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   ABSTRACT 

Epithelial-cadherin downregulation enables cancer cells to escape from the primary mass; 

however, E-cadherin has been found to be expressed on metastatic foci, bringing into question 

the role of this molecule in tumor progression. We define a novel role for the cellular adhesion 

molecule E-cadherin, in which the protein’s re-emergence promotes carcinoma-parenchymal 

interactions in ectopic sites. Non-metastatic E-cadherin positive MCF7 breast cancer cells form 

heterotypic cohesions mediated by E-cadherin, and in invasive and metastatic MDA-MB-231 

cells, the E-cadherin promoter hypermethylation that prevents endogenous E-cadherin expression 

is reversed when these cells are cultured with hepatocytes. The function of this re-expression is 

suggested by the E-cadherin-dependent sustained activation of Erk-MAP kinase and Akt in these 

breast carcinoma cells.  Thus, we propose that E-cadherin expression and subsequent 

heterocellular interactions direct cell fate decisions that may ultimately enable colonization of a 

secondary site by an invasive cancer cell. 
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1.0  INTRODUCTION 

As is the case with scientific investigations, a macroscopic perspective is required to understand 

the significance of the individual steps taken to arrive at the conclusions of the study.  Cancer 

pathology, a disease of vastly heterogeneous etiology, is especially suited to such perspective, as 

dissection of sequential steps of the metastatic process without context results in meaningless 

segmentation of the disease.  The following introduction describes the events in the 

transformation of normal breast cells to their invasive counterparts and metastatic disease of the 

liver, all elements essential to understanding the significance of the thesis as a whole. 

 

1.1 BREAST CANCER 

The normal mammary gland has the structure of a modified sweat gland.  The breasts’ anatomy 

consists of the skin, the subcutaneous adipose tissue, and the glandular tissue, comprising the 

stromal and parenchymal architectures.  The breasts are in systemic linkage to the rest of the 

body by way of the arterial (thoracic, thoracoacromial, posterior intercostal) and venous 

(axillary) blood supply and drainage, respectively.  The breasts also have rich lymphatic 

network, most of which flows to the axillary lymph nodes.  The lumen of the lymphatic 

structures are open-ended and in continuity with the extracellular tissue spaces, which allows the 
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free flow of lymph and cellular content.  The relationship of structure to function of the human 

female breast has been covered in much greater depth elsewhere (Hovey and Trott 2004); the 

most relevant part of the breast microanatomy to the thesis herein is the epithelial parenchymal 

component. 

The breast is divided into six to 10 duct systems, each of which is subdivided into 

lobules, the organizational unit of the mammary parenchyma.  Iterative branching of the large 

ducts results in the eventual terminal duct.  The distal proliferation of these terminal ducts at the 

beginning of female menarche results in lobules composed of ductules lined with epithelium.  

This architectural unit is known as the terminal duct lobular unit.  Carcinoma in situ is thought to 

develop when genetic or epigenetic changes allow the epithelial cells in the terminal duct lobular 

units to take on a transformed phenotype, which is antecedent to a more motile cell type.  

Subsequent dissemination and colonization of distant organs throughout the body is mostly 

responsible for the pathologies of invasive cancers. 

The symbolic and esthetic value of the female breast has increased public awareness of 

the breast cancer for the past half-century.  Previous theories on breast cancer pathology 

motivated the radical mastectomy procedure, which was overwhelmingly favored by physicians 

for the first half of the century.  This radical procedure was unsuccessful though, as most patients 

relapsed in systemic disease (Fisher 1999).  More modern locoregional procedures to control the 

spread of breast cancer also proved deficient.  The modern treatment regimen combines both 

local and systemic treatment, taking advantage of new tools that allow clinicians to personalize 

therapy based on the molecular variants of the disease in the individual person. 

 The etiology of breast cancer is heterogeneous.  The greatest risk factors include 

advanced age, being born in North America or Northern Europe, high premenopausal insulin-like 
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growth factor (IGF)-1 level, high postmenopausal blood estrogen level, and a familial history of 

breast cancer.  Genetic predisposition to the disease is responsible for 5-10% of diagnosed cases 

(Oldenburg, Meijers-Heijboer et al. 2007).  BRCA1 and BRCA2 account for the majority of 

autosomal predisposition.  Though there are other germ line mutations (p53, Cowden syndrome 

10q locus, ATM) that can act as predictive criteria for the development of metastatic disease, the 

precise determination of who is at risk has been impossible and therefore proactive management 

has also been unachievable. 

 The preponderance of evidence supports that there is no single reason for the cellular 

transformation to neoplastic phenotypes.  For that reason, targeted molecular therapies have had 

the most success for cytotoxic and cytostatic cancer treatment.  This thesis investigates two 

targetable molecules for potential therapeutic intervention: Phospholipase-C-γ (PLCγ), a 

molecule important to cellular motility, and Epithelial-cadherin, a cell-adhesion molecule 

integral to the maintenance of epithelial architecture. 

1.2 EPITHELIAL TO MESENCHYMAL TRANSITION IN CANCER 

The epithelial to mesenchymal transition (EMT) was recognized as early as 1908 (Lillie 1908).  

It was characterized as being a critical part of embryonic development in many animal species.  

It was not until 1982, when scientists found that if Madaline-Darby canine kidney cells were 

treated with conditioned fibroblast media, they could be converted to a nonpolarized migratory 

cell type (Greenburg and Hay 1982).  The connection between EMT and cancer progression 

came even later primarily because it is impossible to recognize EMT in vivo during carcinoma 

progression because of the spatial and temporal complexity of metastasis (Thiery 2002). 
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Epithelial cell plasticity has been conserved and is integral to development of all 

metazoans.  The remodeling of epithelial sheets in higher organisms is conserved from the basic 

remodeling actions of delamination, invagination, and cavitation in the most primitive 

organisms.  It has been reported that in most metazoans, epithelial sheets can undergo both EMT 

and the mesenchymal-epithelial transition (MET) (Gilbert 1997).  In humans, the MET is 

particularly important in the normal developmental process of kidney ontogenesis (Stark, Vainio 

et al. 1994).   

The loss of the E-cadherin cell adhesion molecule is of particular importance to the EMT, 

and it has even been given the name “caretaker of the epithelial phenotype” (Thiery 2002).  In 

normal development, E-cadherin is responsible for organizing cells into their constituent organs, 

because the cell adhesion molecule allows cells of the same type to organize together.  In turn, E-

cadherin foci form adherence junctions and in some instances promote the formation of 

desmosomes (Kowalczyk, Bornslaeger et al. 1999). 

The stability of these cohesive junctions depends on the stability of the E-cadherin 

molecule, including E-cadherin’s transcription, translation, trafficking to and from the cell 

surface, and effector control over the cell’s presentation on the cell surface.  Function-blocking 

antibodies or siRNA directed to E-cadherin will cause loss of integrity of epithelial sheets in vivo 

or loss of cobblestone morphology in vitro (Imhof, Vollmers et al. 1983).  In the context of EMT 

and MET, E-cadherin is lost during the gastrulation of Drosophila, chick, and mouse (Edelman, 

Gallin et al. 1983; Burdsal, Damsky et al. 1993; Tepass, Gruszynski-DeFeo et al. 1996); and, 

importantly, E-cadherin is gained in the reciprocal transition of kidney ontogenesis mentioned 

above (Kuure, Vuolteenaho et al. 2000). 
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In modeling cellular behavior in three-dimensional collagen gels, it has become well 

known that if E-cadherin is abrogated, the epithelial nature of polarized cells is also 

compromised, and they will invade and degrade the collagen substratum (Chen and Obrink 

1991).  In studies where E-cadherin expression was rescued in mesenchymal cells, the previously 

motile and invasive cells will undergo partial or complete reversion to an epithelial type 

(Behrens, Mareel et al. 1989; Navarro, Gomez et al. 1991; Vleminckx, Vakaet et al. 1991).  In 

vivo, there is a strong correlation between loss of E-cadherin in invasive cancers, number of 

metastases, and short survivor rate of cancer patients (Birchmeier and Behrens 1994; Hirohashi 

1998).  Notably, E-cadherin deactivation is usually by epigenetic means, which are reversible, 

opposed to the small minority of cancers that deactivate E-cadherin through mutation (Risinger, 

Berchuck et al. 1994; Yoshiura, Kanai et al. 1995).  In Chapter 4, it is reported for the first time 

that cancer cells will re-expression E-cadherin in the appropriate physiological context, namely 

the ectopic hepatic parenchymal environment.   

1.3 CANCER CELL DISSEMINATION 

As the EMT is a precursor to a more motile and invasive phenotype, the view that invasive 

cancer is a disease of dysregulated cell motility has become more accepted (Kassis, 

Lauffenburger et al. 2001).  The important reason to focus on motility is the ability to parse 

motility from proliferation, both caused by receptor tyrosine kinase activation (Turner, Chen et 

al. 1996; Turner, Epps-Fung et al. 1997).  Motility is a key step in the metastatic cascade because 

migration and invasion into adjacent tissues is dependent on productive motility through the 

basement membrane (Figure 1).   
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EGF and TGFα, both EGFR ligands, as well as HGF/Scatter factor have all been linked 

to tumor cell invasiveness (Wells 2000).  The amplification of EGFR and HER2 has been 

documented repeatedly in cancers associated with poor prognosis, and EGFR-family member 

signaling has been a particularly successful target in the clinic with the development of 

Trastuzumab, Cetuximab, and other function blocking antibodies to EGFR-family members.  

Downstream of receptor tyrosine kinase activation, signaling pathways must diverge into either 

pro-migratory or pro-proliferatory roles.  Phospholipase-C-γ (PLCγ), in conjunction with actin 

modifying proteins, was initially described as being necessary for growth-factor induced cell 

motility (Chen, Murphy-Ullrich et al. 1996; Gilmore and Burridge 1996).  Upon receptor 

tyrosine kinase activation, which activates PLCγ, phosphatidylinostitol biphosphate (PIP2) is 

cleaved at the membrane causing the release of gelsolin, profiling, and cofilin that direct changes 

in cytoskeletal architecture (Chen, Murphy-Ullrich et al. 1996).  The cytoskeletal remodeling 

results in cellular polarization, which is necessary for motility (Wells, Ware et al. 1999).  

Abrogation of PLCγ activation does not block proliferation, an observation that confirms the 

independence of the growth factor induced responses (Bornfeldt, Raines et al. 1994; Chen, Xie et 

al. 1994). 

Initial studies to determine this involved expressing an EGFR that could transmodulate 

PLCγ, the wild-type EGFR, and a construct that lacked the ability to transactivate PLCγ (Xie, 

Turner et al. 1995).  Though both receptors were able to activate the pro-proliferatory pathway, 

the cells expressing the wild-type EGFR were significantly more invasive in invasion assays and 
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Figure 1. Motility, autocrine signaling, and loss of epithelial architecture are all key to 
transformative and metastatic progression. Epithelial tissues consist of sheets of normal cells 
(green) linked together by E-cadherin (thick black bars). This establishes a polarity that 
segregates apically secreted factors, such as EGF, from their basolaterally-presented receptors 
that normally are utilized by stromally derived factors, such as TGFβ. Due to genetic and 
epigenetic events, E-cadherin is lost during neoplastic transition (red/orange cells), allowing for 
autocrine signaling. This ‘dedifferentiation’ is the carcinoma-associated EMT. However, we 
propose that during metastatic seeding to other epithelial organs E-cadherin is re-expressed 
enabling linkages to normal parenchymal cells. This characterizes the mesenchymal to-epithelial 
reverting transition (MErT). 

 

 7 



xenograft models (Xie, Turner et al. 1995; Turner, Chen et al. 1996).  In studies that directly 

targeted PLCγ with the pharmacological inhibitor U73122, tumor invasiveness was inhibited 

while growth remained unchanged (Turner, Chen et al. 1996; Turner, Epps-Fung et al. 1997). 

The evidence above in combination with other studies on autocrine-induced PLCγ 

activation and observations of PLCγ in other cancer cell lines (Kassis, Moellinger et al. 1999; 

Khoshyomn, Penar et al. 1999) underlines the important of PLCγ to tumor cell invasion.  As 

PLCγ is also activated by the PDGF and IGF-1 receptors (Bornfeldt, Raines et al. 1994; Kundra, 

Escobedo et al. 1994),  PLCγ may be a convergence point to negotiate the cross-talk between a 

number of pro-migratory and pro-proliferatory pathways (Kassis, Radinsky et al. 2002).  In total, 

there is a well-supported proof-of-concept that PLCγ signaling is fundamental to neoplastic cell 

dissemination that causes the majority of cancer morbidity and mortality.  In Chapter 2, the 

critical in situ data validating the proof-of-concept is reported, thus substantiating the in vitro 

data with its clinical presentation. 

1.4 E-CADHERIN IN NORMAL AND TRANSFORMED CELLS 

Epithelial-cadherin (E-cadherin) is central to the dynamic cellular and morphological changes 

that occur during both normal development and the EMT.  Many biological processes, such as 

hemostasis, immunological response, inflammation, embryogenesis, and development of neural 

tissue depend on the precise selective molecular interactions that E-cadherin orchestrates 

(Petruzzelli, Takami et al. 1999).  In addition, the spatiotemporal expression of E-cadherin is 

fundamental to the processes of normal development and progression of EMT / MET.  The 

importance of such concepts to this thesis includes 1) E-cadherin has historically taken the role 
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of directing interactions between cells of the same type (homotypic interactions; and 2) the 

disappearance and reappearance of E-cadherin is a continual theme throughout development and 

EMT.  Chapter Three of this thesis provides compelling information that the role of E-cadherin 

may be greatly expanded in the process of MET-related metastatic progression (Figure 1). 

1.4.1 E-cadherin structure and function 

Though many cadherins have been characterized, the classic (Type I) cadherins, the group to 

which E-cadherin belongs, have been best described and offer the best insight into the structure-

function relationship of these proteins.  The classical cadherins are a family of transmembrane 

proteins, whose extracellular domains control the adhesive function of the proteins and whose 

intracellular domains allow docking of cadherin substrates to stabilize the protein at the cell 

membrane and connection to the actin cytoskeleton.  While the calcium dependent ligation of the 

extracellular domains without involvement of the actin cytoskeleton is sufficient for adhesion, 

the anchoring of the intracellular cadherin tail to cytoskeletal components significantly 

strengthens the adhesion (Yap, Brieher et al. 1997).  Cadherin substrate molecules including β-

catenin, α-catenin, and vinculin anchor cadherins to the actin cytoskeleton. 

1.4.1.1 E-cadherin structure 

The extracellular domain of E-cadherin is made up of 5 domains, labeled EC-1 through 

EC-5.  EC-1, the domain most distal to the cell membrane was resolved by NMR spectroscopy 

and X-ray crystallography in 1995 (Overduin, Harvey et al. 1995; Shapiro, Fannon et al. 1995).  

The resolved structures bared highly conserved structure to the immunoglobulin variable-like 

domains.  Within these structures, coordinated Ca2+ was determined to be necessary for 

 9 



 

 

 

Figure 2. E-cadherin cis- and trans- ligation is calcium dependent.  Calcium coordination 
rigidifies the 5 extracellular domains of the E-cadherin molecule (B).  The unorganized 
molecular lattice of (A) proceeds to the ordered cis-interaction in (C), and then to trans-ligation 
of adjacent molecules in (D).  Figure used with Open Access permission: Pertz et al. (1999). “A 
new crystal structure, Ca2+ dependence and mutational analysis reveal molecular details of E-
cadherin homoassociation.” EMBO 18(7):1738-1747. 
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 productive ligation by rigidifying domain structure and hence orientation (Nagar, Overduin et al. 

1996). 

Upon the appropriate engagement of adjacent cell membranes, E-cadherin undergoes 

rearrangement in the membrane form a disordered structure to an ordered lattice.  The formation 

of the ordered lattice is also supported by Ca2+ coordination.  Lattice coordination is thought to 

occur in two steps:  cis-dimerization of E-cadherin proteins on the cell surface and then trans-

dimerization of E-cadherin proteins on adjacent cell membranes (Shapiro, Fannon et al. 1995).  

The Ca2+ fortified lattice provides substantial protection again exogenous proteases (Yoshida 

and Takeichi 1982).  Although dimer formation takes on a zipper appearance with interdigitated 

residue adducts, the attempt to find conserved amino acid recognition sequences for the 

dimerization structures that have held up to subsequent experimentation have eluded researchers 

to this point (Shapiro, Fannon et al. 1995). 

1.4.1.2 E-cadherin substrates determining binding efficiency 

The cytoplasmic domain of E-cadherin is crucially important to stable cell-cell adhesion 

(Figure 3).  The intercellular domain is highly conserved across the classical cadherins and 

contains a membrane-proximal domain and a series of catenin-binding domains.  The C-terminal 

residues of the E-cadherin cytoplasmic domain are very important for β-catenin-E-cadherin 

complex formation, and these residues are highly conserved in the classical cadherin family 

(Stappert and Kemler 1994).  It has also been shown that phosphorylation of the E-cadherin 

cytoplasmic domain strengthens the interaction between the C-terminal residues and β-catenin 

(Stappert and Kemler 1994; Kinch, Clark et al. 1995).  There is well documented role for β-

catenin in the Wnt growth factor signaling pathway (Brennan and Brown 2004).  β-catenin in its 

unactivated state and while not being sequestered on the E-cadherin binding domain, is targeted 
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Figure 3.  E-cadherin sequesters catenins and controls their signaling in addition to forming cell-
cell adhesions. A) E-cadherin sequesters β- and p120- catenins on its intracellular catenin 
binding domains. In an untransformed cell, p120 is thought to stabilize E-cadherin at the surface, 
β-catenin is sequestered from forming a complex with axin and, in this location also functions as 
an adaptor protein for α-catenin, which in turn anchors E-cadherin to the cytoskeleton. B) In 
many carcinomas, E-cadherin is silenced by promoter methylation allowing β-catenin to 
translocate to the nucleus and p120 to promote an epithelial phenotype. However the 
mechanisms of how these catenins act and whether they act individually or in concert are not 
settled. C) E-cadherin dependent adhesion in itself is not a dominant stop mechanism to inhibit 
invasion. In studies where the β-catenin binding domain was deleted from the E-cadherin 
intracellular domain, but E-cadherin was still able to mediate adhesion through direct 
crosslinking with α-catenin and therefore interaction with the actin cytoskeleton, β-catenin was 
free to signal in the cell cytoplasm and led to an invasive phenotype (though this phenotype was 
independent of its TCF-mediated transcriptional activity). Therefore, cytoplasmic localization of 
β-catenin is thought to contribute to the mesenchymal nature of cells. D) In studies of cell that 
had low levels of E-cadherin and cytoplasmic localization of p120, tyrosine phosphorylation on 
p120’s amino-terminal by the pro-oncogene Src was thought to contribute to modulate its 
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contribution to cell migration. When p120 is knocked down, the equilibrium shift to Rho-GDP 
promotes actin polymerization, stress fiber formation, a flattened morphology and less invasive 
phenotype. Therefore, cytoplasmic localization of p120 is thought to contribute to the 
mesenchymal nature of cells. These four scenarios provide data that show the critical role of E-
cadherin as a signal modulation molecule by sequestering catenins, primarily p120 and α- 
catenin. In the absence of E-cadherin homotypic binding, this plaque is unstable and the catenins 
are now free to relocalize. 
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for degradation by the GSK3-APC-axin complex.  In the presence of a Wnt activation signal, β-

catenin acts as a transcriptional coactivator in complex with members of the Lef/Tcf family 

(Behrens, von Kries et al. 1996).  This equilibrium is essential for stable cell-cell adhesion.  In a 

transformed state, there is a large pool of free β-catenin that results in accumulation of the β-

catenin-Tcf complex, which in turn activates transcription of a number of pro-mitogenic genes.  

