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The term “functional connectivity” is used to denote correlations in activation among spatially-

distinct brain regions, either in a resting state or when processing external stimuli. Functional

connectivity has been extensively evaluated with several functional neuroimaging methods,

particularly PET and fMRI. Yet these relationships have been quantified using very differ-

ent measures and the extent to which they index the same constructs is unclear. We have

implemented a variety of these functional connectivity measures in a new freely-available

MATLAB toolbox. These measures are categorized into two groups: whole time-series and

trial-based approaches. We evaluate these measures via simulations with different patterns

of functional connectivity and provide recommendations for their use. We also apply these

measures to a previously published fMRI dataset in which activity in dorsal anterior cingu-

late cortex (dACC) and dorsolateral prefrontal cortex (DLPFC) was evaluated in 32 healthy

subjects during a digit sorting task. Though all implemented measures demonstrate func-

tional connectivity between dACC and DLPFC activity during event-related tasks, different

participants appeared to display qualitatively different relationships.

We also propose a new methodology for exploring functional connectivity in slow event-

related designs, where stimuli are presented at a sufficient separation to examine the dynamic

responses in brain regions. Our methodology simultaneously determines the level of smooth-

ing to obtain the underlying noise-free BOLD response and the functional connectivity among

several regions. Smoothing is accomplished through an empirical basis via functional prin-

cipal components analysis. The coefficients of the basis are assumed to be correlated across

regions, and the nature and strength of functional connectivity is derived from this correla-
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tion matrix. The model is implemented within a Bayesian framework by specifying priors on

the parameters and using a Markov Chain Monte Carlo (MCMC) Gibbs sampling algorithm.

We demonstrate this new approach on a sample of clinically depressed subjects and healthy

controls in examining relationships among three brain regions implicated in depression and

emotion during emotional information processing. The results show that depressed subjects

display decreased coupling between left amygdala and DLPFC compared to healthy subjects

and this may potentially be due to inefficient functioning in mediating connectivity from the

rostral portion Brodmanns area24 (BA24).

Keywords Functional magnetic resonance imaging; Event-related design; Functional con-

nectivity; Functional data analysis; B-spline; Mixed-effects model; Principal components;

Reduced rank model; Bayesian method; Markov chain monte carlo.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1.0 MATLAB TOOLBOX FOR FUNCTIONAL CONNECTIVITY . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Overview of How to Use the Toolbox . . . . . . . . . . . . . . . . . . 3

1.2.2 Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.3 Whole Time-Series Approaches . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3.1 Cross-Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.3.2 Cross-Coherence . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.3.3 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3.4 Partial Cross-Correlation/Coherence/Mutual Information . . . 6

1.2.4 Trial-Based Approaches . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4.1 Peak Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.4.2 Functional Canonical Correlation . . . . . . . . . . . . . . . . 8

1.2.4.3 Use of Whole Time-Series Approaches with Nonstationary De-

signs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.1 Simulation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3.2 Tree-Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3.3 Simulation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.3.4 Application to An Empirical Neuroimaging Dataset . . . . . . . . . . 23

1.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vi



2.0 A BAYESIAN APPROACH ON SMOOTHING AND MAPPING FUNC-

TIONAL CONNECTIVITY FOR EVENT-RELATED FMRI DESIGNS 30

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.2 The Model and Prior Specification . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1.1 The Mixed-Effects Model . . . . . . . . . . . . . . . . . . . . . 33

2.2.1.2 Single-Curve Reduced Rank Mixed-Effects Model . . . . . . . 34

2.2.1.3 Multiple-Curve Reduced Rank Mixed-Effects Model . . . . . . 36

2.2.1.4 Adaptation of the Multiple-Curve Reduced Rank Model to Slow

Event-Related Design . . . . . . . . . . . . . . . . . . . . . . . 38

2.2.2 Prior Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.3 A New Measure of Functional Connectivity . . . . . . . . . . . . . . . . . . 42

2.4 Model Fitting, Selection and Bayesian Inference . . . . . . . . . . . . . . . . 43

2.4.1 The Sampling Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.4.2 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.4.3 Posterior Inferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.5 Simulation and Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5.2 Real Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

APPENDIX A. LIST OF FUNCTIONS OF THE MATLAB FUNCTIONAL

CONNECTIVITY TOOLBOX . . . . . . . . . . . . . . . . . . . . . . . . . 62

APPENDIX B. DERIVATIONS OF THE NEW FUNCTIONAL CON-

NECTIVITY MEASURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

APPENDIX C. DETAILS OF MCMC SAMPLER . . . . . . . . . . . . . . . 73

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

vii



LIST OF TABLES

1.1 Interpreting data based on simulation results (whole waveform) . . . . . . . . 16

1.2 Interpreting data based on simulation results (trial-based waveform) . . . . . 16

2.1 Posterior estimated variance of PC scores for models with difference number

of PCs in the simulation study. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.2 Comparing true and estimated correlation parameters in R. . . . . . . . . . . 50

2.3 Posterior estimated variance of PC scores for models with difference number

of PCs in the fMRI study. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4 Posterior estimates of correlation parameters in R for the depressed group with

corresponding 95% posterior credible intervals in brackets. . . . . . . . . . . . 57

2.5 Posterior estimates of correlation parameters in R for the healthy group with

corresponding 95% posterior credible intervals in brackets. . . . . . . . . . . . 57

viii



LIST OF FIGURES

1.1 Simulations for resting state designs . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Simulations for event-related designs . . . . . . . . . . . . . . . . . . . . . . . 14

1.3 Multiple trials for one subject . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.4 Mean results of FC on Simulations with zero-order relationship (stationary

design) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Mean results of FC on Simulations with zero-order relationship (event-related

design) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6 Regions used in the analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Multiple trials for one subject . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8 Classification results of 32 subjects . . . . . . . . . . . . . . . . . . . . . . . . 26

1.9 Mean results of FC on Empirical Dataset . . . . . . . . . . . . . . . . . . . . 27

2.1 Two subjects’ trial activation trajectories . . . . . . . . . . . . . . . . . . . . 31

2.2 True and fitted PC functions in simulation data . . . . . . . . . . . . . . . . 49

2.3 True and fitted PC functions in simulation data . . . . . . . . . . . . . . . . 49

2.4 Estimated canonical weight functions . . . . . . . . . . . . . . . . . . . . . . 51

2.5 Estimated PC functions from three ROIs . . . . . . . . . . . . . . . . . . . . 55

2.6 Effect of PC functions on the mean . . . . . . . . . . . . . . . . . . . . . . . 55

2.7 Estimated individual trajectories . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.8 Estimated FC between amygdala and DLPFC . . . . . . . . . . . . . . . . . 59

ix



PREFACE

First of all, I would like to express my gratitude to my advisor Dr. Wesley Thompson

and co-advisor Dr. Yu Cheng, for their guidance, encouragement and continuous support

throughout the years of my PhD program. I would also like to thank Dr. Leon Gleser,

Dr. Robert Krafty and Dr. Greg Siegle for their questions, comments, suggestions and time

spent discussing my work. Special thanks to Dr. Wesley Thompson and Dr. Greg Siegle

for providing me an intriguing topic as the starting point of my research and their advice

helped me get through many difficulties of my research work.

I have enjoyed my time in Pittsburgh, and must thank for all the professors who helped

me to build a solid foundation for my current and future career through their classes. I also

want to thank my classmates, friends and colleagues for the good time we have had, and

the support they could provide. My family, especially my husband Xing Yuan, my parents,

and my grandparents, deserves special thanks for their love and unfailing support, which has

enabled me to bring this work to fruition. I will be forever grateful.

x



1.0 MATLAB TOOLBOX FOR FUNCTIONAL CONNECTIVITY

1.1 INTRODUCTION

The brain forms a distributed network, whereby specialized regions communicate with each

other to process information [15, 72]. The attempt to identify and quantify such inter-

regional relationships has been termed “connectivity” analysis [24]. Functional connectivity

(FC), in particular, is defined as the statistical association or dependency among two or

more anatomically distinct time-series [26, 37, 63]. Measures of FC are agnostic regarding

causality or direction of connections.

FC analyses were first performed on human brain functional data using positron emission

tomography (PET) [14, 38, 27], and have since expanded into functional Magnetic Resonance

Imaging (fMRI), Magnetoencephalography (MEG), Electroencephalography (EEG), and pe-

ripheral physiological measures [24, 70, 63, 18, 11, 41, 54, 32]. FC has also been assessed

with a variety of different experimental designs, including block designs [36, 45, 3] and event-

related designs [59, 22, 68, 2]. Block designs alternate periods of stimulus types, with each

period presenting a given stimulus type multiple times, whereas event-related designs present

stimuli individually separated by an inter-stimulus interval (ISI), termed a “trial”. More re-

cently, resting state studies, particularly involving the “default mode” network [7, 50, 35, 23],

have also become popular for determining connectivity. Methods for computing FC from

resting state data usually assume that the time-series are stationary (i.e., probabilistically

unchanging across time), and utilize information from the entire time-series of fMRI scans

(“whole time-series” approaches). Conversely, methods for event-related designs do not re-

quire stationarity, and FC is often computed based on associations obtained by examining

data divided into individual trials (“trial-based” approaches). Block designs may be consid-
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ered locally stationary and hence are intermediate between resting state and event-related

designs.

The MATLAB toolbox described in this paper includes measures of FC from both whole

time-series and trial-based approaches, including zero-order and cross-correlation [7, 4, 68],

cross-coherence [70, 63, 53], mutual information [41, 54, 63], peak correlation [59], and func-

tional canonical correlation [75, 68]. We also implement optional temporal smoothing steps

in the toolbox. Many of these measures have not been previously available in a user-friendly

package aimed at neuroscientists and this toolbox provides a quick and easy means to com-

pute and compare results from different FC measures.

The implemented techniques specifically attempt to characterize the relationships be-

tween time-series extracted from two or more regions above and beyond zero-order correla-

tional relationships, potentially controlling for one or more other time-series. The toolbox

does not include other types of measures of FC. Following Cattel (1952),[10] data can be

clustered along dimensions of occasions (time), variables (for fMRI, space or region), and

person. We have concentrated on characterizing relationships between occasions across re-

gions; e.g., lagged cross-correlation analysis characterizes relationships of a time-series at one

lag to another time-series at other lags. FC has been alternately defined in the literature

based on other ways of clustering fMRI data. For example, techniques such as principal

components analysis (PCA) or independent components analysis (ICA) generally attempt

to cluster voxels or regions (i.e., variables). ICA, in particular, extracts latent time-series

which characterize the behavior of sets of voxels (e.g., Formisano et al. 2004 [21]). The

degenerate case of spatial PCA with just two regions is the zero-order correlation between

the regions. Thus, these techniques are more appropriate when large numbers of voxels or

regions are examined. Other techniques such as the examination of psychophysiological in-

teractions [25] do not control for third-variable time-series, but rather, examine interactions

with them. Such alternate techniques generally focus on zero-order relationships between

time-series, but could be generalized to account for the types of relationships examined in

this paper.

The rest of this chapter is organized as follows. A detailed summary of statistical method-

ologies commonly used for FC is introduced in Section 1.2 along with a description of the
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Matlab toolbox. In Section 1.3, we evaluate the performances of different FC measures via

simulations of different patterns of relationships between regional time-series. In this sec-

tion, we also analyze data from a small application to an empirical neuroimaging dataset.

In Section 1.4, we present a short discussion and suggest areas of further development.

1.2 MATERIALS AND METHODS

1.2.1 Overview of How to Use the Toolbox

The Functional Connectivity Toolbox is developed in MATLAB (Mathworks, Inc.) as an

open source package. It is designed to use existing routines in the MATLAB distribu-

tion with an additional freely-available toolbox for functional data analysis (Ramsay 2005;

http://www.psych.mcgill.ca/misc/fda/index.html). Each FC measure listed above is coded

into a function in MATLAB. The inputs of the functions are equal length time-series data

from brain regions’ responses within a single subject. For slow event-related designs, the

user must also indicate the number of scans per trial. For example, if Y1(t) and Y2(t) are

one subject’s fMRI responses from two brain regions for an slow event-related design with

T scans per trial, then the peak correlation between Y1 and Y2 can be obtained by enter-

ing corrpeak(Y1, Y2, T ), where corrpeak is the function’s name, as defined in MATLAB.

For fast event-related designs, stimulus time-series should be indicated instead of scans per

trial. Calling features for each of the functions in the toolbox, along with its arguments are

described in the Appendix A.

1.2.2 Smoothing

We also include an optimized smoothing step as a noise-reduction procedure because not

all noise can be removed or cleaned [47]. Temporal smoothing is particularly important

in connectivity analyses because reliable detection of FC between brain responses can re-

quire high signal-to-noise ratio (SNR) [5]. FC estimates are therefore strongly dependent

on the level of temporal smoothing; too much smoothing yields over-estimates of relation-
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ships between time-series whereas too little smoothing underestimates these relationships.

We have implemented an optional Bayesian temporal smoothing technique using a Markov

Chain Monte Carlo (MCMC) Gibbs sampling algorithm with roughness penalty parameters

treated as components of variance and estimated from the data. This technique utilizes a

cubic B-spline basis expansion with equally spaced knots, and includes the ability to handle

white or lag-1 autocorrelated noise. An optional pre-whitening step is also available with

lag-1 autocorrelated noise. The level of autocorrelation has to be predetermined; the default

value is set to 0.7. We chose a cubic B-spline basis because it produces smooth yet flexi-

ble fits and for efficient computation of the roughness penalty parameter. A simple default

choice of the number of knots for the basis is min(1
4
× length of data, 35) [62].

1.2.3 Whole Time-Series Approaches

Whole time-series approaches aim to examine the relationships contained within the entire

time-series of fMRI scans, based on the assumption that the time-series is stationary. Sta-

tionarity of the time-series guarantees that the relationships among them are probabilistically

consistent over time [66].

1.2.3.1 Cross-Correlation Zero-order correlation measures the simultaneous linear cou-

pling relationship between two time-series. When the time courses are highly positively

correlated, this implies that the two regions are on average more or less active at the same

times. Conversely, a high negative correlation implies that when one region is more active

the other is less active. Zero-order correlation has been used often to measure inter-regional

relationships in fMRI, e.g., in Biswal et al. (1995)[7].

Lagged cross-correlation can also be used to evaluate inter-regional relationships [68].

Lagged cross-correlations capture the lagged or delayed linear relationships between regions.

Cross-correlation between brain regions A and B at positive lags indicate a relationship be-

tween activity of region A and subsequent activity of region B, or vice versa. One study that

used lagged cross-correlations [68] found that depressed people had attenuated correlation

of dorsolateral prefrontal cortex activity with amygdala activity 3 to 6 sec later.
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Cross-correlation of any two individual time-series (i, j), at lag h, ρij(h), is given by

ρij(h) =
covij(t, t+ h)√
vari(t)varj(t+ h)

, (1.1)

where ρij(h) = ρji(−h), and is restricted to the [−1, 1] interval. h = 0 corresponds to

zero-order correlation.

