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MINOR AXIS FLEXURE AND COMBINED LOADING RESPONSE OF
I-SHAPED STEEL MEMBERS
Muharrem Aktas, PhD

University of Pittsburgh, 2004

The present dissertation elucidates the problem of determining if a given I-shaped cross-section
is properly proportioned to accommodate sufficient plastic hinge rotation capacity to facilitate
the redistribution of moments in a structural system as needed to accommodate the formation of
a collapse mechanism. It might be tempting to believe that application of the limiting flange
plate slenderness value for the case of major axis flexure are applicable in this case; since the
pervasive belief is that this approach ought to be conservative. However, the present research
study indicates that this is not the case and thus more sophisticated analysis techniques are
required to better understand this case.

Most current design specifications employed throughout the world prescribe the use of
so-called interaction equations for the design of beam-columns. Most often these interaction
equations are optimized for use with the members possessing I-shaped cross-sections that are
bent about the major principal centroidal axis while simultaneously being subjected to
compressive thrust. The current study then also focuses on the case wherein an I-shaped member
is loaded in compression and simultaneously bent about the minor principal centroidal axis. It is
shown that the current AISC interaction equations can be improved on in terms of their ability to
predict failure in these types of members. Alterations to the existing AISC interaction equations

are suggested for improving on strength predictions relative to this case.



Through these two research focuses, the present dissertation adds significantly to the state
of knowledge surrounding the response of steel members possessing I-shaped cross-sections that
are subjected to minor axis flexural effects; effects that are important to the robust and redundant

design of structures in a system-wide sense.

Keywords: Interaction equation, weak axis, finite element modeling, steel I-section Minor axis

flexure, compactness, ductility, plate buckling, moment redistribution
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1.0 INTRODUCTION

In this research, | section flange compactness under minor axis bending and minor axis moment-
thrust response behavior in steel I-shaped members are investigated by using nonlinear finite
element methods.

The case of minor axis flexure in I-shaped cross-sections arises frequently in the
consideration of bi-axial beam bending associated with perimeter spandrel members in exterior
framing lines, as well as in the general case of a beam-column. In these instances, it may be
desirable to employ cross-sections whose proportions are such that sufficient structural ductility
is available in the member in order that system-wide moment redistribution may be achieved.
Scenarios requiring this capacity to redistribute forces frequently arise in seismic design and
other applications that require structural robustness against natural and man-made hazards.

The present study hopes to elucidate the problem of determining if a given I-shaped
cross-section is properly proportioned to accommodate sufficient plastic hinge rotation capacity
to facilitate the redistribution of moments in a structural system as needed to accommodate the
formation of a collapse mechanism.

Many structural members, like beam columns, are subjected to some degree of both
bending and axial load. There is no simple design procedure for beam columns because of the

number of failure modes. Interaction equations are found to provide good results when compared



predicted and tested responses. The current AISC LRFD specification employs an interaction
equation based approach for beam column analysis and design.

The present research has as a focus, the response of I-shaped steel members subjected to
the simultaneous application of axial thrust and minor principal axis flexure. This response will
be compared with the results of the current approach given in the LRFD specification.

The commonly used A992 steel grade is considered though out the present work. The
study reported on herein involves the use of experimentally verified nonlinear finite element
modeling strategies. While it has been shown that non-proportional loading can have an
influence on important parameters governing beam-column response (especially when load
reversals are at issue) (Hajjar 2003), the present study involves a research program wherein the
traditional approach of proportional load application is used. This is the case since the great bulk
of earlier research has focused on this case (Salmon and Johnson 1996), and this is the case at the

heart of current specification equations used though out the world.

1.1 OVERVIEW OF COMPACTNESS

The strength or resistance of a beam in flexure is limited by some combination of local and
overall buckling resistances. Figure 1 shows the general behavior of a wide flange beam (Yura,
Galambos, and Ravindra 1978). Basically the behavior of the beam is divided in three response
regimes: elastic, inelastic, and plastic ranges. In the elastic range, elastic buckling controls the
behavior. In the inelastic range, some or all of the cross-section is yielded but only a small

amount of inelastic deformations is available prior to failure. In the plastic range, the cross-



section reaches the plastic moment, A£,, and maintains this load level as the member tends to

undergo large plastic deformations which allow for moment redistribution. In the current

American steel design specifications, members are classified as, non-compact and compact as a

means for characterizing their strength and deformation capacity. For sections permitted in

plastic analysis, the specification requires a compact section (AISC, 1999). The specification

defines a compact section as one that can develop a fully plastic stress distribution while

exhibiting sufficient plastic hinge rotation capacity, prior to the onset of local buckling, to

accommodate moment redistribution in the structural system (AISC, 1999).

Moment
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Figure 1 Beam behavior (Yura, Galambos, and Ravindra 1978)



1.2 MOMENT - ROTATION CURVES

Rotation capacity is a method of quantifying deformation capacity within a cross-section prior to
instability eroding the cross-sectional capacity (Salmon & Johnson, 1995). There are a number of
different definitions in the literature for rotation capacity.

According to Lay and Galambos (1965) rotation capacity, R,=6,/6,, in which 6, is the
elastic rotation at the initial attainment of the plastic moment M,. And 6, is the plastic rotation at
the point when moment drops below A, , all on within the context of a normalized moment-
rotation context.

Kemp (1985), proposed an alternative definition for rotation capacity as Run=6./6, in
which 6, is the plastic rotation up to the maximum moment on the moment rotation curve. He
proposed this because of the practical difficulties associated with the accurately measuring the
rotation correctly in the unloading range.

The definition for rotation capacity adopted in the present discussion is that presented by

ASCE (1971): R :%—1Where 6; is the rotation when the moment capacity drops below A, on

1
the unloading portion of the M - 6/8, plot, and &, is the theoretical rotation at which the full
plastic capacity is achieved based on elastic beam stiffness. This ductility response measure is
described graphically in figure 2. It is currently assumed that R = 3 is an adequate level of
structural ductility for the non-seismic design of steel building components (AISC 1999) and

thus current compactness provisions are formulated with this measure in mind.
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Figure 2 Definition of Rotation Capacity

1.3 OVERVIEW OF MOMENT AMPLIFICATION FACTOR

Structural members are usually subjected to the combination of bending and axial forces. When
one of these effects is small enough to be neglected then the member can be designed as a
column or as a beam. However; if there is a significant amount of both effects, then they both
have to be considered. Such members are called beam-columns (Salmon & Johnson, 1995).
Including axial load brings a secondary bending moment which is equal to the axial
compression force times the out-of-plane deflection measures with respect to the member
longitudinal axis. First order methods don’t take the displaced geometry into account and thus
are unable to treat this important behavioral feature. Iterative numerical technigues, also known
as second order methods of analysis, must be used to study the importance of these so-called

“second order effects”. However; such techniques are time consuming and not practical in



manual calculations. That is why in the AISC LRFD specification either a second order analysis
or the moment amplification method is permitted (Segui, 2003). The latter of these two
approaches is a simplification that is reasonable for hand calculations.

According to the moment amplification method, the first order moment is multiplied by
the moment amplification factor to get the second order moment (i.e. the sum of the primary
applied moment as well as the secondary moment due to the axial force acting through the out-
of-plane defelction). The equation for amplification factor is developed as follows (Segui, 2003).

For a simply supported beam with an initial crookedness is presented in figure 3.

Figure 3 Simply supported beam with initial crookedness (Segui, 2003).

Initial out of straightness can be approximated by y, where e is the maximum initial

displacement at the midspan.

v, :esin% (1)



The moment curvature can be expressed as

- @

The moment at any location is going to be the moment caused by the axial force times the initial
total deflection. Total deflection is the sum of the initial crookedness and the additional

deflection y caused by the bending.

M=PF(,+y) 3)

When equation 3 is substituted back into the equation 2, equation 4 is obtained;

d’y P Pe . nx
+—Ly=——-sIn— 4
o EIY T El L )

Equation 4 is an ordinary, non-homogeneous differential equation with two unknown integration
constants that can be evaluated through the consideration of two boundary conditions which are;

at x=0, y=0andatx=L, y=0.A function which satisfies these boundary conditions is

. TX
= Bsin— 5
y 7 (5)

Substituting equation back into the differential equation 4 leads to equation 6;

2
T nx P nx  Pe . 7mx

—— Bsin—+— Bsin— = sin— (6)
L L EI L ET L



After solving for B;

2

where P, = ﬁLz

_Fe
p=—2£&L - —° __°
P, 7°El P, 1
ElI I* PI? P,

. TX
=Bsin— =
y=Bsin [

! is the Euler buckling load. Thus

; sinﬂ-_
rie)1f" L

Substituting equation 8 back into equation 3 gives;

M :Pu{esinﬂ{
L

At x =L /2 the maximum moment occurs;

Rearranging equation 10;

e X
(BIR)-1| L

()

(8)

©9)

(10)

(11)



1
M, =M, {m} (12)

In this last equation A, is the first order moment. Then the moment amplification factor is

(Sequi, 2003);

1-(B1P) )

1.4 BASIS FOR CURRENT CROSS-SECTIONAL COMPACTNESS LIMITS FOR
UNSTIFFENED ELEMENTS

The goal of the US specifications in its prescription of so-called compactness criteria (AISC
1999) is to identify plate slenderness limits, 4,, for cross-sectional plate components such that an
overall flexural cross-section will be able to accommodate sufficient plastic hinge rotation to
support system-wide moment redistribution as required for the development of a global collapse
mechanism. In pursuit of this condition, compactness limits have historically been formulated to
loosely accommodate strains approaching strain hardening values within an individual plate
component prior to the attenuation of post-buckling strength due to effects of material
nonlinearity.

As a point of departure for the work reported on herein, it is useful to consider the basis
by which the current US Specification (AISC 1999) addresses plate compactness within the
context of an unstiffened element; flanges in I-shaped cross-sections under uniform flexural
compression. In this case, the question of how to address the uncertainty with regard to the

nature of rotational edge restraint provided at the plate boundary associated with the flange-web



junction is addressed through consideration of the work carried out by Haaijer and Thurlimann
(1957). Haaijer and Thurlimann discovered that unstiffened plates exhibit the onset of strain
hardening at slenderness values, 4., of approximately 0.46 irrespective of whether the supported

edge is fixed or pinned. In this discussion, slenderness is defined as

F
A= F—y (14)

F =k (15)

in which E andv are the usual elastic material constants and » and ¢ are the plate width and
thickness quantities, respectively. The term % is the plate buckling coefficient which depends on
the plate aspect ratio, edge support conditions, and stress distribution along the loaded edge. In
the case of an I-shaped cross-sectional flange, the two extremes that £ can assume are: 0.425 for
the case of a supported edge that is pinned; and 1.277 for the case of a rotationally fixed
supported edge. If the equation 15 is set to be equal to the yield stress, F,, and if it is solved for

the width-to-thickness ratio (b/¢) equation 16 is obtained.
b 160 | £ (16)
t F,

10



As mentioned previously, Haaijer and Thurlimann have observed that unstiffened plate
components under the action of a uniform edge compression achieve strain hardening response at
slenderness values, A., of 0.46 and thus equation 16 may be used to identify a plate slenderness

limit for the attainment of strain hardening response as;

b_ 1621, * s | (17)
t F, F,

The only question remaining regards what value to assume for the plate buckling
coefficient, k. It has been standard practice for AISC (1999) to employ elastic plate buckling
coefficients as a guide in the development of actual design specification equations and as such it
may be considered that the two extreme values for the present case of an I-section flange: 0.425
and 1.277 for the pinned and fixed cases, respectively, are bounding cases. If it is, somewhat
arbitrarily, considered one third of the difference between these two values and add this result to
the smaller of the two a k& of 0.71 which can be applied to equation 17 is obtained so that a

limiting plate slenderness value for the onset of strain-hardening is found as;

b_ 683 65 gL (18)
¢ JE JE F,

It is noted that equation 18 represents the current compactness limit, 4,, presented in the
current AISC LRFD specification (1999) in Table B5.1 for the case of an I-section flange under

the action of uniform flexural compression.
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A similar approach to the foregoing when developing a compactness limit for the case of
flanges in I-sections subjected to flexural compression due to minor axis bending may be
applied; if it is assumed that Haaijer and Thurlimann’s results concerning the invariance of A
with the degree of rotational restraint present at the supported edge in a uniformly compressed
unstiffened element holds for the case of non-uniform compression. Non-uniform compression
stresses would be expected along the loaded plate edge in flange outstands subjected to flexural

compression (as depicted in figure 4).

Figure 4 Minor axis flexural normal stress distribution

While Haaijer and Thurlimann did consider the case of non-uniform compressive stresses
within a plate component, their investigation centered on the case of a stiffened element;

consistent with the web of an I-shaped cross-section subjected to major axis flexure. Proceeding
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with the assumption that the invariance in A holds for the unstiffened case of a flange outstand
in flexural compression due to minor axis flexure in an I-shaped cross-section, equation 17 may
be reused as the basic requirement for the attainment of strain hardening in a non-uniformly
compressed plate component. What is now left to do in the development of a compactness limit
for flange outstands in non-uniform flexural compression is to identify a suitable plate buckling
coefficient . Guidance on the selection of an appropriate & value is obtained using the tabulated
cases presented by Galambos (1998). It may be assumed that the flange outstand experiences
compressive stress only (i.e. assuming that the neutral axis is at the flange-web junction). Two
extreme values for & in this case may then be identified: 0.57 for a pinned supported edge and
1.61 for a rotationally restrained supported edge. Proceeding as in the case of an I-shaped beam
flange outstand subjected to normal stress under major axis flexure, one third of the difference
between the & values of these two extremes may be added to the smaller of the two to arrive at &
= (.92. We may then employ this value in equation 17 to arrive at a limiting plate slenderness

value of

b om|E (19)
t JF F,

The limits obtained from equation 19 can be compared with results obtained from a finite
element parametric study considering flange outstands having various parametric combinations
of: cross-sectional aspect ratio (B;/ d); unbraced length-to-cross-sectional depth ratio (L, / By,

web slenderness ratio, (% / ¢,); flange slenderness ratio, (By/ 2ty), and steel yield strength.
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1.5 BASIS FOR CURRENT INTERACTION EQUATIONS FOR MEMBERS
UNDER AXIAL LOAD AND BENDING

When considering the strength of a steel member under the combined effects of axial load and
flexure, two general approaches have historically been used (Galambos 1998): design charts and
tables of safe moment-thrust combinations; and so-called “interaction” expressions that are in

principal based on the formulaic representation:

f{ P {M } ]< o 0
B provided M provided |y y

Where P denote axial load, and A denotes moments about the X-axis (major principal
centroidal axis or strong-axis) and the Y-axis (minor principal centroidal axis or weak-axis). It
has been the latter approach, the interaction equation method, that has emerged as the dominant
approach for design within the context of modern building specifications though out the world
(Galambos 1998). As an initial approach in the formulation of a reasonable base-line form of an

interaction expression, equation 20 may be restated in the commonly accepted form serving as

the point of departure for essentially all specifications that employ the interaction approach.

