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MINOR AXIS FLEXURE AND COMBINED LOADING RESPONSE OF  
 

I-SHAPED STEEL MEMBERS  
 

Muharrem Aktas, PhD 
 

University of Pittsburgh, 2004 
 
 

The present dissertation elucidates the problem of determining if a given I-shaped cross-section 

is properly proportioned to accommodate sufficient plastic hinge rotation capacity to facilitate 

the redistribution of moments in a structural system as needed to accommodate the formation of 

a collapse mechanism.  It might be tempting to believe that application of the limiting flange 

plate slenderness value for the case of major axis flexure are applicable in this case; since the 

pervasive belief is that this approach ought to be conservative.  However, the present research 

study indicates that this is not the case and thus more sophisticated analysis techniques are 

required to better understand this case. 

Most current design specifications employed throughout the world prescribe the use of 

so-called interaction equations for the design of beam-columns.  Most often these interaction 

equations are optimized for use with the members possessing I-shaped cross-sections that are 

bent about the major principal centroidal axis while simultaneously being subjected to 

compressive thrust.  The current study then also focuses on the case wherein an I-shaped member 

is loaded in compression and simultaneously bent about the minor principal centroidal axis.  It is 

shown that the current AISC interaction equations can be improved on in terms of their ability to 

predict failure in these types of members.  Alterations to the existing AISC interaction equations 

are suggested for improving on strength predictions relative to this case. 

 iv



Through these two research focuses, the present dissertation adds significantly to the state 

of knowledge surrounding the response of steel members possessing I-shaped cross-sections that 

are subjected to minor axis flexural effects; effects that are important to the robust and redundant 

design of structures in a system-wide sense. 

 

Keywords: Interaction equation, weak axis, finite element modeling, steel I-section Minor axis 

flexure, compactness, ductility, plate buckling, moment redistribution 
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1.0  INTRODUCTION 

 
 
 
 
In this research, I section flange compactness under minor axis bending and minor axis moment-

thrust response behavior in steel I-shaped members are investigated by using nonlinear finite 

element methods. 

The case of minor axis flexure in I-shaped cross-sections arises frequently in the 

consideration of bi-axial beam bending associated with perimeter spandrel members in exterior 

framing lines, as well as in the general case of a beam-column.  In these instances, it may be 

desirable to employ cross-sections whose proportions are such that sufficient structural ductility 

is available in the member in order that system-wide moment redistribution may be achieved.  

Scenarios requiring this capacity to redistribute forces frequently arise in seismic design and 

other applications that require structural robustness against natural and man-made hazards.  

The present study hopes to elucidate the problem of determining if a given I-shaped 

cross-section is properly proportioned to accommodate sufficient plastic hinge rotation capacity 

to facilitate the redistribution of moments in a structural system as needed to accommodate the 

formation of a collapse mechanism. 

Many structural members, like beam columns, are subjected to some degree of both 

bending and axial load. There is no simple design procedure for beam columns because of the 

number of failure modes. Interaction equations are found to provide good results when compared 
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predicted and tested responses. The current AISC LRFD specification employs an interaction 

equation based approach for beam column analysis and design. 

The present research has as a focus, the response of I-shaped steel members subjected to 

the simultaneous application of axial thrust and minor principal axis flexure. This response will 

be compared with the results of the current approach given in the LRFD specification. 

The commonly used A992 steel grade is considered though out the present work.  The 

study reported on herein involves the use of experimentally verified nonlinear finite element 

modeling strategies.  While it has been shown that non-proportional loading can have an 

influence on important parameters governing beam-column response (especially when load 

reversals are at issue) (Hajjar 2003), the present study involves a research program wherein the 

traditional approach of proportional load application is used.  This is the case since the great bulk 

of earlier research has focused on this case (Salmon and Johnson 1996), and this is the case at the 

heart of current specification equations used though out the world. 

 
 
 
 

1.1   OVERVIEW OF COMPACTNESS 

 
 
The strength or resistance of a beam in flexure is limited by some combination of local and 

overall buckling resistances. Figure 1 shows the general behavior of a wide flange beam (Yura, 

Galambos, and Ravindra 1978). Basically the behavior of the beam is divided in three response 

regimes: elastic, inelastic, and plastic ranges. In the elastic range, elastic buckling controls the 

behavior. In the inelastic range, some or all of the cross-section is yielded but only a small 

amount of inelastic deformations is available prior to failure. In the plastic range, the cross-
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section reaches the plastic moment, Mp, and maintains this load level as the member tends to 

undergo large plastic deformations which allow for moment redistribution. In the current 

American steel design specifications, members are classified as, non-compact and compact as a 

means for characterizing their strength and deformation capacity. For sections permitted in 

plastic analysis, the specification requires a compact section (AISC, 1999). The specification 

defines a compact section as one that can develop a fully plastic stress distribution while 

exhibiting sufficient plastic hinge rotation capacity, prior to the onset of local buckling, to 

accommodate moment redistribution in the structural system (AISC, 1999). 

 
 
 

 
 
 

Figure 1 Beam behavior (Yura, Galambos, and Ravindra 1978) 

 
 
 
 

3 



 

1.2   MOMENT - ROTATION CURVES 

 
 
Rotation capacity is a method of quantifying deformation capacity within a cross-section prior to 

instability eroding the cross-sectional capacity (Salmon & Johnson, 1995). There are a number of 

differen

According to Lay and Galambos (1965) rotation capacity, R =θ /θ , in which θ  is the 

elastic rotation at the initial attainment of the plastic moment Mp. And θh is the plastic rotation at  

ly measuring the 

otation correctly in the unloading range. 

The definition for rotation capacity adopted in the present discussion is that presented by 

ASCE (1971): 

t definitions in the literature for rotation capacity.  

h h p p

the point when moment drops below Mp , all on within the context of a normalized moment-

rotation context. 

Kemp (1985), proposed an alternative definition for rotation capacity as Rhm=θhm/θp in 

which θhm is the plastic rotation up to the maximum moment on the moment rotation curve. He 

proposed this because of the practical difficulties associated with the accurate

r

2

1

1R θ
θ

= − where θ2 is the rotation when the moment capacity drops below Mp on 

the unloading portion of th tation at which the full 

lastic capacity is achieved based on elastic beam stiffness.  This ductility response measure is 

escribed graphically in figure 2.  It is currently assumed that R = 3 is an adequate level of 

structural ductility for the non-seismic design of steel building components (AISC 1999) and 

pactness provisions are formulated with this measure in mind. 

e M - θ/θp plot, and θ1 is the theoretical ro

p

d

thus current com
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Figure 2 Definition of Rotation Capacity 

 
 
 
 

 

column . However; if there is a significant amount of both effects, then they both 

have to be considered. Such members are called beam-columns (Salmon & Johnson, 1995). 

Including axial load brings a secondary bending moment which is equal to the axial 

compression force times the out-of-plane deflection measures with respect to the member 

longitudinal axis. First order methods don’t take the displaced geometry into account and thus 

are unable to treat this important behavioral feature. Iterative numerical techniques, also known 

as second order methods of analysis, must be used to study the importance of these so-called 

second order effects”. However; such techniques are time consuming and not practical in 

1.3   OVERVIEW OF MOMENT AMPLIFICATION FACTOR 

 
 
Structural members are usually subjected to the combination of bending and axial forces. When 

one of these effects is small enough to be neglected then the member can be designed as a

 or as a beam

“
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manual calculations. That is why in the AISC LRFD specification either a second order analysis 

or the moment amplification method is perm ted (Segui, 2003).  The latter of these two 

approaches 

According to the moment amplification method, the first order moment is multiplied by 

 secondary moment due to the axial force acting through the out-

f-plane defelction). The equation for amplification fact

or a simply supported beam with an initial crookedness is presented in figure 3. 

it

is a simplification that is reasonable for hand calculations. 

the moment amplification factor to get the second order moment (i.e. the sum of the primary 

applied moment as well as the

o or is developed as follows (Segui, 2003). 

F

 

 
 

 
 

Figure 3 Simply supported beam with initial crookedness (Segui, 2003). 

itial out of straightness can be approximate

displacement at the midspan.  

 

 

 

In d by yo where e is the maximum initial 

 sino
xy e

L
π

=  (1) 
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The moment curvature can be expressed as 

2

2

d y M  (2)  
dx EI

= −

oment at any location is going to be the moment caused by the axial force times the initial 

tal deflection. Total deflection is the sum of the initial crooke

eflection y caused by the bending. 

 

 

The m

to dness and the additional 

d

 

( )u oM P y y= +  (3) 

When equation 3 is substituted back into the equation 2, equation 4 is obtained; 

 

 

2

 2 sinu uP P ed y xy
dx EI EI L

π
+ = −  (4) 

 

quation 4 is an ordinary, non-homogeneous differential equation with two unknown integration 

ration of two boundary conditions which are; 

t  and at . A function which satisfies these boundary conditions is  

E

constants that can be evaluated through the conside

 0, 0x y= = , 0x L y= =a

 

sin xy B
L

π
=  (5) 

Substituting equation back into the differential equation 4 leads to equation 6; 

 

 
2

2 sin sin sinu uP P ex x xB B
L L EI L EI L
π π π

− + = −
π  (6)  
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After solving for B;  

2 2

2 2
11

u

eu

uu

P e
e eEIB PP EI

PEI L P L
π π

− −
= = =

−− −
 (7)  

 

where 
2EIP π

=  is the Euler buckling load. Thus 2e L

 

 
( )

sin
e u

sin
/ 1

x e x
P L

y B
L P

π π
⎥

−
 (8) 

⎡ ⎤
= = ⎢

⎢ ⎥⎣ ⎦

ubstituting equation 8 back into equation 3 gives; 

 

 

S

( )
sin sin

/ 1u
e u

x e xM P e
L P P L

π π⎧ ⎫⎡ ⎤⎪ ⎪= + ⎢ ⎥⎨ ⎬−⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭
  (9) 

 

At / 2x L=  the maximum moment occurs; 

 

 
( )max / 1u

e u

eM P e
P P

⎡ ⎤
= +⎢ ⎥

−⎢ ⎥⎣ ⎦
 (10) 

 

Rearranging  equation 10; 

 

( )
 

( )max

/ 1 1e u
u

P P
M P e

/ 1e uP P
⎡ ⎤− +

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

 (11) 
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( )max 0

1
1 /u eP P

M M
⎡ ⎤

= ⎢ ⎥
−⎢ ⎥⎣ ⎦

 (12) 

In this last equation 0M is the first order moment. Then the moment amplification factor is 

 

(Segui, 2003);  

 
( )

1
1 /P P−

 
u e

(13) 

 
 
 

1.4   BASIS FOR CURRENT CROSS-SECTIONAL COMPACTNESS LIMITS FOR 
UNSTIFFENED ELEMENTS 

The goal of the US specifications in its prescription of so-called compactness criteria (AISC 

999) is to identify plate slenderness limits, λp, for cross-sect

overall flexural cross-section will be able to accommodate sufficient plastic hinge rotation to 

support system-wide moment redistribution as required for the development of a global collapse 

mechanism.  In pursuit of this condition, compactness limits have historically been formulated to 

loosely accommodate strains approaching strain hardening values within an individual plate 

nonlinearity. 

by which the current US Specification (AISC 1999) addresses plate compactness within the 

 flexural 

pression.  In this case, the question of how to address the uncertainty with regard to the 

nature of rotational edge restraint provided at the plate boundary associated with the flange-web 

 

 
 

1 ional plate components such that an 

component prior to the attenuation of post-buckling strength due to effects of material 

As a point of departure for the work reported on herein, it is useful to consider the basis 

context of an unstiffened element; flanges in I-shaped cross-sections under uniform

com
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junction is addressed through consideration of the work carried out by Haaijer and Thurlimann 

(1957).  Haaijer and Thurlimann discovered that unstiffened plates exhibit the onset of strain 

hardening at slenderness values, λ , of approximately 0.46 irrespective of whether the supported 

edge is fixed or pinned.  In this discussion, slenderness is defined as 

 

c

 y
c

cr

F
F

λ =  (14) 

 

where classical elastic plate buckling theory provides that 

 

 

( )

2

2crF k
b
t

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

 (15) 
212 1

Eπ

ν−

 

in which E andν are the usual elastic material constants and b and t are the plate width and 

thickness quantities, respectively.  The term k is the plate buckling coefficient which depends on 

the plate aspect ratio, edge support conditions, and stress distribution along the loaded edge.  In 

the case of an I-shaped cross-sectional flange, the two extremes that k can assume are: 0.425 for 

the case of a supported edge that is pinned; and 1.277 for the case of a rotationally fixed 

supported edge.  If the equation 15 is set to be equal to the yield stress, Fy, and if it is solved for 

the width-to-thickness ratio (b/t) equation 16 is obtained. 

 

 

162
y

b k
t F

=  (16) 
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As mentioned previously, Haaijer and Thurlimann have observed that unstiffened plate 

components under the action of a uniform edge compression achieve strain hardening response at 

slenderness values, λc, of 0.46 and thus equation 16 may be used to identify a plate slenderness 

mit foli r the attainment of strain hardening response as; 

 

 162 74.5c
y y

b k k
t F F

λ= =  (17) 

 

The only question remaining regards what value to assume for the plate buckling 

coefficient, k.  It has been standard practice for AISC (1999) to employ elastic plate buckling 

coefficients as a guide in the development of actual design specification equations and as such it 

ay be considered that the two extreme values for the present case of an I-section flange: 0.425 

and 1.277 for the pinned and fixed cases, respectively, are bounding cases.  If it is, somewhat 

arbitrarily, considered one third of the difference between these two values and add this result to 

the smaller of the two a k of 0.71 which can be applied to equation 17 is obtained so that a 

limiting plate slenderness value for the onset of strain-hardening is found as; 

 

 

m

63 65 0.38
yy y

b E
t FF F

= ≈ =  (18) 

 

It is noted that equation 18 represents the current compactness limit, λp, presented in the 

current AISC LRFD specification (1999) in Table B5.1 for the case of an I-section flange under 

e action of uniform flexural compression.  th
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 A similar approach to the foregoing when developing a compactness limit for the case of 

flanges in I-sections subjected to flexural compression due to minor axis bending may be 

applied; if it is assumed that Haaijer and Thurlimann’s results concerning the invariance of λc 

with the degree of rotational restraint present at the supported edge in a uniformly compressed 

unstiffened element holds for the case of non-uniform compression.  Non-uniform compression 

stresses would be expected along the loaded plate edge in flange outstands subjected to flexural 

compression (as depicted in figure 4).   

 

 

 
 

Figure 4 Minor axis flexural normal stress distribution 

ceeding 

 

While Haaijer and Thurlimann did consider the case of non-uniform compressive stresses 

within a plate component, their investigation centered on the case of a stiffened element; 

consistent with the web of an I-shaped cross-section subjected to major axis flexure.  Pro

12 



 

with the assumption that the invariance in λc holds for the unstiffened case of a flange outstand 

 flexural compression due to minor axis flexure in an I-shaped cross-section, equation 17 may 

e reused as the basic requirement for the attainment of strain hardening in a non-uniformly 

compressed plate com it 

for flange outstands in non-un itable plate buckling 

oefficient k.  Guidance on the selection of an appropriate k value is obtained using the tabulated 

  Proceeding as in the case of an I-shaped beam 

ange outstand subjected to normal stress under major axis flexure, one third of the difference 

etween the k values of these two extremes may b

= 0.92.  W

in

b

ponent.  What is now left to do in the development of a compactness lim

iform flexural compression is to identify a su

c

cases presented by Galambos (1998).  It may be assumed that the flange outstand experiences 

compressive stress only (i.e. assuming that the neutral axis is at the flange-web junction).  Two 

extreme values for k in this case may then be identified: 0.57 for a pinned supported edge and 

1.61 for a rotationally restrained supported edge.

fl

b e added to the smaller of the two to arrive at k 

e may then employ this value in equation 17 to arrive at a limiting plate slenderness 

value of 

 

 
yy F

Eb 42.071
≈=  (19) 

 

The limits obtained from equation 19 can be compared with results obtained from a finite 

element parametric study considering flange outstands having various parametric combinat

Ft

ions 

of: cross-sectional aspect ratio (Bf / d); unbraced length-to-cross-sectional depth ratio (Lb / Bf); 

eb slenderness ratio, (h / tw); flange slenderness r

 
 
 

w atio, (Bf / 2tf), and steel yield strength. 
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1.5   BASIS FOR CURRENT INTERACTION EQUATIONS FOR MEMBERS 

 
 
When considering the strength of a steel member under the combined effects of axial load and 

tables of safe moment-thrust combinations; and so-called “interaction” expressions that are in 

 

 

 

UNDER AXIAL LOAD AND BENDING 

flexure, two general approaches have historically been used (Galambos 1998): design charts and 

principal based on the formulaic representation: 

,

, 1.0required requiredf
P M

⎜ ⎟ ≤⎢ ⎥
⎜ ⎟provided provided X Y

P M⎛ ⎞⎡ ⎤

⎢ ⎥⎣ ⎦⎝ ⎠
 (20) 

 

Where P denote axial load, and M denotes moments about the X-axis (major principal 

centroidal axis or strong-axis) and the Y-axis (minor principal centroidal axis or weak-axis).   It 

has been the latter approach, the interaction equation method, that has emerged as the dominant 

approach for design within the context of modern building specifications though out the world 

(Galambos 1998).  As an initial approach in the formulation of a reasonable base-line form of an 

interaction expression, equation 20 may be restated in the commonly accepted form serving as 

the point of departure for essentially all specifications that employ the interaction approach. 

