

ANALYSIS AND DEVELOPMENT OF A MATHEMATICAL STRUCTURE TO

DESCRIBE ENERGY CONSUMPTION OF SENSOR NETWORKS

by

Peter Joseph Hawrylak

BS, University of Pittsburgh, 2002

MS, University of Pittsburgh, 2004

Submitted to the Graduate Faculty of

School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2006

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINEERING

This dissertation was presented

by

Peter Joseph Hawrylak

It was defended on

November 10, 2006

and approved by

Dissertation Director: Marlin H. Mickle, Nickolas A. DeCecco Professor, Electrical

Engineering Department

Dissertation Director: J. Tom Cain, Professor, Electrical Engineering Department

Steven P. Levitan, John A. Jurenko Professor, Computer Engineering Department

Heung-no Lee, Assistant Professor, Department of Electrical and Computer Engineering

J. Robert Boston, Professor, Department of Electrical and Computer Engineering, Department

of Bioengineering, Department of Communications Science and Disorders

Mike Lovell, Associate Professor Industrial Engineering Department

 ii

Copyright © by Peter J. Hawrylak

2006

 iii

ANALYSIS AND DEVELOPMENT OF A MATHEMATICAL STRUCTURE TO

DESCRIBE ENERGY CONSUMPTION OF SENSOR NETWORKS

Peter Joseph Hawrylak, PhD

University of Pittsburgh, 2006

Collections of several hundred, thousands, or even millions of small devices scattered or

placed throughout an area monitoring the environment called sensor networks have several

useful applications. Until recently, the economic cost of development, manufacture, and

deployment limited the use of sensor networks to military and government applications. Recent

advances in technology provide a means for economical development, deployment, and

manufacture of sensor networks.

Current methodology designs, then implements and simulates the sensor network, then

goes back and redesigns to better meet the specifications. The model developed in this

dissertation provides an early indication of what types of solutions will meet the requirements

and what types of solutions will not. With this ability, the time required for simulation and proof

of concept is reduced, allowing more time and money for design and testing of the real world

system.

The model developed characterizes the energy consumption of a sensor or RFID network

as a whole is extremely beneficial and is needed. The model provides a means to benchmark

different types of sensor networks (i.e. different protocols, hardware, software) and to determine

which type is the better solution. A model such as this removes the requirement to develop a

simulation to compare different types. Using the model reduces the time (and save money)

needed to verify the solution and helps with development as multiple designs can be quickly

tested and compared possibly at a much earlier stage in the development cycle allowing a

thorough investigation of different design alternatives.

 iv

TABLE OF CONTENTS

TABLE OF CONTENTS .. V

LIST OF TABLES ... X

LIST OF FIGURES ...XIII

1.0 INTRODUCTION.. 1

1.1 CURRENT/RELATED WORK IN SENSOR NETWORKS.......................... 3

1.2 DISCRETE EVENT SIMULATION... 12

1.3 CURRENT/RELATED WORK IN SENSOR NETWORK SIMULATION16

1.4 BACKGROUND SUMMARY.. 21

1.5 STATEMENT OF THE PROBLEM... 23

2.0 COMPONENTS OF A SENSOR AND RFID NETWORK................................... 25

2.1 NODES.. 25

2.2 SINKS ... 26

3.0 CLASSIFICATION OF SENSOR AND RFID NETWORKS............................... 29

3.1 CLASSES OF SENSOR AND RFID NETWORKS....................................... 29

4.0 MARKOV PROCESS.. 37

4.1 STEADY STATE RESPONSE... 42

4.2 ANALYSIS OF MARKOV PROCESS WITH Z-TRANSFORM 46

4.3 ANALYSIS OF THE SIMPLE TEMPERATURE SENSOR MARKOV
PROCESS.. 48

 v

5.0 SINGLE ENTITY MARKOV PROCESSES .. 56

5.1 NODE MARKOV PROCESS... 56

5.2 TYPE 2 SINK MARKOV PROCESS.. 58

5.3 TYPE 1 SINK MARKOV PROCESS.. 60

5.4 MARKOV PROCESSES FOR TOPOLOGICAL ENTITIES...................... 61

5.4.1 Tasks of a Sensor Network... 62

5.5 MOBILITY .. 65

6.0 BASIC COMMUNICATION GRAPH .. 66

7.0 SENSOR AND RFID NETWORK TOPOLOGY IDENTIFICATION................ 68

7.1 BOTTOM-UP CONSTRUCTION... 70

7.1.1 Cell-Library Binding Method.. 76

7.1.2 Distance Graph Method ... 79

7.2 TOP-DOWN CONSTRUCTION ... 87

8.0 BASE SENSOR AND RFID NETWORK TOPOLOGIES.................................... 90

8.1 MESH TOPOLOGY ... 91

8.2 STAR TOPOLOGY... 92

8.3 CLUSTER TOPOLOGY .. 93

8.4 TREE TOPOLOGY .. 95

8.5 SINGLE LINK TOPOLOGY... 98

9.0 TOPOLOGICAL ENTITIES GENERATION ALGORITHM 99

10.0 ISO 18000-7 RFID NETWORK EXAMPLE .. 102

10.1 EXAMPLE ISO 18000-7 NETWORK... 104

10.2 ANALYSIS OF ISO 18000-7 NETWORK.. 106

 vi

10.2.1 Step 1: Identification of the Base Entities... 106

10.2.2 Step 2: Identification of Tasks of the Base Level Entities 106

10.2.3 Step 3: Development of Markov Process and Probability and Reward
Matrices for the Base Level Entities... 110

10.2.4 Step 3 for the Single ISO 18000-7 Tag .. 110

10.2.5 Step 3 for Single ISO 18000-7 Reader... 122

10.2.6 Step 4: Identification of Interactions between the Base Level Entities 136

10.2.7 Step 5: Identification of the Single Reader and Associated Tags
Topological Entities.. 136

10.2.8 Step 6: Identification of Tasks for the of Single Reader and Associated
Tags Topological Entity... 140

10.2.9 Step 7: Markov Process for the Single Reader and Associated Tags
Topological Entity .. 140

10.2.10 Step 8 for the Single Reader and Associated Tags Topological Entities
 ………………………………………………………………………….... 156

10.2.11 Step 9: Identification of the Multi-Reader Topological Entity 159

10.2.12 Steps 6 through 9 for the Multi-Reader Topological Entity 160

10.2.13 Step 10: Covering the Network with a Single Entity 161

10.3 SUMMARY OF THE ENERGY CONSUMPTION 162

10.4 SUMMARY OF STEPS IN ALGORITHM TO IDENTIFY
TOPOLOGICAL ENTITIES .. 163

10.5 EVALUATION TIME FOR LARGER NETWORKS 164

11.0 ZIGBEE NETWORK EXAMPLE ... 186

11.1 ANALYSIS OF ENERGY CONSUMPTION USING BASE LEVEL
ENTITIES ... 190

11.1.1 Step 1: Identification of Base Level Entities... 191

 vii

11.1.2 Step 2: Identification of Tasks of the Base Level Entities 191

11.1.3 Step 3: Development of the Markov Process, Probability and Rewards
Matrices for the Base Level Entities... 192

11.1.4 Step 3 for the Temperature Sensor ... 192

11.1.5 Step 3 for the ZigBee Router.. 199

11.1.6 Step 3 for the ZigBee Coordinator .. 208

11.1.7 Step 4: Identification of Interactions between Base Level Entities 216

11.1.8 Step 5: Identification of the ZigBee Star Topological Entity................ 216

11.1.9 Step 6: Identification of the Tasks of the ZigBee Star Topological Entity
 ……………………………………………………………………………. 218

11.1.10 Step 7: Development of the Markov Process for the ZigBee Star
Topological Entity .. 219

11.1.11 Step 8 for the ZigBee Star Topological Entity....................................... 228

11.1.12 Step 9: Identification of the ZigBee Tree Topological Entity 228

11.1.13 Step 6 for the ZigBee Tree Topological Entity 229

11.1.14 Step 7 for the ZigBee Tree Topological Entity 230

11.1.15 Steps 8, 9, and 10 for the ZigBee Tree Topological Entity 237

11.2 SUMMARY OF THE ENERGY CONSUMPTION 238

11.3 SUMMARY OF STEPS IN ALGORITHM TO IDENTIFY
TOPOLOGICAL ENTITIES .. 239

11.4 EVALUATION TIME FOR LARGER NETWORKS 240

11.5 BURST SWITCH RECEIVER .. 256

12.0 ANALYSIS OF THE METHOD .. 259

13.0 CONCLUSIONS AND FUTURE WORK ... 266

13.1 REVIEW... 266

 viii

13.2 THE RESEARCH.. 267

13.3 FUTURE WORK... 269

REFERENCES NOT CITED .. 272

REFERENCES.. 275

 ix

 LIST OF TABLES

Table 1.1: Number of times each method is used in the 19 papers surveyed. 17

Table 4.1: Value of n from (4-35) and the energy consumed by the simple temperature sensor
for four different periods of operation. ... 55

Table 10.1: ISO 18000-7 commands and abbreviations.. 107

Table 10.2: Number of entities in example ISO 18000-7 network.. 107

Table 10.3: Number of each inquiry sent by each of the readers in the ISO 18000-7 example.109

Table 10.4: Values of power consumption parameters tag developed by Cho and Baek.......... 118

Table 10.5: Non-power parameters for the ISO 18000-7 tag. ... 120

Table 10.6: Message and reply length parameters... 121

Table 10.7: Energy consumed by each tag in one day... 122

Table 10.8: Power consumption for the reader under different conditions. 129

Table 10.9: Parameters for the single reader model. ... 135

Table 10.10: Energy consumption of the four readers operating for one day. 136

Table 10.11: Value of MOVER for each of the four topologies. .. 152

Table 10.12: Degree of each tag in the example network.. 153

Table 10.13: Value of MReader for each topology. .. 153

Table 10.14: Value of the power consumption parameters for a reader and a tag. 154

Table 10.15: Values of the time parameters for the single reader and associated tags topology.
... 154

 x

Table 10.16: Number of messages each topology sends to the outside world per day.............. 155

Table 10.17: Miscellaneous parameter values for single reader and associated tags topology. 155

Table 10.18: Energy consumed over 1 day for each of the four single reader and associated tag
topologies and for the entire network. .. 156

Table 10.19: Energy consumed calculated using the three different sets of entities and percent
difference from the energy consumption of the base level entities. ... 163

Table 10.20: Time to evaluate the single size example networks.. 183

Table 10.21: Time to evaluate the double size example networks. ... 184

Table 10.22: Time to evaluate the quadruple size example networks. 184

Table 10.23: Energy consumption and percent differences between models for single, double,
and quadruple size example networks. ... 185

Table 11.1: Components used in the base entities in this example.. 190

Table 11.2: Parameters for evaluation for the energy consumption of the temperature sensor. 198

Table 11.3: Energy consumption of the temperature sensors in the example network over 1 day.
... 199

Table 11.4: Parameters for evaluation for the energy consumption of the router. 207

Table 11.5: Energy consumption of the routers in the example network over 1 day. 207

Table 11.6: Parameters for evaluation for the energy consumption of the coordinator. 215

Table 11.7: Energy consumption of the coordinator in the example network over 1 day.......... 216

Table 11.8: Energy consumed for each entity and the entire network using the Star Topology.
... 228

Table 11.9: Energy consumption of the example using the Tree Topological Entity. 237

Table 11.10: Energy consumed calculated using the three different sets of entities and percent
difference from the energy consumption of the base level entities. ... 239

Table 11.11: Time to evaluate single size example networks. .. 254

Table 11.12: Time to evaluate double size example networks. ... 255

 xi

Table 11.13: Time to evaluate quadruple size example networks. .. 255

Table 11.14: Energy consumption and percent difference between models for single, double, and
quadruple size example networks. .. 256

Table 11.15: Power consumption of the temperature sensor with the burst switch. 258

Table 11.16: Energy consumption of the network with the temperature sensors employing the
burst switch calculated using the base level entities and the tree topological entity. 258

 xii

LIST OF FIGURES

Figure 1.1: Graph showing usage of simulators. ... 17

Figure 1.2: A network of 13 nodes, divided into nine smaller areas. .. 19

Figure 2.1: Block diagram of a node. .. 26

Figure 2.2: Type 1 sink node. .. 27

Figure 2.3: Type 2 sink node. .. 28

Figure 3.1: Top-level breakdown of wireless networks... 29

Figure 3.2: Sub-division of networks containing mobile entities. ... 30

Figure 3.3: Sub-division of the networks containing only stationary entities. 31

Figure 3.4: Two entities (Entity 1 and Entity 2) can communicate directly because they are
within range of each other... 32

Figure 3.5: Two entities (Entity 1 and Entity 2) are not within range of each other, messages
must be relayed by the Relay Entity. .. 33

Figure 3.6: Two entities (Entity 1 and Entity 2) are not within range of each other, messages
must be relayed by multiple Relay Entities. ... 33

Figure 3.7: Division of the Respond to Commands class of networks based on the
communication schemes. .. 34

Figure 3.8: Division of the Monitor/Measure Environmental Phenomenon class of networks
based on the communication schemes used.. 35

Figure 3.9: Division of the Respond to Environmental Stimulus class of networks based on the
communication schemes used... 36

 xiii

Figure 4.1: State diagram of the Markov process for the simple temperature sensor. 38

Figure 4.2: Example Markov process with two chains.. 41

Figure 4.3: Example Markov process with two recurrent chains. ... 41

Figure 4.4: Example of a periodic Markov process. .. 44

Figure 4.5: Example of an aperiodic Markov process. .. 45

Figure 4.6: State diagram of the Markov process for the simple temperature sensor. 49

Figure 5.1: Generic Markov process for a node. ... 58

Figure 5.2: Generic Markov process for a Type 2 Sink... 60

Figure 5.3: General Markov process for a Type 1 Sink... 61

Figure 5.4: Six basis tasks forming a basis for all tasks of a sensor network.............................. 64

Figure 5.5: General Markov process for a topological entity. ... 64

Figure 6.1: Example of a basic communication graph of a mesh network.................................. 67

Figure 7.1: Example sensor network consisting of twenty-five entities...................................... 71

Figure 7.2: Example sensor network at entity level... 71

Figure 7.3: Top layer topology of the example sensor network shown in Figure 7.2. 72

Figure 7.4: Example sensor network with each entity assigned an ID. The example tree
structure will be constructed using this network... 73

Figure 7.5: The reduced example sensor network with topology entities replacing groups of
individual entities shown in Figure 7.4... 74

Figure 7.6: Lowest two layers of the partition tree for the example sensor network. 74

Figure 7.7: Final partition tree constructed using the bottom-up method of the example sensor
network shown in Figure 7.4. ... 75

Figure 7.8: Sensor network containing three disconnected portions. .. 78

Figure 7.9: Basic communication graph, G, of the example sensor network. The numbers next
to each edge are the edge weight representing the distance between the two end points in meters.
... 80

 xiv

Figure 7.10: The distance unit graph, GD, created from the graph G in Figure 7.9..................... 81

Figure 7.11: Distance graph GD1 showing only communication links of 1 distance unit or less. 82

Figure 7.12: Distance graph GD2 showing only communication links of 2 distance units or less.
... 83

Figure 7.13: Distance graph GD3 showing only communication links of 3 distance units or less.
... 84

Figure 7.14: Basic communication graph, G’, showing the example sensor network at the first
level of topological abstraction... 84

Figure 7.15: Distance unit graph, GD’ with one distance unit equal to 3.4 meters (or feet)........ 85

Figure 7.16: Distance graph GD1’. ... 86

Figure 7.17: Distance graph GD2’. ... 86

Figure 7.18: Footprint of simple chemical production plant consisting of four buildings. 87

Figure 7.19: Chemical plant with top-level sensor network topology shown. 88

Figure 7.20: Sensor network for the chemical plant to monitor ethylene oxide at the basic entity
level of detail... 89

Figure 7.21: Final partition tree constructed using the top-down method of the example sensor
network shown in Figure 7.4. ... 89

Figure 8.1: A 3x3 mesh topology. ... 91

Figure 8.2: General depiction of the star topology, all entities in the star topology are connected
to the central entity.. 92

Figure 8.3: Example of a single cluster within a cluster topology... 94

Figure 8.4: Data fusion in a network of temperature sensors arranged in a binary tree topology.
All sensor nodes have taken readings and the lowest level (leaf nodes) have transmitted their
readings to the next highest level.. 96

Figure 8.5: The data fusion process started in Figure 8.4 has progressed to the next higher level.
... 96

Figure 8.6: The data fusion process has processed from Figure 8.5 with only the sensor node that
is the root of the tree remaining. ... 97

 xv

Figure 8.7: The data fusion process is complete and the sensor node at the root of the tree has
sent the data to the sink (or next highest level)... 97

Figure 8.8: Example single link topology.. 98

Figure 10.1: Topologies used to group a single ISO 18000-7 reader and associated tags together.
... 105

Figure 10.2: Example ISO 18000-7 network... 108

Figure 10.3: Basic communication graph of the ISO 18000-7 example network. 109

Figure 10.4: Markov process describing the energy consumption of an ISO 18000-7 RFID tag
based on the tasks performed.. 111

Figure 10.5: Example of Manchester encoding used in ISO 18000-7, the byte ‘00101010’ is
illustrated... 119

Figure 10.6: Markov process for an ISO 18000-7 reader. ... 123

Figure 10.7: Entities contained in topology, TOP1, built around reader R1. 137

Figure 10.8: Entities contained in topology, TOP2, built around reader R2. 137

Figure 10.9: Entities contained in topology, TOP3, built around reader R3. 138

Figure 10.10: Entities contained in topology, TOP4, built around reader R4. 138

Figure 10.11: Example ISO 18000-7 network from Figure 10.2 covered using four single reader
and associated tags topological entities. ... 139

Figure 10.12: Markov process for a topological entity containing one reader and all tags
associated with that reader. ... 141

Figure 10.13: Basic communication graph of the example ISO 18000-7 network (readers are
shaded and tags are not shaded).. 143

Figure 10.14: Basic communication graph of the example ISO 18000-7 network (readers are
shaded and tags are not shaded).. 156

Figure 10.15: Entities contained in topology, TOP1, built around reader R1. 157

Figure 10.16: Entities contained in topology, TOP2, built around reader R2. 157

Figure 10.17: Entities contained in topology, TOP3, built around reader R3. 158

 xvi

Figure 10.18: Entities contained in topology, TOP4, built around reader R4. 158

Figure 10.19: Basic communication graph of the four single reader and associated tags
topological entities. ... 158

Figure 10.20: The entire ISO 18000-7 example network is covered using a single multi-reader
topological entity. ... 159

Figure 10.21: Markov process for highest-level topology containing multiple readers. 161

Figure 10.22: Basic communication graph of the double size example network. 164

Figure 10.23: Single reader and associated tags topology, TOP1, centered around reader R1 in
the double size network. ... 166

Figure 10.24: Single reader and associated tags topology, TOP2, centered around reader R2 in
the double size network. ... 166

Figure 10.25: Single reader and associated tags topology, TOP3, centered around reader R3 in
the double size network. ... 166

Figure 10.26: Single reader and associated tags topology, TOP4, centered around reader R4 in
the double size network. ... 167

Figure 10.27: Single reader and associated tags topology, TOP5, centered around reader R5 in
the double size network. ... 167

Figure 10.28: Single reader and associated tags topology, TOP6, centered around reader R6 in
the double size network. ... 167

Figure 10.29: Single reader and associated tags topology, TOP7, centered around reader R7 in
the double size network. ... 168

Figure 10.30: Single reader and associated tags topology, TOP8, centered around reader R8 in
the double size network. ... 168

Figure 10.31: Double size network covered with eight single reader and associated tags
topological entities. ... 169

Figure 10.32: The double size network can be covered by a single multi-reader topological
entity. .. 170

Figure 10.33: Markov process for the multi-reader topological entity...................................... 171

Figure 10.34: Basic communication graph for the quadruple size example network (not to scale).
... 173

 xvii

Figure 10.35: Single reader and associated tags topology, TOP1, centered around reader R1 in
the quadruple size network. .. 174

Figure 10.36: Single reader and associated tags topology, TOP2, centered around reader R2 in
the quadruple size network. .. 174

Figure 10.37: Single reader and associated tags topology, TOP3, centered around reader R3 in
the quadruple size network. .. 174

Figure 10.38: Single reader and associated tags topology, TOP4, centered around reader R4 in
the quadruple size network. .. 175

Figure 10.39: Single reader and associated tags topology, TOP5, centered around reader R5 in
the quadruple size network. .. 175

Figure 10.40: Single reader and associated tags topology, TOP6, centered around reader R6 in
the quadruple size network. .. 175

Figure 10.41: Single reader and associated tags topology, TOP7, centered around reader R7 in
the quadruple size network. .. 176

Figure 10.42: Single reader and associated tags topology, TOP8, centered around reader R8 in
the quadruple size network. .. 176

Figure 10.43: Single reader and associated tags topology, TOP9, centered around reader R9 in
the quadruple size network. .. 176

Figure 10.44: Single reader and associated tags topology, TOP10, centered around reader R10 in
the quadruple size network. .. 177

Figure 10.45: Single reader and associated tags topology, TOP11, centered around reader R11 in
the quadruple size network. .. 177

Figure 10.46: Single reader and associated tags topology, TOP12, centered around reader R12 in
the quadruple size network. .. 177

Figure 10.47: Single reader and associated tags topology, TOP13, centered around reader R13 in
the quadruple size network. .. 178

Figure 10.48: Single reader and associated tags topology, TOP14, centered around reader R14 in
the quadruple size network. .. 178

Figure 10.49: Single reader and associated tags topology, TOP15, centered around reader R15 in
the quadruple size network. .. 178

 xviii

Figure 10.50: Single reader and associated tags topology, TOP16, centered around reader R16 in
the quadruple size network. .. 179

Figure 10.51: Covering of the quadruple size network with the sixteen single reader and
associated tags topological entities. .. 181

Figure 10.52: The double size network can be covered by a single multi-reader topological
entity. .. 181

Figure 10.53: Markov process for the multi-reader topological entity...................................... 182

Figure 11.1: Example of a ZigBee network arranged in a star topology................................... 187

Figure 11.2: Example of a ZigBee network arranged using the Peer-to-Peer topology. 187

Figure 11.3: Top-level of the example ZigBee network, represented by a single ZigBee tree
topological entity. ... 188

Figure 11.4: Intermediate-level depiction of the ZigBee network used in this example........... 189

Figure 11.5: ZigBee network example case... 189

Figure 11.6: Markov process for the temperature sensor ZigBee end-device. 193

Figure 11.7: Markov process for a ZigBee router.. 200

Figure 11.8: Markov process for the ZigBee coordinator.. 209

Figure 11.9: ZigBee base entities contained in topological entity TOPS1. 217

Figure 11.10: ZigBee base entities contained in topological entity TOPS2. 217

Figure 11.11: Covering of the ZigBee example network using the two ZigBee star topological
entities (TOPS1 and TOPS2)... 218

Figure 11.12: Markov process describing the star topological entity. 220

Figure 11.13: Tree topological entity... 229

Figure 11.14: Covering of the ZigBee example network using a single ZigBee tree topological
entity. .. 229

Figure 11.15: Markov process describing the ZigBee coordinator tree topological entity. 231

Figure 11.16: Double size example network. .. 241

 xix

Figure 11.17: ZigBee tree topological entity, TOP1, in the double size network. 241

Figure 11.18: ZigBee tree topological entity, TOP2, in the double size network. 241

Figure 11.19: ZigBee star topological entity 1, TOPS1. ... 242

Figure 11.20: ZigBee star topological entity 2, TOPS2. ... 242

Figure 11.21: ZigBee star topological entity 3, TOPS3. ... 243

Figure 11.22: ZigBee star topological entity 4, TOPS4. ... 243

Figure 11.23: Covering of the double size network with two ZigBee tree topological entities. 244

Figure 11.24: Markov process describing the ZigBee coordinator tree topological entity. 245

Figure 11.25: Covering of the network with a single ZigBee multi-tree topological entity...... 245

Figure 11.26: Quadruple size example network. ... 247

Figure 11.27: ZigBee tree topological entity, TOP1, rooted at ZigBee coordinator 1. 247

Figure 11.28: ZigBee tree topological entity, TOP2, rooted at ZigBee coordinator 2. 248

Figure 11.29: ZigBee tree topological entity, TOP3, rooted at ZigBee coordinator 3. 248

Figure 11.30: ZigBee tree topological entity, TOP4, rooted at ZigBee coordinator 4. 248

Figure 11.31: ZigBee star topological entity 1, TOPS1. ... 249

Figure 11.32: ZigBee star topological entity 2, TOPS2. ... 249

Figure 11.33: ZigBee star topological entity 3, TOPS3. ... 250

Figure 11.34: ZigBee star topological entity 4, TOPS4. ... 250

Figure 11.35: ZigBee star topological entity 5, TOPS5. ... 250

Figure 11.36: ZigBee star topological entity 6, TOPS6. ... 251

Figure 11.37: ZigBee star topological entity 7, TOPS7. ... 251

Figure 11.38: ZigBee star topological entity 8, TOPS8. ... 251

Figure 11.39: Covering of the quadruple size network with the four ZigBee tree topological
entities. .. 252

 xx

Figure 11.40: Markov process describing the ZigBee coordinator tree topological entity. 253

Figure 11.41: Covering of the network with a single ZigBee multi-tree topological entity...... 253

Figure 12.1: State diagram of the Markov process for the simple temperature sensor. 261

 xxi

1.0 INTRODUCTION

A collection of hundreds, thousands or even millions of small inexpensive devices with sensing

capabilities scattered or placed throughout an area is commonly referred to as a sensor network.

RFID networks consist of hundreds or thousands or millions of tags and dozens of readers. The

devices that compose the sensor or RFID networks communicate via wireless communication

equipment. The ability of the sensor network to monitor an area for extended periods of time is a

critical application requirement. RFID systems must track items for up to 25 years. Current

advances in technology have made the creation and deployment of sensor and RFID networks

not only technologically, but also economically feasible. Specifically, the availability of

powerful, low power, and inexpensive processors and accompanying hardware facilitate the

development of sensor and RFID networks. The key to wide scale deployment of these networks

is in the reduction of energy consumption both of individual nodes (or tags) and of the network

as a whole.

The concept of a sensor network is not new as wired sensor networks have been in place

for many years. The availability of low cost electronics for sensors has made the cost of the

wired connections between the sensors and the central controller a significant part of the overall

system cost [1]. The need for a wired connection to exist between the sensor and the central

controller places significant limitations on where sensors can be placed and deployment in

general [1]. For example, sensors cannot be placed in numerous applications having moving

parts because the wire connection would either break as a result of the movement or the wire

would get in the moving parts and cause the machine that the sensor is to monitor to fail [1]. The

limited ability to resist interruptions in communication links is another drawback of wired sensor

networks [1]. In the event of a failure or death of some sensors in a wireless sensor network, it is

still possible for the remaining sensors to reroute their messages through those sensors still in

operation [1]. In a wired sensor network once a communication link is broken, all

 1

communication that traveled through the broken link is lost, thus multiple wired links are needed

to provide a comparable level of resiliency [1].

The military has performed extensive research into and deployed a number of sensor

networks. One of the most notable of these networks is the SOund SUrveillance System

(SOSUS), deployed in the Cold War to monitor movement of submarines [2]. Today, the

National Oceanographic and Atmospheric Administration (NOAA) uses the SOSUS sensor

network to monitor conditions of the oceans [2]. A system such as this could be used to monitor

for and provide advanced warning of tsunamis.

Sensor networks have a wide range of possible military, commercial and public safety

uses. Widespread use of sensor networks can provide solutions to problems in the areas of

environmental monitoring, security, traffic control, and monitoring conditions within an area or

structure. Monitoring the environment on a large scale is an ideal use of sensor networks.

Ecologists require a great deal of information about the environments of organisms they study

[3]. If the environment under study is remote, the frequent trips required to collect the data can

become prohibitive to further study. Disturbances caused to the creatures and the environment

under study in collecting the data can result in unintended harm to the creatures or environment

being studied [4]. Sensor networks provide a means to monitor the environment with the

required granularity while causing little disturbance of the organisms under study [4]. Providing

the ability to monitor large areas, sensor networks, allow possible intruders to be quickly

discovered and apprehended [2]. The use of sensor networks to monitor traffic conditions in

order to reduce congestion is another promising area of development [5]. Indoor climate control

systems continue to advance, incorporating an increasingly complex amount of technology in the

system. With respect to climate control the more temperature readings available to the system,

the better the system can modulate the amount of heat or cooling generated and the distribution

of that heat or cooling, providing a more efficient and conformable environment.

The field of sensor networks is concerned with designing, deploying, and investigating

sensor networks. Of critical importance to sensor and RFID networks is the power consumption

of individual nodes and of the network as a whole. The nodes can derive the power needed for

operation from an onboard power supply, harvest energy from the environment, or from an

external power source. Nodes deriving power from an external source place severe limitations

on the applications available to networks consisting of such nodes. Energy harvesting, while

 2

promising, still requires significant development to enable enough energy to be harvested to

power a node. Therefore, the node must be powered from an onboard power supply, specifically

a battery. The node remains operational as long as the battery can provide the needed

operational power.

Minimizing the power consumption of an individual node, will increase the lifetime of

that node. Depending on what other factors are altered in minimizing the power consumed of a

single node, the network lifetime could increase, decrease, or remain unchanged. Therefore, it is

important to investigate power consumption on an individual node and over the entire network.

Minimizing power consumption over the network as a whole will result in increased lifetime of

the network.

Work in the field of sensor networks has generated a significant amount of attention in

recent years. Much work has been done in the development of communication and routing

protocols, algorithms for the initial configuration and maintenance of the network, with some

work in simulation of these sensor networks to evaluate performance.

1.1 CURRENT/RELATED WORK IN SENSOR NETWORKS

Current work in sensor networks focuses on several different areas. Research investigating

initialization, construction, and routing protocols has received the most attention. Optimizing the

operation of the individual nodes making up the sensor network comprises another area of

research. Network architectures for selective activation of nodes or for operations performed on

data to reduce the amount of data transmitted through the network are a growing area of interest.

Security of sensor networks and the data transmitted through the network is also a growing area

of research as sensor and RFID networks are quickly becoming economically feasible to deploy.

Energy harvesting is another growing area of interest, especially since sensor networks rely on

limited power supply, usually a battery. Mobility of nodes within the sensor networks presents

significant problems to maintaining communication paths within the network. However,

networks with mobile nodes are being investigated as mobile nodes can provide additional

benefits and open new areas for use of sensor networks.

 3

Routing and initialization are critical to the operation of a sensor network and most

research in sensor networks is focused in this area. While some sensor networks are deployed by

hand and use predefined routing tables. In state of the art networks nodes will be randomly

deployed over an area and must build and connect the sensor network themselves. Initialization

is the building and connection of the individual sensors to form the sensor network. Initialization

consists of achieving two goals. The first is to construct the network by finding and connecting

nodes together to form a network. The second objective is setup the initial communication paths,

routes, by which information will be disseminated. Routing focuses on the paths that messages

take between entities in the network. Routing schemes for sensor networks must be flexible to

handle changes (additions and deletions) of nodes in the network.

The first step in initializing a sensor network is for the individual sensor nodes to identify

their neighbors. Several methods are possible for discovery, but a node must either listen for

messages from other nodes announcing their presence, or broadcast a message announcing its

presence. In one algorithm for network construction, new nodes first listen for an invitation to

join the network [6]. Receiving an invitation within a certain time causes the new node to

broadcast a request to join the network [6]. Nodes form local networks with the other nodes they

discover. This process continues the local networks continue to grow and the network gradually

becomes connected [6].

The location of each sensor node is an extremely useful piece of information to determine

the routing paths within the network. Knowledge of location allows individual nodes to identify

nodes that are closer to the destination node of a particular message. With that information, the

message can be addressed only to those nodes that are closer to the destination. Another use of

location is to base the routing paths on minimizing the distance between all the nodes since

received power is inversely proportional to the distance squared.

However, obtaining the location of each sensor node presents significant problems.

Clearly if each node is placed intentionally, the location of each node would be known and could

easily be programmed into the node. Placing each node when a network may contain thousands

of nodes is not feasible, and this solution is limited only to very small sensor networks. Location

finding devices such as GPS are costly in terms of energy use, and take up valuable real estate on

the node. Further, the error range of a few meters, of the GPS system, significantly reduces the

usefulness of the location provided, because the distance between nodes will usually be only a

 4

meter or two at the most. Relative distances between two nodes can be estimated through

measurements of the signal strength of messages from the other node. While this relative

distance does not give an exact position (i.e. latitude, longitude, and altitude) knowing just the

relative distance allows for significant improvement and optimization for during topology

formation and routing. Using three special nodes the location of a fourth node can be obtained

through triangulation based on the received signal strength of a message from a fourth node [7].

Mondinelli and Kovacs-Vajna present another location finding method using just one special

node, but that method requires complicated computations and other regular nodes to participate

in the process as well where the method using triangulation does not require the participation of

other regular nodes.

The topologies used in sensor networks can be generalized into two categories; cluster

topologies, or flat topologies. Cluster topologies partition the network into a set of smaller local

networks, or clusters. Each cluster has a cluster head that is responsible for communication

among clusters. Further, establishment of a local network within each cluster links each node to

the cluster head. Routing within a cluster is simplified as the number of nodes and possible paths

are reduced to only those in the cluster. Clustering also allows for the application of higher-level

optimizations based on clusters rather than individual nodes. One such optimization is to

partition all the sensor nodes into mutually exclusive sets of nodes that cover the entire area

(coverage area is defined by the application and node) being monitored [8]. Only one of the sets

must be active at any given time, thus for a network of homogeneous nodes, the lifetime of the

network is directly related to the number of sets, increasing as the number of sets increases [8].

In a flat topology, the nodes are not grouped together.

Once the topology is defined communication links and routing paths must be setup to

allow information to flow through the network. The primary objective of any routing algorithm

is to discover communication paths that enable all nodes in the network to communicate their

data to the network. The secondary objective of the routing algorithm is to minimize the energy

consumption of the entire network keeping the data delay within acceptable limits, and ensuring

that the network remains connected.

Networks that employ a cluster topology can perform higher-level optimizations to setup

the data routes. For example, the LEACH protocol randomly changes the designated cluster

head distributing the additional energy consumed being a cluster head throughout the cluster and

 5

the PEGASIS protocol, which extends LEACH, can be used if enough global information is

known about the network [9].

Other protocols support data aggregation in a network, or data centric networks. Data

aggregation attempts to reduce the amount of data sent throughout the network by combining the

data received with the sender’s data, for example through averaging or compression. The

majority of research focusing on data centric sensor networks sees the sensor network as a large

database. Data centric networks view the request similar to an SQL query in a database. The

request will contain information specifying what data are requested and only those nodes with

data matching the requested data type will respond.

Sensor networks must continue to function as nodes die. From a routing viewpoint, the

simplest method to increase the fault-tolerance of a network is to send data along multiple paths.

As long as one path is intact, the data will arrive at the destination. One routing algorithm forms

multiple routes between a source and a destination by providing intermediate nodes several

choices of where to forward the packet [10]. With multiple choices, most, or ideally all

intermediary nodes, the network can tolerate significant numbers of node failures before the

network becomes completely disconnected, and the network can better balance the

communication load through selective routing [10]. These benefits can increase the lifetime of

the network, but sending a single message along multiple paths obviously requires more energy

than sending the message along a single path. The drawbacks to this solution are that as the

number of nodes in the network increases so does the potential size of the routing tables stored in

the nodes and the overhead associated with finding and using multiple routes.

Optimizations applied to individual nodes are another area of research interest. Most

optimization strategies focus on reducing the power consumption of the processor. Optimization

of the other hardware contained on the sensor node, such as the sensor, analog to digital

converter (ADC), etc., also reduces power, but short of custom designed components selecting

more efficient off the shelf parts is the only solution.

Reducing power consumption at the node level can be achieved through more efficient

processing and routing of messages. Sensor networks generate huge numbers of messages and a

message arriving at a node falls into one of three categories; the message is for that node, the

node must relay the message, or the message can be ignored. The wireless interface normally

handles the physical reception and collection of the message, and the processor decodes and

 6

processes the message. In this scheme, the processor determines which of the three categories

the message falls into and takes appropriate action. In the case that the message is to be relayed

to another node, custom logic has been developed and integrated onto the wireless interface

board to relay the message to the next node if the message is to be relayed [11]. This reduces the

node power usage as the message is not transferred to the processor board, decoded, and then

back to the wireless interface board for retransmission [11].

Another node level optimization is to ignore all packets not destined for the node.

Particularly useful in networks made up of active RFID tags, the ignoring of messages addressed

to other tags saves power. Waking the processor up only when a message arrives addressed to

the tag will allow the processor to remain in a dormant state for the maximum amount of time.

This results in significantly less energy consumption per unit time over a tag, that requires the

processor to decode every message to check the address. This optimization works best when the

network is frequently interrogated.

Management of the processor state is critical to the energy consumption of a node. The

ideal node would keep the processor in the lowest level sleep mode unless work must be done.

However, entering and leaving each level of sleep mode requires a time delay to power down or

up, as required information must be stored or retrieved by the processor to transition between

modes [12]. During this time, no useful work can be performed, so the energy consumed during

this time is wasted, thus the processor must remain in that state long enough to save at least as

much power as was wasted. Sinha and Chandrakasan have developed an algorithm that attempts

to predict the future workload, and by extension predict how long the processor can remain in a

given state and use this to determine when and what level of sleep mode to enter. If the

workload is predicted to be high in the immediate future the algorithm will either stay in the

active processing mode or enter a sleep mode saving minimum power, but requiring minimum

delay and energy to enter and leave [12].

Sensor networks have tasks that must be performed throughout the network. Some or all

of the tasks may be able to be processed on several different nodes, while still providing the

required level of detail and accuracy. In such a case, tasks can be assigned to different nodes to

prevent some nodes from quickly draining their energy reserve and failing. One algorithm has

been developed to spread the workload over a group of nodes. Assigning a reward and an energy

cost to each task as a part of a network policy, each node is then able to determine if it should

 7

perform a given task based on the reward for performing it, the network policy, and the

remaining energy in the node [13]. Nodes that are low on energy will perform less tasks or tasks

with higher rewards than nodes with significant energy remaining. One drawback of this

solution is that if all nodes that are issued a request to perform a certain task are low on power,

there is a possibility that none of the nodes perform the task. If the task were critical, the

network would fail to meet the operational requirements, which would be a failure of the same

magnitude as a significant number of nodes failing due to lack of energy.

Sensor networks containing a large number of nodes also contain and ultimately report

huge amounts of information. Rarely are all the available data required, and usually only more

specific data are required, such as the temperature, or the temperature in a certain area of the

network. Sending back readings from all nodes wastes the energy of those nodes whose readings

are not needed, and communication is greatly increased, further wasting energy. One solution is

to reduce the amount of information reported. This can be accomplished by activation of only a

select number of nodes, or the combination or compression of results as they are making their

way through the network.

Selectively requesting and reporting data reduces energy consumption of the sensor

network and reduces the amount of processing required on the entity that must process the

readings and make decisions based on those readings. One way to reduce the amount of data is

to query the sensor network for only the desired information. Several papers have compared a

sensor network to a large database, distributed over a large number of nodes [14, 15]. These

papers envision the querying of the sensor network with SQL like commands where only those

nodes with the requested data would reply. This is similar to the use of the SELECT SQL

command used in a database to return those records matching the query. This solution would

require additional processing to be performed by the nodes to determine if they have the

requested information, but it reduces the amount of data sent back. The energy consumption of

the additional processing must be weighed against the energy savings of reducing the amount of

data sent through the network.

Sensor networks that track targets require only those nodes in the area of the target to be

actively monitoring. Research has been conducted by Zhao, et. al., for development of a network

that determines which sensors should be activated and how to handoff the monitoring

requirements as conditions change [16]. Target tracking is an ideal application for this type of

 8

network, because only those sensors within range of the target need to be actively monitoring it,

the other sensors can remain dormant until the target enters their area. They propose methods to

estimate the useful information added with the addition of information from another sensor.

Those sensors that maximize the estimates will be activated. Keeping sensors without much

useful information dormant increases the lifetime of those sensors and possibly that of the

network.

