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TRANSIENT CONJUGATE HEAT TRANSFER IN A CIRCULAR DUCT FOR POWER-LAW FLUID WITH 
VISCOUS DISSIPATION 

 
 

Alan L Briggs, PhD 
 
 

University of Pittsburgh, 2003 
 
 
 

The study of unsteady forced convection heat transfer in tubes imposed to cyclic variations has been 

motivated by heat exchanger applications. This study investigates the heat transfer behavior associated with a 

thermal transient in a forced convection.  

In this analysis, the effects of the duct wall heat capacity and convection from the ambient are considered, 

while axial conduction is neglected. The fluid inlet temperature is varied periodically with time. Incompressible, 

hydrodynamically developed laminar flow of non-Newtonian fluid flow is assumed. The transient conjugate heat 

transfer problem for fully-developed laminar flow of non-Newtonian fluids in circular duct is studied by numerical 

analysis. Control volume based finite difference method is adopted in the numerical procedure for the integration of 

the governing equations. For the non-Newtonian fluid part, power-law model is used. Heat generation from viscous 

dissipation is also taken into account and is represented by Brinkman number. The study investigates the effects of 

non-dimensional parameters on wall, fluid and bulk temperatures. In this dissertation, special focus is placed on the 

effects of the flow index, Brinkman, and Nusselt numbers.  
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1.0 INTRODUCTION 
 
 
 
 

The study of unsteady forced convection heat transfer in tubes imposed to cyclic variations has been 

motivated by heat exchanger applications. This study investigates the heat transfer behavior associated with a 

thermal transient in a forced convection in a circular duct. The motivation behind the thermal response of internal 

flow subject to variations is provided by devices of the regenerative type of heat exchanger through which hot and 

cold fluid pass in succession. Usually, the conditions at the inner surface of the solid are assumed to be given, but in 

fact the thermal conditions at the wall are generally unknown, and the heat transfer problem for the solid wall must 

be analyzed simultaneously with the heat transfer for the fluid. 

 
 
 

l 

P e r io d ic  T e m p e ra t u re  I np ut  
 

T  
 

2 a 
 T  

 

∞

r 
 

z 

 
 
 

Figure 1 Physical Description of the Problem 

 
 
 

In this analysis, the effects of the duct wall heat capacity and convection from the ambient are considered, 

while axial conduction is neglected.  The fluid inlet temperature is varied periodically with time. Incompressible, 
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hydrodynamically developed laminar flow of non-newtonian fluid flow is assumed. The last assumption implies that 

a hydrodynamic entrance length is present which allows establishing a fully developed flow. Except for liquidmetals 

and gases, the hydrodynamic entrance region is much shorter than the thermal entrance region.  It is also assumed 

that physical properties of the wall and fluid are constant.  

In this present work, viscous dissipation effects will also be taken into account. Viscous dissipation can 

result in large local temperature increases, especially in the wall region. Undesired reactions may occur if those 

temperatures are not controlled properly. Lin et al. [27] points out the importance of viscous dissipation in the 

design of the control systems of heat transfer devices in organic-cooled nuclear reactors. We believe it is important 

to investigate any physical effects, such as viscous dissipation, which may lead to pronounced heat transfer. 

 
 
 
 

1.1 LITERATURE SURVEY 
 

Unsteady forced convection in tubes with periodic variation of the inlet condition is of interest in heat 

exchangers. The available work in this area is still limited.  

Sparrow and DeFarios [33] studied the transient conjugate problem of a slug flow inside a parallel plate duct with a 

periodically varying inlet temperature  (1968). The series solution results in a complex eigenvalue problem. 

Cotta, Mikhailov and Ozisik [18]extended their work to a circular duct (1987). They solved the complex eigenvalue 

problem by applying the Count method. The results are presented in the graphical form as a function of axial 

position for different values of the parameters. In both studies, the viscous dissipation is considered to be negligible. 

Travelho and Santos [35] solved the Sparrow and DeFarios’ problem by using the Laplace transform (1991). The 

amplitudes and phase lags with respect to the inlet conditions are determined for the complex wall temperature, fluid 

bulk temperature, and wall heat flux from the solution. However, their solution becomes inaccurate as Z becomes 

equal to or larger than one. 

Santos and Travelho [36] solved the transient laminar forced convection in the thermal entrance region of a circular 

duct with a periodically varying inlet temperature by applying a Laplace transformation (1998). They also included 

convection interaction with an ambient medium outside the duct. In their study, viscous dissipation effects are 

neglected, and slug flow idealization of the velocity field is utilized.  However, in the design of heat transfer devices 
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in organic-cooled nuclear reactors, where Non-Newtonian fluids are used, viscous dissipation becomes significant 

[27].  In the analysis of laminar forced convection of Newtonian fluids flowing in circular ducts, Barletta (1997) 

showed that the effect of viscous dissipation is very relevant in the fully developed region, both if the wall 

temperature is uniform and if convection with an external isothermal fluid occurs [5].  
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2.0 ANALYSIS 

 

2.1 STATEMENT OF THE PROBLEM 

 

The objective of this work presented in the following text is to study the heat transfer problem presented by 

Santos and Travelho [36] (1998). We will extend their work by considering Non-Newtonian fluid flow and by 

taking the effect of the viscous dissipation into account. The assumptions we make for the particular problem are as 

follows: 

•Fluid flow is hydrodynamically developed and laminar 

•Power-law fluids are to be studied 

•Convective heat transfer from the ambient outside and the duct thermal capacity effects are considered 

•Axial conduction is neglected 

•Physical properties of the wall and fluid are constant   

 

 

2.2 GOVERNING EQUATIONS 

 

The linear momentum equation is given in Eulerian form by: 

bTV
ρρ += div

tD
D

               (2-1) 

where  
tD

D
 is the material time derivative, which denotes differentiation with respect to t, holding x fixed where b 

is the body force vector and T is the Cauchy stress tensor. The  

balance of angular momentum yields that the Cauchy stress is symmetric: T=TT. 

The energy equation for forced convection heat transfer with viscous dissipation is as follows: 

Φ+= )( Tgradkdiv
Dt
DTc pρ          (2-2) 
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 where  is dissipation function. Φ

For the problem under consideration, the reduced momentum equation for a circular duct in the axial direction is 

z
pr

rr rz ∂
∂

−=
∂
∂ )(1

)τ           (2-3) 

 where,
dr
Vd

dr
Vdm z

n
z

rz

1−

=τ , m consistency index and n is power-law index. 

Under the conditions we stated in section 2.1, the temperature field is described by the energy equation in the 

following form: 

)()1()( 2

2

rd
dV

r
T

rr
Tk

z
TV

t
Tc z

rzzp τρ +
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

      (2-4)     

With the initial, inlet and boundary conditions given respectively by: 

0)0,,( TzrT =            (2-5) 

tSinTTtrT ω00),0,( ∆+=          (2-6) 

0),,(

0

=
∂

∂

=rr
tzrT

,          (2-7) 

)),,((),,()(),,(
∞

=

−+
∂

∂
=

∂
∂

− TtzaTh
t

tzaTcl
r

tzrTk w
ar

ρ      (2-8) 

The last boundary condition was obtained from the energy balance on the wall where  is the ambient 

temperature. 

∞T

We introduce the following dimensionless quantities: 

a
rR =    dimensionless radial coordinate     (2-9) 

a
zZ =*    dimensionless axial coordinate     (2-10) 

2a

tα
=Τ    dimensionless time      (2-11) 
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2
,*

U
PP

P em

ρ
−

=   dimensionless pressure quantity     (2-12) 

U
VV z

z =*    dimensionless velocity      (2-13) 

0

0

T
TT

∆
−

=Θ ,  dimensionless temperature      (2-14)  

0

0

T
TT

∆
−

=Θ ∞
∞   dimensionless temperature      (2-15)  

lc
ac

a
ww

p

ρ
ρ

=* ,  dimensionless wall heat capacity     (2-16)  

α

2aw
=Ω    dimensionless frequency oscillations    (2-17)  

Applying the dimensionless quantities to the momentum and energy equations, .the problem under 

consideration is given in dimensionless form as: 

)(Re))((1
*

**

dZ
dP

dR
dV

R
RR

nz =
∂
∂

        (2-18) 

Where 
m

aU nn−

=
2

Re ρ
          (2-19) 

2*1*

2

2

*
* )1()( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

∂
Θ∂

+
∂

Θ∂
=

∂
Θ∂

+
Τ∂
Θ∂

−

Rd
Vd

Rd
Vd

Br
RRRZ

VPe z

n

z
z     (2-20) 

with boundary conditions, 

0)0,,( =Θ ∗ZR           (2-21) 

ΤΩ=ΤΘ SinR ),0,(           (2-22) 

0),,(

0

*

=
∂

ΤΘ∂

=RR
ZR

          (2-23) 

)),,1((),,1(1),,( *
0

*

*
1

*

∞

=

Θ−ΤΘ+
Τ∂

ΤΘ∂
=

∂
ΤΘ∂

− ZNuZ
aR

ZR

R

    (2-24) 
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where 

α
ρρ aU

k
aUc

ak
Ucm

m
aUPe p

n

n
p

nn

==== −

−−

1

12

  PrRe  is the Peclet number,   (2-25) 

kTa
UmBr n

n

0
1

1

∆
= −

+

      is the Brinkman number,and         (2-26) 

k
ahNu =0                , is the  outside Nusselt number,      (2-27) 

 

 

2.3 DISCRETIZATION 

 

The algebraic equations involving the unknown values of the dependent variable  at the chosen grid 

points are derived from the differential equation governing 

Φ

Φ . The calculation domain is divided into a number of 

nonoverlapping control volumes shown in Figures 2 and 4, such that one control volume surrounds each grid point. 

Then the differential equation is integrated over each control volume. Piecewise profiles between the grid points are 

used to evaluate the integrals. Integrating the energy equation over the control volume and using a fully-implicit 

scheme we have as follows, 
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Rearranging the equation in the form as:  
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We need to construct an additional equation for Θ at the boundary since the boundary temperature is not 

given. The equation for the wall boundary condition is integrated over half the control volume adjacent to the wall  

as shown in Figure 3, which leads to, 
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Rearranging the equation gives the following; 

S
S R

a
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           (2-37)
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aP
10

           (2-38)

∞Θ= 0Nud            (2-39)

0
0 Nuaaa PSP ++=             (2-40) 

Equation 2-29 is solved using LU decomposition method. Once the coefficient matrix is converted to LU 

equivalent, the solution can be found. The L matrix is a record of operations required to make the coefficient matrix 

into the upper-triangular matrix U. The same transformations are applied to the right hand side. Then after we 

augment the right hand side to U and back-substitute, the solution appears. [39]  
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Figure 2 Control Volume for Discretization 
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3.0 VERIFICATION 

 

3.1 ANSYS RESULTS 

 

In order to verify our results obtained using control volume based finite difference, computations have been 

performed on ANSYS, a commercial FEM code. The model in Figure 5 is run on an Intel NT with four processors 

by ANSYS 5.7. The results and comparisons are summarized in the following.  In order to be consistent with what 

we have for a control volume based finite difference model, half size of the quad elements in radial direction is used 

adjacent to the symmetry line. The half model shown in Figure 5 is generated using total of 1020 nodes and 950 

quad elements to save CPU time. The pipe wall is designed to be sufficiently thin so that the temperature variations 

across the thickness of the wall are negligible.  

For the given problem, the momentum equation can be solved independently. Once a solution for the flow 

field is obtained, the energy equation is activated and transient solution is switched on. It takes 3941 cumulative 

iterations to reach the desired convergence,1.0E-17. The specified convergence criterion is met using the MSU 

advection formulation. The global iteration is set to be 350, and total CPU time in seconds is 164.70, where 136.06 

seconds are spent for calculations. The results are reflected about the symmetry line to have a full model for post-

processing purpose. Computations have been performed for the following conditions: 

Fluid Properties: 

Air at 300 K 

ρ = 1.1614  kg/m**3 

µ = 184.6e-07 kg/m-s 

 k =  0.0263 W/m-K 

Pc  = 1007 J/kg-K 
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Solid Properties: 

Stainless Steel (AISI 304) at 300 K ρ = 8055 kg/m**3 

 k = 15 W/m-K 

Pc  = 480 J/kg-K 

Geometric Properties:  

a = 0.0025 m 

z = 0.0125 m 

l = 0.0002 m 

Loading: 

P∆ =  0.0375 Pa 

)0,,( zrT = 320 K 

0T = 320 K 

0T∆ = 40 K 

tSinTTtrT ω00),0,( ∆+=  

32/2πω =  1/s 

 h = 250 W/m**2-K 

∞T =300 K 

 

3.1.1 Analytical Solution for Velocity 
 

The axial component of the velocity field is given by, ( )
⎥
⎥
⎦
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 where the case 

n=1 corresponds to a Newtonian fluid [8]. In dimensionless form, the velocity profile for non-Newtonian flows 

becomes ( ) [ ]nn
z R

n
nRV /)1(* 1

1
13 +−

+
+

= . 
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Figure 9 displays the dimensionless velocity profiles of Newtonian and non-Newtonian flows. The curve labeled as 

n=1 corresponds to Newtonian fluid profile. The curves labeled n<1 represent shear-thinning non-Newtonian flow. 

Those fluids deliver the highest localized viscous heating due to high near-wall shear rates. These high shear rates 

contribute to elevated local viscous heating effects.  The curves labeled n>1 represent shear-thickening non-

Newtonian flows. Note in Figure 9, the increase in the wall shear rate and the increasingly plug-like nature of the 

profile as power-law index decreases.   

The velocity field for this problem is fully-developed throughout the pipe. The velocity profile for 

Newtonian-fluid follows the “Hagen-Poiseuille” paraboloid, given by, 

( )
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−∆−=

22
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4

)(
a
rLPrrVz µ

 

From the above, the centerline velocity is: 

smV
rz /2539.0

0
=

=
 

The mean velocity is half of the centerline velocity, 

smU /1269.0=  

µ
ρ aU

=Re = 40  (laminar flow) 

The mass flow rate is, 

fUAm ρ=
°

= 2.894*E-06 kg/s    where is the flow area fA

The flow is considered to be Newtonian where n is equal to one.  

