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GAME THEORETIC FLOW AND ROUTING CONTROL  
FOR COMMUNICATION NETWORKS 

 

Ismet Sahin, PhD 

University of Pittsburgh, 2006

 

As the need to support high speed data exchange in modern communication networks 

grows rapidly, effective and fair sharing of the network resources becomes very important.  

Today’s communication networks typically involve a large number of users that share the same 

network resources but may have different, and often competing, objectives.  Advanced network 

protocols that are implemented to optimize the performance of such networks typically assume 

that the users are passive and are willing to accept compromising their own performance for the 

sake of optimizing the performance of the overall network.  However, considering the trend 

towards more decentralization in the future, it is natural to assume that the users in a large 

network may take a more active approach and become more interested in optimizing their own 

individual performances without giving much consideration to the overall performance of  the 

network.  A similar situation occurs when the users are members of teams that are sharing the 

network resources. A user may find itself cooperating with other members of its team which 

itself is competing with the other teams in the network.  Game theory appears to provide the 

necessary framework and mathematical tools for formulating and analyzing the strategic 

interactions among users, or teams of users, of such networks. In this thesis, we investigate 

networks in which users, or teams of users, either compete or cooperate for the same network 

resources.  We considered two important network topologies and used many examples to 

illustrate the various solution concepts that we have investigated..  First we consider two-node 
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parallel link networks with non-cooperative users trying to optimally distribute their flows 

among the links.  For these networks, we established a condition which guarantees the existence 

and uniqueness of a Nash equilibrium for the link flows.  We derived an analytical expression for 

the Nash equilibrium and investigated its properties in terms of the network parameters and the 

users preferences.  We showed that in a competitive environment users can achieve larger flow 

rates by properly emphasizing the corresponding term in their utility functions, but that this can 

only be done at the expense of an increase in the expected delay.  Next, we considered a general 

network structure with multiple links, multiple nodes, and multiple competing users.  We proved 

the existence of a unique Nash equilibrium.  We also investigated many of its intuitive 

properties.  We also extended the model to a network where multiple teams of users compete 

with each other while cooperating within the teams to optimize a team level performance.  For 

this model, we studied the Noninferior Nash solution and compared its results with the standard 

Nash equilibrium solution.  
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1.0  INTRODUCTION 

This thesis is concerned with the optimization of multi-node multi-user communication 

networks by using concepts from game theory.  This approach allows us to study cooperative and 

non-cooperative interactions among the users in the networks.  The classical approach requires 

users to optimize the overall performance of the network [1,2].  However, a user in a large 

network such as the Internet may choose to optimize its own performance rather than the overall 

network performance [3].  Game theory becomes an important tool to model and analyze these 

types of network [4-6].  Problems in optimal routing, flow control, pricing policy, and bandwidth 

allocation have all been recently formulated and solved using cooperative and non-cooperative 

solution concepts from game theory.   

Efficient use of network resources by a central control system can become difficult for the 

networks with large number of users.  Therefore, decentralized control strategies have gained 

considerable importance as they remove the complexity of a central control architecture.  Since 

users in a non-cooperative network make their own flow and routing control decisions, the 

iterative algorithms allowing these users to evaluate their optimal strategies can constitute the 

core of decentralized flow and routing control systems for next generation networks.  These 

algorithms may conceivably be implemented in the Internet by using the capability of IPv4 and 

IPv6 (Internet Protocol version 4 and 6 respectively) which provide network users to route their 

flow on a specific path [1,2]. 
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Competitive users decide on their flow rate and/or routing based on their utility functions 

which translate their needs and desires.  Utility functions that have been used in most models 

typically represent a combination of two objectives: (1) maximizing the flow rate and (2) 

minimizing the congestion delay experienced by the user’s data. There are numerous ways of 

combining these two objectives into a single optimization criterion for each user.  One approach 

[7-12] is to consider a utility function for each user in the form of “benefit/cost”, also known as a 

power criterion.  In this approach, the benefit term represents the total throughput and the cost 

term represents a measure of the average expected delay.  Maximizing the utility function in this 

case will achieve the desired two objectives.  Another approach  that has been considered is a 

utility function for each user in the form of “benefit – cost” [13-16].  Typically, the benefit term 

is a weighted measure of the throughput and the cost term is a weighted measure of the expected 

delay.  The weights can be viewed as representing the user’s preferences for one term over the 

other.  Maximizing this utility function essentially means increasing the throughput while 

simultaneously reducing the expected delay.  Since the users may differ in their throughput needs 

and tolerance for the expected delays, and they consequently can adjust the relative importance 

of the benefit and cost terms by selecting appropriate preference constants (i.e. weights) for each 

of these terms in their own utility function.  In this thesis, we consider both “benefit/cost” and 

“benefit - cost” types of utility functions. 

Since communication networks and game theory are focal points of this investigation, to 

facilitate the understanding of the concepts given later in this thesis, a brief review of these two 

topics is given in Chapter 1.  After giving a short introduction of the principles of how today’s 

communication networks work, we describe various solution concepts in game theory. 
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In Chapter 2, we consider a simple two-node parallel link network with multiple competing 

users.  Each user decides on its total throughput and on the throughput sent on each link so as to 

maximize its own utility function which is in the ‘benefit - cost’ form.   The model also provides 

the users the flexibility of choosing different preference parameters for different links.  This 

allows them to adjust the amount of throughput sent on each link based on their previous 

satisfaction and experiences from these links.  We give a condition under which the existence 

and uniqueness of a Nash equilibrium is guaranteed.  We also study some intuitive properties of 

the Nash equilibrium and present two examples to demonstrate these properties.  

In Chapter 3, we consider a general network environment with multiple nodes and multiple 

links.  Users of this network can enter and exit from any node in the network.  The route of each 

user is fixed; along a path in the network connecting a source node to a destination node specific 

for that user.  Since users share the same network resources, they decide on the flow rate 

competitively by maximizing a power-criterion utility function.  For this model, this utility 

function is more advantageous than the benefit-cost form of utility functions because it results in 

more analytically tractable solutions.  We prove the existence of a unique Nash equilibrium and 

study some intuitive properties of this equilibrium.  Next, we derive both synchronous and 

asynchronous numerical algorithms for the users so that they can evaluate their Nash equilibrium 

flow rates based on the information obtained from the network.  As pointed out previously, these 

numerical algorithms are very desirable because they encourage the establishment of distributive 

networks. 

In Chapter 4 to complete the analysis of multi-node multi-link networks, we also consider 

the same general network environment but with users that decide to cooperate with each other.  

The resultant solution is called Pareto dominant solution which usually gives larger level of 
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satisfaction to every user than the level of satisfaction they would receive from Nash equilibrium 

flow rates.  Next, we expand the model from a single team to multiple teams which compete with 

each other.  We assume that each team has a leader which ensures cooperation within the team 

but competition with the other teams.  In the new model, the optimization is performed at two 

level: (i) The leader of each team competes with the leaders of other teams in order to achieve 

the best utility for its team.  Each team leader tries to optimize a social utility function which is 

the scaled sum of all the utility functions of the users in its team, and (ii) At the team level, the 

team members cooperate to achieve a team level satisfaction rather than an individual level 

satisfaction.  The resultant equilibrium is called Noninferier Nash equilibrium [17, 18].  By 

means of two examples, we illustrate the Nash, Pareto, and Noninferior Nash equilibriums and 

compare their performances. 

In Chapter 5, we summarize some important concluding remarks in this thesis and we also 

present some suggestions on possible extensions of the current research. 

1.1 COMMUNICATION NETWORKS 

Processing power of the early computers was limited and few of these computers could run 

calculation-dense applications.  In the 1960’s, the U.S. Department of Defense Advanced 

Research Project Agency (ARPA)  decided to develop first data network, ARPANET, so that all 

research groups can share these highly powered computers [2].  The principle purpose was to 

design a reliable data network which can perform even though some parts of the network fail.  

This early network has evolved and eventually led to today’s Internet, the global network 

interconnecting networks around the world. 
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Communication networks can be classified into three different networks, namely circuit 

switched networks, packet switched networks, and virtual switched network based on the 

switching type..  In circuit switched networks, a circuit between a source node and a destination 

node is set up before the communication starts.  Here, “circuit” refers to all network resources 

such as switches, routers, communication links, etc. allocated for the communication between the 

source and the destination nodes.  The main characteristic of this network is that network 

resources allocated for a communication between two nodes are dedicated to this 

communication.  Therefore, these resources are not available to other users until the 

communication ends and the resources are released.  However, dedicated resources can 

guarantee a quality of service in these networks.  In packet switched networks, each source node 

splits its data into small blocks of information bits, called packets, then sends these packets to the 

destination.  Since each packet has the source and destination addresses, a packet can be treated 

as an independent entity so that multiple sources can send their data through the same network 

resources.  In the virtual switched networks, each communication session between two nodes 

starts with setting up a virtual circuit between these two nodes.  Both nodes use this virtual path 

to send and receive packets until the end of communication.  Virtual circuits support different 

level of quality services while many users still can share the same network resources. 

Communication networks can also be classified based on the location. A network 

consisting of computers in a building or in a small geographical area is called local area network 

(LAN).  A wide area network (WAN) can contain computers in a very large geographical area.  

To understand how computer networks work, first we will introduce local area network, and then 

we will discuss how an internet works.  We will try to keep the discussion as compact as possible 

by giving only the general underlying concepts and ignoring the details.  
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1.1.1 Local Area Networks (LANs) 

Early communication networks used a connection scheme in which there was at least one 

link between any two nodes as illustrated in Figure 1.1.  They are also called point-to-point 

networks or mesh networks. 

 

 

 

 

Figure 1.1. A Mesh Network 

 

 

The number of links in mesh networks grows exponentially for each additional computer.  

Therefore, the construction cost of these networks can be prohibitively high.  Another important 

shortcoming of these networks is that many links are not used most of the time.  In modern 

LANs, almost all resources in the network are shared by all computers, therefore, the cost of 

building networks reduces and these resources are used more efficiently.  Only one transmission 

at a time can take place in shared networks (in the medium) while others have to wait their turn.  
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There are many LAN technologies with their own specification about the topology of the 

network, the format of the packet, the modulation scheme, etc. Topology of the network specifies 

how to connect computers with each other.  We use the term “frame” instead of “packet” for a 

given LAN technology since each LAN technology has its own packet specification.  We will 

briefly explain how an Ethernet network, a well known LAN technology, operates. 

A typical Ethernet network using 10Base-T wiring scheme is shown in Figure 1.2. Each 

node in the network needs a network interface card, called Ethernet card1 which has a unique 

Ethernet address2 that comes within its electronic circuitry.  The Ethernet hub located at the 

center of the network is also a circuit that regulates the transmissions in the network.  It allows 

only one user to transmit at a time, thus, mainly performing a multiplexing function.  

 

 

 

 

Figure 1.2. An Ethernet Network 

 
                                                 

1 An Ethernet card is a collection of circuits printed on a board. It is plugged into the mother board of the computer. 
2 The Ethernet address is also called the physical address of the node. 
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Suppose that node A with Ethernet address a has some data to transmit to node B with 

Ethernet address b in Figure 1.2.  First, node A checks the network for any on-going 

transmission.  If there is no on-going transmission, node A, using the standard Ethernet frame 

format, puts the source and destination addresses, and its data into frames then it sends the 

frames to the hub.  After receiving the frames, the hub copies each frame to all other links so that 

all computers can get the frames.  Eventually, each computer extracts the destination Ethernet 

address from the frames it received and compares it with its own Ethernet address.  They will 

match only for node B, thus, only node B will keep the frames while other nodes do not. 

Two or more transmissions can not take place at the same time in an Ethernet since all links 

and the hub are used for only one transmission. Therefore, these Ethernets are called shared 

Ethernets.  If two or more nodes start transmission at the same time, then the hub will inform all 

nodes that a collision happened. Being aware of the collision, the source nodes wait for random 

periods of time before re-transmitting. The mechanism of how to access to the medium, 

described very shortly the above, is an implementation of CSMA/CD (carrier sensitive multiple 

access / collision detection) protocol in Ethernet. 

Due to performance concerns, there is a limit on the number of nodes that can be connected 

to the same Ethernet hub. Performance can be increased by interconnecting Ethernets with 

switches or routers. 

1.1.2 The Internet 

An internet consists of two or more networks such as Ethernets connected by routers. Each 

node in an internet has a unique network address and an Ethernet address. Unlike Ethernet 

addresses, a network address is usually based on the geographical position of the node.  Routers 
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make the decision of where to send the packet based on the network address not the Ethernet 

address.  A simple internet illustrated in Figure 1.3 has five Ethernets which are interconnected 

by four routers: R1, R2, R3, and R4.   

Suppose that node A wants to send some data to node B.  The Ethernet addresses of node A 

and B are a and b and their network addresses are A and B, respectively.  Node A sends its 

Ethernet frame [a, r1 | A, B | data] to the router it is connected to.  After receiving the frame, 

router R1 makes some modifications on the frame such as it throws away the Ethernet addresses 

and puts the information into a packet with IP (Internet Protocol) format.  Then R1 checks its 

routing table to find out which router destination address B is connected to.  In this case it is R4. 

R1 sends the IP packet [A, B | data] to R4.  R4 checks its routing table and deliver the packet to 

R3.  Finally, R3 finds out that the destination is in an Ethernet and sends the Ethernet frame [r3, 

b | A, B | data] to the Ethernet hub which copies the frame to its all output ports and eventually, 

the destination node b receives the frame. 

The global Internet interconnects the networks around the world.  Two important protocols, 

TCP (Transfer Control Protocol) and IP (Internet Protocol), usually referred together as TCP/IP, 

are used for exchanging data in the Internet.  IP specifies how to assign a unique network address 

to each computer in the Internet and how to send a packet from a source node to a destination 

node.  IP defines a universal packet format to be able to perform packet delivery in the Internet 

which contains various networks with different frame formats and technologies.  IP supports best 

effort service for delivering packets from a source to a destination node in the Internet. It doesn’t 

guarantee that the packets might be delayed, duplicated, lost, or corrupted with transmission 

errors. 

 9 



TCP protocol has emerged to prevent these undesirable effects and provide a reliable 

transportation in the Internet.  This protocol achieves reliability by means of an acknowledgment 

mechanism which requires a destination node to notify the source node about whether it received 

the transmitted packets successfully.   This protocol also performs flow and congestion control 

based on information available to it so that network resources are used efficiently. 

 

 

 

 

Figure 1.3. A small internet. 
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1.2 GAME THEORY 

Game theory is an important mathematical tool to analyze many problems originating from 

various disciplines.  Problems dealing with cooperative and competitive entities in engineering, 

economics, political science, and many other fields are modeled and analyzed using game 

theoretic principles. Two important solution concepts from game theory are Nash equilibrium 

and Pareto dominance which are usually used to investigate cooperative and competing entities 

respectively. 

A player, also called user in the context of communication networks, is the basic entity in 

models of game theory.  Each user has to make a decision about which action it3 should take 

from a set of available actions.  Each user optimally chooses its action among the set of all 

actions to maximize a utility function (payoff function) or to minimize a cost function.  These 

functions translate the level of satisfaction associated with each possible action.  In other works, 

these functions define a preference relation for the users.  For instance, if x and y are two 

possible choices, a rational user will take action x if the utility of choosing x is higher than the 

utility of choosing y, or if the cost of choosing x is lower than the cost of choosing y.  

Games arise in situations where there is interdependence among users. That is, in situations 

where one user’s payoff is not only a function of its choice but also a function of all other users’ 

choices. For instance, the amount of profit of a company depends on its price setting as well as 

on other companies’ price settings.  Therefore, to maximize its utility function or minimize its 

cost function, a user makes its decision by taking into account other users’ possible decisions.  