 

 1.0
u u

P M
+ ≤  (21) 

P M
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In equation 21, Pu denotes the pure column strength of the member being considered (i.e. 

its axial capacity in the absence of moment) and Mu denotes the capacity of the same member 

under pure bending (i.e. its flexural capacity in the absence of axial loading).  The quantities P 

and M denote the respective failure loads acting in combination on the member in question.  The 

capacit

view to one technique wherein raw cross-sectional 

capacity is treated through the consideration of a fiber analysis.  A fiber analysis is a means by 

hich a zero-length member of given cross-secti

number of uniaxial fibers to fixed coordinates within the cross-section and assigned idealized 

stress-strain response histories as would be consistent with coupon testing in a universal testing 

machine.  With this type of idealization, moment and axial force can be varied (in the presence 

f initial residual stresses) until an unstable combination of loading is achieved – a failure point 

s 

nite lengths wherein inelastic global instability limit states may also be treated (Kanchanalai 

nal strength

mplification of the primary applied moment as a result of so-called “second-order effects” (due 

to the axial force of the member acting over a moment arm emanating from the lateral deflection 

induced by the primary moment) can trace its familiar form in specifications to an earlier edition 

f the SSRC Guide (Johnston 1976) wherein equa

y of a given member may be obtained from experimental testing, but frequently such an 

approach is cumbersome due to the fact that an extremely large potential design space must be 

explored which involves such variables as: member cross-sectional proportions, moment-thrust 

ratios, unbraced length, etc.  In practice, it has been commonplace to employ numerical means 

for the identification of failure in members loaded by a combination of axial force and moment.  

Chen and Lui (1987) provide a helpful over

w onal geometry is studied by assigning a finite 

o

on the interaction line / surface.  This technique can be extended to the consideration of member

of fi

1977).  In addition to inelastic cross-sectio  and member stability issues, the 

a

o tion 21, above, is modified as: 
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( )

0 1.0
1u u

MP
M Pe

+ ≤
−

 (22) 
PP

where Mo is the first-order or primary moment applied directly to the member, and Pe is the axial 

elastic critical load for the member when buckling in the plane of primary moment is enforced.  

The additional denominator term appearing in equation 22 as compared with equation 21 

represents a consideration of member level second order effects. 

While the general underlying approach of most international specifications is rooted in 

the form of equation 21, certain subtle differences do present themselves in side-by-side 

comparisons of their form. Since the topic of the present study is restricted to minor axis flexure, 

the equations presented will be only those germane to that context and then in a format utilizing 

a uniform notation so as to facilitate direct comparison.  The Canadian specification (CSA 2002) 

employs an interaction equation of the form: 

 

0.85 1.0u u

n nP Mφ φ
P M

+ ≤

hile the Eurocode 3 (ECS 2002) equation appears as 

 

 (23) 

 

w

 

1.0u u

n nMφ
P M
Pφ

+ ≤  (24) 

 

 the case of the US specification (AISC 1999), a two-part interaction equation format is used: 

For

In

 0.2
c nPφ

<  uP
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 1 1.0
2

u u

c n b n

P M
P Mφ φ

+ ≤

 

and for 

 (25) 

0.2uP

c nPφ
≥  

 8 1.0u u

n b n

P M
9P Mφ φ

+ ≤

er differences related to the calculation 

of a

that the presence of mono-symmetry in an I-

sha

estigators (Alduri and Madugula, 

199

tions of the type 

w et al 1991) have pointed to the fact 

at equations of such as 25 and 26 may be less than robust in their ability to treat the case of an 

I-shaped beam-colu axis flexure in the 

resence of axial compression). 

 (26) 

 

While it is instructive to note the interaction equation formats for the various 

specifications, it is pointed out that individual member capacity predictions will vary from 

specification to specification as a results of these and oth

xial capacity as well as the determination of compactness in cross-section (i.e. the ability of 

the cross-section to form a plastic hinge and maintain structural ductility). 

The foregoing interaction equations have been developed with the intention of optimizing 

their predictive capabilities within the context of the major-axis (e.g. strong-axis) flexural case.  

It has been noted by others (Galambos, 2001) 

ped cross-section can have a pronounced impact on the economy of design emanating from a 

use of interaction equations such as the foregoing.  Other inv

2) have noted the importance of considering the pronounced effect that deviations from the 

ideal I-shaped cross-sectional case can have on the accuracy on interactions equa

presented in equations 25 and 26.  Other researchers (Lie

th

mn within the context of minor-axis flexure (e.g. weak-

p
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This dissertation contains mainly three parts; 

1. Verification of finite element modeling techniques using full-scale experimental testing 

 

1.6   SCOPE 

 

results obtained in the open literature. 

2. 

approach and focusing on the fundamental behavior of I-sections subjected to minor axis 

In section 2 non linear finite element analysis is discussed in a general sense with the source 

software package ABAQUS is discussed briefly, including the S4R shell elements and von Mises 

r finite element solution algorithms are 

briefly discussed in this sam

specimens with the proper imperfection geometry and their material model are discussed in 

ental tests are presented. 

In section 4, compactness of I-shaped beams under minor axis bending is discussed throug 

e consideration of results obtained from a parametric study. 

Parametric study results carried out using the verified nonlinear finite element modeling 

flexure and combined minor axis flexure and axial compressive thrust. 

3. Discussion of the results. 

of nonlinearities being called out explicitly. In the same section, the commercial finite element 

metal plasticity with isotropic hardening. Also nonlinea

e section of the dissertation. 

In section 3 details of the modeling techniques used in the verification process are explained; 

both for pure minor axis bending case and for the combined loading case. Geometry of the test 

depth in this section. Also, figures comparing the numerical finite element results with the results 

of the full-scale experim

th
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A simila nd the 

teraction of axial force and minor axis bending response for I –shaped beams.  

 

 

2.0  NON LINEAR FINITE ELEMENT ANALYSIS 

 

 

Nonlinear finite element modeling is at the heart of the research work reported on in the current 

study.  Given the reliance of the present work on this analytical method, it is important to clearly 

state the modeling approached used, software packages employed, and any assumptions made 

during the construction of the finite element analogs for the I-shaped cross-sections under 

investigation.  In addition, verification of the modeling techniques against full-scale 

experimental testing can be of great value.   

The commercial multipurpose finite element software package ABAQUS version 6.3 is 

employed in this research.  All modeling reported herein considers both nonlinear geometric and 

material influences.  The incremental solution strategy chosen for this work is the modified Riks-

Wempner method (ABAQUS, 2003). 

Material nonlinearity is modeled using ABAQUS standard metal plasticity material 

model which is based on an incremental plasticity formulation employing associated flow 

assumptions space is 

overned by a simple isotropic hardening rule.   

r parametric study and its concomitant results are used in section 5 to understa

in

Concluding remarks are given is section 6 for both cases. 

 

 

 

in conjunction with a von Mises failure surface whose evolution in stress-

g

The I-shaped cross-sections considered in the current research employ shell finite 

elements positioned along the middle surfaces on the cross-sectional constituent plate 
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components. The S4R nonlinear, finite strain, shell element from the ABAQUS element library 

is employed in this research. The following sub-sections endeavor to meet the above 

requirements and lead to a clear understanding of the approach, and subsequent limitations, of 

the present work.  

 

 

 
For structural analysis there are three sources of nonlinearities in analysis. The corresponding 

nonlinear effects are identified by the terms material, geometric and boundary conditions. All 

Material Nonlinearity:  The stress-strain curve of steel is linear

 

 

2.1   SOURCE OF NONLINEARITIES IN STRUCTURAL RESPONSE 

 

modeling reported herein considers both nonlinear geometric and material influences. 

 elastic until some 

significant point called the yielding point. After the attainment of the yield point, the stress strain 

curve becomes non linear and the strains become partially irrecoverable. In other words when the 

material behavior does not fit the elastic model )( εσ E=   there is a phenomenon of material 

nonlinearity. Effects due to the constitutive equations (stress-strain relations) that are non linear, 

are referred to as material nonlinearities. 

Geometrical nonlinearity: In elementary structural theory the effect of deformations are 

neglected when writing the equations of equilibrium and motion. In other words the behavior is 

described with respect to the undeformed configuration. Real structures are in equilibrium in 

their deformed configuration, not their undeformed configuration, as implied by elementary 

structural theory.  Especially when there is large deflection small strain case, geometric 

onlinearity must be taken into account. Ignoring the effects of geometric nonlinearity makes the n
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governing kinematic relationships linear and thus it is impossible to capture phenomena such as 

bifurcation buckling. 

2.2   NON LINEAR FINITE ELEMENT SOLUTION ALGORITHM  

 

g must be defined as a function of time and nonlinear response obtained by 

increm

 unable to negotiate solution features at the interface between stable 

and unstable equilibrium conditions. One solution method for tracing the nonlinear equilibrium 

path that is used in ABAQUS in such instances is Riks-Wempner method.  

The advantage of the Riks-Wempner method is its ability to trace behavior beyond a 

critical point. In other words, this technique permits limit points on the equilibrium path to be 

negotiated. The ability to accurately negotiate such limit points is a prerequisite for any 

compactness study since unloading response is at the heart of the currently accepted measure for 

flexural ductility: rotation capacity, R. The Riks-Wempner method is also sometimes referred to 

 

The objective of the nonlinear finite element analysis is to trace the non linear load-displacement 

path in multi-dimensional configuration space. In a non linear analysis, solving a single system 

of linear equations directly does not give the equilibrium condition related to physical system 

response. The loadin

enting time (in the case of a static analysis, time is a dummy variable associated with 

incremental loading of the structural system). In ABAQUS this simulation is achieved by 

breaking the total time into a number of time increments. ABAQUS then calculate the 

approximate equilibrium configuration at the end of each time increment via intermediate 

iterations carried out within each increment. Several solution algorithms are proposed and 

applied to trace the equilibrium path. Newton’s method is the basic method, and many other 

algorithms are developed by modifying this method. However, Newton’s method fails around the 

critical points; meaning it is
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as the arc length method. In arc-length methods, the solution is constrained to lie either in a plane 

normal to the tangent of the equilibrium path at the beginning of the increment or on a sphere 

with radius equal to the length of the tangent. This method allows tracing snap-through as well as 

snap-back behavior (Ramm and Stegmuller, 1982).  The algorithm for Riks method can be found 

in depth in the literature (Riks, 1972), (Riks, 1979) and (Crisfield, 1986). 

 
 
 
 

2.3   VON MISES METAL PLASTICITY MODEL IN ABAQUS 

ombination of stress at a point in a given material. ABAQUS permits several different type of 

ield criteria, but the von Mises yield criterion is selected in this research because of its ability to 

accurately predict yielding in body centered cubic crystalline based metals such as steel 

(ABAQUS, 2001).  

When developing the mathematical model for a yield criterion some assumptions may be 

made. 

ss space is shown in figure 5 and 6, respectively. The yielding only depends 

on the deviatoric stress vector OP. The elastic state of stress is defined as being any point inside 

e cylinder, and yielding is defined as any state of stre

e surface of the cylinder. 

 
 
A yield criterion is a law which defines the limit of elastic behavior under any possible 

c

y

First, material may be assumed to be isotropic. Second, Bauschinger effect may be 

neglected. Third, uniform hydrostatic tension or compression does not have an effect on yielding 

(Chakrabarty, 1987). A geometrical representation of the yield criterion in principal stress space 

and for biaxial stre

th ss that permits the stress point to lie on 

th
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Figure 5 Yield surface in principal stress space 

 

 
 

 
 
 

Figure 6 Yield surface for biaxial stress state )0( 3 YYand σσ ==
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According to the von Mises criterion yielding will occur when the distortional strain 

energy density of the structure reaches the distortional strain energy density at yield in uniaxial 

tension or compression (Boresi, 2002).  The total strain energy density oU  can be defined with 

two components.  

 

 U U UV D= +   (27) 
 

where VU  is the strain energy density associated with pure volume change. This can be 

neglected because it is known that hydrostatic pressure does not have effect on yielding.  is 

the dist

 DU

ortional strain energy density and is defined in the principal stress state as 

 

G
U D 12

)() 2
13

2
3 σσσ −+−

 
()( 2

2
21 σσσ +−

=  (28) 

here G is the shear modulus. When uniaxial stress state stress values are known to be 

 

 

w

 
0321 === σσσσ and  (29) 

 

(as in the case of a uniaxial coupon test) then the distortional strain energy at yield will have the 

form (Boresi, 2002).   

 

G
U Y

DY 6

2σ
=  (30)  
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2.4   EVOLUTION OF FAILURE SU

 
 
Plastic deformations may continue after initial yield is reached, and this behavior may be 

accompanied by changes in the yield surface. The relationship for the post yield behavior of the 

material is known as the flow rule. When the material is loaded beyond a certain point the stress 

state reaches the yield surface making yield function zero at that point. 

If the material is non hardening (i.e. perfectly plastic material) the yield surface does not 

change thus the stress point always lies on a surface formed by the locus of points corresponding 

to a constant yield stress. In other words incremental loading will either tend to reduce the value 

f the yield function below zero, which is also known as unloading, or incremental loading will 

tend to increase the value of yielding function above zero, which is not physically possible. In 

this case the stress point moves on the yield surface as the structure deforms plastically. If the 

material is strain hardening, yield surface evolves as the plastic deformation develops. In this 

case the yield surface expands or moves with the stress point still on the yield surface. To 

account for such changes the yield function must be generalized to define the subsequent yield 

surface configurations beyond the initial one.  H wever, what will be the direction of the plastic 

flow must be answered (Deierl

The incremental plastic strain can be written in the form of plastic flow vector, c, and the 

magnit

 

RFACE - ISOTROPIC HARDENING 

o

o

ein, Haijjer, Konvinde, 2001). 

ude of the plastic strain, λ. 

.
p cε λ=  (31) 

 

 

c will be defined as a function of stress state such as plastic potential function g.  

 
gc
σ

∂
=

∂
 (32) 
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In order to catch the real behavior of the material through analytical means, an 

appropriate plastic potential function should be picked. A plastic potential function can be 

chosen as the direction to cause maximum dissipation of plastic work. Knowing that plastic work 

is the irrecoverable part of the work done during a loading-unloading cycle gives the equation  

 

 
.

.p t pdW σ ε=  (33) 
 

p t dW c.σ λ=  (34) 

g and setting equal to zero the following equation is obtained. 

 

After differentiatin

.

. 0t cσ =  (35) 
 

According to this equation for maximum plastic dissipation, the direction of plastic strain 

ector m hat the 

ress state is on the yield surface the incremental stress vector must be tangent to the yield 

 

v ust be located perpendicular to the incremental stress vector. Having known t

st

surface which makes c normal to the yield surface (figure 7). Also the new plastic potential 

surface is now the yield surface. This choice of the flow rule, where the plastic straining is 

perpendicular to the yield surface is called associative flow rule (Deierlein, Haijjer, Konvinde, 

2001). 
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Figure 7 Normality of plastic strain 

 

Getting the maximum dissipation of plastic work by the associative flow rule is only 

valid for elastic-perfectly plastic materials. This flow rule may not give maximum plastic 

dissipa

train rate at a point (ABAQUS, 2001).  

ecreases) in all stress 

dire

 

tion for many types of hardening material. However, it is very popular and widely used in 

the literature for its capability of capturing true behavior for a large variety of materials 

(Deierlein, Haijjer, Konvinde, 2001). Associated flow models give good results with the 

materials whose plastic flow is formed by dislocation motion when there are no sudden changes 

in the direction of the plastic s

After reaching the yield point, many materials show an increase in stress with the 

increase in strain. Also after unloading and reloading the same material is seen to have increased 

its yield point. This response of the material is called the hardening response. Increase in the 

yield point also means increase in the yield surface.  If the yield surface changes its size 

uniformly in all directions, such that the yield stress increases (or d

ctions as plastic straining occurs, then the response is called isotropic hardening (ABAQUS, 

2001) (figure 8).  
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Figure 8 Description of isotropic hardening (Deierlein, Haijjer, Konvinde, 2001). 

 

 Meaning that in the case of the von Mises yield surface, isotropic hardening is manifested 

through an evolution of the cylindrical yield surface in the three dimensional principal stress 

space such that on planes oriented orthogonally with the hydrostatic stress generator of the 

surface the circular outline of the von Mises surface appears as a cylinder whose circumference 

increases, as the stress point continues to impinge on the yield surface during plastic flow, while 

the location of the center of the circle remains unchanged. In this research, isotropic hardening 

and the associated flow rule are adopted and used in conjunction with the ABAQUS software 

system. 
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2.5   S4R SHELL ELEMENT 

The ABAQUS shell element library includes general purpose shell elements and specially 

formulated shell elements for thick and thin shell problems. In this study the S4R general 

urpose shell element is used to model the actual three dimensional geometry of the beam. This 

lement is selected for use in the parametric study based on its satisfactory performance in the 

verification work described in the papers by Thomas and Earls and Greco and Earls (2003a,b). 