The inspection of the results depicted in Table 1 reveals that centerline velocity, mean velocity, and mass 

flow rate are appeared to be in good agreement with the analytical solution. As depicted in Figures 6, 7 and 8, the 

velocity profile is found to be consistent with the Hagen-Poiseuille paraboloid. Figure 8 shows that the maximum 

velocity is at the center of the pipe, whereas we have zero velocity at the walls as a result of the no-slip boundary 

condition. 
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Table 1 Comparison of centerline velocity, mean velocity and mass flow rate. 

 
 
 Target ANSYS 

0=rzV   m/s 0.2539 0.2539 

U  m/s 0.1269 0.1263 

°

m  kg/s 2.894e-06 2.880e-06 

 
 
 

 
 

 

Figure 5 Finite Element Subdivision of the half pipe 
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Figure 6 Contours of Axial Velocity for Ansys Solution 
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Figure 7 Vectors of Axial Velocity for Ansys Solution 
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Figure 8 Axial Velocity Profile for Ansys Solution 
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Figure 9 Dimensionless Velocity Profiles for the steady- ate laminar flow of power-law liquids in a straight pipe. 
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3.1.2 Temperature Solution 
 

Using the conditions stated earlier leads to the following dimensionless values, 

k
ah

Nuo =  =23.76425 

Br = 279 E-09 

*a = 0.00378 

Ω = 0.05459 

Pe = 14.01245 

finalΤ =115.13856 

∆Τ = 3.59808 

∞Θ = -0.5 

 During the energy equation solution, a bug was discovered within Ansys version 5.7. An initial attempt was 

made to solve the energy equation using the Initial Condition command (I.C.) of ANSYS. It is found that this 

command tends to set the initial conditions to zero all the time, not to the specified one. Discovering this error forces 

us to set the desired initial condition as a boundary condition for steady-state case. After running for the steady-state 

case, boundary conditions are deleted for all nodes, and a new set of boundary conditions are applied for the 

transient solution. Since all the results are stored in memory for the steady-state case, ANSYS recognizes those 

nodal results as if they were initial conditions for the transient solution. This method appears to work fine, as can be 

seen in Figure 10. At zero time, we have the specified initial condition for temperature. 

 The same figure shows the specified inlet temperature in time. For our problem, the inlet temperature field 

is subject to a sine function in time. Figures 11, 12, 13, and 14 show temperature contours at different times. The 

inlet temperature takes the value of its initial one at t=32 s. As seen from these figures, forced convection dominates 

the temperature profile in this case. The fluid temperature is damped within a distance from the inlet. Figure 15 

shows the temperature profiles at different axial locations of the inner wall.  The temperature profile in time tends to 
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flatten as the distance from the inlet increases. The effect from ambient is more noticeable downstream, where the 

inlet temperature has less effect on those regions. Figures 16, 17, 18, and 19 exhibit this effect more clearly. 

 The influence of forced convection can be seen in Figure 20. Dimensionless temperature increases as we 

move towards the center of the pipe. Comparing Figures 21 and 22, we can see this result more clearly. The thermal 

wave has more penetration near the center than the wall, where the dimensionless wall temperature decays with 

time. 

  The results we obtained from the control volume based finite difference output are put in dimensional form 

in order to compare with the Ansys solution. As seen in Figure 23, the two solutions are in good agreement. In fact, 

the maximum error is found to be 0.6 percent at z=0.0075 m. We also compared two results at the wall as a function 

of time (Figure 24). The maximum error is found to be 1.9 percent, but keep in mind that those results are obtained 

from two different algorithms with different solution techniques. Also, using the finite difference solution, we have 

made some approximations and used additional equations for the wall temperature. Ansys results appear to be higher 

values in magnitude than the finite difference solution for each case. The difference between the two solutions in 

time is less pronounced as we move away from the wall. This difference may be reduced by decreasing the time 

step, .  This fact will be clear later as we do a stability analysis. Since it is very expensive in terms of CPU time 

and storage to work with small time steps , we adopt the current one. 

∆Τ

∆Τ
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Figure 10  Inlet Temperature Profile 
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Figure 11 Contours of Temperature at t=8sec 
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Figure 12 Contours of Temperature at t=16 sec 

 24



 

 

 

 

 
 

 

Figure 13 Contours of Temperature at t=24 sec 
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Figure 14 Contours of Temperature at t=32 sec 
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Figure 15 Temperature vs. time for various nodal locations 
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Figure 16 Wall temperature profile at t=8 sec 
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Figure 17 Wall temperature profile at t=16sec 
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Figure 18 Wall temperature profile at t=24sec 
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Figure 19  Wall temperature profile at t=32sec 
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Table 2 Ansys output parameters 

 
 

PARAMETER STATUS-           (  46 PARAMETERS DEFINED) 
                  (INCLUDING    25 INTERNAL PARAMETERS) 
  NAME         VALUE          TYPE     DIMENSIONS 
  CP        1007.00000            SCALAR 
  H          250.000000            SCALAR 
  K         2.630000000E-02   SCALAR 
  L        1.250000000E-02     SCALAR 
  MDOT  2.883928751E-06  SCALAR 
  MU       1.846000000E-05  SCALAR 
  PI             3.14159265         SCALAR 
  PIN      3.750000000E-02   SCALAR 
  R        2.500000000E-03     SCALAR 
  RF       9.260000000E-05    SCALAR 
  RHO       1.16140000          SCALAR 
  RSO     2.000000000E-04   SCALAR 
  TAMB      300.000000        SCALAR 
  TAU      3.605977865E-03  SCALAR 
  TC_O      309.784274          SCALAR 
  TIME                                    TABLE       6      12       1 
  TIN       300.000000          SCALAR 
  TM_O      305.290971       SCALAR 
  TW_O      320.000000       SCALAR 
  VXC      0.253957389        SCALAR 
  VXM      0.126465718       SCALAR 
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Table 3  Ansys time history of wall temperatures at various locations 

 
 

TIME          173 TEMP      156 TEMP      146 TEMP      136 TEMP 
INLET         L/5 WALL      2L/5 WALL     3L/5 WALL 
0.0000         320.000       320.000       320.000       320.000 
0.0000         320.000       320.000       320.000       320.000 
1.0000         327.804       318.314       316.782       316.487 
2.0000         335.307       318.200       313.962       312.889 
3.0000         342.223       319.506       312.435       310.238 
4.0000         348.284       321.498       312.027       308.626 
5.0000         353.259       323.631       312.315       307.834 
6.0000         356.955       325.567       312.933       307.583 
7.0000         359.231       327.090       313.621       307.637 
8.0000         360.000       328.066       314.211       307.823 
9.0000         359.231       328.408       314.594       308.020 
10.000         356.955       328.077       314.701       308.146 
11.000         353.259       327.068       314.495       308.151 
12.000         348.284       325.408       313.964       308.005 
13.000         342.223       323.153       313.114       307.693 
14.000         335.307       320.387       311.969       307.217 
15.000         327.804       317.213       310.568       306.585 
16.000         320.000       313.750       308.961       305.819 
17.000         312.196       310.130       307.208       304.943 
18.000         304.693       306.492       305.373       303.990 
19.000         297.777       302.975       303.528       302.995 
20.000         291.716       299.714       301.742       301.995 
21.000         286.741       296.834       300.083       301.029 
22.000         283.045       294.445       298.616       300.133 
23.000         280.769       292.640       297.395       299.341 
24.000         280.000       291.487       296.469       298.683 
25.000         280.769       291.032       295.872       298.186 
26.000         283.045       291.290       295.628       297.867 
27.000         286.741       292.253       295.746       297.740 
28.000         291.716       293.883       296.221       297.808 
29.000         297.777       296.118       297.035       298.070 
30.000         304.693       298.872       298.157       298.515 
31.000         312.196       302.039       299.543       299.126 
32.000         320.000       305.497       301.141       299.880 
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Table 4 Control volume based Finite difference output 

 

 
Program to solve unsteady conjugate heat transfer problem   SOLUTION at Z= 3.00000 

 **********RESULTS********** 
 NEAR-CENTER TEMP=   0.08952493263542  AT TIME=    3.5980800000000 
 NEAR-CENTER TEMP=   0.18814268660827  AT TIME=    7.1961600000000 
 NEAR-CENTER TEMP=   0.28525034552911  AT TIME=    10.794240000000 
 NEAR-CENTER TEMP=   0.37408152311415  AT TIME=    14.392320000000 
 NEAR-CENTER TEMP=   0.44900897659823  AT TIME=    17.990400000000 
 NEAR-CENTER TEMP=   0.50551081052496  AT TIME=    21.588480000000 
 NEAR-CENTER TEMP=   0.54019686355965  AT TIME=    25.186560000000 
 NEAR-CENTER TEMP=   0.55083008931134  AT TIME=    28.784640000000 
 NEAR-CENTER TEMP=   0.53633168303619  AT TIME=    32.382720000000 
 NEAR-CENTER TEMP=   0.49676251153875  AT TIME=    35.980800000000 
 NEAR-CENTER TEMP=   0.43327618586320  AT TIME=    39.578880000000 
 NEAR-CENTER TEMP=   0.34804159145023  AT TIME=    43.176960000000 
 NEAR-CENTER TEMP=   0.24413489326620  AT TIME=    46.775040000000 
 NEAR-CENTER TEMP=   0.12540297096191  AT TIME=    50.373120000000 
 NEAR-CENTER TEMP=  -0.003.6980950629  AT TIME=     53.971200000000 
 NEAR-CENTER TEMP=  -0.13828448523566  AT TIME=    57.569280000000 
 NEAR-CENTER TEMP=  -0.27323996877993  AT TIME=    61.167360000000 
 NEAR-CENTER TEMP=  -0.40341825146715  AT TIME=    64.765440000000 
 NEAR-CENTER TEMP=  -0.52384505431667  AT TIME=    68.363520000000 
 NEAR-CENTER TEMP=  -0.62991251696682  AT TIME=    71.961600000000 
 NEAR-CENTER TEMP=  -0.71755871985305  AT TIME=    75.559680000000 
 NEAR-CENTER TEMP=  -0.78342562141196  AT TIME=    79.157760000000 
 NEAR-CENTER TEMP=  -0.82498948466387  AT TIME=    82.755840000000 
 NEAR-CENTER TEMP=  -0.84065888709783  AT TIME=    86.353920000000 
 NEAR-CENTER TEMP=  -0.82983662609632  AT TIME=    89.952000000000 
 NEAR-CENTER TEMP=  -0.79294319974349  AT TIME=    93.550080000000 
 NEAR-CENTER TEMP=  -0.73140100523563  AT TIME=    97.148160000000 
 NEAR-CENTER TEMP=  -0.64757989657428  AT TIME=    100.74624000000 
 NEAR-CENTER TEMP=  -0.54470622103384  AT TIME=    104.34432000000 
 NEAR-CENTER TEMP=  -0.42673885241873  AT TIME=    107.94240000000 
 NEAR-CENTER TEMP=  -0.29821700398014  AT TIME=    111.54048000000 
 NEAR-CENTER TEMP=  -0.16408568595541  AT TIME=    115.13856000000   
 
NODE=  1   TEMPERATURE=  -0.497200566213283   AT R= 1.00000 
NODE=  2   TEMPERATURE=  -0.470287883059376   AT R= 0.92593 
NODE=  3   TEMPERATURE=  -0.441305854226295   AT R= 0.85185 
NODE=  4   TEMPERATURE=  -0.410393541707785   AT R= 0.77778 
NODE=  5   TEMPERATURE=  -0.377967528071125   AT R= 0.70370 
NODE=  6   TEMPERATURE=  -0.344700939566505   AT R= 0.62963 
NODE=  7   TEMPERATURE=  -0.311478540982138   AT R= 0.55556 
NODE=  8   TEMPERATURE=  -0.279328470579036   AT R= 0.48148 
NODE=  9   TEMPERATURE=  -0.249337901944855   AT R= 0.40741 
NODE= 10   TEMPERATURE=  -0.222565105345318   AT R= 0.33333 
NODE= 11   TEMPERATURE=  -0.199961914507722   AT R= 0.25926 
NODE= 12   TEMPERATURE=  -0.182317513586017   AT R= 0.18519 
NODE= 13   TEMPERATURE=  -0.170227669407784   AT R= 0.11111 
NODE= 14   TEMPERATURE=  -0.164085685955409   AT R= 0.03704   
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 WALL TEMP=  -0.11972192219324  AT TIME=    3.5980800000000 
 WALL TEMP=  -0.20809788001526  AT TIME=    7.1961600000000 
 WALL TEMP=  -0.27305373700169  AT TIME=    10.794240000000 
 WALL TEMP=  -0.32059197856653  AT TIME=    14.392320000000 
 WALL TEMP=  -0.35526429046777  AT TIME=    17.990400000000 
 WALL TEMP=  -0.38052510568670  AT TIME=    21.588480000000 
 WALL TEMP=  -0.39899570905171  AT TIME=    25.186560000000 
 WALL TEMP=  -0.41266149024978  AT TIME=    28.784640000000 
 WALL TEMP=  -0.42301937498003  AT TIME=    32.382720000000 
 WALL TEMP=  -0.43118825844394  AT TIME=    35.980800000000 
 WALL TEMP=  -0.43799208748776  AT TIME=    39.578880000000 
 WALL TEMP=  -0.44402283233687  AT TIME=    43.176960000000 
 WALL TEMP=  -0.44968876455213  AT TIME=    46.775040000000 
 WALL TEMP=  -0.45525207125117  AT TIME=    50.373120000000 
 WALL TEMP=  -0.46085877957736  AT TIME=    53.971200000000 
 WALL TEMP=  -0.46656315980858  AT TIME=    57.569280000000 
 WALL TEMP=  -0.47234816065036  AT TIME=    61.167360000000 
 WALL TEMP=  -0.47814296162384  AT TIME=    64.765440000000 
 WALL TEMP=  -0.48383837182467  AT TIME=    68.363520000000 
 WALL TEMP=  -0.48930053687106  AT TIME=    71.961600000000 
 WALL TEMP=  -0.49438321793345  AT TIME=    75.559680000000 
 WALL TEMP=  -0.49893876422317  AT TIME=    79.157760000000 
 WALL TEMP=  -0.50282780236596  AT TIME=    82.755840000000 
 WALL TEMP=  -0.50592760420080  AT TIME=    86.353920000000 
 WALL TEMP=  -0.50813906189337  AT TIME=    89.952000000000 
 WALL TEMP=  -0.50939219017420  AT TIME=    93.550080000000 
 WALL TEMP=  -0.50965008515788  AT TIME=    97.148160000000 
 WALL TEMP=  -0.50891129329936  AT TIME=    100.74624000000 
 WALL TEMP=  -0.50721057874040  AT TIME=    104.34432000000 
 WALL TEMP=  -0.50461811906041  AT TIME=    107.94240000000 
 WALL TEMP=  -0.50123720501307  AT TIME=    111.54048000000 
 WALL TEMP=  -0.49720056621328  AT TIME=    115.13856000000 
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gure 20 Dimensionless Temperature Profile at 
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iF *Z = 3, with =oNu 23.76425, Br =279E-09 = 0.00378,, *a Ω = 