                                                 
3 A user can be thought as a software entity which makes optimizations and decisions in computer networks. So we will refer each of them as 

“it”. 
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Even though games can be classified into many different categories, we will emphasize 

only three of them. a) Based on cooperation among the users, a game can be cooperative or non-

cooperative.  In non-cooperative games, each user is only concerned about its own payoff and 

doesn’t pay attention to other’s payoffs.  On the other hand, in cooperative games, users 

collaborate to increase their individual as well their mutual (social) payoff functions.  b) Games 

can be strategic (also called static) or repeated (also called dynamic). In strategic games, users 

simultaneously and only once make decisions.  Differently, in repeated games, users interact 

more than once and play the game many times.  In these games, users’ future payoffs depend on 

their current strategic choices.  c) In nonhierarchical games, no user enforces its strategy to other 

users.  However, in hierarchical games, a user called the leader4 can impose its strategy on 

another user which is called the follower.  The solution concept for these games is called 

Stackelberg equilibrium [19].  The leader makes a choice to maximize its own utility ahead of 

the follower and then allow the follower to know its choice.  Based on the leader’s choice, the 

follower decides on its actions to maximize its own utility function.  In this thesis, we will 

concentrate mainly on non-cooperative and cooperative strategic games. 

1.2.1 Strategic Games 

A strategic game, sometimes also called one shot game, has users who make their decisions 

only once, simultaneously, and independently [5,6]. “Once” means that users interact only one 

time and they finish the game by announcing their decisions simultaneously.  Simultaneous 

decision making can be realized in many ways.  In one scheme, each user sends its decision to a 

                                                 
4 There can be more than one leader in a hierarchical game. We focus on the games with only one leader. 
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central computer (not necessarily at the same time) and then the central computer publishes all 

users’ decisions at once. 

In static games, users are aware of each others utility functions so they know the strategic 

interactions in a game.  Let  be the set of users and N be the number of users in 

the game.  A generic user i has to choose its action

(1, 2,...., )N=N

5 from its set of possible actions .  The 

outcome of the game is given by an action profile  which is a collection of 

choices made by all users.  An action profile belongs to the set A which is the Cartesian product 

of action sets of all users, i.e. 

ia iA

1 2( , ,....., )Na a a a=

i
iA A∈⊗ N .  U  that de= ser i has the utility function :iU A→ fines 

the user’s preference relations.  Notice that the utility of user i does not only depend on its action 

i ia A∈  but also depends on the choices of all users a A

R

∈ .  In summary, by using the notation 

given the above, a strategic game can be denoted by ( ) ( ), iAN , iU . 

iU d i iU a a

d by

We interchangeably use )a  an )i−  to stress the effect of all other users’ 

actions on user i’s utility.  The decisions made by all users except user i is denote

 (  ( ,

 i ia A− −∈ , 

to be pr \{ })k i∈N . Similarly iA−  denotes the set ecise, a a a a a a− − += ( ka= , 1 2 1 1( , ,...., , ,...., )i i i N

\{ }
k

k iA A∈= ⊗ N . 

1.2.2 The Nash Equilibrium 

Nash equilibrium is one of the most commonly used solution concepts when there is no 

cooperation among the users or when it is hard to impose cooperation.  In these cases, regardless 

of what other users do, each user wants to maximize its own payoff.  Nash equilibrium is safe 

                                                 
5 The words “action” and “strategy” are used interchangeably even though they are not synonyms.  
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against greedy efforts of any user who wants to increase its payoff by deviating from it.  A user 

can only have worse payoff if it changes its Nash strategy unilaterally.  Therefore, the Nash 

strategy is an equilibrium and can be thought as a steady-state point of the game. 

Non-cooperative games naturally lead to distributed control systems in which decision 

makers are individuals.  A central authority that makes decisions for all users is not needed in 

distributed systems.  This eliminates the complex control signaling schemes which are necessary 

for a central optimization.  Therefore, the overall system design6 is much simplified resulting 

into easily expandable communication network.  Now, let us give a precise definition of the 

Nash equilibrium [5,6]. 

 

Definition 1: The action profile *a A∈  is a Nash equilibrium of the strategic game 

( ) ( ), ,i iA UN  if it satisfies the following property for each user i∈N : 

    (1) * * *( , ) ( , ) for all i i i i i i i iU a a U a a a A− −≥ ∈

It is clear from the definition that each user i∈N  will only lose if it changes its Nash 

strategy  to any other choice .  As a result, all users in the game will prefer not to change 

their Nash strategies.  First, let us give the definition of the best actions

*ia ia

7 of a user and then give 

another definition of Nash equilibrium. 

 

 Definition 2: Given other users’ actions ia A i− −∈ , the set of best actions of user i is given by 

( )i iB a− : 

  { }' '( ) : ( , ) ( , )  for all i i i i i i i i i i i iB a a A U a a U a a a A− − −= ∈ ≥ ∈   (2) 

                                                 
6 However the complexity of the cell phone might increase. 
7 Best action is also called best response or rational response. 
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Definition 3: A Nash equilibrium of the strategic game ( ) ( ), ,i iA UN is an action profile a 

with the property: 

  * *( )  for all i i ia B a i−∈ ∈N   (3) 

Based on this definition we can evaluate a Nash equilibrium by obtaining the best 

responses of all users and then search for an action profile a such that 

.  The second step corresponds to finding the solution of the problem 

with N variable and N equations, if best response functions, 

* *( )  for all i i ia B a i−∈ N∈

iB s, are singleton-valued functions.  

1.2.3 The Stackelberg Strategy 

In previous section, we considered games in which the users were able to make decisions 

independently and simultaneously.  The Nash equilibrium is the appropriate solution concept for 

these games.   But there are situations where one user has a dominant role over other users and 

affects their choices.  Also, there are cases where there is no simple way for the users to make 

their decisions simultaneously and one user can declare its choice before other users [19].  These 

cases can be modeled and analyzed as Stackelberg games.  In these games, as mentioned before, 

there are two types of users, namely, the leader8 and the follower.  The leader is the user which 

imposes its decision over the follower by declaring its decision before the follower.  The 

follower is the user whose decision is affected by the leader’s decision and it reacts to the 

leader’s decision rationally [5,6].  Let 1A  and 2A  be the action (strategy) sets of user 1 and user 2 

respectively. User 1 and user 2 would like to minimize their cost functions 

                                                 
8 Sometimes, the leader is also called the manager. 
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1 1 2( , )J a a and , respectively.  Let us give the formal definition of the Stackelberg 

equilibrium for user 2 to be the leader [19]: 

2 1 2( , )J a a

 

Definition 4: is called a Stackelberg strategy pair of the game if 2 2
1 2( ,S Sa a )

1. There exists a mapping 2 1 , such that, for any fixed 2 2a A:T A A→ ∈ , 

1l a A . 1 2 2 1 1 2 1( , ) ( , ) for alJ Ta a J a a≤ ∈

S SJ Ta a J T≤2. There exists a 2
2 2
Sa A∈  such that )a a   2 2fo . 2 2

2 2 2 2 2 2( , ) ( , r all a A∈

 

Let us give another definition of the Stackelberg equilibrium with user 2 as the leader. 

 

Definition 5: is a Stackelberg strategy pair with player 2 as leader if and only if 

 and  

2 2
1 2( , )S Sa a

2 2 1
1 2( , )S Sa a B∈

  2 2 1
2 1 2 2 1 2 1 2( , ) ( , ), for all ( , )S SJ a a J a a a a B≤ ∈   (4) 

where 1B  is the best action set of user 1. 

The leader evaluates its Stackelberg strategy by obtaining the best response of the follower 

for its all actions  and then by performing a maximization based on its action and the 

follower’s best response. 

2a A∈ 2

1.2.4 Pareto Dominance and Efficiency (Optimality) 

It is well known that the Nash equilibrium is not usually efficient [20].   The inefficiency of 

a non-cooperative system can be interpreted as the cost of having a distributed control system.  
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In some cases, users can cooperate or they can be forced to cooperate to have a more efficient 

operating point so that some or all users can benefit from it.  A Pareto dominant action profile 

increases some users’ utility without hurting any users’ utility.   On the other hand, for any action 

profile  we can find an action profile  in Pareto efficient (optimal) action profile set 

 that Pareto dominates the action profile a.  That is, 

,a A∈ *a

*A ⊂ A **a A∈  is Pareto optimal if we cannot 

find any  that Pareto dominates .   Pareto dominance and optimality are formally given 

in the following definition. 

a A∈ *a

 

Definition 6: An action profile  is said to be Pareto dominant over another action profile a if 

 for all i  and  for some 

â

ˆ( ) ( )i iU a U a≥ ∈N ˆ( ) ( )i iU a U a> .i∈N   Moreover, an action profile  

is said to be Pareto efficient (optimal) if there is no other action profile a  such that 

 for all i  and  for some .

*a

*( ) ( )i iU a U a≥ ∈N *( ) ( )i iU a U a> i∈N  

Let us give an example that demonstrates the game theoretical concepts described the 

above. 

 

Example 1.1: Consider a static game where there are two users.  The cost functions of user 1 and 

user 2 are 

  2 2
1 1 2 1 2 1 2 1 2( , ) ( 2.5) ( 0.5)J x x x x x x x x= − + − − + +   (5) 

  2 2
2 1 2 1 2 1 2 1 2( , ) 3( 1.2) ( 2.2)J x x x x x x x x= − + − − + +   (6) 

respectively.  Let us consider the non-cooperative case in which each user wants to minimize its 

own cost function.  The level curves of  and  can be seen in 1J 2J Figure 1.4.  User 1 and user 2 

choose actions 1x R∈  and 2x R∈  respectively.  Notice that action sets of both users are the 
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same, i.e. . Let  be the action profile set of the game.  If user 1 had 

control on both actions 

1 2X X≡ ≡ R 21X X X= ×

1x  and 2x , it would choose the action profile (2.66, 1.33) that 

corresponds to the minimum of , denoted by  in 1J *
1J Figure 1.4.  Similarly, if user 2 had control 

on both actions it would choose the action profile (1.43, 2.41) that corresponds to the minimum 

of , denoted by . 2J *
2J

 

 

 

 

Figure 1.4. The level curves of  and  1J 2J
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The best actions of user 1, , can be drawn by joining the points at which lines of 

constant 

1 2( )B x

2x  are tangent to the level curves of .  Similarly, the best actions of user 2, , 

can be drawn by joining the points at which lines of constant 

1J 2 1( )B x

1x  are tangent to the level curves of 

.  Although the best actions can be found by means of level curves, their analytical 

expressions can be easily found for this example.  We minimize  for given

2J

1J 2x  to find . 

Therefore,  will be only a function of 

1 2( )B x

1J 1x  when 2x  is fixed. The minimizer of  satisfies the 

first order necessary condition (FONC): 

1J

  *1 1
1 2 1 1 2 2

1

( ) 2( 2.5) 1 0 ( ) 0.5 2dJ x x x x B x x
dx

= − − + = ⇒ = = +   (7) 

Second order necessary condition (SONC), 

 
2

1 1
2
1

( ) 2 0d J x
dx

= >   (8) 

is also satisfied, thus, *
1x  is the minimizer for given 2x .  In the same way, the best action set of 

user 2 can be found: 

  2 1 1( ) 0.5 1.7B x x= +   (9) 

Finding best action sets are complete.  Now, from the second definition of the Nash equilibrium, 

we have to find an action profile 1 2( , )x x  such that 

  1 2 1 1 2 2( , ) and ( , )x x B x x B∈ ∈   (10) 

The intersection point of  and  satisfies this condition.  Therefore, equate two best 

responses: 

1B 2B

 . 1 2 1 1 1 22 4 0.5 1.7 ( , ) (3.8,3.6)N NB B x x x x= ⇒ − = + ⇒ =

In Figure 1.4 the point N corresponds to the Nash equilibrium of the game 1 2( ,N N )x x . 
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Now let us find the Stackelberg equilibrium when user 1 is the leader and user 2 is the 

follower.  The leader knows the follower’s best action for its each action.  Therefore, the leader 

performs an optimization based on the follower’s best action.  We insert   into the leader’s 

cost function  and minimize  with respect to 

2 1( )B x

1 1 2 1( , ( ))J x B x 1 1 2 1( , ( ))J x B x 1x  to obtain the leader’s 

strategy: 

  (11) ( )22
1 1 2 1 1 1 1 1 1 1( , ( )) ( 2.5) (0.5 1.7) 0.5 (0.5 1.7) (0.5 1.7)J x B x x x x x x x= − + + − − + + + +

  1 1 11
1 1 2 2 1

1

1.5 4 0 2.66 ( ) 3.03S S SdJ x x and x B x
dx

= − = ⇒ = = =   (12) 

The point indicated by  corresponds to the Stackelberg equilibrium of the game, 

, when the first user is the leader.   Similarly, for the case in which user 2 

is the leader and user 1 is the follower, the Stackelberg equilibrium can be evaluated as 

, which is denoted by  in 

1S

1 1
1 2( , ) (2.66,3.03)S Sx x =

2 2
1 2( , ) (2.5,1S Sx x = ) 2S Figure 1.4. 

The curve joining the points of tangency between the level curves of  and  in *
1J *

2J Figure 

1.4 corresponds to the Pareto optimal points of the game.  In this case, the users cooperate to 

minimize a common cost function given as follows: 

  1 2 1 2( , ) (1 ) 0 1J x x J Jα α α= + − ≤ ≤   (13) 

It is clear that if both users minimize J, indirectly, one user chooses its action profile that 

minimizes its own cost function as well another’s cost function.  Let us find an analytical 

expression for Pareto optimal action profiles: 

 
2 2

1 2 1 2 1 2

2 2
1 2 1 2 1

( 2.5) ( 0.5)

(1 ) 3( 1.2) ( 2.2)

J x x x x x x

2x x x x x

α

α

⎡ ⎤= − + − − + +⎣ ⎦
⎡ ⎤+ − − + − − + +⎣ ⎦x

  (14) 

Write FONCs: 
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  1 1 2
1

( 4 2.2) 6 6.2 0J x x x
x

α∂
= − + + − − =

∂
  (15) 

  2 1
2

3.4 2 3.4 0J x x
x

α∂
= + − − =

∂
  (16) 

Simultaneous solution of equations (15) and (16)  results in: 

 
2

1 2
7.8 15.8 13.6 36.2 26.6and
11 8 11 8

P Px xα α
α α

− + − +
= =

− −
α

)

  (17) 

It is easy to check that 1 2( ,P Px x  satisfies SONCs, therefore it is the minimizer of J.   Let us write 

the Pareto optimal action set *X  formally becomes: 

 
2

*
1 2 1 2

7.8 15.8 13.6 36.2 26.6( , ) : , , 0 1
11 8 11 8

X x x x xα α α α
α α

⎧ ⎫− + − +
= = = ≤⎨ ⎬− −⎩ ⎭

≤   (18) 

Now consider the action profiles (1.65, 1.81), (1.43, 1.14), and (0.90, 0.47) indicated by R, 

S, and T in Figure 1.4, respectively.  The costs of user 1 and user 2 for these action profiles are 

given in Table 1.1. 

 

 

Table 1.1. Costs for user 1 and user 2 in Example 1.1 

when action profiles R, S, and T are used. 

 

 1J 2J

R 2.9 1.2

S 2.5 2.2

T 3.5 4.2
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The action profile S Pareto dominates the action profile T  because both users have smaller 

costs at profile S than at profile T.  Similarly R also Pareto dominates T.  A point in a Pareto 

optimal set doesn’t necessarily mean to dominate all other points.  For example, even *R X∈ , it 

does not dominate the profile S as the cost of user 1 is higher at profile R than profile S.  It is also 

easy to see that there is no other profile that Pareto dominates R.  Therefore, it is a point in Pareto 

optimal action profile set. 