In the S4R there are four nodes possessing 6 degrees of freedom per node. The general 

purpose shell elements give accurate solutions to most applications. S4R allows transverse shear 

deformation to be considered in a fashion that is consistent with Mindlin-Reissner theory. Also, 

it employs the discrete Kirchhoff techniques to provide satisfactory results as the shell thickness 

decreases (ABAQUS, 2001) 

Finite membrane strains are taken into account in the S4R formulation and thus the 

element admits changes in thickness as a function of membrane strain.  Poisson’s ratio of the 

section defines whether the shell thickness changes as a function of the membrane strain or not. 

Setting the Poisson’s ratio to zero will  keep the shell thickness constant and will allow the 

elements fit for small strain large rotation analysis (ABAQUS ,2001).  

S4R formulation is based on a first order shear deformation theory. In other words the shell 

employs linear displacement and rotation interpolation in the context of Mindlin-Reissner theory, 

but the shear deformations are then obtained directly from a consideration of the nodal 

deformations. This approach is made to be consistent with the assumption that cross-sections 

remain plain but not normal to the Gauss surface of the shell.  

ABAQUS uses a lower order quadrature rule, called reduced integration, to calculate the S4R 

element stiffness. A single integration point is used in this particular element. Reduced 

 
 

p

e
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integration has two main advantages: it significantly reduces running time by using fewer 

sampling points; and with fewer sampling points, some of the more complicated displacement 

modes offer less resistance to deformation. This increases the accuracy of finite element analysis 

(Cook, 1989). Sometimes using reduced integration yields element stiffness matrices that display 

one or more false zero energy mode, which may also be the cause of an unstable, or very 

accurate solution (Bathe, 1982). However; ABAQUS overcomes this problem by using 

ourglass control. Hourglass control assigns an artificial (and usually quite small) stiffness to the 

so-called drilling degree of freedom on the shell.  This stiffness value depends on the factors 

all fraction of typical shear modulus for material (ABAQUS, 2001). 

in

h

usually given as a sm
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ental testing is the best way to investigate the inelastic post buckling response of I-

beams. Ho ever  needed 

 investigate the response of I-beams having many reasonable dimensions. The other choice is 

ress strain curve, 

oundary conditions, initial imperfection etc. may impact on the quality of the numerical results. 

 modeling technique is the primary vehicle for the 

search program reported on herein, it is clearly of great importance to establish the accuracy of 

the modeling strategies employed in this study.  As part of the current work, a careful search of 

the experimental literature is undertaken in order that an appropriate research program might be 

identified for use as a test case for the current verification study. Once a verified model has been 

constructed, reliable data can be produced by doing parametric studies using the finite element 

models. However, accuracy of the computer modeling depends on how well the real material’s 

physical and mechanical properties are defined. 

The most appropriate study found in the literature is centered on some work reported on 

at the University of Sydney (Rasmussen and Chick 1995).  This experimental research program 

3.0  VERIFICATION OF NUMERICAL MODELING 

 
 
 
 
Experim

w , it is expensive and time consuming to perform the large series of tests

to

to use a numerical experimental series with the help of a computer to perform the required 

parametric studies. Such numerical experiments rely on accurate computer models of the I-

beams. The nonlinear finite element program, ABAQUS, is employed in this research. In non 

linear finite element analysis techniques, assumptions related to the type of st

b

As it is that the nonlinear finite element

re
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focuses on the study of I-shaped members possessing slender cross-sectional profiles subjected 

to combined loading applied in a proportional fashion.  As part of this Australian research, the 

xtreme case of pure minor axis bending as well as the cases where the interaction of minor axis 

ending with axial loading are considered and thus valuable experimental results are contained in 

this work; vis-à-vis a verification study related t ent research. 

 
 
 

3.1   SOURCE OF MODELING UNCERTAINTIES 

 
 

here are some uncertainties in both physical testing as well as finite element modeling. For the 

rain oper s, yiel strength values of the material, and the plate 

geometry may be different through the section and along the beam length. Also mis-measured 

and reported in e perfection residual stresses, unreported material properties, 

ch as stress strain properties of material loaded in compression, do have important affects on 

e results of numerical models. Tension properties of the material are reported for the test 

ecimen studied in this research. However, because of the Bauschinger affects, the tension 

e compression behavior. In addition, as deformations become 

rge, support and restraint conditions become critical and variability in these values can change 

• Boundary conditions  

• Mesh density 

e

b

o the pres

 

T

test specimens, stress st  pr tie d 

itial geom tric im s and 

su

th

sp

behavior does not represent th

la

the result dramatically. 

In finite element modeling the analyst must define the information listed below: 

• Initial geometry of the specimen with imperfections 
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• Element type 

• Material model with material stress-strain properties 

• Numerical solution procedure with convergence tolerances 

 

ntal tests under minor axis bending 

and ax

3.2.1  Geometry of the test specimen 

mussen and Chick had tested a series of thin walled I-beams in combined compression and 

minor axis bending. Rasmussen and Chick (1995) focus on a single I-shaped cross-section whose 

nominal dimensions appear in figure 8.  Using this single cross-section, three distinct study cases 

are considered through the variation of the member unbraced length.  Specifically, short (Lb = 

800mm), medium (L  = 35 nd long (Lb = 5800mm) members are treated in their work.  

As a focus of nt v cation efforts, only the short and long cases are considered 

ecause they are the only tests performed under minor axis bending. The cross-section used in 

 
 

 
 

3.2 DESCRIPTION OF EXPERIMENTAL TESTING PROGRAM FROM THE 
LITERATURE FOR I BEAM UNDER MINOR AXIS BENDING. 

 
 
Rasmussen and Chick (1995) conducted a series of experime

ial force. Only two of these tests were performed under pure bending. In this research 

these two test specimens are used to validate the finite element modeling strategies for the 

investigation of I-section flange compactness under minor axis bending, alone. 

 
 

 
 
Ras

b 00mm), a

the curre erifi

b
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the experimental test was a slender I-section fabricated from high strength steel 

with . 

 
 
 

MPaFy 350=

 
 
 

Figure 9 Nomenclature (Rasmussen, 1995) 

 
Table 1 presents the measured cross-sectional dimensions. 

 

Table 1 Specimen dimensions 

 
 

Specimen Ls Lf tf tw bw Bf fc

 (mm) 
800-6 795.5 327 5.01 5.04 240 239 6 
5800-5 5798 5175 4.98 5.02 241 240.5 5 
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3.2.2  Material Model 

 
 

The behavior in the strain-hardening region is generally based on the nominal stress and 

engineering strain; which are calculated without considering the change in area of the cross-

section. However, the change in the cross-sectional area of the specimen may be an important 

parameter when large deformations occur.  In these cases the strain hardening range should be 

characterized using the true stress, obtained by dividing the load by the current area of the 

specimen. Nominal stress and strain data for uniaxial test for isotropic material can be converted 

into true stress and logarithmic plastic strain by using the following equations; 

 

 ( )nomnomtrue εσσ += 1  (36) 
 

 
( )

Enom
truepl σ

εε −+= 1ln

 

Rasmussen and Chick presented stress-strain properties of material loaded in tension in their 

report. Residual stresses are not included in this research since it is known to have no influence 

over the observed strength of hot-rolled structural members.  

Experimentally determined mechanical response values from coupon testing appear in 

table 2, in engineering units. These are converted to an idealized multilinear true stress and 

logarithmic strain format (see figure 10, table 3 and table 4) prior to importation into the finite 

element software package, ABAQUS.  

 

 

 

ln
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Table 2 Material properties 

 
 

Specimen E (GPa) fyc (MPa) fyt (MPa) fut (MPa) Plate 
Number 

800-6 7 198 446 420 498 
5800-5 4 200 466 431 509 

 

Table 3 Stress- Strain values for Test Specimen 800-6 

 
 

 
 

nomσ  nomε  trueσ  plε  ln

420 0.0021 420.89 0 
420 0.0167 427 0.014376 

522.72 0.125 588.06 0.114813 
490.9 0.0577 519.22 0.053465 

522.72 0.2019 628.27 0.1807497 
 
 
 

Table 4 Stress-Strain values for Test Specimen 5800-5. 

 
 

nomσ  nomε  trueσ  
pl

lnε  
431 0.0022 431.93 0 
431 0.0231 440.95 0.0206099 
510 0.0615 541.38 0.0570123 
526.67 0.0885 573.26 0.081899 
526.67 0.1462 603.64 0.1333936 
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Figure 10 Representative Idealized Material Model used in Finite Element Modeling 

 
 

3.2.3  Geometric Imperfections 
 
 
Since the verification test case considered in this part of the study involves minor principal axis

exure of an I-shaped beam under the action of pure moment, bifurcation related response must 

e considered as a possible factor governing overall response.  When applying the finite element 

 The incorporation of the 

perfection field is used to perturb the model from the condition of perfect geometry; failure to 

do this may result in the model artificially persisting in the perfect state throughout the loading 

history.  The potential proximity of the finite element displacement solution to an initial perfect 

geometry arises since such a configuration is a mathematically admissible equilibrium state 

(even post bifurcation).  However this configuration is meaningless physically since the slightest 

loading disturbance, or geometric imperfection, would render such an equilibrium state 

inaccessible to practical cases.  As a means of guarding against any potentially physically 

aberrant response, a reasonable displacement-based imperfection field should be incorporated 

 

fl

b

method to bifurcation-type stability problems, it is oftentimes advisable to incorporate a 

reasonable imperfection field into the finite element model. 

im
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into finite element models whose response has e potential of being governed by bifurcation 

buckling.  In such cases, it is not imperative that the precise governing buckling mode be used as 

an initial imperfection adopted at the start of the nonlinear solution.  Rather, any imperfection 

field used need only possess elements of the dominant features that are contained in the 

governing mode. 

In the present verification study, it is observed from linearized eigenvalue buckling 

analyses, carried out with ABAQUS, that the governing mode of instability in minor axis I-

shaped members in pure bending involves localized buckling within the flange. The perfect 

geometry was seeded with sinusoidal a varying imperfection given by equation 

 

 

th

)sin(
L
xyAwo

π
=  (38) 

 
The magnitude of imperfections for the flanges was taken as the maximum allowable fabrication 

imperfection permitted by the American Welding Society (AWS D1.1:2000); this is 

schematically illustrated in figure 11. 

 
 
 

 
 
 

Figure 11 Measurement of flange warpage and tilt. 
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Two types of constantly imposed imperfections were investigated, sinusoidal varying 

imperfection possessing a half wavelength of Bf / 2 that is phase shifted by 180 degrees between 

opposite flange tips and the same field without phase shift (figure 12 and figure 13). Effects of 

phase shift and imperfection sensitivity are only searched in specimen 800-6 and in 5800-5.  

 
 

 
 
 

Figure 12 Imperfection with phase shift. 
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A=Bf/100

Lw=Bf/2

 
 
 

Figure 13 Sinusoidal imperfection without phase shift. 
 

The results showed that existence of the phase shift in the imperfection does not have affect on 

the moment rotation curve. These results can be seen in figure 14. 
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Figure 14 Comparison of imperfections with and without phase shift 
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Figure 15 Imperfection sensitivity results 
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Also the magnitude of the peak imperfection deflection amplitude is varied to see if the model is 

nsitive to the imperfections or not. The result of the studies for the given test specimen under 

different imperfectio rfection of the test 

specimens at the flange tips and overall along the beam is given in figure 16.  

 

se

n magnitudes is given in figure 15. Variation of impe

  

Figure 16 Imperfection of the test specimen (Rasmussen, 1995) 
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Based on these results, the wavelength and the magnitude for sinusoidal type geometry are taken 

as 0.5xBf and Bf / 100, respectively.  These values are used throughout the remainder of this 

work. 

 

3.2.4  Finite element model for searching the I-section flange compactness under 

 

 

minor axis bending 

 
Finite 

s used to create a central constant moment region possessing precisely the moment 

These forces are applied at the flange-web junctions of the cross-section. While there is 

lso moment gradient loading being applied at both rigid end segments, these end segments are 

not of interest in this research; that is why they are modeled as being approximately rigid through 

the use of and elastic modulus that is one order of magnitude higher than that of middle segment. 

Imperfections were applied only on the flanges. In addition, the rigid segments were not seeded 

with imperfections, and mesh densities used throughout the entire length of the beam were 

constant and uniform. 

element mesh: In this research, the results of a parametric study are carried out using the 

same verified nonlinear finite element modeling approach discussed in the earlier sections. The 

same sinusoidally varying localized imperfection field of intensity Bf / 100 is used in this portion 

of the work.  As a means of creating a constant moment region of investigation for this study, a 

three segment beam, acted on by two equally spaced concentrated transverse loads applied to the 

third points, i

profile required by current specification writing bodies as the foundation case for provisions 

(figure 17). 

a
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Boundary Conditions: The model is a simple supported beam. However; restrain

 

Figure 17 Loading of the model 

t against 

ut of plane translation is applied at the flange tips at the flexible-rigid transition interfaces. A 

schematic depiction of the loading, geometry, and boundary conditions used in this work appears 

 figure 18. 

 

o

in

 

 

 

 
 

Figure 18 Boundary conditions and loading for the model 
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3.2.5  Verification Results for the I-section flange compactness under minor axis 

 

Employing the above specializations, the two constant moment minor axis flexural cases are

bending 

 
 

produced in the computer in order that suitable structural response results can be generated and 

ompared with the results from the experimental program of Rasmussen and Chick (1995).  Plots 

omparing normalized moment and absolute rotation appear in figures 19–20.  Based on these 

 
 

re

c

c

results, it appears that the present modeling techniques are sufficiently robust to undertake the 

outlined parametric study.   
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Figure 19 Comparison of test result with FEA for 800-6 
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Figure 20 Comparison of test result with FEA for 800-6 

 

As mentioned earlier, unreported data from test can interfere with proper modeling. For 

instance only uniaxial tension behavior is repo ed in the test report. Because of Bauschinger 

effect  (see table 2), it is anticipated that the reported mechanical response properties in 

the report of Rasmussen and Chick is inadequate for comparability between the experimental 

sting and any subsequent finite element analogs. However the model of the test specimen only 

considers the uniaxial tensio essarily represent the actual 

ehavior of the specimen. Furthermore, residual stresses are not taken into account in the finite 

elemen

rt

ytyc ff ≠

te

n material behavior which does not nec

b

t modeling. This may also play a role in any observed lack of agreement between the 

experimental tests and the finite element analogs since residual stresses may have a significant 
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impact on light gauge metal structural members, such as those being considered in the 

verification study (as opposed to the heavier hot-rolled sections at the heart of the current 

search’s parametric study discussed later). 

In order to compare the physical results of the tests the deflected shape of the models are 

ompared with that reported by Chick and Rasmussen (1995). In the report Chick and 

asmussen (Rasmussen, 1995) it is stated that: “The 800-Series specimen formed two local 

uckle half-wavelengths in the compression flange outstands which grew in amplitude until the 

end of the test. The tension flan e yielding in tension as the test 

rogressed.” 

In figure 21 an sh he ist  of the model 

matches with t  in the test repor

 
 
 

re

c

R

b

ge outstands remained flat whil

p

 ABAQUS deformation plot ows that t  character ic behavior

hat stated t. 

 
 
 

Figure 21 Deformed shape of the numerical model for test specimen 800-6. 
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In the report Chick and Rasm

“The 5800-Series specimen formed local buckles of consistent amplitude and wavelength over 

the entire length of the com ression flange outstands. These deformations changed in amplitude 

from when they were first apparent. Failure even rr uarter of the length from 

one end of the specime ld p nge outstands.” 

 
 

ussen (Rasmussen, 1995) states; 

p

tually occu ed at one q

n where yie  lines formed in the com ression fla

 
 
 

Figure 22 Deform pecimen 5800-5. 
 

Again in this model ABAQUS deformation plot (figure 22) shows good agreement with the 

statement made in the test report. 

 
 
 
 
 
 
 
 

ed shape of the numerical model for test s
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3.3 DESCRIPTION OF EXPERIMENTAL TESTING PROGRAM FOR I-SHAPED 
BEA S UNDE S MOMENT – THRUST 

 
 
Beams with 3500 mm 800 mm gths fro ear ussen and Chick (1995) 

re used to validate the finite modeling strategies for the investigation of interaction between 

xial loading and minor axis bending. Since a detailed description of modeling is mentioned in 

revious section, only the differences between the two modeling approaches will be reported in 

is section. Total of seven tests are verified for this part of the research.  

 

 

The measured cross-sectional dimensions, in addition to the ultimate forces applied to the 

models, are tabulated in table 5. 