0.05459, Pe = 14.01245, finalΤ =115.13856, ∆Τ = 59808, ∞ 3. Θ = -0.5, n=1. 
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igure 21Dimensionless Wall Temperature vs.Dimensionless Time at 
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*Z =3,R=1with =oNu 23.76425, Br =279E09, *a =0.00378, Ω =0.05459, =14.01245, =115.13856,Pe finalΤ ∆Τ

=3.59808, Θ =-0. 1. ∞ 5,  n=

 37



 

 

 

 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0 30 60 90 120

Dimensionless Time

D
im

en
si

on
le

ss
 N

ea
r-

C
en

te
r 

Te
m

pe
ra

tu
re

 

igure 22 Dimensionless Temperature vs. Dimensionless Time at
 
F  *Z = 3, 
R=0.03704,with =oNu 23.76425, Br =279E09, *a =0.00378, Ω =0 9, =14.01245, =115.13856,.0545 Pe finalΤ ∆Τ

=3.59808, Θ =-0.∞ 5, n=1. 
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Table 5 Temperature values at z=0.0075 m  , t=32 s. 

 
 

Node         R                C.V        ANSYS   
 1        0.25000E-02    300.11     299.88     
 2        0.23148E-02    301.18     301.31     
 3        0.21296E-02    302.34     302.84     
 4        0.19444E-02    303.58     304.43     
 5        0.17593E-02    304.88     306.06     
 6        0.15741E-02    306.21     307.67     
 7        0.13889E-02    307.54     309.22     
 8        0.12037E-02    308.82     310.66     
 9        0.10185E-02    310.02     311.95     
10        0.83334E-03    311.09     313.05     
11        0.64815E-03    312.00     313.96     
12        0.46297E-03    312.70     314.64     
13        0.27778E-03    313.19     315.11     
14        0.92600E-04    313.43     315.35     
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Figure 23 Comparison of Temperature profile at z=0.0075 m, t=32 s. 

 
 

 39



 

T  

 
 

   TIME               ANSYS                     C.V 
    0.0000            320.000                 320.000 
   1.0000             316.487                 315.211 
   2.0000             312.889                 311.676 
   3.0000             310.238                 309.077 
   4.0000             308.626                 307.176 
   5.0000             307.834                 305.789 
   6.0000             307.583                 304.778 
   7.0000             307.637                 304.040 
   8.0000             307.823                 303.493 
   9.0000             308.020                 303.079 
   10.000             308.146                 302.752 
   11.000             308.151                 302.239 
   12.000             308.005                 302.239 
   13.000             307.693                 302.012 
   14.000             307.217                 301.789 
   15.000             306.585                 301.565 
   16.000             305.819                 301.337 
   17.000             304.943                 301.106 
   18.000             303.990                 300.874 
   19.000             302.995                 300.646 
   20.000             301.995                 300.427 
   21.000             301.029                 300.224 
   22.000             300.133                 300.042 
   23.000             299.341                 299.886 
   24.000             298.683                 299.762 
   25.000             298.186                 299.674 
   26.000             297.867                 299.624 
   27.000             297.740                 299.613 
   28.000             297.808                 299.643 
   29.000             298.070                 299.711 
   30.000             298.515                 299.815 
   31.000             299.126                 299.950 
   32.000             299.880                 300.111 

able 6  Comparison of time history of wall temperatures at z=0.0075 m
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Figure 24 Comparison of Wall Temperatures in time at z=0.0075 m 
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Table 7 Comparison of Temperature in time at z=0.0075 m, r= 0.92600E-04 m 

Node 14-Near Center Temperature 
    TIME          ANSYS       C.V     
    0.0000         320.000     320.000 
   1.0000         324.736     323.580 
   2.0000         329.969     327.525 
   3.0000         335.097     331.410 
   4.0000         339.837     334.963 
   5.0000         343.888     337.960 
   6.0000         347.014     340.220 
   7.0000         349.047     341.607 
   8.0000         349.882     342.033 
   9.0000         349.470     341.453 
   10.000         347.816     339.870 
   11.000         344.978     337.331 
   12.000         341.060     333.921 
   13.000         336.211     329.765 
   14.000         330.616     325.016 
   15.000         324.488     319.852 
   16.000         318.062     314.468 
   17.000         311.584     309.070 
   18.000         305.304     303.863 
   19.000         299.463     299.046 
   20.000         294.284     294.803 
   21.000         289.967     291.297 
   22.000         286.677     288.662 
   23.000         284.542     287.000 
   24.000         283.642     286.373 
   25.000         284.013     286.806 
   26.000         285.641     288.282 
   27.000         288.462     290.743 
   28.000         292.369     294.096 
   29.000         297.211     298.211 
   30.000         302.802     302.930 
   31.000         308.927     308.071 
   32.000         315.351     313.436 
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Figure 25 Comparison of Temperature in time at z=0.0075 m, r=0.92600E-04 m 
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3.2 BENCHMARK SOLUTION: GRAETZ PROBLEM 

 

The problems of steady state conduction of heat and diffusion in a fluid flowing in a circular duct have 

been studied by many investigators. Let’s take the case when the duct wall is maintained at a constant temperature 

different from the uniform temperature of the fluid at the entrance, and the fluid axial conduction, viscous 

dissipation, flow work, and thermal energy sources are negligible. This problem is known as the Graetz problem 

named after Graetz who presented the first published solution [26]. The assumptions and boundary conditions made 

by Graetz are constant thermal diffusivity, constant tube wall temperature, temperature symmetrical about the axis, 

uniform temperature at the tube inlet, fully developed parabolic velocity profile at the tube inlet, and negligible 

conduction in the direction of flow. With those assumptions, for one directional flow in a circular tube, the energy 

equation becomes,  

 

)(1
r
Tr

rr
k

z
TVc zp ∂

∂
∂
∂

=
∂
∂ρ          (3-1) 

Equation (3.1) can be written in dimensionless form as 

, where  
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The assumptions stated before correspond to the following boundary conditions: 
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          (3.7) 

          (
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 44



 

The solution to Equation (3-2

          (3.9) 

) may be written as [26] 

∑
∞
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−=Θ
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*2 )2exp(
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nnn ZRC λ

where n n n are the eigenvalues, eigenfunctions, and constants, respectively. 

Integrating equation (3.2) over the control volume, we have: 
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Rearranging the equation in the form as:  
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The dimensionless t

As seen from these figures, the control volume based finite difference solution and the Graetz solutions are in 

excellent agreement. 

SNWP aaaa ++=

emperature distribution for the Graetz problem is displayed in Figures 26, 27 and, 28. 
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Figure 26 Comparison of Control Volume based Finite Difference Solution and Graetz Solution at

Z*=0.01
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Z*=0.03
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igure 28 Comparison of Control Volume based Finite Difference Solution and Graetz Solution at *Z = 0.1, 
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4.0 RESULTS 

 

4.1 STABILITY ANALYSIS 

 

We adopted the fully implicit scheme in our work up to this point. It would be interesting to see how our 

solution would look like if another time scheme is used. For this purpose, we seek a solution for the same energy 

equation using an explicit scheme. The explicit scheme essentially assumes that the old value  prevails 

throughout the entire time step except at time 

o
pΘ

∆Τ+Τ . Also, on the other hand, the fully implicit scheme assumes 

that, at time suddenly drops from to and then stays at over the whole time step. 

Integrating the energy equation (2.20) over the control volume and using the explicit scheme we have as 

follows, 
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Rearranging the equation in the form as: 
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 The equation for the wall boundary condition is integrated over the half control volume adjacent to the wall, which 

leads to, 
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Rearranging the equation gives the following;
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SNW ΘΘΘΘ ,,,   Examining equ ns 4.6 and 4.11, we note that the coefficient of can become negative, 

which violates the rule of positive coefficients. If this rule is violated, physically unr lts could emerge, 

because the negative coefficien

criterion for the explicit scheme. The time step

∞Θ= 0Nud (4

For the explicit scheme, pΘ is explicitly obtainable in terms of the known temperatures 

0
0 Nuaaa P

o
SP ++=

oooo
p atio  o

pΘ

ealistic resu

t implies that a higher o
pΘ  results in a lower pΘ  [28]. This condition is the stability 

 ∆Τ  would have to be small gh so that  is positive. With the 

current input values, an unrealistic solution can be obtained for 

 enou  o
Pa

0018.0≥∆Τ  as displayed in Figure 29. For this 
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time step and larger, the c

scheme shows in very good agreement with the fully implicit scheme as shown in Table 8. Since we are restricted to 

use small time steps to avoid instability for 

storage. On the other hand, the fully implicit scheme ensures that the coefficient of s never negative. It can be 

used with a large time step and it satisfies the requi

will continue to use the fully implicit scheme in this work. 

 
 

 

Figure 29 Explicit Scheme Solution with 

oefficient of pΘ  is negative. As we use a smaller time step, the result of the explicit o

the explicit scheme, it becomes very costly in terms of CPU time and 

o
pΘ  i

rement of physically satisfactory behavior. For this reason, we 
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Figure 30 C son of Explicit and Fully-Implicit Scheme Solution with ompari =oNu 23.76425, Br =279E-09 = 

0.00378,  0 459, = 14.01245 =0.15, 

, *a
Ω = Pe , finalΤ ∆Τ = 0.00015, ∞Θ = -0.5, n=1, Z*=3. .05
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igure 31 Comparison of Explicit and Fully-Implicit Scheme Solution withF  =oNu 23.76425, Br =279E-09 = 

.00378, = 0.05459, = 14.01245 =0.15, 

, *a
0 Ω Pe , finalΤ ∆Τ = 0.0000375, ∞Θ = -0.5, n=1, Z*=3. 
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 =oNu 23.76425, Br =279E-09 = , *aTable 8 Comparison of Temperature with different time schemes with

0.00378, Ω = 0.05459, Pe = 14.01245, finalΤ =0.15, ∆Τ = 0.0000375, ∞Θ = -0.5, n=1, Z*=3. 

 
 
  Explicit-Scheme  
  TEMPERAT

AT
RAT

AT
RAT

EMPERAT
RAT
RAT

RAT
RAT
RAT
RAT

plicit Scheme                  

URE= -0.00669     AT R= 1 
  TEMPER URE= -0.00557     AT R= 0.92593 
  TEMPE URE= -0.00459     AT R= 0.85185 
  TEMPER URE= -0.00374     AT R= 0.77778 
  TEMPE URE= -0.00299     AT R= 0.7037 
  T URE= -0.00232     AT R= 0.62963 
  TEMPE URE= -0.00174     AT R= 0.55556 
  TEMPE URE= -0.00122     AT R= 0.48148 
  TEMPERATURE= -0.00077     AT R= 0.40741 
  TEMPE URE= -0.00039     AT R= 0.33333 
  TEMPE URE= -8.1E-05     AT R= 0.25926 
  TEMPE URE= 0.000158    AT R= 0.18519 
  TEMPE URE= 0.000321    AT R= 0.11111 
  TEMPERATURE= 0.000403    AT R= 0.03704 
  

         Fully-Im       

   
                                   

TEMPERATURE= -0.00669        AT R=    1 
TEMPERATURE= -0.00557        AT R= 0.92593 
TEMPERATURE= -0.00459        AT R= 0.85185 

RA -0.    AT 703
A -0.00231    AT R= 62963 

  TEMPERATURE= -0.00173        AT R= 0.55556 
  TEMPERATURE= -0.00121        AT R= 0.48148 
  TEMPERATURE= -0.00077        AT R= 0.40741 
  TEMPERATURE= -0.00039        AT R= 0.33333 
  TEMPERATURE= -7.8E-05        AT R= 0.25926 
  TEMPERATURE=  0.000159             AT R= 0.18519 
  TEMPERATURE=  0.00032        AT R= 0.11111 
  TEMPERATURE=  0.000401            AT R= 0.03704 

  
  
  
  TEMPERATURE= -0.00373        AT R= 0.77778 
  TEMPE TURE= 00297      R= 0. 7 
  TEMPER TURE=     0.
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4.2 GRID INDEPENDENT STUDY 

 

In general, an accurate solution should be obtained when the grid is sufficiently fine. But there is no need to 

 pendent va le (in this case Θemploy a fine grid in regions where the de riab ) changes rather slowly with the 

O e gri ed where the dependent variable~independent variable 

b p ed fo accuracy is a matter that depends on the nature of the 

nd pend le~independent variable variation, the grid sizes were 

ig he d ariable

independent variable. n the other hand, a fin d is requir

is steep [27]. The num er of grid oints need r a given 

problem to be solved. 