Correlations are often subtended by low-frequency (less than 0.1 Hz) components of the

data, as has been shown in several studies [7, 50, 16]. Biswal et al. (1995)[7], for example,

reported that low-frequency (below 0.08 Hz) correlations existed between the bilateral pri-

mary motor cortices (M1) and the supplementary motor area (SMA) during resting state

scans. We include the ability to apply a low-frequency filter as an option parameter to the

cross-correlation routine. By default this filter is set to 0.1 Hz.

1.2.3.2 Cross-Coherence While correlation is defined in the time domain, coherence

measures are in the frequency domain. Coherence has been repeatedly shown to be a useful

statistic for investigating FC across brain regions [48, 70, 63]. Coherence measures implicitly

account for lags in the effects of one region on another. If a time-series in one region is broadly

similar to that in another, but with a time delay, then the ordinary zero-order correlation

between the two will be moderate or low; the coherence, by contrast, will be high within

the bandwidth of the curve. The squared coefficient of coherence can be interpreted as the

proportion of the power in one of the two time series (at a selected frequency), which can be

explained by its linear regression to the other time course.

The concept of coherence of time-series was introduced by Wiener (1949)[74] and ex-

tensively developed and described by Rosenberg et al. (1989)[61] for its applicability to

functional imaging data. Spectral coherence for determination of FC was applied to motor

experiments by Sun et al. (2004)[70].

Coherence Cohij(λ) between any two individual time-series (i, j) at frequency λ is defined

as

Cohij(λ) = |Rij(λ)|2 =
|fij(λ)|2

fii(λ)fjj(λ)
, (1.2)

where Rij(λ) is the complex valued coherency of Yi and Yj; fij(λ) is the cross-spectral density

between Yi and Yj; and fii(λ) and fjj(λ) are the spectral densities of Yi and Yj. Coherence
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is a positive function, it is symmetric in i and j(e.g., Cohij(λ) = Cohji(−λ)), and bounded

by 0 and 1.

1.2.3.3 Mutual Information Theoretically, correlation and coherence measure the lin-

ear dependence between two time-series, whereas mutual information is a statistical measure

of both linear and nonlinear dependence [64]. Mutual information quantifies the shared infor-

mation between two time-series. For example, if the two time-series are independent, there

is no shared information and hence the mutual information is zero. At the other extreme, if

one time-series is a deterministic one-to-one function of the other, then they share the same

information: in this case their mutual information is infinite.

Jeong et al. (2001)[41] used an entropy-based measure of mutual information to investi-

gate FC among time-series from different cortical areas in both Alzheimer’s disease patients

and healthy controls. Salvador et al. (2005) employed mutual information based on coher-

ence and showed that FC lay mainly in low frequencies. Chen et al. (2008)[11] developed

a conjoined time-frequency analytical-based method of mutual information to explore brain

neural connectivity by MEG during a self-paced finger lifting task. In this toolbox, we imple-

ment mutual information based on coherence in the frequency domain [63], which is defined

as

δij = − 1

2π

∫ λ2

λ1

log(1− Cohij(λ)) dλ, (1.3)

where [λ1, λ2] specify the frequency band within which to integrate the infomation and

−π ≤ λ1 < λ2 ≤ π. This formula assumes time-series are Gaussian.

This integral is unbounded, ranging from 0 to infinity. A simple transformation can be

applied, however, to obtain a normalized mutual information [42, 34, 63], with scores in the

interval [0, 1]. This is implemented in the toolbox as

φij = [1− exp(−2δij)]
1
2 . (1.4)

1.2.3.4 Partial Cross-Correlation/Coherence/Mutual Information With analy-

ses including more than two brain regions, one question is whether an observed dependence

between any two regional time-series is attributable to a direct connection between the two
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brain regions or to an indirect relationship involving other regions. This question may be

addressed by measuring the association between the two regions (i, j) after accounting for

the relationship of each to other reference time-series 1, . . . , P\i, j (time-series from region

1 to P except time-series from region i and j). This is called conditional dependence. A

discussion of how to apply bivariate cross-correlation/coherence/mutual information anal-

ysis to multivariate time-series was provided by Salvador et al. (2005)[63]. Our toolbox

includes similar routines for computing partial cross-correlation/coherence/mutual informa-

tion. These measures yield the partial relationship of each pair of time-series accounting for

the remaining time-series in a matrix.

1.2.4 Trial-Based Approaches

Trial-based approaches evaluate trial-to-trial relationships and are usually applied to event-

related experimental designs. Time-series of brain regions in trial-based approaches does not

have to meet the assumption of stationarity.

1.2.4.1 Peak Correlation Peak correlation captures the coupling relationship of peaks

in activitation in pairs of brain regions associated with discrete events (trials). We implement

this by first creating functional versions of trial-related time-series by temporally smoothing

the trial time courses: each trial yields one curve per region. Separate peak estimates

are computed from the functional responses for each individual trial and for each region

and consequently used as the data in a correlation analysis. A high positive value of peak

correlation between two regions indicates that two regions are more or less active than average

during the same trials. Similarly, a high negative value implies that when one region has a

higher-than-average peak, the other region has a lower-than-average peak.

Similarly, instead of trial peaks, other trial trajectory characteristics can also be es-

timated for constructing trail-by-trail relationship between brain regions. Rissman, et al.

(2004) [59] derived a new method which is capable of characterizing stage-specific functional

interactions. They constructed a standard general linear model (GLM) in which every stage

(cue, delay, and probe) of every trial is modeled with a separate covariate, so that trial-
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to-trial separate parameter estimates relating to cue, delay, and probe are computed. The

parameter estimates are sorted according to the stage from which they were derived and

then use those as the dependent data in a correlation analysis to obtain FC for different

stages of the task respectively.

1.2.4.2 Functional Canonical Correlation Functional canonical correlation seeks to

investigate which modes of variation between pairs of observed random curves are most

associated with one another. Functional versions of trial-related time-series are created by

smoothing the trials and the canonical correlation between these functional responses is

computed. The functional canonical correlation [56] between any pair of individual time-

series (i, j) is given by

ccorsqij(ξ, η) =
cov(

∫
ξ(t)Yim(t)dt ,

∫
η(t)Yjm(t)dt )2

(var
∫
ξ(t)Yim(t)dt + λ‖D2(ξ)‖2)(var

∫
η(t)Yjm(t)dt + λ‖D2(η)‖2)

. (1.5)

Here, ξ(t) is the weight function for Yi and Yim refers to the mth trial of region i;

similarly, η(t) is the weight function for Yj and Yjm refers to mth trial of region j. λ is a

smoothing parameter, chosen via cross-validation, that describes the smoothness constraint

on the weight functions. ‖D2(ξ)‖2 and ‖D2(η)‖2 represent the roughness of the weight

functions, where D2(·) is the second derivative operator.

Qualitative relationships between the two regions can be explored by examining the

weight functions. For example, weight functions may indicate that sustained activity on one

region is related to peak activity in another region. Siegle et al. (2007)[68] used functional

canonical correlation analysis to measure FC between amygdala and DLPFC responses to

negative words.

1.2.4.3 Use of Whole Time-Series Approaches with Nonstationary Designs The

extent to which whole time-series approaches are applicable to nonstationary (e.g., trial-

based) designs is unclear. The whole time-series approaches generally assume stationarity,

and thus in the case of a recurring effect of a stimulus on two regions, may overestimate

true connectivity. This over-estimation might be attenuated by examining connectivity at

8



frequency bands outside the trial range (e.g., using a low-pass filter). Alternately, if effects of

the stimulus are assumed to be constant across trials, residual relationships between regions

might be inferred to reflect connectivity. In this case, stimulus effects can be explicitly ac-

counted for before computing connectivity, e.g., via residual regressions or partial correlation

analysis, entering a stimulus-related response as a covariate. With a fast event-related or

jittered design with catch trials, the covariate waveform could be constructed by deriving

an impulse response function (e.g., via deconvolution) which could be convolved with the

design. In the case of a fast event-related design in which catch trials are not presented, it

would be possible to covary a series of canonical responses convolved with the design from

the waveforms in both regions. With slow event-related designs, if responses within a region

are assumed to have a canonical shape, the covariate waveform could be constructed by con-

volving a canonical response with a delta function at the stimulus frequency. But systematic

deviations from the canonical waveform in either structure might then create a spurious

pattern of connectivity. Rather, using the mean responses in each candidate waveform as

covariates minimizes these effects by assuming only that trial-to-trial deviations from the

mean response in both regions reflect the effects of connectivity. We have adopted this last

approach in the simulations described below.

1.3 RESULTS

1.3.1 Simulation 1

In Simulation 1, we performed two Monte Carlo studies to illustrate how the implemented

FC measures detect different patterns of association between two regions. The first study

simulated stationary (resting sate) fMRI time-series data for use with whole time-series FC

measures. Since any stationary time-series can be represented as the random superposition

of sines and cosines oscillating at various frequencies [66], each regional time-series was

generated by a linear combination of sine waveforms of different frequencies and phases;

the weights for each component were generated from a normal distribution. The regional

9



time-series were then convolved with an hemodynamic response function (double gamma)

to produce a temporally smoothed BOLD time-series. Connectivity between regional time-

series was achieved by linking the weights of sine waveforms at certain frequencies and phases.

Simulated data was generated as single run for each of fifty subjects, consisting of 140 scans

(TR=2s). Gaussian white noise was added to each run. Functional SNR (the ratio between

the intensity of a signal associated with changes in brain function and the variability in the

data due to all sources of noise [39, 66]) was set to approximately 3 here and in the second

study. Simulation and FC results for the first study are given in Figure 1.1.
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The second study simulated nonstationary (event-related) fMRI brain responses. The

BOLD activation curve for each trial was generated by a linear combination of B-spline basis

functions. Weights for the B-splines were generated from multivariate normal distributions

with predefined mean and variance. An association between two regions was created by

correlating the weights of B-spline basis functions. Simulations were generated with 20 trials

and 7 scans per trial (TR=2s) for each of fifty subjects with additive white Gaussian noise.

Simulation and FC results for the second study are given in Figure 1.2.

In the second study, we also considered partial correlation/coherence/mutual information

by including reference waveforms to control for co-activation of regions from application of

the stimulus. Correlation and coherence measures can be dominated by the stimulus-locked

response in event-related designs. When a stimulus is presented, the stimulus-locked neural

response may cause an increase in the BOLD signal in both regions simultaneously (co-

activation). This is not necessarily due to an intrinsic task-induced functional coupling, but

may be due to the response in both regions to the externally-applied stimuli. For example,

in the simulations of event-related design data shown in Figure 1.2, coherence is particularly

high at the trial frequency even when there is no inherent connectivity. By including stim-

ulus reference waveforms, partialling methods estimate any remaining relationship between

two time-series after taking co-activation into account. For these simululations we chose

two stimulus reference waveforms generated by repeating the mean trial-averaged responses

across all trials for each region. Partial results are shown in Figure 1.2 as dashed red lines.
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Tables 1.1 and 1.2 summarize the computed FC measures for different patterns of as-

sociation between two regions, based on the simulation results. Statements within brackets

are partial results accounting for stimulus waveforms. For simulations of non-design related

connectivity, including the mean stimulus waveforms as covariates does not change the value

of correlation and coherence (e.g., zero-order (lag 1) relationship unrelated to the design;

relationships only among low frequencies (0.05 Hz) unrelated to design). For all types of

relationships related to the design, coherence at the trial frequency is attenuated after in-

cluding stimulus waveforms. In contrast, cross-correlation is still high at lag 0 (or 1) for

relationships of design-induced peak amplitude between two regions (e.g., zero-order (lag

1) relationship related to the design; related peak amplitudes but unrelated latencies; and

A-1-mode and B-2-modes) because the two regions become more or less active than the

average response during the same trials, a relationship remains after accounting for stimu-

lus waveforms reflecting true connectivity. Cross-correlation attenuates a bit for data with

related peak amplitudes and latencies but variability in higher moments, because for some

trials region 1 may activate before region 2 and for other trials the reverse may happen. The

relationship of A-peak amplitude to B-sustained activity is phase-lagged after accounting

for the stimulus waveform, since when region 1 has a higher than average peak, region 2

has higher than average sustained later activity. Partial cross-correlation and partial cross-

coherence are very low for data generated with unrelated peak amplitudes but related peak

latencies and essentially zero for data generated with stimulus co-activation but no FC re-

lationship. Note, however, that canonical correlation weighting functions for data generated

with unrelated peak amplitudes but related peak latencies do indicate the nature of the FC

relationship. The two weight functions for this relationship (displayed in Figure 1.2) are

identical and put most weight in the beginning and end of the trials, indicating that the

primary mode of covariation lies in shifting the timing of the peaks.
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Table 1.1: Interpreting data based on simulation results (whole waveform)

Zero-order Lagged Cross Mutual Mutual Interpretation
corr. corr. coh. info.(L) info.(H)

High Medium High at Medium Low Zero-order relationship
or low low freq.

Medium High High at Medium Low Lagged (lag 4) relationship
or low low freq.
Could be Could be High at Medium Low Multiple frequency components with
high high low freq. relationships only among low

frequencies
Low Low High at Low Medium Multiple frequency components with

or high high freq. relationships only among high
frequencies

Table 1.2: Interpreting data based on simulation results (trial-based waveform)

Zero-order Lagged Cross Mutual Mutual Peak Canonical Interpretation
corr. corr. coh. info. info. corr. corr.

(L) (H)
High Medium High at Medium Low Medium High Zero-order
(high) or low low freq. (medium) (low) relationship

(medium (high at unrelated to
or low) low freq. ) design

Medium High High at Medium Low Low High Lagged
or low (high) low freq. (medium) (low) relationship
(medium (high at unrelated to
or low) low freq.) design
High Medium High at Medium Low High High Zero-order
(high) or low trial freq. (medium) (low) relationship

(medium (high at related to
or low) low freq.) design

Medium High High at Medium Low High High Lagged
or low (high) trial freq. (medium) (low) relationship
(medium (high at related to
or low) low freq.) design
Could Could High Medium Low Medium High Multiple
be be at (medium) (low) or frequency
high high 0.05 Hz low components with
(could (could (high relationships
be be at only among low
high) high) 0.05 Hz) frequencies

(0.05Hz)
unrelated to
design

High Medium High at Medium Medium High Medium Related peak
Continued on next page
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Table 1.2 – continued from previous page
Zero-order Lagged Cross Mutual Mutual Peak Canonical Interpretation

corr. corr. coh. info. info. corr. corr.
(L) (H)

or or trial (low) or amplitudes and
medium low freq. low latencies but
(medium) (low) (low) (low) variability in

higher moments
(e.g.,skew,
kurtosis)

Medium Low Medium Medium Medium High High Related peak
(medium) (low) at trial (medium) or low amplitudes but

freq. (low) unrelated peak
(low) latencies

Medium Medium High at Medium Low High High A-1-mode
(high or low trial (medium) (low) corresponds to
or (high at freq. B-2-mode and
medium) certain (high at related mode

lag) low amplitudes and
freq.) latencies

Medium Low High at Medium Low Low High Relationship of
(medium (high at trial (medium) (low) A-peak
or low) certain freq. -amplitude to

lag) (high at B-sustained
low freq.) activity

Medium Low High at Medium Low Low High Unrelated peak
(low) (low) trial freq. (low) (low) amplitudes but

(low) related peak
latencies

Low Low High at Low Low Low Low No connectivity
(low) (low) trial freq. (low) (low)

(low)

1.3.2 Tree-Building

Tables 1.1 and 1.2 show that the combination of all FC measures did not exhibit the same

pattern for any two simulated connectivity relationships between the two regional time-series.

