks under S/SSR will have the same timing as under SSR. From the proof of

SSR as shown in Section 4.3.2, we can easily get the following theorem.

Theorem 4. If the canonical schedules of an AND/OR application can meet the application’s

timing constraints, any execution of the application under Algorithm 2 will meet the timing

constraints.

61

While the shifted/shared slack reclamation scheme can guarantee to meet an application’s

timing constraints, there may be too many frequency changes since a new frequency is

computed for each task. It is known that if all tasks execute at the same frequency, the

minimum energy consumption can be achieved [39]. Considering frequency change overhead,

the single frequency setting is even more attractive. From this intuition, using the statistical

information about an application, we propose the following speculative algorithms.

4.4 SPECULATIVE SCHEMES

Based on different strategies, we developed two speculative schemes. One is to statically

predict an optimal frequency. The second is to dynamically adjust the predicted optimal

frequency while speculating about the remaining work. Since large amounts of slack can be

expected from different branches after an OR synchronization node, the dynamic speculation

is only performed after the OR synchronization nodes.

Although we can speculate before each task on the fly for uniprocessor systems [6], it is

hard to implement it for parallel systems because of the difficulty of computing the remaining

work in the system. The reason is that when a task ends on one processing unit, we do not

know on which processing unit other tasks will run and some tasks may be in the middle of

their execution.

4.4.1 A Static Speculation Scheme

For the static speculative scheme, the frequency at which an application should run, is

decided at the very beginning of the application based on the statistical information about

the whole application as:

fss =
Πa

D
(4.9)

where Πa is the average schedule length of the application.

Even after fss is calculated, we choose the maximum frequency between fss and f g
i for

task Ti, where f g
i is computed from the S/SSR on-line algorithm. This is to guarantee

62

temporal correctness, since the speculative frequency is optimistic and does not take tasks’

worst case behaviors into consideration.

4.4.2 An Adaptive Speculative Scheme

If the statistical characteristics of tasks in an application vary substantially (e.g., the tasks at

the beginning of one application have the average/maximal computation requirement ratio

as 0.9 while tasks at the end of the application have the ratio as 0.1), it may be better to

re-speculate the frequency while the application execution progresses based on the statistical

information about the remaining tasks.

At OR nodes, processing units will synchronize and we can speculate a new optimal

frequency for the remaining tasks at that moment. Using the statistical information about

the remaining tasks on the executed path after an OR node, the speculative frequency would

be set as:

fas =
Πi

a

D − t
(4.10)

where t is the current time (the time when the OR node is processed) and Πi
a is the average

execution time needed when branch bi is taken. Again, to guarantee the deadline, the

frequency fi for Ti will be: fi = max(f g
i , fas).

Because the speculative schemes never set a frequency below the one determined by

S/SSR, they will meet the timing constraints if S/SSR can finish on time. Therefore, from

the discussion in Section 4.3, the speculative schemes can meet an application’s timing

constraints if the application’s canonical schedule under the same heuristic finishes on time.

4.5 PRACTICAL CONSIDERATIONS IN ENERGY MANAGEMENT

In the above discussion, we assumed that frequency1 is continuous and ignored the overhead

for frequency changes. However, current variable frequency processors have only a few

frequency levels and frequency adjustment takes time and consumes energy [19, 34, 37].

1Recall that supply voltage is reduced for lower frequencies under voltage scaling techniques and frequency
changes are used to stand for changing both processing frequency and supply voltage.

63

Moreover, for global scheduling in shared memory systems, shared memory access contention

should be considered. In what follows, we discuss how to incorporate these factors into our

energy aware scheduling algorithms.

4.5.1 Overhead of Frequency Adjustment

There are two kinds of overhead that have to be considered when changing the processing

frequency of a variable frequency processor: time overhead and energy overhead. The time

overhead affects the feasibility of our algorithms; that is, whether an application’s timing

constraints can be met or not. We focus on time overhead first and address energy overhead

later in Section 4.5.1.2.

4.5.1.1 Time Overhead and Slack Reservation The time overhead of frequency and

voltage adjustment has great variations based on different architectures. For example, an

AMD K6-2+ was measured to have an overhead of 400µs for changing voltage and 40µs for

changing frequency [68]. Burd et al. indicate that the delay is limited by 70µs in the new

ARM V4 processor based systems [14]. The frequency transition in lpRAM processors takes

approximately 25µs [67]. For Intel XScale, the maximum timing overhead for changing both

frequency and voltage was measured as 30µs while the StrongARM SA-1110 needs 150µs for

frequency changes [72]. In our experiments, we measured that the frequency change takes

2ms for Transmeta Crusoe 5400 processors.

Since the time overhead of frequency adjustment may not be negligible (e.g., a few

ms), especially for real-time systems, it needs to be taken into consideration in energy

aware scheduling algorithms. One simple approach is to incorporate the time overhead of

frequency changes into the WCET of each task. In the following, we propose a scheme

of slack reservation to incorporate the time overhead of frequency changes into our energy

aware scheduling algorithms.

First, we consider a model to calculate the time overhead associated with frequency

changes. In this model, the time overhead consists of two components: a constant component

that models set-up time and a variable component that models the time of changing frequency

64

with different ranges. Assuming that the variable component is linearly related to the range

of frequency changes, we have:

Ot(f1, f2) = C0 + C1 · |f1 − f2| (4.11)

where C0 and C1 are constants. f1 is the processing frequency before adjustment and f2 is

the processing frequency after adjustment. Notice that, the choice of C1 = 0 results in a

constant time overhead model.

Under the scheme of slack reservation, whenever we try to use slack to scale down pro-

cessing frequency of a processing unit, we reserve enough slack for the processing unit to

change its frequency back to an appropriate level in the future. That is, if the current task

uses up all its allocated time and there is no additional slack, the processing frequency can

be scaled up using the reserved slack and the future tasks can be executed at the appropriate

frequency to meet the timing constraints. The idea is illustrated in Figure 4.14.

Ti i+1T

Li
iT

i+1T

Slack used

Overhead reserved to speed up

Overhead to slow down

Figure 4.14: Slack reservation for incorporating frequency adjustment overhead.

From the figure, when task Ti finishes early and there are Li units of slack, we use a

portion of Li to scale down the processing frequency and reserve enough slack for restoring

frequency back to fmax if task Ti+1 uses up its allocated time. The remaining slack is allocated

to task Ti+1 as additional time units to scale down the processing frequency for executing

Ti+1.

Suppose that the current frequency for Ti is fi and the expected frequency for Ti+1 is

fi+1 (to be computed). The time overhead, Ot(fi, fi+1), to change frequency from fi to fi+1,

65

and the time overhead, Ot(fi+1, fmax), to restore frequency from fi+1 back to fmax are:

Ot(fi, fi+1) = C0 + C1 · |fi+1 − fi| (4.12)

Ot(fi+1, fmax) = C0 + C1 · (fmax − fi+1) (4.13)

Hence, fi+1 can be obtained after giving additional time, (Li−Ot(fi, fi+1)−Ot(fi+1, fmax)),

to task Ti+1. That is:

fi+1 = fmax · ci+1

ci+1 + (Li −Ot(fi, fi+1)−Ot(fi+1, fmax))
(4.14)

For different values of Li, fi+1 could be smaller than, equal to or larger than fi. Suppose

that fi+1 < fi, Equation 4.14 will be a quadratic equation in fi+1 as follows:

2 · C1 · f 2
i+1 + [ci+1 + Li − 2 · C0 − C1 · (fmax + fi)] · fi+1 − fmax · ci+1 = 0 (4.15)

If no solution of fi+1 that satisfies fi+1 < fi is obtained from the above equation, the

assumption is wrong. That is, fi+1 ≥ fi. It is possible to have fi+1 = fi, if the slack

Li−Ot(fi, fmax) (i.e., the overhead of Ot(fi, fi+1) is removed) is enough for task Ti+1 to scale

down its processing frequency to fi. That is, if

fi ≥ fmax · ci+1

ci+1 + Li −Ot(fi, fmax)
(4.16)

we can set fi+1 = fi. If the above equation does not hold, we have fi+1 > fi and fi+1 can be

solved as:

fi+1 = fmax · ci+1

ci+1 + Li − 2 · C0 − C1 · (fmax − fi)
(4.17)

In most cases, the reserved slack, Ot(fi+1, fmax), will not be used and becomes part of

the slack Li+1, which can be reclaimed by next task Ti+2. However, after Ti+1 finishes its

execution, it is possible that the useful slack Li+1 − Ot(fi+1, fmax) is not enough for Ti+2

to use and the frequency computed from Equation 4.17 is larger than fmax. In this case,

Ot(fi+1, fmax) will be used to restore the frequency back to fmax and Ti+2 will run at fmax

as shown in Figure 4.15).

66

Slack used for speeding up Slack Saved

Ti+1 Ti+2i+1

Ti+2Ti+1

L

Figure 4.15: Slack is not enough for an additional frequency change.

Slack can be used Slack reserved for speed change

PUi

PUj

Ti

Tj

running at f i

running at f max

Figure 4.16: Slack sharing with frequency change overhead.

To incorporate the time overhead of frequency changes, slack sharing between processing

units also needs to be modified. Referring to Figure 4.16, suppose processing unit PUi runs

at fi and finishes early. As described in Section 4.3.2, it would share its slack with processing

unit PUj, which is running at frequency fmax, since PUi supposes to finish later than PUj.

However, if there is no enough slack for PUi to change its frequency back to fmax after slack

sharing, we should not share the slack. Instead, PUi needs to restore its frequency to fmax

first.

4.5.1.2 Energy Overhead In addition to time overhead, there is also energy overhead

associated with frequency changes. Suppose the energy overhead for changing frequency

from fi to fj is Oe(fi, fj). Assuming that the energy consumption of Ti+1 is Ei+1 with fmax

and E ′
i+1 with fi+1. It is not energy efficient to change the frequency from fi to fi+1 for Ti+1

if

Oe(fi, fi+1) + E ′
i+1 + Oe(fi+1, fmax) > Ei+1 + Oe(fi, fmax) (4.18)

67

In other words, even if the timing constraints can be met with time overhead, we may decide

not to run Ti+1 at a lower frequency if the energy overhead is larger than the energy saved

by frequency changes.

4.5.2 Discrete Frequency Levels

For modern variable frequency processors, there are only a few frequency settings [34, 19, 37].

Although our energy management algorithms focus on continuous frequency as discussed

earlier, they can be easily adapted to incorporate discrete frequencies.

Specifically, after calculating the processing frequency f g
i for task Ti (see Algorithms 1

and 2), if f g
i falls between two frequency levels (fl < f g

i ≤ fl+1), setting f g
i to fl+1 will

always guarantee that task Ti finishes on time and that the timing constraints are met.

With the higher discrete frequency, not all slack will be used for task Ti and some slack will

be saved for future tasks. From our experiments, by sharing slack with future tasks, the

case of discrete frequencies achieves comparable energy savings as continuous frequencies as

shown in Section 4.6.

Alternatively, we can emulate the single frequency execution of task Ti with two frequen-

cies [39]. At the beginning, Ti can be executed at the lower frequency fl and after a certain

time point ttp the frequency is changed to the higher frequency fl+1. The value of ttp can be

computed as:

fi ·Di = fl · ttp + fl+1 · (Di − ttp) ⇒ (4.19)

ttp =
fl+1 ·Di − fi ·Di

fl+1 − fl

(4.20)

where Di is the total time allocated to task Ti. However, this scheme will require an additional

timer for tasks to change frequencies during their execution. Furthermore, there is one more

frequency change during the execution of each task that needs to be incorporated as discussed

in Section 4.5.1.

68

4.5.3 Shared Memory Access Contention

In shared memory architectures, the data shared among processing units (e.g., the global

ready task queue and the uip structure in Algorithms 1 and 2) must be updated in a critical

section every time a task is dispatched. There will be additional waiting time due to shared

memory access contention as part of the context switch.

In the worst case, one processing unit needs to wait until all other processing units finish

accessing the shared data structures if all of them start the algorithm at the same time. To

account for this waiting time due to shared memory access contention, when generating the

canonical schedule for an application, we need to assume that the worst case will happen

and every access to the shared data will incur the longest contention time. This pessimistic

analysis may result in rejecting schedulable applications, but it will ensure that any execution

will meet the timing constraints if an application’s canonical schedule does.

During actual executions, if one processing unit does not incur the longest contention

time, some extra slack will be available and can be used to scale down the processing fre-

quency. Thus, the algorithm that considers shared memory access contention is more con-

servative and, on average, more slack will be available for power management schemes.

We found that Algorithm 2 takes approximately 600 cycles without reclaiming slack

in a system. For energy management that reclaims the slack, an additional 500 cycles

are needed to compute the new processing frequency for the next task. These values are

obtained by running the algorithm on the SimpleScalar micro-architecture simulator [15].

Here, we assume that up to six processing units are used and that each task has at most

three successors. Note that, the exact number of cycles depends on the number of processing

units in a system and on the number of successors each task can have in an application.

4.6 EVALUATIONS OF ENERGY MANAGEMENT SCHEMES

In this section, we evaluate our proposed energy management schemes through simulation.

We implement a simulator that emulates the execution of an application at the task level

on a shared memory parallel system. Before presenting the results, in what follows, we first

69

describe the simulation setup.

4.6.1 Simulation Setup

In our simulation, both synthetic and real applications are considered. For synthetic appli-

cations, the WCET ci of a task Ti is generated randomly between cmin and cmax, which are

the lower and upper bounds on the WCET of tasks, respectively. To emulate the run-time

behavior of tasks and get different actual execution times, we define an average over worst

case execution time ratio φ for an application. The average over worst case execution time

ratio φi for task Ti is generated as a uniform distribution around φ. When φ ≤ 0.5, the lower

and upper bounds for φi are 0.01 and 2φ; when φ > 0.5, the bounds are 2φ− 1 and 1. The

actual execution time of task Ti follows a discretized normal distribution around φi · ci and

the standard deviation is 0.48 · (1− φi) · ci if φi > 0.5 and 0.48 · φi · ci if α ≤ 0.5 (the value

of 0.48 comes from discretized values of the normal distribution).

In addition, a special synthetic AND/OR-model application is considered and its depen-

dence graph is shown in Figure 4.17. The loops in the dependence graph can be expanded as

discussed in Section 3.1. The numbers associated with each loop are the maximum number

of iterations paired with the probabilities of having specific numbers of iterations. If there

is only one number, it is the exact number of iterations during any execution.

A1 B
5/3

C
4/2

A
8/5

A2 O1

E
10/8

D
5/4

A3

O3

F
8/6

O4

G
5/3

H
10/6

I
10/8

A4

J
4/2

K
5/3

O2
L

4/2

35%

65%

30%

70%

4

4:50%:20%:5%:25%

Figure 4.17: Dependence graph for a synthetic AND/OR-model application.

The first real application we considered is an automated target recognition algorithm

70

(ATR). ATR searches regions of interest (ROI) in one frame and tries to match some tem-

plates with each ROI [75]. The dependence graph for ATR is shown in Figure 4.18a.

P

D1 D4

T 1 T 2
T 3 T 1 T 2

T 3
Template
Matching

ROI
Detection

Prescreen

min(µs) max(µs)
Prescreen 1146 1299

ROI Detection 429 748
Template 1 466 574
Template 2 466 520
Template 3 467 504

a. Dependence graph of ATR b. Execution time for tasks in ATR

Figure 4.18: The dependence graph of ATR and the execution time for the tasks in ATR.

Assuming up to 4 ROIs in one frame and 3 templates.

Here, we assume that ATR can process up to four ROIs in one frame and that each ROI

is compared with three different templates. If the number of ROIs is less than 4, the actual

run time of the tasks corresponding to undetected ROIs (the first few ROIs) is set to 0. We

instrument the ATR algorithm to record the execution times for the program sections corre-

sponding to all the tasks. The table in Figure 4.18b shows the execution timing information

about the tasks in ATR when running on a Linux machine with a Pentium-III 500MHz and

128MB memory. The execution times for tasks are the average values of ATR processing

180 consecutive frames provided by our industry partner.

Second, we consider the Berkeley real-time MPEG-1 encoder [27]. By setting the group of

pictures (GOP) as 15 with the pattern of IBBPBBPBBPBBPBB and forcing it to encode

the last frame, the dependence graph to process the frames in one GOP using decoded frame

as reference is shown in Figure 4.19a.

There are three different frames. The I frame is the intra-frame that is encoded as a

single image with no reference to any past or future frames. The P frame is the forward

predicted frame that is encoded relative to the past reference frame. A B frame is a bi-

directional predicted frames that is encoded relative to the past, the future or both reference

71

I0 PP P P

B B

B B B

B B

B

B

3 6 9 12

1310

118

74

5

1

2 14B

Flower(ms) Tennis(ms)
min max min max

I 50 70 60 70
P 120 140 100 140
B 270 320 190 340

a. Dependence graph of MPEG-1 encoder b. Execution time for different frames

Figure 4.19: The dependence graph and execution time to process different frames of MPEG-

1 encoder; assuming that the encoding sequence is IBBPBBPBBPBBPBB, the last frame is

forced to be encoded, and decoded frames are used as reference.

frames. The reference frame is either an I or a B frame. We also instrument MPEG-1 and

for the Flower-Garden and Tennis movies with each having 150 frames, Figure 4.19b shows

the run time information of processing different frames (the time is only for encoding and

does not include I/O).

For the variable frequency processors, we first consider an ideal processor model that

has continuous frequency. The maximum frequency for the ideal processors is assumed to

be fmax = 1 and there is no minimum frequency limitation (i.e., fmin = 0). Moreover,

the frequency-dependent active power is assumed to be Pd = Cef · f 3 with the maximum

frequency-dependent active power as Pmax
d = Cef · f 3

max = 1.

Unless specified otherwise, we assume that the sleep power for each processing unit

is Ps = 0.1 and the frequency-independent active power is Pind = 0. Without considering

turning on/off processing units dynamically due to the prohibitive cost, we have the minimum

energy efficient frequency as fee = 0. That is, all frequencies are energy efficient. The

effects of frequency-independent active power Pind on the performance of energy management

schemes are addressed separately in Section 4.6.6.

In addition, two real processor models are considered. In the Transmeta model [37], there

are 16 frequency/voltage settings as shown in Table 4.2. The second power configuration

that we considered is the Intel XScale model [34] with the frequency/voltage settings as

shown in Table 4.3. From the tables, we can see that the Intel XScale model has a wider

72

frequency/voltage range than the Transmeta model but fewer frequency/voltage levels.

Table 4.2: Frequency/voltage settings for Transmeta 5400

f(MHz) 700 666 633 600 566 533 500 466
Vdd(V) 1.65 1.65 1.60 1.60 1.55 1.55 1.50 1.50

f(MHz) 433 400 366 333 300 266 233 200
Vdd(V) 1.45 1.40 1.35 1.30 1.25 1.20 1.15 1.10

Table 4.3: Frequency/voltage setting for Intel XScale processors

f(MHz) 1000 800 600 400 150
Vdd(V) 1.80 1.60 1.30 1.00 0.75

Note that the frequencies and voltages do not obey a linear relation in either model,

which is different from the ideal processors. Therefore, the frequency-dependent power for

these two real processor models is assumed to be Pd = Cef · f · V 2
dd. Again, we assume that

the sleep power of one processing unit consumes 10% of the maximum frequency-dependent

power Pmax
d .

In our simulations, we consider the following schemes: the no power management (NPM),

the greedy static power management (G-SPM), the uniform static power management (U-

SPM), the static power management with parallelism (SPM-P), the shifting/sharing slack

reclamation scheme (S/SSR), the static speculation scheme (SS), the adaptive speculation

scheme (AS) and one clairvoyant scheme (CLV). Following the idea of the optimal scheduling

technique to minimize energy consumption for uniprocessor systems [39], CLV uses the actual

execution time of tasks to generate a schedule and to compute a single frequency for all tasks.

We vary a number of parameters in our simulations, such as the overhead of frequency

changes, the number of frequency levels, the laxity over deadline ratio (LDR), the variability

(φ) of an application’s computation requirement and the minimum energy efficient frequency

fee to see how they affect the energy savings for our energy management schemes. The laxity

is defined as the difference between an application’s worst case execution time and its deadline

D. LDR is defined as LDR = laxity
D

and indicates the amount of static slack in a system.

73

The variability of an application’s computation requirement, denoted by φ, indicates the

average amount of dynamic slack generated during the actual execution of the application.

4.6.2 Effects of Frequency Change Overhead

We first consider synthetic tasks with cmin = 1 and cmax = 50. Recall that the time overhead

of frequency change is modeled as a linear function of the range of frequency changes (see

Section 4.5.1). To observe how the time overhead affects the performance of our proposed

energy management schemes in terms of energy savings, we set in the simulations the constant

component of the time overhead (C0) to different values relative to the smallest task’s WCET.

The maximum variable component corresponds to changing frequency between fmax and fmin

and equals C1 times the smallest task’s WCET, where C1 is set to different values from 0 to

1.

Figures 4.20ab shows the effects of different values of C0 and C1 (i.e., different frequency

change overheads) on the energy savings of S/SSR. We consider an independent task set

with 100 tasks and a dependent task set with 20 tasks that are executed on a system with

two processing units. In this simulation, we set LDR = 0 and φ = 0.5. The normalized

energy consumption is reported with the energy consumed by U-SPM as a basis. In the

results, each data point corresponds to an average of 1000 executions.

From the figures, for independent tasks, there is a 6% difference in energy consumption

between the case of maximum overhead and the case of no overhead. For dependent tasks,

the difference is 12%. There is a big jump between the case with no overhead and that

with minimal overhead for dependent tasks. The reason is that the gaps in the middle of a

schedule run at fmin when no frequency change overhead is considered; however, when there

is frequency change overhead, the gaps run at fmax to ensure that future tasks finish on time.

For the real variable frequency processors, the time overhead of frequency changes has

great variations from a few micro-seconds to a few milli-seconds (see Section 4.5.1). With

technology advancements, the frequency change overhead is expected to decrease. Unless

specified otherwise, in what follows, we assume that changing the frequency (and the corre-

sponding supply voltage) once takes 5µs.

74

 40

 42

 44

 46

 48

 50

 0 0.2 0.4 0.6 0.8 1N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n(

%
)

C1

C0=100%
C0=80%
C0=60%
C0=40%
C0=20%
C0=0%

 60

 65

 70

 75

 80

 0 0.2 0.4 0.6 0.8 1N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n(

%
)

C1

C0=100%
C0=80%
C0=60%
C0=40%
C0=20%
C0=0%

a. Independent tasks b. Dependent tasks

Figure 4.20: The effects of frequency change overhead on energy savings.