Selective querying and activation reduces the number of replies, but in larger networks,

the number of replies can still be large. Data fusion and compression can reduce the amount of

data transmitted while keeping a high number of replies. One solution is to average the reported

data over a small geographic area and then send only that average on to the destination. This

reduces the amount of data that must be processed and the number of messages sent to the

destination. This solution is easily implemented in a network that can be divided into clusters by

having each cluster head average the data and sending only that average. Another solution is

compression of the data in order, to send the same information but with fewer bits. One such

solution is to divide up the data space of the response into indexed bins, each containing a

portion of the response space, and then only send the index of the bin back [17]. As long as the

length of the index is less than the length of the data, sending the index reduces the amount of

total number of bits transmitted. Energy is saved by transmitting fewer bits. The sizing of the

bins has impacts on accuracy and precision as well as the amount of energy saved.

Security in sensor networks has received less attention than research focusing on

implementation and deployment of the network. However, security will be an issue as sensor

networks are deployed. Chan and Perrig list eavesdropping, data privacy, and attacks on

networks themselves as some of the security concerns with sensor networks [18]. Monitoring

the messages transmitted through the network can be as simple as listening on the same

frequency that the nodes use, or by inserting nodes into the network to collect data. Private data

can now be accessed and read by third parties. Encryption is one possible solution, but it

requires significant strength, robust key distribution, and more energy [18]. Another solution

suggested is to fragment the data and send each fragment through a different route [18]. This

would require the attacker to successfully monitor all or a majority of the possible routes. This

could reduce the required strength of the encryption scheme. Attacks on sensor networks can

take the form of jamming communications or depleting the remaining energy of the nodes [18].

 9

Jamming prevents communication as the channel becomes unusable, but using communication

schemes specifically targeted at overcoming noisy channels can counter jamming, and jamming

can be quickly discovered [18]. Draining the remaining energy of enough of the nodes will

result in the network becoming too disconnected to function. Injecting large numbers of

commands into the network can quickly drain the batteries of the nodes and may not be

immediately detected [18]. Requiring authentication of commands will counter this attack [18].

However, these counter measures must be carefully designed as they will consume more energy

than they can save.

A few researchers have looked at using energy harvesting to power wireless networks, or

recharge batteries in the nodes [19-22]. This work can be applied to sensor networks as well.

Energy harvesting methods viable for use in sensor networks include RF energy harvesting,

thermoelectric generation, solar power, and harvesting energy from vibrations in the

environment.

The addition of RF energy harvesting circuitry to the node requires minimal additional

hardware as the node is already equipped with an antenna for communication. The large amount

of available RF in the environment both from the sensor network and outside sources (i.e. radio

stations) makes RF energy harvesting one of the leading choices for energy harvesting in a

sensor network. However, the drawback of RF energy harvesting is that it is limited to the

amount of power that can be received by the antenna. The received power in free space is

determined by the following equation.

() απ
λ

d
P

P t
r 2

2

4
= (1-1)

Where λ is the wavelength of the carrier frequency, d is the distance between the

transmitter and the receiver, α is the power that the distance, d, is raised to, Pt is the transmit

power, and Pr is the received power. The free space model uses 2 for α, while in a real world

environment α will be larger due to interference. Thus, the received power decreases quickly as

distance increases making it nearly impossible to power sensor networks with current technology

using RF energy harvesting.

 10

Thermoelectric generation is another method of energy harvesting applicable to sensor

networks. Thermoelectric devices generate energy in response to a difference of temperature

across the generator, the larger the difference the more energy generated. However, for small

temperature differences, little energy can be generated. An individual node in a sensor network

will normally not experience large temperature differences as the internal temperature of the

node will be close to the temperature of the surrounding environment. The resulting small

temperature difference is not enough to provide the energy required by the node for operation.

Solar power is another alternative for powering sensor networks. Solar cells harvest

energy from light in the environment. Currently solar cells can harvest sufficient energy for

small devices such as a handheld calculator to operate. The drawback of solar cells is their need

to be in a brightly illuminated environment. In a low light environment, the solar cell generates

little energy. Another drawback is that the light level is rarely constant, for example, a node

outdoors should have enough light in the day but not during the night. Uncertainty with respect

to the maximum light level and the consistency of the light level available to each node after

deployment of the network makes solar power ineffective.

Using vibration to generate energy has long been used in the manufacture of self-winding

watches [20]. Piezoelectric materials are commonly used to harvest energy from vibration. This

type of energy harvesting suffers from similar drawbacks as solar cells as they are dependent on

the environmental conditions. Most sensor networks are targeted at deployment over a stationary

terrain such as a forest or desert that experiences very little vibration. Further, the vibration

would have to exist for a long period to recharge the batteries that power the node. For these

reasons, harvesting energy from vibrations provides limited support for sensor networks.

Several networks have been proposed and studied in literature utilizing energy harvesting

[21, 23]. The work done by Kansal and Srivastava proposes a network that attempts to divide

tasks among the nodes based on the amount of energy each node can harvest from the

environment. The goal is to distribute the workload such that those nodes that can harvest more

energy will perform more work. This extends previous work investigating distributing work

based only on remaining battery energy. Dividing the workload in such a manner requires that

nodes be able to determine or estimate the amount of energy they can harvest from the

environment and communicate this value to other nodes. Determination of the available energy

and communication of that value with other nodes must be done in an energy efficient manner.

 11

Scheduling tasks based on the energy available to each node and remaining battery power

theoretically increases the lifetime of the network simulated. Rahimi, et. al. describe a network

architecture consisting of two types of node, the first having the ability to harvest energy, move

around and replace depleted batteries with batteries with a full charge. The second are regular

nodes that cannot recharge their batteries or move. The number of energy harvesting nodes

required to cover an area is determined by the total area, energy for the energy harvesting node to

move, available energy, energy consumption of regular nodes, and the number of regular nodes

[21]. Implementation of such a network requires that enough available energy can be harvested,

and that the terrain over which the network is deployed allows movement of the energy

harvesting nodes to replace batteries. Even with high efficiency energy harvesting technology

and an abundant source of ambient energy, the inability to move that energy over rough terrain

prevents replacement of depleted batteries.

1.2 DISCRETE EVENT SIMULATION

Discrete event simulations provide a model platform for a system by determining and updating a

set of state variables describing the system at each time increment. Discrete simulations can be

expanded into a number of different types. Two of the most common are event driven and time

stepped simulations [24]. In time stepped simulations, time is advanced an equal amount at the

time step at which point the simulation states are updated [24]. In a time stepped simulation all

events occurring within one time step are assumed to happen at the same time, thus the choice of

the length of the time step in a time stepped simulation is critical to the accuracy and precision of

the results [24].

Event driven simulations update the state only when something of interest, called an

event, happens [24]. Each event contains information indicating the time that the event is to

occur in the simulation [24]. The simulation state is only updated in response to the occurrence

of an event requiring that the order in which events are processed be maintained in a

chronological ordering (i.e. earliest event is processed first) [24]. Ensuring this chronological

ordering of events results in the primary overhead in the simulation and thus causes the

simulation to slow down considerably [4]. Even with optimizations, the number of events

 12

generated per second for a small or medium sized sensor network is considerable. Time stepped

simulations are usually faster but provide less accurate results than discrete event simulations [4].

Discrete event simulations use events to pass messages between two simulation entities.

Events represent such things as one entity sending a data message to another entity. Events in

discrete event simulations contain a time stamp indicating the time that an event is to occur.

Events must be processed in order based on their timestamps [24]. This is termed, “the

synchronization problem” [24]. In a parallel simulation, the events must be processed in such a

manner as to generate the same result as given by a sequential system processing events one-by-

one in time stamp order [24]. Processing events out of order can lead to situations in which

some entities have advanced to a time ahead of still unprocessed events leading to “causality

errors” [24].

Simulations of wireless networks typically use the event driven discrete model for their

improved accuracy. Simulation entities typically represent nodes or sinks in the sensor network,

and events typically represent the messages sent between nodes or sinks. For each message sent,

two events may be required, one event for the transmission of the message, and a second event

for the receipt of the message [25]. While not a significant problem for simulations of networks

containing a small number of nodes, the event ordering overhead becomes an issue as the size of

the network increases. One study reports that for a network of 3,200 nodes more than 5.3 million

events per second were generated, using their proposed optimizations the number of events per

second was reduced to slightly more than 210,000 [26]. Adding more processors to the

simulation environment only elevates the problem to a point, where the extra messages passed

between the processors will begin to reduce or negate gains achieved.

The synchronization algorithms used by discrete event simulators to determine when and

which events can be processed generally fall into one of two categories; conservative

synchronization, or optimistic synchronization. In conservative synchronization, an event is

processed if and only if the simulation determines that there is no event with a timestamp before

the event in question, and that no event with a timestamp for a time before the timestamp of the

event in question will be received in the future [24]. The possibility exists where all simulation

entities are waiting on possible events from other entities and all entities block, resulting in

deadlock [24]. There are a number of methods to recover from a deadlocked situation. All

deadlock recovery methods require additional overhead in the form of first detecting a deadlock

 13

situation, then determining what messages to send to break the deadlock, and finally the actual

sending of messages to break the deadlock. These additions increase the amount of

communication, the amount of processing, and ultimately the running time of a parallel discrete

event simulation.

Parallel simulations must prevent messages from being delivered to a simulation entity

with a time stamp in that entity’s past. Messages that are still propagating through the network

and have not been delivered to the receiving entity yet, called transient messages, must be taken

into account when a simulation entity wishes to advance the simulation time [24]. The problem

surfaces when a transient message exists for an entity having time stamp, T1 and the entity, not

aware of the transient message, finds that it is safe to advance to time T2, and T2 > T1.

Causality of the simulation is violated when the transient messages arrives at the entity with time

stamp T1, since the entity is now at time T2, and T2 > T1. Detection of the presence of transient

messages requires entities to keep track of the number of messages they have sent and the

number of messages they have received [24]. This requirement adds to the simulation overhead

as two counters must be maintained in the system, and additional processing must be performed

by the simulation controller when an entity wishes to advance its simulation time. Further, some

entities will experience additional delays because they must wait until no transient messages are

present to advance their simulation time.

The amount of time that the simulation time can be advanced must be determined for

each time advance. Determination of the amount of time the simulation can be advanced

requires information from other simulation entities. In the worst case, all entities require

information from all other entities. In a simulation consisting of N entities, in the worst case N2

messages containing the required information are sent through the simulation environment [24].

While methods to improve the required number of messages are possible, determination of the

amount of time the simulation can advance still requires significant overhead [24]. Thus,

maximizing the amount simulation time advances at each advance is critical to the performance

of the simulation [24]. Simulations in which the maximum amount of time that the simulation

can advance at each step are limited to a small value will not scale well as entities are added to

the simulation [24].

Optimistic synchronization algorithms form the second major class of synchronization

algorithms for discrete event parallel simulations. Optimistic synchronization algorithms allow

 14

for the processing of messages without first determining if they are safe allowing for a possible

violation of causality in the simulation [24]. The simulation is rolled back to a previous

simulation time in response to a causality violation [24]. Pipelining microprocessor architectures

are one example of an optimistic synchronization algorithm, and provisions are made to remove

those instructions that were issued when a hazard is detected [24]. Optimistic algorithms do not

require that messages be sent or received in order based on their time stamps, nor do

communication links between simulation entities need to be explicitly determined and defined

[24].

Supporting simulation roll back requires the storage of information describing the state of

the system in the past [24]. Two popular methods to store state information are copy state

saving, where all state variables are stored before processing each event, and incremental state

saving, where for each event the prior value of every state variable modified by that event is

recorded in a log [24]. Better performance is achieved using copy state saving in simulations

where a high percentage of the state variables are modified by each event, and incremental state

saving results in better performance when only a small percentage of the state variables are

modified with each event [24]. Both methods require additional overhead for storing the

redundant state information needed to support roll back. The additional memory needed grows

as the number of simulation entities increases and as the number of events increases because

events cause changes to the state variables. This memory requirement can severely limit the

ability to simulate large networks.

In addition to state saving, support of simulation, roll back requires a method to cancel

messages that were sent incorrectly [24]. The messages requiring deletion were sent by

simulation entities that did not process a message with a time stamp earlier than their current

time [24]. The data contained within these messages may be altered by the earlier message

(message causing the roll back) or the message may not have been sent at all. Processing of

these messages can initiate a causality violation in the simulation, and possibly lead to incorrect

results. In the Time Warp system, anti-messages are used to destroy messages that must be

unsent [24]. When an anti-message and a message appear together in the input queue they

cancel each other out and thus the message is deleted [24]. An anti-message must be sent for

each message that must be deleted due to a roll back [24]. In cases were large numbers of

messages must be deleted per roll back, this can add significant overhead to the simulation.

 15

To be valid, a simulation must produce identical results over multiple runs of the same

simulation [24]. For a parallel processor, this requires that all events must be processed in the

same order for each execution of the simulation [24]. Further, differences in the hardware used

to execute the simulation can affect the results. For example, a difference in floating point

calculations computed on two different processors can result in different results if the messages

are not processed on the same processor for each execution of the simulation [24]. The difficulty

in producing repeatable simulations significantly increases the difficulty in obtaining accurate

comparisons of different systems using results of a simulation.

Messages transmitted in the network are not point to point as with a wired network, but

are transmitted in all directions from the transmitting node. The only requirement is that the

designated receiving node(s) be within range of the signal to ‘hear’ it. One implication of this

communication strategy is that many nodes will overhear messages not designated for them. The

nodes overhearing the message may still be required to process the message adding overhead to

those nodes, and the simulator must decide the nodes within range and will hear the message sent

by the transmitting node. This causes another performance bottleneck in discrete event

simulations. In the worst-case in a simulation containing N nodes, for each node in the

simulation the simulator must determine if a signal sent by any of the other N-1 nodes is received

at the Nth node [27]. This leads to O(N2) checks per node [27]. This problem magnifies itself

both as the number of nodes and the density of the nodes increase. Even though the number of

checks per node may be able to be reduced, the increasing of this overhead with the increasing

size of the network under simulation does not provide a platform that scales well. Although

optimizations have been proposed [27] these come at a cost of reduced accuracy in the

simulation results [26].

1.3 CURRENT/RELATED WORK IN SENSOR NETWORK SIMULATION

There currently exists a vast number of simulators for networks. A survey conducted by Akhtar

lists a total of 42 different network simulators [28]. A brief survey of papers investigating sensor

networks that identifies the method used to obtain results (i.e. simulation or modeling) is shown

in Table 1.1 below.

 16

Of the 19 papers surveyed, most papers used one of three simulators, GloMoSim, ns-2, or

PARSEC as shown in Figure 1.1. All three simulators are discrete event simulators. In two

papers, a custom simulator was used [29, 30]. Discrete event simulators have a number of

limiting factors in the field of the simulation of large sensor networks.

Table 1.1: Number of times each method is used in the 19 papers surveyed.

Simulator Number of Papers Used In
GloMoSim 5

ns-2 4
PARSEC 3

Implement and Test Proposed Solution 1
EmStar 1

Custom Simulator 2
OPNET 1
Matlab 1

Numeric or Analytic Evaluation 1

Number of Papers Using Simulator x

0

1

2

3

4

5

6

GloMoSim ns-2 PARSEC Implement and
Test

EmStar Custom
Simulator

OPNET Matlab Numeric or
Analytic

Evaluation

Simulator

N
um

be
r o

f P
ap

er
s

U
si

ng
 S

im
ul

at
or

Figure 1.1: Graph showing usage of simulators.

 17

GloMoSim is a library providing the capability for discrete-event simulation of wireless

networks using PARSEC [31, 32]. The GloMoSim simulator was developed to provide an

environment capable of simulating wireless networks containing thousands of nodes [31]. The

GloMoSim simulator supports both sequential and parallel simulations [32]. The GloMoSim

environment consists of a number of layers with each layer having interfaces to the layers

immediately above and below the layer in question making it compatible with the seven-layer

OSI model [31]. The layered structure of GloMoSim allows several different models to be

evaluated at one level without requiring reimplementation of the other layers. The primary focus

of GloMoSim is the modeling and evaluating the performance of protocols at the different layers

of the OSI stack.

GloMoSim supports parallel simulation. As mentioned above, a critical factor

influencing the efficiency of a parallel simulation is the number of messages sent between

simulation entities. The simple solution of representing each node in a wireless network with an

individual entity would quickly lead to simulations containing thousands of entities. This will

result in several thousand or possibly more messages being sent between entities. Such a large

number of messages will quickly saturate the communication infrastructure of the parallel system

and performance will degrade significantly as the message delay increases. In order to reduce

the number of messages passed between entities and to allow for scalability, GloMoSim divides

the area where the wireless network exists into smaller areas [31]. Each smaller area is

represented by a single simulation entity and contains all nodes placed within the smaller area

[31]. Messages sent between nodes within a smaller area are routed locally by the simulation

entity representing that area [31]. Only those messages from a node within one smaller area to a

node within another smaller area are transmitted across the system communication structure [31].

Configuration of the GloMoSim simulation is achieved by altering an input file read by

the simulator [31]. The area covered by the network is approximated by a rectangle with the

length in both the x and y direction being customizable by the user [31]. The number of smaller

areas is specified by specifying the number of divisions in the x direction (columns) and the

number of divisions in the y direction (rows) [31]. An example of dividing the total area into

nine smaller areas with three divisions in the x direction (rows) and two divisions in the y

direction is shown in Figure 1.2 below. For example, for nodes N1 and N3 (or N2) to

communicate, the message is routed internally by the simulation entity. However, if nodes N7

 18

and N9 wished to communicate a message must be sent from the simulation entity containing

node N7 is in to the simulation entity that contains node N9 over the communication structure of

the system.

Figure 1.2: A network of 13 nodes, divided into nine smaller areas.

In addition to the number of smaller areas, the user can alter the maximum transmitter

range of the wireless interface. Because the goal of dividing the entire area into smaller areas is

to allow messages to be handled locally within the entity having a large enough smaller area that

the majority of nodes cannot transmit outside of the smaller area best utilizes this optimization.

Thus, the maximum transmitter range is critical to deciding the size of each smaller area, and by

extension, the number of smaller areas. During the simulation there are many times when one of

a number of events may occur, and one must be chosen (i.e. is a message corrupted by

environmental noise). In most cases, a random number is obtained and used to determine which

of several events occurs. GloMoSim utilizes a random number generator that requires a seed to

initialize the random number generator. The seed affects the numbers generated and is

configurable by the user. The user must also specify the maximum time that the simulation must

execute.

Further, details about the nodes that make up the wireless network must be specified.

First, the user must specify the total number of nodes in the wireless network. The nodes can be

 19

placed within the area randomly, uniformly spaced within the area, in a 2-D grid (must be a full

2-D grid), and manually placed where the location (x and y coordinate) of each node is specified

by the user [31]. Second, the model for signal propagation selected can be the free space model

where received power is inversely proportional to the square of the distance between sender and

receiver, the Rayleigh fading distribution, or the Ricean fading distribution [31]. Third, the data

rate of the network must be specified.

GloMoSim provides support for mobile nodes. Two different types of mobility can be

simulated within GloMoSim. The first type is random mobility in which a node moves one unit

in either the x or the y direction. The second type of mobility simulates the node moving to a

randomly selected waypoint. The speed at which the node moves, and the time that the node

stays at the waypoint, once reached, are configurable by the user [31]. The simulation randomly

selects the waypoint [31]. Finally, the simulation allows the user to set the position precision

which determines how often the location of the mobile nodes must be updated [31].

As GloMoSim focuses mainly on the development and evaluation of protocols a number

of built in protocols and algorithms are provided with the library [31]. These components can be

added to simulation, allowing the developer to investigate other areas without having to

implement those layers for which code is already available. Finally, the statistics that are

collected during the simulation must be specified. Again the statistics available are based on

protocol development and evaluation. Statistics such as number of packets sent and received,

number of each type of packet (UDP, TCP, broadcast packets), and throughput are just some of

the many statistics that are able to be logged by GloMoSim [31].

PARSEC is both a language for parallel programming and an environment for parallel

simulation. PARSEC is general in nature and not specifically designed for wireless sensor

networks or RFID networks [33]. PARSEC was designed around the message-passing C (MPC)

kernel for parallel programming, providing the ability for PARSEC to be used as a programming

language and a parallel simulation environment [33]. Development of PARSEC was in response

to the lack of tools focusing on parallel simulation [33]. PARSEC provides the basic

environment and framework for parallel simulation in which the user can implement models to

simulate the system in question. The time-consuming nature of implementing models lead to the

development of the GloMoSim library for wireless networks that is built on top of the PARSEC

framework [33].

 20

1.4 BACKGROUND SUMMARY

Currently there exists a wide range of choices of hardware, of network communication protocols,

and of network setup and maintenance algorithms for sensor networks. While the requirements

of the sensor network being designed can reduce the number of alternatives in each of the above

three categories, there still exists a wide range of alternatives and potential choices in each. The

developer must evaluate and weigh a number of different alternatives comparing benefits and

drawbacks of each before reaching a decision.

Simulators, in various forms, currently exist that can simulate a sensor network. These

simulators are sometimes difficult to learn, require substantial time to develop the simulation

environment, and can require a significant amount of time to produce results. Because

simulators require so much time to produce results, the number of different possible solutions

that can be investigated is limited. Both OPNET and ns-2, two simulators commonly used to

simulate sensor networks, originated as simulators for wired networks that have been extended to

simulate wireless networks [34].

The large number of simulators available and a difficulty in guaranteeing repeatability

increases the difficulty for comparison of results obtained from different simulators. Ideally,

different simulators should present similar results, or trends for a given system. A study by

Cavin, et.al. investigating the variation of results simulating a network on ns-2, GloMoSim, and

OPNET showed that the results were significantly different [34]. The results obtained showed

significant differences not only in values, but also in behavior of the network in general [34].

These differences lead Calvin, et.al. to conclude that simulations provide little improvement to

the design process [34]. Given the variation in results of the simulators investigated, making

accurate comparisons requires the developer to implement not only their work, but also the

network(s) they wish to compare their solution to, in the simulator used to evaluate their

solution. While possible, the amount of extra work and time needed to implement other

solutions becomes prohibitive to thorough testing and evaluation of a particular solution.

While some analytic models exist, they are usually targeted at a specific protocol,

algorithm, or some other area of interest in the field of sensor networks. Analytic models to

model entire sensor networks are extremely limited in scope, often to the single network protocol

 21

in question, and are not well suited to allow customization by users or to evaluate alternatives

wishing to investigate variations of the original idea.

Analytical models should be faster to evaluate and scale better than simulated models,

especially when looking at large networks (10,000+ nodes) or longer time frames (i.e. months or

years). Most simulators currently in use have a discrete event simulation at the backend. For

example, a leading discrete event simulator ns-2, scales poorly, thus limiting simulations to a

networks with at most a few thousand nodes [34]. The use of a discrete event simulator at the

core is problematic if a large number of messages are sent because the discrete event simulator

must schedule each event and ensure delivery of events in the proper order. In sensor or RFID

networks, the number of messages sent (and thus needing scheduling) often becomes very large.

Such a model should execute significantly faster and scale well as the network size and the

number of messages increases.

Chiasserini and Garetto describe an analytical model describing the energy consumption

in sensor networks in which nodes can be put to sleep to conserve power [35]. This work limits

the model of the node to that of the processor and the communication hardware, while the

network is modeled as a queuing network in which all messages are received without error [35].

Such simplifications neglect critical facts such as how nodes receive messages when a node is

asleep. An analytical model allowing modeling of individual components within nodes and the

network connecting them using assumptions based on real world behavior and performance is

needed.

The ability to compare two or more different networks accurately is needed to decide

between different design alternatives. With a modeling approach, it is easier to verify if the

implementation of the network follows the specifications of the network being investigated.

Further, an analytical model is more transparent than elaborate code written for a simulator,

allowing other researchers to quickly see and understand how the model was implemented and to

determine if the implementation closely follows the specifications for the particular network

evaluated. This increased transparency will increase the ability to compare results obtained for

two or more different networks.

 22

1.5 STATEMENT OF THE PROBLEM

The proposed research will provide a generic analytic modeling framework for sensor networks

for thorough analysis at a variety of levels. This analytic model will be designed to provide

solutions to the current limitations sensor network developers currently face. The initial goal

of this research is to develop the structured modeling environment of sensor networks in their

entirety earlier in the design cycle than is currently feasible. This will provide designers with

additional knowledge enabling more informed design decisions to be made in the design phase of

the sensor network. The ultimate goal is for the modeling framework to provide the

mathematical model and topological basis for a tool during the specification phase (or very early

phases) of the design phase to determine the best way to proceed to a particular analysis by

comparing several alternatives and verifying initial concepts quickly and easily.

This dissertation will present the development of the framework for a mathematical

structure (model) of the current state of recognized sensor networks. First, a thorough analysis

of the relevant literature will provide the basis for the current state of sensor networks. This

analysis will provide the means to divide existing sensor networks into a number of generic

classes that cover the entire field. Further, this information will allow identification of the basic

components that make up a sensor or RFID network.

Second, a similar analysis of existing tools for analysis and simulation of these networks

identifying the relevant characteristics that researchers and developers focus on will be presented

in this dissertation. The tool summary will then be analyzed to extract the implicit and explicit

structural components that appear to be the primary focus of the previous analyses. These two

surveys and the classification of sensor networks will provide the basis for the framework for

the mathematical structure (model) to be developed describing sensor networks.

The initial structural formulation will then be tested to insure the inclusion of both the

implicit and explicit features of sensor network analysis. Based on this research, the final

dichotomy of sensor networks will be formulated, comprising the third contribution of this

research.

The proposed modeling environment will allow expansion and customization providing

structural hooks throughout the model elements. These hooks will allow a user to insert

customized sub-models or to modify existing modeling structures. Customized or expanded sub-

 23

models can be hung from these hooks. Using hooks, models can easily be created to study new

network types, or modified to examine different possibilities of a given network type.

The model will allow the user to focus on a particular area of interest and allow the

simplification of other components (i.e. only simulate the energy used by the sensors, and look at

nothing else). Again, by using hooks at each of the modeling levels, the user will be free to

select a detailed or a simplistic model at various levels. Further, the user will be able to add their

own model components to the existing model. This framework provides the user with the

freedom to decide and perform modeling with varying levels of detail for each of the top-level

parameters.

This modeling framework will be used on some example networks and the results

compared with results of previous work. Differences between the results will be discussed. The

example cases will consist of networks based on the ISO 18000-7 RFID standard and on the

IEEE 802.15.4/ZigBee standard.

The remainder of this dissertation is structured as follows. The base level entities from

which sensor and RFID networks are constructed are presented in Section 2. In Section 3, sensor

and RFID networks are broken down into specific classes to assist designers in determining the

tasks of the topological entities. Section 4 introduces Markov processes and provides the basis

for the operations with Markov processes used in this dissertation. Generic Markov processes

for the base entities and the generic topological entity are described in Section 5. The basic

communication graph concept that is used during the analysis of a network is described in

Section 6. Section 7 presents methods to identify topologies in already existing networks and a

method to use topologies to design a new network. The base topologies of a sensor or RFID

network are illustrated in Section 8. The algorithm to identify topological entities is presented in

Section 9. The ISO 18000-7 example case is presented in Section 10, and the ZigBee example

case is presented in Section 11. The operations required to recalculate the energy consumed after

altering the parameters in the method developed in this work are presented in Section 12, and

Section 13 presents the conclusions.

 24

2.0 COMPONENTS OF A SENSOR AND RFID NETWORK

Sensor and RFID networks contain hundreds or thousands of entities. The entities of sensor or

RFID networks are composed of two principle components, nodes and sinks. The node is

primarily concerned with the collection or storage of data or monitoring of the environment, and

transmission of that data back to the outside world. The primarily concern of the sink is to

provide a bidirectional link between the sensor network (network of nodes) and the outside

world. The outside world consists of the user or controller, or a device (computer) that collects

and processes the information generated by the sensor network. In most networks, the sink also

takes on the role of network controller on either a local or a global level.

2.1 NODES

At the highest level, the node consists of five components, the energy supply (usually a battery),

energy harvesting circuit(s), communications circuitry, a processor and a transducer (a sensor or

an actuator). In a RFID network, a RFID tag acts like a node and may not have a transducer.

The node interacts with the outside world in three different ways. The first interaction,

communication with sinks or other nodes, is achieved by sending and receiving messages.

Secondly, the node interacts with the outside world through use of the transducer, either by

reading the current measurement from a sensor, or by altering the state of an actuator. Third, the

node may harvest energy from the environment. It is possible to have multiple energy harvesting

circuits in a single node (i.e. motion and solar energy harvesting circuits). The node contains

communications circuitry enabling it to send and receive messages from the network. Finally,

the node contains an on-board energy source supplying the power for operation of the node.

 25

The top-level diagram and five top-level blocks will form the basis for the energy models

for the nodes in all classes of networks investigated. The top-level block diagram of the node is

shown in Figure 2.1.

Figure 2.1: Block diagram of a node.

2.2 SINKS

The sink provides a link between the outside world and the network. There are two possibilities

for the sink. The first, a type 1 sink, is just a node modified with the capability to communicate

with the outside world. The type 1 sink can act as a node or as a sink and can change roles

during operation depending on existing conditions. The second, a type 2 sink, is a sink designed

specifically to be a sink. The only purpose of the type 2 sink is to provide a communications link

between the network and the outside world. Therefore, the type 2 sink cannot change roles

during operation to act as a node like the type 1 sink can.

The type 1 sink is a node, modified to provide the capability of communication with the

outside world. The type 1 sink is used to represent entities in a sensor network that can switch

roles to be a node or a sink as needed by the network. The ability to switch roles provides for

 26

more flexibility for a network to respond to changing conditions. Entities of this type can be

used to model networks employing a clustering strategy that rotates the role of cluster head

within each cluster. The block diagram of the type 1 sink is shown in Figure 2.2.

Figure 2.2: Type 1 sink node.

The type 1 sink must be capable of performing all the functions of a node (i.e. taking

measurements) and of a sink (communicating with outside world). Therefore, the five top-level

blocks of the node are also contained within the type 1 sink. The type 1 sink has an additional

block, Communication with World, which provides the communications link between the sink

and the outside world. This communication block is separate from the other existing

communication block (Communication with Network) to account for possible differences

between the communication method used for inter-network communication and for the

communication link between the network and the outside world. When acting as a node, the

Communication with World block is not used and the Sensor/Actuator block is used.

Conversely, when acting as a sink the Sensor/Actuator block is not used and the Communication

with World block is used.

 27

The type 2 sink differs from the type 1 sink in that it is specifically designed to function

as a dedicated sink. The block diagram of the type 2 sink is shown in Figure 2.3. The type 2

sink cannot switch roles and become a node as the type 1 sink can. Therefore the type 2 sink

functions purely as a communications gateway to the outside world. Therefore, the type 2 sink

has no capability to have a transducer (Sensor/Actuator) attached. The node and the type 2 sink

have four of the top-level blocks in common (the Sensor/Actuator is not part of the type 2 sink).

The type 2 sink has an additional block, the Communications with World block, providing the

communications link between the sink and the outside world. This communication block is

separate from the other existing communication block (Communication with Network) to

account for possible differences between the communication method used for inter-network

communication and for the communication link between the network and the outside world.

Figure 2.3: Type 2 sink node.

 28

3.0 CLASSIFICATION OF SENSOR AND RFID NETWORKS

Existing sensor networks can be broken up into a number of different categories. Each category

describes a particular type of wireless network. This determination of this classification will be

the starting point for the development of a mathematical structure describing the energy

consumption for each category of networks.

3.1 CLASSES OF SENSOR AND RFID NETWORKS

Mobility of the node and/or sink is a critical factor in classifying a particular network into a

category. Networks with only stationary entities are significantly easier to model, as the network

topology changes only with the addition or deletion of entities in the network. Conversely,

networks with entities with mobile capabilities present an added problem that the network

topology can change without the addition or deletion of entities to the network. The initial

division of sensor networks is based on whether or not the network contains entities with

mobility or contains only stationary entities and is shown in Figure 3.1.

Figure 3.1: Top-level breakdown of wireless networks.

 29

For networks containing mobile entities, the energy consumed for the movement of each

mobile entity in the network must be taken into account. A mathematical structure will be

developed to account for this energy. A mobile entity, when moving can be viewed as being

deleted at the starting position and added at the destination if the mobile entity does not

communicate during transit. If the mobile entity must communicate during transit, the model

must account for that communication. Therefore, the class of networks with mobility requires

different structures depending on the requirements of the mobile entities and is further divided as

shown in Figure 3.2 below.

Figure 3.2: Sub-division of networks containing mobile entities.

With the initial division of sensor and RFID networks into two classes, the first

containing all networks without mobile entities, and the second containing all networks with

mobile entities, further subdivision of each class is possible based on the requirements and tasks

of each network. The class of networks without mobile entities can be subdivided into three

categories, shown below in Figure 3.3. These three sub-divisions cover all networks without

mobile entities.

 30

Figure 3.3: Sub-division of the networks containing only stationary entities.

The first sub-class, Respond to Commands, contains all networks where the nodes take

action based on the commands sent by the sink or controller. In this type of network, the nodes

do not communicate without first receiving a command from the sink/controller. Further, the

nodes communicate only with the sink, there is no node-to-node communication other than the

possible relaying of messages between the sink and a particular node (in either direction).

The second sub-class, Monitor/Measure Environmental Phenomenon Report Periodically,

consists of networks in which the nodes must monitor an environmental phenomenon and

periodically communicate those readings back to the sink or controller. One example, of such a

sensor network is a network that must monitor and report the temperature of a room once a

second. In this type of network nodes periodically take a reading and send that reading to the

sink. At the top-level, the communication is from node to sink possibly using other nodes as

intermediary relays. The nodes will send their information to the sink periodically and do not

need to wait for the sink to request the information, as in the first case.

The third sub-class, Respond to Environmental Stimulus Report only in Response to

Stimulus, contains all networks that are responsible for monitoring the environment and

reporting information to the sink only when specific conditions are met. In this class of

networks, readings are taken locally by the nodes and messages are sent only when the

phenomenon being monitored exceeds some threshold value. A network used by the military to

track targets on a battlefield is one example of this type of network. In such a network, readings

would only be taken and messages sent to the sink when a target is detected. If no targets are

 31

detected no readings would be taken, or messages sent to the sink. This network is similar to the

second class, as the nodes send information without the sink explicitly requesting it. It extends

the second class to the class of networks that respond to environmental stimulus rather than

report data at regular intervals.

With wireless communication, two entities can communicate directly with each other

only if they are both within range of each other, as shown in Figure 3.4. However, if the two

entities in question are not within range, communication is still possible, but an intermediary

entity must be used to relay the message as shown in Figure 3.5. The case of relaying using a

single entity, as shown in Figure 3.5, can be extended the case where multiple relay entities are

used. This case is shown in Figure 3.6 where multiple entities must relay the message. Both of

the preceding examples (Figure 3.5 and Figure 3.6) illustrate multiple hop communication. The

final sub-division of each of the three network classes presented above is based on the type of

communication used, direct or multiple hop communication.

Figure 3.4: Two entities (Entity 1 and Entity 2) can communicate directly because they are within

range of each other.

 32

Figure 3.5: Two entities (Entity 1 and Entity 2) are not within range of each other, messages must be

relayed by the Relay Entity.

Figure 3.6: Two entities (Entity 1 and Entity 2) are not within range of each other, messages must be

relayed by multiple Relay Entities.

The Responds to Commands sub-class of sensor and RFID networks consists of those

networks that are a master/slave architecture. In these networks, the sinks are the masters and

the nodes are the slaves. Nodes only respond to commands and inquiries sent from a sink.

Nodes do not initiate communication by sending commands or inquiries and only communicate

with other nodes in order to relay a message to a node from a sink or to the sink from a node.

The Responds to Commands network class can be further divided into smaller classes

based on the communication links, multiple or single hop, between the sinks and the nodes.

Based on the number of combinations of multiple hop and single hop communication for the

node to sink and sink to node links there are four sub-classes of Responds to Commands

networks. These four subclasses are shown in Figure 3.7.

 33

Figure 3.7: Division of the Respond to Commands class of networks based on the communication

schemes.

The first sub-class (upper left child) contains all networks in where both the sink and the

nodes communicate with each other without going through intermediary nodes in a single hop.

The second sub-class (bottom left child) is comprised of all networks in which the sink(s)

communicate with all nodes directly, in a single hop, while there are some nodes that cannot

communicate with the sink directly, in a single hop. Those nodes unable to transmit a message

to the sink in a single hop must use other nodes to relay their messages to the sink, requiring

multiple hops for their message to reach the sink. The third sub-class (bottom right child)

consists of all networks in which some of the sinks and some of the nodes require multiple hops

to communicate with each other. The fourth sub-class (top right child) consists of networks in

which the sink requires multiple hops to communicate with some nodes, while all nodes can

communicate with the sink in a single hop.

The Monitor/Measure Environmental Phenomenon Report Periodically class represents

the type of network where the nodes periodically report information back to the sinks in the

network and again can be divided into four classes based on node/sink communication links as

shown in Figure 3.8. The measurements are reported to the sink periodically. In this network,

the majority of the communication is from the nodes to the sink. The node to sink

communication variations account for two of the four sub-classes where the node to sink link is

 34

either limited to a single hop or can be multiple hops. To make this type of network more

general, the ability for the sinks to issue commands to the network is added. Some examples of

these commands could be a request for the current readings or to control or initiate configuration

of the network. The communication links between the sink and the nodes can be either limited to

a single hop, or require multiple hops, providing the remaining two subclasses of this type of

network.

The Respond to Environmental Stimulus Report only in Response to Stimulus class of

networks is very similar to the Monitor/Measure Environmental Phenomenon Report

Periodically class. The key difference between the two types is in the reason the nodes report

information to the sinks. In the Monitor/Measure Environmental Phenomenon Report

Periodically network type, the nodes report readings to the sinks at regular intervals or in

response to a command issued by a sink. In Respond to Respond to Environmental Stimulus

Report only in Response to Stimulus type networks the nodes only report information to the

sinks if the phenomenon monitored surpasses a certain threshold, and, therefore, the sending of

information is not necessarily regular. For example, the threshold could be a temperature set

point, above which a central alarm must activate, or the threshold could be the detection of a

target in a military terrain monitoring system.

Figure 3.8: Division of the Monitor/Measure Environmental Phenomenon class of networks based on

the communication schemes used.

 35

The division of the Respond to Environmental Stimulus Report only in Response to

Stimulus class is shown in Figure 3.9. Two of the four subclasses account for single and

multiple hop node to sink paths. To provide support for commands to be issued into the network

through the sinks, two subclasses are provided to model different sink to node paths. The

remaining two subclasses account for single and multiple hop sink to node paths.

Figure 3.9: Division of the Respond to Environmental Stimulus class of networks based on the

communication schemes used.

 36

4.0 MARKOV PROCESS

Markov processes are an efficient way to analyze systems. Markov processes can be used to

model a system when the next state of the system depends on the current state of the system, and

not on the past states [36]. A Markov process consists of a set of states, a set of transition

probabilities, and a set of reward values. The states represent different conditions in a system.

The transition probabilities provide the likelihood, or probability, that the system will transition

from state i to state k. The reward values denote the gain or profit, or the loss or penalty from

moving from state i to state k.

It is often convenient to illustrate a Markov process using a specialized graph, or state

diagram. In a state diagram, the vertices correspond to system states, and the edges correspond

to transitions between two states. Each edge is assigned a value representing the probability of

moving from state i to state k (i and k may be the same state). The transition probability is

contained in the interval [0, 1]. For each state, i, the sum of the transition probabilities of all

edges originating from state i must be 1. Similarly, the sum of all transitions leaving (beginning

at) state i must equal 1.

A simple temperature sensor will be analyzed using a Markov process. The simple

temperature sensor must take a temperature reading every minute and send the current reading to

a system controller. A three state Markov process can describe the operation of the temperature

sensor. Each state represents one of the three tasks that the temperature sensor must perform.

First, the temperature sensor must read the on-board temperature sensor. Next, the current

temperature reading must be transmitted back to the system controller. Finally, the temperature

sensor must wait until it is time to take the next reading. The three states will be referred to as

READ (RD), XMIT (TX), and WAIT (WT). The state diagram of the Markov process

describing the temperature sensor with transition probabilities is shown in Figure 4.1.

 37

Figure 4.1: State diagram of the Markov process for the simple temperature sensor.