 

Table 5 Measured specimen lengths and applied loads 
 
 

Spe

M R MINOR AXI

and 5  len m the res ch of Ram

a

a

p

th

 
 

3.3.1  Geometry of the test specimen 

 

cimen tf (mm) tw(mm) bw (mm) Bf (mm) fc (mm) M (kNm) P(kN) 
3500-2 5.02 4.95 240.50 240.00 4.50 5.53 653 
3500-3 4.97 4.98 240.00 239.50 6.50 9.57 553 

3500-5 5.01 5.00 240.50 239.50 4.50 39.63 65 
      
5800-2 4.91 5.01 24

3500-4 4.96 5.00 240.00 239.00 6.00 13.2 427 

  
0.00 240.00 4.50 1.79 430 

5800-3 4.99 5.01 241.00 240.00 5.00 7.26 318 
5800-4 5.07 5.05 241.00 240.00 5.50 18.21 181 
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3.3.2  Material model 
 
 
Uniaxial tension test results carried out under quasi-static conditions are adjusted to be static 

values according to the paper of Galambos and Ravindra (1978). In that paper stress levels are 

decreased by 4 ksi because of the difference between the dynamic test loading and the actual 

static loading. Static yield stress is independent of testing procedure and the behavior of testing 

machine. Static yield stress is defined as the stress level when the strain rate is zero or when the 

testing speed is zero (Galambos, 1998). In figure 23 difference between static and dynamic 

loading can be seen. For example; uniaxial tension test results for plate 2 is given in figure 24 

nd the amount of deduction calculated is also shown on figure 24.   

 

a

 
 
 

Figure 23 Difference between dynamic loading and static loading (Galambos,1998). 
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Figure 24 Stress strain plot for plate 2. 

 

The reported mechanical response values from coupon testing appear in table 6 in 

engineering units; these are subsequently adjusted to be static values and then converted to an 

idealized multilinear true stress and logarithmic strain format (see figure 10, table 7,8,9,10 and 

11) prior to importation into the finite element software package, ABAQUS.  
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Table 6 Mechanical properties 

 
 

Specimen Plate E (GPa) fyc (MPa) fyt (MPa) fut (MPa) 
3500-2 6 204 457 431 503 
3500-3 2 198 450 435 498 
3500-4 3 200 453 436 506 
3500-5 4 200 466 431 509 
      
5800-2 1 199 451 435 502 
5800-3 2 198 450 435 498 
5800-4 1 199 451 435 502 

 
 
 

Table 7 Stress- Strain values for Plate 1 

 
 

nomσ  nomε  trueσ  
pl

lnε  
435.5 0.002188 0 408.874 
4
503 0.063462 07.3492 0.05884 
525 0.10875 54.5098 0.100305 
525 0.186635 595.404 0.167991 

35.5 0.014904 414.4099 0.012567 
5
5

 
 
 

Table 8 Stress -Strain values for Plate 2 

 
 

nomσ  nomε  trueσ  
pl

lnε  
435 0.002197 408.3766 0 
435 0.018269 415.3681 0.015867 

523.3333 0.111731 554.2267 0.10298 
523.3333 0.186731 593.4767 0.168066 

499.3333 0.061538 502.4825 0.057042 
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Table 9 Stress -Strain values for Plate 3 

 
 

nomσ  nomε  trueσ  
pl

lnε  
436 0.00218 409.3715 0 
436 0.011538 413.4517 0.009267 

526.6667 0.186538 

506.6667 0.065385 512.2158 0.060637 
526.6667 0.105769 554.7928 0.097629 

597.3312 0.167916 
 

 
 

Table 10 Stress -Strain values for Plate 4 

 
 

nomσ  nomε  trueσ   
pl

lnε
431 0.002155 404.3498 0 
431 0.013077 0.010809 
510 0.061538 0.057012 

544.9517 0.081903 
26 0.14 575.2979

409.0571 
513.8056 

526 0.088462 
5

 
 0.133397 6154 

 
 
 

Table 1  alues ate 

 

1 Stress -Strain v  for Pl 6 

 

nomσ  nomε  truσ   
pl

lnεe

431 0.00211 .3313 404 5 0 
431 0.00961 .565 07
483.3333 0.046154 478.062 0.042642 
520 0.1 544.421 0.092506 

5 407 2 0.0 436 

520 0.176923 584.421 0.159903 
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3.3.3  Geometric imperfections 

 the finite element analogs of the experimental test specimens, a reasonable displacement-

based imperfecti  of sinusoidally 

arying imperfection possessing a half wavelength of Bf / 2, that is phase shifted by 180 degrees 

etween opposite flange tips (see figure 12) as well as a maximum displacement amplitude equal 

to 0.2 times the flange thickness.  

s

 

 
 
In

on field is incorporated into the finite element models in the form

v

b

 
 

3.3.4  Finite element model for I-Shaped Beams under minor axis moment - thrust 
 
 
Finite element mesh: The I-shaped cross-section  are built-up using S4R shell finite elements 

from ABAQUS element library positioned along the middle surfaces of the cross-sectional 

constituent plate components (figure 25). 

 

 

 

 
 

Figure 25. Representative Shell Finite Element Mesh 
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A cons r lar to

behave rigidly. 

Boundary Conditions: The model is a simple supported beam. However; restraint against 

torsion is applied at the flange tips at the flexible-rigid transition interfaces. A schematic 

depiction of the loading, geometry, and boundary conditions used in this work appears in figure 

26. At the end of the I-shaped member, along the plate edges, rigid beam elements from the 

ABAQUS element libra al kinematics at points 

ssociated with the imposition of boundary conditions. 

 

tant moment loading is achieved by applying four concentrated forces pe pendicu  

the beam longitudinal axis. Axial loads are applied at the nodes at the roller end of the simply 

supported beam. The two end segments adjacent to the constant moment region, are made to 

ry are employed to assist with maintaining ide

a
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Figure 26 Test rig and finite element modeling 
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3.3.5  Verification of Test nder minor axis moment - 
thrust 

s 27 and 28.  In these figures, the 

aximum inelastic moment at the mid-span versus the axial load are plotted. The maximum 

oment is calculated as the sum of the end moment and the moment produced by the 

ccentricity of the axial force; 

 Results for I-Shaped Beams u

 
 
Results from seven of the experimental specimens reported on from the research program of 

Rasmussen and Chick (1995) are compared with equivalent finite element models.  Plots 

comparing these interaction responses appear in figure

m

m

endM M Pδ= +  where δe is the mid-span deflection (i.e. the sum 

of the primary and secondary moments). Based on these results, it appears that the present 

modeling techniques are sufficiently robust to undertake the desired parametric study. 
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Figure 27 Comparison of results for 3500 series 
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Figure 28 Comparison of results for 5800 series 

 

Rasmussen and Chick (1995) also reported the maximum axial force and corresponding 

second order mom ts. It these test results 

allows foran easy comparison with the design interaction curve in AISC-LRFD since it is defined 

is terms of ultimate axial load versus second order elastic moment . In order to 

compare the experimental results with design interaction equations, end moment must be 

converted to second order moments. This can be done by using the following equation; 

 
 

ent values at the end poin is noted that the format of 

( )uP ( )meuM

1meu enduM B M= ×  (39) 
 

 1
1

1 u

e

B P
P

=
−

 (40) 
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where Euler buckling load is 
2

2e
EIP

L
π

=

x

; a value enforced to be the flexural buckling load about 

the minor principal axis in this conte t, and is the first order end moment coinciding with 

the controlling value of . Furthermore, from the ABAQUS results is converted into 

and compared with the corresponding values given by Rasmussen. Comparison of these 

alues can be seen in table 12. 

 

 
 

  Pu (kN) Mmeu (kNm) 

enduM

uP enduM

meuM

v

Table 12 Comparison of ultimate axial load and second order elastic moments 

Specimen FEA Test FEA Test 
3500-2 654.00 653.00 9.82 9.80
3500-3 536.28 553.00 14.75 15.60

   
5800-2 414.51 430.00 5.99 7.30
5800-3 317.29 318.00 16.02 16.20
5800-4 191.85 181.00 28.78 26.30

3500-4 
3500-5 

449.12 427.00 20.11
63.97 65.00 40.79

18.80
41.50

 
 
 
Based on results from figure 27 and 28, as well as the failure loads presented in table 12, it 

appears that the present modeling techniques are sufficiently robust to undertake the current 

research work investigating combined loading response of I-shaped steel cross-sections bent 

abou nce gt the minor-axis in the prese  of axial compressive loadin . 
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4.0  I-SHAPED BEAMS UNDER MINOR AXIS BENDING 

 
 
 
 

4.1   PARAMETRIC STUDY  

 
 

otation capacity for wide-flange beams under major axis bending is studied by various 

searchers. Kemp (1985) examined the ratio of 

R

/ , / , / , /re f f w y fb t d t L r L t and found their 

fluences on plastic flexural ductility or rotation capacity of wide flange beams. He also 

 parameter in determining the rotation capacity.  However, it is 

ointed out that in the case of major axis flexure, the occurrence of lateral-torsional b  

an important factor in the ma ty (a situation consistent 

ith the observed sensitivity on ) . This is not the case for an I-beam in minor axis bending 

in

reported that strain hardening properties of the steel is an important factor in affecting the 

observed flexural ductility. Based on the studies of Roik and Kuhlman (1987), the / fL b ratio 

was also found to be an important

p uckling is

nifestation of overall beam rotation capaci

w  / fL b

since the cross-section cannot experience this overall mode of buckling. 

The present parametric investigation considers the variation of five physical quantities: 

cross-sectional aspect ratio ( / )fB d  unbraced length-to-cross-sectional depth ratio ( / )b fL b ; web 

slenderness ratio, ( / )h t flange slenderness ratio, ( / 2 )w f fB t , and steel yield strength.  The 

individual parameters are varied within the context of five groupings of a series of given 

quantities as defined in table 13.  
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Parametric studies are constructed for each different / wh t  ratio. For each / wh t  ratio, 

/b fL b  ratio is varied from two to nine. Also /fB d   is varied from 0.4 to 0.9 for each /b fL b  

ratio. When arriving at individual plate slenderness limits for compact flange response, the ratio 

/ 2f fB t   is varied for a fixed combination of the ot our param ters until compact response is 

achieved. A schematic depiction of this approach can be seen in figure 29. For each 

 

/tw=120 

her f e

/ w

there will be at least 96 finite element model runs. 

h t  group 

Table 13 Parametric Study Naming Convention 

 
 

 h/tw=60 h/tw=90 h

fy=50 Group 1 Group 2 Group 3 

fy=60 Group 4 NA NA 

fy=70 Group 5 NA NA 
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Figure 29 Depiction of Appro  Taken Arrivin t comp ess Re s (note
plete f ge width in this f re) 

 

In order to see the effects of mat ial stren  50 ksi, 60 ksi and 70 ksi steel are used in 

e parametric study. The true stress and logarithmic plastic strain values for these steels are 

iven in table 14. 

ach in g a actn sult : b  refers to the f
com lan igu

er gth

th

g
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Table 14 True str ic study models 
 
 

5  ks
σ ue

50 ks
εln

pl
60 ksi 
σtrue

 ks
ln

s
true

70 ks
εln

pl 

ess and logarithmic strain values    for   parametr

0 i 
tr

i 60
ε pl

i 70 k
σ

i i 

50 0 60 0 70 0 
51.345 0.0092 61.345 0.0092 81.345 0.0092 
75 0.0557 57 57 
80 0.09 89   

78 0.05 88 0.05
 0.09 99 0.09

 
 
 
 

4.2   GENERAL BEHAVIOR 

s expected, the results showed no evidence of lateral torsional buckling. The only instability 

henomenon was the local buckling of compression portion of the flanges. A typical deflected 

ape, with von-Mises stresses, can be seen in figure 30.  

 
 
A

p

sh

 
 
 

 
 

Figure 30 Typical deflected shape and stress distribution 
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When a given  in the compression 

nd tension regions (i.e. above and below the neutral axis) are yielded. However, for some cases 

the web did not yield, or just sta ed to yield ed its p tic moment capacity. 

It is not surprising that the w ailed t eld in instances since itsw location corresponds 

to the theoretical ne l axis positio e cr ction  str trib r L/Bf=2 of 

group 2 is giv  f re 31.  each B  rat re ar plot h re t the state of 

stress at incipient plastic mom  an e att nt of ultimate nt. The numbers under 

ach figure show the crement number, and th r nu is fo tate o tic moment. 

or each finite element model shown below, the left figure is at Mp and the right figure is at Mu.  

 

 
 
 
 
 
 
 
 
 
 

 beam reaches its plastic moment capacity, flanges both

a

rt , as the section reach las

eb f o yi most 

utra n of th oss-se .  The ess dis ution fo

en in igu For f /d io, the e two s whic presen
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L/Bf=2  Bf/d=0.4  Bf/2tf=8.5 L/Bf=2  Bf/d=0.5  Bf/2tf=8 
 

 
L 2  .6  8 /Bf=2 =0.7 tf=8 /B = B /d=0 B /2t = L   B /d   B /2f f f f f f

  
L/Bf=2  Bf/d=0.8  Bf/2tf=7.5 L/Bf=2  Bf/d=0.9  Bf/2tf=7.5 

  
 
 

Figure 31 von Mises stress distribution for 2 at d at M

 

In order to se e a ect o in w eldi avi e plots are given for L/Bf=9 of 

group 2 in figure 32. 

L/Bf = Mp an u

f L/B  eb yi ng beh or, same th ff f
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L/Bf=9  Bf/d=0.4  Bf/2tf=9.5 L/Bf=9  Bf/d=0.5  Bf/2tf=8.5 L/Bf=9  Bf/d=0.6  Bf/2tf=8 
 

   
L/bf=9  Bf/d=0.7  Bf/2tf=8 L/Bf=9  Bf/d=0.8  Bf/2tf=8 L/Bf=9  Bf/d=0.9Bf/2tf=7.5 

   
 
 

Figure 32 von Mises stress distribution for L/Bf =9 at Mp and at Mu 

 

From figure 31 and figure 32 it can be said that for higher Bf/d ratio there is a limited amount of 

web yielding at plastic moment state. Also as the L/bf ratio gets higher the tendency for web 

yielding to occur at Mp decreases.
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4.3   MOMENT ROTATION CURVES 

 
 
Moment rotation curves for each parametric combination displayed a significant sensitivity 

related to when there was rotation capacity to be measured and when there was none at all. For 

example, this can be seen in moment rotation curve for L/Bf=4, Bf /d=0.5 and h/tw=90 (group 2) 

(see figure 29). For Bf/2tf=8.5 the rotation capacity is 24.24 which is much greater than three: the 

minimum rotation capacity mentioned in AISC (1999) manual. However for Bf /2tf=9 there is no 

rotation capacity at all. The delineation between small finite rotation capacity values and very 

large rotation capacities is referred to as the critical rotation capacity herein. It has been found 

that the critical moment rotation values vary from 32.71 to 5.34; sometimes slight changes in 

slenderness yield enormous improvements in structural ductility and other times such changes 

result in only small, incremental improvements. 

More than 40 discrete parametric data points are obtained from an analysis space of more 

than 480 individual runs. The 40 discrete parametric points for the flange slenderness values 

where the critical rotation capacities are found are presented in tables 15,16,17,18, and 19. 