In balanced equilibrium, most of the β-catenin is sequestered by E-cadherin and involved in 

stabilizing cell-cell adhesion and only a small fraction of free β-catenin exists in a soluble 

cytoplasmic pool. 

Another catenin-protein capable of binding the E-cadherin cytoplasmic domain is 

p120ctn, although the binding of this catenin occurs at the membrane proximal domain 

(Gooding, Yap et al. 2004).  Though the exact role for p120ctn has yet to be determined, p120ctn 

can affect E-cadherin’s adhesiveness both negatively and positively (Ireton, Davis et al. 2002; 

Gumbiner 2005).  p120ctn can also modulate actin modifying proteins such as RhoA, Rac, and 

Cdc42, which regulate actin clustering (Ireton, Davis et al. 2002), though there is no evidence 

that p120 links directly to the actin cytoskeleton.  Modulating level of p120ctn have been found 

to influence levels of E-cadherin expression, though mechanisms of p120ctn adhesion 

modulation independent of E-cadherin protein levels have been found (Aono, Nakagawa et al. 

1999; Thoreson, Anastasiadis et al. 2000; Davis, Ireton et al. 2003).  Therefore, it is unclear as 

the most important role for p120ctn in the regulation of cadherin adhesive function.   

1.4.1.3 E-cadherin presentation at the cell surface 

Catenins control the regulation of adhesion by controlling the amount of E-cadherin 

available at the cell surface.  To fully appreciate E-cadherin translocation on and off the 

membrane, the exocytic path of E-cadherin will be explored from the beginning.  The trans-
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Golgi network is the first place where delivery of E-cadherin is fated.  The highly conserved 

dileucine sorting motif in the cytoplasmic tail of E-cadherin dictates its sorting to the basolateral 

surface (Miranda, Khromykh et al. 2001).  β-catenin is associated with E-cadherin very early in 

the exocytic pathway, and is delivered to the membrane surface in a single complex (Chen, 

Stewart et al. 1999).  In preconfluent or nonadherent cells, E-cadherin is trafficked constantly to 

and from the cell membrane (Bryant and Stow 2004).  In cells making productive contacts, E-

cadherin trafficking is minimized, and the protein is stably incorporated into adherens junctions.  

Only at the cell surface does p120ctn become associated with E-cadherin, and the turnover of E-

cadherin is thought to be controlled by speed of p120ctn turnover from E-cadherin’s membrane 

proximal domain (Davis, Ireton et al. 2003).  Confluent cell populations have very small 

intracellular pools of E-cadherin (Bryant and Stow 2004).  Further studies have revealed how 

contacts between cells are initiated, strengthened, compacted, and condensed (Adams, Chen et 

al. 1998).  At early points of contact, E-cadherin assemble in puncta and eventually form 

plaques.  These plaques colocalize with actin nucleating complexes, such as Arp2/3 (Kovacs, 

Goodwin et al. 2002; Verma, Shewan et al. 2004). Hence, the coordinated reorganization of E-

cadherin and the actin cytoskeleton results in mature cell-cell contacts.   

When cells become motile and break mature cell-cell contacts, E-cadherin is rapidly 

removed from the cell surface.  The rapid turnover of E-cadherin at the cell surface is also linked 

to neoplastic events.  In the context of most cancers, EGFR is intimately involved in the 

transformation of normal cells to their neoplastic counterparts.  It has been repeatedly reported 

that increased receptor tyrosine kinase activity and loss of E-cadherin function are interconnected 

events associated with tumor progression.  EGFR activation causes subsequent tyrosine 

phosphorylation of E-cadherin substrates, such as β-catenin, causing a loss of anchorage to the 
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cytoskeleton.  E-cadherin is then internalized and either recycled or degraded (Pece and Gutkind 

2002).  Internalization occurs through clathrin mediated endocytosis, and ubiquitinated E-

cadherin is directed to the early endosome, where it can either be trafficked to the late endosome 

or be recycled to the cell surface  (Fujita, Krause et al. 2002). 

1.4.1.4 Cadherin binding 

Observations from early experiments found that different types of animal cells sort 

themselves from each other when artificially mixed (Moscona and Moscona 1952; Steinberg 

1963; Steinberg and Gilbert 2004).  This phenomenon was presumed to play a very large role 

during early ontogenesis.  These results combined with previous experiments demonstrating that 

cells with different cadherins would segregate from one another in vitro (Takeichi, Atsumi et al. 

1981; Nose, Nagafuchi et al. 1988) had yet to be reconciled.  The first direct evidence that 

showed the presumable unique binding specificity of the cadherin subclasses was demonstrated 

by transfection of cells lacking endogenous cadherins with the different cadherin subclasses 

(Nose, Nagafuchi et al. 1988).  The study was very straightforward: L-cells were transfected with 

cDNAs encoding two different subclasses of cadherin.  When in spheroid culture, aggregates 

would form of cells only expressing similar cadherin subclass.  They also found that cells 

without cadherin expression would not associate with those cells that expressed cadherins.  They 

concluded that the homotypic aggregates overcame the affinities of the heterotypic aggregates, 

thus resulting in cell sorting.   

Next came a study that built on the previous report to conclude that the amount of 

cadherin molecule presented on the cell surface was important for binding specificity 

(Friedlander, Mege et al. 1989).  This study verified that cadherins allow cells to sort from one 

another, but it is a more complex process than merely subclass presentation on particular cell 
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type.  The more complex view of cell sorting was verified many years in later in a modern study 

using six different cadherin subclasses.  By this time, the Differential Adhesion Hypothesis had 

been well documented.  The Differential Adhesion Hypothesis states that cell sorting 

rearrangements “result from the repeated exchange of weaker for stronger adhesions by 

intrinsically motile cells.  The final configuration, approaching that of minimal interfacial free 

energy, is achieved when total cell-cell binding strength is maximized” (Steinberg and Roth 

1964).  The ultimate test of the Differential Adhesion Hypothesis was to determine the extent to 

which cadherin of different subclass could participate in heterocadherin bonding.  The study 

determined that coaggregation of similar cadherin subclasses occurred when shear forces were 

low or absent, but at higher shear forces, subclasses intermixed (Duguay, Foty et al. 2003).  The 

conclusion was that adhesions of the classic classical cadherin subclass must be of similar 

strength.  The most recent study that verified the finding that the ability to sort cells that express 

different cadherin subclasses is determined by other mechanisms than simply the differential 

affinity of one subclass over the other (Niessen and Gumbiner 2002). 

In total, these studies are important because they note the relative promiscuity of cadherin 

binding.  Despite the many years of study, no one has shown a physiologically relevant context 

for the binding of cadherins on different types of cells.  In Chapter 4, the notion is developed that 

transformed breast cells may be taking advantage of the cadherin ligation to establish functional 

contacts with hepatocytes. 

1.4.2 E-cadherin in cancer progression 

The invasive phenotype is gained upon disruption of tight epithelial cell-cell contacts, which 

results in release of invasive tumor cell from the primary site (Figure 1).  E-cadherin has been 
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known as a tumor suppressor since 1991 (Frixen, Behrens et al. 1991; Sommers, Thompson et al. 

1991), because the molecule’s downregulation is a turning point from carcinoma in situ to a 

metastatic phenotype.  It is also thought that the loss of E-cadherin protein expression, in 

addition to reducing coupling of epithelial cells, also solublizes β-catenin from its previously 

sequestered status.  β-catenin can then travel to the nucleus to activate TCF-induced genes, such 

as c-myc, cyclin-D1, and matrilysin (Brennan and Brown 2004).  Though mutation of the E-

cadherin gene has been reported as the cause for E-cadherin silencing, the mutation rate of E-

cadherin seems to be very low in a cancers (Kanai, Oda et al. 1994; Risinger, Berchuck et al. 

1994).  Epigenetic silencing due to methylation of the promoter region seems to be the most 

frequent cause of E-cadherin silencing in human cancers (Graff, Herman et al. 1995; Yoshiura, 

Kanai et al. 1995).   

The first studies dealing with the transcriptional regulation of E-cadherin alluded to 

reduced activity of the promoter using a chloramphenicol acetyltransferase assay, which 

suggested negative regulation in a cis-regulatory manner (Behrens, Lowrick et al. 1991).  The 

promoter region was also found not to be active in the TSU-pr1 prostate cancer cell line, but 

active in the PC-3 cell line (Bussemakers, Giroldi et al. 1994).  The most likely cause of 

transcription repression from promoter silencing is the methylation of CpG islands proximal to 

the 5’ regulatory regions of genes.  Altered methylation profiles of cancer cells is widely 

reported (Liteplo, Frost et al. 1985; Das and Singal 2004; Issa 2004; Esteller 2005; Esteller 2005; 

Jair, Bachman et al. 2006).  In fact, E-cadherin promoter methylation is common to a wide 

variety of cancers (Yoshiura, Kanai et al. 1995).  It should be noted, however, that a methylation-

free promoter does not guarantee protein expression on the cell surface.  A variety of 

mechanisms including transcriptional repression (SLUG/SNAIL) and effector tyrosine kinase 
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activation (reviewed above) can prevent the positive functioning of E-cadherin (Maeda, Johnson 

et al. 2005) (Figure 3).  It should further be noted that methylation is a reversible epigenetic 

mode of silencing, whether active or passive (Ramchandani, Bhattacharya et al. 1999; Lucifero, 

Mertineit et al. 2002; Das and Singal 2004; Turek-Plewa and Jagodzinski 2005).  The 

demethylation of genes is a common event in the development-associated mesenchymal-

epithelial transition.  Chapter Four queries whether a MET-like demethylation is occurring in 

breast cancer cells in a hepatocyte microenvironment. 

 19 



 

Figure 4.  E-cadherin is regulated on multiple levels.  E-cadherin is regulated on the epigenetic level by methylation 
of the promoter region, on the transcriptional level by the Snail/Slug transcription factors, and on the effector level 
by the receptor tyrosine kinase EGFR.   Overcoming all of these repression mechanisms can result in a reversion of 
the EMT, or the so-called mesenchymal-epithelial reverting transition (MErT). 
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1.5 BREAST CANCER METASTATIC TO THE LIVER 

The transition from in situ neoplastic growth in breast to metastatic disease is characterized by 

the ability of cells to invade the basement membrane into adjacent local tissue (Figure 1).  

Metastasis follows a series of sequential steps that allows for extravasation from the primary site, 

dissemination throughout the body, intravasation into ectopic tissues, and metastatic colonization 

of those tissues (Kassis, Lauffenburger et al. 2001).  To successfully colonize an ectopic site, the 

cancer cells must strategically arrest at the appropriate site by either hematogenous or lymphatic 

routes of dissemination, elude immune surveillance, cope with hemostatic shear stress, reorient 

metabolic needs to the ectopic environment, and overcome other metastatic inefficiencies. 

The distribution of metastases is strongly correlated to those soft tissue organs that 

circulate a large volume of lymph or blood.  Appropriately, the liver is the second most common 

organ involved in metastatic disease after the lymph nodes.  The dual blood supply and 

microvasculature significantly contribute to the formation of metastases.  In fact, a focal liver 

lesion is more likely to represent a metastatic deposit than a primary malignancy (Bail, Foultier 

et al. 1994).  Tumor emboli flowing through the blood stream are trapped by physical obstruction 

due to the narrowness of the venous branches or by other cells in the lumen of the hepatic 

environment, such as Kupffer cells.  For extravasation, the normally fenestrated endothelium of 

the liver allows access to the underlying basement membrane-like layer.  Implantation into the 

Space of Disse further allows access to diffusible nutrients from the hepatic capillaries.  If a 

cancer cell progresses beyond arresting in the endothelium and begins to colonize the ectopic 
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site, the liver parenchymal hepatocytes are compressed, causing atrophy and clinically presenting 

as hepatolomegaly or acites.  The process of colonization involves more than simply 

proliferation, but is a combination of dormancy, apoptosis, novel sets of cell-cell cell-tissue 

interactions, and altered responsiveness to paracrine factors (Steeg 2000). 

Breast cancer metastasizes to the liver in 60.6% of all cases (O'Reilly, Richards et al. 

1990); for non-nodal metastases, that frequency is second only to that of the lung.  Patients 

presenting with breast cancer metastatic to the liver represent a poor median survival group with 

median survival rates of less than 6 months (Pentheroudakis, Fountzilas et al. 2005).  Indeed, 

studies have suggested that colonization of the secondary-site is rate-limiting to the pathological 

nature of metastatic cancer (Steeg 2000).  The most germane question remains whether 

metastatic colonization of the liver is a translational target. 
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2.1 ABSTRACT 

PLCγ (phospholipase C-γ) has been implicated in tumor cell motility required for invasiveness 

and metastasis. Diminished tumor dissemination has been demonstrated in xenograft models, but 

studies in naturally-occurring tumors are lacking having been limited by the timing of the 

interventions. Therefore, we generated mice which express a doxycycline (DOX)-inducible 

dominant-negative fragment of PLCγ, PLCz; this approach avoids the in utero lethality caused 

by the absence of PLCγ. As we targeted two de novo-occurring carcinomas of the mammary 

(MMTV-driven polyoma middle T antigen model, PyVmT) and prostate (TRAMP model) 

glands, we limited expression to these epithelial cells by driving doxycycline transactivator from 

the prostatein C3 promoter. This avoids the confounding variable of potentially abrogating 

motility in stromal and endothelial cells. These mice developed normally in the presence of 

doxycycline, except for limited mammary development if treated before 6 weeks and immaturity 

of the prostate gland if treated before 2 weeks of age. DOX-mediated induction of PLCz from 

age 8 to 16 weeks in PyVmT mice decreased the number of lung metastases by >10 fold (p < 

0.06) without a detectable effect on in situ tumor cell proliferation or tumor size.  Lung 

metastases were also significantly decreased in the TRAMP model in which the mice expressed 

the PLCz fragment (p < 0.05).   Doxycycline treatment itself had no effect on tumor size or 

metastasis in control mice, nor did it affect tumor dissemination in nontransgenic littermates.  In 

conclusion, abrogation of the PLCγ signaling pathway can limit the metastatic potential of 

carcinomas. 
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2.2 INTRODUCTION 

Cancer morbidity and mortality results mainly from invasion and dissemination of the primary 

tumor. This spread of the tumor requires cell proliferation, motility, and survival in an ectopic 

environment (Wells, Kassis et al. 2002; Fidler 2003; Wang, Goswami et al. 2005).  Inhibition of 

any one of these steps would stop tumor dissemination; however, therapies aimed at cell 

proliferation and survival have been limited by toxicity as these properties are common to 

normal homeostatic mechanisms. On the other hand, the induced motility noted during tumor 

invasion and metastasis appears to be a re-iteration of that noted during organogenesis and 

regenerative wound repair (Wells 2000), and not molecularly analogous to the motility extant 

during homeostasis. This offers a novel avenue for intervention against tumor spread that could 

have minimal toxicity. 

Key molecular switches have been identified during induced cell migration of tumor cells 

(Wells 2000; Ridley, Schwartz et al. 2003). These are downstream of growth factor receptors 

activated by autocrine and paracrine signals. These switches include phospholipase C-γ (PLCγ), 

activation of which lies upstream of cytoskeletal reorganization. PLCγ appears to be at a 

convergence point of various signaling pathways, and as such offers an opportunity for 

differential abrogation of multiple yet distinct signaling events (Kassis, Moellinger et al. 1999; 

Jones, Peak et al. 2005).  In previous studies, we tested whether PLCγ signaling contributes to 

tumor invasion indirectly through an examination of EGF receptor-mediated invasiveness. We 

engineered EGFR constructs that were fully mitogenic, but either activated PLCγ (WT) or did 

not (c’973) in DU-145 androgen-independent human prostate cancer cells. The cells expressing 

the WT EGFR were significantly more invasive through Matrigel and xenograft models (Xie, 
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Turner et al. 1995; Turner, Epps-Fung et al. 1997).  When this cascade was intervened at the 

level of PLCγ using pharmacological inhibitors (U73122) or a dominant negative fragment 

(PLCz), tumor invasiveness and dissemination was inhibited in xenograft models, but tumor 

growth was unaffected. Subsequent studies confirmed the applicability of PLCγ signaling of 

tumor cell invasiveness in other prostate tumor cells as well as those derived from breast, bladder 

and oral mucosa (Kassis, Moellinger et al. 1999; Price, Tiganis et al. 1999; Dittman, Husemann 

et al. 2002; Thomas, Coppelli et al. 2002).  

 Although these published reports provide a ‘proof-of-concept’ that PLCγ signaling can be 

targeted to limit carcinoma invasion (Mouneimne, Soon et al. 2004), in vivo experiments have 

been lacking to support this clinically relevant hypothesis that such inhibition limits tumor 

metastasis.  Therefore, we have developed a double-transgenic model of oncogene-induced 

mammary or prostate carcinoma in which PLCγ can be conditionally regulated, thus avoiding 

tumor suppressive effects during early phases of transformation. By limiting the expression of a 

dominant-negative PLCγ fragment (PLCz) to the epithelial cells of the mammary and prostate 

glands (Guy, Webster et al. 1992; Tehranian, Morris et al. 1996), we also avoid any questions as 

to limiting stromal responsiveness or angiogenesis needed for metastases to become 

macroscopic. We tested the hypothesis in spontaneous tumor models of mammary and prostate 

carcinomas.  In these models, induction of the dominant negative fragment PLCz clearly 

decreased the number of metastases to the lung.  These results not only support tumor cell 

motility as a rate-limiting step in metastasis, but also are the first to limit dissemination of in situ 

de novo-occurring tumors by inhibiting PLCγ mediated motility. 
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2.3 RESULTS 

2.3.1 Expression of the DOX-inducible PLCz transgene is restricted to mammary and 

prostate epithelia 

A constitutively active PLCz transgene under the control of the C3(1) prostatein promoter (Guy, 

Webster et al. 1992; Tehranian, Morris et al. 1996) was constructed. The rat C3(1) prostatein 

promoter drives the expression of the reverse tetracycline transactivator (rTetR-VP16) which 

binds to TRE (tetracycline response element) and activates the transcription of PLCz in the 

presence of DOX (Figure 5A).  We chose to utilize expression of a dominant-negative rather 

than an inducible excision/deletion situation for two reasons, one being that low level leakage of 

expression would lead to inadvertent deletion but not competition, and the second being the 

ability to revert to a PLCγ-positive state by withdrawal of DOX. The predicted 800bp PCR 

product was amplified from positive PLCz transgene founders (Figure 5B). 

The expression of the transgene was confirmed by immunoblot analysis of protein from 

tissues of mice using a polyclonal anti-PLCγ antiserum. We treated mice between 4 and 8 weeks 

of age with DOX to determine if PLCz expression was inducible, and in which tissues it would 

be expressed. After one week of DOX treatment, PLCz was found only in the prostate and 

mammary glands of transgenic animals and not in the wild-type littermates. The 51kDa PLCz 

band was not detected in mice in the absence of DOX treatment, nor was it found in 

nontransgenic mice in the presence of DOX (Figure 6A). We did not detect PLCz in the ventral 

prostate and seminal vesicles, consistent with reports of C3(1) being expressed only in the dorsal 

prostate (Figure 6B) (Claessens, Celis et al. 1989; Maroulakou, Anver et al. 1994; Tehranian, 

Morris et al. 1996). 
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Figure 5. Generation of PLCz-expressing mice. The pC3(1)tPLCz bicistronic construct (a) 
contains the reverse tet repressor driven by the breast and prostate specific promoter, C3(1), that 
binds to the TRE (tetracycline response element) in the presence of doxycycline (DOX). VP-16 
transcriptional activation domain of herpes simplex virus enhances expression of the downstream 
PLCz. Thus, PLCz expression is expressed only on DOX induction in a tissue-specific manner. 
To detect transmission of the pC3(1)tPLCz construct, 1 mg of genomic DNA from a tail of each 
transgenic or wild-type mouse was used to perform the PCR analysis. 10 pg of transgene 
fragment from pTGC3(1) was used as template for the positive control and there is no template 
with the negative control. (b) The arrow head indicates the 0.8 kb PCR products from the 
transgene. 
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The persistent expression of PLCz depended on continued treatment with DOX, as 

removal of the DOX-laced drinking water resulted in dramatically reduced PLCz expression 

after two weeks (Figure 6C). For both the induction and the reversion experiments, we probed 

the protein rather than mRNA, as protein processing and stability might be extended and thus 

alter the kinetics of biological response. As abrogation of signaling by dominant-negative 

constructs requires excess expression, we confirmed that PLCz expression was significantly 

higher than that of endogenous PLCγ, seen at low levels at 130kDa (Figure 6A). These results 

strongly indicate that the C3(1) promoter is able to induce the transgene expression in a tissue 

specific and regulatable manner in the mammary and prostate gland of transgenic mice. 