4.6.3 Effects of Discrete Frequency Levels

To see how discrete frequency levels affect the performance of energy management schemes

on energy savings, we consider processors that have different numbers of frequency levels

between fmin = 200MHz and fmax = 700MHz (the frequency numbers are taken from

Transmeta 5400 [37]). Figure 4.21a shows the normalized energy consumption of S/SSR

when the same synthetic task sets used in the last section are executed on a system with two

processing units. To separate the effects of discrete frequency levels and frequency change

overhead, no frequency change overhead is considered in this section.

The frequency levels are uniformly distributed at the same increment between two dis-

crete frequency levels and ’∞’ corresponds to the case of continuous frequency. From the

figure, we can see that energy consumption of S/SSR with continuous frequency is not al-

ways less than that of discrete frequencies, and that more frequency levels do not guarantee

less energy consumption. The reason is that, with discrete frequencies, processors set their

frequency to the next higher discrete level, which saves some slack for future tasks. When

sharing the slack with future tasks, the energy consumption with discrete frequencies may

be less than that with continuous frequency, and a few frequency levels may be better than

many frequency levels. Moreover, 4 or 6 frequency levels are sufficient to achieve almost the

75

 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85

 2 4 6 8 10 12 14 16 ∞N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n(

%
)

Number of frequency levels

Dependent Tasks
Independent Tasks

Figure 4.21: The effects of discrete frequencies on energy savings.

same energy savings as the case of continuous frequency, which is the same observation as

reported in [17] for uniprocessor with periodic tasks.

4.6.4 Energy Savings of SPM-P

We compare the energy consumed by our new scheme SPM-P with G-SPM and U-SPM in this

section. We consider synthetic applications that consist of randomly generated dependent

tasks. Different numbers of tasks (from 7 to 90) in an application have been tested, since the

nature of the results is more or less the same, we only present the results for an application

that consists of 50 dependent tasks. Moreover, we set cmin = 10 and cmax = 100.

Since LDR determines the amount of static slack in a system, Figure 4.22 shows the

normalized energy consumption for different static power management schemes as a function

of LDR when the application is executed on four and eight processors, respectively. Here, we

consider the Intel XScale processor model and normalized energy consumption is reported

with the energy consumed by NPM being used as a basis.

Notice that the length of an application’s canonical schedule is fixed when it is executed

on a specific system. To get different amount of static slack in a system (i.e., different values

of LDR), we vary the deadline of an application. From Figure 4.22a, we can see that SPM-P

performs the best in terms of energy savings when compared with G-SPM and U-SPM. On

76

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
(%

)

LDR

G-SPM
U-SPM
SPM-P

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
(%

)

LDR

G-SPM
U-SPM
SPM-P

a. 4 Processors b. 8 Processors

Figure 4.22: The normalized energy vs. LDR for different SPMs.

increasing the number of processors to 8, Figure 4.22b shows that SPM-P experiences more

energy savings compared with G-SPM and U-SPM. The reason is that the variations of

parallelism in the schedule become larger for 8 processors and SPM-P is able to exploit these

variations by allocating more slack to schedule sections that have higher levels of parallelism.

It is clear that more energy savings can be obtained with larger LDR (i.e., more static slack).

Finally, compared with U-SPM, SPM-P saves around 5% more energy.

Although not shown, the total energy consumed in case of 8 processors is greater than

what is consumed by 4 processors. It comes from the fact that total idle time typically

increases for larger number of processors due to more synchronization being needed on more

processors (recall that an idle processing unit consumes the sleep power which is assume to

be Ps = 0.1).

4.6.5 Energy Savings of S/SSR and Speculative Schemes

4.6.5.1 Trace Based Simulations for AND-model Applications When using the

traces from ATR and MPEG-1, we vary the number of processors in the simulations to show

the effectiveness of our shifted/shared slack reclamation schemes on different systems. Note

that the maximum parallelism for Berkeley MPEG-1 encoder is 3 for one GOP. The timing

77

information about the traces were shown in Section 4.6.1. The Intel XScale processor model

is used. Notice that, both ATR and MPEG-1 are AND-model applications. Thus, S/SSR

acts the same as shared slack reclamation (SSR), a special case of S/SSR. The energy savings

of S/SSR compared with U-SPM are shown in Table 4.4.

Table 4.4: Energy savings vs. U-SPM using trace data

ATR MPEG-1 Encoder
Flower Tennis

2-Proc 3-Proc 4-Proc 2-Proc 3-Proc 2-Proc 3-Proc

S/SSR 26.35% 38.65% 41.66% 17.42% 16.53% 25.16% 23.77%
CLV 58.83% 54.71% 52.14% 24.11% 26.43% 35.07% 36.92%

From the table, we can see that there is more energy savings for Tennis than Flower-

Garden from MPEG-1 encoder because the encoding time for Tennis varies more than

Flower-Garden (see Figure 4.19b). CLV gets 7% to 32% more energy savings than S/SSR.

4.6.5.2 Synthetic AND/OR-model Applications Notice that, when using the trace

data, the amount of dynamic slack in the traces is fixed. To get different amounts of dynamic

slack and examine their effects on the energy savings of S/SSR and speculative schemes,

we consider the synthetic AND/OR-model application as shown in Figure 4.17. When the

synthetic application is executed on a dual-processor system with LDR = 0.2, the normalized

energy consumption for the energy management schemes is shown in Figure 4.23 as a function

of φ with energy consumed by U-SPM as a basis. Here, we consider two real processor models

as mentioned in Section 4.6.1: Transmeta [37] and Intel XScale [34], which have 16 and 5

frequency levels, respectively.

From the figure, we can see that more energy savings are obtained for large values of φ

since they indicates more dynamic slack. Moreover, the performance of S/SSR on energy

savings is as good as that of static speculation (SS) and adaptive speculation (AS) schemes.

It is expected that the speculative schemes perform better than the S/SSR scheme. The

reason is that, typically, S/SSR tends to allocate all the available slack to the current task and

executes the task at the slowest possible frequency. Consequently, future tasks may need to

78

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
(%

)

execution time variation: φ

Transmeta Model

SS
AS

S/SSR
CLV

 0

 10

 20

 30

 40

 50

 60

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

no
rm

al
iz

ed
 e

ne
rg

y
co

ns
um

pt
io

n
(%

)

execution time variation: φ

Intel Xscale Model

SS
AS

S/SSR
CLV

Figure 4.23: The normalized energy vs. φ for synthetic application running on a dual-

processor system with LDR = 0.2.

run at higher frequencies and consume more energy. However, when the minimum frequency

is bounded by fmin, it prevents S/SSR from using all available slack at the very beginning

and forces some slack to be saved for future tasks. Moreover, as shown in Section 4.6.3,

fewer frequency levels can also help to prevent the S/SSR scheme from using slack early by

decreasing the probability of frequency changes: the closer the frequencies are to each other,

the higher the probability is for smaller amount of slack causing a frequency change. As

a result, the greediness of the S/SSR scheme is moderated by a higher fmin and/or fewer

frequency levels.

4.6.6 Effects of The Minimum Energy Efficient Frequency

From the last section, we can see that the minimum frequency has great effects on the per-

formance of energy management schemes. So far we have ignored the frequency-independent

active power Pind, which could impose a minimum energy efficient frequency fee on energy

management as discussed in Section 3.2. In this section, we study the effects of frequency-

independent active power on energy management by setting fee with different values (i.e.,

different frequency-independent active powers).

With fixed fmax = 1GHz, we set the factor fmax

fee
to different values to get different fee,

79

which correspond to different frequency-independent powers Pind. Without loss of generality,

we assume that the minimum frequency limitation is bounded by fee. Corresponding to

Intel XScale and Transmeta processor models, 5 and 16 frequency levels are considered,

which are equally distributed between fmax and fee. Figure 4.24 shows the normalized

energy consumption of different schemes for ATR running on a dual-processor system with

LDR = 0.2.

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

(%
)

fmax/fee

5 frequency LevelsS/SSR
SS
AS

CLV

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

(%
)

fmax/fee

16 frequency LevelsS/SSR
SS
AS

CLV

 15

 20

 25

 30

 35

 40

 45

 50

 0 5 10 15 20 25

N
or

m
al

iz
ed

 e
ne

rg
y

co
ns

um
pt

io
n

(%
)

fmax/fee

continuous frequencyS/SSR
SS
AS

CLV

a. 5 frequency levels b. 16 frequency levels c. continuous

Figure 4.24: The normalized energy vs. fmax

fmin
for ATR running on a dual-processor system

with LDR = 0.2.

As shown in Figure 4.24a, When there are 5 frequency levels, S/SSR consumes compara-

ble amount of energy as the speculative schemes even when fee = 40MHz (i.e., fmax

fee
= 25),

which coincides with our previous observation that a few frequency levels are good enough

for the S/SSR scheme. For the case of 16 frequency levels as shown in Figure 4.24b, S/SSR

becomes worse than speculative schemes as expected when fee ≤ 200MHz (i.e., fmax

fee
≥ 5).

Notice that S/SSR does not always become worse with decreased fee (i.e., increased fmax

fee
)

for the cases of 5 and 16 frequency levels. The non-monotonic changes in the performance

of S/SSR are a direct result of the quantized frequency levels. When we use continuous fre-

quencies between fmax and fee as shown in Figure 4.24c, the energy consumption of S/SSR

increases monotonically with decreased fee. Overall, we can see that the performance of spec-

ulative schemes is 10% to 15% worse than CLV scheme. For higher LDR (e.g., LDR = 0.6),

similar results are obtained.

80

4.7 THEORETICAL BOUNDS: HOW MUCH BETTER CAN WE DO?

From the evaluations, we can see that the amount of slack, both static and dynamic, deter-

mines how much we can scale down the processing frequency for executing an application,

and thus the amount of energy that we can save by deploying energy management schemes.

If there is no slack, an application needs to always run at the maximum frequency and no

energy saving can be obtained.

So far we did not consider turning processing units off due to the prohibitive overhead.

In order to answer the question of “how much better we can do”, we study the effects of

turning processing units off in this section. Moreover, to obtain the upper bound on the

energy savings that energy management schemes can achieve, no overhead of turning on/off

processing units is considered.

For simplicity, we assume that applications are fully parallel, which means that when

an application needs L time units on one processing unit, it only takes L
N

time units when

it is executed on N processing units (i.e., perfect load balancing is assumed). Moreover,

we assume that the actual running time of an application is known a priori and continuous

frequency is considered. Suppose that an application would actually take L̂ time units on

one processing unit at the maximum frequency fmax. The actual system load is defined as

σ̂ =
bL
D

, where D is the application’s deadline. If the system load is σ = L
D

and the average

over worst case execution time is φ, on average, we have σ̂ = φσ.

When the application is executed on a system consisting of N processing units, the

effective system load is defined as σ̂N = bσ
N

. Thus, σ̂ can be up to N and σ̂N is always

bounded by 1.

For a certain system load σ̂, the number of processing unit needed is at least dσ̂e. More

processing units may be used for executing the application at lower frequencies, but using

fewer processing units is not feasible since it will require the processing units to run at

frequencies higher than fmax.

Recall that the power of one processing unit is modeled as (see Section 3.2; the equation

is repeated for convenience):

P = Ps + h̄(Pind + Pd) = Ps + h̄(Pind + Ceff
m) (4.21)

81

Although the application only takes
bL
N

time units when it runs on N processing units at

frequency fmax, all N processing units will consume the maximum power Pmax for all the

time if no power management (NPM) is deployed. Here, we have Pmax = Ps+Pind+Ceff
m
max =

(α + β + 1)Pmax
d (recall that the maximum frequency-dependent active power is defined as

Pmax
d = Ceff

m
max, the sleep power Ps = αPmax

d and the frequency-independent active power

Pind = βPmax
d). Therefore, the total energy consumption for NPM within one application

frame D will be:

E
NPM

(N, fmax, D) = N · Pmax ·D = N · (α + β + 1)Pmax
d ·D (4.22)

Under energy management, we can scale down the processing frequency of the processing

units and/or turn off some processing units for energy savings. Due to the sleep power Ps

and/or frequency-independent active power Pind, there is an energy efficient frequency fee =

m

√
α+β
m−1

= κ · fmax (see Section 3.2). Therefore, when the actual system load is low (i.e., σ̂ ≤
N · κ), we should only deploy X =

⌈bσ
κ

⌉
processing units and turn the remaining processing

units off. With perfect load balancing, each processing unit will run the application forbL·fmax

X·fee
=

bL
X·κ time units at frequency fee. The energy consumption is:

E
PM

(X, fee,
L̂

X · κ) = X · (Ps + Pind + Ceff
m
ee) ·

L̂

X · κ
= (α + β + κm)Pmax

d · L̂

κ
(4.23)

Thus, compared with NPM, the amount of energy saved by energy management is the

difference between E
NPM

(N, fmax, D) and E
PM

(X, fee,
bL

X·κ). Define the normalized energy

savings (NES) as the amount of energy saved by energy management over the amount of

energy consumed by NPM. We have:

NES =
E

NPM
(N, fmax, D)− E

PM
(X, fee,

bL
X·κ)

E
NPM

(N, fmax, D)
= 1− α + β + κm

α + β + 1
· σ̂

N · κ (4.24)

82

When the actual system load σ̂ > N ·κ, all N processing units will be deployed for energy

efficiency. The processing frequency for all processing units and the energy consumption are:

f
N

=
L

N ·Dfmax = σ̂Nfmax (4.25)

E
PM

(N, f
N
, D) = N · (Ps + Pind + Ceff

m
N

) ·D
= N · (α + β + σ̂m

N)Pmax
d ·D (4.26)

Therefore, compared with NPM, the normalized energy savings is:

NES =
E

NPM
(N, fmax, D)− E

PM
(N, f

N
, D)

E
NPM

(N, fmax, D)
= 1− α + β + σ̂m

N

α + β + 1
(4.27)

As α, β, κ, m and N are system dependent parameters, the normalized energy savings will

depend on actual system load σ̂.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.5 1 1.5 2 2.5 3 3.5 4

no
rm

al
iz

ed
 e

ne
rg

y
sa

vi
ng

s
(%

)

actual system load

α+β=0.0
α+β=0.2
α+β=1.0
α+β=2.0

Figure 4.25: The theoretical bounds on energy savings.

Suppose that N = 4 and m = 3, Figure 4.25 shows the maximum normalized energy

savings for different actual system loads that can be achieved by energy management schemes.

Notice that, the overhead of turning on/off a processing unit is assumed to be zero to get

the maximum bound. That is, α and β have the same effect on energy consumption as well

as the minimum energy efficient frequency. For simplicity, we show the theoretical bounds

for different values of α + β.

83

From the figure, we can see that, the lower the actual system load σ̂ is, the more slack

there is in a system and the higher the normalized energy savings will be. When α + β = 0

(i.e., there is no sleep power and frequency-independent power), energy management through

voltage scaling gets the highest energy savings for specific actual system load. Notice that,

with m = 3, the minimum energy efficient frequency is fmax when α+β ≥ 2. That is, for any

workload, it is most energy efficient to execute an application at the maximum processing

frequency and then turn off the processing units when they are idle. Thus, for the case of

α + β = 2, the maximum energy savings has a linear relation with the actual system load.

Therefore, sleep power and frequency independent power have great effects on the energy

savings that can be obtained by energy management schemes. The smaller they are, the more

energy savings energy management schemes can potentially obtain. For example, when σ̂ = 2

(i.e., half of the maximum system load for four processing units), energy management can

save up to 85% for the case of α + β = 0 while only 50% for the case of α + β = 2.

4.8 CHAPTER SUMMARY

In this chapter, we proposed several energy management schemes for frame-based parallel

real-time applications running on shared memory systems with multiple processing units.

These schemes include both static and dynamic energy management to reclaim static and

dynamic slack, respectively. We considered AND-mode applications, where all tasks of an

application are always executed, as well as AND/OR-model applications that have more

than one execution path and only a subset of tasks will be executed during any specific

execution instance.

As a first step, we addressed the importance of task priority assignment in parallel

real-time systems. We illustrated the anomaly of traditional list scheduling with longest

task first (LTF) heuristic. We proved that, without reclaiming slack, fixed-priority list

scheduling can meet an application’s timing constraints if the timing constraints can be met

in the application’s canonical execution, in which every task is assumed to use its worst

case execution time (WCET). We then proposed the fixed-priority list scheduling for energy

management in parallel real-time systems.

84

While the greedy static power management (G-SPM) gives all static slack to the first or

last task running on each processing unit, the uniform static power management (U-SPM)

distributes static slack over the schedule evenly. Although U-SPM is optimal for uniprocessor

systems, it is not optimal for parallel systems due to different levels of parallelism for different

sections in a schedule. With the observation that it is more energy efficient to allocate more

slack to schedule sections that have higher levels of parallelism, a static power management

scheme with parallelism (SPM-P) is proposed. SPM-P allocates static slack to different

sections of a schedule based on their levels of parallelism. Simulation results show that,

compared to U-SPM, SPM-P can save up to 5% more energy. However, the actual energy

savings will depend on the parallelism variations in a schedule.

When considering dynamic slack, the simple greedy slack reclamation (GSR) scheme,

which allocates any dynamic slack to the next task to be executed and has been demon-

strated to be effective for uniprocessor systems [6]. However, we showed the GSR is not

feasible for parallel systems and may result in missed deadlines. Based on a global fixed

priority list scheduling strategy, the shifted/shared slack reclamation (S/SSR) schemes are

proposed. Simulation results show that S/SSR can get up to 50% energy savings compared

with static power management when the average over worst case execution time of an ap-

plication is around 50%. With the capability of automatically balancing actual workload

among processing units through global scheduling, the proposed schemes have been shown

to save more energy than partition scheduling where each processing unit reclaims slack for

energy management individually [94, 95].

Considering the overhead of changing frequency/voltage and observing that a new fre-

quency is calculated for each task under the S/SSR scheme, the speculation schemes are

proposed by exploring the statistical timing information about applications. The specu-

lation schemes intend to save more energy by reducing the number of frequency/voltage

changes and the related overhead. However, our simulation results show that the specula-

tion schemes consume comparable energy with S/SSR when there is a minimal frequency

limitation and/or only a few frequency/voltage levels exist in a system.

Some practical issues for energy management are also addressed, such as the overhead

of frequency/voltage changes, discrete frequency/voltage levels and shared memory access

85

contention. A slack reservation scheme has been proposed to incorporate the overhead of

frequency/voltage changes into the energy management algorithms. From our experiments,

it is shown that, when frequency/voltage scaling overhead is relatively small compared to

the size of real-time tasks, the effects of such overhead is not significant [95]. In addition, a

few (e.g., 4 to 6) frequency/voltage levels are as effective as continuous frequency/voltage for

energy management on energy savings, which coincides with the observation as reported in

[17] for uniprocessor with periodic tasks. When shared memory contention is considered, our

energy aware scheduling algorithms become more conservative and may reject applications

that are schedulable. However, for applications that have a feasible schedule under our

energy aware scheduling algorithms, more energy savings are obtained.

Moreover, we addressed the question of “what is the best we can do” using energy man-

agement and provided some theoretic bounds on energy savings. Clearly, the amount of

energy that could be saved depends on the total amount of slack, both static and dynamic,

in a system. For systems with 100% load, there is no slack and no energy saving can be

obtained through energy management. When a system is not fully loaded, the lower the

system load is, the more slack there is and the higher the energy savings can be obtained

through energy management.

86

5.0 ENERGY EFFICIENT FAULT TOLERANCE

For mission critical real-time applications, such as satellite and surveillance systems, higher

levels of reliability are also desired in addition to lower levels of energy consumption. Al-

though fault tolerance through redundancy [69, 70] and energy management through slack

reclamation [62, 66, 76, 85, 88] have been extensively explored separately, there is less work

focusing on the combination of energy and reliability management.

In this chapter, we address the problem of energy efficient fault tolerance for real-time sys-

tems. Performability has been defined as the probability of finishing an application correctly

within the application’s deadline in the presence of faults [42]. In this work, performability

is also used to refer to the number of faults that can be tolerated within an application’s

deadline. Therefore, larger performabilities imply higher levels of reliability and smaller

performabilities correspond lower levels of reliability.

First, exploring slack time as temporal redundancy, we discuss energy efficient roll-back

recovery schemes. The optimal number of checkpoints for minimizing energy consumption

or maximizing performability is explored (Section 5.1). Then, we focus on an optimistic

N-modular redundancy (ONMR) scheme, which reduces the processing frequency for some

processing units in a N -modular redundant system for energy savings provided that these

processing units can speed up the computation whenever needed to meet the deadlines (Sec-

tion 5.2). For a system that consists of a fixed number of processing units, we also look at

the configuration problems and propose a framework to find the optimal redundant config-

uration for either minimizing the energy consumption or maximizing system performability

(Section 5.3). Finally, we discuss the interplay of energy and performability management

and address the trade-off between energy consumption and performability in a system. The

effects of energy management on fault rates are also considered and an exponential fault rate

87

model is proposed based on previous published data (Section 5.4).

5.1 ENERGY EFFICIENT ROLL-BACK RECOVERY

We have discussed the management schemes that explore slack in real-time systems for

energy savings in Chapter 4. In this section, slack time will be explored as temporal re-

dundancy to increase system performability. Notice that, for a reliable real-time system,

the performability generally corresponds to the worst case scenario (e.g., the probability of

finishing an application correctly or the maximum number of faults that can be tolerated

within the application’s deadline in the worst case). Therefore, only static slack is considered

for temporal redundancy in this work. The usage of dynamic slack, which depends on the

run-time behavior of an application, for performability will be explored in our future work.

As a first step, we consider single task applications. However, the schemes considered can

be easily extended to applications that consist of multiple tasks by enforcing an individual

deadline for each task after allocating the static slack. Suppose that an application has

WCET as L and deadline D. The amount of static slack available is D−L and the system load

is defined as σ = L
D

. We will assume in this chapter that replicated execution of an application

on multiple processing units is used to detect faults (see Section 3.3). However, for simplicity,

we assume in this section that the application is executed only on two processing units (i.e.,

a Duplex system).

We first consider the simple case of re-executing an application to recover from transient

faults (Section 5.1.1). The concept of pessimism level for the number of expected faults is

proposed. Then checkpointing is considered for efficient usage of slack (Section 5.1.2) and

the optimal number of checkpoints that maximizes performability with limited energy bud-

get is explored (Section 5.1.3). The optimal number of checkpoints that minimizes energy

consumption with a given performability goal is also explored (Section 5.1.4). We further

evaluate the effectiveness of checkpointing by comparing the energy consumption and per-

formability of a duplex system with checkpoints and a triple modular redundancy (TMR)

system that uses one more processing unit (Section 5.1.5).

88

5.1.1 Simple Scheme of Re-execution (Retry)

In a retry scheme, an application is re-executed as a whole when the results on two processing

units in a duplex system are not identical. For an application with WCET L, the maximum

number of recoveries bmax that can be scheduled at the maximum frequency fmax within its

deadline D is:

bmax =

⌊
D

L

⌋
− 1 (5.1)

Here, the overhead of reloading an application for re-execution is assumed to be incorporated

into the application’s WCET, L.

