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The study of perceptual decisions has been developed as a substitute for investigating more 

complex multiple attribute decisions. However, little attention has been paid to the similarity of 

results between the two literatures. Four separate behavioral experiments and a secondary trial-

by-trial analysis investigated the sensitivity of perceptual decisions. Results were compared to 

both previous perceptual decision research and that of multiple attribute decisions in an effort to 

bridge the divide. The first experiment examined the effect of increasing the similarity of 

available response alternatives on accuracy and reaction time. The results suggest that high levels 

of similarity can begin to degrade the decision process by lowering accuracy and slowing 

reaction time; however these changes may be dependent on the extent to which the alternatives 

use overlapping neuronal pools. The second experiment examined the effect of increasing the 

number of response alternatives available for a single decision. The results suggest that 

increasing the number of alternatives may not affect performance until some critical point (in this 

case, eight alternatives). The third experiment examined how delay in the presentation of 

evidence compared to the start of the decision process affects the overall accuracy and reaction 

time once information is given. The results demonstrate that as the decision process extends in 

time, decisions are made faster and less accurately. Finally, the fourth experiment examined how 
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the interrupting the incoming stream of information with either highly informative or highly 

misleading evidence would affect the decision. The results illustrated a complicated picture in 

which highly informative evidence accelerated decisions but misleading evidence failed to slow 

decisions. In addition to the individual aims, a secondary analysis investigated potential trial-by-

trial variation in performance. There was some evidence that participants made ongoing 

adjustments to their strategy dependent on performance, but only when feedback was available; 

previous trial status (e.g., highly informative vs. highly misleading evidence) did not affect 

current trial performance. In sum the results demonstrate that perceptual decisions do show high 

levels of sensitivity to a variety of manipulations, but fail to replicate many of the results from 

more complicated multiple attribute decisions.  
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1.0  INTRODUCTION 

Imagine you are waiting for the bus at the end of a long workday. When it is sunny 

outside, you can clearly see the bus marquee as the vehicle comes closer, allowing you to easily 

determine the route number and consider the secondary decision of whether to hail the driver or 

step back from the curb. However, during a downpour or snowstorm, the bus marquee becomes 

difficult to see, with only bits of information reaching your eyes at any point in time. The 

decision about which route is designated on the marquee becomes difficult, even effortful, and 

you probably watch the bus for a longer amount of time in order to decipher the numbers. This 

example highlights how even simple perceptual acts like identifying the route number on a bus 

marquee can become a laborious decision process. Yet despite the increased difficulty and effort 

involved, the example fails to capture the additional complexity of the decisions that may follow 

the identification, such as determining whether or not that route will take you to your destination, 

how likely it is that a better bus will arrive soon, and remembering to take a particular route in 

order to stop by the grocery store on the way home. This dissertation will explore how closely 

perceptual decisions approximate the variability of the natural environment, such as the timing of 

incoming evidence, changes in the fidelity of that evidence, and similarity between potential 

alternatives. In addition, attention will be paid to whether or not the results from perceptual 

decision studies agree with the findings in multiple attribute decisions to determine whether 

perceptual decisions are truly a simplified version of the same process.  
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1.1 OVERVIEW 

The decision process is a complicated series of stages that involves the reception of 

external input, the interpretation of that input, and the selection of a choice among output options 

(Schall, 1999). The perceptual decision process has been favored as a way to examine the 

decision process in a simplified environment, allowing for finer manipulation and study. 

However, there is some question as to whether the simplified perceptual decisions truly emulate 

the same behavioral characteristics as more traditional multiple attribute decisions. For example, 

past research has shown that the amount of noise in a stimulus can change both the accuracy and 

the reaction time of an impending decision (e.g., Ratcliff & Rouder, 1998). Although this lends 

insight into the decision process, previous studies have generally involved only two response 

options (e.g., bright/dark, red/green, left/right). This approach does not accurately reflect more 

common situations in the environment that involve the vetting of multiple possibilities at once. 

Research on multiple attribute decisions has shown that increasing the number of options can 

change decision dynamics, either slowing response time or causing adoption of strategies to 

speed decisions (Tversky & Sattath, 1979; Einhorn & Hogarth, 1981; Payne, Bettman, & 

Johnson, 1988). However, it remains unclear whether perceptual decisions will also show similar 

changes in behavior to the multiple attribute counterparts they are expected to simulate. 

There are also other aspects of the perceptual decision literature that fail to capture some 

of the variability of the real world. Although different levels of stimulus fidelity may be assessed 

across trials (e.g., more or fewer white pixels compared to black pixels during brightness 

discrimination), little has been done to test changes in fidelity within a trial (e.g., a shifting 

amount of white versus black pixels during a single trial). When trying to recognize the bus 

marquee during the snowstorm as described above, the snow would be constantly shifting in the 
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wind and causing moments of clearer views and more obstructed views. However, we must 

integrate information over the course of those more informative and less informative moments in 

order to reach our final identification. Therefore it is important to understand not only how 

perceptual decisions are reached with static amounts of evidence, but also how the process 

handles fluctuations in the fidelity of evidence over time. 

 In addition, the timing used in the majority of tasks has involved the presentation of a 

stimulus after a fixation period, creating an association between the start of a trial and the 

presentation of perceptual evidence. However, the natural environment rarely has clear signals 

for when evidence towards a decision may arrive. Before accepting that perceptual decisions 

adequately emulate the greater general decision process, particularly when discussing potential 

related brain mechanisms, this dissertation attempts to answer some of these open questions. 

Examining perceptual decisions affords the researcher an opportunity to remove or 

control task and stimulus parameters, such as bias or expertise, which might be indefinable or 

uncontrollable in more complex situations. There is also the expectation that determining the 

mechanisms underlying basic perceptual decisions will serve as a theoretical base for more 

complex or abstract forms of decision-making, such as the determination of whether a presented 

item has been stored in memory or not. However, research on perceptual decisions spans several 

tasks, stimulus sets, and goals, making comparisons across studies difficult. Previous studies 

have demonstrated that even small changes in task structure can change the decision process 

(Ebbesen & Konecni, 1980), highlighting the importance of building a set of experiments using a 

single stimulus and task paradigm with only minor manipulations. Constraining the current series 

of experiments to the same stimulus and highly similar task structure should allow for cleaner 
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examination of how each manipulation affects the decision process and limit the effects of 

extraneous variables. 

The remainder of this chapter will be an overview of the extensive previous research on 

perceptual decisions to date, including behavioral studies, neurophysiological studies using 

macaques, and the limited human research thus far using electroencephalography (EEG) and 

functional magnetic resonance imaging (fMRI). There will then be a brief description of the open 

questions this dissertation attempts to answer, with previews of the experiments and results 

presented throughout this document. There are two overarching purposes threaded throughout 

the experiments. First, the experiments are intended to serve as a bridge among isolated 

behavioral and neurophysiological experiments described throughout the introduction that 

involve a variety of stimuli and task structures. By presenting a series of experiments with the 

same basic stimulus and task paradigm but individual manipulations related to the literature, 

hopefully a more cohesive picture of what affects perceptual decisions will arise from the results. 

Second, references will be made throughout this work to findings from multiple attribute 

decision studies. By examining the parallels and divergences between the perceptual and 

multiple attribute decision literature, we can better understand how well studying the perceptual 

decision process emulates the general decision process and what kinds of generalizations are 

possible. However, before setting up the experimental crux of the problem, it is important to 

consider the theoretical roots. The following section will describe the theoretical underpinnings 

and assumptions used throughout this document, as well as some of the language from 

mathematical modeling that is used for descriptive and illustrative purposes. 
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1.2 THEORETICAL AND MATHEMATICAL ASSUMPTIONS ABOUT DECISIONS 

Decisions can come about based on internal information, external stimulation, or some 

combination of the two, and may or may not carry an extrinsic reward. Finally, some decisions 

may be made instantaneously, while others can take several seconds, minutes, or longer. The 

process can be simplified into the basic model depicted in Figure 1; through a sequence of stages 

information is received, a decision process occurs in which that information is evaluated and 

evidence towards a particular alternative is extracted, and an output is selected. After some 

decisions, a reward may occur which reinforces the chosen output. For example, in previous 

work (Ploran et al., 2007), I used fMRI in humans to separate brain activity into patterns 

indicative of three stages of information processing: sensory input, evidence gathering, and 

decision (Figure 1, right panels). Fast-rising, sustained levels of activity in regions in the 

occipital lobes were indicative of sensory processing, activity in parietal and middle frontal areas 

for which the rate of increase in activity changed in accordance to the timing of the final 

response suggested an ongoing evidence gathering process, and areas in the frontal lobe 

responded transiently to the specific response output (Ploran et al., 2007; Ploran, Tremel, Nelson, 

& Wheeler, submitted). This separation of patterns lends support to the use of the model depicted 

in Figure 1, at least at a broad scale as required by the spatial limitations of fMRI. Due to the 

breadth of this phenomenon, this document will focus on the decision process after information 

has been received and prior to the selection of output, referencing data from healthy humans and 

macaque monkeys during perceptual decisions. 

However, returning to potential theoretical assumptions without limitations, the evidence 

gathering stage may involve several subprocesses. Rachlin (1988) suggested separating the 

identification of alternatives, evaluation of alternatives, and a decision mechanism from one 
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another (Figure 2). These subprocesses work well with the theme here that there are separate 

levels of complexity that can individually affect evidence gathering and the selection of output. 

In the bus marquee example used earlier, the decision process changed dependent on the clarity 

of the marquee through particular weather conditions (i.e., evaluation of alternatives). Yet, the 

decision process may also change depending on whether you know of four or eight routes that 

use the particular bus stop by which you are standing (i.e., identification of alternatives). 

Although each of these stages can individually affect the decision process, it is more likely that 

the quality and/or amount of detail contained in the input interacts with the number of possible 

alternatives to make the largest impact on the decision process. Due to the diversity of language 

used to describe the decision process, the following terms will be used throughout this document 

to represent the three processing stages: information will describe incoming sensory input, 

evidence will describe what the decision process derives from the information and integrates 

together, and response will be used to indicate the termination of the process and resulting 

output. 
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Figure 1. Simplified framework of the decision process with three major stages. To the 

right of the stages are fMRI results that lend to support to the dissociation of timing 

(Ploran et al., 2007). 
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Figure 2. Separation of the evidence gathering stage into multiple subprocesses (modified 

from Rachlin, 1988). 
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The evidence gathering or evaluation stage of the decision process has been represented 

by variety of mathematical models; the two most popular are race models (Smith, 2000; Usher & 

McClelland, 2001; Ratcliff, 2006) and diffusion models (Ratcliff, 1978, 2002; Ratcliff & 

Rouder, 2000; Ratcliff & McKoon, 2008). Both types of models are sequential-sampling models 

that use representations of evidence that change with incoming information over time and have 

to pass a threshold in order to trigger a response. However, the models differ in the number of 

representations for response alternatives, the manner in which evidence is accumulated, and the 

placements of threshold. Due to the frequent use of these models to account for behavioral 

perceptual decision data (e.g., Ratcliff & Rouder, 1998; Ratcliff & McKoon, 2008) and 

neurophysiological data (e.g., Gold & Shadlen, 2001), several modeling terms will be used 

throughout this dissertation when discussing potential mechanisms and parameters of the neural 

underpinnings that could create the behavioral results seen here. The following will serve as a 

brief primer on the type of parameters these models use, the similarities between the two types, 

and how we might use these models to create predictions for the current studies. 

 While race models have a separate “counter” for information (or evidence) towards each 

possible response (Figure 3b, 3c), diffusion models use a single representation for evidence 

(Figure 3a); this leads to a major difference between race and diffusion models. Because race 

models have separate counters for each possible response, the decision is literally a race to see 

which counter reaches threshold first (Figure 3b, 3c). Each counter increases with supportive 

evidence, but decreases after opposing evidence. However, as more response options are added 

to the race model, increases and decreases of equal magnitude would make it increasingly 

impossible for any one counter to pass threshold due to low positive-to-negative evidence ratios. 

Therefore, negative evidence for each response must be scaled by the number of available 
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responses (Usher & McClelland, 2001). It is possible, with the right number of responses and 

supporting evidence among those responses (i.e., even distribution of positive and negative 

evidence), to have a very close race in which the response that passes threshold is only slightly 

ahead of the next best option (for more detail on race / accumulator models, see Usher & 

McClelland, 2001). 

In diffusion models, on the other hand, the evidence is gathered in only one parameter 

that represents the balance of information between the two possible responses. This leads to a 

tug-of-war in the direction of the parameter according to the available evidence; the evidence 

parameter can only pass threshold and finalize a decision after a continuous stream of evidence 

for the same response, rather than a noisy stream with evidence for both responses (Figure 3a). 

However, because diffusion models are only able to have two possible responses at the most 

(there are also single outcome diffusion models) and evidence is gathered in one parameter, the 

tug-of-war happens on an equal basis. Unlike the race model, there is no scaling of negative 

evidence in relation to the number of possible responses; evidence for and against a response in a 

diffusion model is weighted equally. This causes a situation in which as the signal-to-noise ratio 

decreases (and therefore some amount of evidence is available for each option), it becomes 

increasingly difficult for the parameter to gather enough evidence and pass threshold (Figure 3a, 

dashed line). On the other hand, if there is a high signal-to-noise ratio in favor of one response, 

the parameter will quickly drift towards the boundary for that response (Figure 3a, solid line; for 

more detail on diffusion models, see Shadlen et al., 2006; Busemeyer & Townsend, 1993). 
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Figure 3. Examples of the mechanisms behind diffusion and race models. (a) Diffusion 

model with thresholds for each option and drift parameters representing two separate 

decisions: a fast decision (solid line) and a slow decision (dashed line); (b, c) Race model in 

which each line represents a counter and both accrue at the same time for either fast (b) or 

slow (c) decisions. 
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The main parameters that affect the trajectory within a diffusion model are starting point, 

drift rate, and threshold. The starting point is the point from which the decision parameter begins 

accumulating evidence. By allowing the starting point to vary trial-to-trial, diffusion models can 

adequately account for fast errors; if the starting point is much higher than usual, it only takes a 

few bits of information to cross the upper threshold even if the next bits of information would 

lead the model to cross the lower threshold instead. The drift rate is the average amount of 

increase towards a threshold per bit of information. Finally, the threshold is the level of activity 

needed in order to trigger a decision; the threshold can be manipulated to be more liberal or 

conservative depending on the requirements for the task (e.g., speed versus accuracy, Fitts, 1966; 

Ratcliff & McKoon, 2008). Aside from these parameters that vary according to task, there is 

usually also a constant (sometimes with its own trial-to-trial variability) that accounts for all the 

non-decision computation, such as the time it takes to execute a motor output indicating a 

decision. Although there has been a larger discussion of whether or not these are the only 

necessary parameters and the need for variation in them (Busemeyer & Townsend, 1993), these 

represent the parameters that overlap in most diffusion model accounts. 

Despite differences, both types of models include a threshold and include some 

fluctuation in the decision parameter as a function of incoming stimulus noise. Although the race 

model would be more appropriate to use for decisions with more than two choices (an important 

constraint for diffusion models that has been recently explored using neurophysiological data, 

Churchland, Kiani, & Shadlen, 2008), it is outside the scope of this dissertation to test the models 

for efficacy. Instead, the concepts within the models will be used as references and good 

theoretical parameters to consider when examining behavioral data. The combination of the 

starting point, drift rate, and threshold concepts have allowed models to account for a variety of 
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behavioral data, including both memory (Ratcliff, 1978) and perceptual decisions (Ratcliff & 

Rouder, 1998; Ratcliff & McKoon, 2008). These parameters have also been used to fit 

neurophysiological data from perceptual decisions (e.g., Gold & Shadlen, 2001), demonstrating 

the flexibility of these parameters to account for both behavioral measures like accuracy and 

reaction time, as well as the underlying neural processes. Therefore it is these three concepts that 

will be used to create questions, predictions, manipulations, and ultimately possible explanations 

for the results.  

1.3 EVOLUTION OF BEHAVIORAL STUDIES OF PERCEPTION 

The study of perception harks back to the earliest psychophysical experiments examining 

anatomy, physiology, and behavior. However, the study of perceptual decisions, in which the 

subject must respond to the stimulus in some instructed manner, has a more research history. 

Beginning with stimulus-response paradigms in which subjects make quick pre-determined 

responses to the presentation of a particular associated stimulus (Hick, 1952; Hyman, 1953), the 

study of perceptual decisions has evolved into a closer investigation of what affects the 

interpretation of a stimulus that in turn creates the behavioral response. The following section 

will describe some of the evolution of the study of perceptual decisions from a behavioral 

standpoint. Succeeding sections will then extend this evolution to studies of neurophysiology in 

macaques and the use of neuroimaging techniques in humans. 

An important consideration that should be maintained throughout reading this document 

is what exactly constitutes a perceptual decision, versus the pure act of perception without 

interpretation. Humans make decisions constantly, often without conscious awareness. For 
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example, perceptual recognition is usually an automatic process; the ability to identify and 

respond with an object’s name can occur within 1000 ms of presentation (Rossion & Pourtois, 

2004). Similarly, word identification can occur within 750 ms of presentation, for words up to 6 

letters in length and 2 syllables (Frederiksen & Kroll, 1976). However, if the object or word is 

occluded or incomplete, more calculations among the alternatives must be made before a final 

identification response is selected. Instead of the fast, easy recognition made when all the 

perceptual information is available, you might pause to gather more evidence towards the correct 

choice. When not given enough information, the act of perception becomes an effortful decision 

process that requires gathering of evidence from incoming stimulus information and 

interpretation of that evidence prior to the selection of a response.  

Behavioral research on perceptual decisions has largely focused on two-choice paradigms 

using motion, color, or brightness discriminations (e.g., Ratcliff & Rouder, 1998; Ratcliff & 

McKoon, 2008). These studies collectively demonstrate that the timing and accuracy of a 

perceptual decision are functions of uncertainty (i.e., noise), both in the stimulus itself and the 

neural processes underling the decision process. The uncertainty in the stimulus can be a result of 

actual sensory qualities (i.e., the number of white versus black pixels; Ratcliff & Rouder, 1998) 

or the duration of the stimulus prior to masking (Ratcliff & Rouder, 2000). Biological sources of 

uncertainty arise from the noise in neural pools encoding potential alternatives (Gold & Shadlen, 

2001). In any case, higher uncertainty creates longer and less accurate responses. 

However, there are limitations to the use of 2-choice paradigms when attempting to 

describe the perceptual decision process more generally. First, it is rare that one is presented with 

two discrete choices. Often we are presented with noisy sensory information without a clear 

delineation of the possible identity. If there are multiple response options to vet in relation to the 
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presented stimulus, processing may take longer than when there are only two response options. 

In fact, stimulus-response paradigms have long demonstrated that as participants are required to 

respond with unique responses to an increasing number of stimuli, the reaction time after each 

presentation is longer than when there are fewer possible stimuli among the presentation set 

(Hyman, 1953). After initial training, this paradigm doesn’t even require a decision so much as 

the automated response selection from an unambiguous stimulus, yet the number of possible 

stimuli still has a strong effect (accounting for up to 97% of the variance in reaction time). 

It has also been shown in decisions involving multiple attributes that an increase in the 

number of response alternatives can spontaneously prompt the adoption of strategies and 

heuristics to aid in decision making, particularly when certain time pressures and other task 

demands are present (Payne, Bettmann, & Johnson, 1988). For example, the “elimination by 

aspects” strategy (Tversky, 1972) allows the decision maker to rule out one or more response 

options very early in the decision period, thereby rerouting information towards the remaining 

possibilities. Alternatively, the “majority of confirming dimensions” strategy (Russo & Dosher, 

1983) considers pairs of alternatives out of the many available options and selects the best of 

each pair to remain available while discarding the worst of each pair. However, there are many 

more possible strategies than described here, and in addition, it is possible to combine strategies 

into a more comprehensive or efficient approach (e.g., eliminate unlikely possibilities and then 

compare pairs; Payne, Bettmann, & Johnson, 1988). 

A recent study using 2-, 3-, and 4-choice letter discriminations found increasing reaction 

times and decreasing accuracy as the number of response alternatives increased (Leite & Ratcliff, 

2010). This suggests that the decision process changed as there were more response alternatives 

available for matching the evidence. However, it is unclear whether four alternatives are enough 
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to cause significant changes in strategy as observed in multiple attribute decisions. The impact of 

the number of alternatives on the perceptual decision process is investigated further in 3.0 , 

including a post-experiment questionnaire on possible strategy adoption to assess whether or not 

participants attempted to mitigate any detriment to performance as the number of response 

alternatives increased. 

Another consideration for the validity of previous perceptual decision research is that 2-

choice experiments often present opposing choices (e.g., rightward vs. leftward motion, light vs. 

dark pixels). However, the external world is created from a continuum of sensory stimuli, and 

often we must make very fine distinctions between two similar choices (e.g., “Does that bus 

marquee say 71B or 71D?”). One previous study (Ratcliff & Rouder, 2000) did assess easy vs. 

hard letter discriminations (e.g., E vs. C., or E vs. F) and found that similar letter pairs were 

associated with lower accuracy and longer response times. Unfortunately, the study was focused 

on validating a diffusion model of decision making and the results based on degrees of similarity 

were not fully explored.  

While the binary choice studies have laid a strong foundation for the examination of 

perceptual decisions, related research has demonstrated that the internal decision process may 

not be strictly dichotomous. Experiments allowing subjects to indicate more than one guess on 

various temporal and spatial selective attention paradigms have found that while the individual 

responses were discretely categorical in nature and subjects did not report being “half aware” of 

the targets (Sergent & Dehaene, 2004), their responses arose from graded distributions (Vul, 

Hanus, & Kanwisher, 2009). These results suggest that there is some noise in the underlying 

cognitive process prior to the decision. If the distributions for two similar options overlap, 

responses may be more difficult to make compared with options with non-overlapping 
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distributions. This possibility is examined in 2.0 , which assesses how performance changes as 

the two available alternatives become more similar to one another. 

A last consideration is the effect of prior performance on current decisions. That is, aside 

from within-trial noise and variability in the stimulus, does across-trial noise and variability also 

affect decisions? That is, is each individual decision based solely on stimulus aspects from the 

current trial, or also from the characteristics demonstrated about a stimulus over previous trials 

as well? Both temporal and spatial selective attention responses appear to be affected by only 

uncertainty in the stimulus itself on a given trial (within trial variability), rather than potential 

across-trial variability (Vul, Hanus, & Kanwisher, 2009). That is, the uncertainty of a stimulus 

within the trial has a larger effect on the decision process than the accumulated known 

uncertainty of stimulus identification over the previous trials. However, previous theoretical 

accounts of effort and achievement behavior have considered a more dynamic selection of effort 

that is affected by task difficulty, relationship of the current task to previous tasks, previous 

outcomes, and possibly motivation (see Thomas, 1983 for review). Given the similarity between 

the models for selective attention and perceptual decisions, it is important to test how ongoing 

performance affects each new decision, as well as how bias in previous trials (in the form of 

highly coherent information for or against the correct alternative) can affect the treatment of 

information on new trials, as was done for several experiments in 6.0 . 