2.3.2 Induction of PLCz inhibits invasiveness of the primary tumor and metastatic tumor 

formation 

To determine whether a PLCγ-mediated motility-associated signaling pathway is associated with 

tumor cell dissemination, the pC3(1)tPLCz transgene founders were crossed with MMTV-

PyVmT and TRAMP mice to generate double transgenic MMTV-PyVmT-PLCz (PyVmT-PLCz) 

mice and TRAMP-PLCz mice. MMTV-PymT transgenic mice develop mammary tumors with 

an average latency of 53 days and form lung metastases with 100% penetrance by 100 days of 

age (Muraoka, Dumont et al. 2002).  TRAMP transgenic mice develop prostate tumors with an 

average latency of 84 days and form lung metastases with 95% penetrance by 24 weeks of age 

(Gingrich, Barrios et al. 1997). 

 In the absence of DOX, tumors arose with similar latencies to MMTV-PyVmT 

and TRAMP mice. Because the average tumor latency for the PyV-PLCz mice was ~8 weeks, 
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Figure 6.  Inducible expression of PLCz in tissues from male and female mice. Proteins were 
analysed on 10% SDS–PAGE and immunoblotted with a rabbit polyclonal antibody that 
recognizes the Z region of PLCg. DOX was added to the drinking water to induce PLCz 
expression. One week after DOX addition, mice were killing and tissues were processed to get 
protein lysates. A selection of tissues and mice are shown to present evidence that PLCz 
expression is dependent on (a) transgene presence, (a) DOX induction (b) steroid-responsive 
tissues and (c) continued presence of DOX. (a) PLCz is induced by DOX in the prostate (PR) 
and mammary glands (MG) of transgenic (T) mice and is not expressed in PLCz- (W) mice. (b) 
PLCz is expressed in the PG of male T mouse in a tissue-specific fashion and is not expressed in 
the seminal vesicles (SV), liver (Liv), lungs (lun) or spleen (Spl). Nontransgenic mice were 
negative in all tissues. (c) Three different PLCz-transgenic female mice were treated with DOX 
for 1 week and then switched to normal drinking water and sacrificed 2 weeks later. The positive 
control was killed after the DOX treatment. The inguinal MG was dissected and protein lysates 
analysed. (c) is overexposed compared to (a) and (b) to detect lowlevel persistence of PLCz. 
 

 

Figure 7 Fisher’s exact test was used to generate P-values to determine whether induction of 
PLCz had a significant influence on the extent of lung metastases. A, TRAMP and 
TRAMP/PLCz mice were scored for invasiveness of the primary prostate tumors. The TRAMP 
mice expressing the PLCz trangene had a significant reduction in the invasiveness of the primary 
tumor (P<0.02). B, TRAMP and TRAMP/PLCz mice were scored for the extent of the lung 
metastases. The TRAMP mice expressing the PLCz transgene had a significant decrease in the 
extent of lung metastasis (P<0.06). C, PyVmT and PyVmT/PLCz mice were scored as in (B). 
The PyVmT mice expressing the PLCz transgene had a significant decrease in the extent of lung 
metastasis (P<0.03). 
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 DOX was administered no earlier than 9 weeks to allow both the mammary gland to 

form and primary tumor formation to occur. In TRAMP mice, tumor formation began soon after 

birth, so DOX was administered beginning immediately after weaning.  The majority of DOX 

treated PyVmT-PLCz and TRAMP-PLCz mice exhibited signs of high carcinoma load-related 

distress at 16 weeks and 24 weeks, respectively, and were sacrificed. 

The primary tumors in the prostate of the TRAMP-PLCz mice were scored for 

invasiveness after 24 weeks of DOX treatment. The TRAMP-PLCz mice displayed a 

significantly decreased invasiveness score of the tumor into the prostate parenchyma when 

compared with the untreated mice, while the no-insert controls and untreated controls remained 

indistinguishable (Table 1A).  When comparing the invasiveness score of the DOX-treated 

PLCz-positive mice with the DOX-treated transgene-absent control mice, the DOX-treated PLCz 

positive mice displayed a significantly decreased invasvieness score of the tumor into the 

prostate parenchyma that was significantly lower than the DOX-treated transgene-absent mice (p 

< 0.02). 

 Lung metastases were counted at 24 weeks of age in the TRAMP mice and 16 

weeks of age in the PyVmT-PLCz mice, based on literature-reported development and pilot 

experiments. In the TRAMP-PLCz mice, after less than 24 weeks of DOX treatment, the 

TRAMP-PLCz mice displayed a significantly decreased number of lung metastases when 

compared with TRAMP-PLCz mice without DOX treatment, while the controls, as above, 

remained indistinguishable (Table 1B).  

 To determine if this reduced metastasis also held in other tumors, we checked the 

mammary tumor spontaneously arising in the PyVmT mice. After 8 weeks of DOX treatment, 

the PyVmT-PLCz mice displayed a significantly decreased number of lung metastases when 
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compared with PyVmT-PLCz mice without DOX treatment (p < 0.02), while the “no insert” 

controls and positive insert/no treatment mice remained statistically indistinguishable (Table 1C; 

Figure 7, Figure 8A). Primary mammary tumors from DOX-treated PyVmT and PyVmT-PLCz 

mice had no differences in tumor volume due to DOX induction (Figure 8B).  The number of 

lung metastases in PyVmT-PLCz mice not induced to express PLCz by DOX was not different 

from the number observed in MMTV-PyVmT mice. 
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Figure 8.  Metastatic tumors in the lungs of MMTV-PyV mice expressing PLCz. H&E sections 
of dissected lung tissue from representative mice. Normal mouse lung tissue (top left). Lung 
sections of transgenic PyVmT without the PLCz transgene show large metastatic tumors 
throughout the lung parenchyma that crowd alveolar septa (top right). PyVmT-PLCz mice whose 
PLCz expression is induced with DOX treatment markedly diminishes the number of tumors in 
the lung parenchyma (bottom left). DOXtreatment has no effect on metastatic lung deposits in 
PyVmT mice (bottom right). 
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Figure 9.  The number of metastatic lung tumors is drastically reduced in PLCz+ mice, while the 
tumor size remains unchanged. The number of tumors were counted and sized according to the 
Materials and methods section. (a) The number of metastatic lung tumors in PyVmT/PLCz+ 
mice is fewer compared to the number of metastatic tumors in PyVmT not expressing the PLCz 
transgene. (b) The PLCz transgene does not affect the size of metastatic lung tumors in 
PyVmT/PLCz mice when compared to the PyVmT not expressing the transgene. 
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2.4 DISCUSSION 

Tumor invasion, both into adnexia and as the first step in dissemination, has been proposed to be 

a consequence of dysregulated cell motility (Kassis, Lauffenburger et al. 2001).  The 

dissemination of cells from the primary tumor to metastatic sites is limiting for the tumor’s 

progression. Although many of the molecules that regulate or effect cell motility have been 

investigated (Ridley, Schwartz et al. 2003), the dysregulation of those same molecular events has 

yet to be properly characterized in the context of the dissemination and metastatic seeding of de-

novo arising cancers.  The models examined herein, are of spontaneous metastasis of in situ 

carcinomas that arise secondary to oncogenic activation. We queried whether the dissemination 

of such tumors can be limited by blocking a key cell motility pathway, that of PLCγ. 

PLCγ signaling is an enticing target to dissect the contributions of induced cell motility to 

tumor progression, as it distinguishes the cell motility response from that of proliferation (Chen, 

Xie et al. 1996).  Obviously, any intervention that also prevents proliferation would be falsely 

scored as metastasis suppressing as metastasis requires subsequent proliferation. Despite the 

extensive investigations on motility in culture systems and confirmation in xenograft models, 

experimental evidence is lacking as to the relative or specific contributions of motility on the 

metastatic dissemination of de novo-occuring cancer cells.  This is due to the pleiotropic nature 

of the signals during tumor progression, such as the autocrine stimulatory loops activating 

growth factor receptors that drive both motility and proliferation.  For instance, current 

molecularly-targeted therapies inhibit signaling from the EGFR family members HER2 (erbB2) 

and HER1 (EGFR, erbB1). Both of these receptors initiate and sustain proliferation and 

migration in breast and prostate carcinoma cells. Thus, while these inhibitors limit dissemination, 

whether growth factor-enhanced motility underlies metastasis remains unproven. Abrogation of 
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PLCγ signaling by pharmacological or genetic means eliminates motility but not mitogenesis 

induced by EGFR, HER2 (Chen, Gupta et al. 1994; Chen, Xie et al. 1994) and other growth 

factor receptors (Reddy, Wells et al. 1996).  By targeting this convergent downstream effector 

molecule, we defined a role for growth factor-induced cell motility in the dissemination of 

primary breast and prostate cancer in vivo. 

In this study, we conditionally expressed a dominant-negative fragment of PLCγ in the 

mammary and prostate epithelium of TRAMP and MMTV-PyVmT. This conditional, post-natal 

expression was required as constitutive ablation of PLCγ is embryonic lethal (Ji, Ermini et al. 

1998). Furthermore, by limiting expression to the target epithelial cells, we avoid issues of 

altering the microenvironment of the primary and metastatic tumor sites, as well as affecting 

tumor-associated angiogenesis (Bodnar, Yates et al. 2006). We chose a reversible, inducible 

system rather than conditional gene deletion (i.e. Cre-Lox) for the flexibility provided by the 

ability to revert to a functional phenotype (see Supplemental data).  

Expression of the dominant-negative PLCz construct during prenatal and immediate post-

natal periods retarded organogenesis specific to the prostate and mammary epithelium.  This was 

reversible upon DOX withdrawal, validating our strategy and demonstrating that low level 

leakiness of the tetracycline-on system was not consequential as a dominant-negative is only 

effective when in stoichiometric excess.  

To study the role of PLCγ signaling in metastasis, we allowed organogenesis and 

maturation to proceed, and spontaneous tumorigenesis to be initiated by the transgenic 

oncogenes. Forcing expression of PLCz limited the metastases from both the breast and prostate 

carcinomas; the lungs were chosen for ease and reproducibility of quantitation, though similarly 

decreased metastasis was noted in other internal organs (data not shown).  This decrease in 
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number and size of metastases was not due to slower tumor growth as the primary tumor sizes 

were unaffected by PLCγ expression. These data confirm that cancer cell invasiveness is a 

determining factor of tumor progression in vivo. 

These studies confirm that PLCγ function is necessary for tumor cell dissemination in 

both breast and prostate cancers. That tumorigenesis was incompletely abrogated is not 

unexpected, but may be due to several reasons.  First, the expression of PLCz does not 

completely eliminate EGF-induced PIP2 hydrolysis in vitro (Chen, Gupta et al. 1994) and may be 

similarly incomplete in in vivo systems. Second, some low level EGF-induced motility is noted 

in PLCγ-1 devoid cells (Ji, Ermini et al. 1998) this is due to other pathways that regulate 

motility-associated processes other than protrusion, such as ERK MAP kinase/m-calpain (Chen, 

Xie et al. 1996; Glading, Chang et al. 2000) and PKCd/MLC (Iwabu, Smith et al. 2004), as well 

some upregulation of PLCγ-2 expression.  It should also be noted that while the targeted 

inhibition of PLCγ is being discussed as a downstream effector required for EGFR-mediated 

motility, we cannot be certain that the extracellular trigger for breast and prostate cancer 

dissemination are the EGFR ligands.  EGFR signaling is likely to be the primary trigger as it has 

been implicated in the transformation, mitogenic and motogenic properties of tumor cells 

(Carpenter 2000); however, it is possible that other growth factors are signaling via 

PLCγ (Carpenter and Ji 1999; Jones, Peak et al. 2005).  As PLCγ seems to serve as a point of 

convergence for PDGF, HGF, and IGF-1 in addition to EGF in signaling motility (Bornfeldt, 

Raines et al. 1994; Kundra, Escobedo et al. 1994), expression of PLCz would be expected to 

diminish cell motility signaled by all of these factors.  Furthermore, PLCγ has been linked to 

integrin-related changes that result in cell motility in the context of invading cancer cells (Jones, 

Peak et al. 2005)   The progression of invasive cancers to the morbidity and mortality of 
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metastasis encompasses a series of highly coordinated events, though the literature offers a 

compelling line of evidence for the general role of PLCγ throughout the metastatic process. We 

have demonstrated here that signaling through PLCγ is a necessary and potentially limiting step 

that may be targeted in a rational intervention. 

2.5 MATERIALS AND METHODS 

All animal experimentations were approved by the Institutional Animal Care and Use 

Committees respectful to where the experiments occurred, including the University of 

Pittsburgh, Pittsburgh VAMC, and the University of Alabama at Birmingham. 

 

2.5.1 Generation of double transgenic TRAMP and MMTV-PyVmT with a DOX-

inducible PLCz transgene 

The reverse tetracycline plasmids (tet-on) PUHD13-6 and PUHD172-1neo were kindly provided 

by Dr. Hermann Bujard (Heidelberg) (Gossen, Freundlieb et al. 1995). The CMV promoter 

driving the reverse tet repressor (rTetR) of PHUD172-1neo was replaced with rat C3(1) 

prostatein promoter (kindly provided by Dr. Peter Barry, UC Davis (Tehranian, Morris et al. 

1996)). The dominant-negative PLCγ fragment, PLCz, ((Homma and Takenawa 1992; Chen, 

Gupta et al. 1994)) was placed downstream of the TRE (tetracycline response element) with the 

TATA box from CMV minimal promoter of PUHD13-6. These two DNA fragments containing 

C3(1)rtetR and TRE-TATA-PLCz were ligated into the pBluescript to create a single bicistronic 
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construct;  this was done to increase expression levels (Hofmann, Nolan et al. 1996) and simplify 

breeding schemes by physically linking the two halves of the system. The resulting plasmid, 

pC3(1)tPLCz, was used in microinjection (Fig.1A) 

 pC3(1)tPLCz was digested with NotI and PstI and electrophoresed through a 

0.7% low melting point agarose gel and purified using Quiax DNA binding beads. Purified DNA 

was injected into one cell FBV zygotes by the University of Alabama at Birmingham transgenic 

polyomafacility (Carl Pinkert, Director). Following injection, viable eggs were transferred to the 

oviducts of pseudopregenant female mice. To identify positives, DNA was extracted from 1cm 

section of tails using Quiamp DNA extraction kit (Quiagen). DNA was resuspended with 200 μl 

of TE (10 mM Tris, 1 mM EDTA pH 8.0). Screening of transgenic mice was by polymerase 

chain reactions with one pair of oligonucleotides annealed to the PLCz. The PCR was performed 

on a DNA thermocycler (Ericomp) using following program: 94oC for 1 minutes, 56oC for 1 

minute, and 72oC for 1 minute.  PCR product was analyzed by electrophoresis on a 1% agarose 

gel (Fig. 1B).  

 The PLCz mice were mated with TRAMP mice, kindly provided by Norman Greenburg 

(Gingrich, Barrios et al. 1996), or MMTV-PyV mice, the gift of Dr. WJ Muller (Webster, 

Martin-Soudant et al. 1998). Male PLCz mice were mated with female TRAMP mice or female 

PLCz were mated with male MMTV-PyV mice. The F1 crosses were used for all experiments. 

The mice lacking the PLCz transgene presented tumors at the expected rates and times. 
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2.5.2 PLCz expression 

To induce expression of the PLCz transgene, doxycycline was also administered orally in 

drinking water (2 mg/ml) for varying times before sacrificing mice. Various tissues from wild 

type and transgenic mice were sonicated in PBS with protease inhibitors (10 μg/ml leupeptin, 20 

μg/ml aprotinin, 1 mM phenylmethylsulfhnyl fluoride). The concentration of each sample was 

determined by measuring the absorbance at 595 nm using Biorad Bradford assay. 50 μg of 

lysates were subjected to 10% SDS-PAGE, and the resolved proteins were transferred 

electrophoretically to PVDF membrane. After shaking the blot in TBST with 5% non-fat dry 

milk (W/V) for 1 hour and blot was incubated with the anti-rabbit PLCγ antibody (Santa Cruz) at 

4oC for overnight. After incubation with primary antibody, the blot was washed in TBST for 15 

minutes twice and incubated with secondary antibody (anti rabbit IgG, 2500:1 dilution, 

Promega). Protein bands were visualized with NBT and BCIP (Promega). 

2.5.3 Histologic and immunohistochemical assessments of mammary and prostate glands 

For histology, part of mammary gland and dorsal prostate gland were fixed in 10% 

neutral buffered formalin, processed for paraffin sectioning and stained with hematoxylin and 

eosin. Paraffin sections were deparaffinized, hydrated, pretreated with 2 N HCl for 20 minutes at 

37oC and exposed to 0.01% trypsin at 37oC for 3 minutes, followed by staining using a mouse 

monoclonal anti-PCNA antibody and biotinylated secondary antibody. 3,3' Diaminobenzidine 

tetrahydrochloride was used as chromogen. Sections were also tested for apoptosis using the 

Apotag kit (Oncor). After hydration, sections were treated with proteinase K (20 μg/ml) and the 
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endogenous hydrogen peroxide was quenched by incubating with 2% hydrogen peroxide in PBS. 

Terminal deoxytransferase was added to sections followed by the incubation with anti-

digioxigenin antibody conjugated with HRP. Color detection was accomplished with DAB as 

Chromogen.  

The primary and metastatic tumors were scored for invasion of the parenchyma and were 

evaluated using a method modified from Eneroth (Jakobsson, Eneroth et al. 1973).  The tumor 

invasion modes were scored into four histopathologic malignancy grade, given as (score), gross 

description: (0.5) micrometastasis; (1) well defined border; (2) cords/Indian files, less well 

defined border; (3) groups of cells, no distinct border; (4) diffuse growth. 

2.5.4 Statistical analyses 

Data were categorized into PLC-/No DOX, PLC+/No DOX, PLC-/DOX and PLCz+/DOX 

groups. Differences in continuous parameters (size, number) were evaluated by Wilcoxon-Rank 

Sum Test using the SAS statistical software package (Cary, NC). Fisher’s exact test was used to 

evaluate the significance of differences in the parameters. All Ps are represented by one-tailed 

tests (Kassis, Moellinger et al. 1999) and were deemed statistically significant at p < 0.10; 

though levels of statistical differences are provided. 

2.6 ACKNOWLEDGEMENTS 

We thank Norman Greenberg for the gift of the TRAMP mice and Dr. William Muller for the 

gift of the MMTV-PyV mice. Dr. Peter Barry kindly provided the prostatein promoter construct. 

 41 



This work was supported in part by grants from the Department of Defense Congressionally 

Mandated Medical Research Program on Prostate and Breast Cancer and a VA Merit Award. 