5.1.1.1 Pessimism Level: The Number of Expected Faults When only b (≤ bmax)

recoveries are needed, the amount of remaining static slack is D−(b+1)L. This slack can be

used to scale down the processing frequency of the original execution as well as recoveries of

an application. Considering the probability of recoveries being invoked (e.g., the ith recovery

is invoked only if an application and all the previous i − 1 recoveries fail), it may be more

energy efficient to execute the original execution with a lower frequency while the recoveries

are executed at higher frequencies. For simplicity, in this work, the frequency to execute

any recovery is either the maximum frequency fmax or the same frequency of the original

execution.

Assuming that no faults will occur (i.e., being optimistic), all the slack D− (b + 1)L can

be used to scale down the processing frequency of the application’s original execution. The

recoveries are executed at the maximum frequency fmax if needed. Alternatively, assuming

that all recoveries of an application are needed (i.e., being pessimistic), we can scale down the

processing frequency for the original execution as well as all the recoveries of an application

to minimize the expected energy consumption. We define the pessimism level be (≤ b) as

the number of recoveries that are expected to be invoked (i.e., the number of faults expected

to occur). Therefore, optimistic analysis corresponds to be = 0 and pessimistic analysis

corresponds to be = b. When computing the expected energy consumption, we assume that

the slack is used to scale down the processing frequency of the original execution and the

first be (≤ b) recoveries of an application.

89

For example, as illustrated in Figure 5.1, if an application has L = 2 and D = 6, the

maximum number of recoveries that can be scheduled within D at the maximum frequency

fmax = 1 is two (Figure 5.1a). In this case, there is no additional slack and the application

is executed at the maximum frequency fmax = 1 during its original execution as well as its

recoveries if needed. However, if only one recovery is needed, there will be 6− 2 · 2 = 2 units

of slack. Being optimistic, the slack should be used to scale down the processing frequency

of the application’s original execution, which will be executed at the frequency of 1
2
, while

the recovery is executed at fmax = 1 as shown in Figure 5.1b. If we are pessimistic and

expect that there is a fault during the original execution of the application, the recovery will

be needed and the slack should be used to scale down the processing frequency for both the

application’s original execution and its recovery (Figure 5.1c). In the figures, each task box

represents replicated execution of the application on two processing units.

R 2R 1 R 1

fmax

R 1
O

L Df

t

2 4 6

max

f

t

D

2 4 6

O

f=1/2

f

t

D

2 4 6

O

f = 2/3

c. Be pessimisticb. One recovery and be optimistica. f = 1 with 2 recoveries

Figure 5.1: The retry scheme for an application with L = 2 and D = 6. Here, O stands for

the original execution and Ri (i = 1, 2) is for the ith recovery.

5.1.1.2 Performability of Retry Scheme Suppose that b (≤ bmax) recoveries are

scheduled to achieve a certain level of performability for an application under the retry

scheme. With be-pessimism (be ≤ b), the amount of time allocated to the application’s

original execution or any of its first be recoveries is:

torg =
D − (b− be)L

be + 1
(5.2)

With a Poisson distribution of faults and average fault arrival rate λ, the probability of having

fault(s) in one processing unit during the application’s original execution or any execution

90

of its first be recoveries is 1− e−λtorg . Therefore, the probability of the application’s original

execution or any execution of its first be recoveries having fault(s) on a duplex system is:

ρorg = 1− e−2λtorg (5.3)

Notice that each of the remaining recoveries takes L time units at the maximum frequency

fmax = 1. Similarly, the probability of any remaining recovery having fault(s) on a duplex

system is:

ρrem = 1− e−2λL (5.4)

Thus, the performability (i.e., the probability of an application being executed correctly

within its deadline) is:

Rretry = (1− ρbe+1
org) + ρbe+1

org (1− ρb−be
rem) (5.5)

where the first part is the probability of the application being executed correctly within its

original execution and the first be recoveries; the second part is the probability of having

fault(s) during its original execution and all the first be recoveries while one of the remaining

recoveries getting correct results.

5.1.1.3 Expected Energy Consumption of Retry Scheme With an application’s

original execution and any of its first be recoveries being allocated torg time units (see Equa-

tion 5.2), the frequency, at which the application’s original execution and the first be recov-

eries will be executed, is:

forg =
(be + 1)L

D − (b− be)L
(5.6)

Therefore, the energy consumed by the application’s original execution or any of its first be

recoveries on a duplex system is:

Eorg = 2(Ps + Pind + Ceff
m
org)torg (5.7)

91

Since the remaining recoveries are executed at fmax, the energy consumption for executing

any of the remaining recoveries on a duplex system is:

Erem = 2(Ps + Pind + Ceff
m
max)L (5.8)

For the retry scheme, the original execution of an application needs to be performed under

all circumstances. The probability of the first recovery being executed is the probability

of having fault(s) during the original execution, which is ρorg as shown in Equation 5.3.

Similarly, the probability of the ith (i ≤ b) recovery being executed is the probability of

having fault(s) during the original execution as well as every previous recovery execution,

which is given as follows:

Pri =

ρi
org 1 ≤ i ≤ be

ρbe+1
org · ρi−be−1

rem be < i ≤ b
(5.9)

Thus, the expected energy consumption for executing the application is:

Eexp = Eorg(1 +
be∑

i=1

Pri) + Erem

b∑

i=be+1

Pri (5.10)

5.1.2 Checkpointing and Its Applicability

Notice that, the retry scheme is not applicable when system load is more than 50%. For

large applications, re-execution takes significant amount of slack time. To efficiently use slack

time, checkpointing techniques can be deployed to divide an application into small sections.

At a checkpoint, the important system information and process states are saved to stable

storage and a fault-detection routine (comparison of states of the two processing units) is

executed simultaneously. If a fault is detected, only the faulty section of an application is

executed by rolling back execution to the previous correct state [46, 49].

However, checkpoints incur time as well as energy overheads. Based on different check-

pointing techniques used [71], the overheads of taking checkpoints vary greatly. For simplic-

ity, we assume that the amount of work within each checkpoint is fixed and that taking a

checkpoint consumes r time units at the maximum frequency fmax. For ease of presentation,

we define γ = r
L
, where L is the WCET of an application.

92

Checkpoints can be uniformly or non-uniformly distributed within an application [59]. In

this work, we consider only uniformly distributed checkpoints. Although more checkpoints

result in smaller recovery sections, more checkpoint overhead will be incurred. The optimal

number of checkpoints to minimize the response time [49] as well as to minimize the energy

consumption has been studied [22, 59] .

In what follows, we first explore the applicability of checkpointing with respect to system

load, number of recovery sections and checkpoint overhead. Then, we study the optimal num-

ber of checkpoints to minimize the expected energy consumption with a given performability

goal or to maximize the performability with limited energy budget.

Suppose that there are n checkpoints within an application. When the application and

all recovery sections are executed at the maximum frequency fmax, the maximum number of

recovery sections that can be scheduled within the application’s deadline is:

bmax =

⌊
D

L/n + r

⌋
− n =

⌊
D

L/n + r
− n

⌋
(5.11)

Here, we assume that the recovery overhead used to restore the previous correct state is

the same as taking one checkpoint. Differentiating Equation 5.11 with respect to n, we can

find that, when the number of checkpoints is n =
⌊√

DL−L
r

⌋
or n =

⌈√
DL−L

r

⌉
, the maximum

number of recovery sections that can be scheduled within the application’s deadline is (recall

that system load is defined as σ = L
D

):

bmax =

⌊
(
√

D −√L)2

r

⌋
=

⌊
(1−√σ)2

γσ

⌋
(5.12)

When fewer or more checkpoints are used, only fewer recovery sections can be scheduled

within the application’s deadline because of the increase in the recovery size or the increase

in overhead for checkpointing, respectively. For example, as illustrated in Figure 5.2, when

L = 12, D = 35, r = 3, the maximum number of recovery sections is
⌊

(
√

35−√12)2

3

⌋
= 2 when

the optimal number of checkpoints is
⌈√

35·12−12
3

⌉
= 3 (shown in Figure 5.2a). When 2 or 4

checkpoints are deployed, only one recovery section can be scheduled within the application’s

deadline (as shown in Figure 5.2b and 5.2c, respectively).

93

f

t

f

t

recovery
section

original
section

355 30252015100

355 30252015100

355 30252015100

f D

t

D

c. Four checkpoints, one recovery section

b. Two checkpoints, one recovery section

or recovery overhead
checkpoint overhead

a. Three checkpoint, two recovery sections

Figure 5.2: Optimal number of checkpoints for maximizing the number of recovery sections;

L = 12, D = 35, r = 3.

Suppose that the number of recovery sections needed to achieve a give level of performa-

bility is b (≤ bmax). For example, only b faults need to be tolerated in a duplex system. With

n checkpoints, we have:

L + nr + b(r +
L

n
) ≤ D (5.13)

which can be rewritten as

γσn2 − (1− σ − bγσ)n + bσ ≤ 0 (5.14)

From Equation 5.14, in order to have a real (non-imaginary) solution for n, we should have:

(1− σ − bγσ)2 − 4bγσ2 ≥ 0 (5.15)

Let σup be the upper bound on the system load that can be handled with b recovery sections

and checkpointing overhead γ. From Equation 5.15, we can derive σup:

σup ≤ 1

1 + bγ + 2
√

bγ
(5.16)

In other words, when the system load σ > σup, it is not feasible to schedule b recovery

sections with checkpointing overhead as γ. In what follows, we assume that σ ≤ σup.

94

5.1.3 Optimal Number of Checkpoints for Maximizing Performability

When there is enough energy, both processing units in a duplex system could run at the

maximum frequency fmax with the maximum power level of Pmax = Ps + Pind + Ceff
m
max.

From Equation 5.12, the maximum number of recovery sections that can be scheduled within

an application’s deadline is bmax.

With a limited energy budget, we need to reduce the power level of the duplex system.

That is, we need to reduce the frequency of the processing units. Notice that, from the

power model discussed in Section 3.2, it is most energy efficient to scale down the processing

frequency uniformly for both processing units within an application’s deadline. Suppose that

the energy budget is Ebudget. With the deadline of an application being D, the maximum

power level that a duplex system can consume is:

Pbudget =
Ebudget

D
(5.17)

Notice that, for a duplex system, the minimum power level is consumed when both

processing units run at the minimum energy efficient frequency fee. Thus, the minimum

power level consumed by a duplex system is:

Pmin = 2(Ps + Pind + Ceff
m
ee) = 2(α + β + κm)Pmax

d (5.18)

If Pmin > Pbudget, the energy budget Ebudget is not enough to keep a duplex system in

active working state for all the time within the application’s deadline. Although it is possible

to put a duplex system to sleep for some time and use the energy budget to keep a duplex

system active during part of the duration, for simplicity, we consider that the energy budget

is not enough for a duplex system when Pmin > Pbudget.

Suppose that Pmin < Pbudget, which means that the processing units in a duplex system

could run at a higher frequency than fee. Assume that the frequency is fbudget. There is,

fbudget = m

√
Pbudget

2 · Pmax
d

− α− β (5.19)

95

Similar to Equation 5.11, when there are n checkpoints within an application, the number

of recovery sections that can be scheduled within the application’s deadline at the reduced

processing frequency fbudget is:

bbudget =

⌊
Dfbudget

L/n + r

⌋
− n =

⌊
Dfbudget

L/n + r
− n

⌋
(5.20)

Notice that bbudget ≥ 0. From Equation 5.20, the number of checkpoints n should satisfy:

1 ≤ n ≤
⌊

Dfbudget − L

r

⌋
=

⌊
fbudget − σ

γσ

⌋
(5.21)

With n checkpoints, the length of each application section at frequency f should be L/n+r
fbudget

,

which includes the overhead of one checkpoint. However, due to the integer limitation of

bbudget introduced by the floor operation in Equation 5.20, the amount of time allocated to

each section could be:

tn,bbudget
=

D

n + bbudget

(5.22)

Therefore, for energy efficiency, the application and its recovery sections are executed at a

frequency lower than fbudget with each section being allocated tn,bbudget
time units.

Considering Poisson distribution of faults with average fault arrival rate λ, the probability

of one section having fault(s) on a duplex system is:

ρn,bbudget
= 1− e−2λtn,bbudget (5.23)

For simplicity, we assume that the average fault arrival rate λ remains the same for different

processing frequencies. The case of λ depending on processing frequency and supply voltage

will be further discussed in Section 5.4.2.

Define R(x, n) as the probability of completing correctly n sections when up to x sections

are executed. Note that it is possible to get n correct sections before all x sections are

executed. R(x, n) can be computed as:

R(x, n) = (1− ρn,bbudget
) ·R(x− 1, n− 1) + ρn,bbudget

·R(x− 1, n) (5.24)

where the first part stands for the probability of the first section finishing correctly and the

remaining sections having n − 1 sections being executed correctly; the second part is the

96

probability of the first section having fault(s) and the remaining sections having n sections

being executed correctly. Equation 5.24 has the following termination conditions:

R(i, 0) = 1 i ≥ 0

R(i, i + j) = 0 i ≥ 0; j > 0

R(i, i) = (1− ρn,bbudget
)i i > 0

(5.25)

The first condition represents the case where all the required sections have been executed

correctly and no further execution is needed. The second condition represents the case where

more sections than what is available are required to be executed correctly, which is impossible

and has the probability of 0. The last case is where all sections need to be executed correctly.

Therefore, the performability of an application with n checkpoints and bbudget recovery

sections, which is the probability of having n sections being executed correctly among all

n + bbudget sections, can be expressed as:

Rn,bbudget
= R(n + bbudget, n) (5.26)

From Equations 5.20, 5.22, 5.23 and 5.26, it is difficult to get a close formula for the

optimal number of checkpoints that maximizes the performability. However, from Equa-

tion 5.21, searching through all possible values of n, we can iteratively find the optimal

number of checkpoints that maximizes the performability.

Alternatively, with the intuition that more recovery sections lead to higher levels of

performability, we may approximate the solution by finding the number of checkpoints that

results in the maximum number of recovery sections. Differentiating Equation 5.20 with

respect to n, we find that, when the number of checkpoints is n =

⌊√
DfbudgetL−L

r

⌋
or n =

⌈√
DfbudgetL−L

r

⌉
, the maximum number of recovery sections is:

bbudget,max =

⌊
(
√

Dfbudget −
√

L)2

r

⌋
(5.27)

As an example, assume that checkpoint overhead is r = 4, for an application with

L = 30 and D = 100, Figure 5.3 shows the probability of failure (i.e., 1−performability) and

97

the corresponding number of recovery sections for different numbers of checkpoints. Here,

two cases are considered. When there is no energy limitation, the application is executed

at the maximum frequency fmax = 1 and the corresponding maximum supply voltage. For

the case of limited energy budget, suppose that the application is executed at frequency

f = 0.8 and the corresponding voltage level. For illustration, different fault rates, λ = 10−4

and λ = 10−3, are assumed for the application being executed at fmax = 1 and f = 0.8,

respectively.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0 2 4 6 8 10 12 14 16

1-
pe

rf
or

m
ab

ili
ty

n: number of checkpoints

λ=10-3

λ=10-4

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16

nu
m

be
r

of
 r

ec
ov

er
y

se
ct

io
ns

n: number of checkpoints

λ=10-3

λ=10-4

a. 1−performability b. b: recovery sections

Figure 5.3: Performability and number of recovery sections.

From the figure, we can see that the optimal number of checkpoints that leads the

highest performability results in the maximum number of recovery sections. However, due

to the rounding effects, different numbers of checkpoints may result in the same number of

recovery sections, which lead to slight difference on performability. For example, for the case

of f = 1.0 (λ = 10−4), the maximum number of recovery sections (5) can be obtained when

the number of checkpoints is 5, 6 or 7, which leads to almost the same performability.

Thus, instead of searching through all possible numbers of checkpoints to get the optimal

number of checkpoints that leads to the highest performability, we may find the number of

checkpoints that results in the maximum number of recovery sections in constant time. This

leads to the highest (or close to the highest) performability.

98

5.1.4 Optimal Number of Checkpoints for Energy Minimization

In this section, we focus on finding the optimal number of checkpoints that minimizes energy

consumption for executing an application while achieving a given level of performability. If

an application needs b (b ≤ bmax) recovery sections (e.g., to tolerate up to b faults a duplex

system), from Equation 5.14, the number of checkpoints n should satisfy:

⌈
(1− σ − bγσ)−√∆

2γσ

⌉
≤ n ≤

⌊
(1− σ − bγσ) +

√
∆

2γσ

⌋
(5.28)

where ∆ = (1− σ − bγσ)2 − 4bγσ2.

5.1.4.1 Expected Energy Consumption For an application with b recovery sections

and n checkpoints, where n satisfies Equation 5.28, the amount of slack is D− (n+b)(L
n

+r).

As discussed in Section 5.1.1, considering be-pessimism (be ≤ b), the slack can be used to

scale down the processing frequency when executing the original n sections and the first

be recovery sections. For convenience, we use expected sections to refer to the original n

sections and the first be recovery sections. The remaining recovery sections are executed at

the maximum frequency fmax if needed. The time allocated to each of expected sections and

the corresponding frequency are (recall that the minimum energy efficient frequency is fee):

texpected = min

{
D − (b− be)(

L
n

+ r)

n + be

,
L/n + r

fee

}
(5.29)

fexpected = max

{
(n + be)(

L
n

+ r)

D − (b− be)(
L
n

+ r)
, fee

}
(5.30)

Thus, the energy consumption for the execution of one expected section on a duplex system

is:

Eexpected = 2(Ps + Pind + Ceff
m
expected)texpected (5.31)

With Poisson distribution of faults with average fault arrival rate λ, the probability of

one expected section having faults on a duplex system is:

ρexpected = 1− e−2λtexpected (5.32)

99

Similarly, we can get the energy consumption and the probability of having fault during

the execution in any remaining recovery sections as:

Erem = 2(Ps + Pind + Ceff
m
max)L (5.33)

ρrem = 1− e−2λL (5.34)

Notice that the original n sections are always executed. To find out the probability of

recovery sections being executed, considering that expected sections and remaining recovery

sections have different probabilities of failure, we extend the definition of R(x, n) as follows:

R(x, n) = (1− ρ1) ·R(x− 1, n− 1) + ρ1 ·R(x− 1, n) (5.35)

where ρ1 is the probability of the first section being not executed correctly. And the extended

termination conditions are:

R(i, 0) = 1 i ≥ 0

R(i, i + j) = 0 i ≥ 0; j > 0

R(i, i) =
∏i

j=1(1− ρj) i > 0

(5.36)

where ρj is the probability of having faults during the execution of the jth section and

ρi =

ρexpected = 1− e−2λtexpected i ≤ n + be

ρrem = 1− e−2λL i > n + be

(5.37)

Therefore, the probability of the ith recovery section being executed is the probability

of fewer than n sections being correctly executed within the execution of n + i− 1 sections,

which is 1−R(n + i− 1, n). Thus, the expected energy consumption is:

Eexp = Eexpected

(
n +

be∑
i=1

(1−R(n + i− 1, n))

)
+ Erem

b∑

i=be+1

(1−R(n + i− 1, n) (5.38)

From Equation 5.38, it is difficult to get a close formula for the optimal number of check-

points that minimizes the expected energy consumption Eexp. However, from Equation 5.28,

searching through all possible values of n, we can iteratively find the optimal number of

checkpoints that minimizes the expected energy consumption.

100

5.1.4.2 Fault-Free Energy Consumption Considering that faults are rare, we could

be optimistic (i.e., be = 0) and use all the slack to scale down the processing frequency of the

original n sections. In this section, we focus on finding the optimal number of checkpoints

that minimizes the fault-free energy consumption. Recall that we are considering a duplex

system and the processing units are always on due to the prohibitive overhead of turning a

processing unit on/off. Thus, the fault-free energy consumption is:

Eff = 2

(
PsD + (Pind + Ceff

m
expected)

(L + nr)

fexpected

)
(5.39)

where fexpected is given by Equation 5.30 with be = 0. When L+nr)

D−b(L
n

+r)
< fee, that is,

0 < σ+nγσ
1−b(γσ+ σ

n
)
≤ κ, the n original sections are executed at frequency fee and the fault-free

energy consumption is:

Eff = 2

(
α + (β + κm)

σ + nγσ

κ

)
Pmax

d D (5.40)

Noting that
∂Eff

∂n
> 0, we conclude that the fault-free energy consumption Eff is minimized

at the smallest n that satisfies 0 < σ+nγσ
1−b(γσ+ σ

n
)
≤ κ. For any n(≥ 1), we have 0 < σ+nγσ

1−b(γσ+ σ
n

)
.

From σ+nγσ
1−b(γσ+ σ

n
)
≤ κ, we can get a quadratic equation in n:

γσn2 − (κ− σ − bκγσ)n + bκσ ≤ 0 (5.41)

Solving this equation, we get:

(κ− σ − bκγσ)−√∆

2γσ
≤ n ≤ (κ− σ − bκγσ) +

√
∆

2γσ
(5.42)

where ∆ = (κ − σ − bκγσ)2 − 4bγσ2κ. From the above equation, to have a real (non-

imaginary) n, we must have ∆ ≥ 0. That is, σ ≤ κ
1+bκγ+2

√
bκγ

def
= σκ,γ. In other words, in

order to execute the original n sections of an application at frequency fee, the system load

should be smaller than σκ,γ. Thus, the optimal number of checkpoints to minimize Eff in

this case is:

n = max

{
1,

(κ− σ − bκγσ)−√∆

2γσ

}
(5.43)

101

When system load is higher (σκ,γ < σ ≤ σup), where σup is the upper bound on system

load that can be handled with checkpoint overhead r and b recovery sections (see Sec-

tion 5.1.2), we will have κ < σ+nγσ
1−b(γσ+ σ

n
)
. Therefore the original n sections of an application

are executed at frequency fexpected = L+nr
D−b(L

n
+r)

and the fault-free energy consumption is:

Eff = 2

[
α +

(
β +

(
σ + nγσ

1− b(γσ + σ
n
)

)m)
(1− b(γσ +

σ

n
))

]
Pmax

d D (5.44)

Notice that any n will satisfy κ < σ+nγσ
1−b(γσ+ σ

n
)

when σκ,γ < σ ≤ σup. Differentiating Equa-

tion 5.44 and setting
∂Eff

∂n
= 0, we find that the fault-free energy consumption Eff is mini-

mized when n satisfies the following equation:

mn2γ(1− bγσ − bσ

n
)(σ + nγσ)m−1 + β(1− bγσ − bσ

n
)m − (m− 1)(σ + nγσ)m = 0 (5.45)

We could not find a close form for the solution n. However, for given b,m, β, γ and σ, the

value of n that satisfies the above equation can be found iteratively.