1.3 A BRIEF SURVEY OF PREVIOUS RESEARCH  

Models of game theory have been extensively applied to a wide variety of problems arising 

from communication networks.  Problems of routing control [3,10,15,17,18,21-33], flow control 

[7-9, 11-13, 34-42] , capacity allocation [43-46], and pricing[47-49] the network resources have 

received considerable attention in the control and communication literature.  In a routing control 

problem, a user tries to find the path(s) through which it should send its throughput demand to 

have the best performance with respect to some performance criterion.  In a flow control 

problem, a user asks how much flow it should send to the network to find its optimum flow 

control strategy.  Differently, in the capacity allocation problems, users decide how much of the 

network resources they should allocate. Lastly, pricing of the network resources has been used to 

increase the use of network efficiency. 

The existence and uniqueness of the Nash equilibrium constitutes one of the most 

important problems.  If there exists a unique Nash equilibrium, then we can analytically or 

numerically obtain this equilibrium point.  We may also try to tune the network parameters so 

that efficient use of the network resources is achieved at the Nash equilibrium. 
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There are few communication network models for which the uniqueness of the Nash 

equilibrium is established [50]. In [3], the authors provide a simple example to illustrate the 

difficulty of having a unique Nash equilibrium.  In the example, a network with only four nodes 

has two Nash equilibriums. Therefore, usually, the uniqueness of the Nash equilibrium is 

established case by case. 

Rosen’s diagonal strict concavity (DSC) conditions are used to establish the uniqueness of 

the Nash equilibrium in some studies.  These conditions guarantee the existence and uniqueness 

of the Nash equilibrium for convex games.  DSC conditions are shown to be satisfied for general 

topology networks with polynomial costs in [21].  Also, these conditions are satisfied by the 

parallel link networks with two users and two links and by general topology networks under light 

traffic conditions as in [3]. 

A user in a competitive routing network makes its decision of how to split its given 

throughput demand into the available paths.  Orda et al [3] study this problem for parallel link 

and general topology networks with L links and I users.  In this game, each user decides on the 

amount of flow for each link to minimize its own cost function without paying attention to other 

users’ performance.  In other words, by using the notation in the paper, user i minimizes its own 

cost by adjusting its flow configuration vector { }i
1 2f , ,.....,i i i

Lf f f=  where i
lf  denotes the 

amount of flow user i puts on link l.   The outcome of the game is expressed by the system flow 

configuration that is the Nash equilibrium of the game given by .   The Nash 

equilibrium is investigated for a wide variety of cost functions that satisfy some mild convexity 

conditions.   The cost function of each user is expressed as the sum of all link costs.  The flow of 

a generic user through a link incurs some cost, called the link cost.  The existence of Nash 

equilibrium is established for both networks for this cost function.  The uniqueness of the Nash 

1 2 I(f ,f ,.....,f )F =
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equilibrium for the network of parallel links is established under the assumption that all users 

send their flows over the same set of links.  The uniqueness of the general topology networks 

demands even more restrictive conditions.   It is established by means of Rosen’s DSC 

conditions which hold for a lightly loaded general topology networks.  The Nash equilibrium is 

also stable and unique for a special case of the parallel link networks with two users and two 

links.   In addition to the existence and uniqueness of Nash equilibrium analysis, intuitive 

properties of the Nash equilibrium called monotonicity properties are also explored.  For 

instance, the user with higher throughput demand uses a larger portion of each link than the user 

with lower throughput demand.  They show that the general topology networks might not have 

these properties.  

La and Anantharam consider the same competitive routing problem described above in a 

dynamic game context in [22].  The users are the Network Access Providers (NAPs) who 

compete with each other to support the best service to their individual network users.  They 

interact many times with each other until the state of the network changes considerably due to 

the change of the number of the network users, or the topology of the network, or the load over 

the network.  In practice, NAPs can communicate with each other before they make their 

decisions; so they can negotiate about the effective use of the network.  It is natural to consider 

that each user wants to increase its own performance.  Therefore, none of the users might desire 

to cooperate unless there is a reward for cooperation or might keep its agreement unless there is a 

punishment for deviating from it.  These interactions among the users cannot be analyzed by 

static games.   Dynamic games provide a better understanding of this situation.  In this setting, it 

is possible to have a Nash equilibrium that yield a minimum total system cost and every user of 

the network has a cost that is not larger than that of the static game setting.  That is the case for 
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parallel link networks and the Nash equilibrium which is socially optimal is called subgame-

perfect Nash equilibrium (SPNEP).   SPNEP also exists for general topology networks if all 

users have the same source and destination nodes and if some light technical conditions hold for 

the network.   It might not exist in a general topology network with users having different source 

and destination nodes.  

Routing in communication networks and transportation networks have some similarities in 

nature.  In transportation networks, one driver has negligibly small effect on the other drivers and 

the solution concept is Wardrop equilibrium [50].  On the other hand, users’ flows in the 

communication networks are not negligible.  Altman et al [21] consider the routing control 

problem in general topology networks with polynomial costs.   Users have a fixed amount of 

flow demand to send to the destination and they have polynomial cost function that is borrowed 

from the road traffic context.  The cost function is defined by the US Bureau of Public Roads.  

The existence and uniqueness of the Nash equilibrium are established for the general topology 

networks.  Moreover, it is shown that the Nash equilibrium does also result in a socially optimal 

network operating point at which the total cost of the network is minimum. 

It is well known that the Nash equilibrium is not usually efficient.  Therefore, different 

mechanisms are suggested to have an operating point which is more efficient then the Nash 

equilibrium [23,33,43].   Design parameters of the network and pricing the network resources are 

two examples of these mechanisms.  Korilis et al [33] consider the problem of architecting a 

non-cooperative network with I users competitively routing their flows through the network just 

like the users in [3].  In this study, the inefficiency of the Nash equilibrium is overcome by 

means of two techniques.  The first technique is employed in the provisioning phase, i.e., during 

the construction of the network.   The designer of the network adjusts the capacity of each link so 
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that the resultant network yields a Nash equilibrium which is system wide efficient.  System 

wide efficiency means that the overall network performance is optimum with respect to some 

performance criteria, in this case the criterion is the minimum network cost.  The designer is able 

to achieve this goal since it is assumed that users are rational and their performance criteria are 

known.  A mapping, called Nash mapping, assigns each capacity configuration of the network to 

a unique Nash equilibrium (system flow configuration).   The unique Nash mapping allows them 

to compare the Nash equilibriums to obtain the capacity configuration that yields the minimum 

total system cost.   To be able to compare different Nash equilibriums, it is also assumed that all 

users send flows over the same set of links for different link capacity settings.  For the network 

of parallel links, adding all available capacity to the link which has initially highest capacity is 

the user price optimal solution.  A capacity configuration is the user price optimal if it minimizes 

all users’ prices.   Price of a user, called marginal cost in economy, is the partial derivative of 

cost function with respect to the user’s own flow.  The second technique for overcoming the 

inefficiency of the Nash equilibrium is employed in the run time.  The network manager has 

control over some portion of the flow to route through the network.  The manager adjusts the 

amount of flow for each link just like other users to lead to a Nash equilibrium at which the 

minimum average network delay is achieved.   Thus, the manager plays a social role in this game 

to increase the efficiency of the system.  Since the manager actively adjusts the available 

capacity to other users by its flow; this technique is similar to the capacity assignment technique 

during the provisioning phase.  But, differently, the manager’s flow consumes some resources 

and incurs some cost to the network.  Authors show that the manager’s flow demand must 

exceed a threshold to achieve its goal.  Interestingly, the threshold decreases with increasing load 

in the network.  In other words, the manager’s job is easier for a heavily loaded network.  Lastly, 
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in this study, the authors also investigate Braess paradox.  That is, the addition of some more 

capacity to a network can degrade all users’ performances.  The authors prove that this paradox 

does not occur in parallel link networks.  One way to prevent this paradox from occurring in 

general topology networks is that the available capacity should be added to all links of the 

network uniformly. 

The routing control problems we described earlier involves routing of a given flow demand 

through the network.  The nature of the problem is completely different if the users are to send 

an unspecified amount of flow on the network and the problem becomes an optimal routing and 

flowing control problem.  In other words, users simultaneously decide on their flow and routing 

strategies.  Each user finds its optimum amount of flow for each link.   Altman et al [10] consider 

this problem for parallel link networks for an arbitrarily large number of users.  Users aim to 

maximize their utility function which is in the form of benefit/cost.  As mentioned before, this 

form of the utility functions is recognized as the power criterion.  A positive power of the total 

throughput of the user is considered to be the benefit term while the average expected delay 

experienced by the user’s flow is considered to be the cost term.  Maximizing this form of utility 

function can be interpreted as maximizing the throughput while minimizing the delay.  The 

power of the total throughput, adjusting the tradeoff between throughput and delay, can be user 

specific.  For this non-concave utility function the authors find an explicit expression of the 

solution for a single user that uses M parallel links.  Interestingly, it is possible to have an 

optimal flow configuration for the user such that some links are not used.  They also show that 

there exists a unique Nash equilibrium as the number of users becomes arbitrarily large.  The 

large number of users results into the Nash equilibrium which has delay-equalizing property that 

delay for each link becomes the same. 
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As mentioned before, pricing mechanism is also widely used to utilize the resources 

effectively and increase the system performance.  Korilis et al [47] consider a pricing mechanism 

that leads to minimum network congestion.  The authors suggest that price of a link is directly 

proportional to the congestion level of the link.  Therefore, highly congested links will have high 

prices that will produce an incentive for users to use the lightly congested links with low prices. 

The manager’s objective is to have the network operate at a target point at which the minimum 

network congestion cost is achieved.  A pricing vector of the network contains the prices for all 

links.  The manager chooses the pricing vector and all network users use this pricing vector to 

decide on their flow rates by minimizing their cost functions.  Flow rates of all users constitute 

the system flow configuration.  The authors prove that there exists a unique price vector that 

induces a unique Nash equilibrium at which the system flow configuration and the manager’s 

target system operating point matches up for parallel link networks.  For a general network case 

such as the Internet where users’ cost or utility functions are not known, they introduce an 

adaptive algorithm to find the price vector.  They obtain the sufficient conditions for the 

algorithm to converge to the optimum price vector.  

Rhee and Konstantopoulos [45] consider a bandwidth allocation problem for a parallel link 

network.  Each user reserves the amount of bandwidth that maximizes its own utility function. 

Utility functions are assumed to be concave and smooth.  In this model, users can have different 

utility functions and the users’ throughput is bounded between a maximum and a minimum 

value.  In previous works, each user had a fixed bandwidth demand or the users’ demands were 

limited by the capacity of the resources.  The existence and uniqueness of the Nash equilibrium 

is established for parallel link networks and also for general topology networks with users 

establishing virtual paths along a fixed route.  That is, no user splits its flow over the links but 
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each user sends its flow along one virtual path in the fixed routing scheme.  Gauss-Seidel 

iterative method is shown to be converging to the unique Nash equilibrium for networks with 

one link and many users. 

Lastly, in study [52], an elastic traffic model is studied.  Traffic arising as a result of 

controlling flow rates with respect to available bandwidth within a network is referred as 

“elastic.”  In this model, each user chooses a price per unit time.  Based on this price, the 

network assigns a flow rate to this user by optimizing a network performance criterion.  For this 

network model, the authors establishes the stability of the algorithms which are based on 

additively increasing and multiplicatively decreasing flow rates.  They generalize these results to 

large scale broadband communication systems in [53].  
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2.0  FLOW AND ROUTING CONTROL FOR PARALLEL-LINK NETWORKS  

In this chapter, we consider a two-node parallel link network with multiple competing 

users.  This simple type of network is encountered in many of today’s communication networks in 

several different ways [43].  For instance, in a broadband network, users are assigned some pre-

allocated network resources and independent virtual paths are created by splitting the available 

bandwidth.  Each virtual path may be considered as a link in a parallel link network model.  

Similarly, to simplify routing in a complex communication network, users may be restricted to 

send their data flow on a specified number of paths between any two nodes in the network.  

Another example is that of an enterprise which is served by many ISPs.  The connections to the 

ISPs can be modeled as parallel links and the enterprise may have different preferences for each 

connection based on the price and its previous satisfaction with that ISP.    

Each user of the two-node parallel link network decides on its flow rate which maximizes a 

benefit-cost form of utility function.  Since our network consists of several parallel links, we 

provide each user with the flexibility of using different preference constants for different links in 

their utility functions.  That is, we allow the preference constants to be link-dependent.   In doing 

this, our model gives each user the option to choose the preference constants not only to balance 

between throughput and delay but also to reduce the usage of links that they perceive to be 

defective and increase the usage of links that they perceive to best meet their needs.  
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In section 2.1, we present a mathematical formulation of the problem and we derive 

conditions on the link capacities and preference constants which guarantee the existence and 

uniqueness of a Nash equilibrium for this network.  An analytic expression for the Nash control 

policy for each user is also derived.  In section 2.2, we discuss six properties of the solution 

which characterize its dependence on the various network parameters.  In particular, we show 

that, in general, allowing the preference constants to be link-dependent will lead to a control 

policy in which each user’s flow rate on each link is directly correlated with the user’s preference 

for that link.  We also show that the resulting Nash equilibrium will be non-symmetric and 

characterized by the fact that all users are not necessarily required to have the same flow rate on 

each link.  This can be especially useful as a mechanism for the network to offer different levels 

of quality of service to different users.  In section 2.3, we present two illustrative examples, and 

in section 2.4, we provide some concluding remarks. 

2.1 MATHEMATICAL FORMULATION AND DERIVATION OF THE NASH 

EQUILIBRIUM  

Consider a data communication network with two nodes - a source node and a destination 

node - connected by M parallel links and shared by N competitive users.  Let the set of links be 

denoted by {1,2,....., }M=M  and the set of users by {1,2,....., }N=N .  Let and mc miλ  for 

 and i  denote the capacity of link m and the flow (transmission) rate of user i  on 

link  respectively.  We note that the flow rate 

m∈M ∈N

m miλ  is a static control variable chosen by user i . 

The total flow of all users on link m is therefore given by 
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  m m
j

jλ λ
∈

= ∑
N

  (19) 

Let ( 1 2, ,.....,i i i M )iλ λ λ λ=
�

 be an M-dimensional vector denoting the flow configuration of user i  

on the network links{1,2,..., }M .  This vector is chosen by user  from a control set: i

  { }: 0  for all M
i i mi mR c mλ λΩ = ∈ ≤ < ∈

�
M   (20) 

in such a way as to maximize a certain utility function.  Clearly, a solution 

* * * *
1 2{ , ,...., ,...., }i Nλ λ λ λ
� � � �

 is feasible if the non-negativity condition  0 for all ,mi i mλ ≥ ∈ ∈N M� 

and the stability condition  for all m mc mλ < M∈  are both satisfied.  Since a change in any one 

user’s flow over the network affects all other users’ flow configurations, and since each user 

wants to maximize its own utility function, this network problem is best analyzed using a non-

cooperative game theoretic approach.  In this chapter, we are interested in the Nash solution 

concept [4-6] which represents an equilibrium condition when the network reaches steady state 

operation.   