At each interval, the system is in exactly one state. The system may change states,

moving from state i to state k with probability, Pik, or may stay in state i, with probability, Pii.

The transition probabilities do not change with time in a stationary Markov processes [36]. A

Markov process will have N states. These probabilities can be grouped into an N by N square

matrix. The temperature sensor example consists of three states and the 3x3 probability matrix

for this process as illustrated in (4-1).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

TXTXTXRDTXWT

RDTXRDRDRDWT

WTTXWTRDWTWT

PPP
PPP
PPP

P (4-1)

The probability matrix (4-1 has an entry for all nine possible edges in the state diagram in

Figure 4.1. However, not all nine edges are present in Figure 4.1. Those edges that are not

shown in Figure 4.1 have a transition probability of 0. The probability matrix with transition

probabilities for the simple temperature sensor is shown in (4-2).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

30.0070.0
60.020.020.0
01.029.070.0

P (4-2)

 38

A set of rewards is associated with the transitions from each state i, to each state k. The

reward denotes the profit, or loss, associated with transitioning from state i to state k. As with

the transition probabilities, the rewards can be represented in an N by N square matrix as shown

in (4-3).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

TXTXTXRDTXWT

RDTXRDRDRDWT

WTTXWTRDWTWT

RRR
RRR
RRR

R (4-3)

In the case of sensor networks the reward will be the energy consumption of state k. The

value is the sum of the product of all transitions and the rewards associated with each transition.

The system is in exactly one state in each interval. The probability of being in a state, i,

during the nth interval is denoted as, πi(n) [37]. The vector π illustrated in (4-4) is defined as the

collection of the πi’s.

[N]ππππ ...21= (4-4)

where the system in question has N different states. Since each of the πi(n)’s denotes a

probability that the system is in state i, during interval n, the sum of all πi’s must be 1. Hence,

∑
=

=
N

i
i

1

1π (4-5)

The probability that the system will be in state k during the next interval, the (n+1)th

interval, if the system is in state i during the nth interval is simply the product of that the

probability the system is in state i during the nth interval and the transition probability pik during

the nth interval.

The system can transition into state k from any of the N states in the system. Therefore

the probability of being in state k during the (n+1)th interval without regard to what state the

system was in during the nth interval is simply the sum of the probabilities of entering state k

 39

from each of the N system states. The probability of being in state k during the (n+1)th interval

is given by

∑
=

=+
N

i
ikik pnn

1

)()1(ππ (4-6)

In matrix form the π vector can be calculated using the previous π vector and the

probability matrix P giving the probability that the system in is each of the N states during the

(n+1)th interval

() ()Pnn ππ =+1 (4-7)

To obtain the π vector for the nth interval the probability matrix must be raised to the nth

power because

() ()
() () () () 20012

01
PPPP

P
ππππ

ππ

===

=
 (4-8)

The term π(0) is the starting vector containing the system state before the first interval.

The above process continues until π(n) can be calculated using the equation below

() () nPn 0ππ = (4-9)

Thus, it is possible to determine the probabilities that the system is in a given state at any

interval using (4-9). However, for systems with large numbers of states (large N) the probability

matrix will grow accordingly and continually multiplying the previous π-vector and the P matrix

to obtain the current π-vector becomes tedious.

A chain in a Markov process is a set of states of the Markov process. Chains are

important to the analysis of Markov processes. Figure 4.2 shows a Markov process with two

chains consisting of the states {1} and {2, 3, 4}.

 40

Figure 4.2: Example Markov process with two chains.

The first chain consisting of only state 1 is a recurrent chain because once state 1 is

entered the process can never leave state 1. The chain consisting of states {2, 3, 4} is not

recurrent because in the future it is possible to enter state 1 from state 2. No matter what state

the Markov process in Figure 4.2 starts in, after a long time it will eventually become trapped in

the single recurrent chain, in this example, state 1.

All Markov processes have at least one recurrent chain but may have more than one

recurrent chain [37]. An example Markov process with two recurrent chains is shown in Figure

4.3.

Figure 4.3: Example Markov process with two recurrent chains.

 41

The first recurrent chain in Figure 4.3 consists of state 1, while the second recurrent chain

consists of the states {3, 4}. State 2 does not belong to either chain and is a transient state since

after a long time (in the above example after the first transition) the process can not be in that

state [37]. Unlike the Markov process shown in Figure 4.2, the process illustrated in Figure 4.3

will be in one of two chains after one transition. The chain that the process in Figure 4.3 is

trapped in depends on the starting state. For example if the process is started in state 1, then it

will never leave state 1. Similarly, if the process is started in either state 3 or state 4, the process

will never leave the recurrent chain made up of states 3 and 4. However, if the process is started

in state 2, after one transition the process will become trapped in one of the two recurrent chains

based on the transition probabilities from state 2 to either chain. In this example, it is more likely

that the process will become trapped in the recurrent chain containing states 3 and 4. The

Markov process shown in Figure 4.1 has only one recurrent chain.

4.1 STEADY STATE RESPONSE

In some systems, the state probabilities remain constant after some period of time. This state

probability vector is called the absolute probability vector and is defined as

()n
n

ππ
∞→

= lim (4-10)

In order for the absolute probability vector to exist, the system must have certain

characteristics. The absolute probability vector exists when the probability vectors for each

possible starting state converges to the same probability vector after a long time. If the π-vector

found using (4-10) is identical regardless of what state the system starts in then the absolute

probability vector exists. If the probability of transitioning into state j is the same from state i,

Pij, for all states i in the system the absolute probability vector exists.

The existence of the absolute probability vector simplifies the analysis of the system

because after a long time the π-vector no longer changes and does not need to be calculated for

 42

future intervals. Using the absolute probability vector greatly simplifies the process and reduces

the number of computations required to evaluate such a system.

The absolute probability vector can be found using two different methods. The first

method is simply to raise the probability matrix, P, to a high power. When the probability

matrix, P, is raised to a high power, each row of P is equal to the absolute probability vector, π.

If the Markov process has a single recurrent chain, then all rows of P raised to the high power

will be identical. However, if the Markov process has more than one recurrent chain, then the ith

row of P raised to a high power is the absolute probability vector that is obtained if the process is

started in state i.

The second method to find the absolute probability vector, π, is to solve a set of N+1

linear simultaneous equations. When the absolute probability vector, π, exists the following

equations holds

Pππ = (4-11)

From (4-11), N equations can be obtained. There are N unknown πi elements contained

in π, at least one more equation is required to find a unique solution for the π i’s. Since the

absolute probability vector, π, contains the probability of being in each state in the steady state

the sum of the elements of π is 1. This forms the (N+1)th equation that allows a unique solution

to be obtained for π. The N+1 equations are illustrated below

[] [
1...

......

21

2121

=+++
=

N

NN P
πππ

ππππππ] (4-12)

Solving the N+1 equations for the N unknown πi values yields a unique solution for the

absolute probability vector, π. The absolute probability vector exists if the Markov process is

irreducible, aperiodic, and positive persistent [36].

If the Markov process is irreducible, aperiodic, and positive persistent the absolute state

probability vector exists, and the above properties of the π-vector hold [36]. The above

properties of the π-vector also hold if the Markov process contains some transient states as long

 43

as the aperiodic property holds for all persistent states, and there is only one irreducible set of

periodic states [36].

An irreducible Markov process is a process that for all pairs of states it is possible to go

from state j to state k in n moves, and also from state k to state j in m moves [36]. The number

of moves, n, and, m, may be different [36]. More simply, an irreducible Markov process

contains only one recurrent chain [36]. Hence, the example Markov process in Figure 4.3 has

two recurrent chains and is not irreducible. Conversely, the Markov process in Figure 4.2 has

only one recurrent chain and is irreducible.

The period of a state in a Markov process is defined by the possible discrete times that a

state j is returned to when starting at state j [36]. For a state to be periodic two conditions must

hold. The first condition is that the state, k, can only be entered only on the m*dth move, where

m can vary among the positive integers and d is particular positive integer [36]. For all other

moves not equal to m*d, the probability of entering state k is 0 [36]. The value of d is the

greatest integer such that it is possible to enter state k on the m*dth move [36]. The state k is

aperiodic if the value of d is 1 [36]. An aperiodic Markov process is simply a Markov process

where every state is aperiodic. An example periodic Markov process is shown in Figure 4.4.

Figure 4.4: Example of a periodic Markov process.

In the example Markov process Figure 4.4, it is possible to return to state 1 when starting

from state 1 at times, 2, 4, 6, 8 …. The value of d could be either 1 or 2 since for both values it

is possible to find a value of m such that one of the return times to state 1 can be expressed as

 44

m*d. However, the definition of periodic places the restriction on d that it must be largest

number such that all return times can be expressed as m*d. Thus, the value of d must be 2 and

state 1 is said to have a period of 2. The period of a state is simply the value of d for that state.

The period of the remaining states can be found in a similar manner. The value of d is simply

the greatest common devisor (producing a positive integer) of the return times. The example

Markov process in Figure 4.5 is aperiodic because the only possible values of d for all states is 1.

Figure 4.5: Example of an aperiodic Markov process.

It is easy to verify that states 1, 2, 3, 4, 5, and 6 are aperiodic because the return times for

those states consist of both even and odd times. It is impossible to find a common divisor of an

even and odd return time other than 1 so states 1, 2, 3, 4, 5, and 6 are aperiodic since d is 1 for

those states. For example, the first three return times to state 1 starting in state 1 are 3, 4, 6 and

the only possible value of d, that allows these three return times to be generated with m*d is 1.

The remaining states can be shown to have periods of 1 using similar reasoning. If the

probability Pii for state i is greater than zero, state i is periodic [36].

A positive persistent state is a state in which it is possible to return to that state from that

state. The probability of returning to a state, j, when in state, j, at a given time, n, is denoted as

fjj
(n). If the sum of the fjj’s for all n is 1, then state j is a persistent state [36]. The expected return

time, μj, is calculated by multiplying the time step, n, by the probability of returning to state j at

time n, fjj(n) and is shown in (4-13) [36].

 45

(∑∞
=

n
n

jjj fn)(*μ) (4-13)

The expected return time of a positive persistent state is finite [36]. A null persistent

state has a expected return time of infinity [36].

Recall that for the properties of the π-vector defined above to exist, that the Markov

process must be irreducible, aperiodic, and positive persistent [36]. Determining if a Markov

process meets the criteria for the absolute probability vector to exist can be difficult. However,

several efficient methods have been developed [36, 38, 39]. The column-sum method described

by Isaachson and Madsen is one such method and that particular algorithm is used in this

research to verify that the Markov processes used for the example cases are irreducible,

aperiodic, and positive persistent.

4.2 ANALYSIS OF MARKOV PROCESS WITH Z-TRANSFORM

When the probability matrix P has large dimensions, computing Pn or solving the system of

equations given in (4-12) to obtain the absolute probability vector, π, can be tedious and time

consuming. Obtaining the π-vector can be simplified by performing operations in the z-domain.

Because the Markov processes in this work are evaluated in a discrete time base they may be

evaluated in the z-domain. A discrete time function is transformed into a function in the z-

domain as follows, where n represents the discrete time step, f(n) is the discrete function, and

f(z) is the function corresponding to f(n) in the z-domain.

() () n

n

znfzf ∑
∞

=

=
0

 (4-14)

It is also possible to move from the z-domain to the discrete domain by using the

appropriate inverse z-transform.

Converting (4-9) from the discrete domain into the z-domain requires evaluating the

following

 46

(){ } (){ }nPn 0ππ Ζ=Ζ (4-15)

Where, Z{…} denotes the z-transform. The identity matrix, I, is equivalent to a scalar 1

in terms of mathematical operations with respect to matrices. A well know z-transform of a

function αn is

{ }
α

α
−

=Ζ
1

1n (4-16)

Modifying (4-16) for matrices results in

{ } () 1−−=Ζ AzIAn (4-17)

where I is the identity matrix and A is any matrix. Here the probability matrix, P, will be

substituted for the matrix, A, in (4-17). Applying this to (4-15) yields [40],

(){ } () ()() () () ()() 1

000
0000 −

∞

=

∞

=

∞

=

−====Ζ ∑∑∑ zPIPzPzzPn
n

n

n

n

n

nn πππππ (4-18)

To obtain π(n) from (4-18) the inverse z-transform of Z{π(n)} must be evaluated,

() () (){ }110 −− −Ζ= zPIn ππ (4-19)

Thus, π(n) can be computed using (4-19). Computing π(n) using (4-19) requires

computing (I-zP)-1, converting the P matrix to the z-domain, and converting the result back to the

discrete domain. Both the z-transform and the inverse z-transform have been heavily studied and

many conversion tables to convert functions between the z and discrete domains exist [37, 40-

42]. In some cases using (4-19) to determine π(n) is simpler than either (4-9) or (4-12).

Finishing the evaluation of (4-19) yields,

 47

() () ()nHn 0ππ = (4-20)

where H(n) is the inverse z-transform of (I-zP)-1. The matrix, H(n), contains a steady

state component, that does not change with time and a transient component that disappears after

a time for aperiodic processes [37]. The column sum method described by Isaacson and Madsen

can be used to determine if the Markov process is aperiodic or not [36]. Hence, H(n) can be

written as,

() ()nTSnH += (4-21)

Where, S, denotes the steady state component of H(n), and T(n) denotes the transient

component of H(n). For periodic Markov processes the transient term T(n) does not disappear

for large n, and the steady state response, S, represents the probability of being in a given state at

time, n [37]. The steady state component is related to the absolute state probability vector, π,

discussed in Section 4.1 [37]. If the Markov process is irreducible, aperiodic, and positive

persistent then the transient term, T(n), is 0 and π(n) only depends on S, simplifying the

calculation of π(n).

4.3 ANALYSIS OF THE SIMPLE TEMPERATURE SENSOR MARKOV PROCESS

The analysis of the Markov process developed earlier to describe a simple temperature sensor is

presented in this section. Recall that the simple temperature sensor can be in one of three states,

wait, read, xmit. The state diagram repeated in Figure 4.6 is below. The probability matrix for

the simple temperature sensor is repeated in (4-22).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

30.0070.0
60.020.020.0
01.029.070.0

P (4-22)

 48

Figure 4.6: State diagram of the Markov process for the simple temperature sensor.

To determine if the above matrix, P, is aperiodic, the column-sum method will be used.

The first step is to create an adjacency matrix, A, for the probability matrix P. Each element of

A is either a 1 or a 0. Element Aij is a 1 if the probability of transitioning from state i to state j is

greater than zero, otherwise Aij is a 0. The adjacency matrix A for the matrix P in (4-22) is

shown below.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

101
111
111

A (4-23)

The adjacency matrix, like P, is an N by N matrix. If any column of A sums to N then

the Markov process is aperioidic, irreducible, and positive persistent [36]. If no column sums to

N then the matrix A is raised to the 2kth power where k starts at one and k is increased by one

each time no column sums to N [36]. If no column sums to one when,

()

2
12 −

>
NNk (4-24)

the Markov process is not aperiodic, irreducible, and positive persistent [36].

 49

The first and third columns of matrix A shown in (4-23) sum to 3 and N equals 3 for this

example. Therefore, using the column sum method on the adjacency matrix generated from the

probability matrix in (4-22) the Markov process is determined to be aperiodic [37]. Because the

Markov process is aperiodic, the transient component of H(n) will vanish for large n, and the

absolute state probabilities can be obtained.

To obtain the absolute state probabilities the following system of equations can be solved.

() ()

1
30.0070.0
60.020.020.0
01.029.070.0

321

321321

=++

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
∗=

πππ

ππππππ (4-25)

Multiplying out the π-vector and P matrix and rearranging terms yields.

1
070.060.001.0

080.029.0
070.020.030.0

321

321

21

321

=++
=+−−

=+−
=−−

πππ
πππ

ππ
πππ

 (4-26)

Putting the above four simultaneous linear equations into matrix format yields

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−

−−

1
0
0
0

111
70.060.001.0
080.029.0
70.020.030.0

 (4-27)

Solving (4-27) yeilds

0.1926
0.2148
0.5926

3

2

1

=
=
=

π
π
π

 (4-28)

 50

Because the system is aperiodic, the π-vector could also have been determined by raising

the P matrix to a high power, say 200.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1926.02148.05926.0
1926.02148.05926.0
1926.02148.05926.0

30.0070.0
6.020.020.0
01.029.070.0 200

200P (4-29)

As can be seen the rows of the resulting matrix in (4-29) equal to each other and to

solution found by solving the set of four equations. Therefore, either method will work to find

the π-vector for an aperiodic system. However, due to the large amount of computations needed

to raise P to a high power it is sometimes quicker to solve the system of equations for the π-

vector.

The reward matrix, R, defines the reward for each transition. In a financial situation, the

reward represents a profit or a loss occurring as a result of a transition. In this work the reward

represents the energy consumed during a particular transition. The reward matrix for this

example will have the following form.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

TXTXTXRDTXWT

RDTXRDRDRDWT

WTTXWTRDWTWT

RRR
RRR
RRR

R (4-30)

For this example, the specific rewards denote the energy consumed in mW (milliwatts)

for each transition in the Markov process describing the simple temperature sensor. The energy

consumption for each transition of the Markov process describing the simple temperature sensor

is shown in (4-31).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1704
1755
362

R (4-31)

 51

The total possible reward that is possible during the next transition, when in a state k, is

denoted by, qk. The quantity, qk, represents the total reward possible when a transition is made

from state k to another state [37, 40].

(∑
=

=
N

j
kjkjk rpq

1
*)

)

 (4-32)

The column vector q denotes the total possible reward in the next transition from each of

the N states in the Markov process and is composed of the qk’s found in (4-32).

()

(

()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

∑

∑

∑

=

=

=

N

j
NjNj

N

j
jj

N

j
jj

N
rp

rp

rp

q

q
q

q

1

1
22

1
11

2

1

*

:

*

*

:
 (4-33)

In an aperiodic, irreducible, and positive persistent Markov process, the transient term,

T(n), is 0 and all the rows of S are equal to the π-vector. The reward for a given Markov

process, g, is found by multiplying the probability that the process is in a state k by the total

possible reward for state k, for all N states.

πqg = (4-34)

The quantity, g, represents the average energy consumption for the Markov process for

each transition. The energy consumption of the Markov process for n is found using (4-35).

gnETotal ⋅= (4-35)

Where n is the number of transitions investigated and g is the average energy

consumption for one transition. Transitions represent entire tasks, or sub-tasks that make up a

 52

larger task. Converting the number of transitions, n, into a time requires that the average time

per transition, tA, be obtained. Often a single transition represents completion of tasks and sub-

tasks on multiple separate entities. First, a time matrix, TA, is created containing the average

time for all sub-tasks represented in a single transition,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NNNN

N

N

A

ttt

ttt
ttt

T

...
............

...

...

21

22221

11211

 (4-36)

Each entry, tij, in, TA, represents the average time of the operation of all entities

performing a task for the i to j transition. It is important that all entities, tij, in, TA, are in the

same time units. The average time per transition, tA, should be weighted to those transitions that

happen more frequently to obtain better accuracy in the solution. To appropriately weight, tA, to

those transitions the average time per transition q-vector, qA, is found,

()

(

()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

∑

∑

∑

=

=

=

N

j
NjNj

N

j
jj

N

j
jj

AN

A

A

A

tp

tp

tp

q

q
q

q

1

1
22

1
11

2

1

*

:

*

*

:
) (4-37)

With, qA, the weighted average time per transition, tA, is simply,

AA πqt = (4-38)

Once, tA, is calculated the number of transitions is found by simply dividing the desired

length of time to investigate, LTime, by, tA,

 53

()
A

Time

t
Ln = (4-39)

The energy consumption for the example simple temperature sensor can now be

calculated. The π-vector was found, and the values for the three elements of the π-vector are

listed in (4-28). The reward for each transition is listed in the reward matrix, R, in (4-31). First,

the q vector is found using (4-33) is shown in (4-40).

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

90.7
20.12
17.3

3

2

1

q
q
q

q (4-40)

With the q vector and the π-vector, the average energy consumption of the simple

temperature sensor for one transition, g, is computed using (4-35).

6.0207=g (4-41)

Hence, the simple temperature sensor consumes 6.0207 mW (milliwatts) of energy for

each transition. Assuming each transition represents an average of 1 second, thus making, tA, 1

second, the energy consumed in one hour is simply, g, multiplied by the number of transitions in

one hour, in this case, 3600. The energy consumed in one hour is given by the following

equation.

 mJ 21674.520207.6*3600Hour 1Total ==⋅=− gnE (4-42)

The energy consumed in one day is calculated by simply adjusting the quantity, n, in

(4-35) to the number of transitions in one day, in this case 86400. Thus, the energy consumed in

one day is given by the following equation.

 mJ 520188.480207.6*86400Day 1Total ==⋅=− gnE (4-43)

 54

The energy consumption of the simple temperature sensor can be found for one-week,

one-month, one-year, etc. simply by changing the parameter, n, in (4-35) to the appropriate

value. The energies consumed for four additional periods are listed in Table 4.1.

Table 4.1: Value of n from (4-35) and the energy consumed by the simple temperature sensor for

four different periods of operation.

Period Value of n Energy Consumed

(mJ)

1-Week 604800 3641319.36 mJ

1-Month (30 Days) 2592000 15605654.40 mJ

1-Year (365.25

Days)

31557600 189998842.32 mJ

10-Years (3652.5

Days)

315576000 1899988423.20 mJ

By comparison, a 60 W light bulb consumes 5,184,000,000 mJ (milli-Joules) of energy in

one day.

 55

5.0 SINGLE ENTITY MARKOV PROCESSES

A single Markov process and a set of associated input parameters defining the functionality of an

entity can be used to describe the energy consumption of that entity in isolation. These Markov

processes are used as the basis for describing the energy consumption of the entire network. In

these Markov processes the states correspond to the tasks or stages of tasks (for more complex

tasks) that the entity performs during its operation with the transitions representing the actions

required to complete those tasks. The Markov processes for each entity are general in the sense

that they contain chains to describe the energy consumption of all possible tasks for an entity.

The general model is customizable to describe a real-world entity by altering the probability

matrix and altering the reward matrix through input parameters describing the functionality of

the entity, and by structurally altering the Markov process.

5.1 NODE MARKOV PROCESS

The node accounts for the majority of the entities in most sensor or RFID networks. The node

contains sensors and/or actuators along with communications devices and some processing

capability. The generic node must perform five basic tasks within the sensor network. First, the

node must take sensor readings to monitor some phenomenon. Second, the node may contain

actuators, and must operate those actuators. Third, the node must process data and received

messages. Fourth, the node must receive messages from the network. Finally, the node must

transmit messages to the remainder of the network.

The node may contain only sensors, only actuators, or a mixture of sensors and actuators.

Nodes may contain a single sensor or multiple sensors. The node must take and process sensor

readings periodically. The frequency of these readings is an input parameter to the Markov

 56

process for the node. A high sensor read frequency describes a node that must take and process

sensor readings often, and low sensor read frequency describes a node that takes and processes

frequency readings very infrequently. For example, a node designed to monitor for hazardous

chemicals in a chemical plant may require a reading every minute to ensure safety while a node

in an HVAC system may only need to read the temperature sensor every fifteen minutes. A state

describing the energy consumption of the task to take a particular reading will be present in the

Markov model. Tasks may require readings from multiple sensors and the designers specify

these tasks.

Similarly, nodes containing actuators must periodically adjust the actuator output. These

actuators provide input into another system, for example controlling a rotating gear. The type of

system dynamics determine the actuator update frequency that the actuator(s) are responsible for

controlling. Some systems require rapid input changes to maintain stability while others require

infrequent input changes to maintain stability. The actuator update frequency is an input into the

Markov process describing the node. There will be a state to describe the energy consumption of

each actuator task performed by the node. As with the sensor tasks the number of actuator task

states must be limited to prevent the explosion of the dimensions of the Markov process.

The node may receive a message during operation. This message could be a command or

request from a type 1 or type 2 sink, or a data message from another node. The node must

process all received messages. Some messages may contain errors, and not all errors can be

corrected. The node discards those messages. However, some errors can be corrected with

additional processing of the message.

The transmitter may allow for the adjustment of transmission power. This control allows

the node to adjust the transmission power and by extension, the range of the transmitter to use

minimize the amount of power to transmit the message from the source to the destination. The

node can also use this feature to overcome interference, such as a thunderstorm, in the

environment. This is represented in the general Markov process for the node by having multiple

transmit states, each for a different level of transmit power. The number of different transmit

levels must be kept relatively small to prevent the dimensionality of the Markov process from

exploding. The number of different transmit and sleep states must be kept reasonably small to

prevent the dimensionality of the Markov process from exploding. The Markov process for the

node is shown in Figure 5.1.

 57

Figure 5.1: Generic Markov process for a node.

The transition probabilities in the generic process are simple to find. The probability of

transitioning into one of the task states is simply the probability of that task occurring. This

probability can be found using by dividing the number of times per day a particular task is

executed by the number of transitions possible in a single day. For states with a loop-back

transition, the same method can be applied to determine those transition probabilities.

5.2 TYPE 2 SINK MARKOV PROCESS

The type 2 sink provides a link between the outside world and the sensor network. The primary

function of the type 2 sink is to listen for data messages sent by nodes within the sensor network

and to transfer that information to the outside world. The type 2 sink also injects commands

from the outside world into the network, however this event is rare as ideally once initialized the

 58

sensor network will function without interaction from the outside world. Thus, the type 2 sink

only transmits to the network when it receives a command from the outside world.

The type 2 sink is also equipped with a microprocessor allowing the sink to process the

received data. This processing capability can be used to reduce the volume of messages sent to

the outside world. Two examples of this are data fusion and data compression. Reducing the

amount of data transmitted can significantly reduce the energy consumption of a sensor network,

but only if the additional energy used processing the data is offset by a larger reduction in energy

consumed by the transmitters.

The type 2 sink must communicate with entities inside the sensor network and outside the

sensor network. In both cases, communication includes receiving and transmitting messages.

Two sets of communication states will be used to account for these four tasks. The first will

model the communication with the outside world and consists of one receive state and a number

of transmit states. Each transmit state represents a transmission at a different power level.

Communication inside the sensor network is similar, with a single receive state and a number of

transmit states each representing a different transmitter power level. In both communication

cases, the number of transmit states (transmitter power levels) must be kept reasonably small to

prevent the dimensions of the Markov process from exploding.

The type 2 sink can process data, and a state is assigned to represent the task of actively

processing data. The type 2 sink can also enter sleep mode where different components can be

put into a low power state. There can be multiple levels of sleep states, and each level will be

represented by a separate state. As with the two sets of transmit states the number of sleep states

must be kept relatively small to keep the dimensionality of the Markov process within reasonable

limits. The generic Markov process for a type 2 sink is shown in Figure 5.2.

The transition probabilities in the generic process are simple to find. The probability of

transitioning into one of the task states is simply the probability of that task occurring. This

probability can be found using by dividing the number of times per day a particular task is

executed by the number of transitions possible in a single day. For states with a loop-back

transition, the same method can be applied to determine those transition probabilities.

 59

Figure 5.2: Generic Markov process for a Type 2 Sink.

5.3 TYPE 1 SINK MARKOV PROCESS

The type 1 sink can function as either a type 2 sink or as a node, and can change rolls during

operation. Therefore, the type 1 sink must be able to perform all the tasks of a node and of a

type 2 sink. The Markov process for the type 1 sink is obtained by combining the Markov

processes for a node and for a type 2 sink. In this case the number of sensors, actuators, and

transmitter power levels must be reasonably limited in order to prevent an explosion in the

dimensionality of the Markov process. The generic Markov process for the type 1 sink is shown

in Figure 5.3.

 60

Figure 5.3: General Markov process for a Type 1 Sink.

The transition probabilities in the generic process are simple to find. The probability of

transitioning into one of the task states is simply the probability of that task occurring. This

probability can be found using by dividing the number of times per day a particular task is

executed by the number of transitions possible in a single day. For states with a loop-back

transition, the same method can be applied to determine those transition probabilities.

5.4 MARKOV PROCESSES FOR TOPOLOGICAL ENTITIES

The entities that comprise a sensor or RFID network group themselves into the topological

groups described in the previous section. The topological groups enable the designer to view the

sensor or RFID network at a higher, more abstracted level. Topological groups provide a means

 61

to decompose the entire sensor or RFID network into a set of sensor or RFID network

topologies. The number of sensor or RFID network topologies after the sensor or RFID network

is decomposed is less than the number of base entities in the original sensor or RFID network.

By investigating each of the topological entities designers are able to gain insight into the

behavior and performance of the sensor or RFID network on a whole providing for quicker, more

efficient simulation of the sensor or RFID network to determine energy consumption.

A Markov process similar in structure to those developed to describe the individual

entities describes the topological entity. The Markov process describing a topological entity

must accurately model the actions of all entities in the topology and keep the dimensionality of

the Markov process to a minimum. Keeping the dimensionality at a minimum reduces the

amount of computations, hence time, to evaluate the Markov process to determine energy

consumption.

The Markov processes for the topological entities will focus on the tasks that each

topology must perform. Sensor or RFID networks must perform a few common tasks to function

and some specialized tasks based on the requirements of the individual sensor or RFID network.

However, within a single or RFID sensor network, all required tasks can be determined from the

requirements and specifications of that particular network. Focusing on the performance of these

tasks enables the entities to be quickly and easily combined into topological entities and for the

creation of the Markov process for the topological entities.

5.4.1 Tasks of a Sensor Network

Sensor and RFID networks must perform a number of different tasks. The Markov model for the

sensor or RFID network must represent each of these tasks. Focusing on the tasks a sensor or

RFID network topology performs limits the dimensionality of the Markov process describing

that topology. Limiting the dimensionality of the Markov process is critical to ensuring that the

Markov process can be evaluated within a reasonable time. The individual topology groups that

combine to make up the sensor or RFID network must perform either all or a sub-set of the tasks.

The Markov model for each topology group must represent those tasks that must be performed

by that topology group.

 62

The following six tasks form a basis of tasks that a topology may perform. These basic

operations form a basis for the more complex tasks that a sensor or RFID network may perform.

The most basic task of a sensor network is to collect data from the sensor nodes. Collecting data

involves taking sensor readings and communicating those readings to the appropriate sink(s).

Processing of the sensor reading by the sensor nodes or the sinks is the second task required by

the sensor network. For example, the processing could be focused on fusing the data, or

normalizing sensor readings to a known standard. The third task of a sensor or RFID network is

for the sinks in the sensor or RFID network to communicate the collected data to the outside

world. Fourth, sinks in the sensor or RFID network must receive commands from the outside

world. Fifth, entities in the sensor or RFID network must process commands from the outside

world or other entities. Sixth, the entities in the sensor or RFID network must distribute

commands they receive. The six basic tasks that form a basis for tasks within a sensor network

are shown in Figure 5.4. More complex tasks can be decomposed into a sequence of the six

basis tasks, or as a customized extension of one of the six basis tasks.

The above six basis tasks provide the foundation for developing the Markov process

structure describing each topological entity. The structure of the Markov process describing

each topology type will be the same, but the reward and probability matrices will be customized

for each topology type. A general Markov process for a topological entity performing each of

the six basis tasks is shown in Figure 5.5.

The transition probabilities in the generic process are simple to find. The probability of

transitioning into one of the task states is simply the probability of that task occurring. This

probability can be found by dividing the number of times per day a particular task is executed by

the number of transitions possible in a single day. For states with a loop-back transition, the

same method can be applied to determine those transition probabilities.

 63

Figure 5.4: Six basis tasks forming a basis for all tasks of a sensor network.

Figure 5.5: General Markov process for a topological entity.

 64

5.5 MOBILITY

A sensor network containing entities capable of moving around may be able to reposition those

assets to improve the quality of the network. For example, some propose deploying mobile

energy harvesting entities as part of a sensor network capable of recharging batteries and

replacing the batteries of dead entities automatically [21]. Mobile entities can be used to repair

or add new communication links in networks or to arrange the sensors in a better topology for

monitoring [43].

Mobility offers many useful features in sensor networks and mobility is achieved in

sensor networks by providing a mobile version of a static entity [21, 43, 44]. An entity called a

mobile entity will facilitate the addition of mobility to a static entity (node, type 1 sink, or type 2

sink).

Sensor networks have also been envisioned containing entities to transport stationary

entities from one location to another [45]. The Networked Infomechanical System (NIMS)

provides entities that can pick up, transport, and drop off stationary entities [45]. An entity

mover entity will provide this capability to the networks investigated in this work. The entity

mover will have the capabilities to pick up an entity, transport that entity to another location, and

finally drop off the entity at the new location. With the mobile entity and the entity mover,

mobility within sensor networks is covered.

This work focuses on wireless networks in which the entities are stationary, but the

method developed can be employed in wireless networks containing mobile entities. As an

entity moves the topology of the network changes reflecting that movement. Each network is

made up of a collection of topologies that cooperate to perform a set of tasks. With mobility the

makeup of the topology changes (nodes or sinks are moved from one topology to another

topology). These changes in topologies can be determined or estimated beforehand and the

network can then be analyzed using each set of topologies. Ideally, only those topologies that

are effected by mobility must be reevaluated. Hence, mobility can be modeled by using a set of

topologies that reflect the movement of entities within the network. Random movement can be

modeled using random groupings of topologies to simulate the movement.

 65

6.0 BASIC COMMUNICATION GRAPH

Interaction among entities in a sensor or RFID network is limited to communication. There are

two types of communication that take place - useful and worthless. Useful communication is

defined as an entity receiving a message (error free or correct) that is addressed to it. Worthless

communication is defined as an entity receiving a message that is not addressed to it or a

message that contains an error. Regardless of whether the communication is useful or worthless,

the presence of a message in the channel will corrupt any message that is simultaneously in the

channel and/or prevent an entity wishing to transmit a message by occupying the channel. Thus,

no distinction need be made between useful and worthless communication, only the fact that a

message that is present is required.

Graphs provide an excellent representation for many problems. Some areas where graphs

are extremely useful are in cell-library binding, and network connectivity and routing [46-48].

Sensor networks can be represented using a graph. In this research, sensor and RFID networks

will be represented by a basic communication graph with the vertices representing entities and

edges representing communication links. The edges are each assigned a weight corresponding to

the distance (or power) required for one of the two vertices connected by the edge to

communicate with the other. Such a graph will be referred to as a basic communication graph.

The probability that a message is present will be determined using a graph describing

communication called a basic communication graph in this research. Each entity making up the

larger topology is represented by a vertex in the graph. Edges in the graph represent two vertices

(entities) that are within direct communication range (point to point) of each other. A graph

example of a partial mesh network containing 9 nodes where each node is within direct

communication range of its neighbors is shown Figure 6.1. The nodes in Figure 6.1 can be

replaced with sinks or topological entities without any modification to the concepts of the basic

communication graph.

 66

Figure 6.1: Example of a basic communication graph of a mesh network.

Each of the corner nodes (nodes 1, 3, 7, 9) is within range of only 3 other nodes, while

the center node (node 5) is within range of 8 other nodes. Clearly, node 5 (center node) will

have more difficulty in obtaining a clear channel to communicate, because any of the other 8

nodes transmitting will prevent node 5 from accessing the channel (medium). As a result, the

probability that node 5 must wait for the communication channel to be free is higher than that for

nodes 1, 3, 7, and 9 because node 5 can communicate with more nodes.

Similarly, the probability that node 5 receives an uncorrupted message is lower than for

the corner nodes since any transmission from one of the other 7 nodes can corrupt the message

being received at node 5 (assuming an Aloha type protocol). For example, if node 1 and node 9

transmit a message to node 5 at the same time both messages will be corrupted when received at

node 5. The number of edges ending at each vertex, or the degree of each vertex, will be used to

derive these probabilities. The probability of interference, F, at a particular entity, v, is found

using the following equation.

()v
F

deg
1

= (6-1)

This procedure is applicable to cases where vertices represent topologies as well. The

degrees will be known for those networks that have a defined topology. With the degree, it is

possible to obtain the probabilities mentioned above for each entity (vertex) in the graph.

 67

7.0 SENSOR AND RFID NETWORK TOPOLOGY IDENTIFICATION

Simulations of large sensor and RFID networks take a long time to run - often many hours or

days. Configuring the simulation environment for a large sensor or RFID network is not a trivial

task. The time required to setup and run one simulation typically prohibits a thorough

exploration of design alternatives during the development of a sensor network. Limited

exploration of design alternatives leads to sub-optimal sensor and RFID networks possibly not

meeting the requirements. The large number of entities that must be configured and simulated

causes a bottleneck for simulation. Reducing the number of entities that must be simulated

speeds up both the configuration and execution time of the simulation allowing exploration of

more design alternatives. However, reducing the number of simulated entities may reduce the

accuracy of the simulation.

A network topology is an association of individual entities in a network. Some examples

of network topologies are crossbar, tree, ring, and star. Topologies are normally defined based

on communication links between entities. In terms of a computer network, such as Ethernet or

token-ring, the topology defines how one computer can communicate with another computer as

opposed to physical topology. Topologies are more important in sensor and RFID networks as

the entities use topological information to communicate but also to work together to perform the

required functions.

All networks, including sensor and RFID networks, can be defined by a topology. Ad-

hoc sensor networks use an algorithm or a set of parameters to setup the network. A topology

can always be overlaid to such an ad-hoc network. The ad-hoc network could also be

programmed with the desired topology and the entities in the network will then organize

themselves into such a topology. Topologies provide a means to describe the operation of a

group of entities without having to simulate the operations of each individual entity contained in

the topology.

 68

At the macro-level, a sensor or RFID network can be described by a topology and a set of

tasks that must be performed. The macro-level topology of a large sensor or RFID network is

composed of a number of entities. Each entity represents a separate portion of the larger sensor

network and has a topology. This decomposition is repeated until the final set of topologies

consists only of base level entities. The decomposition of sensor and RFID networks using

topologies results in a set of topologies that can be expressed using a tree structure. This tree

structure will be referred to as a partition tree. A parent node in the partition tree structure

represents a particular topology containing as members all child nodes of that parent node.

Partitioning of the topologies continues until reaching the leaf nodes, which represent single base

entities. The root of the partition tree represents the macro-level topology description of the

sensor or RFID network, and the lowest level (the leaves) of the tree represents the micro-level

description of the sensor or RFID network. The levels between the root and leaves represent

different levels of abstraction. Topologies provide the linkage between two layers of abstraction.

The top layer contains the basic topology of the entire network. Each lower layer shows

the topology of the sensor or RFID network in greater detail. At the lowest level, the topology of

the sensor or RFID network with each entity in the sensor or RFID network is shown.

Information obtained from an analysis performed at one level of the tree can be propagated one

level immediately above or below the current level, allowing refinement to those levels.

The partition tree of a sensor or RFID network can be constructed in two ways; from the

bottom up, or from the top down. The bottom up construction begins with the base level entities

and groups them into small topologies. This grouping continues until the entire network is

grouped together into a single topology. This method is useful when a topology must be applied

to a group of base level entities that have already been deployed. The top-down method starts

with the sensor or RFID network assigning a macro-level topology. The macro-level topology,

is constructed using topological entities. Each topological entity is then described by a topology

and the process continues until all topologies have been broken down into base level entities.

The top-down method is useful when designing a sensor or RFID network that has not yet been

deployed. Additionally, if the phenomena of interest are identified beforehand the top-down

method provides an efficient way to design the sensor network around monitoring those

phenomena of interest.

 69

The entities contained in each topology at each level cooperate to perform a set of tasks.

A general Markov process that contains chains for all tasks required in a particular sensor or

RFID network topology will be used to describe the energy consumption of each topology. The

general Markov process is customized to a specific behavior and task by adjusting the probability

and reward matrices, or the structure of the Markov process. Focusing on tasks performed by the

topology prevents the Markov process describing that task from growing to an unmanageable

dimension.

Thus, the sensor or RFID network can be divided into smaller components and a Markov

process with a reasonable degree describing each component. Therefore, the degree of any one

Markov process is not too large to prevent performing the matrix operations or solving the set of

linear equations.

7.1 BOTTOM-UP CONSTRUCTION

Constructing the partition tree using the bottom-up method continually groups entities together

forming larger entities until a single entity contains the entire network. This method is best used

when the sensor network has already been deployed and a topology must be fit to the network.

An example sensor network containing 25 base level entities is shown in Figure 7.1. The

arrows connecting the entities denote a communication link between entities. As can be seen

from Figure 7.1, there are four different spatial groupings of base level entities, top, middle right,

bottom right, and bottom left.