In summary, when the system load is low (i.e., 0 ≤ σ ≤ κ
1+bκγ+2

√
bκγ

def
= σκ,γ), the optimal

number of checkpoints n to minimize the fault-free energy consumption Eff is given by

Equation (5.43); when the system load is high (i.e., σκ,γ < σ ≤ 1
1+bγ+2

√
bγ

def
= σup), the

optimal number of checkpoints n to minimize Eff can be solved iteratively. If the system

load is very high (i.e., σ > σup), checkpointing is not applicable.

5.1.5 Evaluations of Roll-Back Recovery with Checkpoints

When an application is executed on a higher levels of modular redundant system (e.g., triple

modular redundant, TMR, systems), faults can be tolerated/masked through majority voting

[69]. However, by deploying more processing units, higher levels of modular redundancy

imply more energy consumption.

For comparison, we consider a TMR system and compare the energy consumption and

system performability for Duplex with checkpoints and TMR to tolerate one fault. Notice

that, to tolerate a single fault, TMR does not need recovery and all slack can be used to

scale down the frequency of the processing units for energy savings. We vary a number

102

of parameters: system power characteristics (sleep power Ps and frequency-independent

power Pind), checkpoint overhead (r) and system load (σ) to see how they affect the energy

consumption and performability of Duplex and TMR.

As in Chapter 4, m = 3 and Pmax
d = 1 are used in our analysis. Recall that Ps =

αPmax
d = α and Pind = βPmax

d = β.

5.1.5.1 Optimal Number of Checkpoints The optimal number of checkpoints for

Duplex to minimize energy consumption is determined by the frequency-independent power

β, the checkpointing overhead γ and the system load σ. Figure 5.4 shows the optimal number

of checkpoints for a duplex system with different frequency-independent active power and

different checkpoint overhead (γ = 0.01, 0.05, 0.1 corresponding to Dup-0.01, Dup-0.05 and

Dup-0.1, respectively) under different system loads.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nu
m

be
r

of
 c

he
ck

po
in

ts

system load: σ

Dup-0.01
Dup-0.05

Dup-0.1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nu
m

be
r

of
 c

he
ck

po
in

ts

system load: σ

Dup-0.01
Dup-0.05

Dup-0.1

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

nu
m

be
r

of
 c

he
ck

po
in

ts

system load: σ

Dup-0.01
Dup-0.05

Dup-0.1

a. β = 0.1 b. β = 0.5 c. β = 1.0

Figure 5.4: Optimal number of checkpoints for Duplex; α = 0.1.

From the figure, we can see that Duplex is only applicable when the system load is

low and/or the overhead of checkpoints is small. With checkpoint overhead increasing, the

maximum system load Duplex can handle decreases. As expected, the optimal number of

checkpoints increases when the checkpoint overhead decreases since more checkpoints can be

used with smaller checkpoint overhead. The optimal number of checkpoints decreases when

frequency-independent active power (β) increases. The reason is that the minimum energy

efficient frequency fee is higher with higher frequency-independent active power. Thus, the

application is able to run at fee with fewer number of checkpoints for the same system load.

103

5.1.5.2 Energy Efficient Regions To tolerate a single fault, Duplex needs one recovery

while TMR does not. Therefore, TMR is feasible when σ ≤ 1. However, for Duplex, it is

feasible only when σ ≤ σup = 1
1+γ+2

√
γ

(see Equation 5.16) for a given checkpoint overhead

r = γL.

When Duplex is not feasible, we can only use TMR. When both Duplex and TMR are

feasible, the minimum fault-free energy consumption for Duplex, Edup, can be obtained by

deploying the optimal number of checkpoints as discussed in Section 5.1.4.2. The minimum

fault-free energy consumption for TMR, Etmr, can be obtained when all three processing

units run at the frequency of ftmr = max{σfmax, fee}. When Edup is less than Etmr, Duplex

should be used; otherwise, use TMR.

 0

 0.5

 1

 1.5

 2

 0 0.05 0.1 0.15 0.2

α:
 s

le
ep

 p
ow

er

γ: constant overhead

T
M

R
 R

eg
io

n

Duplex Region

β=0.0
β=0.2
β=0.4

 0

 0.5

 1

 1.5

 2

 0 0.05 0.1 0.15 0.2

α:
 s

le
ep

 p
ow

er

γ: constant overhead

TMR Region

D
up

le
x

R
eg

io
n

β=0.0
β=0.2
β=0.4

a. σ = 0.4 b. σ = 0.6

Figure 5.5: Energy efficient regions for Duplex and TMR

Suppose the application’s deadline is D = 1000 time units. We consider two different

loads σ = 0.4 (L = 400) and σ = 0.6 (L = 600). Figure 5.5 shows the energy efficient regions

for Duplex and TMR with different checkpoint overheads and system power characteristics.

From the figures, we can see that when the system load is higher, the maximum check-

point overhead that Duplex can use is smaller. Furthermore, lower sleep and/or frequency-

independent active power favors TMR even when Duplex is applicable. These observations

are the same as reported in [22].

104

5.1.5.3 System Performability With the assumption that the inter-arrival time of

faults follows Poisson distribution and the average failure rate is λ, the probability of failure

on one processing unit during the period of D is ρ(D) = 1−e−λD. Since the deadline D is an

application specific parameter, in the following discussion we assume that ρ(D) = 10−3, 10−4

and 10−5. Figure 5.6 shows the probability of failure (1−performability) for Duplex and TMR

with different values of ρ(D) (i.e., different failure rates). For Duplex, the optimal number

of checkpoints that minimizes energy consumption is used. Notice that lower probability of

failure means higher performability.

 1e-08

 1e-07

 1e-06

 1e-05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-
pe

rf
or

m
ab

ili
ty

system load: σ

TMR
Dup-0.01
Dup-0.05
Dup-0.10

 1e-10

 1e-09

 1e-08

 1e-07

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-
pe

rf
or

m
ab

ili
ty

system load: σ

TMR
Dup-0.01
Dup-0.05
Dup-0.10

 1e-12

 1e-11

 1e-10

 1e-09

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-
pe

rf
or

m
ab

ili
ty

system load: σ

TMR
Dup-0.01
Dup-0.05
Dup-0.10

a. ρ(D) = 10−3 b. ρ(D) = 10−4 b. ρ(D) = 10−5

Figure 5.6: The probability of failure (1−performability) for Duplex and TMR.

In Figure 5.6, we assume that α = 0.1 and β = 0.5. As expected, when the load

σ increases, the performabilities decrease since both Duplex and TMR use more time to

execute the application. The reason for the decreased performability is that, with the inter-

arrival time of faults following a Poisson distribution, the longer a processing unit runs, the

higher the probability it fails and the lower the performability is. Also note that different

checkpoint overheads have no significant effect on the performability achieved by Duplex.

With one recovery section, Duplex achieves comparable levels of performability as that of

TMR, especially with low loads where all executions are performed at the minimum energy

efficient frequency.

105

5.2 OPTIMISTIC MODULAR REDUNDANCY

From the discussion in the last section, compared with Duplex that deploys checkpoints,

only TMR is applicable when the overhead of checkpoints is large and/or the system load

is high. However, TMR uses one more processing unit and consumes more energy, espe-

cially for larger sleep powers and frequency-independent powers. In [22], an optimistic triple

modular redundancy (OTMR) scheme was proposed to reduce the energy consumption in a

traditional TMR system. Expecting that faults are rare, OTMR turns off or scales down

one processing unit provided that it can catch up and finish the computation before the

application’s deadline if the other two processing units do encounter faults.

Considering the general system power model, we first explore the optimal frequency

setting for OTMR to minimize system energy consumption (Section 5.2.1). Then, for that

optimal frequency setting, assuming a Poisson distribution of faults, the performability of

OTMR is derived (Section 5.2.2). The detailed comparison between OTMR and TMR on

both energy consumption and performability is presented (Section 5.2.3) and the idea is

extended to an optimistic N-modular redundancy (ONMR) scheme (Section 5.2.4).

5.2.1 Optimal Frequency Setting for OTMR

For the OTMR scheme, the processing frequency for the first two processing units is crucial

in determining the amount of slack reserved for the third processing unit, when the third

processing unit should begin to run and at what frequency. Clearly, the optimal frequency

setting for OTMR to minimize energy consumption depends on system loads (i.e., the amount

of available slack). Recall that fee is the minimum energy efficient frequency (Section 3.2).

If the system load is very low, we can reserve enough slack for the third processing unit and

run the first two processing units at fee as shown in Figure 5.7a.

In the figure, the white rectangle represents the execution of the application on the

first two processing units and the dark shadowed rectangles are the reserved times for the

third processing unit. The width of a rectangle represents processing frequency and the

height represents execution time. When the system load is higher, based on the amount of

106

f2

fmax
L f2

fmax
L

execution for
first two units

reserved time
for third unit

fee

f2

fmax
f2

fmax

f2

fmax

f2 f3

fee

fee

fmax

overlapped
computation

D

L

a. very low load b. low load c. very high load

D − L D − L

L

Figure 5.7: Optimal frequency setting for OTMR under different system loads: a. very low

system load (0 ≤ σ ≤ κ
1+κ

); b. low system load (κ
1+κ

< σ ≤ κ); c. very high system load

(1
2−κ

< σ ≤ 1).

reserved slack for the third processing unit and its processing frequency, the third processing

unit may need to execute part of the application concurrently with the first two processing

units (defined as overlapped computation) as shown Figures 5.7bc, where the light shadowed

rectangles are the overlapped computations in the third processing unit.

5.2.1.1 Expected Energy Consumption Suppose that the optimal frequency for the

first two processing units is f2 and f3r is the optimal frequency for the third processing units

to execute the application during the reserved time. The optimal frequency f3 that the

third processing unit uses to perform the overlapped computation will depend on f2 and f3r.

Recall that normalized frequency is used and fmax = 1. With the first two processing units

running at f2, the amount of reserved time for the third processing unit is D − L
f2

. Thus,

the amount of overlapped computation is L− f3r(D − L
f2

). Thus,

f3 =
L− f3r(D − L

f2
)

L
f2

=
(L− f3r(D − L

f2
))f2

L
(5.46)

107

Recall that the minimum energy efficient frequency is fee and the maximum frequency is

fmax. Therefore:

fee ≤ f2, f3, f3r ≤ fmax = 1 (5.47)

The power consumption in a processing unit at frequency f is modeled as P (f) = Ps +

h̄(Pind + Ceff
m) (see Section 3.2). Since the processing units are assumed to be always

on, the sleep power Ps is always consumed on all processing units within the time period

considered. We use Pa(f) to stand for active power at frequency f and Pa(f) = Pind+Ceff
m.

Considering the probabilities of performing computations, the expected energy consumption

of an OTMR system is:

Eexp = 3PsD + 2 · Pa(f2) · t2 + Pa(f3) · t3 + ·(1−R2)Pa(f3r) · t3r (5.48)

where

t2 =
L

f2

(5.49)

t3r = max

{
L

fee

, (D − t2)

}
(5.50)

t3 =
L− t3rf3r

f3

(5.51)

Here, t2, t3 and t3r are the execution times for the computation on the first two processing

units, for the overlapped computation on the third processing unit and for the computation

during reserved time on the third processing unit, respectively.

The first part in Equation 5.48 is the energy consumption in a system due to sleep power

and is always consumed. The second and the third parts are active energy consumed by the

first two processing units and the third processing unit, respectively. They are also always

consumed whether the execution on the first two processing units has errors or not. The last

part is the active energy consumed by the third processing unit during the reserved time.

This has a probability (1 − R2) of being executed where R2 is the probability of having no

fault(s) during the execution on the first two processing units. Assuming that faults follow

a Poisson distribution with an average fault arrival rate λ, we have:

R2 =
(
1− (1− e−λt2)

)2
= e2(−λt2) (5.52)

108

For given L,D and λ, from Equations 5.46, 5.48, 5.49, 5.50, 5.51 and 5.52, we can see that

Eexp is a function of f2 and f3r. However, we cannot get close formula solutions of f2 and f3r

to minimize Eexp due to the exponential component in R2. Notice that fee ≤ f2, f3r ≤ fmax.

Searching over the feasible values of f2 and f3r, we may approximate the solutions iteratively,

especially for systems that have only a few frequency levels.

5.2.1.2 Fault Free Energy Consumption To simplify the problem, we assume that

the third processing unit runs at the maximum frequency during the reserved time (i.e.,

f3r = fmax) and focus on minimizing the fault-free energy consumption that is given as:

Eff = 3PsD + 2 · Pa(f2) · t2 + ·Pa(f3) · t3 (5.53)

Without loss of generality, suppose that the optimal frequency for the first two processing

units is f2 = xfmax. The reserved time for the third processing unit is D− L
x
. If D− L

x
≥ L

(i.e., the reserved time is enough for the third processing unit to finish the computation at

the maximum frequency fmax), no computation needs to be done concurrently and the third

processing unit just sleeps initially (see Case 1 below). Otherwise, the amount of overlapped

computation is L − (D − L
x
) at frequency f3 = max{fee,

L−(D−L
x

)
L
x

fmax} = max{fee, (1 −
1−σ

σ
x)fmax}. Therefore, due to the minimum energy efficient frequency fee, in order to find

the optimal frequencies, we need to consider the following cases corresponding to different

system loads. Notice that f2 ≥ max{σfmax, fee}. That is, x ≥ max{σ, κ}.
Case 1: 0 < σ ≤ κ

1+κ
(system load is very low).

In this case, we have L ≤ D− L
κ

(from σ ≤ κ
1+κ

). That is, there is enough reserved time

and the third unit just sleeps initially. The optimal frequency for the first two processing

units is fee as shown in Figure 5.7a. The minimum fault-free energy consumption for OTMR

is:

EOTMR = 3PsD + 2(Pind + Ceff
m
ee)

L

fee

=
(
3α + 2(β + κm)

σ

κ

)
Pmax

d D (5.54)

Case 2: κ
1+κ

< σ ≤ κ (system load is low).

109

In this case, the third processing unit may have to execute part of the application con-

currently with the first two processing units as shown in Figure 5.7b. However, as discussed

below, the frequency at which the third processing unit executes the overlapped computation

is not higher than fee.

Notice that, when the reserved time for the third processing unit is L, the first two

processing units should run at frequency L
D−L

fmax = σ
1−σ

fmax, which is higher than fee

(because κ
1+κ

< σ and fee = κfmax). Running at a frequency higher than σ
1−σ

fmax will

needlessly increase the energy consumption for the first two processing units. Since the

optimal frequency for the first two processing units f2 = xfmax is also limited by fmax, we

have f2 ≤ min{ σ
1−σ

fmax, fmax}. That is, x ≤ min{ σ
1−σ

, 1}. Thus, we have L− (D − L
x
) ≥ 0.

Recall that the optimal frequency for the third processing unit to execute the overlapped

computation is f3 = max{fee, (1− 1−σ
σ

x)fmax}. Since f2 ≥ fee, that is, x ≥ κ ≥ σ, we have

(1 − 1−σ
σ

x)fmax ≤ (1 − 1−σ
σ

σ)fmax = σfmax ≤ fee. Thus, f3 = fee. However, the start time

for the third processing unit to execute the overlapped computation is determined by x and

σ. Therefore, the fault-free energy consumption for OTMR is:

EOTMR = 3PsD + 2(Pind + Ceff
m
b1)

L

x
+ (Pind + Ceff

m
ee)

L− (D − L
x
)

κ

=

(
3α + 2(β + xm)

σ

x
+ (β + κm)

σ − (1− σ
x
)

κ

)
Pmax

d D (5.55)

Differentiating the above equation with respect to x, we get:

∂EOTMR

∂x
=

2(m− 1)xm − 2β − (
β
κ

+ κm−1
)

x2
σ = 0 (5.56)

Solving the above equation, we conclude that EOTMR is minimized when

x =
m

√
2β +

(
β
κ

+ κm−1
)

2(m− 1)

def
= xβ,κ,m (5.57)

subject to κ ≤ x ≤ min{ σ
1−σ

, 1}. Thus, if xβ,κ,m ≤ κ, EOTMR is minimized when x = κ;

otherwise, EOTMR is minimized when x = min{1, σ
1−σ

, xβ,κ,m}.
Case 3: κ < σ ≤ 1

2−κ
(system load is high).

Because f2 = xfmax and f3 = max{fee, (1 − 1−σ
σ

x)fmax}, the frequency (1 − 1−σ
σ

x)fmax

is smaller than fee if x ≥ 1−κ
1−σ

σ. In this case, f3 = fee (same as in Figure 5.7b) and the

110

optimal x to minimize EOTMR can be solved as in Case 2. However, if x < 1−κ
1−σ

σ, we have

(1− 1−σ
σ

x)fmax > fee and the third processing unit will run at frequency f3 = (1− 1−σ
σ

x)fmax

(as in Figure 5.7c). The optimal x to minimize EOTMR can be found iteratively as will be

discussed next in Case 4. As the result, the optimal x is the one that results in smaller

EOTMR among the two sub cases.

Case 4: 1
2−κ

< σ ≤ 1 (the system load is very high).

From 1
2−κ

< σ, we have 1 < 1−κ
1−σ

σ. Note that x ≤ min{ σ
1−σ

, 1} as discussed in Case 2.

Therefore, x ≤ 1 < 1−κ
1−σ

σ, that is, κ < 1 − 1−σ
σ

x. Hence the third processing unit needs to

execute the overlapped computation at frequency f3 = yfmax = (1 − 1−σ
σ

x)fmax > fee as

shown in Figure 5.7c. Thus, the fault-free energy consumption for OTMR is:

EOTMR = 3PsD + 2(Pind + Ceff
m
2)

L

x
+ (Pind + Ceff

m
3)

L− (D − L
x
)

y

=

(
3α + 2(β + xm)

σ

x
+ (β + ym)

σ − (1− σ
x
)

y

)
Pmax

d D (5.58)

Setting ∂EOTMR

∂x
= 0, we conclude that EOTMR is minimized when x satisfies the following

equation subject to σ < x ≤ min{ σ
1−σ

, 1}:

2(m− 1)σxmy2 − (1− σ)(m− 1)x2ym + (m− 1)
1− σ

σ
(x− σ)xym

+β(1− σ)x2 − βσy − 2βσy2 − (1− σ)β

σ
(x− σ)x− σym+1 = 0 (5.59)

where y = 1 − 1−σ
σ

x. It is not clear if there is a close form for the solution x. For a given

m,β and σ, however, x can be found iteratively.

In summary, to minimize the energy consumption of OTMR, when system load is very

low (i.e., σ ≤ κ
1+κ

), the optimal frequency for the first two processing units is fee and the third

processing unit just sleeps initially. When system load is low (i.e., κ
1+κ

< σ ≤ κ), the optimal

frequency for the first two processing units is fee (if xβ,κ,m ≤ κ) or min{1, σ
1−σ

, xβ,κ,m}fmax,

while the third processing unit runs at fee, where xβ,κ,m =
m

√
aβ+(N−a)(β

κ
+κm−1)

a(m−1)
. When

system load is high (i.e., κ < σ ≤ 1) the optimal frequencies for the processing units need

to be solved iteratively.

111

5.2.2 Performability of OTMR

When all processing units run at their optimal frequencies to minimize energy consumption,

assuming that faults follow a Poisson distribution with an average fault arrival rate λ, we

can find the performability of OTMR as follows. The probability of having fault(s) on one

processing unit during a period of time t is:

ρ(t) = 1− e−λt (5.60)

With the optimal frequency f2, the first two processing units run for t2 = L
f2

time units

and the probability of having fault(s) during the execution on one processing unit is ρ2 =

ρ(t2) = 1 − e
−λ L

f2 . For the execution of the application on the third processing unit, it is

divided into two parts. Initially, the application is executed at frequency f3 for t3 time units

(the overlapped computation); then, it is executed at frequency f3r for t3r time units (the

reserved time). Therefore, the third processing unit will run for (t3 + t3r) time units and the

probability of having fault(s) on the third unit is ρ3 = ρ(t3 + t3r) = 1−e−λ(t3+t3r). Therefore,

the performability of a OTMR system is:

ROTMR = (1− ρ2)
2 + 2(1− ρ2)ρ2(1− ρ3) (5.61)

where the first term is the probability of having no fault in the first two processing units and

the second term is the probability of having fault(s) on any one of the first two processing

units but no fault on the third processing unit.

5.2.3 Comparison of OTMR and Traditional TMR

In a traditional TMR scheme, the slack is used to scale down all processing units that have

the same frequency. With system load as σ = L
D

, the optimal frequency to minimize energy

consumption for a TMR system and the corresponding running time are:

fTMR = max{fee, σfmax} (5.62)

tTMR = min

{
L

κ
,D

}
(5.63)

112

where fee = κfmax is the minimum energy efficient frequency. Therefore, the energy con-

sumption for a TMR system is:

ETMR = 3 [PsD + (Pind + Ceff
m
TMR)tTMR] (5.64)

Given a Poisson distribution of faults with average fault arrival rate λ, the probability

of having fault(s) on one processing unit would be:

ρTMR = ρ(tTMR) = 1− e−λtTMR (5.65)

Thus, the performability of a TMR system is:

RTMR = (1− ρTMR)3 + 3(1− ρTMR)2ρTMR (5.66)

where the first term is the probability of having no faults during execution and the second

term is the probability of having fault(s) only in one processing unit.

In what follows, we provide detailed comparison between OTMR and traditional TMR

on both energy consumption and performability. Recall that m = 3 and the maximum

frequency-dependent active power Pmax
d = 1. The sleep power Ps is the same for TMR and

OTMR and we assume that the sleep power Ps = 0.1. We vary the values of the frequency-

independent active power as Pind = βPmax
d = 0.1, 0.5, 1.0. Figure 5.8 shows the optimal

processing frequencies for the first two processing units in OTMR (OTMR-2), the third

processing unit of OTMR (OTMR-3) and all processing units in TMR (TMR), to minimize

energy consumption under different system loads.