 

 42 



3.0  EXPRESSION OF THE CYTOSOLIC TAIL OF E-CADHERIN PARTIALLY 

REVERTS THE EPITHELIAL TO MESENCHYMAL TRANSITION IN AGGRESSIVE 

BREAST CARCINOMA CELLS 

Christopher R. Shepard, Alan Wells 
 

Department of Pathology, University of Pittsburgh School of Medicine 
and Pittsburgh VA Medical Center, Pittsburgh, PA 

 43 



 

3.1 ABSTRACT 

Coculturing of the aggressive MDA-231 breast carcinoma cell and primary breast carcinoma 

cells with normal parenchymal cells of a metastatic target organ, the liver, resulted in renewed 

transcription of E-cadherin secondary to specific loss of promoter methylation. Despite the re-

expression of E-cadherin, the MDA-231 cells do not fully revert to an epithelial cohesive-cluster 

morphology.  We speculated that the MDA-231 cells that re-expressed E-cadherin may have an 

intermediate phenotype, wherein the cells benefit from E-cadherin-dependent canonical pathway 

activation, but also retain characteristics of invasive cancer cells.  We tested this hypothesis by 

using a dominant negative E-cadherin, in which an intact intracellular domain is coupled to an 

extracellular domain from the class I major histocompatibility complex antigen (H-2kd).  This 

dominant negative construct sequesters the E-cadherin plaque-associated molecules beta-catenin 

and p120, which, in the absence of E-cadherin, are conventionally thought to propagate 

oncogenic signals.  The cells demonstrated a level of invasiveness in vitro intermediate between 

MDA-231 cells and non-aggressive MCF7 cells, and similar to that of partially-reverted MDA-

231 cells cocultured with hepatocytes.  These data suggest a model in which breast cancer cells 

in the metastatic environment partially downregulate catenin-driven oncogenic signaling by a 

phenotypic shift in the E-cadherin expression equilibrium. In this manner, the cells remain in a 

partial EMT or reversion thereof, whereby they are able to readily shift between epithelial-like 

dormancy and aggressive metastatic growth as determine by other micro-environmental cues. 
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3.2 INTRODUCTION 

Breast cancer is the most frequently diagnosed cancer in women, and it is the second 

leading cause of cancer death in women of all ages (Punglia, Morrow et al. 2007).  The majority 

of these cancers originate from the epithelial cells lining the mammary ducts.  Transformation of 

normal ductal epithelial cells into their metastatic counterparts occurs in a series of sequential 

steps, during which the cells acquire a more amoeboidal phenotype, become motile, disseminate, 

and colonize distant sites of the body.  The initial stages of this transformation are described as 

an epithelial-to-mesenchymal transition (EMT) (Lee, Dedhar et al. 2006).  The EMT, which 

includes a loss of E-cadherin as a precursor to a more motile and invasive phenotype, is 

necessary to break away from the primary mass and either disseminate by hematagenous or 

lymphatic routes.  Upon colonization of a distant ectopic organ, it is hypothesized that cancer 

cells undergo a reprogramming to a more epithelial phenotype, described as a mesenchymal-to-

epithelelial reverting transition (MErT) (Yates, Shepard et al. 2007).  MErT is hypothesized to 

play a role in the ability of cancer cells to colonize an ectopic locale and counter many of the 

metastatic inefficiencies and pharmaceutical challenges that affront the cancer cells. 

 A hallmark measure of malignant tumor cells is invasiveness.  Invasiveness is the 

result of disconnect of E-cadherin-mediated cell-cell adhesions that limit cell dispersion and 

establish apical-basal polarity with segregation of signals.  This phenomenon has been shown 

repeatedly in simulations of the cadherin switch phenomena in which E-cadherin presence or 

absence dictates the degree of epithelial-like phenotype in a cell. This has been demonstrated by 

expression of a dominant negative Epithelial-cadherin (H-2kd-Ecad), formed by fusion of an 

intact intracellular domain to the extracellular domain from the class I major histocompatibility 

complex antigen (H-2kd), in non-metastatic epithelial-like MCF-7 breast cancer cells causing 
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them to become more invasive (Vizirianakis, Chen et al. 2002).  Thus, invasiveness can be 

considered an inverse measure of epithelial quality of a carcinoma cell (Heimann and Hellman 

2000), and can be used to determine how restoration of the appropriate equilibriums restores the 

epithelial phenotype. 

 E-cadherin not only established cell-cell connections but alters the localization and 

signaling capacity of multifunctional signaling molecules, the catenins in particular. One 

molecular equilibrium necessary for the epithlelial phenotype is the appropriate stoichiometry 

between E-cadherin, β-catenin, and p120 (Aberle, Schwartz et al. 1996; Hirohashi 1998).  Cell-

cell binding of E-cadherin inhibits β-catenin and p120 signaling by sequestering the proteins at 

the cell surface; active β-catenin and p120 signaling have both been implicated in invasive 

phenotypes (Gottardi, Wong et al. 2001; Reynolds and Roczniak-Ferguson 2004).  Noting that 

many cancer cell lines retain epithelial elements, we hypothesized whether epitheliality could be 

incrementally gained by simple sequestration of the effector catenins.  Herein, we report that 

expression of the intracellular domain of E-cadherin binds the catenins, and partially reverts the 

EMT, limiting tumor cell invasiveness similar. This suggests that a major role of E-cadherin 

expression in breast carcinoma cells is to modulate catenin signaling. 

3.3 RESULTS 

3.3.1 Breast cancer cell lines retain epithelial elements 

Two well-characterized model breast cancer cell lines, MCF7 and MDA-231, though 

both originating as exudative pleural effusions from ductal carcinoma in situ, possess seemingly 
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polar characteristics on the EMT spectrum (Soule, Vazguez et al. 1973; Cailleau, Young et al. 

1974; Cailleau, Olive et al. 1978).  MCF7 cells retain many features of their epithelial 

counterparts and are not invasive in vivo. MCF7 cells present cobblestone morphology when 

grown in monolayer and epithelial levels of E-cadherin expression, and have even been 

considered in some studies as immortalized mammary epithelial cells.  MDA-231 cells, in 

contrast, are highly invasive and have a mesenchymal phenotype.  MDA-231 cells grow 

individually and unconnected in monolayer cultures, do not express E-cadherin due to promoter 

methylation (which is characteristic of E-cadherin silencing in invasive carcinoma cells), and are 

highly invasive in vivo.  Since the preponderance of literature suggests that carcinoma cells, in 

order to metastasize, must lose their epitheliality, specifically the cell adhesion molecule E-

cadherin to decouple from the primary epithelia, we were curious as to what epithelial 

characteristics each cell line endogenously retained or reacquired before being isolated from the 

pleural effusion with the intention of engineering the equilibrium of these features further into 

the study.  In order to determine the extent to which breast cancer cells retained epithelial 

elements we assayed two hallmark features: their ability to assume a mammary-specific 

epithelial morphology and their responsiveness to TGF-β. 

 To determine how E-cadherin expression effected the morphological clustering of 

MCF7 cells, we performed FACS analysis and gated the top 5% of E-cadherin expressors in a 

screen of 5e6 MCF7 cells.  When these cells were cultured, they grew in dome-shaped, tightly 

adherent clusters (Figure 10A), in contrast to their more spread morphology prior to the sorting.  

This morphology has been seen in both primary isolates and clonally derived cell lines of 

mammary adenocarcinoma (Pickett, Pitelka et al. 1975; Zucchi, Bini et al. 2002), though this 

morphology does not occur spontaneously in MCF7 cells (Figure 10A).  After four weeks of  
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Figure 10. Invasive cancer cells retain epithelial characteristics.  A) a, MCF7 cells grow in 
clustered epithelial sheets. b, when high-E-cadherin expressing MCF7 are plated, they grow in a 
very tightly adherent domes.  c, four weeks after sorting out the high E-cadherin MCF7 cells, 
they have returned to a flattened morphology and a more similar morphology as seen in panel a.  
B) MDA-231 cells (a) and MCF7 cells (b) were kept in culture with and without varying 
concentrations of TGF-β.  Both cells lines, which were isolated from exudative pleural effusions 
indicating that they had already metastasized, were responsive to the growth suppressive effects 
of TGF-β. 
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normal culture without any selective mechanism, the MCF7 cells return to their original 

morphology (Figure 10A).  This qualitative data suggests that MCF7 cells retain their ability to 

undergo reversible shifts in differentiation.  Contrary to other mammary adenocarcinoma cell 

lines that require de novo protein expression for dome formation (Zucchi, Bini et al. 2002), high 

E-cadherin expression is the primary phenotypic element that promotes dome-forming ability in 

MCF7 cells.   The return of MCF7 cells to their original phenotype after sorting suggests that 

MCF7 have the plasticity to move along the spectrum of the EMT. 

 A hallmark biological response that is considered to distinguish normal epithelial cells 

from transformed ones is the cessation of proliferation upon treatment with TGF-β (Nelson, 

Vanduijn et al. 2006), though growth effects of transformed mammary epithelia upon TGF-β 

treatment has been subject to much debate (Roberts and Wakefield 2003).  We treated both 

MCF7 and MDA-231 cells with TGF-β and saw a growth inhibitory effect at all concentrations 

in both cell types (Figure 11a and 11b), which is consistent with previous literature (Mazars, 

Barboule et al. 1995).  Contrary to the currently accepted model, that as mammary cells progress 

toward malignancy the TGF-β response is more oncogenic (Wakefield and Roberts 2002), the 

response of MCF7 and MDA-231 resembled cells of the normal epithelium, where suppressor 

activities dominate in response to TGF-β treatment.  These data suggest mammary tumor cells 

that retain elements of the epithelial lineage and are plastic in these aspects. 

3.3.2 Epithelial markers vary quantitatively between breast cancer lines 

The carcinoma-related EMT affects more than E-cadherin cohesiveness and TGF-β 

responsiveness.  Many cytoskeletal and cell adhesion proteins change levels with the acquisition 

of a more mesenchymal phenotype (Gotzmann, Mikula et al. 2004).  We queried how these 
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levels had changed in MCF7 and MDA-231 cells in comparison to the normal human mammary 

epithelial 184A-1 cell line using fluorescent microscopy.  We also stably transfected the MDA-

231 cells using a dominant negative fragment H-2kd-Ecad (referred to as 231/H2kd) that has an 

intact intracellular and transmembrane E-cadherin, but the extracellular domain is that of the 

class I major histocompatibility complex antigen (H-2kd) (Vizirianakis, Chen et al. 2002; Fedor-

Chaiken, Hein et al. 2003), thereby producing a stable 231/H2kd cell line that can bind 

intracellular catenins but not form cell-cell adhesions.  We postulated that expressing the 

cytosolic tail of E-cadherin may allow for a partial MErT, because the intracellular domain of the 

E-cadherin molecule serves as a stable docking station of many effector protein in epithelial cells 

that is absent in mesenchymally transformed cells.  Our three-pronged analysis included the 

signaling molecule (EGF receptor tyrosine kinase (EGFR)), cell adhesion protein and effector 

molecules (cadherins and catenins), and cytoskeletal proteins. 

 EGFR positive feedback and autocrine activation is a hallmark of aggressive 

carcinoma cells (Kim, Kassis et al. 1999).  Such is the case with MDA-MB-468 cells, an 

invasive cell line with amplified EGFR (Ennis, Valverius et al. 1989).  Surprisingly, we observed 

similar levels of the EGFR in the 184A-1 HMEC, MDA-231, and 231/H2kd cell lines (Figure 

11A).  This is not in conflict with the initial characterization of the MDA-231 ATCC cell line 

(Bates, Valverius et al. 1990).  ER-positive MCF7 cells expressed EGFR at only 22% of the 

levels of the 184A-1 HMEC cell line, which is also in accordance with studies that ER positivity 

is inversely correlated to EGFR status (Neskovic-Konstantinovic, Nikolic-Vukosavljevic et al. 

1999). 

 When compared to the normal nontransformed 184A-1 HMEC cell line, the cell 

adhesion protein and effector molecules also shared striking similarities and differences (Figure  
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Figure 11. Invasive cancer cells exhibit a very skewed protein profile when compared with 
untransformed HMECs.  A) Cells were examined by immunofluorescence and the histograms of 
the acquired pictures were analyzed for pixel intensity.  B) 231/H2kd cells exhibit remarkably 
upregulated levels of cytokeratin-18 compared to their untransformed MDA-231 counterparts. 
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11A).  Expectedly, E-cadherin was very similar in the MCF7 and 184A-1 HMEC cell lines, 

while MDA-231 and 231/H2kd cells completely lacked the protein.  The expression levels of α-

catenin, and E-cadherin effector molecule that couples the transmembrane adhesion protein to 

the actin cytoskeleton, were polar opposite in MDA-231 and MCF7 cells.  The more epithelial 

MCF7 line had α-catenin levels over two-fold higher than in 184A-1 HMECs, while the MDA-

231 line had much lower levels.  β-catenin was expressed in both MCF7 and MDA-231 lines at 

levels almost 6-fold above the 184A-1 HMEC line; this is not surprising given the link between 

the canonical Wnt signaling pathway and transformation.  β-catenin expression in 231/H2kd 

cells was similarily elevated.  β-catenin’s homologue, γ-catenin, was elevated in MCF7 cells and 

a little more than half that of 184A-1 HMEC expression.  E-cadherin’s other effector catenin, 

p120, was present in very high levels in MCF7 and at lower levels in MDA-231 and 231-derived 

lines. 

 The EMT is also characterized by a switch from cytokeratin-18 to vimentin intermediate 

filament expression.  We did not observe the characteristic switch in intermediate filaments, as 

MCF7 and MDA-231 cells exhibited similar amounts of vimentin below 10% that of the model 

epithelial 184A-1 cells (Figure 11A), though some groups report that low vimentin expression is 

indicative of high tumor grade in vivo (Willipinski-Stapelfeldt, Riethdorf et al. 2005).  Our most 

significant observations were those of cytokeratin-18 expression and how the expression 

changed upon introduction of the dominant negative H-2kd-Ecad.  Consistent with a mechanism 

that restores epitheliality, MCF7 cells display 2.5-fold more cytokeratin-18 than the HMEC 

counterparts, while this epithelial marker was decreased in MDA-231 cells (Figure 11A).  Most 

interestingly, in the 231/H2kd cells, cytokeratin-18 was restored to levels similar to MCF7 

(Figure 11A and 11B), though the cellular localization of cytokeratin-18 in 231/H2kd cells was 
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starkly different, being punctate rather than as a cytosolic scaffold such as with the normal cells.  

This suggests that the cytosolic tail of E-cadherin acts to affect an increase in cytokeratin-18 

levels.  In total, while the MCF7 cell line is much more epithelial than its MDA-231 counterpart, 

there are similar mesenchymal markers that the two lines share; conversely, the MDA-231 cell 

line has features shared by the normal 184A-1 HMEC line, such as untransformed levels of 

EGFR.  Though the dominant negative construct imparted the ability on MDA-231 cells to 

upregulate cytokeratin-18, a robust epithelial marker, we observed the other proteins to stay 

similar to those levels of MDA-231. 

3.3.3 Intermediate mesenchymal-epithelial phenotypes can be engineered 

Upon seeing the varied protein profiles of the MCF7,MDA-231, and 231/H2kd cells, we 

suspected that we had engineered an epithelial to mesenchymal reverting transition in the more 

invasive MDA-231 cells by controlling the localization of β-catenin and p120.  Upon co-

immunoprecipitation of H-2kd from total cell lysate of 231/H2kd cells, we were able to co-

precipiate β-catenin and p120, a result of their sequestration onto the cytoplasmic domain of E-

cadherin (Figure 12A).  This engineering also resulted in a change of cell morphology in the 

231/H2kd cells to a more flattened morphology and the 231/H2kd cells having punctuated 

lamellipodia instead of a defined leading edge as in the MDA-231 cells (Figure 12A, inset).  It is 

important to note that this engineering was performed without establishing cell-cell connections, 

and therefore suggests that outside-in signaling by E-cadherin is not necessary for at least a 

partial switch to epithelial morphology. 

 Testing the functional implications of H-2kd-Ecad in MDA-231 cells using the invasion 

assay, we found that sequestration of E-cadherin effector catenins abrogated the invasiveness of  
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Figure 12. Cancer cells can be engineered to be more epithelial by introducing a dominant 
negative E-cadherin which sequesters catenins and mitigates the invasive phenotype.  A) In 
whole cells lysates, the H2kd fragment is detected in MDA-231 cells transfected with a dominant 
negative E-cadherin (H-2kd-Ecad).  β-catenin and p120 can be co-immunoprecipitated with 
H2kd in 231/H2kd cells.  231/H2kd cells have a flattened morphology with punctuated 
lamellipodia rather than the apparent leading edge seen in the untransformed MDA-231 
counterparts (insets).  B) Invasion assay comparing wild-type MDA-231 cells, epithelial MCF7 
cells, and 231/H2kd cells.  Asterisks denotes statistical significance by Student t-test (*p<0.08). 
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these cells by almost almost one-third when comparing the difference between the untransfected 

MDA-231 cells and the basal MCF7 cells (Figure 12B).  Though we were able to mitigate 

invasiveness in MDA-231 cells by sequestering β-catenin and p120, we found that the baseline 

invasiveness without a chemotactic signal (“serum free” in the bottom chamber) was still greater 

than the MCF7 cells (p < 0.08), in which E-cadherin is expressed in high amounts both limiting 

the signaling of the catenin proteins and establishing cell-cell connections.  Though β-catenin 

and p120 have been the most studied proteins to date regarding their ability to regulate 

epitheliality with their association in the E-cadherin complex, the expression of the cytosolic tail 

of E-cadherin could have sequestered or effected the signaling of other uncharacterized effector 

proteins that could have contributed to these results.  In total, this suggests that changes to the 

localization of key signaling proteins during the mesenchymal to epithelial transition can have 

profound effects mitigating the mesenchymal nature of an invasive cell. 

3.4 DISCUSSION 

Metastatic transformation follows a sequence of ordered events, during which normal 

epithelial cells become metastatic by both the gain and loss of functions that perturb the cell from 

its epithelial equilibrium.  The hallmark imbalance of the epithelial to mesenchymal transition 

begins at the primary tumor, where E-cadherin silenced (Foty and Steinberg 2004).  The 

silencing of the cell adhesion molecule not only contributes to the decoupling of the epithelial 

sheet, which allows malignant cells to break away from the primary mass, but also to increased 

activity of E-cadherin’s effector catenins, β-catenin and p120 (Brennan and Brown 2004; Sarrio, 

Perez-Mies et al. 2004).  In epithelial equilibrium, the catenin signaling is limited by 
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sequestration on the intracellular tail of the E-cadherin transmembrane protein; when E-cadherin 

is no longer present, β-catenin and p120 are free to transit throughout the cytoplasm of the cell, 

signaling to their downstream pathways.  When this signaling is not balanced by E-cadherin 

sequestration, it most likely results in a metastatic cascade, further perturbing the equilibrium 

until the full mesenchymal nature of the cell is reached.  The present study provides proof-of-

principle that even invasive carcinoma cells can regain some epithelial phenotypes by 

modulating this catenin signaling. 

 In previous studies, we documented how normal epithelial cells can drive the re-

expression of E-cadherin in breast cancer cells in a process described as the mesenchymal to 

epithelial reverting transition (MErT) (Yates, Shepard et al. 2007).  In the prostate cancer cell 

lines DU-145 and PC-3, E-cadherin expression could be induced by inhibition of the EGFR, 

indicating that a post-transcriptional pathway was responsible for E-cadherin downregulation.  

Several intermediate pathways linking tyrosine kinase activation to E-cadherin recycling and/or 

destruction have been reported (Pece and Gutkind 2002).  As EGFR-family member 

amplification is a frequent occurrence in invasive cancers, increased signaling through this 

receptor family is a likely cause for loss of epithelial equilibrium and progression towards a 

mesenchymal phenotype.  Inhibition of EGFR signaling demonstrated epithelial phenotype 

plasticity in highly invasive carcinomas, leading us to query how else this equilibrium could be 

affected.   