LM 10 (21)
M
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In equation 21, P, denotes the pure column strength of the member being considered (i.e.
its axial capacity in the absence of moment) and A7, denotes the capacity of the same member
under pure bending (i.e. its flexural capacity in the absence of axial loading). The quantities P
and M denote the respective failure loads acting in combination on the member in question. The
capacity of a given member may be obtained from experimental testing, but frequently such an
approach is cumbersome due to the fact that an extremely large potential design space must be
explored which involves such variables as: member cross-sectional proportions, moment-thrust
ratios, unbraced length, etc. In practice, it has been commonplace to employ numerical means
for the identification of failure in members loaded by a combination of axial force and moment.
Chen and Lui (1987) provide a helpful overview to one technique wherein raw cross-sectional
capacity is treated through the consideration of a fiber analysis. A fiber analysis is a means by
which a zero-length member of given cross-sectional geometry is studied by assigning a finite
number of uniaxial fibers to fixed coordinates within the cross-section and assigned idealized
stress-strain response histories as would be consistent with coupon testing in a universal testing
machine. With this type of idealization, moment and axial force can be varied (in the presence
of initial residual stresses) until an unstable combination of loading is achieved — a failure point
on the interaction line / surface. This technique can be extended to the consideration of members
of finite lengths wherein inelastic global instability limit states may also be treated (Kanchanalai
1977). In addition to inelastic cross-sectional strength and member stability issues, the
amplification of the primary applied moment as a result of so-called “second-order effects” (due
to the axial force of the member acting over a moment arm emanating from the lateral deflection
induced by the primary moment) can trace its familiar form in specifications to an earlier edition

of the SSRC Guide (Johnston 1976) wherein equation 21, above, is modified as:
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P My <19 (22)

Pr. M,
P, M, (1—%6)

where M, is the first-order or primary moment applied directly to the member, and P, is the axial
elastic critical load for the member when buckling in the plane of primary moment is enforced.
The additional denominator term appearing in equation 22 as compared with equation 21
represents a consideration of member level second order effects.

While the general underlying approach of most international specifications is rooted in
the form of equation 21, certain subtle differences do present themselves in side-by-side
comparisons of their form. Since the topic of the present study is restricted to minor axis flexure,
the equations presented will be only those germane to that context and then in a format utilizing
a uniform notation so as to facilitate direct comparison. The Canadian specification (CSA 2002)

employs an interaction equation of the form:

B O8M, g (23)
¢oF, oM

n

while the Eurocode 3 (ECS 2002) equation appears as

B Mg 21

In the case of the US specification (AISC 1999), a two-part interaction equation format is used:

For i <0.2

cn
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1P M

——4-4+—1-<10 (25)
2¢CP}1 ¢an

and for i >0.2
B LEM, ) (26)
¢Pn 9¢an

While it is instructive to note the interaction equation formats for the various
specifications, it is pointed out that individual member capacity predictions will vary from
specification to specification as a results of these and other differences related to the calculation
of axial capacity as well as the determination of compactness in cross-section (i.e. the ability of
the cross-section to form a plastic hinge and maintain structural ductility).

The foregoing interaction equations have been developed with the intention of optimizing
their predictive capabilities within the context of the major-axis (e.g. strong-axis) flexural case.
It has been noted by others (Galambos, 2001) that the presence of mono-symmetry in an I-
shaped cross-section can have a pronounced impact on the economy of design emanating from a
use of interaction equations such as the foregoing. Other investigators (Alduri and Madugula,
1992) have noted the importance of considering the pronounced effect that deviations from the
ideal 1-shaped cross-sectional case can have on the accuracy on interactions equations of the type
presented in equations 25 and 26. Other researchers (Liew et al 1991) have pointed to the fact
that equations of such as 25 and 26 may be less than robust in their ability to treat the case of an
I-shaped beam-column within the context of minor-axis flexure (e.g. weak-axis flexure in the

presence of axial compression).
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1.6 SCOPE

This dissertation contains mainly three parts;

1. Verification of finite element modeling techniques using full-scale experimental testing
results obtained in the open literature.

2. Parametric study results carried out using the verified nonlinear finite element modeling
approach and focusing on the fundamental behavior of I-sections subjected to minor axis
flexure and combined minor axis flexure and axial compressive thrust.

3. Discussion of the results.

In section 2 non linear finite element analysis is discussed in a general sense with the source
of nonlinearities being called out explicitly. In the same section, the commercial finite element
software package ABAQUS is discussed briefly, including the S4R shell elements and von Mises
metal plasticity with isotropic hardening. Also nonlinear finite element solution algorithms are
briefly discussed in this same section of the dissertation.

In section 3 details of the modeling techniques used in the verification process are explained,;
both for pure minor axis bending case and for the combined loading case. Geometry of the test
specimens with the proper imperfection geometry and their material model are discussed in
depth in this section. Also, figures comparing the numerical finite element results with the results
of the full-scale experimental tests are presented.

In section 4, compactness of I-shaped beams under minor axis bending is discussed throug

the consideration of results obtained from a parametric study.
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A similar parametric study and its concomitant results are used in section 5 to understand the
interaction of axial force and minor axis bending response for | —shaped beams.

Concluding remarks are given is section 6 for both cases.

2.0 NON LINEAR FINITE ELEMENT ANALYSIS

Nonlinear finite element modeling is at the heart of the research work reported on in the current
study. Given the reliance of the present work on this analytical method, it is important to clearly
state the modeling approached used, software packages employed, and any assumptions made
during the construction of the finite element analogs for the I-shaped cross-sections under
investigation.  In addition, verification of the modeling techniques against full-scale
experimental testing can be of great value.

The commercial multipurpose finite element software package ABAQUS version 6.3 is
employed in this research. All modeling reported herein considers both nonlinear geometric and
material influences. The incremental solution strategy chosen for this work is the modified Riks-
Wempner method (ABAQUS, 2003).

Material nonlinearity is modeled using ABAQUS standard metal plasticity material
model which is based on an incremental plasticity formulation employing associated flow
assumptions in conjunction with a von Mises failure surface whose evolution in stress-space is
governed by a simple isotropic hardening rule.

The I-shaped cross-sections considered in the current research employ shell finite

elements positioned along the middle surfaces on the cross-sectional constituent plate
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components. The S4R nonlinear, finite strain, shell element from the ABAQUS element library
is employed in this research. The following sub-sections endeavor to meet the above
requirements and lead to a clear understanding of the approach, and subsequent limitations, of

the present work.

2.1 SOURCE OF NONLINEARITIES IN STRUCTURAL RESPONSE

For structural analysis there are three sources of nonlinearities in analysis. The corresponding
nonlinear effects are identified by the terms material, geometric and boundary conditions. All
modeling reported herein considers both nonlinear geometric and material influences.

Material Nonlinearity: The stress-strain curve of steel is linear elastic until some
significant point called the yielding point. After the attainment of the yield point, the stress strain
curve becomes non linear and the strains become partially irrecoverable. In other words when the

material behavior does not fit the elastic model (o = E¢) there is a phenomenon of material

nonlinearity. Effects due to the constitutive equations (stress-strain relations) that are non linear,
are referred to as material nonlinearities.

Geometrical nonlinearity: In elementary structural theory the effect of deformations are
neglected when writing the equations of equilibrium and motion. In other words the behavior is
described with respect to the undeformed configuration. Real structures are in equilibrium in
their deformed configuration, not their undeformed configuration, as implied by elementary
structural theory. Especially when there is large deflection small strain case, geometric

nonlinearity must be taken into account. Ignoring the effects of geometric nonlinearity makes the
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governing kinematic relationships linear and thus it is impossible to capture phenomena such as

bifurcation buckling.

2.2 NON LINEAR FINITE ELEMENT SOLUTION ALGORITHM

The objective of the nonlinear finite element analysis is to trace the non linear load-displacement
path in multi-dimensional configuration space. In a non linear analysis, solving a single system
of linear equations directly does not give the equilibrium condition related to physical system
response. The loading must be defined as a function of time and nonlinear response obtained by
incrementing time (in the case of a static analysis, time is a dummy variable associated with
incremental loading of the structural system). In ABAQUS this simulation is achieved by
breaking the total time into a number of time increments. ABAQUS then calculate the
approximate equilibrium configuration at the end of each time increment via intermediate
iterations carried out within each increment. Several solution algorithms are proposed and
applied to trace the equilibrium path. Newton’s method is the basic method, and many other
algorithms are developed by modifying this method. However, Newton’s method fails around the
critical points; meaning it is unable to negotiate solution features at the interface between stable
and unstable equilibrium conditions. One solution method for tracing the nonlinear equilibrium
path that is used in ABAQUS in such instances is Riks-Wempner method.

The advantage of the Riks-Wempner method is its ability to trace behavior beyond a
critical point. In other words, this technique permits limit points on the equilibrium path to be
negotiated. The ability to accurately negotiate such limit points is a prerequisite for any
compactness study since unloading response is at the heart of the currently accepted measure for

flexural ductility: rotation capacity, R. The Riks-Wempner method is also sometimes referred to
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as the arc length method. In arc-length methods, the solution is constrained to lie either in a plane
normal to the tangent of the equilibrium path at the beginning of the increment or on a sphere
with radius equal to the length of the tangent. This method allows tracing snap-through as well as
snap-back behavior (Ramm and Stegmuller, 1982). The algorithm for Riks method can be found

in depth in the literature (Riks, 1972), (Riks, 1979) and (Crisfield, 1986).

2.3 VON MISES METAL PLASTICITY MODEL IN ABAQUS

A vyield criterion is a law which defines the limit of elastic behavior under any possible
combination of stress at a point in a given material. ABAQUS permits several different type of
yield criteria, but the von Mises yield criterion is selected in this research because of its ability to
accurately predict yielding in body centered cubic crystalline based metals such as steel
(ABAQUS, 2001).

When developing the mathematical model for a yield criterion some assumptions may be
made. First, material may be assumed to be isotropic. Second, Bauschinger effect may be
neglected. Third, uniform hydrostatic tension or compression does not have an effect on yielding
(Chakrabarty, 1987). A geometrical representation of the yield criterion in principal stress space
and for biaxial stress space is shown in figure 5 and 6, respectively. The yielding only depends
on the deviatoric stress vector OP. The elastic state of stress is defined as being any point inside
the cylinder, and yielding is defined as any state of stress that permits the stress point to lie on

the surface of the cylinder.
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According to the von Mises criterion yielding will occur when the distortional strain

energy density of the structure reaches the distortional strain energy density at yield in uniaxial
tension or compression (Boresi, 2002). The total strain energy density U, can be defined with

two components.

U =U,+U, 27)

where U, is the strain energy density associated with pure volume change. This can be

neglected because it is known that hydrostatic pressure does not have effect on yielding. U, is

the distortional strain energy density and is defined in the principal stress state as

(o, _62)2 + (o, _63)2 + (o, _01)2

U, = 28
D 126G (28)

where G is the shear modulus. When uniaxial stress state stress values are known to be
o,=0 and o0,=0,=0 (29)

(as in the case of a uniaxial coupon test) then the distortional strain energy at yield will have the

form (Boresi, 2002).

Upy = (30)
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2.4 EVOLUTION OF FAILURE SURFACE - ISOTROPIC HARDENING

Plastic deformations may continue after initial yield is reached, and this behavior may be
accompanied by changes in the yield surface. The relationship for the post yield behavior of the
material is known as the flow rule. When the material is loaded beyond a certain point the stress
state reaches the yield surface making yield function zero at that point.

If the material is non hardening (i.e. perfectly plastic material) the yield surface does not
change thus the stress point always lies on a surface formed by the locus of points corresponding
to a constant yield stress. In other words incremental loading will either tend to reduce the value
of the yield function below zero, which is also known as unloading, or incremental loading will
tend to increase the value of yielding function above zero, which is not physically possible. In
this case the stress point moves on the yield surface as the structure deforms plastically. If the
material is strain hardening, yield surface evolves as the plastic deformation develops. In this
case the yield surface expands or moves with the stress point still on the yield surface. To
account for such changes the yield function must be generalized to define the subsequent yield
surface configurations beyond the initial one. However, what will be the direction of the plastic
flow must be answered (Deierlein, Haijjer, Konvinde, 2001).

The incremental plastic strain can be written in the form of plastic flow vector, ¢, and the

magnitude of the plastic strain, A.

e = dc (31)

¢ will be defined as a function of stress state such as plastic potential function g.

0g
= 32
e=on (32)
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In order to catch the real behavior of the material through analytical means, an
appropriate plastic potential function should be picked. A plastic potential function can be
chosen as the direction to cause maximum dissipation of plastic work. Knowing that plastic work

is the irrecoverable part of the work done during a loading-unloading cycle gives the equation

AW’ =o' g” (33)

dw? =o' Ac (34)

After differentiating and setting equal to zero the following equation is obtained.

&’ c=0 (35)

According to this equation for maximum plastic dissipation, the direction of plastic strain
vector must be located perpendicular to the incremental stress vector. Having known that the
stress state is on the yield surface the incremental stress vector must be tangent to the yield
surface which makes ¢ normal to the yield surface (figure 7). Also the new plastic potential
surface is now the yield surface. This choice of the flow rule, where the plastic straining is
perpendicular to the yield surface is called associative flow rule (Deierlein, Haijjer, Konvinde,

2001).
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Figure 7 Normality of plastic strain

Getting the maximum dissipation of plastic work by the associative flow rule is only
valid for elastic-perfectly plastic materials. This flow rule may not give maximum plastic
dissipation for many types of hardening material. However, it is very popular and widely used in
the literature for its capability of capturing true behavior for a large variety of materials
(Deierlein, Haijjer, Konvinde, 2001). Associated flow models give good results with the
materials whose plastic flow is formed by dislocation motion when there are no sudden changes
in the direction of the plastic strain rate at a point (ABAQUS, 2001).

After reaching the yield point, many materials show an increase in stress with the
increase in strain. Also after unloading and reloading the same material is seen to have increased
its yield point. This response of the material is called the hardening response. Increase in the
yield point also means increase in the yield surface. If the yield surface changes its size
uniformly in all directions, such that the yield stress increases (or decreases) in all stress
directions as plastic straining occurs, then the response is called isotropic hardening (ABAQUS,

2001) (figure 8).
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Figure 8 Description of isotropic hardening (Deierlein, Haijjer, Konvinde, 2001).

Meaning that in the case of the von Mises yield surface, isotropic hardening is manifested
through an evolution of the cylindrical yield surface in the three dimensional principal stress
space such that on planes oriented orthogonally with the hydrostatic stress generator of the
surface the circular outline of the von Mises surface appears as a cylinder whose circumference
increases, as the stress point continues to impinge on the yield surface during plastic flow, while
the location of the center of the circle remains unchanged. In this research, isotropic hardening
and the associated flow rule are adopted and used in conjunction with the ABAQUS software

system.
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2.5 S4AR SHELL ELEMENT

The ABAQUS shell element library includes general purpose shell elements and specially
formulated shell elements for thick and thin shell problems. In this study the S4R general
purpose shell element is used to model the actual three dimensional geometry of the beam. This
element is selected for use in the parametric study based on its satisfactory performance in the
verification work described in the papers by Thomas and Earls and Greco and Earls (2003a,b).

In the S4R there are four nodes possessing 6 degrees of freedom per node. The general
purpose shell elements give accurate solutions to most applications. S4R allows transverse shear
deformation to be considered in a fashion that is consistent with Mindlin-Reissner theory. Also,
it employs the discrete Kirchhoff techniques to provide satisfactory results as the shell thickness
decreases (ABAQUS, 2001)

Finite membrane strains are taken into account in the S4R formulation and thus the
element admits changes in thickness as a function of membrane strain. Poisson’s ratio of the
section defines whether the shell thickness changes as a function of the membrane strain or not.
Setting the Poisson’s ratio to zero will keep the shell thickness constant and will allow the
elements fit for small strain large rotation analysis (ABAQUS ,2001).