The corresponding critical rotation capacities, calculated at these parametric points, are 

tabulated in tables 20,21,22,23 and 24. In addition, for the group 2 parametric points, some 

presentative trend lines are plotted in figure 33. In figures 34 and 35 moment rotation curves 

for the case of L/Bf

re

=2 and L/Bf=9, from group 2, is presented. 
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Table 15 Critical Bf/2tf ratio values for Group 1 

      fy=50 h/tw=60     
  Bf/d 

 
 

  0.4 0.5 0.6 0.7 0.8 0.9 
2 9.5 8.5 8.5 8 8 8 
3 9.5 8.5 8.5 8 8 8 
4 10 9 8.5 8.5 8 8 
5 na na 9 8.5 8 8 
6 11.5 10 9 8.5 8.5 8.5 
7 na 10 9 9 8.5 8.5 
8 na 10 9.5 9 8.5 8.5 

L
/B

f

9 na 10.5 9.5 9 8.5 8.5 
 
 
 

Table 16 Critical Bf/2tf ratio values for Group 2 

      fy=50 h/tw=90     
  Bf/d 

 
 

  0.4 0.5 0 0.7 0.8 0.9 
2 8.5 8 8 8 7.5 7.5 

.6

3 8.5 8 8 8 7.5 7.5 
4 9 8.5 8 8 7.5 7.5 
5 9 8.5 8 8 8 7.5 
6 9 8.5 8 8 8 7.5 
7 9 8.5 8 8 8 7.5 
8 9.5 8.5 8 8 8 7.5 

L
/B

f

9 9.5 8.5 8 8 8 7.5 
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Table 17 Critical Bf/2tf ratio values for Group 3 

 
 

      fy=50 h/tw=120     
  Bf/d 
  0.4 0.5 0.6 0.7 0.8 0.9 

2 8.5 8 8 7.5 7 6.5 
3 na 8 na 7.5 na 6.5 
4 8.5 8 8 7.5 7 6.5 
5 8.5 8 8 7.5 7 7 
6 8.5 8 8 na 7 7 
7 8.5 8 8 8 7 7 
8 8.5 8 8 na Na 8

L
/B

f

9 8.5 8.5 8 8 7.5 7 
 
 
 

Table 18 Critical Bf/2tf ratio values for Group 4 

 
 

      fy=60 h/tw=60     
  Bf/d 
  0.4 0.5 0.6 0.7 0.8 0.9 

2 8 7.5 7.5 7.5 7.5 7.5 
3 8 7.5 7.5 7.5 7.5 7.5 
4 8.5 8 7.5 7.5 7.5 7.5 
5 9 8 8 7.5 7.5 7.5 
6 10 8.5 8 8 7.5 7.5 
7 10 9 8.5 8 7.5 7.5 
8 na 9 8.5 8 8 7.5 

L
/B

f

9 na 9 8 8.5 8 8 .5
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Table 19 Critical Bf/2tf ratio values for Group 5 

 
 

    fy=70 h/tw=60   
  Bf/d 
  0.4 0.5 0.6 0.7 0.8 0.9 

2 7.5 7 7 7 7 7 
3 7.5 7 7 7 7 7 
4 7.5 7.5 7 7 7 7 
5 8 7.5 7.5 7 7 7 
6 8.5 8 7.5 7.5 7 7 
7 9 8 8 7.5 7.5 7.5 
8 9 8.5 8 7.5 7.5 7.5 

L
/B

f

9 9 na 8 7.5 7.5 7.5 
 
 
 

Table 20 Critical rotation capacity values for Group 1 

 
 

      fy=50 h/tw=60     
  Bf/d 
  0.4 0.5 0.6 0.7 0.8 0.9

2 29.78 28.16 20.92 19.93 19.37 15.84
3 25.61 24.58 18.36 18.13 16.67 13.34
4 32.71 21.99 19.61 15.92 15.85 14.58
5 na na 16.83 16.21 16.19 14.45
6 30.15 20.67 18.92 17.38 14.39 11.94
7 na 21.69 18.46 13.66 13.42 11.15
8 na 21.71 14.20 13.10 12.24 10.93

L
/B

f

9 na 18.76 15.99 12.72 11.32 9.87
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Table 21 Critical rotation capacity values for Group 2 

 
 

      fy=50 h/tw=90     
  Bf/d 
  0.4 0.5 0.6 0.7 0.8 0.9

2 23.64 20.69 15.90 10.72 13.20 10.05
3 24.52 21.91 16.25 12.73 13.98 11.24
4 21.98 19.37 18.16 15.87 15.55 12.33
5 20.12 16.27 16.67 13.93 12.08 13.06
6 18.49 13.54 13.97 12.09 10.67 12.71
7 17.53 14.04 12.78 10.13 9.39 10.71
8 15.29 11.11 10.47 8.75 7.60 9.22

L
/B

f

9 16.10 11.38 9.38 8.59 7.34 8.22
 
 
 

Table 22 Critical rotation capacity values for Group 3 

 
 

      fy=50 h/tw=120     
  Bf/d 
  0.4 0.5 0.6 0.7 0.8 0.9

2 18.49 16.48 10.28 9.41 9.61 9.09
3 na 13.08 na 9.03 na 8.68
4 15.35 14.25 11.33 10.03 7.34 8.32
5 15.53 13.93 10.69 10.21 8.44 5.34
6 14.11 13.65 10.67 na 7.34 5.97
7 12.51 11.75 10.36 7.41 8.52 5.86
8 11.03 10.32 9.44 8.11 na na

L
/B

f

9 10.38 8.74 8.57 7.35 7.70 6.08
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Table 23 Critical rotation capacity values for Group 4 

 
 

      fy=60 h/tw=60     
  Bf/d 
  0.4 0.5 0.6 0.7 0.8 0.9

2 21.06 22.56 18.65 15.56 13.11 9.68 
3 19.94 17.96 14.70 13.17 11.58 9.10 
4 19.86 16.20 15.97 13.89 12.83 11.32 
5 19.19 15.74 12.99 13.80 12.09 10.75 
6 19.22 14.94 12.49 11.39 12.45 11.17 
7 22.73 14.19 12.43 11.94 11.91 10.47 
8 na 15.46 12.84 11.34 9.53 9.80 

L
/B

9 na 15.3

f

7 12.49 9.32 9.06 7.55 
 
 
 

 
 

      f =70 h/t =60     
  B

Table 24 Critical rotation capacity values for Group 5 

y w

 f/d
  0.4 0.5 0.6 0.7 0.8 0.9

2 15.38 16.82 12.91 11.02 9.86 9.19 
3 15.09 13.53 11.92 10.78 9.89 8.26 
4 18.57 13.20 13.72 11.48 10.34 9.48 
5 14.94 11.69 9.90 11.57 10.46 9.68 
6 14.48 12.22 10.67 9.45 10.11 9.34 
7 15.42 13.66 11.16 9.60 8.53 7.28 
8 17.27 13.20 10.65 9.52 8.21 7.08 

L
/B

f

9 17.79 na 9.75 9.12 7.72 6.68 
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Figure 33 Bf /2tf values for varying Bf /d values for group 2 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 
 
 

 

 

 

75 



 

L/Bf=2 and Bf/d=0.4

0.2

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45

Θ/Θp

M
n/M

p

 

L/Bf=2 and Bf/d=0.5

0

0.2

0.6

1

1.2

0 5 10 15 20 25 30 35 40 45

Θ/Θp

M
n/M

p

 

Bf/2tf=8.5

0

0.4

Bf/2tf=8

0.4

0.8

L/Bf=2 and Bf/d=0.6 L/Bf=2 and Bf/d=0.7
Bf/2tf=8

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45

n/M
p

Bf/2tf=8

0

0.2

0.4

0.6

0.8

1

0 5

n/M
p

1.2

Θ/Θp

M

 

1.2

10 15 20 25 30 35 40 45

Θ/Θp

M

 

L/Bf=2 and Bf/d=0.8
Bf/2tf=7.5

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45

Θ/Θp

M
n/M

p

 

L/Bf=2 and Bf/d=0.9
Bf/2tf=7.5

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40 45

Θ/Θp

M
n/M

p

 
 
 

Figure 34 Moment-rotation curves for L/Bf=2 of group 2 
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Figure 35 Moment-rotation curves for L/Bf=9 of group 2 
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4.4   DISCUSSION OF RESULTS  

 
 
As the parameters of the , cert rends ehavi come clear.  The current 

section endeavors to de e observe fer as w as to describe possible 

mechanisms that may ex served r se us l dditional insight into the 

roblem of minor axis compactness. 

O

the major axis provisions to the case of minor axis flexure.  For the case of steel with a minimum 

specified yield stress of 345MPa, the US specification requires that for compactness, the ratio B  

/ 2tf may not exceed 9.2.  However, the results presented herein clearly indicate that the 

maximum permissible plate ratio Bf / 2tf may be as low as 6.5 (depending on web slenderness 

tio, h / tw, and cross-sectional aspect ratio, Bf / d).  Similar results hold for the cases with steel 

having yield stresses of 414MPa and 483MPa. 

 
 

4.4.1  Effect of steel yield strength on flange compactness limit  
 
 
Based on the compactness results gleaned from the finite element modeling results obtained 

using steel possessing yield strengths of 345MPa, 414MPa, and 483MPa, certain trends in cross-

sectional compactness arise.  As the yield st  

ximum permissible cross-sectional plate slenderness ratio decreases by as much as 25%.  

study are varied ain t  in b or be

scribe th d dif ences ell 

plain the ob espon and th end a

p

ne discussion point that conspicuously presents itself is related to the applicability of 

exiting specification recommendations, for major axis flexural flange compactness, to the case of 

minor axis flexure.  While it is commonly believed that the foregoing practice is conservative 

(based on so-called “common sense”), this may not actually be the case.  Based on the results 

presented herein for the three steel grades considered, it appears to be un-conservative to apply 

f

ra

rength increases from 345MPa to 483MPa, the

ma
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Meaning that as steel strength increases, a significantly more strict compactness limit must be 

nforced, as compared with cross-sections made from lower strength steels.  It is noted that this 

sensitiv

, (approximately 0.9) 

e diminution of the maximum permissible flange slenderness resulting from the increasing 

eel strength is much more consistent with current specification predictions; although overall 

magnitude of the slenderness limit predicted by the specifications is still un-conservative. 

 
 

4.4.2  Effect of web slenderness on flange compactness limit 
 
 
A clear parameter influencing the maximum permissible flange slenderness limit is web 

enderness, h / tw.  Using the web compactness limit from the US specification (in conjunction 

ith a steel yield strength of 345MPa), for the case of major axis flexure, results in a web 

slenderness limit of 90.  As part of the current research effort, a variation of +/- 30% (i.e. h / tw = 

60, 90, and 120) is considered in the following discussion.  As web slenderness, h / tw, increases, 

e maximum permissible flange slenderness required for compact behavior decreases (in some 

cases by as much as 25% as h / t  increases by 100%). 

 

4.4.3  Effect of Cross-sectional aspect ratio on flange compactness limit 

 
al flange width to cross-sectional depth ratio, 

f / d (aspect ration), has a pronounced influence on the limiting flange slenderness required for 

e

ity to yield stress is somewhat greater than what the US specification predicts (15% 

decrease in maximum permissible limiting plate slenderness resulting from the noted 138MPa 

steel strength increase – all other parameters held constant).  However, it is noted that in cases 

where the cross-section possesses a large cross-sectional aspect ratio, Bf / d

th

st

sl

w

th

w

 

 

It is interesting to note that the ratio of cross-section

B
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compact response.  In general, as the aspect ratio increases (from 0.4 to 0.9), decreases as large 

as 25% are observed d indicate that, as an 

olated parameter, cross-sectional aspect ratio is at least as important as web slenderness in 

affecting limiting flange slenderness requirements for compact response in minor axis flexure.  

However, it is pointed out that as the span-to-depth ratio approaches 7, the fluctuation in flange 

compactness as a function of cross-sectional aspect ratio all but disappears. 

 
 

4.4.4  Effect of span-to-flange width ratio on flange compactness limit 
 
 
In the present research, a series of different span-to-depth ratios, Lb / Bf, are considered; ranging 

from 2 to 9.  Based on the author’s experience in modeling, beams whose span-to-flange width 

ratio is greater than or equal to 7 tend to behave well; vis-à-vis Bernoulli-Euler beam theory.  

Those beams whose span-to-flange width ratios are less than 7 tend to exhibit significant effects 

f internal shear.  This fact is pointed out since it is noted that as the span-to-flange width ratio 

creases, in the test population considered in the current research, increases in concomitant 

ange slenderness limits accompany this growth; increasing by as much as 17% in the most 

xtreme instance (all other parameters held constant). 

ased on the foregoing, it seems that the major factors influencing minor axis flange 

pactness are web slenderness and cross-sectional aspect ratio.  However, a closer 

examination of the results hints at a mechanical basis for this: the effect of web-restraint on the 

elastic flange buckling.  In arriving at this conjecture, it is observed that at low span-to-flange 

to occur in the limiting flange slenderness.  This woul

is

o

in

fl

e

 
 

4.4.5  Effect of web-restraint on flange compactness limit 
 
 
B

com

in
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width ratios, the reduction in the flange compactness limit, as a function of cross-sectional aspect 

ratio, is greatest.  In addition, at high span-to-flange width ratios, the flange slenderness limit for 

pactness is qu e steady across different cross-sectional aspect ratios, and this steadiness 

occurs in conjunction with the largest observed permissible values for the flange slenderness. 

One may use the foregoing, in conjunction 

s re somewhat insensitive to changes in span-to-flange width ratio, to shed light on an 

obvious limitation in the modeling: the presence of rigid ends in the model.  It might have been 

ised that the rigid ends would provide an artificially high restrain

us improve structural ductility; allowing for more liberal flange compactness limits.  Such a 

oser together.  In actuality, the opposite trend is observed and the most 

beral minor axis flange compactness limits occur at the larger span-to-flange width ratios for 

e beam in question.  So the question remains;

increases in compactness limits then where is the restraint coming from?  The hypothesis is that 

the restraint is coming from the web.  Based on the research results, it is noted that as the web 

slenderness increases, it is easier for the flange to buckle locally.  This may be ascribed to the 

reduced flexural rigidity in the web as its slenderness is increased.  It is further pointed out that 

is web restraint effect appears to be more pronounced in cases wherein the member in minor 

 to-flange width ratios are greater than 

r equal to 7).  At lower span-to-flange width ratios, the effects of shear complicate the observed 

response and thus make it difficult to find a mechanistic basis for observed differences in flange 

pactness. 

 
 

com it

with the observation that flange compactness 

limit  a

surm t against local buckling and 

th

restraining effect ought to be most pronounced as the span lengths decrease and the rigid ends 

subsequently move cl

li

th  if some restraint of the flanges is leading to 

th

axis flexure is permitted to act like a beam (i.e. when span-

o

com
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4.4.6  Comparison with Equ
 

 
ation 19 

he approach taken in deriving equation 19 in section 1.4 is philosophically consistent with what 

e US Specification (AISC 1999) has done fo

ompression due to major axis flexure.  Applyin

s in 345 MPa flanges, of 10.2; a value far in excess of what is 

bserved to be a safe limit from the current finite element modeling results.  A more appropriate 

se of an equation 19 approach might be to preserve the plate buckling coefficient associated 

ge (0.57) wherein a more reasonable value of 7.9 is arrived at 

for an appropriate cei a flang len  lim / 2 qu  compact cross-

sectional response for use in conjunc  wi MP   L  fl lues 

of 7.3 and 6.7 are also obtained from is ch ca el ield strengths of 

414MPa and 483MPa, respectively.  While it is that such an approach may be on the 

conservative side for the parametric s e e , od ed enomenological 

nse since it tacitly denies the relevance of edge restraint which has clearly been shown to be of 

portance to this problem.  However, as a simple and easily understood means for prescribing 

minor axis flange compactness limits, it may be of some use. 

 
T

th r the case of flange outstands subjected to 

c g the one third difference between the plate 

buckling coefficients, that is subsequently added to the lower bound value, produces a plate 

slenderness limit, for compactnes

o

u

with the pinned supported plate ed

ling for e s derness it, Bf tf, as re ired for

tion th 345 a steel. imiting ange slenderness va

 th approa  in the se of ste  with y

pac xplored the meth  is flaw  in a ph

se

im
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5.0  I-SHAPED STEEL CROSS-SECTIONS BENT ABOUT THE MINOR-AXIS IN THE 
PRESENCE OF AXIAL COMPRESSIVE L

 
 

5.1   PARAMETRIC STUDY 

 

OADING  

 
 

 
 
The present parametric investigation for interaction equations considers variations in weak-axis 

slenderness, /L r ; cross-sectional proportions such as: flange slenderness, /b y f fb t , and web 

slenderness, . In the case of weak-axis slenderness,  ratios of 40, 50, and 100 are 

considered. In all of the sections considered, the webs and flanges are compact (in a strong-axis 

sense), but the flange of the W12x72 (US customary designation) case considered is very close 

 the compactness limit prescribed by AISC (1999). A total of three cross-sections taken from 

AISC Manual (AISC 1999) are used in developing the computer models (table 25). For each 

cross-section, the weak-axis slenderness ratio,  is changed as mentioned above. The same 

sinusoidally varying localized imperfection f t is described earlier) is employed in the 

parametric study, a peak displacement amplitude equal to  is adopted, as per the 

maximum allowable fabrication imperfection permitted by AWS (2000). 

 

 

 

/ wh t /b yL r

to

/b yL r

ield (tha

/100fB

83 



 

Table 25 Cross-sections used in the parametric study 

 
 

Cross  Section bf/tf h/tw bf/d

W12x72 9.00 22.60 0.98
W12x96 6.80 17.70 0.96

W14x132 7.10 17.70 1.00
 
 
 

Loading for the current parametric study is achieved using the configuration displayed in 

figure 36. For each cross-section and for the various weak axis slenderness values, 

considered, a parameter, 

/b yL r  

α , is changed from 0.005 to 0.8, to achieve the various fractions of 

mome grow at the same rate within the given 

proportionality ratio being considered. For each run 

nt and axial force; which subsequently 

uP  (ultimate axial load) and the 

orresponding c uM (ultimate moment) are plotted to define the interaction curve for the given 

member. For example for cross-section W12x26 with / 40b yL r = ,α values and corresponding P 

and M plots are given in figure 37. 

 
 
 

 
 
 

Figure 36 Schematic description of loading for the parametric study. 
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Figure 37 Representative interaction curve for a given cross-section 
 

In order to include the second order effects due to the beam column behavior , additional 

moment resulting from  is calculated as uP uP δ×  where δ  is the difference between the midspan 

deflection and the deflection at the intersection of rigid and flexible beam ( ) (figure 38). 

This additional moment is added to the primary moment observed from FEA. 

 
 
 

2 1∆ − ∆
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Figure 38 Calculation of additional moment 
 
 
 
 

5.2 GENERAL BEHAVIOR  

 
 
Formation of local buckles were observed along the flange outstands; the deflected shape of the 

beam, as obtained from FEA, is presented in figure 39. Increasing the load makes the local 

buckles at the com fail by yielding in 

nsion. As the numerical test progresses, the tension flange straightened from its initial local 

buckled configuration. See figure 40 and figure 41. 