Thus, it appears that quantifying more than one FC measure may be useful in understanding

the precise nature of connectivity between two fMRI time-series. To explore this idea further,

we determined a set of if-then logical (split) conditions permitted accurate predictions of

17



association type between regions (from the 11 patterns listed in Table 1.2) from a set of

FC measure predictors (partial correlation/coherence/mutual information are implemented

instead of correlation/coherence/mutual information). We conducted a classification analysis

via a tree-building algorithm [8] using the values of the FC measures to move through the

tree (until reaching a terminal node) to predict the category (1-11) shown for that node. This

classification tree is shown in Figure 1.3. The tree was built based on 80% of the simulation

data and the pruning parameter was chosen by 10-fold cross-validation [73]. The proportion

of correctly classified simulations for the other 20% was 92.7%. The inclusion of multiple

measures in the tree suggested that multiple FC measures are useful in determining the true

nature of a functional relationship between two regions.

1.3.3 Simulation 2

In Simulation 2, we performed two Monte Carlo studies to illustrate the effect on computed

FC relationships when different types of noise are added to related BOLD signals. BOLD

signals were generated as in Simulation 1. In study 1, BOLD signals from two regions were

stationary with a zero-order relationship. In study 2, BOLD signals were event-related with

zero-order relationship. Lag-1 autocorrelated noise with low SNR (functional SNR around

1.5) and lag-1 autocorrelated noise with high SNR (functional SNR around 2.5) were added

to the coupled BOLD responses. In each of the studies, FC measures were computed after

smoothing with and without explicitly modeling autocorrelated noise. FC results from the

two studies are shown in Figure 1.4 and 1.5 respectively. These results show that as SNR

decreases, FC measures tend to become attenuated. However, even under a high level of noise

inter-regional relationsips were detectable for some FC methods; e.g., functional canonical

correlation is still high (around 0.8) when applied to smoothed fMRI responses with low

SNR (see second row of Figure 1.5).

In addition, the results illustrate that smoothing fMRI responses with a method that

explicitly models autocorrelated noise can be important for detecting FC when noise is in

fact autocorrelated, especially when the SNR is low. For example, in Figure 1.5, partial

cross-coherence between the two regions is quite small (around 0.2) at low frequencies when

18



canonical<0.975 

1 

p_lag 1<0.685 

p_lag 4<-0.64 

    Classification tree 

2 

p_zero-order<-0.425 

p_lag 1<0.855 

6 

10 11 

5 
peak<0.585 

canonical<0.815 

p_lag4<-0.275 canonical<0.565 

9 

4 8 3 7 8 3 

p_lag 1<0.925 

p_lag 4<0.315 

4 
p_zero-order<0.865 p_lag 4<0.3 

Figure 1.3: Multiple trials for one subject

Classification tree of 11 pattern of associations. Here, 1-11 represent: 1.Zero-order relationship unrelated
to design; 2.Lagged (lag 4) relationship unrelated to design; 3.Zero-order relationship related to design;
4.Lagged (lag 1) relationship related to design; 5.Relationships among low frequencies unrelated to design;
6.Related peak amplitudes and latencies but variability in higher moments; 7.Related peak amplitudes
but unrelated peak latencies; 8.A-1-mode B-2-modes; 9.Relationship of A-peak-amplitude to B-sustained
activity; 10.Unrelated peak amplitudes but related peak latencies; and 11.No connectivity. Covariates put
in this classification tree were partial zero-order correlation(‘p zero-order’), partial lag-1 correlation(‘p lag
1’), partial lag-4 correlation(‘p lag 4’), partial mutual information over low frequency band(‘pmu l’), partial
mutual information over high frequency band(‘pmu h’), peak correlation(‘peak’), and functional canonical
correlation(‘canonical’).
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the SNR is low and smoothed without modeling autocorrelated noise, but increases to around

0.7 when the data are smoothed with a method that models autocorrelated noise. Smoothing

data after pre-whitening (not shown here) resulted in similar improved estimates of FC in the

presence of autocorrelated noise. In contrast, we found little difference in the FC measures

for the stationary design (Figure 1.4).
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1.3.4 Application to An Empirical Neuroimaging Dataset

This analysis involves data from 32 healthy adult subjects, acquired as part of a larger

study. The goal was to determine functional relationships between the dorsal anterior cin-

gulate cortex (dACC) and dorsolateral prefrontal cortex (DLPFC) during executive control.

Theoretical models [15] and initial neuroimaging analyses [51, 2] suggest that bidirectional

relationships should be apparent - that is, the DLPFC is involved in executive control neces-

sary to prime the dACC, and dACC activity should spur future DLPFC activity. But these

relationships have not been tested using multiple measures of connectivity, so the true na-

ture of relationships has not been determined. In addition, no study of relationships between

these regions has considered the idea that different healthy subjects may be characterized by

qualitatively different functional relationships among these regions. In 36 slow event-related

trials (one subject with 33), participants viewed a fixation mask (1 sec), followed by a set of

three, four or five digits (2 sec), followed by another fixation mask (5 sec). Then, a ‘target’

digit from the previously presented set appeared (10 sec). Participants were told to push

a button indicating whether the target was the middle digit of the previously presented

set or not. The fMRI data were gathered every 1.5 sec. The full experimental design as

well as preprocessing of these data are described by Siegle et al. (2007). Briefly, data were

subjected to motion correction, detrending within blocks, and temporal smoothing, cross

registered to an image within the dataset, and subjected to spatial smoothing, 6mm FWHM

Gaussian kernel. The reference brain was then transformed into Talairach space using AFNI

(Cox, 1996)[17] to extract anatomical masks. Regions involved in this analysis were dACC

restricted in BA32 and DLPFC restricted in BA9 (Figure 1.6), with significant scan × condi-

tion interactions (p < 0.0001) using a repeated measures Analysis of Variance (ANOVA) in

which subject was a random factor and scan and condition (number of presented digits) were

fixed factors, subject to an empirically derived contiguity threshold of 105 voxels. Significant

regions were restricted to those in BA32 and BA9 using Talairach masks and are shown in

Figure 1.6. The averaged fMRI signal from each ROI(region of interest) were acquired and

normalized by subtracting and then divided by the median regional activation across the

whole time-series within stimulus types and subjects. Figure 1.7 shows one subject’s BOLD
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DLPFC(BA9) 

Regions used in the analysis 

dACC(BA32) 

Figure 1.6: Regions used in the analysis

Identified regions of interest used in the analysis: dACC restricted in BA32 (left) and DLPFC restricted in
BA9 (right).

responses of the ROIs.

We applied all of the FC measures (including partial correlation methods, controlling for

the mean effect from the external stimulus in each region) to dACC(BA32) and DLPFC(BA9)

within subjects. Cross-correlation and partial cross-correlation both reached their maximum

at lag 0 and the associations were not attenuated when controlling the effects from the exter-

nal stimulus. Taking out the external stimulus waveform reduced cross-coherence between

these two regions at the trial frequency. A strong relationship was observed for both peak

correlation and canonical correlation.

Based on the results of different FC measures on this real dataset, we classified the 32

subjects according to the classification tree shown in Figure 1.3. There were 6 detected

relationships: 3. Zero-order relationship unrelated to design; 6. Related peak amplitudes

and latencies but variability in higher moments; 8. A-1-mode B-2-modes; 9. Relationship of

A-peak-amplitude to B-sustained activity; 10. Unrelated peak amplitudes but related peak

latencies; and 11. No relationship. Most subjects (27 of 32) were classified to relationship

6, 8 and 10 (Figure 1.8). Average results of the computed FC within three main groups

are shown in Figure 1.9 (partial results are shown in dashed red lines). Subjects classified
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Figure 1.7: Multiple trials for one subject

Thirty-six experimental trials for one subject. Blue lines are trials in dACC(BA32) (left panel) and
DLPFC(BA9) (right panel). Bold red lines are subject’s mean responses for each ROI.

to relationships 6 and 8 showed higher cross-correlation and peak correlation than subjects

classified to relationship 10 because they had related peak amplitude activity between the

two regions. Subjects classified to relationship 8 showed higher cross-coherence over low

frequency band than the other groups.
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Figure 1.8: Classification results of 32 subjects

Classification results for 32 subjects. X axis represents the 11 types of association corresponding to Figure
1.3. Y axis represents the number of subjects classified to each relationship.

26



−
10

−
5

0
5

10
−

1

−
0.

50

0.
51

cr
os

s−
co

rr
el

at
io

n

r

0
0.

1
0.

2
0.

3
0

0.
2

0.
4

0.
6

0.
81

cr
os

s−
co

he
re

nc
e

coh

G
ro

up
2:

R
el

at
ed

 p
ea

k 
am

pl
itu

de
s 

an
d 

la
te

nc
ie

s 
bu

t v
ar

ia
bi

lit
y 

in
 h

ig
he

r 
m

om
en

ts

pm
ul

pm
uh

p_
c

ca
_c

0

0.
2

0.
4

0.
6

0.
81

2
4

6
8

10
−

0.
10

0.
1

0.
2

0.
3

0.
4

w
ei

gh
t f

un
ct

io
ns

−
10

−
5

0
5

10
−

1

−
0.

50

0.
51

cr
os

s−
co

rr
el

at
io

n

r

0
0.

1
0.

2
0.

3
0

0.
2

0.
4

0.
6

0.
81

cr
os

s−
co

he
re

nc
e

coh

G
ro

up
3:

A
−

1−
m

od
e 

B
−

2−
m

od
es

pm
ul

pm
uh

p_
c

ca
_c

0

0.
2

0.
4

0.
6

0.
81

2
4

6
8

10
−

0.
2

−
0.

10

0.
1

0.
2

0.
3

w
ei

gh
t f

un
ct

io
ns

−
10

−
5

0
5

10
−

1

−
0.

50

0.
51

cr
os

s−
co

rr
el

at
io

n

r

0
0.

1
0.

2
0.

3
0

0.
2

0.
4

0.
6

0.
81

cr
os

s−
co

he
re

nc
e

coh

G
ro

up
5:

U
nr

el
at

ed
 p

ea
k 

am
pl

itu
de

s 
bu

t r
el

at
ed

 p
ea

k 
la

te
nc

ie
s

pm
ul

pm
uh

p_
c

ca
_c

0

0.
2

0.
4

0.
6

0.
81

2
4

6
8

10
−

0.
20

0.
2

0.
4

0.
6

w
ei

gh
t f

un
ct

io
ns

F
ig

u
re

1.
9:

M
ea

n
re

su
lt

s
of

F
C

on
E

m
p
ir

ic
al

D
at

as
et

M
ea

n
re

su
lt

s
of

di
ffe

re
nt

F
C

m
ea

su
re

s
be

tw
ee

n
dA

C
C

(B
A

32
)

an
d

D
L

P
F

C
(B

A
9)

fo
r

th
re

e
m

ai
n

cl
as

si
fie

d
gr

ou
ps

.
R

ed
da

sh
ed

lin
es

sh
ow

n
ar

e
pa

rt
ia

l
co

rr
el

at
io

n
or

co
he

re
nc

e.
‘p

m
ul

’,
‘p

m
uh

’,
‘p

c’
,

‘c
a

c’
re

pr
es

en
t

pa
rt

ia
l

m
ut

ua
l

in
fo

rm
at

io
n

ov
er

lo
w

fr
eq

ue
nc

y
ba

nd
,

pa
rt

ia
l

m
ut

ua
l

in
fo

rm
at

io
n

ov
er

hi
gh

fr
eq

ue
nc

y
ba

nd
,

pe
ak

co
rr

el
at

io
n,

an
d

fu
nc

ti
on

al
ca

no
ni

ca
l

co
rr

el
at

io
n

re
sp

ec
ti

ve
ly

.

27



1.4 DISCUSSION

We have developed a MATLAB toolbox for performing FC analyses which includes many of

the most commonly-used approaches researchers have utilized to date for the identification

of condition-dependent functional interactions between fMRI time-series obtained from two

or more brain regions [7, 59, 63, 68]. The approaches are either bivariate or multivariate

methods defined in time or frequency domains that emphasize distinct features of relation-

ships among the time-series. An optional pre-smoothing step is also implemented which

allows empirically-derived temporal smoothing of the data before performing FC analyses.

The FC toolbox enables ease of comparison and greater flexibility for choosing among FC

measures, and may potentially lead to a greater understanding of the precise nature of FC

relationships manifested in a given dataset. The simulation results illustrated that using

multiple FC measures could effectively detect and classify regional associations and provide

more information about the type of FC than any single measure.

We applied these methods to an fMRI study to determine FC between dACC(BA32) and

DLPFC(BA9) during a digit sorting task. We found strong relationships between these two

ROIs. Relationships between the regions were 1) heterogeneous across subjects, 2) related to

task, and 3) more complex than would have been detected using simple zero-order statistics

such as correlation. Following the classification tree (Figure 1.3) 27 of 32 subjects were

classified to relationship 6, 8 and 10 (Figure 1.8). This indicated that the most common

FC relationship in the sample involved a higher peak response in dACC(BA32) in response

to a higher peak response in DLPFC(BA9). But some subjects displayed a prolongation of

response in dACC(BA32) in response to a higher peak response in DLPFC(BA9). These

relationships were not trivial, and certainly were more complex than would be revealed by

zero-order correlation alone. At the most basic level, we can conclude that in this study,

the dACC(BA32) and DLPFC(BA9) were strongly related among nearly all subjects - this

point would not have been possible without using multiple connectivity measures. Future

research is necessary to suggest whether the different observed patterns of relationships have

psychological and biological importance, e.g., whether subjects with different patterns of

connectivity differed in other important ways such as their performance.
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The toolbox is flexible, taking brain activity data as inputs but also able to accept

peripheral physiological measures (i.e., blood pressure, heart rate, etc.) into the FC function,

with the requirement that all time-series inputs should be on the same resolution . An

interpolation function is available in this toolbox that would allow time courses with different

resolutions to be applied that are thereafter altered to be on the same resolution as the fMRI

time courses. Furthermore, this toolbox could be implemented for determining whole brain

network structure in which, instead of doing FC analysis between ROIs, researchers could

do FC analysis between each pair of voxels over the whole brain.