S4R formulation is based on a first order shear deformation theory. In other words the shell
employs linear displacement and rotation interpolation in the context of Mindlin-Reissner theory,
but the shear deformations are then obtained directly from a consideration of the nodal
deformations. This approach is made to be consistent with the assumption that cross-sections
remain plain but not normal to the Gauss surface of the shell.

ABAQUS uses a lower order quadrature rule, called reduced integration, to calculate the S4R

element stiffness. A single integration point is used in this particular element. Reduced
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integration has two main advantages: it significantly reduces running time by using fewer
sampling points; and with fewer sampling points, some of the more complicated displacement
modes offer less resistance to deformation. This increases the accuracy of finite element analysis
(Cook, 1989). Sometimes using reduced integration yields element stiffness matrices that display
one or more false zero energy mode, which may also be the cause of an unstable, or very
inaccurate solution (Bathe, 1982). However; ABAQUS overcomes this problem by using
hourglass control. Hourglass control assigns an artificial (and usually quite small) stiffness to the
so-called drilling degree of freedom on the shell. This stiffness value depends on the factors

usually given as a small fraction of typical shear modulus for material (ABAQUS, 2001).
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3.0 VERIFICATION OF NUMERICAL MODELING

Experimental testing is the best way to investigate the inelastic post buckling response of I-
beams. However, it is expensive and time consuming to perform the large series of tests needed
to investigate the response of I-beams having many reasonable dimensions. The other choice is
to use a numerical experimental series with the help of a computer to perform the required
parametric studies. Such numerical experiments rely on accurate computer models of the I-
beams. The nonlinear finite element program, ABAQUS, is employed in this research. In non
linear finite element analysis techniques, assumptions related to the type of stress strain curve,
boundary conditions, initial imperfection etc. may impact on the quality of the numerical results.

As it is that the nonlinear finite element modeling technique is the primary vehicle for the
research program reported on herein, it is clearly of great importance to establish the accuracy of
the modeling strategies employed in this study. As part of the current work, a careful search of
the experimental literature is undertaken in order that an appropriate research program might be
identified for use as a test case for the current verification study. Once a verified model has been
constructed, reliable data can be produced by doing parametric studies using the finite element
models. However, accuracy of the computer modeling depends on how well the real material’s
physical and mechanical properties are defined.

The most appropriate study found in the literature is centered on some work reported on

at the University of Sydney (Rasmussen and Chick 1995). This experimental research program
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focuses on the study of I-shaped members possessing slender cross-sectional profiles subjected
to combined loading applied in a proportional fashion. As part of this Australian research, the
extreme case of pure minor axis bending as well as the cases where the interaction of minor axis
bending with axial loading are considered and thus valuable experimental results are contained in

this work; vis-a-vis a verification study related to the present research.

3.1 SOURCE OF MODELING UNCERTAINTIES

There are some uncertainties in both physical testing as well as finite element modeling. For the
test specimens, stress strain properties, yield strength values of the material, and the plate
geometry may be different through the section and along the beam length. Also mis-measured
and reported initial geometric imperfections and residual stresses, unreported material properties,
such as stress strain properties of material loaded in compression, do have important affects on
the results of numerical models. Tension properties of the material are reported for the test
specimen studied in this research. However, because of the Bauschinger affects, the tension
behavior does not represent the compression behavior. In addition, as deformations become
large, support and restraint conditions become critical and variability in these values can change
the result dramatically.
In finite element modeling the analyst must define the information listed below:
e Initial geometry of the specimen with imperfections
e Boundary conditions

e Mesh density
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e Element type
e Material model with material stress-strain properties

e Numerical solution procedure with convergence tolerances

3.2 DESCRIPTION OF EXPERIMENTAL TESTING PROGRAM FROM THE
LITERATURE FOR | BEAM UNDER MINOR AXIS BENDING.

Rasmussen and Chick (1995) conducted a series of experimental tests under minor axis bending
and axial force. Only two of these tests were performed under pure bending. In this research
these two test specimens are used to validate the finite element modeling strategies for the

investigation of I-section flange compactness under minor axis bending, alone.

3.2.1 Geometry of the test specimen

Rasmussen and Chick had tested a series of thin walled I-beams in combined compression and
minor axis bending. Rasmussen and Chick (1995) focus on a single I-shaped cross-section whose
nominal dimensions appear in figure 8. Using this single cross-section, three distinct study cases
are considered through the variation of the member unbraced length. Specifically, short (L, =
800mm), medium (L, = 3500mm), and long (L, = 5800mm) members are treated in their work.
As a focus of the current verification efforts, only the short and long cases are considered

because they are the only tests performed under minor axis bending. The cross-section used in
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the experimental test was a slender I-section fabricated from high strength steel

with 7, =350 MPa.

weld

(a) (b}

Figure 9 Nomenclature (Rasmussen, 1995)

Table 1 presents the measured cross-sectional dimensions.

Table 1 Specimen dimensions

Specimen | L Ls ty tw by By f
(mm)
800-6 7955 (327 |501 |[504 |[240 |239 |6
5800-5 5798 | 5175 [4.98 |[5.02 [241 |2405 |5
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3.2.2 Material Model

The behavior in the strain-hardening region is generally based on the nominal stress and
engineering strain; which are calculated without considering the change in area of the cross-
section. However, the change in the cross-sectional area of the specimen may be an important
parameter when large deformations occur. In these cases the strain hardening range should be
characterized using the true stress, obtained by dividing the load by the current area of the
specimen. Nominal stress and strain data for uniaxial test for isotropic material can be converted

into true stress and logarithmic plastic strain by using the following equations;

O true = O nom (1 + gnom ) (36)

gl =In(l+ g,mm)—M

£ 37)

Rasmussen and Chick presented stress-strain properties of material loaded in tension in their

report. Residual stresses are not included in this research since it is known to have no influence
over the observed strength of hot-rolled structural members.

Experimentally determined mechanical response values from coupon testing appear in

table 2, in engineering units. These are converted to an idealized multilinear true stress and

logarithmic strain format (see figure 10, table 3 and table 4) prior to importation into the finite

element software package, ABAQUS.

35



Table 2 Material properties

Specimen /¢ g (GPa) f.(MPa) f.(MPa) fu(MPa)

Number
800-6 7 198 446 420 498
5800-5 4 200 466 431 509

Table 3 Stress- Strain values for Test Specimen 800-6

pl
o gnom O-true ‘9|n

nom

420 0.0021 42089 O

420 0.0167 427 0.014376
490.9 0.0577 519.22 0.053465
522.72 0.125 588.06 0.114813
522.72 0.2019 628.27 0.1807497

Table 4 Stress-Strain values for Test Specimen 5800-5.

pl
o & Gtrue gln

nom nom

431 0.0022 43193 0

431 0.0231 440.95 0.0206099
510 0.0615 541.38 0.0570123
526.67 0.0885 573.26 0.081899
526.67 0.1462 603.64 0.1333936
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Figure 10 Representative Idealized Material Model used in Finite Element Modeling

3.2.3 Geometric Imperfections

Since the verification test case considered in this part of the study involves minor principal axis
flexure of an I-shaped beam under the action of pure moment, bifurcation related response must
be considered as a possible factor governing overall response. When applying the finite element
method to bifurcation-type stability problems, it is oftentimes advisable to incorporate a
reasonable imperfection field into the finite element model. The incorporation of the
imperfection field is used to perturb the model from the condition of perfect geometry; failure to
do this may result in the model artificially persisting in the perfect state throughout the loading
history. The potential proximity of the finite element displacement solution to an initial perfect
geometry arises since such a configuration is a mathematically admissible equilibrium state
(even post bifurcation). However this configuration is meaningless physically since the slightest
loading disturbance, or geometric imperfection, would render such an equilibrium state
inaccessible to practical cases. As a means of guarding against any potentially physically

aberrant response, a reasonable displacement-based imperfection field should be incorporated
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into finite element models whose response has the potential of being governed by bifurcation
buckling. In such cases, it is not imperative that the precise governing buckling mode be used as
an initial imperfection adopted at the start of the nonlinear solution. Rather, any imperfection
field used need only possess elements of the dominant features that are contained in the
governing mode.

In the present verification study, it is observed from linearized eigenvalue buckling
analyses, carried out with ABAQUS, that the governing mode of instability in minor axis I-
shaped members in pure bending involves localized buckling within the flange. The perfect

geometry was seeded with sinusoidal a varying imperfection given by equation

w, = Aysin(%) (38)

The magnitude of imperfections for the flanges was taken as the maximum allowable fabrication
imperfection permitted by the American Welding Society (AWS D1.1:2000); this is

schematically illustrated in figure 11.

S

'
A
T_

e

A(in) < W (in) / 100 or ¥ in whichever is greater

Figure 11 Measurement of flange warpage and tilt.
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Two types of constantly imposed imperfections were investigated, sinusoidal varying
imperfection possessing a half wavelength of B,/ 2 that is phase shifted by 180 degrees between
opposite flange tips and the same field without phase shift (figure 12 and figure 13). Effects of

phase shift and imperfection sensitivity are only searched in specimen 800-6 and in 5800-5.

TF inside

BF outside

Figure 12 Imperfection with phase shift.

39



B2

Lw=

-
.

A4

Magnitude of the

A=

dal

SIS0l

thout phase sh

inusoidal imperfection wi

Figure 13 S

does not have affect on

in the imperfection

The results showed that existence of the phase shi

the moment rotation curve. These results can be seen in figure 14.

40



Specimen 800-6
25

% 21
=
=
§ 15 —e—with phase
é —s—test
§ 1] —x—w/o phase
£
o
5
= 0.5

0¥ T T T T

0.00 1.00 2.00 3.00 4.00 5.00

Head rotation (degrees)
Specimen 5800-5
2.5

@ 24 |
=
=
E 131 —e—wfo phase
‘_g —a—test
2 .
e —a—Wwith phase
E
o
S
= 051

O . T T T T T

0.00 1.00 2.00 3.00 4.00 5.00 6.00

Head rotation (degrees)

Figure 14 Comparison of imperfections with and without phase shift
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Figure 15 Imperfection sensitivity results
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Also the magnitude of the peak imperfection deflection amplitude is varied to see if the model is

sensitive to the imperfections or not. The result of the studies for the given test specimen under

different imperfection magnitudes is given in figure 15. Variation of imperfection of the test

specimens at the flange tips and overall along the beam is given in figure 16.
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Figure 33: Specimen 800-6 Flange Geometric Imperfections
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Figure 34: Specimen 800-6 Web and Overall Geometric Imperfections
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Figure 54: Specimen 3800-5 Web and Overall Geometric Imperfections

Figure 16 Imperfection of the test specimen (Rasmussen, 1995)



Based on these results, the wavelength and the magnitude for sinusoidal type geometry are taken
as 0.5xBy and B/ 100, respectively. These values are used throughout the remainder of this

work.

3.2.4 Finite element model for searching the I-section flange compactness under
minor axis bending

Finite element mesh.: In this research, the results of a parametric study are carried out using the
same verified nonlinear finite element modeling approach discussed in the earlier sections. The
same sinusoidally varying localized imperfection field of intensity B,/ 100 is used in this portion
of the work. As a means of creating a constant moment region of investigation for this study, a
three segment beam, acted on by two equally spaced concentrated transverse loads applied to the
third points, is used to create a central constant moment region possessing precisely the moment
profile required by current specification writing bodies as the foundation case for provisions
(figure 17).

These forces are applied at the flange-web junctions of the cross-section. While there is
also moment gradient loading being applied at both rigid end segments, these end segments are
not of interest in this research; that is why they are modeled as being approximately rigid through
the use of and elastic modulus that is one order of magnitude higher than that of middle segment.
Imperfections were applied only on the flanges. In addition, the rigid segments were not seeded
with imperfections, and mesh densities used throughout the entire length of the beam were

constant and uniform.
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Rigid Segment Flexible Segment Rigid Segment

1O}

Constant Moment
Region

Figure 17 Loading of the model

Boundary Conditions: The model is a simple supported beam. However; restraint against
out of plane translation is applied at the flange tips at the flexible-rigid transition interfaces. A
schematic depiction of the loading, geometry, and boundary conditions used in this work appears

in figure 18.

v
O -Denotes Constraints Out-of- Plane Deflection
= -Denotes Boundary Condition for Pin End

----- -Denotes Boundary Condition for Roller End

Figure 18 Boundary conditions and loading for the model
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3.2.5 Verification Results for the I-section flange compactness under minor axis
bending

Employing the above specializations, the two constant moment minor axis flexural cases are

reproduced in the computer in order that suitable structural response results can be generated and

compared with the results from the experimental program of Rasmussen and Chick (1995). Plots

comparing normalized moment and absolute rotation appear in figures 19-20. Based on these

results, it appears that the present modeling techniques are sufficiently robust to undertake the

outlined parametric study.

2.50 4

2.00

1.50

M/ Ms

1.00

0.50

—l— Chick and Rasmussen

—a&— Abaqus Result

0.00 T T T T 1
0.00 1.00 2.00 3.00 4.00 5.00

Head rotation (degrees)

Figure 19 Comparison of test result with FEA for 800-6
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0.00 1.00 2.00 3.00 4.00 5.00 6.00

Head rotation (degrees)

Figure 20 Comparison of test result with FEA for 800-6

As mentioned earlier, unreported data from test can interfere with proper modeling. For
instance only uniaxial tension behavior is reported in the test report. Because of Bauschinger

effect /. = f,, (see table 2), it is anticipated that the reported mechanical response properties in

the report of Rasmussen and Chick is inadequate for comparability between the experimental
testing and any subsequent finite element analogs. However the model of the test specimen only
considers the uniaxial tension material behavior which does not necessarily represent the actual
behavior of the specimen. Furthermore, residual stresses are not taken into account in the finite
element modeling. This may also play a role in any observed lack of agreement between the

experimental tests and the finite element analogs since residual stresses may have a significant
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impact on light gauge metal structural members, such as those being considered in the
verification study (as opposed to the heavier hot-rolled sections at the heart of the current
research’s parametric study discussed later).

In order to compare the physical results of the tests the deflected shape of the models are
compared with that reported by Chick and Rasmussen (1995). In the report Chick and
Rasmussen (Rasmussen, 1995) it is stated that: “The 800-Series specimen formed two local
buckle half-wavelengths in the compression flange outstands which grew in amplitude until the
end of the test. The tension flange outstands remained flat while yielding in tension as the test
progressed.”

In figure 21 an ABAQUS deformation plot shows that the characteristic behavior of the model

matches with that stated in the test report.

Twro local buckle half-wavelengths i the

\ compression flange

T

Flat tension flange

Figure 21 Deformed shape of the numerical model for test specimen 800-6.
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In the report Chick and Rasmussen (Rasmussen, 1995) states;

“The 5800-Series specimen formed local buckles of consistent amplitude and wavelength over
the entire length of the compression flange outstands. These deformations changed in amplitude
from when they were first apparent. Failure eventually occurred at one quarter of the length from

one end of the specimen where yield lines formed in the compression flange outstands.”

Tielding Starts .- i
Local Buckling
P S, Mises
- P SNEG, [fraction = -1.0}
_ (Awe. Crit.: 75%)
= g = +4.370e+02

Figure 22 Deformed shape of the numerical model for test specimen 5800-5.

Again in this model ABAQUS deformation plot (figure 22) shows good agreement with the

statement made in the test report.
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3.3 DESCRIPTION OF EXPERIMENTAL TESTING PROGRAM FOR I-SHAPED
BEAMS UNDER MINOR AXIS MOMENT - THRUST

Beams with 3500 mm and 5800 mm lengths from the research of Ramussen and Chick (1995)
are used to validate the finite modeling strategies for the investigation of interaction between
axial loading and minor axis bending. Since a detailed description of modeling is mentioned in
previous section, only the differences between the two modeling approaches will be reported in

this section. Total of seven tests are verified for this part of the research.