In the MDA-231 breast cancer line, in which E-cadherin is silenced on the genetic level 

by promoter methylation, we saw that coculturing with epithelial cells triggered a demethylation 

of the promoter region and subsequent expression of E-cadherin that could functionally ligate 

with juxtaposed epithelial cells and transduce signals by canonical pathway activation (Shepard 
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and Wells 2007).  In these studies, we observed that the epithelial interaction altered the MET 

equilibrium on the epigenetic level, allowing re-expression of E-cadherin and relocalization of β-

catenin and p120 to the cytosolic tail of E-cadherin.  Our observations of mesenchymal-epithelial 

equilibrium shifts raised the question of what aspect of E-cadherin expression was responsible – 

the cell-cell connections or the altered signaling from relocalization of the attendant catenins.   

First, by examining phenotypic and proteomic patterns in both the aggressive MDA-231 

and the nearly nontumorigenic MCF7 cells, we found that there is variation in breast cancer cell 

lines such that this no ‘pure’ signature for either end of the EMT spectrum; and that these 

characteristics are plastic. In MCF7 cells, which are non-invasive in vivo, a highly differentiated 

phenotype can be realized simply by sorting for those cells at the tail-end of the E-cadherin 

expression distribution; in this way, an equilibrium shift changing the amount of E-cadherin 

expression in the MCF7 population would restore the epithelial phenotype of the cell population.  

We also observed biological responses, thought only present in normal epithelial cells, to be 

preserved in the invasive cancer cell line MDA-231; responsiveness to TGF-β1 mediated growth 

suppressive effects is a property of development-associated transitions involving branching 

morphogenesis.  Our data suggests that invasive cells can still be responsive to TGF-β in a 

growth-suppressive manner.  This is such a hallmark characteristic, one of the defining ones in 

mammary bud development, that the possibility for MDA-231 cells’ ability to redifferentiate to a 

pseudo-normal mammary epithelium cannot be ignored. 

After observing these variations at odds with a one-way EMT theory, we hypothesized that we 

could engineer a small phenotypic equilibrium shift in MDA-231 cells by sequestering the E-

cadherin-associated catenins with a non-binding E-cadherin construct.  After transfecting the 

MDA-231 cells with the cytosolic domain of E-cadherin linked to the MHC external domain, we 
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saw that the dominant negative protein sequestered both β- and p120- catenins.  The advantage 

of using this dominant negative is that the catenin signaling could be parsed from other activities 

of the extracellular domain of E-cadherin including cell adhesion through trans-ligation and 

EGFR cis-modulation (Fedor-Chaiken, Hein et al. 2003).  We compared the transfectants with 

the parental MDA-231 cells and the MCF7 cells.  Not only did the 231/H2kds expression levels 

of cytokeratin-18 seen in the epithelialoid MCF7 cells, but when the invasiveness was measured 

by invasion chamber assay, we found that MDA-231/H2kd cells were less invasive than their 

MDA-231 counterparts. The MDA-231/H2kd cells were still more invasive than the MCF7 cells 

even at basal levels without a chemoattractant present.  Thus, we provide proof-of-principle that 

cancer cells can be engineered to approach a mesenchymal-to-epithelial reverting transition by 

altering the functions of E-cadherin expression.  Malignant carcinoma reversion to epitheliality 

in vivo, whether in the natural history of the disease or by pharmaceutical intervention, may be a 

double edged sword.  The result of returning invasive cells back into their epithelial counterparts 

will mitigate the pathology of invasive cells.  However, this reversion may provide other 

behaviors that may make the cells more likely to persist and survive attempts to exterminate the 

tumor.  More research into how invasive cells undergo the MErT is necessary to formulate a 

pharmaceutical intervention strategy. 
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3.5 MATERIALS AND METHODS 

3.5.1 Cell lines and reagents 

The human breast adenocarcinoma cell lines MCF7 and MDA-231 were originally derived from 

pleural effusions.  Cells were maintained in RPMI-1640 with 10% FBS as previously described 

(Yates, Shepard et al. 2007).  184A-1 HMECS were a kind gift from Lauffenburger  et al and 

cultured as previously described (Wolf-Yadlin, Kumar et al. 2006).  High E-cadherin expression 

MCF7 cells were sorted by FACS using a human E-cadherin-specific (67A4) antibody (Santa 

Cruz Biotechnology; Santa Cruz, CA) and cultured as above.  TGFβ-1 (Peprotech; Rocky Hill, 

NJ) was used at stated concentrations in serum-supplemented media.  MDA-231/H2kd cells were 

generated using the Myc/His encoding H-2kd-E-cad dominant negative E-cadherin construct, a 

kind gift from Vizirianakis et al (Vizirianakis, Chen et al. 2002).  H-2kd-Ecad cells were selected 

by FACS using the H-2kd (SF1-1.1) antibody (BD Pharmingen; San Jose, CA) and were 

maintained in 600μg/ml G418 until used for experimentation. 

3.5.2 Immunofluorescence staining and analysis 

Cells were plated in Nunc Lab-Tek 8-well Chamber Slides (Fisher; Houston, TX) and allowed to 

attach overnight.  The next day cell were fixed in 4% paraformaldehyde then permeabilzed using 

1% Triton in PBS for 4 minutes.  Cells were incubated with primary antibody for 60 minutes, 

washed, and then secondary antibody for 60 minutes, washed, then mounted using Vectashield 

with DAPI (Vector Labs; Burlingame, CA).  Images were acquired using an Olympus 1X70 

inverted microscope (Center Valley, PA).  Primary antibodies were purchased from Santa Cruz 
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Biotechnology, unless otherwise stated: E-cadherin (67A4), p120 (H-90), β-catenin (C-18), 

vimentin (J144), cytokeratin-18 (RCK106), γ-catenin (C-20), α-catenin (H297), EGFR (Ab-3) 

(Oncogene; Uniondale, NY).  Raw 8-bit color depth images were analyzed using the Photoshop 

(Adobe; San Jose CA) pixel histogram tool using channel-specific parameters.  Enlarged insets 

were sharpened using Photoshop’s “Smart Sharpen” tool; image manipulations were applied 

equally to all comparable figures. 

3.5.3 Immunoprecipitations and western blots 

MDA-231/H2kd cells were quiesced for 24 hours and immunoprecipitation was performed using 

the H-2kd antibody from sodium-dodecyl-sulfate (SDS)-sample buffer cell lysate as previously 

described (PMID: 14747473).  Immunoprecipiated proteins were subjected to SDS-PAGE and 

transferred to polyvinylidene difluoride membrane/Immobilon-P (Millipore; Beford MA).  Blots 

were probed with given primary antibody above before visualizing with the Enhanced 

Chemiluminescence Kit (Amersham Biosciences; Piscataway, NJ). 

3.5.4 Invasion assay 

Invasive potential was determined in vitro by migration through an artificial ECM (Zhou, 

Grandis et al. 2006).  1.5e4 cells were challenged in growth-factor reduced matrigel invasion 

chambers (Becton Dickinson/Biocoat; Bedford, MA) as previously described.  Cells were plated 

in 1% BSA for the first 24 hours; after, media in the top chamber was replaced with serum-free 

media and media containing 10% serum was added to the lower chamber for the remainder of the 

assay.  After 48 hours, the remaining cells and ECM in the top chamber were removed by cotton 
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swab and the cells that invaded through the matrix and reached the bottom of the filter were 

counted visually.  Individual experiments were performed in triplicate.  Negative controls were 

performed by using serum-free media in the bottom chamber for the duration of the experiment.  

Measurements were recorded as the fraction of total cells seeded at the beginning of the assay. 

3.5.5 Statistical Analysis 

All quantitative data are presented as mean ± sd obtained from at least three independent 

experiments.  P-value significance was determined using a two-tailed unpaired Student t-test.  

All images were representative of at least three independent observations. 
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4.1 ABSTRACT 

Epithelial-cadherin downregulation enables cancer cells to escape from the primary mass; 

however, E-cadherin has been found to be expressed on metastatic foci, bringing into question 

the role of this molecule in tumor progression. We define a novel role for the cellular adhesion 

molecule E-cadherin, in which the protein’s re-emergence promotes carcinoma-parenchymal 

interactions in ectopic sites. Non-metastatic E-cadherin positive MCF7 breast cancer cells form 

heterotypic cohesions mediated by E-cadherin, and in invasive and metastatic MDA-MB-231 

cells, the E-cadherin promoter hypermethylation that prevents endogenous E-cadherin expression 

is reversed when these cells are cultured with hepatocytes. The function of this re-expression is 

suggested by the E-cadherin-dependent sustained activation of Erk-MAP kinase and Akt in these 

breast carcinoma cells.  Thus, we propose that E-cadherin expression and subsequent 

heterocellular interactions direct cell fate decisions that may ultimately enable colonization of a 

secondary site by an invasive cancer cell. 

4.2 INTRODUCTION 

Cadherins make up a family of adhesion molecules that mediate Ca2+-dependent cell-cell 

adhesion at points of cell-cell contact (Nose, Nagafuchi et al. 1988; Takeichi 1991). Epithelial-

cadherin (E-cadherin, CDH1), the prototype classical cadherin present on the surface of most 
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epithelial cells, has a cytoplasmic domain that anchors the cell adhesion molecule to the actin 

cytoskeleton via catenin-based complexes (Aberle, Schwartz et al. 1996). It is generally 

considered that E-cadherin directs homotypic binding, organizing cells of the same lineage into a 

functional tissue during morphogenesis (Takeichi 1991). Thus, E-cadherin is central to epithelial 

cell differentiation and suppression of proliferation and migration.  

Finding E-cadherin downregulated or even lost in invasive and metastatic carcinomas 

buttressed this role of E-cadherin in modulating the epithelial phenotype (Hirohashi 1998). It has 

been hypothesized that loss of E-cadherin allows individual tumor cells to break from the 

primary tumor mass at the same time as enabling autocrine pro-proliferative and –migratory 

signaling to ensue from receptors and ligands physiologically separated by cell polarity and the 

E-cadherin-based tight junctions (Hazan and Norton 1998). This supported a designation as a 

tumor suppressor, even placing E-cadherin at the apex of a “tumor suppressor system” 

(Vleminckx, Vakaet et al. 1991). More recent reports of E-cadherin being expressed at the site of 

metastatic foci in the liver, lung and lymph nodes (Kowalski, Rubin et al. 2003) have caused 

reconsideration of E-cadherin downregulation as required for tumor dissemination. The key 

question is whether downregulation of E-cadherin is not required for dissemination, or rather, as 

we posit here, that E-cadherin expression is re-established at the metastatic site. 

We previously reported that co-culture of DU145 human prostate carcinoma cells with normal 

rodent hepatocytes causes an increase in E-cadherin at both the mRNA and the protein level 

(Yates, Shepard et al. 2007). This re-expression could also be accomplished by LHRH receptor 

negative attenuation of the stimulatory autocrine EGFR signaling loop extant in most carcinomas 

(Kim, Turner et al. 1999; Wells 2000). We thus proposed that the re-expression of E-cadherin on 

invasive prostate cancer cells was described by a mesenchymal-to-epithelial reverting transition 

 64 



(MErT) (Yates, Shepard et al. 2007). In this study, we test this hypothesis in a cell line in which 

the E-cadherin promoter is hypermethylated, the aggressive breast carcinoma line MDA-MB-

231. Herein, we report that hepatocytes drive the re-expression of E-cadherin in these breast 

carcinoma cells and in some primary breast carcinoma explants. These are functional in that 

ligation with cell heterotypic E-cadherins elicits intracellular signaling related to tumor cell 

survival. Thus, we propose that a stimulus originating from the hepatocytes drives the 

demethylation of the E-cadherin promoter region in breast cancer cells and results in a functional 

adhesion between invasive cancer cells and the parenchymal hepatocyte, suggesting that E-

cadherin may not only be a tumor-supressor in the locale of the primary tumor, but also act as a 

metastasis-specific oncogene promoting survival in ectopic organs. 

4.3 RESULTS 

4.3.1 Distant soft tissue micrometastases that originate from E-cadherin-negative MDA-

MB-231 primary tumor xenografts re-expression E-cadherin 

Our working model proposes two changes in E-cadherin expression that promote tumor 

dissemination. First, E-cadherin downregulation or loss in the primary tumor site enables 

emigration, as has been shown in numerous studies (Mareel, Behrens et al. 1991; Shiozaki, 

Tahara et al. 1991; Vleminckx, Vakaet et al. 1991; Bracke, Van Roy et al. 1996; Hirohashi 1998; 

Hazan, Qiao et al. 2004). Second, E-cadherin expression is upregulated in metastatic sites to 

provide for survival in the ectopic environments; we show evidence for the re-expression 

phenomena herein. We evaluated metastases of the highly aggressive, E-cadherin deficient 
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MDA-MB-231 human breast carcinomas from orthotopic xenografts in the inguinal fat pads. 

After four weeks to allow for dissemination from the primary tumor, the mice were sacrificed 

and lung micrometastases examined (Figure 13). Our use of human breast cancer cells and a 

mouse host allowed for a human-specific E-cadherin antibody to discern between the cancer 

cells and the epithelial mouse parenchyma. The primary xenograft tumor was similar to de novo 

occurring in situ human breast cancers, exemplified by nuclear atypia and cellular 

disorganization. At the periphery of the tumor, cancer cells invaded the neighboring adipocytes 

indicative of their invasive ability. We first confirmed that the primary xenograft transplants in 

the inguinal fat pads did not express E-cadherin (Figure 13A). The lack of E-cadherin expression 

was expected in the primary xenograft, since the E-cadherin promoter region in the MDA-MB-

231 cells is highly methylated (Graff, Herman et al. 1995). There was no change in E-cadherin 

status of the invading cells in the primary xenograft, as we observed that in both the center and 

periphery areas of the tumor that E-cadherin was not detectable by immunoperoxidase staining 

(Figure 13A, middle and right). The early micrometastases in the lung showed a markedly 

different pattern of E-cadherin expression; these tumor cell nodules were less than 2mm in 

diameter fitting the definition of a micrometastase as stated in the AJCC staging manual (Figure 

13B, left) (Huvos, Hutter et al. 1971). When immunoperoxidase labeling was performed on these 

sections, we found that isolated islands expressed E-cadherin (Figure 13B, top). When the image 

was captured at higher resolution (Figure 13B, top adjacent), we found that the E-cadherin 
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Figure 13. E-cadherin positive metastatic foci originate from E-cadherin negative primary 
tumors. A) Left, human MDA-MB-231 breast cancer cell xenograft in a mouse inguinal fatpad 
(H&E); middle, immunoperoxidase labeling with a human-specific E-cadherin antibody 
indicates the absence of E-cadherin expression in the center of the primary tumor; right, 
immunoperoxidase labeling of a field at the periphery of the tumor indicates the homogeneity of 
the absence of E-cadherin in all fields of the primary tumor. B) Left, islands of micrometastases 
in the lung originating from the primary xenograft in A (H&E); top adjacent, immunoperoxidase 
staining using a human-specific antibody of diseased portions of the mouse lung indicate the 
presence of E-cadherin positive human MDA-MB-231 cancer cells (arrows); bottom adjacent, 
mouse epithelial alveolar cells in a portion of the unaffected lung do not exhibit labeling with the 
human-specific E-cadherin antibody. 
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staining in the micrometastases was localized to the membrane of the cells, and that E-cadherin 

positive cancer cells occurred in islands and were not disseminated throughout the entire tumor 

field. Other fields of the same lung, unaffected and clear of metastatic lesions, had no staining 

(Figure 13B, bottom). The heterogeneity of the secondary micrometastases was distinct from the 

homogeneous solid tumor at the primary xenograft transplant, and we queried this re-expression 

in the remainder of the study. 

 

4.3.2 E-cadherin protein and message expression in MDA-MB-231 cells is driven by 

hepatocyte co-culture 

The initial finding of E-cadherin expression being upregulated in the early micrometastases of 

MDA-MB-231 cells, while consistent with our model of re-expression at the ectopic site, leaves 

open the possibility of preferential dissemination of E-cadherin-positive cells. We had earlier 

shown that prostate cancer cells undergo a program of mesenchymal to epithelial reverse 

transition (MErT) that includes upregulation of E-cadherin when these cells are co-cultured with 

primary hepatocytes (Yates, Shepard et al. 2007). Therefore, we determined whether the 

individual breast cancer cells also would undergo this reverse transition as best determined in 

vitro. This is of particular interest as the E-cadherin is silenced by promoter hypermethylation in 

the MDA-MB-231 cells, similar to breast cancers and most invasive carcinomas (Graff, Herman 

et al. 1995), while in prostate cancer cell lines, including DU-145 and PC3, E-cadherin is 

downregulated at the post-transcriptional stage (Mitchell, Abel et al. 2000).  

We co-cultured MDA-MB-231 cells with freshly isolated rodent hepatocytes, as liver is a 

common site of breast cancer metastasis (Goldhirsch, Gelber et al. 1988; O'Reilly, Richards et al. 
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1990; Wyld, Gutteridge et al. 2003) and isolation of highly enriched parenchymal cells is more 

readily accomplished in liver than lung. Upon whole cell lysis of both hepatocytes and cancer 

cells on day 6 we noted E-cadherin immuno-reactivity using a human-specific antibody (Figure 

14A), suggesting that this expression occurred in the MDA-MB-231 cells. Control experiments 

were performed to confirm the minimal cross-reactivity of the antibody with E-cadherin of rat 

origin (data not shown). To both quantify the level of E-cadherin upregulation on individual cells 

and further define it is the breast cancer cells that express E-cadherin, we determine cell 

reactivity by quantitative flow-cytometry (Figure 14B). Side and forward scatter as well as 

hepatocyte-specific autofluorescence gating were optimized to exclude the hepatocyte 

population. MDA-MB-231 cells has a unimodal level of background fluorescence. The same 

analysis of MDA-MB-231 cells after 6 days of co-culture with hepatocytes forms a bimodal 

distribution, with 22.32% of cells forming a distinct population in the second decade of the log 

scale. From this data, we observe that E-cadherin is translated or survives at the protein level in 

only a fraction of the breast cancer cells, which we further studied below. Importantly, we did 

not detect E-cadherin upregulation in MDA-MB-231 cells when cultured alone (Figure 14C). 

Therefore, hepatocytes drive the expression of E-cadherin in MDA-MB-231 invasive 

adenocarcinoma cell line. 
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Figure 14.  Hepatocytes drive the re-expression of E-cadherin in MDA-MB-231 breast cancer 
cells. A) Immunoblot of proteins lysates from MDA-MB-231/hepatocyte co-cultures using a 
human-specific antibody indicates that within 6 days of co-culture with hepatocytes, the cancer 
cells re-express E-cadherin. B) Flow cytometry analysis of the MDA-MB-231 population. 
Hepatocyte interference was excluded using a human-specific antibody as well as SS/FS gating. 
On Day 0, MDA-MB-231 cells have a homogenous level of background fluorescence with a 
coefficient of variation (CV) of 63.01 that falls within the first decade of the log scale, gated as 
R10. The E-cadherin negative MDA-MB-231 cells on day 6 have a similar CV of 66.91, which 
suggests the MDA-MB-231 population has become bimodal, with E-cadherin positive cells gated 
as R11. 

 

 70 



 

4.3.3 Demethylation of the E-cadherin promoter region without global demethylation 

allows for protein re-expression 

We explored an epigenetic mechanism to explain the re-expression of E-cadherin in MDA-MB-

231 cells when in the presence of ectopic parenchymal cells, since the promoter region of MDA-

MB-231 cells has been well characterized (Graff, Herman et al. 1995; Graff, Herman et al. 1997; 

Graff, Gabrielson et al. 2000) as being fully methylated, with this silencing E-cadherin 

transcription. We assayed a CpG island that was proximal to the E-cadherin transcription start 

site, whose methylation correlates with E-cadherin expression (Kallakury, Sheehan et al. 2001). 