We plan future work in several areas. First, an important question not addressed in the

smoothing step is the estimation of the autocorrelation in the noise. We intend to implement

an improved smoothing step which estimates the autocorrelation as well as smoothing in

a future version of the toolbox. Second, the simulation studies implemented in this paper

only considered direct relationships between two regions; multivariate relationships involving

three or more regions are, of course, important. We intend to perform further simulations

involving more than two regions to examine the behavior of these algorithms under indirect

regional associations. Finally, our simulation studies only included 11 distinct patterns of

inter-regional connectivity; since there may be many more types of connectivity relationships

in actual data, results obtained from our classification tree may be misleading. However,

we have used this limited set of patterns to demonstrate some possible associations, and to

show that for understanding plausible relationships it may be useful to compute multiple

FC measures. Moreover, the website for this toolbox is open to the public so that users

can provide information on this issue. Specifically, we have created an area in which new

empirical or simulated datasets can be uploaded with known relationships. We plan to

update the classification tree regularly based on these data.

The Matlab Functional Connectivity toolbox is freely-availabe at http://groups.google.com

/group/fc-toolbox.
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2.0 A BAYESIAN APPROACH ON SMOOTHING AND MAPPING

FUNCTIONAL CONNECTIVITY FOR EVENT-RELATED FMRI DESIGNS

2.1 INTRODUCTION

Functional magnetic resonance imaging (FMRI) has provided a useful technique to study

activation of the human brain in tasks of cognition, emotion, and behavior. During an fMRI

experiment, the subject performs a sequence of tasks while magnetic resonance images of his

or her brain are acquired at regular intervals, which yields a sequence of three-dimensional

images of the subject’s brain over time. Thus, fMRI data is collected in four dimensions, three

spatial and one temporal, and the time dimension measures the blood oxygen level-dependent

(BOLD) response to reflect neural activity. FMRI experiments are often employed to study

activation and functional connectivity (FC), which seeks to characterize the dynamics of

BOLD responses and determine relationships among specialized brain regions in processing

information under various experimental conditions, or subgroups of subjects. The aim of this

chapter is to present an exploratory model to analyze fMRI data from multiple brain regions

in slow event-related fMRI experimental designs. This model simultaneously estimates the

BOLD responses and FC, while making minimal assumptions about the shape of BOLD

responses and the nature of the inter-regional relationships.

Slow event-related designs are well-suited for exploring temporal dynamics of activity in

regions involved in complex cognition or emotion tasks, which may take several seconds to

process [71]. In a slow event-related experimental paradigm, stimuli or trials are presented

individually, separated by inter-stimulus interval, which is usually on the order of 10 to 20

seconds. This duration is usually long enough to allow the neural activation following the

stimulus returning to its baseline [33], hence allowing researchers to learn about the BOLD
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Figure 2.1: Two subjects’ trial activation trajectories

Subjects’ stimulus-locked trial activation trajectories in three brain regions in response to 20 negative word
stimuli. Regional activation trajectories were determined by averaging activation trajectories over voxels
within the region. Blue lines indicate individual stimulus-locked trajectories, red lines indicate subjects’
averaged activation trajectories.

response and the post-stimulus inter-regional relationships. Experimental stimuli can vary

trial by trial and are usually presented in a random order, which permits the examination

of the inter-regional relationships for different stimulus types.

There are two special aspects of the data resulting from this type of experiment. First, the

responses are inherently functional in nature, sampled discretely at a finite number of time

points. Second, the data resulting from this experiment are nonlinear and nonstationary,

vary from trial to trial, person to person and group to group. A motivating experiment of

slow event-related design published in 2007 by Siegle, et al [68] is shown in Figure 2.1; data

in this figure are stimulus-locked responses trajectories for three regions of interest (ROIs) of

a mentally-healthy control subject and a depressed subject with major depressive disorder.

The subjects were presented with a list of 60 personally-relevent negative/neutral/positive

words and the presented trials are from the negative stimuli.

In traditional analyses, curve averaging within subjects or trial types is used for studying

stimulus-locked activation in fMRI study. This technique provides a simple method for
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learning the nonstationarities in stimulus-locked BOLD responses. However, it ignores the

within-subject variability. Another commonly used approach for studying stimulus-locked

activation is to use parametric models with a variety of covariates of interest, for example,

categorical variables describing the type of multiple tasks, group membership, and so forth.

Usually, the design matrix will also include terms representing the predicted shape of BOLD

response curve, specifically a convolution of the stimulus time courses with a model for

the hemodynamic response function (HRF), typically a simple gamma [46], Possion [28], or

Gaussin model [55]. But fMRI responses are frequently observed that they do not match

the HRF model [68, 47]. In addition, study designs are becoming increasingly complex and

the signals under investigation are closer to the limits of detection. Thus, nonparametric

approaches are proposed to model fMRI responses [19, 13, 71], which require no or very

limited assumptions to be made about the data and are therefore applicable in a wider

variety of situations.

In this chapter, a nonparametric approach is going to be introduced. As a point of

general statistical methodology, this new approach is concerned with multivariate functional

data analysis, with aims of smoothing and learning the covariance structure of multiple

curves, where the curves are observed longitudinally over equally spaced time points. The

statistical framework of functional data analysis (FDA) is a term introduced by Ramsay and

Silverman [56], where the basic unit of information is the entire function, such as a curve or

image. There has been an increasing interest in the nonparametric analysis of data that are

in the form of functions. Rice and Silverman(1991) [57] used smoothing splines to model the

mean function and modeled the covariance functions in terms of eigenfunctions; Brumback

and Rice (1998) [9] introduced a penalized smoothing spline mixed model which used the

mixed-effects model as a basis for extending the smoothing spline model for individual curves

(Kimmeldrof and Wahba 1970 [44]; Silverman 1985 [69]) to a sample of curves; Shi, et al.

(1996) [65], Rice and Wu (2001) [58], and James, et al. (2001) [40] proposed B-splines to

model the individual curves with random coefficients through mixed-effects model; Rice and

Wu (2001) and James et al. (2001) [40] suggested using principal component (PC) functions

to characterize the dominant modes of variation of a sample of random trajectories around

an overall mean trend function. Our approach is most closely related to that of James,
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et al. (2001) [40] and Rice and Wu (2001)[58]. Unlike the standard nonparametric FDA

literature, the major novelty in our approach is that it focuses on a set of functions which

are not necessarily independent. Smoothing is accomplished through a few PC functions via

the one-dimensional reduced rank mixed-effect model proposed by James, et al. (2001) [40],

and then modeling the association of curves by jointly modeling the PC scores. The model

is employed in a Bayesian formulation and we use Markov chain Monte Carlo (MCMC)

methods to sample from the posterior distribution of the model parameters. Our model also

allows for straightforward computation of pointwise Bayesian posterior credible regions for

both the mean curve, the individual curves, and the PC curves.

The outline for the remainder of this chapter is as follows. In Section 2.2, we describe

the proposed model, while Section 2.3 introduces a new FC measure. Section 2.4 outlines

the sampling scheme, model selection criteria as well as the posterior inference for the new

approach. In Section 2.5 we provide the results of a simulation study to evaluate the method,

and an application to analyze data from a psychiatric neuroscience experiment. Finally some

discussion related to the work is given.

2.2 THE MODEL AND PRIOR SPECIFICATION

2.2.1 The Model

2.2.1.1 The Mixed-Effects Model Mixed-effects models have been widely used in the

analysis of curve data; Shi, et al. (1996) [65] and Rice and Wu (2001)[58] suggested using

a mixed-effects approach to solve the functional principal components problem. in their

model, a set of smooth basis functions φk(t) (k = 1, . . . , K), such as B-splines, are used to

represent the curves, where the spline coefficients are assumed to be random to capture the

individual-specific effects. Let Yi(t) be the measurement at time t for the ith individual or

curve and write

Yi(t) = µ(t) + hi(t) + εi(t), 0 6 t 6 T, i = 1, . . . , N (2.1)

33



where µ(t) is the overall mean curve for the population, hi(t) represents the random departure

from the mean for subject i and εi(t) is the random measurement of error with mean zero and

variance σ2. Let φ(t) = (φ1(t), φ2(t), . . . , φK(t))T be the vector of K spline basis functions

evaluated at time t. Denote β be the unknown but fixed vector of spline coefficients, and

let γi be a random vector of spline coefficients for each curve with population covariance

matrix Γ. Then, µ(t) and hi(t) are modelled by a linear combination of basis functions, and

the resulting mixed-effects model has the form

Yi(t) = φ(t)Tβ + φ(t)Tγi + εi(t), i = 1, . . . , N. (2.2)

The principal patterns of variation about the mean curve are referred to as functional princi-

pal component curves. Rice and Wu (2000) [58] suggested modeling the patterns of variation

of the basis coefficients, γi, and then transform back to the original space. Since Γ is the

covariance matrix of the γi, this is achieved by multiplying the eigenvectors of Γ by b(t).

2.2.1.2 Single-Curve Reduced Rank Mixed-Effects Model If the dimension of the

spline basis is K then in fitting the covariance matrix Γ, K(K + 1)/2 different parameters

must be estimated, and the large number of parameters may make the model’s fit deteriorate.

James, et al. (2000) [40] pointed out this problem by developing a reduced rank model in

which the individual departure from the mean curve is modeled by a small number of PC

curves. This reduced rank model can be interpreted as a submodel of the mixed effects

model. Let fq be the qth PC function and let f(t) = (f1(t), f2(t), . . . , fQ(t))T be the vector

of PC functions evaluated at time t. The reduced rank model is defined as

Yi(t) = µ(t) + f(t)Tαi + εi(t) i = 1, . . . , N (2.3)

subject to the orthogonality constraint
∫
fjfl = δjl, with δjl being the Kronecker δ. These or-

thogonal PC functions characterize the major modes of variation in the individual curves.The

components of the random vector αi for the ith individual give the relative weight of the

PC functions. The αi’s and εi’s are assumed to be uncorrelated with each other and the

εi’s are temporally uncorrelated with each other as well. The αi’s are taken to a common

covariance matrix and the εi’s are assumed to have a common covariance σ2.
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Similar to the mixed-effects model 2.2, in order to fit this model when the data are

measured at only a finite number of time points, James, et al. (2000) [40] chose to represent

µ(t) and f(t) using a basis of spline functions. Let φ(t) = (φ1(t), φ2(t), . . . , φK(t))T be the

vector of K spline basis functions evaluated at time t. Let θµ and Θ be, respectively, a

K-dimensional vector and a K by Q matrix of spline coefficients. Then,

µ(t) = φ(t)Tθµ

f(t)T = φ(t)TΘ

The reduced rank model then has the form

Yi(t) = φ(t)Tθµ + φTΘαi + εi(t) i = 1, . . . , N (2.4)

αi ∼ (0,Σα), εi(t) ∼ (0, σ2)

subject to

ΘTΘ = I,

∫
φ(t)Tφ(t)dt = 1,

∫ ∫
φ(t)Tφ(s)dtds = 0. (2.5)

The equations in 2.5 impose orthogonality constraints on the PC curves. Σα is restricted

to be diagonal, otherwise, αi’s, Θ and Σ will be confounded [40]. According to Zhou, et al.

2008 [76], the orthogonality constraints imposed on b(t) could be achieved approximately by

choosing φ(t) such that (L/l)BTB = I. Here, B = (φ(t1), . . . ,φ(tl))
T is the matrix of basis

functions evaluated at a fine grid of l time-points t1, . . . , tl and L is the length of the interval

in which these grid points are taken.

As we have mentioned at the beginning of this section, the reduced rank model is a

submodel of the mixed effects model defined in Equation 2.2. Reparameterizing γi in 2.2 as

[
Θ Θ∗

] αi

αi
∗

 (2.6)

where Θ and αi are defined as above, Θ∗ is a K by K −Q matrix which is orthogonal to Θ,

and αi
∗ is a random vector of length K −Q with a diagonal covariance matrix. As a result

the mixed effects model in 2.2 can be written as

Yi(t) = φ(t)Tθµ + φ(t)TΘαi + φ(t)TΘ∗αi
∗ + εi(t) i = 1, . . . , N

(2.7)
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In the reduced rank model the α∗i ’s are set to zero and no attempt is made to estimate the

additional parameters Θ∗. To fit Q principle component curves Rice and Wu (2000)[58] sug-

gested to calculate the first Q eigenvectors of Γ; in other words, even though Θ∗ is estimated

it is never used. By employing the reduced rank model, the principal component curves are

estimated directly rather than estimating an entire covariance matrix and computing the

first Q eigenvectors.

2.2.1.3 Multiple-Curve Reduced Rank Mixed-Effects Model For data consisting

of multiple curves, an important problem of interest is modeling the association among them.

Zhou, et al. 2008 [76] discussed jointly modeling paired curves and the idea we use is similar

to theirs, but emphasizing the multivariate case. We first model each curve via the single

reduced rank PC model as discussed in Section 2.2.1.2, and the association among the curves

is modeled through the association among the PC scores corresponding to the underlying

variables. To be more specific, we assume that the scores of each PC function are realizations

of a stationary process.

Suppose Yi(t) is a P ×1 vector of response variables on subject i at time t, i = 1, . . . , N ,

and consider the model

Yi(t) = µ(t) + hi(t) + εi(t), 0 6 t 6 T, i = 1, . . . , N, (2.8)

= µ(t) + f(t)Tαi + εi(t)

In Equation 2.8, µ(t) = (µ1(t), . . . , µP (t))′, f(t)T = diag
(
f1(t)T , . . . , fP (t)T

)
where fp(t) =(

fp1(t), . . . , fpQp(t)
)T

, p = 1, . . . , P , is the Qp × 1 vector of PC functions corresponding

to the underling variable evaluated at time t, εi(t) = (εi1(t), . . . , εiP (t))′ is the vector of

measurement errors at time t. The measurement errors εi’s are assumed to be temporally

uncorrelated with mean zero and covariance matrix Σω = diag(σ2
ε,1, . . . , σ

2
ε,P ). The random

vector αTi =
(
αTi1, . . . ,α

T
iP

)
and αip, p = 1, . . . , P , gives the relative weights on the PC scores

for the pth variable and ith individual. It is also assumed that the αi’s and εi’s are mutu-

ally independent. The PC functions for each single curve are subject to the orthogonality

constraints
∫
fpqfpl = δpql .
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As discussed in Section 2.2.1.2, for the purpose of identifiability, the PC scores αipq,

q = 1, . . . , Qp, for the pth curve should be independent with each other for p = 1, . . . , P .

The strength of association among the curves is modeled on the smoothed response level

via correlations between the scores of PC functions. To be specific, αi ∼ N(0,Σ) and Σ is

restricted to the form as 
Σ1 C12 · · · C1P

CT
12 Σ2 · · · C2P

...
...

. . .
...

CT
1P CT

2P · · · ΣP

 ,

where Σ1, . . . ,ΣP are diagonal matrix. Σ can also be broken down in terms of its corre-

sponding standard deviations and correlation matrix. Specifically, we write

Σ = diag(D)Rdiag(D) (2.9)

where D = (D′1, . . . , D
′
P )′ is the Q × 1 (Q = Q1 + . . . + QP ) vector of standard deviations

and R is restricted to the form as
IQ1 R12 · · · R1P

RT
12 IQ2 · · · R2P

...
...