3.3.1 Geometry of the test specimen

The measured cross-sectional dimensions, in addition to the ultimate forces applied to the

models, are tabulated in table 5.

Table 5 Measured specimen lengths and applied loads

Specimen t,(mm) t,.(mm) b,, (mm) B (mm) f.(mm) M (kNm)  P(kN)

3500-2 5.02 4.95 24050  240.00 4.50 5.93 653
3500-3 4.97 4.98 240.00  239.50 6.50 9.57 553
3500-4 4.96 5.00 240.00  239.00 6.00 13.2 427
3500-5 5.01 5.00 24050  239.50 450 39.63 65
5800-2 491 5.01 240.00  240.00 450 1.79 430
5800-3 4.99 5.01 241.00  240.00 5.00 7.26 318
5800-4 5.07 5.05 241.00  240.00 5.50 18.21 181
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3.3.2 Material model

Uniaxial tension test results carried out under quasi-static conditions are adjusted to be static
values according to the paper of Galambos and Ravindra (1978). In that paper stress levels are
decreased by 4 ksi because of the difference between the dynamic test loading and the actual
static loading. Static yield stress is independent of testing procedure and the behavior of testing
machine. Static yield stress is defined as the stress level when the strain rate is zero or when the
testing speed is zero (Galambos, 1998). In figure 23 difference between static and dynamic
loading can be seen. For example; uniaxial tension test results for plate 2 is given in figure 24

and the amount of deduction calculated is also shown on figure 24.

!J

M

Pyst— J// —""—"—— Experimental

Applied load P

P,,, = maximum dynamic load

Py = maximum static load

Midheight deflection, A

Figure 23 Difference between dynamic loading and static loading (Galambos,1998).

51



600

500

400

300

Stress, o(MPa)

200 -

100

7T~
7 \
—f—————f——
U S S —— eSS = — S P ——
» \ /
> AN /
d ~N__-
r«;q
— e o I _ ! §
* | .
+
*
> |
Lo |
] = ] — '“‘ - e FEETE
i .
" ¢ 23.6 Mpa=3.4 ksi
» — e
" +
"
b —y
'3 I § IR T — |
» |
>
»
4
-
3 -
p
b 4
: :
] |
<
L
3
|
0 50000 100000 150000 200000 250000
Stran, t'l\‘:[?h )

Figure 24 Stress strain plot for plate 2.

The reported mechanical response values from coupon testing appear in table 6 in

engineering units; these are subsequently adjusted to be static values and then converted to an

idealized multilinear true stress and logarithmic strain format (see figure 10, table 7,8,9,10 and

11) prior to importation into the finite element software package, ABAQUS.
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Table 6 Mechanical properties

Specimen Plate E (GPa) f,. (MPa) f,.(MPa) f.. (MPa)

3500-2 6 204 457 431 503
3500-3 2 198 450 435 498
3500-4 3 200 453 436 506
3500-5 4 200 466 431 509
5800-2 1 199 451 435 502
5800-3 2 198 450 435 498
5800-4 1 199 451 435 502

Table 7 Stress- Strain values for Plate 1

C om Epom O e el
4355 0.002188 408.874 0

4355 0.014904 414.4099  0.012567
503 0.063462 507.3492  0.05884
525 0.10875  554.5098  0.100305
525 0.186635 595.404  0.167991

Table 8 Stress -Strain values for Plate 2

O-nnm gnnm O-tme & |ﬁ[
435 0.002197 408.3766 O
435 0.018269 415.3681 0.015867

499.3333  0.061538 502.4825 0.057042
523.3333  0.111731 554.2267 0.10298
523.3333  0.186731 593.4767 0.168066
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Table 9 Stress -Strain values for Plate 3

O-num gnum O-true gllr:l

436 0.00218 409.3715 O

436 0.011538 413.4517 0.009267

506.6667 0.065385 512.2158 0.060637

526.6667 0.105769 554.7928 0.097629

526.6667 0.186538 597.3312 0.167916

Table 10 Stress -Strain values for Plate 4

O-nom gnom O-true & |’;l

431 0.002155 404.3498 O

431 0.013077 409.0571 0.010809
510 0.061538 513.8056 0.057012
526 0.088462 5449517 0.081903
526 0.146154 575.2979 0.133397

Table 11 Stress -Strain values for Plate 6

O-nnm gnnm O-tme & |ﬁ[
431 0.002113 404.3315 O
431 0.009615 407.5652 0.007436
483.3333 0.046154 478.062 0.042642
520 0.1 544.421 0.092506
520 0.176923 584.421 0.159903
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3.3.3 Geometric imperfections

In the finite element analogs of the experimental test specimens, a reasonable displacement-
based imperfection field is incorporated into the finite element models in the form of sinusoidally
varying imperfection possessing a half wavelength of B,/ 2, that is phase shifted by 180 degrees
between opposite flange tips (see figure 12) as well as a maximum displacement amplitude equal

to 0.2 times the flange thickness.

3.3.4 Finite element model for I-Shaped Beams under minor axis moment - thrust

Finite element mesh: The |-shaped cross-sections are built-up using S4R shell finite elements
from ABAQUS element library positioned along the middle surfaces of the cross-sectional

constituent plate components (figure 25).

Figure 25. Representative Shell Finite Element Mesh
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A constant moment loading is achieved by applying four concentrated forces perpendicular to
the beam longitudinal axis. Axial loads are applied at the nodes at the roller end of the simply
supported beam. The two end segments adjacent to the constant moment region, are made to
behave rigidly.

Boundary Conditions: The model is a simple supported beam. However; restraint against
torsion is applied at the flange tips at the flexible-rigid transition interfaces. A schematic
depiction of the loading, geometry, and boundary conditions used in this work appears in figure
26. At the end of the I-shaped member, along the plate edges, rigid beam elements from the
ABAQUS element library are employed to assist with maintaining ideal kinematics at points

associated with the imposition of boundary conditions.
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Rigid End &

Flexible Beam

Rigid End

o -Denotes Restraint of St.Venant's Torsion
== -Denotes for Rigid Beam

A -Denotes Pin B.C
& -Denotes Roller B.C

Figure 26 Test rig and finite element modeling
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3.3.5 Verification of Test Results for I-Shaped Beams under minor axis moment -
thrust

Results from seven of the experimental specimens reported on from the research program of

Rasmussen and Chick (1995) are compared with equivalent finite element models. Plots

comparing these interaction responses appear in figures 27 and 28. In these figures, the

maximum inelastic moment at the mid-span versus the axial load are plotted. The maximum

moment is calculated as the sum of the end moment and the moment produced by the

eccentricity of the axial force; M =M, ,+ Po where ¢'is the mid-span deflection (i.e. the sum

of the primary and secondary moments). Based on these results, it appears that the present

modeling techniques are sufficiently robust to undertake the desired parametric study.

3500 Series

700.00

600.00

500.00
-~
Z
X
o/
o 400.00
ut —=—3500_2_FEA
g —4—3500_2 Test
g 300.00 —%—3500_3 FEA
b —3500_3_Test
200.00 —3500_4 _FEA
—6—3500_4 Test
100.00 3500 5 FEA
3500_5 Test

0,00 l T T T T T T T T T 1
0.00 5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00 45.00 50.00

Moment (KkNm)

Figure 27 Comparison of results for 3500 series
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5800 Series

—=—5800_2 FEA
——5800_2 Test
—%—5800_3 FEA
—%—5800_3 Test
——5800_4_FEA
—0—5800_4 Test

0.00 ¥ ‘ ‘ ‘ ‘ ‘
0.00 10.00 20.00 30.00 40.00 50.00

Moment (kNm)

Figure 28 Comparison of results for 5800 series

Rasmussen and Chick (1995) also reported the maximum axial force and corresponding
second order moment values at the end points. It is noted that the format of these test results
allows foran easy comparison with the design interaction curve in AISC-LRFD since it is defined

is terms of ultimate axial load (P)versus second order elastic moment(3/, ). In order to

compare the experimental results with design interaction equations, end moment must be

converted to second order moments. This can be done by using the following equation;

Mmeu = Bl x Memlu (39)
1
B, = P (40)
P
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2

. . EI .
where Euler buckling load is P, = ”LZ ; a value enforced to be the flexural buckling load about

the minor principal axis in this context, and M, is the first order end moment coinciding with

the controlling value of P . Furthermore, M, from the ABAQUS results is converted into

endu

M . and compared with the corresponding values given by Rasmussen. Comparison of these

values can be seen in table 12.

Table 12 Comparison of ultimate axial load and second order elastic moments

P u (k]v) Mmeu (kN m)
Specimen  FEA Test FEA Test
3500-2 654.00 653.00 9.82 9.80

3500-3 536.28 553.00 14.75  15.60
3500-4 449.12 427.00 20.11  18.80
3500-5 63.97 65.00 40.79  41.50

5800-2 414.51 430.00 5.99 7.30
5800-3 317.29 318.00 16.02  16.20

5800-4 191.85 181.00 28.78  26.30

Based on results from figure 27 and 28, as well as the failure loads presented in table 12, it
appears that the present modeling techniques are sufficiently robust to undertake the current
research work investigating combined loading response of I-shaped steel cross-sections bent

about the minor-axis in the presence of axial compressive loading.
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4.0 I-SHAPED BEAMS UNDER MINOR AXIS BENDING

41 PARAMETRIC STUDY

Rotation capacity for wide-flange beams under major axis bending is studied by various

researchers. Kemp (1985) examined the ratio of b, /¢,,d/t,,Llr,,L/t,and found their

influences on plastic flexural ductility or rotation capacity of wide flange beams. He also
reported that strain hardening properties of the steel is an important factor in affecting the

observed flexural ductility. Based on the studies of Roik and Kuhlman (1987), the L/b, ratio

was also found to be an important parameter in determining the rotation capacity. However, it is
pointed out that in the case of major axis flexure, the occurrence of lateral-torsional buckling is
an important factor in the manifestation of overall beam rotation capacity (a situation consistent

with the observed sensitivity on L/5b,) . This is not the case for an I-beam in minor axis bending

since the cross-section cannot experience this overall mode of buckling.
The present parametric investigation considers the variation of five physical quantities:

cross-sectional aspect ratio (B, /d) unbraced length-to-cross-sectional depth ratio (L, /5, ) ; web
slenderness ratio, (%/t,)flange slenderness ratio, (B,/2t,), and steel yield strength. The

individual parameters are varied within the context of five groupings of a series of given

quantities as defined in table 13.
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Parametric studies are constructed for each different i/t ratio. For each h/t, ratio,
L,1b, ratio is varied from two to nine. Also B,/d is varied from 0.4 to 0.9 for each L, /b,

ratio. When arriving at individual plate slenderness limits for compact flange response, the ratio

B, [2t, is varied for a fixed combination of the other four parameters until compact response is

achieved. A schematic depiction of this approach can be seen in figure 29. For each /¢, group

there will be at least 96 finite element model runs.

Table 13 Parametric Study Naming Convention

h/t,=60 h/t,=90 h/t,=120
f,=50 Group 1 Group 2 Group 3
f,=60 Group 4 NA NA
f,=70 Group 5 NA NA
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Figure 29 Depiction of Approach Taken in Arriving at compactness Results (note: by refers to the
complete flange width in this figure)

In order to see the effects of material strength 50 ksi, 60 ksi and 70 ksi steel are used in
the parametric study. The true stress and logarithmic plastic strain values for these steels are

given in table 14.
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Table 14 True stress and logarithmic strain values for parametric study models

S0ksi  50ksi 60ksi 60ksi 70ksi  70Kksi
pl pl pl

Otrue €in Otrue €in Otrue €in

50 0 60 0 70 0
51.345 0.0092 61.345 0.0092 81.345 0.0092
75 0.0557 78 0.0557 88 0.0557
80 0.09 89 0.09 99 0.09

4.2 GENERAL BEHAVIOR

As expected, the results showed no evidence of lateral torsional buckling. The only instability
phenomenon was the local buckling of compression portion of the flanges. A typical deflected

shape, with von-Mises stresses, can be seen in figure 30.

3, Mises

SNEG, (fraction = -1.0)

[we. Crit.: 75%)
+1.550e+02
+5.000e+01
+4.554e+01
+4,1688e+01

Figure 30 Typical deflected shape and stress distribution
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When a given beam reaches its plastic moment capacity, flanges both in the compression
and tension regions (i.e. above and below the neutral axis) are yielded. However, for some cases
the web did not yield, or just started to yield, as the section reached its plastic moment capacity.
It is not surprising that the web failed to yield in most instances since itsw location corresponds
to the theoretical neutral axis position of the cross-section. The stress distribution for L/B=2 of
group 2 is given in figure 31. For each B/d ratio, there are two plots which represent the state of
stress at incipient plastic moment and at the attainment of ultimate moment. The numbers under
each figure show the increment number, and the lower number is for the state of plastic moment.

For each finite element model shown below, the left figure is at M), and the right figure is at A4,,.
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L/B=2 B/d=0.4 B/2t=8.5 L/B=2 By/d=0.5 B/2t=8

PS 2 058

i PS2_04_85 i
L/B=2 B/d=0.6 B/2t=8 L/B=2 B/d=0.7 B/21=8
PS 2 0.6_8 PS2 07 8

L/B=2 B/d=0.8 B/2t=7.5 | L/B=2 B/d=0.9 B/21=7.5

PS2 0.8 7.5 PS2 0.9 7.5

Figure 31 von Mises stress distribution for L/B, =2 at M, and at M,

In order to see the affect of L/B;in web yielding behavior, same plots are given for L/B=9 of

group 2 in figure 32.
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L/B=9 B/d=0.4 B/2t=9.5 | L/B~9 B/d=0.5 Bj2t=8.5 | L/B=9 B/d=0.6 B/2t=8

PS9_0.4_95 P89 0.5 8.5 PS9 0.6 8

20
23

L/b=9 B/d=0.7 B/2t=8 | L/B=9 B/d=0.8 B/2t=8 | L/B~9 Byd=0.9B/2=7.5

PS9 0.7 8 PSO 08 8 PS9 0.9 7.5

Figure 32 von Mises stress distribution for L/B, =9 at M,, and at M,

From figure 31 and figure 32 it can be said that for higher B/d ratio there is a limited amount of
web yielding at plastic moment state. Also as the L/bs ratio gets higher the tendency for web

yielding to occur at M, decreases.
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43 MOMENT ROTATION CURVES

Moment rotation curves for each parametric combination displayed a significant sensitivity
related to when there was rotation capacity to be measured and when there was none at all. For
example, this can be seen in moment rotation curve for L/B=4, B;/d=0.5 and h/t,,=90 (group 2)
(see figure 29). For B/2t=38.5 the rotation capacity is 24.24 which is much greater than three: the
minimum rotation capacity mentioned in AISC (1999) manual. However for B,/2t,=9 there is no
rotation capacity at all. The delineation between small finite rotation capacity values and very
large rotation capacities is referred to as the critical rotation capacity herein. It has been found
that the critical moment rotation values vary from 32.71 to 5.34; sometimes slight changes in
slenderness yield enormous improvements in structural ductility and other times such changes
result in only small, incremental improvements.

More than 40 discrete parametric data points are obtained from an analysis space of more
than 480 individual runs. The 40 discrete parametric points for the flange slenderness values
where the critical rotation capacities are found are presented in tables 15,16,17,18, and 19.