These four groups of entities can easily communicate with each other due to the short

distances between them. The communication links between entities are shown in Figure 7.2.

 70

Figure 7.1: Example sensor network consisting of twenty-five entities.

Figure 7.2: Example sensor network at entity level.

 71

These groupings can be formed together into four separate topologies, two mesh

topologies (lower right and lower left groups), a cluster topology (top group), and a star topology

(middle right group). Thus, this sensor network can, at the highest level, be viewed as a mesh

network containing four topologies and is shown in Figure 7.3. Following this same procedure

larger sensor networks can be reduced to a simpler representation.

Figure 7.3: Top layer topology of the example sensor network shown in Figure 7.2.

The example sensor network can now be partitioned into a partition tree. The partition

tree for this example sensor network will be constructed from using the bottom-up construction

method. First, individual entities will be grouped to form small topologies. Next the small

topologies will be combined with other topologies to form large topologies. The large topologies

will be combined to form larger topologies. This process will continue until the sensor network

can be represented by a single topology.

A partition tree will be created using the example sensor network previously described.

Each node in the example sensor network is assigned a unique ID. This is purely for clarity of

the example, as the ID will be used to show where each entity and topology group fit within the

partition tree. The example sensor network with unique IDs is shown in Figure 7.4.

 72

Figure 7.4: Example sensor network with each entity assigned an ID. The example tree structure

will be constructed using this network.

The first step is to identify topology groups within the sensor network structure. Starting

at entity 1 it is clear that entities 1 through 9 form a mesh topology, with entity 1 providing the

link to the rest of the network. Therefore, entities 1 through 9 will be grouped into a mesh

topology. Entities 10 through 13 form a second mesh (or ring) topology and the entity 10 links

that mesh topology to the remainder of the network. Therefore, entities 10 through 13 will be

grouped into a second mesh topology. Entities 14 through 19 form a cluster topology with entity

14 providing links to the rest of the network. Therefore, entities 14 through 19 will be grouped

into a cluster topology. Entities 20 through 26 form a star network with entity 20 providing links

to the remainder of the network. Therefore, entities 20 through 26 will be grouped together in a

star topology.

The second step is to reduce the complexity of the sensor network by replacing each

group of entities included in a particular topology with a single entity representing that topology.

The example sensor network in Figure 7.4 is reduced by replacing the groups of entities with

single topology entities as shown in Figure 7.5. The four entities contained in Figure 7.5

 73

represent a collection of base level entities and reduce the number of entities that require analysis

from twenty-five to four.

Figure 7.5: The reduced example sensor network with topology entities replacing groups of

individual entities shown in Figure 7.4.

At this point, the lowest two layers of the partition tree have already been obtained. The

lowest layer contains only leaves, while the higher levels may contain topologies or leaves. The

leaves represent individual entities. The first two layers of the partition tree are shown in Figure

7.6.

Figure 7.6: Lowest two layers of the partition tree for the example sensor network.

 74

The second step is to combine the topological entities into a larger topology. The

reduced sensor network shown in Figure 7.5 resembles a mesh network. The four topological

entities can be grouped together into a single mesh network. This mesh network topology now

represents the entire sensor network as a single entity indicating that the bottom up method has

finished. The final partition tree of the example sensor network in Figure 7.1 is shown in Figure

7.7.

Figure 7.7: Final partition tree constructed using the bottom-up method of the example sensor

network shown in Figure 7.4.

The above example illustrates how a topology can be enforced on a sensor network. In

the case of sensor networks whose entities are deployed at random locations, a topology can still

be assigned a priori as the entities in the sensor network can automatically organize themselves

to form the required topology.

Combining individual nodes together into topological groups allows the reduction of the

number of Markov processes that must be evaluated to obtain the energy consumption of a

sensor network. However, care must be taken to ensure that the Markov process describing each

topology does not have dimensions so large that the evaluation of the Markov process requires

too much computing time and resources. If too much computing time and resources are

required, at some point the benefit obtained from grouping entities into topologies will be lost as

direct evaluation of the Markov process describing each entity would require no more computing

time and resources. The Markov processes describing each topology will focus on the tasks the

 75

topology must perform. Each task can be ideally represented by a single state, thus keeping the

dimension of the Markov process describing a topology within reason.

The basic communication graph is useful in identifying topologies as needed for the

bottom-up method. The first step in the bottom-up method is to identify the initial topologies

from the large sensor network. Two methods can be used to construct the topologies in the

bottom-up method. The first involves using procedures used for cell-library binding in digital

CAD packages. The second method creates a set of graphs based on the basic communication

graph to identify topologies within the sensor network.

7.1.1 Cell-Library Binding Method

A number of methods exist to map a digital circuit to cells in a particular technology library [46].

The cell library binding process takes such a graph and covers it with logic cells contained in the

library [46]. Cell library binding algorithms generally fall into one of two categories, structural

matching and Boolean matching [46]. In structural matching the cell library binding process, the

circuit design is provided as a graph with vertices representing a logical operation (i.e. NAND,

NOR) with edges indicating the flow of data or signals through the system [46]. Structural

matching searches for matches in the circuit graph to graphs of the individual cells in the cell

library [46]. In Boolean matching, the circuit and library cells are described by Boolean

functions, called patterns, and the circuit is searched for patterns matching those of the library

cells [46].

With respect to this research, the structural matching algorithms are applicable because

sensor and RFID networks can be represented using the basic communication graph. The basic

communication graph of a sensor or RFID network is very similar to the circuit graph that are

inputs into cell library binding tools. Structural matching searches a pattern match in circuit

graph matching a pattern in the cell library [46]. This requires that both the circuit graph and cell

component graphs be translated into comparable structures [46]. Structural matching can be

transformed into a graph isomorphism problem, which is NP-complete, but the tree covering or

matching problem can be solved in linear time [46]. Cell library binding solutions make use of

the linear time algorithms for tree covering. Therefore, if the sensor network graph can be

 76

converted into a tree structure the same linear time cell library binding methods used for logic

synthesis can be used to identify the topologies in the sensor network.

Trees are a special form of graph containing no cycles but the majority of sensor and

RFID networks contain cycles [49, 50]. Constructing a new basic communication graph for a

sensor or RFID network without cycles allows the use of existing solutions from cell library

binding to be used to identify the topologies contained in the sensor network. Sensor and RFID

networks connect to the outside world through type 1 and type 2 sinks. Type 1 and type 2 sinks

are roots of trees within the sensor network. Using the type 1 and type 2 sinks as a starting point,

a spanning tree or minimum spanning tree (MST) can be constructed connecting all entities in

the sensor network to at least one sink entity. A spanning tree is a tree containing all the vertices

in a given graph. A minimum spanning tree is a tree containing all vertices in a given graph

where the sum of the edge weights is the minimum. The graph over which the spanning tree or

minimum spanning tree is constructed can be a sub-graph of a larger graph. Using the minimum

spanning tree focuses attention on the shortest possible links helping to group entities spatially.

The spanning tree requires less computational power to generate, but does not automatically

group entities together spatially. The spatial grouping of entities is related to the accuracy of the

behavior models of the topological entities because entities that are close together tend to work

together because the relative closeness of the entities allows them communicate using a lower

transmission power level than entities that are far away.

Two greedy algorithms commonly used to find a minimum spanning tree of a graph are

Prim’s algorithm and Kruskal’s algorithm [49, 51]. Kruskal’s algorithm starts by creating a tree

containing a only single vertex. Hence, for a graph G containing V vertices and E edges,

Kruskal’s algorithm begins by constructing V trees containing one vertex each. The edges E are

then sorted into a list in increasing order of weight. The first edge in the list (edge with

minimum weight) is removed from the list and added to the minimum spanning tree if and only

if the edge connects two unconnected trees. If the edge connects two already connected trees, it

would create a cycle violating the definition of a tree. The process above is repeated until the

minimum spanning tree is formed. The run-time of Kruskal’s algorithm is O(Elog2(V)), where

E denotes the number of edges in the graph, and V denotes the number of vertices in the graph

[49].

 77

Prim’s algorithm starts at a given vertex and grows the minimum spanning tree by adding

edges to the current minimum spanning tree. During each step, the edge with minimum weight

connecting one of the vertices currently in the minimum spanning tree to a vertex not in the

minimum spanning tree is added to the minimum spanning tree. The run-time of Prim’s

algorithm O(Vlog2(V) + Elog2(V)) = O(Elog2(V)) because E > V is true in the most sensor

networks [49]. The run-time of Prim’s algorithm can be improved if a Fibonacci heap is used to

identify the minimum weight edge that adds another vertex to the minimum spanning tree [49].

A Fibonacci heap is a special kind of heap data structure that allows for updating the key, or

data, for a node within the Fibonacci heap in O(1) or constant time and allows for the node with

the minimum key to be extracted in O(log2(V)) [49]. Thus, Prim’s algorithm implemented to

use a Fibonacci heap has a run-time of O(E + Vlog2(V)) which is better if V << E [49]. Prim’s

algorithm implemented with a Fibonacci heap is most likely better for finding the minimum

spanning tree of the basic communication graph of a sensor or RFID network because the

number of edges is usually much greater than the number of vertices (entities).

The minimum spanning tree of the sensor network may be a single tree or a set of

minimum spanning trees. The latter case is encountered when portions of the sensor or RFID

network are disconnected from each other. Each disconnected portion of the sensor or RFID

network is connected to the outside world through one or more sinks. If a disconnected portion

has no sink, it is isolated from the outside world and can not function as part of the sensor

network and will not have a MST (minimum spanning tree) because all MSTs must be rooted at

a type 1 or a type 2 sink. A simple example of a sensor network with three disconnected portions

is shown in Figure 7.8.

Figure 7.8: Sensor network containing three disconnected portions.

 78

There will be at least one minimum spanning tree for each disconnected portion. Hence,

the maximum number of spanning trees is equal to the total number of type 1 and type 2 sinks in

the sensor network, and the minimum number of spanning trees is equal to the number of

disconnected portions of the sensor network.

In some sensor and RFID networks, a non-sink entity may not have path to a sink entity.

Such an entity is referred to as an isolated entity. In this case that entity cannot be covered by

any spanning tree rooted at a sink entity. Therefore, in this case a spanning tree must be

computed for every sink in the network before realizing that no path exists from a sink to the

isolated entity. This results in the worst possible runtime for the spanning tree algorithm. The

fact that an isolated entity is not included in any spanning tree is acceptable because there is no

condition under which isolated entities could participate in the sensor or RFID network.

Using one of the methods above, a set of minimum spanning trees of the network can be

found, and then cell library binding methods can then be used on each tree to identify the

topology.

7.1.2 Distance Graph Method

Sensor and RFID network topologies normally consist of a set of entities within a relatively close

distance to each other. Recall that the power required to communicate over a given distance is

proportional to the distance because the received power at an antenna in free space is determined

by the following equation.

() απ
λ

d
P

P t
r 2

2

4
= (7-1)

Where λ is the wavelength of the carrier frequency, d is the distance between the

transmitter and the receiver, α is the power that the distance, d, is raised to, Pt is the transmit

power, and Pr is the received power. The free space model uses 2 for α, while in a real world

environment α will be larger due to interference. Thus, the received power decreases quickly as

distance increases.

 79

Hence, by grouping entities close together into topologies, the energy consumed by intra-

topology communication is kept small. In addition, the duties of the sensor and RFID network

over a small area are likely to be similar. Hence, the Markov process describing the topology

more accurately describes the functions of the individual entities contained in the topology.

The basic communication graph, G, can be used to help identify topologies contained in

the sensor or RFID network. The edges of the basic communication graph have weights

assigned to them that correspond to the distance between the two vertices at the two ends of the

edge. The identification of topologies will be demonstrated to illustrate the construction of the

partition tree from the bottom-up. The basic communication graph of the example sensor

network with edge weights denoting the distance between entities in meters is shown in Figure

7.9.

Figure 7.9: Basic communication graph, G, of the example sensor network. The numbers next to

each edge are the edge weight representing the distance between the two end points in meters.

An arbitrary measure of distance, the distance unit, can be defined over the sensor

network. One distance unit is defined as the minimum value of all edge weights, or the distance

between the two closest base entities. The minimum edge weight in Figure 7.9 is 2, making 1

 80

distance unit equal to 2 meters. Normalizing the edge weights simplifies the analysis. With the

definition of a single distance unit, a new graph, the distance unit graph, GD, can be created that

is identical in structure to G with the exception that the edge weights are now given in terms of

distance units, rather than pure distance (meters). The distance unit graph, GD, created by

dividing all edge weights in Figure 7.9 by 2 converting meters into distance units. The distances

do not need to be normalized but normalizing the distances makes the analysis easier. The

resulting distance unit graph GD, is shown in Figure 7.10.

Figure 7.10: The distance unit graph, GD, created from the graph G in Figure 7.9.

A set of graphs can be created from GD with restrictions based on the maximum edge

weight (maximum distance between two entities). Each graph, GDi contains all vertices in GD

but only those edges with weight less than Di, where Di is in units of distance units. The set of

graphs GDi relate spatial information about the communication structure of the sensor or RFID

network. Each graph in GDi represents the sensor or RFID network with communication links of

no greater length than Di. Thus, the maximum weight of any edge in GDi less than or equal to the

number of edges in GDi+1. Similarly, the number of edges in GDi is always less than or equal to

the number of edges in GDi+1. Fewer computations are required to search GDi to identify

 81

topologies than to search GDi+1 making it desirable to try to cover the sensor or RFID network

using the lowest possible distance graph. Defining GDi as being the distance graph containing all

edges of GD with edge weight less than or equal to i, where i = 1, 2, 3, … The graphs GD1

through GD3 are shown in Figure 7.11 through Figure 7.13.

Figure 7.11: Distance graph GD1 showing only communication links of 1 distance unit or less.

Starting with GD1, shown in Figure 7.11, it is easy to match the mesh topology pattern to

the mesh topology consisting of four entities in the lower right corner. The larger mesh topology

in the lower left corner requires matching of a larger mesh topology pattern. The star topology in

the upper right corner can be matched to a star topology pattern containing a central entity

connected to five other entities. The sixth entity, the unconnected type 1 sink, is not covered by

the star topology or any other topology. The cluster topology in the upper left corner is

incomplete as two nodes are not directly connected together. A star topology could be used to

cover this topology if the links connecting the nodes are ignored. In this example it is assumed

that the topology pattern must match exactly without ignoring any edges, however this is not

necessary. Allowing edges to be ignored when identifying topologies may result in the

topological covering being identified more quickly, but at the cost of accuracy. Hence, the graph

 82

GD1 cannot be covered by base topologies, and the next distance graph in the set, GD2, shown in

Figure 7.12 must be employed.

Figure 7.12: Distance graph GD2 showing only communication links of 2 distance units or less.

The final communication link of the star topology has been added in GD2 and thus the star

topology in the upper right corner can be identified. If edges can be ignored then the cluster

topology in the upper left corner could be covered with a star topology and all entities would be

covered by base topologies indicating the procedure is complete. However, because in this

example edges are not ignored, the cluster topology in the upper left corner is still unidentified so

GD3, shown in Figure 7.13 must be employed. Ignoring edges may decrease the accuracy of the

assigned topology.

The final edge, linking the two nodes in the cluster topology in the upper left corner is

included in GD3. Hence, the cluster topology in the upper left can now be identified and all

entities are covered by base topologies so we are done. The entities in GD3 can be replaced with

the topological entities that were identified to cover them to create a new basic communication

graph, G’. This new graph G’ represents the sensor network at the first level of topological

 83

abstraction and is shown in Figure 7.14. The edge weights in the basic communication graph G’

in Figure 7.14 represent distance between topological entities in meters.

Figure 7.13: Distance graph GD3 showing only communication links of 3 distance units or less.

Figure 7.14: Basic communication graph, G’, showing the example sensor network at the first level

of topological abstraction.

 84

To construct the distance graph, GD’, from G’, one distance unit is defined as the

minimum edge weight of 3.4 meters and the edge weights are converted from meters to distance

units. The graph GD’ is shown in Figure 7.15.

Figure 7.15: Distance unit graph, GD’ with one distance unit equal to 3.4 meters (or feet).

The distance graph GD1 is created from GD’ and is shown in Figure 7.16. The two

topological entities on the left side are not unconnected making it impossible to cover the graph

in Figure 7.16 with base topologies. Therefore, the graph GD2’ shown in Figure 7.17 must be

employed.

With the distance unit graph, GD2’ it is possible to cover all four topological entities using

the mesh topology. After applying the mesh topology to graph GD2’, a new basic communication

graph, G’’ can be created by representing the four topological entities with a single mesh

topological entity. Because the basic communication graph, G’’, contains only one entity no

further reduction is possible and the bottom-up construction is complete.

 85

Figure 7.16: Distance graph GD1’.

Figure 7.17: Distance graph GD2’.

Searching for topologies, starting with GD1 and only searching GD2, GD3, …, if the

smaller graph cannot be covered, yields topologies that are spatially close together. The spatial

closeness of the entities in each topology produces a Markov process of the topology that more

accurately represents the energy consumption of the individual entities contained within the

topology, because entities that are closer together tend to work together.

 86

7.2 TOP-DOWN CONSTRUCTION

The process described above can be performed in top-down order. Using the above example, the

process to decompose the sensor network using the top-down methodology will be presented.

The first step with the top-down methodology is to identify phenomena of interest the sensor

network will monitor. Take as an example a small chemical production plant, the footprint of

which is shown in Figure 7.18.

In this example, the sensor network must monitor the concentration of ethylene oxide

within each of the four buildings and report that concentration to the control building. The

phenomenon that will be monitored in this example is the indoor concentration of ethylene

oxide.

With this information it is now possible to identify the locations that must be covered by

the sensor network. The interior of each of the four buildings must be monitored using a sensor

network and each network must be able to communicate with the control building. Based on the

building shapes, a mesh network will provide good coverage in the two square shaped buildings,

and either a cluster or a star network will provide good coverage in the circular buildings. The

top-level topology showing the high level entities and high level communication links is shown

in Figure 7.19.

Figure 7.18: Footprint of simple chemical production plant consisting of four buildings.

 87

Figure 7.19: Chemical plant with top-level sensor network topology shown.

Each building now has a sensor network topology defined to monitor for ethylene oxide.

Now each of the four top-level topologies can be again expanded to a more detailed level and

studied in isolation from the other three topologies. Expanding the four topologies to the next

level of detail results the sensor network described at the base entity level and this is shown in

Figure 7.20.

With the detail to the base entity level, it is now possible to investigate the energy

consumption of individual entities in the sensor network. The partition tree is built from the top-

down when using the top-down methodology shown in Figure 7.21 and is identical that built

using the bottom-up method shown in Figure 7.7.

The top-down methodology provides for a better designed sensor network as the

phenomena to be monitored are identified and located first. The sensor network is then designed

around the phenomena to provide the needed coverage. Using the top-down method it becomes

possible to deploy topologies of entities to monitor the phenomena of interest rather than to try to

fit topologies to a set of base networks to monitor the phenomena. Further, in the case of a

sensor network with mobile entities the positioning of those entities and their future movements

can easily be determined and anticipated based on the desired topology.

 88

Figure 7.20: Sensor network for the chemical plant to monitor ethylene oxide at the basic entity level

of detail.

Figure 7.21: Final partition tree constructed using the top-down method of the example sensor

network shown in Figure 7.4.

 89

8.0 BASE SENSOR AND RFID NETWORK TOPOLOGIES

In the previous section, topologies were used to group together base entities responsible for

performing similar tasks. Grouping the base entities into topological entities reduced the number

of entities that need to be simulated resulting in a speedup in evaluation of the energy consumed

by the network. This process can be continued and topological entities can themselves be

grouped together into topologies. At each stage in this process the number of entities in the

simulation is reduced. Sensor and RFID networks are composed of a set of base topologies that

perform a similar role as the base entities. Existing sensor or RFID networks can be decomposed

into collections of base topologies and new sensor or RFID networks can be built using the base

topologies. The individual entities in a base topology could be base entities (nodes or sinks) or

topologies containing base and/or topological entities.

Graph theory provides a convenient means to determine the resistance to a breakdown in

the communication with a network or topology due to link or entity failures. Unattended sensor

networks will most likely experience link or entity failures. Hence, sensor and RFID networks

must have resistance to link and entity failures. As shown, each topology can be represented by

a graph with the edges being the communication links and the vertices being the entities that

make up the topology. The connectivity of a graph is a measure of how many edges or vertices

need to be removed to disconnect the graph. In terms of a sensor or RFID network topology,

connectivity measures how many communication link or entity failures a topology can sustain

before becoming disconnected and failing. The larger the connectivity of a topology, the more

failures that must occur before that topology fails.

 90

8.1 MESH TOPOLOGY

There are many different variations of the mesh topology. A fully connected mesh is a topology

in which each node is connected to every other node. While the fully connected mesh topology

allows for direct communication between any two entities, the number of communication links

and, hence, cost grows astronomically. The very large number of links required to implement a

fully connected mesh topology limits its use to smaller networks. The ZigBee protocol employs

a fully connected mesh, where each ZigBee entity can communicate with any other ZigBee

entity within range to increase resistance to link or entity failures [52]. A crossbar mesh or

Manhattan topology is another variety of the general mesh topology. The crossbar or Manhattan

mesh is laid out as a 2D-grid with each entity communicating with another entity to the north,

south, east, and west. In the crossbar mesh topology, each node communicates with at most four

other nodes. This type of topology is common in parallel computing and provides a number of

independent routes from source to destination [53]. An example of a 3x3 crossbar mesh

topology is shown in Figure 8.1.

Figure 8.1: A 3x3 mesh topology.

In the crossbar mesh, there are a number of completely independent paths sharing no

common edges between two entities in a mesh topology. A fully connected mesh contains the

most independent paths between two entities. For example, in the crossbar mesh topology in

Figure 8.1 there are two completely independent paths between entities 7 and 3;

 91

 Path 1: 7,8,9,6,3

 Path 2: 7,4,1,2,3

For the crossbar mesh network topology in Figure 8.1 to become disconnected at least

two links would need to fail (i.e. 7-4, and 7-8). Thus, the mesh topology provides a strong

resilience in the face a link failures. The presence of multiple paths between two entities enables

information to travel through an alternate route if the primary route becomes disconnected. This

is important in a sensor network because as entities fail communication between the remaining

entities could be adversely affected if alternate paths are not present in the network. As sensor

networks must be resilient against failures of a few entities the mesh topologies are popular with

sensor networks.

8.2 STAR TOPOLOGY

In a star topology, there is one link between the central entity and all other entities in the star

network. Figure 8.2 shows simple example of the star topology. Thus, in a star topology

containing n entities, there are (n-1) links.

Figure 8.2: General depiction of the star topology, all entities in the star topology are connected to

the central entity.

 92

The primary drawback of the star topology is the absence of redundant paths to the

central entity. Thus, the star topology has a connectivity of 1. If any link in the star topology

fails at least one entity will be isolated from the central entity. A benefit of the star topology is

that if any link fails only one entity is disconnected from the star. In other topologies, the failure

of a single link could result in the disconnection of multiple entities that were using the failed

link to communicate with the central entity. Further, if the central entity is removed, then all

remaining entities in the star topology are isolated from the rest of the network.

The star topology has the benefit of easily scheduling communications between the

central entity and other entities. The central entity knows exactly how many entities are

connected to it and can assign each entity a timeslot or CDMA code to use to transmit their data.

This results in a negligible number of message collisions and increased throughput, thus

increasing the efficiency of the topology in terms of throughput and number of message

collisions. Another advantage of the star topology is that the central entity can more efficiently

divide the workload for the required tasks among the entities it oversees. This should result in an

increase in the lifetime of the topology. The star topology is one of the topologies available in a

ZigBee network [54].

In a sensor or RFID network, the central entity is assumed to connect the star topology it

exists in to the rest of the network or to the outside world. The central entity must transmit the

data collected from the other members of the star topology to the outside world and must

distribute commands and requests received from the outside world to the other members of the

star topology. Therefore, the central entity is either a type 1 or a type 2 sink. The other entities

can be either nodes or type 1 sinks acting like nodes. Star topologies are a good mechanism for

use in networks that employ data fusion because the central entity can fuse the data before

sending the data to the rest of the network or the outside world.

8.3 CLUSTER TOPOLOGY

The cluster topology is related to the star topology. The network generated using only the cluster

topology contains a set of groups called clusters. Each cluster contains a number of entities

within the cluster. Like the star topology, each cluster has a controlling entity. The controlling

 93

entity is responsible for directing the operation of the cluster and for communicating with the

larger network outside of the cluster. In the cluster topology, the entity performing the

controlling entity role can change over time. The ability to change which entity is acting as the

controlling entity provides added functional resilience to entity failures. Within the cluster,

individual members communicate directly with each other in addition to the controlling entity.

Figure 8.3 shows an example of a single cluster in a larger cluster topology.

Figure 8.3: Example of a single cluster within a cluster topology.

The cluster in Figure 8.3 contains seven entities, any of which could perform the

controlling entity role for the cluster. In a star topology, the central entity controls the rest of the

star and performs the energy intensive tasks long-haul communication. Once the central entity in

a star fails, the data from the other members of the star are unable to communicate their results to

the rest of the network. In the star topology, none of the other members can take over the

responsibilities of the central entity. The ability to pass the role of controlling entity between the

members of the cluster enables the cluster as a whole to function longer than a comparable star

topology because multiple entities can be the controlling entity.

The cluster topology has a greater connectivity than the star topology and provides a

greater resilience to a communications link failure than the star topology. In the star topology,

each time a link fails, one entity is disconnected from the central entity. However, in the cluster

topology, if a link fails between two entities there is the chance that the traffic can be rerouted

through the other links.

 94

8.4 TREE TOPOLOGY

A tree topology organizes the entities into a structure resembling the branches of a tree. A tree is

simply a graph containing no cycles. Some examples of tree topologies are a binary tree, and an

n-ary tree. Single paths are common in sensor or RFID networks, but they fall under the

category of a tree topology because all paths eventually meet at a common node - usually a sink.

Thus, a sensor or RFID network consisting of numerous single paths from nodes to sinks is

really a network of tree topologies with each tree rooted at a sink.

The tree topology is useful in cases where data traveling to the sink can be fused or

processed at each hop on the message path. As previously described, data fusion can greatly

reduce the amount of information that must be transmitted. Reducing the amount of information

that must be transmitted provides a potential energy savings.

Data fusion performs more computational operations on the data, but in exchange, the

amount of data transmitted by each entity is reduced. The tree topology is ideally suited to data

fusion. At each level, the vertices of the tree wait until receiving data from all children. The

parent vertex then fuses their data and their children’s data. The fused data is then sent to the

higher-level parent entity. Compression and averaging of data are just two examples of data

fusion methods.

A simple example of data fusion using a binary tree structure is one in which parent

nodes at each level average the temperature readings reported by their children. A simple

network of fifteen temperature sensors is shown in Figure 8.4.

Each vertex in the binary tree represents a single sensor and with data flowing in the

direction of the arrow. The number inside each vertex is the temperature reading taken at that

particular sensor. The number next to the edges is the temperature reading that each vertex sends

to its parent. This temperature is the average of the temperatures received from the children and

the parent’s temperature reading. Because the first level all are leaf nodes, the average sent to

each parent is identical to the temperature reading.

Once each parent has received temperature messages from both children, the average

temperature to send to the next highest level can be computed. This process is shown in Figure

8.5.

 95

Figure 8.4: Data fusion in a network of temperature sensors arranged in a binary tree topology. All

sensor nodes have taken readings and the lowest level (leaf nodes) have transmitted their readings to the next

highest level.

Figure 8.5: The data fusion process started in Figure 8.4 has progressed to the next higher level.

The process continues with the next highest level and is shown in Figure 8.6. At this

point only the sensor node that is the root of the tree has yet to contribute data to the average

temperature.

Once the sensor node at the root of the tree receives information from the two children, it

can add the final temperature reading to the average. The average temperature data is then sent

to the next level, which is assumed in this case to be a sink. However, the tree structure could

 96

continue, and the process for the larger tree structure is identical to the process for the smaller

tree structure shown here. The completed data fusion process is shown in Figure 8.7.

Figure 8.6: The data fusion process has processed from Figure 8.5 with only the sensor node that is

the root of the tree remaining.

Figure 8.7: The data fusion process is complete and the sensor node at the root of the tree has sent

the data to the sink (or next highest level).

In the above example, only a single temperature was sent over each link. Without data

fusion each vertex must transmits its own temperature reading as well as the temperature

 97

readings of all descendents. The higher-level vertices must transmit increasingly larger numbers

of readings. Thus, data fusion provides substantial savings in the amount of messages sent for a

tree consisting of many levels. Without data fusion, a total of 49 messages are sent as compared

to only 15 messages when data fusion is employed.

8.5 SINGLE LINK TOPOLOGY

The single link topology is the basis topology from which all other topologies can be

constructed. The single link has a connectivity of 1 and is extremely vulnerable to failure in the

face of a single link or entity failure. This vulnerability to failure is magnified if the single link

topology is used to connect two larger topologies (i.e. to connect two 3x3 mesh topologies). The

single link topology is included for completeness and to allow existing networks to be

completely covered by a set of topologies. Usually the single link can be absorbed into a tree

rooted at a sink entity. In some cases, only a few single links exist in a sensor or RFID network

and the single link topology enables those links to be covered without reconstructing another

topology. The communication link between the two entities can be unidirectional or

bidirectional, and an example of a single link topology is shown in Figure 8.8.

Figure 8.8: Example single link topology.

The single link topology is not meant to be used on a large scale, because it does not

provide much reduction in the number of entities in the system. The single link topology should

only be employed when absolutely necessary to cover an existing sensor or RFID network with a

topological entities when using the bottom up method. When the designer is using the top-down

design methodology, the single link topology should never be used.

 98

9.0 TOPOLOGICAL ENTITIES GENERATION ALGORITHM

The method developed in this work uses topological entities to group multiple entities into a

single entity with the goal of reducing the number of simulation entities present in the network.

The top-down and bottom-up construction methods can then be used to tile the network with the

topological entities, but those entities must first be defined. The following ten-step algorithm

can be used to define the topological entities present in a given sensor or RFID network.

First, the base level entities making up the network must be identified. Second, the tasks

that each base level entity must perform must be identified. These tasks will be used to construct

the Markov processes describing each type of base level entity and to assist in identifying

interactions with other entities. Third, a Markov process describing each base level entity based

on the tasks it performs must be developed. Expressions for the probability and reward matrices

must be obtained. These expressions define the parameters that describe each base level entity.

Fourth, using the tasks the base level entities perform, the interactions between the base level

entities can be determined. During this step, a basic communication graph can be developed to

assist the designer, but that is not necessary. Fifth, using the interactions between the base level

entities and the tasks the base level entities must work together to perform, the first level

topological entities can be defined. The first level topological entities group the base level

entities together based on interactions between the base level entities. Several different types of

first level topologies are possible within the same network because portions of the network may

have different responsibilities.

With the first level topologies, the network can now be tiled using these topologies. In

the top-down approach, the network is built from the top down starting with larger topological

entities and working down using increasingly smaller topological entities, until at the final step

base level entities are used. In the bottom-up approach the network is already deployed, so the

basic communication graph must be constructed and searched for topological groups. With the

 99

fundamental topological entities identified existing algorithms can be used to search the basic

communication graph to identify these topological entities. These algorithms form the basis for

CAD tools for integrated circuit design [46]. Once a topological entity is identified it is replaced

with the topological entity. This replacement reduces the order (number of entities) of the basic

communication graph. Larger topological entities can be constructed using the first level

topological entities. Again, in the bottom up approach the larger topological entities can be

identified and replaced with a single topological entity by employing existing algorithms.

The following steps describe how to identify larger topological entities constructed from

smaller topological entities. Sixth, the tasks that each type of topological entity performs must

be identified. These tasks can be derived from the tasks of the entities within the topological

entity and the interactions between entities within the topology. Seventh, using the tasks

identified in step six, the Markov process and expressions from the probability and rewards

matrices can be developed. To obtain expressions for the rewards matrix the task can be broken

down into a sequence of subtasks that the entities within the topology must perform to complete

the larger topological entity task. These expressions will define the parameters that describe the

operation and energy consumption of the topological entity. Eighth, the interactions between

topological entities must be identified. Again, constructing a basic communication graph of the

topological entities is helpful but not necessary. These interactions will be used to define the

next higher level topological entities. The network can now be tiled with these topological

entities.

Ninth, the next higher level topological entities are identified based on the interactions

between the topological entities at the current level. Tenth, by repeating steps six through nine,

the topological entities continue to grow in size and fewer topological entities are required to

cover the network after each pass through steps six through nine. In the ideal case, the

topological entity will grow large enough to cover the network using a single topological entity.

The examples in Sections 10 and 11 will illustrate the use of the method developed in this work.

The algorithm for the procedure described above is given below.

Step 1: Identify the base level entities that make up the network

Step 2: Identify the tasks each base level entity must perform

 100

Step 3: Develop a Markov process and expressions for the probability and rewards

matrices for each base level entity using the tasks from Step 2

Step 4: Identify the interaction between base level entities using the tasks the base level

entities perform

Step 5: Identify the first level topological entities from the interactions and tasks

identified in Step 4 and Step 2

Step 6: Identify the tasks each topological entity must perform

Step 7: Develop Markov processes and expressions for the probability and rewards

matrices for each type of topological entity

Step 8: Identify the interactions between topological entities using information from Step

6

Step 9: Identify the next higher level topological entities based on information from Step

8 and Step 6 – If new topological entities are identified Repeat Steps 6 through 9 for those

topological entities

Step 10: If number of topological entities to tile the network is too large GOTO step 6,

OTHERWISE Stop

 101

10.0 ISO 18000-7 RFID NETWORK EXAMPLE

Current commercially available RFID tags generally fall into one of two categories, passive tags

or active tags. Passive tags have no on-board power source and are powered by the reader’s

interrogation signal. Passive tags communicate using backscatter and generally contain only a

unique identifier and a few bytes of additional information. Active tags have an on-board power

source, usually a battery, which powers a processor, an active receiver, and an active transmitter.

Active tags may even include sensors or other similar devices and can communicate over greater

distances than passive tags [55-58]. The lifetime of an active tag is limited to the lifetime of the

active tag’s on-board power supply (battery). Conserving energy is critical for active tags

because a reduction in energy consumption yields an increase in lifetime.

An International Organization for Standardization (ISO) has produced the standard ISO

18000-7, describing the physical, MAC, and communication protocol for active RFID tags

communicating at 433 MHz. An ISO 18000-7 network consists of two types of entities, RFID

tags, and ISO 18000-7 readers. In the ISO 18000-7 standard, communication is always initiated

by the reader. Tags send a reply only in response to a reader’s inquiry. Communication only

occurs between tags and readers because there is no tag to tag communication. Tags receiving

messages from other tags simply discard those messages.

The ISO 18000-7 standard defines two types of communication. The first type is

communication between a reader and tag(s). The tags communicate only with readers and only

in response to a reader’s inquiry and the reader always initiates the communication (reader talks

first). The second type of communication is reader to reader and this may be achieved using an

external network such as an internal LAN to link the readers. ISO 18000-7 assigns each reader a

unique ID, which the tag includes in the reply to that reader’s inquiry [59]. It is possible that the

reader to which the reply is addressed did not receive that reply, but that another reader did.

Using reader-to-reader communication, the reader receiving the reply can forward that reply to

 102

the reader specified in the reader ID field of the reply. The reader-to-reader communication

increases the reply success rate of the system. The readers are assumed to be connected to the

facility’s power supply, and their energy consumption is not an issue.

Two types of commands are defined by ISO 18000-7, broadcast and point-to-point. The

type of command is distinguished by a flag bit in the inquiry sent from the reader [59].

Broadcast commands are not addressed to a particular tag, and any tag receiving a broadcast

command from a reader will send a reply. Three commands are defined as broadcast commands;

1) collect the tag ID; 2) collect the tag ID with some data; and 3) collect the tag ID and the user

ID [59]. The remaining eleven commands are point-to-point commands. Point-to-point

commands contain a tag and group ID in the command packet, and only the tag with a matching

tag or group ID will respond to the command [59]. Point-to-point commands are primarily used

to control the tag (i.e. set tag password, lock tag, unlock tag, put tag to sleep, etc.) [59].

Battery powered devices are often put to sleep to conserve energy and extend lifetime.

The ISO 18000-7 standard allows for tags to go to sleep on their own or be put to sleep by a

reader and defines a wake-up tone, a 30 kHz square wave, to wake-up all tags receiving this tone

[59]. The wake-up tone is used to wake tags up from the sleep state so they can receive the

message. The sleep state allows the tags to power down to conserve energy during dormant

periods.

An ISO 18000-7 network falls under the respond to commands category of sensor and

RFID networks. Hence, the network is constructed from a number of tree or star topologies with

a reader being the central entity or the root in each case. It is possible for a tag to be within

communication range of more than one reader and belong to multiple tree or star topologies. In

this case, the tag would be a member of the star or tree topology for each reader such that the tag

in range.

Markov processes will first be developed to model the energy consumption of a generic

ISO 18000-7 active RFID tag and for a generic ISO 18000-7 reader. The Markov processes will

be customized to each tag and reader (number of each type of command sent/received will be

specified) and the energy consumption of the network will be computed by evaluating the

Markov process for each entity (each tag or reader). The energy consumption for each entity

will be obtained by evaluating the Markov process for that entity. Once the Markov processes

for all base entities have been evaluated the energy consumption of the entire ISO 18000-7

 103

network is simply the sum of the energy consumption found for each entity. The time required

to evaluate the network and determine the energy consumption will be recorded. The time

required to evaluate each model will be used to determine how well the method scales with

respect to the size of the network being analyzed.

The entities in the example network will then be grouped into topologies. The energy

consumption of the network will then be found using topological entities and compared to the

energy consumption found using the base entities. Each topology will consist of a single reader

and all tags that are within range of that reader. Using this topology will reduce the number of

simulation entities from the number of tags plus the number of readers to simply the number of

readers. In the majority of RFID systems, the number of tags far exceeds the number of readers.

A Markov process will be developed to represent the energy consumption of this topology. The

Markov processes for the individual tree (or star) topologies will model the tasks that the

topology performs. Again, the energy consumption of the network will be determined by

evaluating the Markov process associated with each topology and then summing the results. The

time required to determine the energy consumption of the network will also be recorded.

Next, the topological entities will be grouped into a single topological entity, and the

energy consumption of the network found using this single topological entity. The energy

consumption of the network will be found using this topology and the energy consumption

obtained using the base entities and smaller topology will be compared. In addition, the time

required to evaluate the network using the base entities and the topological entities will be

compared to determine the speedup provided by the topological entities.

10.1 EXAMPLE ISO 18000-7 NETWORK

Conceptually, this network contains three levels. The first level is the individual tags, the second

level is the interaction of each reader with all tags within the reader’s range, and the third level is

the reader-to-reader communication. The first level contains the largest number of entities,

having an entity for each tag and reader requiring the longest execution time to evaluate.

Topological entities are introduced at the second level in order to reduce the number of

simulation entities. At the second level, the readers and tags are grouped together to form either

 104

a star topology or a tree topology with the reader playing the role of the central entity in the star

topology or the root in the tree topology. The tree topology can be used with the restriction that

it contains a single root, the reader, with all tags within range of the reader (root) are children of

the root. Grouping a reader and associated tags together reduces the number of simulation

entities in the system providing a speedup in evaluation of energy consumption. A simple

example of the star and tree topologies for an ISO 18000-7 network is shown in Figure 10.1.

Figure 10.1: Topologies used to group a single ISO 18000-7 reader and associated tags together.

The cluster, and mesh topologies cannot be used as topologies at the second level because

the reader and tag communication is point-to-point and there is no tag-to-tag communication.

The cluster and the mesh topologies imply the possibility of tag-to-tag communication to relay

messages to and from the reader. The single link topology is used only when a reader is within

range of at most one tag, in all other cases the tree or the star topology can be applied to reduce

the number of simulation entities. The single link topology will not be used in this example

because everywhere where the single link topology could be employed a star or tree topology

could also be employed. The star or tree topologies are the better choice because they group

more entities together than the single link topology.

It is possible that a tag is within range of more than one reader. A tag that is within range

of more than one reader will be duplicated in the topology based around each reader with which

it can communicate.

 105

The third level is the highest level of abstraction looking only at the readers in the

network and has the fewest number of entities. At this level, every entity can represent multiple

readers and all tags within those readers’ range. Readers may communicate with other readers so

all topologies are possible for the reader-only portion of the network.