In order to fi  the pattern of the de ent variab

varied. As seen from f ure 32 and figure 35, t ependent v  Θ  changes slowly with Z*. That is the reason 

ang rent in the Z* direction. On the other hand, the maximum 

th v  an tions is found to be 10 percent (Figure 34). It is found 

, since there is not significant change in the 

ent va ecame independent of grid size beyond   as it can 

e e, meters and boundary conditions, it is concluded 

ho o get a satisfactory solution for this problem. The 

tw des Z and is 

t. ind v d size requires more CPU time and storage. 

et un anged, the preliminary grid solutions can be used to 

. T nked to the way the dependent variable changes in the 

we don’t see much ch e in Θ  with a diffe  grid size 

solution difference wi arious grid sizes in R d Z* direc

30*50* * ≥nodesnodes Zthat an appropriate grid size would be R

riable b 30*50* * ≥nodesnodes ZRsolution. The independ

be seen from Figur 34. Henc  with the given para

that * * ≥ZR 30*50  snodesnodes uld be good enough t

maximum solution d 30*50* * =nodes 10*10* * =nodesnodes ZRerence be een grid sizes of noRiff

found to be 1.3 percen Keep in m  that using a ery small gri

But if param ers and bo dary conditions are ch

construct suitable grid he grid spacing should be directly li

calculation domain.  
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Figure 32 Grid Study with different grid size in Z* direction with =oNu 23.76425, Br =279E-09
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Figure 33 Grid Study with different grid size in R direction =oNu 23.76425, Br =279E-09 = 0.00378,, *a Ω = 

0.05459, = 14.01245 =115.13856Pe , finalΤ , ∆Τ = 3.59808, ∞Θ = -0.5, n=1, Z*=3. 
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Figure 3 rid Study w ifferent grid si e in R and Z* directions =oNu 23.76425, Br =279E-09 = 

0.00378, = 0.05459, = 14.01245 =115.13856

, *a
Ω Pe , finalΤ , ∆Τ = 3.59808, ∞Θ = -0.5, n=1, Z*=3. 
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Figure 35  Grid Study with different grid size in Z* direction =oNu 23.76425, Br =279E-09,  0.00378,*a = Ω = 

0.05459, = 14.01245 inal =115.138Pe , fΤ 56, ∆Τ = 3.59808, ∞Θ = -0.5, n=1 =0.01, 50 nodes in R, Z*  direction 
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4.3 HEAT TRANSFER WITH VISCOUS DISSIPATION 

ese 

let 

 

 Since it has been established that results of our work are in good agreement with a commercial package and 

the benchmark solution, we would like to study the physical parameters. It will be interesting to see the effects of 

non-dimensional parameters especially on wall and fluid temperatures. The next step will be investigating th

effects as a function of the parameters of the problem. In order to distinguish the effects of inlet temperature and 

ambient temperature, we use only a quarter cycle of the inlet temperature profile, which assures a positive in

temperature (Figure 36), while using 5.0−=Θ∞  as ambient dimensionless temperature. At this point, we would 

like to introduce dimensionless bulk mean temperature, defined as 

∫

∫ Θ
=Θ

1

0

*

1

0

*

dRRV

dRRV

Z

Z

b            (4.14) 

This is usually applied in the case of forced convection inside a closed duct and is the mean fluid temperature at a 

cross section. Also, the local Nusselt number is given by, 
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*, 2          (4.15) 
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Figure 36 Dimensionless Inlet Temperature vs. Dimensionless Time Ω = 0.05459, finalΤ =115.13856 = 

3.59808, , Z*=0 

, ∆Τ

ΩΤ=Θ SinINLET
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.3.1 Non-Newtonian Fluid 
 

 
4

 
 Figure 37 displays the dimensionless wall temperature profiles of non-Newtonian flows. The curve labeled 

as n=0.4 corresponds shear-thinning non-Newtonian flow, while the curve labeled n=1.8 represents shear-thickening 

non-Newtonian flow. Note in Figure 37, the increase in the dimensionless wall temperature as the power-law index 

decreases. Pseudo-plastic flows contribute to elevated viscous heating effects, thus forming higher temperatures near 

the liquid-solid interface. Figure 38 shows the dimensionless temperature profile at Z*=0.2. Due to viscous heating, 

the pseudo-plastic flow generates higher temperatures near the wall. As we move away from the wall, the effect of 

dilatant flow becomes more dominant. The dimensionless temperature increases as we move towards the center of 

the pipe for this kind of flow. The thermal wave of the inlet temperature has more penetration near the center than 

the wall. 

  Figures 39 and 40 show the dimensionless bulk temperature profile at different dimensionless axial 

distance. The bulk temperature profile flattens as distance from the inlet increases. The bulk temperature is higher 

for shear thickening fluids, since it has more effect of the positive inlet temperature on the overall fluid temperature 

than the shear thinning fluids. 

  Figure 41 shows the local Nusselt number for different power-law index. The steeper velocity gradient in 

the wall region for lower power-law index causes enhancement of the local Nusselt number. At locations very far 

from the inlet, local Nusselt number approaches to a certain value.  



 

 
 
 

 
 
Figure 37 Comparison of Dimensionless Wall Temperature Profiles at different power-law index =oNu 1.0, 

Br =0.1, = 0.1, = 0.05459 = 0.5,*a Ω , Pe finalΤ =28.78464, ∆Τ = 3.59808, ∞Θ = -0.5, Z*=0.2 
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Figure 38 Comparison of Dimensionless Temperature Profiles at different power-law index, =oNu  Br =0.1, 

= 0.1, = 0.05459 = 0.5, =28.78464,* Ω , Pe finalΤ  ∆Τ = 3.59808, ∞Θa = -0.5, Z*=0.2 
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Figure 39 Comparison of Dimensionless Bulk Temperature Profiles at different Power-law index, =oNu 1.0, 

Br =0.1, = 0.1, = 0.05459, = 0.5,*a Ω Pe finalΤ =28.78464, ∆Τ = 3.59808, ∞Θ = -0.5, Z*=3 
 

 
 
Figure 40 Comparison of Dimensionless Bulk Temperature Profiles at different Power-law index, =oNu 1.0, 

Br =0.1, = 0.1, = 0.05459, = 0.5,*a Ω Pe finalΤ =28.78464, ∆Τ = 3.59808, ∞Θ = -0.5, Z*=0.2 
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1 arison of Nusselt number at different Power-law index
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.3.2 Brinkman Number 

 
 In this section, heat generation from viscous dissipation is taken into account, which is represented by the 

Brinkman number. Figure 42 and Figure 43 show the dimensionless wall temperature for different Brinkman 

numbers at different dimensionless axial distances. It is noticeable that dimensionless wall temperature increases as 

the Brinkman number increases. From the figure, this effect seems insignificant at the first glance. But Table 9 

exhibits the effect of Brinkman number more clearly. 

Table 9 Dimensionless Wall Temperature with different Brinkman numbers at various locations, 1.0, n=1.8, 

= 0.1, = 0.05459 = 0.5, =28.78464

=oNu

*a  Ω , Pe finalΤ , ∆Τ = 3.59808, ∞Θ = -0.5. 

 
 
Dimensionless  
Wall Temperature at 

Brinkman=3 Brinkman=0.1 Difference 

Z*=0.10 0.21850 0.21434 1.9 % 

Z*=0.15 0.11415 0.10908 4.4 % 

Z*=0.18 0.06340 0.05788 8.7 % 

Z*=0.20 0.03171 0.02590 18.3 % 

 
 
 
 T le 9 s  the dimensi ess wall tem rature at selectab hows onl pe ed nodes for different Brinkman number. The 

effect from viscous dissipation is more noticeable downstream, where the inlet temperature has less effect on those 

regions. 

 The local Nusselt number also increases with increasing Brinkman number due to viscous heating. The 

variation of local Nusselt number with axial dimensionless distance is shown in Table 10. 
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Table 10 Local Nusselt number at different Brinkman numbers, =oNu 1.0, n=1.8, = 0.1, = 0.05459, = 

= 3.59808 = -0.5 

Local Nusselt Number at Br=0.1 Br=3 

 *a  Ω Pe
, ∞Θ0.5, finalΤ =28.78464, ∆Τ

 
 

Z*=0.00267 11.59833 11.62345 

Z*=0.04933 4.59676 4.62307 

Z*=0.18 3.96616 4.00349 
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Figure 42 Comparison of Dimensionless Wall Temperature Profiles at different Brinkman numbers, =oNu 1.0, 

n=1.8, = 0.1, = 0.05459 = 0.5, =28.78464, *a  Ω , Pe finalΤ ∆Τ = 3.59808, ∞Θ = -0.5, Z*=0.2 
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igure 43 Comparison of Dimensionless Wall Temperature Profiles at different Brinkman numbers,

 

 

=oNuF 1.0, 

=1.8, = 0.1, = 0.05459 = 0.5, =28.78464, *a  Ω , Pe finalΤ ∆Τ = 3.59808, ∞Θn = -0.5, Z*=3. 
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Figure 44 Dimensionless Temperature Profiles at different Brinkman numbers,
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 71



 

 
 

2

4

6

8

10

12

14

16

18

0 0.05 0.1 0.15 0.2

Z*

N
u Br=0.1

Br=3

 

igure 45 Nusselt number at different Brinkman numbers,

 

=oNu 1.0, n=1.8, = 0.1, = 0.05459, =  *a Ω PeF

0.5, finalΤ =28.78464, ∆Τ = 3.59808, ∞Θ = -0.5, Z*=0.2 
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4.3.3 Nusselt Number 
 

is small, when the thermal resistance is large, the thermal 

wave from the inlet has more penetration along the pipe as in Figures 46 and 47. Note that the dimensionless inlet 

temperature takes the value of one in this case. 

 For higher values o , the influence of the ambient temperature on the wall temperature is very 

significant. When the extern ce is very small, with a high  number, the dimensionless wall 

temperature approaches the dimensionless ambient temperature, as displayed in Figure 49 and Figure 50. 

 The local Nusselt number increases with the increase in external resistance as displayed in Figure 51. At 

locations very far from the inlet, the local Nusselt number approaches a certain value.  

 
 
 

 
 
 
 
 
 
 
 
 
 

Figure 46 Dimensionless Bulk Temperature Profile at different Outside Nusselt numbers with n=1, = 1.0, 

 
  The outside Nusselt number is one of the major parameters containing information on the wall heat flux. It 

represents the external thermal resistance. When the 0Nu

f 0Nu

al resistan 0Nu

 
 
 
 
 
 
 
 
 
 
 
 
 
 

*a Ω = 
0.05459, = 1.0,Pe  Br =0.1, =28.78464finalΤ , ∆Τ = 3.59808, ∞Θ = -0.5, Z*=3. 
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Figure 47 Dimensionless Bulk Temperature Profile at different Outside Nusselt numbers with n=1, = 1.0, *a Ω = 
.05459, = 1.0,0 Pe  Br =0.1, =28.78464finalΤ , ∆Τ = 3.59808, ∞Θ = -0.5, Z*=0.2 
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Figure 48 Dimensionless Temperature Profile at different Outside Nusselt numbers with n=1, = 1.0, *a Ω = 
.05459, = 1.0,Pe  Br =0.1, =28.78464finalΤ , ∆Τ = 3.59808, ∞Θ0 = -0.5, Z*=0.2 
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Figure 49 Dimensionless Wall Temperature Profile at different Outside Nusselt numbers with n=1, *a = 1.0, Ω = 
0.05459, Pe = 1.0, Br =0.1, finalΤ =28.78464, ∆Τ = 3.59808, ∞Θ = -0.5, Z*=3. 

 
 

 

 

 
 
 
 
 
 
 
 
 
 

 
 

Figure 50 Dimensionless Wall Temperature Profile at different Outside Nusselt numbers with n=1, = 1.0, 
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Figure 51 Local Nusselt number at different Outside Nusselt numbers with n=1, *a = 1.0, = 0.05459, = 1.0, Ω Pe
Br =0.1, =28.78464 = 3.59808finalΤ , ∆Τ , ∞Θ = -0.5, Z*=0.2 
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4.4 CONCLUSIONS AND FUTURE WORK 

In most polymer processing applications and in lubrication systems the changes of temperature with 

osition and time are significant. In the manufacture of plastic objects, it starts by melting plastic pellets and then 

 pl nt 

the g pro n t od processing operations, such as extrusion, and in 

lubrication problems, the temperature rise by viscous dissipation is considerable.  The estimation of viscous heating 

effects and local temperatures is of particular interest in polymer flow problems because of the thermal instability of 

polymeric liquids; chemical degradation can occur if hot spots develop in the processing line.  

 In this dissertation, the transient conjugate heat transfer problem for fully-developed laminar flow of non-

Newtonian fluids in a circular duct is studied by numerical analysis. A control volume based finite difference 

method is adopted in the numerical procedure for the integration of the governing equations. For the non-Newtonian 

fluid part, the power-law model is used. Heat generation from viscous dissipation is also taken into account and is 

represented by the Brinkman number. The steady-state results agree with the Graetz solution very well, and the 

transient solution is in good agreement with the results obtained from commercial engineering software as well. We 

 
 
 
 

 Transient forced convection heat transfer in ducts is of great importance to the design of heat exchanger 

systems. The variety of applications ranges from compact heat exchangers to cooling devices in electronics and 

aerospace, involving Newtonian as well as non-Newtonian fluids. Especially regenerative type heat exchangers, 

through which hot and cold fluids pass in succession, motivated the study of thermal response of duct flows to 

imposed cyclic variation in boundary conditions.  The processes such as start-up, shut-down, power-surge, pump 

failure have also stimulated investigations to determine the transient thermal response of duct flows.  

 There are a large number of heat exchangers designed and manufactured for the food and chemical process 

industries to heat and cool non-Newtonian fluids. In the design of the control systems of heat transfer devices in 

organic-cooled nuclear reactors, it is important to have a detailed knowledge of the non-Newtonian fluid flow and 

heat transfer for circular ducts.  The fluids, such as polymer solutions or melts, greases, starch suspensions, 

mayonnaise, paper pulp, soap and detergent slurries, are non-Newtonian. 