Notice that, the minimum energy efficient frequency fee = m

√
β

m−1
fmax = κfmax is de-

termined by β and m. With m = 3, the larger β leads to larger fee. From Figure 5.8, we

can see that the optimal frequency for TMR is max{fee, σfmax}. For OTMR, the optimal

frequency for the first two processing units is the same as that for TMR when system load

is low (σ ≤ κ
1+κ

), and begins to increase sharply when system load becomes higher. By

running the first two processing units faster, OTMR reserves enough time and the third

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

no
rm

al
iz

ed
 f

re
qu

en
cy

system load: σ

TMR
OTMR-2
OTMR-3

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

no
rm

al
iz

ed
 f

re
qu

en
cy

system load: σ

TMR
OTMR-2
OTMR-3

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

no
rm

al
iz

ed
 f

re
qu

en
cy

system load: σ

TMR
OTMR-2
OTMR-3

a. β = 0.1 (fee = 0.3684) b. β = 0.5 (fee = 0.6299) c. β = 1.0 (fee = 0.7937)

Figure 5.8: Optimal frequencies for OTMR and TMR.

processing unit could sleep more at the beginning and thus save more energy. For exam-

ple, when β = 0.5 (Figure 5.8b), the optimal frequency for the first two processing units is

fee = κfmax = 0.6299 and the third processing unit sleeps when the load σ ≤ κ
1+κ

= 0.39;

when the load is slightly higher, the optimal frequency for the first two processing units

increases to σ
1−σ

and the third processing unit continues to sleep until the load reaches

σ = 0.4499, at which point σ
1−σ

= 0.8181 = xβ,κ,m = m

√
2β+β/κ+κm−1

2(m−1)
. After that the first two

processing units run at the optimal frequency xβ,κ,m = 0.8181 and the third processing unit

begins to run at fee = 0.6299. However, the running time for the third processing unit is not

the same as the first two processing units before load approaches 1
2−κ

= 0.7299, after which

the frequency of the third processing unit is higher than fee = 0.6299.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

en
er

gy
 c

on
su

m
pt

io
n

system load: σ

TMR
OTMR

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

en
er

gy
 c

on
su

m
pt

io
n

system load: σ

TMR
OTMR

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

en
er

gy
 c

on
su

m
pt

io
n

system load: σ

TMR
OTMR

a. β = 0.1 b. β = 0.5 c. β = 1.0

Figure 5.9: The energy consumption of OTMR and TMR.

Figure 5.9 show the minimum energy consumptions for OTMR and TMR with different

system loads. Even though OTMR’s first two processing units run faster than TMR, the

114

sleep of the third processing unit leads to OTMR consuming equal or less energy than TMR

at the expense of a slight more complex frequency management scheme.

We further examine the performability achieved by OTMR and TMR when their pro-

cessing frequencies are optimized for energy consumption. As in Section 5.1, we assume

that ρ(D) = 10−3, 10−4 and 10−5 (i.e., different fault arrival rates). Figure 5.10 shows the

probability of failure (i.e., 1−performability) for OTMR and TMR with different values of

ρ(D). As expected, when the load σ increases, the performabilities for all schemes decrease

since all schemes use more time to execute the application. The reason is that, with the inter

arrival time of faults following a Poisson distribution, the longer a processing unit runs, the

higher the probability it fails and the lower the performability is. OTMR achieves slightly

better performability than TMR since OTMR runs faster and uses less time to execute an

application.

 1e-08

 1e-07

 1e-06

 1e-05

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-
pe

rf
or

m
ab

ili
ty

system load: σ

TMR
OTMR

 1e-10

 1e-09

 1e-08

 1e-07

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-
pe

rf
or

m
ab

ili
ty

system load: σ

TMR
OTMR

 1e-12

 1e-11

 1e-10

 1e-09

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

1-
pe

rf
or

m
ab

ili
ty

system load: σ

TMR
OTMR

a. ρ(D) = 10−3 b. ρ(D) = 10−4 c. ρ(D) = 10−5

Figure 5.10: The probability of failure (1−performability) of OTMR and TMR; β = 0.5.

5.2.4 Optimistic N-Modular Redundancy (ONMR)

Extending the idea of OTMR, we consider in this section a general optimistic N-modular

redundancy (ONMR) scheme. For the a-out-of-N (a < N) modular redundancy model,

ONMR puts N − a processing units (defined as backup processing units) to sleep or scale

down their processing frequency as long as they have enough reserved time to finish the

execution before the application’s deadline D whenever needed. The first a processing units

are referred to as primary processing units.

115

As for OTMR, the optimal frequency setting for the processing units in ONNR depends

on system loads. If the system load is low, we can run the primary processing units at

the minimum energy efficient frequency fee while reserving enough slack for the backup

processing units such that they can run together at fee and meet the application’s deadline

when there are faults during the application’s execution on the primary processing units. In

this case, the analysis for the optimal frequency setting for OTMR in the previous sections

can be applied to ONMR directly, where the frequency for the first two processing units

in OTMR corresponds to the frequency for the primary processing units in ONMR and the

frequency for the third processing unit in OTMR corresponds to the frequency for the backup

processing units in ONMR.

Suppose that the optimal frequency for the primary processing units is fa, the optimal

frequencies for the backup processing units are fb1 and fb2, which correspond to the processing

frequencies for the overlapped computation and the computation during the reserved time,

respectively. Therefore, the primary processing units run for ta = L
fa

time units and, as in

OTMR, for the execution of the application on the backup processing units, it is divided

into two parts. Initially, the application is executed at frequency fb1 for tb1 time units (the

overlapped computation); then, it is executed at frequency fb2 for tb2 time units (the reserved

time). That is, the backup processing units will run for (tb1 + tb2) time units.

Thus, under the optimal frequency setting for ONMR, the probability of x processing

units (out of a primary processing units) having fault(s) is:

Pr(a, x, λ, ta) = Cx
aρ(λ, ta)

x(1− ρ(λ, ta))
a−x (5.67)

Similarly, the probability of y processing units (out of N−a backup processing units) having

fault(s) is:

Pr(N − a, y, λ, tb1 + tb2) = Cy
N−aρ(λ, tb1 + tb2)

y(1− ρ(λ, tb1 + tb2))
N−a−y (5.68)

The performability of an ONMR system is the summation of the probability of getting x

faulty processing units among the primary processing units while at least x processing units

among the N − a backup processing units get correct results. Notice that x should not be

116

larger than N − a, the number of backup processing units. That is, 0 ≤ x ≤ min{a, N − a}.
Therefore, the performability of an ONMR system is:

RONMR =

min{a,N−a}∑
x=0

[
Pr(a, x, λ, ta)

N−a−x∑
y=0

Pr(N − a, y, λ, tb1 + tb2)

]
(5.69)

Instead of running all the backup processing units together at the same frequency, we can

apply the same idea iteratively and put the backup processing units to work at different

time and different frequencies. However, the analysis of the optimal frequency setting for

the processing units in ONMR will become more complex and we will explore this point in

our future work.

5.3 ENERGY EFFICIENT REDUNDANCY CONFIGURATION

For single task applications, we have explored checkpointing techniques (Section 5.1) and

optimistic modular redundancy (Section 5.2) for energy efficient fault tolerance. In this

section, we consider a fully parallel application consisting of multiple independent tasks that

is executed on a system with M processing units. For simplicity, we consider deterministic

fault model and focus on exploring the most efficient system configuration to maximize the

number of faults that can be tolerated with limited energy budget or to minimize energy

consumption with a given number of faults to be tolerated.

Moreover, we assume that all the independent tasks in an application are the same

size of one time unit. For parallel applications that consist of tasks with different sizes,

checkpointing techniques may be deployed as described in Section 5.1.3 to divide tasks into

sections of the same size.

Suppose that there are w independent tasks in an application. Recall that replicated

execution is used to detect faults (see Section 3.3). Define a redundant group as the processing

units that handle the same set of tasks. We assume that the application is executed on p

(p ≤ bM
2
c) duplex groups. The application will need n =

⌈
w
p

⌉
time units. Define a section

as the execution of one task on one duplex group. If faults occur during the execution of one

117

task, the task becomes faulty and a recovery section of one time unit is needed to re-execute

the faulty task.

Suppose that b time units are needed to be reserved as backup slots, where each backup

slot has p parallel recovery sections. The schedule for executing all tasks within the appli-

cation’s deadline D is shown in Figure 5.11. In the figure, each white rectangle represents a

section that is used to execute one task on one duplex group and the shadowed rectangles

represent the recovery sections reserved for re-executing the faulty tasks. For ease of presen-

tation, the first n time units are referred to as primary time units and all white rectangles

are referred as primary executions. After scheduling the primary time units and backup

slots, the amount of slack left is D− (n+ b), which can be used to scale down the processing

frequency of the processing units and save energy.

Dslack

p

b: backup time unitsn: primary time units

Figure 5.11: For an application consisting of w (= n ·p) independent tasks that have WCET

as one time unit, it needs n time units when it is executed on p (≤ bM
2
c) duplex groups.

Suppose that b time units are reserved as backup slots and the slack time is D − n− b.

For a faulty task, its re-execution during a recovery section may also encounter faults. If

all the recovery sections that are used to re-execute a faulty task encounter faults, then we

say that there is a recovery failure and the faulty task needs to be re-executed again.

We first address the recovery schemes that work with parallel slack and propose an effi-

cient adaptive parallel recovery schemes that recovers tasks in parallel (Section 5.3.1). Then,

in Section 5.3.2, we discuss the combination of parallel recovery and modular redundancy.

The optimal redundant configuration of the processing units to minimize system energy

consumption with a fixed performability goal or to maximize system performability with

limited energy budget is explored in Section 5.3.3. Finally, the analysis results are presented

118

in Section 5.3.4.

5.3.1 Recovery Schemes with Parallel Slack

In this section, we calculate the worst case maximum number of faults that can be tolerated

during the execution of w tasks by p duplex groups with b backup slots. The addition of

one more fault could cause an additional faulty task that can not be recovered and thus lead

to a system failure. As a first step, we assume that the number of requests w is a multiple

of p (i.e., w = n · p, n ≥ 1). The case of w being not a multiple of p will be discussed

in Section 5.3.1.4. For different strategies of using backup slots, we consider three recovery

schemes: restricted serial recovery, parallel recovery and adaptive parallel recovery.

Consider the example shown in Figure 5.12 where 9 tasks are executed on three duplex

groups. The tasks are labeled T1 to T9 and there are two backup slots (i.e., six recovery

sections). Again, each box in the figure represents the execution of a task on a duplex

group. Suppose that tasks T3 and T8 become faulty on the top duplex during the third time

unit and the bottom duplex during the second time unit, respectively. Task T8 is recovered

immediately during the third time unit (R8) and the execution of task T9 is postponed.

Therefore, before using backup slots, there are two tasks to be executed/re-executed; the

original task T9 and the recovery task R3.

T 1 T 2

T 4 T 5

T 8T 7

T 3

R 8

T 6

R 3

T 9

T 1 T 2

T 4 T 5

T 8T 7

T 3

R 8

T 6

R 3 9

9T

T

R

T

3

9R 3

T 1 T 2

T 4 T 5

T 8T 7

T 3

R 8

T 6

R 3

3R

T 9

a. Restricted serial recovery b. Parallel recovery c. Adaptive parallel recovery

Figure 5.12: Different recovery schemes.

5.3.1.1 Restricted Serial Recovery The restricted serial recovery scheme limits the

re-execution of a faulty task to the same duplex. For example, Figure 5.12a shows that T3

is recovered by R3 on the top duplex while T8 is recovered by R8 on the bottom duplex.

It is easy to see that, with b backup slots, the restricted serial recovery scheme can only

recover from b fault in the worst case (either during primary or backup slots). For example,

119

as shown in Figure 5.13a, if there is a fault that causes task T3 to be faulty during primary

execution, we can only tolerate one more fault in the worst case when the fault causes T3’s

recovery R3 to be faulty. One additional fault could cause the second recovery RR3 of task

T3 to be faulty and lead to system failure since the recovery of the faulty tasks is restricted

to the same duplex group.

T 1 T 2

T 4 T 5

T 7

T 3

T 6

T 8

R 3 RR 3

T 9

T 1 T 2

T 4 T 5

T 8T 7

T 3

R 8

T 6

R 3 9

9T

T

R

T

3

93R

T 1 T 2

T 4 T 5

T 8T 7

T 3

R 8

T 6

R 3 9T

T

T

9

9

3R

T 9

a. Restricted serial recovery b. Parallel recovery c. Adaptive parallel recovery

Figure 5.13: The maximum number of faults that can be tolerated by different recovery

schemes in the worst case.

5.3.1.2 Parallel Recovery If faulty tasks can be re-processed on multiple duplex groups

in parallel, we can allocate multiple recovery sections to re-execute one faulty task concur-

rently. The parallel recovery scheme considers all recovery sections at the beginning of

backup slots and equally allocate them to the remaining tasks. For the above example, there

are 6 recovery section in total and each of the remaining tasks R3 and T9 gets three recovery

sections. The schedule is shown in Figure 5.12b.

Suppose that there are i faults during primary execution and i tasks remain to be

executed/re-executed at the beginning of the backup slots. With b · p recovery sections

in total, each remaining task will get at least b b·p
i
c recovery sections. That is, at most

b b·p
i
c − 1 additional faults can be tolerated. Therefore, when there are i faults during pri-

mary execution, the number of additional faults that can be tolerated during the backup

execution by parallel recovery is:

PR(b, p, i) =

⌊
b · p
i

⌋
− 1 (5.70)

Let PRb,p represents the maximum number of faults that can be tolerated by p duplex groups

with b backup slots in the worst case. Hence:

PRb,p = min
1≤i≤min{b·p,n·p}

{i + PR(b, p, i)} (5.71)

120

Notice that, w (= n · p) is the maximum number of faults that could occur during the n

primary time units. That is, i ≤ n ·p. Furthermore, we have i ≤ b ·p because it is not feasible

for b · p recovery sections to recover more than b · p faulty tasks. Algebraic manipulations

show that the value of PRb,p is obtained when:

i = min
{

n · p,
⌊√

b · p
⌋

+ u
}

. (5.72)

where u equals 0 or 1 depending on the floor operation in Equation 5.70. For the example

in Figure 5.12, we have PR2,3 = 4 when i = 2 (illustrated in Figure 5.13b) or i = 3. That

is, for the case shown in Figure 5.13b, two more faults can be tolerated in the worst case.

One additional fault could cause the third recovery section for R3 to be faulty and lead to

a system failure. Notice that, although T9 is processed successfully during the first backup

slot, the other two recovery sections in the second backup slot that are allocated to T9 can

not be used by R3 due to the fixed recovery schedule.

5.3.1.3 Adaptive Parallel Recovery Instead of considering all recovery sections to-

gether, we can use one backup slot at a time and adaptively allocate the recovery sections to

improve the performance and tolerate more faults. For example, as shown in Figure 5.12c,

we first use the three recovery sections in the first backup slot to execute/re-execute the re-

maining two tasks. Task recovery R3 is processed on two duplex groups and task T9 on one

duplex group. If the Duplex that executes task T9 happens to encounter a fault, the recovery

task R9 can be processed using all recovery sections in the second backup slot on all three

duplex groups, thus allowing two additional faults as shown in Figure 5.13c. Therefore, 5

faults can be tolerated in the worst case. Compared to the simple parallel recovery scheme,

one more fault could be tolerated.

In general, suppose that there are i tasks remaining to be executed/re-executed before

using backup slots. Since there are p recovery sections within one backup slot, we can use

the first backup slot to execute/re-execute up to p remaining tasks. If i > p, the remaining

tasks and any new faulty tasks during the first backup slot will be executed/re-executed on

the following b− 1 backup slots. If i ≤ p, tasks are executed/re-executed redundantly using

121

a round-ribbon scheduler. In other words, p − i
⌊

p
i

⌋
tasks are executed with a redundancy

of
⌊

p
i

⌋
+ 1 and the other tasks are executed with a redundancy of

⌊
p
i

⌋
.

Assuming that z tasks need to be executed/re-executed after the first backup slot, then

the same recovery algorithm that is used in the first backup slot to execute i tasks is used in

the second backup slot to process z tasks; and the process is repeated for all b backup slots.

With adaptive parallel recovery scheme, suppose that APRb,p is the worst case maximum

number of faults that can be tolerated using b backup slots on p duplex groups. We have:

APRb,p = min
1≤i≤min{b·p,n·p}

{i + APR(b, p, i)} (5.73)

where i is the number of faults during the n primary time units and APR(b, p, i) is the

maximum number of additional faults that can be tolerated during b backup slots in the

worst case distribution of the faults.

In Equation 5.73, APRb,p is calculated by considering different number of faults, i, oc-

curred in the n primary time units and estimating the corresponding number of faults allowed

in the worst case in backup slots, APR(b, p, i), and then taking the minimum over all values

of i. Notice that at most w = n · p faults can occur during the primary execution of w tasks

and at most b · p faults can be recovered with b backup slots. That is i ≤ min{n · p, b · p}.
APR(b, p, i) can be found iteratively as shown below:

APR(1, p, i) =
⌊p

i

⌋
− 1 (5.74)

APR(b, p, i) = min
x(i)≤J≤y(i)

{J + APR(b− 1, p, z(i, J))} (5.75)

When b = 1 (i.e., i ≤ p), Equation 5.74 says that the maximum number of additional faults

that can be tolerated in the worst case is
⌊

p
i

⌋ − 1. That is, one more fault could cause

a recovery failure that leads to a system failure since at least one task is recovered with

redundancy
⌊

p
i

⌋
.

For the case of b > 1, in Equation 5.75, J is the number of faults during the first

backup slot and z(i, J) is the number of tasks that still need to be executed during the

remaining b− 1 backup slots. We search all possible values of J and the minimum value of

J + APR(b − 1, p, z(i, J)) is the worst case maximum number of additional faults that can

be tolerated during b backup slots.

122

The bounds on J , x(i) and y(i), depend on i, the number of tasks that need to be

executed during b backup slots. When i > p, we have enough tasks to be executed and

the first backup slot is used to execute p tasks (each on one processing unit). When J

(0 ≤ J ≤ p) faults happen during the first backup slot and the total number of tasks that

remain to be executed during the remaining b− 1 backup slots is z(i, J) = i− p + J . Since

we should have z(i, J) ≤ (b− 1)p, then J should not be larger than b · p− i. That is, when

i > p, we have x(i) = 0, y(i) = min{p, b · p− i} and z(i, J) = i− p + J .

When i ≤ p, all tasks are processed during the first backup slot with the least redundancy

being
⌊

p
i

⌋
. To get the maximum number of faults that can be tolerated, at least one recovery

failure is needed during the first backup slot such that the remaining b− 1 backup slots can

be utilized. Thus, the lower bound for J , the number of faults during the first backup slot, is

x(i) =
⌊

p
i

⌋
. Therefore,

⌊
p
i

⌋
= x(i) ≤ J ≤ y(i) = p. When there are J faults during the first

backup slot, the maximum number of recovery failures in the worst case is z(i, J), which

is also the number of tasks that need to be executed during the remaining b − 1 backup

slots. From the adaptive parallel recovery scheme, it is not hard to get z(i, J) =
⌊

J
bp/ic

⌋

when
⌊

p
i

⌋ ≤ J ≤ (i − p + ibp
i
c)bp

i
c and z(i, J) = (i − p + ibp

i
c) +

⌊
J−(i−p+ib p

i
c)b p

i
c

bp/ic+1

⌋
when

(i− p + ibp
i
c)bp

i
c < J ≤ p.

For the example in Figure 5.12, applying Equations 5.74 and 5.75, we get APR(2, 3, 1) =

5. That is, if there is only one fault during the primary execution, it can tolerate up to 5

faults since all 6 recovery sections will be redundant. Similarly, APR(2, 3, 2) = 3 (illustrated

in Figure 5.13c), APR(2, 3, 3) = 2, APR(2, 3, 4) = 1, APR(2, 3, 5) = 0 and APR(2, 3, 6) = 0.

Thus, from Equation 5.73, APR2,3 = min6
i=1{APR(2, 3, i) + i} = 5.

5.3.1.4 Arbitrary Number of Tasks We have discussed the case where the number of

tasks, w, in an application is a multiple of p, the number of working duplex groups. Next,

we focus on extending the results to the case where w is not a multiple of p.

Without loss of generality, suppose that w = n · p + d, where n ≥ 1 and 0 < d < p.

Thus, the execution of all tasks will need (n + 1) primary time units. However, the last

primary time unit is not fully scheduled with tasks. If we consider the last primary time

unit as a backup slot, there will be at least d tasks that need to be executed after finishing

123

the execution in the first n time units.

Therefore, similar to Equations 5.70 and 5.73, the worst case maximum number of faults

that can be tolerated with b backup slots can be obtained as:

PRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + PR(b + 1, p, i)} (5.76)

APRb+1,p = min
d≤i≤min{w,(b+1)·p}

{i + APR(b + 1, p, i)} (5.77)

where i is the number of tasks to be executed/re-executed on b+1 backup slots. PR(b+1, p, i)

and APR(b + 1, p, i) are defined as in Equations 5.70 and 5.75, respectively. That is, we

pretend to have b + 1 backup slots and treat the last d tasks that are not scheduled within

the first n time units as faulty tasks. Therefore, the minimum number of faulty tasks to be

executed/re-executed is d and the maximum number of faulty tasks is min{w, (b + 1) · p},
which are shown as the range of i in Equations 5.76 and 5.77.

5.3.1.5 Maximum Number of Tolerated Faults To illustrate the performance of

different recovery schemes, we calculate the worst case maximum number of faults that can

be recovered by p duplex groups with b backup slots under different recovery schemes. Recall

that, for the restricted serial recovery scheme, the number of faults that can be tolerated in

the wost case is the number of available backup slots b and is independent of the number of

duplex groups that work in parallel.

Table 5.1: The worst case maximum number of faults that can be tolerated by p duplex

groups with b backup slots.

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 20

p = 4 parallel 3 4 6 7 8 8 9 10 11 11 12 12 13 14 14 16
adaptive 3 6 10 14 18 22 26 30 34 38 42 46 50 54 58 78

p = 8 parallel 4 7 8 10 11 12 14 15 16 16 17 18 19 20 20 24
adaptive 4 10 17 24 31 39 47 55 63 71 79 87 95 103 111 151

p = 12 parallel 6 8 11 12 14 16 17 18 19 20 22 23 24 24 25 30
adaptive 6 14 23 33 43 54 66 78 90 102 114 126 138 150 162 222

Assuming that the number of tasks w in an application is a multiple of p and is more than

the number of available recovery sections, Table 5.1 gives the worst case maximum number

124

of faults that can be tolerated by a given number of duplex groups with different numbers

of backup slots under parallel and adaptive parallel recovery schemes. From the table, we

can see that the number of faults that can be tolerated by the parallel recovery scheme may

be less than what can be tolerated by the restricted serial recovery scheme. For example,

with p = 4, the restricted serial recovery scheme can tolerated 15 and 20 faults when b = 15

and b = 20, respectively. However, the parallel recovery can only tolerate 14 and 16 faults

respectively. The reason comes from the unwise decision of fixing the allocation of all the

recovery slots, especially for larger number of backup slots. When the number of backup

slots equals 1, the two parallel recovery schemes have the same behavior and can tolerate

the same number of faults.

From Table 5.1, we can also see that the adaptive parallel recovery scheme is much

more efficient than the restricted serial recovery and the simple parallel recovery schemes,

especially for more duplex groups that work in parallel and larger number of backup slots.

Interestingly, for the adaptive parallel recovery scheme, the number of faults that can be

tolerated by p duplex groups increases linearly with the number of backup slots b when b is

greater than a certain value that depends on p. For example, with p = 8, after b is greater

than 5, the number of faults that can be tolerated using adaptive parallel recovery scheme

increases by 8 when b is incremented. However, for p = 12, when b > 7, the number of faults

increases by 12 when b is incremented.