10.2 ANALYSIS OF ISO 18000-7 NETWORK

The analysis of the energy consumption of the ISO 18000-7 example case is presented in this

section. The subsections in this section cover the steps in the algorithm to identify the

topological entities for the example network. The energy consumption found for each of the

three levels, base level entities, single reader and associated tags topological entities, and multi-

reader topological entity are included in the relevant subsections.

10.2.1 Step 1: Identification of the Base Entities

The first step, step 1, of the algorithm is to identify the base entities making up the network. The

base entities in the ISO 18000-7 example network follow from the ISO 18000-7 specification. In

an ISO 18000-7 network two types of base level entities exist, tags and readers. The tags

provide information to the readers. The readers link the network with the outside world.

10.2.2 Step 2: Identification of Tasks of the Base Level Entities

The tag must perform only one task, reply to received commands. The reader must perform five

tasks. First, the reader must send inquiries to the tags to solicit information. Second, the reader

must listen for tag replies. Third, the reader may need to communicate with another reader,

either to forward a reply or receive a reply forwarded from another reader. Fourth, the reader

must communicate with the outside world (internet or company’s private LAN) to receive

instructions and transfer data received to the outside world. Fifth, the reader must process the

reply.

 106

A Markov process describing the energy consumption of an ISO 18000-7 RFID tag can

be developed based on the single task the tag performs. The reader may send any of eighteen

possible commands to the tag. These commands are listed and given abbreviations in Table

10.1.

Table 10.1: ISO 18000-7 commands and abbreviations.

Command Abbreviation Command Abbreviation

Collection Co Read Owner ID OIDR

Collection with Data CD Write Owner ID OIDW

Collection with User ID CID Firmware Revision FR

Sleep SL Model Number MN

Status ST Read Memory RM

Read User ID Length IDLR Write Memory WM

Write User ID Length IDLW Set Password SP

Read User ID UIDR Read Set Password

Protect

SPP

Write User ID UIDW Unlock UNL

The ISO 18000-7 used in this example consists of NTag tags and NReader readers. The

values of these parameters are given in Table 10.2.

Table 10.2: Number of entities in example ISO 18000-7 network.

NTag 20

NReader 4

 107

The example network consists of twenty RFID tags and four RFID readers. All readers

are identical to each other and all tags are identical to each other. Each reader can communicate

with any tag within its range. A tag can communicate with (reply to) any reader that is within its

communication range. Each tag is assigned a unique ID number for discussion and a ‘T’ to

indicate it is a tag prefixes this ID number. Similarly, readers are assigned a unique ID number

starting with a ‘R’ followed by the unique ID number. The example network is shown below in

Figure 10.2 where the grey circles represent readers and the white circles represent tags. Each

reader has a communication range denoted by a dotted circle in Figure 10.2 and the reader can

communicate with any tag within the circle, as shown in the basic communication graph of the

example ISO 18000-7 network in Figure 10.3.

Each reader sends out a number of inquiries each day. The number of each type of

inquiry sent by each of the four readers per day is listed in Table 10.3.

Figure 10.2: Example ISO 18000-7 network.

 108

Figure 10.3: Basic communication graph of the ISO 18000-7 example network.

Table 10.3: Number of each inquiry sent by each of the readers in the ISO 18000-7 example.

Inquiry R1 R2 R3 R4
Co 23 17 15 25
CD 8 9 14 20
CID 6 8 12 24
SL 12 15 17 9
ST 10 13 8 15
IDLR 0 0 0 0
IDLW 0 0 0 0
UIDR 1 1 3 0
UIDW 0 0 0 0
OIDR 1 4 6 3
OIDW 0 0 0 0
FR 1 1 3 1
MN 1 4 2 0
RM 4 6 9 1
WM 1 3 4 5
SP 0 0 0 0
SPP 0 0 0 0
UNL 0 0 0 0

 109

10.2.3 Step 3: Development of Markov Process and Probability and Reward Matrices for

the Base Level Entities

The tasks that the tag must perform (identified in Section 10.2.2) form the basis for constructing

the Markov processes for the tag and reader. The Markov processes and expressions for the

probability and reward matrices for the base level entities (tag and reader) are determined in step

3 of the algorithm. The development of the Markov process and expressions for the probability

and rewards matrices for the ISO 18000-7 tag is presented in Section 10.2.4. The development

of the Markov process and expressions for the probability and rewards matrices for the ISO

18000-7 reader is presented in Section 10.2.5. The energy consumption for a period of 1 day for

each of the base level entities is presented at the end of each of the following two subsections.

The energy consumption is compared against the energy consumption found using the

topological entities presented in later sections.

10.2.4 Step 3 for the Single ISO 18000-7 Tag

The tasks that the tag must perform (identified in Section 10.2.2) form the basis for constructing

the Markov processes for the tag, and are repeated for clarity. The tag must perform only one

task, reply to received commands. This task can be broken into five steps. First, the tag enters

the sleep state remaining dormant between inquiries to conserve energy, and the tag must listen

for the wake-up tone. Ideally the tag will spend the majority of it’s lifetime in the sleep state and

in this example, the tags will be put to sleep after the reader has completed the inquiry, and the

reader will transmit the wake-up tone before issuing an inquiry. Second, the tag must listen for

messages after being wakened by the wake-up tone. Third, the tag must receive, decode, and

process received messages. Manchester encoding is used in ISO 18000-7 networks to provide a

communications channel with less errors [59]. An active receiver converts the RF signal to a

digital signal. Fourth, the tag must decode the Manchester encoded message, verifying that the

message is addressed to itself and if so, generate the appropriate reply. The fifth task that the tag

must perform is to transmit the reply to the reader. The data portion of the reply must be

encoded using Manchester encoding. An active transmitter will convert the reply from a digital

 110

signal into an RF signal. The Markov process for the ISO 18000-7 RFID tag is illustrated in

Figure 10.4.

Figure 10.4: Markov process describing the energy consumption of an ISO 18000-7 RFID tag based

on the tasks performed.

It is assumed that the tags will immediately go back to sleep after sending the reply. A

probability and a reward matrix are associated with the Markov process in Figure 10.4. The

probability matrix, P, will have the form,

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

TTTS

PTPPPS

RPRR

LR

SLSS

PP
PPP

PP
P

PP

P

000
00

000
0000
000

 (10-1)

The reward matrix will have the following format shown in (10-2).

 111

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

TTTS

PTPPPS

RPRR

LR

SLSS

RR
RRR

RR
R

RR

R

000
00

000
0000
000

 (10-2)

The period of one day will be used to determine the transition probabilities and the

rewards will represent the energy consumed for each transition (action). The day can be divided

into a number of periods, with each period having a length τ. In this case, τ is 2.5 ms

(milliseconds). The 2.5 ms (milliseconds) period was chosen as that is a good approximation for

the time for the shortest task to be performed - processing one byte of a received message. The

time period τ allows the determination of the energy consumed for the reward matrix. The total

number of periods, T, in one day (8.64*107 milliseconds in one day) is given by (10-3).

τ

710*8.64
=T (10-3)

For τ equal to 2.5 ms (milliseconds), there are a total of 34,560,000 τ-periods within one day.

First, the transition probabilities for the sleep state will be determined. The number of

times per day that the tag is interrogated, I, is used to determine the transitions starting at the

sleep state. It is assumed that the tag wakes up after observing the 30 kHz wake-up tone for, W,

continuous τ-periods, and also observing that every interrogation is successful in waking up the

tag. In this case, W, is equal to 4, requiring that the 30 kHz wake-up tone must be observed for

10 ms (milliseconds) for the tag to transition from state S to state L. The number of possible S to

L transitions, denoted by, TSL, is found using (10-4).

τ*
10*8.64 7

W
TSL = (10-4)

Using the values for τ and W previously defined, TSL is 8,640,000. The number of times

per day that each of the eighteen commands is received by the tag are input parameters into the

 112

model and are denoted by, Ixx, where, xx, is the abbreviation for each command found in Table

10.1. The total number of messages received by a tag is the sum of the, Ixx, variables and is

denoted by, I. The probabilities PSL and PSS are found using (10-5) and (10-6) respectively

SL
SL T

IP = (10-5)

SLSS PP −= 1 (10-6)

The tag, when in state L, is listening for the preamble and sync pulse of an ISO 18000-7

command. Once the preamble and sync pulse are detected, the tag will transition into the

receiving message state.

The reader sends the wake-up tone for 2.5 seconds, and the tag wakes up and enters state

L after observing the wake-up tone for 10 ms [59]. Thus, the tag must listen for the preamble for

approximately TWake seconds. In this example TWake is 2.49 seconds. The transition probability

from state L to state the receive message state, R, is , PLR, is given by (10-7).

1=LRP (10-7)

Some commands have a variable length based on the parameters associated with each

command. For those commands with variable length, there is a transition back into the receiving

message state, state R, to account for the variable length. In the ISO 18000-7 standard, the only

commands having a variable length are the write memory and write user ID commands [59].

The base length of each of the eighteen commands includes all non-variable portions of the

message are denoted as, LMxx, where, xx, is the abbreviation for the one of the commands in

Table 10.1. For those messages having variable length components the length of those

components is denoted by, LExx, and again, xx, is the abbreviation for the one of the commands

in Table 10.1. For commands without variable length parameters, LExx, equals zero.

The probability that the tag stays in the receive message state (still more bytes of message

to receive), is given by (10-8).

 113

()()

()()

()

(())⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+⋅
−=

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

+⋅

−+⋅
=

∑
∑

∑
∑

∀

∀

∀

∀

xx
ExxMxxxx

xx
xx

xx
ExxMxxxx

xx
ExxMxxxx

RR LLI

I

LLI

LLI
P 1

1
 (10-8)

The probability that the tag receives the last byte of the inquiry and transitions from state

R, to the process message state, P, is given by (10-9).

RRRP PP −= 1 (10-9)

The tag, in state P, processes the message and determines what action, if any, to take.

The received message could be either a broadcast message or a point-to-point message. For a

broadcast message all tags receiving that message will respond, while for a point-to-point

message only the specified tags will respond. The probability that the received message is a

broadcast command is denoted by, MB, and MP, denotes the probability that the command is

point-to-point and addressed to the tag. It is assumed that the tag can determine if the message is

a broadcast or point-to-point command, checking the address in the case of a point-to-point

command, within, WP, τ-periods. In this example, WP, is assumed to be 1. The tag requires

time, TP, to process each byte of the command and each byte of the reply. Hence, the probability

that the tag remains in state P is given by (10-10).

()()

()()

()

(())⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+⋅
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+⋅

−+⋅
=

∑
∑

∑
∑

∀

∀

∀

∀

xx
ERxxMRxxxx

xx
xx

xx
ERxxMRxxxx

xx
ERxxMRxxxx

PP LLI

I

LLI

LLI
P 1

1
 (10-10)

The probability of transitioning from state P to state T is simply,

()
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
+−=

∑∑
∈∈

I

I
M

I

I
PP PtPxx

xx

P
Bxx

xx

PPPT **1 (10-11)

 114

The probability that the message is not addressed to the tag and the tag returns to sleep is

given by (10-12).

(PPPTPS PPP +−=1) (10-12)

where, B, denotes the set of all broadcast commands, and PtP denotes the set of all point-to-point

commands.

The tag must transmit a reply to all eighteen commands, and the replies have varying

lengths. Two of the eighteen replies, read user ID and read memory, have variable length

portions [59]. The base lengths of each of the eighteen replies includes all non-variable portions

of the message and are denoted as, LMRxx, where, xx, is the abbreviation for the one of the

commands in Table 10.1. For those replies having variable length components, the length of

those components is denoted by, LERxx, again, xx, is the abbreviation for the one of the

commands in Table 10.1. For replies without variable length parameters, LERxx, equals zero.

The probability that the tag must continue to transmit and remains in the transmit state is given

by (10-13).

()()

()()

()

(())⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+⋅
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+⋅

−+⋅
=

∑
∑

∑
∑

∀

∀

∀

∀

xx
ERxxMRxxxx

xx
xx

xx
ERxxMRxxxx

xx
ERxxMRxxxx

TT LLI

I

LLI

LLI
P 1

1
 (10-13)

The probability of the tag returning to sleep after transmitting the last byte of the reply

transitioning from state T to state S is given by (10-14).

TTTS PP −=1 (10-14)

The reward matrix will now be determined. The reward for each transition in the Markov

process represents the energy consumed to perform the particular operation the transition

represents. The following definitions will be used to determine the energy consumption for each

transition. The reward matrix has the following format as shown in (10-15).

 115

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

TTTS

PTPPPS

RPRR

LR

SLSS

RR
RRR

RR
R

RR

R

000
00

000
0000
000

 (10-15)

The reward for staying in the sleep state, S, is simply the power consumed by the tag in

sleep mode multiplied by the time for a possible transition into state L as shown in (10-16).

τ*SSSS PWR = (10-16)

where, PWSS, denotes the tag’s power consumption while in the sleep state.

Likewise, the reward for transitioning from state S into state L is simply.

τ∗= WPWR SLSL * (10-17)

Where the power consumption of the tag while waking up from sleep mode during the

transition from state S to state L is represented by, PWSL. The power consumption of the tag

while listening for and receiving the preamble is denoted by, PWLL. The reward for transitioning

to the receive message state after detecting a preamble and sync pulse is simply:

WakeLLLR TPWR *= (10-18)

The tag will remain in the receive message state until the entire command has been

received. The term, PWR, denotes the power consumed by the tag while receiving a message,

and the term, TB, denotes the time required to receive one byte of the message. The energy

required to receive one byte of the command is given by (10-19).

BRRR TPWR *= (10-19)

 116

Upon receiving the last byte of the command, the tag will transition into the processing

message state. The energy consumed during this transition is equal to that of receiving one byte

of the command. Hence, RRR, and RRP are equal.

RRRP RR = (10-20)

The tag must process each byte of the message and then generate each byte of the reply.

The tag requires time, TP, to process one byte of the command or to generate one byte of the

reply and consumes, PWP, Watts while processing the message. The energy consumed for each

byte processed is simply.

PPPP TPWR *= (10-21)

The transition from state P to state S requires the same energy as that from state P back to

state P. Hence,

PPPS RR = (10-22)

The transition from state P to state T represents processing of the final byte of the

message or reply. During this time the transmitter wakes up and transmits the preamble. The tag

consumes, PWT, Watts while transmitting information. The time required to transmit the

preamble is denoted by, TPT. Hence, RPT is simply:

PTTPPPT TPWTPWR ** += (10-23)

Transmitting each byte of the reply requires time, TB. While transmitting the tag remains

in state T, and the reward for remaining in state T is given by (10-24).

BTTT TPWR *= (10-24)

 117

The transition from state T to state S occurs when the final byte of the reply is

transmitted, and then the transmitter and processor or controller return to sleep mode. The

energy consumption for this transition is given by (10-25).

BTTS TPWR *= (10-25)

The tag developed by Cho and Baek will be used to obtain the power consumption

numbers for the tag components [60]. Cho and Baek’s tag utilizes an Atmega 128L processor, a

XEMICS XE1203F transceiver, and a RICOH Rx5C348A real-time clock [60]. In this example

the Atmega 128L processor and XEMICS transceiver will be used for the tag, but the real-time

clock will not be part of the tag. The time parameters will be derived by estimating the amount

of time each task requires. The ATmega processor operating at 4MHz used by Cho and Baek

draws at most 5.5 mA when active and 2.5 mA when idle [60, 61]. The transmitter portion of the

XE1203F transceiver draws 40 mA when active, the receiver portion draws 17 mA when active,

and the transceiver draws 1 μA (micro-Amps) in when asleep [60, 62]. The tag operates at 3.3 V

[60]. The values for the power consumption parameters for the ISO 18000-7 tag are listed in

Table 10.4.

Table 10.4: Values of power consumption parameters tag developed by Cho and Baek.

Parameter Power Consumption (mW)

PWSS 74.2533 mW

PWSL 74.2533 mW

PWLL 74.2533 mW

PWR 74.2533 mW

PWP 74.2533 mW

PWT 150.1533 mW

 118

The time to transmit one byte of encoded data, TB, is defined as the number of symbols

required to transmit one byte of encoded information multiplied the time to transmit one symbol.

The ISO 18000-7 standard employs Manchester encoding in order to encode a synchronizing

signal with the data reducing errors due to loss of synchronization between the transmitter and

receiver [48, 59]. As Manchester encoding requires a transition in the middle of the bit time,

transmission of one bit of information actually requires the transmission of two symbols, with

each symbol being transmitted for half of the bit time. ISO 18000-7 defines a ‘1’ bit as

represented by a low to high mid-bit transition and a ‘0’ bit as a high to low mid-bit transition.

The Manchester encoding defined by the ISO 18000-7 standard is illustrated in Figure 10.5.

Figure 10.5: Example of Manchester encoding used in ISO 18000-7, the byte ‘00101010’ is

illustrated.

Each byte of data in an ISO 18000-7 standard is followed by a stop bit, requiring that

each data byte actually contains nine bits (8 data bits plus 1 stop bit) [59]. The data rate in ISO

18000-7 is defined as 27.7 kilobits per second meaning that the symbol rate is twice that, or 55.4

kilobits per second [59]. Hence, the time to transmit one byte, TB, is found using (10-26).

 119

⎟
⎠
⎞

⎜
⎝
⎛=

27700
1*9BT (10-26)

Assuming that, NI, instructions must be executed by the processor to decode and process

one byte of information on a processor capable of executing, CP, instructions per second the time

to process a single byte, TP, can be found using the following equation.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

P

I
P C

NT (10-27)

In the ISO 18000-7 examples, NI, is assumed to be 10,000, and CP, is assumed to be 4

MHz. Thus, using (10-27), TP, is found to be 2.5 ms.

The preamble consists of twenty, 60 μs pulses with a 50% duty cycle (30 μs high then 30

μs low) followed by a sync pulse of 96 μs (for the tag reply) [59]. The total time required to

transmit the preamble, TPT, is 1,296 μs. The non-power parameters for the ISO 18000-7 tag are

listed in

Table 10.5: Non-power parameters for the ISO 18000-7 tag.

Parameter Value

TWake (milliseconds) 2490 ms

TPT (milliseconds) 0.1296 ms

TB (milliseconds) 0.3249 ms

TP (milliseconds) 2.5 ms

NI (instructions) 10000

CP (instructions per second) 4 MHz

τ (milliseconds) 2.5 ms

W (τ periods) 4

 120

With these equations and the user input parameters, the probability and reward values can

be calculated for each tag. The values of LMxx, LExx, LMRxx, and LERxx for each of the eighteen

commands are listed in Table 10.6.

Table 10.6: Message and reply length parameters.

Command LMxx LExx LMRxx LERxx

Co 17 0 14 0

CD 20 0 14 32

CID 16 0 14 16

SL 14 0 0 0

ST 14 0 13 0

IDLR 14 0 12 16

IDLW 14 16 12 0

UIDR 14 0 13 0

UIDW 15 0 12 0

OIDR 14 0 15 0

OIDW 14 3 12 0

FR 14 0 13 0

MN 14 0 14 0

RM 18 0 13 46

WM 18 46 12 0

SP 18 0 12 0

SPP 15 0 12 0

UNL 18 0 12 0

With the probability and reward values for each tag the energy consumption of each tag

in a one day period is obtained and listed in Table 10.7.

 121

Table 10.7: Energy consumed by each tag in one day.

Tag ID Energy Consumed (mJ) Tag ID Energy Consumed (mJ)

T1 6415639.19 mJ T11 6415908.60 mJ

T2 6415639.19 mJ T12 6415876.13 mJ

T3 6415823.54 mJ T13 6415876.13 mJ

T4 6415876.13 mJ T14 6415725.57 mJ

T5 6416056.37 mJ T15 6415725.57 mJ

T6 6416056.37 mJ T16 6415990.16 mJ

T7 6415823.54 mJ T17 6415755.40 mJ

T8 6415672.36 mJ T18 6415755.40 mJ

T9 6415672.36 mJ T19 6415755.40 mJ

T10 6415937.95 mJ T20 6415755.40 mJ

10.2.5 Step 3 for Single ISO 18000-7 Reader

The tasks that the tag must perform (identified in Section 10.2.2) form the basis for constructing

the Markov processes for the reader, and are repeated for clarity. The reader must perform five

tasks. First, the reader must send inquiries to the tags to solicit information. Second, the reader

must listen for tag replies. This task is broken into two separate tasks, listening for the preamble

that begins every reply and receiving the data portion of the message. Third, the reader may

need to communicate with another reader, either to forward a reply or receive a reply forwarded

from another reader. Fourth, the reader must communicate with the outside world (internet or

company’s private LAN) to receive instructions and transfer data received to the outside world.

Fifth, the reader must process the reply.

It is assumed that communications across the network connecting the readers to each

other and the network connecting the readers to the outside world are on separate networks and

do not interfere with the RFID communication. It is assumed that the readers are connected

 122

through an Ethernet (or other infrastructure) to each other and the outside world. The Markov

process for an ISO 18000-7 reader is shown in Figure 10.6.

Figure 10.6: Markov process for an ISO 18000-7 reader.

The probability matrix for the ISO 18000-7 reader will have the following form.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

PPPCPWPSPL

RPRR

CPCC

WPWW

SSSL

LRLCLWLL

PPPPP
PP
PP
PP

PP
PPPP

P

0
0000

0000
0000

0000
00

 (10-28)

 123

The ISO 18000-7 standard does not define the communication links between readers or

between the readers and the outside world. In this example, it is assumed that the readers will

periodically receive commands from the outside world that cause them to send an inquiry.

Further, it is assumed that the readers will send back information they collect to the outside

world and that the readers are preprogrammed to issue some inquiries periodically (i.e. issue a

collection command once per hour). The number of each type of inquiry issued by a reader is

specified by the user.

Again, the period of one day will be used, and the τ-period of 1.25 ms will be used to

obtain some of the transition probabilities. The number of inquiry messages received by the

reader from the outside world is denoted by, MIxx, where, xx, is the abbreviation of the inquiry

from Table 10.1. The length of the base reply to each command is denoted by, LMxx, where, xx,

is the abbreviation of the inquiry from Table 10.1. The length of the variable portion of the

command is denoted as, LExx, where, xx, is the abbreviation of the inquiry from Table 10.1. For

commands without a variable length portion, LExx, is 0. The number of messages that the reader

receives from the outside world in one day is denoted as MOUT, and the length of these messages

is denoted by, LOUT. The transition probabilities for the Communicate with Outside World state,

W, will be found first. The probability, PWW, of entering state W from state W is simply.

()()
()()

()
()() ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

+
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

−+−+
=

∑
∑

∑
∑

∀

∀

∀

∀

OutOut
xx

ExxMxxxxI

xx
xxI

OutOut
xx

ExxMxxxxI

OutOut
xx

ExxMxxxxI

WW LMLLM

M

LMLLM

LMLLM
P

**

1
1

**

1*1*
 (10-29)

The only other transition that originates in state W is to state P, hence the probability,

PWP, of entering state P from state W is simply.

WWWP PP −= 1 (10-30)

The Communicate with Other Readers state, state C, is very similar to the Communicate

with the Outside World state. The reader communicates with, NT, tags, receiving, MT, messages

from the, NT, tags. Some of the messages received by the reader contain an error and the

percentage of messages received by the reader containing an error is denoted by, MError. The

 124

reader receives a number of replies from other readers, and the average length of reach message

received from another reader is, LAvg-R. The reader-to-reader network requires some overhead

(i.e. framing) and the length of that extra overhead is, LReader. When in state C, the probability of

remaining in state C is given by (10-31).

() () (

() () (

)

)⎟
⎠

⎞
⎜
⎝

⎛
−−+

⎟
⎠

⎞
⎜
⎝

⎛
−−−+

=

∑

∑

∀
−

∀
−

xx
xxTTErrorRAvg

xx
xxTTErrorRAvg

CC

INMMLL

INMMLL
P

*1**2

*1*1*2

Reader

Reader
 (10-31)

The probability of transitioning from state C into the Process Reply state, state P, is given

by (10-32).

CCCP PP −= 1 (10-32)

The transition probabilities originating in the Receiving Reply state, state R, can be found

using similar methods as those originating in states W and C. The number of replies a reader

receives is denoted by, Ixx, where, xx, is the abbreviation of the inquiry from Table 10.1. The

base length of each reply is denoted by, LMRxx, where, xx, is the abbreviation of the inquiry from

Table 10.1. The length of any variable portions of the reply are denoted by, LERxx, where, xx, is

the abbreviation of the inquiry from Table 10.1. For replies that have no variable length

components, the value of, LERxx, is 0 for those replies. When the reader is receiving a reply from

a tag, the probability that the reader remains in state R is given by the following equation.

()()

()()

()

(())⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−+
=

∑
∑

∑
∑

∀

∀

∀

∀

xx
ERxxMRxxxx

xx
xx

xx
ERxxMRxxxx

xx
ERxxMRxxxx

RR LLI

I

LLI

LLI
P

*
1

*

1*
 (10-33)

The probability of entering the processing reply state, state P, from state R is simply.

RRRP PP −= 1 (10-34)

 125

The transition probabilities originating in the send inquiry state, state S, can be found

using a similar strategy as those for the receive reply state. The probability that there are

additional bytes of the inquiry to send, or of remaining in state S is,

()()

()()

()

(())⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−+
=

∑
∑

∑
∑

∀

∀

∀

∀

xx
ERxxMRxxxx

xx
xx

xx
ERxxMRxxxx

xx
ERxxMRxxxx

SS LLI

I

LLI

LLI
P

*
1

*

1*
 (10-35)

The probability that the byte just sent is the last byte of the inquiry causing a transition

into the listen to preamble state, state L, is given by (10-36)

SSSL PP −= 1 (10-36)

The transition probabilities for transitions originating in the Process Reply state, state P,

are now determined. While in state P, the reader can receive or send messages to other readers

or the outside world, decide to transmit an inquiry transitioning to state S, or can return to state L

if the message contains an error or is from a reader. The probability that the reader remains in

the processing state is equal to the probability that the reader is processing a reply from a tag that

is addressed to itself, or a message from another reader, or a message from the outside world.

The reader must periodically send information to the outside world. The number of times in one

day that the reader sends information to the outside world is denoted by, SOUT. The number of

messages that a given reader receives from other readers per day is denoted by MReader. The

probability that the reader starts to send a message to or receives a message from the outside

world, PPW, is given by (10-37).

() TREADEROUTOUT
xx

xx

OUTOUT
PW MMSMI

SMP
++++

+
=

∑
∀

 (10-37)

The probability that the reader begins to send an inquiry by transitioning into state S is

given by (10-38).

 126

()

() TREADEROUTOUT
xx

xx

xx
xx

PS MMSMI

I
P

++++
=

∑
∑

∀

∀ (10-38)

The probability that the message is from another reader or contains an error, causing a

transition into state L is given by (10-39).

() ()

() TREADEROUTOUT
xx

xx

xx
xxTTError

PL MMSMI

INMM
P

++++

⎟
⎠

⎞
⎜
⎝

⎛
−

=
∑

∑

∀

∀

*
 (10-39)

The probability that the reader starts to send a message to or receives a message from

another reader is given by (10-40).

() ()

() TREADEROUTOUT
xx

xx

xx
xxTTError

PC MMSMI

INMM
P

++++

⎟
⎠

⎞
⎜
⎝

⎛
−−

=
∑

∑

∀

∀

*1
 (10-40)

The probability of remaining in state P, PPP, is given by (10-41).

(PLPCPWPSPP PPPPP +++−=1) (10-41)

The transition probabilities for those transitions originating in state L are now

determined. The period of one day can be divided into τR time slots. Each time slot represents

the time required to detect the preamble of a tag’s reply. The number of time slots, τR, is found

with the following equation.

Preamble

Day

S
S

R =τ (10-42)

 127

Where SDay is the number of seconds in one day and SPreamble is the number of seconds

required to detect the reply’s preamble. In ISO 18000-7 the preamble for a tag reply is 1296 μs

(microseconds) [59].

The transition probabilities are then simply the ratios of the various actions that can occur

in state L to τR. The probability of detecting the preamble of the reply and transitioning into

state R is given by the following equation.

R

T
LR

MP
τ

= (10-43)

The probability that a message is received from the outside world, causing a transition

into state W is found using (10-44).

R

Out
LW

MP
τ

= (10-44)

The probability that a message is received from another reader causing a transition into

state C is found using the following equation.

R
LC

MP
τ
Reader= (10-45)

The probability that the reader remains in state L can be determined using (10-46), and it

is assumed that (MT + MOUT + MReader) << τR.

(LWLCLRLL PPPP ++−= 1) (10-46)

The rewards for each transaction represent the energy consumed in performing the action

that particular transaction represents. The reward matrix for an ISO 18000-7 reader has the

following format.

 128

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

PPPCPWPSPL

RPRR

CPCC

WPWW

SSSL

LRLCLWLL

RRRRR
RR
RR
RR

RR
RRRR

R

0
0000

0000
0000

0000
00

 (10-47)

The reader developed by Cho and Baek uses an Atmega128L processor, a XE1203F

transceiver and an RS-232 interface connecting the reader to the outside world operating at 9.6

kbps [60]. The processor is assumed to operate at 8 MHz operating at 5 V draws 11 mA when

active and 15 μA (micro-Amps) when asleep (watchdog timer enabled) [61]. The processor

consumes 55 mW when active and 75 μW (micro-Watts) when asleep. The transmitter portion

of the XE1203F transceiver draws 40 mA when active, the receiver portion draws 17 mA when

active, and the transceiver draws 1 μA(micro-Amps) in when asleep [60, 62]. The transceiver

operates at 3.3 V, and the transceiver consumes 132 mW when transmitting, 56.1 mW when

receiving, and 3.3 μA (micro-Amps) when asleep [60, 62]. The power consumption for the

reader under different conditions are listed in Table 10.8.

Table 10.8: Power consumption for the reader under different conditions.

Parameter Power Consumption (mW)

PWL 111.1 mW

PWS 187 mW

PWSL 111.1 mW

PWW 111.1 mW

PWC 111.1 mW

PWR 111.1 mW

PWP 111.1 mW

PWPS 187 mW

 129

The reward values for those transitions that originate in state L are found first. The

energy consumed while remaining in state L, listening for the preamble is given by the following

equation.

LLL PWSR *Preamble= (10-48)

The term, PWL, in (10-48) represents the power consumption of the reader in state L.

Specifically, PWL, includes the power consumption of the active receiver (RFID tag), processor

or controller, transceiver for inter-reader communications, and the transceiver for communication

with the outside world. The power consumption of those devices in sleep mode is also included

in, PWL, and in any future power variables unless specifically mentioned otherwise. The

remaining components are asleep to conserve power.

When a message is detected from the outside world, the reader transitions into state W in

order to receive the message. Similarly, when the reader detects an incoming message from

another reader it will transition into state C to receive that message. The power consumption

during the transition caused by detection of an ISO 18000-7 preamble or a message from the

outside world or another reader is equal to, PWL, because no additional components must be

activated to receive either message. Likewise, no additional hardware must be activated to

receive an incoming any of these three types of messages. The incoming ISO 18000-7 message

could be from a tag or from another reader, but that is dealt with in state P after the message has

been received. Hence, the energy consumption for the transition from state L into state R, W, or

C is equal to the energy consumption of remaining in state L.

LCLWLRLL RRRR === (10-49)

The energy consumption for the actions that may occur while the reader is in the Send

Inquiry state, state S is now found. While in state S, the reader will transmit bytes of the inquiry

command one by one until the complete command has been transmitted. The power

consumption of the tag while in state S is denoted by, PWS. The term, PWS, represents the

power consumption of the active transmitter (RFID tag), active transmitter, the two transceivers

connecting the reader to the outside world and to other readers, and the processor or controller

 130

unit. In state S, all components are active and the time required to transmit one byte of the

message is denoted as, TByte-S. The time to transmit or receive one byte of an ISO 18000-7

message, TByte-S, is given by (10-26). The energy consumed to send one byte of the message

other than the last byte is given by (10-50).

SSS PWTR *SByte−= (10-50)

When the reader sends the last byte of the inquiry message, it transitions from state S into

state L to listen for the reply. During this transition, the transmitter is powered down and the

active receiver (RFID tag) is wakened. The power consumption, for powering down the active

transmitter (RFID tag), is denoted by, PWSL, and the time required to power down the active

transmitter is denoted by, TSL. It is assumed that, TSL, is less than or equal to, TByte-S. The

energy consumed transitioning from state S into state L is given by the following equation.

SLSSL PWTPWTR ** SLSByte += − (10-51)

While the reader is in state W, it can communicate with the outside world staying in state

W or transition into state P to process the message after receiving the entire message. In state W

the transceiver for communication with the outside world, the transceiver for reader-to-reader

communication, active receiver, and the processor or controller components are active. The

other components are asleep in order to conserve energy. The power consumption of active

components of the reader while in state W is denoted by, PWW, and is equal to, PWL. The reader

requires time, TByte-W, to transmit or receive one byte to or from the outside world. The link to

the outside world is an RS-232 link operating at 9.6 kbps [60]. In this example it is assumed that

the RS-232 link transmits a byte of information using 8 data bits, 1 start bit, 1 stop bit, and no

parity bit. Hence, each byte of information transmitted or received over the RS-232 link requires

10-bits. Thus, TByte-W, is given by the following equation.

ms 0416.1
9600

1*10WByte =⎟
⎠
⎞

⎜
⎝
⎛=−T (10-52)

 131

Hence, the energy consumption of remaining in state W is given by the following

equation.

LWWW PWTPWTR ** WByteWByte −− == (10-53)

When the last byte of the message to the outside world has been successfully sent or

received the reader will transition into state P, but no additional components must be activated.

Thus, the energy consumption for the W to P transition is equal to that for the transition from

state W back into itself.

LWWWP PWTRR *WByte−== (10-54)

The energy consumption of the reader as a result of possible actions while the reader is

communicating with another reader in state C is similar to that when the reader is in state W.

When communicating with another reader, the processor or controller, active receiver, and the

reader-to-reader and reader-to-outside world transceivers must be active. The other components

are placed in sleep mode to conserve energy. The power consumption of the processor or

controller and the reader-to-reader transceiver is denoted by, PWC, and is equal to both, PWW,

and PWL. The reader requires, TByte-C, to transmit or receive one byte to or from the other reader.

Because the same communication link is used to connect the readers to each other and the

outside world, TByte-C, equals, TByte-W. Hence, while transmitting of receiving a message to or

from another reader, the energy consumed is simply,

LCCC PWTPWTR ** CByteCByte −− == (10-55)

When the last byte of the message has been sent or received, the reader will transition

into state P. During this transition, no additional hardware components must be activated. The

energy consumed when transitioning from state C to state P is equal to that consumed during the

transition from state C to state C.

 132

LCCCP PWTRR *CByte−== (10-56)

The energy consumption for the receive reply state, state R, is similar to that in states L,

W, and C. The reader requires, TByte-R, time to receive one byte of the ISO 18000-7 message,

and TByte-R, is equal to, TByte-S. During reception of an ISO message the processor or controller,

the active receiver, and transceivers connecting the reader to the outside world and the other

readers are required. The remaining components are kept in sleep mode to reduce energy

consumption. The power consumption of the reader with these components powered-up is

denoted by, PWR, and is equal to, PWL. The energy consumption to receive one byte of the

message while remaining in state R (there are more bytes of message left to receive) is given by

the following equation.

LRRR PWTPWTR ** RByteRByte −− == (10-57)

The energy consumption of the reader when transitioning into state P from state R is

equal to the energy consumption of the reader while remaining in state R.

LRRRP PWTRR *RByte−== (10-58)

The power consumption of the reader in state P is determined from the power

consumption of the processor or controller, active receiver, and the two transceivers connecting

the reader to the outside world and to other readers. The active receiver and active transmitter

are both put into sleep mode to reduce power consumption. The power consumption of the

reader when in state P is denoted by, PWP, which is equal to, PWL. To process one byte of a

message requires, TByte-P, time and can be found using the following equation.

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=−

P

I

C
NT PByte (10-59)

 133

Where, NI, is the number of instructions required to process one byte, and CP, is the

number of instructions per second that the processor executes. In this case, NI is assumed to be

10,000 and CP is assumed to be 8 MHz. Thus, using (10-27), TByte-P, is found to be 1.25 ms. The

energy consumption for remaining in state P, RPP, is given by (10-60).

LPPP PWTPWTR ** PBytePByte −− == (10-60)

When a message is detected from or sent to the outside world, the reader transitions into

state W to communicate with the outside world. In state W the active receiver is activated in

state W, but it is not activated during the transition into state W from state P. Hence, the energy

consumption for the transition from state P to state W is given below.

LPPPPW PWTPWTRR ** PBytePByte −− === (10-61)

Similarly, the energy consumed during the transition from state P to state C and from

state P to state L is identical to that for the P to W transition.

LPPPWPLPC PWTRRRR *PByte−==== (10-62)

When an inquiry must be sent to the tags, the active transmitter must be wakened. The

reader must first transmit the wake-up tone for 2.5 seconds and then transmit the first byte of

information. Hence, TWake, is 2.5 seconds. The power consumption of active transmitter during

the wake-up process is denoted by, PWPS. The energy consumption for the P to S transition is

given in (10-63).

PSWakePPS PWTPWTR **PByte += − (10-63)

Expressions to compute all the reward values have been defined and the reward matrix

can be calculated for any given ISO 18000-7 reader that fits the model’s assumptions. The

average length of a tag’s reply that is overheard by a reader other than the receipient of reply is

 134

denoted by, LAvg-R. The parameters specifically for the readers for this example are listed in

Table 10.9.

Table 10.9: Parameters for the single reader model.

Parameter Reader – R1 Reader – R2 Reader – R3 Reader – R4

MOUT (Messages) 10 24 48 20

MREADER (Messages) 1749 1773 1625 380

LREADER (Bytes) 8 8 8 8

MT (Messages) 1401 1302 1523 792

MERROR (Percentage) 6 % 7 % 3 % 0 %

SOUT (Messages) 15 54 32 37

LOUT (Bytes) 20 20 20 20

LAvg-R 18.2778 18.2778 18.2778 18.2778

SPreamble (μs) 1296 1296 1296 1296

TByte-P (ms) 1.25 1.25 1.25 1.25

TByte-R (ms) 0.3249 0.3249 0.3249 0.3249

TByte-S (ms) 0.3249 0.3249 0.3249 0.3249

TSL (ms) 0.100 0.100 0.100 0.100

TByte-C (ms) 1.0416 1.0416 1.0416 1.0416

TByte-W (ms) 1.0416 1.0416 1.0416 1.0416

The number of inquiries that each reader transmits per day is listed in Table 10.3 and the

lengths of the set and variable parts of each command and reply are listed in Table 10.6. The

number of messages of each type of inquiry, MIxx, that the reader receives from the outside world

(instructing reader to transmit that inquiry) is assumed to be half of the total inquiries issued by

the reader which are listed in Table 10.3. The energy consumption of each of the four readers for

one day is listed in Table 10.10.

 135

Table 10.10: Energy consumption of the four readers operating for one day.

Reader Energy Consumption (mJ)

R1 9910931.11 mJ

R2 9911577.09 mJ

R3 10137390.92 mJ

R4 9937375.96 mJ

Summing the energy consumption of all 20 tags and 4 readers that make up this example

network, the energy consumed by the entire network for one day is calculated. The energy

consumed by this example network for a period of one day is 161644185.89 mJ.

10.2.6 Step 4: Identification of Interactions between the Base Level Entities

The interactions between the base level entities are found in this section. This is step 4 in the

algorithm. The tags respond to reader inquiries and the reader initiates communication. Because

of this an ISO 18000-7 network falls under the category of Responds to Commands network.

The interactions are limited to reader-tag exchanges with the reader initiating the exchange and

the tag simply providing the requested information in reply. These interactions will be used

along with the tasks to identify the single reader and associated tags topological entities

contained in the example ISO 18000-7 network.

10.2.7 Step 5: Identification of the Single Reader and Associated Tags Topological Entities

The single reader and associated tags topological entities are identified in this section. This is

step 5 in the algorithm. Based on the interactions between the tags and readers, the simplest

topology group for an ISO 18000-7 network contains a single reader and all ISO 18000-7 tags

within range of that reader. Tags that are within range of more than one reader will be present in

the topology built around each reader the tag is within range of. Four readers are in the example

 136

network. Therefore, four single reader and associated tags topologies are needed to represent the

entire network. The entities contained in the topology built around reader R1 are shown in

Figure 10.7. This topology is referred to as TOP1.