The corresponding critical rotation capacities, calculated at these parametric points, are
tabulated in tables 20,21,22,23 and 24. In addition, for the group 2 parametric points, some
representative trend lines are plotted in figure 33. In figures 34 and 35 moment rotation curves

for the case of L/B,=2 and L/B/=9, from group 2, is presented.
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Table 15 Critical B¢/2t; ratio values for Group 1

f,=50  h/t,=60
Bs/d

0.4 05 0.6 0.7 0.8 0.9

2 9.5 8.5 8.5 8 8 8

3 9.5 8.5 8.5 8 8 8

4 10 9 8.5 8.5 8 8

g 5 na na 9 8.5 8 8
-1 6 11.5 10 9 8.5 8.5 8.5
7 na 10 9 9 8.5 8.5

8 na 10 9.5 9 8.5 8.5

9 na 10.5 9.5 9 8.5 8.5

Table 16 Critical B¢/2t; ratio values for Group 2
f,=50  h/t,=90
B:/d

0.4 0.5 0.6 0.7 0.8 0.9

2 8.5 8 8 8 7.5 7.5

3 8.5 8 8 8 75 7.5

4 9 8.5 8 8 75 75

a 5 9 8.5 8 8 8 75
1 6 9 8.5 8 8 8 7.5
7 9 8.5 8 8 8 7.5

8 9.5 8.5 8 8 8 75

9 9.5 8.5 8 8 8 7.5
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Table 17 Critical B#/2t; ratio values for Group 3

f,=50  h/t,=120
By/d

0.4 0.5 0.6 0.7 0.8 0.9

2 8.5 8 8 7.5 7 6.5

3 na 8 na 7.5 na 6.5

4 8.5 8 8 7.5 7 6.5

W 5 8.5 8 8 7.5 7 7
J 6 8.5 8 8 na 7 7
7 8.5 8 8 8 7 7

8 8.5 8 8 8 na Na

9 8.5 8.5 8 8 7.5 7

Table 18 Critical B¢/2t; ratio values for Group 4
f,=60  h/t,=60
B/d

0.4 0.5 0.6 0.7 0.8 0.9

2 8 7.5 7.5 7.5 7.5 7.5

3 8 7.5 7.5 7.5 7.5 7.5

4 8.5 8 7.5 7.5 7.5 7.5

M 5 9 8 8 7.5 7.5 7.5
J 6 10 8.5 8 8 75 75
7 10 9 8.5 8 7.5 7.5

8 na 9 8.5 8 8 7.5

9 na 9 8.5 8.5 8 8
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Table 19 Critical B#/2t; ratio values for Group 5

f,=70  h/t,=60

Bs/d
0.4 0.5 0.6 0.7 0.8 0.9
2 7.5 7 7 7 7 7
3 7.5 7 7 7 7 7
4 7.5 75 7 7 7 7
M 5 8 7.5 75 7 7 7
J 6| 85 8 75 75 7 7
7 9 8 8 7.5 75 7.5
8 9 8.5 8 7.5 75 7.5
9 9 na 8 7.5 75 7.5
Table 20 Critical rotation capacity values for Group 1
£=50  h/t,=60
Bs/d
0.4 0.5 0.6 0.7 0.8 0.9
2 29.78 28.16 20.92 19.93 19.37 15.84
3 25.61 24.58 18.36 18.13 16.67 13.34
4 32.71 21.99 19.61 15.92 15.85 14.58
M 5 na na 16.83 16.21 16.19 14.45
J 6 30.15 20.67 18.92 17.38 14.39 11.94
7 na 21.69 18.46 13.66 13.42 11.15
8 na 21.71 14.20 13.10 12.24 10.93
9 na  18.76 15.99 12.72 11.32 9.87
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L/Bs

L/Bs

Table 21 Critical rotation capacity values for Group 2

f,=50  hi/t,=90
Bs/d
0.4 0.5 0.6 0.7 0.8 0.9

2 2364 2069 1590  10.72  13.20  10.05
3 2452 2191 1625 1273  13.98  11.24
4 2198 1937 1816 1587 1555  12.33
5] 2012 1627 1667  13.93  12.08  13.06
6 18.49 1354  13.97  12.09  10.67  12.71
7 1753 1404 1278  10.13 9.39  10.71
8 15.29 1111 1047 8.75 7.60 9.22
9 16.10 11.38 9.38 8.59 7.34 8.22

Table 22 Critical rotation capacity values for Group 3

f,=50  hit,=120

Bs/d

0.4 0.5 0.6 0.7 0.8 0.9
2 18.49  16.48  10.28 9.41 9.61 9.09
3 na 13.08 na 9.03 na 8.68
4 15.35 1425  11.33  10.03 7.34 8.32
5 1553  13.93  10.69  10.21 8.44 5.34
6 1411 1365  10.67 na 7.34 5.97
7 1251 1175  10.36 7.41 8.52 5.86
8 11.03 10.32 9.44 8.11 na na
9l 10.38 8.74 8.57 7.35 7.70 6.08
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L/B¢

L/Bs¢

Table 23 Critical rotation capacity values for Group 4

f,=60  hit,=60

B¢/d

0.4 0.5 0.6 0.7 0.8 0.9
2| 2106 2256 1865 1556  13.11 9.68
3 19.94 1796 1470 1317 1158 9.10
4 1986 1620 1597  13.89  12.83  11.32
5 19.19 1574  12.99  13.80  12.09  10.75
6 19.22 1494 1249 1139 1245 1117
71l 2273 1419 1243 11.94 1191 1047
8 na 1546  12.84  11.34 9.53 9.80
9| na  15.37 12.49 9.32 9.06 7.55

Table 24 Critical rotation capacity values for Group 5

=70 hit,=60

Bs/d

0.4 0.5 0.6 0.7 0.8 0.9
2 1538  16.82 1291  11.02 9.86 9.19
3 15.09 1353  11.92  10.78 9.89 8.26
4 1857 1320 1372 1148  10.34 9.48
5 14.94  11.69 9.00 1157  10.46 9.68
6 14.48 1222  10.67 9.45  10.11 9.34
7 15.42 1366  11.16 9.60 8.53 7.28
8 17.27 1320  10.65 9.52 8.21 7.08
9 17.79 na 9.75 9.12 7.72 6.68
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L/B =8 L/B =9
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Figure 33 B;/2t,values for varying B,/d values for group 2
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Figure 34 Moment-rotation curves for L/B,=2 of group 2
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Figure 35 Moment-rotation curves for L/B=9 of group 2
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4.4 DISCUSSION OF RESULTS

As the parameters of the study are varied, certain trends in behavior become clear. The current
section endeavors to describe the observed differences as well as to describe possible
mechanisms that may explain the observed response and thus lend additional insight into the
problem of minor axis compactness.

One discussion point that conspicuously presents itself is related to the applicability of
exiting specification recommendations, for major axis flexural flange compactness, to the case of
minor axis flexure. While it is commonly believed that the foregoing practice is conservative
(based on so-called “common sense”), this may not actually be the case. Based on the results
presented herein for the three steel grades considered, it appears to be un-conservative to apply
the major axis provisions to the case of minor axis flexure. For the case of steel with a minimum
specified yield stress of 345MPa, the US specification requires that for compactness, the ratio B,
/ 2ty may not exceed 9.2. However, the results presented herein clearly indicate that the
maximum permissible plate ratio B,/ 2t, may be as low as 6.5 (depending on web slenderness
ratio, 4 / t,,, and cross-sectional aspect ratio, B,/ d). Similar results hold for the cases with steel

having yield stresses of 414MPa and 483MPa.

4.4.1 Effect of steel yield strength on flange compactness limit

Based on the compactness results gleaned from the finite element modeling results obtained
using steel possessing yield strengths of 345MPa, 414MPa, and 483MPa, certain trends in cross-
sectional compactness arise. As the yield strength increases from 345MPa to 483MPa, the

maximum permissible cross-sectional plate slenderness ratio decreases by as much as 25%.

78



Meaning that as steel strength increases, a significantly more strict compactness limit must be
enforced, as compared with cross-sections made from lower strength steels. It is noted that this
sensitivity to yield stress is somewhat greater than what the US specification predicts (15%
decrease in maximum permissible limiting plate slenderness resulting from the noted 138MPa
steel strength increase — all other parameters held constant). However, it is noted that in cases
where the cross-section possesses a large cross-sectional aspect ratio, Bs/ d, (approximately 0.9)
the diminution of the maximum permissible flange slenderness resulting from the increasing
steel strength is much more consistent with current specification predictions; although overall

magnitude of the slenderness limit predicted by the specifications is still un-conservative.

4.4.2 Effect of web slenderness on flange compactness limit

A clear parameter influencing the maximum permissible flange slenderness limit is web
slenderness, 4 / t,,. Using the web compactness limit from the US specification (in conjunction
with a steel yield strength of 345MPa), for the case of major axis flexure, results in a web
slenderness limit of 90. As part of the current research effort, a variation of +/- 30% (i.e. 2 /t,, =
60, 90, and 120) is considered in the following discussion. As web slenderness, % / t,,, increases,
the maximum permissible flange slenderness required for compact behavior decreases (in some

cases by as much as 25% as 4 / t,, increases by 100%).

4.4.3 Effect of Cross-sectional aspect ratio on flange compactness limit

It is interesting to note that the ratio of cross-sectional flange width to cross-sectional depth ratio,

B/ d (aspect ration), has a pronounced influence on the limiting flange slenderness required for
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compact response. In general, as the aspect ratio increases (from 0.4 to 0.9), decreases as large
as 25% are observed to occur in the limiting flange slenderness. This would indicate that, as an
isolated parameter, cross-sectional aspect ratio is at least as important as web slenderness in
affecting limiting flange slenderness requirements for compact response in minor axis flexure.
However, it is pointed out that as the span-to-depth ratio approaches 7, the fluctuation in flange

compactness as a function of cross-sectional aspect ratio all but disappears.

4.4.4 Effect of span-to-flange width ratio on flange compactness limit

In the present research, a series of different span-to-depth ratios, L, / By are considered; ranging
from 2 to 9. Based on the author’s experience in modeling, beams whose span-to-flange width
ratio is greater than or equal to 7 tend to behave well; vis-a-vis Bernoulli-Euler beam theory.
Those beams whose span-to-flange width ratios are less than 7 tend to exhibit significant effects
of internal shear. This fact is pointed out since it is noted that as the span-to-flange width ratio
increases, in the test population considered in the current research, increases in concomitant
flange slenderness limits accompany this growth; increasing by as much as 17% in the most

extreme instance (all other parameters held constant).

4.4.5 Effect of web-restraint on flange compactness limit

Based on the foregoing, it seems that the major factors influencing minor axis flange
compactness are web slenderness and cross-sectional aspect ratio. However, a closer
examination of the results hints at a mechanical basis for this: the effect of web-restraint on the

inelastic flange buckling. In arriving at this conjecture, it is observed that at low span-to-flange
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width ratios, the reduction in the flange compactness limit, as a function of cross-sectional aspect
ratio, is greatest. In addition, at high span-to-flange width ratios, the flange slenderness limit for
compactness is quite steady across different cross-sectional aspect ratios, and this steadiness
occurs in conjunction with the largest observed permissible values for the flange slenderness.
One may use the foregoing, in conjunction with the observation that flange compactness
limits are somewhat insensitive to changes in span-to-flange width ratio, to shed light on an
obvious limitation in the modeling: the presence of rigid ends in the model. It might have been
surmised that the rigid ends would provide an artificially high restraint against local buckling and
thus improve structural ductility; allowing for more liberal flange compactness limits. Such a
restraining effect ought to be most pronounced as the span lengths decrease and the rigid ends
subsequently move closer together. In actuality, the opposite trend is observed and the most
liberal minor axis flange compactness limits occur at the larger span-to-flange width ratios for
the beam in question. So the question remains; if some restraint of the flanges is leading to
increases in compactness limits then where is the restraint coming from? The hypothesis is that
the restraint is coming from the web. Based on the research results, it is noted that as the web
slenderness increases, it is easier for the flange to buckle locally. This may be ascribed to the
reduced flexural rigidity in the web as its slenderness is increased. It is further pointed out that
this web restraint effect appears to be more pronounced in cases wherein the member in minor
axis flexure is permitted to act like a beam (i.e. when span-to-flange width ratios are greater than
or equal to 7). At lower span-to-flange width ratios, the effects of shear complicate the observed
response and thus make it difficult to find a mechanistic basis for observed differences in flange

compactness.
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4.4.6 Comparison with Equation 19

The approach taken in deriving equation 19 in section 1.4 is philosophically consistent with what
the US Specification (AISC 1999) has done for the case of flange outstands subjected to
compression due to major axis flexure. Applying the one third difference between the plate
buckling coefficients, that is subsequently added to the lower bound value, produces a plate
slenderness limit, for compactness in 345 MPa flanges, of 10.2; a value far in excess of what is
observed to be a safe limit from the current finite element modeling results. A more appropriate
use of an equation 19 approach might be to preserve the plate buckling coefficient associated
with the pinned supported plate edge (0.57) wherein a more reasonable value of 7.9 is arrived at
for an appropriate ceiling for a flange slenderness limit, B,/ 2t; as required for compact cross-
sectional response for use in conjunction with 345 MPa steel. Limiting flange slenderness values
of 7.3 and 6.7 are also obtained from this approach in the case of steel with yield strengths of
414MPa and 483MPa, respectively. While it is that such an approach may be on the
conservative side for the parametric space explored, the method is flawed in a phenomenological
sense since it tacitly denies the relevance of edge restraint which has clearly been shown to be of
importance to this problem. However, as a simple and easily understood means for prescribing

minor axis flange compactness limits, it may be of some use.
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5.0 I-SHAPED STEEL CROSS-SECTIONS BENT ABOUT THE MINOR-AXIS IN THE
PRESENCE OF AXIAL COMPRESSIVE LOADING

5.1 PARAMETRIC STUDY

The present parametric investigation for interaction equations considers variations in weak-axis
slenderness, L, / r, ; cross-sectional proportions such as: flange slenderness, b,/¢,, and web
slenderness, #/¢,. In the case of weak-axis slenderness, L,/r, ratios of 40, 50, and 100 are

considered. In all of the sections considered, the webs and flanges are compact (in a strong-axis
sense), but the flange of the W12x72 (US customary designation) case considered is very close
to the compactness limit prescribed by AISC (1999). A total of three cross-sections taken from
AISC Manual (AISC 1999) are used in developing the computer models (table 25). For each

cross-section, the weak-axis slenderness ratio, L, /, is changed as mentioned above. The same

sinusoidally varying localized imperfection field (that is described earlier) is employed in the

parametric study, a peak displacement amplitude equal to B, /100 is adopted, as per the

maximum allowable fabrication imperfection permitted by AWS (2000).
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Table 25 Cross-sections used in the parametric study

Cross Section bilt; h/t,, bid
W12x72 9.00 22.60 0.98
W12x96 6.80 17.70 0.96
W14x132 710 17.70 1.00

Loading for the current parametric study is achieved using the configuration displayed in

figure 36. For each cross-section and for the various weak axis slenderness values, L,/r,

considered, a parameter, «, is changed from 0.005 to 0.8, to achieve the various fractions of
moment and axial force; which subsequently grow at the same rate within the given

proportionality ratio being considered. For each run P (ultimate axial load) and the
corresponding M, (ultimate moment) are plotted to define the interaction curve for the given
member. For example for cross-section W12x26 with L, /r, =40, « values and corresponding P

and M plots are given in figure 37.