 
 
 

pression flanges more distinct. The tension flange outstands 

te

 
 

Figure 39 Deflected shape taken from FEM analysis. 
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Figure 40 von d axial force 

 
 

-Mises stress plot for beam under both minor axis bending an
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Figure 41 von-Mises stress plot for beam under both minor axis bending and axial force 

 

 
 

5.3   THE AISC-LRFD BEAM-COLUMN INTERACTION EQUATIONS. 

 

 

 

In LRFD Chapter H, the interaction equation for doubly and singly symmetric members subject 

to bending and axial force is given by H1-1a and H1-1b as below; 

For 0.2u

n

P
Pφ

≥  

 8 1.0uyu ux MP M⎛ ⎞

9n b nx b nyP M Mφ φ φ
+ +⎜ ⎟

⎝ ⎠

For 

≤⎜ ⎟  (41) 

 

0.2u

nPφ
P

<  

88 



 

1.0
2

uyu ux

n b nx b ny

MP M
P M Mφ φ φ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 + +⎜ ⎟  (42) 

 

≤

nPφWherein, , is the design compression strength for flexural buckling, as calculated according 

to LRFD section E2.  

 

 0.85n g crP A F φ= =  (43) 
 

1.5cλ ≤  For 

( )0.658 c
cr y

2

 F F=  (44) 

c

λ

For 1.5λ >  

2

0.877
cr y

c

F F
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (45) 

where the column slenderness parameter, 

 

cλ , is defines as; 

 

 y
c

FKL
r E

λ
π

=  (46) 

 

In addition, nyMφ , the flexural design strength of the beam, is determined by the limit state of 

yielding according to LRFD (F1-1): 

 

 0.9n pM M φ= =  (47) 
 
 1.5p y y y y y yM F Z M M F S= ≤ × =  (48) 
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And the Elastic Euler buckling load for the y-axis, 
2

, 2
y

e y
b

EI
P

L
π

= , is calculated and tabulated with 

the calculated Pn and Mn in table 26. 

 

Table 26 Cross-sectional properties  

 
 

Cross-section Lb/ry Lb Pn Pe,y Mn

W12x72 40 121.60 938.52 3774.55 2430.00
50 152.00 878.75 2415.71 2430.00

100 304.00 507.82 603.93 2430.00
     

W12x96 40 123.60 1254.33 5058.53 3330.00
50 154.50 1174.45 3237.46 3330.00

100 309.00 678.70 809.37 3330.00
     

W14x132 40 150.40 1725.82 6933.98 5587.50
50 188.00 1615.90 4437.75 5587.50

 100 376.00 933.81 1109.44 5587.50
 
 

Since the major axis bending is not at issue in this research, 
 

uxM  is taken zero. In the 

development of the interaction curves, all the resistance factors are taken as one so as to achieve 

nominal resistances, or design strengths.  The current interaction equation from Chapter H of the 

LRFD specification (AISC 1999) is developed by solving Mu for a given Pu.  

 

For   
 

 90.2 1
8

u u
u n

n n

P PM M
P P

⎛ ⎞
≥ = × ×⎜ ⎟

⎝ ⎠
−  (49) 

 
For    
 

 0.2 1
2

u u
u n

n n⎝ ⎠

P PM M
P P

⎛ ⎞
< = × −⎜ ⎟  (50) 
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5.4   DISCUSSION OF RESULTS 

 
 
More than 120 discrete parametric data points are obtained from the analysis space. Interaction 

curves are gleaned from the data sets associated with the nonlinear finite element modeling of 

the three cross-sections identified in table 25; for each of the three unbraced lengths /b yL r = 40, 

50 and 100. Figures 42 through 50 display the results of this effort, as well as the accompanying 

predictions associated with the provisions contained in Chapter H of the AISC specification 

(1999).  

 
 
 

 
 

 
 

Figure 42 Comparison of FE interaction results with AISC 
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Figure 43 Comparison of FE interaction results with AISC
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Figure 44 Comparison of FE interaction results with AISC 
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Figure 45 Comparison of FE interaction results with AISC 

W12x72         Lb/ry=40 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

M/M n

P
/
P n

LRFD
FEA

 
 

 

 
Figure 46 Comparison of FE interaction results with AISC 
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Figure 47 Comparison of FE interaction results with AISC 

 
 

 
Figure 48 Comparison of FE interaction results with AISC 
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Figure 50 Comparison of FE interaction results with AISC 

 

Figure 49 Comparison of FE interaction results with AISC 
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5.5   RECOMMENDED INTERACTION EQUATIONS 

Based on plots presented above ( figure 4 is noted that the current AISC interaction 

xpressions tend to be somewhat conservative in their capacity predictions for I-shaped beam-

olumns bent about the weak axis when the applied moment ratio, M/Mn is less than 

app ot 

rprising since, as was pointed out in the introduction, the AISC interaction equations were 

 based on the behavior of I-shaped beam-columns bent about their strong axis (major 

l axis). 

The current research proposes amending the existing AISC interaction equations ( 

 41 and 42 above), by specifying substantive changes to address the important observed 

ferences for the case of I-shaped  beam-columns bent about the weak axis (minor 

entroidal axis).  The form of the new equations are given as: 

 
 

2-figure50), it 

e

c

roximately 0.7 and unconservative at moment ratios greater than this.  This finding is n

su

developed

principal centroida

equations

behavioral dif

principal c

for :5.0≥uP  
nP

0.1
9
7

≤+
n

u

n

u

M
M

P
P  (51)  

:5.0<uPand for  
nP

0.1
10
7

≤+
n

u

n

u

M
M

P
P  (52) 

hrough 59 show a comparison between the results of the nonlinear finite element 

nalyses, the current AISC interaction predictions, and the predictions obtained 

osed equations 51 and 52. 

 

 

Figures 51 t

beam-column a

using the prop
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parison of FE interaction results with AISC and proposed equation. 

 
mparison of FE interaction results with AISC and proposed equation. 

Figure 51 Com

 
 

Figure 52 Co
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omparison of FE interaction results with AISC and proposed equation. 

Figure 53 Com

 
 

Figure 54 C
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omparison of FE interaction results with AISC and proposed equation. 

 
6 Comparison of FE interaction results with AISC and proposed equation. 

Figure 55 C
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7 Comparison of FE interaction results with AISC and proposed equation. 

 
 58 Comparison of FE interaction results with AISC and proposed equation. 
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9 Comparison of FE interaction results with AISC and proposed equation. 
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6.0  CONCLUSION 

6.1   COMPACTNESS 

e verified nonlinear finite element modeling techniques, I-shaped beams bent about 

rincipal centroidal axis are studied. It appears to be unconservative to apply limiting 

s for the major principal axis flexural case when significant structural 

lity is sought.  Indeed, proper consideration of reserve capacity during inelastic buckling of 

tuent plate buckling elements used in the flanges must properly consider the important 

s of rotational edge restraint afforded by the web along the flange-web junction. 

but useful measure, one may deny the importance of this edge restraint and 

 plate slenderness limit that is not too philosophically different 

quations employed in the major axis flexural case and thus easily incorporated into 

 
 
 
 
 
 
 

 
 
 
 

 
 
Employing th

the minor p

plate slenderness ratio

ducti

consti

effect

As a crude 

rely on a simple, but conservative

from the e

existing specification formats.  
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6.2   INTERACTION EQUATIONS 

 
 
Through the use of experimentally verified nonlinear finite element modeling techniques, the 

-column, subjected to bending about the minor principal centroidal axis, 

 efforts, it is noted that the current AISC interaction expressions tend to 

heir capacity predictions for I-shaped beam-columns bent about 

plied moment ratio, M / Mn, is less than approximately 0.7; and 

vative at moment ratios greater than this.  This finding is not surprising since the AISC 

uations were developed based on the behavior of I-shaped beam-columns bent 

xis (major principal centroidal axis). 

eans for mitigating the observed lack of agreement between the existing interaction 

 predictions for this case, as compare with the nonlinear finite element modeling results, 

tion of the form of the existing AISC interaction equations (AISC 1999) is proposed.  

of this effort is a set of two equations, following directly after the current equation 

apter H of the AISC specification (1999), that exhibit a better agreement with the 

inor axis beam-column modeling results as compared with the current form of the 

case of an I-shaped beam

is treated.  Based on these

be somewhat conservative in t

the weak axis when the ap

unconser

interaction eq

about the strong a

As a m

equation

a modifica

The result 

format in Ch

observed m

equations. 
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APPENDIX 

E FOR I-SHAPED BEAMS UNDER MINOR AXIS BENDING 

 
 
 
 
 

ABAQUS INPUT FIL
 
 
 
*HEADING 
**Num. of ele in L/3 (m)=30   
**Num of ele in bf/2 (n)=4 
**Num of ele in d (k)=25 
** 
**Fy=50ksi & Est=2.9E4ksi & Iso.Hard 
** d=25 
** tf=0.417 
** bf=7.5  
** tw=0.278 
** bf/d=0.3 
** bf/2tf=9 
** imp_size=0.075 
** lw=3.75 
** del_y=1  
** P=-11.024 
*NODE 
**Left side of the Left Flange 
1,0,0,0 
365,0,0,3.75 
729,0,0,7.5 
**Right side of the Left Flange 
91,0,90,0 
455,0,90,3.75 
819,0,90,7.5 
**Left side of the Right Flange 
820,24.583,0,0 
1184,24.583,0,3.75 
1548,24.583,0,7.5 
**Right side of the Right Flange 
910,24.583,90,0 
1274,24.583,90,3.75 
1638,24.583,90,7.5 
**Web 
1639,0.2085,0,3.75 
1669,0.2085,30,3.75 
1699,0.2085,60,3.75 
1729,0.2085,90,3.75 
3914,24.3745,0,3.75 
3944,24.3745,30,3.75 
3974,24.3745,60,3.75 
4004,24.3745,90,3.75 
**Middle of lflange 
395,0,30,3.75 
425,0,60,3.75 
**Middle of rflange 
1214,24.583,30,3.75 
1244,24.583,60,3.75 
**Constant Moment Region 
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******************************** 
**Left flange Bottom 
31,0,30,0 
32,0.0557527809112509,31,0 

3687,32,0 
17781132,33,0 

636361,55,7.5 
56,7.5 

56604212,57,7.5 

33,0.074583838186
34,0.04402249
35,-0.0156923111687995,34,0 
36,-0.0650150374028232,35,0 
37,-0.0712822029285651,36,0 
38,-0.0303434398228237,37,0 
39,0.030689963962659,38,0 
40,0.0713992449095712,39,0 
41,0.0648250873392884,40,0 
42,0.0153211615976319,41,0 
43,-0.0443290507515532,42,0 
44,-0.074622790936483,43,0 
45,-0.0554983313674026,44,0 
46,0.000379345162739933,45,0 
47,0.0560058041386644,46,0 
48,0.074542977367232,47,0 
49,0.0437148065827612,48,0 
50,-0.0160630592855293,49,0 
51,-0.0652033241947715,50,0 
52,-0.0711633373438593,51,0 
53,-0.029996139410555,52,0 
54,0.031035702964977,53,0 
55,0.0715144602926071,54,0 
56,0.0646334788636361,55,0 
57,0.0149496200670996,56,0 
58,-0.0446344756604212,57,0 
59,-0.0746598346210515,58,0 
60,-0.0552424620166707,59,0 
61,0,60,0 
**Left Flange Top 
759,0,30,7.5 
760,0.0557527809112509,31,7.5 
761,0.0745838381863687,32,7.5 
762,0.0440224917781132,33,7.5 
763,-0.0156923111687995,34,7.5 
764,-0.0650150374028232,35,7.5 
765,-0.0712822029285651,36,7.5 
766,-0.0303434398228237,37,7.5 
767,0.030689963962659,38,7.5 
768,0.0713992449095712,39,7.5 
769,0.0648250873392884,40,7.5 
770,0.0153211615976319,41,7.5 
771,-0.0443290507515532,42,7.5 
772,-0.074622790936483,43,7.5 
773,-0.0554983313674026,44,7.5 
774,0.000379345162739933,45,7.5 
775,0.0560058041386644,46,7.5 
776,0.074542977367232,47,7.5 
777,0.0437148065827612,48,7.5 
778,-0.0160630592855293,49,7.5 
779,-0.0652033241947715,50,7.5 
780,-0.0711633373438593,51,7.5 
781,-0.029996139410555,52,7.5 
782,0.031035702964977,53,7.5 
783,0.0715144602926071,54,7.5 
784,0.0646334788
785,0.0149496200670996,
786,-0.04463447
787,-0.0746598346210515,58,7.5 
788,-0.0552424620166707,59,7.5 
789,0,60,7.5 
**Right Flange Bottom 
850,24.583,30,0 
851,24.5272472190887,31,0 
852,24.5084161618136,32,0 
853,24.5389775082219,33,0 
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854,24.5986923111688,34,0 
855,24.6480150374028,35,0 
856,24.6542822029286,36,0 
857,24.6133434398228,37,0 
858,24.5523100360373,38,0 
859,24.5116007550904,39,0 
860,24.5181749126607,40,0 
861,24.5676788384024,41,0 
862,24.6273290507516,42,0 
863,24.6576227909365,43,0 
864,24.6384983313674,44,0 
865,24.5826206548373,45,0 
866,24.5269941958613,46,0 
867,24.5084570226328,47,0 
868,24.5392851934172,48,0 
869,24.5990630592855,49,0 
870,24.6482033241948,50,0 
871,24.6541633373439,51,0 
872,24.6129961394106,52,0 
873,24.551964297035,53,0 
874,24.5114855397074,54,0 
875,24.5183665211364,55,0 
876,24.5680503799329,56,0 
877,24.6276344756604,57,0 
878,24.6576598346211,58,0 
879,24.6382424620167,59,0 
880,24.583,60,0 
**Right Flange Top 
1578,24.583,30,7.5 
1579,24.5272472190887,31,7.5 
1580,24.5084161618136,32,7.5 
1581,24.5389775082219,33,7.5 
1582,24.5986923111688,34,7.5 
1583,24.6480150374028,35,7.5 
1584,24.6542822029286,36,7.5 
1585,24.6133434398228,37,7.5 
1586,24.5523100360373,38,7.5 
1587,24.5116007550904,39,7.5 
1588,24.5181749126607,40,7.5 
1589,24.5676788384024,41,7.5 
1590,24.6273290507516,42,7.5 
1591,24.6576227909365,43,7.5 
1592,24.6384983313674,44,7.5 
1593,24.5826206548373,45,7.5 
1594,24.5269941958613,46,7.5 
1595,24.5084570226328,47,7.5 

172,48,7.5 
855,49,7.5 

1596,24.5392851934
1597,24.5990630592
1598,24.6482033241948,50,7.5 
1599,24.6541633373439,51,7.5 
1600,24.6129961394106,52,7.5 
1601,24.551964297035,53,7.5 
1602,24.5114855397074,54,7.5 
1603,24.5183665211364,55,7.5 
1604,24.5680503799329,56,7.5 
1605,24.6276344756604,57,7.5 
1606,24.6576598346211,58,7.5 
1607,24.6382424620167,59,7.5 
1608,24.583,60,7.5 
**Left of the left flange 
*NGEN,NSET=LLB 
1,31,1 
*NGEN,NSET=LLM 
365,395,1 
*NGEN,NSET=LLT 
729,759,1 
*NFILL,NSET=LEFTLF1 
LLB,LLM,4,91 
*NFILL,NSET=LEFTLF2 
LLM,LLT,4,91 

106 



 

**Right of the left flange 
*NGEN,NSET=LRB 
61,91,1 
*NGEN,NSET=LRM 
425,455,1 
*NGEN,NSET=LRT 
789,819,1 
*NFILL,NSET=RIGHTLF1 
LRB,LRM,4,91 
*NFILL,NSET=RIGHTLF2 
LRM,LRT,4,91 
**Middle of the left flange 
*NSET,NSET=LMB,GENERATE 
31,61,1 
*NGEN,NSET=LMM 
395,425,1 
*NSET,NSET=LMT,GENERATE 
759,789,1 
*NFILL,NSET=MIDLF1 
LMB,LMM,4,91 
*NFILL,NSET=MIDLF2 
LMM,LMT,4,91 
**Left of the right flange 
*NGEN,NSET=RLB 
820,850,1 
*NGEN,NSET=RLM 
1184,1214,1 
*NGEN,NSET=RLT 
1548,1578,1 
*NFILL,NSET=LEFTRF1 
RLB,RLM,4,91 
*NFILL,NSET=LEFTRF2 

