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Falls threaten the quality of life of older adults and are associated with tremendous economic 

costs.  Slips and trips are the two major causes of falls during locomotion and each requires a 

different postural response to prevent falling. However, a critical requirement in maintaining 

balance in either is the ability to generate proactive postural adjustments.  Older adults have been 

shown to adopt proactive postural adjustments during repeated exposure to initially novel 

perturbations.  However, the extent to which such learning applied to gait was unknown.  This 

dissertation investigated reducing the incidence of falls in older adults through learning 

anticipatory adjustments to perturbations during gait based on a systems model theory.  Potential 

associations between age and anticipatory postural strategies when repeatedly exposed to 

forward slips were studied.  Forward vs. backward walking slips were also compared to examine 

the impact of gait novelty on the ability to generate proactive adjustments.  The impact of 

knowledge of the type of perturbation on the ability to generate proactive adjustments and 

whether such adjustments change with experience and when the nature of the perturbation was 

also investigated.  Subjects were exposed to multiple slip and trip perturbations to investigate 

these differences and to compare how young and older adults alter their proactive adjustments.  

As anticipatory behavior improves perturbation recovery outcomes, changes in measures of 

severity with increased exposure were also analyzed.  This study found young and older adults 

adopt proactive postural adjustments when repeatedly exposed to forward slips and make internal 

representations applicable to a novel task.  Awareness of a perturbation proved sufficient to 
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induce proactive adaptations and with experience, adaptations became perturbation specific to 

reduce slip and trip risk in both age groups.  Perturbation recovery improved with multiple 

exposures in both age groups as decreases in severity measures were observed.  This study opens 

the door to studies evaluating the retention of postural control motor skills adapted through 

training and prior experiences and sheds light on the benefits of a systems model theory based 

fall intervention program for slips and trips.  

 

 

 



 

vi 

TABLE OF CONTENTS 

PREFACE .................................................................................................................................. XII 
 

1.0 BACKGROUND ........................................................................................................... 1 
 

1.1 PROBLEM STATEMENT AND SIGNIFICANCE ......................................... 1 
 

1.2 CONTRIBUTING FACTORS TO SLIP, TRIP AND FALL ACCIDENTS . 3 
 

1.3 AN APPROACH TO MOTOR LEARNING AND THE IMPORTANCE OF 
PROACTIVE POSTURAL ADJUSTMENTS ................................................. 5 

 
1.4 PREVIOUS FINDINGS AND VOIDS IN THE LITERATURE .................... 6 

 
1.5 BACKWARD WALKING AS A NOVEL TASK ............................................. 9 

 
1.6 THE CURRENT STATE OF TRAINING, RETENTION AND THE 

JOURNEY TOWARDS THE DEVELOPMENT OF SUCCESSFUL FALL 
INTERVENTION PROGRAMS ..................................................................... 10 

 
2.0 OBJECTIVE OF RESEARCH ................................................................................. 14 

 
2.1 PURPOSE AND LONG TERM GOAL .......................................................... 14 

 
2.2 RESEARCH QUESTIONS ............................................................................... 15 

 
2.2.1 Research Question #1 ................................................................................. 15 

2.2.2 Research Question #2 ................................................................................. 16 

2.2.3 Research Question #3 ................................................................................. 16 

2.3 SPECIFIC AIMS ............................................................................................... 16 
 

2.3.1 Specific Aim #1 ............................................................................................ 16 

2.3.2 Specific Aim #2 ............................................................................................ 16 



 

vii 

2.3.3 Specific Aim #3 ............................................................................................ 17 

2.3.4 Specific Aim #4 ............................................................................................ 17 

3.0 POSTURAL ADAPTATIONS DURING REPEATED EXPOSURE TO 
FORWARD AND BACKWARD SLIPPING IN HEALTHY YOUNG AND 
OLDER ADULTS ....................................................................................................... 18 

 
3.1 ABSTRACT ........................................................................................................ 18 

 
3.2 INTRODUCTION ............................................................................................. 19 

 
3.3 METHODS ......................................................................................................... 21 

 
3.3.1 Subjects, experimental equipment and conditions, protocol .................. 21 

3.3.2 Data analysis and statistics ......................................................................... 24 

3.4 RESULTS ........................................................................................................... 25 
 

3.5 DISCUSSION ..................................................................................................... 30 
 

4.0 PROACTIVE ADAPTATIONS TO SLIPS AND TRIPS:  DOES KNOWLEDGE 
AND/OR EXPERIENCE WITH FALLING HAZARDS MATTER? .................. 34 

 
4.1 ABSTRACT ........................................................................................................ 34 

 
4.2 INTRODUCTION ............................................................................................. 35 

 
4.3 METHODS ......................................................................................................... 36 

 
4.3.1 Subjects, experimental equipment and design, protocol ......................... 36 

4.3.2 Perturbation paradigms ............................................................................. 39 

4.3.3 Data analysis and statistics ......................................................................... 40 

4.4 RESULTS ........................................................................................................... 41 
 

4.4.1 Slip block observations ............................................................................... 41 

4.4.2 Trip block observations .............................................................................. 44 

4.4.3 Combo block observations ......................................................................... 45 

4.5 DISCUSSION ..................................................................................................... 46 



 

viii 

5.0 MEASURES OF SEVERITY:  DOES KNOWLEDGE AND EXPERIENCE 
IMPROVE SLIP AND TRIP RECOVERY? ........................................................... 52 

 
5.1 ABSTRACT ........................................................................................................ 52 

 
5.2 INTRODUCTION ............................................................................................. 53 

 
5.3 METHODS ......................................................................................................... 55 

 
5.3.1 Subjects, experimental equipment and design ......................................... 56 

5.3.2 Perturbation paradigms ............................................................................. 58 

5.3.3 Data analysis and statistics ......................................................................... 58 

5.4 RESULTS ........................................................................................................... 60 
 

5.5 DISCUSSION ..................................................................................................... 69 
 

6.0 DISCUSSION AND FUTURE WORK .................................................................... 76 
 

6.1 ADAPTIVE POSTURAL STRATEGIES IN YOUNG AND OLDER 
ADULTS ............................................................................................................. 76 

 
6.2 SIGNIFICANT FINDINGS .............................................................................. 77 

 
6.3 FUTURE RESEARCH DIRECTION .............................................................. 80 

 
APPENDIX A .............................................................................................................................. 86 

 
APPENDIX B .............................................................................................................................. 87 

 
APPENDIX C .............................................................................................................................. 91 

 
BIBLIOGRAPHY ....................................................................................................................... 92 



 

ix 

 LIST OF TABLES 

 

Table 3.1 Subject characteristics. ................................................................................................. 21 
 

Table 3.2 Center of mass state, cadence and foot floor angle mean values (standard deviation) 
for both age groups and directions. .............................................................................. 26 

 
Table 4.1  Subject characteristics and spatial-temporal values (mean ± standard deviation). ..... 37 

 
Table 4.2 Description of four trial blocks. ................................................................................... 38 

 
Table 5.1  Subject characteristics. ................................................................................................ 56 

 
Table 5.2 Description of the four trial blocks. ............................................................................. 57 



 

x 

LIST OF FIGURES 

 

Figure 1.1 Unintentional injury in the year 2007 by age group in the United States. ................... 3 
 

Figure 3.1 Human Movement and Balance Laboratory custom marker set.  All markers are 
present for calibration in the static trial.  In dynamic trials, all markers with an S are 
removed due to common obstructions of these markers. .......................................... 22 

 
Figure 3.2 COMAP velocity for the forward (top) and backward (bottom) directions across 

repeated exposure trials.  Old and young adults are depicted as striped and solid 
bars, respectively.  Standard deviations are represented.  Positive indicates the 
COMAP velocity is moving anteriorly.  Old adults significantly reduced COMAP 
velocity in the forward and backward directions.  No change was observed in 
COMAP velocity for young adults in either direction. .............................................. 27 

 
Figure 3.3  Foot floor angle for the forward (top) and backward (bottom) directions across 

repeated exposure trials.  Old and young adults are depicted as striped and solid 
bars, respectively.  Standard deviations are represented.  Positive foot floor angle 
indicates toes-up in the forward direction and toes-down in the backward direction 
at foot contact.  Both young and old adults significantly reduced foot floor angle in 
both directions. ......................................................................................................... 28 

 
Figure 4.1 Tripping device (bottom side up (left) and solenoid-caliper-eyebolt-spring assembly 

(right). ........................................................................................................................ 39 
 

Figure 4.2  Changes in foot floor angle across conditions is shown for young (solid) and old 
(striped) adults.  The asterisk indicates a significant difference between age groups 
(p < .05) in the slip knowledge, trip knowledge and trip experience conditions.  
Standard error bars are presented. ............................................................................ 42 

 
Figure 4.3  Changes in minimum toe clearance across conditions is shown for young (solid) and 

old (striped) adults.  No significant differences existed between age groups within 
conditions.  Standard error bars are presented. ......................................................... 43 

 
Figure 5.1 Test matrix highlighting the planned comparisons (A-D) used to identify changes in 

perturbation severity.  Figure adapted from [41]. ..................................................... 60 



 

xi 

Figure 5.2 Unexpected trip pictured for one subject at a) right heel contact b) just before impact
 ................................................................................................................................... 61 

 
Figure 5.3 Trunk flexion angle at recovery foot contact during tripping is shown for young 

(solid) and older adults (striped) in the first trip of the trip block (knowledge 
provided), last trip of the trip block (knowledge + prior exposure – 3 perturbation 
exposures), first trip of the combo block (no knowledge of the nature of the 
perturbation + prior exposure – 4 perturbation exposures) and last trip of the combo 
block (no knowledge of the nature of the perturbation + increased exposure – 6 
perturbation exposures).  Young and older adults significantly differed in how prior 
exposure affected trunk flexion angle (p = .0278). .................................................. 62 

 
Figure 5.4 Sagittal views of the marker position data for a typical participant from the instant 

just before trip obstacle impact to just after recovery foot landing for (a) the first 
“unexpected” trip of the trip block and (b) the last trip of the combo block.  Dots 
from top to bottom represent the acromion, posterior superior iliac spine, greater 
trochanter, lateral epicondyle, malleolous, heel and toe of the left side, respectively.
 ................................................................................................................................... 64 

 
Figure 5.5 Mean trunk flexion velocity during tripping is shown for young (solid) and older 

adults (striped) in the first trip of the trip block (knowledge provided), last trip of the 
trip block (knowledge + prior exposure – 3 perturbation exposures), first trip of the 
combo block (no knowledge of the nature of the perturbation + prior exposure – 4 
perturbation exposures) and last trip of the combo block (no knowledge of the nature 
of the perturbation + increased exposure – 6 perturbation exposures).  Both young 
and older adults were able to use increased exposure to the perturbation to 
significantly reduce mean trunk flexion velocity (p < .0001 and p = .0071, 
respectively). ............................................................................................................. 66 

 
Figure 5.6 Maximum trunk deviation in the frontal plane during tripping is shown for young 

(solid) and older adults (striped) in the first trip of the trip block (knowledge 
provided), last trip of the trip block (knowledge + prior exposure – 3 perturbation 
exposures), first trip of the combo block (no knowledge of the nature of the 
perturbation + prior exposure – 4 perturbation exposures) and last trip of the combo 
block (no knowledge of the nature of the perturbation + increased exposure – 6 
perturbation exposures).  Positive values indicate deviation ipsilateral to tripped foot 
side (left) as absolute values of the trunk deviation were plotted for representation.  
Young and older adults significantly differed in how increased exposure to the 
perturbation affected maximum ipsilateral trunk deviation (p = .0073). .................. 68 



 

xii 

PREFACE 

There is no telling how many miles you will have to run while chasing a dream.   

       ~Author Unknown 

 

This has truly been a journey.  Through this process I have evolved both as an individual and a 

researcher.  For that I am grateful.  I would first like to thank my advisor, Dr. Rakié Cham.  Over 

the years she has pushed me to achieve my potential and I appreciate her setting the bar for 

excellence.  In addition, I am also thankful for my committee members, Dr. McCrory, Dr. Perera, 

Dr. Redfern and Dr. Van Swearingen, whom have demonstrated a diverse set of expertise while 

each supporting me with a unique perspective to reach the finish line.  Each of you has 

contributed to this work to help me develop a very insightful project that has significance for the 

field.  I thank each of you for your continued support, time, guidance, advice and insight.  Dr. 

Borovetz and Dr. Wosu, I appreciate your steadfast support throughout my studies at the 

University of Pittsburgh.  Each of you has helped me through situations that made it possible to 

get to the current point.  To my Pitt family, Ms. Allen, Ms. Moore and Dominique, thank you for 

being a family away from home.  I will miss those spontaneous office visits and heart-to-hearts 

that became a part of my daily life.  I would also like to give a special thank you to April 

Chambers, Wilshaw Stevens and the members of the HMBL for their continued support.  

Without your help completion of this project would have been very difficult.  For the friendships 

I have formed in graduate school, Kurt Beschorner and Peter Sandrian, I believe we will be 



 

xiii 

friends forever.  Thank you for all of the memories that made the difficult times less gloomy.  

And lastly, to thank the people behind the scenes, my family and friends.  To my mother and 

bestfriend, Mrs. Felix Harper, the day has come.  THANK YOU.  You have held my hand every 

step of the way and because of your support I never gave up.  To my family, thank you for 

believing in me even at moments when I didn’t believe in myself.  To Tiffany, thank you for 

helping me maintain a balance.  Your support truly made the difference in the final stretch.  

Every aforementioned person has made the completion of this work possible.  I appreciate you 

all.  This dissertation is dedicated to Clark Kingston.  Thank you for supporting mommy and 

being my guiding light to the finish line.    

 

 

Acknowledgements:  This work was supported in part by NIH by F31 AG025684-03 NIH Ruth 

L. Kirschstein Award.

 



 

1 

1.0  BACKGROUND 

Falls threaten the quality of life of older adults and are associated with tremendous economic 

cost.  The aging of the population is expected to aggravate these falls-related concerns.  To date, 

fall prevention programs have had limited success minimizing the risk of falls in the elderly.  

Research into the basic underlying reasons for aging-related worsening of postural control 

performance can provide new directions for clinicians and therapists in their attempt to minimize 

their patients’ risk of falling and to improve the likeliness of recovery when falls do occur.  This 

chapter reviews the problem and significance of slip, trip and fall accidents (Section 1.1), the 

contributing factors to slip, trip and fall accidents (Section 1.2), an approach to motor learning 

and the importance of proactive postural adjustments (Section 1.3), previous findings and voids 

in the literature (Section 1.4), backward walking as a novel task (1.5), and the current state of 

training, retention and the journey towards the development successful intervention programs 

(1.6). 