5.3.2 Parallel Recovery and Modular Redundancy

Instead of being configured with Duplex, a system that consists of M processing units can

be configured with any level of modular redundancy (e.g., NMR, 2 ≤ N ≤ M), which may

consume different amounts of energy and result in different numbers of faults that can be

tolerated within an application’s deadline. In this section, we extend the recovery schemes

and combine them with modular redundancy.

Suppose that a section in Figure 5.11, 5.12 and 5.13 corresponds to the execution of a

task on a NMR group. As discussed in Section 5.2, for the general a-out-of-N NMR model,

at least a processing units in a NMR group need to get correct results to avoid a NMR group

125

failure. If there is a NMR group failure, we will get a faulty task. As in the last section, the

faulty task can be re-executed using recovery sections to increase system performability.

For the discussion in Section 5.3.1, if each rectangle in Figure 5.12 and 5.13 corresponds

to the execution of a task on a NMR group, the worst case maximum number of faults that

can be tolerated by p duplex groups with b backup slots will be equal to the worst case

maximum number of group failures that can be tolerated by p NMR groups with b backup

slots.

Notice that, when N -modular redundancy (2 ≤ N ≤ M) is used, the number of faulty

sections to be recovered may not be the same as the number of faults to be tolerated. For

the general a-out-of-N NMR model, the execution of one task succeeds if no less than a

processing units get correct results. That is, in the worst case, N−a+1 faults cause a NMR

group failure and thus lead to a faulty task. Therefore, to tolerate k faults, we only need to

be able to recover
⌊

k
N−a+1

⌋
faulty tasks. Inversely, if Q is the number of faulty sections that

can be recovered, the number of faults that can be tolerated will be Q · (N − a + 1) + N − a.

For example, if each rectangle in Figure 5.13c represents the execution of a task on a TMR

and the 2-out-of-3 TMR model is used, the maximum number of faults that can be tolerated

in the worst case will be APR(2, 3) · (N − a + 1) + N − a = 5(3− 2 + 1) + 3− 2 = 11.

5.3.3 Optimal Redundant Configurations

In what follows, we consider two optimization problems. First, for a given performability

goal, what is the optimal redundant configuration that minimizes system energy consump-

tion? Second, for a limited energy budget, what is the optimal redundant configuration

that maximizes system performability? A redundant configuration is defined as the number

processing units deployed, the level of modular redundancy used, the processing frequency

for working processing units and the number of backup time slots needed.

5.3.3.1 Minimize Energy with A Given Performability Goal For a system con-

sisting of M processing units, to tolerate k faults within an application’s deadline, we may

use different redundant configurations which in turn consume different amounts of energy.

126

When the system is configured with NMR, there are at most bM
N
c NMR groups available.

Because of energy consideration, as discussed in Section 4.7, it may be more energy efficient

to use fewer NMR groups than what is available and turn the unused processing units off.

For p NMR groups (1 ≤ p ≤ ⌊
M
N

⌋
; the remaining M −pN processing units are turned off

for energy savings), we have shown in Sections 5.3.1 and 5.3.2 how to compute the maximum

number of faults, k, that can be tolerated by p NMR groups with a given number of backup

time slots b in the worst case. In this section, we use the same analysis as discussed for the

inverse problem. That is, to compute the least number of backup slots, b, needed by p NMR

groups to tolerate k faults.

If the backup time needed is more than the slack time available (i.e., b > D −
⌈

w
p

⌉
), p

NMR groups are not feasible to tolerate k faults within the application’s deadline. Suppose

that b ≤ D−
⌈

w
p

⌉
, the amount of remaining slack time on each NMR group is D−

⌈
w
p

⌉
− b.

As in Section 5.1.1, expecting ke faults will occur (i.e., ke-pessimism) and assuming that be

(≤ b) is the minimum number of backup slots to tolerate ke faults, the slack time is used to

scale down the processing frequency of the execution during
⌈

w
p

⌉
primary time units as well

as the first be backup slots. The recoveries during the remaining backup slots are executed

at the maximum frequency fmax when more than ke faults occur. Thus, the ke-pessimism

expected energy consumption is:

f(ke) =

{ dw/pe+ be

D − (b− be)
, fee

}
(5.78)

E(ke) = p ·N ·

PsD + (Pind + Ceff

m(ke))

⌈
w
p

⌉
+ be

f(ke)

 (5.79)

where f(ke) is the frequency to execute tasks during the primary time units and the first be

backup slots. Recall that fee is the minimum energy efficient frequency (see Section 3.2.2).

At last, searching through all feasible redundant configurations, Algorithm 3 summarizes

the procedure to get the optimal redundant configuration to minimize the expected energy

consumption while tolerating k faults within the application’s deadline D.

First, the algorithm finds the least number of backup slots b for p NMR groups to tolerate

k faults using a given recovery scheme (lines 7 and 8). If b is larger than the available slack

D − n, p NMR groups are not feasible. Otherwise (from line 11 to 17), the least number

127

Algorithm 3 The optimal redundancy configuration algorithm for energy minimization
1: INPUT: w, D, M,α, β, κ, m, k, ke

2: Emin = M(α + β + 1)Pmax
d D;

3: Nopt = −1; popt = −1; bopt = −1;
4: for (N from 2 to M) do
5: for (p from

⌊
M
N

⌋
to 1) do

6: b = 0; be = 0;
7: while (PR(N, c, p, b) < k) do
8: b = b + 1; /*see Equations 5.76 and 5.77*/
9: end while

10: if (b ≤ D −
⌈

w
p

⌉
) then

11: while (PR(N, c, p, be) < ke) do
12: be = be + 1;
13: end while
14: Calculate E(ke) from Equation 5.79;
15: if (E(ke) < Emin) then
16: Emin = E(ke); Nopt = N ; popt = p; bopt = b;
17: end if
18: end if
19: end for
20: end for
21: return (Nopt, popt,bopt).

of backup slots be for p NMR groups to tolerate ke faults is obtained (line 11) and the

expected energy consumption is computed (line 14). Searching through all feasible numbers

of NMR groups (line 5) and all possible values of N (line 4), we get the optimal redundant

configuration to minimize the expected energy consumption (line 21). Notice that, finding

the least number of backup slots to tolerate k faults has a complexity of O(k) (lines 7 and

11). Thus, the complexity of this algorithm is O(M2k).

5.3.3.2 Maximize Performability with Fixed Energy Budget When the energy

budget is limited, we may not be able to power up all the M processing units in a system.

The larger the number of deployed processing units is, the lower the frequency at which

the processing units can run. For a given number of processing units that run at a certain

frequency, different levels of modular redundancy will result in different number of modular

redundancy groups and further lead to different maximum number of faults that can be

tolerated within an application’s deadline. In this section, we consider the optimal redundant

configuration that maximizes the number of faults that can be tolerated with fixed energy

128

budget.

Recall that, it is most energy efficient to scale down all the deployed processing units

uniformly within an application’s deadline (from the power model discussed in Section 3.2).

With limited energy budget Ebudget and an application’s deadline D, the maximum power

level that a system can consume is:

Pbudget =
Ebudget

D
(5.80)

When p NMR groups (p · N ≤ M) is deployed, the minimum power level is consumed

when every processing unit runs at the minimum energy efficient frequency fee. Thus, the

minimum power level is:

Pmin(p,N) = p ·N(Ps + Pind + Ceff
m
ee) = p ·N(α + β + κm)Pmax

d (5.81)

If Pmin(p,N) > Pbudget, p NMR groups are not feasible in terms of energy consumption.

Suppose that Pmin(p,N) < Pbudget, which means that the processing units in p NMR groups

could run at a higher frequency than fee. Assume that the frequency is fbudget(p,N). We

have:

fbudget(p,N) = m

√
Pbudget

p ·N · Pmax
d

− α− β (5.82)

The total time needed for executing all tasks in an application at frequency fbudget(p,N) is:

tprimary =

⌈
w
p

⌉

fbudget(p,N)
(5.83)

If tprimary > D, p NMR groups are not feasible to finish all tasks within the application’s

deadline under the energy budget. Suppose that tprimary ≤ D. We have D − tprimary units

of slack time and the number of backup time slots that can be scheduled at frequency

fbudget(p,N) is:

bbudget(p, N) = (D − tprimary)fbudget(p,N) = D · fbudget(p,N)−
⌈

w

p

⌉
(5.84)

Thus, from Equations 5.76 and 5.77 in Section 5.3.1, the maximum number of NMR group

failures that can be recovered within the application’s deadline is either PR(p, bbudget(p,N))

129

(for parallel recovery scheme) or APR(p, bbudget(p,N)) (for adaptive parallel recovery scheme).

The corresponding maximum number of faults that can be tolerated in the worst case is:

kparallel(p,N) = PR(p, bbudget(p,N))(N − a + 1) + (N − a) (5.85)

kadaptive(p,N) = APR(p, bbudget(p,N))(N − a + 1) + (N − a) (5.86)

where a a− out−N NMR model is assumed.

Algorithm 4 Algorithm to find the optimal redundant configuration for maximizing per-

formability
1: INPUT: n,D,M,α, βκ, m, Elimit

2: kmax = −1; Nopt = −1; popt = −1;
3: Get Plimit from Equation 5.80;
4: for (N from 2 to M) do
5: for (p from

⌊
M
N

⌋
to 1) do

6: Get flimit(p,N) from Equation 5.82;
7: Get tprimary from Equation 5.83;
8: if (flimit(p,N) ≥ fee AND tprimary ≤ D) then
9: Get blimit(p,N) from Equation 5.84;

10: Get k(p,N) from either Equation 5.76 or Equation 5.77;
11: if (k(p,N) > kmax) then
12: kmax = k(p,N); Nopt = N ;popt = p;
13: end if
14: end if
15: end for
16: end for
17: return (Nopt, popt).

For a given recovery scheme, searching all feasible combinations of p and N , Algorithm 4

summaries the procedure to get the optimal redundant configuration that maximizes the

maximum number of faults that can be tolerated within the application’s deadline in the

worst case. It is easy to find that the complexity of this algorithm is O(M2).

5.3.4 Analysis Results

In what follows, we provide some analysis results to show that different levels of modular

redundancy may be deployed in optimal redundant configurations that minimizes expected

energy consumption or maximizes system performability. Assuming that any two faults are

130

not the same, the 2-out-of-N NMR model is used, which actually favors higher levels of

modular redundancy.

In our analysis, we focus on varying the task size, number of tasks in an application (i.e.,

system load), the number of faults to be tolerated (k) and the recovery schemes to see how

they affect the optimal redundant configuration. The deadline of the application is assumed

to be 1 second and three different task sizes are considered: 1ms, 10ms and 50ms.

As before, we use m = 3 and Pmax
d = Ceff

m
max = 1 in our analysis. The values of

α and β are assumed to be 0.1 and 0.3 respectively. We consider a system that consists

of 12 processing units. To detect faults through comparison, the least level of modular

redundancy is Duplex and there are at most 6 duplex groups. Define system load as the

ratio of the WCET of an application, which is the summation of all tasks’ WCET, over its

deadline. With 6 duplex groups, the maximum system load that can be handled is 6. To get

enough slack for illustrating the variation of the optimal redundant configurations, a system

load of 2.6 is used. For different task sizes, different numbers of tasks in the application are

used to obtain system load as 2.6.

5.3.4.1 Optimal Configuration for Energy Minimization Table 5.2 shows the level

of modular redundancy employed (N) and the number of NMR groups used (p). for the

optimal redundant configuration that tolerates a given number of faults k using different

recovery schemes (the remaining processing units are turned off for energy efficiency).

Table 5.2: The optimal redundant configuration for different task sizes with fixed system

load 2.6 using different recovery schemes. Here, M = 12 and ke = k
2
.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

size,number N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p

1ms,2600 2, 4 2, 4 2, 4 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

serial 10ms,260 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

50ms,52 2, 4 2, 4 2,4 2, 6 2, 6 2, 6 2, 6 2, 6 2, 6 2, 6 3, 4 3, 4 3, 4 3, 4

1ms,2600 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

parallel 10ms,260 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

50ms,52 2, 4 2, 5 2, 5 2, 5 2, 5 2, 6 2, 6 2, 5 2, 5 2, 5 2, 5 2, 5 2, 6 3, 4

1ms,2600 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 4 2, 5 2, 5 2, 5 2, 5

adaptive 10ms,260 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

50ms,52 2, 4 2, 5 2, 5 2, 5 2, 5 2, 4 2, 4 2, 5 2, 5 2, 5 2, 6 2, 5 2, 5 2, 6

From the table, we can see that Duplex is the most energy efficient configuration in most

131

cases. Moreover, small tasks and adaptive parallel recovery favor lower levels of modular

redundancy while large tasks and restricted serial recovery favor higher levels of modular

redundancy, especially for larger number of faults to be tolerated (more than 11 in the

table). Due to the effects of sleep power, the number of duplex groups needed does not

increase monotonically when the number of faults increases, especially for the case of large

task size where more slack time is needed as temporal redundancy for the same number of

backup slots. Figure 5.14 shows the corresponding minimum expected energy consumption.

Here, k
2
-pessimism is used.

 5

 6

 7

 8

 9

 10

 11

 12

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

 5

 6

 7

 8

 9

 10

 11

 12

 13

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

 5.4

 5.6

 5.8

 6

 6.2

 6.4

 6.6

 6.8

 7

 2 4 6 8 10 12 14

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

k:number of faults

(50ms, 52)
(10ms, 260)
(1ms, 2600)

a. Restricted serial recovery b. Parallel recovery c. Adaptive parallel recovery

Figure 5.14: The minimum expected energy consumption for different recovery schemes.

The two numbers in the legends stand for task size and the number tasks in the ap-

plication, respectively. From the figure, we can see that, when the task size is 1ms, the

minimum expected energy consumption is almost the same for different numbers of faults

to be tolerated. The reason is that, to tolerate up to 15 faults, the amount of slack time

used by the backup slots is almost negligible and the amount of slack time used for energy

management is more or less the same when each backup slot is only 1ms. However, when the

task size is 50ms, the size of one backup slot is also 50ms and the minimum expected energy

consumption increases significantly when the number of faults to be tolerated increases. This

comes from the fact that each additional backup slot needs relatively more slack time and

less slack is left for energy management when the number of faults to be tolerated increases.

Notice that, for different number of faults to be tolerated, the same number of backup

slots may be needed, especially for parallel recovery schemes, which in turn leads to the

same minimum expected energy consumption. Furthermore, to tolerate the same number of

132

faults, the adaptive parallel recovery scheme is the most energy efficient for a give task size.

For different task sizes and the adaptive parallel recovery scheme, Figure 5.15 further

shows the minimum expected energy consumption to tolerate given numbers of faults under

different system loads. For a given task size, different numbers of tasks are used to obtain

different system loads.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

system load

k=16
k=8
k=4

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

system load

k=16
k=8
k=4

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8

ex
pe

ct
ed

 e
ne

rg
y

co
ns

um
pt

io
n

system load

k=16
k=8
k=4

a. 1ms b. 10ms b. 50ms

Figure 5.15: The minimum expected energy consumption under different system load for

different task sizes to tolerate given numbers of faults. The adaptive parallel recovery scheme

is used and ke = k
2
.

When system load increases, more tasks need to be processed within the application’s

deadline and the minimum expected energy consumption to tolerate a given number (e.g.,

4, 8 or 16) of faults increases. The same as before, when the task size is 1ms, the minimum

expected energy consumption is almost the same to tolerate 4, 8 or 16 faults within the ap-

plication’s deadline. The difference in the minimum expected energy consumption increases

for larger task sizes.

To see the effects of different levels of pessimism, Table 5.3 shows the optimal redundant

configuration that minimizes the expected energy consumption when tolerating given num-

bers of faults. For adaptive parallel recovery, Duplex is always the best and is not shown in

the table. From the table, we can see that optimistic analysis favors lower levels of modular

redundancy and pessimistic analysis favors higher levels of modular redundancy. This comes

from the fact that higher levels of modular redundancy needs less backup slots for tolerating

a given number of faults, which results in more slack for scaling down all the processing

and less energy when pessimistic analysis is used. For optimistic analysis, only the original

133

Table 5.3: The effects of pessimism levels on optimal redundant configuration to tolerate a

given number of faults. The task size used is 50ms and there are 26 tasks in the application.

k 1 2 3 4 5 6 7 8 9 10 11 12 13 14

recovery ke N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p N, p

0 2, 2 2, 2 2, 3 2, 3 2, 3 2, 3 2, 3 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

restricted k/2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 3 2, 3 2, 3 2, 5 3, 3 3, 3 3, 3 3, 3 3, 3

k 2,2 2, 2 2, 2 2, 3 2, 3 2, 3 3, 2 3, 3 3, 3 3, 3 3, 3 3, 3 3, 3 4, 3

0 2, 2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 3 2, 3 2, 5 2, 5 2, 5 2, 5 2, 5 2, 5

parallel k/2 2, 2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 4 2, 3 2, 4 2, 5 2, 5 2, 5 2, 5 3, 4

k 2, 2 2, 2 2, 2 2, 3 2, 3 2, 3 2, 4 2, 5 3, 3 3, 3 3, 3 3, 3 3, 3 4, 3

processing of tasks counts in the expected energy consumption, which favors lower levels of

modular redundancy that may have more backup slots.

5.3.4.2 Optimal Configuration for Performability Maximization Assume that

the maximum power Pmax corresponds to running all processing units with the maximum

processing frequency fmax. When the energy budget for each interval is limited, we can

only consume a fraction of Pmax when processing tasks within an application’s deadline. For

different energy budget (i.e., different fraction of Pmax), Figure 5.16 shows the worst case

maximum number of faults that can be tolerated when the optimal redundant configuration

is employed (see Algorithm 4). Again, different numbers of tasks are considered for different

task sizes to get a fixed system load of 2.6.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
or

st
 c

as
e

m
ax

im
um

 fa
ul

ts

Energy budget

Stepped
Overall

Restricted

 0

 50

 100

 150

 200

 250

 300

 350

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
or

st
 c

as
e

m
ax

im
um

 fa
ul

ts

Energy budget

Stepped
Overall

Restricted

 0

 10

 20

 30

 40

 50

 60

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
or

st
 c

as
e

m
ax

im
um

 fa
ul

ts

Energy budget

Stepped
Overall

Restricted

a. 1ms and 2600 tasks b. 10ms and 260 tasks c. 50ms and 52 tasks

Figure 5.16: The worst case maximum number of faults that can be tolerated with limited

energy budget for different sizes of tasks.

From the figure, we can see that the number of faults that can be tolerated increases

134

with increased energy budget. When the task size increases, there is less available backup

slots due to large backup slot size and fewer faults can be tolerated. When the number of

backup slots is very large (e.g., for the case of task size being 1ms with 2600 tasks), the

parallel recovery performs worse than the restricted serial recovery. The adaptive parallel

recovery performs the best and can tolerate much more faults than the other two recovery

schemes at the expense of more complex management of backup slots. For optimal redundant

configurations, similar results have been observed regarding the relationship of the levels of

modular redundancy, recovery schemes and task sizes.

5.4 INTERPLAY OF ENERGY MANAGEMENT AND

PERFORMABILITY

So far we have assumed that the fault rate is independent of energy management. However,

the rate of transient faults (i.e., soft errors caused, for example, by cosmic ray radiations) do

depend on system processing frequency and supply voltage as discussed below. This makes

the trade-off between system performability and energy consumption more interesting. For

simplicity, when considering the effects of voltage scaling on fault rates, we re-visit the

single task applications and checkpointing techniques for a duplex system as in Section 5.1.

However, similar analysis may be performed for applications consisting of multiple tasks and

systems with higher levels of modular redundancy.

Based on previously published data, we first discuss an exponential fault rate model for

different supply voltages (Section 5.4.1). Then, the trade-off between energy consumption

and system performability for single task applications running on a duplex system is explored

and the analysis results are presented (Section 5.4.2).

5.4.1 Voltage Scaling and Fault Rates

Transient faults caused by radiations in semiconductor circuits have been known and well

studied since the late 1970s [101]. When high-energy particles strike a sensitive region in

semiconductor devices, a dense track of electron-hole pairs is deposited. The charge may

135

be collected by pn-junctions via drift and diffusion mechanisms to form a current pulse and

cause a logic error [41], or to accumulate and exceed the minimum charge (i.e., the critical

charge) required to flip the value stored in a memory cell [32, 102].

Because it is relatively easy to detect errors in memory and large areas in microprocessor

chips is dedicated to caches and registers, numerous work has examined the effects of cosmic

ray radiations on memory circuits [32, 78, 102]. Although past research has shown that

logic circuits are less susceptible to cosmic ray radiations than memory [12, 52], a recent

model predicts that, with technology advancement and reduced feature size, the fault rate in

combinational logic circuits will be comparable to that of memory elements [81]. There are

various factors that affect the fault rate, such as cosmic ray flux (i.e., number of particles per

area), technology feature size, chip capacity, supply voltage and operating frequency. Thus,

modeling the fault rate is extremely hard [78, 81, 102].

In this work, we focus on the effects of frequency and voltage scaling on fault rate changes.

We assume that the radiation induced faults follow a Poisson distribution with an average

fault rate λ being determined by system supply voltage and frequency. For simplicity, no

variation of other factors is considered. That is, for a given level of supply voltage and

frequency (e.g., Vmax and fmax), the average fault rate (e.g., λ0) is fixed. Hence, for systems

running at frequency f (fmin ≤ f ≤ fmax) and corresponding voltage V (Vmin ≤ V ≤ Vmax),

the general model for the average fault rate can be expressed as:

λ(f, V) = λ0 · g(f, V) (5.87)

where λ0 is the average fault rate corresponding to Vmax and fmax. That is, g(fmax, Vmax) = 1.

In what follows, we consider an exponential model for the fault rate based on previ-

ously published data. However, the framework for exploring the trade-off between system

performability and energy consumption discussed in Section 5.4.2 is independent of specific

fault rate models.

136

5.4.1.1 Exponential Fault Rate Model For different technologies that have different

supply voltages, Seifert et al. examined the fault rate in the family of Alpha processors due

to α particle effects using both simulations and experiments [77]. Their results showed that

fault rate in these processors (including logic core and cache) increases exponentially when

supply voltage decreases. The same observation has been shown in [102] for memory. The

reason is that, with reduced supply voltage, the critical charge becomes smaller and in turn

results in exponentially increased fault rate [32, 81]. This partially comes from the fact that

there are many more lower energy particles than higher energy particles (e.g., one order of

magnitude less in energy corresponding to 100 times more in the number of particles [101])

and with smaller critical charge, lower energy particles could cause an error.