Figure 10.7: Entities contained in topology, TOP1, built around reader R1.

The topology built around reader R2 is shown in Figure 10.8 and is referred to as TOP2.

Figure 10.8: Entities contained in topology, TOP2, built around reader R2.

 137

The entities contained in the topology centered around reader, R3 are shown in Figure

10.9 and are referred to as TOP3.

Figure 10.9: Entities contained in topology, TOP3, built around reader R3.

The final topology, constructed around reader, R4, is shown in Figure 10.10 and is

referred to as TOP4.

Figure 10.10: Entities contained in topology, TOP4, built around reader R4.

 138

Applying this topology to an ISO 18000-7 network reduces the total number of

simulation entities from twenty-four, the total number of entities in the network (NTag + NReader)

to, four, the number of readers (NReader) in the network. This reduces the number of simulation

entities that must be evaluated. Hence decreasing the time required to determine the energy

consumption of the network. Once a single reader and associated tags topological entity is

identified it is replaced with the topological entity reducing the order of the basic communication

graph. Unless otherwise noted reducing the order means a reduction in the number of Markov

processes that must be evaluated not in reduction of the dimensionality of the Markov process.

With the single reader and associated tags fundamental topological entity identified existing

algorithms can be used to search the basic communication graph to identify these topological

entities. These algorithms form the basis for CAD tools for integrated circuit design [46]. The

reduced network with using the four single reader and associated tags topological entities (TOP1,

TOP2, TOP3, and TOP4) to cover the network shown in Figure 10.2 is shown in Figure 10.11.

Tags that are in more than one topology (connected to more than one reader in the basic

communication graph shown in Figure 10.3) must be taken into account when the energy

consumption of the topology is determined. A tag will respond to any reader that is within

range. Therefore, it is possible for the reader in one topology to overhear a reply from a tag

within that same topology that is addressed to another reader. In this case, the reader forwards

the overheard reply to the reader to which the reply is addressed. Tags are placed in the topology

built around each reader that they can communicate with.

Figure 10.11: Example ISO 18000-7 network from Figure 10.2 covered using four single reader and

associated tags topological entities.

 139

10.2.8 Step 6: Identification of Tasks for the of Single Reader and Associated Tags

Topological Entity

The tasks of the single reader and associated tags topological entities are found in this section.

This is step 6 in the algorithm. This topological entity must perform three basic tasks. The first

task is for the reader interrogate the tags for control purposes and to gather information held by

the tags. The reader issues two types of inquiries, broadcast and point-to-point. The second task

is for the reader to communicate with other readers when a reply addressed to another reader is

received. The third task is for the reader to communicate with the outside world for control

purposes and to send collected information to the outside world.

10.2.9 Step 7: Markov Process for the Single Reader and Associated Tags Topological

Entity

The Markov process for the single reader and associated tags topological entity and expressions

for the probability and rewards matrices are found in this section and are based on the tasks

identified during step 6 of the algorithm in Section 10.2.8. This is step 7 in the algorithm. The

topology may contain tags that are within range of more than one reader. This causes those tags

to transmit a reply to inquiries from a reader other than the reader that the topology is centered

around. The reader at the center of the topology will hear replies sent by tags that are within

range of more than one reader. To account for this the Overhear Tag Reply state, state O, is

included in the Markov process. When not performing one of these tasks the entire topology is

idle attempting to conserve power. The Markov process for this topology is shown in Figure

10.12 below.

The Markov process for this topology contains only five states, the same number of states

as the Markov process for a single tag, and one less state than the Markov process for a single

reader. The number of computations required to evaluate the Markov process for this topology

is, at worst, no more than that required to evaluate the Markov process for a single tag or a single

reader. The probability matrix for this topology has the following form.

 140

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

PP
PP

PP
PP

PPPPP

P

000
000
000
000

 (10-64)

The reward matrix for the single reader and associated tag topology has the following

form.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

RR
RR

RR
RR

RRRRR

R

000
000
000
000

 (10-65)

Figure 10.12: Markov process for a topological entity containing one reader and all tags associated

with that reader.

 141

Each single reader and associated tags topology contains one reader, and NT, tags. The

reader issues, I, inquiries per day, and the number of each type of inquiry issued is listed in

Table 10.3. The reader communicates with the outside world receiving, MOUT, control messages

from the outside world and sends, SOUT, information messages to the outside world. The reader

overhears, MOVER, tag replies generated by other readers within range of one of the tags within

this topology. The number of replies that the reader overhears is determined by the number of

times that are within range of more than one reader respond to another reader’s inquiry. This can

be calculated using the following equation,

() (∑ ∑
∈ ∈∈

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

CTx By
x

PtPy
PxOVER ayxay

IMIM
,,

*)∑

)

 (10-66)

Where, CT, denotes the set of all tags within a single reader and associated tags topology

that are within range of at least one other reader: MP, is the probability that a point-to-point

command is addressed to a particular tag, x; PtP,denotes the set of all inquiries that are point-to-

point, and B denotes the set of all inquiries that are broadcast. The parameter, y, represents the

set of readers that are within range of tag x. The parameter, a, denotes which command the

overheard reply is for, the commands are listed in Table 10.1. The reader receives, MReader,

messages per day from other readers. The number of each type of command that the reader

issues is denoted by, MIxx, where, xx, is the abbreviation for the one of the commands in Table

10.1. The value of, MReader, is obtained using (10-67).

() (∑ ∑
∈ ∀

⎟
⎠

⎞
⎜
⎝

⎛
−=

CTx xx
IxxMxM 1)deg(Reader

 (10-67)

The basic communication graph is used to determine how many additional readers will

overhear tag x’s response to the reader’s inquiry. The term, deg(x), in (10-67) denotes the

degree of the vertex representing tag x in the basic communication graph, and one edge is

subtracted as that edge represents the link between the reader that issued the inquiry and tag x in

a given topology. Each reader that can communicate with tag x must be taken into account. A

tag belongs to the set of tags that can communicate with multiple readers, CT, if it has a degree

 142

greater than one. The basic communication graph for this network is shown in Figure 10.13 and

is used to determine the degree for tag in the network.

The transition probabilities for those transitions originating in state S are determined.

The period of one day is divided into, T, periods, with each period being, τ, seconds long. As

before for the single reader case, the value of, τ, will be 1.25 milliseconds, and T, is given by

(10-3). The system will transition into state O when a tag sends a reply to another reader’s

inquiry and the probability of this occurring, PSO, is given by (10-68).

T
M

PSO
OVER= (10-68)

Figure 10.13: Basic communication graph of the example ISO 18000-7 network (readers are shaded

and tags are not shaded).

Similarly, the probability that the system transitions into state I is the probability that the

reader issues an inquiry. The probability, PSI, of the reader issuing an inquiry is given below.

 143

T

M

T
IP xx

Ixx

SI

∑
∀== (10-69)

The probability that the reader receives or sends a message to the outside world

transitioning into state W, PSW, is given by the following equation,

T
SMPSW

OUTOUT +
= (10-70)

The probability that the reader receives a message from another reader is computed using

the following equation, where, MReader, denotes the number of messages received from the other

readers in one day.

T
MPSR

Reader= (10-71)

The probability that the topology remains dormant, or in state S, is simply the probability

that there is no event for a given τ-period, and PSS, is simply,

(SRSOSWSISS PPPPP +++−= 1) (10-72)

The reader communicates with the outside world by sending or receiving messages. The

reader sends, MOUT, messages per day and each message contains, LOut, bytes. The base lengths

of each of the eighteen replies includes all non-variable portions of the message and are denoted

as, LMRxx, where, xx, is the abbreviation for the one of the commands in Table 10.1. For those

replies having variable length components the length of those components, is denoted by, LERxx,

again, xx, is the abbreviation for the one of the commands in Table 10.1. The number of each

type of command received from the outside is denoted by, MIOxx, where, xx, is the abbreviation

for one of the commands listed in Table 10.1. In this example, half of the reader’s total inquiries

are received from the outside world.

 144

IxxIOxx MM *5.0= (10-73)

The probability that the reader is still sending or receiving a message, PWW, is given by

(10-74).

()()
()()

()
()() ⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

++

+−+
=

∑
∑

∑
∑

∀

∀

∀

∀

OutOut
xx

ExxMxxxxIO

xx
xxIO

OutOut
xx

ExxMxxxxIO

OutOut
xx

ExxMxxxxIO

WW LMLLM

M

LMLLM

LMLLM
P

**
1

**

1
 (10-74)

The probability that the reader receives or sends the last byte of the message is simply,

WWWS PP −=1 (10-75)

The probability that the system is overhearing a reply from a tag addressed to another

reader is given by the following equation.

()()
()()

()
(())⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

−+
=

∑
∑

∑
∑

∀

∀

∀

∀

xx
ERxxMRxxxxI

xx
xxI

xx
ERxxMRxxxxI

xx
ERxxMRxxxxI

OO LLM

M

LLM

LLM
P

*
1

*

1*
 (10-76)

The probability of the reader receiving the last byte of the reply is simply,

OOOR PP −=1 (10-77)

After overhearing the reply to another reader’s inquiry, the reader in the system will

forward the reply to the appropriate reader. The total number of each type of inquiries, MIxx-b,

received by a tag, b, in the set of tags, CT, is simply the sum of each type of command issued by

the set of readers, CRb, that is within range of tag b. The set of readers, CRb, does not contain

the reader that the topology tag b belongs to is centered around because replies to those

commands sent by the reader within the topology are not forwarded.

 145

∑
∀

∈∀
− =

xx
bCRc

IxxI MM bxx (10-78)

Each message forwarded to another reader has overhead of, LReader, bytes. The

probability that the reader is still transmitting the reply and remains in state R, PRR, is given by

(10-79).

()()

()()
()

()()

()()
⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++
−=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++
−=

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

++

−++

=

∑

∑
∑

∑

∑

∈∀
∀

∈∀
∀

∀

∈∀
∀

∈∀
∀

CTb
xx

ERxxMRxxI

CTb
xx

ERxxMRxxI

xx
I

CTb
xx

ERxxMRxxI

CTb
xx

ERxxMRxxI

RR

LLLM
M

LLLM

M

LLLM

LLLM

P

Readerb-xx

Reader

Readerb-xx

b-xx

Readerb-xx

Readerb-xx

*
1

*
1

*

1*

 (10-79)

The probability that the reader transmits the last byte of the message and returns to state

S, PRS, is simply,

RRRS PP −=1 (10-80)

When the reader issues an inquiry to the tags within the topological entity centered on the

reader, the reader must first send the inquiry, then the tag must process the inquiry and send the

reply. The probability that the topology is performing the interrogation task, PII, is given by the

following equation.

()()()
()()

()
()()⎟

⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++
−=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+++

−+++
=

∑
∑

∑
∑

∀

∀

∀

∀

xx
ERxxMRxxExxMxxxxIT

xx
xxIT

xx
ERxxMRxxExxMxxxxIT

xx
ERxxMRxxExxMxxxxIT

II

LLLLMN

MN

LLLLMN

LLLLMN
P

**

*
1

**

1**

 (10-81)

 146

where, NT, is the number of tags in the topology. The transition probability that the topology is

performing the final operations for the interrogation task (the reader finishes processing the

reply) and returns to state S, PIS, is simply,

IIIS PP −=1 (10-82)

The reward matrix has the following form.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

RR
RR

RR
RR

RRRRR

R

000
000
000
000

 (10-83)

The time, τ, is defined to be 1.25 ms (milliseconds). The energy consumption of the

topology when remaining in the idle state, RSS, is,

SSS PWR *τ= (10-84)

where, PWS, denotes the power consumption of the topology in the idle state. In the idle state,

the reader power consumption, PWS-Rdr, consists of the power consumption of the processor,

transceivers for communicating with other readers and the outside world, the active receiver that

receives tag replies, and the power consumed by the active receiver while in the dormant state.

Unless otherwise noted all power consumption parameters include the power consumption of the

dormant state of those components that are not active. When the topology is in the idle state,

each tag within the topology is in the dormant state. In the dormant state, the power

consumption of the tag, PWS-Tag, includes the power consumption of the active receiver and the

processor that is monitoring for the wake-up pulse. There are, NT, tags in each topology, the

power consumption for the topology in the idle state, PWS, is given by the following equation.

 147

()TagSTRdrSS PWNPWPW −− += * (10-85)

When the reader communicates with other readers, the outside world, or overhears a

response from another tag the necessary components are already active. Thus, the energy

consumption for the transitions from state S to either state R, W, or O are equal. This transition

is assumed to take one τ-period. The energy consumption, RSR, RSW, RSO, for the S-R, S-W, and

S-O transitions respectively, are equal and are given by the following equation.

() SSTagSTRdrSSOSWSR RPWNPWRRR =+=== −− **τ (10-86)

When the reader sends an inquiry the topology transitions into state I to interrogate the

tags. During the transition from state S to state I the reader activates the transmitter and issues

the wake-up pulse for 2.5 seconds, denoted as, TWAKE, to wake-up all tags within range [59].

The power consumption of the reader with the processor, transceivers connecting the reader to

the outside world and other readers, active receiver and active transmitter is denoted by, PWSI-Rdr.

The tag hears the wake-up tone and begins to listen for the preamble, but no additional

components must be activated for this so the power consumption, PWSI-Tag, is equal to, PWS-Tag.

All, NT, tags wake-up and consuming, PWSI-Tag, Watts and begin to listen for the preamble. The

time that is required to transmit the preamble, 1,296 μs, is denoted by, TPreamble. The energy

consumed turning the transition from state S to state I is,

() ()TagSITRdrSIWAKESI PWNPWTTR −− ++= **Preamble (10-87)

When the reader issues an inquiry, the reader must first transmit the inquiry and the tags

simultaneously receive the reply. After receiving the inquiry, the tags process the inquiry to

determine if the command is addressed to them and if so to generate the appropriate response.

The tags then send the response and go back to sleep. The reader will receive and then process

the tag’s reply, finally returning to the idle state. The reader only activates the active transmitter

while it is sending the wake-up pulse or the inquiry, the rest of the time the active transmitter is

dormant. Each transition from state I back into state I represents an operation on one byte of the

 148

message. The message can be received, transmitted, or processed, and the time to perform each

of these three operations on one byte of data is denoted by TB, TB, and TP, respectively. The

times to receive and transmit one byte of the message are identical because the data rate is the

same for both operations in the ISO 18000-7 standard [59]. The reader and tag could have

different processors (most likely the processor on the reader will be more powerful), and the time

required to process one byte of the message on the reader will be denoted as, TP-Rdr, and the time

to process one byte of the message on the tag will be denoted as, TP-Tag. The time, TB, can be

found using (10-26). The times for, TP-Rdr, and TP-Tag, can be determined by estimating the

number of instructions required to process one byte of the message and the clock speed of the

processor. The number instructions required for the reader to process one byte of the message is

denoted by, NI-Rdr, while the tag requires, NI-Tag, instructions to process one byte of the message.

The clock speed of the reader’s processor is, CRdr, and the clock speed of the tag’s processor is,

CTag. The values of, TP-Rdr, and TP-Tag, can be found using the two equations below.

Rdr

RdrI
RdrP C

NT −
− = (10-88)

Tag

TagI
TagP C

N
T −

− = (10-89)

The probability that the inquiry that the reader issues is a broadcast command, MB, is

calculated using the following equation,

∑
∑

∀

∈∀=

xx
xx

Bxx
xx

B I

I
M (10-90)

where B denotes all inquiries that fall into the broadcast category.

The power consumption of the reader while transmitting the inquiry, PWII-Rdr, is equal to

PWSI-Rdr because no additional components are required to be active. The power consumption of

the tag while receiving an inquiry, PWII-Tag, is equal to, PWSI-Tag, because all the necessary

components are active. The tag must activate the active transmitter to send the response the to

 149

the command, and the power consumption of the tag during the transmission of the reply is

denoted by, PWTX-Tag, during which time the processor, active receiver, and active transmitter are

active. The energy consumed for the one interrogation within the topology is given by (10-91).

()
() (()RdrSTagTXTRdrSTagTXTB

RdrSRdrPTagIITTagPRdrIITagIITBII

PWPWNTPWPWNT

PWTPWNTPWPWNTR

−−−−

−−−−−−

++++)
+++=

Preamble
 (10-91)

The energy consumption for the transition from state I to state S, RIS, represents operating

on the final byte and is therefore identical to, RII.

IIIS RR = (10-92)

The reader does not need to activate any additional components to communicate with

another reader or the outside world, or to overhear the reply addressed to another reader.

Therefore, the power consumption of the reader in states R, W, and O is equal to, PWS-Rdr. The

number of symbols that can be sent across the reader-to-reader network in one second is denoted

by, DRtR, and the number of symbols in one byte is denoted by, NByte-RtR. Similarly, DOut denotes

the number of symbols that can be sent across the network connecting the reader to the outside

world in one second, and the number of symbols in one byte is denoted by, NByte-Out. Hence, the

time to transmit one byte across the reader-to-reader network, TByte-RtR, and the time to transmit

one byte across the network connecting the reader to the outside world, TByte-Out, are found using

the following two equations.

RtRByte−
− =

N
DT RtR

RtRByte (10-93)

ut

Out
OutByte N

DT
OByte−

− = (10-94)

The energy consumed while receiving a byte of a message from another reader, RRR, is

given by the equation below.

 150

()TagSRdrSRtRByteRR PWPWTR −−− += * (10-95)

During the transition from state R to state S, the reader communicates the last byte of the

message to or from the other reader. Thus the energy consumption for the transition from state R

to state S, RRS, is equal to, RRR.

RRRS RR = (10-96)

The energy consumed while the reader is communicating with the outside world, RWW, is

given in the following equation.

()TagSRdrSOutByteWW PWPWTR −−− += * (10-97)

The reader communicates the last byte of information with the outside world during the

transition from state W back to state S. Hence, the energy consumption for the transition from

state W to state S, RWS, is equal to, RWW.

WWWS RR = (10-98)

The energy consumption of the reader while overhearing a reply from a tag addressed to

another reader, ROO, is found using (10-99).

()TagSRdrSBOO PWPWTR −− += * (10-99)

During the transition from state O to state R, the reader overhears the last byte of the

reply. Therefore, the energy consumption for the transition from state O to state R, ROR, is equal

to, ROO.

OOOR RR = (10-100)

 151

It is assumed that all tags in the network belong to the same group. Hence, they all

respond to any point-to-point command. Therefore, MP, is equal to 1 for the four topologies in

this example. First, the set of tags, CTx, for each topology is determined (x denotes which of the

four topologies CTx represents). The basic communication graph in Figure 10.13 is used to

identify these sets because a tag with degree greater than one is in the set, CTx, for each reader,

x, connected to it. The set, CT, for each of the four topologies is shown below.

{ }
{ }
{
{ }T16T10,

T16T13,T12,T11,T6,T5,T4,
T11T10,T7,T6,T5,T3,

T13T12,T7,T6,T5,T4,T3,

4

3

2

1

=
=
=
=

CT
CT
CT
CT

} (10-101)

Using (10-66), MOVER, is calculated for each of the four topologies and is listed in Table

10.11. The degree of each of the tags is determined from the basic communication graph shown

in Figure 10.13 is listed Table 10.12.

The number of messages forwarded to each reader, MReader, is computed using (10-67),

and is shown in Table 10.13.

Table 10.11: Value of MOVER for each of the four topologies.

Topology MOVER (Number of Messages) Topology MOVER (Number of Messages)

TOP1 789 TOP3 686

TOP2 654 TOP4 174

The power consumption parameters only require determining the power consumption of a

single tag or reader for a particular task (or step of a task). The power consumption is

determined by the summing the power consumption of each component for each task (some

components are dormant others are active). In this case, most of the power consumption

parameters can be found using the power consumption parameters found for the single tag and

 152

single reader models. The values of the power consumption parameters used in this example are

listed in Table 10.14.

Table 10.12: Degree of each tag in the example network.

Tag Degree Tag Degree

1 1 11 2

2 1 12 2

3 2 13 2

4 2 14 1

5 3 15 1

6 3 16 2

7 2 17 1

8 1 18 1

9 1 19 1

10 2 20 1

Table 10.13: Value of MReader for each topology.

Topology MReader Topology MReader

TOP1 1137 TOP3 984

TOP2 976 TOP4 174

The values of the time parameters used in the single reader and associated tags topology

are listed in Table 10.15. Because the tags and readers are identical to those studied in the

previous example (single tags and single readers) the time for the reader and tag to process one

byte of information is the same for both cases because the number of instructions to process one

byte and the clock speeds have not changed. Similarly, the time to transmit one byte on the ISO

 153

18000-7 reader-tag network has not changed and is identical to the previous cases. Again, the

time required to transmit or receive one byte of information on the reader-to-reader network and

the reader-to-outside world network is the same as the previous case.

Table 10.14: Value of the power consumption parameters for a reader and a tag.

Parameter Power Consumption (mW)

PWS-Rdr 111.1 mW

PWS-Tag 74.2533 mW

PWII-Rdr 187 mW

PWII-Tag 74.2533 mW

PWTX-Tag 150.1533 mW

PWSI-Rdr 187 mW

PWSI-Tag 74.2533 mW

Table 10.15: Values of the time parameters for the single reader and associated tags topology.

Parameter Time (milliseconds)

TPreamble 0.1296 ms

TWAKE 2500 ms

TP-Rdr 1.25 ms

TP-Tag 2.5 ms

TB 0.3249 ms

TByte-RtR 1.0416 ms

TByte-Out 1.0416 ms

Each reader in the network sends, SOut, messages to the outside world. The values of,

SOut, and MOut, for each reader is taken from the single reader example, and the values of, SOut,

 154

and MOut, for each topology (reader because each topology, TOPx, is built around reader, Rx) are

listed in Table 10.16. The remaining parameters for this example are listed in Table 10.17. The

energy consumed over the period of one day for each of the four topologies and the total energy

consumed by the network (sum of energy consumed of each topology) are listed in Table 10.18.

The energy consumed by the entire network calculated using topologies is within 4 % of that

found by evaluating each tag and reader separately.

Table 10.16: Number of messages each topology sends to the outside world per day.

Parameter Topology

TOP1

Topology TOP2 Topology

TOP3

Topology

TOP4

SOut (Number of

Messages Per Day)

15 54 32 37

MOUT (Messages) 10 24 48 20

Table 10.17: Miscellaneous parameter values for single reader and associated tags topology.

Parameter Value

LReader (Bytes) 8 Bytes

LOut (Bytes) 20 Bytes

 155

Table 10.18: Energy consumed over 1 day for each of the four single reader and associated tag

topologies and for the entire network.

Topology Energy Consumed in One Day (mJ)

TOP1 44347884.42 mJ

TOP2 40488969.57 mJ

TOP3 44702959.56 mJ

TOP4 32104372.34 mJ

Entire Network 161644185.89 mJ

10.2.10 Step 8 for the Single Reader and Associated Tags Topological Entities

The interactions between the four single reader and associated tags topological entities are

defined in this section. This is step 8 in the algorithm. The interactions will be used to help to

identify the multi-reader topological entity in the following section. The basic communication

graph of the ISO 18000-7 example network is repeated in Figure 10.14 for clarity.

Figure 10.14: Basic communication graph of the example ISO 18000-7 network (readers are shaded

and tags are not shaded).

 156

The four single reader and associated tags topological entities are shown in the following

four figures. The single reader and associated tags topological entity generated around reader

R1, TOP1, are shown in Figure 10.15. The single reader and associated tags topological entity

generated around reader R2, TOP2, are shown in Figure 10.16. The single reader and associated

tags topological entity generated around reader R3, TOP3, are shown in Figure 10.17. The

single reader and associated tags topological entity generated around reader R4, TOP4, are

shown in Figure 10.18. The basic communication graph of the example network, shown in

Figure 10.14, when covered by the four single reader and associated tags topological entities

(TOP1, TOP2, TOP3, and TOP4) is shown in Figure 10.19.

Figure 10.15: Entities contained in topology, TOP1, built around reader R1.

Figure 10.16: Entities contained in topology, TOP2, built around reader R2.

 157

Figure 10.17: Entities contained in topology, TOP3, built around reader R3.

Figure 10.18: Entities contained in topology, TOP4, built around reader R4.

Figure 10.19: Basic communication graph of the four single reader and associated tags topological

entities.

 158

The readers communicate with each other, thus linking all the single reader and

associated tags topologies together forming a fully connected mesh topology. The highest level

of abstraction combines all four single reader and associated tags topologies into a single

topological entity.

10.2.11 Step 9: Identification of the Multi-Reader Topological Entity

The multi-reader topological entity is identified based on the tasks (Section 10.2.8) and

interactions of the single reader and associated tags topological entities (Section 10.2.10). This

is step 9 in the algorithm. The interactions between the single reader and associated tags

topological entities is shown in Figure 10.19. In this example, the readers form a fully connected

mesh network and this fully connected mesh topology can be represented by a larger topological

entity. This level of abstraction allows the example network to be represented as a single

topological entity. Once the multi-reader topological entity is identified it is replaced with the

topological entity reducing the order (number of Markov processes) of the basic communication

graph. With the multi-reader fundamental topological entity identified existing algorithms can

be used to search the basic communication graph to identify these topological entities. These

algorithms form the basis for CAD tools for integrated circuit design [46]. In this example, the 4

single reader and associated tags topological entities shown in Figure 10.19 can be replaced with

a single multi-reader topological entity as shown in Figure 10.20. Thus, using this topology only

one entity must be evaluated to obtain the energy consumption of the network, as shown in

Figure 10.20, rather than evaluating the twenty-four entities originally required, as shown in

Figure 10.13.

Figure 10.20: The entire ISO 18000-7 example network is covered using a single multi-reader

topological entity.

 159

10.2.12 Steps 6 through 9 for the Multi-Reader Topological Entity

Development of the model describing the energy consumption of the multi-reader topological

entity requires that steps 6 through 9 of the algorithm be repeated for the multi-reader topological

entity. The multi-reader topological entity must still perform the same tasks as the previous

single reader and associated tags topological entity. The multi-reader topological entity must

still communicate with other readers, both within the topological entity and in other topological

entities, and still communicates with the outside world. The readers within this topological

entity still interrogate the tags in the topology, and readers still overhear replies that are

addressed to readers other than themselves. Thus, the Markov process for this topology is

identical to that for the single reader and associated tags topological entity and is shown below in

Figure 10.21. The probability matrix, P, and the reward matrix, R, have the same form as the

previous topology.

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

PP
PP

PP
PP

PPPPP

P

000
000
000
000

 (10-102)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

RR
RR

RR
RR

RRRRR

R

000
000
000
000

 (10-103)

There are, NR, readers within each multi-reader topological entity. The transition

probabilities for the multi-reader topological entity are found using similar methods as those for

the single reader and associated tags topological entity where. However, all contributions from

all, NR, readers must be taken into account. Each of the, NR, readers has a single reader and

associated tags topological entity built around it. The Markov process for the multi-reader

topological entity is identical, in structure, to that for the single reader and associated tags

topological entity. Therefore, the transition probabilities for each of the, NR, single reader and

 160

associated tags topological entities that make up the multi-reader topology are simply summed

and divided by, NR, to obtain the multi-reader transition probabilities. The rewards matrix, for

the multi-reader topological entity must account for the energy consumption of the transitions for

each of the, NR, single reader and associated tags topological entities it contains. Hence, the

rewards matrix for the multi-reader topological entity is simply the sum of the reward matrices

for each of the, NR, single reader and associated tags topological entities.

Figure 10.21: Markov process for highest-level topology containing multiple readers.

10.2.13 Step 10: Covering the Network with a Single Entity

In this example, the multi-reader topological entity consists of all four readers and by extension

all four single reader and associated tags topological entities. Thus, using the Multi-Reader

 161

topological entity the entire network can be covered using a single entity and the algorithm is

finished.

The energy consumption of the entire network can now be found by evaluating only the

single Multi-Reader topological entity. Using the results from the four single reader and

associated topologies calculated in the previous section, the energy consumption for the multi-

reader topology representing the entire network is, 161862122.37 mJ, which is very close to that

calculated for the network composed of four single reader and associated tags topologies.

10.3 SUMMARY OF THE ENERGY CONSUMPTION

The energy consumed by the network for a period of 1 day was calculated using three different

methods. First, the energy consumed by the network was calculated by first calculating the

energy consumed by each base level entities and then summing the values to obtain the energy

consumption for the entire network (Section 10.2.4 for the tag and Section 10.2.5 for the reader).

Next, the four single reader and associated tags topological were used to cover the network.

Again the energy consumption for the period of 1 day was computed for each of the four single

reader and associated tags topological entities and then summed to arrive at the energy

consumption of the entire network (Section 10.2.9). Finally, the multi-reader topological entity

was used to cover the entire network with a single entity and the energy consumption of the

multi-reader topological entity was calculated for the period of 1 day (Sections 10.2.12 and

10.2.13). The energy consumed for each case is listed in Table 10.19. The percent difference,

D, is computed as follows, where, EBase-Level, is the energy consumed calculated using the base

level entities, and ETest, is the energy consumed using one of the other two sets of topological

entities (four single reader and associated tags topological entities or one multi-reader

topological entity).

LevelBase

TestLevelBase

−

− −
=

E
EE

D (10-104)

 162

Table 10.19: Energy consumed calculated using the three different sets of entities and percent

difference from the energy consumption of the base level entities.

Entity Energy Consumed (mJ) Percent Difference

(%)

Base Level Entities 161644185.89 mJ 0 %

Four Single Reader and Associated

Tags Topological Entities

161644185.89 mJ 3.9054 %

One Multi-Reader Topological Entity 161862122.37 mJ 3.7758 %

The results show that the percent difference is no more than 3.89 % in the worst case

(using the four single reader and associated tags topological entities) and the method of using the

topological entities is considered accurate.

10.4 SUMMARY OF STEPS IN ALGORITHM TO IDENTIFY TOPOLOGICAL

ENTITIES

The steps in the algorithm to identify the topological entities in the ISO 18000-7 example

network are summarized in this section. First, Step 1, identification of the base level entities,

was performed in Section 10.2.1. Step 2, identification of the tasks of the base level entities was

performed in Section 10.2.2. Step 3, development of the Markov processes with expressions for

the probability and rewards matrices for each type of base level entity were performed in Section

10.2.4 for the tag and in Section 10.2.5 for the Reader. Step 4, identification of the interactions

between the base level entities, occurs in Section 10.2.6. Step 5, identification of the first-level

topologies occurs in Section 10.2.7. Step 6, identification of the tasks each topological entity

performs was accomplished in Section 10.2.8. Step 7, development of Markov processes and

expressions for the probability and rewards matrices was performed in Section 10.2.9. Step 8,

identification of interaction between topological entities, was presented in Section 10.2.10. Step

9, identification of the next higher topological entities, was presented in Section 10.2.11. Steps 6

 163

through 9 were repeated for the Multi-Reader topological entity in Section 10.2.12. Step 10, is

satisfied because only one Multi-Reader topological entity was required to cover the entire

network, at the end on Section 10.2.13.

10.5 EVALUATION TIME FOR LARGER NETWORKS

To determine how the execution time of the method developed in this work scales with the size

of the network being evaluated, the example ISO 18000-7 was doubled and doubled again to

generate three different size networks. The single size network has the same size as that in the

example presented in the Section 10.2. The double network consists of two single size networks

with connections between tags 1 and 2 and tags 38 and 39 (in the new numbering, in the single

network these are tags 18 and 19) and the basic communication graph of the double size network

is shown in Figure 10.22.

Figure 10.22: Basic communication graph of the double size example network.

 164

There are a total of eight single reader and associated tags topological entities contained

in the double network. Each single reader and associated tag topological entity is a star topology

with the reader acting as the central entity with all tags within communication of the reader as

members of the topology. With the single reader and associated tags fundamental topological

entity identified, existing algorithms can be used to identify the eight single reader and

associated tags topological entities in the double size example network shown in Figure 10.22.

These algorithms form the basis for CAD tools for integrated circuit design [46]. The eight

individual single reader and associated tags topological entities are illustrated in the following

eight figures.

The first single reader and associated tags topological entity, TOP1, is centered around

reader R1, and is illustrated in Figure 10.23. The second single reader and associated tags

topological entity, TOP2, is centered around reader R2, and is illustrated in Figure 10.24. The

second single reader and associated tags topological entity, TOP3, is centered around reader R3,

and is illustrated in Figure 10.25. The second single reader and associated tags topological

entity, TOP4, is centered around reader R4, and is illustrated in Figure 10.26. The second single

reader and associated tags topological entity, TOP5, is centered around reader R5, and is

illustrated in Figure 10.27. The second single reader and associated tags topological entity,

TOP6, is centered around reader R6, and is illustrated in Figure 10.28. The second single reader

and associated tags topological entity, TOP7, is centered around reader R7, and is illustrated in

Figure 10.29. The second single reader and associated tags topological entity, TOP8, is centered

around reader R8, and is illustrated in Figure 10.30. The network shown in Figure 10.22 can be

covered using the eight single reader and associated tags topological entities shown in the

previous eight figures. The network covered using the eight single reader and associated tags

topological entities (TOP1, TOP2, TOP3, TOP4, TOP5, TOP6, TOP7, and TOP8) is shown in

Figure 10.31.

 165

Figure 10.23: Single reader and associated tags topology, TOP1, centered around reader R1 in the

double size network.

Figure 10.24: Single reader and associated tags topology, TOP2, centered around reader R2 in the

double size network.

Figure 10.25: Single reader and associated tags topology, TOP3, centered around reader R3 in the

double size network.

 166

Figure 10.26: Single reader and associated tags topology, TOP4, centered around reader R4 in the

double size network.

Figure 10.27: Single reader and associated tags topology, TOP5, centered around reader R5 in the

double size network.

Figure 10.28: Single reader and associated tags topology, TOP6, centered around reader R6 in the

double size network.

 167

Figure 10.29: Single reader and associated tags topology, TOP7, centered around reader R7 in the

double size network.

Figure 10.30: Single reader and associated tags topology, TOP8, centered around reader R8 in the

double size network.

 168

Figure 10.31: Double size network covered with eight single reader and associated tags topological

entities.

With the single reader and associated tags fundamental topological entity identified

existing algorithms can be used to search the basic communication graph to identify these

topological entities. These algorithms form the basis for CAD tools for integrated circuit design

[46]. The order (number of Markov processes) of the double size network is reduced from the 48

base level entities as shown in Figure 10.22 to 8 single reader and associated tags topological

entities as shown in Figure 10.31. The covering of the double size entity by the eight single

reader and associated tags topological entities results in a fully connected mesh. This network

can be reduced to a single multi-reader topological entity that contains the eight single reader and

associated topological entities (TOP1, TOP2, TOP3, TOP4, TOP5, TOP6, TOP7, and TOP8) is

shown in Figure 10.32.

 169

Figure 10.32: The double size network can be covered by a single multi-reader topological entity.

The tasks and the Markov process for the multi-reader topological entity is identical to

the Markov process developed for the multi-reader topological entity in Section 10.2.12 is shown

in Figure 10.33. In this example, the 8 single reader and associated tags topological entities

shown in Figure 10.31 can be replaced with a single multi-reader topological entity as shown in

Figure 10.32. This reduces the order of the network from 48, as shown in Figure 10.22, to 1, as

shown in Figure 10.32.

The probability and reward matrices for the multi-reader topological entity are shown

below and are calculated from the eight single reader and associated tags topological entities as

described in Section 10.2.10. The probability matrix is computed by summing the probability

matrices for each of the eight single reader and associated tags topological entities together and

then dividing by eight (the number of single reader and associated tags topological entities).

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

PP
PP

PP
PP

PPPPP

P

000
000
000
000

 (10-105)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

RR
RR

RR
RR

RRRRR

R

000
000
000
000

 (10-106)

 170

Figure 10.33: Markov process for the multi-reader topological entity.

The energy consumption of the network using two different groups of entities. First, the

energy consumption of the network is calculated using the base entities and then summing the

energy consumed by each base entity together to obtain the energy consumed by the entire

network. The models developed for the base entities (single tag and single reader) are used for

each of the base entities in the double example network. Then, the energy consumption of the

network is computed using the single multi-reader topological entity, using the model developed

in Section 10.2.10. The parameters for the double size network are identical to those for the

single size network examined in Section 10.2. The parameters for the base entities in the double

size network correspond to those for the single size network. The parameters for tags 1 through

20 in the double size network are identical to those for tags 1 through 20 (Section 10.2.9) in the

single size network respectively. The parameters for tags 21 through 40 in the double size

network are identical to those for tags 1 through 20 (Section 10.2.9) in the single size network,

respectively. The double size network is created by duplicating the single size network and

connecting the two together. The duplicate network has the same parameters as the original

network. The parameters for readers 1 through 4 in the double size network are identical to those

for readers 1 through 4 (Section 10.2.9) in the single size network, respectively. Similarly, the

parameters for readers 5 through 8 in the double size network are identical to the parameters for

 171

readers 1 through 4 (Section 10.2.9) in the single size network, respectively. The energy

consumption for the double size network and execution time for each of the two methods is

presented and analyzed at the end of this section.

The quadruple network combines two double networks in a similar fashion with tags 21

and 22 connected to tags 58 and 59 in the other network and the basic communication graph of

the quadruple size network is shown in Figure 10.34.

The quadruple size network contains sixteen single reader and associated tags topological

entities. These sixteen single reader and associated tags topological entities can be combined

into a single multi-reader topological entity. With the single reader and associated tags

fundamental topological entity identified, existing algorithms can be used to identify the sixteen

single readers and associated tags topological entities in the quadruple size network shown in

Figure 10.34. These algorithms form the basis for CAD tools for integrated circuit design [46].

The sixteen single reader and associated tags topological entities in the quadruple size network

are shown in the following sixteen figures.

The first single reader and associated tags topological entity, TOP1, is centered around

reader R1, and is illustrated in Figure 10.35. The second single reader and associated tags

topological entity, TOP2, is centered around reader R2, and is illustrated in Figure 10.36. The

second single reader and associated tags topological entity, TOP3, is centered around reader R3,

and is illustrated in Figure 10.37. The second single reader and associated tags topological

entity, TOP4, is centered around reader R4, and is illustrated in Figure 10.38. The second single

reader and associated tags topological entity, TOP5, is centered around reader R5, and is

illustrated in Figure 10.39. The second single reader and associated tags topological entity,

TOP6, is centered around reader R6, and is illustrated in Figure 10.40. The second single reader

and associated tags topological entity, TOP7, is centered around reader R7, and is illustrated in

Figure 10.41. The second single reader and associated tags topological entity, TOP8, is centered

around reader R8, and is illustrated in Figure 10.42. The second single reader and associated

tags topological entity, TOP9, is centered around reader R9, and is illustrated in Figure 10.43.

The second single reader and associated tags topological entity, TOP10, is centered around

reader R10, and is illustrated in Figure 10.44. The second single reader and associated tags

topological entity, TOP11, is centered around reader R11, and is illustrated in Figure 10.45. The

second single reader and associated tags topological entity, TOP12, is centered around reader

 172

R12, and is illustrated in Figure 10.46. The second single reader and associated tags topological

entity, TOP13, is centered around reader R13, and is illustrated in Figure 10.47. The second

single reader and associated tags topological entity, TOP14, is centered around reader R14, and

is illustrated in Figure 10.48. The second single reader and associated tags topological entity,

TOP15, is centered around reader R15, and is illustrated in Figure 10.49. The second single

reader and associated tags topological entity, TOP16, is centered around reader R16, and is

illustrated in Figure 10.50.

Figure 10.34: Basic communication graph for the quadruple size example network (not to scale).

 173

Figure 10.35: Single reader and associated tags topology, TOP1, centered around reader R1 in the

quadruple size network.

Figure 10.36: Single reader and associated tags topology, TOP2, centered around reader R2 in the

quadruple size network.

Figure 10.37: Single reader and associated tags topology, TOP3, centered around reader R3 in the

quadruple size network.

 174

Figure 10.38: Single reader and associated tags topology, TOP4, centered around reader R4 in the

quadruple size network.

Figure 10.39: Single reader and associated tags topology, TOP5, centered around reader R5 in the

quadruple size network.

Figure 10.40: Single reader and associated tags topology, TOP6, centered around reader R6 in the

quadruple size network.