1.1 PROBLEM STATEMENT AND SIGNIFICANCE 

Falls are a major health problem in the elderly. The average annual risk of falling for an older 

adult over 65 years ranges from 30 to over 50%, i.e. at least 1 in 3 older adults falls each year [1, 

2]. Consequences of falls include injury, fear of falling, decreased activity, functional 
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deterioration, social isolation, depression, reduced quality of life, institutionalization and death  

[3].  Muscle weakness, gait and balance deficits increase fall risk by 440%, 290% and 290%, 

respectively, and all of these factors are correlated with the natural process of aging [4].  The 

problem to date is that the incidence of falls remains on the rise.  Fall induced injuries in persons 

aged 50 and older increased from 5,622 in 1970 to 21,574 in 1995, a 284% increase [5] and this 

number continues to grow.  In 2007, more than 18,000 older adults died as the result of 

unintentional fall injuries [6].  In the following year, 2.1 million nonfatal fall related injuries 

(Figure 1.1) among older adults were treated in the emergency room with an alarming estimated 

559,000 requiring hospitalization [7].  This apparent problem also reaches new dimensions of 

complexity and concern when considering the aging workforce.  By the year 2050, the estimated 

population of older adults is expected to increase by more than 50 million [8].  In the year 2000, 

direct medical costs had already spiraled to $200 million dollars in fatal falls and $19 billion 

dollars in nonfatal injuries [7].  Thus, there is an imperative need to develop intervention 

programs reducing the incidence of falls and associated health care costs. To achieve this goal, it 

is necessary to understand the factors that contribute to the probability of falling for a postural 

disturbance as well as the factors associated with the ability to recover from such a postural 

disturbance [9]. This research proposes to focus on one of these factors, the ability to adapt one’s 

gait when faced with environmental hazards, e.g. slipping/tripping hazards. The goal of such 

work is to establish the validity that postural control motor skills can be adapted and retained 

through training in the form of prior experiences which can potentially serve as the foundation 

for intervention programs focused on task specific motor learning capabilities. 
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1.2 CONTRIBUTING FACTORS TO SLIP, TRIP AND FALL ACCIDENTS 

Normal walking necessitates the performance of complex processes involved in the initiation of 

movements and balance maintenance. Two major causes of falling, slips and trips, will be 

investigated in this dissertation.  These two perturbations require different postural responses to 

prevent falling. To prevent the initiation of slipping, the retarding or frictional forces at the foot-

floor interface must be sufficient to counteract shear forces generated by the forward motion of 

Figure 1.1 Unintentional injury in the year 2007 by age group in the United States. 
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the foot as it hits the floor and body weight is transferred to it. Since the shear forces are highest 

shortly after heel contact, the ground reaction forces occurring at that time are of critical 

importance in determining whether the frictional capabilities of the foot-floor interface will be 

sufficient to prevent slips. Specifically, an increased risk of slipping is assumed as the peak shear 

to normal ground reaction force ratio, also called peak required coefficient of friction 

(RCOFpeak), exceeds the measured or available foot-floor coefficient of friction (COF) [10, 11]. 

In order to avoid a fall after a slip is initiated, the body must generate a quick and effective 

corrective response to re-establish dynamic balance and maintain an upright posture while 

continuing with the locomotion task  [12]. 

Recovery following a trip is also a dynamic task involving concentric and eccentric joint 

moments.  Evidence linking increased risk of trip-initiated falls with decreased lower extremity 

strength and slower responses following the perturbation has been shown [13-16]. Other factors 

associated with increased risk of trip-precipitated falls included faster walking speed at trip 

onset, stooped gait, delayed recovery responses (e.g. landing of the tripped foot and responses of 

the lower extremity muscles), inadequate positioning of the recovery foot during the positioning 

phase, inability to arrest trunk flexion, changes in neural control and reduced toe clearance [9, 

13, 17-19]. Pavol and colleagues also underlined the critical role of the hips in recovering from a 

trip and the ability to effectively use the support limb to slow the fall appears to be of equal 

importance in determining the outcome of a trip [13, 20]. 



 

5 

1.3 AN APPROACH TO MOTOR LEARNING AND THE IMPORTANCE OF 

PROACTIVE POSTURAL ADJUSTMENTS 

One approach in treating individuals with balance disorders is to expose patients to varied gait 

experiences on different surfaces in different situations. The underlying theory of such a 

therapeutic approach, referred to as the systems model theory, indicates that balance is not based 

on a fixed set of equilibrium reflexes (“feedback” reflexes) but on flexible, functional motor 

skills that can adapt with training and prior experiences [21] emphasizing goal-directed neural 

organization of multiple interacting systems [21, 22].  Thus, in the context of this systems model 

theory, the classification of balance as a motor skill suggests that balance can be improved with 

repeated exposures.  Specifically, when equilibrium is unexpectedly challenged, “online” 

sensory inputs and cortical inputs providing stored information based on previous experiences 

partially determine reactive motor balance recovery responses.  This study investigated the 

possibility of reducing the incidence of falls in older adults through learning to better recover 

based on a systems model theory.  In this study, short-term evaluations of this approach were 

conducted in situations where subjects are aware of the type of perturbation and, more 

importantly, when participants are uncertain of the nature of the balance-challenging event.  The 

findings of this study can open the door to studies evaluating the long-term benefits of systems 

model theory based fall interventions. For example, one could foresee the potential benefits of 

therapeutically exposing individuals at risk of falling to slippery surfaces at the beginning of the 

winter season to improve their chance of recovering from a slip on ice. 

The central nervous system (CNS) must routinely compensate for external perturbations 

that occur during gait to maintain balance. Compensation can take the form of feedforward or 

feedback (e.g. reflexes) control. Feedforward responses, or proactive postural adjustments, 
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precede the onset of a predictable perturbation and attempt to counteract the expected 

destabilizing effect of the perturbation [23, 24]. One critical requirement for maintaining balance 

during gait is the ability to generate proactive postural adjustments in the face of external 

perturbations.  These adjustments might include alterations in the body’s center of mass (COM) 

state (e.g. repositioning of the COM with respect to the base of support, modifying the COM’s 

velocity) and changes in gait patterns (e.g. increased knee/hip flexion).  Feedforward control can 

significantly reduce the reliance on reactive responses triggered by the onset of the perturbation 

(“feedback control”).  There is evidence from novel tasks indicating that, when exposed to 

perturbations of some known characteristics or nature, the CNS adapts its feedforward control 

[25-27]. However, it is presently unclear how the CNS might feasibly employ feedforward 

adjustments to reduce the likelihood of a balance loss in the event of an external perturbation 

during gait. 

1.4 PREVIOUS FINDINGS AND VOIDS IN THE LITERATURE 

Several studies have investigated repeated and multiple exposures to slips [27-42].  Pavol and 

colleagues investigated proactive strategies using a perturbed sit-to-stand testing paradigm [28].  

Early studies found older adults to initially be at greater risk than young adults to fall from a 

novel and unexpected perturbation [28].  However, healthy older adults learned to avoid falling 

comparable to young adults with no evidence in age-related limitations in the acquisition of 

motor skills.  In more recent studies, repeated exposures to slips produced in laboratory settings 

mimicking real-life situations has been tested to explore the effectiveness of training reducing 

balance loss and improving stability [26, 27, 30, 43, 44].  With repeated exposure to perturbed 
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and non-perturbed conditions, subjects began to adapt towards an optimal strategy that allowed a 

balance loss to be avoided under both conditions [26].  This same group later showed reduced 

fall incidence to be achieved through both proactive adaptations of the sit-to-stand performance 

and adaptive changes in the reactive response to slipping [27, 30].  This indicates that healthy 

older adults appear fully capable of learning to better recover from or adjust to a perturbation 

through repeated exposure.  In addition, a related study found proactive adjustments in pre-slip 

stability to influence post-slip decreases in the base of support (BOS) velocity which resulted in 

overall improvements in stability [26].  Such improvements from the repeated exposure training 

were suggested to persist even in unperturbed conditions [26].  Adaptations to perturbations that 

persisted in subsequent trials in the absence of the perturbation were later referred to as 

“aftereffects” [33].  These adaptations to repeated exposures were rapidly acquired, age–

independent and other studies also reported similar proactive gait adjustments adopted in 

environments perceived to be slippery including reduced heel velocity and foot floor angle at 

foot contact, decreased step length, changes in knee and hip moments, increased cadence and 

elevation in vertical COM position [34, 35, 38, 39, 43, 45-48]. 

Despite extensive research, questions still remain regarding the ability of repeated 

exposure learning to transfer over different types of perturbations.  It is also currently unclear 

how the CNS responds to multiple exposures to different types of perturbations when presented 

randomly and without knowledge.  This has been part of our motivation for this study.  Previous 

trip studies have indicated that the probability of successful balance recovery after a trip is much 

lower in elderly individuals compared to young adults [18, 19].  But the answer to the question 

as to why older adults fall from a trip more is unknown.  Repeated exposures to trips have been 

studied to a lesser extent.  Most studies investigating tripping have either only exposed subjects 
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to one trip [9], studied only young adults [20, 49] or focused on the recovery responses and 

reactive mechanisms after tripping [14, 15, 17, 50-52].  Pavol et al. were amongst the first to 

study trips in older adults [9, 13, 53] where they found lower extremity strength to play both a 

beneficial and maladaptive role.  On the one hand lower extremity strength enabled the execution 

of an adequate trip recovery response.  However, as stronger people walk faster, walking too fast 

was shown to increase recovery demands following a trip [13].  Other studies involving multiple 

trips have focused on the obstructed swing limb and descriptions of recovery kinematics and 

muscle responses [13, 17, 49, 54-56].  Pavol et al. ascribed falls after tripping to the slower 

execution of the recovery strategy in older adults which was shown to be related to the ability to 

generate large ankle and hip extension moments, an ability diminished in older adults and 

especially fallers.  In general, contribution of the support limb to recovery is also limited in older 

adults [50].  More recent studies have investigated arm movement differences in young and older 

adults and found young adults to rely on arm movements to elevate the body COM as a means of 

reducing forward angular momentum of the body [57].  Although much information has been 

disseminated regarding differences in trip recovery between young and older adults, limited 

information is available regarding age-related proactive adaptation differences observed during 

tripping and how these adaptations may differ with concurrent presentation of another type of 

perturbation. 

The role of prior knowledge and experience on proactive postural adjustments has also 

been largely investigated.  Previous studies have shown subjects to behave differently after one 

exposure [34, 35, 38, 58].  Large foot floor angles at foot contact prior to the unexpected slips 

were reduced in remaining slip trials.  Heiden et al. found subjects to adapt optimally with both 

awareness of and experience with the perturbation [41].  In a related study, actual mechanisms of 
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adaptation did not differ much between age groups with the exception that foot floor angle was 

significantly reduced in older adults [58]which is evidence of older adults’ likeliness to adopt a 

more cautious gait when aware of a potential threat to balance.  In tripping, Pijnappels et al. 

found gait kinematics of younger adults to be minimally affected by anticipation when 

forewarned of a trip.  No study has simultaneously investigated the effect of multiple exposure, 

knowledge and experience on slips and trips on the same set of subjects. 

 

1.5 BACKWARD WALKING AS A NOVEL TASK 

In addition to forward gait, this study tested backward walking activities. This choice of task is 

based on two factors. First, in the therapeutic systems model theory approach mentioned 

previously, successful balance maintenance during walking requires the ability to adjust motor 

postural responses to various environmental and task constraints. Changing the direction of 

locomotion is one way to vary the task constraints and this method has been explored in various 

gait/mobility research and in clinical and therapeutic settings [59-64].  Indeed, although 

backward walking is not a commonly performed task, such activity can provide information 

concerning the ability of the CNS to generate and to adjust postural motor responses when 

performing unfamiliar tasks. In contrast to forward walking, backward walking is not a 

preprogrammed activity and thus it might be associated with greater demands for attentional 

resources [59]. Also, the dynamical sensory cues (e.g. visual, proprioceptive) will be different 

between the two gait activities resulting in potentially different strategies for maintaining balance 

[59].   In spite of the task-related differences, research supports that forward and backward 
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walking are run from the same motor program which facilitates the comparison of postural motor 

responses between the two gait activities. Specifically, Winter suggested that “backward walking 

is almost a simple reversal of forward walking” [65].  Others have put forward the idea that a 

central program for locomotion regulates reflex pathways  [60] and kinematic patterns [62] for 

both forward and backward walking.  Thus, this study shed light on the capabilities of the CNS 

to process/integrate sensory information that is relevant to balance while performing familiar 

(forward walking) and non-familiar (backward walking) gait activities and to generate and adjust 

postural responses when balance is challenged. 

1.6 THE CURRENT STATE OF TRAINING, RETENTION AND THE JOURNEY 

TOWARDS THE DEVELOPMENT OF SUCCESSFUL FALL INTERVENTION 

PROGRAMS 

To date, fall intervention programs have had limited success.  Several exercise interventions 

have been proposed to prevent falls in older adults including resistance training, endurance 

training and balance training [17, 66-70].  However, the most effective method of training 

considering exercise intensity and type has yet to be determined.  Some programs have had a 

prophylactic effect, others have had no effect and others have actually increased the incidence of 

falls [67, 71-73].   

As opposed to the commonly practiced exercise based interventions, research is moving 

in the direction of motor learning based interventions.  Pai and Bhatt refer to repeated exposure 

training as one of the potentially most beneficial yet underutilized intervention strategies 

available [33].  Through motor training in situations resembling real-life, it is believed that older 
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adults can strengthen their own neuromuscular protective mechanisms to reduce fall incidence.  

The maintenance of posture and balance during locomotion necessitates the need for human 

beings to readily and constantly be able to adapt to changing environmental and task constraints.  

The ability to transfer motion state adaptations to changing environmental and task constraints 

has been said to be one of three critical components in motor learning along with acquisition and 

retention [74].  Practicing movements is one way that individuals can relearn.  In fact, greater 

challenges to posture and balance have been associated with increased motor learning abilities 

[75].   

Bhatt and Pai have led the way in repeated exposures to slipping as a means of motor 

learning.  Past studies have shown that with just one to two trials, loss of balance incidence was 

reduced 80% [43, 44].  In addition, adaptive motor improvements were shown to be retained for 

several months.  The primary objective of a more recent study was to determine whether gait 

stability improvements acquired on a repeated slip exposure trained limb could transfer 

immediately to the untrained contralateral limb [32].  Partial immediate transfers of gait stability 

were observed on the untrained contralateral limb.  The untrained limb also continued to show 

improvements which persisted for up to 1-month but started to deteriorate over a long-term 4-

month interval [32].  These improvements were accomplishable with only one slipping exposure 

on the untrained side per retest session.  This study provided evidence that information acquired 

through repeated exposure training can be generalized, applied to the contralateral (untrained) 

side and retained for an extended period of time.  A later study also supported that the CNS 

could generalize neuromechanical responses acquired through motor training in different 

environmental contexts, i.e. different types of forward slips (moveable platform vs. slippery 

floor) [31, 76]. Both of the aforementioned training protocols were conducted on young adults.  
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However, to assess whether aging-related declines affected the ability to learn in postural tasks 

involving different functional requirements, a study was conducted on young and old comparing 

acquisition of motor skills in sit-to-stand slips versus movable platform slips [58, 77].  With 

repeated slip exposure in both tasks, older adults learned to resist falls comparably to and just as 

rapidly as young adults.  In fact, large reductions in fall incidence were observed after only one 

slip exposure in each task and adaptation rates were not shown to differ between the tasks.  This 

study did not investigate retest sessions.  Therefore, the ability of older adults to retain learned 

motor skills over an extended period of time remains to be determined.  This study shed light on 

adaptation abilities across tasks.  However, the transfer of adaptations acquired in a specific task 

to recovery from different types of perturbations and directions of perturbations remains 

unknown.   

Other groups have investigated trip training to improve recovery and reduce the number 

of falls occurring as the outcome of a trip.  One approach exposed older subjects to a simulated 

trip that necessitated a recovery step to clear the obstacle resembling recovery following an 

actual trip [66].  Repeated exposure to a simulated trip on a treadmill was used to enable subjects 

to learn a strategy that would improve recovery kinematics following a trip.  This study provided 

evidence that motor skills acquired through repeated exposure training on a treadmill proved 

beneficial in improving recovery kinematics following a trip while walking over ground [66].  

Resistance training targeted to increase muscle strength and therefore improve the push-off 

reaction and thus trip recovery was carried out in another trip training pilot study [19].  Strength 

measures increased over the marked training period, however, significance in the trip recovery 

measures were not observed although slight improvements were seen.  This study gave further 

merit to the question of whether strength training, task-specific training of motor skills or a 
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combination of both would prove most effective in developing a training tool specific to trips.  