Following the same co-culture protocol as above, we isolated genomic DNA for methylation 

specific PCR (MSP) analyses. When human MDA-MB-231 cells were co-cultured with rat 

hepatocytes over a period of 6 days, the methylation status of the E-cadherin promoter region 

changed from a hypermethylated state to a hypomethylated state (Figure 15A.c). It was 

determined in control experiments of hepatocytes alone in culture over the same period of time 

that the methylation-specific primers amplified only human E-cadherin DNA and not rat (Figure 

15A.c). The stability of the E-cadherin promoter in MCF7 cells, an E-cadherin-positive, non-

invasive breast epithelial cell line, was assessed over the same time-course and remained 

unchanged (Figure 15A.a) and MDA-MB-231 cells remained hypermethylated in the absence of 

hepatocytes (Figure 12A.b). These MSP data show that demethylation of the promoter region 

was antecedent to transcription of the E-cadherin message in MDA-MB-231 cells co-cultured 

with hepatocytes. 
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An open question is whether the loss of promoter methylation is specific or global in the 

presence of hepatocytes. The H19 gene is a paternally imprinted gene whose methylation is 

modulated during gametogenesis (Lucifero, Mertineit et al. 2002), and does not change after 

terminal differentiation of a cell line. We performed bisulfite MSP analysis on MDA-MB-231 

cells before and 1,3, and 6 days into co-culture with hepatocytes, examining a previously 

reported CpG site of H19 (Figure 15B). Evaluation of the data revealed that the average 

methylation of H19 remained unchanged at all time points. This suggests that MDA-231 cells 

initiate a specific program of demethylation involving the E-cadherin gene when co-cultured 

with hepatocytes, and demethylation of the E-cadherin promoter is not epiphenomenal to a 

global demethylation program. 

Our data show a loss of nearly all methylation in the MDA-MB-231 promoter region, 

despite our flow cytometry data indicating only a subpopulation of cells expressed the protein. 

To confirm that demethylation of the promoter region allowed E-cadherin transcription, we 

quantified E-cadherin message in MDA-MB-231 using qRT-PCR; MCF7 cells served as the 

positive control. MDA-MB-231 cells presented undetectable levels of transcript (Figure 15A.d). 

However, after 6 days of coculture, the level of E-cadherin transcript was comparable to that in 

MCF7 cells (95 ± 2%, n = 4). 
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Figure 15. Re-expression of E-cadherin follows a proliferation-dependent demethylation of the 
E-cadherin promoter. A) a-b, HGM does not affect the methylation status of E-cadherin positive 
MCF7 cells or E-cadherin negative MDA-231 cells; c, primers that amplify only the human E-
cadherin promoter sequence indicate that hepatocytes drive the demethylation of the E-cadherin 
promoter region by 6 days of co-culture with hepatocytes; d, human specific RT-PCR primers 
indicate that E-cadherin message in MDA-MB-231 cells after 6 days of co-culture is comparable 
to MCF7. B) human specific primers that amplify the imprinted H19 gene indicate that a global 
hypomethylation phenomena is not occurring. C) a, upon addition of 50μg/ml MMC, 
demethylation of the MDA-MB-231 E-cadherin promoter does not occur; b, with the addition of 
MCC, E-cadherin message transcript in MDA-MB-231 cells is undetectable; c, human-specific 
E-cadherin is not detectable on the protein level with the addition of MMC.  Shown are mean±sd 
(n=4). 

 

 74 



 

4.3.4 Cancer cells undergo a proliferation-dependent demethylation of the E-cadherin 

promoter 

Currently, there are no well-defined DNA demethylases, leaving either a passive mechanism, 

lack of maintenance methylation subsequent to mitosis, or an active mechanism, enzyme-

mediated excision, to explain the loss of methylation on the E-cadherin promoter. Our MSP 

experiments suggested a passive process, reflected in both intermediate stages of promoter 

methylation on Day 3 and extended time period to unmethylated status (6 days). To test directly 

whether the demethylation was dependent on proliferation of the cancer cells, we inhibited 

proliferation of the cancer cells using mitomycin-C (50 ug/ml). This treatment completely 

prevented promoter demethylation as demonstrated by MSP (Figure 15C.a). Quantitative RT-

PCR confirmed the levels of E-cadherin transcript in co-cultured MDA-MB-231 cells treated 

with mitomycin-C were undetectable (Figure 15C.b). Furthermore, this translated through to the 

protein level, wherein we could not detect protein if mitomycin-C was present during the 

induction period (Figure 15C.c). These findings further support E-cadherin demethylation as 

occurring by reported mechanisms in the literature (Razin and Riggs 1980; Turek-Plewa and 

Jagodzinski 2005). 
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4.3.5 E-cadherin on breast cancer cells can mediate functional heterotypic adhesion to 

hepatocytes 

As we had established that re-expression of E-cadherin occurs, we speculated that E-cadherin on 

cancer cells may play the same role as on mesenchymal cells after dissemination from the neural 

crest, one of mediating interactions with the ectopic environment (Pla, Moore et al. 2001) . The 

primary physiological role of E-cadherin is one of cell-cell adhesion, as the molecule is the chief 

contributor to the architecture of epithelial sheets. Similarly, the functioning of the molecule on 

the cell surface depends on several factors not limited to the density of protein expression of the 

adhering cell types, the cadherin isotype, and amount of glycosylation on the protein. In order to 

show that E-cadherin on breast cancer cells can mediate an adhesive ligation with the E-cadherin 

on hepatocytes, we used a centrifugal assay that had been used in previous studies to quantify the 

kinetics of E-cadherin ligation in homocellular interactions; these studies have shown that E-

cadherin ligation occurs in a single logarithmic step (McClay, Wessel et al. 1981; Angres, Barth 

et al. 1996; Giacomello, Neumayer et al. 1999).  

The kinetics of adhesion between breast cancer cells and hepatocytes were measured over 

a period of 60 minutes. To determine whether breast cancer cells can make cell heterotypic 

interactions, we used the MCF7 cell line, which has high E-cadherin expression. These cells 

homotypically adhered to each other in a single logarithmic step, in agreement with the literature 

(Figure 8A) (Angres, Barth et al. 1996). Interestingly, MCF7 cells adhered to hepatocytes with 

similar kinetics during the initial stages of strengthening of the adhesion, though the half-

maximal binding of cells in the heterotypic adhesion was slightly, though significantly less 

(Figure 16A). MDA-MB-231 cells did not adhere to hepatocytes (Figure 16A). To demonstrate 

that this cell adhesion was E-cadherin mediated, we targeted this mechanism specifically. The 
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CAFCA binding was abrogated by EDTA, a calcium chelator, or an E-cadherin blocking 

antibody (SHE78) (Figure 16B). Both of these interventions were consistent with E-cadherin-

mediated cell-cell adhesion. However, to confirm that it is the breast cancer cell E-cadherin that 

is responsible for adhesion, we treated the MCF7 cells with siRNA constructs prior to CAFCA 

analysis. A human E-cadherin-specific siRNA reduced E-cadherin levels by well over half in 

MCF7 cells while a different, nontargeted siRNA had no effect on E-cadherin presentation 

(Figure 16C). The E-cadherin-specific siRNA reduced cell heterotypic adhesion down to 

background levels (Figure 16D). These data, for the first time, hint at the relevancy of 

heterotypic cohesion between two different lineages of cells, both with epithelial characteristics. 
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Figure 16. Heterotypic adhesion between cancer cells and hepatocytes exerts an E-
cadherin-dependent functional mechanical force. A) Homotypic cohesion between MCF7-MCF7 
cells develops in a single logarithmic step (triangles); heterotypic cohesion between MCF7-
hepatocytes still develops in a single logarithmic step, though the half-maximal number of cells 
bound is significantly less (squares); heterotypic cohesion between 231-hepatocytes is negligible 
and indistinguishable from background levels (circles). B) Hetertypic MCF7-hepatocyte 
cohesion is E-cadherin dependent and can be abolished by either calcium chelation (triangles) or 
the E-cadherin function blocking antibody, SHE78 (circles). C) siRNA knock-down of E-
cadherin in MCF7 cells. D) Heterotypic adhesion between MCF7-hepatocytes can be abolished 
to near-background levels with an E-cadherin-directed siRNA, but adhesion remains unaffected 
with a non-targeted siRNA.  Shown are mean±sd(n=4). 
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To confirm that the E-cadherin in MCF7 cells was participating in a functional 

heterotypic ligation with the E-cadherin on hepatoytes, we localized the cytoskeleton and 

cytoskeleton assembly proteins to points of juxtaposed MCF7 cells and hepatocytes. That the E-

cadherin ligation was functional in the CAFCA studies indicated of involvement of the actin 

cytoskeleton to anchor the heterotypic cellular-adhesion. We observed areas of focused actin 

polymerization where MCF7 cells came into contact with hepatocytes at early co-culture time 

points (Figure 17A). Arp2/3, a good indicator of focused actin polymerization (Machesky and 

Insall 1999; Machesky, Mullins et al. 1999), co-localized with these areas. To further show 

involvement of cytoskeletal anchoring, we set out to reproduce studies that determined Arp2/3 

associates with E-cadherin and is necessary for efficient E-cadherin ligation (Kovacs, Goodwin 

et al. 2002; Verma, Shewan et al. 2004). After co-culturing E-cadherin positive MCF7 cells with 

hepatocytes for 90 minutes, we found that both Arp2 and E-cadherin localized to E-cadherin 

plaques at the edge of MCF7 cells that were directly juxtaposed with hepatocytes (Figure 17B). 

Hence, the adhesion machinery that mediates the contact between hepatocytes and breast cancer 

cells is mechanically functional and the molecules that mediate actin-based anchoring in cell-cell 

adhesion are present in plaques at places of cell juxtaposition. 
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Figure 17.  In E-cadherin positive MCF7 cells, the actin assembly complex Arp 2/3 is recruited 
to points of heterotypic cohesion to actively anchor the cancer cells to the hepatocytes. DAPI, 
blue; actin, yellow; Arp3, green; human specific E-cadherin, red. A) Cell interaction was 
observed 90 minutes after seeding of MCF7 cells into hepatocyte cultures. At points where well-
differentiated hepatocytes and E-cadherin positive MCF7 cells are directly juxtaposed, focused 
actin polymerization occurs at the periphery of the cells that colocalizes with Arp3, while absent 
from the periphery not juxtaposed. B) A human specific antibody was used to show the 
colocalization of E-cadherin and Arp3. Colocalization in yellow. 
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Recent reports have documented E-cadherin ligation to activate canonical signaling 

pathways involved in mitogenesis, motility, and survival (Pece, Chiariello et al. 1999; Pece and 

Gutkind 2000). However, as soluble factors from hepatocytes might also signal the breast cancer 

cells, we isolated hepatocyte membranes using differential centrifugation and passively adsorbed 

them onto culture plates coated with poly-L-lysine. The membranes were characterized by 

immunoblot and shown to contain E-cadherin (data not shown). In this way, we could stringently 

assay kinase activation in the breast cancer cells without assaying the activity of pathways in the 

hepatocytes or those induced by soluble factors from hepatocytes. In MCF7 cells, both Erk and 

Akt are activated in an E-cadherin-dependent manner (Figure 18).  This activation could be 

attenuated to background levels by either Ca2+ removal from the media or by an antibody that 

blocks E-cadherin function (Laur, Klingelhofer et al. 2002). Immunocomplex assays confirmed 

that these canonical pathways were being activated in MCF7 cells (Figure 18C). The kinase 

assay showed maximal phosphorylation of Erk was 65% of EGF treatment and maximal Akt 

activation was 45% of PDGF treatment. The ability of an E-cadherin functional blocking 

antibody or calcium chelation to abrogate pathway activation suggests that E-cadherin is directly 

propagating signals to the canonical Erk-MAPK and Akt pathways. 
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Figure 18.  The canonical Erk-MAPK and Akt pathways are activated in E-cadherin positive 
MCF7 cells upon ligation with hepatocyte E-cadherin. A) Erk-MAPK activation peaks at 30min 
after ligation and Akt activation peaks at 60min after contact; activation of Erk and Akt can be 
attenuated with calcium chelation or the function blocking antibody, SHE78. B) 60min time-
course of Erk-MAPK and Akt activation. Calcium chelation completely abrogates activation of 
Erk and Akt(pS473). C) Total Erk or Akt were immunoprecipitated and MBP was used as a 
substrate for in vitro kinase assays. Results are shown as fractions of maximal activation by 5min 
EGF or PDGF treatment.  Shown are mean±sd (n=3). 
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4.3.6 E-cadherin trafficking to the surface requires EGFR attenuation but EGFR 

functionality is necessary for preserved E-cadherin-dependent MAPK activation in MDA-

MB-231 cells 

The invasive, mesenchymally-transitioned MDA-MB-231 cells did not adhere to hepatocytes in 

the CAFCA assay (Figure 17A). This was expected as these cells do not express E-cadherin. We 

postulated upon E-cadherin upregulation after co-culturing, these cells should adhere to 

hepatocytes in an E-cadherin dependent manner. After co-culturing, MDA-MB-231 cells did 

adhere to the hepatocytes, but not at the levels of the E-cadherin positive MCF7 cells (Figure 

19A). This suggested that E-cadherin was present at the cell surface in sufficient amounts to 

allow for adhesion, but not in amounts that allowed the robust adhesion similar to MCF7. Upon 

examination by confocal microscopy, we found that the re-expressed E-cadherin was not stably 

presented on the surface of MDA-MB-231 cells, but much of the protein remained in 

intracellular locales (Figure 19B). This was postulated as due to autocrine EGFR signaling 

leading to E-cadherin internalization (Pece and Gutkind 2002). As we can restore E-cadherin 

surface expression and cell-cell adhesion in prostate carcinoma cells by inhibiting EGFR (Yates, 

Wells et al. 2005; Yates, Shepard et al. 2007), we exposed these co-cultured MDA-MB-231 cells 

to PD153035, an inhibitor of EGFR kinase activity. This resulted in E-cadherin re-localization to 

the cell surface that corroborated with increased beta-catenin localization (Figure 19C) and 

increased cell adhesion to hepatocytes (Figure 19A). 

We were curious whether the E-cadherin dependent canonical activation we observed in 

the MCF7 cells was preserved in MDA-MB-231 cells that re-expressed E-cadherin. MDA-MB-
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231 cells that were co-cultured with hepatocytes for 6 days, when exposed to hepatocytes, 

exhibited the same maximal Erk activation at 30 minutes and was prolonged through 60 minutes 

(Figure 19D). As our previous PD153035 experiment allowed E-cadherin to the surface, we 

questioned whether PD153035 treatment would either increase Erk signal activation or abrogate 

it, since it has been reported that E-cadherin activates the MAPK pathway through EGFR (Pece 

and Gutkind 2000). Upon treatment with PD153035, we observed a complete abrogation of Erk 

signaling (Figure 19E), suggesting that E-cadherin-mediated activation occurs via transactivation 

of EGFR as has been reported in the literature. To further support this data, we found that EGFR 

co-immunoprecipitates with E-cadherin in MCF7 cells and MDA-MB-231 cells after co-culture 

with hepatocytes. These data indicate that modulation of E-cadherin adhesion and signaling in 

invasive cancer cells by EGFR receptor tyrosine kinase signaling is a delicate balance between 

high EGFR signaling and complete destruction or remodeling of the receptor, or low but not 

absent EGFR signaling to allow cell fate decisions transduced by E-cadherin. 
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Figure 19.   Abrogation of EGFR signaling in MDA-MB-231 cells is sufficient to increase 
heterotypic binding with hepatocytes, but EGFR signaling is necessary for E-cadherin dependent 
Erk-MAPK activation. A) MDA-MB-231 cells were co-cultured with hepatocytes and subjected 
to heterotypic CAFCA. MDA-MB-231 cells that were treated with the EGFR inhibitor 
PE153035 increased adhesion 1.7 fold.  Shown is mean±sd (n=4). B) Despite re-expression of E-
cadherin in MDA-MB-231 cells, a large amount of E-cadherin does not traffick to the cell 
surface, but is rather seen in perinuclear organelles. C) Trafficking of E-cadherin to the cell 
surface can be recovered by abrogation of the EGFR with PD153035. D) E-cadherin that does 
traffick to the cell surface transduces the same pattern of Erk-MAPK activation as seen in MCF7 
cells. Activation can be attenuated by a function blocking antibody directed towards E-cadherin. 
E) Treatment with PD153035 completely attenuates E-cadherin transduced Erk-MAPK 
activation. F) EGFR co-immunoprecipitates with E-cadherin in MDA-MB-231 cells that have 
been subjected to hepatocyte coculture. An E-cadherin antibody that reacts with a human-
specific epitope was used for the immunoprecipitation. 
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4.3.7 Hepatocytes drive the upregulation of E-cadherin in a subset of cells from primary 

breast cancer explants 

To make our in vitro results more germane to clinical cases of breast adenocarcinoma, we used 

explants from primary breast tumors to determine if patterns of E-cadherin expression occured 

when these primary cells were cultured with primary rat hepatocytes. All primary explants were 

used before the third passage. In total, we assayed four primary explants by flow cytometry and 

seven primary explants by immunofluorescence. Following the same protocol as in the previous 

co-culture experiments, we analyzed the cells by flow cytometry using side scatter and forward 

scatter gating in addition to using a human specific antibody to exclude interference from the 

hepatocytes. Our flow cytometry experiments indicated that one of the four explants we tested, 

designated 1570, expressed E-cadherin at 7-fold higher levels after co-culture with hepatocytes 

(Figure 20A). The delay in E-cadherin expression of the 1570 explant could be attributable to a 

delay in proliferation of the cancer cells, which would be consistent with passive E-cadherin 

promoter demethylation as the cause of protein expression as we observed in our in vitro 

findings. We observed a decrease in E-cadherin in the 1568 and 1569 explants, and no change in 

expression in the 1550 explant. (Figure 20A) We found these same patterns in a proportionate 

amount in seven other primary breast cancer explants that we observed by confocal microscopy. 

When we imaged two explants that were E-cadherin negative when introduced to the 

hepatocyte population, after 6 days in co-culture with hepatocytes, the cancer cells expressed 

robust and well localized E-cadherin (Figure 20B). Five of the explants that we examined by 

confocal immunofluoresence already expressed E-cadherin that was well localized to the plasma 
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membrane in the cancer cells. We cultured these five lines with primary hepatocytes for 6 days 

in HGM. Interestingly, those lines that predominately expressed E-cadherin, T2410, T2391, and 

T2392, lost most of their E-cadherin expression, except for those cancer cells that were 

juxtaposed to the primary hepatocytes (Figure 20B, merge). Though the limited number of 

primary cells prevented us from performing quantitation of the number of cells that expressed E-

cadherin alone or in hepatocyte co-culture, we measured the median and standard deviation of 

fluorescence intensity of the E-cadherin expression on the primary cells to stay the same, except 

in the T2410 primary cell line, in which it decreased. We were unable to run further experiments 

or controls due to the limited number and passage integrity of the primary breast cancer explants, 

nonetheless, this line of evidence strongly correlates to an E-cadherin-dependent hepatocyte 

interaction in clinically relevant breast carcinomas. 
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Figure 20.  A subset of primary breast carcinoma explants re-express E-cadherin when 
cocultured with primary hepatocytes. A) Flow cytometry analysis of primary explants using the 
human-specific E-cadherin antibody. A fluorescence unit of 1 indicates that the fluorescence 
intensity was equal to the same gate performed without addition of antibody. B) Two explants, 
C, positive for E-cadherin upregulation when cocultured with hepatocytes, H, identified by 
confocal microscopy. In control experiments, hepatocytes were identified by endogenous 
autofluorescence excited by the 488-laser line.  
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4.4 DISCUSSION 

Carcinomas are generally considered to undergo an epithelial to mesenchymal-like transition 

(EMT) as a prelude to dissemination. The key marker for this phenotypic shift is the 

downregulation of E-cadherin, a cell-adhesion molecule whose normal functioning is vital to the 

maintenance of epithelial tissue integrity and whose loss enables tumor cells to disseminate from 

the primary masszInterestingly E-cadherin expression has been noted in distant metastases of 

primary tumors suggesting a possible survival advantage as is noted during development with the 

reverse mesenchymal to epithelial transition (Larue and Bellacosa 2005). It is currently unknown 

whether these E-cadherin-positive tumor cells disseminate from the primary tumor and form 

secondary metastatic lesions, or if E-cadherin-negative cells regain E-cadherin expression in 

response to the ectopic environment. The present study provides proof-of-principle that, at least 

in the presence of hepatocytes, E-cadherin-negative invasive breast cancer cells undergo a 

mesenchymal to epithelial reverting transtion (MErT) secondary to loss of E-cadherin promoter 

hypermethylation, and that the hepatocyte-ligated E-cadherin on tumor cells can activate 

canonical survival pathways in the cancer cells. 