Together, these behavioral studies demonstrate the breadth of manipulations that have 

been used to study perceptual decisions. In particular, consideration should be made regarding 

the variety of stimulus sets (e.g., bright/dark pixels, red/green pixels, letters, etc.). The physical 

characteristics involved in each of these stimuli result in a variety of brain areas necessary for 

processing the sensory input prior to interpretation during the decision process. Also, some 
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stimuli involved quantifiable amounts (brightness patches) whereas others did not (letters). These 

issues make it difficult to compare across studies, a problem that the current set of studies 

attempts to address by using the same stimulus throughout. In addition, some of the literature 

involved results from multiple attribute decisions (e.g., Payne, Bettman, & Johnson, 1988), 

highlighting the question of whether perceptual decisions adequately emulate a more general 

decision process in simplified form. The discussion of results from the current experiments will 

include references to both the perceptual and multiple attribute decision research in an attempt to 

bridge between these two disparate fields. 

1.4 NEUROPHYSIOLOGICAL SUPPORT FOR DECISION MODELS 

There is a wealth of literature on the primary sensory, secondary sensory, evidence 

gathering, execution of response, and reward/feedback stages of perceptual decisions using 

neurophysiological recordings in macaques and rats. These studies span various visual paradigms 

(Shadlen & Newsome, 2001; Roitman & Shadlen, 2002; Horwitz, Batista, & Newsome, 2004; 

Lo & Wang, 2006), flutter/grating sensory discriminations (Romo & Salinas, 2003; Salinas, 

Hernandez, Zainos, & Romo, 2000), auditory discriminations (Lemus, Hernandez, & Romo, 

2009), and even responses based on gustatory stimuli (MacDonald, Meck, Simon, & Nicolelis, 

2009). From this broad testing of the various sensory circuits, there has been the emergence and 

collective adherence to a systems level theory of decision making that applies to all these 

situations. This research has supported the notion that decisions arise from a series of 

hierarchical brain areas, spanning sensory, evidence accumulation, and decision execution 
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processes. An example of which brain areas may be involved and how each area might affect the 

decision process will be described presently.  

A large portion of the research on perceptual decisions has been conducted using 

neurophysiological measures of visual discrimination in macaques. Importantly, several 

researchers have adopted a motion discrimination paradigm as an easy way to manipulate the 

perceptual information available for the decision. The adoption of this stimulus presentation 

across many studies has created a cohesive narrative about the potential development of a 

decision across multiple brain areas. The knowledge of how various manipulations affect 

responses during this paradigm was the primary reason for its use throughout this dissertation. 

Therefore, it is important to consider both the behavioral and neural patterns found within the 

neurophysiological literature when constructing the experiments and predictions described later.  

The motion discrimination paradigm has been used with both humans (Shulman et al., 

1999; Shulman et al., 2003; Palmer, Huk, & Shadlen, 2005) and non-lesioned macaques 

(Celebrini & Newsome, 1994; Kim & Shadlen, 1999; Shadlen & Newsome, 2001), and lends 

itself to a variety of manipulations. The basic paradigm involves a screen with a large number of 

dots that move randomly, making the display look like a simple version of television static. 

Researchers can manipulate how many dots move together coherently in one direction, and 

subjects discriminate the trajectory of motion. By varying the coherence of the dots (i.e., how 

many dots are moving together), the quality of the motion signal is manipulated and the 

discrimination of the direction becomes more or less difficult. In an easy discrimination (>50% 

coherence), decisions are made quickly, because the signal clearly outweighs the noise. At lower 

levels of coherence (<20%), the signal of the motion is disrupted by the majority noise of the 

randomly moving dots and discrimination becomes difficult. 
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By examining the single-unit neurophysiology research in monkeys, it appears that 

perceptual decisions arise from activity spreading from the highly motion selective area middle 

temporal area (MT) (Celebrini & Newsome, 1994), to visually responsive areas involved in 

preparation of eye movements such as the lateral intraparietal area (LIP) (Shadlen & Newsome, 

2001; Roitman & Shadlen, 2002; Hanks, Ditterich, & Shadlen, 2006) and superior colliculus 

(Horwitz, Batista, & Newsome, 2004; Lo & Wang, 2006), and finally into the dorsolateral 

prefrontal cortex (dlPFC), specifically the frontal eye fields (FEF). These final frontal areas are 

non-visually responsive areas that may be involved in motor planning, reward, or attention (Kim 

& Shadlen, 1999; Leon & Shadlen, 1999). Collectively, the main finding of these papers was that 

brain areas involved in the earlier stages of visual processing modulated activity based on the 

coherence of motion, while areas farther upstream reacted less to stimulus properties and more to 

the impending decision (i.e., the preparation of eye movement indicating the decision). 

Early experiments testing motion discrimination in LIP demonstrated a difference in the 

increasing or decreasing of neural activity dependent on both the coherence of motion and the 

final decision (Shadlen & Newsome, 2001). Specifically, when highly coherent motion towards 

the response field caused neurons to increase in activity very quickly; however, when motion 

was weak (but still towards the response field), neurons increased in activity at a slower rate. 

Similar differences in the rate of change in neuronal activity were found during motion away 

from the response field, such that neurons decreased in activity more quickly for strong motion 

away from the response field than weak motion (Shadlen & Newsome, 2001). Interestingly, 

despite the differences in rate of increase or decrease, activity reached a common level by the 

end of the trial, prior to the saccade to indicate decision. In addition, a later study (Huk & 

Shadlen, 2005) incorporated short (100ms) bursts of highly coherent motion within a subset of 
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trials and found the accumulation rate of neural firing changed in trajectory and reached the 

common level earlier than without the burst. That is, while initially accumulating normally, the 

burst caused the accumulation rate to increase mid-trial. However, in both these studies the 

monkeys were required to maintain fixation until a cue, so it is unknown whether or not this 

would have resulted in faster reaction times (e.g., faster rise in activity to the common plateau 

level would have triggered a threshold and caused a detection response).  

The LIP studies demonstrated how neurophysiology can be an extremely useful 

methodology since it allows for close examination of neural activity on the millisecond level. 

This affords the opportunity to consider differences in activity between conditions in a very 

minute way. However, one limitation of the aforementioned LIP studies was the use of a delayed 

response task. As mentioned above, the monkeys were required to wait after seeing the motion 

display until a cue gave permission to make the saccade indicating the decision. This wait prior 

to response created a situation in which inferences were made about the decision process without 

knowing the precise moment at which the process ended, leading to possible confounding of 

decision processes and the maintenance of a motor plan. By using a reaction time experiment in 

which the monkeys made a saccade upon making a decision, Roitman & Shadlen (2002) were 

able to examine the activity leading directly up to the decision in a more natural timecourse. The 

comparison of activity for different levels of coherence illustrated the same modulation of 

activity throughout the trial, such that higher levels of coherence were associated with faster 

increases and lower levels of coherence with slower increases. However, the important 

comparison grouped trials by reaction time regardless of coherence, eliminating any modulation 

based on sensory efficacy of the stimulus. This comparison illustrated that faster increases were 

also associated with earlier response times, and slower increases were associated with longer 
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response times. Combined with the modulation of activity based on coherence, the difference in 

relative timing of activity and its relation to response time is a good indicator that area LIP is 

involved in some stage of the decision-making process – potentially as an integrator between 

sensory information and the decision variable (Roitman & Shadlen, 2002; Mazurek et al, 2003). 

Perhaps the most interesting results are from a very carefully controlled experiment 

attempting to eliminate the confounding of the decision choice with movement planning to 

indicate that choice (Horwitz, Batista, & Newsome, 2004). While the traditional motion 

discrimination paradigm presented both the central viewing window and the two dots marking 

the possible decisions in their relative locations, the new paradigm moved the dots around the 

screen as a pair so that the monkey had to select the dot based on its position relative to the other 

dot, rather than the viewing window. The change in the paradigm created a situation in which a 

rightward motion stimulus could result in a leftward eye movement, even though the eye 

movement would target the right dot out of the pair. Movement planning could now be in 

opposition to the perception of motion. However, the most crucial aspect of the new paradigm 

was that the decision targets were only shown after a delay during which no motion was present. 

This means that any potential evidence accumulation that occurs should only be related to the 

decision, and not the planning of the movement to indicate that decision. Indeed, the researchers 

found that a small subset (~10%) of neurons in the superior colliculus demonstrated modulation 

during the presence of motion that was indicative of the decision, even without available targets 

for which to plan an eye movement. This suggests that some neurons are able to hold abstract 

representations of a decision without the explicit targets necessary to execute action based on 

that decision (Horwitz, Batista, & Newsome, 2004). 



 23 

Recent research has expanded the motion discrimination task from two to four 

alternatives (Churchland, Kiani, & Shadlen, 2008). The main finding was that increasing the 

number of alternatives resulted in a decreased initial firing rate towards the correct alternative, 

with a slower buildup to a stable threshold. Behaviorally, 4-choice decisions took longer and 

were less accurate than 2-choice decisions. This suggests that increasing the number of 

alternatives may change how neural areas process the task, altering accuracy and reaction time. 

This potential effect was examined more closely in 3.0 . 

The control condition for the 2- vs. 4-choice experiment was to include a 2-choice trial in 

which the alternatives were perpendicular to each other rather than opposite (Churchland, Kiani, 

& Shadlen, 2008). These 90° trials resulted in an intermediate decrease in reaction time and 

firing rate buildup compared to the 180° trials. This suggests that there was a processing 

difference between the original opposing response alternatives and the slightly more similar 

perpendicular alternatives. The experiment in 2.0 examines how similarity of response 

alternatives may affect accuracy and reaction time, with the general prediction that as similarity 

increases the decision process becomes more difficult. 

These neurophysiological experiments demonstrate several important characteristics 

described by the decision making models. First, the change in the rate of increase in firing 

dependent on the response may represent the evaluation of alternatives (Figure 2) that we would 

expect given different efficacies of evidence. Importantly, Roitman and Shadlen (2002) 

illustrated that these changes in rate are associated with changes in response time independent of 

stimulus efficacy. This ties into the second characteristic of decision making highlighted here: 

the need for a stable threshold. In these experiments, neurons throughout the brain appeared to 

reach a steady threshold level prior to a decision, in both the delayed and immediate versions. 
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Despite changes to the rate of increase in firing, the decision was not made until this threshold is 

reached, indicating a stable cut-off mechanism in the decision process. Therefore increases in 

activity in sensory areas like MT in response to increases in coherence of the stimulus in turn 

increase the rate of firing in evidence gathering areas like LIP and superior colliculus, causing 

the threshold to be reached sooner.  

1.5 NEURAL BASIS OF PERCEPTUAL DECISIONS IN HUMANS 

The neurophysiological literature highlights the important role that timing plays in 

determining whether or not an area of the brain is involved in sensory, decision, or movement 

planning processes. By using paradigms that attempted to separate the processes, the 

neurophysiology literature has made significant headway into determining the pathways for 

certain visual and somatosensory tasks. However, due to the invasive nature of the methodology, 

it limits these studies to the use of non-human primate subjects. Fortunately, advances have been 

made in the analysis of the blood oxygen level dependent (BOLD) signal within fMRI, high-

density electroencephalogram (EEG) recording, and the concurrent use of fMRI and event-

related potential (ERP) recordings. These advances now allow researchers to make some 

statements about the comparative timing within a region, and tentatively make comparisons 

across regions. 

For example, McKeeff & Tong (2007) created a face/non-face paradigm using Mooney 

contorted images of faces; the Mooney transformation alters a grayscale image into pure black 

and white contrast, masking the usual contours and lines of the original image. Because facial 

features can often be very small in scale, altering the quality of the image by using this technique 
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highly increases the difficulty of the discrimination. Interestingly, among the trials for which the 

stimulus was categorized as a face, there were timing differences in fusiform gyrus (a highly 

face-selective area) dependent on the response time. Faster face categorizations were associated 

with faster BOLD rise times, while slower discriminations had slower rise times. However, this 

difference was not present for trials in which the stimulus was categorized as a non-face. The 

authors suggest that this timing difference was indicative of top-down influences on fusiform 

face area as evidence of face contours was gathered from the otherwise indecipherable image 

(McKeeff & Tong, 2007). This suggests that since the participant was actively looking for a face, 

this top-down information drove the search for facial contours. However, the simpler answer 

may be that as lower visual areas parsed the contours of the incoming sensory information into 

recognizable facial features, more activity occurred in fusiform gyrus from feedforward 

connections. As soon as this activity reached some threshold, the brain could categorize the 

image as a face. If the activity in fusiform gyrus did not reach some predetermined threshold, the 

found contours were deemed noise, and the image was categorized as a non-face. Consequently, 

on trials when there is a faster increase in activity in fusiform gyrus, categorization occurs 

quicker than when activity rises more slowly because the threshold is met faster. 

The quality of facial features was also used by Thielscher & Pessoa (2007) to create an 

emotion discrimination experiment using faces with varying levels of expression; however, in 

this case the images themselves were not transformed. Instead, the researchers maintained clear 

images, but manipulated the extent of the frown and openness of the eyes to create varying 

degrees of expression. By focusing the analysis on the brain areas active during the 

discrimination of neutral stimuli, the researchers were able to examine how activity evolved 

when there was little drive by the sensory stimulus. Instead, brain areas active during the 
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categorization of neutral stimuli were assumed to represent the decision process. The main 

analysis again suggested a series of brain areas stretching from visual areas, through emotion-

related areas, and finally to higher-level areas.  

However, the more interesting analysis considered how the activation in a decision area 

should correlate with response time. The authors suggested that if a brain area is associated with 

the decision, the activation should mimic the response time curve. That is, trial-by-trial 

fluctuations in the BOLD response should correlate with trial-by-trial RT in a systematic way. 

Indeed, this is what Thielscher & Pessoa (2007) found; activity in the anterior cingulate, inferior 

frontal gyrus, and middle frontal gyrus correlated with response time such that longer RTs were 

associated with more activation. This runs counter to the argument presented by Heekeren, 

Marrett, Bandettini, & Ungerleider (2004), in which more activity in a decision area was thought 

to reflect a bigger difference in the two areas of comparison. If the brain area encoding one 

response (e.g., face) was significantly more active than the brain area encoding the competing 

response (e.g., house), the “decision” brain area would have an easier comparison and therefore 

an easier decision with most likely a faster response time. It is possible that both these theories 

are true, but simply represent different aspects of the decision process: signal detection via 

Heekeren et al. (2004) and some sort of continued processing via Thielscher & Pessoa (2007). 

Indeed, the region found by Heekeren et al. (2004) was in a separate area than the area found by 

Thielscher & Pessoa (2007), highlighting potential functional differences. This illustrates how 

elusive the process of decision-making can be, and further highlights the complexity of the 

process.  

The observation of an increased BOLD activation that correlates with longer response 

times inevitably arouses the suggestion of an area related to task demand or task difficulty. While 
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this does not preclude the area from involvement in the decision process, it does place certain 

boundaries on function. For example, when attempting to separate the temporal signatures of the 

decision process by using ERP during a face/object discrimination, Philiastides, Ratcliff, and 

Sajda (2006; see also Philiastides & Sajda, 2006) combined manipulation of difficulty within the 

task as well as difficulty between two tasks using the same phase-coherence shifted images. By 

using the scrambled images for both the difficult face/object and easy red/green discriminations, 

the researchers were able to separate the temporal signatures of visual areas responsive to the 

particular stimulus from general task difficulty areas. The results showed two points at which the 

ERP waveform separated dependent on condition. There was first an early component at 220ms 

that modulated based on task difficulty; there was increased negativity during the difficult 

face/object task with low coherence stimuli, but no increase in negativity during the easy 

face/object task with high coherence stimuli. Furthermore, when the low coherence stimuli were 

used in the easy red/green task (which did not require attention to details masked by the phase-

shift), the negativity did not appear. This lack of negativity during the easier decisions suggests 

that this early component was only indicative of task difficulty, not the decision process. 

However, since it is difficult to isolate the source of ERP waveforms, it is not possible to know 

whether or not this component overlaps with the increased activation seen by Thielscher & 

Pessoa (2007).  

Another interesting finding with the face/object paradigm was a late component (starting 

at 300ms) that appeared to correlate with response time. However, unlike the early component 

that modulated based on stimulus properties, the late component was present regardless of the 

coherence, suggesting it was not related to task difficulty. More importantly, the timing of onset 

for the late component was correlated with coherence level and the length of activity was 
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correlated with response time. By comparing these parameters with a diffusion model based on 

the behavioral data, the authors found that the activity in the late component was highly 

correlated with the mean drift rate proposed by the model for each trial. While this appears to 

suggest that the late component was indicative of an evidence accumulator, the authors were 

careful to note that the activity was not found during the red/green color categorization task; this 

means that either the activity was only strong enough to detect during more difficult tasks, or the 

activity was explicitly involved in the face/object discrimination similar to the early visual peaks 

they found rather than a general mechanism involved in decisions (Philiastides, Ratcliff, & 

Sajda, 2006). 

While ERP studies can lend some support for the relative timing of components, it is 

difficult and unreliable to identify the source of these components. This highlights the benefits of 

a multimodality approach across electrophysiological and neuroimaging methods. However, it is 

widely known that the underlying mechanics of fMRI do not easily fit into the discussion of 

timing within neural processes. Fortunately, recent studies have demonstrated that fMRI can be 

used to separate temporal signature given proper design and analysis techniques (Ploran et al., 

2007; Wheeler et al., 2008: Ploran, Tremel, Nelson, & Wheeler, submitted). By obscuring 

images of common objects, these studies were able to draw out the object recognition process for 

up to 14 seconds. Comparisons of recognitions that occurred after different lengths of time 

revealed that the process extends through a series of brain regions starting in occipital lobe, 

through parietal lobe, and finishing in frontal lobe. In addition to the breadth of activity, these 

studies also demonstrated different patterns of activity suggestive of varying stages of the 

decision process. Occipital areas contained a sustained level of activity throughout the trial, 

indicating constant sensory stimulation. Parietal and some frontal areas demonstrated growing 
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levels of activity that shifted in peak coinciding with the recognition response, suggesting the 

accumulation of evidence. Lastly, frontal and some subcortical areas were active transiently at 

the time of the decision, but not beforehand, indicating a tight coupling with response execution.  

In addition, these patterns remained despite a manipulation in which the object identity 

was not consistent during the trial (i.e., the available information was constantly changing). 

Despite the increased difficulty, activity in parietal and frontal areas continued to demonstrate an 

increasing pattern dependent on the timing of the response as participants attempted to recognize 

the object. Importantly, activity during these inconsistent trials was not any greater than trials 

during which object identification was consistent, ruling out that the activity was due to effort. 

These diverse patterns not only illustrative of how and when different brain areas may be 

involved in the process, but also demonstrate that fMRI can be a useful technique for 

investigating timing differences if the task is adapted appropriately. 

Collectively the neuroimaging studies on humans lend support to theory of perceptual 

decision described earlier, with information progressing through a series of stages (Figure 1). 

Changes in sensory areas related to the stimuli correlated with changes in anterior executive 

areas (Heekeren, Marrett, Bandettini, & Ungerleider, 2004). Additionally, there is evidence that 

sensory areas were active earlier than parietal and frontal areas that may be evaluating the 

incoming information for evidence towards the response (Philiastides, Ratcliff, & Sajda, 2006; 

Ploran et al., 2007; Ploran, Tremel, Nelson, & Wheeler, submitted). However, neuroimaging and 

electrophysiology highlighted activation in large areas of the brain. The lack of precision and 

general overlapping nature of neuroimaging results from a wide variety of studies can make 

interpretation of these results difficult. Before advancing further, it is important to understanding 

the types of changes certain manipulations to the stimulus and decision environment can create 
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in order to better predict where and when changes may occur in the brain. By creating strong a 

priori hypotheses about the processes and potential brain areas involved based on the results of 

behavioral studies, neuroimaging results will gain strength and stability. 

1.6 OPEN QUESTIONS AND OVERVIEW OF DOCUMENT 

Although the research on perceptual decisions has been extensive, it is not without 

shortcomings. For example, the use of the 90  control condition by Churchland, Kiani, & 

Shadlen (2008) caused changes in neural activity that may have represented the unintended 

effects of similarity. As this was not the focus of the study it was not examined further, yet 

leaves an interesting question as to how the similarity of response options (in this case a smaller 

angle of disparity between two possible directions of motion) may affect the extraction of 

evidence from incoming sensory information. Also, the limited attempt to examine how the 

number of responses alternatives affects the decision process (Leite & Ratcliff, 2010) failed to 

consider how the use of letters as stimuli creates comparison problems to the more quantifiably 

manipulable stimuli like color or brightness patches from previous experiments (Ratcliff & 

Rouder, 1998).  

This dissertation will address some of these shortcomings by systematically assessing 

aspects of perceptual decisions using a single quantifiable stimulus – random dot motion. The 

first experiment (2.0 ) will follow up on Churchland, Kiani, & Shadlen (2008) by testing how the 

similarity of two presented possible directions impacts the speed and accuracy of the decision 

process. The second experiment (3.0 ) will follow up on Leite & Ratcliff (2010) by testing 

whether increasing the number of choices to a greater extent continues to negatively impact 
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performance. The remaining two experiments will start to explore perceptual decisions in less 

predictable environments. The first will assess how delaying information towards a decision after 

the decision process has started affects overall accuracy and speed once the information is 

presented (4.0 ). This represents a potentially more realistic assessment of the process, as the 

environment does not always give cues to when information to be evaluated is forthcoming. The 

second will assess how altering the fidelity of evidence during the decision process affects the 

ultimate decision (5.0 ). This manipulation mimics previous studies in macaques (Huk & 

Shadlen, 2005) in an effort to bridge between the human behavioral and macaque 

neurophysiological literature. Finally, a trial-by-trial analysis of the data will assess whether 

performance changes based on previous trial characteristics such as accuracy, timing of 

evidence, or stimulus fidelity. This analysis will address whether perceptual decisions follow 

similar behavioral patterns to multiple attribute decisions, which see variability, or visual and 

spatial attention studies, which do not. These questions are characterized more fully below. 

1.6.1 Question #1 

Research in multiple attribute decisions has shown that similarity of the alternatives can 

affect decision processes (Biggs, Bedard, Gabor, & Linsmeier, 1985; Einhorn & Hogarth, 1981). 

The study of perceptual decisions often uses a basic visual stimulus that varies along a single 

continuum (e.g., brightness). Sometimes these continuums are used to create stimuli that are 

difficult to discrimination (e.g., patches of almost equal brightness, Ratcliff & Rouder, 1998). 

More often, the continuum is ignored and choices reside at opposite ends of the scale (e.g., right 

vs. left motion in a variety of neurophysiological experiments such as Shadlen & Newsome, 

2001). Although there has been some interest in how similarity affects perceptual 
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discriminations, the limited studies have used letter tasks in which it is hard to quantify the 

similarity or manipulate it at fine grain levels (Ratcliff & Rouder, 2000). As mentioned above, 

one study which did start to capitalize on additional directions in the motion discrimination 

experiment found potentially interesting neurophysiological results that suggested a change in 

the process, but failed to fully explore the behavioral and neural results.  