. . .
...

RT
1P RT

2P · · · IQP

 ,

with I being the identity matrix.

Let φ(t) = (φ1(t), φ2(t), . . . , φK(t))T be the K-dimensional vector of orthogonal spline

basis functions evaluated at time t and Φb(t) is a P by P ×K matrix defined as

Φb(t) =


φT (t) . . . 0T

...
. . .

...

0T . . . φT (t)

 . (2.10)

Then the model for the observed data can be written as

Yi(t) = Φb(t)θµ + Φb(t)Θαi + εi(t). (2.11)
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In Equation 2.11, θµ and Θ are, respectively, a P ×K-dimensional vector and a P ×K by

P ×Q matrix of spline coefficients where θµ = (θµ1

′, . . . ,θµP

′)′ and

Θ =


Θ1 . . . 0
...

. . .
...

0 . . . ΘP

 (2.12)

subject to ΘT
p Θp = I, p = 1, . . . , P . Θp is a K ×Qp matrix.

2.2.1.4 Adaptation of the Multiple-Curve Reduced Rank Model to Slow Event-

Related Design As discussed in Section 2.1, in a slow event-related design, the fMRI data

is observed for multiple subjects at multiple brain regions, with multiple trials per subject

and multiple scans per trial. Suppose there are N subjects, with subject i completing Mi

trials. Each trial consists of a short stimulus followed by an intertrial period consisting

of S fMRI scans. The fMRI activations for each trial are obtained from P pre-specified

brain regions. For trial j nested within subject i, denote the P -dimensional observed fMRI

response at the tth time (scan) following stimulus presentation by Yij(t). The fMRI response

Yij(t) can be decomposed into two parts

Yij(t) = Bij(t) + εij(t), (2.13)

i = 1, . . . , N, j = 1, . . . ,Mi, t = 1, . . . , S,

where Bij(t) represents the underlying BOLD response and εij(t) represents the noise which

is assumed to be temporally uncorrelated with mean zeros and variance covariance matrix

Σω = diag(σ2
ε,1, . . . , σ

2
ε,P ). Bij(t) can be written as

Bij(t) = µi(t) + hij(t), (2.14)

µi(t) is the overall mean function for subject i evaluated at time t and hij(t) represents the

smoothed deviation of the jth trial at time t. Following model 2.11, each dimension of hij(t)

is summarized by a set of PC functions which characterize the major modes of variation
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in the trial waveforms and we assume the sources of variation are constant across subjects.

Then, model 2.14 becomes

Bij(t) = Φb(t)θµi + Φb(t)Θαij. (2.15)

Φb(t), θµi
and Θ are defined the same as in Model 2.11. The random vector αij gives the

relative weights on the PC scores for the jth trial of ith individual and it is assumed that

αij ∼ N(0,Σi). It is also assumed that αij’s and εij’s are mutually independent. Writing

Σi = diag(Di)Ridiag(Di), i = 1, . . . , N , where Ri is the correlation matrix and Di is the

vector of standard deviations in subject i. We allow subject-dependent vectors of standard

deviations, but a common correlation matrix across subjects. Thus, Ri = R for all i, and Di’s

are unrestricted except being component-wise positive. This assumption of the correlation

structure keeps the number of unknown parameters to a much smaller size which is more

manageable. Clinically, we assume that the communication structure among brain regions

is similar across subjects which is reasonable if all the subjects are in the same categorical

group, for example, if they are all depressed patients. Here, the inter-regional association is

assumed within trials.

2.2.2 Prior Specification

The parameters of the proposed model are denoted by {θµi
,Θ,Di, R,Σω}, where index

1 6 i 6 N ranges over subjects. Prior specifications for some of the parameters follow the

common practice for Bayesian mixed models [29].

Specifically, the prior distributions for spline coefficients θµi
, i = 1, . . . , N , are indepen-

dent and follow multivariate normal distributions

θµi
∼ NP×K(0, cθIP×K), (2.16)

where IP×K is a identity matrix and the multiplier cθ is a prespecified constant; large values

of cθ correspond to a vague prior for θµi
.

The spline coefficients Θp =
(
θp,1, . . . ,θp,Qp

)
, p = 1, . . . , P , is a K ×Qp matrix and the

prior for each column vector θp,q, q = 1, . . . , Qp, is given by NK(0, cΘIK) and set cΘ to large

values to give a diffuse yet proper prior.
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A uniform prior distribution on log(σω,p),p = 1, . . . , P , is assumed which is equivalent to

p(σω,p) ∝ σ−1
ω,p or p(σ2

ω,p) ∝ σ−2
ω,p, (2.17)

and this can be taken as a limit of proper conditionally-conjugate inverse-gamma priors [30].

Since Di, i = 1, . . . , N , is simply aQ×1 vector with component-wise non-negativity as the

only constraint, the priors is placed on the logarithm of Di [6]. The log(Di)’s, i = 1, . . . , N ,

are shrinked to the same structure by following a common multivariate normal distribution

where

log(Di) ∼ NQ(ξ,Λ). (2.18)

The matrix Λ is chosen to be diagonal, that is, we are choosing independent log normal

distributions for each of the standard deviations. The hyperpriors for ξ and Λ are given as

ξ ∼ NQ(0, cξIQ), (2.19)

log(
√

Λq) ∝ 1, q = 1, . . . , Q

with a fixed large value of cξ. Λq is the qth diagonal element of Λ.

Let G be a gaussian bi-directed graph and an absent edge of G corresponding to marginal

independence. We accommodate the common correlation model [49] to correlation matrix

subject to R ∈ RQ, a positive definite matrix, and R ∈ M(G), where M(G) is the cone of

correlation matrices which fulfill the linear restrictions

rql = 0 if (q, l) /∈ G. (2.20)

We consider correlation matrix R restricted to the form as


IQ1 R12 · · · R1P

RT
12 IQ2 · · · R2P

...
...

. . .
...

RT
1P RT

2P · · · IQP

 .
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Then, a zero value in R corresponds to an absent edge in G. In the common correlation

model, all nonzero correlations rql are assumed to follow a common normal distribution

where

rql ∼ N(µ, σ2), 1 6 q < l 6 Q and (q, l) ∈ G. (2.21)

Then,

f(R|µ, σ2) = C(µ, σ2)
∏
q<l

(q,l)∈G

exp

{
−(rql − µ)2

2σ2

}
I
{
R ∈ RQ, R ∈M(G)

}
(2.22)

where

C−1(µ, σ2) =

∫
R∈RQ

R∈M(G)

∏
q<l

(q,l)∈G

exp

{
−(rql − µ)2

2σ2

}
drql. (2.23)

and where I{�} represents an indicator function which introduces dependence among rqls.

We assume the hyperpriors for µ and σ as

µ ∼ N(0, cµ), (2.24)

log(σ) ∝ 1,

where cµ is a specified constant. The full conditional densities for µ and σ2 are

p(µ | R, σ2) ∝ C(µ, σ2)
∏
q<l

(q,l)∈G

exp

{
−(rql − µ)2

2σ2

}
exp

(
−µ2

2cµ

)
, (2.25)

p(σ2 |R, µ) ∝ C(µ, σ2)
∏
q<l

(q,l)∈G

exp

{
−(rql − µ)2

2σ2

}
1

σ2
. (2.26)
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2.3 A NEW MEASURE OF FUNCTIONAL CONNECTIVITY

One of the aims of our proposed model is to determine FC among brain regions. A direct

way to learn FC is from the entries of the correlation matrix R. A positive value of Rp1p2(q, l)

indicates that the qth PC score for ROI p1 and the lth PC score for ROI p2 are positively

correlated. This could also help us better understand the type of FC in terms of learning the

shape of the corresponding PC functions. However, it is desirable to come up a summarized

measure of FC for the purpose of ease of comparison. We proposed a new measure of FC

based on the correlation matrix R by calculating the mutual information between the vectors

of PC scores from different ROIs. Then the inter-regional relationship between region p1 and

region p2 is measured via the mutual information between αijp1 and αijp2 , 1 6 p1, p2 6 P ,

which is defined as

MI (αijp1 ,αijp2) = H (αijp1) +H (αijp2)−H (αijp1 ,αijp2) , (2.27)

and H(X) = −E (log(fX(x))) is the entropy of X. Here, fX(x) is the probability density

function of X. If k dimensional random variable X follows multivariate normal distribution

with variance covariance matrix Σ, then

H(X) =
k

2
+
k

2
log(2π) +

1

2
|Σ|[1]. (2.28)

Based on the multivariate normal assumption of αij , any subvector of αij is of the same

structure with the correlation matrix being a submatrix of R. Then, the mutual information

between αijp1 and αijp2 could be simplified as

MI (αijp1 ,αijp2) = −1

2
log|R{p1,p2}|, (2.29)

where

R{p1,p2} =

∣∣∣∣∣∣ IQp1 Rp1p2

RT
p1p2

IQp2

∣∣∣∣∣∣ . (2.30)

As shown in Model 2.29, FC between region p1 and region p2 is subject-independent, which

is consistent with our model assumption.
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Another good property of this new connectivity measure is that it is easy to derive the

conditional FC between any two regions or response variables given the other variables in

the model. Learning conditional FC among brain regions has high clinical importance and

an application of it in research on depression is going to be presented in Section 2.5.2. We

define the conditional FC between ROI p1 and ROI p2 by the partial mutual information

between αijp1 and αijp2 , 1 6 p1, p2 6 P , which is given by

MI
(
αijp1 ,αijp2|αij{1,...,P\p1,p2}

)
= H

(
αijp1 ,αij{1,...,P\p1,p2}

)
+H

(
αijp2 ,αij{1,...,P\p1,p2}

)
−H

(
αij{1,...,P\p1,p2}

)
−H

(
αijp1 ,αijp2 ,αij{1,...,P\p1,p2}

)
= H

(
αij{1,...,P\p2}

)
+H

(
αij{1,...,P\p1}

)
−H

(
αij{1,...,P\p1,p2}

)
−H (αij)

=
1

2
log|R{1...,P\p2}|+

1

2
log|R{1...,P\p1}| −

1

2
log|R{1...,P\p1,p2}|

−1

2
log|R|, (2.31)

where R{1...,P\p2}, R{1...,P\p1} and R{1...,P\p1,p2} are defined in the same way as R{p1,p2} in 2.30.

Details of how Model 2.29 and 2.31 are derived are given in Appendix B.

FC obtained from this way ranges from 0 to infinity. A simple transformation can be

applied, however, to obtain a normalized mutual information [42, 34, 63], with scores in the

interval [0, 1].

2.4 MODEL FITTING, SELECTION AND BAYESIAN INFERENCE

2.4.1 The Sampling Scheme

We implement MCMC methods for model estimation using Gibbs sampling. In this section,

the MCMC Gibbs sampling scheme for our proposed model is outlined in a few stages. More

details on the sampling scheme and the derivation of the conditional posterior distributions

using the priors described in Section 2.2.2 on the model parameters are given in the Appendix
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C. Suppose that Φ0 = {θµ0,α0,Θ0,D0, R0,Σ0
ω} are the current draws for the parameters in

the proposed model. The sampling scheme in the following iteration is as follows:

Step 1: Sample {θnew
µ , αnew} from p(θnew

µ , αnew | Θ0, D0, R0, Σ0
ω, Y). The parame-

ters {θnew
µi
} N
i=1

and {αnew
ij } N

i=1
Mi

j=1
are sampled together to improve mixing and obtain

a more efficient algorithm [12].

Step 1(a): Sample {θnew
µi
} N
i=1

from p(θµi | Θ0, Di
0, R0, Σ0

ω, Yi) = MVN(µθµi |�, Σθµi |�)

and µθµi |� and Σθµi |� are given by C.2 in Appendix C.

Step 1(b): Sample {αnew
ij } N

i=1
Mi

j=1
from p(αij | θnew

µi
, Θ0, Di

0, R0, Σ0
ω, Yi) =

MVN(µαij |�, Σαij |�) and µαij |� and Σαij |� are given by C.3 in Appendix C.

Step 2: Sample {Dnew
iq } N

i=1
from p(Diq | αnew

i , Di{−q} R
0). Since the conditional posterior

distribution is not standard, we use the griddy Gibbs sampler strategy [60, 6] to make

the draws of Di because it is easy to program. We draw each of the components of Di

one at a time and the only constraint of each Diq, q = 1, . . . , Q is being positive. Details

are discussed in Appendix C.

Step 3: Sample hyperparameters ξnew
q from p(ξq | Dnew

iq , Λ0
q) = N(µξq |�, σ

2
ξq |�

), q =

1, . . . , Q, where µξq |� and σ2
ξq |�

are given by C.7 in Appendix C. Sample hyperparameters

Λnew
q from p(Λq | Dnew

iq , ξnew
q ) = IG(cΛq |�, dΛq |�), q = 1, . . . , Q, where cΛq |� and dΛq |� are

given by C.8 in Appendix C

Step 4: Sample rnew
q,l from p(rql | αnew, Dnew, R{−ql}). Each rql, 1 6 q < l 6 Q and

(q, l) ∈ G, is drawn one at a time using the Metropolis-Hastings step. The positive

definiteness of R constrains rql to an interval (lql, uql), and the proposal density could be

the uniform density on this interval. Details are given in Appendix C.

Step 5: Sample hyperparameter µnew from p(µ | Rnew, (σ2)0) and sample (σ2)
new

from

p(σ2 | Rnew, µnew). Since the densities of µ and σ2 are not conjugate and with an

additional factor of the normalizing constant C(µ, σ2), we will use Metropolis-Hastings

step to update them, as detailed in Appendix C.

Step 6: Sample {
(
σ2
ω,p

)new} P
p=1

from p(σ2
ω,p | θnew

µp , αnew
p , Θ0, Yp ) = IG(cσ2

ω,p|�,

dσ2
ω,p|�) with cσ2

ω,p|� and dσ2
ω,p|� are given by C.14 in Appendix C.

Step 7: Sample {Θnew
p } P

p=1
from p(vec(Θp) |θnew

µp , αnew
p , σnew

ω,p , Yp) = MVN(µvec(Θp),

Σvec(Θp)), where µvec(Θp) and Σvec(Θp) are given by C.15 in Appendix C. The matrix
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Θp obtained in this step does not have to be orthogonal. We orthogonalize it in the way

that firstly compute the pooled variance matrix

Σ̂p,pool =

∑
MiD

new
ip (Dnew

ip )′∑
Mi

(2.32)

and then compute Θnew
p Σ̂p,poolΘ

new
p and reset Θnew

p equal to the first Qp eigenvectors.

2.4.2 Model Selection

It is particular important to identify the number of important PCs in functional PC analysis.

As discussed by James, et al. (2000) [40] and Zhou, et al. 2008 [76], choosing to fit too many

PCs can degrade the fit of all the PCs because they are not independent with each other.