 E-cadherin is downregulated in carcinomas predominantly by epigenetic 

processes such as receptor tyrosine kinase signaling and promoter methylation (Becker, Atkinson 

et al. 1994; Kanai, Oda et al. 1994; Risinger, Berchuck et al. 1994). This is unusual among tumor 

suppressor in which loss or mutation appears to be the rule. However, it does allow for reversion 

of this phenotypic change. In MDA-MB-231 cells, that are representative of invasive breast 
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cancers and in which E-cadherin silencing is due to promoter hypermethylation (Graff, Herman 

et al. 1995), the CpG islands in the promoter region most proximal to the E-cadherin initiation 

site are fully methylated, and this exerts a profound effect on mesenchymal nature, as 

demethylation of these islands by a chemical agent causes re-expression of E-cadherin and loss 

of invasive ability (Nam, Ino et al. 2004). As we had previously found that co-culture of invasive 

prostate cancer cells with primary hepatocytes allowed stable re-expression of E-cadherin and 

that re-expressed E-cadherin participated in a cell-cell adhesive ligation in E-cadherin on 

hepatocytes (Yates, Shepard et al. 2007), we queried whether this phenomenon was relevant to 

breast cancer cells. The primary distinction is that in the prostate cancer cells, E-cadherin was 

downregulated only by receptor tyrosine kinase signaling (Yates et al., 2005), while in breast 

cancer there is also methylation induced silencing of E-cadherin (Graff et al, 1995). Indeed, 

culturing of MDA-MB-231 cells with primary hepatocytes resulted in lack of methylation of the 

E-cadherin promoter and expression of E-cadherin message and protein, thought at a longer time 

course than the prostate cancer cells. We observed that the loss of methylation was dependent on 

the proliferation of the cancer cells. This re-expression of E-cadherin on the surface requires also 

the secondary step of inhibition of receptor tyrosine kinase signaling, as hepatocyte coculture-

induced E-cadherin compartmentalized to perinuclear organelles, with mass relocation to the 

membrane only upon further treatment with a tyrosine kinase inhibitor.  

 The consequence of this E-cadherin transcriptional upregulation is to allow for 

additional signaling from the surface. Using the MCF7 cells that retain E-cadherin expresion and 

epithelial characteristics (Soule, Vazguez et al. 1973), E-cadherin-mediated heterotypic 

interactions with hepatocytes are functional, inducing plaque formation with Arp2/3 

colocalization, which had previously only been shown to occur in epithelial homotypic 

 91 



interactions. The ability of E-cadherin on MCF7 cells to engage in a heterotypic interaction with 

hepatocytes was also documented in our centrifugal studies, the results of which showed that the 

E-cadherin ligation between MCF7 cells and hepatocytes was force-bearing, which is consistent 

with previous homotypical E-cadherin interaction and our own Arp2/3 localization experiments 

(Angres, Barth et al. 1996). Finally, we saw that ligation of E-cadherin between MCF7 cells and 

hepatocytes could transduce activation of both Erk-MAPK and Akt pathways with independent 

kinetics. These signaling pathways were also actuated in MDA-MB-231 cells after reversion to 

E-cadherin expression by coculture with hepatocytes. Though cadherin-mediated heterotypic 

interactions have been previously noted in cells made to express various cadherins, to our 

knowledge this is the first line of evidence that has shown cancer cells using heterotypic 

interactions to activate canonical pathways which may very well determine their fate in a foreign 

in vitro environment. 

 The foundation of our findings rest on the epigenetic reversion we observe when 

breast cancer cells are co-cultured with primary hepatocytes. The epigenetic status of the primary 

tumor and disseminated metastases is most likely important, since primary tumors that have high 

E-cadherin levels have very little systemic disease (Goldstein 2002), suggesting that the 

epigenetic reversion at distant secondary sites is important. These observations in connection 

with clinical observations suggest that E-cadherin positive cells do not leave the tumor, but 

actually regain the protein at distant sites. In addition, a similar phenomenon has been observed 

in human tumor cells when cultured in either spheroid or transwell invasion chambers, during 

which E-cadherin promoter methylation is unstable during in vitro simulation of metastatic 

progression (Graff, Gabrielson et al. 2000). Our study brings those previous studies full circle 

with relevant parenchymal cell interaction and physiologically relevant pathway activation. We 
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found it especially interesting that the loss of methylation of the E-cadherin promoter in MDA-

MB-231 cells was dependent on proliferation of the cancer cells. This dependency on 

proliferation suggests a passive loss of methylation of the E-cadherin promoter region, in which 

daughter strands do not participate in the maintenance methylation to which other methylated 

CpG islands are subjected after DNA replication. Our cursory observations of doubling times of 

MDA-MB-231 cells suggest that these cells undergo about three rounds of replication in about 6 

days (unpublished data). A passive process would result in non-methylation of 87.5% of the 

alleles in three rounds of replication; this is consistent with our observations of a lack of 

amplification of methylated loci after 6 days of culture. PCR bias must be taken into account in 

that the geometric progression of the reaction will favor the template of higher frequency in the 

reaction, so the complete absence of methylated E-cadherin alleles may not be literal. In 

addition, it has been demonstrated that suboptimal melting temperature may also contribute bias 

to nonmethylated alleles. To ensure the efficacy of these results, we used a commercially 

marketed kit to evaluate the status of the E-cadherin promoter. To our knowledge, we are the 

first group to demonstrate that normal primary hepatocytes drive the demethylation of the E-

cadherin promoter in invasive cancer cells. 

  Our in vitro data is consistent with the storyline that cancer cells respond in a 

series of tightly woven sequential steps to adapt in foreign environments. There are several 

possible outcomes or combinations of outcomes after a cell extravasates into a metastatic target 

tissue: 1) a single cell can succumb to metastatic inefficiencies, leading to necrosis or apoptosis; 

2) dormancy has been reported, which may result in short-term remission with long-term 

recurrence; or 3) the cell could receive either a mitogenic or motogenic signal. We speculate with 

our current data that the re-expression of E-cadherin in invasive cancer cells may act to counter 
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apoptosis and either promote long-term malignant recurrence by cloaking the cancer cell with 

epithelioid-like characteristics, or re-expressed E-cadherin may act to transmit either mitogenic 

or motogenic signals resulting in proliferation and invasion of the target tissue. Indeed, the 

downstream proliferatory and migratory pathways of Erk-MAPK as well as the anti-apoptotic 

effects of Akt are well documented (Torii, Yamamoto et al. 2006; Dillon, White et al. 2007). 

Further supporting this are quantitative studies that show during the phases of formation and 

development of micrometastases in secondary organs, cells are particularly vulnerable to 

apoptosis (Luzzi, MacDonald et al. 1998), yet it is still unclear what gives metastatic cells 

competency to survive this phase. In the context of the cadherin-switch, evidence that E-

cadherin, and not N-cadherin, can modulate EGFR may play a role (Fedor-Chaiken, Hein et al. 

2003). E-cadherin re-expression has been speculated to play a central role in establishing 

metastases (Park, Karesen et al. 2007). In developmental mesenchymal to epithelial transition 

associated with the dorsal-lateral pathway dissemination from the neural crest, E-cadherin re-

expression may enable melanoblasts to degrade the basement membrane locally by 

metalloproteinase activity, as the cytoplasmic domain of E-cadherin can induce the expression of 

stromelysin-1 (Delmas, Pla et al. 1999). This is relevant because it has been considered that 

cancer is merely an emulation of development-associated pathways. Finally, E-cadherin-

dependent intercellular adhesion enhances chemoresistance (Nakamura, Kato et al. 2003). This 

line of data illustrated the chemo-protectant effects of E-cadherin, which is very suggestive with 

our result of canonical pathway activation. Collectively, we see the picture emerging of E-

cadherin re-expression occurring during the micrometastatic stages of cancer formation in 

ectopic tissues, which not only allows cancer cells to evade metastatic inefficiencies and survive 
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in the foreign microenvironment, but re-expressed E-cadherin may also contribute to 

pharmaceutically refractive disease. 

We demonstrate in this study that E-cadherin demethylation in breast cancer cells is 

modulated by co-culture with primary hepatocytes, and the protein expression is dependent on 

proliferation of the cancer cells. We have implicated that a gene-specific program is executed in 

the cellular cohesion machinery during co-culture, and E-cadherin is targeted preferentially 

converse to a global hypomethylation program. Finally, E-cadherin ligation activates canonical 

pathways in the cancer cells including the MAPK and Akt pathways, which may contribute to 

either the mitogeneis, motogenesis, or survival in metastasized cells; these different outcomes 

may be controlled by subtle regulatory factors such as cadherin affinity and clustering that 

preceeds activation of specific signaling cascades. The search for therapeutic targets that act on 

molecules specific to the process of metastatic colonization of distant sites, rather than reliance 

on systemic cytotoxic treatments, is ongoing. Upon further investigation of these mechanisms, E-

cadherin may emerge as a molecule that is tumor-suppressant at the primary site but oncogenic at 

distant metastases. 

4.5 MATERIALS AND METHODS 

4.5.1 Xenografts 

The Institutional Animal Care and Use Committee at the Veterans Affairs Hospital in Pittsburgh 

approved all animal procedures. Experiments were performed in 8 week old female athymic 

nude mice. One million MDA-MB-231 cells were injected into the right mammary fat pad; 
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injection vehicle was the culture medium (0.2 mL/site). Mice were sacrificed 4-5 weeks after 

tumor cell implantation and the primary xenograft and lungs removed. 

4.5.2 Cell culture and co-culture 

Human MDA-MB-231 and MCF7 cells were cultured as described previously (Kassis, 

Moellinger et al. 1999). Primary rat hepatocytes were isolated and cultured as described 

previously (Rosenberg, Strom et al. 1982; Yates, Shepard et al. 2007). Cancer cells were 

separated from hepatocytes using FACS. 

 

4.5.3 Immunohistochemistry 

Xenograft and other harvested tissues were fixed in 4% buffered formalin and 4μm thick paraffin 

sections underwent antigen retrieval for 5 min in 95°C 10mM citrate solution in preparation for 

H&E and immunochemistry. With the use of the Mouse on Mouse Kit (Vector Labs, 

Berlingame, CA), positive labeling was confirmed by comparing serial sections incubated with 

the primary human-specific E-cadherin antibody (67A4 1:100; Santa Cruz Biotechnology, Santa 

Cruz, CA) or the biotinylated secondary antibody alone. Labeling was visualized with the 

Vectastain Elite kit (Vector Labs). 
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4.5.4 SiRNA 

Silencer Validated siRNA (#161135, Ambion, Austin, TX) was transfected using Lipofectamine 

2000 (Invitrogen, Carlsbad, CA). Cells were gorwn in antibiotic-free media till 60% confluent 

and transfected with siRNA for 24h. The final concentration of siRNA in the experiment was 

100nM. Cells were allowed to recover in media with antibiotics for 24h before further 

experimentation. The control GFP DNA (5’-ACCCGCGCCGAGGUGAAGTT-3’, IDT, Skokie, 

IL) was that from another species. 

 

4.5.5 Real-time quantitative PCR 

RNA was isolated from hepatocyte-cancer cell co-cultures with the PureYield RNA Midiprep 

System (Promega, Madison, WI). cDNA was obtained with High Capacity cDNA RT Kit 

(Applied BioSystems, Foster City, CA). TaqMan Gene Expression Assay Hs00170423_A1 

CDHI probe was obtained from Applied Biosystems (Foster City, CA). Amplification and 

analysis in quadruplicate was run in an Applied Biosystems 7500 Real-Time PCR System. 

Relative values were normalized by using GAPDH levels as a reference using TaqMan Pre-

Developed Human GAPDH Assay Reagent by Applied Biosystems. 

4.5.6 Methylation specific PCR 

DNA was isolated from co-culture using the DNeasy Blood and Tissue Kit (Qiagen, Velencia, 

CA). 500ng of isolated DNA was subjected to bisulfite treatment using the EZ DNA Methylation 
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Gold Kit (Zymo, San Diego, CA) per the manufacturer’s specifications. MSP was performed 

using the CpG WIZ E-cadherin Amplification Kit per the manufacturer’s instructions (Millipore, 

Temecula, CA). MSP of H19 after bisulfite conversion was performed using the following 

primers: F 5’-TTA TAA AAT CGA AAA TTA CGC GCG A-3’ R 5’-TTT TAG ATG ATT TTT 

GTG AAT TTT-3’. Cycling conditions were 95 °C for 15 min, 35 cycles of 94°C for 1 min, 55°C 

for 1 min, and 72°C for 1 min with a final extension of 5 min at 72 °C. The reactions were 

performed using Platinum Taq (Invitrogen). 

4.5.7 Westernblots, flow cytometry, and immunofluorescence 

Proteins were resolved on 7.5% SDS-PAGE and detected by Western analysis. Mouse-

monoclonal human-specific E-cadherin (67A4 1:1000), pAkt1/2/3 (Ser473 1:1000), 

pAkt1/2/3(Thr308 1:1000), pErk (E-4 1:1000) were purchased from Santa Cruz Biotech (Santa 

Cruz, CA). Flow cytometry was performed using a DakoCytomation CyAN High Speed 

Analyzer. Co-cultures were non-ezymatically dissociated from the culture plates and vortexed 

into a single-cell suspension. The cells were fixed in 2% Paraformaldehyde for 30 minutes, 

permeabilized with 1% Triton for 3 minutes, and incubated with a PI-conjugated E-cadherin 

antibody (67A4) for 30 minutes. The mixed hepatocyte-cancer cell suspension was gated as to 

exclude hepatocytes using the appropriate SSC/FSC parameters. Data was collected on at least 

106 cells in the appropriate SSC/FSC region. Immunofluorescence was performed similarly to 

flow cytometry, except primary antibody incubation was performed overnight. Arp3 (G-15 

1:100), E-cadherin (67A4 1:100), beta-catenin (C-18 1:100) were purchased from Santa Cruz 

Biotech and Alexa 488-phalloidin was purchased from Molecular Probes (Carlsbad, CA).  

Secondary fluorphores included Alexa Fluor-488, -594, and -674 (Molecular Probes). 
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Visualization was performed on an Olympus Fluoview 1000 confocal microscope (Olympus, 

Center Valley, PA).  Histograms of acquired pictures were widened equally on all comparable 

images. 

4.5.8 Centrifugal assay for fluorescent cell adhesion (CAFCA) 

This assay is a modification of the McClay and Giacolmello assays (McClay, Wessel et al. 

1981). Cancer cells were non-enzymatically dissociated and labelled with 5 M Calcein AM 

(Molecular Probes, Carlsbad, CA, USA). Labelled cancer cells were seeded at a density of 42 

000 cells well-1 in 96-well plates containing a densely confluent hepatocyte monolayer. The 

plates were centrifuged for <60s at 50g to pellet the cancer cells onto the hepatic monolayer, then 

incubated at 37°C. At defined times, the plates were inverted and centrifuged at 600g for 5 min 

and then gently washed to remove unbound cells from the hepatocyte monolayer. Fluorescence 

was measured with a 494/517 bandpass filter set-up from the bottom of the plate by a TECAN 

Spectra-Fluor plate fluorometer. Absolute emission measurements were background subtracted. 

 

4.5.9 Hepatocyte membrane assays 

Heptocyte membranes were isolated as described (Forster and Kaltschmidt 1999). Culture plates 

were coated with poly-L-lysine per the manufacturer (mol wt 150000-300000 Sigma, St. Louis, 

MO).  Hepatocyte membranes (2 mg protein/cm2) were passively adsorbed onto 6-well culture 

plates using poly-L-lysine (Sigma) for 10 minutes. MCF7 and MDA-MB-231 cells were 

quiesced in serum-free media for 3 hours before phosphorylation measurements were taken by 
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Western blot or in vitro kinase assay.  MCF7 or MDA-MB-231 cells were seeded at 19E3 

cells/cm2 onto 6-well plates coated with the membranes and briefly centrifuged at 50g for 1 

minute to synchronize the cells with the membrane layer. At defined time-points, RIPA lysates 

were taken and for in vitro kinase assay, total Erk and Akt proteins were immunoprecipitated 

from the total protein using agarose conjugated Erk (K-23) and Akt1/2(N-19) antibodies, both 

purchased from Santa Cruz Biotech. Kinase activity was assayed using the MBP 96-well Assay 

Kit Chemiluminescence Detection from Upstate (Lake Placid, NY). Luminescence detection was 

performed with either a Tecan SpectraFluor or a Tecan GENios Pro apparatus. 

 

4.5.10 Primary explants 

Polyclonal primary human tumor explants were obtained and cultured as previously reported   

(Ochs, Fensterer et al. 2003). Immunofluorescence labeling was performed as above. 
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5.0  CARCINOMA DISSEMINATION FOLLOWS FROM AN EPITHELIAL-TO-

MESENCHYMAL-LIKE TRANSITION (EMT) 

The major part of cancer morbidity and mortality results from metastatic colonization of distant 

organs by carcinomas far from their original sites of development.  In tumors of epithelial origin, 

a change in architecture usually denotes the first signs of neoplastic transformation.  While 

neoplastic transformation is usually a precursor to a more motile phenotype, carcinomas are 

distinguished from their normal counterparts by a loss of tissue and cell coupling (Guarino, 

Rubino et al. 2007). 

In untransformed tissues, the epithelial cells are polarized and hence the apical face of the 

cell interacts with the luminal compartment, and the basolateral face of the cell interacts with the 

stromal compartment.  Epithelial cells are often arranged in sheets with adjacent cells tightly 

connected via tight junctions and gap junctions.  At the apical surface in most tissues, the 

epithelial cells are in contact with body fluids that are either wholly or partly produced by these 

same cells.  These fluids contain biologically factors, growth factors in particular, that are 

usually inert to the tissue as the receptors for such factors are sequestered on the basolateral 

surfaces.  The tight junctions, constructed upon homotypic binding of E-cadherin, limit the 

access of the apical fluids to the basolateral spaces and surfaces and the underlying stromal 

compartment.    Distinct and compartmentalized interactions occur solely because of the 

organized structure of both the cell and the tissue as a whole. 

Upon neoplastic transformation, this orderly arrangement is lost.  A host of genetic and 

epigenetic changes occur that lead to degradation and eventual loss of the tight junctions.  What 
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follows contributes fundamentally to the change from neoplasm to carcinoma in situ.  First, the 

epithelial cells are now exposed to potential autocrine factors, as the localization of ligand 

production and receptor expression are no longer segregated.  Second, the epithelial cells are 

released from physical restraints with loss of contact inhibition, allowing for cell movement and 

even proliferation.  And third, the stromal elements are now exposed to many epithelially derived 

bioactive factors promoting a stromal response.  The latter event may change the profile of 

signals that derive from the stromal compartment as the composition and architectural profile of 

the stromal elements change.  The net sum of these tissue alterations are that the epithelial cells 

are directed to assume a less differentiated state that converges towards the mesenchymal 

phenotype, characterized by motility and proliferation with amoeboidal architecture that has 

limited direct cell-cell communication.  This is the so-called epithelial-to-mesenchymal-like 

transition (EMT) of carcinomas (Peinado, Portillo et al. 2004; Guarino, Rubino et al. 2007). 