2.0 discusses an experiment that investigated the effect of similarity of options, in this 

case possible directions of motion, on accuracy and reaction time. It was predicted that as 

alternatives become more similar, the decision process must evaluate increasingly overlapping 

pools of neurons. The overlapping activity would then result in more time needed to make a 

decision with less accuracy. The results demonstrate that alternatives must be highly similar in 

order to affect decision processes. However, once there is a high enough similarity, performance 

is affected in both accuracy and reaction time measures. 

1.6.2 Question #2 

Until recently, the majority of perceptual decision experiments to date involve binary 

choices (c.f., Churchland, Kiani, & Shadlen, 2008; Leite & Ratcliff, 2010). While prior stimulus-

response studies have demonstrated a linear relationship between number of possible stimulus 

and speed of response (Hyman 1953), this does not capture the process that occurs when stimuli 

are ambiguous and do not require a conditioned response. In order to understand the naturalist ic 

dynamics of decision making, it is necessary to test how increased available response alternatives 

affect decision times. Assessing decision time as a function of response number will determine 

whether large numbers of options are all taken into consideration, or whether the response set is 

strategically reduced prior to the commitment to a decision. A linear increase in decision time 
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with number of options would support the former, similar to the linear increase in memory 

search times with set-size increases found in the Sternberg task (Sternberg, 1966) and the 

stimulus-response paradigm (Hyman, 1953). On the other hand, a selective strategy might be 

used to eliminate clearly wrong answers, focusing assessment on the most likely answers (Payne, 

Bettmann, & Johnson, 1988). This may create non-linear asymptotic changes in speed as the 

number of response alternatives increases.  

3.0 discusses an experiment in which 2-, 4-, and 8-choice versions of the motion 

discrimination paradigm were tested. Competing hypotheses predict that participants will either 

adopt strategies to mitigate the increasing evaluation load (by potentially eliminating obvious 

non-choices or other means), thus saving reaction time and performance from detriment as 

choices increase. On the other hand, participants may not adopt strategies and instead spread the 

decision process to vet each new response alternative, resulting in longer decision times and 

lower accuracy. The results suggest that increasing the number of possible response alternatives 

does affect both accuracy and reaction time, though not necessarily simultaneously. Increasing 

choices from 2 to 4 options decreased accuracy despite similar reaction times, whereas 

increasing from 4 to 8 choices both decreased accuracy and increased reaction time. A discussion 

of how increasing the number of choices and the accompanying increase in similarity of those 

choices is included. 

1.6.3 Question #3 

Previous studies of perceptual decisions appear to fall into two procedural categories: 

brief, isolated presentations of stimuli (e.g., Ratcliff, 2002; Shadlen & Newsome, 2001) or 

continuous presentations of stimuli until response (e.g., Ratcliff & Rouder, 1998; Roitman & 
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Shadlen, 2002). Importantly, past studies have used a predictable relationship between the start 

of a trial and the presentation of the stimulus with minimal variation within an experiment (c.f., 

Green, Smith, & von Gierke, 1983). However, the decision process should be able to handle a 

dynamic environment in which evidence occurs at any point past the initial knowledge of its 

impending arrival. In addition, it has been shown that time constraints can affect strategy 

selection in decision making (Payne, Bettmann, & Johnson, 1988). This leads to the open 

question of whether the timing of incoming evidence after search onset affects the speed with 

which a decision is made. If so, how does early information get incorporated into the longer 

decision process? 

Two experiments were conducted to test this question. 4.0 describes an experiment in 

which the informative stimulus was presented at varying times in an otherwise random 

background to test isolated effects of timing. If the decision process involves a timeout function 

to limit the spending of mental resources on an unsuccessful evaluation, reaction times should 

max out across conditions in which information is presented very late in the trial. If there is no 

timeout function to preserve resources, there should be no change in performance levels once 

information is presented. The results demonstrate a decrease in accuracy and a decrease in 

reaction time as the decision extends in time. Two different theories that might account for these 

results are discussed.  

In addition, 5.0 describes an experiment in which bursts of highly informative or highly 

misleading information are embedded early in the trial. It was predicted that altering the fidelity 

of information early in the trial should influence the overall process, but not cause an immediate 

termination. This should create faster, more accurate responses when the highly informative 

evidence agrees with the correct response, but slower, less accurate responses when it is 
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contrary. The results present a complicated pattern whereby the ongoing mix of trials throughout 

each block appeared to inform strategy selection as the participant moved through the task. 

1.6.4 Question #4 

Prior experiments on effort and achievement behavior have suggested that completion of 

the current trial can be dependent on the difficulty, success, and other characteristics of the prior 

trial (Thomas, 1983). Given variability in perceptual stimuli, it is possible that the decision 

process adapts continuously according to recent trial performance. If this is true, reaction time 

and accuracy should fluctuate depending on characteristics of the previous trial, including 

successful completion and stimulus characteristics. Conversely, studies of temporal and spatial 

attention have not shown trial-by-trial variability in responses, and instead demonstrate that 

performance on a given trial is the direct result of variability of the stimulus within the trial (Vul, 

Hanus, & Kanwisher, 2009).   

6.0 explores the possibility of trial-by-trial shifts in strategy by reanalyzing data from the 

4 experiments contained in earlier chapters based on previous trial characteristics such as 

accuracy, speed, and trial status (e.g., informative burst of information vs. misleading burst of 

information). If participants were adjusting their strategy as suggested by work on multiple 

attribute decisions, there should be shifts in performance associated with the status of the 

previous trial. The results suggest that this may be partially true when participants are presented 

with feedback, as shown through changes in performance based on previous trial accuracy during 

the burst experiment (5.0 ). However, there were no trial-by-trial shifts in performance based on 

previous trial characteristics, for example whether or not the previous trial contained an 

informative or anti-informative burst of evidence. These paradoxical results highlight the need to 
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further assess perceptual decisions behaviorally before attempting to understand the neural 

underpinnings. If the parameters of the decision are changing based on characteristics of the 

previous trial, hypotheses regarding brain activity should also change. 
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2.0  POINT OF PERCEPTUAL BREAK AND EFFECTS OF SIMILARITY 

2.1 INTRODUCTION 

The visual system is highly effective at identifying stimuli and does so through a series of 

specialized downstream regions for particular types of visual input (Ungerleider & Mishkin, 

1982). For example, areas MT in the macaque and a homologue in humans (V5; Tootell & 

Taylor, 1995) have been shown to process motion stimuli (e.g., direction of a moving stimulus) 

(Newsome & Pare, 1988; Britten & Newsome, 1998). The physiology of this area will partially 

determine the downstream effects of the perceptual decision process regarding the random dot 

motion paradigm used throughout this document. Neurons in the middle temporal lobe fire 

preferentially to stimuli moving in a particular direction; however, there are variations in firing 

rate dependent on the level of coherence (Britten, Shadlen, Newsome, & Movshon, 1992). As the 

level of coherence decreases, and in turn the amount of noise present in the stimulus increases, 

preferential firing does not meet the same level of activity as when the stimulus has high 

coherence. Additionally, the ability to predict the impending behavioral choice regarding 

direction of motion from any one neuron begins to fail as coherence decreases. This suggests that 

decisions regarding motion at low levels of coherence must arrive from the integration of activity 

over a pool of neurons with similar direction sensitivity (Britten, Newsome, Shadlen, Celebrini, 

& Movshon, 1996). However, although these neuronal pools demonstrate a high rate of firing for 
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the preferred stimulus, they also respond at reduced levels to directions adjacent to the preferred 

direction. Importantly, these tuning curves broaden as the coherence of the stimulus decreases 

(Britten & Newsome, 1998). This means that at low levels of coherence, the activity caused by a 

near-preferred stimulus will be closer to the activity caused by the preferred stimulus than if the 

two were presented at a higher coherence, potentially resulting in high levels of interference 

between pools during the evaluation stage of the decision process. The results from Britten & 

Newsome (1998) demonstrate that for a narrowly tuned neuron, activity falls by 50% of the peak 

amount for a stimulus 30  off the preferred direction when presented at 100% coherence. Yet, 

when coherence is decreased to 25.6% (the closest coherence level to the current studies), 

activity for the same 30  offset stimulus drops by approximately 10%. This variance in the 

sensitivity of the tuning curve has direct implications for the ability of the participant to 

accurately discriminate the direction of motion. 

Before using the random dot motion paradigm for the remaining experiments, it is 

important to test the ability of participants to adequately (i.e., significantly above chance) 

discriminate the directions of motion within the display even at low coherences. The display 

used throughout the experiments in this dissertation is a stochastic random dot display that 

replots 1000 dots in a random fashion, with a specified subset moving in one direction together. 

Experiments hereafter will use 45  increments and greater as the minimum degree difference 

between options. The goal of this experiment is to identify the direction detection threshold in 

human participants using our random dot display.  The hypothesis is that the threshold will be 

below 45 degrees of visual angle (the minimum angle used in the remaining experiments) based 

on the neurophysiological data described above and behavioral piloting results in the lab that 

have demonstrated above chance performance at 45  disparity. To assess this formally, the 
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current experiment will test discrimination with two response alternatives at 22.5 , 45 , 67.5 , 

and 90  in disparity from one another.  

A secondary goal of this experiment is to examine how changes in the similarity of the 

response options in this paradigm influences the accuracy and speed of discriminations. Previous 

studies have demonstrated that increasing the similarity of options can affect performance in 

both accuracy and reaction time. For example, similar letters (e.g., E and F) require more time to 

discriminate and result in lower accuracy compared to dissimilar letters (e.g., E and C; Ratcliff & 

Rouder, 2000). In addition, previous neurophysiological work using the stochastic random dot 

motion paradigm tested 90  discriminations compared to 180  discriminations. This resulted in 

slower neural firing buildup and slower reaction times, suggesting a more difficult decision 

(Churchland, Kiani, & Shadlen, 2008). The neurophysiological data suggests a potential 

mechanism by which similarity affects performance. As the options become more similar to each 

other, the potential for the comparison of overlapping neural pools increases. As described 

above, motion stimuli near the perceptual threshold for discrimination have the potential to 

activate more neurons due to the wide tuning curves (Britten & Newsome, 1998). In addition, 

studies of primary visual cortex have demonstrated that in certain perceptual discrimination 

tasks, perceptual ability relies on the steep slopes on either side of the tuning curve rather than 

the peak (Butts & Goldman, 2006). If activity occurs in a set of neurons that overlap from pools 

that code similar directions of motion, discrimination ability may suffer.  

There are two possible ways this might affect performance. The first way is if perceptual 

decisions occur due to a simple passing of threshold mechanism (Mazurek, Roitman, Ditterich, 

& Shadlen, 2003); in this case, increasing similarity will likely result in decreases in accuracy 

but not reaction time. The activity from the neuronal pools will still occur at the same fidelity, 
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with one reaching the threshold prior to the other. However, if the two options are so similar that 

the pools overlap, the wrong pool may reach threshold first due to variation in neural spiking 

(Butts & Goldman, 2006; Figure 4). The second way is if discrimination occurs through a brain 

area (the “comparator”) that compares the relative activity in the pools that code the presented 

options (Heekeren, Marrett, Bandettini, & Ungerleider, 2004; Lo & Wang, 2006; Kiani, Hanks, 

& Shadlen, 2006). In this case, both accuracy and reaction time may be affected. During an easy 

discrimination (i.e., the compared pools do not overlap in preference), the comparator will 

increase in activity quickly, pass threshold, and designate the pool with greater activity as the 

winner (Figure 5a, comparing either the solid bars to each other or the striped bars). If the 

comparison is difficult (e.g., the activity in the two pools of neurons under comparison are very 

close in activity; Figure 5b), an executive function of the comparator may be to delay the 

decision in order to gather more information about the stimulus. Once the comparator passes 

threshold, the decision is executed in favor of the pool with more activity. 

The results of this experiment should shed light on which of these two possibilities may 

be in action during perceptual decisions based on the resulting changes in performance as 

similarity increases. However, although decreases in accuracy may be expected by the increasing 

similarity of the options, performance in the 45  should remain significantly above chance levels 

in order to validate the use of that angle of disparity as the minimum between alternatives for the 

remaining experimental designs. 
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Figure 4. Examples of overlapping neural pools and the resulting decision process. 
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Figure 5. Example of resulting activity in a comparator brain area depending on similarity 

of alternatives. (a) Two examples of an easy decision: either the solid bars or the slashed 

bars are compared with each other, causing a high level of activity in the comparator 

region due to the large difference in activity between the red and green selective areas; (b) 

Example of a difficult decision that results in low activity in the comparator and would 

require more information before triggering a response. Note that both comparisons in (a) 

would result in the same amount of activity in the comparator, highlighting a problem with 

this theoretical approach. 
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2.2 METHODS 

2.2.1 Participants 

Forty-one healthy young adults (ages 18-25 years) were recruited from the Introduction to 

Psychology participant pool at the University of Pittsburgh. Participants were tested in groups of 

7-22 in a computer lab, with each seated at their own computer. The experiment lasted one hour 

and participants received one credit towards their course requirement. Prior to beginning the 

experiment, all participants completed a consent form approved by the Internal Review Board at 

the University of Pittsburgh. Data from 4 participants was removed for chance performance that 

indicated a misunderstanding of the task. 

2.2.2 Materials  

The experiment was conducted using EPrime software (Psychology Software Tools, Pittsburgh, 

PA) on Dell computers. The display presented white dots on a black screen contained within a 

circle of space approximately 4” in diameter; a fixation cross was in the middle of the circle. The 

dots were replotted in a random direction at a rate 60Hz. The experimenter could control both the 

direction and coherence (i.e., how many dots were moving together in the same direction) of the 

display. To indicate the options on a particular trial, “1” and “0” were presented at locations 

adjacent to the circular motion frame in a location found by drawing a straight line from the 
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center of the circle to the frame in the desired direction. Participants used a standard keyboard 

for response. 

2.2.3 Design  

Discriminations were made between 22.5 , 45 , 67.5 , and 90  pairs. The correct motion could 

be in any of 16 directions, starting at 0  (upward) through 337.5  in 22.5  increments. The other 

response option (the “comparator”) could be in either the clockwise or counterclockwise 

direction. This resulted in a 16 (direction of motion) x 4 (degree of difference) design. The 

number indicating the correct response was randomly selected to reduce any bias effects. Due to 

the large number of trials this creates, and in order to get a sufficient number of trials in the 22.5  

and 45  conditions to accurately assess the discrimination ability for the remaining experiments, 

trials were selected randomly from probability distributions with greater probabilities for 

selection of the higher similarity trials but equal probabilities for each direction of motion as the 

correct response.  

2.2.4 Procedure  

After completing the consent form, participants were given brief verbal instructions on the basic 

aspects of experiment including the task and response options. Participants were asked to place 

the index finger of their right hand on the “0” key of the number line at the top of the keyboard 

and the index finger of their left hand on the “1” key at the other end of the number line. These 

fingers were to remain in place throughout the experiment, and the experimenter reminded 

participants who removed their fingers from these locations throughout the session.  
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Participants then read a series of screens reiterating the verbal instructions about the task 

and were prompted to ask any questions they may have. Then they were given 10 practice trials 

designed to acclimate them to the task. The first trial was conducted at a high coherence level 

(80%), and succeeding trials decreased in coherence until the final three trials were given at the 

25% coherence level that remained throughout the rest of the experiment (selection of 25% 

coherence was based on prior behavioral testing that demonstrated this level to elicit a variety of 

performance levels across participants that is neither at floor or ceiling). At the end of the 

practice session participants were again prompted to ask the experimenter any questions 

regarding the task they may have. If they did not have any questions, they proceeded with the 

experiment. 

The experiment was divided into 8 blocks of 40 to 56 trials (an earlier version of the 

experiment (N = 15) had a shorter trial duration that allowed for more trials per block; this led to 

a high number of no-response trials so the trial length was increased for the remaining 

participants to increase responses). At the beginning of each block, participants read an 

instruction screen that reminded them of the response options; they pressed the space bar to 

advance to the block of trials. Blocks lasted approximately 6 minutes in duration, after which a 

screen instructed participants to briefly rest their eyes before moving on to the next block. 

Each trial consisted of two parts. The first part was a 2000ms fixation period, during 

which the fixation cross was red in color and the dots were set to all move randomly. Participants 

had been previously instructed to not respond during these periods, as there was no direction 

possible when the fixation cross was red. The second part of the trial was a 6000ms motion 

period (4000ms in the earlier version) during which the fixation cross turned white and the dots 

were set to 25% coherence towards the selected direction. The “0” and “1” white markers for 
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response options were displayed in the appropriate locations around the circular motion frame 

dependent on the condition at the start of the 6000ms motion period (Figure 6). Participants were 

instructed to respond during this period with the response option they believed corresponded 

with the overall motion of the dots. Trials lasted the entire 6000ms (or 4000ms) period despite 

earlier responses. No feedback on performance was given. 

2.2.5 Data Scoring and Sorting  

Each trial was marked based on the response. There were four potential responses: correct 

(response matched the marker for the correct choice), incorrect (response matched the marker for 

the incorrect choice), fixation (a response was made in the fixation period prior to the trial), or no 

response. Trials with fixation responses or no response were removed from the analysis. Trials 

with correct and incorrect responses also had an associated reaction time that was calculated by 

the amount of time between the start of the coherent stimulus and the button press in response. 
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Figure 6. Timeline illustrating two trials of the perceptual break experiment. 
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2.3 RESULTS 

2.3.1 Accuracy 

Overall accuracy was high (M = 88.4%, SD = 6.6), indicating that participants were able to learn 

the task. Performance on the increasing similarity of options is shown in Figure 7. A repeated-

measures ANOVA was used to analyze the accuracy rates for the degree of difference (4 

conditions; 90 , 67.5 , 45 , and 22.5 ), the correct direction of motion (16 conditions; 0  to 

337.5  in 22.5  increments), and the interaction between the two variables. The main effect of 

degree of difference between response options was significant (F(3,99) = 61.881, p < .001). 

Accuracy for the 22.5  condition (M = 79.8%, SE = 2.0) was significantly lower than all other 

comparison conditions (P < .001 for all pairwise comparisons). In addition, the 45  condition (M 

= 91.2%, SE = 1.2) was significantly lower than the 90  condition (M = 93.9%, SE = 1.0; p = 

.01). However, the 67.5  condition (M = 93.6%, SE = 1.0) was not significantly different from 

either the 45  or 90  conditions. This demonstrates that at fine levels of similarity (22.5  

difference in response options), accuracy begins to decline. However, larger degrees of 

difference have less or no effect on performance. 

The main effect of direction for the correct option was also significant (F(15,495) = 

4.521, p < .001; Figure 8). Post-hoc pairwise comparisons indicate that this effect is driven by 

the 135  (M = 84.5%, SE = 2.1) and 315  (M = 83.8%, SE = 2.2) directions, which are 

significantly different from 0  (M = 94.3%, SE = 1.3) and 180  (M = 93.4%, SE = 1.3)(p < .01 
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for all four pairwise comparisons). In addition, the 315  condition is also significantly different 

from trials in which 22.5  is correct, (M = 92.3%, SE = 1.3; p =.01) and 270  is correct (M = 

91.9%, SE = 1.2; p = .05). All other pairwise comparisons were not significant, indicating that 

aside from the 135  and 315  conditions, there was not a bias in favor or against particular 

directions of motion. 

The interaction between degree of difference and direction of correct motion was also 

significant (F(45,1485) = 2.02, p < .001). This again is driven by the 135  and 315  conditions in 

which the 90  comparisons for these directions decrease in accuracy compared to the 67.5  

comparisons (86.5% vs. 89.5% and 83.6% vs. 90.2% respectively). Although this suggests there 

was an error in experimental coding, no error could be found. 

2.3.2 Reaction Time 

Responses were on average made about halfway through the trial (M = 2162.67ms, SD = 

407.25). A repeated-measures ANOVA was used to analyze the reaction times for the degree of 

difference (4 conditions; 90 , 67.5 , 45 , and 22.5 ), the correct direction of motion (16 

conditions; 0  to 337.5  in 22.5  increments), and the interaction between the two variables. The 

main effect of degree of difference between response options was significant (F(3,99) = 32.17, p 

< .001). Post-hoc pairwise comparisons reveal the same effects as for accuracy. The 22.5  

difference between response options (M = 2250.14ms, SE = 65.44) took significantly longer than 

all other differences (all comparisons p < .001). In addition, the 45  condition (M = 2051.57ms, 

SE = 64.52) took significantly longer than the 90  condition (M = 1962.25ms, SE = 57.87; p = 

.02). The 67.5  condition (M = 2025.30ms, SE = 59.09) was not different from either the 45  or 
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90  conditions (Figure 9). This increase in reaction time as options became more similar suggests 

that the decision process requires more time, and therefore potentially more information as it 

accumulates over time, than when the options are further apart. 

The main effect of correct direction of motion was also significant (F(15,495) = 4.78, p < 

.001). This appears to be driven by shorter reaction times for stimuli on the vertical axis (up, M = 

1930.19ms, SE = 69.02; down, M = 1872.48, SE = 55.91) compared to directions off the vertical 

axis. These effects are summarized in Figure 10. In addition, there was a significant difference 

between the 270  (M = 2010.51ms, SE = 73.93) and 292.5  (M = 2205.56ms, SE = 75.79; p = 

.03). The shorter reaction times for stimuli on the vertical axis suggests a processing preference, 

as has been previously demonstrated in object recognition (the “oblique effect”; see Appelle, 

1972 for review). 

The interaction between degree of difference and the motion of the correct direction was 

not significant (F(45,1485) = 1.159, p = .22). All directions of motion had increasing reaction 

times as similarity increased.  
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Figure 7. Accuracy as a function of angle of disparity. 

 

 

Figure 8. Accuracy as a function of direction of motion (0  is up, 90  is right). 
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Figure 9. Reaction time as a function of similarity. 

 

Figure 10. Reaction time as a function of direction of motion (0  is up, 90  is right). 
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2.4 DISCUSSION 

The results demonstrate only minor changes in performance at angles of disparity of 45  or 

greater, with the effect of similarity only significantly decreasing accuracy and increasing 

reaction time at very high levels of similarity (22.5  angle of disparity between the two possible 

response options). However, these changes to both measures of performance agree with the 

effects of response option similarity found in research on both perceptual decisions (Ratcliff & 

Rouder, 2000) and higher levels of decision making (e.g., medical diagnosis based on a list of 

symptoms; Biggs, Bedard, Gaber, & Linsmeier, 1985). In addition, the changes in response time 

directly agree with previous work with the random dot motion task in behavioral (Ball & 

Sekuler, 1980) and neurophysiological (Churchland, Kiani, & Shadlen, 2008) studies. Although 

increasing the similarity of choices did not appear to affect accuracy and reaction time in a linear 

fashion, it is likely due to the large grain size of the comparisons. As the degree of difference 

decreased down to 45  and 22.5 , performance began to decrease in accuracy and increase in 

reaction time. Had the degree of difference between possible options decreased even further 

(e.g., 11.25  between response options), the pools of neurons involved in the decision (Mazurek, 

Roitman, Ditterich, & Shadlen, 2003) would involve higher overlap in tuning. In that case, it is 

likely that the effects would have grown larger.  