The determination of optimal parameters for motor learning across different perturbations and 

considerate of age remains to be achieved. 
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2.0  OBJECTIVE OF RESEARCH 

Balance maintenance during walking requires the ability to adjust postural responses to various 

environmental and task constraints.  One critical requirement in maintaining balance when 

exposed to an external perturbation, a slip/trip, is the ability to generate a proactive postural 

adjustment.  Such adjustments precede the onset of a predictable perturbation in attempts to 

counteract any destabilizing effect that a slip/trip may have.  This study aimed at investigating 

this ability among younger and older adults in different conditions. The overall effect of postural 

adjustments was assessed using derivations of the motion analysis data collected in the 

laboratory.  Comparisons of familiar and novel tasks yielded insight into the CNS’ ability to 

perform and adjust postural motor responses in gait activities that are not preprogrammed.  

Simultaneously investigating proactive adaptations to slips and trips in the same group of young 

and old adults showed whether knowledge and experience have the capacity to improve 

anticipatory performance in one, none or each of the presented perturbations. 

2.1 PURPOSE AND LONG TERM GOAL 

The purpose of this study was to gain a better understanding of abilities to generate proactive 

postural adjustments in balance-challenging environments.  Specifically, potential associations 

between aging and the ability to generate these proactive postural adjustments were of particular 
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interest.  Proactive postural adjustments have been studied in older adults during slips, but to a 

lesser extent in trips.  This study investigated how repeated exposures to perturbations, multiple 

exposures to perturbations, familiarity versus novelty of gait tasks, knowledge, experience and 

uncertainty each play a role in the ability to generate proactive postural adjustments as well as 

the ability to successfully employ optimal perturbation recovery responses.  The goal of this 

research was to provide evidence to suggest that task specific training in the form of repeated 

and/or multiple exposures to both slip and trip perturbations, the two main causes of falls,  is 

effective in helping adults adopt beneficial proactive adaptations that reduce the incidence of 

falls.  The long-term goal of this research is to aid in the development of intervention and 

rehabilitation regimens that focus on a motor learning approach to help older adults reduce the 

incidence of falls in a cost-effective, easily implemented fashion. 

2.2 RESEARCH QUESTIONS 

2.2.1 Research Question #1 

How might the CNS feasibly employ feedforward adjustments to reduce the likelihood of a 

balance loss in the event of an external perturbation during gait? How might the CNS feasibly 

employ feedforward adjustments to reduce the likelihood of a balance loss during a novel task? 
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2.2.2 Research Question #2 

Could the systems model theory applied to perturbations during gait be an effective component 

in the enhancement of interventions to reduce the incidence of falls? 

2.2.3 Research Question #3 

Is this effective for different types of perturbations simultaneously investigated?  

2.3 SPECIFIC AIMS 

2.3.1 Specific Aim #1 

To investigate potential associations between aging and anticipatory postural strategies when 

repeatedly exposed to slip or when exposed multiple times to slip/trip stimuli while walking 

forward. 

2.3.2 Specific Aim #2 

To examine the impact of the novelty of the gait activity on proactive postural adjustments in the 

face of slipping hazards and to compare the findings between young and older adults. 
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2.3.3 Specific Aim #3 

To compare how young and older adults optimize their anticipatory gait adjustments when 

uncertain of the nature of the perturbation. 

2.3.4 Specific Aim #4 

To investigate potential associations between aging and perturbation recovery responses when 

exposed multiple times to slip and trip stimuli while walking forward and to compare how young 

and older adults optimize their perturbation recovery responses when uncertain of the nature of 

the perturbation. 
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3.0  POSTURAL ADAPTATIONS DURING REPEATED EXPOSURE TO FORWARD 

AND BACKWARD SLIPPING IN HEALTHY YOUNG AND OLDER ADULTS 

3.1 ABSTRACT 

Balance maintenance during walking requires the ability to adjust postural responses to various 

environmental and task constraints.  This study investigated the differences in proactive postural 

adjustments adopted when exposed to a slip during a familiar gait task, walking forward, and an 

unfamiliar gait task, walking backward.  Furthermore, this study aimed to describe aging-related 

differences observed in these proactive strategies.  Eighteen younger (ages 21-35) and thirteen 

older (ages 65-75) adults participated in this study.  Subjects experienced an unexpected slip 

followed by five repeated, known slips in each direction.  Postural adaptations, changes in COM 

state and slip-risk related kinematic data, were evaluated 50 ms before foot contact.  In the 

forward direction older adults exhibited gait alterations of greater magnitudes and took more 

exposures to reach a steady state.  Older adults executed cautious strategies in the novel task 

demonstrated by immediate significant changes compared to more gradual changes observed in 

young adults.  The CNS was able to make internal representations to a novel task for both young 

and older adults.   
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3.2 INTRODUCTION 

Aging is associated with the loss of pre-programmed motor patterns involved in functional 

stability and balance [78].  As a result, older adults over the age of 65 have a 30 to 50% chance 

of experiencing a fall each year [1, 79].  The financial toll for older adult falls is expected to 

increase as the population ages, possibly reaching an estimated $54.9 billion by the year 2020 [6, 

80].  These anticipated costs could potentially be reduced with the successful development of 

interventions targeted at reducing fall incidence in older adults.  One approach in treating 

individuals with balance disorders is to expose patients to varied gait experiences on different 

surfaces in different situations.  The underlying theory of such a therapeutic approach, referred to 

as the systems model theory, indicates that balance is not based on a fixed set of equilibrium 

reflexes but rather on flexible, functional motor skills that can adapt with training and prior 

experiences [21].  On the basis of this theory and classifying balance as a motor skill, it is 

believed that balance can be improved with repeated exposure to a particular perturbation [21, 

22].   

To maintain balance, the central nervous system (CNS) must routinely compensate for 

external perturbations during gait.  One form of such compensation is feedforward control, 

referred to as proactive postural adjustments, which precedes the onset of a known perturbation 

in attempts to counteract the expected destabilizing effect of the perturbation [28, 31].  One 

critical requirement for maintaining balance during gait is center of mass (COM) control.  COM 

adaptations were shown to be impacted by both experience with and knowledge of a slip 

perturbation [33, 41, 58].  In a recent study, the ability to rapidly acquire fall-resisting skills on 

repeated slip exposure remained intact at older ages and across different tasks [58].  It is 

presently unclear how the CNS might feasibly employ proactive postural adjustments to reduce 
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the likelihood of a balance loss in the event of a perturbation during a novel gait task.  

 Successful balance maintenance during walking requires the ability to adjust postural 

responses to various task constraints such as changing the direction of locomotion [59-64].  The 

literature supports that forward and backward walking are run from the same motor program [61, 

81] and this facilitates a comparison between forward and backward walking as a familiar and 

novel task, respectively.  Information regarding the ability of the CNS to generate and adjust 

postural responses when performing unfamiliar tasks as well as whether abilities to generate 

proactive adjustments are task specific may emerge from such comparisons.  To date, potential 

associations between aging and the ability to generate proactive postural adjustments when 

balance is challenged during a novel gait task has not yet been investigated [26-28, 33].   

The purpose of this study is two-fold:  (1) To investigate potential associations between 

aging and anticipatory postural strategies when repeatedly exposed to a familiar task, a slip while 

walking forward and (2) To examine the impact of the novelty of the gait activity, a slip while 

walking backward, on proactive postural adjustments and to compare the findings between 

young and older adults.  Adaptations to whole body COM state, foot floor angle and cadence 

were compared when repeatedly exposed to the same slip perturbation in the forward and 

backward directions for both young and older adults.  This was done to observe changes in 

proactive strategies with knowledge and increased exposure to the perturbations.  The findings of 

this study add further insight to potential long-term benefits of systems model based 

interventions. 
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3.3 METHODS 

Eighteen young (ages 21-35) and thirteen old adults (ages 65-75) screened for neurological and 

musculoskeletal abnormalities were recruited for participation (Table 3.1).  Written informed 

consent was obtained prior to participation according to the University of Pittsburgh Institutional 

Review Board.  Exclusion criteria included a clinically significant condition that would impede 

normal/independent gait and balance.   

 

Table 3.1 Subject characteristics. 

 

3.3.1 Subjects, experimental equipment and conditions, protocol 

Subjects walked along an 8.5 m long vinyl-tiled walkway.  An eight M2-camera VICON® 612 

(VICONPeak, Lake Forest, California) 612 motion measurement system recorded three-

dimensional motion data captured at 120 Hz from 81 reflective markers placed on the body and  

shoes (Figure 3.1).  All subjects wore the same shoes.  Ground reaction forces captured at 1080  

 

 

 

 

 

Female Male Mean SD Mean SD Mean SD

Young 8 10 27.9 4.9 174.8 7.0 72.7 13.5
Old 5 8 68.9 3.1 172.7 8.9 77.8 11.7

Age (years) Height (cm) Body mass (kg)
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Figure 3.1 Human Movement and Balance Laboratory custom marker set.  All markers are present for calibration in the static 
trial.  In dynamic trials, all markers with an S are removed due to common obstructions of these markers. 
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Hz were measured on two Bertec® (Bertec Corporation, OH, USA) type 4060a force plates 

embedded into the walkway 3 and 4 meters from the start of the walkway for the right foot and 

left foot, respectively.  Subjects were equipped with a safety harness during all trials to prevent 

them from hitting the ground in the event that an irrecoverable loss of balance occurred.  The 

trolley was operated by a lab staff member to stay above the subject while walking and did not 

impede gait.  Slips were induced with a 40-ml sample of glycerol solution (90% glycerol: 10% 

water) applied uniformly by the same experimenter in all slip trials for consistency over the 

second force plate ( 60 x 40 cm) such that the left foot came in contact with the slippery area.  

Contact paper was also applied to the bottom of the shoes in all trials to enhance slipperiness.  

The testing environment was illuminated by ceiling mounted halogen lights which were dimmed 

throughout the experiment to reduce visibility of contaminant in unaware trials.   

Experimental conditions included two walking directions, forward (FW) and backward 

(BW), at a self-selected speed.  The presentation order of these conditions was randomized.  

After baseline gait data were collected within each walking direction, subjects were exposed to 

one unexpected slip immediately followed by five repeated slips.  In the unexpected slip (US), 

subjects had no knowledge that the glycerol had been applied to the floor and expected a dry, 

non-slippery floor.  In the five repeated slips (RS1…RS5), subjects were told they would 

experience the same type of perturbation consecutively and to try to regain their balance and 

continue walking.  Only three slips within each walking direction were included in the analyses, 

namely, US, RS1 and RS5.  The rationale of the selected trials was the US served as a baseline, 

RS1 was the first trial with knowledge of the upcoming slips with minimal experience and RS5 

had knowledge and the greatest level of exposure to the perturbation.  
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3.3.2 Data analysis and statistics 

Center of mass (COM) position and velocity in the anterior-posterior (COMAP), medial-lateral 

(COMML) and vertical (COMV) directions, cadence and foot floor angle at heel contact in FW and 

toe contact in BW were the dependent variables of interest.  COM position was calculated using 

a weighted average of 13-segmental COM locations [39] with the following equation: 

 

∑
∑=

i

ii
body m

am
COM                     (1) 

 

where m is the mass of the segment, a is the location of the segment center of mass and i 

represents the individual segment.  Segment masses and segment COM locations were 

determined as per de Leva [82].  COM position was measured with respect to the ankle of the 

slipping foot 50 milliseconds prior to foot contact to investigate COM adaptations.  COMAP and 

COMV were normalized to leg length prior to analyses.  COM position was first filtered using a 

zero-phase low pass filter passband 6 Hz, stopband 15 Hz and then derived to compute COM 

velocity.  Foot contact was determined from minimum vertical velocity of the heel in FW and of 

the toe in BW.  Foot floor angle was always taken at foot contact of the slipping foot and 

cadence was determined from the first and last foot contact points in the trial. 

JMP® 8 (SAS Institute Inc.) was used for all statistical analyses.  A mixed linear model 

was fit to each dependent variable (COM state, cadence and foot floor angle) as the response 

variable; age group (YA/OA), direction (forward/backward), trial (US/RS1/RS5) and 
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interactions as fixed effects; and subject as a random effect.  Appropriate contrasts were 

constructed to make comparisons of interest.  Statistical significance was set at α=.05. 

3.4 RESULTS 

Associations between aging and anticipatory postural strategies when repeatedly exposed to a 

familiar task, a slip while walking forward were observed.  The unexpected slip served as a 

baseline and old adults had a more superiorly located COMV position (p = .0421) (Table 3.2).  

No other differences existed between age groups in the FW unexpected slip.  Old adults 

immediately reduced COMAP velocity .13 m/s (p = .0208; Figure 3.2) while young adults 

reduced foot floor angle 9º (p = .0032; Figure 3.2) in the first repeated exposure slip, RS1, with 

knowledge that the slip would occur and minimal slip experience (1 prior slip).  With increased 

exposure in FW RS5 (5 prior slips), the COM of old adults was less posterior to the ankle (p = 

.0138) as they continued to reduce COMAP velocity compared to young adults (p =.0003).  

Young versus old difference in how adaptations to COMAP velocity were affected by repeated 

exposure was -.178 m/s (p = .016).  Both young and old adults significantly reduced foot floor 

angle (p < .001 and p < .0001, respectively) in the FW RS5 trial.  Age group differences were 

found to be significant in three of the eight dependent variables in the FW RS5 trial.  These 

variables include the COMAP velocity (p = .0063), COMV velocity (p = .0003) and foot floor 

angle (p = .05) (Table 3.2).
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Table 3.2 Center of mass state, cadence and foot floor angle mean values (standard deviation) for both age groups and directions. 

Unexpected slip Repeated slip 5th Repeated slip Unexpected slip Repeated slip 5th Repeated slip

COMML  position (cm) 72.2 (30.7) 81 (34.6) 77.1 (34.2) 86.1 (20.3) 89.7 (14.5) 91.2 (22.2)
COMAP position (/leg length) .286 (.146) .269 (.111) .251 (.153) .352 (.055) .294 (.0691) .270 (.0675)
COMV  position (/leg length) .879 (.335) .893 (.341) .893 (.341) 1.03 (.0355) 1.05 (.0373) 1.05 (.0398)
COMML velocity (m/s) -.0462 (.0422) -.0693 (.0343) .0463 (.0449) -.0479 (.0369) -.0689 (.0515) -.0398 (.0556)
COMAP  velocity (m/s) 1.26 (.174) 1.23 (.233) 1.24 (.246) 1.18 (.267) 1.05 (.313) .972 (.319)
COMV  velocity (m/s) -.190 (.0510) -.193 (.0511) -.200 (.0695) -.150 (.0586) -.147 (.0813) -.115 (.0739)
Cadence (steps/minute) 109 (16.7) 115 (18.3) 122 (22.4) 111 (18.8) 116 (21.3) 119 (23.9)
Foot floor angle (deg) 19.3 (9.00) 10.5 (8.94) 9.36 (9.27) 15.8 (10.0) 9.38 (9.85) 2.02 (8.96)

Unexpected slip Repeated slip 5th Repeated slip Unexpected slip Repeated slip 5th Repeated slip

COMML  position (cm) 93.3 (21.9) 98.0 (24.7) 91.5 (22.5) 73.3 (36.1) 77.5 (33.4) 75.9 (31.1)
COMAP position (/leg length) .344 (.0547) .344 (.0497) .330 (.0812) .287 (.141) .300 (.118) .265 (.114)
COMV  position (/leg length) .935 (.0455) .951 (.0388) .956 (.0463) .911 (.241) .917 (.236) .926 (.239)
COMML velocity (m/s) .114 (.0455) .101 (.0653) .100 (.0458) .0894 (.0423) .0625 (.0758) .0804 (.0584)
COMAP  velocity (m/s) .918 (.218) .862 (.228) .877 (.264) .823 (.325) .676 (.306) .693 (.346)
COMV  velocity (m/s) -.121 (.0729) -.102 (.0445) -.123 (.101) -.0890 (.0611) -.0648 (.0351) -.0592 (.0493)
Cadence (steps/minute) 109 (32.1) 116 (35.8) 122 (35.9) 111 (24.1) 121 (34.7) 111 (38.9)
Foot floor angle (deg) 43.0 (11.2) 37.5 (13.8) 34.5 (12.1) 35.8 (12.0) 27.6 (12.6) 28.9 (8.27)

Variables

Variables

Young Old

Mean (SD ) Mean (SD )

Forward

Backward
Young Old

Mean (SD ) Mean (SD )

Center of mass (COM) position and velocity in the anterior-posterior (COMAP), medial-lateral (COMML) and vertical (COMV) directions.  Positive COMML 
position and velocity indicates COM medial to the ankle of the slipping foot and COMML is moving medially over time, respectively.  Positive COMAP 
position and velocity indicates COM posterior to the ankle of the slipping foot and COMAP is moving anteriorly (where anterior refers to the direction of 
motion) over time, respectively.  Positive COMV position and velocity indicates COM located superiorly to the ankle of the slipping foot and COMv is moving 
superiorly over time, respectively.  Positive foot floor angle indicates a toes-up position in the forward direction and a toes-down position in the backward 
direction. 
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Figure 3.2 COMAP velocity for the forward (top) and backward (bottom) directions 

across repeated exposure trials.  Old and young adults are depicted as striped and solid 

bars, respectively.  Standard deviations are represented.  Positive indicates the COMAP 

velocity is moving anteriorly.  Old adults significantly reduced COMAP velocity in the 

forward and backward directions.  No change was observed in COMAP velocity for 

young adults in either direction.   
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Figure 3.3  Foot floor angle for the forward (top) and backward (bottom) directions across 

repeated exposure trials.  Old and young adults are depicted as striped and solid bars, respectively.  