 

p

performing a sequence of processing operations on the molten material. The heat transfer ays significa role in 

coolin cess to obtai he finished pr uct. In high speed 
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also investigated the effects of non uid and bulk temperatures. In this 

study, a special focus is placed on the effects of the flow x, Brinkman and, Nusselt numbers. The increment of 

flow index leads to the increase of wall temperature. The steeper velocity gradient in the wall region for lower 

power-law index causes enhancement of the local Nusselt umber. At locations very far from the inlet, local Nusselt 

umber 

ently, the heat 

ansfer 

an interesting phenomenon that has never 

-dimensional parameters especially on wall, fl

 inde

 n

n approaches to a certain value. The Brinkman number has the same effect on the wall temperature as well. 

The dimensionless wall temperature increases as the Brinkman number increases. The local Nusselt number also 

increases with increasing Brinkman number due to viscous heating. Another parameter, outside Nusselt number, 

represents the external resistance. Higher outside Nusselt numbers cause the wall temperature to approach to the 

ambient temperature. The local Nusselt number also increases with the increase in external resistance.   

 The viscosity of non-Newtonian fluids varies with both shear rate and temperature. Consequ

tr differs from those obtained with a constant property fluid. As part of the future work, temperature dependent 

model can be used to consider the temperature-dependent viscosity of a non-Newtonian fluid. 

 Relative to the complex geometries often found in industry. Therefore, different geometries should also be 

studied in the future. As an example, the physical mechanism of the heat transfer enhancement for the non-

Newtonian fluids in the rectangular ducts has not been clearly understood, 

been observed in a circular pipe flow.   

 Even today, there is a lack of experimental data for heat transfer coefficients which are required for the 

design of heat exchangers. An experimental study is required to fully verify the correlation of the numerical 

investigation. The current study will help to set up such an experimental research, especially for rig design and 

planning.
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APPENDIX A 

AN E 

!ANSYS INPUT FILE by Alan L.Briggs 

!This program calculates the velocity and the temperature distributions !for conjugate heat transfer problem. 

/batch 

/TITLE,CONJUGATE HEAT TRANSFER 

/config,nproc,4                         ! 4 processors to be used 

/PREP7 

/unit,si 

SMRT,OFF 

ET,1,FLUID141,,,2                       ! 2D AXISYMMETRIC XR SYSTEM 

MSHK,1                                  ! MAPPED AREA MESH 

MSHA,0,2D                               ! QUAD ELEMENTS 

!DIMENSIONS AND PROPERTIES 

PI   = ACOS(-1) 

L    = 0.0125                           ! PIPE LENGTH (M) 

R    = 0.0025                           ! PIPE RADIUS (M) 

RF   = 0.0000926                        ! NEAR CENTER LOCATION (M) 

PIN  = 0.0375                           ! INLET PRESSURE (PA) 

TIN  = 300.0                            ! INLET TEMPERATURE (K) 

TAMB = 300.0                            ! AMBIENT TEMPERATURE (K) 

RHO  = 1.1614                           ! FLUID DENSITY (KG/M**3)  

MU   = 184.6E-07                        ! FLUID VISCOSITY (KG/(M*SEC))

 
 
 
 

SYS INPUT FIL
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K    = 0.0263                           ! FLUID THERMAL CONDUCTIVITY (W/(M*K)) 

CP   = 1007                             ! FLUID SPECIFIC HEAT (J/(KG*K)) 

RSO  = 0.0002                           ! SOLID WIDTH   

H    = 250                              ! HEAT TRANSFER W/M**2*K)   

RECTNG,,L,,RF 

RECTNG,,L,RF,R 

RECT,,L,R,R+RSO 

EASE RANGE OLERANCE 

,,,2,4,2 

D RADIAL LINE DIVISIONS 

,5,7,2 

,ALL,,,13 

2 

NE DIVISIONS 

 COFFICIENT (

nummrg,all,0.0000001                     !INCR  OF T

numcmp,all 

LSEL,S

!LESIZE,ALL,,,12,-2                      ! GRADE

LESIZE,ALL,,,1 

LSEL,S,,

LESIZE

LSEL,S,,,1,3,

LSEL,A,,,6 

!LESIZE,ALL,,,50,1                       ! GRADED AXIAL LI

LESIZE,ALL,,,50 

ASEL,S,,,1 

ASEL,A,,,2 

ALLSEL,BELOW,AREA 

MAT,1                                    ! FLUID  

AMESH,ALL 

/PNUM,MAT,1  

ALLSEL,ALL 

ASEL,S,,,3 

ALLSEL,BELOW,AREA 

LSEL,S,,,8,10,2 



 

LESIZE,ALL,,,5 

LSEL,S,,,9 

LESIZE,ALL,,,50 

MAT,2                                     !SOLID REGION 

AMESH,3 

ALLSEL,ALL 

!LSEL,S,,,3                              ! NO-SLIP WALL BOUNDARY 

                  ! SYMMETRY BOUNDARY 

                             ! INLET BOUNDARY 

S,PIN 

   ! OUTLET BOUNDARY 

,8055                          ! SOLID PROPERTIES (AISI 302)          

   ! SOLID THERMAL CONDUCTIVITY 

                     ! SOLID SPECIFIC HEAT 

!NSLL,S,1 

!D,ALL,VX 

!D,ALL,VY 

allsel,all 

LSEL,S,,,1             

NSLL,S,1 

D,ALL,VY 

LSEL,S,,,4  

LSEL,A,,,7  

NSLL,S,1 

D,ALL,VY 

D,ALL,PRE

LSEL,S,,,2  

LSEL,A,,,5                            

NSLL,S,1 

D,ALL,VY 

D,ALL,PRES 

ALLSEL 

MP,DENS,2

mp,kxx,2,15                          

MP,C,2,480         
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MP,DENS,1,RHO                           ! FLUID DENSITY 

MU                            ! FLUID VISCOSITY 

                  ! FLUID SPECIFIC HEAT                  

L CONDUCTIVITY 

                     ! INITIAL TEMPERATURE 

U,FLOW,1                      ! STEADY-STATE SOLUTION 

LU,TEMP,1    

R,EXEC,350                    ! # OF GLOBAL ITERATIONS 

,ITER,CHEC,100                    ! CHECKPOINT FREQUENCY 

ERATURE 

UTP,TAUW,T                      ! OUTPUT WALL SHEAR STRESS 

I,DENS,RHO         ! initial density for all fluid regions 

I,VISC,MU          ! initial viscosity for all fluid regions 

id regions 

I,SPHT,CP          ! initial specific heat for all fluid regions 

,PRES,1.E-09      ! convergence criterion 

NAME    

MTID    

ME,'time' 

ime.func   

MP,VISC,1,

MP,C,1,CP             

mp,kxx,1,K                              ! FLUID THERMA

allsel,all 

d,all,temp,320     

/SOLU     

FLDATA,SOL

FLDATA,SO

FLDATA,ITE

FLDATA

FLDATA,TEMP,NOMI,TIN                    ! NOMINAL TEMP

FLDATA,O

FLDA,NOM

FLDA,NOM

FLDA,NOMI,COND,K           ! initial conductivity for all flu

FLDA,NOM

FLDA,TERM

solve 

/prep7 

ddele,all,temp 

*DEL,_FNC

*DEL,_FNC

*SET,_FNCNA

! /INPUT,t

*DIM,%_FNCNAME%,TABLE,6,12,1 

!    

! Begin of equation: 320+(40*sin((2*{PI}/32)*{TIME}))    
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%_FNCNAME%(0,0,1)= 0.0, -999 

%_FNCNAME%(2,0,1)= 0.0   

%_FNCNAME%(3,0,1)= 0.0   

%_FNCNAME%(4,0,1)= 0.0   

%_FNCNAME%(5,0,1)= 0.0   

E%(0,1,1)= 1.0, -1, 0, 2, 0, 0, 0    

 -3, 0, 1, -1, 3, -2  

f equation: 320+(40*sin((2*{PI}/32)*{TIME}))  

                        ! INLET TEMPERATURE VARIATIONS 

   

ONV,H,TAMB                      ! APPLY CONVECTION H,TAMB 

%_FNCNAME%(6,0,1)= 0.0   

%_FNCNAM

%_FNCNAME%(0,2,1)= 0.0, -2, 0, 3.14159265358979312, 0, 0, -1 

%_FNCNAME%(0,3,1)=   0,

%_FNCNAME%(0,4,1)= 0.0, -1, 0, 32, 0, 0, -3  

%_FNCNAME%(0,5,1)= 0.0, -2, 0, 1, -3, 4, -1  

%_FNCNAME%(0,6,1)= 0.0, -1, 0, 1, -2, 3, 1   

%_FNCNAME%(0,7,1)= 0.0, -1, 9, 1, -1, 0, 0   

%_FNCNAME%(0,8,1)= 0.0, -2, 0, 40, 0, 0, -1  

%_FNCNAME%(0,9,1)= 0.0, -3, 0, 1, -2, 3, -1  

%_FNCNAME%(0,10,1)= 0.0, -1, 0, 320, 0, 0, -3    

%_FNCNAME%(0,11,1)= 0.0, -2, 0, 1, -1, 1, -3 

%_FNCNAME%(0,12,1)= 0.0, 99, 0, 1, -2, 0, 0  

! End o

!--> 

LSEL,S,,,4,7,3 

NSLL,S,1 

D,ALL,TEMP,%time%

allsel,all  

LSEL,S,,,9 

NSLL,S,1                    

SF,ALL,C

ALLSEL,all 
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/solu 

FLDATA,SOLU,TRANS,1                     ! TRANSIENT SOLUTION 

              ! # OF GLOBAL ITERATIONS 

             ! ACTIVATE ENERGY EQUATION 

              ! DEACTIVATE FLOW EQUATIONS 

LAXATION FOR TEMP 

TEP 

IME 

HEAT FLUX 

y 

 

T 

NTOURS OF AXIAL VELOCITY 

(2) 

,2,,50 

 

FLDATA,TIME,GLOB,350      

FLDATA,SOLU,TEMP,T         

FLDATA,SOLU,FLOW,F        

!fldata,meth,enrg,3 

FLDATA,RELX,TEMP,1.0                    ! NO RE

FLDATA,TIME,TEMP,1e-17,    

FLDATA,TIME,STEP,1                      ! TIME S

FLDATA,TIME,TEND,32                     ! FINAL T

FLDATA,TIME,NUMB,32 

FLDATA,STEP,APPE,1 

FLDATA,OUTP,HFLU,T                      ! OUTPUT 

FLDATA,OUTP,HFLM,T   

save 

solve                                   !solve for temperature onl

FINISH 

/post1                                  ! POSTPROCESSING

SET,LAST 

EPLO

/CONTOUR,1,50 

/TITLE,CO

PLNSOL,VX 

VXC=VX

PATH,PIPE

PPATH,1,,L,0,0 

PPATH,2,,L,R,0 

PDEF,VX,VX
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PDEF,TEMP,TEMP 

S OF WALL SHEAR STRESS 

          ! WALL SHEAR STRESS  

IPLY VX TIMES TEMP 

Y ABOVE TIMES R COORDINATE 

,2/VXM/R**2        ! INTEGRATE TEMPERATURE ALONG PATH 

T,TM                 ! GET OUTLET MEAN TEMPERATURE 

    

,TW_O,PLNSOL,,MAX                   ! GET OUTLET WALL TEMPERATURE 

TERLINE TEMPERATURE 

S                                 ! LIST CURRENT PARAMETER VALUES 

ADIAL COORDINATE, (M) 

,Y,VELOCITY, (M/SEC) 

 T(R) 

MPERATURE, (K) 

P                             ! PLOT TEMP ALONG PATH 

MPERATURE PROFILE 

PERATURE, (K) 

L COORDINATE, (M) 

2,,50 

PCALC,MULT,PROD1,VX,S 

PCALC,INTG,VXM,PROD1,S,2/R**2 

*GET,VXM,PATH,,LAST,VXM                 ! MEAN AXIAL VELOCITY  

MDOT= RHO*VXM*PI*R**2                   ! MASS FLOW RATE 

/TITLE,CONTOUR

plnsol,tauw                              

*GET,TAU,PLNSOL,,MAX          

PCALC,MULT,PROD2,VX,TEMP                ! MULT

PCALC,MULT,PROD3,PROD2,S                ! MULTIPL

PCALC,INTG,TM,PROD3,S

*GET,TM_O,PATH,,LAS

/TITLE,CONTORS OF TEMPERATURE 

PLNSOL,TEMP                    

*GET

TC_O = TEMP(2)                          ! GET OUTLET CEN

*STATU

/TITLE,AXIAL VELOCITY PROFILE, VX(R) 

/AXLAB,X,R

/AXLAB

PLPATH,VX         

/TITLE,OUTLET TEMPERATURE PROFILE,

/AXLAB,Y,TE

PLPATH,TEM

/TITLE,WALL TE

/AXLAB,Y,TEM

/AXLAB,X,AXIA

PATH,AXIAL,
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PPATH,1,,0,R,0 

PPATH,2,,L,R,0 

PDEF,VX1,VX 

PDEF,WALL TEMP,TEMP 

plpath,WALL TEMP 

NSEL,S,LOC,X,0.0075                         !RESULTS ALONG PIPE-3L/5 

PRNSOL,TEMP 

FINISH 
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APPENDIX B 

UNSTEADY CONJUGATE HEAT TRA IRCULAR DUCT (FULLY-IMPLICIT) 

************************************************************************ 

*                  UNSTEADY CONJUGATE HEAT TRANSFER                                           * 

*                IN A CIRCULAR DUCT (Fully-Implicit)                                                         * 

*                      by Alan L. Briggs                                                                                          * 

************************************************************************ 

 C     THE FOLLOWING ASSIGNS VARIABLES AS REAL OR INTEGER 

      PARAMETER(NDIM=50,NDIMR=50,NDIMZ=1,ZNODES=30) 

      REAL*8  A(NDIM,NDIM),B(NDIM),TEMP(NDIMR) 

     .,OLDTEMP(NDIMR,ZNODES),INTEMP(NDIMR), FLUX(ZNODES), 

     . OLDTIME,NEWTEMP(NDIMR,ZNODES),BULK(ZNODES) 

     .,FTIME,DTIME,VEL, THETAINF,RN,RS,ROD,ROU,LOCR,DELRS, 

     .DELRN,AW,AS,AN,DELZ,POWER,NUSSELT,ASTAR,OMEGA,PECKLET 

     .,BRINKMAN,VISD,VELN,VELS,SOMET,CRN,CRS,NODECOUNT 

     .,UPBULK,DOWNBULK,DIMNUSS(ZNODES) 

      INTEGER IPVT(NDIM),N,I,J,IOUT,IFLAG,IIN,L 

      N = NDIMR*NDIMZ 

************************************************************************* 

C     INPUT VALUES 

************************************************************************* 

*     OPEN(6,FILE='WALL.OUT',STATUS='NEW') 

      NODECOUNT=NDIMR*ZNODES

 
 
 
 

NSFER IN A C
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      POWER=1. 