We follow a similar approach as discussed in [40, 76] to choose the number of PC functions

which is to calculate the proportion of variability explained by each PC. Firstly, we apply

the single-curve reduced rank mixed-effects model to each variable to select the number of

PC for each variable. The model starts with one PC and then adding one more PC one at a

time. If the proportion of the variability explained by the PCs already in the model does not

change much after adding the new PC and the proportion of the variability explained by the

newly added PC is much smaller than those already in the model, the process stops. The

variability explained by the each PC is calculated by pooling the variance of the PC score

across subjects. Then, we fit the multiple-curve reduced rank mixed-effects model using the

chosen numbers of significant PCs from fitting the single-curve models. This procedure is

tested in the simulated datasets and will be discussed in details in Section 2.5.1.

2.4.3 Posterior Inferences

In the MCMC procedure, samples from the joint posterior density of model parameters are

produced which are then summarized for the purposes of inference. After a burn-in period,

suppose L iterations of samples are produced, where {θµl,αl,Θl,Dl, Rl,Σl
ω}, 1 6 l 6 L.

The mean curve for subject i at a given time point t is obtained by averaging over the draws:

µ̂i(t) =
1

L

L∑
l=1

ΦT (t)θ[l]
µi
. (2.33)
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Then µ̂i(�) could be obtained by varying t on a fine grid on the interval [0, T ]. The estimated

functional response fij(t) for the jth trial of subject i at time t could be given by

f̂ij(t) =
1

L

L∑
l=1

(ΦT (t)θ[l]
µi

+ ΦT (t)Θ[l]α
[l]
ij ). (2.34)

The pointwise posterior credible intervals of the mean and individual functions are easy to

obtain. For example, the credible interval for µ̂i(�) at time t with approximate probability

content (1− α) is the α/2 and 1− α/2 quantiles of the L draws of ΦT (t)θ[l]
µi

.

The estimator of correlation matrix R with respect to the squared error loss function is

the posterior mean estimator which is estimated from the MCMC samples in the standard

manner. The estimated functional connectivity for region p1 and p2 could be obtained in a

similar fashion where

M̂I(αijp1 , αijp2) =
1

L

L∑
l=1

(−1

2
ln|R[l]

{p1,p2}|), (2.35)

and

M̂I (αijp1 , αijp2 | αij{1,...,P\p1,p2})

=
1

L

L∑
l=1

(
1

2
log|R[l]

{1...,P\p2}|+
1

2
log|R[l]

{1...,P\p1}|

−1

2
log|R[l]

{1...,P\p1,p2}| −
1

2
log|R[l]|). (2.36)

The posterior credible intervals of these connectivity measures could be obtained by deter-

mining the quantiles from the posterior draws as well.
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2.5 SIMULATION AND REAL DATA ANALYSIS

2.5.1 Simulation Study

Here we illustrate the performance of the proposed MCMC sampling algorithm and model

selection procedure in fitting the multivariate reduced rank model and the utility of the

proposed model in estimating the connectivity coefficients through a small simulation study.

In the study, the dataset was generated from the model

Yij(t) = Bij(t) + εij(t) (2.37)

= µi(t) + f(t)Tαij + εij(t),

εij(t) ∼ N (0,Σε) ,

αij ∼ N (0,Σi) with Σi = DiRDi.

Here Yij(t) represents fMRI responses from P = 4 ROIs and f(t) is defined as in 2.8 where

f(t)T = diag
(
f1(t)T , . . . , f4(t)T

)
and fp(t) =

(
fp1(t), . . . , fpQp(t)

)T
, p = 1, . . . , 4, is the Qp× 1

vector of PC functions corresponding to the pth ROI evaluated at time t. We assume

Q1 = 1, Q2 = Q3 = 2 and Q4 = 1. The PC functions are normalized such that
∫
f 2
pq(t)dt =

1, p = 1, . . . , 4 and q = 1, . . . , Qp. The PC curves for each ROI are orthogonal to each

other. The simulated data was generated mimicking a typical event-related fMRI design.

In the simulation, we have N = 50 subjects (i = 1, . . . , 50), Mi = 20 trials per subject

(j = 1, . . . , 20), S = 7 scans per trial (t = 1, . . . , 7). The time points t are uniformly

distributed over the unit interval.

We chose to fit the mean functions and the PC functions using orthogonal cubic B-splines

with one internal knot at 0.5 quantile of the given time interval. Then, five basis functions

was used and this was deemed more than sufficient to provide a good fit for a curve consisting

of 7 points. Firstly, the single-curve model was applied to each ROIs response to choose the

number of PC functions. A sequence of models with difference numbers of PC functions

were considered, and the corresponding variances of PC scores for these models are given

in Table 2.1. Based on these, we successfully picked 1 PC function for ROI 1 and ROI 4

and 2 PC functions for ROI 2 and ROI 3. Then, the MCMC fitting algorithm was applied
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Table 2.1: Posterior estimated variance of PC scores for models with difference number of

PCs in the simulation study.

Number of PC 1 2 3

PC 1 1 2 1 2 3

ΣROI1,pool 0.136 0.136 0.003 0.136 0.004 0.002

ΣROI2,pool 0.100 0.103 0.016 0.103 0.016 0.002

ΣROI3,pool 0.084 0.086 0.015 0.086 0.015 0.002

ΣROI4,pool 0.124 0.124 0.004 0.125 0.004 0.003

to fit the multiple-curve model which was run for 10,000 iterations with a burn-in period

of 5,000. The conditional posterior distributions on the parameters were derived using the

prior distributions specied in Section 2.2.2. Convergence was monitored by initializing the

chains at multiple random starting values and observing that the posterior distributions

of parameters had converged to the same space [29]. Figure 2.2 presents the posterior

estimate of the trial-based BOLD response (right-hand panel) along with the simulated

underline BOLD response (left-hand panel) and simulated fMRI response (middle panel)

from a randomly chosen subject. As observed from Figure 2.2, the recovered BOLD responses

are close to the underlying BOLD responses. Figure 2.3 compares the true PC curves in

generating the data (upper panel) and the fitted PC curves (lower panel) with 95% credible

intervals and the estimated PC curves are very close to the true curves with fairly narrow

credible intervals over time. We also compared the true and estimated correlation parameters

in R which is presented in Table 2.2 and our fitting algorithm could successfully estimate

the correlation matrix with the assigned common normal prior distribution.

To assess the utility of our proposed model in estimating FC, we compared FC ob-

tained from our method and FC obtained from functional canonical correlation described at

Section 1.2.4.2. Functional canonical correlation seeks to investigate which modes of varia-

tion between pairs of observed random curves are mostly associated with one another and

the qualitative relationships between the two responses can be explored by examining the

canonical variate weight functions. Since functional canonical correlation examines paired
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Figure 2.2: True and fitted PC functions in simulation data

From left to right: Underlying BOLD responses; Simulated fMRI response (underlying BOLD response plus
error); Recovered BOLD responses; . Blue lines are trials. Heavy green, red and blue line are subject means
for underlying BOLD responses, and simulated fMRI response, and recovered BOLD responses, respectively.
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Figure 2.3: True and fitted PC functions in simulation data

Comparing true PC curves in generating the data (upper panel) and the fitted principal component curves
(lower panel) with 95% credible intervals. The first PC function is plotted in red and the second one is
plotted in blue
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Table 2.2: Comparing true and estimated correlation parameters in R.

True 1.00 0.62 0.51 0.47 -0.27 0.16
Mean 0.64 0.50 0.49 -0.30 0.23
True 1.00 0 0.53 -0.05 0.32
Mean 0.54 -0.04 0.34
True 0 1.00 -0.05 -0.43 0.05
Mean -0.05 -0.47 0.09
True 1.00 0 0.50
Mean 0.53
True 0 1.00 -0.25
Mean -0.30
True 1.00

relationship, we only applied it to ROI 1 and ROI 2 in the simulated dataset. By using

the Matlab Functional Connectivity Toolbox introduced in Chapter 1, we obtained the first

canonical correlation between ROI 1 and ROI 2 was 0.47 and the weighted functions are pre-

sented in Figure 2.4. It should be noted that we calculated functional canonical correlation

over all people at once, rather than person-by-person. The canonical correlation weighting

function for ROI 1 puts most weight at early scans around scan 2 to 3 and the canonical

correlation weighting function for ROI 2 puts most weight weight in the beginning and end

of the trial but with opposite signs, indicating that early activities in ROI 1 is mostly related

to early and later activities in ROI 2. By applying our proposed model in the simulation

dataset, firstly, we found one PC function for ROI 1 and two PC functions for ROI 2 that

characterized the major modes of variation in the trial-based activations. The PC functions

are displayed in Figure 2.3. The PC function in ROI 1 accounts for the variability of acti-

vation throughout the whole trial but peaks around scan 2 to 3. The first PC function in

RIO 2 accounts the variability of activation over the whole trial with the magnitude peaks

around scan 2 to 3 as well and the second PC function in ROI 2 contributes to the variabil-

ity over later scans. Secondly, from the estimated correlation matrix R, we found the score

corresponding to the first PC function of ROI 1 is positively correlated with both the scores

corresponding to the first (mean=0.64) and second (mean=0.50) PC functions of ROI 2. By

observing all these, we could conclude that ROI 1 and ROI 2 have excitatory relationships

especially over scan 2 to 3 and decreased activity in ROI 1, primarily at early scans, tends
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Figure 2.4: Estimated canonical weight functions

Estimated canonical variate weight functions for ROI 1 (in red) and ROI 2 (in blue) in the simulation data.

to lead more sustained activity in ROI 2. The summarized connectivity between ROI 1 and

ROI 2 obtained from the new FC measure is 0.54. Comparing to the conclusion obtained

by applying functional canonical correlation to ROI 1 and ROI 2, this new measure tends

to provide a more accurate picture of the type of connectivity between the selected regions.

In addition, we can further apply this new measure to calculate the conditional FC between

ROI 1 and ROI 2 given activations from ROI 3 and ROI 4 being partialled out where other

existing event-related FC measures could not be applied directly.

2.5.2 Real Data Analysis

As discussed in 2.1, we applied our model to data from a psychiatric neuroscience experiment

designed to test differences in relationships of functioning among brain regions between

unipolar major depressed subjects and never-depressed healthy controls [68]. In particular,

we were interested in examining relationships among a candidate mechanism of three ROIs

during emotional information processing, activity in left amygdala, a brain region linked

with recognizing the emotionality of information and generating emotional reactions, and
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two cortical regions: dorsolateral prefrontal cortex (DLPFC), a brain region associated with

executive control and initiating emotion regulation, and the rostral portion Brodmann’s

area 24 (BA24), a regional associated with processing self-relevant information and emotion

regulation, particularly inhibition of the amygdala [71]. Relationships among these areas

have been hypothesized by several researchers. For example, if executive control is necessary

for emotion regulation and, specially, if the DLPFC initiates a process of emotion regulation

that results in inhibition of limbic regions such as the amygdala [52], sustained emotional

reactivity might result from decreased DLPFC function. Indeed, the increased and sustained

amygdala activity has been linked to decreased DLPFC activity in healthy [20] and depressed

individuals [67]. But it is not hypothesized that there would be a negative correlation

between DLPFC and amygdala activity on tasks involving emotional stimuli; if the DLPFC

is important for emotion regulation, it would become active following amygdala activity,

leading to a positive correlation and the sustained amygdala activity would be explained

by decreased strength of such coupling relationship [68]. There are no direct relationships

between DLPFC and amygdala. Rather, it might be mediated by connections from the

ventromedial regions such as BA24 to the amygdala [31]. The regulatory communication of

DLPFC with amygdala is impaired in depression, possibly through decreased functioning in

mediation from ventromedial regions such as BA24.

Thirty patients with major depressive disorder and 28 healthy control subjects partici-

pated in 60 slow event-related trials and completed tasks designed to provoke limbic reactivity

to emotional stimuli in depression. During each trial, participants viewed a fixation cue (1

sec) followed by a positive, negative, or neutral word (200 msec), followed by a mask (row

of Xs; 10.8 sec). Participants pushed a button for whether the word was relevant, somewhat

relevant, or not relevant to them or their lives, as quickly and accurately as they could. We

examined results from 20 trials using negative words. The fMRI data were generated per 1.5

sec. More details on experimental design and subject characteristics can be found in Siegle,

et al. (2007) [68].

Briefly, data were pre-processed in several steps of motion correction, detrending within

blocks, outliers rescaled, cross registered to an reference brain, and spatially smoothed. The

reference brain was then transformed into Talairach space using AFNI (Cox, 1996) [17] to
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extract anatomical masks. The left amygdala was identified anatomically in the functional

data. DLPFC and BA24 were identified empirically. Specifically, the DLPFC regions were

derived from a group × scan random effects voxelwise ANOVA in the time course of response

to putting digits in order on a sorting-task. Identified regions were with significant group ×

scan interactions, as shown in Siegle, et al. (2007), Figure 5 [68]. BA24 were identified which

differentiated depressed and healthy individuals in the time course of response to negative

words, in the context of a group × valence × scan ANOVA (shown in Siegle, et al. 2007

[68]). Figure 2.1 shows two subjects’ 20 negative word trial trajectories from the three ROIs

along with subjects’ averaged activation trajectories. Within-trial regional activations were

normalized to the first scan regional BOLD activation within each trial so the resulting trial

trajectories should begin at zeros. We discarded the first scan in each trial and 7 scans’

BOLD response per trial were analyzed.

We ran the multiple-curve reduced rank model on the groups (healthy vs depressed)

separately. The mean and the PC functions were fitted using five orthogonal cubic B-splines

with one internal knot at the 0.5-quantile of the given time interval. The MCMC sampling

algorithm described in Section 2.4 was applied for 10,000 iterations with a burn in of 5000

iterations. Convergence was monitored using iteration plots. Following the method described

in Section 2.4.2, firstly, we run the single-curve reduced rank model on each ROI separately,

and the corresponding variances of PC scores are given in Table 2.3. We chose two PC

functions for each ROI so that the model was fitted with Q1 = Q2 = Q3 = 2 for each group.

But the second PC is less important than the first one given that the variability explained

by the first PC is around three times of the variability explained by the second one.

If Figure 2.5, we plot the estimated two PC curves from each ROI for depressed and

healthy groups, respectively. The first PC curves correspond to a level shift from the mean

curve and the magnitude of shifting increases with time. The second PC curves change

sign during the time period and correspond to opposite departures from the mean at the

beginning and the end of the trial. The effect on subject’s mean curve is displayed in Figure

2.6 by adding and subtracting a multiple of each of the PC curves. We did not know

the shape of the PC curves prior to the analysis, but it turns out that the shape of the

estimated PC curves are rather similar across regions. This may be caused by the high level
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Table 2.3: Posterior estimated variance of PC scores for models with difference number of

PCs in the fMRI study.