It is possible that the motion stimulus does not have enough variation in order to induce 

these similarity differences. Since coherence was kept constant in order to equate neural activity 

levels across comparisons, the only attribute altered was the degree of difference between the 

options. Previous studies of similarity in decision making have often used multiple attribute 

contexts (like medical diagnoses based on a variety of symptoms; Biggs, Bedard, Gaber, & 
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Linsmeier, 1985), but the motion stimulus does not have as many degrees of freedom. This lack 

of variety may constrain the extent to which similarity can have an affect in the current context. 

While the effect of similarity was an important secondary goal of this experiment, the 

primary goal was to test whether or not the remaining experiments would be compromised by the 

minimum 45  angle of disparity between response options when 8 options are presented. The 

high performance rate in the 45  condition confirmed that the difference is distinguishable and 

therefore able to be used in the remaining experiments. However, there was a significant change 

in performance between the 90  and 45  conditions, so caution will be taken when discussing 

changes in performance when there are also changes in the angle of disparity between response 

options (e.g., between the 4-choice and 8-choice conditions in 3.0 ). In addition, there appears to 

be a bias towards motion along the vertical axis, particularly in the speed of decisions. While all 

the experiments use counterbalancing to avoid these effects overall, any indication that direction 

of motion is affecting the results above the intended manipulations in the remaining studies will 

be examined in a separate analysis. 
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3.0  INCREASING CHOICES 

3.1 INTRODUCTION 

The previous chapter investigated how increasing the similarity of options might affect 

reaction time and accuracy. The results indicated that similarity might not affect performance 

until the identified alternatives are highly similar (e.g., 22.5  in disparity or less for the present 

paradigm). While the effect was not as strong as hoped, it still demonstrated that aspects of the 

response options themselves might affect the decision process. In addition to similarity between 

possible response options, it is also likely that the number of available options could make a 

difference in performance. In simple stimulus-response paradigms, increasing the number of 

possible items to be displayed increased reaction time linearly (Hyman, 1953). This suggests that 

processing slowed as there are more associations to consider upon stimulus presentation. 

However, stimulus-response paradigms do not require interpretation of the stimulus, necessarily. 

If the stimulus is presented unambiguously (i.e., without added noise or disruption), it is a matter 

of conditioned execution of the correct response. The current chapter examines how increasing 

the number of possible response options affects the speed of interpretation and execution of a 

decision for an ambiguous perceptual stimulus. 

The majority of previous studies on perceptual decisions require a choice between two 

dichotomous options (e.g., face/house, Heekeren, Marrett, Bandettini, & Ungerleider, 2004; 
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face/car, Philiastides & Sajda, 2007; Philiastides, Ratcliff, & Sajda, 2006). However, we do not 

always have the benefit of determining binary decisions. The primary goal of this experiment is 

to test how the increase from 2 response alternatives to more (in the present experiment, 4 or 8 

alternatives) affects both accuracy and reaction time. While this does not assess completely blind 

decisions in which the number of alternatives is unknown or infinite (e.g., object identification), 

it should begin to establish how performance changes as possibilities increase under controlled 

conditions. As mentioned above, increasing the number of items in the stimulus-response 

paradigm slowed responses but did not change accuracy (Hyman, 1953). However, the lack of a 

change in accuracy appears to be largely due to the task instructions, which required a low error 

rate and specific timing of responses after the stimulus was presented. In fact, the design of 

Hyman’s experiment was an attempt to adjust the task based on changes in accuracy in an earlier 

paper (Hick, 1952) that he believed failed to capture the true effect because it allowed for 

strategies that increased speed and errors at the same time. Therefore, without the strict response 

instructions (i.e., accuracy is unconstrained in the current experiment), it will be interesting to 

see if increasing the number of response alternatives in an ambiguous stimulus situation affects 

both reaction time and accuracy, as has been found in 4-choice decision tasks (Churchland, 

Kiani, & Shadlen, 2008; Leite & Ratcliff, 2010). 

Although increasing the number of response alternatives in this type of motion 

discrimination experiment inevitably increases the similarity of the alternatives, the previous 

experiment demonstrated that there is only a slight decrease in performance from a 90  to a 45  

angle of disparity in two-choice decisions. Therefore it seems safe to assume that as long as the 

minimum degree of difference between alternatives is 45 , there should not be adverse affects of 

the increase in similarity in addition to the increasing number of alternatives. Just as the previous 
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experiment began to find decreases in accuracy and increases in reaction time as similarity 

increases, it is expected that adding response alternatives will create similar results. However, 

because the 45  difference condition did not large changes in performance, changes in the 

current experiment above those levels can be attributed to the addition of response alternatives 

instead of similarity.  

 It is expected that response time will increase as there are more alternatives to vet (Leite 

& Ratcliff, 2010; Churchland, Kiani, & Shadlen, 2008). There are two potential increasing 

patterns. First, response time may increase in a linear fashion with the number of alternatives, 

demonstrating that each added alternative adds a constant load to the process, similar to the 

results of the stimulus-response paradigm (Hyman, 1953). This appears to be true for when 

moving across 2-, 3-, and 4-choice decisions (Leite & Ratcliff, 2010), but it is unclear how this 

will extend to 8-choice trials. Therefore, the second possibility is that response time may reach a 

plateau as alternatives increase as the subjects adopt a decision strategy (e.g., use of early 

information to eliminate clear non-options on a particular trial to reduce number of alternatives; 

Payne, Bettman, & Johnson, 1988). Previous decision research has shown the use of preference 

trees as a fast way to eliminate improbable options when considering decisions with multiple 

relevant aspects (Tversky & Sattath, 1979); it is possible that a similar heuristic may be used 

during simple perceptual decisions. The pattern of reaction times based on the number of 

possible options should dissociate these two theories. A consistent linear increase in reaction 

time as the number of alternatives increases will support the theory that each alternative adds a 

consistent amount of processing to the cognitive load (Figure 11, solid line). On the other hand, 

if the increase in reaction time slows or reaches a plateau, a strategy account will be supported 

(Figure 11, dashed line).  
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Figure 11. Predicted differences in reaction time depending on either a consistent load with 

each new alternative or strategy adoption. 
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A secondary goal of this experiment is to gauge whether or not strategy towards the task 

changes as the stimulus space is crowded with more possible options. Previous research in 

decision making suggests that people use heuristics or strategies to solve difficult decisions 

quickly (Tversky & Sattath, 1979; Einhorn & Hogarth, 1981; Payne, Bettman, & Johnson, 1988). 

As the number of possible alternative increases, it is likely that participants are adopting one or 

more strategies to simplify the problem space. These strategies may include ruling out obvious 

non-options, dividing the problem space a priori to bin evidence quickly, or starting with certain 

biases towards the probability of one result over the others. This will be assessed by subjective 

feedback on strategy approach, with questions directed at these possibilities.  

A final goal of this experiment is to test how the requirements for response output might 

affect speed and accuracy. Previous experiments on perceptual decisions have used a single 

button to indicate the discrimination, which may leave doubt as to the veracity of the decision 

(Ploran et al., 2007; Ploran et al., in preparation). While the previous experiments on object 

recognition did garner enough error trials to conduct a separate analysis (Wheeler et al., 2008), 

there remains concern that without a definitive option-related response output the decision is 

made under slightly different conditions (e.g., a lower threshold for making the initial response 

because there is less concern regarding performance). In theory, while there might be marginal 

differences in reaction time based on different motor output (one button responses might be 

faster than selection of the appropriate button out of up to 8 options), accuracy should be similar. 

However, this assumes that participants are not motivated to boost their reported accuracy in the 

one-button version of the task (see Methods). The following experiment will examine how the 

reported accuracy in the one-button version of the task compares to actual accuracy computed 

through definitive response options. It will also assess the potential timing differences between 
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using one motor action to respond versus several motor actions, each associated with a unique 

response option.  

3.2 METHODS 

3.2.1 Participants 

Seventy-one healthy young adults (ages 18-25 years) were recruited from the Introduction to 

Psychology participant pool at the University of Pittsburgh. Participants were tested in groups of 

7-22 in a computer lab, with each seated at their own computer. The experiment lasted one hour 

and participants received one credit towards their course requirement. Prior to beginning the 

experiment, all participants completed a consent form approved by the Internal Review Board at 

the University of Pittsburgh. 

One set of participants (N = 20) was tested in the one-button version; one participant was 

removed from the analysis for performance outside 2 standard deviations below the mean. 

Another set of participants (N = 27) was tested in the definitive response version of the 

experiment. Data for two participants was removed for performance outside 2 standard 

deviations below the mean that indicated a misunderstanding of the task or response options. A 

final set of participants (N = 24) was also tested on the one-button version of the experiment; in 

addition, these participants were given a strategy assessment at the end of the session. 

Unfortunately, due to experimental error, the accuracy and reaction time data for these 

participants is unusable, but the strategy assessments remain intact. 
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3.2.2 Materials  

The experiment was conducted using EPrime software (Psychology Software Tools, Pittsburgh, 

PA) on Dell computers. Responses were made via the keyboard attached to the computer. The 

display presented white dots on a black screen contained within a circle of space approximately 

4” in diameter; a fixation cross was in the middle of the circle. The dots were replotted in a 

random direction at a rate of 60 Hz. The experimenter could control both the direction and 

coherence (i.e., how many dots were moving together in the same direction) of the display.  

3.2.3 Design  

Trials were broken into blocks with instructions indicating whether the block would include 2, 4, 

or 8 choices. In the 2- and 4-choice conditions, the instructions also indicated the possible 

directions of the choices (e.g., up/down or left/right). Only the vertical and horizontal axes were 

used in the 2-choice condition; the 4-choice condition used the cardinal directions in one case 

(i.e., up, down, left, and right) and the diagonal directions in another case. In order to equate and 

counterbalance the number of occurrences per each response choice (e.g., left) in the 4- and 8-

choice blocks, the number of trials and number of blocks were different for each number of 

choices. There were two 2-choice blocks with 20 trials each, three 4-choice blocks with 28 trials 

each, and four 8-choice blocks with 32 trials each. This resulted in blocks approximately 3 to 6 

minutes in length.  
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3.2.4 Procedure 

After reading and signing consent forms according to the rules of the Internal Review Board at 

the University of Pittsburgh, participants were verbally instructed about the basic aspects of the 

experiment including a description of the experiment, task, and response options. Participants 

then read a series of instruction screens reiterating the verbal instructions and were prompted to 

ask questions if necessary. They then started a three-minute practice session containing 10 trials 

in the 8-choice version of the experiment. The coherence level started at 80% for the first trial 

and shifted down in increments to 25% for the last three trials in order to acclimate the 

participants to the task. After completing the practice session participants were again prompted 

to ask any questions they may have regarding the task. They then proceeded into the experiment 

and responded according to their particular instructions and trial structure, elaborated below. 

After completion of the experiment, participants were thanked for their time and allowed to leave 

the computer lab. 

3.2.5 One-button Version 

In this version of the experiment, participants responded using the Space bar and the task 

structure was slightly different. The trial started with 2000ms of random motion and a red 

fixation cross; the period of motion designated by the white fixation cross was broken into two 

parts. The first part was 6000 ms of motion at 25% coherence during which participants were 

instructed to press the Space bar when they were pretty confident as to the direction of motion. 

After the 6000 ms allowed for the initial decision, 2000 ms of 90% coherent motion was 

presented for the participants to verify their response. If their initial guess was correct, 
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participants pressed the Space bar again. If their initial guess was incorrect, participants did not 

make a second response. Verbal instructions prior to the experiment emphasized the likelihood 

of incorrect responses and stressed the need to be honest over the need to report high accuracy.  

3.2.6 Definitive Response Version 

In this version of the experiment, participants responded using the number pad on the right side 

of the keyboard. Instructions designated the “8” key as up, the “2” key as down, the “6” key as 

right, the “4” key as left, and the remaining “1”, “3”, “7”, and “9” keys as the respective diagonal 

directions. Participants were to rest their right index finger on the “5” key (in the middle of the 

pad) and press the appropriate button to indicate the direction of motion on each trial.  

Each trial began with 2000ms of 0% coherence motion with a red fixation cross. 

Participants had been instructed that periods with a red fixation cross were at 0% coherence and 

therefore did not require a response as there was no motion present. The fixation cross then 

changed to white for 8000 ms and the coherence level was raised to 25%. Depending on the 

block, the direction of motion was randomly selected from among the possible choices, with 

equal numbers of trials per direction chosen throughout the block. Participants responded by 

pressing the appropriate button on the number pad as described above. 

3.2.7 Strategy Assessment 

A portion of the participants was asked to report their general task strategy at the end of the 

experiment. The debriefing questionnaire began with general open-ended questions regarding 

confidence level at the decision point for each block type. It then presented several options for 
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how participants might have divided the visual space in order to complete the task effectively in 

the 2- and 4-choice blocks (the 8-choice condition was left out due to time constraints; Section 

1.01(a)(i)Appendix B). Participants were asked to give a percentage for each option as to how 

close it was to their actual strategy. The questionnaire presented several complementary pairs of 

strategies for the 2- and 4-choice versions to investigate whether participants maintained a 

similar strategy across blocks or changed strategies according to the number of options. 

3.3 RESULTS 

3.3.1 One-Button Version – Accuracy 

Overall performance was extremely high (M = 91.47%, SD = 8.15), indicating there may be 

some motivation to misreport accuracy. A repeated-measures ANOVA found that the main effect 

of number of choices was not significant (F(2,38) = 2.23, p = .12). Accuracy was similar in the 

2-choice (M = 91.31%, SD = 12.72), 4-choice (M = 88.57%, SD = 12.54), and 8-choice (M = 

90.47%, SD = 10.29). As already mentioned, this suggests some motivation (or lack of 

motivation) to misreport accuracy and complete the task dishonestly. 

3.3.2 One-Button Version – Reaction Time 

Overall reaction times were well within the 6000ms of motion during the trial prior to the 

2000ms verification stage (M = 2154.44ms, SD = 553.46). However, a repeated-measures 

ANOVA found that the main effect of number of choices was not significant (F(2,36) = .373, p = 
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.69). The 2-choice (M = 2194.10, SD = 679.37), 4-choice (M = 2123.31, SD = 642.31), and 8-

choice (M = 2186.56, SD = 495.25) were all similar in speed. It is unclear why reaction times did 

not change. Even if participants were misreporting accuracy, there could still be some changes in 

the initial response phase. It is likely that participants, realizing that accuracy was self-reported, 

weren’t bothering to attend to the task at all, causing faster responses in which the participants’ 

were not as confident as required for the definitive response version. 

3.3.3 Definitive Response Version - Accuracy 

Overall performance was high (M = 82.06%, SD = 14.92), indicating that participants were able 

to complete the task effectively. Unlike the one-button version, a repeated-measures ANOVA 

found that the main effect of number of choices was significant (F(2,48) = 29.60, p < .001); the 

2-choice condition was the most accurate (M = 93.11%, SD = 8.4), followed by the 4-choice 

condition (M = 89.75%, SD = 11.81), and the 8-choice was least accurate (M = 74.62%, SD = 

19.60; Figure 12). While the 2- and 4-choice conditions were not significantly different from 

each other, both were significantly more accurate than the 8-choice condition (both p < .001). 

This suggests that when participants are required to make a specific response for each option, 

adding choices to task causes a decrease in the accuracy of the decision process. 

3.3.4 Definitive Response Version – Reaction Time 

Overall reaction times were well within the 8000ms of motion during the trial (M = 3074.68ms, 

SD = 568.52). A repeated-measures ANOVA found that the main effect of number of choices 

was significant (F(2,48) = 27.26, p < .001; Figure 13). The 2-choice (M = 2671.49, SD = 695.56) 



 66 

and 4-choice (M = 2674.29, SD = 663.77) conditions were equal in speed, while the 8-choice 

condition was significantly slower (M = 3449.65, SD = 617.59; both post-hoc comparisons were 

p < .001). This suggests that the decision process is affected by the number of choices available, 

but perhaps not in a linear fashion as expected from the stimulus-response literature. 

3.3.5 Definitive Response version – Angular disparity of errors 

As more response alternatives are available, evidence is divided among finer grain distinctions. 

Therefore, we would expect that errors should be made through selection of a response 

alternative similar to the correct alternative, not a random other possibility. To assess this, errors 

in each block were sorted by the angle of disparity from the correct response alternative 

(regardless of clockwise or counterclockwise direction) and then entered into a one-way repeated 

measures ANOVA per block (Figure 14). The data was analyzed per block to avoid data loss due 

to high performance in the 2-choice condition, which would eliminate data points from other 

conditions if a 3x4 ANOVA was performed instead (i.e., participants with 100% correct 

performance in the 2-choice condition would be removed from all conditions). The numbers of 

retained participants per analysis are reported with the statistics below. 

There are two predictions of interest. First, if participants are performing the task 

correctly, errors should be isolated to 180  in disparity in the 2-choice block and 90  and 180  in 

the 4-choice block. Errors that are 45  in disparity from the correct response alternative are likely 

the result of motor error rather than selection error. Second, in the 8-choice block, in which all 

buttons are associated with a response, there should be a higher proportion of incorrect responses 

made with a 45  angle of disparity off the correct alternative than other angles of disparity. 

Importantly, errors of 45  in the 2- and 4-choice can be used to calculate a more accurate 
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depiction of selection error in the 8-choice condition by subtracting the 2- and 4-choice 45  error 

baseline rate from the 45  error rate in the 8-choice block. 

The one-way repeated-measures ANOVA (N = 16) with 4 levels of angular disparity 

(45 , 90 , 135 , and 180 ) for the 2-choice block resulted in a significant main effect (F(1.23, 

18.45) = 116.54, p < .001). Post-hoc pairwise comparisons illustrate that the majority of errors 

were made at 180  in disparity from the correct response alternative, with no difference among 

the rates for 45 , 90 , and 135  disparities (all comparisons p > .5). Only 2.5% of errors were 

made at 45  in disparity from the correct response, suggesting that motor error was low.  

The one-way repeated-measures ANOVA (N = 22) for the 4-choce block also resulted in 

a significant main effect (F(1.65,34.72) = 12.71, p < .001). Post-hoc pairwise comparisons 

highlighted a higher proportion in the 90  and 180  disparities versus the 45  and 135 disparities 

(p < .05), with no difference within the pairs. This result combined with the finding of high 

errors in the 180  disparity in the 2-choice block confirms that participants were responding 

according to the directions for available response alternatives per block. In addition, there again 

were a low proportion of errors at 45  in disparity (5.6%). 

The one-way repeated-measures ANOVA (N = 25) for the 8-choice block again resulted 

in a significant main effect (F(1.70,40.87) = 31.99, p < .001). Post-hoc pairwise comparisons 

highlighted no difference in the proportion of errors at 90 , 135 , and 180  in disparity (all p > 

.2), but significant differences between each of these angles and errors at 45  in disparity (all p < 

.001). These results remain significant in the same pattern even when the proportion of errors in 

the 45  condition in the 8-choice blocks were adjusted by subtracting the average proportion of 

errors at 45  in disparity in the 2- and 4-choice blocks on a subject-wise basis. In addition, the 

proportion of 45  errors appears to double in magnitude from the 2- to 4-choice blocks, so a 
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second adjustment was made to the 8-choice block by subtracting double the proportion of 45  

errors from the 4-choice block to mimic this increasing trend. Even with this liberal adjustment, 

the pattern remains the same (though the main effect did decrease to p = .04). The continued 

significance despite adjustments for baseline motor error confirms that errors in the 8-choice 

block were likely due to the decision process rather than an increase in motor errors. 

3.3.6 Strategy Assessment 

Participants responded an average confidence level at the initial button press of 53.75% (SD = 

24.85). While this is lower than expected (past object recognition experiments with a similar 

structure have reported confidence of approximately 85%; Ploran et al., 2007), this appears to be 

due to a handful of participants reporting confidence levels in the 10-30% range. Instructions 

emphasized maintaining a high level of confidence, so these low reported values suggest either a 

low level of motivation or a lack of understanding of either the instructions or question. 

Excerpts from the open-ended section of the questionnaire are included at the end of the 

chapter. A large proportion of the participants (11 out of 24) explicitly mentioned focusing on 

the fixation cross, which suggests the instructions to maintain fixation throughout the experiment 

were heeded appropriately. In addition, several subjects (6 out of 24) mentioned trying to relax 

their vision or not to focus too hard in order to see the whole circle of dots. In general, the 

answers to the open-ended question did not vary substantially, and several participants 

spontaneously mentioned strategies similar to those assessed in the close-ended questions 

discussed below. 

In the close-ended section of the questionnaire, participants rated a set of pictures 

depicting possible ways to divide the circle of dots, with marks to indicate areas of attention and 
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inattention (1.0 ). Of the three options participants rated for the 2-choice decision (Figure 15), the 

third option was the closest to their chosen strategy (M = 54.77%, SD = 39.95), followed by the 

second option (M = 35.91%, SD = 34.35), and then the first (M = 25.45%, SD = 35.15). A 

repeated-measures ANOVA found that the main effect of strategy choice was significant 

(F(2,42) = 4.02, p = .02); participants attended to a narrow band of the space while ignoring the 

outside in order to choose between the two options. For the 4-choice strategies, the two options 

were equal in similarity to the chosen strategy (Figure 15; M = 52.05%, SD = 39.48; M = 

50.23%, SD = 35.74, respectively) and a repeated-measures ANOVA found that the main effect 

was not significant. There seems to be some preference for dividing the space, but there was less 

agreement on whether attempts were made to ignore some parts of the space in order to simplify 

the problem. 
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Figure 12. Accuracy as a function of number of choices in the definitive response version. 

 

Figure 13. Reaction time as a function of choices in the definitive response version. 
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Figure 14. Angular disparity of errors from correct response alternative. 
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Figure 15. Subjective assessment of possible strategies to divide the screen as the number of 

alternatives increased. 
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3.4 DISCUSSION 

The comparison of the one-button versus the definitive response versions of the 

experiment presents a stark contrast. While overall performance still remains high when 

participants press a particular button associated with each possible response, it does not match 

the self-report of those in the one-button condition. In addition, accuracy decreases and reaction 

time increases in the definitive response condition as more options are added to the problem 

space, yet both measures remain the same in the one-button version. Importantly, the analysis on 

the disparity of error responses from the correct response suggest that faulty motor execution is 

not likely able to account for the total decrease in performance. This suggests that participants 

are misreporting accuracy in the one-button task across all conditions, despite strong instruction 

to the contrary. The stable reaction time data also suggests that participants were not being as 

careful with signaling when they were confident of the direction of motion as those in the 

definitive response condition. This weighs heavily in favor of either always designing tasks with 

more definitive response options when possible, or at least training participants until they are 

reporting accuracy correctly based on verbal response at button press or comparison to a 

definitive response group. This highlights similar concerns to the design of stimulus-response 

paradigms as examined in Hick (1952) and Hyman (1953). When participants were forced to 

respond under conditions that ensured their button press was made at the moment of decision (by 

requiring a fast release of one button and selection of another with low error rates; Hyman, 

1953), response timing demonstrated a different pattern than a less controlled version of the 
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experiment (Hick, 1952). Unfortunately, the requirements used by Hyman inherently negated the 

ability to observe changes in accuracy. 