      NUSSELT=23.764 

      BRINKMAN=0.000000279 

      ASTAR=0.00378 

      OMEGA=0.0546 

      PECKLET=14.01245 

      IIN=5 

ODECOUNT 

UT3.DAT',STATUS='NEW') 

gram to solve unsteady conjugate heat transfer 

ESPECTIVELY 

      IOUT=6 

      ROD=0 

      ROU=1 

      ZIN=0 

      ZOUT=3 

      OLDTIME=0 

      DTIME=0.00015 

      FTIME=DTIME*1000 

      TOL=0.00000001 

      THETAINF=-0.5 

      GAPR=ROU-ROD  

      GAPZ=ZOUT-ZIN 

      DISR=GAPR/(NDIMR-0.5) 

      write(6,*)'DISR=',DISR,'      ', 'NODECOUNT', N

      DISZ=GAPZ/(ZNODES)     

*      OPEN(IOUT,FILE='INP

      WRITE(IOUT,100) 

100   FORMAT(/,'   Pro

     . problem') 

  C     DISTANCES FROM POINT P TO N,S,E,W, R

      DELRN=DISR 
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      DELRS=DISR 

,1 

 

 

EMP DISTRIBUTION       

E=OLDTIME+DTIME 

DIMR,1 

P(I)=SIN(OMEGA*OLDTIME) 

=INTEMP(I) 

met,'Inlet temp' 

SZ 

N 

ETAINF+OLDTEMP(1,L)*AO   

CR-DISR 

      DELZ=DISZ 

      DO I=1,NDIMR,1 

      DO L=1,ZNODES

      OLDTEMP(I,L)=0

      ENDDO 

      ENDDO

C     INLET T

 777  OLDTIM

      DO I=1,N

      INTEM

           SOMET

      ENDDO 

C      write(IOUT,*) so

            ZLOC=0 

      DO L=1,ZNODES,1 

      ZLOC=ZLOC+DI

      LOCR=1.0 

C     WALL CONDITIO

      AS=1/DELRS   

      AO=1/(ASTAR*DTIME) 

      A(1,1)=AS+AO+NUSSELT 

      A(1,2)=-AS 

      B(1)=NUSSELT*TH

      DO J=2,NDIMR-1 

      LOCR=LO

      CRN=LOCR+DISR 

      CRS=LOCR-DISR 
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      RN=LOCR+DISR/2 

SR/2 

+1)/(POWER+1))*(1-RN**((POWER+1)/POWER)) 

)/(POWER+1))*(1-LOCR**((POWER+1)/POWER)) 

+1)/(POWER+1))*(1-RS**((POWER+1)/POWER)) 

KLET*VEL*((RN**2)-(RS**2))/(2.*DELZ) 

/(DELRN) 

IME) 

S+AO 

INKMAN*LOCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1)) 

EMP(J)+OLDTEMP(J,L)*AO+VISD 

R-DISR 

WER+1))*(1-LOCR**((POWER+1)/POWER)) 

ER+1))*(1-RN**((POWER+1)/POWER))        

OWER+1)/(POWER+1))*(1-RS**((POWER+1)/POWER)) 

L*((RN**2))/(2.*DISZ) 

(1.0/DTIME)    

      RS=LOCR-DI

      VELN=((3*POWER

      VEL=((3*POWER+1

      VELS=((3*POWER

      AW=PEC

      AN=(RN)

      AS=(RS)/(DELRS) 

      AO=(((RN**2)-(RS**2))/2.)*(1./DT

      A(J,J)=AW+AN+A

      A(J,J+1)=-AS 

      A(J,J-1)=-AN 

      VISD=BR

     c*((VELN-VELS)**2) 

      B(J)=AW*INT

      ENDDO 

*     Next to Center 

      LOCR=LOC

      RN=LOCR+DISR/2 

      RS=0 

      VEL=((3*POWER+1)/(PO

      VELN=((3*POWER+1)/(POW

      VELS=((3*P

*      WRITE(6,*) 'CENTER VEL',VELS 

      AW=PECKLET*VE

      AN=(RN)/(DELRN) 

      AS=0    

      AO=(((RN**2))/2)*
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      VISD=BRINKMAN*LOCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1)) 

) 

 

iginal A matrix is:') 

) 

T,155) 

RMAT(20F8.4) 

OSTION 

T,NDIM,IOUT,IFLAG) 

AG .LT. 0) STOP 

 

(IOUT,400) 

 

     c*((VELN-VELS)**2

      A(NDIMR,NDIMR)=AW+AN+AO 

      A(NDIMR,NDIMR-1)=-AN 

      B(NDIMR)=AW*INTEMP(NDIMR)+OLDTEMP(NDIMR,L)*AO+VISD

*        WRITE(IOUT,150) 

*150   FORMAT('  The or

*      DO I = 1,N 

*              WRITE(IOUT,200) (A(I,J),J=1,N) 

*200           FORMAT(400F8.4

*      ENDDO 

*        WRITE(IOU

*155   FORMAT('  The original B matrix is:') 

*      DO I = 1,N 

*              WRITE(IOUT,222) B(I) 

*222          FO

*      ENDDO 

C  DO THE LU DECOMP

      CALL LUD(A,N,IPV

      IF (IFL

*      WRITE(IOUT,300) 

*300   FORMAT(/,'  The compact LU matrix is:') 

*      DO I = 1,N 

*              WRITE(IOUT,350) (A(I,J),J=1,N)

*350           FORMAT(20F8.4) 

*      ENDDO 

*      WRITE

*400   FORMAT(/,'  The pivoting order is:')
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*      WRITE(IOUT,450) (IPVT(I), I=1,N) 

*450   FORMAT(5I6) 

      CALL SOLVE(A,N,IPVT,B,NDIM) 

*      WRITE(IOUT,500) 

*500   FORMAT(/,'  The solution to the set of equations is:') 

*      DO I=1,N 

*              WRITE(IOUT,550) I,B(I) 

*550           FORMAT(' I = ',I3,' X(I) = ',E12.5) 

RATURE=' ,I,TEMP(I) 

0 

/(POWER+1))*(1-LOCR**((POWER+1)/POWER)) 

BULK 

=(VEL*LOCR*DISR)+DOWNBULK       

UPBULK/DOWNBULK 

UMBER 

DISR/(BULK(L)-TEMP(1)) 

*      ENDDO 

      DO I=1,NDIMR,1 

      TEMP(I)=B(I) 

C       WRITE(6,*) 'TEMPE

      ENDDO 

      LOCR=1.0 

      BULK(L)=0 

      DIMNUSS(L)=0 

      UPBULK=

      DOWNBULK=0 

      DO I=2,NDIMR,1 

      LOCR=LOCR-DISR 

      VEL=((3*POWER+1)

      UPBULK=(VEL*TEMP(I)*LOCR*DISR)+UP

      DOWNBULK

      ENDDO 

C     BULK TEMPERATURE 

      BULK(L)=

C     LOCAL NUSSELT N

      DIMNUSS(L)=-2*(TEMP(1)-TEMP(2))/
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         IF((ABS(OLDTIME-FTIME)).LT.TOL) THEN 

TEMPERATURE AT Z=',ZLOC,'    ',BULK(L) 

I) 

LDTIME-FTIME)).LT.TOL) THEN 

TION at=','         ','T=',FTIME,'    ','Z=',ZLOC 

******RESULTS**********' 

T TIME=',OLDTIME     

IOUT,*) 'NEAR-CENTER TEMP=',TEMP(NDIMR) 

DES,1 

EWTEMP(I,L) 

IMR) 

7 

******************************** 

      WRITE(6,*) 'BULK

      ENDIF 

      DO I=1,NDIMR,1 

      NEWTEMP(I,L)=TEMP(I) 

      INTEMP(I)=TEMP(

      ENDDO                       

      ENDDO 

      IF((ABS(O

      WRITE(6,*) ' SOLU

      write(6,*) '****

      WRITE(IOUT,*) 'WALL TEMP=',TEMP(1),'  A

*      WRITE(

      GO TO 333 

      ELSE 

      DO I=1,NDIMR,1 

      DO L=1,ZNO

      OLDTEMP(I,L)=N

      ENDDO 

      ENDDO 

*      WRITE(IOUT,*) 'WALL TEMP=',TEMP(1),'  AT TIME=',OLDTIME     

*       WRITE(IOUT,*) 'NEAR-CENTER TEMP=',TEMP(ND

*     .,'  AT TIME=',OLDTIME 

      GO TO 77

      ENDIF 

 *********************************

C     THE END OF PROGRAM 

 333  LOCR=1 
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      DO I=1,NDIMR,1 

      WRITE(6,999)I,TEMP(I),LOCR 

 999  FORMAT('NODE=',I3,'   ','TEMPERATURE=',F20.15,'     ' 

NODES,1 

1,ZNODES,1 

DISZ                 

URE                

RE 

T('WALL TEMP=',F20.15,'   ','AT Z=',F8.5) 

VT,NDIM,IOUT,IFLAG) 

---------------------------------------------- 

UBROUTINE PRODUCES THE LU DECOMPOSITION OF A MATRIX A[I,J]. 

EDURE. 

ATRIX OF SIZE NDIM BY NDIM 

  -  THE MAXIMUM ROW DIMENSION OF A 

     .,'AT R=',F8.5)    

      LOCR=LOCR-DISR 

      ENDDO  

         WHERE=0 

      DO L=1,Z

      WHERE=WHERE+DISZ 

C     LOCAL NUSSELT NUMBER                                

      WRITE(6,998) DIMNUSS(L), WHERE 

 998  FORMAT('NUSSELT=',F20.15,'   ','AT Z=',F8.5) 

      ENDDO 

      WHERE=0 

      DO L=

      WHERE=WHERE+

C     WALL TEMPERAT

      WRITE(6,967)NEWTEMP(1,L),WHE

 967  FORMA

      ENDDO 

      STOP 

      END     

      SUBROUTINE LUD(A,N,IP

C  -----------------

C     THIS S

C     THE A-MATRIX IS DESTROYED DURING EXECUTION OF THIS PROC

C     INPUT:  A  -  A SQUARE M

C             NDIM
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C             IOUT  -  LOGICAL DEVICE NUMBER FOR OUTPUT 

TRIX A[I,J] BEING PROCESSED. 

IX A[I,J] 

 ARRAY CONTAINING THE ORDER OF THE ROWS OF THE 

GED MATRIX DUE TO PIVOTING 

G -  SIGNAL OF STATUS ON RETURN 

 = 1, NORMAL RETURN 

DICATION OF SMALL PIVOT ELEMENT 

--------------------------------- 

IOUT,IFLAG 

 = I 

VT,N,1,NDIM) 

 

R OR NEAR SINGULAR  ',//) 

N 

 

 THE REST OF THE FIRST ROW 

C             N  -  THE SIZE OF THE MA

C     OUTPUT: A  -  THE LU DECOMPOSITION OF THE MATR

C             IPVT  -  AN

C                      REARRAN

C             IFLA

C               IFLAG

C               IFLAG = -1, IN

C  -----------------------------------

      REAL*8 A(NDIM,N),  SUM 

      INTEGER IPVT(N),I,J,JM1,JP1,K,NM1,

      DO I = 1,N 

         IPVT(I)

      ENDDO 

      CALL PIVOT_A(A,IP

      IF (ABS(A(1,1)). LT. 1.0E-09) THEN

          WRITE(IOUT,10) 

10        FORMAT(//,'   MATRIX IS SINGULA

          IFLAG = -1 

          RETUR

      ENDIF

C  MODIFY

      DO I = 2,N 

         A(1,I) = A(1,I)/A(1,1) 

      ENDDO 

      NM1 = N - 1 

C  LOOP THROUGH REST OF ROWS EXCEPT THE LAST 

      DO J = 2,NM1 
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         JM1 = J - 1 

C  FIND THE VALUES FOR THE L-MATRIX COLUMN 

         DO I = J,N 

            SUM = 0.0 

            DO K = 1,JM1 

               SUM = SUM + A(I,K)*A(K,J) 

            ENDDO 

            A(I,J) = A(I,J) - SUM 

         ENDDO 

         CALL PIVOT_A(A,IPVT,N,J,NDIM) 

IOUT,10) 

1 

RN 

RIX ROW 

M1 

M = SUM + A(J,I)*A(I,K) 

 (A(J,K) - SUM)/A(J,J) 

ST DIAGONAL ELEMENT OF THE LU MATRIX 

         IF (ABS(A(J,J)). LT. 1.0E-05) THEN 

            WRITE(

            IFLAG = -

            RETU

         ENDIF 

C  FIND THE VALUES FOR THE U-MAT

         JP1 = J + 1 

         DO K = JP1,N 

            SUM = 0.0 

            DO I = 1,J

               SU

            ENDDO 

            A(J,K) =

         ENDDO 

      ENDDO 

C  FIND THE LA

      SUM = 0.0 

      DO K = 1,NM1 
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         SUM = SUM + A(N,K)*A(K,N) 

,N) - SUM 

)). LT. 1.0E-05) THEN 

ETURN WITH GOOD LU MATRIX 

IVOT_A(A,IPVT,N,JCOL,NDIM) 

------------------------------------------------ 

OUTINE SEARCHES THE jTH COLUMN OF THE A[I,J] MATRIX FOR THE 

RHANGES ROWS TO 

LEMENT ON THE DIAGONAL.  IT RECORDS THE CHAGES IN 

T(I). 