Standard deviations are represented.  Positive foot floor angle indicates toes-up in the forward 

direction and toes-down in the backward direction at foot contact.  Both young and old adults 

significantly reduced foot floor angle in both directions. 
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Proactive adaptations were impacted by age in the backward walking slip, novel task.  In 

the BW unexpected slip, the COM in young adults was 20 cm more medial to the ankle and they 

walked with a 7º larger foot floor angle at toe down.  No other differences existed between age 

groups in the BW unexpected slip.  Age group differences in the BW RS1 trial were observed for 

COMML position (p = .0322) and velocity (p = .0312), COMAP velocity (p = .0328) and foot floor 

angle (.0097).  Young adults’ COM was more medial to the ankle and moved .04 m/s faster 

medially and .2 m/s faster anteriorly while having a 10º larger foot floor angle at toe down.  In 

comparison, old adults significantly reduced COMAP velocity .15 m/s (p = .0093) and foot floor 

angle 8º (p = .0202) in the BW RS1 trial.  Old adults continued to reduce COMAP velocity in the 

BW RS5 trial (Figure 3.2).  In addition, both young and old adults significantly reduced foot 

floor angle by almost 10º (p = .0047 and p = .0501, respectively; Figure 3.3).  Old adults had a 

.06 m/s slower COMV velocity compared to young adults (p = .0062) and was the only 

significant difference between age groups in the BW RS5 trial.   

When comparing whether adjustments differed when performing the novel as opposed to 

the familiar task significant observations were made.  Unexpected slip trial adaptations 

significantly differed between directions in all variables except COMV position and cadence in 

young adults and COMML position and cadence in old adults (Table 3.2).  The following were 

observed in the BW US compared to the FW US.  COMAP position increased 6% in young adults 

(p = .0376) and decreased 7% in old adults (p = .0504).  COMAP velocity decreased .3 m/s in 

young adults (p < .0001) and .4 m/s in old adults (p < .0001).  COMML position increased 21 cm 

in young adults (p = .001).  COMML velocity increased .07 m/s in young adults (p < .0001) and 

.04 m/s in old adults.  COMV position decreased 12% in old adults (p = .0498).  COMV velocity 

decreased .07 m/s in young adults (p < .0001) and .06 m/s in old adults (p = .001).  Foot floor 
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angle increased 24º in young adults (p < .0001) and 20º in old adults (p < .0001).  Age groups 

adapted similarly between conditions and there were no age differences in how novelty of the 

gait task impacted proactive adaptations.  

3.5 DISCUSSION 

The present study investigated potential associations between aging and anticipatory postural 

strategies when repeatedly exposed to a familiar task, a slip while walking forward and examined 

the impact of the novelty of the gait activity, a slip while walking backward, on such 

associations.  Our hypothesis that repeated exposure to a familiar task would result in a greater 

number of trials needed to achieve steady state adaptations in older adults was supported.  

However, our hypothesis that gait alterations would be of smaller magnitude in older adults was 

not supported.  We also hypothesized subsequent exposures to a novel balance-perturbing task 

compared to a largely pre-programmed activity would result in postural adjustments of different 

magnitude.  This hypothesis was also not supported.  Comparable to other studies, it was found 

that both young and older adults were capable of adapting with repeated exposures in both 

directions [26-28, 33, 58].  However, the mechanisms of adaptation were found to differ with 

age. 

Older adults did take a greater number of exposures to reach steady state in the forward 

direction; however, the overall magnitudes of their gait alterations were actually greater.  Their 

adaptations occurred gradually in the familiar task compared to immediately in the novel task.  

As the novel task represented an activity with which subjects were less familiar, it is possible 

that older adults adapted more rapidly using cautious strategies to promote balance maintenance.  
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Older adults immediately made significant adaptations in the novel task which may be attributed 

to delivery of the script at the beginning of the repeated exposure trials informing subjects they 

would now experience the same perturbation consecutively.  This agrees with previous studies 

that found adaptations to occur within one slip trial and gait to be more cautious when subjects 

had awareness of and experience with the perturbation [33, 34, 38, 41, 58].  This observation was 

also unique to older adults providing support that the warning may affect young and older adults 

differently in an unfamiliar situation which can be associated with heightened anxiety due to a 

known threat to balance [1].  Young adults made more gradual changes to establish a strategy for 

balance maintenance in both directions with foot floor angle adaptations being the exception. 

As differences were observed between the forward and backward directions in the 

unexpected slip trials before any within direction slips had been performed, gait changes were 

induced by the nature of the task alone.  Age groups adapted similarly between directions with 

some exceptions.  In the novel task, young adults had an increased safety margin between the 

COM and boundaries of the supporting area provided by a widened base of support represented 

by COMML position.  As mediolateral stability has also been used to discriminate fallers from 

non-fallers and to predict the likeliness of falls to the side [45, 83, 84], this finding may suggest 

mediolateral stability to discriminate age-related proactive capability differences when 

performing a novel task.  Postural adjustments did not differ with subsequent exposure in a novel 

compared to a familiar task.   

Adaptive mechanisms differed within each direction between age groups.  Although both 

groups reduced COMAP velocity in the novel task, young adults did not modulate it within 

directions like older adults.  Slower walkers have been shown to be more unstable at slip onset 
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[85] and restricted in the mechanisms and magnitudes with which one can adapt.  Such cautious 

behavior observed only in older adults could therefore be a maladaptive strategy. 

Several studies have investigated repeated exposure to slips [27, 28, 33, 85], novel task 

slips [27, 28, 33], slips resembling real-life slips [31, 34, 58] and the effects of knowledge and 

experience [38, 41].  However, this is the first study to our knowledge that looks at slipping 

while walking forward, a highly pre-programmed activity, and slipping while walking backward, 

a novel activity that utilizes the same central pattern generator (CPG), on the same group of 

subjects inclusive of both healthy young and old adults.  Only 65-75 year olds meeting all 

inclusion criteria with health comparable to the young adults were tested in this study and our 

subject population appeared to be very robust.  It is likely that with a subject pool inclusive of 

older and frailer adults, stronger differences in the COM state and cadence would emerge 

between age groups. The slips used in this study were extremely slippery and highly resembling 

of real-life slips.  Subjects were informed the study would entail slipping when consented; 

however, we do not feel this to be a limitation based on their lack of familiarity with the 

protocol.  It is feasible that proactive adjustments observed in this study could be applied to the 

nature of gait to be expected by people knowingly walking outside on a sheet of ice.  It may be a 

limitation that subjects were only truly naïve in their first slipping direction.  However, we 

randomized direction order to minimize this impact.  Also, it should be stated that adaptations 

observed in the present study reflected what subjects actually did and not their capabilities. 

 The CNS was able to create internal representations [33], generalized motor programs 

resulting in adaptive changes in gait, applicable to a novel task for both young and older adults.  

Adaptations with repeated exposure were more impacted by age than novelty of the task.  Young 

adults did not modulate gait speed and increased mediolateral stability, both of which are known 
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to be beneficial adaptations.  Overall, both young and older adults demonstrated proactive 

postural strategies in response to challenges to balance during familiar and unfamiliar tasks.  

These results are insightful because with repeated exposure older adults can learn to adapt to 

maintain balance even in novel gait tasks having had no prior training and/or experience 

comparable to young adults.  It is insightful that older adults were able to immediately generate 

proactive adaptations during an unfamiliar task.  Such rapid adaptations in the unfamiliar task are 

associated with an increased challenge and a greater threat to balance in older adults.  This may 

support familiar tasks presented with greater complexity in repeated exposure trainings may 

expedite motor learning capabilities and possibly long-term retention.  Further investigation must 

be done to yield support for this approach in consideration for the development of long-lasting, 

effective interventions to reduce the incidence of falls in older adults.   



 

34 

4.0  PROACTIVE ADAPTATIONS TO SLIPS AND TRIPS:  DOES KNOWLEDGE 

AND/OR EXPERIENCE WITH FALLING HAZARDS MATTER? 

4.1 ABSTRACT 

This study investigated proactive strategies adopted in anticipation of slips and trips when 

knowledge of and experience with the specific perturbation was provided.  Differences in the 

proactive strategies adopted when uncertain of the nature of the perturbation were also of 

interest.  Aging-related differences in the alterations of these anticipatory gait adjustments were 

also compared.  Sixteen young and thirteen older healthy adults participated.  Subjects 

experienced slip and trip perturbations where knowledge/no knowledge was provided.  

Dependent variables included foot-floor angle and minimum toe clearance due to the correlations 

of these gait variables with the risk of slip/trip-initiated falls.  Proactive adaptations to slips and 

trips were found to be perturbation specific as evident by a modulation in responses known to 

benefit perturbation recovery.  This study provides insight into possible avenues for the 

improvement of perturbation performance which could easily be incorporated into fall 

intervention programs. 



 

35 

4.2 INTRODUCTION 

Falls and fall-related injuries are the origin of many adverse outcomes affecting socialization, 

mental and physical health and related health care costs.  In 2000, direct medical costs totaled 

$179 million for fatal falls and $19 billion for nonfatal fall injuries [7].  With an aging 

workforce, balance challenging environments encountered in the workplace pose an even greater 

threat and therefore an increased concern for falls in the elderly.  Such environments include 

slipping and tripping hazards, which account for over 50% of falls in the elderly [86-88].  Nearly 

5% of all falls result in fracture and 5-11% result in other serious injuries [5].  In the year 2000, 

2.6 million non-fatal fall injuries required medical treatment in older adults [7]. 

 Postural responses required to recover from a slip are different than those needed to 

recover from a trip.   However, for both slipping and tripping perturbations, the ability to 

generate proactive postural adjustments prior to the onset of the perturbation is critical to the 

maintenance of balance.  Proactive adaptations precede a predictable perturbation which means 

knowledge of the perturbation must be provided.  Knowledge of the perturbation has induced 

proactive adaptations in both slips and trips.  Older adults have been shown capable of exhibiting 

proactive adjustments to the center of mass comparable to those of young adults in repeated 

exposure to slipping [27].  Anticipatory behavior has also been observed in tripping where 

differences in step width and foot clearance were found to be affected by being forewarned that a 

trip would occur [89].  It has also been reported that experience with a perturbation also 

improves proactive capabilities [35, 38, 41].  The strategies adopted by older adults in 

anticipation of a slip and with repeated exposure to slips has been described [27-29, 31-33, 39, 

43, 44].  However, to date, studies on tripping are limited in that they either involved only one 

exposure to a trip, tested only young adults or focused on recovery responses [9, 17, 20, 56, 89].  
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A better understanding of differences in postural adjustments adopted by young and older adults 

in anticipation of a tripping hazard is needed.   

 In summary, the goal of this study is to investigate the differences in proactive strategies 

adopted in anticipation of slips and trips when knowledge of the specific perturbation is 

provided.  Aging-related differences in these abilities will also be investigated.  To our 

knowledge no study exists that simultaneously investigates proactive postural adaptations to 

slipping and tripping on the same group of subjects inclusive of young and older adults.  

Changes in foot floor angle are a known anticipatory adjustment specific to slipping.  When 

knowledge is provided that a slip will occur or after individuals have experienced a slip, foot 

floor angle is typically reduced to decrease the risk of slipping in consequent trials [34, 35, 38, 

39].  In tripping, a known anticipatory adjustment involves toe clearance [18].  With knowledge 

that a trip will occur or after experiencing a trip, individuals have been shown to increase 

minimum toe clearance in efforts to reduce impact with the obstacle or to clear the obstacle with 

the toe [9, 56, 89-91].  Thus, in this study we will focus on foot-floor angle and toe clearance due 

to the correlations of these gait variables with the risk of slip/trip-initiated falls, respectively. 

4.3 METHODS 

4.3.1 Subjects, experimental equipment and design, protocol 

Sixteen younger (YA) (ages 21-35) and thirteen older (OA) adults (ages 65-75), screened for 

neurological and musculoskeletal abnormalities, were recruited for participation (see Table 4.1 

for subject characteristics).   
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Table 4.1  Subject characteristics and spatial-temporal values (mean ± standard deviation). 

 
 

Written informed consent was obtained prior to participation according to the University of 

Pittsburgh Institutional Review Board.  Exclusion criteria included a clinically significant 

neurological, musculoskeletal, cardiovascular and/or orthopedic disease and the presence of any 

difficulty that would impede normal walking or an ability to walk and stand independently.  

Additionally, older adults were screened for osteoporosis (T-score ≤ -2.5) to minimize the risk of 

testing those with osteoporosis.   

Participants were instrumented with reflective markers and walked across a vinyl tile 

walkway while whole-body motion and kinetic data were captured at 120 and 1080 Hz, 

respectively [39].  Subjects were equipped with a safety harness during all trials to prevent them 

from hitting the ground in the event that an irrecoverable loss of balance occurred.  All subjects 

wore the same tight-fitting outfit and shoes.  Next, subjects were allowed to practice walking 

prior to data collection and instructed to walk at a comfortable pace while looking straight ahead 

in a dimmed environment to reduce the possible detection of a contaminant placed on the floor in 

the slippery condition.   

The experimental design consisted of four blocks of trials (Table 4.2).  Block 1 was 

always presented first.  In Block 1, the baseline block, five unperturbed gait trials were collected.  

Young Old
(n =16; 9M,7F) (n =13; 8M,5F)

Age (yrs) 27 ± 5 70 ± 3
Height (cm) 175 ± 8 173 ± 9
Weight (kg) 72 ± 13 77 ± 11
Gait speed (m/s) 1.2 ± 0.2 1.1 ± 0.2
Cadence (steps/minute) 104 ± 11 106 ± 13

Variable
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Subjects were assured that no perturbation would occur during these trials.  The following two 

blocks of trials, Blocks 2 and 3, were presented in a random order.  

 

Table 4.2 Description of four trial blocks. 