However, despite these differences in performance between the two conditions of the 

current experiment, the results from the definitive response condition still describe how 

increasing the number of choice alternatives affects performance. As mentioned above, accuracy 

decreased and reaction time increased as more choices were added to the problem space. This 

mimics the pattern found in previous perceptual decision experiments (Churchland, Kiani, & 

Shadlen, 2008; Leite & Ratcliff, 2010). It is important to note, though, that despite the decreases 

in accuracy, performance in the 8-choice condition was still well above chance levels (12.5%). In 

addition, the 2- and 4-choice decisions did not differ from each other in reaction time, suggesting 

an initial accuracy cost prior to a time cost associated with increasing available options. Given 

the high performance in the 90  condition in the similarity experiment (2.0 ) and the 4-choice 

experiment here (in which the options are 90  separated from each other), it is possible that this 

initial drop in accuracy was due to the increasing number of choices and not the increasing 

similarity of those options. The large decrease in accuracy from 4-choice to 8-choice (compared 

to a smaller decrease from 2- to 4-choice) and the significant increase in reaction time may then 

reflect both the increasing number of choices and the increasing similarity of options (similar to 

the changes in accuracy and reaction time between the 90  and 45  conditions in the similarity 

experiment).  

It is interesting to see that performance in the 4-choice condition reported here was 

approximately the same as the 90  condition in the similarity experiment reported in 2.0 . 

However, performance in the 8-choice condition was far worse than the complementary 45  (2-

choice) decision in the similarity experiment. Conservatively, accuracy is 15% lower and 
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reaction times are 1400ms slower, on average. These changes over and above the possible 

changes due to increasing similarity may be attributable to the increasing number of response 

alternatives. Considering the structure of the two popular mathematical models of the decision 

process may aid in explaining how adding options can cause a change in reaction time. In a race 

model of decision making, adding more response options would require more counters (one for 

each option), which may require more intense monitoring of ongoing activity if there is not an 

automatic trigger when a counter reaches threshold. It also means that the incoming sensory 

information and extracted evidence will have to be divided among those counters in smaller 

increments. In a diffusion model of decision making (assuming the possibility of a 

multidimensional diffusion model rather than the standard binary instantiation), increasing the 

number of response alternatives increases the space in which activity can drift. This would likely 

lead to longer paths to a boundary. In either case, decisions are likely to take longer, even if 

accuracy remains high (i.e., the threshold of activity needed to make a decision remains similar 

across trials despite increasing options). 

It is when considering this change in accuracy that the assessment of strategy may 

become relevant. The popular choices in the 2- and 4-choice conditions both involved the 

participant attending to certain parts of the field and ignoring others (Figure 14); this deviates 

from previously reported decision strategies involving the elimination of unlikely responses in 

order to concentrate evidence towards more likely alternatives (Tversky & Sattath, 1979; Payne, 

Bettman, & Johnson, 1988). However, if the common strategy involved ignoring parts of the 

stimulus field, this may account for the unexpected decreases in accuracy as the number of 

options increased. As the space is divided into smaller and smaller areas according to the number 

of response alternatives, participants attend to motion towards each option in a narrower space. 
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This results in less information and evidence per alternative despite the consistent coherence 

level across blocks and presence of motion on any trial being displayed throughout the circle. 

While a few participants reported focusing on the whole circle as their main strategy, the 

majority either spontaneously reported a division strategy or rated the division strategies highly. 

Because participants were instructed to do their best to respond on every trial, it is possible that 

under circumstances of low evidence (due to both the coherence level and the division strategy), 

participants were forced to make decisions prior to reaching threshold. This would result in the 

decreasing accuracy as number of options (and therefore division of the evidence) increased, and 

may require a timeout mechanism (or some other parameter) to execute the best decision 

possible prior to passing threshold. This potential for a timeout function in decision making will 

be assessed in the next experiment. 

3.5 EXCERPTS FROM STRATEGY ASSESSMENT 

 I tried to see if the dots would make smaller patterns of lines or streams in a consistent 

direction. 

 Pick one dot and follow it across 

 General feeling of movement, where did I perceive I’d be moving compared to the dots 

 Divided the screen into sides or quarters (for the 2- and 4-choice, respectively) 

 I focused on the dots nearest to the cross to see if I could figure out the direction. 

 I just stared at the cross and looked at the dots in my periphery 
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4.0  TIMING OF EVIDENCE 

4.1 INTRODUCTION 

Previous studies of perceptual decisions appear to fall into two procedural categories: 

brief, isolated presentations of stimuli (e.g., Ratcliff, 2002; Shadlen & Newsome, 2001) or 

continuous presentations of stimuli until response (Ratcliff & Rouder, 1998; Roitman & Shadlen, 

2002). Importantly, past studies have used a predictable relationship between the start of a trial 

and the presentation of the stimulus with minimal variation within an experiment (c.f., Green, 

Smith, & von Gierke, 1983). This is also true of the experiments in 2.0 3.0  here. However, there 

are often instances in which we are aware a stimulus is coming but do not know the specific 

timing of its presentation. We are therefore waiting for information without the ability to prepare 

for response execution. This experiment will assess how the timing of information relative to the 

expectation of its arrival affects speed of response.   

In 3.0 we saw a decrease in accuracy in the 8-choice condition, despite an increase in 

reaction time that should have allowed for enough evidence to accrue. It is possible that due to 

the division of evidence among many bins, participants may have been unable to gather enough 

evidence for any particular alternative among the 8 options. In order to execute a response prior 

to the end of each trial, participants may have used a timeout function to end the search before 

the threshold was passed. This in turn would cause the decrease in accuracy in addition to the 
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increase in reaction time. Several models of memory describe the possibility of a timeout 

function that serves to truncate search in favor of selecting the most likely option when it is clear 

no new information is forthcoming (Gillund & Shiffrin, 1984; Anderson, 2007). It is possible 

that perceptual decisions behave similarly. When confronted with ambiguous evidence towards 

an eventual decision, a timeout function would ensure that a decision is made even though the 

incoming sensory information does not provide enough evidence to pass a pre-defined threshold 

for response. This could be true both for cases in which the available evidence is ambiguous (like 

the experiment in 3.0 ) or, as in the present experiment, the availability of evidence itself is 

uncertain due to shifts in the timing. 

Before testing how the timing of evidence affects perceptual decisions, it is useful to 

consider how the process might change. In diffusion models, decisions arise from the accrual of 

evidence in a drift parameter that eventually meets a threshold. Once activity meets the 

threshold, the decision is executed in favor of the response alternative that threshold represents 

(Figure 16a). Using this framework, a timeout function could operate under two different guises. 

First, the neural mechanism that processes the decision could designate a relatively constant 

amount of time allowed for a decision; if this time is reached prior to activity passing a decision 

threshold, the response matches the closest threshold the activity would pass if given more 

time/evidence (Figure 16b). This is similar to the truncation of a memory search when no 

memory trace appears to be available (Gillund & Shiffrin, 1983; Anderson, 2007). On the other 

hand, the threshold needed to execute a decision could decrease over time, similar to how the 

start point and drift rate can vary in traditional diffusion models (Ratcliff & McKoon, 2008). 

Although many decision models include thresholds, there is often more discussion about the shift 

in start point due to the need for simplicity and the inclusion of as few integrals into the 
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mathematical instantiation of the model as possible (Ratcliff & McKoon, 2008). However, 

constraining the model for the purposes of simplicity may also be constraining interpretation of 

the results. For instance, changes in the start point are typically thought to occur as an indication 

of bias (Ratcliff, 1985; Voss, Rothermund, & Voss, 2004), much like low levels of neural firing 

for a particular option that may be forthcoming (Schultz, 2000). While this is likely the case 

when only two alternatives are present and the participant can keep track of the general ongoing 

ratio, it is unclear whether this continues to be true when more response alternatives (in the 

present case, eight) are available. Instead of changing the start point, it is possible that certain 

tasks may require a change in threshold. Previous accounts of diffusion models have allowed for 

changes in threshold, but only under particular instructions such as the speed/accuracy trade-off 

paradigm (Fitts, 1966; Ratcliff & McKoon, 2008). A potential mechanism for the timeout 

function, however, could be that as the decision process extends in time, the threshold the 

accumulating evidence needs to pass decreases, thereby increasing the chances of passing the 

boundaries and making a response (Figure 16c). This would be similar to the changes in 

threshold needed to increase speed under speed-emphasized instructions versus the threshold for 

accuracy in the complementary instructions (Fitts, 1966; Ratcliff & McKoon, 2008), but would 

occur without explicit instruction. 
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Figure 16. Examples of how diffusion models may include a timeout function. A fast 

decision (e.g., low ambiguity evidence) is represented in blue and a slow decision (e.g., high 

ambiguity evidence) is represented in red; (a) Traditional diffusion model without a 

timeout function in which evidence accrues in the drift parameter and the decision is 

executed upon reaching the upper and lower bound; (b) Model with a predesignated time 

(vertical dashed line) at which a decision will be made in favor of the closest bound if the 

threshold has not yet been passed; (c) Model with a decreasing threshold as time extends 

(note: sigmoidal shape is for illustration purposes only). 
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While both of these possibilities would result in lower accuracy due to insufficient 

perceptual evidence to pass the initially high decision threshold, there are slightly different 

predictions with regard to reaction time. For the timeout option, with a definitive pre-designated 

time at which a decision is made, we would expect a consistent mean reaction time across 

responses when evidence is not forthcoming. By this view, in the current line of investigation in 

which a motion signal can appear transiently at any point in a long time window, we would 

expect participants to consistently false alarm earlier in the trial for trials in which motion is 

presented very late. The time at which participants false alarm should be similar across the later 

conditions (e.g., when motion is presented 6 seconds or 8 seconds into the trial) if a pre-

designated time is being used. For the variable threshold option, in which the threshold 

continually lowers as time goes on, response times should be related to the meeting of increasing 

evidence and the decreasing threshold. Under the same assumptions as random walk models, 

responses should vary in time based on physiological noise in interpreting incoming information 

and extracting evidence (Ratcliff, 1978; Smith, 1986; Ratcliff & McKoon, 2008), and may allow 

for longer waiting periods than a pre-designated timeout. This variation dependent on 

physiological noise would create a wider distribution of response times across conditions, 

without clustering around one specific time point late in the trial. The following experiment will 

test how the timing of incoming evidence is incorporated into the final decision, and will 

examine the resulting changes in accuracy and reaction time. Reaction times that tightly cluster 

together late in the trial with a large number of false alarms will support the timeout model, 

while spread out reaction times more associated with the timing of the stimulus presentation will 

support the variable threshold model. 
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4.2 METHODS 

4.2.1 Participants 

Sixty-one healthy young adults (ages 18-25 years) were recruited from the Introduction to 

Psychology participant pool at the University of Pittsburgh. Participants were tested in groups of 

10-22 in a computer lab, with each seated at their own computer. The experiment lasted one hour 

and participants received one credit towards their course requirement. Prior to beginning the 

experiment, all participants completed a consent form approved by the Internal Review Board at 

the University of Pittsburgh. 

4.2.2 Materials  

The experiment was conducted using EPrime software (Psychology Software Tools, Pittsburgh, 

PA) on Dell computers. Responses were made via the regular keyboard attached to the computer. 

The display presented white dots on a black screen contained within a circle of space 

approximately 4” in diameter; a fixation cross was in the middle of the circle. The dots were 

replotted in a random direction at a rate of 60Hz. The experimenter could control both the 

direction and coherence (i.e., how many dots were moving together in the same direction) of the 

display.  



 83 

4.2.3 Design 

A 2000ms section of 25% coherent motion was embedded within each 10000ms trial. This 

section of motion was implemented at 5 different windows at equal intervals. In order to allow 

for enough time to respond, only the first 4 windows will be examined (see explanation of 

analysis parameters in Results). No other manipulations were included. There were 42 trials of 

each condition, for 210 total trials combined across conditions. Trials were chosen randomly and 

were broken into seven blocks of 30 trials each (approximately 6 minutes in length). 

4.2.4 Procedure  

After completing the consent forms, participants were given verbal instructions regarding the 

basic task structure, response options, and length of the experiment. Next the participants read a 

series of instruction screens reiterating this information with more detail; at the end they were 

asked to alert the experimenter of any questions they may have. Then they started a practice 

session consisting of 5 trials; afterwards they were again prompted to ask any remaining 

questions they may have. When the participants felt comfortable they proceeded on to the 

experiment, which was divided as described above. After each block of trials participants were 

asked to rest their eyes; at the end of the experiment they were thanked for their time and asked 

to leave the computer lab. 

Each trial began with 2000ms of random motion and a red fixation cross. Participants 

were instructed that periods with the red fixation cross contained no motion and no responses 

should be made at that time. The fixation cross would then change to white for 10000ms, and 

participants were to make a motion discrimination response once per trial (Figure 17). The 
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motion was set to 0% coherence except the 2000ms window of 25% motion that moved 

dependent on timing condition. When the participant felt confident about the direction of motion, 

he/she would press the corresponding number on the number pad at the right side of the 

keyboard. For example, “2” was down and “6” was right. Motion could be in any of 8 directions 

(up, down, left, right, and the diagonals). When not making responses, participants keep their 

finger on the “5” key in the middle of the number pad.  

4.2.5 Data Scoring and Sorting 

Trials were sorted based on when the 2-second bin of motion occurred (either the 1
st
 2 seconds, 

the 2
nd

 2 seconds, and so on up to the 5
th

 2 seconds of the trial). Each trial was then scored based 

the response; there were five possible responses: correct (number pressed on number pad 

matched direction of motion), incorrect (number response did not match direction of motion), 

fixation (response occurred during the fixation period prior to the start of trial), double response 

(two responses were made during the trial), and no response. Fixation, double response, and no 

response trials were removed for further analyses. The remaining correct and incorrect trials 

were sorted based on when the responses was made during the trial. Responses prior to the 

presentation of motion were labeled as false alarms. Responses during the 2 seconds of motion 

presentation and the 2 seconds immediately succeeding the motion stimulus (a 4 second window) 

were labeled as hits or misses according to accuracy. Responses more than 4 seconds after the 

presentation of motion were also discarded as it is difficult to assess whether these are late hits or 

misses, or false alarms after having failed to detect the motion.  
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Figure 17. Representation of the task. Light grey boxes indicate 0% (random) motion, dark 

grey boxes indicate 25% motion in any of 8 directions. Fixation crosses are the same for all 

trials. 
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4.3 RESULTS 

4.3.1 Accuracy and Reaction Time 

Five participants were removed from the analysis due to missing data in one or more conditions; 

this indicates that they did not learn to wait for the coherent motion and instead always 

responded within the first few seconds of each trial. Three more participants were removed from 

the analysis because their average accuracy across conditions was not above chance (note: in this 

particular experiment chance is 12.5% because there are 8 possible options at all times). In order 

to ensure accurate measurements of accuracy and reaction time, participants were required to 

have at least 3 trials per bin of data in order to be included. Using this guideline, 23 participants 

with fewer than three trials per bin per accuracy status were removed from the analysis. The 

following analyses were completed on data from the remaining 30 participants. 

To equate the amount of time available for response across conditions, only the 2000ms 

of motion (grey boxes, Table 1) and the 2000ms immediately afterwards will be analyzed for 

each condition (the maximum time possible in the 4
th
 bin condition; see Data Scoring and 

Sorting). For example, when motion was presented in the 2
nd

 condition, there were 571 trials 

during which participants attempted to make a response. In addition, the following 2000ms 

window (white box immediately to the right of the grey box) included another 667 responses to 

the motion. This division of the data results in roughly equivalent numbers of trials, though the 

4
th
 bin condition has slightly fewer (right column, Table 1). The diminished trial count in the 4

th
 

bin is due to an increase in false alarms during the 6 seconds prior to presentation of coherent 

motion. These false alarms will be analyzed in an ANOVA and incorporated into receiver-

operating characteristic analyses at the end of this section. 
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Table 1. Total number of responses across participants in each time window depending on 

trial type. Numbers in dark grey boxes indicate responses during actual motion, numbers 

within the green boundaries indicate analyzed responses (summed up in the column of 

green boxes to the right. 
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Accuracy was calculated by dividing the number of hits by the total number of trials in 

which the participants responded during the 4-second window during and after motion 

presentation as specified above. Accuracy decreased as the wait time prior to coherent motion 

increased (F(3,63.31) = 22.29, p < .001). Motion within the first 2000ms (1
st
 bin) resulted in high 

accuracy; as motion moved later in the trial, accuracy started to decrease (Table 2). Post-hoc 

pairwise comparisons reveal that the 1
st
 bin is more accurate than the others (all p < .001), the 2

nd
 

bin is more accurate than the 3
rd

 and 4
th
 bins (both p < .01), but the 3

rd
 and 4

th
 bins have similarly 

low accuracy (p > .10). This suggests that the decision process was operating with a higher 

threshold earlier in the trial that demanded more information in order to execute a response, 

leading to more accurate responses. 

Reaction time was calculated from the start of coherent motion in each trial to equate 

time across the conditions. A repeated-measures ANOVA indicated that overall reaction time, 

regardless of accuracy, decreased as the timing of motion occurred later in the trial (F(3,68.06) = 

44.54, p < .001); all post-hoc pairwise comparisons were significant (p < .03). This main effect 

of timing of the motion on reaction time is consistent for both Correct (F(3,87) = 15.30, p < .001) 

and Incorrect (F(3,87) = 31.073, p < .001) trials, indicating that the change in reaction time is an 

effect of the decision process as a whole, and does not change depending on how well the 

participant is able to interpret the incoming information. There was also a main effect of 

accuracy on reaction time (F(1,29) = 41.642, p < .001), such that Incorrect trials are faster than 

Correct trials (Table 2). However, an interaction was present (F(3,87) = 11.461, p < .001) and 

post-hoc pairwise comparisons revealed that the difference in reaction time depending on 

accuracy was only present for the 3
rd

 and 4
th

 bins (both p < .01), suggesting that it is after waiting  
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Timing of Motion Accuracy Correct Reaction Time Incorrect Reaction Time 

1st bin 69.2% (3.2) 2611.60ms (65.15) 2580.32ms (145.93) 

2nd bin 54.5% (2.9) 2349.87ms (92.09) 2216.02ms (113.93) 

3rd bin 46.5% (3.1) 2272.18ms (67.09) 1573.57ms (90.71) 

4th bin 44.1% (2.7) 2059.20ms (64.42) 1299.15ms (75.20) 

 

 

 

Table 2. Accuracy rates and reaction times depending on timing of motion (numbers in 

parentheses are standard error). Note: chance in this experiment is 12.5%. 
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for long periods of time prior to coherent information is presented that the decision process 

begins to lose fidelity. Overall, the data indicate that as decisions extend in time, the process 

through which those decisions are made changes; these changes result in faster, but less accurate 

responses once information is presented. 

4.3.2 False Alarm Rates 

One indication of a timeout function would be increased false alarm rates as the wait time before 

motion presentation increases. The longer the wait, the more likely a false alarm will occur. An 

analysis of the 5
th
 condition in which motion did not occur until the last 2 seconds of the trial, 

thus requiring 8 seconds of waiting, demonstrated an increasing number of false alarms as wait 

time increased. Trials were separated in 2-second bins to complement the timing of motion in the 

other conditions, and then the false alarm rate was calculated by dividing the number of false 

alarms by the number of trials that had not yet received a response (i.e., opportunities to false 

alarm). A repeated-measures ANOVA demonstrated that there was a higher percentage of false 

alarms at later times in the trial (F(3,87) = 65.18, p < .001). All pairwise comparisons were 

significant; descriptive statistics are presented in Table 3. Again this suggests that the decision 

process loses fidelity as the process extends in time, allowing for more premature executions of 

the decision (i.e., false alarms) prior to the presentation of information. 
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Time in Trial Mean False Alarm Rate (SE) 

0-2 sec 5.50% (1.2) 

2-4 secs 14.60% (1.2) 

4-6 secs 22.00% (1.5) 

6-8 secs 31.80% (1.8) 

 

 

Table 3. False alarm rates calculated from the 5th condition in which motion is not 

presented until 8 seconds into the trial. 
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4.3.3 Receiver-Operating Characteristic Analysis 

Sensory discrimination tasks often use a receiver-operating characteristic (ROC) analysis to 

assess participants’ sensitivity (d-prime, or d’) and selectivity (criterion, or beta). Due to the 

nature of the task, there is not an obvious way to calculate d’. Unlike tasks in which each trial 

presents a single stimulus (e.g., motion present or absent) and requires a single response (e.g., 

“present” or “absent”), the extended trial structure means that on any given trial participants have 

varying durations in which they may false alarm at the beginning of the trial and only one chance 

to make a hit or miss later in the trial. In addition, an early false alarm on a trial removes the 

opportunity for a hit once motion is presented due to instructions to only respond once per trial. 

Therefore the participant must continuously correctly reject (i.e., withhold response) for several 

seconds in order to have the opportunity to make a hit or miss once motion is presented. This 

overlapping dependence of response options may create several confounds for the ROC analysis. 

In order to capture as much as possible with this analysis, three different d’ and beta calculations 

were made. 

The first analysis assessed false alarm and hit rates for each trial type and calculated d’ 

and beta accordingly. Because it was not possible to make a false alarm when motion was 

presented in the first 2 seconds, this analysis only includes trials when the motion was in the 2
nd

, 

3
rd

, or 4
th
 bin. This analysis found that both d’ (F(2,58) = 98.58, p < .001) and beta (F(2,58) = 

151.05, p < .001) decrease as time waiting for motion increases. All post-hoc pairwise 

comparisons were significant (all p < .001; Table 4). 

The second d’ analysis focused on time within the trial, collapsed across conditions. This 

analysis calculated the probability of hits from conditions with coherent motion in the 1
st
, 2

nd
, 3

rd
, 
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or 4
th
 bins. Hit rates were calculated for each time epoch from trials in which motion was 

presented in that epoch, with responses in both that epoch and the immediately succeeding epoch 

collapsed together to account for RT differences (e.g., if motion was presented in the first bin, 

responses in the 1
st
 and 2

nd
 bins were counted for the first epoch). In order to separate the 

opportunity to false alarm at any given point with the opportunity to make a hit later in the trial,  

the false alarm rate was calculated from the 5
th

 bin. This analysis found a main effect of time 

within the trial on d’ (F(1.82, 52.70) = 69.59, p < .001). D-prime decreased in each succeeding 

time epoch within the trial (Table 5), with all post-hoc pairwise comparisons resulting in 

significance (all p < .01). Beta values also decreased as a function of epoch (F(3,87) = 82.39, p < 

.001); all post-hoc pairwise comparisons were again significant (all p < .01; Table 5).  