V=aP V=P

P M=aPL
—_—
L L

Figure 36 Schematic description of loading for the parametric study.
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Figure 37 Representative interaction curve for a given cross-section

In order to include the second order effects due to the beam column behavior , additional

moment resulting from P, is calculated as P, xd where ¢ is the difference between the midspan
deflection and the deflection at the intersection of rigid and flexible beam (A, —A,) (figure 38).

This additional moment is added to the primary moment observed from FEA.
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Figure 38 Calculation of additional moment

5.2 GENERAL BEHAVIOR

Formation of local buckles were observed along the flange outstands; the deflected shape of the
beam, as obtained from FEA, is presented in figure 39. Increasing the load makes the local
buckles at the compression flanges more distinct. The tension flange outstands fail by yielding in
tension. As the numerical test progresses, the tension flange straightened from its initial local

buckled configuration. See figure 40 and figure 41.

Figure 39 Deflected shape taken from FEM analysis.
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Figure 40 von-Mises stress plot for beam under both minor axis bending and axial force
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Figure 41 von-Mises stress plot for beam under both minor axis bending and axial force

5.3 THE AISC-LRFD BEAM-COLUMN INTERACTION EQUATIONS.

In LRFD Chapter H, the interaction equation for doubly and singly symmetric members subject

to bending and axial force is given by H1-1a and H1-1b as below;

Foriz 0.2
¢F,

M
£ +§ M, +—2|<1.0 (41)
¢F, 9\ oM, oM,

For i <0.2
PF,
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M
£ + M, +—|<1.0 (42)
2¢R’I ¢an ¢any

X

Wherein, ¢P,, is the design compression strength for flexural buckling, as calculated according

to LRFD section E2.

P=AF, ¢=085 (43)

For A, <15
F, =(0.658)F, (44)

For 4, >1.5
Fc,:[oiz?j@ (45)

where the column slenderness parameter, A , is defines as;

2 =KL 5

46
S = (46)

In addition, ¢M, , the flexural design strength of the beam, is determined by the limit state of

yielding according to LRFD (F1-1):

M,=M, $=09 (47)

M,=FZ <15xM, M, =F,S, (48)
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2
. . . 7 El . .
And the Elastic Euler buckling load for the y-axis, P, , = i ~, is calculated and tabulated with

2
b

the calculated P, and M, in table 26.

Table 26 Cross-sectional properties

Cross-section Ly/r, L, P, P, M,

W12x72 40 121.60 938.52 377455  2430.00
50 152.00 878.75 241571  2430.00
100 304.00 507.82 603.93  2430.00

W12x96 40 12360 1254.33  5058.53  3330.00
50 15450 117445  3237.46  3330.00
100 309.00 678.70 809.37  3330.00

W14x132 40 150.40 1725.82 6933.98  5587.50
50 188.00 1615.90 4437.75  5587.50
100 376.00 933.81  1109.44  5587.50

Since the major axis bending is not at issue in this research, M is taken zero. In the

development of the interaction curves, all the resistance factors are taken as one so as to achieve
nominal resistances, or design strengths. The current interaction equation from Chapter H of the

LRFD specification (AISC 1999) is developed by solving M, for a given P,,.

For
ﬁ20.2 MM:Mnxgx 1—£ (49)
b, 8 b,
For
Lico2 M -m, x(l— £, j (50)
n 2F,
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5.4 DISCUSSION OF RESULTS

More than 120 discrete parametric data points are obtained from the analysis space. Interaction
curves are gleaned from the data sets associated with the nonlinear finite element modeling of

the three cross-sections identified in table 25; for each of the three unbraced lengths Z, /», =40,

50 and 100. Figures 42 through 50 display the results of this effort, as well as the accompanying
predictions associated with the provisions contained in Chapter H of the AISC specification

(1999).

W12x96 Ly/ry=40

1.2 7

—LRFD
——FEA

0.2

0 0.2 0.4 0.6 0.8 1 1.2
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Figure 42 Comparison of FE interaction results with AISC
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Figure 43 Comparison of FE interaction results with AISC
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Figure 44 Comparison of FE interaction results with AISC
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Figure 45 Comparison of FE interaction results with AISC
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Figure 46 Comparison of FE interaction results with AISC
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Figure 47 Comparison of FE interaction results with AISC
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Figure 48 Comparison of FE interaction results with AISC
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5.5 RECOMMENDED INTERACTION EQUATIONS

Based on plots presented above ( figure 42-figure50), it is noted that the current AISC interaction
expressions tend to be somewhat conservative in their capacity predictions for I-shaped beam-
columns bent about the weak axis when the applied moment ratio, M/M, is less than
approximately 0.7 and unconservative at moment ratios greater than this. This finding is not
surprising since, as was pointed out in the introduction, the AISC interaction equations were
developed based on the behavior of I-shaped beam-columns bent about their strong axis (major
principal centroidal axis).

The current research proposes amending the existing AISC interaction equations (
equations 41 and 42 above), by specifying substantive changes to address the important observed
behavioral differences for the case of I-shaped beam-columns bent about the weak axis (minor

principal centroidal axis). The form of the new equations are given as:

for £ >05:
P,
LM, 19 (51)
P, 9M,
and for i <0.5:
P,
TE .M (52)
0P M

Figures 51 through 59 show a comparison between the results of the nonlinear finite element
beam-column analyses, the current AISC interaction predictions, and the predictions obtained

using the proposed equations 51 and 52.
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6.0 CONCLUSION

6.1 COMPACTNESS

Employing the verified nonlinear finite element modeling techniques, I-shaped beams bent about
the minor principal centroidal axis are studied. It appears to be unconservative to apply limiting
plate slenderness ratios for the major principal axis flexural case when significant structural
ductility is sought. Indeed, proper consideration of reserve capacity during inelastic buckling of
constituent plate buckling elements used in the flanges must properly consider the important
effects of rotational edge restraint afforded by the web along the flange-web junction.

As a crude but useful measure, one may deny the importance of this edge restraint and
rely on a simple, but conservative plate slenderness limit that is not too philosophically different
from the equations employed in the major axis flexural case and thus easily incorporated into

existing specification formats.
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6.2 INTERACTION EQUATIONS

Through the use of experimentally verified nonlinear finite element modeling techniques, the
case of an I-shaped beam-column, subjected to bending about the minor principal centroidal axis,
is treated. Based on these efforts, it is noted that the current AISC interaction expressions tend to
be somewhat conservative in their capacity predictions for I-shaped beam-columns bent about
the weak axis when the applied moment ratio, M / M,, is less than approximately 0.7; and
unconservative at moment ratios greater than this. This finding is not surprising since the AISC
interaction equations were developed based on the behavior of I-shaped beam-columns bent
about the strong axis (major principal centroidal axis).

As a means for mitigating the observed lack of agreement between the existing interaction
equation predictions for this case, as compare with the nonlinear finite element modeling results,
a modification of the form of the existing AISC interaction equations (AISC 1999) is proposed.
The result of this effort is a set of two equations, following directly after the current equation
format in Chapter H of the AISC specification (1999), that exhibit a better agreement with the
observed minor axis beam-column modeling results as compared with the current form of the

equations.
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APPENDIX

ABAQUS INPUT FILE FOR I-SHAPED BEAMS UNDER MINOR AXIS BENDING

*HEADING

**Num. of ele in L/3 (m)=30
**Num of ele in bf/2 (n)=4
**Num of ele in d (k)=25
**Fy=50ksi & Est=2.9E4ksi & Iso.Hard
** d=25

** tf=0.417

** bf=7.5

** tw=0.278

** bf/d=0.3

** bf/2tf=9

** imp_size=0.075

** |w=3.75

** del_y=1

** p=-11.024

*NODE

**Left side of the Left Flange
1,0,0,0

365,0,0,3.75

729,0,0,7.5

**Right side of the Left Flange
91,0,90,0

455,0,90,3.75

819,0,90,7.5

**|eft side of the Right Flange
820,24.583,0,0
1184,24.583,0,3.75
1548,24.583,0,7.5

**Right side of the Right Flange
910,24.583,90,0
1274,24.583,90,3.75
1638,24.583,90,7.5

**Web

1639,0.2085,0,3.75
1669,0.2085,30,3.75
1699,0.2085,60,3.75
1729,0.2085,90,3.75
3914,24.3745,0,3.75
3944,24.3745,30,3.75
3974,24.3745,60,3.75
4004,24.3745,90,3.75
**Middle of Iflange
395,0,30,3.75

425,0,60,3.75

**Middle of rflange
1214,24.583,30,3.75
1244,24.583,60,3.75
**Constant Moment Region
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**|eft flange Bottom

31,0,30,0
32,0.0557527809112509,31,0
33,0.0745838381863687,32,0
34,0.0440224917781132,33,0
35,-0.0156923111687995,34,0
36,-0.0650150374028232,35,0
37,-0.0712822029285651,36,0
38,-0.0303434398228237,37,0
39,0.030689963962659,38,0
40,0.0713992449095712,39,0
41,0.0648250873392884,40,0
42,0.0153211615976319,41,0
43,-0.0443290507515532,42,0
44,-0.074622790936483,43,0
45,-0.0554983313674026,44,0
46,0.000379345162739933,45,0
47,0.0560058041386644,46,0
48,0.074542977367232,47,0
49,0.0437148065827612,48,0
50,-0.0160630592855293,49,0
51,-0.0652033241947715,50,0
52,-0.0711633373438593,51,0
53,-0.029996139410555,52,0
54,0.031035702964977,53,0
55,0.0715144602926071,54,0
56,0.0646334788636361,55,0
57,0.0149496200670996,56,0
58,-0.0446344756604212,57,0
59,-0.0746598346210515,58,0
60,-0.0552424620166707,59,0
61,0,60,0

**Left Flange Top

759,0,30,7.5
760,0.0557527809112509,31,7.5
761,0.0745838381863687,32,7.5
762,0.0440224917781132,33,7.5
763,-0.0156923111687995,34,7.5
764,-0.0650150374028232,35,7.5
765,-0.0712822029285651,36,7.5
766,-0.0303434398228237,37,7.5
767,0.030689963962659,38,7.5
768,0.0713992449095712,39,7.5
769,0.0648250873392884,40,7.5
770,0.0153211615976319,41,7.5
771,-0.0443290507515532,42,7.5
772,-0.074622790936483,43,7.5
773,-0.0554983313674026,44,7.5
774,0.000379345162739933,45,7.5
775,0.0560058041386644,46,7.5
776,0.074542977367232,47,7.5
777,0.0437148065827612,48,7.5
778,-0.0160630592855293,49,7.5
779,-0.0652033241947715,50,7.5
780,-0.0711633373438593,51,7.5
781,-0.029996139410555,52,7.5
782,0.031035702964977,53,7.5
783,0.0715144602926071,54,7.5
784,0.0646334788636361,55,7.5
785,0.0149496200670996,56,7.5
786,-0.0446344756604212,57,7.5
787,-0.0746598346210515,58,7.5
788,-0.0552424620166707,59,7.5
789,0,60,7.5

**Right Flange Bottom
850,24.583,30,0
851,24.5272472190887,31,0
852,24.5084161618136,32,0
853,24.5389775082219,33,0
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854,24.5986923111688,34,0
855,24.6480150374028,35,0
856,24.6542822029286,36,0
857,24.6133434398228,37,0
858,24.5523100360373,38,0
859,24.5116007550904,39,0
860,24.5181749126607,40,0
861,24.5676788384024,41,0
862,24.6273290507516,42,0
863,24.6576227909365,43,0
864,24.6384983313674,44,0
865,24.5826206548373,45,0
866,24.5269941958613,46,0
867,24.5084570226328,47,0
868,24.5392851934172,48,0
869,24.5990630592855,49,0
870,24.6482033241948,50,0
871,24.6541633373439,51,0
872,24.6129961394106,52,0
873,24.551964297035,53,0
874,24.5114855397074,54,0
875,24.5183665211364,55,0
876,24.5680503799329,56,0
877,24.6276344756604,57,0
878,24.6576598346211,58,0
879,24.6382424620167,59,0
880,24.583,60,0

**Right Flange Top
1578,24.583,30,7.5
1579,24.5272472190887,31,7.5
1580,24.5084161618136,32,7.5
1581,24.5389775082219,33,7.5
1582,24.5986923111688,34,7.5
1583,24.6480150374028,35,7.5
1584,24.6542822029286,36,7.5
1585,24.6133434398228,37,7.5
1586,24.5523100360373,38,7.5
1587,24.5116007550904,39,7.5
1588,24.5181749126607,40,7.5
1589,24.5676788384024,41,7.5
1590,24.6273290507516,42,7.5
1591,24.6576227909365,43,7.5
1592,24.6384983313674,44,7.5
1593,24.5826206548373,45,7.5
1594,24.5269941958613,46,7.5
1595,24.5084570226328,47,7.5
1596,24.5392851934172,48,7.5
1597,24.5990630592855,49,7.5
1598,24.6482033241948,50,7.5
1599,24.6541633373439,51,7.5
1600,24.6129961394106,52,7.5
1601,24.551964297035,53,7.5
1602,24.5114855397074,54,7.5
1603,24.5183665211364,55,7.5
1604,24.5680503799329,56,7.5
1605,24.6276344756604,57,7.5
1606,24.6576598346211,58,7.5
1607,24.6382424620167,59,7.5
1608,24.583,60,7.5

**Left of the left flange
*NGEN,NSET=LLB

1311

*NGEN,NSET=LLM
365,395,1

*NGEN,NSET=LLT

729,759,1
*NFILL,NSET=LEFTLF1
LLB,LLM,4,91
*NFILL,NSET=LEFTLF2
LLM,LLT,4,91
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**Right of the left flange
*NGEN,NSET=LRB
61,91,1
*NGEN,NSET=LRM
425,455,1
*NGEN,NSET=LRT
789,819,1
*NFILL,NSET=RIGHTLF1
LRB,LRM,4,91
*NFILL,NSET=RIGHTLF2
LRM,LRT 4,91

**Middle of the left flange
*NSET,NSET=LMB,GENERATE
31,61,1
*NGEN,NSET=LMM
395,425,1
*NSET,NSET=LMT,GENERATE
759,789,1
*NFILL,NSET=MIDLF1
LMB,LMM 4,91
*NFILL,NSET=MIDLF2
LMM,LMT 4,91

**Left of the right flange
*NGEN,NSET=RLB
820,850,1
*NGEN,NSET=RLM
1184,1214,1
*NGEN,NSET=RLT
1548,1578,1
*NFILL,NSET=LEFTRF1
RLB,RLM,4,91
*NFILL,NSET=LEFTRF2
RLM,RLT,4,91

**Right of the right flange
*NGEN,NSET=RRB
880,910,1
*NGEN,NSET=RRM
1244,1274,1
*NGEN,NSET=RRT
1608,1638,1
*NFILL,NSET=RIGHTRF1
RRB,RRM 4,91
*NFILL,NSET=RIGHTRF2
RRM,RRT 4,91

**Middle of the right flange
*NSET,NSET=RMB,GENERATE
850,880,1
*NGEN,NSET=RMM
1214,1244,1
*NSET,NSET=RMT,GENERATE
1578,1608,1
*NFILL,NSET=MIDRF1
RMB,RMM,4,91
*NFILL,NSET=MIDRF2
RMM,RMT 4,91

**

**\WEB NODES
**
*NGEN,NSET=WLT
1639,1669,1
*NGEN,NSET=WMT
1669,1699,1
*NGEN,NSET=WRT
1699,1729,1
*NGEN,NSET=WLB
3914,3944,1
*NGEN,NSET=WMB
3944,3974,1
*NGEN,NSET=WRB
3974,4004,1
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*NFILL,NSET=WL
WLT,WLB,25,91
*NFILL,NSET=WM
WMT,WMB, 25,91
*NFILL,NSET=WR
WRT,WRB,25,91