 175

Figure 10.41: Single reader and associated tags topology, TOP7, centered around reader R7 in the

quadruple size network.

Figure 10.42: Single reader and associated tags topology, TOP8, centered around reader R8 in the

quadruple size network.

Figure 10.43: Single reader and associated tags topology, TOP9, centered around reader R9 in the

quadruple size network.

 176

Figure 10.44: Single reader and associated tags topology, TOP10, centered around reader R10 in the

quadruple size network.

Figure 10.45: Single reader and associated tags topology, TOP11, centered around reader R11 in the

quadruple size network.

Figure 10.46: Single reader and associated tags topology, TOP12, centered around reader R12 in the

quadruple size network.

 177

Figure 10.47: Single reader and associated tags topology, TOP13, centered around reader R13 in the

quadruple size network.

Figure 10.48: Single reader and associated tags topology, TOP14, centered around reader R14 in the

quadruple size network.

Figure 10.49: Single reader and associated tags topology, TOP15, centered around reader R15 in the

quadruple size network.

 178

Figure 10.50: Single reader and associated tags topology, TOP16, centered around reader R16 in the

quadruple size network.

The quadruple size network shown in Figure 10.34 can be covered using the sixteen

single reader and associated tags topological entities shown in the previous sixteen figures. The

sixteen single reader and associated tags topological entities covering the quadruple size network

are shown in Figure 10.51. All sixteen readers are connected forming a fully connected mesh of

the 16 readers and associated tags topological entities.

The covering of the quadruple size entity by the sixteen single reader and associated tags

topological entities results in a fully connected mesh. Once a single reader and associated tags

topological entity is identified it is replaced with the topological entity reducing the order of the

basic communication graph. With the single reader and associated tags fundamental topological

entity identified existing algorithms can be used to search the basic communication graph to

identify these topological entities. These algorithms form the basis for CAD tools for integrated

circuit design [46]. The order of the quadruple size graph is reduced from the 96 base level

entities as shown in Figure 10.34 to 16 single reader and associated tags topological entities as

shown in Figure 10.51.

All of the connections are between the single reader and associated tags topological

entities in Figure 10.51 are not shown because showing all connections would prevent the figure

from being readable. This network can be reduced to a single multi-reader topological entity that

contains the eight single reader and associated topological entities (TOP1, TOP2, TOP3, TOP4,

TOP5, TOP6, TOP7, TOP8, TOP9, TOP10, TOP11, TOP12, TOP13, TOP14, TOP15, and

 179

TOP16) is shown in Figure 10.52. Again, once the multi-reader fundamental topological entity

is identified the basic communication graph can be searched for the multi-reader topological

entities. In this example, the 16 single reader and associated tags topological entities shown in

Figure 10.51 can be replaced with a single multi-reader topological entity as shown in Figure

10.52.

The tasks and the Markov process for the multi-reader topological entity is identical to

the Markov process developed for the multi-reader topological entity in Section 10.2.10 is shown

in Figure 10.53. The probability and reward matrices for the multi-reader topological entity are

shown below and are calculated from the sixteen single reader and associated tags topological

entities as described in Section 10.2.10. The probability matrix is computed by summing the

probability matrices for each of the sixteen single reader and associated tags topological entities

together and then dividing by sixteen (the number of single reader and associated tags

topological entities in the quadruple size network).

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

PP
PP

PP
PP

PPPPP

P

000
000
000
000

 (10-107)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

OOOR

WWWS

RRRS

IIIS

SOSWSRSISS

RR
RR

RR
RR

RRRRR

R

000
000
000
000

 (10-108)

 180

Figure 10.51: Covering of the quadruple size network with the sixteen single reader and associated tags

topological entities.

Figure 10.52: The double size network can be covered by a single multi-reader topological entity.

 181

Figure 10.53: Markov process for the multi-reader topological entity.

The energy consumption of the network using two different groups of entities. First, the

energy consumption of the network is calculated using the base entities and then summing the

energy consumed by each base entity together to obtain the energy consumed by the entire

network. The models developed for the base entities (single tag and single reader) are used for

each of the base entities in the quadruple example network. Then, the energy consumption of the

network is computed using the single multi-reader topological entity, using the model developed

in Section 10.2.10. The parameters for the quadruple size network are identical to those for the

single size network examined in Section 10.2. The parameters for the base entities in the

quadruple size network correspond to those for the single size network. The parameters for tags

1 through 20 in the quadruple size network are identical to those for tags 1 through 20 (Section

10.2.9) in the single size network respectively. The parameters for tags 21 through 40 in the

double size network are identical to those for tags 1 through 20 (Section 10.2.9) in the single size

network, respectively. Likewise, the parameters for tags 41 through 60 in the quadruple network

are identical to those for tags 1 though 20 (Section 10.2.9) in the single size network,

respectively. Again, the parameters for tags 61 through 80 in the quadruple network are identical

to those for tags 1 though 20 (Section 10.2.9) in the single size network, respectively. The

quadruple size network is created by duplicating the double size network and connecting the two

together. The duplicate network has the same parameters as the original network. The

 182

parameters for readers 1 through 4 in the quadruple size network are identical to those for readers

1 through 4 (Section 10.2.9) in the single size network, respectively. Similarly, the parameters

for readers 5 through 8 in the quadruple size network are identical to the parameters for readers 1

through 4 (Section 10.2.9) in the single size network, respectively. Likewise, the parameters for

readers 9 through 12 in the quadruple size network are identical to the parameters for readers 1

through 4 (Section 10.2.9) in the single size network, respectively. Again, the parameters for

readers 13 through 16 in the quadruple size network are identical to the parameters for readers 1

through 4 (Section 10.2.9) in the single size network, respectively. The energy consumption for

the quadruple size network and execution time for each of the two methods is presented and

analyzed at the end of this section.

The time required to calculate the energy consumption of the model using the base level

entities and using the multiple reader topological entities was found. Each model was executed

100 times in Matlab, and the execution time for all 100 evaluations was obtained. The average

time for a single evaluation is found by simply dividing the overall time by 100. Running each

model 100 times minimizes any effects on execution time resulting from start-up times and

context switches within the computing environment. The time to evaluate the single size

example network 100 times and the average time for one evaluation to determine the energy

consumed over one day are listed in Table 10.20. The time to evaluate the double size example

network 100 times and the average time to evaluate the energy consumption over 1 day is given

in Table 10.21. The time required to evaluate the quadruple size example network 100 times and

the average time for evaluation of the energy consumed by the network over 1 day is given in

Table 10.22.

Table 10.20: Time to evaluate the single size example networks.

Entity Time for 100 Evaluations

(seconds)

Average Time for 1

Evaluation (seconds)

Base Level Entities 1.881434 seconds 0.018814 seconds

Multi-Reader Topology 0.470980 seconds 0.004710 seconds

 183

Table 10.21: Time to evaluate the double size example networks.

Entity Time for 100 Evaluations

(seconds)

Average Time for 1

Evaluation (seconds)

Base Level Entities 3.670574 seconds 0.036706 seconds

Multi-Reader Topology 0.923373 seconds 0.009234 seconds

Table 10.22: Time to evaluate the quadruple size example networks.

Entity Time for 100 Evaluations

(seconds)

Average Time for 1

Evaluation (seconds)

Base Level Entities 7.286213 seconds 0.072862 seconds

Multi-Reader Topology 1.807628 seconds 0.018076 seconds

The time required to evaluate the three different size networks scales less than linear in

time. Evaluating the single size network using the multi-reader topological entity requires 4.7

ms (milliseconds), and the time required to evaluate the quadruple size network using the multi-

reader topological entity requires 18.0 ms (milliseconds). If the execution time of the method

scaled linearly with the size of the network, then the quadruple network should require 18.8 ms

(milliseconds) for evaluation, but it only requires 18.0 ms (milliseconds). Hence, the execution

time of the evaluation method scales less than linearly to the size of the network.

The percent difference, D, between the energy consumed by the network over one day

calculated using the base level entity model, EBase-Level, and the multi-reader topological entity

model, EMulti-Reader, is given by the following equation,

LevelBase

ReaderMultiLevelBase

−

−− −
=

E
EE

D (10-109)

 184

The energies consumed by the single, double, and quadruple size example networks as

well as the percentage difference, D, between the base level and multi-reader topological entity

models for each of the three cases are shown in Table 10.23.

Table 10.23: Energy consumption and percent differences between models for single, double, and

quadruple size example networks.

Size Entity Energy Consumed (mJ) Percent Difference

(%)

Base Level Entities 168213595.82 mJ Single

Multi-Reader Topological

Entity

161862122.37 mJ

3.7758 %

Base Level Entities 336647721.33 mJ Double

Multi-Reader Topological

Entity

341620256.48 mJ

1.4771 %

Base Level Entities 673448327.46 mJ Quadruple

Multi-Reader Topological

Entity

700046334.95 mJ

3.9495 %

The percent difference between the model using the base level entities and the model

using the multi-reader topological entity are within 4 % of each other in all three cases. Hence,

the method developed in this work is considered accurate.

 185

11.0 ZIGBEE NETWORK EXAMPLE

ZigBee is a network structure focusing on the connecting low-power wireless devices together to

form a network. ZigBee was created by a group of companies looking to develop a standard for

wireless low-power devices [63]. The ZigBee standard partitions the network into a number of

layers like the Open Systems Interconnection (OSI) standard [54]. ZigBee networks use IEEE

802.15.4 for the lowest two layers (PHY and MAC), and the ZigBee standard defines the upper

layers of the network [54, 64].

A ZigBee network is composed of three types of devices. The first, the ZigBee

coordinator, is the ZigBee implementation of the IEEE 802.15.4 personal area network (PAN)

coordinator [54]. There is only one PAN coordinator in an IEEE 802.15.4 network and the PAN

coordinator is responsible for controlling the network [64]. The second type of device found in a

ZigBee network is a ZigBee router which is an IEEE 802.15.4 Full-Function Device (FFD) that

is not acting as the ZigBee coordinator [54, 64]. The ZigBee coordinator is simply a ZigBee

router that has been selected to oversee the entire network. The final type of device in a ZigBee

network is the ZigBee end-device. The ZigBee end-device is analogous to the IEEE 802.15.4

Reduced-Function Device (RFD) and usually contains only a sensor, minimal control logic, and

a transceiver [54, 64]. A RFD can only communicate with a FFD, while a FFD can

communicate with other FFDs or with RFDs [64].

Two categories of topologies are defined by IEEE 802.15.4 and ZigBee, star topology

and the peer-to-peer topology [54, 64]. In the star topology, the PAN coordinator acts as the

central entity and devices can communicate directly with the PAN coordinator [64]. An example

of a ZigBee network arranged in a star topology with each device having a direct link to the PAN

coordinator is shown in Figure 11.1.

 186

Figure 11.1: Example of a ZigBee network arranged in a star topology.

In a peer-to-peer network there is still a PAN coordinator, and devices do not need to

have a direct connection to the PAN coordinator [64]. In a peer-to-peer topology, it is possible

for a device to communicate with the PAN coordinator using multi-hop communication through

a number of intermediate ZigBee routers (or FFDs in IEEE 802.15.4 terminology). An IEEE

802.15.4 peer-to-peer topology may contain a mesh, cluster, tree, single link topologies. The

entire peer-to-peer network may contain multiple topologies. An example of a ZigBee network

arranged using the peer-to-peer topology is shown in Figure 11.2. The RFDs (ZigBee end-

devices) must communicate with the PAN controller through FFDs (ZigBee routers).

Figure 11.2: Example of a ZigBee network arranged using the Peer-to-Peer topology.

 187

In this example case, the energy consumption of the following ZigBee network shown in

Figure 11.4 will be investigated. This example ZigBee network is arranged as a binary tree of

star topologies. The ZigBee coordinator is the root and communicates with two ZigBee routers.

Each ZigBee router connects to five ZigBee end-devices forming two star topologies. The

ZigBee end-devices are temperature sensors that periodically transmit their temperature reading

to the ZigBee router. The ZigBee routers may request the ZigBee end-devices to report their

temperature by sending a broadcast command to the ZigBee end-devices connected to them. The

top-level network shown in Figure 11.3 contains a single entity, the ZigBee tree topological

entity, representing the entities shown in Figure 11.4.

Figure 11.3: Top-level of the example ZigBee network, represented by a single ZigBee tree

topological entity.

The intermediate-level network, shown in Figure 11.4, resembles a binary tree with the

ZigBee coordinator (ZC) as the root and star topologies as the two children. This is an example

of using the top-down methodology to construct a network. First, the ZigBee tree topological

entity is deployed. Next the ZigBee tree topological entity is broken down into three entities the

ZigBee coordinator and two ZigBee star topological entities. Finally, the intermediate-level

depiction shown in Figure 11.4 will be reduced to the base entities as shown in Figure 11.5. The

example ZigBee network showing the deployment of base entities is shown in Figure 11.5 with

each base entity assigned an identifier (E denotes an end-device, C a coordinator, and R a

router).

 188

Figure 11.4: Intermediate-level depiction of the ZigBee network used in this example.

Figure 11.5: ZigBee network example case.

The ZigBee end-devices must perform two tasks, receive the take a reading command

from a ZigBee router, and take a temperature reading and then send that reading to the ZigBee

router periodically. The ZigBee router must perform three tasks. First, the ZigBee router must

receive, store, and average the temperature readings from the ZigBee end-devices. Second, the

ZigBee router must receive messages from the ZigBee coordinator and forward those requests to

the end-devices. In this example, the ZigBee coordinator only sends the message for the ZigBee

routers to request the ZigBee end-devices to take a temperature reading and report the results.

The third task that the ZigBee router performs is to transmit the average temperature to the

 189

ZigBee coordinator. The ZigBee coordinator must perform three tasks. The first task that the

ZigBee coordinator performs is to receive the average temperatures from the ZigBee routers.

Second, the ZigBee coordinator sometimes requires the temperature readings between periodic

reporting intervals and sends a command to the ZigBee routers requesting the temperature.

Third, the ZigBee controller transmits the temperature readings to the outside world for further

use.

11.1 ANALYSIS OF ENERGY CONSUMPTION USING BASE LEVEL ENTITIES

The energy consumption of the ZigBee network described in the previous section will be

evaluated by focusing on the energy consumption of each base level entity (ZigBee end-devices,

ZigBee routers, and ZigBee coordinators). This example assumes that there are no collisions

because the routers can assign the end-devices separate timeslots to transmit information, and

that all messages arrive at the destination without error. Markov processes with probability and

reward matrices will be developed to describe each of the three types of base entities and will

then be evaluated to determine the energy consumed by the network over the period of one day.

The components used in the ZigBee devices are listed in the following table, Table 11.1.

Table 11.1: Components used in the base entities in this example.

Component Function

MC13192 2.4 GHz Low Power IEEE 802.15.4 Transciever

ATmega128(L) Processor

LM70 Temperature Sensor

The ATmega128 process is assumed to operate at 4 MHz for the temperature sensors

(ZigBee end-devices) and at 8 MHz for the ZigBee routers and ZigBee coordinator. The

 190

temperature sensor, LM70, is found only in the ZigBee end-devices (temperature sensors). The

transceiver is used in all three entities.

11.1.1 Step 1: Identification of Base Level Entities

The base level entities in a ZigBee network are identified in the ZigBee standard. There are

three base level entities in a ZigBee network, the ZigBee coordinator, the ZigBee router, and the

temperature sensor (ZigBee end-device). These three base level entities are described in detail in

Section 11.0.

11.1.2 Step 2: Identification of Tasks of the Base Level Entities

The tasks of the three base level entities in the ZigBee example network are presented in this

section. This is step 2 in the algorithm. These tasks will be used to help identify the two ZigBee

star topological entities and the ZigBee tree topological entity during later steps in the algorithm.

The ZigBee end-devices must perform two tasks, receive the take a reading command

from a ZigBee router, and to take a temperature reading and then send that reading to the ZigBee

router periodically.

The ZigBee router must perform three tasks. First, the ZigBee router must receive, store,

and average the temperature readings from the ZigBee end-devices. Second, the ZigBee router

must receive messages from the ZigBee coordinator and forward those requests to the end-

devices. In this example, the ZigBee coordinator only sends the message for the ZigBee routers

to request the ZigBee end-devices to take a temperature reading and report the results. The third

task that the ZigBee router performs is to transmit the average temperature to the ZigBee

coordinator.

The ZigBee coordinator must also perform three tasks. The first task that the ZigBee

coordinator performs is to receive the average temperatures from the ZigBee routers. Second,

the ZigBee coordinator sometimes requires the temperature readings between periodic reporting

intervals and sends a command to the ZigBee routers requesting the temperature. Third, the

ZigBee controller transmits the temperature readings to the outside world for further use.

 191

11.1.3 Step 3: Development of the Markov Process, Probability and Rewards Matrices for

the Base Level Entities

The Markov processes and expressions for the probability and rewards matrices are presented for

each of the three base level entities of the ZigBee example in this section. This is step 3 in the

algorithm. The Markov processes and expressions for the probability and rewards matrices for

the temperature sensor entity are presented in Section 11.1.4. The Markov processes and

expressions for the probability and rewards matrices for the ZigBee router entity are presented in

Section 11.1.5. The Markov processes and expressions for the probability and rewards matrices

for the ZigBee coordinator entity are presented in Section 11.1.6. The energy consumption for

each base level entity is calculated and presented in these sections. The energy consumption will

be used to determine the energy consumed by the entire network using the base level entities and

will be compared to the energy consumption found using the topological entities developed in

later sections.

11.1.4 Step 3 for the Temperature Sensor

The ZigBee end-devices in this network consist entirely of temperature sensors. These

temperature sensors periodically take a temperature reading and report that reading to the ZigBee

router they communicate with. These readings are taken without any explicit command from the

ZigBee routers. However, the network may need a temperature reading between the periodic

intervals. In this case the ZigBee routers issue a command instructing the temperature sensors to

take a temperature reading. Upon receiving this command, the temperature sensors take and

transmit the temperature reading to the ZigBee router to which they are attached. The Markov

process describing the temperature sensor ZigBee end-device is shown Figure 11.6.

 192

Figure 11.6: Markov process for the temperature sensor ZigBee end-device.

The probability and reward matrices are as follows:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000
000

000
0

TI

ST

RS

ISIRII

P
P

P
PPP

P (11-1)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000
000

000
0

TI

ST

RS

ISIRII

R
R

R
RRR

R (11-2)

The probabilities for those transitions originating in state I are found first. The time

required to receive the whole ZigBee preamble is denoted as, TPreamble. The preamble is defined

as a 4 byte sequence in the ZigBee and IEEE 802.15.4 standard [54, 64]. The time required to

check the device’s counters to determine if it is time to take a periodic temperature reading also

requires, TPreamble, seconds. Hence, the period of one day can be broken up into, T, intervals of,

TPreamble, seconds.

 193

()
Preamble

Day One in Seconds
T

T = (11-3)

Each temperature sensor receives, MRouter, messages from the router requesting a

temperature reading per day. Hence, the probability that the temperature sensor transitions into

state R, to receive a message from the ZigBee router, PIR, is given by the following equation.

T
MPIR

Router= (11-4)

The temperature sensor also automatically takes a temperature reading every, TReading,

seconds. The number of readings that the temperature sensor takes automatically per day, TAuto,

is given by the following equation.

()

Reading
Auto

Day One in Seconds
T

T = (11-5)

The probability that the temperature sensor must take a temperature reading

automatically, PIS, is given below.

T
TPIS

Auto= (11-6)

It is assumed that, (TAuto + MRouter) < T, is always true. The probability that the

temperature sensor remains idle, PII, is simply,

(IRISII PPP +−= 1) (11-7)

The remaining probabilities are 1, thus,

1=== TISTRS PPP (11-8)

 194

The reward value for each the transition is now found. In the idle state, state I, the

temperature sensor is dormant. In state I, only the processor and receiver are active, while the

transmitter and temperature sensor are dormant. The temperature sensor receives the message

sent from the ZigBee router in state R. When in state R, only the processor and receiver must be

active, no other components are required to be active. While the temperature sensor is taking a

temperature reading, the processor and temperature sensor must be active, while the receiver and

transmitter can be turned off. Finally, in the transmitting reply state, state T, only the transmitter

and processor must be active, and the receiver must be turned on when leaving state T, so that

the temperature sensor is ready to receive a message in state I.

The power consumed when the receiver and processor are active is denoted as, PWPR.

The power consumption of the other components in sleep mode is also included unless otherwise

mentioned. The reward for the temperature sensor to remain in state I, RII, is given by the

following equation.

PRII PWTR *Preamble= (11-9)

When a ZigBee preamble is detected the temperature sensor does not need to activate or

power down any additional components, hence the reward for transitioning from state I to state

R, RIR, is equal to, RII.

PRIIIR PWTRR *Preamble== (11-10)

When it is time for the temperature sensor to take an automatic temperature reading, the

receiver can be powered down while the temperature sensor must be activated. The receiver can

be powered down almost instantaneously, while the temperature sensor requires, TTSWakeUp, to

wake up. The power consumption of the temperature sensor, with only the processor and

temperature sensor active, is denoted by, PWPS. Thus, the reward for the I to S transition, RIS, is,

PSPRIS PWTPWTR ** TSWakeUpPreamble += (11-11)

 195

The only message that the ZigBee router sends to the temperature sensors is the request

for a reading command. Hence, all messages from the ZigBee router are the same length

denoted by, LRMsg. The ZigBee message consists of take a reading command requiring, LReadCmd,

bytes. In this example, LReadCmd, is 1 byte. All messages received by the temperature sensor are

within the same PAN so intra-PAN message formats and short addresses will be used. The

overhead of the ZigBee data frame minus the preamble, LOverhead, is 15 bytes [64]. Thus, the

length of a ZigBee message, minus the preamble (as that is detected in the I to R transition),

LRMsg, is 16 bytes. The time to receive one byte of a ZigBee message is denoted as, TByte-RX.

The energy consumed to receive the router’s message and to wake-up the temperature sensor,

RRS, is given by the following equation.

PSPRRMsgRS PWTPWTLR *** TSWakeUpRXByte += − (11-12)

The time required to take and process a temperature reading is denoted as, TTemp. The

time required to process the reading includes the time to obtain the reading from the temperature

sensor, TR-Temp, and the time to process the reading, TProc. The time to process the reading, TProc,

can be obtained by dividing the number of instructions, Ni, required to process the reading by the

number of instructions per second the processor can perform, Ci. Hence, TProc, is,

i

i

C
NT =Proc (11-13)

TTemp, is then simply,

TempRProcTemp −+= TTT (11-14)

The transmitter must also be wakened, and this requires time, TWake-TX. The power

consumption with the processor and transmitter active and the other components dormant is

denoted by, PWPT. Hence, the energy consumed to take and process the temperature reading,

RST, is,

 196

PSPTST PWTPWTR ** TempTXWake += − (11-15)

The length of the preamble, LPreamble, is 4 bytes. The length of the data message,

excluding the preamble, containing the temperature reading is denoted as, LTMsg. The message

contains, LTempOver, bytes of overhead. The overhead, LTempOver, for a data message is 15 bytes

(excluding the 4 byte preamble sequence) [64]. The data portion of the message consists of the

temperature reading, requiring, LTData, bytes. In this example, LTData, is assumed to be 4 bytes.

Hence, LTMsg, is,

TDataTempOverTMsg LLL += (11-16)

The time to transmit one byte of the message in ZigBee is denoted as, TByte-TX, and the

time for the receiver to wake-up is denoted as, TWake-RX. It is assumed that the transmitter can be

powered down almost instantaneously. Hence, the energy consumed by the temperature sensor

to transmit a temperature reading, RTI, is,

() PTPRTI PWTLLPWTR *** TX-BytePreambleTMsgRXWake ++= − (11-17)

The LM70 temperature sensor operates at 2.65 V, drawing 12 μA (mico-Amps) when

shutdown and 260 μA (micro-Amps) when active [65]. The LM70 requires 210 ms (milli-

seconds) to take a reading and can wake-up time is included in the time to take a reading [65].

The ATmega128L operates at 3 V when the clock frequency is 4 MHz and draws 5.5 mA (milli-

Amps) of current [61]. The Freescale transceiver operates at 2.7 V and draws 37 mA (milli-

Amps) when receiving; 30 mA (milli-Amps) when transmitting; and 500 μA (micro-Amps)

when idle [66]. The transceiver requires 144 μs (micro-seconds) to wake-up the transmitter or

receiver [66]. The parameters used to evaluate the energy consumption of the temperature

sensor ZigBee end-devices are listed in Table 11.2. The energy consumption of each of the

temperature sensors over one day in the example network using the parameters in Table 11.2 are

listed in Table 11.3.

 197

Table 11.2: Parameters for evaluation for the energy consumption of the temperature sensor.

Parameter Value

Milliseconds in One Day 86,400,000 milliseconds / day

ZigBee Operational Frequency 2.4 GHz

TByte-TX 0.032 ms

TPreamble 0.128 ms

MRouter – Temperature sensors connected to R1 48

MRouter – Temperature sensors connected to R2 48

TReading 180 seconds

PWPR 116.4318 mW

PWPS 18.5390 mW

TTSWakeUp 0 ms

LRMsg 16 Bytes

TByte-RX 0.032 ms

Ni 1000 instructions

Ci 4 MHz

TProc 0.25 ms

TR-Temp 210 ms

TTemp 210.25 ms

TWake-TX 0.144 ms

PWPT 97.5318 mW

LTempOver 15 Bytes

LTData 4 Bytes

LTMsg 19 Bytes

TWake-RX 0.144 ms

T 2,700,000,000

LPreamble 4 Bytes

 198

Table 11.3: Energy consumption of the temperature sensors in the example network over 1 day.

Temperature

Sensor

Energy Consumed (mJ) Temperature

Sensor

Energy Consumed (mJ)

E1 10048845.49 mJ E6 10048845.49 mJ

E2 10048845.49 mJ E7 10048845.49 mJ

E3 10048845.49 mJ E8 10048845.49 mJ

E4 10048845.49 mJ E9 10048845.49 mJ

E5 10048845.49 mJ E10 10048845.49 mJ

11.1.5 Step 3 for the ZigBee Router

The two ZigBee routers in the example network must collect temperature readings from the

temperature sensors with which they communicate. After, all the temperature readings have

been received, the ZigBee router computes the average temperature and sends it to the ZigBee

coordinator. The ZigBee router must also listen for the message from the ZigBee coordinator to

take a temperature reading between reporting intervals. Upon receiving this message from the

ZigBee coordinator, the ZigBee router must broadcast the request to the temperature sensors that

it is responsible for causing the temperature sensors to take and transmit their temperature

readings to the ZigBee router. The Markov process describing the ZigBee router is shown in

Figure 11.7. The probability and reward matrices have the following form.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000
00000

0000
00000
0000
0000

TI

AT

PAPI

BI

RPRB

IRII

P
P

PP
P

PP
PP

P (11-18)

 199

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000
00000

0000
00000
0000
0000

TI

AT

PAPI

BI

RPRB

IRII

R
R

RR
R

RR
RR

R (11-19)

Figure 11.7: Markov process for a ZigBee router.

The probability for those transitions originating in state I are found first. The time

required to receive the whole ZigBee preamble is denoted as, TPreamble. The preamble is defined

as a 4 byte sequence in the ZigBee and IEEE 802.15.4 standard [54, 64]. The time required to

check the device’s counters to determine if it is time to take a periodic temperature reading also

 200

requires, TPreamble, seconds. Hence, the period of one day can be broken up into, T, intervals of,

TPreamble, seconds.

()

Preamble

Day One in Seconds
T

T = (11-20)

Each router communicates with, NT, temperature sensor end-devices. Each temperature

sensor transmits temperatures readings automatically at a frequency of, FReading, resulting in,

MReading, temperature readings per day from one temperature sensor.

() ReadingReading *Day One in Seconds FM = (11-21)

Each router receives, MCoord, messages from the coordinator requesting a temperature

reading between reporting intervals per day. Each of the, MCoord, messages causes additional

readings to be received by the router. The number of readings received by the router due to,

MCoord, messages, MRead-C, is,

TNM *MCoordC-Read = (11-22)

The total number of messages received by the router is denoted as, MTotal.

CoordCReadReadingTotal * MMMNM T ++= − (11-23)

Hence, the probability that the router transitions into state R, to receive a message from

the ZigBee coordinator, PIR, is given by the following equation.

T
MPIR

Total= (11-24)

 201

It is assumed that, MTotal < T; otherwise if, MTotal > T, then such a network could not exist

because there are more messages than time permits. The probability that a preamble is not

detected, PII, is simply,

IRII PP −= 1 (11-25)

After the preamble is detected the message may be either a temperature reading, or a

request from the ZigBee coordinator to take a reading. The probability that message is a

temperature reading from one of the temperature sensors, PRP, is,

Total

CReadReading*
M

MMN
P T

RP
−+

= (11-26)

The probability that the message is a request for the temperature from the ZigBee

coordinator is,

RPRB PP −= 1 (11-27)

The probability that the last reading has been received, PPA, is simply,

T
PA N

P 1
= (11-28)

The probability that there are more readings left, PPI, is simply,

PAPI PP −= 1 (11-29)

The remaining transition probabilities are all 1.

1=== TIATBI PPP (11-30)

 202

The reward value for each transition denotes the energy consumed for the task

represented by the transition. The router, in state I, is waiting for a preamble indicating a

message is present. To monitor for the preamble, the processor and receiver must be active, and

all other components (transmitter) are dormant, but the power consumed in the dormant state is

included unless otherwise mentioned. While receiving a message or while processing a reading

only the receiver and processor must be active. When the average of the temperature readings is

being calculated only the processor must be active. When transmitting the average temperature

or broadcasting the temperature reading request command, only the processor and transmitter

must be active, the receiver can be dormant.

The power consumed when the receiver and processor are active is denoted as, PWPR.

The reward for the router to remain in state I, RII, is given by the following equation.

PRII PWTR *Preamble= (11-31)

When a ZigBee preamble is detected, the router does not need to activate or power down

any additional components, hence the reward for transitioning from state I to state R, RIR, is

equal to, RII.

PRIIIR PWTRR *Preamble== (11-32)

The router can receive two messages, the request for a reading from the ZigBee

coordinator or the temperature reading from a single temperature sensor. The only message that

the ZigBee coordinator sends to the router is to request a reading. Hence, all messages from the

ZigBee coordinator are the same length denoted by, LCMsg. The ZigBee message consists of the

take a reading command, requiring, LReadCmd, bytes. In this example, LReadCmd, is 1 Byte. All

messages in this example are within the same PAN so intra-PAN message formats and short

addresses will be used. The overhead of the ZigBee data frame, LOverhead, is 15 bytes (preamble

is excluded) [64]. Thus, the length of a ZigBee message, minus the preamble (as that is detected

in the I to R transition), LCMsg, is 16 bytes. The length of the preamble, LPreamble, is 4 bytes. The

time to receive one byte of a ZigBee message is denoted as, TByte-RX.

 203

The time required to process a request for a temperature reading is denoted as, TP-Req.

The time to process the reading, TP-Req, can be obtained by dividing the number of instructions,

Ni-Req, required to process the reading by the number of instructions per second the processor can

perform, Ci-Req. Hence, TP-Req, is,

Req-

Req-
Req-P

i

i

C
N

T = (11-33)

The power consumed when only the processor is active is denoted as, PWP. Hence, the

energy consumed to receive the request for a temperature reading from the ZigBee coordinator,

RRB, is,

PPRCMsgRB PWTPWTLR *** ReqPRXByte −− += (11-34)

After receiving the request for a reading from the ZigBee coordinator, the router must

broadcast that request to the temperature sensors for which it is responsible. The transmitter

must also be wakened and this requires that time, TWake-TX. The power consumption with the

processor and transmitter active and the other components dormant is denoted by, PWPT. The

time for the receiver to wake-up is denoted as, TWake-RX. It is assumed that the transmitter and

receiver can be powered down almost instantaneously. The energy consumed to broadcast the

reading request, RBI, is,

()() PTPRBI PWTLLTPWTR *** TX-BytePreambleCMsgTXWakeRXWake +++= −− (11-35)

The length of the data message containing the temperature reading is denoted as, LTMsg.

The message contains, LTempOver, bytes of overhead. The overhead, LTempOver, for a data message

is 15 bytes (excluding the 4 byte preamble sequence) [64]. The data portion of the message

consists of the temperature reading, requiring, LTData, bytes. In this example, LTData, is assumed

to be 4 bytes. Hence, LTMsg, is,

 204

TDataTempOverTMsg LLL += (11-36)

The energy consumed to receive a temperature reading from a temperature sensor, RRP,

is,

PRTMsgRP PWTLR ** RXByte−= (11-37)

The time required to process a temperature reading and determine if all temperature

readings have been received or if more are expected is denoted as, TProc. The time to process the

reading, TProc, can be obtained by dividing the number of instructions, Ni, required to process the

reading by the number of instructions per second the processor can perform, Ci, (this is simply

the clock frequency). Hence, TProc, is,

i

i

C
NT =Proc (11-38)

Therefore, the energy consumed to determine if there are more temperature readings to

receive, RPI, is,

PRPI PWTR *Proc= (11-39)

The same processing must be done on the message to determine if that received reading

is the last reading. Thus, the energy consumed to determine that a reading is the last reading,

RPA, is equal to, RPI.

PIPA RR = (11-40)

The time required to compute the average of the temperature readings, TAvg, can be found

using (11-38) with the appropriate value for, Ni, and Ci, for calculating the average temperature.

Therefore, the energy consumed to determine if there are more temperature readings to receive,

RAT, is,

 205

PAT PWTR *Avg= (11-41)

The length of the message containing the average temperature is the same as that

containing a temperature reading, LTMsg, because the size of the temperature data field is kept the

same so as not to lose any precision. The time to transmit one byte of the message in ZigBee is

denoted as, TByte-TX, and the time for the receiver to wake-up is denoted as, TWake-RX. It is

assumed that the transmitter can be powered down almost instantaneously.

()() PTPRTI PWTTLLPWTR *** TXWakeTX-BytePreambleTMsgRXWake −− +++= (11-42)

The Atmega128 processor with a clock speed of 8 MHz operates at 5 V and draws 19 mA

(milli-Amps) of current [61]. The parameters used to evaluate the energy consumption of the

temperature sensor ZigBee end-devices are listed in Table 11.4. The energy consumption of

each of the routers over one day in the example network using the parameters in Table 11.4 are

listed in Table 11.5.

 206

Table 11.4: Parameters for evaluation for the energy consumption of the router.

Parameter Value
Milliseconds in One Day 86,400,000 milliseconds / day

ZigBee Operational Frequency 2.4 GHz
TByte-TX 0.032 ms
TPreamble 0.128 ms
TReading 180 seconds
PWPR 194.9 mW
LRMsg 16 Bytes

TByte-RX 0.032 ms
Ni 1500 instructions
Ci 8 MHz

TProc 0.25 ms
TWake-TX 0.144 ms
PWPT 176 mW

LTempOver 15 Bytes
LTData 4 Bytes
LTMsg 19 Bytes

TWake-RX 0.144 ms
MCoord 48
FReading 0.0056 Readings per second

NT 5
MRead-C 240
MTotal 720
TAVG 0.1875 ms
PWP 95 mW

MReading 480 readings per day
T 2,700,000,000

LPreamble 4 Bytes
Ni-Req 1000
Ci-Req 8 MHz
TP-Req 0.1250 ms

Table 11.5: Energy consumption of the routers in the example network over 1 day.

Router Energy Consumption (mJ)

R1 16839340.02 mJ

R2 16839340.02 mJ

 207

11.1.6 Step 3 for the ZigBee Coordinator

The ZigBee coordinator is responsible for controlling the PAN. The coordinator receives

temperature readings from the attached routers, and forwards those readings to the outside world.

The coordinator also receives requests for temperature readings from the outside world causing

the coordinator to request the temperature readings from the routers it is responsible for. The

Markov process for the ZigBee coordinator is shown in Figure 11.8.

The coordinator in the idle state, I, is waiting for an incoming message. The coordinator

upon detecting the preamble will transition into state R to receive the message. The message

may be a temperature reading or a request for the temperature reading from the outside world. If

the message is a temperature reading, the coordinator will transition into state P, and if the

message is a request for the temperature the coordinator will transition into state D. The

coordinator processes the received temperature request message or temperature reading message

in states D and P respectively. The coordinator will forward the temperature reading to the

outside world in state W and then return to state I. Similarly, if the message is a request for the

temperature, the coordinator will broadcast the temperature request to the ZigBee routers. This

will cause the routers to request and obtain the temperature readings from the temperature

sensors and then transmit the average temperature to the coordinator. The probability and

reward matrices have the following form.

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000
00000
00000
00000

0000
0000

DB

BI

WI

PW

RDRP

IRII

P
P
P

P
PP

PP

P (11-43)

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

00000
00000
00000
00000

0000
0000

DB

BI

WI

PW

RDRP

IRII

R
R
R

R
RR

RR

R (11-44)

 208

Figure 11.8: Markov process for the ZigBee coordinator.

The probability for those transitions originating in state I are found first. The time

required to receive the whole ZigBee preamble is denoted as, TPreamble. The preamble is defined

as a 4 byte sequence in the ZigBee and IEEE 802.15.4 standards [54, 64]. The time required to

check the device’s counters to determine if it is time to take a periodic temperature reading also

requires, TPreamble, seconds. Hence, the period of one day can be broken up into, T, intervals of,

TPreamble, seconds.

()

Preamble

Day One in Seconds
T

T = (11-45)

 209

Each coordinator communicates with, NR, ZigBee routers. Each router transmits the

average temperature in response to automatic readings by the temperature sensors at a frequency

of, FReading, resulting in, MReading, average temperature readings per day from one router.

() ReadingReading *Day One in Seconds FM = (11-46)

Each coordinator receives, MOUT, messages from the outside world requesting a

temperature reading between reporting intervals per day. Each of the, MOUT, messages causes

one additional average temperature reading to be received by the coordinator from each router

that the coordinator is attached to. Thus, the number of readings received by the coordinator due

to the, MOUT, messages, MRead-O, is,

RNM *MOUTO-Read = (11-47)

The total number of messages received by the router is denoted as, MTotal, is,

OUTORead
1

xReadingTotal MMMM
RN

x
++= −

=
∑ (11-48)

The number of periodic reports from each router connected to the coordinator is,

MReadingx, and there are, NR, routers connected to the coordinator. Hence, the probability that the

coordinator transitions into state R, to receive a message from the ZigBee router or the outside

world, PIR, is given by the following equation.

T
MPIR

Total= (11-49)

The probability that a preamble is not detected and the coordinator stays in the idle state,

PII, is simply,

 210

IRII PP −= 1 (11-50)

The probability that the message is from the a temperature reading from the router is,

Total

ORead
1

xReading

M

MM
P

RN

x
RP

−
=

+
=

∑
 (11-51)

The probability that the message is a request for the temperature from the ZigBee

coordinator is,

RPRD PP −= 1 (11-52)

The remaining probabilities are all 1, therefore,

1==== WIPWBIDB PPPP (11-53)

The reward values represent the energy consumption of coordinator for the task

represented by each transition in the Markov process for the coordinator shown in Figure 11.8.

The coordinator in the idle state is simply waiting for a preamble indicating the start of an

incoming message. Only the processor and receiver must be active in this state. While receiving

a message in state R, only the processor and receiver must be active. When processing either

message, the receiver can be powered down. Thus, only the processor is active in states D and P.

When transmitting the average temperature to the outside world, state W, or broadcasting the

request, state B, only the transmitter and processor are active.

The power consumed when the receiver and processor are active is denoted as, PWPR.

The reward for the coordinator to remain in state I, RII, is given by the following equation.

PRII PWTR *Preamble= (11-54)

 211

When a ZigBee preamble is detected the coordinator does not need to activate or power

down any additional components. Hence, the reward for transitioning from state I to state R, RIR,

is equal to, RII.

PRIIIR PWTRR *Preamble== (11-55)

The coordinator can receive two messages, the request for a reading from the outside, or

the temperature reading from a router. A request for a temperature reading originates outside the

PAN managed by the coordinator. Hence, the inter-PAN message format and long addresses are

used. The command to request the temperature, LReadCmd, is 1 byte. The message overhead is,

LOverhead-O, is 29 bytes (preamble is excluded). The length of the entire message, LOUT, is 30

bytes.

ReadCmdOOverheadOUT LLL += − (11-56)

The time to receive or transmit one byte of a ZigBee message is denoted as, TByte-RX.