 

 In these blocks, subjects were informed of the type of perturbation they would experience, slip 

or trip, however no knowledge of the exact timing of the perturbation was provided.  At the 

beginning of the block before any trials had taken place subjects were told the following script, 

“In the next set of trials, at some point you will experience a (slip/trip).”  In each of the 

perturbation blocks, slip block or trip block, 3 perturbation trials were randomly inserted into 5 

unperturbed gait trials.  In these blocks, an unperturbed walking trial was always the first trial in 

the block and at least one unperturbed walking trial separated perturbations. In the final block, 

Block 4 - the combo block, 3 slips and 3 trips were randomly inserted into a series of 10 

unperturbed walking trials.  In Block 4, subjects were not informed of the specific type of 

perturbation (combination of slips and trips) they would experience nor were they aware of the 

exact timing of the perturbations.  Therefore, in Block 4, subjects had no prior knowledge.  

Before all trials in Blocks 2, 3 and 4, subjects were instructed to turn and face the wall 1-2 

minutes while listening to loud music in the headphones and completing a word find puzzle.  

Block Prior Knowledge Perturbation Type 
(1)  5 unperturbed trials – Baseline Yes, subject was reassured that no 

perturbation would occur in the 
next set of trials 

None 

(2)  3 slips randomly inserted into a 
series of  5 unperturbed trials 
 

Yes, subject informed of the type 
of perturbation at the beginning of 
the block but not exact timing 

Slip, None 

(3)  3 trips randomly inserted into a 
series of  5 unperturbed trials 

Yes, subject informed of the type 
of perturbation at the beginning of 
the block but not exact timing 

Trip, None 

(4)  3 trips and 3 slips randomly 
inserted into a series of 10 
unperturbed trials 

No, subject was not informed of the 
specific type of perturbation 
(slips/trips were mixed) 

Slip, Trip, None 
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This was done to maintain uncertainty as to the timing of the perturbations by distracting 

subjects from the later application of contaminant/preparation for the trips. 

4.3.2 Perturbation paradigms 

Slips were induced with a glycerol solution (90% glycerol: 10% water) [39].  Additionally, 

contact paper was applied to the bottom of all shoes to make the floor more slippery.  Trips were 

induced by an in-house designed apparatus (Figure 4.1).  Detection of center of pressure in 

excess of 15 N on the forceplate immediately following right heel contact triggered activation of 

a solenoid driven obstacle system embedded in a wooden box on the floor adjacent to the force 

plate.  The pull solenoid released a caliper-eyebolt-spring mechanism that pushed out a 37¼” L x 

1¼” W x 3½” H trip slide approximately 90 ms after heel contact.  Eight foam covered 

plexiglass trip obstacle slides were hidden over a 60 cm distance and the appropriate slide based 

on location of the center of pressure shot out to catch the subject at midswing of the left foot.  

 

 

 

 

 
Figure 4.1 Tripping device (bottom side up (left) and solenoid-caliper-eyebolt-spring assembly (right). 
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4.3.3 Data analysis and statistics 

For each subject only the last baseline trial (Baseline), the walking trial immediately following 

the script (Knowledge) and the walking trial before the last perturbation (Experience) in each 

block were analyzed.  We focused on these trials specifically because of our research interests in 

(i) baseline gait patterns representing the subject’s natural walking, (ii) the impact of the warning 

script before any perturbations on gait adaptations and lastly (iii) gait adaptations that occur with 

experience with two known perturbations (in the slip and trip blocks) and with mixed 

perturbations (in the combo block).  As mentioned previously, dependent variables included 

common measures of the risk of slips and trips. More specifically, sagittal foot floor angle at heel 

contact was evaluated due to the established correlation of this variable with slips [38, 39] and 

minimum toe clearance for its relation to trips [18, 92-94].   

JMP 8 was used for all statistical analyses.  A mixed linear model was fit with foot floor 

angle or minimum toe clearance as the response variable; age group (YA/OA), condition 

(Baseline / Slip Knowledge / Slip Experience / Trip Knowledge / Trip Experience / Combo 

Knowledge / Combo Experience), interaction between these variables as fixed effects; and 

subject as a random effect to account for the same subject performing under multiple conditions.  

Appropriate contrasts were constructed for comparisons of interest (see Appendix A).  Statistical 

significance was set at α=.05. 
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4.4 RESULTS 

4.4.1 Slip block observations 

In the slip block, (Block 2 or 3, knowledge provided), slip risk was reduced compared to natural 

walking.  Foot floor angle was significantly reduced in both the knowledge and experience trials 

compared to the baseline trial (p < .01) for old adults.  Adaptations to foot floor angle were made 

and persisted throughout the block.  Old adults reduced foot floor angle by as much as 16º in the 

knowledge trial and reduced foot floor angle by 9º compared to baseline in the experience trial.  

Figure 4.2 shows the change in foot floor angle across conditions and between age groups.  

Baseline values of foot floor angle did not differ between age groups.  However, older adults had 

a significantly reduced foot floor angle in the slip knowledge condition than younger adults (p = 

.0001).  There was a significant difference in young and old adults’ adaptations with knowledge 

of the slip.  Specifically, young versus old difference in how foot floor adaptations changed with 

knowledge was -14º (p = .0004).   No differences existed between the groups in the slip 

experience condition (p = .4914) as both young and old continued to significantly modulate foot 

floor angle from the baseline and knowledge conditions to the slip experience conditions (p = 

.002; .0167 and p = .0018; .0266, respectively).  There was a significant difference in young and 

old adults’ adaptations from only knowledge to knowledge plus experience with the slip.  Young 

versus old difference in changes in foot floor angle from knowledge to knowledge plus 

experience was 13º (p = .0013).  Similar trends were not observed for toe clearance in the slip 

block.  Figure 4.3 highlights the changes in toe clearance across conditions and between age 

groups.  No significant differences in toe clearance were observed for any trials in the slip block. 
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Figure 4.2  Changes in foot floor angle across conditions is shown for young (solid) and old (striped) adults.  The asterisk indicates a significant difference 

between age groups (p < .05) in the slip knowledge, trip knowledge and trip experience conditions.  Standard error bars are presented. 
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Figure 4.3  Changes in minimum toe clearance across conditions is shown for young (solid) and old (striped) adults.  No significant differences existed between 
age groups within conditions.  Standard error bars are presented.
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4.4.2 Trip block observations 

In the trip block, (Block 2 or 3, knowledge provided), trip risk was also reduced compared to 

natural walking.  Initial changes in toe clearance, a decrease of 0.8 cm in the knowledge trial, did 

not differ from baseline.  However, in the experience trial, toe clearance increased for old and 

young adults 1.8 cm and 1.5 cm, respectively, compared to baseline and these changes were 

found to be significant (p = .059 and p = .013) (Figure 4.3).  This later increase in toe clearance 

in the trip experience condition was also significantly different from the knowledge trial as 

young adults increased toe clearance by 2.5 cm (p = .0004) and old adults 2.2 cm (p = .0048).  

No significant age group differences in toe clearance or age related changes in adaptations from 

knowledge to knowledge plus experience were observed.  In the trip block, after being warned 

that a trip would occur old adults significantly reduced foot floor angle 14º in the knowledge trial 

compared to baseline (p < .0001) (Figure 4.2).  Young adults showed a trend for significance and 

reduced foot floor angle 5º in the trip knowledge condition compared to baseline (p = .0585).  

Knowledge of the trip impacted young and old differently.  Young versus old difference in the 

impact of knowledge on foot floor angle was 9º (p = .0225).  After experiencing two trips and 

several unperturbed walking trials, foot floor angle in the trip experience condition returned to 

baseline values for both young and old adults.  Beneficial adaptations in toe clearance were made 

throughout the trials within the trip block while adaptations to foot floor angle did not persist. 



 

45 

4.4.3 Combo block observations 

In the combo block (Block 4, no knowledge provided), both slip and trip risks were reduced.  

Although no knowledge was provided at the beginning of the combo block, subjects began 

walking with a slightly reduced foot floor angle and a slightly increased toe clearance in the 

knowledge trial compared to baseline.  The magnitude of the combo knowledge foot floor angle 

was less than baseline values but still greater than the initial reductions in foot floor angle that 

had been observed in either the slip or trip blocks (Blocks 2-3) where knowledge of the 

perturbations had been provided (Figure 4.2).  Older adults’ foot floor angle was significantly 

increased 11º in the combo knowledge condition compared to the slip knowledge condition (p = 

.0003).  There was also a difference in how young and old adults changed their foot floor angle 

when uncertain of the nature of the perturbation.  Young versus old difference in change in foot 

floor angle when no knowledge was provided compared to when knowledge was provided was 

13º (p = .0012) in the slips and 8º (p = .0482) in the trips.  For toe clearance, it was not until the 

combo experience condition that a significant increase compared to baseline occurred in young 

adults (p = .0084).  Young adults increased toe clearance by 1.9 cm in the combo experience 

condition (Figure 4.3).  There was a significant difference in how no knowledge compared to 

knowledge affected adaptations.  Both young (p = .0097) and old (p = .0369) adults had a 

significantly greater minimum toe clearance in the combo knowledge condition compared to the 

trip knowledge condition.  With experience, minimum toe clearance also increased significantly 

compared to the trip knowledge condition and this was observed for young (p = .0003) and old 

adults (p = .0126).  

 When comparing the adaptations made across conditions, post hoc comparisons show 

that initial changes in foot floor angle did not differ between slips and trips, but slips and trips 
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did significantly differ from the knowledge trial of the combo block .  The achieved toe 

clearance in the combo block was significantly different from that of the experience condition of 

the slip block (p = .0149) in young adults, but found to be similar to the experience condition of 

the trip block for both young (.839) and old (.737). 

4.5 DISCUSSION 

The purpose of this study was to investigate the differences in proactive strategies adopted in 

anticipation of slips and trips when knowledge of the specific perturbation was provided.  We 

also sought to compare aging-related differences in the optimization of these anticipatory gait 

adjustments known to reduce falls precipitated by slips and trips.  Present results show that both 

young and older adults are able to reduce slip and trip risk with knowledge of and experience 

with the perturbations.  In both slips and trips, awareness of an upcoming perturbation alone was 

sufficient to induce proactive adaptations.   In addition, experience with the perturbation in the 

absence of knowledge regarding the nature of the perturbation to be encountered (Block 4) 

proved sufficient in enabling both groups to adopt optimal anticipatory strategies that reduced 

the risk of falling from a slip or a trip when either was randomly presented.  

One main finding of this study is proactive adaptations were found to be perturbation 

specific.  For example, when warned of slipping, significant adaptations were observed in foot 

floor angle only and when warned of tripping, significant adaptations persisted in toe clearance 

only.  However, when both slips and trips were presented without warning, significant 

adaptations in both foot floor angle and toe clearance were observed.  As in other studies, actual 

mechanisms of adaptation did not differ much between age groups with the exception that foot 
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floor angle was significantly reduced in older adults [58].  This is evidence of older adults’ 

likeliness to adopt a more cautious gait.  Our foot floor angle results agree with previous findings 

where foot floor angles at foot contact prior to the unexpected slip were reduced in remaining 

slip trials [34, 35, 38, 58].   

Results of this study imply that older adults are capable of adopting strategies (reduced 

foot floor angle at heel contact) known to reduce the risk of slipping when anticipating a slippery 

floor.  Other studies also reported similar findings [32, 34, 35, 38, 39, 58, 95].  In contrast, both 

older and younger adults lacked an immediate adaptation following the script in trip trials.  Upon 

receipt of knowledge that subjects would experience a trip in the next set of trials, subjects did 

not immediately adopt a more cautious walking adaptation inclusive of increased toe clearance.  

This may suggest a lack of internal, preprogrammed strategies to utilize in anticipation of a trip.  

Repeated exposures to trips have been studied to a lesser extent than slips.  Most studies 

investigating tripping have either only exposed subjects to one trip [9], studied only young adults 

[20, 49]or focused on the recovery responses and reactive mechanisms after tripping [14, 15, 17, 

51, 52, 96].  Although much information has been disseminated regarding differences in trip 

recovery responses between young and older adults, limited information is available regarding 

age-related differences in proactive adaptation differences during tripping.   

Another main finding of this study is knowledge of a known threat to balance is sufficient 

to activate the execution of proactive adaptations even when adults lack experience with the 

specific perturbation.  When subjects were warned that they would experience a slip or trip 

perturbation (Blocks 2 and 3), gait patterns immediately deviated from baseline levels.  

However, adaptations specific and beneficial to the perturbation were only observed in 

knowledge trials where subjects had prior experience with the perturbation, in the current study, 
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the slip block.  A limitation to the study is that subjects had previously experienced the slipping 

paradigm in a previous visit so even when only knowledge was provided; the subjects were not 

completely naïve as to the conditions of the perturbation.  Immediate responses observed in the 

slip and trip blocks were a result of knowledge whereas those in the combo block were 

adaptations that had been adopted due to prior experience in the current testing session.  In the 

combo block, adaptations specific to slipping and tripping were maintained because both 

perturbations were occurring in the block.  Although no knowledge was provided in this block it 

can be argued that after a subject had experienced one of each of the perturbations within the 

block naivety was gone and they were then anticipating both perturbations.  As subjects 

continued to apply these adaptations with no knowledge of the type of perturbation ahead it can 

be said that an optimal strategy inclusive of both increased toe clearance and reduced foot floor 

angle was adopted by both old and young adults to minimize destabilization caused by the 

perturbations.  These anticipatory strategies also increased the probability of successfully 

recovering balance in each type of perturbation.  Previous studies have shown subjects to behave 

differently after one exposure [34, 35, 38, 58].  Other studies found subjects to adapt with both 

experience and awareness of the perturbation [40, 41].  Our results support these findings as our 

subjects had knowledge and experience with both perturbations when the most optimal 

adaptations were observed.   

The process by which adaptations became perturbation specific was a unique observation.  

Adaptations immediately following the script, knowledge trials, were similar regardless of 

perturbation type.  However, as subjects gained experience with the specific perturbations, later 

responses, as represented by those in the experience responses, became perturbation specific.  

When subjects were warned that they would experience a trip, foot floor angle was also initially 
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reduced.  However, after experiencing two trips and several unperturbed walking trials, a key 

observation is that subjects did not continue to reduce foot floor angle.  In fact, foot floor angle 

returned to baseline values.  This suggests that subjects did not continue to adapt foot floor angle 

in the tripping block because it was not an adaptation beneficial to tripping.  With experience, the 

presence or absence of knowledge was no longer the driving force behind observed adaptations.  

This relates to other studies where subjects were similarly said to rely more on experience than 

knowledge [38, 40, 41].  This may suggest a tendency to initially execute all cautious strategies 

familiar to the individual when threatened of a balance-challenging environment, especially in 

older adults.  Experience with the perturbation may enable the discontinuation of adaptations not 

beneficial to the perturbation while beneficial adaptations are continuously adopted.  In this 

manner, the adaptations become curtailed to the specific type of perturbation as observed in the 

slip and trip blocks investigated in this study. 