---------------------------------------------- 

,N),BIG,TEMP 

,ITEMP,JCOL_P1 

 ELEMENTS IN THE COLUMN ARE BIGGER THAN DIAGONAL ELEMENT 

(A(JCOL,JCOL)) 

 = JCOL + 1 

BS(A(I,JCOL)) 

 BIG) THEN 

      ENDDO 

      A(N,N) = A(N

      IF (ABS(A(N,N

          WRITE(IOUT,10) 

          IFLAG = -1 

          RETURN 

      ENDIF 

C  NORMAL R

      IFLAG = 1 

      RETURN 

      END 

      SUBROUTINE P

C  -------------------

C  THIS SUBR

C  LARGEST ELEMENT BELOW THE DIAGONAL.  IT THEN INTE

C  PLACE THIS E

C  THE ARRAY IPV

C  ---------------------

      REAL*8 A(NDIM

      INTEGER IPVT(N),JCOL,I,INDEX

C  FIND IF ANY

      INDEX = JCOL 

      BIG = ABS

      JCOL_P1

      DO I = JCOL_P1,N 

         TEMP = A

         IF (TEMP .GT.
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            INDEX = I 

            BIG = TEMP 

S IF NECESSARY 

. JCOL) THEN 

P = A(JCOL,I) 

X,I) = TEMP 

P = IPVT(JCOL) 

A,N,IPVT,B,NDIM) 

 COMBINED LU MATRIX "A" TO SOLVE 

ER OF EQUATIONS TO BE SOLVED 

HE REARRANGEMENT OF THE ROWS 

M THE LU DECOMPOSTION 

AND SIDE OF THE SET OF EQUATIONS 

ION VECTOR 

-------------------------- 

         ENDIF 

      ENDDO 

C  INTERCHANGE ROW

      IF (INDEX .NE

         DO I = 1,N 

            TEM

            A(JCOL,I) = A(INDEX,I) 

            A(INDE

         ENDDO 

         ITEM

         IPVT(JCOL) = IPVT(INDEX) 

         IPVT(INDEX) = ITEMP 

      ENDIF 

      RETURN 

      END 

      SUBROUTINE SOLVE(

C  --------------------------------------------------------------- 

C      THIS SUBROUTINE USES THE

C      A SYSTEM OF LINEAR EQUATIONS 

C      INPUT:   A - LU MATRIX 

C               N - NUMB

C            IPVT - A RECORD OF T

C                   OF A[I,J] FRO

C               B - RIGHT H

C      OUTPUT:  B - THE SOLUT

C  ---------------------------------------
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      REAL*8 A(NDIM,N), B(N), B_PRIM(80), SUM 

),I,J,IM1 

GE THE ELEMENTS OF THE B VECTOR & STORE THEM IN THE B_PRIM ARRAY. 

 

 DOING FORWARD SUBSTITUTION--LB' = B 

)/A(1,1) 

0 

M(J) 

M(I) = (B_PRIM(I) - SUM)/A(I,I) 

 FOR X BY BACK SUBSTITUTION--UX = B' 

      INTEGER IPVT(N

C  REARRAN

      DO I = 1,N

         B_PRIM(I) = B(IPVT(I)) 

      ENDDO 

C  OBTAIN B' BY

      B_PRIM(1) = B_PRIM(1

      DO I = 2,N 

         IM1 = I - 1 

         SUM = 0.

         DO J = 1,IM1 

            SUM = SUM + A(I,J)*B_PRI

         ENDDO 

         B_PRI

      ENDDO 

C  SOLVE

C  RESULTS STORED IN B ARRAY 

      B(N) = B_PRIM(N) 

      DO I = (N-1),1,-1 

         B(I) = B_PRIM(I) 

         DO J = (I+1),N 

            B(I) = B(I) - A(I,J)*B(J) 

         ENDDO 

      ENDDO 

      RETURN 

      END 
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APPENDIX C 
 



 

APPENDIX C 

GR M 

************************************************************************ 

*                       GRAETZ PROBLEM    BY ALAN L. BRIGGS                                        * 

************************************************************************ 

C     THE FOLLOWING ASSIGNS VARIABLES AS REAL OR INTEGER 

      PARAMETER(NDIM=50,NDIMR=50,NDIMZ=1,ZNODES=30) 

      REAL*8  A(NDIM,NDIM),B(NDIM),TEMP(NDIMR) 

     .,INTEMP(NDIMR), FLUX(ZNODES), 

     . NEWTEMP(NDIMR,ZNODES) 

     ., THETAINF,RN,RS,ROD,ROU,LOCR,DELRS, 

     .DELRN,AW,AS,AN,DELZ,CRN,CRS,NODECOUNT 

      INTEGER IPVT(NDIM),N,I,J,IOUT,IFLAG,IIN,L 

      N = NDIMR*NDIMZ 

************************************************************************* 

C     INPUT VALUES 

************************************************************************* 

*     OPEN(6,FILE='WALL.OUT',STATUS='NEW') 

      NODECOUNT=NDIMR*ZNODES 

      IIN=5 

      IOUT=6 

      ROD=0 

      ROU=1

 
 
 
 

AETZ PROBLE
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      ZIN=0 

      ZOUT=0.1 

      THETAINF=0.0 

      GAPR=ROU-ROD  

      GAPZ=ZOUT-ZIN 

      DISR=GAPR/(NDIMR+0.5) 

*      WRITE(6,*)'DISR=',DISR,'      ', 'NODECO T 

EMP(I),'INLET TEMP' 

 NODE 

CR-DISR 

CR+DISR 

R-DISR 

UNT', NODECOUN

      DISZ=GAPZ/(ZNODES)     

*      OPEN(IOUT,FILE='INPUT3.DAT',STATUS='NEW') 

      WRITE(IOUT,100) 

100   FORMAT(/,'   PROGRAM TO SOLVE GRAETZ PROBLEM') 

C     DISTANCES FROM POINT P TO N,S,E,W, RESPECTIVELY 

      DELRN=DISR 

      DELRS=DISR 

      DELZ=DISZ 

*     INLET TEMPERATURE 

      DO I=1,NDIMR,1 

      INTEMP(I)=1.0 

*      WRITE(IOUT,*) INT

      ENDDO 

      ZLOC=0 

      DO L=1,ZNODES,1 

      ZLOC=ZLOC+DISZ 

      LOCR=1.0 

*     FIRST

      LOCR=LO

      CRN=LO

      CRS=LOC
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      RN=LOCR+DISR/2 

ISR/2 

*2)-(RS**2)))/(2.*DELZ)) 

)))/(4.*DELZ))) 

 

SR 

SR 

ISR/2 

S**2)))/(2.*DELZ)) 

**4)))/(4.*DELZ))) 

(DELRS) 

+AN+AS 

TEMP(J) 

 

 

      RS=LOCR-D

      AW=0.5*(((((RN*

     C-((((RN**4)-(RS**4

      AN=(RN)/(DELRN)

      AS=(RS)/(DELRS) 

      A(1,1)=AW+AN+AS 

      A(1,2)=-AS 

      B(1)=AW*INTEMP(1)+AN*THETAINF 

      DO J=2,NDIMR-1 

      LOCR=LOCR-DISR 

*       WRITE(6,*) J,LOCR,' NODE LOC' 

      CRN=LOCR+DI

      CRS=LOCR-DI

      RN=LOCR+D

      RS=LOCR-DISR/2 

      AW=0.5*(((((RN**2)-(R

     C-((((RN**4)-(RS

      AN=(RN)/(DELRN) 

      AS=(RS)/

      A(J,J)=AW

      A(J,J+1)=-AS 

      A(J,J-1)=-AN 

      B(J)=AW*IN

       ENDDO 

*     NEXT TO CENTER 

      LOCR=LOCR-DISR

      RN=LOCR+DISR/2
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      RS=0 

      AW=((((RN**2)-(RS**2)))/(2.*DELZ))-((((RN**4)-(RS**4)))/(4.*DELZ)) 

AW+AN 

1)=-AN 

MP(NDIMR) 

UT,150) 

IX IS:') 

00) (A(I,J),J=1,N) 

5) 

ORIGINAL B MATRIX IS:') 

POSTION 

,NDIM,IOUT,IFLAG) 

. 0) STOP 

,300) 

OMPACT LU MATRIX IS:') 

N 

50) (A(I,J),J=1,N) 

8.4) 

      AN=(RN)/(DELRN) 

      AS=0    

      A(NDIMR,NDIMR)=

      A(NDIMR,NDIMR-

      B(NDIMR)=AW*INTE

*        WRITE(IO

*150   FORMAT('  THE ORIGINAL A MATR

*      DO I = 1,N 

*              WRITE(IOUT,2

*200           FORMAT(400F8.4) 

*      ENDDO 

*        WRITE(IOUT,15

*155   FORMAT('  THE 

*      DO I = 1,N 

*              WRITE(IOUT,222) B(I) 

*222          FORMAT(20F8.4) 

*      ENDDO 

C  DO THE LU DECOM

      CALL LUD(A,N,IPVT

      IF (IFLAG .LT

*      WRITE(IOUT

*300   FORMAT(/,'  THE C

*      DO I = 1,

*              WRITE(IOUT,3

*350           FORMAT(20F

*      ENDDO 
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*      WRITE(IOUT,400) 

IPVT(I), I=1,N) 

AT(5I6) 

IM) 

 THE SET OF EQUATIONS IS:') 

AT(' I = ',I3,' X(I) = ',E12.5) 

B(I) 

RATURE=' ,I,TEMP(I) 

AXIAL LOCATION=' ,ZLOC 

CR-DISR 

'   ','TEMPERATURE=',F20.15,'   ' 

R,1 

URE=' ,I,TEMP(I) 

*400   FORMAT(/,'  THE PIVOTING ORDER IS:') 

*      WRITE(IOUT,450) (

*450   FORM

      CALL SOLVE(A,N,IPVT,B,ND

*      WRITE(IOUT,500) 

*500   FORMAT(/,'  THE SOLUTION TO

*      DO I=1,N 

*              WRITE(IOUT,550) I,B(I) 

*550           FORM

*      ENDDO 

*      DO I=1,NDIMR,1 

*      TEMP(I)=

*       WRITE(6,*) 'TEMPE

*      ENDDO 

*     WRITE(6,*) '

      LOCR=1 

      DO I=1,NDIMR,1 

      LOCR=LO

      TEMP(I)=B(I) 

*      WRITE(6,999)I,TEMP(I),LOCR 

* 999  FORMAT('NODE=',I3,

*     .,'AT R=',F8.5)    

      ENDDO  

      DO I=1,NDIM

      INTEMP(I)=TEMP(I) 

*       WRITE(6,*) 'TEMPERAT

      ENDDO 
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      ENDDO            

****************************************************************** 

L LOCATION=' ,ZLOC 

I) 

RE=',F20.15,'   ' 

.5)    

ERE+DISZ       

'                           

S)=-(NEWTEMP(1,L)-NEWTEMP(2,L))/DISR/2  

L HEAT FLUX=',FLUX(L),'        ','AT Z=',WHERE 

-------------------------------------- 

INE PRODUCES THE LU DECOMPOSITION OF A MATRIX A[I,J]. 

IS DESTROYED DURING EXECUTION OF THIS PROCEDURE. 

RE MATRIX OF SIZE NDIM BY NDIM 

ION OF A 

T  -  LOGICAL DEVICE NUMBER FOR OUTPUT 

C     THE END OF PROGRAM 

      WRITE(6,*) 'AXIA

      LOCR=1 

      DO I=1,NDIMR,1 

      LOCR=LOCR-DISR 

      TEMP(I)=B(

      WRITE(6,999)I,TEMP(I),LOCR 

 999  FORMAT('NODE=',I3,'   ','TEMPERATU

     .,'AT R=',F8

      ENDDO  

       WHERE=0 

      DO L=1,ZNODES,1 

      WHERE=WH

*      WRITE(6,*) NEWTEMP(1,L),'WALL TEMP

      FLUX(LX

*      WRITE(6,*) 'WAL

      ENDDO 

      STOP 

      END     

      SUBROUTINE LUD(A,N,IPVT,NDIM,IOUT,IFLAG) 

C  -------------------------

C     THIS SUBROUT

C     THE A-MATRIX 

C     INPUT:  A  -  A SQUA

C             NDIM  -  THE MAXIMUM ROW DIMENS

C             IOU
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C             N  -  THE SIZE OF THE MATRIX A[I,J] BEING PROCESSED. 