Group Number of PC 1 2 3

PC 1 1 2 1 2 3

Depressed ΣAMYG,pool 0.434 0.441 0.184 0.442 0.188 0.080

ΣDLPFC,pool 0.335 0.340 0.125 0.341 0.128 0.059

ΣBA24,pool 0.305 0.308 0.111 0.310 0.114 0.051

Control ΣAMYG,pool 0.412 0.417 0.143 0.419 0.149 0.079

ΣDLPFC,pool 0.348 0.354 0.146 0.355 0.149 0.064

ΣBA24,pool 0.323 0.328 0.139 0.328 0.141 0.054

of autocorrelation in the data and the limited observations per trial.

Figure 2.7 presents the data on six individual trials from one subject, along with the

estimated trajectories and 95% pointwise posterior credible intervals. The dashed lines

indicate subject’s mean trajectories and circles indicate actual observed data points for each

trial. As observed, the variations in the trail waveforms could be characterized very well by

the PC functions and the pointwise credible intervals for the individual functions are fairly

narrow over time.

The estimated correlation parameters in R from the two groups are presented in Table

2.4 and 2.5 along with the corresponding 95% posterior credible intervals in brackets. The

correlation matrix estimated from the healthy group implies that any two of the three ROIs

are positively correlated in such a way that the first PC scores from the corresponding two

ROIs are positively correlated with each other and the second PC scores from the corre-

sponding two ROIs are positively correlated with each other, which suggests the excitatory

influence between them. The correlation matrix estimated from the depressed group ex-

hibits similar patterns, but with some exceptions. Any two of the three ROIs are positively

correlated in the same way that the first PC scores from the corresponding two ROIs are

positively correlated with each other as well as the second PC scores. However, the correla-

tion parameters are smaller than those estimated from the healthy group. In addition, the
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Figure 2.5: Estimated PC functions from three ROIs

Estimated PC functions from amygdala, DLPFC and BA24 for the depressed (upper panel) and the healthy
(lower panel) groups. The first PC function is plotted in red and the second one is plotted in blue.
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Figure 2.6: Effect of PC functions on the mean

Estimated PC functions (left panel) and the effects on the mean curves of adding (plus signs) and subtracting
(minus signs) a multiple of each of the PCs (right panel).
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Figure 2.7: Estimated individual trajectories

Estimated individual trajectories with 95% posterior credible intervals for six trials from one subject. Circles
indicate actual data points and dashed lines indicate subject’s mean trajectory.

first PC score from amygdala and the second PC score from BA24 are negatively correlated

(mean=-0.16, PCI=[-0.26 -0.06]), which suggests a positive score on the second PC of BA24

tends to be associated with a negative score on the first PC scores of amygdala. In other

words, when BA24 has higher early activity, respectively lower, than the mean response,

amygdala tends to have lower activity, respectively higher, than the mean response primally

at later scans. Thus, in depressed subjects, early activity in BA24 tends to damp amygdala

activity especially at later scans, and vice versa. This is not found significantly from the

healthy group.

We applied the new measure of FC introduced in Section 2.3 to amygdala and DLPFC

(see Figure 2.8). Estimated FC between amygdala and DLPFC sharply reduces in the de-

pressed group and the difference between the two groups is -0.28 with posterior credible

interval being [-0.41, -0.14]. Conditional FC between amygdala and DLPFC given the ef-

fects from BA24 being partialled out slightly reduces in the depressed group but sharply

reduces in the healthy group, suggesting that BA24 activity mediates the functional rela-

tionship between amygdala and DLPFC strongly in the healthy group but weakly in the
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Table 2.4: Posterior estimates of correlation parameters in R for the depressed group with

corresponding 95% posterior credible intervals in brackets.

AMYG DLPFC BA24
PC 1 PC 2 PC1 PC2 PC1 PC2

AMYG PC1 1.00 0 0.16 -0.07 0.45 -0.16
(0.07 0.25) (-0.15 0.03) (0.37 0.53) (-0.26 -0.06)

PC2 0 1.00 -0.03 0.21 0.06 0.45
(-0.12 0.06) (0.11 0.30) (-0.01 0.14) (0.36 0.53)

DLPFC PC1 0.16 -0.03 1.00 0 0.53 0.09
(0.47 0.60) (0.00 0.17)

PC2 -0.07 0.21 0 1.00 -0.04 0.66
(-0.11 0.06) (0.61 0.72)

BA24 PC1 0.45 0.06 0.53 -0.04 1.00 0
PC2 -0.16 0.45 0.09 0.66 0 1.00

Table 2.5: Posterior estimates of correlation parameters in R for the healthy group with

corresponding 95% posterior credible intervals in brackets.

AMYG DLPFC BA24
PC 1 PC 2 PC1 PC2 PC1 PC2

AMYG PC1 1.00 0 0.39 -0.02 0.50 -0.03
(0.29 0.48) (-0.10 0.11) (0.42 0.57) (-0.13 0.07)

PC2 0 1.00 0.05 0.44 0.04 0.57
(-0.07 0.16) (0.32 0.54) (-0.06 0.15) (0.46 0.66)

DLPFC PC1 0.39 0.05 1.00 0 0.68 0.02
(0.61 0.74) (-0.08 0.09)

PC2 -0.02 0.44 0 1.00 0.06 0.79
(-0.01 0.14) (0.73 0.83)

BA24 PC1 0.50 0.04 0.68 0.06 1.00 0
PC2 -0.03 0.57 0.02 0.79 0 1.00
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depressed group. Thus, the findings further support the hypothesis that depressed subjects

display decreased coupling relationship between amygdala and DLPFC than healthy subjects

and the impaired communication between them in depression is possibly through decreased

functioning in mediation from ventromedial regions such as BA24.

2.6 DISCUSSION

To date, the most common approaches applied to FC analysis for event-related designs are

peak correlation [59] and functional canonical correlation [68], which are introduced in Sec-

tion 1.2.4. Peak correlation tends to capture the coupling relationship of peaks in activitation

in pairs of brain regions associated with discrete events, whereas functional canonical corre-

lation seeks to investigate which modes of variation between pairs of observed post-stimulus

responses are most associated with one another. While both methods have been successfully

applied to FC analysis in various contexts, they also have some disadvantages. Firstly, both

of them are correlation approaches which are not appropriate for inferences and simulation.

Secondly, they both deal solely with bivariate cases from which the conditional dependence

can not be derived directly. Moreover, the determination of BOLD responses and FC are

implemented separately when applying both methods to event-related fMRI designs. It is de-

sirable to encompass simultaneous determination of BOLD responses and FC since the level

of smoothing could impact estimates of connectivity. We have proposed a Bayesian model

tailored for smoothing and exploring FC of multiple brain regions in slow event-related fMRI

designs, which has several key advantages over the alternative approaches. First of all, our

approach consists of a full probability model and the use of a Bayesian paradigm provides

a range of flexible inferences. The MCMC estimation procedure produces samples from the

joint posterior distribution of all of the model parameters, which facilitates estimation of and

inferences about response functions and FC parameters. In addition, our proposed model

allows incorporation of multivariate responses, where the conditional bivariate inter-regional

relationship given other regions’ responses or covariates of interest being partialled out could

be derived easily. Exploring conditional FC has high clinical importance in depression re-
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Figure 2.8: Estimated FC between amygdala and DLPFC

Estimated FC (upper panel) and conditional FC (lower panel) with 95% posterior credible intervals between
amygdala and DLPFC for depressed and healthy groups.
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search. Also, the new approach provides a unified framework to obtain neural activation

inferences as well as FC inferences, rather than treating them as distinct analytical objec-

tives. Trial waveforms are modeled while accounting for inter-regional relationships. This

model is also constructed to exploit important characteristics of slow event-related fMRI

designs. It allows for nonstationarities in stimulus-locked trial waveforms and individual

variations in activations. Another incremental utility of our proposed technique above and

beyond the existing methods for exploring inter-regional relationships is that it could explore

a more concrete picture of the communication structure.

We demonstrated the usefulness of our proposed methodology, including the fitting al-

gorithm and prior distribution specifications, by applying this model in simulations. It has

shown that the proposed methodology could successfully estimate the model parameters

and capture the underlying BOLD responses. As we mentioned before, our aim in the new

approach is two fold. Besides the aim of uncovering BOLD responses, we also seek to iden-

tify the inter-regional correlations. We applied both functional canonical correlation and

our method to the simulated data with known inter-regional relationships and demonstrated

that our new approach provide more information about the type of FC.

The utility of this methodology was demonstrated by application to a real-life psychi-

atric neuroscience experiment looking at the functional relationships among multiple brain

regions. In particular, we examined relationships among amygdala, DLPFC and BA24. The

results suggested that depressed subjects exhibits decreased strength of coupling relationship

between amygdala and DLPFC as hypothesized (e.g. [68]). Moreover, in depressed subjects,

it is likely that the early activity in BA24 tends to damp amygdala activity especially at

later scans, suggesting the inhibitory effects of BA24 on amygdala for emotion regulation.

We also calculated the conditional FC between amygdala and DLPFC by covaring out the

effects from BA24 and found that the conditional FC between amygdala and DLPFC slightly

reduces in the depressed group but strongly reduces in the healthy group. This observations

suggested that the impaired relationship between amygdala and DLPFC in depressed sub-

jects may potentially due to the decreased functioning in mediation FC from BA24 (e.g.

[43]).

One important issue not addressed in this approach is to allow individual subject dif-
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ferences in FC. This could enable researchers to obtain subject-level indices which is of

considerable interest to determine whether individual variation in FC estimates are predic-

tive of clinical measures of depression, such as Beck Depression Inventory (BDI), a clinical

measure of depressive severity. To accommodate this, we could allow subject differences in

the correlation matrix R. Then, in the common correlation model, all correlations rql,i for

subject i are assumed to follow a common normal distribution where

rql,i ∼ N(µi, σ
2
i ), 1 6 q < l 6 Q and (q, l) ∈ G, (2.38)

and

µi ∼ N(δµ, ν
2
µ), (2.39)

log(σi) ∼ N(δσ, ν
2
σ).

This could be easily implemented from the proposed model.

An important methodological question in implementing this multiple-curve reduced rank

model is the choice of number and placement of the knots for the basis spline functions. We

have done some sensitivity analysis by choosing different numbers and spacing of knots and

found out that our choice of K = 5 was more than sufficient to provide a good fit for a curve

consisting of 7 points. Also, we could allow different basis functions for subject’s mean curve

and PC curves instead of assuming that they have the same underling level of smoothness.

Another area for further research is to implement an automatic procedure to determine

the number of PC functions and estimate the model parameters simultaneously under the

same disciplined framework. Our current approach requires a separate model selection pro-

cedure that the single-curve reduced rank model is applied to each variable to select the

number of PC functions. This would result in extensive computation as more response vari-

ables or time points involved. One way to accomplish this is through reversible-jump MCMC

by regarding each PC function as a one-dimensional space and employing birth-death moves

in the reversible jump methodology among different spaces. We intend to implement this

procedure into our approach in the futher.
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APPENDIX A

LIST OF FUNCTIONS OF THE MATLAB FUNCTIONAL CONNECTIVITY

TOOLBOX

Cross-correlation :

[xcorr,xcorr lag]=lagged(y1,y2,lag)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

lag (optional): A positive integer indicates the maximum lag of the cross-correlation.

The default value is 10.

Outputs:

xcorr : A vector of estimated cross-correlations at different lags.

xcorr lag : A vector of integers indicates the lags corresponding to the estimated cross-

correlations.

Partial cross-correlation :

[Pxcorr,Pxcorr lag]=Plagged(y,lag)

Inputs:

y (required): A matrix of brain regions’ response. Each region’s time-series is column-

wise.

lag (optional): A positive integer indicates the maximum lag of the partial cross-correlation.

The default value is 10.

Outputs:

62



Pxcorr : A matrix of estimated partial cross-correlations at different lags. Pxcorr(i,j,:)

corresponds to the partial cross-correlations between region i and j.

xcorr lag : A vector of integers indicates the lags corresponding to the estimated partial

cross-correlations.

Cross-coherence :

[Coh,lambda Coh]=coh(y1,y2,l,sr)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

l (optional): A positive integer specifies the length of the cross-coherence. The default

value equals the length of the input time-series.

sr (optional): A positive number specifies the sampling rate (in Hz). The default value

is 1.

Outputs:

Coh : A vector of estimated cross-coherence at different frequencies.

lambda Coh : A vector of positive values indicates the frequencies corresponding to

the estimated cross-coherence.

Partial cross-coherence :

[PCoh,lambda PCoh]=Pcoh(y,l,sr)

Inputs:

y (required): A matrix of brain regions’ response. Each region’s time-series is column-

wise.

l (optional): A positive integer specifies the length of the partial cross-coherence. The

default value equals the length of the input time-series.

sr (optional): A positive number specifies the sampling rate (in Hz). The default value

is 1.

Outputs:

PCoh : A matrix of estimated partial cross-coherence at different frequencies. PCoh(i,j,:)

corresponds to the partial cross-coherence between region i and j.
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lambda PCoh : A vector of positive values indicates the frequencies corresponding to

the estimated partial cross-coherence.

Mutual information :

phi=mutualinf(y1,y2,sr,lambdamin,lambdamax)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

sr (optional): A positive number specifies the sampling rate (in Hz). The default value

is 1.

lambdamin,lambdamax : [lambdamin, lambdamax] specifies the frequency bound-

aries (in Hz) within which to integrate the information. The default values are 0

and 1
2

respectively.

Outputs:

phi : Estimated mutual information which is between 0 and 1.

Partial mutual information :

Pphi=Pmutualinf(y,sr,lambdamin,lambdamax)

Inputs:

y (required): A matrix of brain regions’ response. Each region’s time-series is column-

wise.

sr (optional): A positive number specifies the sampling rate (in Hz). The default value

is 1.

lambdamin,lambdamax : [lambdamin, lambdamax] specifies the frequency bound-

aries (in Hz) within which to integrate the information. The default values are 0

and 1
2

respectively.

Outputs:

Pphi : A matrix of estimated partial mutual information. Pphi(i,j) corresponds to the

partial mutual information between region i and j.

Peak correlation :

pcorr=corrpeak(y1,y2,scan,k,norder)

Inputs:
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y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

scan (required): A positive integer specifies the number of scans per trial.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the trial-based curve. The default value is calculated by min(1/4 ×

scan, 35) + norder.

norder (optional): An integer specifies the order of B-spline functions when smooth-

ing the trial-based curve. The default order is 4, and this defines splines that are

piecewise cubic.

Outputs:

pcorr : Estimated peak correlation which is between -1 and 1.

Peak correlation (fast event-related design) :

pcorr=corrpeak fast(y1,y2,st,k,norder)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

st (required): Column-wise vector of stimulus time-series.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the trial-based curve. The default value is calculated by min(1/4 ×

scan, 35) + norder.

norder (optional): An integer specifies the order of B-spline functions when smooth-

ing the trial-based curve. The default order is 4, and this defines splines that are

piecewise cubic.

Outputs:

pcorr : Estimated peak correlation which is between -1 and 1.