 Studies investigating proactive strategies generated in anticipation of a threat to balance 

have described anticipatory postural adjustments that happen prior to the onset of a perturbation 

to reduce the destabilizing effects of the perturbation [28, 31-35, 38, 40, 41, 44, 46, 89].  The 

central nervous system seems capable of interpreting information about the expected 

environment and generating anticipatory adjustments to maintain postural control.  One highly 

supported mechanism of how the central nervous system achieves this is by its development of 

internal models.  If we accept that prior perturbation experience is more influential than 

knowledge or awareness alone, it may further support the existence of internal models in postural 

adaptations during gait as those that have been shown in arm movements and grip-force-load-

force coupling [97-99].  The neuroplastic capabilities of the CNS are believed to generate 

representations of the human body and the environment with which it interacts known as internal 
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models  [100].  In these internal models, feedforward control is used to generate adaptations 

reflecting demands of a postural task [101].  As interaction increases with greater exposure to 

environments, the neural representations evolve to reflect the continuous learning that takes 

place.  Kawato et al. hypothesized these internal models may play a part in generating 

anticipatory actions and later found fMRI evidence that the cerebellum acquires multiple, context 

specific internal models to adapt to different environmental situations [97, 102].  In addition, 

with adequate exposure to a robot generated perturbation force, unimpaired subjects were able to 

counteract the robot force during arm reaching movements [103, 104].  Similarly in the current 

study, with multiple exposures, subjects were able to adopt anticipatory postural adjustments that 

reduced their slip and trip related risk.  It is highly likely that multiple and repeated exposures to 

slipping and tripping perturbations also create a preprogrammed response that is retained and 

later called upon in similar situations of postural threat in efforts to maintain balance and not be 

as destabilized by external perturbations.  The existence of such a model would provide insight 

on the effectiveness of repeated (or multiple) exposure therapy as a means of fall prevention 

training. 

In conclusion, with an aging workforce, the probability of increased occupational slip and 

trip accidents are of growing concern.  This study has shown that knowledge alone can generate 

anticipatory strategies when forewarned of an upcoming perturbation.  Further, with multiple 

exposures to the perturbation, postural adaptations to reduce falls risk are continuously adopted.  

It has also been shown that both young and old adults are capable of generating beneficial 

adaptations with limited training and that older adults tend to adopt even more cautious strategies 

when they have had experience with the particular perturbation.  Old and young adults were able 

to have successful recovery outcomes when randomly presented with slips and trips based on 
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their ability to adopt an optimal proactive strategy that prepared them for either perturbation.  

Lastly, proactive postural adjustments were found to be perturbation specific.  With further 

research into the theory of repeated/multiple exposure training to foster the development of 

internal models along with the retention capabilities of such training, a feasible, cost-effective 

fall prevention tool could be on the horizon for implementation in occupational safety 

procedures. 
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5.0  MEASURES OF SEVERITY:  DOES KNOWLEDGE AND EXPERIENCE 

IMPROVE SLIP AND TRIP RECOVERY? 

5.1 ABSTRACT 

More than one in three older adults fall each year and fall related injuries in older adults are often 

treated medically with the direct costs totaling an estimated $19 billion dollars [7].  This study 

investigated how the severity of a trip changes with awareness of the environmental hazard 

(knowledge) and/or with prior exposure.  The impact of aging on this effect was also 

investigated.  Sixteen young and thirteen older adults participated.  Three blocks of gait 

perturbations were presented to each subject.  In the first two (a slip or trip block), subjects were 

exposed to either slip or trip perturbations randomly inserted into unperturbed walking trials.  At 

least one unperturbed walking trial separated all perturbation trials.  Knowledge regarding the 

type of perturbation (slip or trip) was provided to the subject at the beginning of the first two 

blocks, however timing of the perturbation was not provided.  In the third and final block, termed 

the “combo” block, subjects were not provided any information related to the perturbation type 

or the timing and a combination of slips and trips were randomly inserted into unperturbed 

walking trials.  Dependent variables reflecting the severity of the trip perturbation included 

sagittal and frontal planes trunk kinematics (excursion and angular velocity).  Overall, the results 

showed the destabilizing effects of the perturbations to diminish with prior exposure to trip 
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perturbations as both young and old adults were able to establish optimal postural responses to 

maintain balance even when uncertain about the nature of the balance perturbation. 

5.2 INTRODUCTION 

More than one in three older adults fall each year and fall related injuries in older adults are often 

treated medically with the direct costs totaling an estimated $19 billion dollars [7].  In addition to 

escalated economic costs, consequences of falls include fear of falling, decreased activity, 

functional deterioration, social isolation, depression, reduced quality of life and 

institutionalization [3].  Thus, there is an imperative need to develop intervention programs that 

reduce the occurrence of fall accidents.  To achieve this, it is first necessary to establish that 

postural control motor skills can be adapted and retained through training and prior experiences 

which will later serve as the foundation for fall intervention programs. 

 Normal walking necessitates the performance of complex processes involved in the 

initiation of movements and balance maintenance.  In these processes, the central nervous system 

(CNS) must routinely compensate for external perturbations that occur during gait to maintain 

balance.  Such compensation can take the form of feedforward or feedback control.  Feedback 

responses are quick, corrective responses generated immediately after a balance perturbation to 

re-establish balance and maintain upright posture while continuing the locomotor task [48, 105].  

On the other hand, feedforward, or proactive, responses precede the onset of a predictable 

perturbation and attempt to counteract the expected destabilizing effect of the perturbation [26, 

28].  Proactive postural adjustments, also called anticipatory strategies, generate flexible, motor 

skills that can adapt with training and prior experiences. 
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 CNS compensation during two major causes of falling, slips and trips, have been 

previously investigated.  Specifically, proactive strategies during repeated exposure to a 

perturbed sit-to-stand slipping paradigm found subjects began to adapt toward an optimal 

movement strategy that allowed balance loss to be avoided under perturbed and non-perturbed 

conditions [26, 28].  This and other studies also found young and older adults to be able to learn 

to avoid falling at similar rates [28, 38, 41].  In tripping, changes in spatial gait parameters were 

observed in young subjects when forewarned that a trip would occur [89].  When knowledge is 

provided regarding a particular perturbation, it is expected that proactive strategies in consequent 

trials will be observed.  It is also expected that such anticipatory behavior will improve 

perturbation performance and therefore increase the chances of recovery.   

 In a recent study, proactive adjustments during slipping and tripping were found to be 

perturbation specific [46].  Subjects were provided knowledge as to the type of perturbation they 

would experience.  In trials where they knew they would experience a slip, decreased foot floor 

angle was observed.  Likewise, in trials where it was known that a trip would occur, increases in 

toe clearance were observed during swing.  In a block that contained both slips and trips, both 

reduced foot floor angle and increased toe clearance were observed.  It was apparent that with 

knowledge and prior exposure to the perturbation, there was a modulation in these perturbation 

specific adaptations in attempts to reduce the destabilizing effects of the perturbations.  

However, it is currently unknown whether the presence of such proactive adaptations was 

actually effective in reducing balance perturbations when exposed to slip and trip hazards. 

 The purpose of this study was three-fold:  (1) to determine whether trip severity decreases 

with prior exposure; (2) to determine the effect of knowledge related to the nature of the 

perturbation (slip or trip) on the severity of such perturbation; and (3) to determine if increased 
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exposure helps reduce trip severity when knowledge related to the nature of the perturbation (slip 

or trip) is not available.  The presence of age-related differences in the aforementioned objectives 

was also investigated. 

5.3 METHODS 

Sixteen younger (YA) (ages 21-35) and thirteen older (OA) adults (ages 65-75), screened for 

neurological and musculoskeletal abnormalities, were recruited for participation (see Table 5.1 

for subject characteristics).  Written informed consent was obtained prior to participation 

according to the University of Pittsburgh Institutional Review Board.  Exclusion criteria included 

a clinically significant neurological, musculoskeletal, cardiovascular and/or orthopedic disease 

and the presence of any difficulty that would impede normal walking or an ability to walk and 

stand independently.  Additionally, older adults were screened for osteoporosis (T-score ≤ -2.5) 

to minimize the risk of bone fracture.   
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Table 5.1  Subject characteristics. 

 

5.3.1 Subjects, experimental equipment and design 

Participants were instrumented with reflective markers and walked across a vinyl tile walkway 

while whole-body motion and kinetic data were captured at 120 and 1080 Hz, respectively [39].  

Subjects were equipped with a safety harness during all trials to prevent them from hitting the 

ground in the event of an irrecoverable loss of balance.  All subjects wore the same tight-fitting 

outfit and shoes.  Next, subjects were allowed to practice walking prior to data collection and 

instructed to walk at a comfortable pace while looking straight ahead in a dimmed environment 

to reduce the possible detection of a contaminant placed on the floor in the slippery condition. 

 

 

 

 

 

 

 

 

Young Old
(n =16; 9M,7F) (n =13; 8M,5F)

Age (yrs) 27 ± 5 70 ± 3
Height (cm) 175 ± 8 173 ± 9
Weight (kg) 72 ± 13 77 ± 11
Gait speed (m/s) 1.2 ± 0.2 1.1 ± 0.2
Cadence (steps/minute) 104 ± 11 106 ± 13

Variable



 

57 

 

Table 5.2 Description of the four trial blocks. 

 

The experimental design consisted of four blocks of trials (Table 5.2).  Block 1 was 

always presented first.  In Block 1, the baseline block, five unperturbed gait trials were collected.  

Subjects were assured that no perturbation would occur during these trials.  The following two 

blocks of trials, Blocks 2 and 3, were presented in a random order.  In these blocks, subjects were 

informed of the type of perturbation they would experience, slip or trip, however no knowledge 

of the exact timing of the perturbation was provided.  At the beginning of the block before any 

trials had taken place subjects were told the following script, “In the next set of trials, at some 

point you will experience a (slip/trip).”  In each of the perturbation blocks, slip block or trip 

block, 3 perturbation trials were randomly inserted into 5 unperturbed gait trials.  In these blocks, 

an unperturbed walking trial was always the first trial in the block and at least one unperturbed 

walking trial separated perturbations.  In the final block, Block 4 - the combo block, 3 slips and 3 

trips were randomly inserted into a series of 10 unperturbed walking trials.  In Block 4, subjects 

were not informed of the specific type of perturbation (combination of slips and trips) they 

would experience nor were they informed of the exact timing of the perturbations.  Therefore, in 

Block 4, subjects had no prior knowledge.  Before all trials in Blocks 2, 3 and 4, subjects were 

Block Prior Knowledge Perturbation Type 
(1)  5 unperturbed trials – Baseline Yes, subject was reassured that no 

perturbation would occur in the 
next set of trials 

None 

(2)  3 slips randomly inserted into a 
series of  5 unperturbed trials 
 

Yes, subject informed of the type 
of perturbation at the beginning of 
the block but not exact timing 

Slip, None 

(3)  3 trips randomly inserted into a 
series of  5 unperturbed trials 

Yes, subject informed of the type 
of perturbation at the beginning of 
the block but not exact timing 

Trip, None 

(4)  3 trips and 3 slips randomly 
inserted into a series of 10 
unperturbed trials 

No, subject was not informed of the 
specific type of perturbation 
(slips/trips were mixed) 

Slip, Trip, None 
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instructed to turn and face the wall 1-2 minutes while listening to loud music in the headphones 

and completing a word find puzzle.  This was done to maintain uncertainty as to the timing of the 

perturbations by distracting subjects from the later application of contaminant/preparation for the 

trips. 

5.3.2 Perturbation paradigms 

Slips were induced with a glycerol solution (90% glycerol: 10% water) [39].  Additionally, 

contact paper was applied to the bottom of all shoes to make the floor more slippery.  Trips were 

induced by an in-house designed apparatus.  Detection of center of pressure in excess of 15 N on 

the forceplate immediately following right heel contact triggered activation of a solenoid driven 

obstacle system embedded in a wooden box on the floor adjacent to the force plate.  The pull 

solenoid released a caliper-eyebolt-spring mechanism that pushed out a 37¼” L x 1¼” W x 3½” 

H trip slide approximately 90 ms after heel contact.  Eight foam-covered plexiglass trip obstacle 

slides were hidden over a 60 cm distance and the appropriate slide based on location of the 

center of pressure shot out to catch the subject at midswing of the left foot.  

5.3.3 Data analysis and statistics 

For each subject, only the first and last perturbation in the trip block and the first and last trip 

perturbation in the combo block were analyzed.  The trials to be analyzed are described in Figure 

5.1 and categorized by the knowledge and prior exposure conditions.  Dependent variables 

included measures trip severity.  Trunk kinematics play a critical role in the recovery outcome of 

trip perturbations and were the focal point of interest to gauge changes in severity of the 
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perturbation with multiple exposures.  Sagittal and frontal plane trunk kinematics were analyzed 

for the trips.  Specifically, maximum instantaneous trunk flexion angle in the sagittal plane and 

maximum instantaneous angular deviation towards the ipsilateral side of the perturbed foot in the 

frontal plane were investigated.  The time window was taken from obstacle impact to landing of 

the recovery foot.  For a stable estimate of the angular velocities, mean trunk flexion and 

ipsilateral deviation velocities were also evaluated over the same time window.  Trunk angle was 

defined as the angle between the trunk segment (midpoint of the shoulders and the posterior-

superior iliac spine) and vertical.  Trunk angular velocity was the time derivative of trunk angle. 

JMP 8 was used for all statistical analyses.  A mixed linear model was fit with each 

dependent variable (trunk flexion angle, trunk flexion velocity, angular ipsilateral deviation, 

angular ipsilateral deviation velocity); age group (YA/OA), condition (first trip, last trip, first 

combo trip, last combo trip), interactions between them as fixed effects; and subject as a random 

effect to account for the same subject performing under multiple conditions.  Appropriate 

contrasts were constructed for comparisons of interest.  Statistical significance was set at α=.05. 
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Figure 5.1 Test matrix highlighting the planned comparisons (A-D) used to identify changes in perturbation 
severity.  Figure adapted from [41]. 

 

5.4 RESULTS 

Changes in measures of trip severity were influenced by prior exposure (3 tripping 

perturbations), knowledge of the nature of the perturbation and increased exposure (6 tripping 

perturbations).  Prior exposure with the tripping perturbation affected trunk flexion angle at 
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recovery foot contact.  The greatest trunk flexion angles of 43º and 35º at recovery foot contact 

for young and old adults, respectively, were observed in the first trip condition of the trip block 

when only knowledge that subjects would experience a trip in the following set of trials had been 

provided.  Young adults decreased trunk flexion angle at recovery foot contact 26º on their third 

exposure to a trip in the last trip of the trip block (p = .0001) compared to a reduction of only 6º 

in older adults.  Figure 5.2 shows a typical unexpected trip at various time points. Figure 5.3 

shows trunk flexion angle at recovery foot contact across tripping conditions for both young and 

old adults.   

 

 

 

Figure 5.2 Unexpected trip pictured for one subject at a) right heel contact b) just before impact  
with the obstacle c) immediately after impact and d) landing of the recovery foot.  
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Figure 5.3 Trunk flexion angle at recovery foot contact during tripping is shown for young (solid) and older adults 
(striped) in the first trip of the trip block (knowledge provided), last trip of the trip block (knowledge + prior 
exposure – 3 perturbation exposures), first trip of the combo block (no knowledge of the nature of the perturbation + 
prior exposure – 4 perturbation exposures) and last trip of the combo block (no knowledge of the nature of the 
perturbation + increased exposure – 6 perturbation exposures).  Young and older adults significantly differed in how 
prior exposure affected trunk flexion angle (p = .0278). 