We assume that the level of satisfaction of user i∈N  with a set of flow configurations 

implemented by all users is measured by a utility function of the form: 

  1 2( , ,....., ) mi mi
i N mi mi

m m m m

U
c
β λλ λ λ α λ

λ∈ ∈

= −
−∑ ∑� � � M M

  (21) 

As mentioned earlier, this function is in the form of “benefit – cost” where the benefit term 

corresponds to the ith user’s total weighted flow mi mi
m

α λ
∈
∑
M

, and the cost term corresponds to the 

ith user’s total weighted congestion cost ( )mi mi m m
m

cβ λ
∈

−λ∑
M

.  In this expression, the 

deterministic term ( )1 m mc λ−  represents the expected congestion delay on link m  for an M/M/1 
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delay function [3,22,33,43].  The parameters >0  and 0mi miα β >  in (21) represent preferences for 

the relative importance that user i  attaches to the benefit and cost terms on link m .   We note 

that although all users have utility functions that are of the same form, they can (and most likely 

will) in general use different pref ence constants in these functions.  Clearly, user i  wants to 

implement a flow configuration i

er

λ
�

 which maximizes iU . However, iU  depends on the flow 

configurations implemented by all users. A Nash equilibrium solu r game 

problem is defined as a 

tion r this m

set of f

 fo ulti-use

easible flow configuration vectors * * * *
1 2{ , ,...., ,...., }i Nλ λ λ λ
� � � �

 which 

satisfy the inequalities: 

 
* * * * * *

1 2 1 1, ,...., , , ,....,i i i i NU λ λ λ λ λ λ− +� � � � � �   (22) 

. cheating) from it.  In this sense, it 

rk problem.  For a solution in the interior of control 

t (20) for each user, these conditions9 are:  

i i Nλ

( )
( )* * * * *

1 2 1 1        , ,...., , , ,....,    for  and for 1,2,....,  i i i i N i iU i Nλ λ λ λ λ λ λ− +≥ ∈Ω =
� � � � � � �

As we mentioned before, an important property of the Nash solution is that when implemented, 

no user will be able to benefit by unilaterally deviating (i.e

represents an equilibrium condition for all network users.    

 We will now derive necessary and sufficient conditions for the existence and uniqueness 

of a Nash equilibrium solution for this netwo

se

  1 2( , ,....., ) 0    for all U iλ λ λ∇ = ∈
� � � �

N   (23) 

nd  

i

a

  1 2( , ,....., ) is negative
i i NUλ  definite for all λ λ λΗ
� � � �

∈N   (24) 

ondition (23) yields the following equations:    

                                                

C

 
9 The notations  and denote the gradient vector and Hessian matrix of  with respect to ( )

i iUλ∇
�

( )
i iUλΗ
�

iU iλ�
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( )2 0  for all ,m m mic i mλ λα β − +
− = ∈ ∈N M   (25)   mi mi

m mc λ−

nd condition (24) yields a Hessian matrix which is diagon  and whose diagonal term is 

given by:  

 

 thma al

( ) 3,

2 ( )c
( )i

mi m m mi
i m m

m m

U
cλ

β λ λ− +
λ

Η = −
−�

  (26) 

The equations in (25) have a unique Nash solution for the flow of user  on link  given by:  

 

i m

( ) ( )* *2
*  for all mi m m mi m mc cλ λ γ λ= − − − ∈M m (27) 

where mi mi miγ α β= . We will refer to the term miγ  as the user’s tradeoff parameter for lin

To determine 

thi k m . 

*
mλ , insert (27) in (19) to obtain 

  ( ) ( )* * 2

m m m m m mc N c
*

λ λ γ λ= − − −   (28) 

where m mi
i

γ= ∑ .  Equation (28) simplifies to the following quadratic expression in 
∈N

*

mλγ : 

 
* *2 2( ) ( 2 1) 0m m m m m m m mN c c Ncγ λ γ λ γ+ − − + − =   (29) 

The two roots of (29) are  

 
( ) )(*

21 1 4 m mN N cγ± − − ± +

2m m
m

cλ
γ
−

= +   (30) 

The stability condition for the positive root 
*

m mcλ
+
<  reduces to 4 0m mcγ < , and this inequality 

can not be satisfied since both mγ  and  are positive constants.  Therefore, the root mc
*

mλ
+
 can not 

be a feasible solution.  On the other hand, the stability condition for the negative root 
*

m mcλ
−
<  

reduces to ( ) 21 ( 1) 4 m mN N γ− − < − + c  which is always satisfied. Therefore, the optimal total 

 34 



**
m mλ λ

−
=link flow is , or 

 
( ) ( )2

* 1 1 4
2m m

mγ

ndition for non-nega otal link flow

m mN N c
c

γ
λ

− + − +
= −   (31) 

The co tivity of t
*

0mλ
−
≥  can be reduced to m mN cγ ≤  for 

m∈M .  But the condition m mN cγ ≤ cally satisfied if all individual flo  

are non

 will be automati w rates

negative, i.e.  for all -  * 0miλ ≥ i∈N  and m∈M .  By using (27), the inequality 

ields 

* 0miλ ≥  

y

* 1 mi
m m m

mi mi

c c βλ
γ α

≤ − = −    (32) 

sing *
mλU  as given by (31), condition (32) can be rewritten as:  

( )1 1   for all ,m  m
mi mi

N c i m
γ γ

− − ≤ ∈ ∈⎜ ⎟
⎝ ⎠

N M   (33) 

The sufficiency condition in 

γ⎛ ⎞

(26) is clearly satisfied since (32) implies *
m mcλ <  which guarantees 

that the expressions in (26) will all be negative. As a final remark, we note that for the Nash 

solution to be an interior point of the control set (20), the inequalities in (33) must all be strictly 

satisfied for all users which will then insure that all flows on all links will be positive.  That is no 

link will be unused.    

An expression for the residual capacity in link  can be derived from (31) as:  

 

m

( ) ( )

*

21 1 4
   

2

m m m

m m

m

r c

N N

λ

γ
γ

= −

− + − +
=

 c (34) 
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2.2 PROPERTIES OF THE NASH EQUILIBRIUM 

The Nash solution derived in the previous section has certain properties that are consistent 

with what one would intuitively expect the network to satisfy.  In this section we discuss six such 

properties.  The first and second properties are unique to our utility function with link-dependent 

tradeoff parameters and the remaining four refer to the special case of a network with link-

independent tradeoff parameters and are similar to the ones associated with the utility functions 

used in [3].  Throughout the discussion of these properties, the * superscript will be removed 

from the Nash solution to simplify the notation. 

 

Property 1:  For any link  and arbitrary users ,m∈M ,a b∈N , ma mbγ γ> ⇔ ma mbλ λ>  and 

ma mb ma mbγ γ λ λ= ⇔ = .  

Proof: Suppose ma mbγ γ> . Multiplying both sides by and subtracting  from both sides 

yields

2
mr mr

ma mbλ λ> . Now suppose ma mbλ λ> . Subtracting from both sides and dividing by  

yields 

mr
2

mr

ma mbγ γ> .  The case of equality can be proven similarly.  

Essentially this property says that the Nash solution allows a user with a higher tradeoff 

parameter to send a higher flow than a user with a smaller tradeoff parameter on any link of the 

network. As a result, users with high throughput demand (such as in video applications) may 

choose large values for miγ  while users with low throughput demand (such as in e-mail 

applications) may choose smaller values for miγ . 
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Property 2:  For any link , the total link flow m∈M mλ  increases monotonically with mγ . 

Proof:  If we rewrite equation (31) as:  

 
2

2

41 ( 1) ( 1)
2

m
m m

m m

cN Ncλ
γ γ mγ

⎡ ⎤− −
= − + +⎢ ⎥

⎢ ⎥⎣ ⎦
  (35) 

it becomes clear that as mγ  increases, the second term on the right hand side (which corresponds 

to ) decreases and as a result mr mλ  increases. 

This property implies that an increase in the tradeoff parameters of all users for a link in the 

network will lead to a larger total flow on that link.  This, for instance, might occur when all 

users choose to increase the preference constants for the benefit term (the throughput term) at the 

expense of the cost term (the congestion delay term).   In doing so, the resulting Nash solution 

will allow each user to send more flow on the link, however at the expense that their flows will 

experience higher delays. 

 As mentioned earlier, the remaining four properties correspond to the special case where 

all users have the same tradeoff parameters on all links.  That is 1 2 ....i i Mi iγ γ γ γ= = = =  for all 

, which implies that for any link i∈N m∈M , m i
i

γ γ γ
∈

= = ∑
N

.   

 

Property 3:  For any pair of links ,m n∈M,  and m n mc c r r> ⇔ > n nm n mc c r r= ⇔ = . 

Proof:  It is clear from (34) that the residual capacity  of link m is monotonically increasing 

with , which implies that  yields .  Conversely, assume , using simple 

cancellation of terms on both sides of 

mr

mc mc c> n n n

n

mr r> mr r>

(34) yields .  The same proof follows for the case of 

equality. 

mc c>
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This property conveys the fact that the unused bandwidths of the links with larger 

capacities are greater than the unused bandwidths of links with smaller capacities. 

 

Property 4: For any  and i∈N ,m n∈M, m n mi nc c iλ λ> ⇒ >  and m n mic c niλ λ= ⇒ = . 

Proof: Assume , for .  Property 3 implies mc c> n ,m n∈M 1 1m i n ir rγ γ− > −  since 0iγ > .  Then 

 which yields that ( ) ( ) (1 1m m i m n i n n ir r r r r rγ γ− > − > − )1γ mi niλ λ> .  The same proof follows for 

the equality. 

Intuitively, this property implies users will be allowed larger flow rates on links that have 

larger capacities and equal flow rates on links that have equal capacities. 

 

Property 5: For any i∈N and ,m n∈M,  and m n mic c d d> ⇔ > ni nim n mic c d d= ⇔ = , where 

 is the residual capacity of link m seen by user i.  That is: mid

  ,

   

mi m mk
k k i

m mi

d c

r

λ

λ
∈ ≠

= −

= +

∑
N   (36) 

Proof:  Assume  which implies  by Property 3 and this implies mc c> n nmr r> 2 2
m i n ir rγ γ>  which 

is equivalent to .  Conversely, assume . Insert mi nid d> mi nid d> miλ  given by (27) into (36) to 

obtain 2
mi m id r γ= .  Then  impliesmi nid d> 2 2

m i n ir rγ γ>  which, in turn, implies  since mr r> n

, , 0i m nr rγ > . The last inequality implies  by Property 3.  The same proof follows for the 

equality. 

mc c> n

This property says that an arbitrary user sees larger unused bandwidths on those links that 

have larger capacities.  
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Property 6:  For , ,m n∈M m n mc c nλ λ> ⇒ >   and m n mc c nλ λ= ⇒ = . 

Proof: From Property 4,  implies mc c> n mi niλ λ>  for all i∈N . This implies that 

mi ni
i i

λ λ
∈ ∈

>∑ ∑
N N

 which is equivalent to m nλ λ> .  The same proof follows for the equality. 

This last property is a direct consequence of Property 4.  That is, if all users are required to 

have larger flow rates on links with larger capacities then the overall total flow rate will be larger 

on the links with larger capacities than on links with smaller capacities.  Similarly, in the limiting 

case where all links have the same capacities, the total flows in all links will be the same. 

2.3 ILLUSTRATIVE EXAMPLES 

In this section, we present two examples to illustrate the solution concept and properties 

derived in the previous two sections.  For convenience, we will represent the tradeoff parameters 

of all users for all links in the network as an N M×  matrix ( ) 1,...,
1,...,

i
i Nm
m M

G γ =
=

=  whose (  entry 

corresponds to user  tradeoff parameter for link .  Similarly, we will write the Nash 

solution as an  flow matrix 

, )thi m

'si m

N M× ( ) 1,...,
1,...,

i
i Nm
m M

λ =
=

Λ =  whose (  entry corresponds to the flow 

rate of user i  on link .   

, )thi m

m

 

Example 2.1: Consider a simple network with two parallel links and two users.  Let the link 

capacities be and .  First, we consider the case in which the users’ tradeoff 

parameters are link-independent, i.e. 

1 10c = 2 5c =

1 2
i i iγ γ γ= =  for i=1,2.  For this case, the feasible region of 
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tradeoff parameters for the existence and uniqueness of a Nash equilibrium as described in (33) 

is shown in Figure 2.1.  As an illustration, the Nash equilibria for several arbitrary choices of 

tradeoff parameters in and out of this feasible region are given in Table 2.1 and also shown in 

Figure 2.1. 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

γ1

γ2

Feasible
 Region

 

C

A

B

D

F

G

E

 

Figure 2.1. Region of feasibility for Example 1.1 

when users have the same tradeoff parameters for all links.  Feasible regions is defined by the set 

( ) 1 2
1 2

1, : 5 1 and , 1,2i
i i

iγ γγ γ γ
γ γ

⎧ ⎫⎛ ⎞+⎪ ⎪≥ − < ∞ =⎨ ⎬⎜ ⎟
⎪ ⎪⎝ ⎠⎩ ⎭

. 
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Notice that the tradeoff parameters of choices A, C, and E, which are outside the feasible 

region, produced Nash equilibria that are not feasible since at least one user has a negative flow 

on at least one link.  In choice D, both users have the same tradeoff parameters and as a result the 

corresponding Nash flow rates are the same on both links (symmetric Nash equilibrium).  

Choices B, F, and G illustrate different feasible choices of parameters yielding feasible Nash 

lutions.  Notice that in all cases, as expected; larger tradeoff parameters yield larger flows.   

 

ven dif

corresponding to seven different values  the pair

so

 

Table 2.1. Nash equilibria for se ferent cases 

 ( )1 2,γ γof  as shown in Figure 2.1. 

 

 1 2,γ γ  *Λ  Feasible 

A 0.1, 0.1 
0 1.54
0 1.54

−⎡ ⎤
⎢ ⎥−⎣ ⎦

 No 

B 0.5, 0.7 
2.22 0.62
4.44 1.87
⎡ ⎤
⎢ ⎥
⎣ ⎦

 Yes 

C 0.5, 2 
0.22 0.3
7.55 3.67

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 No 

D 1.5, 1.5 
4 1.76
4 1.76
⎡ ⎤
⎢ ⎥
⎣ ⎦

 Yes 

E 2, 0.55 
7.37 3.57
0.44 0.18
⎡ ⎤
⎢ ⎥−⎣ ⎦

 No 

F 2, 2.5 
3.55 1.57
4.84 2.25
⎡ ⎤
⎢ ⎥
⎣ ⎦

 Yes 

G 2.5, 1.5 
5.6 2.65
2.68 1.09
⎡ ⎤
⎢ ⎥
⎣ ⎦

 Yes 
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In order to illustrate the dependence of the Nash flows on the tradeoff parameters, Figure 

2.2 and Figure 2.3 are representative plots of  the econd ser’s Nash flow on link 2 and the total 

Nash flow on link 2, respectively, for varying 1

 s u

γ  and 2γ .  Notice that the flow rate is higher 

when 2γ  is larger than 1γ . This is in agreement with Property 1.  In Figure 2.3, note that total 

flow on link 2 increases as 1 2γ γ γ= +  increases, which is in agreement with Property 2.  

 

Table 2.2. Nash equilibria for five different choices 

of link-dependent tradeoff parame rs represented by the matrices G. 