The third analysis redefined hits as any response made during the 4-second analysis 

window during and after motion presentation for each condition in relation to the total number of 

trials at which point motion had already been presented. In this case, accuracy was disregarded 

and any response during the 4-second window was considered a “hit”. False alarm rates were 

calculated using responses prior to motion onset in the other conditions during the 2-second time 

window for the calculated condition (e.g., for the 1
st
 condition hits were responses in the 1

st
 and 

2
nd

 bins when motion was presented in the 1
st
 bin, false alarms were responses during the 1

st
 bin 

during the 2
nd

-5
th
 timing conditions at which point motion had not yet been presented) in relation 

to the total number of trials for which a response had not yet been made (Figure 18). This 

analysis yielded some interesting results. Although there was a main effect of timing of motion 

on d’ (F(1.39,40.46) = 9.92, p = .001), this was driven by lower d’ values in the 2
nd

 condition 

than the 1
st
 and 3

rd
 conditions (both comparisons p < .05) while there was no difference between 

the 1
st
 and 3

rd
 conditions (p = 1.0). In addition, there was also a main effect of timing on beta 
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values (F(1.41,41.01) = 118.47, p < .001), with all post-hoc pairwise comparisons significant 

(Table 6). 

While the results from these ROC analyses suggest that both sensitivity and selectivity 

decrease as time spent on the decision increases, it is important to note the issues described 

earlier. In the first analysis, there is a greater opportunity to false alarm in the 4
th
 condition than 

the 2
nd

 condition. The participant must withhold response (i.e., correctly reject) for the equivalent 

of 3 trial windows (6 seconds) to reach the information in the 4
th

 bin, while they only need to 

withhold response for 1 trial window (2 seconds) prior to motion in the 2
nd

 bin. While on the one 

hand this describes exactly the issue at hand (i.e., whether or not waiting longer causes more 

false alarms), the analysis may be biasing the results by including more opportunity. There was 

an attempt to control for this in the second analysis by using only the associated bin of the 5
th

 

condition for the false alarm rate, while still maintaining the hit rate from the appropriate 1
st
, 2

nd
, 

3
rd

, or 4
th
 condition. The d’ and beta values using this technique again demonstrated decreases in 

both measures as the decision process extended in time, suggesting that participants are losing 

sensitivity and selectivity over time. 

The third analysis presents a potentially more complicated story. Again, there are 

constraints on the validity of this analysis due to different numbers of trials per calculation of hit 

rate and false alarm rate. However, there is some possibility that d’ was remaining stable while 

beta values decreased. This would complement the hypothesis that the threshold for response is 

decreasing over time (represented by beta), while overall approach to the task is remaining 

constant (represented by d’).  
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Timing of Motion d' (SE) beta (SE) 

2nd bin 1.65 (.16) 1.52 (.10) 

3rd bin .69 (.14) .78 (.10) 

4th bin -.17 (.11) -.01 (.08) 

 

 

Table 4. D-prime and beta values calculated per condition. 

 

 

 

 

Epoch in Trial d' (SE) Beta (SE) 

0-2 secs 2.40 (.17) 1.82 (.09) 

2-4 secs 1.24 (.12) 1.11 (.06) 

4-6 secs .71 (.12) .80 (.05) 

6-8 secs .35 (.10) .50 (.06) 

 

 

Table 5. D-prime and beta values calculated using hit rates from the appropriate timing 

condition and false alarm rate from the 5th condition. 



 96 

 

Figure 18. Depiction of analysis windows for third d' and beta analysis using the 1
st
 

condition as an example. Green box indicates 4-second window for hits in the 1
st
 condition; 

these responses were divided by the total number of responses in the dashed green window. 

The red box indicates the responses that were considered false alarms for the 1
st
 bin, and 

were divided by the total number of trials in the red dashed window. 

 

Timing of Motion d' (SE) Beta (SE) 

2nd bin 1.85 (.11) 1.88 (.14) 

3rd bin 1.16 (.07) .67 (.07) 

4th bin 1.68 (.15) .13 (.05) 

 

Table 6. Average values for the third d’ analysis that disregarded accuracy. 
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4.3.4 Mean Reaction Times Across Response Types 

One of the potential instantiations of a timeout function is a pre-designated time at which a 

decision must be executed regardless of what evidence has been presented. This would result in a 

relatively stable mean response time among the later conditions coinciding with the same timing 

as highest percentage of false alarm rates as indicated above. Alternatively, a variable threshold 

without a definitive time associated with it would result is a larger distribution of responses, with 

each later condition resulting in a later mean reaction time. To assess reaction times among the 

conditions, the mean of each participant’s RT distribution for each motion condition was 

calculated regardless of response type (e.g., false alarm, hit, or miss) and the pattern of RTs was 

assessed across bins 1-5. A repeated-measures ANOVA found that the mean response time 

decreased as the wait before motion was presented increased (F(2.42,70.06) = 32.12, p < .001). 

This is not surprising because the informative portion of the trial moved later across conditions, 

thereby moving the response times for hits and misses. However, the post-hoc pairwise 

comparisons highlight a more complicated story. While the 1
st
 condition is faster than all others 

(all comparisons p < .001) and the 2
nd

 condition is faster than the 3
rd

, 4
th

, and 5
th

 conditions (all 

comparisons p < .05), the latter conditions are not significantly different from each other (Figure 

19). Importantly, the average reaction times in the 4
th
 and 5

th
 conditions were prior to the 

presentation of coherent motion in those conditions, highlighting that decisions were consistently 

made prior to the presence of coherent information. In addition, the similarity of the mean 

reaction times for both the 4
th

 and 5
th
 conditions suggests that participants were unwilling to wait 

longer than a certain amount of time (approximately 5500ms per trial in the current experiment).  
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Figure 19. Mean reaction time depending on timing of motion, regardless of accuracy or 

false alarm status. 
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4.4 DISCUSSION 

These results highlight some interesting aspects of how the timing of incoming sensory 

evidence in relation to the start of the decision-making period can affect the end response out of 

that decision. The significant decreases in both accuracy and reaction time as the timing of 

evidence came later in the trial suggest that the decision process changed as it extended in time. 

Two competing hypotheses might account for these results. One theory would require that the 

timeout occur at a consistent, pre-designated time in the decision process that would function to 

maximize efficiency when it appears no new evidence will be presented, similar to discussions of 

some memory models (Gillund & Shiffrin, 1983; Anderson, 2007). At the pre-designated time, 

selection would be made of whichever response alternative was the most likely solution based on 

evidence that had accrued to that point. The other theory suggests that the threshold used to 

execute the decision process lowers over time, making it easier to execute the decision on little 

evidence but not requiring a response at a particular time. This is similar to how the threshold 

changes under speed instructions compared to accuracy instructions (Fitts, 1966; Ratcliff & 

McKoon, 2008), but would occur without explicit instruction on the part of the experimenter. 

While both hypotheses would predict decreases in accuracy due to response execution prior to 

the initial high threshold is passed, the pre-designated timeout would predict a consistency in 

mean reaction times among the later conditions while the lowering threshold would predict a 

larger distribution of reaction times across conditions.  

Not surprisingly, there was a decrease in accuracy as the timing of motion was later in the 

trial. In addition, two ROC analyses demonstrated decreases in both d’ and beta values, although 
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a third analysis presented the possibility of stable d’ values while beta decreased. Overall, the 

decrease in beta values suggests a lowering criterion to allow more responses as the trial 

continues. However, as mentioned in the Results section, it is unclear whether these values have 

any meaning given the task structure. Each trial had multiple opportunities to correctly reject or 

false alarm prior to the opportunity to make a hit or miss. The participant had to be able to 

continuously correctly reject the random motion over the course of the trial (up to 8 seconds in 

the 5
th

 condition) in order to give a single response during the coherent motion section. This 

overlapping nature involved in each trial made calculating the necessary rates difficult to do in 

isolation. In addition, the theory behind d’ assumes a 50% possibility for a hit given a stimulus 

(e.g., “old” vs. “new” responses to a studied item, or “present” vs. “absent” to a visual stimulus). 

The task in this experiment has only a 12.5% possibility of a hit given a stimulus (i.e., the 

participant identifies not only that the stimulus is present, but also the particular direction out of 

eight possibilities). Although it is possible to calculate signal detection measures for cases with 

more than two response alternatives, in which each pair of alternatives receives its own d’ 

measure (Macmillan, 1991), it continues to be unclear whether or not the task structure itself 

negates the use of a signal detection calculation. 

The results also demonstrated that when participants did wait long enough to see the 

coherent motion, reaction times to motion later in the trial were shorter than to motion early in 

the trial when measured from motion onset. That is, responses to motion in the 4
th

 bin were faster 

on average than responses to motion in the 1
st
 bin. This suggests that participants were using a 

less stringent decision rule as the trial went on in order to maximize response efficiently later in 

the trial. As a result, and as described above, accuracy was lower later in the trial. Aside from 

faster reaction times once motion was presented, overall reaction times (collapsed across false 
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alarms, hits, and misses) illustrated an interesting pattern. While average reaction times for the 

1
st
 and 2

nd
 conditions were after the presentation of motion, average reaction times for the 3

rd
 

condition were in the middle of the motion block. This is not surprising given the increase in 

speed of responses just described. However, average reaction times for the 4
th

 and 5
th

 conditions 

were prior to the presentation of motion, meaning that on average participants were responding 

before they saw any meaningful evidence (i.e., the majority of their responses in these conditions 

were false alarms). The tendency to respond prior to motion onset is confirmed by the increase in 

false alarm rate as the random motion at the beginning of the trial extended in time. What is 

particularly interesting is that the trial did not end upon response; participants still had to wait the 

full 10 seconds. This has two implications of note. First, there was no incentive for participants 

to make early responses as it would not shorten participation time. And second, participants 

would see the motion presentation late in the trial during the 4
th

 and 5
th

 conditions, which could 

in theory cause participants to learn to wait longer. Yet despite seeing motion at the end of the 

trial, it is clear given the average reaction time results that participants did not learn to wait 

longer. 

All of these findings lend support to both the lowering threshold and pre-designated 

timeout hypotheses. However, the overall reaction time data may highlight the stronger theory. 

There was no difference in mean reaction time in the 3
rd

, 4
th
, and 5

th
 conditions. Although the 

mean reaction time was within the motion period for the 3
rd

 condition, it was before motion was 

presented in both the 4
th

 and 5
th

 conditions  (Figure 20). In addition, this mean reaction time is 

consistent with the high rate of false alarms during the 3
rd

 and 4
th
 epochs. A reanalysis of the data 

in 1 second epochs (half the epoch size as the original analysis) demonstrated that the highest 

rates of false alarms occurred between 5000 and 8000ms, concurrent with the 5600ms average 
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response time across conditions (Figure 21). A repeated-measures ANOVA indicated that there 

was a main effect of timing on the false alarm rate (F(3.39,98.57) = 25.33, p < .001); in addition, 

the linear trend was also significant, indicating that the false alarm rate rose at each successive 

step (F(1,29) = 109.45, p < .001).  

The overall reaction time results suggest that the decision process in this experiment 

maintains a pre-designated time by which a decision must be made, regardless of the presence or 

absence of informative evidence. The consistency of average reaction times in the 3
rd

, 4
th

, and 5
th

 

conditions, in addition to the fact that the average times in the 4
th
 and 5

th
 conditions is prior to the 

availability of evidence, suggests that there is some mechanism pressuring for the execution of a 

response after a certain about of time (in this case, approximately 5.5 seconds). It should be 

noted that it is unlikely that this result is due to time pressure from the impending end of the trial 

(Payne, Bettman, & Johnson, 1988). The average response time is only a little more than half the 

total trial length. All trials were 10 s in length, regardless of condition or response, so there 

should not have been an inherent pressure to respond prior to, on average, 6 seconds as the 

average reaction time suggest. In some ways, the decrease in reaction time dependent on wait 

length is a bit surprising. Previous studies that used a variable wait prior to the presentation of 

the stimulus found very little shift in reaction time after an initial speed-up (Green, Smith, & von 

Gierke, 1983); however, the longest wait period in that study was slightly over 3 seconds. It is 

possible that the extension of the wait period to more than twice that length on some trials is 

triggering a mechanism not previously found. 

 This experiment examined how perceptual decisions behave when confronted with a 

dearth of evidence for a required decision. In the trials presented here, participants often began 

with a lack of information for an extended period of time, yet were required to make a response. 
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When the timing of incoming evidence is ambiguous, some mechanism must be in place to 

efficiently execute a response as soon as evidence in available. If there were insufficient 

evidence to pass threshold (even a lowered one), a timeout function as described here would 

serve as an efficient way to limit decision time. Although there may be instances in which long 

decision times do not result in adverse consequences, it is better for cognition to err on the side 

of limiting processing so as to execute responses in a fast amount of time and free up resources 

for other matters (Kiani, Hanks, & Shadlen, 2008). In the results shown here, this may be the 

case even when the inevitable end of the trial is far from the time at which this mechanism acts. 

The next experiment will examine how flexible the decision process is during the earlier portion 

of the trial, which should be unaffected by any regulatory mechanisms (as illustrated by the low 

level of false alarms here). 
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Figure 20. Mean reaction time in relation to the task structure. Yellow stars indicate the 

mean reaction time for each condition; note that stars for the 4th and 5th conditions are 

located prior to the grey box indicating the 25% coherent motion stimulus. 
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Figure 21. False alarm rate collapsed across conditions, divided into 1-second epochs. 
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5.0  FLUCTUATIONS OF EVIDENCE 

5.1 INTRODUCTION 

When faced with imperfect evidence, the perceptual decision process attempts to gather 

evidence over time to maximize the amount of useful information available towards the decision. 

However, as seen in the previous chapter, the parameters used to make that decision may change 

as this process is drawn out. When coherent motion was presented later in the trial decisions 

were faster and less accurate, suggesting a change in the threshold used to assess the data and 

execute the decision. On the other hand, coherent motion presented early in the trial was 

processed through a slower, more accurate decision process. This suggests that the timing of 

incoming information may have different effects on the decision process. This leaves open the 

possibility that other slight changes in the stimulus may influence the process, such as changes in 

the fidelity of incoming information as is examined here. 

Attempts have been made to alter the decision process through various means. Research 

is several areas of perception have tested the ability to influence decisions by electrical 

microstimulation of relevant brain areas. For example, microstimulation of the lateral 

intraparietal sulcus can change the speed of responses dependent on whether the stimulation is 

affecting neurons that are excited or inhibited by the stimulus (Hanks, Ditterich, & Shadlen, 

2006). Also, previous research has shown that presenting short, presumably imperceptible, bursts 
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of strongly coherent evidence during an otherwise difficult decision can influence the final 

decision in motion discrimination paradigms in macaques without the aid of microstimulation 

(Huk & Shadlen, 2005; Kiani, Hanks & Shadlen, 2008). Huk and Shadlen (2005) found that the 

bursts created changes in the increasing trajectory of neural firing that caused it to reach the 

common level earlier than without the burst. That is, while initially accumulating normally, the 

burst caused the accumulation rate to increase. However, the monkeys were required to maintain 

fixation until a cue, so it is unknown whether or not this would have resulted in faster reaction 

times (e.g., faster rise in activity to the common plateau level would have triggered a threshold 

and caused a detection response). In addition, Kiani, Hanks, & Shadlen (2008) found that the 

effectiveness of the burst depended on the efficacy of the stimulus it interrupted. If the burst was 

inserted into a stimulus that was already above threshold, it did not affect the result. On the other 

hand, inserting a burst into a low coherence stimulus resulted in a longer effect, and was able to 

cause that effect later in the trial (i.e., presenting the burst later in time was still effective). 

The current experiment assesses whether or not changes in the stimulus (e.g., embedded 

bursts of motion like Huk & Shadlen, 2005) can create changes in reaction time, like those found 

from direct microstimulation in Hanks, Ditterich, & Shadlen (2006). Without artificial 

stimulation of the neuronal pools involved in the decision, the current experiment relies on 

natural increases in firing due to the stimulus itself. If the increase in firing due to increased 

coherence of the stimulus is strong enough to pass the decision threshold, we should see similar 

changes in reaction time compared to the microstimulation experiment (i.e., faster when highly 

informative evidence is present than not). This will be examined by inserting bursts of strong 

evidence early in the trial, at a time when threshold levels still appear to be high based on 4.0 . 

The goal is for the burst to be short enough to not cause the immediate execution of the decision, 
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but rather to influence the overall process and alter reaction time compared to trials without a 

burst of strong evidence. If the burst is long enough to immediately execute the decision, we will 

be unable to see how intermediate pieces of evidence influence the overall decision process, 

particularly the comparison of evidence in favor of and against the correct decision, described 

presently. 

The influence of the highly informative, but shortly presented evidence should affect both 

decisions in accordance with the extra evidence and in the opposite direction as well. If early 

highly coherent information has the ability to influence a later decision we should see earlier 

responses in pro-burst blocks and later responses in anti-burst blocks compared to blocks with 

only regular non-burst trials, representing shifts in the speed of integration based on the highly 

coherent information. However, as long as the burst itself does not cause the termination of the 

decision, accuracy should remain approximately the same as the threshold for the decision 

should remain the same throughout the experiment. (If the burst does terminate the decision, 

anti-burst trials will not be accurate.) That is, the veracity of the early information should not 

affect the overall decision, just the speed with which it is made; this would be similar to a change 

in the drift rate in a diffusion model (Ratcliff, 1978). Another possibility is that while pro-bursts 

blocks will demonstrate faster responses, anti-burst blocks will be no different than regular 

blocks. This would support the theory that subjects ignore information that is contradictory to 

their current hypothesis (Mynatt, Doherty, & Tweney, 1978). 
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5.2 METHODS 

5.2.1 Participants 

Fifty-six healthy young adults (ages 18-25 years) were recruited from the Introduction to 

Psychology participant pool at the University of Pittsburgh. Participants were tested in groups of 

10-22 in a computer lab, with each seated at their own computer. The experiment lasted one hour 

and participants received one credit towards their course requirement. Prior to beginning the 

experiment, all participants completed a consent form approved by the Internal Review Board at 

the University of Pittsburgh. 

5.2.2 Materials 

The experiment was conducted using EPrime software (Psychology Software Tools, Pittsburgh, 

PA) on Dell computers. Responses were made via the keyboard attached to the computer. The 

display presented white dots on a black screen contained within a circle of space approximately 

4” in diameter; a fixation cross was in the middle of the circle. The dots were replotted in a 

random direction at a rate of 60 Hz. The experimenter could control both the direction and 

coherence (i.e., how many dots were moving together in the same direction) of the display.  

5.2.3 Design 

Three different trial types were used in this experiment; all had eight possible directions of 

motion (the four cardinal directions and the four diagonals, separated by 45 ). The basic 
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(“regular”) trial lasted 16 seconds and included eight 2000ms segments. Over the course of these 

segments, coherence of motion began at 5% and increased in 5% increments to 35% and 

direction of motion was always the same across segments. The final 2000ms segment was 85% 

coherent motion, during which participants verified their response (see Procedure). On some 

trials (“pro-burst”), the third segment (beginning 4000ms into the trial) was altered to include a 

50ms burst of 85% coherent motion. The burst occurred 200ms into the segment to reduce 

visibility of the manipulation, and was in the same direction as the rest of the segments. On other 

trials (“anti-burst”), the trial structure was the same as for “pro-burst” but the direction of motion 

in the burst was 180  in rotation in comparison to the rest of the trial. 

Trials were separated into four types of blocks. “Regular” blocks contained only 

“regular” trials to assess baseline performance on the task. “Pro” blocks contained a 25:75 mix of 

“pro-burst” and “regular” trials. “Anti” blocks contained a 25:75 mix of “anti-burst” and 

“regular” trials. “Mixed” blocks contained a 25:25:50 mix of “pro-burst”, “anti-burst”, and 

“regular” trials. The ratios were selected to limit how noticeable the burst manipulation was to 

participants, thus avoiding changes in strategy as much as possible. Participants completed 8 

blocks total, two for each type. The Regular, Pro, and Anti blocks had 20 trials each; the Mixed 

blocks had 24 trials each. 

5.2.4 Procedure 

After completing the consent forms, participants were given verbal instructions regarding the 

basic task structure, response options, and length of the experiment. Next the participants read a 

series of instruction screens reiterating this information with more detail; at the end they were 

asked to alert the experimenter of any questions they may have. Then they started a practice 
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session consisting of 13 trials; afterwards they were again prompted to ask any remaining 

questions they may have. When the participants felt comfortable they proceeded on to the 

experiment, which was divided as described above. After each block of trials participants were 

asked to rest their eyes; at the end of the experiment they were thanked for their time and asked 

to leave the computer lab. 

Each trial began with 2000ms of random motion and a red fixation cross. Participants 

were instructed that the red cross indicated random motion and they should not respond during 

these periods. The motion discrimination period started once the fixation cross turned to white; 

each trial lasted 16 seconds total, divided into eight 2000ms segments. During the first segment, 

motion was presented at 5% coherence. Over the course of the succeeding segments motion 

increased in coherence in 5% increments through 35% at the seventh segment. The eighth (and 

last) segment consisted of motion at 85% coherence (Figure 22, “Regular” row). Depending on 

the trial status, a 50ms burst of motion may have occurred in the third segment as previously 

described in the Design section (Figure 22, “Pro Burst” and “Anti Burst” rows). The direction of 

motion was the same throughout all eight segments, except for “anti-burst” trials in which the 

burst of motion was in the opposite direction as the rest of the trial. 

Participants were instructed to press the space bar when they could indicate the direction 

of motion. At the end of the trial during the 85% coherent 2000ms segment, participants were to 

press the space bar a second time if the direction of motion matched their earlier guess. If the 

direction did not match, participants withheld a response. 
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Figure 22. Illustration of task structure for the burst experiment. Fixation row, color of the 

fixation cross depending on break versus task periods; Regular row, coherence levels as 

they increased in 2000ms blocks, indicated by increasing saturation of grey; Pro Burst and 

Anti Burst rows, burst trials included an 85% coherence segment, indicated by the black 

bar, during the third portion of the trial (other 15% coherence). Note that verification 

responses were made during the final 2000ms of the trial during 85% coherent motion, 

illustrated to the right of the 14s marker. 
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5.3 RESULTS 

Data from two participants was removed due to data recording problems. Data from two 

more participants was removed due to 0% accuracy scores, indicating a lack of learning the task 

properly. All data from the remaining participants (N = 52) was included in the following 

analyses; Greenhouse-Geisser corrections for sphericity violations were used when appropriate.  

Overall accuracy was high but not perfect (M = 77.12%, SD = 14.52), indicating that 

participants were not inflating their self-reported accuracy as much as those in 3.0 . The self-

reported accuracy rate is similar to an object recognition experiment with the same response 

structure (Ploran, Tremel, Nelson, & Wheeler, submitted), suggesting that with proper 

instruction and oversight, this response method can elicit good estimations of performance.  

5.3.1 Changes in performance by block 

Descriptive statistics for accuracy and reaction time broken down by trial type and block are 

presented in Figure 23 and Figure 24. It was expected that changes in the stimulus should only 

affect reaction time and not accuracy; therefore it is important to assess accuracy across the 

different blocks prior to analyzing specific trial types. Accuracy was only marginally different 

dependent on block (F(2.55, 130.30) = 2.54, p = .069). Post-hoc comparisons indicate that this 

effect is driven by lower performance in the Pro Block (M = 74.63%, SD = 14.43) compared 

with the Mixed Block (M = 78.31%, SD = 14.47; p = .03) and the Regular Block (M = 78.60%, 

SD = 13.91; p = .04). There were no other significant pairwise comparisons. 
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Despite the only marginal differences in accuracy dependent on block, there were 

significant differences in reaction time (F(2.66,135.97) = 17.38, p < .001). The Anti (M = 

8005.64ms, SD = 1241.02) and Regular (M = 8151.16ms, SD = 1151.06) blocks, while not 

different from each other, are significantly slower than the Mixed (M = 7313.07ms, SD = 

1389.61) and Pro (M = 7492.58ms, SD = 1446.95) blocks. This suggests that there were at least 

some differences in the decision process, even if performance remains at the same high level.  