Scan of interest correlation :

scancorr=corrscan(y1,y2,scan,scanofinterest,k,norder)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.
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scan (required): A positive integer specifies the number of scans per trial.

scanofinterest (require): A positive integer within [0, scan] specifies the scan number

at which something interesting is hypothesized to occur.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the trial-based curve. The default value is calculated by min(1/4 ×

scan, 35) + norder.

norder (optional): An integer specifies the order of B-spline functions when smooth-

ing the trial-based curve. The default order is 4, and this defines splines that are

piecewise cubic.

Outputs:

scancorr : Estimated correlation of activity at the scan of interest which is between -1

and 1.

Scan of interest correlation (fast event-related design) :

scancorr=corrscan fast(y1,y2,st,scanofinterest,k,norder)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

st (required): Column-wise vector of stimulus time-series.

scanofinterest (require): A positive integer within [0, scan] specifies the scan number

at which something interesting is hypothesized to occur.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the trial-based curve. The default value is calculated by min(1/4 ×

scan, 35) + norder.

norder (optional): An integer specifies the order of B-spline functions when smooth-

ing the trial-based curve. The default order is 4, and this defines splines that are

piecewise cubic.

Outputs:

scancorr : Estimated correlation of activity at the scan of interest which is between -1

and 1.

66



Functional canonical correlation :

[cr,u,v,lambda]=ccorr cv(y1,y2,scan,k,norder,lambda max)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

scan (required): A positive integer specifies the number of scans per trial.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the trial-based curve. The default value is calculated by min(1/4 ×

scan, 35) + norder.

norder (optional): An integer specifies the order of B-spline functions when smooth-

ing the trial-based curve. The default order is 4, and this defines splines that are

piecewise cubic.

lambda max : [0, lambda max] specifies the boundaries within which to choose the

smoothing parameter of the weight functions.

Outputs:

cr : Estimated functional canonical correlation which is between -1 and 1.

u and v : Estimated weight functions for the two regions respectively.

lambda : The smoothing parameter which is chosen via cross-validation.

Functional canonical correlation (fast event-related design) :

[cr,u,v,lambda]=ccorr cv fast(y1,y2,st,k,norder,lambda max)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

st (required): Column-wise vector of stimulus time-series.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the trial-based curve. The default value is calculated by min(1/4 ×

scan, 35) + norder.

norder (optional): An integer specifies the order of B-spline functions when smooth-

ing the trial-based curve. The default order is 4, and this defines splines that are

piecewise cubic.
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lambda max : [0, lambda max] specifies the boundaries within which to choose the

smoothing parameter of the weight functions.

Outputs:

cr : Estimated functional canonical correlation which is between -1 and 1.

u and v : Estimated weight functions for the two regions respectively.

lambda : The smoothing parameter which is chosen via cross-validation.

Get all Measures :

s=getallconnectivityinds(y1,y2,scan,tr,justeventmeas,scanofinterest)

Inputs:

y1 and y2 (required): Time-series of brain region’s response. They should be column-

wise.

scan (required): A positive integer specifies the number of scans per trial.

tr (optional): A positive number specifies the number of seconds between samples

(scans). The default value is 1.5.

justeventmeas (optional): If 1, only trial-based measures should be computed. It 0,

only whole time-series measures should be computed. The default value is 0.

scanofinterest (optional): A specific scan number within trials at which something

interesting is hypothesized to occur.

Outputs:

s : A cell array with all the estimated FC measures assigned to it.

Low pass filter :

y lp=lowpass(y,sr,f,order)

Inputs:

y (required): Time-series of brain region’s response.

sr (required): A positive number specifies the sampling frequency (in Hz).

f (required): A positive number specifies the cut-off frequency (in Hz) which should be

between 0 and half of the sampling frequency.

order (optional): An integer specifies the order of the filter. The default value is 10.

Outputs:

y lp : The new time-series after being low pass filtered.
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Smoothing (resting state design) :

Y sm=smoothing whole(Y,P,N,scan,auto,nloop,k,norder)

Inputs:

Y (required): A three-dimensional matrix storing brain regions’ response.

Its dimensions are:

1. time ... size = no. of scans per trial

2. variables ... size = no. of regions

3. replications ... size = no. of subjects × no. of trials per subject

P (required): A positive integer indicates the number of regions.

N (required): A positive integer indicates the number of subjects.

scan (required): A positive integer specifies the number of scans per trial.

auto (optional): A number within [-1 1] specifies the autocorrelation of the noise. The

default value is 0.7.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the data. The default value is calculated by min(1/4×scan, 35)+norder,

where n equals the length of the input time-series.

norder (optional): An integer specifies the order of B-spline functions when smoothing

the data. The default order is 4, and this defines splines that are piecewise cubic.

Outputs:

Y sm : A three-dimensional matrix storing smoothed brain regions’ response.

Smoothing (event-related design) :

Y sm=smoothing(Y,P,N,M,scan,auto,nloop,k,norder)

Inputs:

Y (required): A three-dimensional matrix storing brain regions’ response.

Its dimensions are:

1. time ... size = no. of scans per trial

2. variables ... size = no. of regions

3. replications ... size = no. of subjects × no. of trials per subject

P (required): A positive integer indicates the number of regions.

N (required): A positive integer indicates the number of subjects.
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M (required): A vector of positive integers with size N×1 where the ith position of M

indicates the number of trials of subject i.

scan (required): A positive integer specifies the number of scans per trial.

auto (optional): A number within [-1 1] specifies the autocorrelation of the noise. The

default value is 0.7.

k (optional): An integer variable specifies the number of B-spline basis functions when

smoothing the data. The default value is calculated by min(1/4×scan, 35)+norder,

where n equals the length of the input time-series.

norder (optional): An integer specifies the order of B-spline functions when smoothing

the data. The default order is 4, and this defines splines that are piecewise cubic.

Outputs:

Y sm : A three-dimensional matrix storing smoothed brain regions’ response.

Pre-whitening :

y prewhiten=prewhiten(y,auto)

Inputs:

y (required): Input time-series data.

auto (optional): A number within [-1 1] specifies the autocorrelation of the noise. The

default value is 0.7.

Outputs:

y prewhiten : The new time-series after being pre-whitened.

Interpolation: y scale=gsresample(y,origHz,newHz)

Inputs:

y (required): Input time-series data.

origHz (required): Original sampling rate.

newHz (required): New sampling rate.

Outputs:

y scale : The new time-series after being rescaled.
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APPENDIX B

DERIVATIONS OF THE NEW FUNCTIONAL CONNECTIVITY MEASURE

MI (αijp1 ,αijp2)

= H (αijp1) +H (αijp2)−H (αijp1 ,αijp2)

=
Qp1

2
+
Qp1

2
log(2π) + log|diag(Dip1)|

+
Qp2

2
+
Qp2

2
log(2π) + log|diag(Dip2)|

−Qp1 +Qp2

2
− Qp1 +Qp2

2
log(2π)

−1

2
log
∣∣diag(Di,{p1,p2})

∣∣ ∣∣R{p1,p2}∣∣ ∣∣diag(Di,{p1,p2})
∣∣

= −1

2
log
∣∣R{p1,p2}∣∣ (B.1)

where

Di,{p1,p2} =
(
D′ip1 D′ip2

)
, (B.2)

and ∣∣R{p1,p2}∣∣ =

∣∣∣∣∣∣ I Rp1p2

RT
p1p2

I

∣∣∣∣∣∣ . (B.3)
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MI
(
αijp1 ,αijp2 |αij{1,...,P\p1,p2}

)
= H

(
αij{1,...,P\p2}

)
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(
αij{1,...,P\p1}

)
−H

(
αij{1,...,P\p1,p2}

)
−H (αij)

=
1

2
log
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log
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APPENDIX C

DETAILS OF MCMC SAMPLER

Step 1: Generating {θµ, α} conditional on {Θ, D, R, Σω, Y}. This is done in two steps,

using the factorization

p(θµ, α | Θ, D, R, Σω, Y) ∝ p(θµ | Θ, D, R, Σω, Y) (C.1)

× p(α | θµ, Θ, D, R, Σω, Y).

Step 1(a): Generating {θµi}
N
i=1

conditional on {Θ, Di, R, Σω, Yi}. Let Yij = (YT
ij(1), . . . ,

YT
ij(S))T and Φb = (Φb(1)T , . . . ,Φb(S)T )T . The conditional posterior distributions of the

{θµi}
N
i=1

are independent MVN
(
µθµi |�, Σθµi |�

)
, where

µθµi |� = Σθµi |�

(
Mi∑
j=1

(Φb)′(diag(Di)Rdiag(Di))
−1Yij

)
and

Σθµi |� =

(
Mi(Φ

b)′(diag(Di)Rdiag(Di))
−1Φb +

1

cθ
I

)−1

. (C.2)

Step 1(b): Generating {αij} N
i=1

Mi

j=1
conditional on {θµi , Θ, Di, R, Σω, Yij}. The con-

ditional posterior distributions of the {αij} N
i=1

Mi

j=1
are independent MVN

(
µαij |�, Σαij |�

)
,

where

µαij |� = Σαij |�

(
S∑
t=1

Θ′(Φb(t))′Σ−1
ω (Yij(t)− Φb(t)θµi

)
and

Σαij |� =

(
S∑
t=1

Θ′(Φb(t))′Σ−1
ω Φb(t)Θ + (diag(Di)Rdiag(Di))

−1

)−1

. (C.3)
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Step 2: Generating each of the components of {Di} N
i=1

one at a time. The conditional

density of {Diq} N
i=1

is

p(Diq | αi, Di{−q}, R)

∝ p(αi | Di, R)p(Diq)

∝ |Diq|−Mi−1 exp

{
−1

2

[
(Si)qq(R

−1)qq
D2
iq

+ 2
1

Diq

Q∑
q′ 6=q

(Si)qq′(R
−1)qq′

1

Diq′

]}

exp

{
−(log(Diq)− ξq)2

2Λq

}
, (C.4)

where

Si =

Mi∑
j=1

αijα
′
ij. (C.5)

Since this conditional posterior distribution is not standard and hard to sample from, we

implement the griddy Gibbs strategy to generate Diq according to [60, 6]. The Griddy Gibbs

sampler constructs an approximation to the conditional density numerically, by evaluating

the posterior density on a grid over the support of values for Diq|αi,Di{−q}, R (that is,

keeping the conditioning parameters αi,Di{−q}, R constant). To sample from a general

density function p with cumulative distribution function P , we can take a drawing u from a

uniform distribution, and apply the inverse CDF P−1 to arrive at a drawing Diq = P−1(u)

from the original distribution. We put down the grid d1, . . . , dg uniformly distributed and

force the density of either end of the grid is less than 5% of the maximum value, which is

p(d1 | �) < max (p(d1 | �), . . . , p(dg | �))× 5% and

p(dg | �) < max (p(d1 | �), . . . , p(dg | �))× 5%. (C.6)

Step 3: Generating ξq, q = 1, . . . , Q, conditional on {Diq, Λq}. The conditional posterior

distribution of ξq is N(µξq |�, σ
2
ξq |�

) where

µξq |� = σ2
ξq |�

(
N∑
i=1

Diq

Λq

)
, and

σ2
ξq |� =

(
N

Λq

+
1

cξ

)−1

. (C.7)
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Generating Λq, q = 1, . . . , Q, conditional on {Diq, ξq}. The conditional posterior distri-

bution of Λq is IG(cΛq |�, dΛq |�) where

cΛq |� =
N

2
+ 1 and

dΛq |� =
1

2

N∑
i=1

(
Diq − ξq

)2
. (C.8)

Step 4: Generating each rql, 1 6 q < l 6 Q and (q, l) ∈ G one at a time. The conditional

density of rql is

p(rql | α, D, R{−ql}) ∝ p(α | D, R)p(rql)

∝ |R|−
PN
i=1Mi

2 exp

{
−1

2
trace(R−1B)

}
exp

{
−(rql − µ)2

2σ2

}
I
{
R ∈ RQ, R ∈M(G)

}
, (C.9)

with B =
∑N

i=1

∑Mi

j=1 diag(Di)
−1αijαij

′diag(Di). Let R(r) be the matrix obtained from R

by changing the (q, l)th correlation to r and let f(r) = |R(r)|. According to [49], the set

of values of rql preserving the positiveness of R when R ∈ M(G) are those in the interval

(lql, uql) which is determined by the roots of quadratic function ar2 + br + c, where a =

[f(1) + f(−1) − 2f(0)]/2, b = [f(1) − f(−1)]/2, and c = f(0). The new proposal of rql

is generated from Uniform(lql, uql). Step 5: Generating µ conditional on {R, σ2} and

generating σ2 conditional on {R, µ}. The conditional densities of µ and σ2 are similar to

the conjugate densities but with an additional factor of the normalizing constant C(µ, σ2).

The normalizing constant C is proportional to the integral of a product of univariate normal

densities restricted to a constrained space and could be evaluated using the strategy of

importance sampling [49]: generate rmql ∼ N(µ, σ2) for q < l and (q, l) ∈ G, m = 1, . . . ,M ,

define Rm = (rmql ) and use

Ĉ(µ, σ2) =
1

M

M∑
m=1

I
{
Rm ∈ RQ, R ∈M(G)

}
. (C.10)
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The proposal density for µ is N(µpro, σ
2
pro) and

µpro = σ2
pro (

∑
q<l

(q,l)∈G

rql
σ2

), (C.11)

σ2
pro = (

Q1(Q2 + . . .+QP ) + · · ·+QP−1QP

σ2
+

1

cµ
)−1. (C.12)

The proposal density for σ2 is IG(cpro, dpro) and

cpro =
Q1(Q2 + . . .+QP ) + · · ·+QP−1QP

2
+ 1 and

dpro =
∑
q<l

(q,l)∈G

(rql − µ)2

2
. (C.13)

Step 6: Generating σ2
ω,p, p = 1, . . . , P , conditional on {θµp , αp, Θp, Yp}. The conditional

posterior distributions is IG(cσ2
ω,p|�, dσ2

ω,p|�) where

cσ2
ω,p|� = S

∑N
i=1Mi

2
+ 1 and and

dσ2
ω,p|� =

N∑
i=1

Mi∑
j=1

S∑
t=1

(
Yijp(t)− φT (t)θµip − φ

T (t)Θpαijp

)
. (C.14)

Step 7: Generating vec(Θp) conditional on {θµp , αp, σω,p, Yp}. The conditional posterior

distribution is MVN(µvec(Θp), Σvec(Θp)) where

µvec(Θp) = ΣΘp

 N∑
i=1

Mi∑
j=1

S∑
t=1

(IQp ⊗ φT (t))′αijp

(
Yijp(t)− φT (t)θµip

)
σ2
ω,p

 and

Σvec(Θp) =

(
N∑
i=1

Mi∑
j=1

S∑
t=1

(IQp ⊗ φT (t))′αijpα
′
ijp(IQp ⊗ φT (t))

σ2
ω,p

+
1

cΘ

I

)−1

. (C.15)
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