 

Choice I Choice II Choice III Choice IV Choice V 

 

te

  

G 
11 1
1 2

⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 1
1 6
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
1 1
1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
2 1
1 1
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
2 1
1 2
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

9.08 0.68
0.04 2.84⎥−

⎡ ⎤
⎢
⎣ ⎦

 
⎣ ⎦

3.75 0.07
3.75 4.15

−
⎥

⎡ ⎤
⎢

3.75 1.57
3.75 1.57
⎡ ⎤
⎢ ⎥
⎣ ⎦

6.0 1.57
2.0 1.57
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
6.0 0.68
2.0 2.84
⎡ ⎤
⎢ ⎥
⎣ ⎦

 *Λ  

Not Feasible Not Feasible Feasible Feasible Feasible 
 

 

Now, let us allow the users to have different tradeoff parameters for different links.  That 

is, user 'si  tradeoff parameters 1 2and i iγ γ  are now represented as the thi row in the tradeoff 

configuration matrix G.  Nash equilibria for five arbitrary choices of tradeoff parameters 

represented by the G matrix are illustrated in Table 2.2. Choices I and II are not feasible because 

the feasibility condition (33) is not satisfied.  The tradeoff parameters in Choice I imply that user 

1’s desire to use link 1 is too high while those of Choice II imply that user 2’s preference for link 

 42 



2 is too high.  Choice III corresponds to a situation where both users have equal preference for 

both links.  The resulting Nash solution is symmetric and both users have the same flow on both 

links.  Choices IV and V show that the user whose tradeoff parameter for a given link is higher is 

allowed a larger flow on that link.  Also, it is clear that the Nash flows on one link do not depend 

n the capacities of, or tradeoff parameters for, the other link. 

 

o
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Figure 2.3. Total flow on link 2 

 

 

Example 2.2: Consider a network with 3 users and 4 links, and let the network parameters be 

1 2 3 4

1 1 1 1
10, 8, 8, 6,  and 1 2 2 3

4 5 2 1
c c c c G

⎡ ⎤
⎢ ⎥= = = = = ⎢ ⎥
⎢ ⎥⎣ ⎦

 

In this example, the four links can be considered as virtual paths connecting a source node to a 

destination node in a broadband network.  We assume that the users are capable of sending data 

on all available links whose maximum available capacities are as specified above.  Note that in 

this example, user 1 has equal preferences for all links, user 2 has highest preference for link 4, 

and user 3 has highest preference for link 2.  It can be easily shown that this case satisfies the 
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feasibility condition (16).  The Nash equilibrium flow rates can be determined and are given by 

the matrix 

 . *

0.6878  0.1504   0.7116  0.4119
0.6878  1.4336   2.9039  3.8627
7.1561  5.2832   2.9039  0.4119

⎡ ⎤
⎢ ⎥Λ = ⎢ ⎥
⎢ ⎥⎣ ⎦

Notice that the third user’s preferences for the first and second links are larger than the other 

users’.  Therefore, its flow rates on these links are also larger.  This user might be using a video 

application.  On the other hand, the first user, who is probably using an e-mail application and 

hence does not need a large flow rate, chooses smaller tradeoffs for all links, and as a result has 

smaller flow rates.  Also, it is obvious that users with the same tradeoff parameter for the same 

link should have the same flow rate on that link.  This occurs in the case of the flow rates of the 

first and second users on the first link.  Note also that even though some users have the same 

tradeoff parameters for two or more links, they usually don’t necessarily have the same flow 

rates on these links because of the difference in the link capacities and in the user preferences.  

For example, even though the first user’s tradeoffs are the same for all links, it has different flow 

rates on these links.  The Nash optimal total link flows are calculated as *
1 8.5316λ = , 

*
2 6.8672λ = ,  *

3 6.5194λ = , and *
4 4.6864λ = .  It can be easily checked that all properties 1 

through 6 are satisfied. 

 Now consider a scenario where all three users linearly increase their preferences for each 

link, i.e.G Gσ=� , where σ  is some positive constant. Figure 2.4 illustrates the Nash equilibrium 

total flow rates and residual capacities in the network links as a function of σ .  Notice that all 

total flows increase rapidly with σ  for small values of σ  such as ( ]0,1σ ∈ , and then level off as 

σ increases beyond a value of 2. This basically says that if all users decide to collectively  
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Figure 2.4. (a) Total flow and (b) residual capacity on each link 

as a function of σ  
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increase their preferences in an attempt to increase the total flow in the network while at the 

same time preserving a Nash equilibrium, then the network will quickly saturate and will only 

allow for incrementally small increases in the total flows and correspondingly small decreases in 

the link residual capacities. 

2.4 CONCLUSIONS 

In this chapter, we considered two-node parallel link communication networks with 

competing users and derived a flow and routing control policy for each user which satisfies the 

Nash equilibrium condition of game theory.  The network is characterized by each user having a 

utility function which combines, in a linear additive fashion, two objectives representing the 

user’s desire to maximize its data throughput and minimize its expected delay.   Preference 

constants are introduced in the utility functions to reflect each user’s preferences not only with 

respect to the two objectives, as has been widely considered in the related literature, but also with 

respect to the links in the network. That is, each user is given the flexibility of choosing 

preference constants for the two objectives that are link-dependent.  A closed form expression 

for the Nash solution has been derived and feasibility conditions on the link capacities and 

preference constants which guarantee existence and uniqueness of a Nash equilibrium have been 

established.  Several properties of the resulting flow and routing policy have also been discussed.  

These properties demonstrate that the Nash solution concept provides a viable equilibrium 

condition for parallel link networks with competitive users.  The resulting Nash flow and routing 

policies appear to be consistent with what would be intuitively expected as network behavior.   

The properties also demonstrate that the resulting flows are distributed over all links in the 
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network in accordance with the users’ preferences for these links, and that the flows will be 

higher on links with higher capacities.  Finally, we should mention that although this network 

structure is simple, the results obtained can be considered as a first step in understanding the 

characteristics and properties of the Nash equilibrium in more complex multi-user networks 

which are in general extremely difficult to analyze analytically.   
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3.0  FLOW CONTROL FOR GENERAL MULTI-NODE MULTI-LINK 

COMMUNICATION NETWORKS 

In this chapter, we consider a general network structure with many nodes and many links. 

We assume that each user has a pre-specified route on the network from a source node to a 

destination node and that its control variable is its data flow rate on this route. The model allows 

for each link between any two nodes to be shared by any number of users.  Each user chooses its 

flow rate by maximizing a utility function that measures its level of satisfaction with the choices 

of flows made by all users.   The utility function that we used in this chapter is the standard 

“power criterion” type that has been extensively used in the literature [7-12].  As mentioned in 

the Chapter 1, this function has the ability to combine the following two objectives: (i) 

maximizing the flow rate and (ii) minimizing the expected average delay experienced by the data 

flow. A user can adjust the importance of one objective with respect to the other by modifying a 

weight parameter in its own utility function.  Using this utility function, a single link network 

model was considered in [12] and the convergence of synchronous and asynchronous algorithms 

was established.  For a large number of users in a two-node parallel link network, an analytic 

expression for the asymptotic Nash equilibrium was derived in [10]. It was also shown that the 

Nash equilibrium flow rates tend to equalize the expected delay over the links.  In this chapter, 

we will generalize the above results by considering a general network structure with many nodes 

and links.  For the power criterion, we prove the existence and uniqueness of an interior Nash 
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equilibrium and we establish the convergence of the synchronous Gauss-Seidel algorithm to this 

equilibrium.  In this general network environment, we also derive some intuitive properties of the 

Nash equilibrium. 

In the next section, we formulate this general multi-user, multi-node, multi-link network 

optimization problem as a non-cooperative game between the users. In section 3.2, we prove the 

existence and uniqueness of a Nash equilibrium, and in section 3.3, we give an illustrative 

example and explore some intuitive properties of the Nash equilibrium.  In section 3.4, we 

present some concluding remarks. 

3.1 MODEL FORMULATION 

We consider general network topology with M  links shared by  competitive users.  Let 

the set of links be denoted by 

N

{ }1, 2,......, M=M  and the set of users by { }1, 2,........, N=N .  Let 

 denote the capacity of link  and let mc m∈M iλ  denote the flow of user i .    The flow rate ∈N

iλ  which is the same on all links used by user i  is a control variable for user .  Let i miθ be a 

binary number defined as follows:    

  .  (37) 
1, if user  sends data over link m
0, otherwisemi

i
θ

⎧
= ⎨
⎩

Using vector notation, we define the vectors c ,
�
λ
�

, and iθ�
 as: 

 

1 11

22=  , = ,   and    

i

i
i

N MM

c
c

c

c

2

i

λ θ
λ θ

λ θ

λ θ

⎡ ⎤ ⎡⎡ ⎤ ⎤
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥ = ⎥
⎢ ⎥ ⎢⎢ ⎥ ⎥
⎢ ⎥ ⎢⎢ ⎥

⎣ ⎦
⎥

⎣ ⎦ ⎣

# ##� � �

⎦

  (38) 
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where Mc R∈
�

denotes the network capacity vector, NRλ ∈
�

 the flow control vector, and 

M
i Rθ ∈
�

the routing vector for user  (we assume that at least one entry in i iθ�
 is nonzero) .  We 

now define the routing matrix Θ M NR ×∈ for all users as: 

 

11 12 1

21 22 2

1 2

Θ

N

N

M M MN

θ θ θ
θ θ θ

θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

""
""

# # % #
""

.  (39) 

Note that this matrix has entries that are either zero or one and that its column is the vector thi iθ�
.  

As an illustrative example, the routing matrix 

  [ ]1 2 3

1 1 0
1 0 0

Θ
0 1 1
1 0 0

θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥= =
⎢ ⎥
⎢ ⎥
⎣ ⎦

� � �
   

corresponds to the 3-user, 4-link, 4-node network shown in Figure 3.1 with user 1 sending data 

on links 1,2, and 4, user 2 sending data on links 1 and 3, and user 3 sending data on link 3.   

The residual (unused) capacity of link m  denoted by  is the difference between the total 

capacity of the link and the total flow rate over this link.  Therefore, the residual capacity vector, 

denoted by r , is given as follows:  

mr

�

  Θr c λ= −
� � �

  (40) 

A flow vector λ
�

is denoted as an interior point if  

  0    and     0rλ > >
��

  (41) 

Finally, we assume that each user chooses its flow rate iλ to maximize a power criterion 

utility function of the form: 
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  ( )1 2, ,.......,
i

i
i N mi

m m

U
D

αλλ λ λ θ
∈

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑
M

  (42) 

where  denotes the expected delay on link  andmD m  0iα >  is a preference parameter that user 

i  chooses to adjust the relative importance of flow rate over the average delay of its data 

transmission.  Clearly, the utility function of user i  is the sum of the individual utilities over the 

links that it sends its data on.   

 

 

 

 

Figure 3.1. A four-link three-user network 

 

 

A flow vector  constitutes a Nash equilibrium if its entries satisfy 

the following inequalities:   

* * * *
1 2= .......

T

Mλ λ λ λ⎡⎣�
⎤⎦

  ( ) ( )* * * * * * * * * * *
1 2 1 1 1 2 1 1, ,.., , , ,.., , ,.., , , ,..,i i i i N i i i iU U Nλ λ λ λ λ λ λ λ λ λ λ λ− + − +≥ (43) 

for 1,2,...,i = N  and for all possible values of iλ .   
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Assuming an M/M/1 queuing process for every link in the network, the expected delay 

becomes 1mD = mr .  Using this delay function and writing  (42) in vector notation yields 

  ( )    for all  i T
i i iU r iαλ λ θ= ∈

�� �
N .  (44) 

3.2 EXISTENCE AND UNIQUENESS OF THE NASH EQUILIBRIUM 

The following theorem establishes the existence and uniqueness of an interior Nash 

equilibrium for the general network environment discussed in the previous section. 

 

Theorem:  For the general network structure described in (37) through (42) and utility functions 

(44), there exists a unique Nash equilibrium.  

Proof: A Nash equilibrium vector * * * *
1 2= .......

T

Mλ λ λ λ⎡ ⎤⎣ ⎦�
, if it exists, must satisfy the 

following necessary and sufficient conditions: 

 
2

20  and 0  for  1, 2,...,  i i

i i

U U i N
λ λ

∂ ∂
= < =

∂ ∂
  (45) 

When the necessary conditions are applied to (44) we get 

  1, 20   for ,...,T Ti
i i i i i

i

i
U r Nα θ λθ θ
λ

=
∂

= − =
∂ �� � �

.  (46) 

Inserting (40) in (46) and rearranging the resulting equation we obtain 

  Θ =    for 1,2,...,T T Ti
i i i i

i

c i Nλθ λ θ θ θ
α

+ =
� � � � � �

.  (47) 

Since 1 1 2 2Θ ..... N Nλ θ λ θ λ θ λ= + + +
� � � �

, we can reduce (47) to the following:  
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  1 T Ti
i i i i j j

ji
j i

cα T
iλ θ θ θ θ λ θ

α ∈
≠

⎛ ⎞+
+ =⎜ ⎟

⎝ ⎠
∑� � � � � �N

  (48) 

for 1,2,...i = N .  Equation (48) corresponds to a linear system of equations of the form A bλ =
� �

 

where the matrix A  and the vector b  are given by: 
�

 

1
1 1 1 2 1

1
1

2
2 1 2 2 2 2

2

1 2

1

1
and

1

T T T
N

T

T T T T
N

T
N

T T TN
N N N N

N

c
c

A b

c

α θ θ θ θ θ θ
α

θ
αθ θ θ θ θ θ θα

θ
αθ θ θ θ θ θ
α

+⎡ ⎤
⎢ ⎥
⎢ ⎥ ⎡ ⎤

+⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢= =⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦+⎢ ⎥
⎢ ⎥⎣ ⎦

…
� � � � � �

� �…
� � � � � � � �

� ## # % #
� �…

� � � � � �

⎥
⎥
(49) 

Here, we note that the matrix A  can be written in the form A B C= +  where , which is 

a positive semidefinite matrix, and 

TΘ ΘB =

1 1 2 2
1 2

1 1 1diag , ,....,T T T
N N

N

C θ θ θ θ θ θ
α α α
⎛ ⎞

= ⎜ ⎟
⎝ ⎠� � � � � �

, which is a 

positive definite matrix, since all of its diagonal entries are positive. Hence, A  is positive 

definite which implies that it is also nonsingular, and the equation A bλ =
� �

 has a unique solution.   

Thus, A  is invertible and the unique solution is:   

  ( ) 1* T TΘ Θ+ C Θ cλ
−

=
� �

.  (50) 

When the sufficiency conditions are applied to (44) we get:  

( ) ( ) ( )
2

2 1
2 1 1  < 0 for  1, 2,...,  i iT T Ti

i i i i i i i i i i i
i

U r iα αα λ α θ λθ θ λ α θ θ
λ

− −∂
= − − − + =

∂ �� � � � �
N   (51) 

The first term on the right hand side in (51) becomes zero by(46).  Since, for all i , ∈N iλ  and 

iα  are positive numbers and at least one miθ  is nonzero for some , we have m∈M
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2

2 0   for all i

i

U i
λ

∂
<

∂
N∈ .  Therefore, the flow rate vector given by (50)  is the unique Nash 

equilibrium of this network.  This completes the proof. 

We note that if the network consists of only one link then the linear systems A bλ =
� �

given by 

(49) reduces to the special case in [12] where 1T
i jθ θ =
� �

 for 1,2,...i N= and the elements of vector 

are the same and equal to the capacity of the link. b
�

From equation (50), it is clear that the Nash flow rates are linear in link capacities.  In 

particular, if all link capacities are scaled by a real number  then the flow rates of all users will 

also be scaled by the same number.  Another important property of the Nash equilibrium is stated 

in the following proposition: 

 

Property 1: Consider two network optimization problems  and .  If all users have the same 

preference parameters and routing strategies in both  and  except that user i  has a 

larger preference parameter in X than in X hen this user’s flow rate will be larger in  'X  th  

in X . 