**NSET FOR BOUNDARY CONDITION
*NSET,NSET=PINNED,GENERATE

1639,3914,91
365,1184,819

*NSET,NSET=ROLLER,GENERATE

1729,4004,91
455,1274,819
**

**ELEMENT DEFINITIONS

*%x

*%

**LEFT FLANGE
*ELEMENT,TYPE=S4R
1,1,2,93,92
*ELGEN,ELSET=LFL1
1,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
361,365,366,457,456
*ELGEN,ELSET=LFL2
361,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
31,31,32,123,122
*ELGEN,ELSET=LFM1
31,30,1,1,4,91,90
*ELEMENT,TYPE=S4R
391,395,396,487,486
*ELGEN,ELSET=LFM2
391,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
61,61,62,153,152
*ELGEN,ELSET=LFR1
61,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
421,425,426,517,516
*ELGEN,ELSET=LFR2
421,30,1,1,4,91,90
**RIGHT FLANGE
*ELEMENT,TYPE=S4R
721,820,821,912,911
*ELGEN,ELSET=RFL1
721,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
1081,1184,1185,1276,1275
*ELGEN,ELSET=RFL2
1081,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
751,850,851,942,941
*ELGEN,ELSET=RFM1
751,30,1,1,4,91,90
*ELEMENT,TYPE=S4R
1111,1214,1215,1306,1305
*ELGEN,ELSET=RFM2
1111,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
781,880,881,972,971
*ELGEN,ELSET=RFR1
781,30,1,1,4,91,90
*ELEMENT, TYPE=S4R
1141,1244,1245,1336,1335
*ELGEN,ELSET=RFR2
1141,30,1,1,4,91,90
**TOP STITCH
*ELEMENT,TYPE=S4R
1441,365,366,1640,1639
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*ELGEN,ELSET=TSL

1441,30,1,1,1

*ELEMENT, TYPE=S4R
1471,395,396,1670,1669
*ELGEN,ELSET=TSM

1471,30,1,1,1
*ELEMENT,TYPE=S4R
1501,425,426,1700,1699
*ELGEN,ELSET=TSR

1501,30,1,1,1

**BOTTOM STITCH

*ELEMENT, TYPE=S4R
3781,3914,3915,1185,1184
*ELGEN,ELSET=BSL

3781,30,1,1,1
*ELEMENT,TYPE=S4R
3811,3944,3945,1215,1214
*ELGEN,ELSET=BSM

3811,30,1,1,1

*ELEMENT, TYPE=S4R
3841,3974,3975,1245,1244
*ELGEN,ELSET=BSR

3841,30,1,1,1

**WEB ELEMENTS
*ELEMENT,TYPE=S4R
1531,1639,1640,1731,1730
*ELGEN,ELSET=WEBL
1531,30,1,1,25,91,90

*ELEMENT, TYPE=S4R
1561,1669,1670,1761,1760
*ELGEN,ELSET=WEBM
1561,30,1,1,25,91,90

*ELEMENT, TYPE=S4R
1591,1699,1700,1791,1790
*ELGEN,ELSET=WEBR
1591,30,1,1,25,91,90

**GROUPING ELEMENTS
*ELSET,ELSET=LFLANGELEFT
LFL1,LFL2
*ELSET,ELSET=LFLANGEMIDDLE
LFM1,LFM2
*ELSET,ELSET=LFLANGERIGHT
LFR1,LFR2
*ELSET,ELSET=RFLANGELEFT
RFL1,RFL2
*ELSET,ELSET=RFLANGEMIDDLE
RFM1,RFM2
*ELSET,ELSET=RFLANGERIGHT
RFR1,RFR2
*ELSET,ELSET=LFLANGE
LFLANGELEFT,LFLANGEMIDDLE,LFLANGERIGHT
*ELSET,ELSET=RFLANGE
RFLANGELEFT,RFLANGEMIDDLE,RFLANGERIGHT
*ELSET,ELSET=WEBLEFT
TSL,BSL,WEBL
*ELSET,ELSET=WEBMIDDLE
TSM,BSM,WEBM
*ELSET,ELSET=WEBRIGHT
TSR,BSR,WEBR
*ELSET,ELSET=WEB
WEBLEFT,WEBMIDDLE,WEBRIGHT
*ELSET,ELSET=TOPSTC
TSL,TSM,TSR
*ELSET,ELSET=BOTTOMSTC
BSL,BSM,BSR
*ELSET,ELSET=BEAMRIGHT
LFLANGERIGHT,RFLANGERIGHT,WEBRIGHT
*ELSET,ELSET=BEAMMIDDLE
LFLANGEMIDDLE,RFLANGEMIDDLE,WEBMIDDLE
*ELSET,ELSET=BEAMLEFT
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LFLANGELEFT,RFLANGELEFT ,WEBLEFT
*ELSET,ELSET=FLANGERIGID
LFL1,LFL2,RFL1,RFL2,LFR2LFR1,RFR2,RFR1
*ELSET,ELSET=FLANGEFLEX
LFM2,LFM1,RFM2,RFM1
*ELSET,ELSET=WEBRIGID
TSL,WEBL,BSL, TSR,WEBR,BSR

*SHELL SECTION,MATERIAL=FLEX,ELSET=FLANGEFLEX
0.417

*SHELL SECTION,MATERIAL=FLEX,ELSET=WEBMIDDLE
0.278

*SHELL SECTION,MATERIAL=RIGID,ELSET=FLANGERIGID
0.417

*SHELL SECTION,MATERIAL=RIGID,ELSET=WEBRIGID
0.278

*MATERIAL,NAME=RIGID

*ELASTIC

290000,0.3

*MATERIAL,NAME=FLEX

*ELASTIC

29000,0.3

*PLASTIC

50,0

51.345,0.00922948

75,0.0557238

80,0.090034

*BOUNDARY

PINNED,1,3

ROLLER,1

ROLLER,3

395,1

759,1

31,1

789,1

425,1

61,1

1578,1

1608,1

12141

12441

850,1

880,1

*STEP,NLGEOM,INC=70

*STATIC,RIKS

0.01,1,0.0000000001
*CONTROLS,ANALYSIS=DISCONTINUOUS
*CLOAD

395,3,-10.154

1214,3,-10.154

425,3,-10.154

1244,3,-10.154
*RESTART,WRITE,FREQUENCY=1
*ELPRINT,FREQUENCY=0

*NODE PRINT,FREQUENCY=1

CF

*END STEP
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ABAQUS INPUT FILE FOR I-SHAPED BEAMS UNDER MINOR AXIS MOMENT -
THRUST

*HEADING

wx b=8 Lb=8

*x =14 Lj=14

wx k=10 d=10.33

wx n=6 bf=5.77

** a=0 La=0

wx m=54 Lf=54.4

wx tf=0.44  tw=0.26

ol impsize=0.0577  Iw=2.885
ol camber=0 dely=1.00740740740741
*x Ntotal=338 P=304.2

*x totalaxial=23

** E:

**j 14

**j+ta 14

**j+ath 22

**j+atb+m 76
**j+a+2*b+m 84
**j+2*a+2*b+m 84
*RQ*+2*a+2*b+m 98
*%x

*NODE
**Bottom1

1,0,0,0

15,0,14,0

23,0,22,0
77,0,76.4,0
85,0,84.4,0
99,0,98.4,0
**Middlel
298,0,0,2.885
312,0,14,2.885
320,0,22,2.885
374,0,76.4,2.885
382,0,84.4,2.885
396,0,98.4,2.885
**Topl
595,0,0,5.77
609,0,14,5.77
617,0,22,5.77
671,0,76.4,5.77
679,0,84.45.77
693,0,98.4,5.77
**Bottom2
694,10.77,0,0
708,10.77,14,0
716,10.77,22,0
770,10.77,76.4,0
778,10.77,84.4,0
792,10.77,98.4,0
**Middle2
991,10.77,0,2.885
1005,10.77,14,2.885
1013,10.77,22,2.885
1067,10.77,76.4,2.885
1075,10.77,84.4,2.885
1089,10.77,98.4,2.885
**Top2
1288,10.77,0,5.77
1302,10.77,14,5.77
1310,10.77,22,5.77
1364,10.77,76.4,5.77
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1372,10.77,84.4,5.77
1386,10.77,98.4,5.77
**Web Top
1387,1.077,0,2.885
1401,1.077,14,2.885
1409,1.077,22,2.885
1463,1.077,76.4,2.885
1471,1.077,84.4,2.885
1485,1.077,98.4,2.885
**Web Bottom
2179,9.693,0,2.885
2193,9.693,14,2.885
2201,9.693,22,2.885
2255,9.693,76.4,2.885
2263,9.693,84.4,2.885
2277,9.693,98.4,2.885
**Constant Moment Region

**|eft flange Bottom

23,0,22,0
24,0.0513557058728689,23.0074074074074,0
25,0.046822946147168,24.0148148148148,0
26,-0.00866544879943186,25.0222222222222,0
27,-0.0547235646973492,26.0296296296296,0
28,-0.0412281020583456,27.037037037037,0
29,0.017134339320784,28.0444444444444,0
30,0.0568501295166074,29.0518518518519,0
31,0.0346980813922161,30.0592592592593,0
32,-0.0252145718151973,31.0666666666667,0
33,-0.0576871634846619,32.0740740740741,0
34,-0.0273810045344245,33.0814814814815,0
35,0.0327228624594854,34.0888888888889,0
36,0.0572156801693888,35.0962962962963,0
37,0.0194428446573978,36.1037037037037,0
38,-0.0394889007810437,37.1111111111111,0
39,-0.0554463742215485,38.1185185185185,0
40,-0.011063662952733,39.1259259259259,0
41,0.0453592128083917,40.1333333333333,0
42,0.0524193787881428,41.1407407407407,0
43,0.00243352430520481,42.1481481481481,0
44,-0.0502006423195506,43.1555555555556,0
45,-0.0482033551726907,44.162962962963,0
46,0.00625181394688691,45.1703703703704,0
47,0.0539033712231341,46.1777777777778,0
48,0.0428939353916493,47.1851851851852,0
49,-0.0147953423732309,48.1925925925926,0
50,-0.0563834105608863,49.2,0
51,-0.036611552954456,50.2074074074074,0
52,0.0230032682142046,51.2148148148148,0
53,0.0575845056282812,52.2222222222222,0
54,0.0294987110715816,53.2296296296296,0
55,-0.0306894111798719,54.237037037037,0
56,-0.0574794119993549,55.2444444444444.,0
57,-0.0217167502558045,56.2518518518518,0
58,0.0376794265754137,57.2592592592593,0
59,0.0560705135117159,58.2666666666667,0
60,0.0134421886371641,59.2740740740741,0
61,-0.0438147599598885,60.2814814814815,0
62,-0.0533897681939817,61.2888888888889,0
63,-0.00486271800419616,62.2962962962963,0
64,0.0489562436348416,63.3037037037037,0
65,0.0494979833621752,64.3111111111111,0
66,-0.00382705360680747,65.3185185185185,0
67,-0.0529872533836495,66.3259259259259,0
68,-0.0444834363280547,67.3333333333333,0
69,0.0124300162037034,68.3407407407407,0
70,0.0558163538573204,69.3481481481481,0
71,0.0384598720058418,70.3555555555556,0
72,-0.0207510288822458,71.362962962963,0
73,-0.0573793726014906,72.3703703703704,0
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74,-0.0315639228376029,73.3777777777778,0
75,0.0286013462050269,74.3851851851852,0
76,0.0576408556794895,75.3925925925926,0
77,0,76.4,0

**Left Flange Top

617,0,22,5.77
618,-0.0513557058728689,23.0074074074074,5.77
619,-0.046822946147168,24.0148148148148,5.77
620,0.00866544879943186,25.0222222222222,5.77
621,0.0547235646973492,26.0296296296296,5.77
622,0.0412281020583456,27.037037037037,5.77
623,-0.017134339320784,28.0444444444444 577
624,-0.0568501295166074,29.0518518518519,5.77
625,-0.0346980813922161,30.0592592592593,5.77
626,0.0252145718151973,31.0666666666667,5.77
627,0.0576871634846619,32.0740740740741,5.77
628,0.0273810045344245,33.0814814814815,5.77
629,-0.0327228624594854,34.0888888888889,5.77
630,-0.0572156801693888,35.0962962962963,5.77
631,-0.0194428446573978,36.1037037037037,5.77
632,0.0394889007810437,37.1111111111111,5.77
633,0.0554463742215485,38.1185185185185,5.77
634,0.011063662952733,39.1259259259259,5.77
635,-0.0453592128083917,40.1333333333333,5.77
636,-0.0524193787881428,41.1407407407407,5.77
637,-0.00243352430520481,42.1481481481481,5.77
638,0.0502006423195506,43.1555555555556,5.77
639,0.0482033551726907,44.162962962963,5.77
640,-0.00625181394688691,45.1703703703704,5.77
641,-0.0539033712231341,46.1777777777778,5.77
642,-0.0428939353916493,47.1851851851852,5.77
643,0.0147953423732309,48.1925925925926,5.77
644,0.0563834105608863,49.2,5.77
645,0.036611552954456,50.2074074074074,5.77
646,-0.0230032682142046,51.2148148148148,5.77
647,-0.0575845056282812,52.2222222222222,5.77
648,-0.0294987110715816,53.2296296296296,5.77
649,0.0306894111798719,54.237037037037,5.77
650,0.0574794119993549,55.2444444444444.5.77
651,0.0217167502558045,56.2518518518518,5.77
652,-0.0376794265754137,57.2592592592593,5.77
653,-0.0560705135117159,58.2666666666667,5.77
654,-0.0134421886371641,59.2740740740741,5.77
655,0.0438147599598885,60.2814814814815,5.77
656,0.0533897681939817,61.28888388888889,5.77
657,0.00486271800419616,62.2962962962963,5.77
658,-0.0489562436348416,63.3037037037037,5.77
659,-0.0494979833621752,64.3111111111111,5.77
660,0.00382705360680747,65.3185185185185,5.77
661,0.0529872533836495,66.3259259259259,5.77
662,0.0444834363280547,67.3333333333333,5.77
663,-0.0124300162037034,68.3407407407407,5.77
664,-0.0558163538573204,69.3481481481481,5.77
665,-0.0384598720058418,70.3555555555556,5.77
666,0.0207510288822458,71.362962962963,5.77
667,0.0573793726014906,72.3703703703704,5.77
668,0.0315639228376029,73.3777777777778,5.77
669,-0.0286013462050269,74.3851851851852,5.77
670,-0.0576408556794895,75.3925925925926,5.77
671,0,76.4,5.77