91 

,NSET=RRB 

NSET=RRM 

NSET=RRT 

ET=RIGHTRF1 

ET=RIGHTRF2 

f the right flange 
,GENERATE 

M 
1 

,GENERATE 
1 

 
,4,91 

 
,4,91 

DES 

ET=WLT 

ET=WMT 

ET=WRT 

B 
1 

B 
1 

1 

RLM,RLT,4,
**Right of the right flange 
*NGEN
880,910,1 
*NGEN,
1244,1274,1 
*NGEN,
1608,1638,1 
*NFILL,NS
RRB,RRM,4,91 
*NFILL,NS
RRM,RRT,4,91 
**Middle o
*NSET,NSET=RMB
850,880,1 
*NGEN,NSET=RM
1214,1244,
*NSET,NSET=RMT
1578,1608,
*NFILL,NSET=MIDRF1
RMB,RMM
*NFILL,NSET=MIDRF2
RMM,RMT
** 
**WEB NO
** 
*NGEN,NS
1639,1669,1 
*NGEN,NS
1669,1699,1 
*NGEN,NS
1699,1729,1 
*NGEN,NSET=WL
3914,3944,
*NGEN,NSET=WM
3944,3974,
*NGEN,NSET=WRB 
3974,4004,
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*NFILL,NSET=WL 
,25,91 

 
B,25,91 

 
91 

NDARY CONDITION 
=PINNED,GENERATE 

 
LER,GENERATE 

 

NITIONS 

NGE 

FL1 
90 

=S4R 
57,456 

,ELSET=LFL2 

YPE=S4R 

ET=LFM1 

YPE=S4R 
6 

ET=LFM2 

YPE=S4R 

ET=LFR1 

YPE=S4R 
6 

ET=LFR2 

E 
S4R 

12,911 
LSET=RFL1 

,TYPE=S4R 
6,1275 

LSET=RFL2 
 

,TYPE=S4R 
1 

LSET=RFM1 

,TYPE=S4R 
6,1305 

LSET=RFM2 

,TYPE=S4R 
 

LSET=RFR1 

,TYPE=S4R 
,1335 

LSET=RFR2 
,4,91,90 

,TYPE=S4R 
639 

WLT,WLB
*NFILL,NSET=WM
WMT,WM
*NFILL,NSET=WR
WRT,WRB,25,
**NSET FOR BOU
*NSET,NSET
1639,3914,91 
365,1184,819
*NSET,NSET=ROL
1729,4004,91
455,1274,819 
** 
**ELEMENT DEFI
** 
** 
**LEFT FLA
*ELEMENT,TYPE=S4R 
1,1,2,93,92 
*ELGEN,ELSET=L
1,30,1,1,4,91,
*ELEMENT,TYPE
361,365,366,4
*ELGEN
361,30,1,1,4,91,90 
*ELEMENT,T
31,31,32,123,122 
*ELGEN,ELS
31,30,1,1,4,91,90 
*ELEMENT,T
391,395,396,487,48
*ELGEN,ELS
391,30,1,1,4,91,90 
*ELEMENT,T
61,61,62,153,152 
*ELGEN,ELS
61,30,1,1,4,91,90 
*ELEMENT,T
421,425,426,517,51
*ELGEN,ELS
421,30,1,1,4,91,90 
**RIGHT FLANG
*ELEMENT,TYPE=
721,820,821,9
*ELGEN,E
721,30,1,1,4,91,90 
*ELEMENT
1081,1184,1185,127
*ELGEN,E
1081,30,1,1,4,91,90
*ELEMENT
751,850,851,942,94
*ELGEN,E
751,30,1,1,4,91,90 
*ELEMENT
1111,1214,1215,130
*ELGEN,E
1111,30,1,1,4,91,90 
*ELEMENT
781,880,881,972,971
*ELGEN,E
781,30,1,1,4,91,90 
*ELEMENT
1141,1244,1245,1336
*ELGEN,E
1141,30,1,1
**TOP STITCH 
*ELEMENT
1441,365,366,1640,1
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*ELGEN,ELSET=TSL 

,TYPE=S4R 
669 

LSET=TSM 

,TYPE=S4R 
699 

LSET=TSR 

TCH 
4R 

3915,1185,1184 

,1 
4R 

3945,1215,1214 
,ELSET=BSM 

,TYPE=S4R 
,1244 

T=BSR 

MENTS 
4R 

640,1731,1730 
EBL 

,25,91,90 

LSET=WEBM 
5,91,90 

YPE=S4R 
1,1699,1700,1791,1790 

R 
1,30,1,1,25,91,90 

NG ELEMENTS 
ELEFT 

NGEMIDDLE 

ERIGHT 

NGELEFT 

EMIDDLE 

NGERIGHT 

E 
NGEMIDDLE,LFLANGERIGHT 
NGE 

RFLANGEMIDDLE,RFLANGERIGHT 
FT 

MIDDLE 
 

T=WEBRIGHT 

 
,WEBRIGHT 

TOMSTC 

EAMRIGHT 
GERIGHT,WEBRIGHT 

MMIDDLE 
LANGEMIDDLE,WEBMIDDLE 
LEFT 

1441,30,1,1,1 
*ELEMENT
1471,395,396,1670,1
*ELGEN,E
1471,30,1,1,1 
*ELEMENT
1501,425,426,1700,1
*ELGEN,E
1501,30,1,1,1 
**BOTTOM STI
*ELEMENT,TYPE=S
3781,3914,
*ELGEN,ELSET=BSL 
3781,30,1,1
*ELEMENT,TYPE=S
3811,3944,
*ELGEN
3811,30,1,1,1 
*ELEMENT
3841,3974,3975,1245
*ELGEN,ELSE
3841,30,1,1,1 
**WEB ELE
*ELEMENT,TYPE=S
1531,1639,1
*ELGEN,ELSET=W
1531,30,1,1
*ELEMENT,TYPE=S4R 
1561,1669,1670,1761,1760 
*ELGEN,E
1561,30,1,1,2
*ELEMENT,T
159
*ELGEN,ELSET=WEB
159
**GROUPI
*ELSET,ELSET=LFLANG
LFL1,LFL2 
*ELSET,ELSET=LFLA
LFM1,LFM2 
*ELSET,ELSET=LFLANG
LFR1,LFR2 
*ELSET,ELSET=RFLA
RFL1,RFL2 
*ELSET,ELSET=RFLANG
RFM1,RFM2 
*ELSET,ELSET=RFLA
RFR1,RFR2 
*ELSET,ELSET=LFLANG
LFLANGELEFT,LFLA
*ELSET,ELSET=RFLA
RFLANGELEFT,
*ELSET,ELSET=WEBLE
TSL,BSL,WEBL 
*ELSET,ELSET=WEB
TSM,BSM,WEBM
*ELSET,ELSE
TSR,BSR,WEBR 
*ELSET,ELSET=WEB
WEBLEFT,WEBMIDDLE
*ELSET,ELSET=TOPSTC 
TSL,TSM,TSR 
*ELSET,ELSET=BOT
BSL,BSM,BSR 
*ELSET,ELSET=B
LFLANGERIGHT,RFLAN
*ELSET,ELSET=BEA
LFLANGEMIDDLE,RF
*ELSET,ELSET=BEAM
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LFLANGELEFT,RFLANGELEFT,WEBLEFT 
NGERIGID 

,LFR2,LFR1,RFR2,RFR1 
LANGEFLEX 

 
RIGID 

EBR,BSR 
MATERIAL=FLEX,ELSET=FLANGEFLEX 

RIAL=FLEX,ELSET=WEBMIDDLE 

TERIAL=RIGID,ELSET=FLANGERIGID 

RIAL=RIGID,ELSET=WEBRIGID 

IGID 

EX 

1 
*CONTROLS,ANALYSIS=DISCONTINUOUS 
*CLOAD 
395,3,-10.154 
1214,3,-10.154 
425,3,-10.154 
1244,3,-10.154 
*RESTART,WRITE,FREQUENCY=1 
*ELPRINT,FREQUENCY=0 
*NODE PRINT,FREQUENCY=1 
CF 
*END STEP 

*ELSET,ELSET=FLA
LFL1,LFL2,RFL1,RFL2
*ELSET,ELSET=F
LFM2,LFM1,RFM2,RFM1
*ELSET,ELSET=WEB
TSL,WEBL,BSL,TSR,W
*SHELL SECTION,
0.417 
*SHELL SECTION,MATE
0.278 
*SHELL SECTION,MA
0.417 
*SHELL SECTION,MATE
0.278 
*MATERIAL,NAME=R
*ELASTIC 
290000,0.3 
*MATERIAL,NAME=FL
*ELASTIC 
29000,0.3 
*PLASTIC 
50,0 
51.345,0.00922948 
75,0.0557238 
80,0.090034 
*BOUNDARY 
PINNED,1,3 
ROLLER,1 
ROLLER,3 
395,1 
759,1 
31,1 
789,1 
425,1 
61,1 
1578,1 
1608,1 
1214,1 
1244,1 
850,1 
880,1 
*STEP,NLGEOM,INC=70 
*STATIC,RIKS 
0.01,1,0.000000000
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ABAQUS INPUT FILE FOR I-SHAPED BEAMS UNDER MINOR AXIS MOMENT – 
THRUST 

 
 
 
*HEADING 
**                                b=8     Lb=8 
**                                j=14     Lj=14 
**                                k=10     d=10.33 
**                                n=6     bf=5.77 
**                                a=0     La=0 
**                                m=54     Lf=54.4 
**                                tf=0.44     tw=0.26 
**                       impsize=0.0577     lw=2.885 
**                       camber=0     dely=1.00740740740741 
**                         Ntotal=338     P=304.2 
**                     totalaxial=23      
**                                E=      
**j     14 
**j+a     14 
**j+a+b     22 
**j+a+b+m     76 
**j+a+2*b+m     84 
**j+2*a+2*b+m     84 
**2*j+2*a+2*b+m     98 
**      
*NODE      
**Bottom1      
1,0,0,0 
15,0,14,0 
23,0,22,0 
77,0,76.4,0 
85,0,84.4,0 
99,0,98.4,0 
**Middle1      
298,0,0,2.885 
312,0,14,2.885 
320,0,22,2.885 
374,0,76.4,2.885 
382,0,84.4,2.885 
396,0,98.4,2.885 
**Top1      
595,0,0,5.77 
609,0,14,5.77 
617,0,22,5.77 
671,0,76.4,5.77 
679,0,84.4,5.77 
693,0,98.4,5.77 
**Bottom2      
694,10.77,0,0 
708,10.77,14,0 
716,10.77,22,0 
770,10.77,76.4,0 
778,10.77,84.4,0 
792,10.77,98.4,0 
**Middle2      
991,10.77,0,2.885 
1005,10.77,14,2.885 
1013,10.77,22,2.885 
1067,10.77,76.4,2.885 
1075,10.77,84.4,2.885 
1089,10.77,98.4,2.885 
**Top2      
1288,10.77,0,5.77 
1302,10.77,14,5.77 
1310,10.77,22,5.77 
1364,10.77,76.4,5.77 
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1372,10.77,84.4,5.77 
1386,10.77,98.4,5.77 
**Web Top      
1387,1.077,0,2.885 
1401,1.077,14,2.885 
1409,1.077,22,2.885 
1463,1.077,76.4,2.885 
1471,1.077,84.4,2.885 
1485,1.077,98.4,2.885 
**Web Bottom      
2179,9.693,0,2.885 
2193,9.693,14,2.885 
2201,9.693,22,2.885 
2255,9.693,76.4,2.885 
2263,9.693,84.4,2.885 
2277,9.693,98.4,2.885 
**Constant Moment Region 
******************************** 
**Left flange Bottom 
23,0,22,0 
24,0.0513557058728689,23.0074074074074,0 
25,0.046822946147168,24.0148148148148,0 
26,-0.00866544879943186,25.0222222222222,0 
27,-0.0547235646973492,26.0296296296296,0 
28,-0.0412281020583456,27.037037037037,0 
29,0.017134339320784,28.0444444444444,0 
30,0.0568501295166074,29.0518518518519,0 
31,0.0346980813922161,30.0592592592593,0 
32,-0.0252145718151973,31.0666666666667,0 
33,-0.0576871634846619,32.0740740740741,0 
34,-0.0273810045344245,33.0814814814815,0 
35,0.0327228624594854,34.0888888888889,0 
36,0.0572156801693888,35.0962962962963,0 
37,0.0194428446573978,36.1037037037037,0 
38,-0.0394889007810437,37.1111111111111,0 
39,-0.0554463742215485,38.1185185185185,0 
40,-0.011063662952733,39.1259259259259,0 
41,0.0453592128083917,40.1333333333333,0 
42,0.0524193787881428,41.1407407407407,0 
43,0.00243352430520481,42.1481481481481,0 
44,-0.0502006423195506,43.1555555555556,0 
45,-0.0482033551726907,44.162962962963,0 
46,0.00625181394688691,45.1703703703704,0 
47,0.0539033712231341,46.1777777777778,0 
48,0.0428939353916493,47.1851851851852,0 
49,-0.0147953423732309,48.1925925925926,0 
50,-0.0563834105608863,49.2,0 
51,-0.036611552954456,50.2074074074074,0 
52,0.0230032682142046,51.2148148148148,0 
53,0.0575845056282812,52.2222222222222,0 
54,0.0294987110715816,53.2296296296296,0 
55,-0.0306894111798719,54.237037037037,0 
56,-0.0574794119993549,55.2444444444444,0 
57,-0.0217167502558045,56.2518518518518,0 
58,0.0376794265754137,57.2592592592593,0 
59,0.0560705135117159,58.2666666666667,0 
60,0.0134421886371641,59.2740740740741,0 
61,-0.0438147599598885,60.2814814814815,0 
62,-0.0533897681939817,61.2888888888889,0 
63,-0.00486271800419616,62.2962962962963,0 
64,0.0489562436348416,63.3037037037037,0 
65,0.0494979833621752,64.3111111111111,0 
66,-0.00382705360680747,65.3185185185185,0 
67,-0.0529872533836495,66.3259259259259,0 
68,-0.0444834363280547,67.3333333333333,0 
69,0.0124300162037034,68.3407407407407,0 
70,0.0558163538573204,69.3481481481481,0 
71,0.0384598720058418,70.3555555555556,0 
72,-0.0207510288822458,71.362962962963,0 
73,-0.0573793726014906,72.3703703703704,0 
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74,-0.0315639228376029,73.3777777777778,0 
75,0.0286013462050269,74.3851851851852,0 
76,0.0576408556794895,75.3925925925926,0 
77,0,76.4,0 
**Left Flange Top 
617,0,22,5.77 
618,-0.0513557058728689,23.0074074074074,5.77 
619,-0.046822946147168,24.0148148148148,5.77 
620,0.00866544879943186,25.0222222222222,5.77 
621,0.0547235646973492,26.0296296296296,5.77 
622,0.0412281020583456,27.037037037037,5.77 
623,-0.017134339320784,28.0444444444444,5.77 
624,-0.0568501295166074,29.0518518518519,5.77 
625,-0.0346980813922161,30.0592592592593,5.77 
626,0.0252145718151973,31.0666666666667,5.77 
627,0.0576871634846619,32.0740740740741,5.77 
628,0.0273810045344245,33.0814814814815,5.77 
629,-0.0327228624594854,34.0888888888889,5.77 
630,-0.0572156801693888,35.0962962962963,5.77 
631,-0.0194428446573978,36.1037037037037,5.77 
632,0.0394889007810437,37.1111111111111,5.77 
633,0.0554463742215485,38.1185185185185,5.77 
634,0.011063662952733,39.1259259259259,5.77 
635,-0.0453592128083917,40.1333333333333,5.77 
636,-0.0524193787881428,41.1407407407407,5.77 
637,-0.00243352430520481,42.1481481481481,5.77 
638,0.0502006423195506,43.1555555555556,5.77 
639,0.0482033551726907,44.162962962963,5.77 
640,-0.00625181394688691,45.1703703703704,5.77 
641,-0.0539033712231341,46.1777777777778,5.77 
642,-0.0428939353916493,47.1851851851852,5.77 
643,0.0147953423732309,48.1925925925926,5.77 
644,0.0563834105608863,49.2,5.77 
645,0.036611552954456,50.2074074074074,5.77 
646,-0.0230032682142046,51.2148148148148,5.77 
647,-0.0575845056282812,52.2222222222222,5.77 
648,-0.0294987110715816,53.2296296296296,5.77 
649,0.0306894111798719,54.237037037037,5.77 
650,0.0574794119993549,55.2444444444444,5.77 
651,0.0217167502558045,56.2518518518518,5.77 
652,-0.0376794265754137,57.2592592592593,5.77 
653,-0.0560705135117159,58.2666666666667,5.77 
654,-0.0134421886371641,59.2740740740741,5.77 
655,0.0438147599598885,60.2814814814815,5.77 
656,0.0533897681939817,61.2888888888889,5.77 
657,0.00486271800419616,62.2962962962963,5.77 
658,-0.0489562436348416,63.3037037037037,5.77 
659,-0.0494979833621752,64.3111111111111,5.77 
660,0.00382705360680747,65.3185185185185,5.77 
661,0.0529872533836495,66.3259259259259,5.77 
662,0.0444834363280547,67.3333333333333,5.77 
663,-0.0124300162037034,68.3407407407407,5.77 
664,-0.0558163538573204,69.3481481481481,5.77 
665,-0.0384598720058418,70.3555555555556,5.77 
666,0.0207510288822458,71.362962962963,5.77 
667,0.0573793726014906,72.3703703703704,5.77 
668,0.0315639228376029,73.3777777777778,5.77 
669,-0.0286013462050269,74.3851851851852,5.77 
670,-0.0576408556794895,75.3925925925926,5.77 
671,0,76.4,5.77 
**Right Flange Bottom 
716,10.77,22,0 
717,10.7186442941271,23.0074074074074,0 
718,10.7231770538528,24.0148148148148,0 
719,10.7786654487994,25.0222222222222,0 
720,10.8247235646973,26.0296296296296,0 
721,10.8112281020583,27.037037037037,0 
722,10.7528656606792,28.0444444444444,0 
723,10.7131498704834,29.0518518518519,0 
724,10.7353019186078,30.0592592592593,0 
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725,10.7952145718152,31.0666666666667,0 
726,10.8276871634847,32.0740740740741,0 
727,10.7973810045344,33.0814814814815,0 
728,10.7372771375405,34.0888888888889,0 
729,10.7127843198306,35.0962962962963,0 
730,10.7505571553426,36.1037037037037,0 
731,10.809488900781,37.1111111111111,0 
732,10.8254463742215,38.1185185185185,0 
733,10.7810636629527,39.1259259259259,0 
734,10.7246407871916,40.1333333333333,0 
735,10.7175806212119,41.1407407407407,0 
736,10.7675664756948,42.1481481481481,0 
737,10.8202006423196,43.1555555555556,0 
738,10.8182033551727,44.162962962963,0 
739,10.7637481860531,45.1703703703704,0 
740,10.7160966287769,46.1777777777778,0 
741,10.7271060646083,47.1851851851852,0 
742,10.7847953423732,48.1925925925926,0 
743,10.8263834105609,49.2,0 
744,10.8066115529545,50.2074074074074,0 
745,10.7469967317858,51.2148148148148,0 
746,10.7124154943717,52.2222222222222,0 
747,10.7405012889284,53.2296296296296,0 
748,10.8006894111799,54.237037037037,0 
749,10.8274794119994,55.2444444444444,0 
750,10.7917167502558,56.2518518518518,0 
751,10.7323205734246,57.2592592592593,0 
752,10.7139294864883,58.2666666666667,0 
753,10.7565578113628,59.2740740740741,0 
754,10.8138147599599,60.2814814814815,0 
755,10.823389768194,61.2888888888889,0 
756,10.7748627180042,62.2962962962963,0 
757,10.7210437563652,63.3037037037037,0 
758,10.7205020166378,64.3111111111111,0 
759,10.7738270536068,65.3185185185185,0 
760,10.8229872533836,66.3259259259259,0 
761,10.8144834363281,67.3333333333333,0 
762,10.7575699837963,68.3407407407407,0 
763,10.7141836461427,69.3481481481481,0 
764,10.7315401279942,70.3555555555556,0 
765,10.7907510288822,71.362962962963,0 
766,10.8273793726015,72.3703703703704,0 
767,10.8015639228376,73.3777777777778,0 
768,10.741398653795,74.3851851851852,0 
769,10.7123591443205,75.3925925925926,0 
770,10.77,76.4,0 
**Right Flange Top 
1310,10.77,22,5.77 
1311,10.8213557058729,23.0074074074074,5.77 
1312,10.8168229461472,24.0148148148148,5.77 
1313,10.7613345512006,25.0222222222222,5.77 
1314,10.7152764353027,26.0296296296296,5.77 
1315,10.7287718979417,27.037037037037,5.77 
1316,10.7871343393208,28.0444444444444,5.77 
1317,10.8268501295166,29.0518518518519,5.77 
1318,10.8046980813922,30.0592592592593,5.77 
1319,10.7447854281848,31.0666666666667,5.77 
1320,10.7123128365153,32.0740740740741,5.77 
1321,10.7426189954656,33.0814814814815,5.77 
1322,10.8027228624595,34.0888888888889,5.77 
1323,10.8272156801694,35.0962962962963,5.77 
1324,10.7894428446574,36.1037037037037,5.77 
1325,10.730511099219,37.1111111111111,5.77 
1326,10.7145536257785,38.1185185185185,5.77 
1327,10.7589363370473,39.1259259259259,5.77 
1328,10.8153592128084,40.1333333333333,5.77 
1329,10.8224193787881,41.1407407407407,5.77 
1330,10.7724335243052,42.1481481481481,5.77 
1331,10.7197993576804,43.1555555555556,5.77 
1332,10.7217966448273,44.162962962963,5.77 
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1333,10.7762518139469,45.1703703703704,5.77 
1334,10.8239033712231,46.1777777777778,5.77 
1335,10.8128939353916,47.1851851851852,5.77 
1336,10.7552046576268,48.1925925925926,5.77 
1337,10.7136165894391,49.2,5.77 
1338,10.7333884470455,50.2074074074074,5.77 
1339,10.7930032682142,51.2148148148148,5.77 
1340,10.8275845056283,52.2222222222222,5.77 
1341,10.7994987110716,53.2296296296296,5.77 
1342,10.7393105888201,54.237037037037,5.77 
1343,10.7125205880006,55.2444444444444,5.77 
1344,10.7482832497442,56.2518518518518,5.77 
1345,10.8076794265754,57.2592592592593,5.77 
1346,10.8260705135117,58.2666666666667,5.77 
1347,10.7834421886372,59.2740740740741,5.77 
1348,10.7261852400401,60.2814814814815,5.77 
1349,10.716610231806,61.2888888888889,5.77 
1350,10.7651372819958,62.2962962962963,5.77 
1351,10.8189562436348,63.3037037037037,5.77 
1352,10.8194979833622,64.3111111111111,5.77 
1353,10.7661729463932,65.3185185185185,5.77 
1354,10.7170127466163,66.3259259259259,5.77 
1355,10.7255165636719,67.3333333333333,5.77 
1356,10.7824300162037,68.3407407407407,5.77 
1357,10.8258163538573,69.3481481481481,5.77 
1358,10.8084598720058,70.3555555555556,5.77 
1359,10.7492489711178,71.362962962963,5.77 
1360,10.7126206273985,72.3703703703704,5.77 
1361,10.7384360771624,73.3777777777778,5.77 
1362,10.798601346205,74.3851851851852,5.77 
1363,10.8276408556795,75.3925925925926,5.77 
1364,10.77,76.4,5.77 
**Flange1 
*NGEN,NSET=a1 
1,15,1 
*NGEN,NSET=a3 
15,23,1 
*NSET,NSET=a4,GENERATE 
23,77,1 
*NGEN,NSET=a5 
77,85,1 
*NGEN,NSET=a6 
85,99,1 
*NGEN,NSET=b1 
298,312,1 
*NGEN,NSET=b3 
312,320,1 
*NGEN,NSET=b4 
320,374,1 
*NGEN,NSET=b5 
374,382,1 
*NGEN,NSET=b6 
382,396,1 
*NGEN,NSET=c1 
595,609,1 
*NGEN,NSET=c3 
609,617,1 
*NSET,NSET=c4,GENERATE 
617,671,1 
*NGEN,NSET=c5 
671,679,1 
*NGEN,NSET=c6 
679,693,1 
**Flange 2 
*NGEN,NSET=d1 
694,708,1 
*NGEN,NSET=d3 
708,716,1 
*NSET,NSET=d4,GENERATE 
716,770,1 