X 'X

X 'X ∈N

'   t an

i

,

To prove this property, let us use the notation ' to denote the network parameters of the 

problem .  Suppose'X 'iα α> .  For simplicity of notation, we will drop the * notation from the 

Nash equilibrium solution.  The Nash equilibriums λ
�

 and 'λ
�

 of the problems  and  satisfy 

the necessary conditions 

X 'X

A bλ =
� �

 and ' 'A bλ =
� �

 respectively.  Notice that the entries of matrices 

A  and 'A  are the same except for the diagonal entries which are thi ( )1ii i ia α α= +  and 

( )' ' 1ii i ia 'α α= +  respectively.  Since both iα  and 'iα  are positive numbers, 'i iα α>  

implies .  Let us define an 'ii iia a< N N×  matrix 'D A A= − .  Thus, all entries of D  are zero 
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except for the  diagonal entry 'thi ii ii iid a a= −  which is a positive number.  The necessary 

conditions A bλ =
� �

 of  can be written asX ( )' ' 'A D b Aλ λ+ = =
� � �

.    This is equivalent 

to ( ) ( ) 1' 'A Dλ λ λ−− =
� � �

.  The vector Dλ
�

 has all zero entries except its  entry ( )thi ii ii
D dλ λ=
�

.  Let 

 denote the  column of ( .  Then the flow difference vector becomesiv
�

thi ) 1'A − ( )' ii i id vλ λ λ− =
� � �

.  

But the  entry of  is a positive number because thi iv
�

'A  is positive definite, therefore its inverse 

 is also positive definite and all diagonal entries of a positive definite matrix (( ) 1'A − ) 1'A −  are 

also positive.  Therefore, ( ) ( )' ii i ii i
d vλ λ λ− =

� � �
 is a positive number indicating the amount of 

increase of flow rate of user i . 

 

Property 2: In a realistic network with a large number of users, the enforcement of the Nash 

flow rates obtained in (48) may not be straightforward.  Very likely, this may require a central 

entity in the network which has knowledge of the capacities of all links and the routing strategies 

and preference parameters of all users.  This entity would then determine the Nash flow rates of 

all users by performing the computations required in (50) and transmitting the optimal flow rates 

to the users.  This computation can be done in one step by computing the inverse ( ) 1TΘ Θ + C
−

 or 

by an iterative Gauss-Seidel process depending on the state of the network.  In the latter case, 

two possible algorithms known as synchronous and asynchronous algorithms can be 

implemented to converge to the Nash equilibrium.  Both algorithms start with an initial flow rate 

vector (0)
jλ   chosen arbitrarily but satisfying (41).  In the synchronous algorithm, all users update 

their flow rates simultaneously at every iteration.  In the asynchronous algorithm, a randomly 

selected subset of the users (could be one or more) update their flow rates simultaneously at 
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every iteration.  In either of these two algorithms, at the nth iteration the users that update their 

flow rates (i.e. all in the synchronous algorithm, or a subset in the asynchronous algorithm), use 

expression (48) to perform the following update: 

    (52) ( ) ( )1  n T T n
i i i i j j

j
j i

K c - λλ θ θ θ+

∈
≠

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑� � � �N

where  

 
( )1

i
i T

i i i

K α
α θ θ

=
+

� �
  (53) 

 

We note that as a result of the positive definiteness of matrix ( ) 1−
, convergence 

of the synchronous algorithm is guaranteed [51]

TΘ Θ + C

.  

n

As a final remark, we note that after some simple manipulations, the iteration given by 

(52) can be reduced to: 

    (54) ( ) ( ) ( )1

i

n n
i i l i i

l
K r Mλ λ+

∈

⎛ ⎞
= +⎜ ⎟⎜ ⎟

⎝ ⎠
∑

�M

where denotes the set of all links used by user and iM i iM  is the total number of links in .  

Note that ,

iM

iK iM , and ( )n
iλ are all specific to user i .  Therefore, to update its flow rate, the only 

information user  needs to extract from the network is the sum of the residual capacities of the 

links which it uses.  This is an important result because the users do not need to know each 

other’s routing strategies or preference parameters to update their own flow rates.  However, it is 

important to mention that in both cases (synchronous or asynchronous) the rate of convergence 

of the algorithm depends on the preference parameters of all users. 

i
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3.3 ILLUSTRATIVE EXAMPLE 

In order to illustrate the results obtained in the previous section, consider the network with 5 

users, 10 nodes, and 16 links shown in Figure 3.2.   The routes for all 5 users are indicated on the 

network and assume that the preference parameters in their utilities are as follows 1 0.6α = , 

2 0.7α = , 3 0.8α = , 4 0.4α = , and 5 0.5α =  respectively. Recall that the higher the preference 

parameter the more emphasis the user places on maximizing its flow rate over minimizing the 

expected delay of its data.  Assume that all 16 links have the same capacity 

.  Throughout the example, when we allow one parameter to vary, 

we will usually keep all other network parameters unchanged.  Furthermore, we say that two 

users are “direct competitors” if they share at least one link on the network.  In other words, 

users and 

100 Mbps for 1,...,16kc k= =

i j  are direct competitors if 0T
i jθ θ ≠
� �

.  For example, in Figure 3.2, users 1, 3, and 5 

are direct competitors because user 1 shares links 6 with user 3 and link 3 with user 5.  On the 

other hand, users 1 and 4 are not direct competitors.  

Using equation (50), the Nash equilibrium solution can be determined as follows: 

 

*
1
*
2

* *
3
*
4
*
5

30.5896
25.6984
31.8029
17.0026
23.4804

λ
λ

λ λ
λ
λ

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

�
  (55) 

The total flow in each link can be determined by adding the flow rates of the users of that link.  

For example the total flow rate on link 4 which is used by users 2, 4 and 5 is 66/1814 Mbps and 

its residual capacity is 33.8186 Mbps.  As mentioned earlier, the Nash flow rates are linear in the 
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link capacities.  This means that if all link capacities are reduced from 100 Mbps to 50 Mbps, 

then the flow rates given in (55) will also be reduced by 50%. 

 

 

 

 

Figure 3.2. Network topology for the illustrative example 

a 5-user data communication network. 

 

 

There are several interesting observations that can be drawn from this example by 

examining how varying some of the parameters will affect the network equilibrium.  We 
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summarize these in the following six observations. We note that although these observations are 

stated here based on this single example, they have also been observed in many other examples 

with different network topologies, different routing strategies, and different number of users. 
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Figure 3.3.  Flow rates of all users as a function of the preference parameter of user 1. 

 

 

 

Observation 1:  Let us assume that all network parameters are kept unchanged while the 

preference parameter of user 1 ( 1α ) becomes a variable.  Figure 3.3 shows the flow rates of all 

users as 1α  increases from 0.1 to 1 (i.e. as user 1 puts more and more emphasis on maximizing 
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its flow rate).  Clearly, we see that the flow rate of user 1 increases with increasing 1α . This is 

consistent with Property 1.  We also observe that the flow rates of the direct competitors of user 

1 (i.e. users 3 and 5) decrease as 1α  increases.  Note also that as the flow rates of users 3 and 5 

decrease their direct competitors, which are users 2 and 4, obtain larger flow rates.  Similar 

observations can be made if the preference parameters of any of the 5 users are varied while the 

other users parameters are kept constant.  These remarks are summarized more formally in the 

following observation:  If a user’s preference parameter increases, its flow rate will increase 

and the flow rates of all of its direct competitors will decrease.  
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Figure 3.4.  Flow rates of all users as a function of the capacity of link 7. 
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Observation 2: A similar remark can also be made when the capacity of a link used by 

only one user is increased.  This has the same effect as increasing the preference parameter of 

this user.  Figure 3.4 shows plots of the flow rates of all users if the capacity of link 7 is 

increased from 30 to 100Mbps.  As can be seen from these plots, user 4, who is the only user of 

link 7, obtains a larger flow rate but the direct competitors of user 4, namely users 2, 3, and 5, 

obtain lower flow rates. This remark is summarized more formally in the following observation:  

If the capacity of a link used by only one user is increased, the flow rate of that user will increase 

and the flow rates of all its direct competitors will decrease. 
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Figure 3.5.  Flow rates of all users as a function of the capacity of link 8. 
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Observation 3:  Another intuitive property of the Nash equilibrium is that an increase in 

the capacity of a link used by more than one user yields larger flow rates for all users of that link.  

Figure 3.5 shows plots of the flow rates of all users as the capacity of link 8 is increased from 90 

to 200 Mbps. Observe that the users of link 8, namely users 2 and 5, obtain larger flow rates as 

the capacity of link 8 increases. This is summarized in the following observation:  If the capacity 

of a link used by more than one user is increased, the flow rate of all the user of that link will 

increase.  

 

Observation 4:  We now examine the Nash equilibrium as a function of all users’ 

preference parameters.  To be able to do this and view the results graphically, let us assume that 

all users now have the same preference parameter for 1,...,5i iα α= =  and let us increase α  from 

0.1 to 1. This basically says that as α  increases, all users are placing more emphasis on flow 

rates rather than expected delays. Figure 3.6 shows plots of the flow rates for all users as a 

function of α  and Figure 3.7 shows plots of the residual capacities in some links (links 2, 6, 11 

and 12) in the network.  Observe that the flow rates of all 5 users increase, but that the rate of 

increase becomes less as α  approaches 1.  Similarly, the residual capacities decrease, but the 

rate of decrease becomes less as α  approaches 1.  These remarks are summarized in the 

following observation: If all users have the same preference parameter then an increase in this 

parameter will result in an increase in the flow rates of all users and a decrease in the residual 

capacities of all links.  In both cases, however, the rate of increase or decreases will be less for 

larger values of the parameter.  
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Figure 3.6. Flow rates for all users as the preference parameter of all users varies 

 

 

Observation 5: We now examine how the Nash equilibrium changes when a new user 

enters the network. Assume a 6th user with a preference parameter 6 0.6α =  enters the network 

and follows the same route as user 1.  The preference parameters of the initial 5 users are now 

back to their initial values: 1 0.6α = , 2 0.7α = , 3 0.8α = , 4 0.4α = , and 5 0.5α =  respectively. 

The Nash equilibrium for this new 6-user network can be determined as: 
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Figure 3.7. Residual capacities in some links as the preference parameter of all users varies 

 

 

When we compare these flow rates with those of original network with 5 users as given 

in (55), we see that, as expected, the direct competitors of the new user, namely users 1, 3, and 5 

obtain lower flow rates.  Now let us examine the effect of increasing the preference parameter of 
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the new user.  Figure 3.8 shows plots of all users’ flow rates as the preference parameter of the 

new user is increased from 0.5 to 0.9.  Observe that the flow rates of the new user’s direct 

competitors decrease monotonically as the new user’s preference parameter increases.  We 

summarize this in the following observation:  If a new user enters the network, then the flow 

rates of the direct competitors of the new user decrease as the preference parameter of the new 

user increases. 

 

Observation 6:       Finally, using the same original 5 users network, we will examine the 

rate of convergence of the synchronous and asynchronous algorithms to the Nash equilibrium. 
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Figure 3.8.  Flow rates of all users as the preference parameter of the new user varies 
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As mentioned earlier, in the synchronous algorithm all 5 users update their flow rates 

simultaneously at every iteration.  For the asynchronous algorithm, we allowed, few users to 

update their flow rates at each iteration, while the flow rates of the remaining users were kept 

unchanged.  We implemented this algorithm by randomly assigning to each user a real number 

from a uniform distribution over the interval [0, 1].  If the number assigned to a user is less than 

0.4, then this user updates its flow rate; otherwise its flow rate is kept unchanged. This algorithm 

resulted in two users on average updating their flow rates at every iteration.  Figure 3.9 and 

Figure 3.10 show the flow rates trajectories starting with an initial guess of  for 

all users, versus iteration number for both the synchronous and asynchronous algorithms 

respectively.  Notice that the synchronous algorithm converges faster to the Nash equilibrium 

than the asynchronous algorithm.  The slower rate of convergence of the asynchronous algorithm 

can also be easily seen in 

(0) 10 Mbpsiλ =

Figure 3.11, which shows plots of the Euclidean error norms 

5
( ) ( ) * 2

1
(n n

i i
i

e )λ λ
=

= −∑ versus iteration number.  The slower rate of convergence of the 

asynchronous algorithm can be attributed to two factors: 1) If it so happens in the asynchronous 

algorithm that the same users are selected to update their flow rates for two or more consecutive 

iterations, then their flow rates will not change resulting in no change in the flow rates of all 

other users, which will slow down the convergence rate; and  2) Users in the asynchronous 

algorithm do not update their flow rates as regularly as those in the synchronous algorithm, 

which will also slow down  the convergence rate. These remarks are summarized in the 

following observation:  The asynchronous algorithm is slower than the synchronous algorithm in 

its convergence rate to the Nash equilibrium flow rates.  
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Figure 3.9. Flow rates trajectories for all users for the synchronous algorithm 
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Figure 3.10.  Flow rates trajectories for all users for the asynchronous algorithm. 
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Figure 3.11. Plots of the Euclidean error norms 

for the synchronous and asynchronous algorithms. 
 

 

3.4 CONCLUSION 

In this chapter, we investigated the flow control for a general multi-node multi-link 

communication network with multiple users competing for the same network resources.  We 

assumed that each user’s flow can enter and exit from any pair of nodes in the network, but that 

the route between these two nodes has already been determined.  We further assumed that the 

flow rates for each user are determined in such a way as to optimize a utility function of the 
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power criterion type that combines maximizing flow rate and minimizing expected delay.  

Although the possibility of cooperation among all users exist and may be feasible, in this chapter 

we considered only a situation where the users are competing and the possibility of cooperation 

and teaming does not exist.   For this general network, we derived an analytical expression for 

the flow rates that satisfy the Nash equilibrium condition from game theory and established its 

uniqueness.  This latter property is important because without it a mechanism will need to be 

added to the network management to guarantee that the Nash flow rates for all users are 

determined from the same equilibrium solution. Using an example, we illustrated the solution 

concept and derived some interesting observations that relate to the behavior of the Nash 

equilibrium in terms of various network parameters, including some convergence properties for 

the corresponding synchronous and asynchronous algorithms.  We should note that although our 

model is quite general in nature, it still has some limitations. First, our analysis is mostly 

applicable to wired networks where data transmission error rates are much smaller than wireless 

networks, and hence can be ignored.  Second, our approach is static in nature in that it assumes 

constant flow rates over fixed routes.  Although modern networks are dynamic in nature, this 

static analysis can be viewed as corresponding to periods of time when steady state equilibrium 

conditions have been reached in the network.  Third, we assumed that all users have the same 

type of utility function which indeed led to a unique Nash equilibrium.  Finally, we assumed that 

the data routes for all users have already been determined.  
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4.0  COOPERATIVE FLOW CONTROL FOR GENERAL COMMUNICATION 

NETWORKS 

In the previous chapter, we investigated general communication networks which consist of 

users, each competing with the others to maximize its own utility function.  However, a group 

(team) of users which are related to each other through achieving the same goal may concern 

more about team level performance than individual performance.  For instance, users of an 

organization using this organization's private communication network would like to cooperate to 

increase this network's performance instead of individual performances.   