 

 

In addition, age group differences in how prior exposure affected trip perturbation recovery were 

also observed.  Young versus old differences in how prior exposure impacted trunk flexion angle 

at recovery foot contact was 21º (p = .0278).  Young adults were also able to significantly reduce 

trunk flexion angle 23º when no knowledge regarding the nature of the perturbation was 

provided in the first combo trip compared to the first trip of the trip block (p = .0004).   Although 

older adults reduced their trunk flexion angle in the first trip of the combo block compared to the 

first trip of the trip block, this reduction of 13º only showed a trend for significance (p = .0565).  
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Increased exposure to the tripping perturbation and therefore more experience proved to 

significantly improve trunk flexion angle for both age groups and no differences were observed 

between age groups.  From the first trip of the trip block to the last trip of the combo block 

young adults reduced trunk flexion angle 29º (p < .0001) and old adults 18º (p = .0087).  Figure 

5.4 shows a typical young subject improving in the ability to arrest trunk flexion with increased 

exposure.  The top figure demonstrates the severity of the perturbation in the first trip and the 

bottom shows how the subject has reduced trunk flexion by the last combo trip. 
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Figure 5.4 Sagittal views of the marker position data for a typical participant from the instant just before trip 
obstacle impact to just after recovery foot landing for (a) the first “unexpected” trip of the trip block and (b) the last 
trip of the combo block.  Dots from top to bottom represent the acromion, posterior superior iliac spine, greater 
trochanter, lateral epicondyle, malleolous, heel and toe of the left side, respectively. 
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Mean trunk flexion velocity improved with prior exposure in young adults.  Figure 5.5 

shows mean trunk flexion velocity across conditions for young and old.  Young adults reduced 

mean trunk flexion velocity 38 deg/s with prior exposure compared to the first trip in the trip 

block (p = .0023).  When no knowledge regarding the nature of the perturbation was provided, 

both young and old adults were able to successfully reduce mean trunk flexion velocity.  Young 

adults reduced mean trunk flexion velocity 46 deg/s (p = .0002) and old adults 27 deg/s (p = 

.0401) in the first trip of the combo block.  When comparing the first trip of the trip block to the 

last trip of the combo block both young and old adults continued to significantly reduce mean 

trunk flexion velocity where young adults decreased 54 deg/s (p < .0001) and old adults 36 deg/s 

(p = .0071).  In addition, old adults showed a significant difference in mean trunk flexion 

velocity with increased exposure.  Specifically, old adults reduced mean trunk flexion velocity 

26 deg/s from the last trip condition of the trip block to the last trip condition of the combo 

block.   
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Figure 5.5 Mean trunk flexion velocity during tripping is shown for young (solid) and older adults (striped) in the first 

trip of the trip block (knowledge provided), last trip of the trip block (knowledge + prior exposure – 3 perturbation 

exposures), first trip of the combo block (no knowledge of the nature of the perturbation + prior exposure – 4 perturbation 

exposures) and last trip of the combo block (no knowledge of the nature of the perturbation + increased exposure – 6 

perturbation exposures).  Both young and older adults were able to use increased exposure to the perturbation to 

significantly reduce mean trunk flexion velocity (p < .0001 and p = .0071, respectively). 
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Prior exposure also improved perturbation response in maximum trunk deviation 

ipsilateral to the tripped foot side for both young and old adults.  Figure 5.6 shows maximum 

trunk deviation in the frontal plane across tripping conditions for both age groups.  Both young 

and older adults experienced their greatest deviation in the first trip condition.  Young adults had 

a more negative maximum deviation which indicates a greater perturbation of the trunk towards 

the tripped foot (left) side (-ZY plane with respect to vertical).  Absolute values were taken for 

graphical purposes only.  Young and old adults significantly decreased maximum trunk deviation 

in the frontal plane, 11º (p < .0001) and 5º (p = .0401), respectively, in the last trip of the trip 

block.  There was no age group difference in how prior exposure impacted maximum ipsilateral 

trunk deviation.  When no knowledge regarding the nature of the perturbation was provided, both 

young and older adults significantly decreased maximum ipsilateral trunk deviation.   Young 

adults decreased 9º (p = .0002) and old adults 6º (p = .0123) compared to the first trip condition 

where knowledge was provided.  Increased exposure to the tripping perturbation only 

significantly improved maximum ipsilateral trunk deviation for young adults that increased 13º 

(p < .0001) by the last trip of the combo block.   
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Figure 5.6 Maximum trunk deviation in the frontal plane during tripping is shown for young (solid) and older adults 

(striped) in the first trip of the trip block (knowledge provided), last trip of the trip block (knowledge + prior 

exposure – 3 perturbation exposures), first trip of the combo block (no knowledge of the nature of the perturbation + 

prior exposure – 4 perturbation exposures) and last trip of the combo block (no knowledge of the nature of the 

perturbation + increased exposure – 6 perturbation exposures).  Positive values indicate deviation ipsilateral to 

tripped foot side (left) as absolute values of the trunk deviation were plotted for representation.  Young and older 

adults significantly differed in how increased exposure to the perturbation affected maximum ipsilateral trunk 

deviation (p = .0073).   

 

 

Contrast comparisons revealed a significant difference in the last combo trip condition between 

young and old adults.  This significant improvement observed only in young adults resulted in an 

age group difference in how increased exposure affected postural responses.  Maximum 

ipsilateral trunk deviation was not different in the last trip of the combo block compared to the 

first trip of the trip block for older adults (p = .1485).  Young adults reduced maximum 

ipsilateral trunk deviation significantly from the first trip, -16.6º, to the last combo trip condition, 

-4.2º, compared to older adults’ 10º in the last trip of the combo block which was not different 

from the first trip of the trip block -13.6º (p = .1485).  Young versus old difference in how 
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increased exposure affected maximum ipsilateral trunk deviation was -9º (p = .0073).  No other 

trip severity measures differed significantly between age groups or conditions. 

5.5 DISCUSSION 

This study sought to examine whether multiple exposures to perturbations improved perturbation 

postural response performance.  Specifically, we sought to determine whether differences in 

knowledge and prior exposure conditions reduced perturbation severity during trips in young and 

older adults.  Overall, the results showed the destabilizing effects of the perturbations to diminish 

with exposures as both young and old adults were able to establish optimal postural responses to 

maintain balance even when uncertain about the nature of the balance perturbation. 

Trunk kinematics play a critical role in the recovery outcome of both slip and trip 

perturbations and were the focal point of interest to gauge changes in severity of the perturbation 

with multiple exposures.  Based on the nature of perturbations, it is likely that the first encounter 

with the perturbation will likely be the most severe perturbation as it is the most unexpected or 

naïve response.  The more severe the perturbation is, the greater the destabilizing effect of the 

perturbation.  Once a perturbation becomes predictable, proactive adaptations are often adopted 

preceding the perturbation onset to minimize the effect of the perturbation.  Also, with exposure 

to the perturbation knowledge regarding the conditions of the perturbation is gathered which 

further improve a person’s proactive adaptation generating capabilities as well as feedback 

responses.  The maintenance of dynamic stability during slips involves minimizing a backward 

loss of balance whereas in trips the forward rotation of the trunk must be arrested.  Grabiner et al. 

have suggested that avoiding a fall subsequent to a large postural disturbance that causes 
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posteriorly-directed motion of the body is more challenging than disturbances causing anteriorly- 

and laterally-directed motion, especially in older adults.  Therefore, there is inherent direction-

related specificity in the recovery responses to these perturbations [106]. 

Trips and slips activate different trunk postural responses.  In trips, the momentum of the 

perturbation rotates the trunk forward often beyond the base of support.  For this reason, trunk 

flexion angle was one measure selected to represent severity of the trip perturbation.  More 

severe trips result in larger trunk flexion angles in the sagittal plane with respect to vertical and 

often an inability to arrest this rotation results in a forward fall.  As subjects gained experience 

with the perturbation, it was expected that trunk flexion angle would decrease as they would be 

less perturbed by the tripping perturbation.  Another key finding of this study was that older 

adults had greater difficulty in arresting their forward momentum after a trip.  With experience 

older adults still had not attained optimal trunk control.  In fact, a significant reduction in trunk 

flexion angle did not occur for older adults until the last trip in the combo block after 

experiencing six trip perturbations.  The same trends were observed for mean trunk flexion 

velocity.  With increased exposure to the tripping perturbation, mean trunk flexion velocity 

continued to decrease for both age groups. 

Both young and old adults continued to improve trip perturbation recovery with each 

exposure.  Perhaps this suggests that with each trip exposure, subjects were training a response 

that improved recovery and would eventually reach an optimal recovery strategy beyond which 

significant improvement would not be possible.  This may show that a large number of 

perturbation exposures are needed in trips to fully optimize postural responses.  This differs from 

our results in slipping where prior exposure and increased exposure did not significantly improve 

postural response.  As subjects had no past tripping experience an ideal follow-up study would 
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investigate knowledge trips in the same group of participants to determine whether optimal 

retention of postural responses was apparent by the limitations in postural response 

improvement.  

An interesting finding was in the trip postural response in the frontal plane.  Deviation in 

the frontal plane has been used to differentiate faller from non-fallers as well as the probability of 

falling to the side [107].  Therefore, frontal plane stability has been shown to be even more 

significant in older adults.  However, in our findings, frontal plane stability of old adults was 

comparable to young adults.  In fact, old adults were able to decrease maximum trunk deviation 

in the frontal plane with minimal exposure.  The exception was in the last trip of the combo 

block.  In the last trip of the combo block old adults exhibited maximum ipsilateral trunk 

deviation similar to initial trip magnitudes.  The lack of similar destabilization in the sagittal 

plane in the last trip of the combo block shows that old adults were still improving trip postural 

responses.  However, this may suggest that the maintenance of sagittal plane stability is 

prioritized in older adults especially when the two types of perturbations (slips and trips) are 

randomly presented.  The particular trial where this is observed represents the greatest level of 

exposure to trips perturbation of all tested conditions.  A limitation is that due to the nature of the 

study the true causation of this cannot be isolated.  However, it is possible that this difference 

can be attributed to the fact that older people were less able to respond after having experienced 

such a large number of mixed perturbations.   

One main finding of this study is no knowledge regarding the nature of the perturbation 

did not affect older adults during tripping.  However, in a separate analysis of the slip trials 

collected in this same protocol (unpublished data), older adults were affected when no 

knowledge regarding the nature of the perturbation was provided.  Older adults experienced their 
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most severe slip, as determined by their greatest level of perturbation, in the first slip of the 

combo block where no knowledge of the perturbation had been provided.  This shows that prior 

exposure with the perturbation in the absence of knowledge was not sufficient in controlling the 

trunk to be less perturbed.  At the first slip of the combo block, old adults had adequate exposure 

to and experience with the perturbation and had been less perturbed in previous trials.  This may 

suggest that older adults were initially more perturbed in the uncertain condition because they 

were not explicitly told there would be a perturbation in the following set of trials.  These results 

agree with a previous study that found young adults to have a more cautious gait encountering a 

slippery perturbation when they had both awareness and experience with the perturbation [41].  

The fact that old adults had been less perturbed when knowledge had been provided and did not 

exhibit this ability in the absence of knowledge shows the importance, and perhaps reliance, of 

older adults on awareness to achieve optimal recovery performance as experience was present in 

both conditions and in the uncertain slip subjects actually had more experience.  The fact that 

this was not observed in trips is a promising result.  It is likely that since subjects were 

experiencing trips for the first time, the amount of exposures necessary to develop an internal 

representation had not yet been achieved.  In the absence of such a motor program, it is likely 

that the CNS continues to expect the perturbation and therefore whether knowledge was 

provided or not, subjects continued to improve proactive and reactive responses.  However, once 

an internal representation has been created through training, such as the previous repeated slip 

training that subjects experienced in a prior session, it is likely that the CNS turns the program 

off in the absence of external cues or explicit instructions which would enable explain a 

difference in postural response when there was no knowledge of the perturbation. 
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With the past slipping experience, a repeated exposure paradigm, it is possible that 

subjects developed an internal representation of a motor response specific to improve the 

chances of recovery upon slipping.  However, based on the results of our study, it remains 

unknown if such an internal representation exists, is it only activated with some degree of 

expectance of the particular perturbation.  Even though knowledge was provided in the slip 

block, there remained some degree of uncertainty as to the actual timing of the perturbation and 

how many perturbations would occur.  It seems that knowledge in general makes a substantial 

difference in the activation of any existing models.  Although there was still no knowledge 

provided in the last slip of the combo block, the first combo slip experience may have been 

enough to anticipate more perturbations activating proactive adaptations and turning on the 

motor command for slipping both of which would result in less destabilization by the 

perturbation and an enhanced recovery performance.  In a previous study, these same older 

adults were shown to be capable of generating proactive adaptations in foot floor angle with 

experience with the perturbation in the absence of knowledge.  This may show that after 

exposure to a perturbation older adults walk with a cautious gait, aftereffect of the perturbation 

whether it is present or not [33].  However, these proactive adaptations may be programmed 

automatically whereas the feedback responses needed for recovery are activated only in the 

presence of the perturbation or when the perturbation is predictable.   

Increased challenge of task-specific training has been shown to improve motor learning 

capabilities.  Repeated exposure to the same perturbation can serve as task-specific training 

especially in cases where the perturbations resemble real-life perturbations.  It can be suggested 

that the random presentation of either a slip or trip with no knowledge of the nature, timing or 

number of exposures increased the challenge of the perturbations in this study.  A further 
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investigation involving how the sequence of perturbations influences the adaptations and 

recovery kinematics of older adults is necessary and will be done in a subsequent analysis.  This 

would enhance our understanding of the paradigm complexity and how it influences the 

biomechanical modulation of gait during complex locomotor tasks in the older population 

compared to younger adults.  The structure of this protocol may also yield insight into the 

prioritization or retention of motor programs in older adults.  As the combo block was mixed 

with slips and trips, it is possible that subjects performed better in the perturbation they 

experienced first as this would be the perturbation they continued to anticipate.  We observed 

visually during testing sessions that for both age groups, but in particular older adults, when first 

presented with the other perturbation type in the combo block, for some it was equally if not 

more unexpected than the first presentation of that particular perturbation.  It is evident from 

previous studies that older adults can adopt proactive adaptations to slipping and tripping, foot 

floor angle and an increase in minimum toe clearance, to anticipate a challenge to balance.  

However, more research is needed to further understand older adult recovery capabilities when 

knowledge is not provided and more than one specific gait task is explored to better characterize 

kinematic and kinetic variables that could possibly identify the existence of overlap in responses 

to slips and trips.  Identification of such overlap could serve as the foundational components of a 

task-specific training tool that capable of improving slip and trip recovery.   

To our knowledge, no study has simultaneously investigated two perturbations, slips and 

trips, occurring during forward directed locomotion on the same group of subjects inclusive of 

young and old adults.  Therefore, this study is novel in that it enabled the observation of effects 

of uncertainty and experience on slip and trip recovery responses in the same group of subjects.  

These perturbations have been investigated individually on young and old adults, but often the 
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differences in paradigm and subject populations make it difficult to interpret how applicable 

results will be in different scenarios.  The ability to observe changes in behavior across 

conditions specifically in old adults provides insight for more specific questions for future 

research.  Overall, this study showed that the mechanisms by which uncertainty and increased 

experience affect young and old adults with slip and trip perturbations differs.  However, at 

recovery in the last perturbation trials generally resulted in improved recovery outcomes for both 

young and old adults. 
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6.0  DISCUSSION AND FUTURE WORK 

6.1 ADAPTIVE POSTURAL STRATEGIES IN YOUNG AND OLDER ADULTS 

In just 40 years, the population of older adults in America alone is expected to increase by more 

than 50 million [8].  Falls and fall-related injuries are the origin of many adverse outcomes 

affecting socialization, mental and physical health and related health care costs.  With an aging 

workforce, balance challenging environments encountered in the workplace pose an even greater 

threat and therefore an increased concern for falls in the elderly.   

 This dissertation was focused on understanding the proactive adaptations adopted in 

repeated exposures to slips resembling real-life during forward walking and backward walking as 

well as multiple exposures to trips while walking forward.  As proactive postural adjustments are 

known to be a direct influence in the generation of adequate feedback responses and improved 

recovery, this work supported efforts to identify beneficial tools for integration into a fall 

intervention program.   The insight from this study can inform future intervention approaches in 

the development of fall intervention and rehabilitation regimens that focus on a motor learning 

approach to help older adults reduce the incidence of falls in a cost-effective, easily implemented 

fashion.  However, the techniques presented in this work have only been tested in those that are 

not at greatest risk for falling.  The relation of the test findings to falling has not been 

established.  Therefore, older adults at greatest risk for falling, including frail and mobility 
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impaired individuals may not respond similarly or may even be at risk for injury from such an 

intervention.  Further research must be done to draw further conclusions about the effectiveness 

of repeated exposures therapy in populations resembling those at greatest risk. 