Carcinoma EMT is distinguished from normal developmental EMT by the fact that the 

cells do not actually reassume a fully functioning physiological role similar to an epithelially 

derived cell (Peinado, Portillo et al. 2004).  Rather, the attributes of the cells converge on those 

noted in stromal cells, and the normal epithelial markers and functions are lost indefinitely.   

Thus, the first steps in the dedifferentiation process of carcinoma progression is an EMT 

process very similar to the transformation of primitive epithelial that form the primitive 

trophoblastic germ layers in normal development.   Despite the long-standing recognition of this 

carcinoma EMT, there is no accepted molecular definition of what constitutes this process 

(Peinado, Portillo et al. 2004; Thompson, Newgreen et al. 2005; Lee, Dedhar et al. 2006).  The 

vastly heterogeneous etiology of cancer probably contributes to this ambiguity.  A picture is 

emerging of common molecular findings that account for both the histopathological picture and 
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the cell biology findings.  At the minimum, the carcinoma EMT is defined by a loss of normal 

epithelial architecture, namely both the homogeneous physiological symmetry of the cell, cell-

cell contacts, and communications dependent on that architecture.  At the molecular level, this is 

reflected by downregulation or loss of specific cytokeratins and E-cadherin.  The latter is of 

particular importance, because it can be viewed as both a cause and effect of the EMT. 

Loss of E-cadherin disrupts not only cell-cell junctions but also allows for loss of the 

normal organ architecture.  The transformed cell’s endowed properties allow them to move with 

many more degrees of freedom within the epithelial layer, as they are no longer constrained 

within a functional syncytium (Friedl, Zanker et al. 1998).  This is a histopathological hallmark 

of neoplastic transformation.  Furthermore, the absence of apical-basal barriers between the cells 

enables soluble factors secreted by the cells to reach cognate receptors normally segregated on 

the basolateral surfaces.  This autocrine signaling often further reinforces the EMT phenotype 

because stimulation of most receptors with intrinsic tyrosine kinase activity, particularly the 

ubiquitous EGF receptor system, drive E-cadherin downregulation and epithelial 

dedifferentiation (Roura, Miravet et al. 1999; Cavallaro, Schaffhauser et al. 2002).  Lastly, the E-

cadherin-based cell connection can control global cell signaling, as the catenins that anchor these 

plaques possess signaling properties dependent upon whether that are in soluble or insoluble 

complexes (Aberle, Schwartz et al. 1996; Bracke, Van Roy et al. 1996).  At an albeit simplistic 

level, the E-cadherin protein complex at the cell membrane sequesters α-, β- and p120-catenins 

in epithelial cells and prevents transformative effects on the cellular cytoskeleton and 

transcriptome.  The extent of the global control on cell phenotype exerted by E-cadherin is 

inherent to its designation as a tumor suppressor; forced re-expression of E-cadherin in invasive 

carcinoma cells can revert the neoplastic phenotype (Chen and Obrink 1991; Frixen, Behrens et 
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al. 1991).  For these reasons, E-cadherin expression on the cell surface has emerged as a 

molecular hallmark of the carcinoma EMT. 
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6.0  METASTATIC SEEDING IS RATE-LIMITING FOR METASTATIC 

COLONIZATION OF DISTANT ORGANS 

Key to carcinoma pathology is the ability of carcinoma cells to survive and thrive in ectopic 

tissues after their escape from the primary tumor mass.  As described in Chapter 5, the carcinoma 

EMT is critical to this initial escape by enabling individual cell migration and invasion through 

barrier matrices (Wells 2000).  In order to establish metastatic foci, similar transition-like events 

occur (Luzzi, MacDonald et al. 1998).  First, the cells arrest in the dissemination conduits 

(lymph and blood vessels) by size mismatch between the tumor cells and the diameter of 

capillaries or because of obstruction of rolling immune cells.  The carcinoma cells then must 

penetrate between the endothelial cells and migrate into the ectopic tissue.  This appears to be 

relatively efficient, as cells extravasate at high frequencies (Chambers, Naumov et al. 2000).  

The primary rate-limiting step after initial EMT and dissemination is the ability of invasive cells 

to successfully colonize the ectopic site. 

Many years ago it was appreciated that tumor cells disseminate preferentially to ectopic 

tissues based mainly on the ability of that host tissue to support the survival and proliferation of 

those cells (Fidler 2001).  This is referred to as the ‘seed and soil’ hypothesis.  The stromal 

component of different tissues and organs produce and present overlapping but distinct matrix 

components and secreted factors that serve to hospitably accommodate the local cells.  

Disseminated tumor cells must find a host environment that provides the necessary signals or 
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these cells must provide the missing factors in an autocrine fashion or other manner that results 

from transformation.  Some of these missing factors might be replaced by genetic mutations that 

alleviate a particular requirement or are provided by the autocrine signaling inherent in the 

carcinoma EMT.  Still the transformation rarely allows for proliferation outside of a hospitable 

micro-environment (Bissell 2007). 

The survival of these carcinoma cells in ectopic tissue is complicated by the question of 

tumor cell dormancy.  While tumor masses need to approach a billion cells to be detectable as 

metastases, this should occur relatively quickly if the tumor cells continue to proliferate at the 

inherent cell-doubling rate quantifiable in most highly aggressive primary tumors.  However, in 

many tumors, metastases appear only years after removal of the primary mass.  During this time, 

the metastatic foci must remain minimal, being either in a state of balanced proliferation-necrosis 

or as a dormant cancer cell.  The key difference between these two options is that in the former, 

the local milieu must present a full complement of factors for cell proliferation plus signals for 

death, whereas in the latter, only a partial complement of factors needs to be present to enable 

cell survival at a lower metabolic load.  The question of ectopic site preference, survival, and 

proliferation reduces to that of the ectopic microenvironment.  While there are nascent efforts to 

fully catalogue tumor microenvironments components, qualitative aspects can be deduced from 

in situ studies.  What has been surprising is that many metastatic carcinomas appear more 

differentiated than the primary tumor from which they derive.  In fact, it is well established that 

many breast cancer metastases to the liver seem to recreate the hepatic architecture without a 

desmoplastic reaction (Stessels, Van den Eynden et al. 2004).  This is inconsistent with the 

prevailing view that carcinomas continue down a dedifferentiation EMT cascade as they get 
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more aggressive and disseminate.  Rather these reports suggest that the metastatic foci may be 

more epithelialoid than the primary site. 

Examining these metastases with immunohistochemistry confirmed this more 

differentiated phenotypes in many carcinomas.  Interestingly, a number of reports related E-

cadherin membrane staining in the metastases but not in the primary carcinoma sites (Putz, 

Witter et al. 1999; Rubin MA 2001; Kowalski, Rubin et al. 2003).  It has been reported in vitro 

that cancer cells expressing E-cadherin are chemoresistant (Green 2004 ; Nakamura 2003).  If E-

cadherin re-expression is necessary for metastatic dormancy, then these micrometastases would 

escape chemotherapies that actively target proliferating cells, as is the case for cancer relapse 

many years after the primary tumor has been eliminated. 
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7.0  E-CADHERIN IN THE MESENCHYMAL-TO-EPITHELIAL REVERTING 

TRANSITION 

The finding of membrane-expressed E-cadherin in carcinoma metastases raises two possibilities.  

The first is that the distant metastases formed from E-cadherin-positive cancer cells that 

disseminated from the primary mass.  Even though many primaries are scored as E-cadherin- 

negative (either the protein is silenced completely or robustly downregulated), this possibility 

cannot be excluded as the larger primary tumors examined show heterogeneity of expression 

with some areas of primary tumor expressing the epithelial marker.  Still, the clinicopathological 

correlation between low to absent E-cadherin and tumor dissemination is strong (Birchmeier and 

Behrens 1994; Cavallaro, Schaffhauser et al. 2002), and the cellular mechanisms supporting this 

model are logical and repeatedly demonstrated.  Carcinoma cells that express E-cadherin show 

limited migration and invasiveness in vitro, and do not form distant metastatic tumors in animal 

models.  However, given the rare nature of metastases despite relatively frequent shedding of 

cells from the primary mass (Cristofanilli, Budd et al. 2004), these metastases could arise from 

the unusual escape of an E-cadherin-positive cell in the primary mass, if E-cadherin expression 

provided a survival and proliferation advantage.  This question in its current form cannot be 

addressed by human tumor surveys because of technical complications, but rather requires 

experimental probing using clonal carcinoma cell populations.  In what appears to be the first 

report directly addressing this question, this thesis describes how the highly aggressive and E-
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cadherin-negative MDA-MB-231 breast carcinoma cell line forms lung metastases from 

orthotopic primary tumors in the inguinal mammary fat pads of mice; these metastases express 

E-cadherin.  While this is far from conclusive, it does present a proof a principle that E-cadherin-

expressing metastases might arise from E-cadherin-negative cells.  Re-expression of E-cadherin 

in the metastatic site, therefore, represents the second possibility.  While this is consistent with 

the histopathological correlations, E-cadherin re-expression would be the result of tumor cell 

plasticity, that of reverting the carcinoma associated EMT that has not been demonstrated to-

date.  The nature of E-cadherin downregulation mechanisms suggests how this could be 

accomplished. 

E-cadherin surface expression is downregulated by two known mechanisms, functioning 

separately at the post-translational and the transcriptional levels.  Tyrosine kinase signaling, 

noted both in response to various growth factors and during neoplastic progression, can 

downregulate E-cadherin secondary to phosphorylation of β-catenin on the E-cadherin complex 

(Reynolds, Daniel et al. 1994; Hazan and Norton 1998).  EGF and HGF/scatter factor lead to 

epithelial cell migration away from cohesive masses secondary to E-cadherin-complex 

dissocation (Birchmeier and Behrens 1994; Miura, Nishimura et al. 2001; Morkel, Huelsken et 

al. 2003).  The endocytosis of E-cadherin after dissociation results in E-cadherin internalization 

and degradation.  This may function in carcinomas, almost all of which have autocrine growth 

factor signaling loops most often that via the EGF receptor (Wells 2000).  Previous reports have 

found in prostate carcinoma lines that inhibition of this autocrine EGF receptor loop (and likely 

the EGFR-induced HGF/c-met autocrine loop (Mamoune, Kassis et al. 2004)), either by direct 

disruption of the signaling loop or by trans-attenuation, results in E-cadherin re-expression and 
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cell-cell cohesion (Yates, Wells et al. 2005; Yates, Shepard et al. 2007; Yates, Shepard et al. 

2007). 

Thus, post-translational E-cadherin downregulation represents an available target for 

counter-regulation by other factors that might be present in the metastatic microenvironment.  In 

most carcinomas, E-cadherin appears to be shut off at the transcriptional level by promoter 

hypermethylation (Graff, Herman et al. 1995; Jones and Baylin 2002; Strathdee and Brown 

2002).  This mode of generating a null phenotype differs from other tumor suppressors that are 

usually victims of other genetic anomalies such as deletions, mutations, or frame-shifts of the 

coding DNA.  While these latter mechanisms are irreversible by their nature, promoter 

hypermethylation is readily reversible if only by maintenance methylation of the CpG site after 

daughter strand synthesis.  One distinction between normally irreversible tumor suppressors from 

the E-cadherin tumor suppressor is that loss of the former often occurs early in neoplastic 

transformation, whereas E-cadherin is relevant throughout many of the sequential steps that 

result in metastatic colonization of secondary tissues.  It has been noted that E-cadherin promoter 

methylation is unstable (Graff, Gabrielson et al. 2000).  This thesis documents that E-cadherin 

promoter methylation can be selectively lost in breast cancer cells when proliferating in the 

presence of normal hepatocytes.  Thus, there exist signals in the hepatic microenvironment that 

undo the epigenetic silencing of E-cadherin by promoter methylation. 

The above discussion begs the question of what selective advantage does the re-

expression of E-cadherin impart?  Nascent investigation beyond this thesis is currently answering 

that question.  The speculation can be easily cast that E-cadherin re-expression provides a 

survival advantage for these cells in a challenging ectopic environment. 
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Two key pathways activated upon E-cadherin binding are the survival-associated ERK 

MAP kinase and Akt/PKB cascades (Pece, Chiariello et al. 1999; Pece and Gutkind 2000).  

Complementing the seed-and-soil hypothesis, functional E-cadherin ligation, either between the 

secondary parenchymal-cancer cells or cancer cell-cancer cell, would provide necessary signals 

to endure in the ectopic soil.  At the start of metastatic seeding, this requires cell-heterotypic E-

cadherin binding, which is reported for the first time in this thesis.  Later as the metastatic cells 

proliferate, E-cadherin ligation may occur between carcinoma cells.  To support the possibility of 

carcinoma-parenchymal binding via E-cadherins, histopathological analyses of many tumors 

suggest close associations between metastatic carcinoma cells and the neighboring parenchymal 

cells (Putz, Witter et al. 1999; Rubin MA 2001; Kowalski, Rubin et al. 2003).  Furthermore, in 

an ex vivo model of carcinoma metastasis to the liver, close connections are observed on the 

ultrastructural level (Yates, C et al.  2007a).  Also, when prostate carcinoma cells are induced to 

re-express E-cadherin, both DU-145 and PC3 cells can form heterotypic adhesions with rat 

hepatocytes (Yates, C C et al.  2007b).  These data provide proof of principle that carcinoma 

cells may re-express E-cadherin in response to the ectopic organ micro-environment so as to 

establish connections with the resident, non-neoplastic epithelial cells. 
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8.0  A MODEL FOR THE MESENCHYMAL-EPITHELIAL REVERTING 

TRANSITION 

The following is a speculative model for the mesenchymal-epithelial reverting transition, with a 

focus on the results present in the thesis.  It encompasses a model of tumor cell plasticity with E-

cadherin playing a central role in the phenotypic differentiation in both the primary and 

metastatic sites. 

At the primary site, ill-defined genetic and epigenetic changes lead to E-cadherin 

downregulation, via receptor tyrosine kinase signaling and/or, as is the case with the majority of 

invasive cancer, promoter hypermethylation (Figure 21, I).  The loss of adherens and tight 

junctions in those cells that progress from neoplastic to carcinoma in situ allows physical 

freedom to move and reorganize, as well as the biological signals derived from autocrine 

signaling.  It is unknown whether the loss of the epithelial barrier further alters the cancer field 

stroma in a manner that accelerates EMT. 

Once free of the physical tethering and architectural restraints imposed by E-cadherin 

binding, the now mesenchymal-like carcinoma cells can actively migrate through barriers and 

enter vascular conduits for dissemination to distant sites.  While the cell must counter many 

metastatic inefficiencies during travel to distant sites of the body, the major impediment to 

metastatic growth appears to be the survival and growth (albeit often delayed or slow) in the 

ectopic site.  This is likely due to the incomplete match of factors and signals in different tissues.  
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 The literature reports that many metastatic carcinoma foci do express E-cadherin, whose 

downregulation is considered critical if not required for dissemination.  This suggests that a 

subset of the disseminated carcinoma cells receive signals from the ectopic organ 

microenvironment to revert the EMT process at least partially to enable E-cadherin re-expression 

(Figure 21, II).  As E-cadherin binding elicits canonical survival signals and prevents anoikis 

(Conacci-Sorrell, Simcha et al. 2003; Reddy, Liu et al. 2005; Kang, Jenabi et al. 2007), the 

selective advantage is obvious.  This thesis documents the process that is the so-called 

mesenchymal-epithelial reverting transition, or MErT. 

Further investigations are required to establish the reverting transition can occur in ex 

vivo and in vivo model systems, as important for de novo disseminating cancers.  Future 

investigations would include the abrogation and rescue of E-cadherin re-expression to limit 

metastatic seeding and also inducible E-cadherin re-expression to counteract metastatic 

inefficiency. 

Still, the advantages of E-cadherin re-expression and seeming redifferentiation must be 

explored.  The reversion of the general carcinoma cell phenotype to a less aggressive, less 

proliferative cell seems counterintuitive particularly in regards to the picture that emerges at the 

primary site.  While activation of ERK-MAP kinase and Akt/PKB signaling pathways promote 

survival, these pathways are even more strongly elicited by other factors and external signals, 

without the suppression of proliferation that ensues from E-cadherin adhesions (Simcha et al.  

1996) (Figure 21, III).  The thesis herein does not answer those questions, but one can speculate 

that the combination of survival signals with limited proliferation and lowered metabolic 

requirements are precisely the keys to metastatic seeding.  By and large, fast growing cells are 

most susceptible to death signals whether due to DNA damage, limited nutrients/metabolic 
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inefficiency, absent pro-survival signals, or apoptotic signals.  It is well recognized in oncology 

that the slowest growing tumors generally are the most resistant to standard chemotherapies.  In 

the ectopic metastatic environment, tumor cells not only carry damaged DNA but also face an 

absence of external factors, as reflected in the seed and soil hypothesis (Fidler 2003).  It is also 

possible that entry of these foreign cells will elicit a localized inflammatory reaction, with the 

production of pro-death signals.  Thus, not only would activation of the pro-survival ERK-MAP 

kinase and Akt/PKB pathways protect the cancer cell, but also proliferation and metabolic 

suppression would provide added survival advantages possibly equilibrated by secretion of 

TGFβ in the damaged liver (Figure 21, IV)  This speculation can be tested in models of 

chemotherapeutic and apoptotic challenge.   

Lastly, one must consider the implications of this proposed carcinoma-related MErT. 

Currently, E-cadherin is categorized as a tumor suppressor due to its protective role against the 

carcinoma-related EMT at the primary site.  However, interventions to prevent E-cadherin 

downregulation may perversely promote seeding of disseminated cells as the re-expression 

phenomena appears to be highly inefficient in the natural course of cancer.  Thus, any E-cadherin 

targeted therapies must be highly cognizant of carcinoma progression dynamics.  Second, the 

formation of E-cadherin ligation to the metastatic target organ parenchyma may result in 

dormancy at the micrometastatic stage.  This would result not only in resistance to chemotherapy 

with tumor re-emergence, but also have implications for what may lead to delayed relapses.  It is 

tempting to speculate that if the proposed MErT leads to dormancy of early micrometastases, 

then a secondary insult to the local environment may be what induces renewed carcinoma cell 

proliferation and escape from E-cadherin-mediated contact inhibition.  This, along with other 

many questions raised by this proposed MErT, awaits further experimentation. 
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Figure 21.  A model for the mesenchymal-epithelial reverting transition (MErT). I, The normal 
mammary epithelium (pink), which expresses E-cadherin (green bars), can become carcinoma in 
situ by EMT (red), which involves hypermethylation of the E-cadherin promoter. The cancer cell 
disseminates to the liver, extravasates from the sinusoid, and invades the hepatic plates. II, In the 
liver, cancer cells are juxtaposed to hepatocytes and in contact with the basement-like membrane 
in the liver parenchyma. An unknown signal causes E-cadherin promoter hypomethylation, 
which allows E-cadherin expression.  EGFR ligands, such as EGF and TGFα, either from cancer 
cell autocrine loops or secreted by the hepatocytes, are present in the microenvironment. III,  
Sustained tyrosine kinase activation causes proliferation, while any E-cadherin participating in 
trans-ligation with hepatocyte E-cadherin transduces EGFR-dependent Erk-MAPK activation 
that remains close to the cell surface resulting in motility/invasion.  A primary response to the 
damaged hepatic epithelium may result in release of TGFβ, which results in a stop-proliferation 
signal. IV, In a dormant micrometatasis, an equilibrium has been reached between E-cadherin 
signaling and TGFβ signaling.  The cell has now undergone partial or complete MErT. 
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