In this chapter, we investigate the same general network structure in the previous chapter 

but within a more general framework.  We consider the network with only cooperative users 

which constitute a team and later we expand this model to multiple teams.  In the network with 

only one team, each user tries to maximize a team level utility function which is the sum of 

weighted utilities of all users in the network.  Each of these utility functions is in the form of 

power criterion given in the previous chapter [7-12].  This network has a leader which chooses 

the weight factors in the team level utility function so that the network users can achieve a larger 

utility value than their Nash equilibrium utility values.  For the next case, rather than having only 

one team in the network, we consider a more general framework in which there are multiple 

teams competing with each other.  Similar to single team case, members of each team cooperate 

to maximize their team's utility function which is again the sum of weighted utilities of all the 
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users in this team.  Similarly, the leader of each team decides on the weight factors in the team's 

utility function.  For this two level optimization problem with competing teams and cooperating 

team members, the Noninferior Nash equilibrium [17,18] becomes a solution concept which 

guarantees the best achievable utilities for each team.  We demonstrate this equilibrium with an 

example and compare its results with the standard Nash equilibrium. 

4.1 MODEL AND FORMULATION 

Even though most of the notation in this model is similar to the one given in the previous 

chapter, for convenience, we will give all notation used in this model.  We consider the same 

general network topology but with M  links shared by  competitive teams.  Let the set of links 

be denoted by 

T

{ }1, 2,......, M=M , the set of teams by { }1, 2,........,T=T , and the set of users in 

team(group)  by g { }1, 2,........,g gn=G  where gn  denotes the number of users in team .  

Therefore, the total number of users in the network, denoted by , becomes .  Let 

 denote the capacity of link  and 

g

totn
1

T

tot g
g

n
=

= ∑n

mc m∈M g
iλ  denote the flow of user i  in team .  The flow 

rate 

g

g
iλ  which is the same on all links used by user i  in team g  is a control variable for user i  

in team g .  Le

 

t g
miθ  be a binary number defined as follows:    

  .  (57) 
1, if user  in team sends data over link m
0, otherwise

g
mi

i g
θ

⎧
= ⎨
⎩

Using vector notation, we define the vectors c ,
�

gλ
�

,λ , and g
iθ�

 as: 
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�##� � � ##

�

  (58) 

where Mc R∈
�

denotes the network capacity vector, gng Rλ ∈
�

 the flow control vector for team , g

λ  is system flow configuration vector (a 1totn ×  vector) which is constructed by placing 

individual team flow vectors one below another, and g M
i Rθ ∈
�

 the routing vector for user i  in 

team  (we assume that at least one entry in g g
iθ�

 is nonzero) .  We now define the team routing 

matrix gΘ gM nR ×∈ for users in team  as: g

 

11 12 1

21 22 2g

1 2

Θ

g

g

g

g g g
n

g g g
n

g g g
M M Mn

θ θ θ

θ θ θ

θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

""

""

# # % #
""

.  (59) 

The network routing matrix of Θ totM nR ×∈  is defined in the following:  

  1 2 TΘ Θ Θ ...... Θ⎡ ⎤=
⎣ ⎦   (60) 

where team routing matrices are placed next to each other.  As an illustrative example, the 

routing matrix 

  1 1 2
1 2 1

1 1 0
1 0 0

Θ
0 1 1
1 0 0

θ θ θ

⎡ ⎤
⎢ ⎥
⎢ ⎥⎡ ⎤= =⎣ ⎦ ⎢ ⎥
⎢ ⎥
⎣ ⎦

� � �
   

corresponds to a 3-user, 4-link, 4-node network with user 1 in team 1 sending data on links 1,2, 

and 4, user 2 in team 1 sending data on links 1 and 3, and the only user of team 2 sending data on 

link 3.  
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The residual (unused) capacity of link  denoted by : k kr

  Θr c λ= −
� �

  (61) 

As we defined in the previous chapter, a flow vector λ
�

is denoted as an interior point if  

  0    and     0rλ > >
��

  (62) 

Finally, we assume that each user chooses its flow rate g
iλ  to maximize a power criterion utility 

function [7-12] of the form: 

  ( ) ( )
g
ig

ig g
i ki

k k

U
D

α
λ

λ θ
∈

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟
⎝ ⎠

∑
M

  (63) 

where  denotes the expected delay on link k  and 0  is a preference parameter that user 

i  in tea  g  chooses to adjust the relative importance of flow rate over the average.  The 

n 

kD  g
iα >

m

tationo ( )g
iU λ  in (63) implies that utility of user  in team g  is a function of all other users’ i

flow rates. 

Members of each team cooperatively decide on their flow rate to maximize the following team 

vel utility function: 

rg g g g g g gU =  

le

  1 1 2 2 ......        fo  all 
g gn nU U U gμ μ μ+ + + ∈T (64) 

where 

ˆ

g
iμ , 1,2,...., gi =

satisfy .  The leader of team  

n , denotes the weight factor for user i  in team g  and these weight factors 

 1
g

g
i

i

μ
∈

=∑
G

g∈T  chooses these weight vector of its members 

( )1 2, ,....,
g

g g g g
nμ μ μ μ=

�
 by performing the following optim

 

ization 

ˆmin max
g g

gU
μ λ

��

  (65) 
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for all possible values of gμ
�

 and gλ
�

.  Even though maximizing ˆmax
g

gU
λ

⎛
⎜
⎝ ⎠�

⎞
⎟with respect to gμ

�
 

would result in a larger total utility for the team, usually the resultant flow rates gives very large 

utilities for some team members and very small utilities for the other team members.   Therefore 

minimization of ˆmax
g

gU
λ

⎛
⎜
⎝ �

⎞
⎟
⎠

 with respect to gμ
�

is more desirable by users because resultant u

levels of team members do not differ significantly. 

tility 

4.2 SIMULATION RESULTS 

In this section, we present two examples to investigate single and multi-team network flow 

rate optimization problems.  We use the same network topology in the previous chapter but with 

different number of users.  For both examples, all links of this network have the same capacity, 

i.e.  Mbps for . 100kc = 1,2,....,16k =

 

Example 4.1. In this example we consider the network given by Figure 4.1 where two users 

constitute a team by maximizing the following common utility function: 

  ( )1 21U U Uμ μ= + −   (66) 

where   and .   Since there is only one team in this 

example, we dropped the superscript referring to team number for simplicity.  Let user 1 and 2 

have the preference constants 

( ) ( )1

1 1 1

T
U r

α
λ θ=

�� ( ) ( )2

2 2 2

T
U

α
λ θ=

��
r

1 0.6α =  and 2 0.4α =  respectively.  Since the common utility 

function is the summation of weighted utilities of user 1 and 2 by the factors  μ  and ( )1 μ−  
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respectively, for largerμ  values, the maximization of U corresponds to the situation in which the 

maximization of the utility of user 1 becomes more significant than the maximization of the 

utility of user 2.   Similarly, for smaller μ  values the maximization of the utility of user 2 

becomes more significant.  By numerically maximizing equation (66) we plotted Figure 4.2, 

Figure 4.3, and Figure 4.4.  In Figure 4.2, as μ  gets larger, the utility of user 1 monotonically 

increases as we expect while the utility of user 2 monotonically decreases.  As can be seen from 

Figure 4.3, flow rates of these users change correspondingly to their utility levels, that is, as μ  

increases the flow rate of user 1 increases while that of user 2 decrease.   

 

 

Figure 4.1. A network with 16 links and 2 users. 
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We plotted the contours of utilities of user 1 and 2, their Nash flow rate, the Pareto optimal 

set (green line) in Figure 4.4.  For any given point in the strategy space of both users, the Pareto 

optimal set has the property of containing at least one point (a pair of flow rates belongs to user 1 

and 2) which gives better utilities to both users than this given point.  We also plotted the set of 

points as thick green line which have the property of yielding larger utility values than Nash 

utility values.  This can be considered as the payoff of collaboration.   Note that the Pareto 

optimal points connect the points at which the contours of U1 and U2 are tangent. 
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Figure 4.2. Utilities of the users when they are cooperative and non-cooperative 
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Figure 4.3. Cooperative and non-cooperative flow rates of users in Example 4.1 

 

 

Example 4.2:  In this example, we consider two teams, team A and B, which decide on their 

flow rates based on the network conditions.  Users of each team cooperatively decide on their 

flow rate to achieve large utility values.  For the illustration purposes, let each team have two 

users.  The routing conditions for the network users are plotted in Figure 4.5.  Utility functions of 

team A users become  and , and team B users become 

 and .  Therefore, utility functions of team A and B can 

be written as 

( ) ( )1

1 1 1

A TA A AU r
α

λ θ=
�� ( ) ( )2

2 2 2

A TA A AU
α

λ θ=
��
r

r( ) ( )1

1 1 1

B TB B BU r
α

λ θ=
�� ( ) ( )2

2 2 2

B TB B BU
α

λ θ=
��

1 1 2 2
ˆ A A A A AU Uμ μ= + U BU 1 and , respectively, where , 1 1 2 2

ˆ B B B BU Uμ μ= + 1 10 ,A Bμ μ≤ ≤
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1 2 1A Aμ μ+ = , and .  Let users’ preference parameters be , , 

, and .  In order to obtain their optimal flow rates for given 

1 2 1B Bμ μ+ = 1 0.5Aα = 2 0.5Aα =

1 0.9Bα = 2 0.4Bα = Aμ
�

 and Bμ
�

, users 

of team A and B perform the following optimizations: 

  .  (67) ˆ ˆmax      and     max  
A B

A BU U
λ λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠� �
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Figure 4.4. The contours of the utility functions of user 1 (red) and 2 (blue) 

The Nash equilibrium is shown by a blue star with the letter N.  The Pareto optimal set is plotted as green solid line.  

The set of Pareto optimal points which yield larger utilities for both users than their Nash utilities are plotted as thick 

green segment.  The points on the thick green line are obtained when μ  is between 0.285 and 0.37. 
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respectively.  Due to nonlinear nature of utilities ˆ AU  and , we obtained numerical solutions 

of optimizations given in 

ˆ BU

(67).  We plotted the optimal flow rates of all users in Figure 4.6.  

Obviously, as 1
Aμ  increases 1

Aλ  increases and 2
Aλ  decreases.  We also noticed that for a fixed 1

Aμ  

value, the flow rates 1
Aλ  and 2

Aλ  do not change significantly even though 1
Bμ  varies.  The similar 

trend is observable for 1
Bμ  and flow rates of the users in team B.  Next we plotted the utilities of 

team A and B in Figure 4.7.  The utility of team B monotonically increases  

 

 

Figure 4.5.  A network with 16 links and 4 users 

 whose routes are depicted as colored lines. 
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for .  This may be the result of the fact that user 1 in team B has much larger 

preference parameter than user 2 in team B.  Since users of A have the same preference 

parameter, we do not see the similar monotonic increase in the utility of team A. 

1 0.055Bμ >
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Figure 4.6.  Flow rates of all users in Example 4.2. 

 (a) The flow rate of user 1 in team A, (b) The flow rate of user 2 in team A, (c) The flow rate of user 1 in team B, 

and (d) The flow rate of user 2 in team B. 
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Figure 4.7.  Utilities of the teams in Example 4.2. 

(a) the utility of team A and (b) the utility of team B. 

 

 

The leader of team A evaluates the optimal weight vector ( )1 2,A A Aμ μ μ=
�

 which solves the 

following optimization problem: 

    (68) ˆmin max
A A

AU
μ λ

��

The leader of team B performs a similar optimization.  By means of numeric optimization, we 

evaluate the following unique Noninferior Nash equilibrium values: weight parameters:  

, , , and , users’ utilities: , 

, , , and teams’ utilities:  and .  

On the other hand, if all four users non-cooperatively decide on their flow rates, then their Nash 

equilibrium flow rates become , , , and , and 

their Nash utilities , , , and .  Obviously, both 

*
1 0.359Aμ = *

2 0.641Aμ = *
1 0.055Bμ = *

2 0.945Bμ = *
1 1048.4AU =

*
2 1041.4AU = *

1 767.2BU = *
2 1102.3BU = * 1043.9AU = * 1083.7BU =

*
1 25.63Aλ = *

2 20.48Aλ = *
1 30.11Bλ = *

2 21.32Bλ =

*
1 1038.2AU = *

2 741.9AU = *
1 2151BU = *

2 906.4BU =
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team A users obtain larger utilities when they cooperate than when they compete.  However, user 

1 in team B looses some utility while user 2 in the same team obtains larger utility.  This may be 

a result of preference parameter of user 1 being much larger than that of user 2 in team B. 

4.3 CONCLUSION 

In this chapter, we investigated the same general network structure with the previous 

chapter but assumed that all users of the network cooperate with each other when there is only 

one team in the network.  All network users try to maximize a network-level utility function 

which is the sum of their weighted utility functions.  The leader of the network decides on weight 

factors in this network-level utility function.  We showed that when all users cooperate, each 

user can obtain a utility value which is larger than its Nash utility value.  Next we extended this 

model to a more general framework in which there exists multiple teams which compete with 

each other while members of each team cooperate with each other to maximize their team-level 

utility function.  Again, the leader of each team decides on the weight factors of the team-level 

utility function so that the members of the team possibly get larger utility values than their 

corresponding Nash equilibrium.  We illustrated the results of these two level network 

optimization with two examples and compared the standard Nash equilibrium with the 

Noninferior Nash equilibrium. 
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5.0  CONLUSION AND FUTURE WORK 

Efficient flow and routing control of network resources becomes crucial as the need for 

accommodating ever growing number of new network users.  In this thesis, we studied optimal 

flow and routing control problems using concepts from game theory.  These concepts are useful 

whenever there is cooperation or conflict among network users.  For several network 

configurations, we investigated the existence and uniqueness of a Nash equilibrium.  We also 

investigated the Pareto optimal and Noninferior Nash strategies for networks with one team 

whose members cooperate and for with many teams which compete with each other respectively. 

A two-node parallel link network provides a simple model to study the existence, 

uniqueness, and properties of a Nash equilibrium.  Each user of this network competitively 

decides on its flow and routing strategies by maximizing a utility function which additively 

combines the objectives of obtaining larger flow rate and smaller network delay.  Each user can 

choose the weight of the importance of one objective to the other by adjusting its preference 

parameters in its utility function.  This model also provides these users the flexibility of choosing 

different preference parameters for different network links so that users can adjust their 

preferences for each link based on their previous experiences from these links.  We established a 

necessary and sufficient condition which guarantees the existence and uniqueness of a Nash 

equilibrium for this network model and obtained an analytical expression for the Nash 

equilibrium.  We also showed several intuitive properties of this equilibrium based on user 
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preferences and other network parameters.  One important property is that a user with a larger 

tradeoff parameter obtains larger flow rate than other users with smaller tradeoff parameters.  

Another intuitive property states that the larger links carry larger flow rates than the smaller 

links. 

We extend our model to a general network environment where there is no constraint on 

the topology of the network such as links being parallel.  In this network, there may be multiple 

nodes which are connected by multiple links.  Multiple users may be sharing these links and each 

may have different source and destination nodes.  We investigate this network using the power 

criterion utility function which provides a more tractable flow control solution.  The routes of the 

users are fixed, that is, a user’s flow can only follow one path from its source to its destination 

node without being split into many paths.  In this model, we assume that user preference 

parameters are link-independent.  We prove the existence of a unique Nash equilibrium and 

investigate some interesting properties of this equilibrium heuristically.  An interesting Nash 

equilibrium property is that when a user increases its preference parameter, its flow rate 

increases while flow rates of its direct competitors decrease.  Another intuitive property states 

that if the capacity of a link is increased, then the flow rates of all users using this link also 

increase.  We also introduced synchronous and asynchronous numeric algorithms which become 

a distributive means of evaluating Nash flow rates.  That is, these numeric schemes do not 

require user-specific information from network, they only require the knowledge of residual 

capacities of the links in a network.  Since we heuristically observed properties of this Nash 

equilibrium, a future work may involve rigorous mathematical proof of these properties.  