6.2 SIGNIFICANT FINDINGS 

This dissertation aimed to provide evidence that a systems model theory based approach to motor 

learning, repeated or multiple exposures to perturbations, can potentially serve as an effective 

tool in the development of fall intervention programs designed to reduce the incidence of falls.   

 In chapter 3.0, repeated exposure to slips while walking forward were investigated and 

compared between young and older adults.  A highly preprogrammed activity, walking forward, 

was also compared to a novel gait activity, backward walking, and aging effects were also 

investigated.  Based on knowledge that both gait tasks utilize the same central pattern generator, 

observed differences in adaptability would be said to be independent of neural limitations.  

Therefore, the findings of this study suggested the CNS’ ability to generate proactive postural 

adjustments to be dependent upon the nature of the task being performed.  The CNS was able to 

make internal representations to a novel task for both young and older adults.   

After investigating whether a novel task with common neural circuitry to the familiar task 

impacted the ability to adapt with repeated exposures, it was then of interest to determine the 

effect of different types of perturbations.  Proactive adaptations adopted in anticipation of slips 

and trips were analyzed in Chapter 4.  In two blocks, the slip and trip blocks, knowledge was 

provided.  However, it was also of interest to observe the adaptations that occurred when the 

nature of the perturbation was uncertain, i.e. no knowledge was provided.  In all conditions 
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subjects gained experience with increased exposure and the effect of experience was also 

considered.  Aging-related differences in the optimization of anticipatory gait adjustments were 

also compared.  The most important finding of this component of the study was that proactive 

adaptations were found to be perturbation specific.  This was evident by a modulation in 

adaptations known to benefit recovery.  Knowledge of a known threat to balance was also 

sufficient to activate the execution of proactive adaptation even when adults lacked experience 

with the perturbation.  However, as the knowledge condition trials were the first trials following 

the script, no experience with the perturbation had yet been obtained.  Adults were capable of 

adopting a strategy known to reduce the risk of slipping when anticipating a slippery floor, but 

no such ability to adopt a strategy reducing trip risk was achievable with only knowledge and 

anticipation of being tripped.  This is a highly significant observation and directly relates to the 

initial component of the study.  In the first gait testing session, subjects experienced repeated 

exposure to forward slips.  After a period of at least 2 weeks but not exceeding 2 months, 

subjects returned for the second gait testing session where they experienced slips and trips.  At 

this point subjects had prior experience with the forward slips, but no prior experience with the 

tripping perturbation.  As subjects were able to immediately adopt appropriate proactive 

strategies when warned of slipping, this may suggest and provide evidence that an internal 

representation of slipping was formed and retained over the elapsed time window.  This study 

focused only on foot angle with regard to slipping.  In a future investigation it would be wise to 

focus on observed proactive adaptations in other kinematic variables to determine the 

similarities, if present, between knowledge trial (first slip gait session 2) and RS5 of the forward 

slip trials(last forward slip gait session 1) responses.  If this trend was upheld in other variables it 

would provide further support to say an internal model for slipping was created from repeated 
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exposure to forward slipping in young and older adults while also providing some evidence of 

capabilities for retention.  Other studies have marked 1-month retest sessions as significant 

retention landmarks so this could potentially have therapeutic implications as well.  Such 

information would be the strongest support of internal models in postural adaptations yielding 

insight on the effectiveness of the systems model theory based approach to fall prevention 

training. 

As proactive postural adjustments reduce the reliance on feedback responses for 

successful recovery outcomes, it was the goal of Chapter 5 to determine if recovery outcomes 

improved.  This was measured by reductions in perturbation severity.  Although recovery from 

slip and trip perturbations requires different postural responses, both involve control of the trunk 

in maintaining balance.  For this reason, measures of instantaneous trunk angle and angular 

velocity were evaluated in the sagittal and frontal planes for both trips and slips.  Destabilizing 

effects of the perturbations diminished with exposures and both young and older adults were able 

to establish optimal recovery responses to maintain balance even when different challenges were 

presented without knowledge.  One significant finding from this study, however, was that when 

the nature of the perturbation was uncertain and subjects were not explicitly told they would 

experience a perturbation, older adults experienced a more severe slip.  This is an important 

observation because older adults have been shown to exhibit a waning effect in responses when 

not expecting the perturbation.  However, immediately in the next slip trial under the same 

conditions, responses improved to previous levels.  Although we have evidence that an internal 

representation for forward walking was formed, this may suggest that for older adults it is only 

activated with some degree of expectance of the particular perturbation (i.e., an explicit script or 

current slip experience is enough to anticipate more perturbations and the increase the level of 
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attention/awareness in the trial immediately following a perturbation).  As evidence is acquired 

for the existence of internal models being formed perhaps this study finding is a very preliminary 

indication that such motor commands have an on/off switch that may be associated with age. 

6.3 FUTURE RESEARCH DIRECTION 

The results of this research open the door to the continued research of the systems model theory 

based approach to increase learning to avoid falls through repeated and multiple exposure 

training.  Although some differences in mechanisms of change in adaptations were age-related, 

this dissertation only tested 13 older adults ages 65-75 all of whom were robust.  Even though 

these adults fall into the range where a concentrated focus on falls has been stressed in the 

research, such older adults willing to come into the laboratory to be slipped and tripped multiple 

times most likely do not resemble the population at greatest risk for falls, recurrent falls and 

those most likely to show large differences in adaptation capabilities compared to healthy young 

adults.  Another limitation to the current study was the random trial sequence in the combo block 

(slips and trips) for each subject.  Trial sequences were generated using a Matlab code and so 

although every subject experienced the same number of total perturbations, the order was 

random for each.  Without further investigation the random presentation of slips and trips in our 

combo block makes it difficult to interpret findings related to how the presence of two different 

perturbations affects the optimization of proactive and reactive responses in young and older 

adults.  The work of this dissertation was but a poke at the potential findings of the current 

dataset.  Several future analyses remain to be performed.   
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Short term research goals include: 

 

1.  The investigation of retention utilizing the investigation of the first unexpected slip 

 trial (first slip of the first gait testing session) compared to the first slip trial of the 

 second gait testing session. 

2.  To investigate the differences in upper extremity contributions to perturbation 

 recovery between slips and trips and to determine whether aging differences exist. 

3. To investigate and compare lower extremity muscular anticipation between slips            

 and trips as well as aging related differences. 

4.  To investigate and compare lower extremity muscular anticipation between no 

 knowledge (unexpected), knowledge (first repeated slip) and knowledge (first 

 perturbation of retest/2nd gait testing session) and aging related differences. 

5.  To investigate the effects of trial sequence in the combo block by grouping subjects 

 with matching trial sequences and running between subject comparisons to make 

 general pre- and post-perturbation kinematic observations. 

6.  To investigate the effects of trial sequence in the combo block by analyzing the first 

 perturbation of the second perturbation type following the first presented perturbation 

 in the block.  For example, given the sequences below: 

  A) S W S W T W S W T W T 

  B) T W T W T W S W S W S 

  C) T W S W S W T W S W T 

 The highlighted trials in A - C would be compared to the first perturbation of that type 

 in the knowledge (slip/trip) block. 



 

82 

7.  To compare the first unexpected slip to the first slip of the combo block and the first 

 slip following a trip in the combo block (when applicable). 

8.  To investigate COM state adaptations and COM control after perturbations in the mixed 

 perturbation block. 

 

 These investigations will foster a greater understanding of the retention capabilities of 

repeated exposure to forward walking slips using a slippery floor paradigm as a training tool.  

Also, the muscle onsets and latencies will enable determination of anticipatory muscular 

contributions common to both slipping and tripping.  Such contributing muscles could be 

targeted in a training program to be combined with task specific training.  Inspection of the effect 

of trial sequence on observed adaptations and reactions will shed light on the prioritization of 

tasks.  As an individual’s expectation of an upcoming event has been shown to be dependent 

upon their most recent experience, such knowledge would better explain how subjects can 

readily transition between tasks in the case where the lack of expectation for a particular 

perturbation destabilizes them comparably or worse to a knowledge perturbation where the exact 

timing is uncertain.  Objective 7 would yield insight as to the presence of internal representations 

developed with training and experience and how they are retained in the absence of knowledge 

and in the presence of another type of perturbation.  Each of these conditions is still unexpected 

as the subject has no knowledge.  However, in the first slip of the combo block the subject is 

either not expecting any perturbation or is expecting a trip because they have already 

experienced a trip.  The same is expected in the first slip following a trip because the subject may 

then continue to expect a trip.  In that case the subject may be confused and choose to adopt an 

optimal anticipatory behavior not knowing which perturbation to expect and therefore having to 
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prepare for either.  Elucidation of an optimal whole-body proactive strategy that fosters 

successful outcomes in the face of either perturbation would be extremely beneficial to the 

advancement of training tools for intervention purposes.  In addition, it is hopeful that in 

subsequent biomechanical analyses experimental data from the current work can be used to drive 

model simulations exploring slipping and tripping on the same subject in efforts to generate a set 

of parameters common to an optimized outcome in both perturbations.  With the establishment 

of such parameters simulation models could be manipulated to determine overlapping regions of 

stability and balance thresholds considerate of both perturbations.  Weight and gender are also 

covariates of interest for future study, especially with regard to trips. 

 Long-term extensions of the current work expand into further areas and become a bit 

more integrating of the neuroscience, electrical engineering and biomechanics disciplines.  In 

order to ever have an accurate assessment of what the CNS is truly doing in these situations, both 

the brain and postural mechanisms have to be evaluated and measured simultaneously.  A future 

study conducting repeated exposure perturbation training while also recording 

electroencephalogram (EEG) or quantitative electroencephalogram (QEEG) would be a valuable 

tool in drawing direct CNS conclusions on the observed biomechanic adaptations.   As brain 

mapping measures electrical activity of the brain, such brainwave signatures may provide insight 

as to how activity changes once the task has been “programmed.”  A limitation to this proposed 

inspection is that EEG/QEEG requires subjects to be very still while wearing the silicone cap.  

With an interdisciplinary approach, it is quite possible that researchers could come together to 

formulate a protocol capable of addressing similar questions despite the inherent limitations.  

The results of such a study would be a major link in the biomechanical and neuroscience data 

and advancement for clinically supported validation of repeated exposure training.   
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 As the target goal of all falls research is to reduce the incidence of falls in older adults, 

research would most benefit from conducting studies on a population most resembling those at 

greatest risk.  This, however, has been a problem and remains a problem for many researchers as 

the identification of subjects in that population willing to volunteer and fulfilling of all of the 

inclusion/exclusion criteria mandated by the Institutional Review Boards across the world to 

ensure human subject safety is an arduous task.  A future study (similar in aims to the current 

work) investigating slips and trips on a pool of healthy older subjects split into a control group 

and a group made to look “unhealthy” would be of interest and merit.  Removing a sensory 

system (visual, proprioceptive or vestibular), inducing extreme fatigue before perturbation 

presentation, having subjects perform a dual task while walking or taping down the arms during 

testing so as not to be accessible in generating recovery responses would be a few ways to make 

otherwise healthy older adults less robust when generating their proactive adaptations and 

recovery responses.  It is possible that findings from such a study would yield more 

representative results of what those who are frail, lacking balance confidence and/or mobility-

limited older adults would actually do if exposed to a similar protocol.  In another potential study 

it would also be interesting to see if adults, young or old, were capable of adopting optimal 

responses as observed in the current work when performing slips/trips in a virtual environment 

where the scene changes from trial to trial but the perturbation does not (perturbation duration 

and severity in terms of paradigm remain constant).  Such observations would provide insight on 

how cognition and reality impact the ability to make adaptations and recovery responses.  Failing 

to observe similar abilities from scene to scene would show that adults are affected by the change 

of scenery moreso than the perturbation itself.  The implications of a study such as this would be 

of benefit to the rehabilitation community as real life perturbations seldom occur in the same 
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setting.  Changes in scenery and surrounding environments provide a different set of contextual 

cues and it is known that these can influence balance maintenance.  Repeated exposure to the 

same task in different visual environments may teach us something about the roles awareness 

and familiarity with the environment may also play in reducing fall incidence.   
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APPENDIX A 

ABBREVIATIONS 

Abbreviation Definition 

BOS Base of support 
CAD Cadence 
COM Center of mass 
COMAP Anterior-posterior center of mass 

COMAP velocity 
Anterior-posterior center of mass 
velocity 

COMML Medial-lateral center of mass velocity 
COMML velocity Medial-lateral center of mass velocity 
COMV Vertical center of mass velocity 
COMV velocity Vertical center of mass velocity 
COP Center of pressure 
FC Foot contact 
FFA Foot floor angle 
PPA Proactive postural adjustments 
PSV Peak slip velocity 
RHC Right heel contact 
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APPENDIX B 

TRIPPER DETAILS 

 

Tripper Design and Operation 

The tripping device was designed to trip an individual’s left foot during midswing.  At contact, 

the foot encounters one of eight wood slides that serve as the tripping obstacles (see Figures 1 

and 2).  These slides are 3.5” tall standing 4.5” from the zeroed floor.  Each slide is 37¼” long 

and when triggered travels approximately 70 cm (10 cm onto the forceplate) ensuring that the 

left foot contacts the slide (for those with narrow stepwidths).   

The device is triggered once 15-N force is detected on the force plate (60 cm L x 40 cm 

W).  At this time, the anterior-posterior position of the center of pressure is calculated using the 

equation: 

 

COPA-P=[(-Fy * h)Mx]/ Fz   (1) 

 

where Fy is the shear force, h is the thickness of the forceplate, Mx is the moment about the x-axis 

and Fz is the normal force.  The forceplate is divided into eight, 7.5 cm sections that are each 

associated with a specific slide.  The Labview coding selects the corresponding region for the 

calculated COP and releases the appropriate slide.   
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The trigger assemblies (mechanical components of slides, see Figures 2 -5) are each activated by 

a solenoid.  The signal from the computer is relayed to one of eight solenoids wired in series.  

The solenoids are each pull type with intermittent duty.   

Once activated, the solenoid pin pulls back on the notch of an archery trigger.  Inside the 

head of the triggers is an eyebolt which is pushed in place by compressing a spring.  The wood 

slides are aligned and at rest against the spring.  At activation of the solenoid, the pin pulls back, 

the notch pulls back opening the trigger head thus releasing the eyebolt, the spring releases from 

compression and drives the wood slide forward.  The wood slides have wheels at the top that roll 

along a metal track giving the slides their speed.  The tripping slide travels out and perturbs the 

left foot at midswing. 

 

 

 

 

 

 

 

   Figure A.B.1. Tripping device (bottom side up). 

 

 

 

       Figure A.B.2. Wood tripper slide with padding. 
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Figure A.B.3.  Solenoid and trigger with eyebolt locked in trigger head. 

 

 

 

 

Figure A.B.4. Trigger, eyebolt, and solenoid pin. 

 

 

 

 

 

 

 

 

    Figure 5. Complete trigger assembly: solenoid, trigger, eyebolt, spring, slide. 

 

Solenoid pin 

Eyebolt  

Trigger head  

Trigger 
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Circuit Info 

The tripper circuit is triggered by a computer parallel port. A signal is sent to a single pin on the 

parallel port which is then amplified. The amplified signal travels to a relay switch which 

triggers a separate power source of 18 volts. The 18 volts is sent through a serial port cable to 

activate the appropriate solenoid.     
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APPENDIX C 

FUNDING SOURCE 

 

This study was supported by a Ruth L. Kirschstein Fellowship National Institutes of Health 

Grant Number 5 F31 AG025684.  The funding period began 10/1/2005 and ended 9/30/2010. 
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