ONTAINING THE ORDER OF THE ROWS OF THE 

 PIVOTING 

G -  SIGNAL OF STATUS ON RETURN 

NORMAL RETURN 

DICATION OF SMALL PIVOT ELEMENT 

------------------------------------------------ 

= I 

VT,N,1,NDIM) 

 THEN 

ULAR  ',//) 

N 

 

 THE REST OF THE FIRST ROW 

C     OUTPUT: A  -  THE LU DECOMPOSITION OF THE MATRIX A[I,J] 

C             IPVT  -  AN ARRAY C

C                      REARRANGED MATRIX DUE TO

C             IFLA

C               IFLAG = 1, 

C               IFLAG = -1, IN

C  --------------------

      REAL*8 A(NDIM,N),  SUM 

      INTEGER IPVT(N),I,J,JM1,JP1,K,NM1,IOUT,IFLAG 

      DO I = 1,N 

         IPVT(I) 

      ENDDO 

      CALL PIVOT_A(A,IP

      IF (ABS(A(1,1)). LT. 1.0E-09)

          WRITE(IOUT,10) 

10        FORMAT(//,'   MATRIX IS SINGULAR OR NEAR SING

          IFLAG = -1 

          RETUR

      ENDIF

C  MODIFY

      DO I = 2,N 

         A(1,I) = A(1,I)/A(1,1) 

      ENDDO 

      NM1 = N - 1 

C  LOOP THROUGH REST OF ROWS EXCEPT THE LAST 

      DO J = 2,NM1 

         JM1 = J - 1 
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C  FIND THE VALUES FOR THE L-MATRIX COLUMN 

         DO I = J,N 

            SUM = 0.0 

            DO K = 1,JM1 

               SUM = SUM + A(I,K)*A(K,J) 

            ENDDO 

            A(I,J) = A(I,J) - SUM 

         ENDDO 

         CALL PIVOT_A(A,IPVT,N,J,NDIM) 

IOUT,10) 

1 

RN 

RIX ROW 

M1 

M = SUM + A(J,I)*A(I,K) 

 (A(J,K) - SUM)/A(J,J) 

ST DIAGONAL ELEMENT OF THE LU MATRIX 

 + A(N,K)*A(K,N) 

         IF (ABS(A(J,J)). LT. 1.0E-05) THEN 

            WRITE(

            IFLAG = -

            RETU

         ENDIF 

C  FIND THE VALUES FOR THE U-MAT

         JP1 = J + 1 

         DO K = JP1,N 

            SUM = 0.0 

            DO I = 1,J

               SU

            ENDDO 

            A(J,K) =

         ENDDO 

      ENDDO 

C  FIND THE LA

      SUM = 0.0 

      DO K = 1,NM1 

         SUM = SUM
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      ENDDO 

      A(N,N) = A(N,N) - SUM 

)). LT. 1.0E-05) THEN 

ETURN WITH GOOD LU MATRIX 

IVOT_A(A,IPVT,N,JCOL,NDIM) 

------------------------------------------------ 

OUTINE SEARCHES THE JTH COLUMN OF THE A[I,J] MATRIX FOR THE 

RHANGES ROWS TO 

LEMENT ON THE DIAGONAL.  IT RECORDS THE CHAGES IN 

T(I). 

---------------------------------------------- 

,N),BIG,TEMP 

,ITEMP,JCOL_P1 

 ELEMENTS IN THE COLUMN ARE BIGGER THAN DIAGONAL ELEMENT 

(A(JCOL,JCOL)) 

 = JCOL + 1 

BS(A(I,JCOL)) 

 BIG) THEN 

      IF (ABS(A(N,N

          WRITE(IOUT,10) 

          IFLAG = -1 

          RETURN 

      ENDIF 

C  NORMAL R

      IFLAG = 1 

      RETURN 

      END 

      SUBROUTINE P

C  -------------------

C  THIS SUBR

C  LARGEST ELEMENT BELOW THE DIAGONAL.  IT THEN INTE

C  PLACE THIS E

C  THE ARRAY IPV

C  ---------------------

      REAL*8 A(NDIM

      INTEGER IPVT(N),JCOL,I,INDEX

C  FIND IF ANY

      INDEX = JCOL 

      BIG = ABS

      JCOL_P1

      DO I = JCOL_P1,N 

         TEMP = A

         IF (TEMP .GT.

            INDEX = I 
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            BIG = TEMP 

S IF NECESSARY 

. JCOL) THEN 

P = A(JCOL,I) 

X,I) = TEMP 

P = IPVT(JCOL) 

A,N,IPVT,B,NDIM) 

 COMBINED LU MATRIX "A" TO SOLVE 

ER OF EQUATIONS TO BE SOLVED 

HE REARRANGEMENT OF THE ROWS 

M THE LU DECOMPOSTION 

AND SIDE OF THE SET OF EQUATIONS 

ION VECTOR 

-------------------------- 

N), B(N), B_PRIM(80), SUM 

         ENDIF 

      ENDDO 

C  INTERCHANGE ROW

      IF (INDEX .NE

         DO I = 1,N 

            TEM

            A(JCOL,I) = A(INDEX,I) 

            A(INDE

         ENDDO 

         ITEM

         IPVT(JCOL) = IPVT(INDEX) 

         IPVT(INDEX) = ITEMP 

      ENDIF 

      RETURN 

      END 

      SUBROUTINE SOLVE(

C  --------------------------------------------------------------- 

C      THIS SUBROUTINE USES THE

C      A SYSTEM OF LINEAR EQUATIONS 

C      INPUT:   A - LU MATRIX 

C               N - NUMB

C            IPVT - A RECORD OF T

C                   OF A[I,J] FRO

C               B - RIGHT H

C      OUTPUT:  B - THE SOLUT

C  ---------------------------------------

      REAL*8 A(NDIM,
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      INTEGER IPVT(N),I,J,IM1 

GE THE ELEMENTS OF THE B VECTOR & STORE THEM IN THE B_PRIM ARRAY. 

 

 DOING FORWARD SUBSTITUTION--LB' = B 

)/A(1,1) 

0 

M(J) 

M(I) = (B_PRIM(I) - SUM)/A(I,I) 

 FOR X BY BACK SUBSTITUTION--UX = B' 

C  REARRAN

      DO I = 1,N

         B_PRIM(I) = B(IPVT(I)) 

      ENDDO 

C  OBTAIN B' BY

      B_PRIM(1) = B_PRIM(1

      DO I = 2,N 

         IM1 = I - 1 

         SUM = 0.

         DO J = 1,IM1 

            SUM = SUM + A(I,J)*B_PRI

         ENDDO 

         B_PRI

      ENDDO 

C  SOLVE

C  RESULTS STORED IN B ARRAY 

      B(N) = B_PRIM(N) 

      DO I = (N-1),1,-1 

         B(I) = B_PRIM(I) 

         DO J = (I+1),N 

            B(I) = B(I) - A(I,J)*B(J) 

         ENDDO 

      ENDDO 

      RETURN 

      END 
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APPENDIX D 

UNSTEADY CONJUGATE HEAT TRAN UCT (EXPLICIT-SCHEME ) 

************************************************************************ 

*         UNSTEADY CONJUGATE HEAT TRANSFER IN A CIRCULAR DUCT          * 

*                                                  (EXPLICIT SCHEME)                                                     * 

************************************************************************ 

C     THE FOLLOWING ASSIGNS VARIABLES AS REAL OR INTEGER 

      PARAMETER(NDIM=50,NDIMR=50,NDIMZ=1,ZNODES=30) 

      REAL*8 TEMP(NDIMR) 

     .,OLDTEMP(NDIMR,ZNODES),INTEMP(NDIMR), FLUX(ZNODES), 

     . OLDTIME,NEWTEMP(NDIMR,ZNODES) 

     .,FTIME,DTIME,VEL, THETAINF,RN,RS,ROD,ROU,LOCR,DELRS, 

     .DELRN,AW,AS,AN,DELZ,POWER,NUSSELT,ASTAR,OMEGA,PECKLET 

     .,BRINKMAN,VISD,VELN,VELS,SOMET,CRN,CRS,NODECOUNT 

      INTEGER N,I,J,IOUT,IIN,L 

      N = NDIMR*NDIMZ 

C     INPUT VALUES 

*     OPEN(6,FILE='WALL.OUT',STATUS='NEW') 

      NODECOUNT=NDIMR*ZNODES 

      POWER=1 

      NUSSELT=23.764 

      BRINKMAN=0.000000279 

      ASTAR=0.00378

 
 
 
 

SFER IN A CIRCULAR D
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      OMEGA=0.0546 

      PECKLET=14.01245 

      IIN=5 

      IOUT=6 

      ROD=0 

      ROU=1 

      ZIN=

RAM TO SOLVE UNSTEADY CONJUGATE HEAT TRANSFER 

IT SCHEME') 

ESPECTIVELY 

,1 

0 

      ZOUT=3 

      OLDTIME=0 

      DTIME=0.00015 

      FTIME=DTIME*1000 

      TOL=0.00000001 

      THETAINF=-0.5 

      GAPR=ROU-ROD  

      GAPZ=ZOUT-ZIN 

      DISR=GAPR/(NDIMR-0.5) 

      WRITE(6,*)'DISR=',DISR,'      ', 'NODECOUNT', NODECOUNT 

      DISZ=GAPZ/(ZNODES)     

*      OPEN(IOUT,FILE='INPUT3.DAT',STATUS='NEW') 

      WRITE(IOUT,100) 

100   FORMAT(/,'   PROG

     . PROBLEM-EXPLIC

  C     DISTANCES FROM POINT P TO N,S,E,W, R

      DELRN=DISR 

      DELRS=DISR 

      DELZ=DISZ 

      DO I=1,NDIMR,1 

      DO L=1,ZNODES
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      OLDTEMP(I,L)=0 

 

EMP DISTRIBUTION       

E=OLDTIME+DTIME 

DIMR,1 

P(I)=SIN(OMEGA*OLDTIME) 

INTEMP(I) 

 SOMET,'INLET TEMP' 

SZ 

N 

' 

T*THETAINF+OLDTEMP(1,L)*AO+AS*OLDTEMP(2,L))/AP  

R/2 

SR/2 

+1)/(POWER+1))*(1-RN**((POWER+1)/POWER)) 

)/(POWER+1))*(1-LOCR**((POWER+1)/POWER)) 

      ENDDO 

      ENDDO

C     INLET T

 777  OLDTIM

      DO I=1,N

      INTEM

       SOMET=

      ENDDO 

*      WRITE(IOUT,*)

      ZLOC=0 

      DO L=1,ZNODES,1 

      ZLOC=ZLOC+DI

      LOCR=1.0 

*     WALL CONDITIO

      AS=1/DELRS   

      AO=1/(ASTAR*DTIME)-AS-NUSSELT 

*      WRITE(6,*) AO,'AOWALL

      AP=AS+AO+NUSSELT 

      TEMP(1)=(NUSSEL

      DO J=2,NDIMR-1 

      LOCR=LOCR-DISR 

      CRN=LOCR+DISR 

      CRS=LOCR-DISR 

      RN=LOCR+DIS

      RS=LOCR-DI

      VELN=((3*POWER

      VEL=((3*POWER+1
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      VELS=((3*POWER+1)/(POWER+1))*(1-RS**((POWER+1)/POWER)) 

KLET*VEL*((RN**2)-(RS**2))/(2.*DELZ) 

/(DELRN) 

TIME))-AW-AN-AS 

O',J 

OCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1)) 

-VELS)**2) 

)*AO+VISD 

DTEMP(J-1,L)+AS*OLDTEMP(J+1,L))/AP     

R-DISR 

OCR**((POWER+1)/POWER)) 

ER+1))*(1-RN**((POWER+1)/POWER)) 

OWER+1))*(1-RS**((POWER+1)/POWER)) 

L*((RN**2))/(2.*DISZ) 

(1.0/DTIME))-AW-AN-AS    

AR CENTER AO' 

*LOCR*DISR*((ABS((VELN-VELS)/DISR))**(POWER-1)) 

      AW=PEC

      AN=(RN)

      AS=(RS)/(DELRS) 

      AO=((((RN**2)-(RS**2))/2.)*(1./D

*      WRITE(6,*) AO,'A

      AP=AW+AN+AS+AO 

      VISD=BRINKMAN*L

     C*((VELN

      TEMP(J)=(AW*INTEMP(J)+OLDTEMP(J,L

     C+AN*OL

      ENDDO 

*     NEXT TO CENTER 

      LOCR=LOC

      RN=LOCR+DISR/2 

      RS=0 

      VEL=((3*POWER+1)/(POWER+1))*(1-L

      VELN=((3*POWER+1)/(POW

       VELS=((3*POWER+1)/(P

*      WRITE(6,*) 'CENTER VEL',VELS 

      AW=PECKLET*VE

      AN=(RN)/(DELRN) 

      AS=0    

      AO=((((RN**2))/2)*

*      WRITE(6,*) AO,'NE

      VISD=BRINKMAN

     C*((VELN-VELS)**2) 

      AP=AW+AN+AO 
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      TEMP(NDIMR)=(AW*INTEMP(NDIMR)+OLDTEMP(NDIMR,L)*AO+VISD 

PERATURE=' ,I,TEMP(I) 

(I) 

LDTIME-FTIME)).LT.TOL) THEN 

ON AT=','         ','T=',FTIME,'    ','Z=',ZLOC 

***RESULTS**********' 

ALL TEMP=',TEMP(1),'  AT TIME=',OLDTIME     

E(IOUT,*) 'NEAR-CENTER TEMP=',TEMP(NDIMR) 

 

 TIME=',OLDTIME     

P=',TEMP(NDIMR) 

     C+AN*OLDTEMP(NDIMR-1,L))/AP 

      DO I=1,NDIMR,1 

*       WRITE(6,*) 'TEM

      ENDDO 

       DO I=1,NDIMR,1 

      NEWTEMP(I,L)=TEMP

      INTEMP(I)=TEMP(I) 

      ENDDO                       

      ENDDO 

*      WRITE(6,*) OLDTIME,FTIME,'OLDTIME,FTIME' 

      IF((ABS(O

      WRITE(6,*) ' SOLUTI

      WRITE(6,*) '*******

*      WRITE(IOUT,*) 'W

*      WRIT

      GO TO 333 

      ELSE 

      DO I=1,NDIMR,1 

      DO L=1,ZNODES,1 

      OLDTEMP(I,L)=NEWTEMP(I,L) 

      ENDDO 

      ENDDO

*      WRITE(IOUT,*) 'WALL TEMP=',TEMP(1),'  AT

*       WRITE(IOUT,*) 'NEAR-CENTER TEM

*     .,'  AT TIME=',OLDTIME 

      GO TO 777 

      ENDIF 
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****************************************************************** 

C     THE END OF PROGRAM 

 333  LOCR=1 

      DO I=1,NDIMR,1 

      WRITE(6,999)I,TEMP(I),LOCR 

=',I3,'   ','TEMPERATURE=',F20.15,'   ' 

0 

DISR/2  

  

 999  FORMAT('NODE

     .,'AT R=',F8.5)    

      LOCR=LOCR-DISR 

      ENDDO  

      WHERE=

      DO L=1,ZNODES,1 

      WHERE=WHERE+DISZ       

*      WRITE(6,*) NEWTEMP(1,L),'WALL TEMP'                           

      FLUX(LXS)=-(NEWTEMP(1,L)-NEWTEMP(2,L))/

*      WRITE(6,*) 'WALL HEAT FLUX=',FLUX(L),'        ','AT Z=',WHERE 

      ENDDO 

      STOP 

      END   
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