**Right Flange Bottom

716,10.77,22,0
717,10.7186442941271,23.0074074074074,0
718,10.7231770538528,24.0148148148148,0
719,10.7786654487994,25.0222222222222,0
720,10.8247235646973,26.0296296296296,0
721,10.8112281020583,27.037037037037,0
722,10.7528656606792,28.0444444444444.0
723,10.7131498704834,29.0518518518519,0
724,10.7353019186078,30.0592592592593,0
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725,10.7952145718152,31.0666666666667,0
726,10.8276871634847,32.0740740740741,0
727,10.7973810045344,33.0814814814815,0
728,10.7372771375405,34.0888888888889,0
729,10.7127843198306,35.0962962962963,0
730,10.7505571553426,36.1037037037037,0
731,10.809488900781,37.1111111111111,0
732,10.8254463742215,38.1185185185185,0
733,10.7810636629527,39.1259259259259,0
734,10.7246407871916,40.1333333333333,0
735,10.7175806212119,41.1407407407407,0
736,10.7675664756948,42.1481481481481,0
737,10.8202006423196,43.1555555555556,0
738,10.8182033551727,44.162962962963,0
739,10.7637481860531,45.1703703703704,0
740,10.7160966287769,46.1777777777778,0
741,10.7271060646083,47.1851851851852,0
742,10.7847953423732,48.1925925925926,0
743,10.8263834105609,49.2,0
744,10.8066115529545,50.2074074074074,0
745,10.7469967317858,51.2148148148148,0
746,10.7124154943717,52.2222222222222,0
747,10.7405012889284,53.2296296296296,0
748,10.8006894111799,54.237037037037,0
749,10.8274794119994,55.2444444444444.0
750,10.7917167502558,56.2518518518518,0
751,10.7323205734246,57.2592592592593,0
752,10.7139294864883,58.2666666666667,0
753,10.7565578113628,59.2740740740741,0
754,10.8138147599599,60.2814814814815,0
755,10.823389768194,61.2888888888889,0
756,10.7748627180042,62.2962962962963,0
757,10.7210437563652,63.3037037037037,0
758,10.7205020166378,64.3111111111111,0
759,10.7738270536068,65.3185185185185,0
760,10.8229872533836,66.3259259259259,0
761,10.8144834363281,67.3333333333333,0
762,10.7575699837963,68.3407407407407,0
763,10.7141836461427,69.3481481481481,0
764,10.7315401279942,70.3555555555556,0
765,10.7907510288822,71.362962962963,0
766,10.8273793726015,72.3703703703704,0
767,10.8015639228376,73.3777777777778,0
768,10.741398653795,74.3851851851852,0
769,10.7123591443205,75.3925925925926,0
770,10.77,76.4,0

**Right Flange Top

1310,10.77,22,5.77
1311,10.8213557058729,23.0074074074074,5.77
1312,10.8168229461472,24.0148148148148,5.77
1313,10.7613345512006,25.0222222222222,5.77
1314,10.7152764353027,26.0296296296296,5.77
1315,10.7287718979417,27.037037037037,5.77
1316,10.7871343393208,28.0444444444444 5. 77
1317,10.8268501295166,29.0518518518519,5.77
1318,10.8046980813922,30.0592592592593,5.77
1319,10.7447854281848,31.0666666666667,5.77
1320,10.7123128365153,32.0740740740741,5.77
1321,10.7426189954656,33.0814814814815,5.77
1322,10.8027228624595,34.0888888888889,5.77
1323,10.8272156801694,35.0962962962963,5.77
1324,10.7894428446574,36.1037037037037,5.77
1325,10.730511099219,37.1111111111111,5.77
1326,10.7145536257785,38.1185185185185,5.77
1327,10.7589363370473,39.1259259259259,5.77
1328,10.8153592128084,40.1333333333333,5.77
1329,10.8224193787881,41.1407407407407,5.77
1330,10.7724335243052,42.1481481481481,5.77
1331,10.7197993576804,43.1555555555556,5.77
1332,10.7217966448273,44.162962962963,5.77
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1333,10.7762518139469,45.1703703703704,5.77
1334,10.8239033712231,46.1777777777778,5.77
1335,10.8128939353916,47.1851851851852,5.77
1336,10.7552046576268,48.1925925925926,5.77
1337,10.7136165894391,49.2,5.77
1338,10.7333884470455,50.2074074074074,5.77
1339,10.7930032682142,51.2148148148148,5.77
1340,10.8275845056283,52.2222222222222,5.77
1341,10.7994987110716,53.2296296296296,5.77
1342,10.7393105888201,54.237037037037,5.77
1343,10.7125205880006,55.2444444444444 5. 77
1344,10.7482832497442,56.2518518518518,5.77
1345,10.8076794265754,57.2592592592593,5.77
1346,10.8260705135117,58.2666666666667,5.77
1347,10.7834421886372,59.2740740740741,5.77
1348,10.7261852400401,60.2814814814815,5.77
1349,10.716610231806,61.2888838888889,5.77
1350,10.7651372819958,62.2962962962963,5.77
1351,10.8189562436348,63.3037037037037,5.77
1352,10.8194979833622,64.3111111111111,5.77
1353,10.7661729463932,65.3185185185185,5.77
1354,10.7170127466163,66.3259259259259,5.77
1355,10.7255165636719,67.3333333333333,5.77
1356,10.7824300162037,68.3407407407407,5.77
1357,10.8258163538573,69.3481481481481,5.77
1358,10.8084598720058,70.3555555555556,5.77
1359,10.7492489711178,71.362962962963,5.77
1360,10.7126206273985,72.3703703703704,5.77
1361,10.7384360771624,73.3777777777778,5.77
1362,10.798601346205,74.3851851851852,5.77
1363,10.8276408556795,75.3925925925926,5.77
1364,10.77,76.4,5.77

**Flangel

*NGEN,NSET=al

1,151

*NGEN,NSET=a3

15,231

*NSET,NSET=a4,GENERATE

23,77,1

*NGEN,NSET=a5

77,85,1

*NGEN,NSET=2a6

85,99,1

*NGEN,NSET=b1

298,312,1

*NGEN,NSET=b3

312,320,1

*NGEN,NSET=b4

320,374,1

*NGEN,NSET=b5

374,382,1

*NGEN,NSET=h6

382,396,1

*NGEN,NSET=cl

595,609,1

*NGEN,NSET=c3

609,617,1

*NSET,NSET=c4,GENERATE

617,671,1

*NGEN,NSET=c5

671,679,1

*NGEN,NSET=c6

679,693,1

**Flange 2

*NGEN,NSET=d1

694,708,1

*NGEN,NSET=d3

708,716,1

*NSET,NSET=d4,GENERATE

716,770,1
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*NGEN,NSET=d5
770,778,1
*NGEN,NSET=d6
778,792,1
*NGEN,NSET=el
991,1005,1
*NGEN,NSET=e3
1005,1013,1
*NGEN,NSET=e4
1013,1067,1
*NGEN,NSET=e5
1067,1075,1
*NGEN,NSET=e6
1075,1089,1
*NGEN,NSET=f1
1288,1302,1
*NGEN,NSET=f3
1302,1310,1

*NSET,NSET=f4, GENERATE

1310,1364,1
*NGEN,NSET=f5
1364,1372,1
*NGEN,NSET=f6
1372,1386,1
**Web
*NGEN,NSET=g1
1387,1401,1
*NGEN,NSET=g3
1401,1409,1
*NGEN,NSET=g4
1409,1463,1
*NGEN,NSET=g5
1463,1471,1
*NGEN,NSET=g6
1471,1485,1
*NGEN,NSET=h1
2179,2193,1
*NGEN,NSET=h3
2193,2201,1
*NGEN,NSET=h4
2201,2255,1
*NGEN,NSET=h5
2255,2263,1
*NGEN,NSET=h6
2263,2277,1
**Flangel
*NFILL,NSET=z1
al,b1,3,99
*NFILL,NSET=2z3
a3,b3,3,99
*NFILL,NSET=24
a4,b4,3,99
*NFILL,NSET=25
a5,b5,3,99
*NFILL,NSET=26
a6,b6,3,99
*NFILL,NSET=2z8
b1,c1,3,99
*NFILL,NSET=z10
b3,c3,3,99
*NFILL,NSET=z11
b4,c4,3,99
*NFILL,NSET=z12
b5,¢5,3,99
*NFILL,NSET=z13
b6,c6,3,99
**Flange2
*NFILL,NSET=z15
di,e1,3,99
*NFILL,NSET=z17
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d3,63,3,99
*NFILL,NSET=218
d4,e4,3,99
*NFILL,NSET=219
d5,e5,3,99
*NFILL,NSET=220
d6,66,3,99
*NFILL,NSET=222
el,f1,3,99
*NFILL,NSET=224
£3,13,3,99
*NFILL,NSET=225
e4,4,3,99
*NFILL,NSET=226
€5,15,3,99
*NFILL,NSET=227
£6,76,3,99

**\\eh
*NFILL,NSET=229
g1,h1,8,99
*NFILL,NSET=231
93,h3,8,99
*NFILL,NSET=232
94,h4,8,99
*NFILL,NSET=233
95,h5,8,99
*NFILL,NSET=234
96,h6,8,99

**NSET FOR AXIAL LOAD
*NSET,NSET=AXIALLOAD,GENERATE

99,693,99
792,1386,99
1485,2277,99
*%*

**Element definitions

*%k

**Flangel
*ELEMENT,TYPE=S4R
1,1,2,101,100
*ELGEN,ELSET=ell
1,14,1,1,6,99,98
*ELEMENT,TYPE=S4R
15,15,16,115,114
*ELGEN,ELSET=el3
15,8,1,1,6,99,98
*ELEMENT,TYPE=S4R
23,23,24,123,122
*ELGEN,ELSET=el4
23,54,1,1,6,99,98
*ELEMENT,TYPE=S4R
77,77,78,177,176
*ELGEN,ELSET=el5
77,8,1,1,6,99,98
*ELEMENT,TYPE=S4R
85,85,86,185,184
*ELGEN,ELSET=el6
85,14,1,1,6,99,98
**Flange2
*ELEMENT,TYPE=S4R
589,694,695,794,793
*ELGEN,ELSET=el8
589,14,1,1,6,99,98
*ELEMENT,TYPE=S4R
603,708,709,808,807
*ELGEN,ELSET=el10
603,8,1,1,6,99,98
*ELEMENT,TYPE=S4R
611,716,717,816,815
*ELGEN,ELSET=el1l
611,54,1,1,6,99,98
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*ELEMENT,TYPE=S4R
665,770,771,870,869
*ELGEN,ELSET=el12
665,8,1,1,6,99,98
*ELEMENT,TYPE=S4R
673,778,779,878,877
*ELGEN,ELSET=el13
673,14,1,1,6,99,98

**Web
*ELEMENT,TYPE=S4R
1177,298,299,1388,1387
*ELGEN,ELSET=el15
1177,14,1,1,1,99,98
*ELEMENT,TYPE=S4R
1191,312,313,1402,1401
*ELGEN,ELSET=el17
1191,8,1,1,1,99,98
*ELEMENT, TYPE=S4R
1199,320,321,1410,1409
*ELGEN,ELSET=el18
1199,54,1,1,1,99,98
*ELEMENT,TYPE=S4R
1253,374,375,1464,1463
*ELGEN,ELSET=el19
1253,8,1,1,1,99,98
*ELEMENT,TYPE=S4R
1261,382,383,1472,1471
*ELGEN,ELSET=el20
1261,14,1,1,1,99,98
*ELEMENT, TYPE=S4R
1275,1387,1388,1487,1486
*ELGEN,ELSET=el22
1275,14,1,1,8,99,98
*ELEMENT,TYPE=S4R
1289,1401,1402,1501,1500
*ELGEN,ELSET=el24
1289,8,1,1,8,99,98
*ELEMENT, TYPE=S4R
1297,1409,1410,1509,1508
*ELGEN,ELSET=el25
1297,54,1,1,8,99,98
*ELEMENT, TYPE=S4R
1351,1463,1464,1563,1562
*ELGEN,ELSET=el26
1351,8,1,1,8,99,98
*ELEMENT, TYPE=S4R
1359,1471,1472,1571,1570
*ELGEN,ELSET=el27
1359,14,1,1,8,99,98
*ELEMENT,TYPE=S4R
2059,2179,2180,992,991
*ELGEN,ELSET=el29
2059,14,1,1,1,99,98
*ELEMENT, TYPE=S4R
2073,2193,2194,1006,1005
*ELGEN,ELSET=el31
2073,8,1,1,1,99,98
*ELEMENT, TYPE=S4R
2081,2201,2202,1014,1013
*ELGEN,ELSET=el32
2081,54,1,1,1,99,98
*ELEMENT,TYPE=S4R
2135,2255,2256,1068,1067
*ELGEN,ELSET=el33
2135,8,1,1,1,99,98
*ELEMENT, TYPE=S4R
2143,2263,2264,1076,1075
*ELGEN,ELSET=el34
2143,14,1,1,1,99,98
*ELEMENT, TYPE=B31
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2157,1,100

*ELGEN,ELSET=F1

2157,6,99

*ELEMENT,TYPE=B31

2163,99,198

*ELGEN,ELSET=F2

2163,6,99

*ELEMENT,TYPE=B31

2169,694,793

*ELGEN,ELSET=F3

2169,6,99

*ELEMENT,TYPE=B31

2175,792,891

*ELGEN,ELSET=F4

2175,6,99

*ELEMENT,TYPE=B31

2181,298,1387

*ELEMENT,TYPE=B31

2182,1387,1486

*ELGEN,ELSET=W1

2182,8,99

*ELEMENT,TYPE=B31

2190,2179,991

*ELEMENT,TYPE=B31

2191,396,1485

*ELEMENT,TYPE=B31

2192,1485,1584

*ELGEN,ELSET=W2

2192,8,99

*ELEMENT,TYPE=B31

2200,2277,1089

*ELSET,ELSET=BEAM
F1,F2,F3,F4,W1,W2,2181,2190,2191,2200
**GROUPING ELEMENTS

*ELSET,ELSET=web_rigid
el15,el22,el29,e120,e127,e134,el17,el24,e131,e119,e126,el33
*ELSET,ELSET=web_flex

el18,el25,el32

*ELSET,ELSET=flange_thick

el3,el5,el10,el12

*ELSET,ELSET=flange_rigid

ell,el6,el8,el13

*ELSET,ELSET=flange_flex

el4,elll

*ELSET,ELSET=rigidbeam

flange_rigid,web_rigid

*ELSET,ELSET=flexbeam
el3,el4,el5,el10,el11,el12,web_flex
*ELSET,ELSET=one_flange

ell,el3,el4,el5,el6

*ELSET,ELSET=two_flange

el8,el10,el11,el12,e113

*ELSET,ELSET=web

web_rigid,web_flex

*SHELL SECTION,MATERIAL=RIGID,ELSET=flange_rigid
2

*SHELL SECTION,MATERIAL=RIGID,ELSET=web_rigid
2

*SHELL SECTION,MATERIAL=FLEX,ELSET=web_flex
0.26

*SHELL SECTION,MATERIAL=FLEX,ELSET=flange_flex
0.44

*SHELL SECTION,MATERIAL=RIGID,ELSET=flange_thick
2

*BEAM SECTION,SECTION=CIRC,ELSET=BEAM,MATERIAL=BEAM
2

0,-1,0

*MATERIAL,NAME=BEAM

*ELASTIC

290000,0.3

119



*MATERIAL,NAME=RIGID
*ELASTIC

290000,0.3
*MATERIAL,NAME=FLEX
*ELASTIC

29000,0.3

*PLASTIC

50,0

51.345,0.00922948

75,0.0557238

80,0.090034

*BOUNDARY

1783,1,3

1881,1

1881,3

1783,5

1881,5

613,5

675,5

1306,5

1368,5

19,5

81,5

712,5

7745

*STEP,NLGEOM,INC=30
*STATIC,RIKS
0.01,1,0.0000000001
*CONTROLS,ANALYSIS=DISCONTINUOUS
*CLOAD

316,3,-304.2

378,3,-304.2

1009,3,-304.2

1071,3,-304.2
AXIALLOAD,2,-14.695652173913
*RESTART,WRITE,FREQUENCY=1
*ELPRINT,FREQUENCY=0
*NODE PRINT,FREQUENCY=1
CF

*END STEP
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