115 



 

116 

*NGEN,NSET=d5 
770,778,1 
*NGEN,NSET=d6 
778,792,1 
*NGEN,NSET=e1 
991,1005,1 
*NGEN,NSET=e3 
1005,1013,1 
*NGEN,NSET=e4 
1013,1067,1 
*NGEN,NSET=e5 
1067,1075,1 
*NGEN,NSET=e6 
1075,1089,1 
*NGEN,NSET=f1 
1288,1302,1 
*NGEN,NSET=f3 
1302,1310,1 
*NSET,NSET=f4,GENERATE 
1310,1364,1 
*NGEN,NSET=f5 
1364,1372,1 
*NGEN,NSET=f6 
1372,1386,1 
**Web 
*NGEN,NSET=g1 
1387,1401,1 
*NGEN,NSET=g3 
1401,1409,1 
*NGEN,NSET=g4 
1409,1463,1 
*NGEN,NSET=g5 
1463,1471,1 
*NGEN,NSET=g6 
1471,1485,1 
*NGEN,NSET=h1 
2179,2193,1 
*NGEN,NSET=h3 
2193,2201,1 
*NGEN,NSET=h4 
2201,2255,1 
*NGEN,NSET=h5 
2255,2263,1 
*NGEN,NSET=h6 
2263,2277,1 
**Flange1 
*NFILL,NSET=z1 
a1,b1,3,99 
*NFILL,NSET=z3 
a3,b3,3,99 
*NFILL,NSET=z4 
a4,b4,3,99 
*NFILL,NSET=z5 
a5,b5,3,99 
*NFILL,NSET=z6 
a6,b6,3,99 
*NFILL,NSET=z8 
b1,c1,3,99 
*NFILL,NSET=z10 
b3,c3,3,99 
*NFILL,NSET=z11 
b4,c4,3,99 
*NFILL,NSET=z12 
b5,c5,3,99 
*NFILL,NSET=z13 
b6,c6,3,99 
**Flange2 
*NFILL,NSET=z15 
d1,e1,3,99 
*NFILL,NSET=z17 
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d3,e3,3,99 
*NFILL,NSET=z18 
d4,e4,3,99 
*NFILL,NSET=z19 
d5,e5,3,99 
*NFILL,NSET=z20 
d6,e6,3,99 
*NFILL,NSET=z22 
e1,f1,3,99 
*NFILL,NSET=z24 
e3,f3,3,99 
*NFILL,NSET=z25 
e4,f4,3,99 
*NFILL,NSET=z26 
e5,f5,3,99 
*NFILL,NSET=z27 
e6,f6,3,99 
**Web 
*NFILL,NSET=z29 
g1,h1,8,99 
*NFILL,NSET=z31 
g3,h3,8,99 
*NFILL,NSET=z32 
g4,h4,8,99 
*NFILL,NSET=z33 
g5,h5,8,99 
*NFILL,NSET=z34 
g6,h6,8,99 
**NSET FOR AXIAL LOAD 
*NSET,NSET=AXIALLOAD,GENERATE 
99,693,99 
792,1386,99 
1485,2277,99 
** 
**Element definitions 
** 
**Flange1 
*ELEMENT,TYPE=S4R 
1,1,2,101,100 
*ELGEN,ELSET=el1 
1,14,1,1,6,99,98 
*ELEMENT,TYPE=S4R 
15,15,16,115,114 
*ELGEN,ELSET=el3 
15,8,1,1,6,99,98 
*ELEMENT,TYPE=S4R 
23,23,24,123,122 
*ELGEN,ELSET=el4 
23,54,1,1,6,99,98 
*ELEMENT,TYPE=S4R 
77,77,78,177,176 
*ELGEN,ELSET=el5 
77,8,1,1,6,99,98 
*ELEMENT,TYPE=S4R 
85,85,86,185,184 
*ELGEN,ELSET=el6 
85,14,1,1,6,99,98 
**Flange2 
*ELEMENT,TYPE=S4R 
589,694,695,794,793 
*ELGEN,ELSET=el8 
589,14,1,1,6,99,98 
*ELEMENT,TYPE=S4R 
603,708,709,808,807 
*ELGEN,ELSET=el10 
603,8,1,1,6,99,98 
*ELEMENT,TYPE=S4R 
611,716,717,816,815 
*ELGEN,ELSET=el11 
611,54,1,1,6,99,98 
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*ELEMENT,TYPE=S4R 
665,770,771,870,869 
*ELGEN,ELSET=el12 
665,8,1,1,6,99,98 
*ELEMENT,TYPE=S4R 
673,778,779,878,877 
*ELGEN,ELSET=el13 
673,14,1,1,6,99,98 
**Web 
*ELEMENT,TYPE=S4R 
1177,298,299,1388,1387 
*ELGEN,ELSET=el15 
1177,14,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
1191,312,313,1402,1401 
*ELGEN,ELSET=el17 
1191,8,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
1199,320,321,1410,1409 
*ELGEN,ELSET=el18 
1199,54,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
1253,374,375,1464,1463 
*ELGEN,ELSET=el19 
1253,8,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
1261,382,383,1472,1471 
*ELGEN,ELSET=el20 
1261,14,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
1275,1387,1388,1487,1486 
*ELGEN,ELSET=el22 
1275,14,1,1,8,99,98 
*ELEMENT,TYPE=S4R 
1289,1401,1402,1501,1500 
*ELGEN,ELSET=el24 
1289,8,1,1,8,99,98 
*ELEMENT,TYPE=S4R 
1297,1409,1410,1509,1508 
*ELGEN,ELSET=el25 
1297,54,1,1,8,99,98 
*ELEMENT,TYPE=S4R 
1351,1463,1464,1563,1562 
*ELGEN,ELSET=el26 
1351,8,1,1,8,99,98 
*ELEMENT,TYPE=S4R 
1359,1471,1472,1571,1570 
*ELGEN,ELSET=el27 
1359,14,1,1,8,99,98 
*ELEMENT,TYPE=S4R 
2059,2179,2180,992,991 
*ELGEN,ELSET=el29 
2059,14,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
2073,2193,2194,1006,1005 
*ELGEN,ELSET=el31 
2073,8,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
2081,2201,2202,1014,1013 
*ELGEN,ELSET=el32 
2081,54,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
2135,2255,2256,1068,1067 
*ELGEN,ELSET=el33 
2135,8,1,1,1,99,98 
*ELEMENT,TYPE=S4R 
2143,2263,2264,1076,1075 
*ELGEN,ELSET=el34 
2143,14,1,1,1,99,98 
*ELEMENT,TYPE=B31 
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2157,1,100 
*ELGEN,ELSET=F1 
2157,6,99 
*ELEMENT,TYPE=B31 
2163,99,198 
*ELGEN,ELSET=F2 
2163,6,99 
*ELEMENT,TYPE=B31 
2169,694,793 
*ELGEN,ELSET=F3 
2169,6,99 
*ELEMENT,TYPE=B31 
2175,792,891 
*ELGEN,ELSET=F4 
2175,6,99 
*ELEMENT,TYPE=B31 
2181,298,1387 
*ELEMENT,TYPE=B31 
2182,1387,1486 
*ELGEN,ELSET=W1 
2182,8,99 
*ELEMENT,TYPE=B31 
2190,2179,991 
*ELEMENT,TYPE=B31 
2191,396,1485 
*ELEMENT,TYPE=B31 
2192,1485,1584 
*ELGEN,ELSET=W2 
2192,8,99 
*ELEMENT,TYPE=B31 
2200,2277,1089 
*ELSET,ELSET=BEAM 
F1,F2,F3,F4,W1,W2,2181,2190,2191,2200 
**GROUPING ELEMENTS 
*ELSET,ELSET=web_rigid 
el15,el22,el29,el20,el27,el34,el17,el24,el31,el19,el26,el33 
*ELSET,ELSET=web_flex 
el18,el25,el32 
*ELSET,ELSET=flange_thick 
el3,el5,el10,el12 
*ELSET,ELSET=flange_rigid 
el1,el6,el8,el13 
*ELSET,ELSET=flange_flex 
el4,el11 
*ELSET,ELSET=rigidbeam 
flange_rigid,web_rigid 
*ELSET,ELSET=flexbeam 
el3,el4,el5,el10,el11,el12,web_flex 
*ELSET,ELSET=one_flange 
el1,el3,el4,el5,el6 
*ELSET,ELSET=two_flange 
el8,el10,el11,el12,el13 
*ELSET,ELSET=web 
web_rigid,web_flex 
*SHELL SECTION,MATERIAL=RIGID,ELSET=flange_rigid 
2 
*SHELL SECTION,MATERIAL=RIGID,ELSET=web_rigid 
2 
*SHELL SECTION,MATERIAL=FLEX,ELSET=web_flex 
0.26 
*SHELL SECTION,MATERIAL=FLEX,ELSET=flange_flex 
0.44 
*SHELL SECTION,MATERIAL=RIGID,ELSET=flange_thick 
2 
*BEAM SECTION,SECTION=CIRC,ELSET=BEAM,MATERIAL=BEAM 
2 
0,-1,0 
*MATERIAL,NAME=BEAM 
*ELASTIC 
290000,0.3 
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*MATERIAL,NAME=RIGID 
*ELASTIC 
290000,0.3 
*MATERIAL,NAME=FLEX 
*ELASTIC 
29000,0.3 
*PLASTIC 
50,0 
51.345,0.00922948 
75,0.0557238 
80,0.090034 
*BOUNDARY 
1783,1,3 
1881,1 
1881,3 
1783,5 
1881,5 
613,5 
675,5 
1306,5 
1368,5 
19,5 
81,5 
712,5 
774,5 
*STEP,NLGEOM,INC=30 
*STATIC,RIKS 
0.01,1,0.0000000001 
*CONTROLS,ANALYSIS=DISCONTINUOUS 
*CLOAD 
316,3,-304.2 
378,3,-304.2 
1009,3,-304.2 
1071,3,-304.2 
AXIALLOAD,2,-14.695652173913 
*RESTART,WRITE,FREQUENCY=1 
*ELPRINT,FREQUENCY=0 
*NODE PRINT,FREQUENCY=1 
CF 
*END STEP 
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