Without fixing routes of network users, another challenging future research topic would be to 

investigate the simultaneous optimization of flow and routing controls for this model. 
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For the same general network structure, we investigated the case in which all users 

cooperative for the overall benefit of the network.  In this solution, users can use one of Pareto 

optimal strategies which give larger utilities to every user than they would obtain from their 

Nash equilibrium strategies.  Next, we expand this model by incorporating teams of users.  

Teams compete with each other while members (users) of each team cooperate to maximize a 

team-level utility function.  The corresponding solution is called non-inferior Nash equilibrium.  

We compare these results with the standard Nash equilibrium and Pareto optimal flow rates.  

One extension of this study would be to investigate the properties of non-inferior Nash 

equilibrium for this general network model and compare their results with the ones obtained in 

this thesis.  The investigation of numeric schemes for team members so that they could adjust 

their flow rate would be another interesting future research topic. 

 86 



BIBLIOGRAPHY 

[1] Dimitri Bertsekas and Robert Gallager, Data Networks (Second Edition), Prentice Hall, 
1991. 

[2] D.E. Comer, Computer Networks and Internets, Prentice Hall, 1999. 

[3] A. Orda, R. Rom, N. Shimkin, “Competitive routing in multi-user communication 
networks,”  IEEE/ACM Transactions on Networking, vol. 1, no. 5, pp. 510-521, 1993. 

[4] J. Nash, “Non-cooperative Games,” Annals of Mathematics, vol. 54, pp. 286-295, 1951. 

[5] T. Basar and G.J. Olsder, Dynamic Non-cooperative Game Theory, Academic Press, 1995. 

[6] M. J. Osborne and A. Rubinstein, A Course in Game Theory, The MIT Press, 1994. 

[7] R. Mazumdar, L. G. Mason, and C. Douligeris, “Fairness in network optimal flow control: 
optimality of product forms”, IEEE Transactions on Communication, vol. 39, no. 5, pp. 
775 – 782, May 1991. 

[8] C. Douligeris and R. Mazumdar, “Efficient flow control in a multiclass 
telecommunications environment,” IEE Proceedings I , vol. 138, no. 6, pp. 494-502,  Dec. 
1991. 

[9] C. Doubligeri and R. Mazumdar, “A game theoretic approach to flow control in an 
integrated environment,” J. Franklin Inst., vol. 329, pp. 383-402, Mar.1992. 

[10] E. Altman, T. Basar, R. Srikant, “Nash equilibria for combined flow control and routing in 
networks: asymptotic behavior for a large number of users,” Proc. of the 38th IEEE 
Conference on Decision and Control, vol. 47, no. 6, pp. 917-930, June 2002. 

[11] Bovopoulos AD and Lazar AA, “Decentralized Algorithms for Optimal Flow Control,” 
Proceedings of the 25th Allerton Conference on Communications, Control and Computing, 
University of Illinois at Urbana - Champaign, pp. 979-988, Oct. 1987. 

[12] Z. Zhang and C. Douligeris, “Convergence of synchronous and asynchronous greedy 
algorithms in a multiclass telecommunications environment,” IEEE Transactions on 
Communications, vol. 40, no. 8, pp. 1277-1281, 1992. 

 87 



[13] S. Stidham, “Decentralized rate-based flow control with bidding for priorities: Equilibrium 
conditions and stability,” Proc. of 35th IEEE Conference on Decision and Control, vol. 3, 
pp. 2917-2920, Dec. 1996. 

[14] A.A. Lazar, A. Orda, D.E. Pendarakis, “Virtual path bandwidth allocation in multi-user 
networks”, Proc. IEEE Transaction on Networking, vol. 5, pp. 861-871, 1997. 

[15] I. Sahin and Marwan A. Simaan, “A Flow and Routing Control Policy for Communication 
Networks with Multiple Competitive Users,” Journal of the Franklin Institute, vol. 343, 
no. 2, pp. 168-180, Mar. 2006. 

[16] R. J. La and V. Anantharam, “Network Pricing Using Game Theoretic Approach,” Proc. of 
the 38th  IEEE Conference on Decision and Control, vol. 4, pp. 4008-4013, Dec. 1999. 

[17] Y. Liu and M. A. Simaan, “Non-inferior Nash Strategies for Routing Control in Parallel-
Link Communication Networks,” International Journal of Communication Systems, 
vol.18, pp. 347-361, 2005. 

[18] Y. Liu and M.A. Simaan, “Noninferior Nash Strategies for Multi-Team Systems”, Journal 
of Optimization Theory and Applications, vol. 120., no.1, pp. 29-51, 2004. 

[19] M. Simaan and J.B. Cruz, “On the Stackelberg Strategy in Nonzero-Sum Games,” Journal 
of Optimization Theory and Applications, vol. 11, no. 5, p. 533-555, May 1973. 

[20] C.U. Saraydar, N.B. Mandayam, and D.J. Goodman, “Efficient Power Control via Pricing 
in Wireless Data Networks,” IEEE Transactions on Communications, vol. 50, no. 2, pp. 
291-303, Feb. 2002. 

[21] E. Altman, T. Basar, T. Jimenez, and N. Shimkin, “Competitive routing in networks with 
polynomial costs,” IEEE Transactions on Automatic Control, vol. 47, pp. 92-96, 2002. 

[22] R.J. La and V. Anantharam, “Optimal routing control: repeated game approach,” IEEE 
Transactions on Automatic Control, vol. 47, no. 3, pp. 437-450, Mar. 2002. 

[23] Y. A. Korilis, A. A. Lazar, and A. Orda, “Achieving Network Optima Using Stackelberg 
Routing Strategies,” IEEE/ACM Transactions on Networking, vol.5, pp. 161-173, Feb. 
1997. 

[24] I. Sahin, M. A. Simaan, “A Game Theoretic Flow and Routing Control Policy for Two-
Node Parallel-Link Communication Networks With Multiple Users,” Proc. of the 15th 
IEEE International Symposium on Personal, Indoor, and Mobile Radio Communications, 
vol. 4, pp. 2478 – 2482, Sep. 2004. 

[25] V. Anantharam, “On the Nash dynamics of congestion games with player-specific utility,” 
43rd IEEE Conference on Decision and Control, vol. 5, pp. 4673-4678, Dec. 2004. 

 88 



[26] A.T. Rextin, Z. Irfan, Z. A. Uzmi, “Games networks play a game theoretic approach to 
networks,” 7th International Symposium on Parallel Architectures, Algorithms and 
Networks, pp. 451-456, May 2004. 

[27] A. A. Economides and J.A. Silvester, “Multi-objective routing in integrated services 
networks: A game theory approach”, INFOCOM ’91 Proceedings, vol. 3, pp. 1220-1227, 
Apr. 1991. 

[28] A. A. Economides and J.A. Silvester, “A game theory approach to cooperative and non-
cooperative routing problems”, ITS Telecommunication Symposium, pp. 597-601, Sep. 
1990. 

[29] E. Altman and H. Kameda, “Equilibria for multiclass routing in multi-agent networks,” 
CDC 2001, vol. 1, pp. 604-609, Dec. 2001. 

[30] Yong Liu and M. A. Simaan, “Competitive team strategies for routing control in parallel-
link communication networks,” Proceedings of American Control Conference, vol. 4, pp. 
2347-2352, Jun. 2005.  

[31] Y. A. Korilis, A. A. Lazar, and A. Orda, “Capacity Allocation Under Non-cooperative 
Routing,” IEEE Transactions on Automatic Control, vol. 42, no. 3, pp. 309-325, Mar. 
1997. 

[32] T. Boulogne, E. Altman, H. Kameda, O. Pourtallier, “Mixed equilibrium (ME) for 
multiclass routing games,” IEEE Transactions on Automatic Control, vol. 47, no. 6, pp. 
903-916, Jun. 2002. 

[33] Y. A. Korilis, A. A. Lazar, and A. Orda, “Architecting Non-cooperative Networks,” IEEE 
Journal on Selected Areas in Communications, vol. 13, pp. 1241-1251, Sep. 1995. 

[34] R. La and V. Anantharam, “Charge-sensitive TCP and Rate Control in the Internet,” IEEE/ACM 
Transactions on Networking, vol. 10, no. 2, pp. 272 -286, Apr. 2002. 

[35] M.R. Mukerjee, “Stable optimal flow control for multiuser communication links,” 
Electronics Letters, vol. 31, pp. 954 –955,  Jun. 1995. 

[36] R.T. Maheswaran and T. Basar, “Multi-user flow control as a Nash game: performance of 
various algorithms,” Proc. of the 37th IEEE Conference on Decision and Control, vol. 1, 
pp. 1090-1095, Dec. 1998. 

[37] P.B. Key, D.R. McAuley, “Differential QoS and pricing in networks: where flow control 
meets game theory,” IEE Proceedings- Software, vol. 146, pp. 39-43, 1999. 

[38] E. Altman and T. Basar, “Multiuser rate-based flow control,” IEEE Transactions on 
Communications, vol. 46, no. 7, pp. 940-949, Jul. 1998. 

 89 

http://www.eecs.berkeley.edu/%7Eananth/2002+/Richard/second_draft.pdf


[39] S. H. Rhee, T. Konstantopoulos, “Optimal flow control and capacity allocation in multi-
service network,” Proceedings of the 37th IEEE Conference on Decision and Control, vol. 
2, pp. 1662-1667, Dec. 1998. 

[40] T. Alpcan and T. Basar, “A game-theoretic framework for congestion control in general 
topology networks,” Proceedings of the 41st IEEE Conference on Decision and Control, 
vol. 2, pp. 1218–1224, Dec. 2002. 

[41] T. Alpcan and T. Basar, “Global stability analysis of an end-to-end congestion control 
scheme for general topology networks with delay,” Proceedings of 42. IEEE Conference 
on Decisions and Control, vol. 1, pp. 1092-1097, Dec. 2003. 

[42] T. Alpcan. "Non-cooperative Games for Control of Networked Systems". PhD Thesis, 
Univ. of Illinois at Urbana-Champaign, USA, 2006. 

[43] Y. A. Korilis, A. A. Lazar, and A. Orda, “Capacity Allocation under Non-cooperative 
Routing,” IEEE Transactions on Automatic Control, vol. 42, pp.309-325, Mar. 1997. 

[44] S.H. Rhee, T. Konstantopoulos, A decentralized model for virtual path capacity allocation, 
Proc. IEEE Infocom, vol. 2, pp. 497 -504, 1999. 

[45] S.H. Rhee and T. Konstantopoulos, “A decentralized model for virtual path capacity 
allocation,” Proc. IEEE Infocom 1999, vol. 2, pp. 497 -504, Mar. 1999. 

[46] H. Yaiche, R. R. Mazumdar, C. Rosenberg, “Distributed algorithms for fair bandwidth 
allocation to elastic services in broadband networks,” INFOCOM 2000, vol. 3, pp. 1511-
1517, Mar. 2000. 

[47] Y.A. Korilis, T.A. Varvarigou, and S.R. Ahuja, “Incentive-compatible pricing strategies in 
non-cooperative networks,”  Proc. of IEEE Infocom, vol. 2 , pp. 439 -446, Mar 1998. 

[48] O. Kabranov, A. Yassine, and D. Makrakis, “Game theoretic pricing and optimal routing in 
optical networks,” ICCT 2003, vol. 1, pp. 604-607, Apr. 2003. 

[49] T. Basar, R. Srikant, “A Stackelberg network game with a large number of followers”, J. 
Optimization Theory and Applications, vol. 115, pp. 479-490, 2002. 

[50] E. Altman, T. Boulogne, R. El Azouzi, T. Jimenez and L. Wynter , “A survey on 
networking games,” Computers and Operations Research, 2004. 

[51] E. K. Blum, Numerical analysis and Computation Theory and Practice, Addison-Wesley, 
1972. 

[52] F. P. Kelly, “Charging and Rate Control for Elastic Traffic,” European Transactions on 
Telecommunications, vol. 8, pp. 33-37, 1997.  

 90 



[53] F. P. Kelly, Maulloo A, and Tan D, “Rate Control in Communication Networks: Shadow 
Prices, Proportional Fairness and Stability,” Journal of the Operational Research Society, 
vol. 49, pp. 237-252, 1998. 

 91 


	TITLE PAGE

	COMMITTEE MEMBERSHIP PAGE

	ABSTRACT

	TABLE OF CONTENTS

	LIST OF TABLES

	Table 1.1. Costs for user 1 and user 2 in Example 1.1
	Table 2.1. Nash equilibria for seven different cases
	Table 2.2. Nash equilibria for five different choices

	LIST OF FIGURES

	Figure 1.1. A Mesh Network
	Figure 1.2. An Ethernet Network
	Figure 1.3. A small internet.
	Figure 1.4. The level curves of  and 
	Figure 2.1. Region of feasibility for Example 1.1
	Figure 2.2. Flow rate of user 2 on link 2 
	Figure 2.3. Total flow on link 2
	Figure 2.4. (a) Total flow and (b) residual capacity on each link
	Figure 3.1. A four-link three-user network
	Figure 3.2. Network topology for the illustrative example
	Figure 3.3.  Flow rates of all users as a function of the preference parameter of user 1.
	Figure 3.4.  Flow rates of all users as a function of the capacity of link 7.
	Figure 3.5.  Flow rates of all users as a function of the capacity of link 8.
	Figure 3.6. Flow rates for all users as the preference parameter of all users varies
	Figure 3.7. Residual capacities in some links as the preference parameter of all users varies
	Figure 3.8.  Flow rates of all users as the preference parameter of the new user varies
	Figure 3.9. Flow rates trajectories for all users for the synchronous algorithm
	Figure 3.10.  Flow rates trajectories for all users for the asynchronous algorithm.
	Figure 3.11. Plots of the Euclidean error norms
	Figure 4.1. A network with 16 links and 2 users.
	Figure 4.2. Utilities of the users when they are cooperative and non-cooperative
	Figure 4.3. Cooperative and non-cooperative flow rates of users in Example 4.1
	Figure 4.4. The contours of the utility functions of user 1 (red) and 2 (blue)
	Figure 4.5.  A network with 16 links and 4 users
	Figure 4.6.  Flow rates of all users in Example 4.2.
	Figure 4.7.  Utilities of the teams in Example 4.2.

	1.0  INTRODUCTION
	1.1 COMMUNICATION NETWORKS
	1.1.1 Local Area Networks (LANs)
	1.1.2 The Internet

	1.2 GAME THEORY
	1.2.1 Strategic Games
	1.2.2 The Nash Equilibrium
	1.2.3 The Stackelberg Strategy
	1.2.4 Pareto Dominance and Efficiency (Optimality)

	1.3 A BRIEF SURVEY OF PREVIOUS RESEARCH 

	2.0  FLOW AND ROUTING CONTROL FOR PARALLEL-LINK NETWORKS 
	2.1 MATHEMATICAL FORMULATION AND DERIVATION OF THE NASH EQUILIBRIUM 
	2.2 PROPERTIES OF THE NASH EQUILIBRIUM
	2.3 ILLUSTRATIVE EXAMPLES
	2.4 CONCLUSIONS

	3.0  FLOW CONTROL FOR GENERAL MULTI-NODE MULTI-LINK COMMUNICATION NETWORKS
	3.1 MODEL FORMULATION
	3.2 EXISTENCE AND UNIQUENESS OF THE NASH EQUILIBRIUM
	3.3 ILLUSTRATIVE EXAMPLE
	3.4 CONCLUSION

	4.0  COOPERATIVE FLOW CONTROL FOR GENERAL COMMUNICATION NETWORKS
	4.1 MODEL AND FORMULATION
	4.2 SIMULATION RESULTS
	4.3 CONCLUSION

	5.0  CONLUSION AND FUTURE WORK
	BIBLIOGRAPHY