5.3.2 Comparison within blocks 

Within the Mixed block, there was a main effect of trial type on accuracy (F(2,102) = 6.6, p = 

.002). Anti trials were the least accurate (M = 73.98%, SD = 19.44), then Regular trials (M = 

79.35%, SD = 18.07), and Pro trials were the most accurate (M = 81.69%, SD = 13.97). While 

the difference between Regular and Pro trials was not significant (p = .86), both were 

significantly better than Anti trials (p = .06 and p = .002, respectively). In addition, a main effect 

of trial type was also found when examining reaction time (F(2,102) = 30.42, p < .001). All 

pairwise comparsions are significant (p < .05); Regular trials were the slowest (M= 7904.01ms, 

SD = 1311.42), then Anti trials (M = 7443.22ms, SD = 1705.59), and Pro trials were the fastest 

(M = 6587.19ms, SD = 1621.70). This indicates that the burst was affecting the timing of the 

decision (i.e., causing faster decisions for both Pro and Anti trials), but was also affecting the 

fidelity of the decision (i.e., lower accuracy for Anti trials). 

There were no differences in accuracy between Anti trials and Regular trials in the Anti 

block (t(51) = -1.06, p = .29). However, there was a difference in reaction time (t(51) = -2.82, p 

= .007) such that Anti trials (M = 7650.58ms, SD = 1697.25) were faster than Regular trials (M = 

8174.13ms, SD = 1136.36). A similar pattern of results was found for the Pro block. There was 
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no significant difference in accuracy between Pro and Regular trials (t(51) = .009, p = .99), but 

there was a significant difference in reaction time (t(51) = -5.80, p < .001). Pro trials (M = 

6611.56ms, SD = 2003.63) were faster than Regular trials (M = 7908.15ms, SD = 1360.48).  

5.3.3 Changes across blocks in performance by trial type 

A repeated-measures ANOVA failed to find a significant difference among accuracies for 

Regular trials across blocks (F(2.30,117.34) = 2.27, p = .10). There was also no significant 

difference in accuracy for Anti trials across blocks (t(51) = 0.41, p = .68). However, there was a 

significant difference in accuracy for Pro trials across blocks (t(51) = 2.94, p = .005); Pro trials in 

Pro blocks were less accurate (M = 74.52%, SD = 19.52) than Pro trials in Mixed blocks (M = 

81.69%, SD = 13.97). For reaction time, again there was no significance difference for Regular 

trials dependent on block (F(2.74,139.66) = 2.18, p = .10). Comparisons for Anti trials (t(51) = 

.896, p = .37) and Pro trials (t(51) = .12, p = .91) also lacked significant differences in reaction 

time dependent on block.  

For the next analyses, performance Regular and Anti trials were collapsed across blocks, 

respectively. Pro trials, due to the significant difference in accuracy depending on block, 

remained separated by block (Pro vs. Mixed). The comparison of accuracy depending on trial 

type revealed a significant difference (F(2.14,109.15) = 5.36, p = .005). Post-hoc comparisons 

found that Pro trials in Mixed blocks were more accurate than all other trial types (all p < .05; 

Table 7). The comparison of reaction time depending on trial type also revealed a significant 

difference (F(2.03,103.60) = 28.99, p < .001). Post-hoc comparisons found that both Pro trial 

types (in Pro blocks and Mixed blocks; p =1.00) were faster than Anti trials, which in turn were 

faster than Regular trials (all p < .01; Table 7). 
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Figure 23. Accuracy by trial type and block type. 

 

 

Figure 24. Reaction time by trial type and block type. 
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Table 7. Average accuracy and reaction times for Anti trials collapsed across blocks, 

Regular trials collapsed across blocks, and the two Pro trial types separated by block. 

 All Anti Trials All Regular Trials 
Pro Trials,  

Mixed Block 

Pro Trials,  

Pro Block 

Accuracy (SE) 74.6% (2.5) 77.7% (1.7) 81.7% (1.9) 74.5% (2.7) 

Reaction Time 

(SE) 
7546.90 (205.62) 8034.36 (148.92) 6587.19 (229.05) 6611.56 (277.75) 
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5.3.4 Changes reaction time by accuracy and trial type 

For each of the following analyses, trials for which there was an invalid response (e.g., no 

response, response during fixation) were discarded. The remaining trials were sorted within each 

block by trial type and accuracy and entered into an ANOVA (or t-test in the case of the Regular 

block) to test effects of accuracy on reaction time dependent on trial type (Figure 25). Post-hoc 

pairwise comparisons were made when appropriate. 

5.3.4.1 Regular Block 

A paired samples t-test comparing reaction times for correct versus incorrect trials was 

significant (t(50) = 2.40, p =.02). When no bursts were present at any time during the block, 

incorrect trials were faster than correct trials. This suggests that the errors may arise through a 

faulty decision process that triggers the decision before enough evidence is gathered. 

5.3.4.2 Anti Block 

A 2x2 repeated-measures ANOVA tested the effects of accuracy and trial type (anti-burst 

versus regular) on reaction time. While there was no difference in reaction time dependent on 

trial type (F(1,40) = 1.22, p = .28), there was a main effect of accuracy (F(1,40) = 8.18, p < .01). 

There was not a significant interaction (F(1,40) = .10, p = .75), demonstrating that incorrect trials 

were faster than correct trials without a dependence on trial type. This matches the results of 

regular block. 
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5.3.4.3 Mixed Block 

 A 2x3 repeated-measures ANOVA tested the effects of accuracy and trial type (anti-

burst, regular, and pro-burst) on reaction time. As previously reported, the main effect of trial 

type was significant (F(2,74) = 11.33, p < .01) and post-hoc pairwise comparisons demonstrate 

that pro-burst trials were faster than both regular and anti-burst trials, but there was no difference 

between anti-burst and regular trials. In addition, there was a main effect of accuracy on reaction 

time (F(1,37) = 9.67, p < .01), such that incorrect trials were faster than correct trials. There was 

not a significant interaction (F(2,74) = .265, p = .77), illustrating that changes in reaction time 

dependence on performance were independent of changes in reaction time due to burst status. 

5.3.4.4 Pro Block 

A 2x2 repeated-measures ANOVA tested the effects of accuracy and trial type (pro-burst 

and regular) on reaction time. As previously reported, the main effect of trial type was significant 

(F(1,45) = 15.05, p < .001), with pro-burst trials resulting in faster times than regular trials. In 

addition, the main effect of accuracy was also significant (F(1,45) = 21.99, p < .001), continuing 

to demonstrate faster reaction times for incorrect trials than correct trials. Again, there was no 

interaction between the two factors (F(1,45) = .58, p = .45). 
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Figure 25. Reaction time by accuracy per trial type in each block. 
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5.4 DISCUSSION 

Overall accuracy was the same regardless of trial type or block status aside from the Pro 

trials in the Mixed block that demonstrated an aberrant increase in performance. This suggests 

that the participants maintained the same decision threshold throughout the experiment 

regardless of trial type or the mix of trials per block. However, despite the similar threshold 

leading to similar accuracy, there were several differences in reaction time depending on both 

trial type and block status. Although reaction times were consistently faster for incorrect trials 

than correct trials, an interaction between this effect and trial status was not found, indicating 

that effects to the decision process did not differentially affect accuracy depending on the 

presence or absence of a burst. Taken together, the change in reaction time despite the consistent 

performance level indicates that the journey through the decision process was altered depending 

on the trial, not the ultimate threshold executing a decision. This agrees with the fluctuations in 

drift rate but steady threshold used in diffusion models (Ratcliff, 1978).  

For example, in Mixed blocks that included Regular trials as well as trials with bursts 

both in the same direction of motion (Pro) and against the direction of motion (Anti), reaction 

time changed according to the validity of evidence in the trial. Pro trials, with a burst of highly 

coherent motion in the same direction as the rest of the trial, resulted in faster decisions than 

Regular trials. In contrast, Anti trials presented evidence against the rest of the trial and resulted 

in slower decisions than Regular trials. These results uphold the hypothesis that bursts of motion 

(i.e., momentary increases in the fidelity of the stimulus) would influence the speed of the 

perceptual decision without affecting the accuracy. Although the data has not been modeled, it is 
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useful to consider what changes to the three basic diffusion model parameters (start point, drift 

rate, and threshold) would create this pattern of data. It is unlikely that the start point was 

shifting, as the direction of motion could be in one of eight directions on any given trial. Shifting 

the start point would make it harder to reach threshold on most trials (i.e., 7/8 of trials on 

average) regardless of burst status. It is also unlikely that the threshold changed between trials, as 

the accuracy remained that same regardless of burst status. This suggests that participants 

required the same amount of evidence for each decision, whether or not there was a burst adding 

to that overall information. This leaves open the possibility of changes to the drift rate. Strong 

Pro evidence would increase the rate; strong Anti evidence would decrease the rate. This altered 

rate would then take less or more time to reach the common threshold causing the reaction time 

patterns seen here, and would also mimic the neural firing patterns previously reported (Huk & 

Shadlen, 2005). It also refutes the notion that participants ignore evidence counter to their 

inclination (Mynatt, Doherty, & Tweney, 1978), in which case we would have expected reaction 

times for Anti trials to be similar to Regular trials. 

Although the results in the Mixed block appear to fully support the hypothesis about how 

highly coherent bits of information influence the overall decision process, there were also results 

that did not necessarily agree with this suggestion. During the Anti block, Anti trials were 

expected to be slower than Regular trials due to the influence the burst should have on the drift 

rate; however, the results indicate that Anti trials were actually faster than Regular trials. Despite 

the best efforts to make the burst of coherent motion consciously imperceptible to participants, it  

is possible that there were some who noticed the change in trial structure. For those who were 

able to both recognize the existence of the burst and identify the direction of motion during the 

burst (50ms in duration), it is possible they adopted different strategies depending on the mix of 
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trials included in the block. For blocks in which the burst always agreed with the final decision 

(e.g., the Pro block), participants could rely on the burst and make a quick answer. For blocks in 

which the burst always disagreed with the final decision (e.g., the Anti block), participants could 

again rely on the burst to indicate the answer – only in the opposite direction of the burst motion. 

However, in Mixed blocks the burst does not reliably indicate the direction of motion, so 

participants can only partially rely on the burst evidence. Because the participants were naïve to 

which trials would be included in any particular block, this change in strategy would have to 

develop of the course of a the first few trials in each block. Therefore it will be important to test 

the trial-by-trial fluctuations in performance to see if there are markers for strategy change. This 

will be addressed in the next chapter, which examines how strategy may develop over the 

beginning of each block and how the status of a previous trial (e.g., burst present or absent, 

performance, speed of decision) may influence performance on the next trial. 
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6.0  ONGOING ADJUSTMENTS TO THE DECISION PROCESS 

6.1 INTRODUCTION 

The previous four chapters have discussed results from experiments that are averaged 

over whole blocks or experiments. In fact, with notable exceptions in which single trials of 

neural firing are assessed and responses are predicted after a model has been built (Kiani, Hanks, 

& Shadlen, 2008) or single trial simulated data using a model based on averaged real data 

(Mazurek, Roitman, Ditterich, & Shadlen, 2003), research on perceptual decisions appears to 

always average over blocks of trials. This assumes that the decision process in any given 

experiment is static from beginning to end. In addition, the model created by Mazurek and 

colleagues (2003) used a stationary threshold based on the best fit to the averaged behavioral 

data. This approach, while useful for the model, likely fails to capture some of the ongoing 

fluctuations present in the process; in fact, the previous chapter on the burst experiment found 

differences in performance depending on the mix of trials in a block, indicating some potential 

shifts in strategy throughout the experiment. This is not surprising given the shifts in strategy and 

use of heuristics previously found during multiple attribute decisions (Payne, Bettmann, & 

Johnson, 1988). When confronted with changing task demands and uncertain stimuli, it is likely 

more efficient to adopt a variable strategy depending on growing knowledge of the overall task 
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structure through recent trial history. In addition, effort and motivation, as affected by previous 

trial history, may also affect each new decision (Thomas, 1983). 

As discussed in 2.0 , the perceptual stimulus used here does not afford a large amount of 

variability. While multiple attribute decisions may require strategy adoption for efficient and 

efficacious selection of a response alternative, it is not clear that this is true for simple perceptual 

decisions as studied here. However, given the number of parameters often used to model the 

decision process (e.g., start point, drift rate, threshold; Ratcliff, 1978), it seems naïve to assume 

these parameters remain static. Indeed, some early models involved presampling of the problem 

space in such a way that there were trial-to-trial correlations of response time (Laming, 1979). 

Yet it is important to remember that parameters in a mathematical model are designed to account 

for the data, and that does not necessarily mean those parameters are present in the neuronal 

pools underlying the responses. In fact, as mentioned in the introduction, studies of temporal and 

spatial attention (potentially more similar to the tasks used in the current set of studies than the 

multiple attribute studies of real estate, etc.) have not shown trial-by-trial variability in responses 

(Vul, Hanus, & Kanwisher, 2009), nor have some studies of choice reaction time for auditory 

stimuli (Green, Smith, & von Gierke, 1983).  

The previous literature sets up an interesting contrast between instances of strategy 

adoption and studies without across-trial variability. Due to the experimental designs here, 

participants were usually aware of the manipulation and experienced more than one condition in 

each block (with the exception of the increasing choices experiment in 3.0 ). To assess how these 

theories may apply to perceptual decisions, this chapter will assess potential trial-by-trial 

fluctuations in performance depending on previous trial status (e.g., burst or non-burst, difficulty 

of pairing) and previous trial performance (e.g., correct vs. incorrect).  
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6.2 ADJUSTMENTS BASED ON MANIPULATIONS 

As mentioned above, three out of the four main experiments presented here included 

mixes of trial types within each block (easy vs. difficult pairs of alternatives in 2.0 , early vs. 

later presentations of motion information in 4.0 , and pro- or anti-informative bursts in 5.0 ). 

Although the participants are not explicitly told the composition of each block, through 

experience they could develop a sense of the structure (with potentially the exception of the burst 

experiment which was designed to avoid detection by the majority of participants). If the 

participants understood the mixture of trials in each block, they may have used this knowledge to 

adjust their strategy on a trial-by-trial basis. In a sense, participants may have gambled on what 

the next trial would be, and thereby adjust their threshold for response higher (for predicted 

difficult trials) or lower (for predicted easy trials). Changes of the threshold in this way would 

result in changes in reaction time. The following section includes analyses of reaction time for 

the similarity, timing of evidence, and burst experiments based on the status of the previous trial 

based on the appropriate manipulation. If participants were adjusting their threshold throughout 

the experiment, we would expect to see shifts in reaction time as a result. 

6.2.1 Similarity Experiment 

One interesting aspect of the experiment in 2.0  is that participants experienced a mix of easier 

(e.g., 67.5  and 90  comparisons) and more difficult (e.g., 45  and 22.5 ) comparisons. This 

embedded nature of the manipulation may cause some of the trial-by-trial changes in strategies 

based on effort (Thomas, 1983). After participants spend time on a difficult decision, they may 
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be more patient with the decision process in the following decision. Conversely, an easy decision 

may lead to more brash responses due to overconfidence.  

To assess this, trials were organized based on current difficulty and the difficulty of the 

previous trial, resulting in 16 categories (4 levels of difficulty for both current and previous trial 

status). The mean reaction time was then calculated for each participant in each of the 16 

categories. These were then analyzed in a repeated-measures ANOVA using Greenhouse-Geisser 

corrections when appropriate. As described in 2.0 , the main effect of current trial status was 

significant (F(2.17,78.24) = 28.23, p < .001), confirming that reaction time did change dependent 

on trial difficulty. Difficult trials (22.5  in difference between the two response options) had 

longer reaction times than easier trials (90  in difference between options). However, the main 

effect of previous trial difficulty was not significant (F(2.32,83.68) = 2.36, p = .09), suggesting 

that the difficulty of the immediately preceding trial did not affect the length of the decision 

process on the current trial. In addition, the interaction between current trial and previous trial 

difficulty was also not significant (F(6.47,232.81) = .74, p = .63). This suggests that participants 

did not adjust their strategy towards the current trial based on the previous trial differently for 

harder or easier current trials. For example, even when faced with a difficult trial, participants 

did not alter their decision process based on previous trial status. 

6.2.2 Timing of Evidence Experiment 

The manipulation in 4.0 was also embedded. Participants responded to a mix of trials in which 

the motion was presented at different times such that they may see motion in the first 2000ms 

(the 1
st
 bin) on trial 1, but in the last 2000ms (5

th
 bin) of trial 2. As was suggested in 4.0 , 

participants did not learn to wait longer in order to respond during the motion on trials with 
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motion in the 4
th

 and 5
th
 bins. However, this failure to learn is surprising considering they were 

forced to watch each whole trial, regardless of when they responded. Over the course of the 

experiment they would have seen many instances (1/5 of the total number of trials) in which 

motion was not presented until the last 2000ms of the trial. While not reflected in the average 

reaction time, it is possible that after watching a 5
th
 bin trial, participants would be more patient 

on the following trial (i.e., have a longer reaction time). 

To assess changes in strategy, each trial was coded with its timing of motion and the 

status of motion in the previous trial (e.g., motion in the 1
st
 bin, 2

nd
 bin, etc.). This created a 5 

(current status) x 5 (previous status) table for each participant with the mean reaction time 

calculated for each cell. These values were entered into a repeated-measures ANOVA to test for 

changes in strategy depending on the previous trial status. If participants demonstrate some 

change in strategy depending on the ongoing manipulations, we would expect trials presented 

after one in which motion was late (e.g., the 4
th

 and 5
th

 conditions) would have longer reaction 

times than trials presented after one in which motion was early. Unfortunately, this does not 

appear to be the case. While average reaction time for the current trial was significant as 

demonstrated in 4.0  (F(2.82,81.83) = 27.79, p < .001), reaction did not change dependent on 

previous trial status (F(3.22,93.31) = .414, p = .79). Although we may expect changes in reaction 

time only after certain types of trials (e.g., the 4
th
 and 5

th
 conditions as specified above), the 

interaction term was also not significant (F(8.78,254.54) = 1.13, p = .32), rejecting this 

hypothesis as well. Participants were not shifting their decision process to allow for more data 

processing even after watching examples in which motion was presented late and in the absence 

of a benefit for early responding. This continues to suggest that participants may cease to allocate 
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resources to an ongoing decision to use those resources elsewhere (Kiani, Hanks, & Shadlen, 

2008), even when there is knowledge that more information is forthcoming. 

6.2.3 Burst Experiment 

Similar to the two previous manipulations, the burst manipulation was also presented in a mix of 

trials. The specific mixture of trials depended on block; Pro blocks had Pro and Regular trials, 

Anti blocks had Anti and Regular trials, and Mixed blocks had all three trial types. 5.0  describes 

how participants appeared to be most affected by the burst manipulation during the Mixed block, 

resulting in changes in accuracy and reaction time depending on trial type (both p < .01). This is 

not surprising, as the Mixed block included all three trial types, thus making the burst unreliable 

as a source of information either for or against the decision. To assess whether or not the status 

of the previous trial had an effect on performance on the current trial, data from the Mixed block 

were divided according to current and previous trial status (3 x 3 table). Due to this increased 

division of the data, some participants had to be excluded for low trial counts in particular 

category based on the combination of random sampling of the trials and invalid responses (e.g., 

responses during fixation, double responses, no response). The following analyses were 

conducted on a subset of participants who had sufficient trials (>3) in each cell (N = 38).  

If participants are changing their strategy during the Mixed block depending on which 

trials they have seen we would expect to see increases in speed after Pro trials and decreases in 

speed after Anti trials. These changes would reflect shifts in confidence relating to performance 

and the fidelity of the burst towards the correct solution. However, a repeated-measures ANOVA 

failed to demonstrate the main effect of previous trial type (F(1.88,69.76) = .504, p = .61; 

Greenhouse-Geisser corrected). In addition, the interaction with current trial status was also not 
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significant (F(3.39,125.38) = .713, p =.584). This suggests that although accuracy and reaction 

time changed dependent on current trial status, it was not due to the status of the previous trial. 

Participants were not relying on the presence and fidelity of the burst during the previous trial to 

adjust their strategy towards the current trial. 

6.3 ADJUSTMENTS BASED ON PREVIOUS TRIAL ACCURACY 

Although status of the previous trial did not affect any of the three experiments analyzed 

above, this does not preclude adjustments to threshold on the part of the participant. Thomas 

(1983) suggested that effort and motivation play a role in the adoption of a strategy. As seen in 

5.0 , the Mixed blocks that included Pro, Anti, and Regular trials led to the most changes in 

reaction time, possibly indicating true changes drift rate. In addition, Anti trials caused 

significantly lower accuracy than Regular or Pro trials, indicating that the burst was effective in 

disrupting the decision process. Due to the nature of the response structure for the burst 

experiment, participants saw a highly coherent motion stimulus at the end of the trial and were 

required to respond if it matched their guess earlier in the trial. This end of trial verification 

could act as feedback to the participants; it forced them to identify their accuracy, which could in 

turn lead to changes in strategy on the next trial due to motivation to perform well. The following 

analysis assesses whether or not reaction time changes based on the accuracy of the previous 

trial. 
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6.3.1 Burst Experiment 

As participants moved through the experiment, they verified each response at the end of the trial. 

This consideration of performance may have led to changes in threshold to maximize 

performance on the following trial. If the previous trial was correct, participants may have 

experienced a boost in confidence in their motion discrimination skills. This, in turn, could have 

led to a lowering of threshold for faster responses. On the other hand, incorrect performance 

would have lowered confidence and led to raising of the threshold to increase accuracy on the 

succeeding trial. 

To assess this, each trial was labeled with the accuracy of the previous trial. After this 

labeling, trials that had invalid responses (at fixation, double responses, and no response) were 

removed from the data due to a lack of a valid response time. Data was also separated based on 

block type (Anti, Mixed, Pro, Regular), as the results in 5.0 suggest there were differences in 

performance dependent on block. The average reaction time data was then calculated for each 

participant based on block and previous trial performance (4 x 2 design). Nineteen participants 

had to be excluded due to a high number of invalid responses that caused insufficient trials in 

one or more cells. Data from the remaining 33 participants was entered into a repeated-measures 

ANOVA. The main effect of block on reaction time was again significant (F(3,96) = 5.92, p = 

.001). However, the main effect of previous trial accuracy on reaction time was not significant 

(F(1,32) = .21, p = .65). Interestingly, though, the interaction between block and previous trial 

accuracy was significant (F(3,96) = 3.53, p = .02). Post-hoc t-tests indicated marginal, though 

opposite, effects in the Anti (t(32) = 1.81, p = .08) and Mixed (t(32) = -1.75, p = .09) blocks. 