As discussed in Section 3.2, voltage scaling reduces supply voltage for lower frequencies

[66]. We use the conclusions in [32, 77, 81, 101, 102] to formulate the effects of voltage

scaling on fault rates as an exponential model. That is, at the lowest frequency fmin and

supply voltage Vmin, the average fault rate is assumed to be λmax = λ010d, where d (> 0) is

a constant. When a system runs at frequency f and corresponding voltage V = f ·Vmax = f ,

the average fault rate can be expressed as (recall that normalized frequency and voltage are

used):

λ(f, V) = λ(f) = λ010
d(1−f)
1−fmin (5.88)

Therefore, in this model, reducing the supply voltage for lower frequency results in expo-

nentially increased fault rates and larger d indicates that the fault rate is more sensitive to

voltage scaling. Notice that, this is a pessimistic model. Considering that the fault rate gen-

erally decreases for lower frequencies and taking the thermal effects of energy management

into consideration, it may be the case that fault rates do not increase exponentially with

reduced voltages. We will explore these points in our future work.

5.4.2 Trade-off between Energy and Performability

For an application with system load as σ = L
D

, where L is the WCET and D is the deadline,

from the discussion in Section 5.1, the frequency at which an application should execute

137

can be as low as σfmax (if σ > κ) for the maximum energy savings. However, when the

application is executed at frequency σfmax, there is no slack for recovery which leads to the

minimum system performability. If the application is executed at the maximum frequency

fmax, from Equation 5.12, the maximum number of recovery sections is bmax which leads to

the highest system performability but no energy saving.

There is a trade-off between energy consumption and system performability for executing

an application. The higher the processing frequency to execute an application is, the more

energy is consumed. However, more recovery sections can be scheduled and higher level of

performability is expected.

In this section, considering the effects of voltage scaling on fault rates, we explore the

trade-off between energy consumption and system performability by assuming that an ap-

plication is executed at different frequencies between σfmax and fmax. Suppose that an

application is executed at frequency f (σfmax < f < fmax) and corresponding supply volt-

age v on a duplex system. For simplicity, we assume that the application’s recovery sections

are executed at the same frequency as f (i.e., being pessimistic on the expected energy

consumption).

From Equation 5.27, the maximum number of recovery sections bmax(f) and the corre-

sponding optimal number of checkpoints nopt(f) can be obtained. Therefore, the length of

each section is:

tsection =
L/nopt(f)

f
(5.89)

Notice that, due to the integer limitation of bmax(f) and nopt(f), different values of f may

lead to the same number of recovery sections and the same number of optimal checkpoints

within an application.

Assume that the average fault arrival rate is λ(f, v) (see Equation 5.88), the probability

of having fault(s) during the execution of one section on a duplex system is:

ρsection = 1− e−λ(f,v)tsection (5.90)

From Equation 5.35, 5.36 and 5.38, the expected energy consumption for executing the

application at frequency f can obtained.

138

5.4.2.1 Some Numeric Results To illustrate the significance of fault rate changes on

performability under voltage scaling, we consider an application that has a deadline D = 100

and WCET L = 30. The checkpoint overhead is set as r = 4. With Pmax
d = 1, α = 0.1 and

β = 0.2, we have fee ≈ 0.46. We vary the values of d (0, 2, 4 and 6) and the results are shown

in Figure 5.17. For other values of L (e.g., 40 and 50), similar results have been obtained.

 1e-16

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 0.4 0.5 0.6 0.7 0.8 0.9 1

1-
pe

rf
or

m
ab

ili
ty

frequency

d=6
d=4
d=2
d=0

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0.4 0.5 0.6 0.7 0.8 0.9 1

en
er

gy
 c

on
su

m
pt

io
n

frequency

d=0
d=2
d=4
d=6

a. 1−performability b. Expected energy consumption

Figure 5.17: The performability and expected energy consumption for different values of d.

We assume that λ0 = 10−6. Recall that the fault rate under frequency f and corre-

sponding voltage v is given in Equation 5.88. For a given level of frequency and voltage, the

performability is obtained by employing the optimal number of checkpoints that maximizes

the number of recovery sections. From Figure 5.17a, we can see that the larger the value of

d is (i.e., the faster the fault rate increases when frequency and voltage decrease), the worse

the performability becomes for lower frequencies. The sharp step increases in the probabil-

ity of failure (i.e., decreases in the performability) correspond to one fewer recovery section

being scheduled because of reduced frequencies. In general, the number of recovery sections

determines the level of performability. The performability for fixed fault rate (d = 0) is

much better than that of variable fault rates (e.g., better than the case of d = 2 in at least

2 orders of magnitude).

Figure 5.17b shows the corresponding expected energy consumption for different values

of d. The expected energy consumption generally decreases with lower frequency/voltage,

139

which illustrates the trade-off between performability and expected energy consumption.

However, for the case of d = 6, the expected energy consumption increases with reduced

frequency when 0.58 ≤ f ≤ 0.68. The anomaly comes from the high probability of recovery

sections being executed with d = 6, which overshadows the energy saved during original

execution. The sharp decrease around f = 0.54 is due to the fact that no recovery can be

scheduled and that no checkpoint overhead is incurred.

The results show the implications of the applicability of voltage scaling when performa-

bility is a major concern. For example, if the required performability goal is 1 − 10−8, the

frequency (and the corresponding voltage) can be reduced to 0.56 when ignoring the effects

of voltage scaling on fault rates. However, when considering fault rate changes caused by

voltage scaling, we can only reduce the frequency (and the corresponding voltage) to 0.7

when d = 2 or 0.78 when d = 4. Thus, ignoring the effects of voltage scaling on fault rates

[89, 98] is too optimistic and may lead to unsatisfied performability when voltage scaling is

used for energy savings.

5.5 CHAPTER SUMMARY

In this section, we explore schemes for energy efficient fault tolerance and illustrate the

interplay of energy consumption and performability in parallel real-time systems.

Specifically, to efficiently use the slack time in a system, we consider checkpointing tech-

niques and explore the energy efficient roll-back recovery schemes. We propose the concept

of pessimism level for the number of expected faults and explore the optimal number of

checkpoints to minimize the expected energy consumption when multiple recovery sections

are considered. We further explore the optimal number of checkpoints to maximize system

performability with limited energy budget.

Next, extending the idea of OTMR [22], we consider an energy efficient optimistic mod-

ular redundancy scheme (ONMR). Expecting that faults are rare, ONMR turns off or scales

down some processing units in a modular redundant system provided that they can catch up

and finish the computation before an application’s deadline if other processing units do en-

counter faults. We analyze the optimal frequency setting for all processing units to minimize

140

the energy consumption in ONMR. The energy consumption and system performability are

compared between ONMR and traditional modular redundancy schemes.

For an application being executed on a system that consists of a certain number of

processing units, we address the optimal redundant configuration problems. The efficient

parallel recovery schemes are first proposed. Then, a framework is discussed for finding

the optimal redundant configuration to minimize expected energy consumption with a given

performability goal as well as to maximize system performability with limited energy budget.

Finally, we address the trade-off between energy consumption and system reliability while

considering the effects of energy management on fault rates. Based on previous published

data, an exponential fault rate model for voltage scaling is proposed. A general framework to

explore the trade-off between energy consumption and system performability is considered.

We illustrate that ignoring the effects of voltage scaling on fault rates may be too optimistic

and will lead to unsatisfied system performability when voltage scaling is used for energy

savings.

141

6.0 CONCLUSIONS

Timeliness is as crucial as correctness of the results produced in real-time systems. For mis-

sion critical applications, such as space-based control systems or life maintenance systems,

where a failure may cause catastrophic results, reliability is as important as timeliness. As

real-time systems are generally over-designed and the actual execution time of real-time ap-

plications has great variations, slack time is expected and can be used by energy management

schemes for energy savings as well as by roll-back recovery schemes for increasing system

reliability. This work focuses on frame-based real-time applications and explores schemes for

energy efficient fault tolerance in parallel systems.

We considered the traditional AND-model applications, where all tasks will be executed

during any execution of an application, as well as the AND/OR-model applications, where

only a subset of tasks will be executed during any specific execution of an application. As

part of this dissertation, energy management schemes that explores both static and dynamic

slack time in a system are first proposed. The proposed schemes demonstrate the feasibility

of energy management in parallel systems and are shown to save a significant amount of

energy through simulations. Then, when considering simultaneous management of energy

and reliability, the interplay between energy consumption and reliability is addressed and

a few energy efficient fault tolerance schemes are proposed to demonstrate the trade-off

between energy savings and reliability and to illustrate the importance of managing them

together.

Specifically, a static power management with parallelism (SPM-P) scheme is proposed.

This scheme takes a schedule’s parallelism into consideration while carrying out energy man-

agement. Compared to the scheme of uniform static power management (U-SPM), which is

optimal for uniprocessor systems and distributes static slack over a schedule evenly, SPM-P

142

can save 5% more energy when the energy consumed by no power management (NPM) is

used as a baseline.

In addition to the SPM-P static power management scheme, shifted/shared slack recla-

mation (S/SSR) schemes that share slack among processing units in a system are proposed

for managing the slack that is generated at run time. Speculation schemes are also addressed

for the same purpose with the intent to smooth the frequency changes and save more energy

by exploring the statistical timing information about applications. Simulation results show

that, compared to static power management, S/SSR can get up to 80% energy savings when

the average over worst case execution time of an application is around 50%. With the ca-

pability of automatically balancing actual workload among processing units by sharing the

dynamic slack, S/SSR performs better than the partition scheduling where each processing

unit reclaims slack for energy savings individually.

In order to account for the overhead of frequency/voltage changes, a slack reservation

scheme is proposed to efficiently incorporate the overhead into our energy management

algorithms. From the simulations, when the overhead of frequency/voltage changes is rela-

tively small compared to the size of tasks, the effects of such overhead on energy manage-

ment schemes for energy savings are not significant. Moreover, the effects of discrete fre-

quency/voltage levels and the minimum frequency are also addressed. When there are only

a few (e.g., 4 to 6) frequency/voltage levels in a system and/or there is a minimal frequency

limitation due to static/leakage power, S/SSR consumes energy comparable to the specu-

lation schemes. When shared memory contention is considered, our energy aware schedul-

ing algorithms become more conservative and may reject applications that are schedulable.

However, for applications that have a feasible schedule under our energy aware scheduling

algorithms, more energy savings are obtained.

Furthermore, we addressed the question of “what is the best we can do” for energy

savings and developed some theoretic bounds for energy management schemes. Clearly, the

amount of energy that could be saved depends on the total amount of slack, both static and

dynamic, in a system. For systems with 100% load, no slack exists and no energy saving can

be obtained by energy management schemes. When a system is not fully loaded, the lower

the system load is, the more slack there is in the system and the higher the energy savings

143

can be.

When combining energy and reliability management, checkpointing techniques are ex-

plored to efficiently use slack time as temporal redundancy and increase system reliability.

We propose the concept of pessimism level for the number of expected faults and explore

the optimal number of checkpoints to minimize expected energy consumption when multiple

recovery sections are considered. We further explore the optimal number of checkpoints to

maximize system reliability with limited energy budget. Without deploying checkpoints,

systems that explore roll-back recovery for increasing system reliability can only handle the

cases with system load less than 50%. When checkpoints are deployed, more checkpoints

imply smaller recovery sections but incur more overhead. Our analysis shows that the op-

timal number of checkpoints that minimizes system energy consumption increases when the

overhead of checkpoints decreases. Moreover, with limited energy budget, the optimal num-

ber of checkpoints that results in the maximum number of recovery sections generally leads

to the highest (or close to the highest) system reliability.

Extending the idea of an optimistic triple modular redundancy scheme (OTMR) [22],

an optimistic N-modular redundancy (ONMR) scheme is addressed, which reduces energy

consumption for traditional N-modular redundant systems without degrading system relia-

bility. Expecting that faults are rare, ONMR turns off or scales down some processing units

in a modular redundant system provided that they can catch up and finish the computation

before an application’s deadline if other processing units do encounter faults. We analyze

the optimal frequency setting for all processing units to minimize the energy consumption

and compare ONMR with the traditional NMR scheme on both energy consumption and

system reliability. The analysis results show that ONMR do save energy compared to NMR,

but at the expense of more complex frequency management. Moreover, by forcing some

processing units to run faster, ONMR uses less time to execute an application and reduces

the probability of having fault(s), thus achieves better system reliability than NMR.

For a fully application being executed on a system that consists of a given number of

processing units, we address the optimal redundant configuration problems. Considering the

parallelism of temporal redundancy in a system, an efficient adaptive parallel recovery scheme

is first proposed. A framework is presented for finding the optimal redundant configuration

144

to minimize expected energy consumption with a given reliability goal as well as to maximize

system reliability with limited energy budget. Through analysis, we found that lower levels

of modular redundancy perform better in most cases on both energy savings and system

reliability. The reasons partially come from the fact that, for a given number of processing

units, lower levels of modular redundancy have more available modular redundant groups,

which could explore an application’s parallelism better and result in more slack considering

fixed application’s deadline. Thus, more energy savings could be obtained and more faults

could be tolerated. Notice that, the optimal redundant configuration can be easily extended

to event-driven rate based system as described in [97].

Finally, we address the trade-off between energy consumption and system reliability while

considering the effects of energy management on fault rates. Based on previous published

data, an exponential fault rate model for voltage scaling is proposed. A general framework

to explore the trade-off between energy consumption and system reliability is considered.

We illustrate that ignoring the effects of voltage scaling on fault rates may be too optimistic

and will lead to unsatisfied system reliability when voltage scaling is used for energy savings.

In summary, the contributions of my doctoral work to the state of the art in energy

management are as follows:

• Considering all the power consuming components in a system, a simple system power

model is proposed and its effects on energy management are addressed [98]. Specifically,

a minimum energy efficient frequency is developed when the system power has a constant

component that can be efficiently removed by putting the system into a sleep state when

it is idle. Using the power model, some theoretic bounds on energy savings of power

management schemes are developed;

• Energy management schemes, both static and dynamic, are proposed for frame based

real-time applications that run on shared-memory parallel systems [93, 94, 95, 100];

• A slack reservation scheme is proposed to efficiently incorporate the overhead of frequency

changes into our energy management schemes. Moreover, discrete frequency/voltage

levels and shared memory access contention are also addressed [95, 100].

145

• The concept of a level of pessimism for the number of expected faults is proposed and

the optimal number of checkpoints for energy minimization or reliability maximization

are considered. An energy efficient optimistic modular redundancy scheme (ONMR) is

considered and the optimal frequency settings for all processing units are analyzed. Con-

sidering the parallel nature of the slack in parallel systems, an efficient adaptive parallel

recovery scheme is proposed and used to determine optimal redundant configurations;

• Finally, we incorporate the effects of frequency/voltage scaling on the fault rates when

studying the trade-off between reliability and energy management. Specifically, an ex-

ponential fault rate model for voltage scaling is proposed based on previous published

data [96] and is used to study the trade-off between energy consumption and system

reliability. To the best of our knowledge, this is the first work to consider the effects of

energy management on reliability.

146

7.0 FUTURE WORK

Energy efficient fault tolerance for parallel systems is a relatively new research area and the

problems we considered in this dissertation can be expanded in various directions. In what

follows, we elaborate on promising extensions to our work.

In this dissertation, we have focused on frame-based real-time applications where tasks

in an application share a common deadline and explored the fixed-priority list scheduling as

the underlying scheduling algorithm for energy management. For more complicated applica-

tions, where tasks arrive at different times and have individual deadlines, instead of using the

earliest ready longest task first (ER-LTF) heuristic for priority assignment, different heuris-

tics (e.g., earliest deadline first (EDF)) may be needed. When applying slack reclamation

for energy savings, the arrival time of tasks needs to be incorporated.

For better system utilization and for reducing the scheduling gaps caused by synchroniza-

tion between tasks, preemption scheduling is needed, especially for periodic tasks. Although

longer canonical schedules enable better slack sharing between processing units in parallel

systems, the cost of creating a canonical schedule with the length of LCM (least common

multiple) of tasks’ periods is generally prohibitive. Instead, relatively longer dynamic sched-

ules are preferred. Pfair is a well-known optimal scheduling algorithm for periodic tasks

running on parallel systems [8]. However the dynamic schedule it generates is only one unit

long since the algorithm needs to make scheduling decision for every time unit. We have

proposed one boundary-fairness (Bfair) scheduling algorithm that is also optimal for periodic

tasks on parallel systems and can generate relative longer dynamic schedules [99]. Combining

Bfair with shared slack reclamation, we will explore energy management for periodic tasks

on parallel systems.

We have ignored in this dissertation inter-processor communication because we focused

147

on shared-memory parallel systems. For distributed systems, where communication delays

may be significant, task migration within different processing units could be prohibitive.

Considering energy consumed by networking subsystems (e.g., wireless/sensor networks),

which may also exhibit the trade-off between delay and energy consumption, it becomes more

interesting but more complicated to explore slack time for energy savings. As shown in [60],

without considering energy consumption for communication, our static power management

with parallelism (SPM-P) can apply directly to distributed systems. Considering the trade-

off between the energy consumption and latency in communication (e.g., wireless networks),

we will further explore energy management for distributed systems.

When studying energy efficient fault tolerance using rollback recovery, we have focused on

using the static slack for temporal redundancy. However, as we mentioned earlier, excessive

amount of dynamic slack may exist in a system due to the run-time behavior of real-time

applications. To explore dynamic slack for fault tolerance, we will extend the concept of

reliability to that of an expected reliability that considers statistical run-time information

about applications.

When considering the interplay of energy and reliability, the thermal effects of energy

management on fault rates should be factored in addition to the effects of supply voltage on

fault rates. Moreover, according to different working environments, adaptive energy efficient

fault tolerance schemes can be explored. More resources (e.g., processing units or slack time)

should be used for fault tolerance to achieve fixed reliability goals when fault rate increases

due to, for example, busty cosmic ray for out-space applications.

148

BIBLIOGRAPHY

[1] N. AbouGhazaleh, D. Mossé, B. R. Childers, and R. Melhem. Toward the placement of
power management points in real time applications. In Proc. of Workshop on Compilers
and Operating Systems for Low Power, 2001.

[2] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proc. of the 12th

Euromicro Conference on Real-Time Systems, Jun. 2000.

[3] J. Anderson and A. Srinivasan. Pfair scheduling: Beyond periodic task systems. In
Proc. of the 7th International Workshop on Real-Time Computing Systems and Appli-
cations, Dec. 2000.

[4] J. Anderson and A. Srinivasan. Mixed pfair/erfair scheduling of asynchronous periodic
tasks. In Proc. of the 13th Euromicro Conference on Real-Time Systems, Jun 2001.

[5] A. Avizienis and J. P. Kelly. Fault-tolerance by design diversity. IEEE Computer,
17:67–80, 1984.

[6] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Dynamic and aggressive
scheduling techniques for power-aware real-time systems. In Proc. of The 22th IEEE
Real-Time Systems Symposium, Dec. 2001.

[7] H. Aydin, R. Melhem, D. Mossé, and P. Mejia-Alvarez. Optimal reward-based schedul-
ing for periodic real-time systems. IEEE Trans. on Computers, 50(2):111–130, 2001.

[8] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varel. Proportionate progress:
A notion of fairness in resource allocation. Algorithmica, 15(6):600–625, 1996.

[9] S. K. Baruah, J. Gehrke, and C. G. Plaxton. Fast scheduling of periodic tasks on
multiple resources. In Proc. of The International Parallel Processing Symposium, Apr.
1995.

[10] A. Bertossi and L. Mancini. Scheduling algorithms for fault-tolerance in hard real-time
systems. Real Time Systems Journal, 7, 1994.

[11] P. Bohrer, E. N. Elnozahy, T. Keller, M. Kistler, C. Lefurgy, C. McDowell, and R. Ra-
jamony. The case for power management in web servers, chapter 1. Power Aware
Computing. Plenum/Kluwer Publishers, 2002.

149

[12] S. Buchner, M. Baze, D. Brown, D. McMorrow, and J. Melinger. Comparison of
error rates in combinational and sequential logic. IEEE Trans. on Nuclear Science,
44(6):2209–2216, 1997.

[13] T. D. Burd and R. W. Brodersen. Energy efficient cmos microprocessor design. In
Proc. of The HICSS Conference, Jan. 1995.

[14] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen. A dynamic voltage
scaled microprocessor system. IEEE Journal of Solid-State Circuits, 35(11):1571–1580,
2000.

[15] D. Burger and T. M. Austin. The simplescalar tool set, version 2.0. Technical Report
1342, Department of Computer Science, University of Wisconsin-Madison, Jun. 1997.

[16] X. Castillo, S. McConnel, and D. Siewiorek. Derivation and caliberation of a transient
error reliability model. IEEE Trans. on computers, 31(7):658–671, 1982.

[17] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos. Data driven signal processing:
An approach for energy efficient computing. In Proc. Int’l Symposium on Low-Power
Electronic Devices, 1996.

[18] A. Chandrakasan, S. Sheng, and R. Brodersen. Low-power cmos digital design. IEEE
Journal of Solid-State Circuit, 27(4):473–484, 1992.

[19] Intel Corp. Mobile pentium iii processor-m datasheet. Order Number: 298340-002,
Oct 2001.

[20] M. L. Dertouzos and A. K. Mok. Multiprocessor on-line scheduling of hard-real-time
tasks. IEEE Trans. On Software Engineering, 15(12):1497–1505, 1989.

[21] E. (Mootaz) Elnozahy, M. Kistler, and R. Rajamony. Energy-efficient server clusters.
In Proc. of Power Aware Computing Systems, 2002.

[22] E. (Mootaz) Elnozahy, R. Melhem, and D. Mossé. Energy-efficient duplex and tmr
real-time systems. In Proc. of The 23rd IEEE Real-Time Systems Symposium, Dec.
2002.

[23] R. Ernst and W. Ye. Embedded program timing analysis based on path clustering and
architecture classification. In Proc. of The International Conference on Computer-
Aided Design, pages 598–604, Nov. 1997.

[24] X. Fan, C. Ellis, and A. Lebeck. The synergy between power-aware memory systems
and processor voltage. In Proc. of the Workshop on Power-Aware Computing Systems,
2003.

[25] S. Ghosh, R. Melhem, and D. Mossé. Fault-tolerance through scheduling of aperi-
odic tasks in hard real-time multiprocessor systems. IEEE Trans. on Parallel and
Distributed Systems, 8(3):272–284, 1997.

150

[26] D. W. Gillies and J. W.-S. Liu. Scheduling tasks with and/or precedence constraints.
SIAM J. Compu., 24(4):797–810, 1995.

[27] K. L. Gong and L. A. Rowe. Parallel mpeg-1 video encoding. In Proc. of 1994 Picture
Coding Symposium, Sacramento, CA, Sep. 1994.

[28] F. Gruian. System-level design methods for low-energy architectures containing vari-
able voltage processors. In Proc. of The Workshop on Power-Aware Computing Sys-
tems, Nov. 2000.

[29] F. Gruian. Hard real-time scheduling for low-energy using stochastic data and dvs
processors. In Proc. of the 2001 International Symposium on Low Power Electronics
and Design, Aug. 2001.

[30] F. Gruian and K. Kuchcinski. Low-energy directed architecture selection and task
scheduling. In Proc. of 25th IEEE Euromicro Conference, pages 296–302, Sep 1999.

[31] F. Gruian and K. Kuchcinski. Lenes: Task scheduling for low-energy systems using
variable supply voltage processors. In Proc. of Asia and South Pacific Design Automa-
tion Conference (ASP-DAC), Jan. 2001.

[32] P. Hazucha and C. Svensson. Impact of cmos technology scaling on the atmospheric
neutron soft error rate. IEEE Trans. on Nuclear Science, 47(6):2586–2594, 2000.

[33] P. Holman and J. Anderson. Guaranteeing pfair supertasks by reweighting. In Proc.
of the 22nd IEEE Real-Time Systems Symposium, Dec. 2001.

[34] http://developer.intel.com/design/intelxscale/benchmarks.htm, 2002.

[35] http://www.curvefit.com/, 2004.

[36] http://www.darpa.mil/ipto/programs/pacc/, 2004.

[37] http://www.transmeta.com, 2001.

[38] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. In Proc. of The 14th

Symposium on Discrete Algorithms, 2003.

[39] T. Ishihara and H. Yauura. Voltage scheduling problem for dynamically variable voltage
processors. In Proc. of The 1998 International Symposium on Low Power Electronics
and Design, Aug. 1998.

[40] B. W. Johnson. Design and Analysis of Fault Tolerant Digital Systems. Addison
Wesley, 1989.

[41] T. Juhnke and H. Klar. Calculation of the soft error rate of submicron cmos logic
circuits. IEEE Journal of Solid-State Circuits, 30(7):830–834, 1995.

151

[42] K. M. Kavi, H. Y. Youn, and B. Shirazi. A performability model for soft real-time
systems. In Proc. of the Hawaii International Conference on System Sciences (HICSS),
Jan. 1994.

[43] A. Khemka and R. K. Shyamasundar. An optimal multiprocessor real-time scheduling
algorithm. Journal of Parallel and Distributed Computing, 43:37–45, 1997.

[44] D. Kirovski and M. Potkonjak. System-level synthesis of low-power hard real-time
systems. In Proc. of The Design Automation Conference, Jun. 1997.

[45] R. Koo and S. Toueg. Checkpointing and rollback recovery for distributed systems.
IEEE Trans. on Software Engineering, 13(1):23–31, 1987.

[46] C. M. Krishma and A. D. Singh. Reliability of checkpointed real-time systems using
time redundancy. IEEE Trans. on Reliability, 42(3):427–435, 1993.

[47] P. Kumar and M. Srivastava. Predictive strategies for low-power rtos scheduling. In
Proc. of the 2000 IEEE International Conference on Computer Design: VLSI in Com-
puters and Processors, Sep. 2000.

[48] A. R. Lebeck, X. Fan, H. Zeng, and C. S. Ellis. Power aware page allocation. In Proc. of
the 9th International Conference on Architectural Support for Programming Languages
and Operating Systems, Nov. 2000.

[49] H. Lee, H. Shin, and S. Min. Worst case timing requirement of real-time tasks with
time redundancy. In Proc. of Real-Time Computing Systems and Applications, 1999.

[50] F. Liberato, S. Lauzac, R. Melhem, and D. Mossé. Fault-tolerant real-time global
scheduling on multiprocessors. In Proc. of The 10th IEEE Euromicro Workshop in
Real-Time Systems, Jun. 1999.

[51] F. Liberato, R. Melhem, and D. Mossé. Tolerance to multiple transient faults for
aperiodic tasks in hard real-time systems. IEEE Trans. on Computers, 49(9):906–914,
2000.

[52] P. Liden, P. Dahlgren, R. Johansson, and J. Karlsson. On latching probability of
particle induced transients in combinational networks. In Proc. of the 24th International
Symposium on Fault-Tolerant Computing, 1994.

[53] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogramming in a
hard real-time environment. J. ACM, 20(1):46–61, 1973.

[54] J. Luo and N. K. Jha. Power-conscious joint scheduling of periodic task graphs and
aperiodic tasks in distributed real-time embedded systems. In Proc. of International
Conference on Computer Aided Design, Nov. 2000.

152

[55] J. Luo and N. K. Jha. Static and dynamic variable voltage scheduling algorithms for
real-time heterogeneous distributed embedded systems. In Proc. of 15th International
Conference on VLSI Design, Jan. 2002.

[56] A. P. Chandrakasan M. Srivastava and R. W. Brodersen. Predictive system shut-
down and other architecture techniques for energy efficient programmable computation.
IEEE Trans. on VLSI Systems, 4(1):42–55, 1996.

[57] G. Manimaran and C. Siva Ram Murthy. A fault-tolerance dynamic scheduling algo-
rithm for multiprocessor real-time systems and its analysis. IEEE Trans. on Parallel
and Distributed Systems, 9(11):1137–1152, 1998.

[58] R. Melhem, N. AbouGhazaleh, H. Aydin, and Daniel Mossé. Power Management
Points in Power-Aware Real-Time Systems, chapter 7, pages 127–152. Power Aware
Computing. Plenum/Kluwer Publishers, 2002.

[59] R. Melhem, D. Mossé, and E. (Mootaz) Elnozahy. The interplay of power management
and fault recovery in real-time systems. IEEE Trans. on Computers, 53(2):217–231,
2004.

[60] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, and R. Melhem. Energy aware scheduling
for distributed real-time systems. In Proc. of International Parallel and Distributed
Processing Symposium (IPDPS), Nice, France, Apr. 2003.

[61] M. Moir and S. Ramamurthy. Pfair scheduling of fixed and migrating tasks on multiple
resources. In Proc. of the 20th IEEE Real-Time Systems Symposium, Dec. 1999.

[62] D. Mossé, H. Aydin, B. R. Childers, and R. Melhem. Compiler-assisted dynamic power-
aware scheduling for real-time applications. In Proc. of Workshop on Compiler and
OS for Low Power, Oct. 2000.

[63] Y. Oh and S. H. Son. Scheduling hard real-time tasks with 1-processor-fault-tolerance.
Technical Report CS-93-27, Computer Science Department, University of Virginia,
Charlottesville, VA 22903 USA, 1993.

[64] A. Parekh. A Generalized Processor Sharing Approach to Flow Control in Integrated
Services Networks. PhD thesis, Department of Electrical Engineering and Computer
Science, MIT, 1992.

[65] D-T. Peng. Performance bounds in list scheduling of redundant tasks on multi-
processors. In Proc. of The 22th Annual International Symposium on Fault-Tolerant
Computing, Jul. 1992.

[66] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic
voltage scaling algorithms. In Proc. of Int’l Symposium on Low Power Electronics and
Design, Aug. 1998.

153

[67] T. Pering, T. Burd, and R. Brodersen. Voltage scaling in the lpram microprocessor
system. In Proc. of Int’l Symposium on Low Power Electronics and Design, 2000.

[68] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded
operating systems. In Proc. of 18th ACM Symposium on Operating Systems Principles
(SOSP’01), Oct. 2001.

[69] D. K. Pradhan. Fault Tolerance Computing: Theory and Techniques. Prentice Hall,
1986.

[70] D. K. Pradhan and N. H. Vaidya. Roll-forward checkpointing scheme: A novel fault-
tolerant architecture. IEEE Trans. on Computers, 43(10):1163–1174, 1994.

[71] F. Quaglia and A. Santoro. Nonblocking checkpointing for optimistic parallel simu-
lation: Description and an implementation. IEEE Trans. on Parallel and Distributed
Systems, 14(6):593–610, 2003.

[72] V. Raghunathan, P. Spanos, and M. B. Srivastava. Adaptive power-fidelity in energy
aware wireless embedded systems. In Proc. of The 21th IEEE Real-Time Systems
Symposium, Orlando, FL, Nov. 2000.

[73] Rambus. Rdram. http://www.rambus.com/, 1999.

[74] B. Randell. System structure for software fault tolerance. IEEE Trans. on Software
Engineering, 1(2):220–232, 1975.

[75] J. A. Ratches, C. P. Walters, R. G. Buser, and B. D. Guenther. Aided and automatic
target recognition based upon sensory inputs from image forming systems. IEEE Tran.
on Pattern Analysis and Machine Intelligence, 19(9):1004–1019, 1997.

[76] S. Saewong and R. Rajkumar. Practical voltage scaling for fixed-priority rt-systems.
In Proc. of the 9th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, 2003.

[77] N. Seifert, D. Moyer, N. Leland, and R. Hokinson. Historical trend in alpha-particle
induced soft error rates of the alphaTM microprocessor. In Proc. of the 39th Annual
International Reliability Physics Symposium, 2001.

[78] Tezzaron Semiconductor. Soft errors in electronic memory: A white paper. available
at http://www.tachyonsemi.com/about/papers/., 2004.

[79] K. Seth, A. Anantaraman, F. Mueller, and E. Rotenberg. Fast: Frequency-aware static
timing analysis. In Proc. of the 24th IEEE Real-Time System Symposium, 2003.

[80] D. Shin, J. Kim, and S. Lee. Intra-task voltage scheduling for low-energy hard real-time
applications. IEEE Design & Test of Computers, 18(2):20–30, 2001.

154

[81] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi. Modeling the
effect of technology trends on the soft error rate of combinational logic. In Proc. of the
International Conference on Dependable Systems and Networks, 2002.

[82] A. Sinha and A. P. Chandrakasan. Jouletrack - a web based tool for software energy
profiling. In Proc. of Design Automation Conference, Jun 2001.

[83] S. Thompson, P. Packan, and M. Bohr. Mos scaling: Transistor chanllenges for the
21st century. Intel Technology Journal, Q3, 1998.

[84] O. S. Unsal, I. Koren, and C. M. Krishna. Towards energy-aware software-based fault
tolerance in real-time systems. In Proc. of The International Symposium on Low Power
Electronics Design (ISLPED), Aug. 2002.

[85] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced cpu en-
ergy. In Proc. of The First USENIX Symposium on Operating Systems Design and
Implementation, Nov. 1994.

[86] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Kerkest, and R. Lauwereins.
Energy-aware runtime scheduling for embedded-multiprocessor socs. IEEE Design &
Test of Computers, 18(5):46–58, 2001.

[87] T. Yang and A. Gerasoulis. List scheduling with and without communication delays.
Parallel Computing, 19:1321–1344, 1993.

[88] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy. In
Proc. of The 36th Annual Symposium on Foundations of Computer Science, Oct. 1995.

[89] Y. Zhang and K. Chakrabarty. Energy-aware adaptive checkpointing in embedded
real-time systems. In Proc. of IEEE/ACM Design, Automation and Test in Europe
Conference(DATE), 2003.

[90] Y. Zhang and K. Chakrabarty. Task feasibility analysis and dynamic voltage scaling in
fault-tolerant real-time embedded systems. In Proc. of IEEE/ACM Design, Automa-
tion and Test in Europe Conference(DATE), 2004.

[91] Y. Zhang, K. Chakrabarty, and V. Swaminathan. Energy-aware fault tolerance in
fixed-priority real-time embedded systems. In Proc. of International Conference on
Computer Aided Design, Nov. 2003.

[92] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy
minimization. In Proc. of The 39th Design Automation Conference, Jun. 2002.

[93] D. Zhu, N. AbouGhazaleh, D. Mossé, and R. Melhem. Power aware scheduling for
and/or graphs in multi-processor real-time systems. In Proc. of The Int’l Conference
on Parallel Processing (ICPP), pages 593–601, Aug. 2002.

155

[94] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multi-processor real-time systems. In Proc. of
The 22th IEEE Real-Time Systems Symposium (RTSS), Dec. 2001.

[95] D. Zhu, R. Melhem, and B. R. Childers. Scheduling with dynamic voltage/speed
adjustment using slack reclamation in multi-processor real-time systems. IEEE Trans.
on Parallel and Distributed Systems, 14(7):686–700, 2003.

[96] D. Zhu, R. Melhem, and D. Mossé. The effects of energy management on reliability
in real-time embedded systems. In Proc. of the International Conference on Computer
Aidded Design (ICCAD), Nov. 2004.

[97] D. Zhu, R. Melhem, and D. Mossé. Energy efficient redundant configuration for qos in
reliable parallel servers. In submitted to EDCC 2004, 2004.

[98] D. Zhu, R. Melhem, D. Mossé, and E.(Mootaz) Elnozahy. Analysis of an energy efficient
optimistic tmr scheme. In Proc. of the 10th International Conference on Parallel and
Distributed Systems (ICPADS), Jul. 2004.

[99] D. Zhu, D. Mossé, and R. Melhem. Periodic multiple resource scheduling problem: how
much fairness is necessary. In Proc. of The 24th IEEE Real-Time Systems Symposium
(RTSS), Dec. 2003.

[100] D. Zhu, D. Mossé, and R. Melhem. Power aware scheduling for and/or graphs in
real-time systems. IEEE Trans. on Parallel and Distributed Systems, 15(9):849–864,
2004.

[101] J. F. Ziegler. Terrestrial cosmic ray intensities. IBM Journal of Research and Devel-
opment, 42(1):117–139, 1998.

[102] J. F. Ziegler. Trends in electronic reliability: Effects of terrestrial cosmic rays. available
at http://www.srim.org/SER/SERTrends.htm, 2004.

156

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	3.1. Power consumption at different frequencies for Intel XScale processors.
	4.1. Offline variables of an AND/OR-model application
	4.2. Frequency/voltage settings for Transmeta 5400
	4.3. Frequency/voltage setting for Intel XScale processors
	4.4. Energy savings vs. U-SPM using trace data
	5.1. The maximum number of faults that can be tolerated.
	5.2. The optimal redundant configurations for different recovery schemes
	5.3. The effects of pessimism levels on optimal redundant configuration

	LIST OF FIGURES
	3.1. AND-model application examples.
	3.2. AND/OR structures
	3.3. Loop expansion in AND/OR-model applications.
	3.4. An example of AND/OR-model applications.
	3.5. The illustration of a simple power model
	3.6. Power model validation using power and frequency numbers of Intel XScale
	3.7. Summary of solutions and research overview.
	4.1. Canonical schedules of an AND-Model application
	4.2. Canonical schedule of an AND/OR-Model application
	4.3. The canonical schedule and one running of an independent task set
	4.4. The canonical schedule and one running of one dependent task set
	4.5. Fixed-priority list scheduling for dependent tasks
	4.6. A simple example and its canonical schedule
	4.7. Two simple static energy management schemes
	4.8. Parallelism in the schedule for a simple application
	4.9. The simple greedy scheme
	4.10. SSR for independent tasks
	4.11. SSR for dependent tasks
	4.12. The shifted canonical schedules for an AND/OR application
	4.13. An actual execution of the AND/OR application
	4.14. Slack reservation for incorporating frequency adjustment overhead.
	4.15. Slack is not enough for an additional frequency change.
	4.16. Slack sharing with frequency change overhead.
	4.17. Dependence graph for a synthetic AND/OR-model application.
	4.18. ATR and its execution time
	4.19. MPGE-1 and its execution time
	4.20. The effects of frequency change overhead on energy savings.
	4.21. The effects of discrete frequencies on energy savings.
	4.22. The normalized energy vs. LDR for different SPMs.
	4.23. Energy savings vs. execution time variations
	4.24. Effects of the minimum energy efficient frequency
	4.25. The theoretical bounds on energy savings.
	5.1. The retry scheme
	5.2. Checkpoints and recovery sections
	5.3. Performability and number of recovery sections.
	5.4. Optimal number of checkpoints for Duplex; =0.1.
	5.5. Energy efficient regions for Duplex and TMR
	5.6. The probability of failure (1-performability) for Duplex and TMR.
	5.7. Optimal frequency settings for OTMR
	5.8. Optimal frequencies for OTMR and TMR
	5.9. The energy consumption of OTMR and TMR
	5.10. The performability of OTMR and TMR
	5.11. Slack and temporal redundancy in parallel systems
	5.12. Different recovery schemes.
	5.13. The faults tolerated by different recovery schemes
	5.14. The minimum expected energy consumption for different recovery schemes.
	5.15. The minimum expected energy consumption under different system load
	5.16. The faults tolerated with limited energy budget
	5.17. The performability and expected energy consumption for different values of d.

	ACKNOWLEDGEMENTS
	1.0 INTRODUCTION
	2.0 BACKGROUND AND RELATED WORK
	2.1 REAL-TIME SYSTEMS
	2.2 ENERGY AWARE COMPUTING
	2.3 FAULT TOLERANCE
	2.4 ENERGY EFFICIENT FAULT TOLERANCE

	3.0 SYSTEM MODELS AND PROBLEM DESCRIPTION
	3.1 APPLICATION AND SYSTEM MODELS
	3.1.1 AND Application Model
	3.1.2 AND/OR Application Model
	3.1.3 System Models

	3.2 POWER MODEL AND ITS EFFECTS ON ENERGY MANAGEMENT
	3.2.1 Dynamic Power for CMOS Based Processors
	3.2.2 A Simple Power Model
	3.2.3 Effects of Power Model on Voltage Scaling

	3.3 FAULT AND RECOVERY MODELS
	3.3.1 Fault Models
	3.3.2 Rollback Recovery and Checkpoints

	3.4 PROBLEM DESCRIPTION AND RESEARCH OVERVIEW

	4.0 PARALLEL ENERGY AWARE SCHEDULING
	4.1 SCHEDULING IN PARALLEL REAL-TIME SYSTEMS
	4.1.1 Earliest Ready Longest Task First Heuristic (ER-LTF)
	4.1.2 Canonical Schedules
	4.1.3 Importance of Execution Order
	4.1.3.1 Independent Tasks
	4.1.3.2 Anomaly of List Scheduling for Dependent Tasks
	4.1.3.3 List Scheduling with Fixed Priority

	4.2 STATIC POWER MANAGEMENT (SPM)
	4.2.1 Greedy Static Power Management (G-SPM)
	4.2.2 Uniform Static Power Management (U-SPM)
	4.2.3 Static Power Management with Parallelism (SPM-P)
	4.2.3.1 SPM-P for Dual-Processor Systems
	4.2.3.2 SPM-P for M-Processor Systems

	4.2.4 SPM for AND/OR Applications

	4.3 DYNAMIC POWER MANAGEMENT (DPM)
	4.3.1 Infeasibility of Simple Greedy Slack Reclamation (GSR)
	4.3.2 Shared Slack Reclamation (SSR) for AND-model Applications
	4.3.2.1 Two Examples
	4.3.2.2 Offline Phase of SSR Scheme
	4.3.2.3 On-line Phase of SSR Scheme
	4.3.2.4 Analysis of SSR Algorithm

	4.3.3 Shifted/Shared Slack Reclamation (S/SSR)
	4.3.3.1 Offline Phase of S/SSR Scheme
	4.3.3.2 On-line Phase of S/SSR Scheme
	4.3.3.3 Analysis of S/SSR Algorithm

	4.4 SPECULATIVE SCHEMES
	4.4.1 A Static Speculation Scheme
	4.4.2 An Adaptive Speculative Scheme

	4.5 PRACTICAL CONSIDERATIONS IN ENERGY MANAGEMENT
	4.5.1 Overhead of Frequency Adjustment
	4.5.1.1 Time Overhead and Slack Reservation
	4.5.1.2 Energy Overhead

	4.5.2 Discrete Frequency Levels
	4.5.3 Shared Memory Access Contention

	4.6 EVALUATIONS OF ENERGY MANAGEMENT SCHEMES
	4.6.1 Simulation Setup
	4.6.2 Effects of Frequency Change Overhead
	4.6.3 Effects of Discrete Frequency Levels
	4.6.4 Energy Savings of SPM-P
	4.6.5 Energy Savings of S/SSR and Speculative Schemes
	4.6.5.1 Trace Based Simulations for AND-model Applications
	4.6.5.2 Synthetic AND/OR-model Applications

	4.6.6 Effects of The Minimum Energy Efficient Frequency

	4.7 THEORETICAL BOUNDS: HOW MUCH BETTER CAN WE DO?
	4.8 CHAPTER SUMMARY

	5.0 ENERGY EFFICIENT FAULT TOLERANCE
	5.1 ENERGY EFFICIENT ROLL-BACK RECOVERY
	5.1.1 Simple Scheme of Re-execution (Retry)
	5.1.1.1 Pessimism Level: The Number of Expected Faults
	5.1.1.2 Performability of Retry Scheme
	5.1.1.3 Expected Energy Consumption of Retry Scheme

	5.1.2 Checkpointing and Its Applicability
	5.1.3 Optimal Number of Checkpoints for Maximizing Performability
	5.1.4 Optimal Number of Checkpoints for Energy Minimization
	5.1.4.1 Expected Energy Consumption
	5.1.4.2 Fault-Free Energy Consumption

	5.1.5 Evaluations of Roll-Back Recovery with Checkpoints
	5.1.5.1 Optimal Number of Checkpoints
	5.1.5.2 Energy Efficient Regions
	5.1.5.3 System Performability

	5.2 OPTIMISTIC MODULAR REDUNDANCY
	5.2.1 Optimal Frequency Setting for OTMR
	5.2.1.1 Expected Energy Consumption
	5.2.1.2 Fault Free Energy Consumption

	5.2.2 Performability of OTMR
	5.2.3 Comparison of OTMR and Traditional TMR
	5.2.4 Optimistic N-Modular Redundancy (ONMR)

	5.3 ENERGY EFFICIENT REDUNDANCY CONFIGURATION
	5.3.1 Recovery Schemes with Parallel Slack
	5.3.1.1 Restricted Serial Recovery
	5.3.1.2 Parallel Recovery
	5.3.1.3 Adaptive Parallel Recovery
	5.3.1.4 Arbitrary Number of Tasks
	5.3.1.5 Maximum Number of Tolerated Faults

	5.3.2 Parallel Recovery and Modular Redundancy
	5.3.3 Optimal Redundant Configurations
	5.3.3.1 Minimize Energy with A Given Performability Goal
	5.3.3.2 Maximize Performability with Fixed Energy Budget

	5.3.4 Analysis Results
	5.3.4.1 Optimal Configuration for Energy Minimization
	5.3.4.2 Optimal Configuration for Performability Maximization

	5.4 INTERPLAY OF ENERGY MANAGEMENT AND PERFORMABILITY
	5.4.1 Voltage Scaling and Fault Rates
	5.4.1.1 Exponential Fault Rate Model

	5.4.2 Trade-off between Energy and Performability
	5.4.2.1 Some Numeric Results

	5.5 CHAPTER SUMMARY

	6.0 CONCLUSIONS
	7.0 FUTURE WORK
	BIBLIOGRAPHY