There was no effect for the Pro (p = .13) and Regular (p = .85) blocks. In the Anti blocks 

reaction time decreased after correct trials compared to incorrect trials. Conversely, in the Mixed 
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blocks reaction time increased after correct trials compared to incorrect trials (Figure 26). These 

results suggest that there are subtle changes in threshold when participants are forced to verify 

their accuracy. This verification stage is likely acting as feedback, causing adjustments to 

performance under the general motivation to perform well. However, the reverse effects between 

the Anti and Mixed blocks indicate a more intricate story potentially based on previous trial 

status (e.g., Anti or Regular trial in Anti blocks; Anti, Pro, or Regular trial in Mixed blocks). 

Unfortunately, further dividing the data by previous trial type to tease apart these contrary effects 

results in too few participants that survive the minimum trial count to get reliable results. 

  



 133 

 

 

Figure 26. Average reaction time based on previous trial accuracy and block status. 
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6.4 DISCUSSION 

This chapter contains two new analyses of the data from the various motion 

discrimination experiments described throughout this document. First, data from the similarity, 

timing of evidence, and burst experiments were reanalyzed to check for changes in reaction time 

based on the manipulation status of the previous trial (e.g., whether or not a burst was present). 

Previous research has suggested that participants may change their decision process depending 

on task structure, effort, and motivation (Payne, Bettman, & Johnson, 1988; Thomas, 1983). 

Each of the manipulations in these experiments may cause changes in effort (e.g., very similar 

vs. far apart options in the similarity experiment or early presentation of motion vs. late 

presentation of motion in the timing of evidence experiment). In addition, the burst manipulation 

may cause changes in motivation if participants noticed the manipulation (which may have 

caused some of the reaction time results as discussed in 5.0 ). However, the results from the 

analysis conducted here do not demonstrate the changes in reaction time that would be expected 

due to shifts in threshold based on strategy adoption. Instead, the results agree with those of Vul, 

Hanus, & Kanwisher (2009) and Green, Smith, & von Gierke (1983) which also failed to show 

trial-to-trial variability. 

The second analysis in this chapter assessed whether or not feedback from the preceding 

trial regarding accuracy would cause shifts in threshold, and thus reaction time, on the next trial. 

In theory, correct performance would cause increases in confidence and associated decreases in 

threshold. Conversely, incorrect performance would cause decreases in confidence and increases 

in threshold. A strategy along these lines would optimize performance for both speed (in high 
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confidence cases) and accuracy (in low confidence cases). Although there were no changes in 

reaction time based on previous trial accuracy with the Pro and Regular blocks, there were 

marginal effects in the Anti and Mixed blocks. Further inspection of these effects found an 

interesting contrast: the predicted effect (faster responses after correct trials, slower responses 

after incorrect trials) did occur in Anti blocks, but the opposite occurred in Mixed blocks. These 

results suggest that there was some trial-to-trial variability in the decision process, potentially in 

the threshold of activity necessary to execute a decision. Due to the paradoxical nature of the 

results, more experimentation is necessary to tease apart the underlying effects. It would be 

particularly interesting to conduct the burst experiment with only the Mixed block composition 

in order to have enough trials to test if and how previous trial status and accuracy may be 

interacting with one another. 
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7.0  GENERAL DISCUSSION 

This dissertation sought to explore the perceptual decision process using a systematic 

approach in an effort to bridge and extend previous behavioral, neurophysiological, and 

neuroimaging work. By isolating manipulations but maintaining the same stimulus and general 

task structure, the results of each individual experiment can be discussed as a whole, an approach 

that has been lacking in the prior behavioral literature. In addition, this dissertation gives a broad 

account of how perceptual decisions are affected by minor changes in the decision environment. 

Building upon previous approaches using the random dot motion task, new manipulations of the 

similarity between response alternatives, number of response alternatives, timing of incoming 

evidence, and fidelity of that evidence add to the knowledge about how perceptual decisions 

behave. Importantly, these manipulations take steps towards a better understanding of perceptual 

decisions under more naturalistic conditions. Finally, consideration of results from prior work in 

both the perceptual decision and multiple attribute decision research was intended to push 

towards defining how the perceptual decision process emulates the general decision process used 

for more complicated situations like multiple attribute decisions. In sum, these four experiments 

and the trial-by-trial analysis determined that while perceptual decisions do often behave like 

multiple attribute decisions, this is not always the case, and more appreciation of the differences 

between these two processes is necessary. 
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7.1 SUMMARY OF FINDINGS 

The first experiment (2.0 ) involved a perceptual decision between two specified 

directions of motion. The manipulation of interest was how similar the options were on each 

trial: 22.5 , 45 , 67.5 , or 90  apart. Although the main purpose of this experiment was to 

confirm that the 45  angle of disparity between options in the remaining three experiments was 

not going to retard performance in addition to the specific manipulations used in each, it also 

highlighted how similarity between options may affect performance. As the angle of disparity 

between options lessened from 45  to 22.5 , accuracy decreased and reaction time increased. 

This is likely due to the activation of neurons in motion-selective area MT (medial temporal 

lobe, or the human homologue in this case) that are sensitive to both directions of motion 

(Britten & Newsome, 1998; Butts & Goldman, 2006). A previous behavioral example of this 

type of interference was the effects on accuracy when comparing similar (e.g., E vs. F) vs. 

dissimilar (e.g., E vs. C) letter pairs (Ratcliff & Rouder, 2000). The first pair consist of almost 

identical lines with the exception of the bottom horizontal line for “F” compared to “E”; on the 

other hand, with only minor overlap in the upper and lower horizontal zones and the left vertical 

zone, “E” and “C” do not share as many features. This would alter how many neurons are 

sensitive to both letters in the pair. If the decision process in the brain makes a comparison 

between pools of neurons sensitive to the two choices and selects the more active pool, the 

activity levels in the “E” and “F” comparison will be closer than those in the “E” and “C” 

comparison, thus making it harder to identify the highest level of activity. In terms of motion 

selection, the superior colliculus has been identified as a potential monitor of the lateral 
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intraparietal area (LIP) and MT (Lo & Wang, 2006) and might be involved in the comparison 

required in the current experiment. 

The second experiment (3.0 ) explored how the addition of alternatives would affect the 

decision process. Initial work into perceptual detection (e.g., stimulus-response paradigms) found 

that as the number of potential stimuli increases, so does response time (Hyman, 1953). Limited 

work on perceptual decisions has shown some detriment to performance when alternatives 

increase from the traditional 2-choice paradigm up to 4 alternatives (Churchland, Kiani, & 

Shadlen, 2008; Leite & Ratcliff, 2010). The current experiment sought to extend this further by 

testing up to 8-choices; it was predicted that participants may adopt strategies to limit the 

problem space when given more than 4 choices to vet at once, as has been seen in more 

complicated multiple attribute decision experiments (Tversky & Sattath, 1979; Einhorn & 

Hogarth, 1981; Payne, Bettman, & Johnson, 1988). The results demonstrated an interesting two-

stage change in performance. As the number of alternatives increased from 2 to 4 choices there 

was an associated decrease in accuracy. However, as the alternatives increased further to 8 

choices there was both a greater drop in accuracy and an increase in reaction time. An analysis of 

the angular disparity of the errors found that these changes were present over and above any 

potential problems with motor execution as the response buttons were closer together. This 

suggests that it is unlikely participants were adopting a strategy to compensate for the increased 

number of alternatives available. In addition, the change from 4 to 8 response alternatives may 

have also been affected by the unavoidable increase of similarity between the alternatives, 

mimicking the changes in accuracy and reaction time seen in Chapter 2.  

The third experiment (4.0 ) examined how the timing of informative evidence can affect 

the decision process. We are not usually in control of when the environment presents us with the 
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perceptual information we must discriminate, so it seems unusual to use tasks in which the start 

of trial is also indicative of when information will be forthcoming. When the coherent motion 

was moved around in time, the results illuminated some interesting changes in performance. 

First, presenting motion soon after the start of the trial resulted in higher accuracy, but also 

slower decisions. Participants were more willing to wait and consider the evidence when it was 

delivered promptly. Conversely, evidence presented later in the trial resulted in less accurate, 

faster decisions. In addition, as they waited for informative evidence to be presented, the longer 

the wait before the presentation of coherent motion, the more likely participants would false 

alarm despite the lack of evidence available. Interestingly, there appeared to be a focus of when 

these false alarms were likely to occur that was not quite 2/3 of the way through the trial length 

even though participants were required to watch the whole trial regardless of response. Previous 

research has found similar results during neurophysiological recording of perceptual decisions in 

macaques and suggested that there may be motivation to reserve mental resources and thus 

truncate ongoing unsuccessful decisions (Kiani, Hanks, & Shadlen, 2008). 

The final experiment (5.0 ) explored how insertions of high quality evidence early in the 

decision could influence the impending response. Previous neurophysiological studies have 

demonstrated that bursts of information can change the rate at which activity in certain brain 

areas (e.g., lateral intraparietal cortex) accrues, potentially altering the timing of the decision 

(Huk & Shadlen, 2005). The implementation of the burst early in the trial was of particular 

interest given the results of the third experiment (4.0 ), which suggested that the decision process 

maintains integrity and is harder to terminate early in the trial compared to later. If the process 

maintains a high level of fidelity early in the trial, extra information should only influence the 

process and not cause the execution of the response. However, the relevance of the information 
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(either towards or against the correct response) should change the speed of the response. This 

hypothesis was only partially upheld, as the results told a more complicated story. Although 

trials with high coherent bursts in the direction of the correct response did result in faster 

decisions than trials with no burst, there was not a slowing of response when the burst was 

against the correct direction. In addition, the effects were most strongly demonstrated when all 

three trial types (Pro, Anti, and Regular) were mixed into the same block, rather than only two 

types. This suggests that despite best efforts and piloting of the experiment, some participants 

were still able to see the burst and use it to their advantage even when it was against the correct 

direction (though not perfectly: Anti trials resulted in lower accuracy). The shifts in results based 

on the composition of each block may highlight potential strategies on the part of the participants 

to limit the resources and time necessary to complete the decision (Tversky & Sattath, 1979; 

Einhorn & Hogarth, 1981; Payne, Bettman, & Johnson, 1988; Kiani, Hanks, & Shadlen, 2008). 

Finally, an additional analysis (6.0 ) assessed whether or not trial-to-trial variability in 

reaction time occurred depending on previous trial status due to manipulation changes 

(similarity, timing of evidence, and burst experiments) or previous trial accuracy when feedback 

was available (burst experiment). While there has been some evidence of shifts in performance 

during multiple attribute decisions (Thomas, 1983; Payne, Bettman, & Johnson, 1988), trial-to-

trial shifts have not been found in previous spatial attention (Vul, Hanus, & Kanwisher, 2009) 

and auditory choice (Green, Smith, & von Gierke, 1983) experiments. The results of the analysis 

failed to indicate trial-to-trial variability in reaction time based on previous trial status in the 

similarity experiment (close options vs. far apart options), timing of evidence (early vs. late 

presentation of motion), or burst (no burst vs. pro burst vs. anti burst) experiments. However, the 

second analysis regarding previous trial accuracy did highlight some changes in reaction time 
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during the burst experiment in which participants were required to verify the accuracy of their 

response at the end of the trial. This verification stage forced participants to create their own 

feedback on their progress, which in turn appeared to change performance in the Anti and Mixed 

blocks. However, as noted in 6.0 , the resulting changes in reaction time were paradoxical. 

Performance was faster following correct trials than incorrect trials during Anti blocks, 

suggesting that correct trials increased confidence and lead to lower thresholds on succeeding 

trials. Interestingly, though, the reverse was true during Mixed blocks; performance was slower 

following correct trials than incorrect trials.  

7.2 RELATIONSHIP TO PREVIOUS LITERATURE 

It is often stated that the goal of perceptual decision research is to understand the 

complicated decision process by studying it in a simplified state (Gold & Shadlen, 2007). 

However, the collective literature on perceptual decisions to this point lacks a strong connection 

to the findings and theories about multiple attribute decisions, nor does it use consistent methods 

that allow for cross-comparison and consensus building among experiments. The primary goal of 

this dissertation was to systematically test perceptual decisions with an eye towards both the 

previous perceptual decision research as well as research on more complicated decision 

problems. The result was an interesting concert of findings that both agrees with and disconfirms 

some of the theories behind multiple attribute decisions. For example, although the perceptual 

stimulus does not have as many degrees of freedom for manipulation as multiple attribute 

problems, there were still some effects on performance when response alternatives became more 

similar (2.0 ). This agrees with prior work on multiple attribute decisions and similarity of 
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options (Biggs, Bedard, Gaber, & Linsmeier, 1985). On the other hand, participants failed to 

adopt strategies that increased efficiency and performance despite the increasing number of 

response alternatives entered into the decision process (3.0 ). This goes against previously 

demonstrated changes in performance dependent on the number of alternatives to be considered 

in any one decision (Tversky & Sattah, 1979; Einhorn & Hogarth, 1981). Lastly, the trial-by-trial 

analysis in 6.0 only partially demonstrated variability in performance; the observed changes were 

not due to effort or motivation (Thomas, 1983) or the experience of certain conditions (Payne, 

Bettman, & Johnson, 1988), but rather prior trial performance. Collectively these results indicate 

that the assertion that perceptual decisions are a simplified version of the general decision 

process may not be fully valid. Therefore future studies of perceptual decisions should be careful 

about broad claims regarding the overall decision process. 

This dissertation also presents significant extensions of previous work on perceptual 

decisions. While there has been some recent interest in how the number of response alternatives 

affect performance (Churchland, Kiani, & Shadlen, 2008; Leite & Ratcliff, 2010), the majority of 

studies thus far have included binary alternatives, often from stimuli without a quantifiable 

spectrum of similarity. 3.0 demonstrated that performance in perceptual decisions decreases as 

the number of response alternatives increases, suggesting that future studies should consider how 

stimulus selection and task structure affect the process in addition to any particular manipulation 

of interest. Additionally, 4.0 investigated how the timing of evidence affects the decision 

process, another rarely considered task parameter (c.f., Kiani, Hanks, & Shadlen, 2008). Because 

we are not usually in charge of when the environment presents us with information to 

discriminate, it is important to consider how the timing of evidence compared to the start of the 

decision process may affect the overall decision. Interestingly, it appears that there may be a 
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timeout function that terminates the decision process after a certain amount of time, potentially 

in order to save mental resources for future processing (Kiani, Hanks, & Shadlen, 2008). 

Although the idea of a timeout function is relatively new to discussion of the perceptual decision 

process, it has been previously discussed in regards to memory function and unsuccessful 

searches (Gillund & Shiffrin, 1984; Anderson, 2007).  

7.3 FUTURE DIRECTIONS 

The results presented here highlight two potentially important avenues of future study. 

First, the paradoxical results of the trial-by-trial analysis in 6.0 suggest an interesting story about 

the role of feedback during ongoing decision processes and how it might alter future decisions. 

Investigating this effect could lead to previously unconsidered implications of how feedback 

and/or reward (e.g., trial-by-trial juice rewards in neurophysiological studies) might affect the 

overall results. At the very least, it would be interesting to reanalyze the neurophysiological data 

to see if prior trial performance affected neural firing rates in a way that is complementary to the 

changes in reaction time demonstrated here. These changes may come in either shifts in baseline 

firing activity at the start of the trial or the level of activity necessary to execute a response shift 

depending on prior trial performance. Examining which of these two changes occur can help 

separate exactly what is causing the changes in performance. Changes in baseline firing rate at 

the start of the trial would indicate some sort of preparation prior to the consideration of 

evidence. On the other hand, a shift in the level of activity necessary would indicate the shifting 

of threshold as theorized here, potentially an indication of confidence in ability. 
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Second, the evidence for a potential timeout function described behaviorally here and 

neurally elsewhere (Kiani, Hanks, & Shadlen, 2008) highlights a little examined factor in the 

decision process. It will be important to further investigate how time and expectations of 

forthcoming evidence impact the overall process. For example, the perceptual decisions used 

thus far in the current projects and previous literature were generally low-cost tasks in which 

there may be no reward (as presented here) or very little reward (a few drops of juice for each 

correct trial in the case of the macaque neurophysiological literature). If a decision has a higher 

cost or gain associated with it, it is possible the decision process will maintain fidelity later in 

time in order to maximize performance. Consider the difference between seeing someone 

familiar in a crowd while walking in your hometown versus seeing that someone while lost in a 

foreign city. In the former case it may not make a difference whether or not you accurately 

recognize the person, as it is unlikely to alter your interaction with the environment. However, in 

the latter case you may strain to determine whether or not the person is an acquaintance in order 

to call out and gain some help you may not otherwise be able to secure. 

7.4 CONCLUSIONS 

The study of perceptual decisions as a simplified example of the general decision process 

continues to be a useful exertion. However, caution must be taken as to how generalizable the 

results truly are to the more complicated multiple attribute process. In addition, the use of 

rewards during the task may be changing the decision process in an ongoing fashion that has 

otherwise not been accounted for in past analyses. This has potentially important implications 

towards the validity of previous findings. Future work should continue to taken these points into 
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consideration, as well as further explore the relationship between the timing of evidence and the 

decision process to more closely approximate how the process operates in vivo.  
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APPENDIX A 

EXPERIMENT INSTRUCTIONS 

 This section contains the text for each experiment as presented in the instruction screens. 

Participants were first verbally instructed by the experimenter and then read through the screens 

at their own pace. The screens were intended to reiterate and reinforce the verbal instructions. 

A.1.1 Opening welcome screen 

The following was presented as the opening welcome screen for all experiments: 

Hello and welcome to the experiment. 

We are going to begin with some practice trials. 

You are going to see a series of images made up of moving dots. 

There is one basic task in this study described over the next few screens. 

Press the SPACE BAR for more instructions. 

 

After this screen was presented, each experiment then had two screens of experiment-specific 

instructions, described in separate sections below. 
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A.1.2 Instructions for the perceptual break experiment (2.0 ) 

First screen: 

When the cross at the center of the screen is red for two seconds, the dots do not move 

together and only random motion is present. DO NOT press anything when the cross is red. 

Focus on the period in which the cross turns white for 6 seconds. During this time some 

of the dots will move in the same direction together. It is your job to figure out which direction. 

You should make a response during every trial (i.e., each time the cross turns white). 

Each trial lasts 6 seconds, so you do not have to respond immediately. 

Press SPACE to continue. 

 

Second screen: 

 When the cross turns white you will also see two possible directions labeled “1” and “0”. 

You must decide which of these options is the correct one and press the corresponding key. The 

practice trials will start off relatively easy and work down to the difficult level of the actual study 

trials. Also, you will notice that the “1” and “0” will move closer and farther apart across trials. 

 Please only respond once during each trial; note, nothing will change when you press the 

button. As long as you think you pressed it hard enough for it to register, you should be fine. 

 Keep your eyes focused on the cross in the center of the screen. 

 Press the SPACE BAR to try some practice trials 

A.1.3 Instructions for the number of alternatives experiment (3.0 ) 

First screen: 
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When the cross at the center of the screen is red for two seconds, the dots do not move 

together and only random motion is present. DO NOT press anything when the cross is red. 

Focus on the period in which the cross turns white for 10 seconds. During this time some 

of the dots will move in the same direction together. It is your job to figure out which direct ion. 

You should make a response during every trial (i.e., each time the cross turns white). 

Each trial lasts 10 seconds, so you do not have to respond immediately. 

Press SPACE to continue. 

 

Second screen (one button version): 

 When you are reasonably confident you know the direction of motion, press the SPACE 

bar. At the end of the trial, the dots will start to gather around the center. If they are going in the 

same direction as your guess, press the SPACE bar again. If they are going in a different 

direction, don’t do anything and wait for the cross to turn red. 

Note, nothing will change when you press the button. As long as you think you pressed it 

hard enough for it to register, you should be fine. 

 Keep your eyes focused on the cross in the center of the screen. 

 Press the SPACE BAR to try some practice trials. 

 

Second screen (definitive response version): 

 When you are reasonably confident you know the direction of motion, press the 

corresponding key on the number pad (e.g., 8 = up, 2 = down, 7 = diagonal up/left). 

Please only respond once during each trial; note, nothing will change when you press the 

button. As long as you think you pressed it hard enough for it to register, you should be fine. 
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 Keep your eyes focused on the cross in the center of the screen. 

 Press the SPACE BAR to try some practice trials. 

A.1.4 Instructions for the timing of evidence experiment (4.0 ) 

First screen: 

When the cross at the center of the screen is red for two seconds, the dots do not move 

together and only random motion is present. DO NOT press anything when the cross is red. 

Focus on the period in which the cross turns white for 10 seconds. During this time some 

of the dots will move in the same direction together for about 2 seconds. It is your job to figure 

out which direction. 

You should make a response during every trial (i.e., each time the cross turns white). 

Each trial lasts 10 seconds, so you do not have to respond immediately. 

Press SPACE to continue. 

 

Second screen: 

 When you are reasonably confident you know the direction of motion, press the 

corresponding key on the number pad (e.g., 8 = up, 2 = down, 7 = diagonal up/left). 

Please only respond once during each trial; note, nothing will change when you press the 

button. As long as you think you pressed it hard enough for it to register, you should be fine. 

 Keep your eyes focused on the cross in the center of the screen. 

 Press the SPACE BAR to try some practice trials. 
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A.1.5 Instructions for the burst experiment (5.0 ) 

First screen:  

When the cross at the center of the screen is red for two seconds, the dots do not move 

together and only random motion is present. DO NOT press anything when the cross is red. 

Focus on the period in which the cross turns white for 16 seconds. The motion will be 

faint and hard to see at first, but will slowly grow into coherent motion in one of eight directions 

(the 4 cardinal directions and the diagonals).  

You should make a response during every trial (i.e., each time the cross turns white). 

Each trial lasts 16 seconds, so you do not have to respond immediately. 

Press SPACE to continue. 

 

Second screen:  

 When you are reasonably confident you know the direction of motion, press the SPACE 

bar. The trial will continue and the motion will still get clearer. 

 When the motion is extremely obvious at the end of the trial, press the SPACE bar again 

if your original guess was CORRECT. Do not press anything if you were incorrect. 

Please respond once during each trial and once at the end of the trial when the motion is 

obvious if you were CORRECT; note, nothing will change when you press the button. As long as 

you think you pressed it hard enough for it to register, you should be fine. 

 Keep your eyes focused on the cross in the center of the screen. 

 Press the SPACE BAR to try some practice trials. 
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APPENDIX B 

STRATEGY ASSESSMENT 

Increasing Choice Experiment 

Subject # _________ 

Date _____________ 

 

1. Describe any strategy you had for the 2-choice blocks (either right vs. left OR up vs. down). 

 

 

 

 

 

 

2. Describe any strategy you had for the 4-choice blocks (up/down/left/right OR the diagonals). 
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3. Describe any strategy you had for the 8-choice blocks. 

 

 

 

 

 

4. On average, how confident were you when you made your response (out of 100%)? 

 

 

 

 

 

 

 

We suspect that people might be dividing the screen as part of their strategy. For each of the 

pictures below, give a percentage out of 100% for how similar it is to the way you were dividing 

up the screen.  

2-choice blocks 
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4-choice blocks 
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