Hence, the energy consumption to receive a request for the temperature from the outside world,

RRD, is,

PROUTRD PWTLR ** RXByte−= (11-57)

The temperature reading is 4 bytes. Hence the length of the average temperature reading

message received from a router, LAvg-Temp, is 19 bytes (preamble is excluded). Therefore, the

energy consumed to receive an average temperature reading from the router, RRP, is,

PRRP PWTLR ** RXByteTempAvg −−= (11-58)

The coordinator must process both the reading and the request for a temperature reading

messages. The time required process a temperature reading is denoted as, TP-Read, and the time

required to process the request for a temperature reading is denoted as, TP-Req. The time to

 212

process the reading, TP-Read, can be obtained by dividing the number of instructions, Ni-Read,

required to process the reading by the number of instructions per second the processor can

perform, Ci-Read. Hence, TP-Read, is,

Readi

Readi
Read-P

−

−=
C
NT (11-59)

Similarly, the time to process the reading, TP-Req, can be obtained by dividing the number

of instructions, Ni-Req, required to process the reading by the number of instructions per second

the processor can execute, Ci-Req. Hence, TP-Req, is,

Reqi

Reqi
Req-P

−

−=
C
N

T (11-60)

Since, only the processor needs to be active, the power consumption of the coordinator

with only the processor active is denoted by, PWP. Therefore, the energy consumed to process a

temperature reading, RPW, is,

PPW PWTR *Read-P= (11-61)

Similarly, the energy consumed by processing the request for a temperature reading

message, RDB, is,

PDB PWTR *Req-P= (11-62)

After receiving the request for a reading from the outside world, the coordinator must

broadcast that request to the routers to which it is connected. The only message that the ZigBee

coordinator sends to the routers is the request a temperature reading command. Hence, all

messages sent by the ZigBee coordinator are the same length, denoted by, LRMsg. The ZigBee

message consists of take a reading command requiring, LReadCmd, bytes. In this example,

LReadCmd, is 1 byte. This message is sent within the same PAN so the intra-PAN message format

 213

and short addresses will be used. The overhead of the ZigBee data frame, LOverhead, is 15 bytes

(excluding the preamble) [64]. Thus, the length of a ZigBee message, minus the preamble,

LRMsg, is 16 bytes. The length of the preamble, LPreamble, is 4 bytes. The transmitter must also be

woken up, requiring time, TWake-TX. The power consumption with the processor and transmitter

active and the other components dormant is denoted by, PWPT. The time for the receiver to

wake-up is denoted as, TWake-RX. It is assumed that the transmitter and receiver can be powered

down almost instantaneously. The energy consumed to broadcast the reading request, RBI, is,

()() PTPRBI PWTTLLPWTR *** TXWakeTX-BytePreambleRMsgRXWake −− +++= (11-63)

Just like the request for a temperature reading message, the average temperature reading

that is sent to the outside world is sent to another PAN so the inter-PAN format and long

addresses are used. The average temperature reading, LTemp-Avg, is 4 bytes. The message

overhead is, LOverhead-O, is 29 bytes (preamble is excluded). The length of the entire message,

LTemp-TX, is 34 bytes.

PreambleAvg-TempOOverheadTX-Temp LLLL ++= − (11-64)

Hence, the energy consumed to transmit the average temperature to the outside world and

to activate the receiver, RWI, is,

() PTPRWI PWTTLPWTR *** TXWakeTX-ByteTX-TempRXWake −− ++= (11-65)

The parameters used to evaluate the energy consumption of the temperature sensor

ZigBee end-devices are listed in Table 11.6. The energy consumption of each of the coordinator

over one day in the example network using the parameters in Table 11.6 are listed in Table 11.7.

 214

Table 11.6: Parameters for evaluation for the energy consumption of the coordinator.

Parameter Value
Milliseconds in One Day 86,400,000 milliseconds / day
ZigBee Operational Frequency 2.4 GHz
TByte-TX 0.032 ms
TPreamble-Detect 0.128 ms
TReading 180 seconds
PWPR 194.9 mW
LRMsg 16 Bytes
TByte-RX 0.032 ms
Ni-Read 1000 instructions
Ci-Read 8 MHz
TP-Read 0.1250 ms
TWake-TX 0.144 ms
PWPT 176 mW
LTempOver 15 Bytes
LTData 4 Bytes
LAvg-Temp 19 Bytes
TWake-RX 0.144 ms
MOUT 48
FReading 0.0056 Readings per second
NT 5
MRead-O 240
MTotal 720
TAVG 0.1875 ms
PWP 95 mW

∑
=

RN

x
M

1
xReading

960

NR 2
T 2,700,000,000
LOUT 30 Bytes
LOverhead-O 29 Bytes
LReadCmd 1 Byte
Ni-Req 5000 instructions
Ci-Req 8 MHz
TP-Req 0.6250 ms
LTemp-Avg 4 Bytes
LTemp-TX 37 Bytes
LPreamble 4 Bytes

 215

Table 11.7: Energy consumption of the coordinator in the example network over 1 day.

Router Energy Consumption (mJ)

C1 16839316.60 mJ

The total energy consumed by the network over one day is obtained by summing the

energy consumption of all 10 temperature sensors, the 2 routers, and the coordinator. The energy

consumption of the entire network over 1 day is, 151006451.54 mJ.

11.1.7 Step 4: Identification of Interactions between Base Level Entities

The interactions between the base level entities is determined in this section and will be used in

the following section to identify the ZigBee star topological entities in the network. This is step

4 in the algorithm. Each temperature sensor communicates with exactly one ZigBee router. The

ZigBee routers communicate with the ZigBee coordinator. Hence, all messages for the

temperature sensors from the ZigBee coordinator must go through one of the ZigBee routers.

Likewise, any message for the temperature sensor from the ZigBee coordinator must travel

through a ZigBee router. Further, the temperature sensors must report their temperature reading

to the router periodically or upon request.

11.1.8 Step 5: Identification of the ZigBee Star Topological Entity

In step 5 of the algorithm, the topological entities are identified based on the tasks and

interactions of the base level entities. The two ZigBee star topological entities are identified

based on the tasks defined in Section 11.1.2 and the interactions identified in Section 11.1.7.

The ZigBee routers and attached temperature sensors can be thought of as a single unit because

they work together to perform the tasks in the network. Thus, the two stars constructed around

the two routers in the example network can be represented by a single star topological entity.

There are a total of twelve base-level entities in the two star networks. By representing each star

 216

network with a single star topological entity, the number of entities that must be evaluated for

those two star networks is reduced from twelve to two. The first of the star topologies, TOPS1, is

constructed around router, R1, and is shown in Figure 11.9. The second of the star topologies,

TOPS2, is constructed around router, R2, and is shown in Figure 11.10.

Figure 11.9: ZigBee base entities contained in topological entity TOPS1.

Figure 11.10: ZigBee base entities contained in topological entity TOPS2.

With the ZigBee star fundamental topological entity defined, existing algorithms can be

used to search the basic communication graph for the ZigBee star topological entities. These

algorithms form the basis for CAD tools for integrated circuit design [46]. The two ZigBee star

topological entities (TOPS1 and TOPS2) identified in this example are shown in Figure 11.9 and

 217

Figure 11.10, above. Employing the two ZigBee star topological entities the network can be

covered using three entities, the ZigBee coordinator and the two ZigBee star topological entities

(TOPS1 and TOPS2) and this is shown in Figure 11.11. Thus, the order (number of Markov

processes) of the ZigBee example network is reduced from 13 as shown in Figure 11.5 to 3 as

shown in Figure 11.11.

Figure 11.11: Covering of the ZigBee example network using the two ZigBee star topological entities

(TOPS1 and TOPS2).

11.1.9 Step 6: Identification of the Tasks of the ZigBee Star Topological Entity

The tasks of the ZigBee star topological entity are identified in this section. This is step 6 of the

algorithm. These tasks will be used to help identify the ZigBee tree topological entity. The

ZigBee star topological entity must take periodic temperature readings and provide the average

temperature reading to the ZigBee coordinator. The ZigBee star topology must also take

temperature readings in response to requests from the ZigBee coordinator for such readings.

Again, the ZigBee star topological entities must average the readings and send the average

reading to the ZigBee coordinator.

 218

11.1.10 Step 7: Development of the Markov Process for the ZigBee Star Topological

Entity

In step 7 of the algorithm the Markov process for the topological entity is constructed and

expressions for the probability and rewards matrices are found. The Markov process for the

ZigBee star topological entity and expressions for the probability and rewards matrices are

developed in this section. The tasks identified in Section 11.1.9 form the basis for development

of the Markov process in this section. The energy consumed by each star topological entity as

well as the ZigBee coordinator is determined too. The energy consumption is used to determine

the accuracy of the ZigBee star topological entities to the results using all the base level entities.

The operation of each star topological entity is described by the Markov process shown in Figure

11.12.

The probability and reward matrices have the following form.

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000
000
000

TI

CI

RI

ITICIRII

P
P
P

PPPP

P (11-66)

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

000
000
000

TI

CI

RI

ITICIRII

R
R
R

RRRR

R (11-67)

As stated in the previous section, the star topology performs three basic tasks; receive a

temperature reading; receive a message from the ZigBee coordinator; and calculate the average

temperature and transmit the average temperature reading to the ZigBee coordinator.

 219

Figure 11.12: Markov process describing the star topological entity.

There are, NT, temperature sensors contained in each of the star topologies. Each of the,

NT, temperature sensors periodically takes a temperature reading and sends that reading to the

router with a frequency of, FReading. The total number of readings sent by one temperature sensor

per day, MReading, is,

() ReadingReading *Day One in Seconds FM = (11-68)

Thus, the total number of periodic temperature readings sent to the router per day,

MTotal-Periodic, is the sum of the number of periodic readings for each temperature sensor in the

topology,

ReadingPeriodicTotal * MNM T=− (11-69)

 220

The router receives, MReq, requests for a temperature reading from the ZigBee

coordinator per day. Each request for a temperature reading causes, all, NT, temperature sensors

to take and send a temperature reading to the router. Hence, the number of temperature readings

received by the router due to requests, MReq-Reads, is,

TNMM *ReqReadReq =− (11-70)

The router collects the temperature readings from all attached temperature sensors and

then calculates the average temperature. The average temperature is transmitted to the ZigBee

coordinator. By sending only the average temperature rather than all temperature readings, the

number of messages is reduced lowering energy consumed for transmitting and reducing

collisions to increase throughput. The number of times per day that the router calculates and

sends the average temperature to the coordinator, MCalc, is,

ReadingReqCalc MMM += (11-71)

The time required to receive the whole ZigBee preamble is denoted as, TPreamble. The

preamble is defined as a 4 byte sequence in the ZigBee and IEEE 802.15.4 standards [54, 64].

The time required to check the device’s counters to determine if it is time to take a periodic

temperature reading also requires, TPreamble, seconds. Hence, the period of one day can be broken

up into, T, intervals of, TPreamble, seconds.

()

Preamble

Day One in Seconds
T

T = (11-72)

The probability that the topology receives a temperature reading from one of the

temperature sensor within the topology, PIR, is,

T
MM

PIR
PeriodicTotalReadReq −− +

= (11-73)

 221

The probability that the topology receives a request for a temperature reading from the

coordinator, PIC, is,

T
M

PIC
Req= (11-74)

The probability that the topology calculates the average temperature and sends the

average temperature to the coordinator, PIT, is,

T
MPIT

Calc= (11-75)

The probability that the topology remains idle, in state I, PII, is simply,

(ICITIRII PPPP ++−= 1) (11-76)

It is assumed that,

TMMMM Calc <+++ −− ReqPeriodicTotalReadReq (11-77)

Otherwise the network would not be realizable because more messages would be

transmitted than there is time in one day. The remaining transition probabilities are 1, thus,

1=== CIRITI PPP (11-78)

In state I, the topology is waiting to perform one of the three tasks; receive a reading;

receive a request for a temperature reading; or to calculate and transmit the average temperature

to the outside world. In state R, the router in the topology is receiving and processing one

temperature reading from a temperature sensor within the topology. In state C, the router

receives a request for a temperature reading from the ZigBee coordinator and then forwards that

request to the temperature sensors contained in the topology.

 222

The power consumed when the receiver and processor are active is denoted as, PWPR-R,

for the router, and PWPR-T, for the temperature sensor. The energy consumed when no event

occurs, RII, is,

(TPRRPRPreamble ** −− += PWNPWTR TII)

)

)

 (11-79)

The energy consumed for the I to R transition, RIR, is,

(TPRTIR PWNPWTR −− += ** RPRPreamble (11-80)

The energy consumed to receive the preamble for the I to R and I to C transitions, RIR,

and RIC, respectively is equal to that of RII.

(TPRRPRPreamble ** −− +== PWNPWTRR TIIIC (11-81)

When a request for a temperature reading is received by the router from the ZigBee

coordinator, the router must receive and process the message and finally forward the request for

a temperature reading to the topology. Each temperature sensor must also receive and process

the request. The only message that the ZigBee coordinator sends to the topology is to request a

reading. Hence, all messages from the ZigBee coordinator are the same length denoted by,

LCMsg. The ZigBee message consists of take a reading command requiring, LReadCmd, bytes. In

this example, LReadCmd, is 1 byte. The overhead of the ZigBee data frame, LOverhead, is 15 bytes

(excluding the 4 byte preamble) [64]. Thus, the length of a ZigBee message, minus the

preamble, LCMsg, is 16 bytes. The time to receive one byte of a ZigBee message is denoted as,

TByte-RX.

The router must process both the reading and the request for a temperature reading

messages. The time required to process a temperature reading is denoted as, TP-R-Rd, and the time

required to process the request for a temperature reading is denoted as, TP-R-RQ. The time to

process the reading, TP-R-Rd, can be obtained by dividing the number of instructions, Ni-R-Rd,

required to process the reading by the number of instructions per second the processor can

perform, Ci-R-Rd. Hence, TP-R-Rd, is,

 223

Rd-Ri

Rd-Ri
Rd-R-P

−

−=
C
NT (11-82)

Similarly, the time to process the reading, TP-R-RQ, can be obtained by dividing the

number of instructions, Ni-R-RQ, required to process the reading by the number of instructions per

second the processor can perform, Ci-R-RQ. Hence, TP-R-RQ, is,

RQ-Ri

RQ-Ri
RQ-R-P

−

−=
C
N

T (11-83)

Likewise, the temperature sensor must process the request and the temperature reading.

The temperature sensor must process both the reading and the request for a temperature reading

messages. The time required process a temperature reading is denoted as, TP-T-Rd, and the time

required to process the request for a temperature reading is denoted as, TP-T-RQ. The time to

process the reading, TP-T-Rd, can be obtained by dividing the number of instructions, Ni-T-Rd,

required to process the reading by the number of instructions per second the processor can

perform, Ci-T-Rd. Hence, TP-T-Rd, is,

Rd-Ti

Rd-Ti
Rd-T-P

−

−=
C
NT (11-84)

Similarly, the time to process the reading, TP-T-RQ, can be obtained by dividing the

number of instructions, Ni-T-RQ, required to process the reading by the number of instructions per

second the processor can perform, Ci-T-RQ. Hence, TP-T-RQ, is,

RQ-Ti

RQ-Ti
RQ-T-P

−

−=
C
N

T (11-85)

The transmitter in the router and temperature sensor require, TTXWake-R, and TTXWake-T,

seconds respectively to wake-up before they can be used to transmit a message. Similarly, the

receiver in the router and temperature sensor require, TRXWake-R, and TRXWake-T, seconds

respectively to wake-up before they can be used to receive a message. The time to receive one

 224

byte of information on the ZigBee network is denoted as, TByte-RX, and TByte-TX, seconds are

required to transmit one byte of information on the ZigBee network. The length of the preamble,

LPreamble, is 4 bytes.

When a router receives a request for a temperature reading, it must transmit the request to

the temperature sensors in the star. To disseminate the request for a temperature reading to the

star topology, the router must first process the request. Next, the router wakes up the transmitter

and transmits the message. Simultaneously, the temperature sensors receive the request. Finally,

the router wakes up the receiver. Hence, the energy consumed to receive the request for a

temperature reading from the ZigBee coordinator, RCI, is,

() ()

() () () () ()RPTCMsgRTXWakeRPTRP

TPRTRPR

TPRTRPRCMsgCI

PWTLLTPWTPW
PWNTPWT

PWNPWTLR

−−−−−−−

−−−−

−−−

++++
++

+=

TXBytePreambleRQRP

TRXWakeRRXWake

RXByte

 (11-86)

The length of the data message containing the temperature reading is denoted as, LTMsg.

The message contains, LTempOver, bytes of overhead. The overhead, LTempOver, for a data message

is 15 bytes (excluding the 4 byte preamble sequence) [64]. The data portion of the message

consists of the temperature reading, requiring, LTData, bytes. In this example, LTData, is assumed

to be 4 bytes. Hence, LTMsg, is,

TDataTempOverTMsg LLL += (11-87)

The time required for the temperature sensor to wake-up is denoted as, TTSWake. The time

required to take and process a temperature reading is denoted as, TTemp. The time required to

process the reading includes the time to obtain the reading from the temperature sensor, TR-Temp,

and the time to process the reading, TProc. The time to process the reading, TProc, can be obtained

by dividing the number of instructions, Ni-TS, required to process the reading by the number of

instructions per second the processor can perform, Ci-TS. Hence, TProc, is,

 225

TSi

TSi

C
NT

−

−=Proc (11-88)

TTemp is then simply,

TempRProcTemp −+= TTT (11-89)

When the router in the topology receives a reading from a temperature sensor, a number

of sub-tasks must take place in the temperature sensor before the reading is sent. The

temperature sensor starts by deciding to take a reading, either because it is time for a periodic

reading or because a reading request was received. First, the temperature sensor must be

wakened and then read. The reading must then be processed and then finally sent to the router.

The temperature sensor consumes, PWPT-T, Watts when the processor and transmitter are active,

and PWPS-T, Watts when the temperature sensor and processor are active. The energy consumed

to receive a temperature reading from a temperature sensor, RRI, is,

()() ()
()

() () ()TPSTPRTRXWake

RPRTMsg

TPTTTXWakeTMsgRI

PWTTPWT

PWTLT

PWTTLLR

−−−

−−−−

−−−

+++

++

++=

**

**

**

TempTSWake

RXByteRdRP

TXBytePreamble

 (11-90)

The router requires, TAVG, seconds to calculate the average temperature. The value of,

TAVG, can be found by obtaining the number of instructions required to calculate the average, Ni-

AVG, and the number of instructions that the processor can evaluate in one second, Ci-AVG.

Hence, TAVG, is,

AVGi

AVGi

C
NT

−

−=AVG (11-91)

The energy consumed while the router is calculating the average temperature, RIT, is

simply,

 226

() (RPRAVGIT PWTR −= *) (11-92)

The router must calculate the average temperature once readings from all temperature

sensors are collected. This task can be broken into three sub-tasks. The first sub-task is for the

router to determine that the last reading has been received and to then calculate the average

reading. During this time the router activates the transmitter which requires time, TTXWake-R, to

wake-up before data can be transmitted. Last, the average temperature reading is transmitted to

the ZigBee coordinator and the router wakes up the receiver. The average temperature reading

has the same length as the temperature readings received from the temperature sensors. The

energy consumed to transmit the message to the coordinator, RTI, is,

() () () () (RPRRRXWakeRPTTMsgRPTRTXWakeTI PWTPWTLLPWTR −−−−−− +++= **** TXBytePreamble) (11-93)

The coordinator is identical to the coordinator analyzed in section 11.1.6, and the

parameters listed in Table 11.6 for the coordinator will be used to evaluate the coordinator in this

example. The parameters for the temperature sensors are identical to those used to analyze the

temperature sensor in 11.1.4, and the appropriate parameters listed in Table 11.3 will be used for

the temperature sensor parameters in the star topological entity. The parameters for the routers

are identical to those used to analyze the routers in 11.1.5, and the appropriate parameters listed

in Table 11.4 will be used for the router parameters in the star topological entity. The energy

consumption of the entire network is the sum of the energy consumed by the two star topological

entities and the energy consumed by the coordinator. The energy consumed by the two star

topological entities, the coordinator, and the entire network over 1 day are listed in Table 11.8.

The percent difference, D, between the energy consumption calculated from the model

where the Markov process for each base level entity was evaluated, EBase-Level, and the model

replacing the two routers and associated temperature sensors with two star topologies, EStar-

Topology, is calculated using,

LevelBase

TopologyStarLevelBase

−

−− −
=

E

EE
D (11-94)

 227

Table 11.8: Energy consumed for each entity and the entire network using the Star Topology.

Entity Energy Consumed (mJ)
Star Topological Entity S1 67336006.64 mJ
Star Topological Entity S2 67336006.64 mJ
C1 16839316.60 mJ
Entire Network 151511329.88 mJ

The difference in the reported energy consumption of the two models, D, is 0.3300 %.

This result indicates that the model employing the two star topologies in place of the two routers

and the temperature sensors associated with those routers is accurate.

11.1.11 Step 8 for the ZigBee Star Topological Entity

These interactions will be used to help identify the ZigBee tree fundamental topological entity in

the following section. In this section, the interactions of the star topological entity are identified.

This is step 8 of the algorithm. The ZigBee star topological entity interacts with the ZigBee

coordinator. All data is transmitted to the ZigBee coordinator and the ZigBee coordinator then

transmits the data to the outside world. Any messages from the outside world are first received

by the ZigBee coordinator and forwarded onto the ZigBee star topological entities.

11.1.12 Step 9: Identification of the ZigBee Tree Topological Entity

The Zigbee tree topological entity is identified based on the tasks and interactions of the ZigBee

star topological entities and the ZigBee coordinator. This is step 9 in the algorithm. The

example network illustrated in Figure 11.5, can be represented as a single topological entity

based around the ZigBee coordinator and the two star topological entities attached to it. This

topological entity consists of three entities, the ZigBee coordinator and the two star topological

entities, and is illustrated in Figure 11.13.

 228

Figure 11.13: Tree topological entity.

With the ZigBee tree fundamental topological entity defined, existing algorithms can be

used to search the basic communication graph for the ZigBee tree topological entities. These

algorithms form the basis for CAD tools for integrated circuit design [46]. The ZigBee example

network can be covered with a single ZigBee tree topological entity, reducing the order (number

of Markov proceof the network from 3 as shown in Figure 11.13 to 1 as shown in Figure 11.14.

Figure 11.14: Covering of the ZigBee example network using a single ZigBee tree topological entity.

11.1.13 Step 6 for the ZigBee Tree Topological Entity

Steps 6 through 9 of the algorithm must be repeated to develop the model of the energy

consumption for the Zigbee tree topological entity. Step 6 of the algorithm for the ZigBee tree

topological entity is presented in this section. The ZigBee tree topology must perform two tasks.

 229

First, the ZigBee tree topology must collect temperature readings, compute the average

temperature and then transmit that average temperature to the outside world. The second task

that is performed by the ZigBee tree topology is to receive and disseminate throughout the

ZigBee tree topological entity the request for a temperature reading from the outside world.

11.1.14 Step 7 for the ZigBee Tree Topological Entity

The Markov process is developed for the ZigBee tree topological entity and expressions for the

probability and rewards matrices are found in this section. This is step 7 of the algorithm for the

ZigBee tree topological entity. The tasks identified in Section 11.1.13 form the basis for

constructing the Markov process in this section. The ZigBee coordinator receives messages from

the two star topologies containing the average temperature reading. The coordinator forwards

these readings to the outside world, and receives requests for a temperature reading from the

outside world. The requests for a temperature reading received by the coordinator must be

converted from the inter-PAN message format to the intra-PAN format and transmitted to the

two star topologies. The Markov process describing the ZigBee coordinator tree topological

entity is shown in Figure 11.15. The probability and reward matrices have the following form.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00

TI

RI

ITIRII

P
P

PPP
P (11-95)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00

TI

RI

ITIRII

R
R

RRR
R (11-96)

 230

Figure 11.15: Markov process describing the ZigBee coordinator tree topological entity.

The preamble requires, TPreamble, seconds to be received or transmitted. Hence, the period

of one day can be broken up into, T, periods each equal to time, TPreamble.

()

Preamble

Day One in Seconds
T

T = (11-97)

The ZigBee tree topological entity contains, NS, ZigBee star topological entities. Each

star topology automatically takes temperature readings and sends the average temperature

calculated from those readings to the coordinator. Each star takes temperature readings with a

frequency of, FReading-x, where, x, denotes one of the, NS, star topologies. The total number of

automatic temperature readings that the coordinator receives per day, MReading-x, and again, x,

denotes one of the, NS, star topologies, is,

()∑
=

−=
SN

x
FM

1
xReadingReading *Day One in Seconds (11-98)

The topology also receives requests for a temperature reading from outside of the PAN.

A total of, MOUT, requests for a temperature reading are received by the topology per day from

outside of the PAN. These, MOUT, messages generate one average temperature reading from

 231

each ZigBee star topological entity within the topology. Hence, the number of average

temperature readings that are received, MATR, is,

SOUTReadingATR * NMMM += (11-99)

The probability that a temperature reading is received, PIT, is,

T
MPIT

ATR= (11-100)

Likewise, the probability that a request for a temperature reading is received, PIR, is,

T
MPIR

OUT= (11-101)

The following condition is assumed to hold true. Otherwise there would not be sufficient

time in one day for all the operations.

TMM <+ OUTATR (11-102)

The probability that the topology remains idle, PII, is simply,

()ITIRII PPP +−= 1 (11-103)

The remaining probabilities are all 1. Hence,

1== TIRI PP (11-104)

The power consumption of the coordinator when only the processor and receiver are

active is denoted by, PWPR-C. The power consumed when the receiver and processor are active is

denoted as, PWPR-R, for the router, and PWPR-T, for the temperature sensor. The power

 232

consumption of an entire ZigBee star topology when only the processor and receiver are active is

denoted by, PWPR-S, where, x, denotes one of the, NS, star topology.

RPRTPR PWPWNPW −−−−− += *xTxSPR (11-105)

The energy consumption of the topology while it is idle, RII, is,

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+= ∑

=
−−−

SN

x
CPRII PWPWTR

1
xSPRPreamble * (11-106)

The coordinator can receive two messages, the request for a reading from the outside

world, or the temperature reading from a temperature sensor. The request for a temperature

reading originates outside the PAN managed by the coordinator. Hence, the inter-PAN message

format and long addresses are used. The command to request the temperature, LReadCmd, is 1

byte. The message overhead is, LOverhead-O, is 29 bytes (preamble excluded). The length of the

entire message, LOUT, is 30 bytes.

ReadCmdOOverheadOUT LLL += − (11-107)

The time to receive and transmit one byte of a ZigBee message is denoted as, TByte-RX,

and TByte-TX, respectively. The energy consumed for the topology to receive a request for a

temperature reading, RIR, is,

()() CPRIR PWTLLR −−+= ** RXBytePreambleOUT (11-108)

The length of the preamble, LPreamble, is 4 bytes. The length of the data message

containing a temperature reading is denoted as, LTMsg. The message contains, LTempOver, bytes of

overhead. The overhead, LTempOver, for a data message is 15 bytes (excluding the 4 byte

preamble sequence) [64]. The data portion of the message consists of the temperature reading,

requiring, LTData, bytes. In this example, LTData, is assumed to be 4 bytes. Hence, LTMsg, is,

 233

TDataTempOverTMsg LLL += (11-109)

The coordinator receives average temperature readings from the attached star topologies.

The star topology requires four steps to calculate the average temperature. First, all, NT, tags in

the star topology must take a temperature reading and transmit that reading to the router in the

topology. This step consumes, RSample, Joules. Simultaneously, the router must receive and

collect all the temperature readings, consuming, RTemp-RX, Joules. When the router receives all

the temperature readings, it must calculate the average, consuming, RCalc, Joules. Finally, the

router transmits the average temperature reading to the coordinator, consuming, RTemp-TX, Joules.

The energy consumed, RSample, by a star topology to take and transmit all, NT,

temperature readings is,

() ()
() T

TPS N
PWTPWT

PWTLLPWTT
R *

**

TPRTRXWakeTPTTTXWake

TPTTXBytePreambleTMsgWakeTSTemp
Sample ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

++

+++
=

−−−−−−

−−−− (11-110)

where, TTemp, is the time required to take and process a temperature reading; found using

(11-14); TTS-Wake, is the time required for the temperature sensor to wake-up; PWPS-T, is the

power consumed by the temperature sensor with the processor and temperature sensor active;

PWPT-T, is the power consumed by the temperature sensor with the transmitter and processor

active; TWake-TX-T, is the time required for the transmitter on the temperature sensor to wake-up;

and TWake-RX-T, is the time required for the receiver on the temperature sensor to wake-up. The

router requires time, TP-R-Rd, to process the reading, and TP-R-Rd, can be found using (11-82). The

energy consumed by the router to receive all, NT, temperature readings, for a particular star

topology, RTemp-RX, is,

()() TRPR NPWTTLLR *** RdRPRXBytePreambleTMsgRX-Temp −−−− ++= (11-111)

The router requires time, TAVG, to compute the average temperature, and TAVG, can be

found using (11-91). The energy consumed by the router to calculate the average temperature,

RCalc, is

 234

RPAVGCalc * −= PWTR (11-112)

where, PWP-R, represents the power consumed by the router when only the processor active.

Finally, the router must transmit the average temperature reading to the coordinator. The energy

consumed by the router to transmit the message to the coordinator, RTemp-TX, is,

()() RPTRPR PWTTLLPWTR −−−−− +++= *** R-TXWakeTX-BytePreambleTMsgR-RXWakeTXTemp (11-113)

The energy consumed by the star topology to transmit an average temperature reading,

ETX-Temp, is simply,

SampleRXTempCalcTXTempTempTX RRRRE +++= −−− (11-114)

The energy consumed by the coordinator receiving the average temperature reading from

a star topology, RIT, is,

() ()CPRIT PWTLLER −−− ++= ** RXBytePreambleTMsgTempTX (11-115)

The energy consumed by the coordinator to transmit the average temperature to the

outside world, RTI, is requires two steps. First, the coordinator must process the average

temperature message converting that message into the inter-PAN message format because the

message will be transmitted outside of the coordinator’s PAN. Second, the coordinator must

wake up the transmitter and then transmit the message. Just like the request for a temperature

reading message the average temperature reading that is sent to the outside world is sent to

another PAN so the inter-PAN format and long addresses are used. The average temperature

reading, LTemp-Avg, is 4 bytes. The message overhead is, LOverhead-O, is 29 bytes (preamble

excluded). Hence, the length of the entire message, LTemp-TX, is 33 bytes.

Avg-TempOOverheadTX-Temp LLL += − (11-116)

 235

The coordinator requires, TP-Read, seconds to process the average temperature reading, and

TP-Read, can be calculated using (11-59). The transmitter requires, TWake-TX-C, seconds to wake-

up, and the coordinator consumes, PWP-C, Watts when only the processor is active, and PWPT-C,

Watts when the processor and transmitter are active. Further, the receiver is turned off during

the transmission and requires, TWake-RX-C, seconds to wake-up. Thus, the energy consumed by

the coordinator to transmit the average temperature to the outside world, RTI, is,

()()

CPRCRXWakeCPReadP

TXBytePreambleTXTempCTXWake

**

**

−−−−−

−−−−−

++

++=

PWTPWT

PWTLLTR CPTTI (11-117)

When the coordinator receives a request for a temperature reading from the outside

world, it must forward the request to the, NS, star topologies it is responsible for. Three steps are

required to disseminate the request to the temperature sensors. First, the coordinator must

process the message and convert the message to intra-PAN message format from the inter-PAN

format because the message was sent from another PAN. Second, the coordinator must wake-up

the transmitter and broadcast the request to the, NS, star topologies to which it is connected. The

coordinator, after transmitting the request, wakes up the receiver. Third, each of the, NS, star

topologies must process and retransmit the request. The coordinator requires, TP-Req-C, seconds to

process the request, and this is calculated using (11-60). Similarly, the router in the star topology

requires, TP-Req-R, seconds to process the request and can be found using (11-33).

The ZigBee message consists of take a reading command requiring, LReadCmd, bytes. In

this example, LReadCmd, is 1 byte. The overhead of the ZigBee data frame, LOverhead, is 15 bytes

(excluding the 4 byte preamble sequence) [64]. Thus, the length of a ZigBee message, minus the

preamble, LCMsg, is 16 bytes. Thus, the energy consumed to disseminate the request for a

temperature reading to the temperature sensors, RRI, is,

 236

()()

()

()()
RPRRRXWakeRPRReqP

TXBytePreambleCMsgRTXWake

1
RXBytePreambleCMsg

CPRCRXWakeCPReadP

TXBytePreambleCMsgCTXWake

**

**

−−−−−−

−−−−

−
=

−−

−−−−−

−−−−

++

+++

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+++

++

++=

∑

PWTNPWNT

PWNTLLT

PWNPWNTLL

PWTPWT

PWTLLTR

SS

RPTS

TPR

SN

x
xTRPRS

CPTRI

 (11-118)

11.1.15 Steps 8, 9, and 10 for the ZigBee Tree Topological Entity

Steps 8, 9, and 10 of the algorithm must be repeated for the ZigBee tree topological entity. The

tree topological entity combines the coordinator and two star topologies in the previous example

together into a single entity. There are no interactions between topological entities at this level

because the network can be covered with a single ZigBee tree topological entity. Because a

single ZigBee tree topological entity can cover the network, no larger topological entities can be

identified in step 9. Step 10 is satisfied because the entire network can be covered by a single

topological entity and the algorithm finishes.

The tree topological entity requires parameters from the base level entities such as power

consumed in different states and the time required to perform various tasks, and these parameters

are identical to those found for the base level entities. This entity uses the parameters for the

temperature sensor, router, and coordinator found in Table 11.2, Table 11.4, and Table 11.6

respectively, for the appropriate parameters for this entity. The energy consumption of the entire

network is simply of the energy consumed by the tree topological entity because with the tree

topological entity the network is reduced to a single topological entity. The energy consumed by

the entire network over 1 day is listed in Table 11.9.

Table 11.9: Energy consumption of the example using the Tree Topological Entity.

Entity Energy Consumed (mJ)

Tree Topological Entity T1 150875856.85 mJ

Entire Network 150875856.85 mJ

 237

The percent difference, D, between the energy consumption calculated from the model

where the Markov process for each base level entity was evaluated, EBase-Level, and the model

using the tree topological entity, ETree-Topology, is calculated using,

LevelBase

TopologyTreeLevelBase

−

−− −
=

E

EE
D (11-119)

The difference in the reported energy consumption of the two models, D, is 0.0865 %.

This result indicates that the model employing the tree topological entity is accurate. The

algorithm is satisfied and finishes because the entire network can be represented by a single

ZigBee tree topological entity.

11.2 SUMMARY OF THE ENERGY CONSUMPTION

The energy consumed by the network for a period of 1 day was calculated using three different

methods. First, the energy consumed by the network was calculated by first calculating the

energy consumed by each base level entities and then summing the values to obtain the energy

consumption for the entire network (Section 11.1.4 for the temperature sensor, Section 11.1.5 for

the ZigBee router, and Section 10.2.5 for the ZigBee coordinator). Next, the two ZigBee star

topological entities replaced the two routers and ten temperature sensors in the example network

as shown in Figure 11.11. Again, the energy consumption for the period of 1 day was computed

for these three entities (ZigBee coordinator and two ZigBee star topological entities) and then

summed to arrive at the energy consumption of the entire network (Section 11.1.10). Finally, the

ZigBee tree topological entity was used to cover the entire network with a single entity and the

energy consumption of the ZigBee tree topological entity was calculated for the period of 1 day

(Sections 11.1.14 and 11.1.15). The energy consumed for each case is listed in Table 11.10. The

percent difference, D, is computed as follows, where, EBase-Level, is the energy consumed

calculated using the base level entities, and ETest, is the energy consumed using one of the other

two sets of topological entities (ZigBee coordinator and two ZigBee star topological entities or

one ZigBee tree topological entity).

 238

LevelBase

TestLevelBase

−

− −
=

E
EE

D (11-120)

Table 11.10: Energy consumed calculated using the three different sets of entities and percent

difference from the energy consumption of the base level entities.

Entity Energy Consumed (mJ) Percent Difference (%)

Base Level Entities 151006451.538448 mJ 0 %

ZigBee Coordinator and Two ZigBee

Star Topological Entities

151511329.875985 mJ 0.3343 %

One ZigBee Tree Topological Entity 150875856.845581 mJ 0.086483 %

The results show that the percent difference is no more than 0.34 % in the worst case

(using the ZigBee coordinator and two ZigBee star topological entities) and the method of using

the topological entities is considered accurate.

11.3 SUMMARY OF STEPS IN ALGORITHM TO IDENTIFY TOPOLOGICAL

ENTITIES

The steps of the algorithm to identify the topological entities were illustrated in the previous

section analyzing the energy consumption of the ZigBee example network. Step 1, identification

of the base level entities was presented in Section 11.1.1. Step 2, the identification of the tasks

performed by each base level entity type was presented in Section 11.1.2. In Sections 11.1.3,

11.1.4 (temperature sensor), 11.1.5 (router), 11.1.6 (coordinator), the Markov processes and the

expressions for the probability and reward matrices are developed for the three types of base

level entities. The Markov processes and the expressions for the probability and reward matrices

for the temperature sensor were presented in Section 11.1.4. The Markov processes and the

expressions for the probability and reward matrices for the ZigBee router were presented in

 239

Section 11.1.5. The Markov processes and the expressions for the probability and reward

matrices for the ZigBee coordinator were presented in Section 11.1.6. Step 4, the identification

of interactions between the base level entities was presented in Section 11.1.7. Step 5, the

identification of topological entities, specifically the identification of the two ZigBee star

topological entities, was presented in Section 11.1.8. Section 11.1.9 presents the tasks that the

ZigBee star topological entities perform and this was Step 6 of the algorithm. The Markov

processes and the expressions for the probability and reward matrices are developed for the

ZigBee star topological entity in Section 11.1.10 and this was step 7 of the algorithm. In Section

11.1.11 step 8 of the algorithm, identification of the interactions between the ZigBee star

topologies and the ZigBee coordinator was presented. Step 9, the identification of topological

entities, in this case the identification of the ZigBee tree topological entity, was presented in

Section 11.1.12. Step 6 for the ZigBee tree topological entity, identifying the tasks of the ZigBee

tree topological entity was presented in Section 11.1.13. Step 7 for the ZigBee tree topological

entity, development of the Markov processes and the expressions for the probability and reward

matrices, was presented in Section 11.1.14. Steps 8, 9, and 10, for the ZigBee tree topological

entity were presented in Section 11.1.15.

11.4 EVALUATION TIME FOR LARGER NETWORKS

To determine how the method in this work scales with the size of the network, the example

ZigBee network was doubled and then doubled again (quadruple the size of the original

network). The single size network is the network analyzed in the previous section. When the

network is double a new coordinator and two star topologies are added to the network as shown

in Figure 11.16.

The double size network contains two ZigBee tree topological entities, TOP1 and TOP2.

The two ZigBee tree topological entities, TOP1, and TOP2, are shown in Figure 11.17 and

Figure 11.18, respectively.

 240

Figure 11.16: Double size example network.

Figure 11.17: ZigBee tree topological entity, TOP1, in the double size network.

Figure 11.18: ZigBee tree topological entity, TOP2, in the double size network.

 241

Both TOP1 and TOP2 contain two ZigBee star topological entities, and one ZigBee

coordinator. Each star topological entity contains five temperature sensors and one ZigBee

router as shown in Figure 11.9 and Figure 11.10. Each ZigBee star topological entity connects to

one ZigBee coordinator as shown in Figure 11.17 and Figure 11.18. The four individual ZigBee

star topological entities TOPS1, TOPS2, TOPS3, and TOPS4, are shown in the following four

figures.

The base entities contained in TOPS1 are shown in Figure 11.19. The base entities

contained in TOPS2 are shown in Figure 11.20. The base entities contained in TOPS3 are shown

in Figure 11.21. The base entities contained in TOPS4 are shown in Figure 11.22.

Figure 11.19: ZigBee star topological entity 1, TOPS1.

Figure 11.20: ZigBee star topological entity 2, TOPS2.

 242

Figure 11.21: ZigBee star topological entity 3, TOPS3.

Figure 11.22: ZigBee star topological entity 4, TOPS4.

ZigBee routers R1 and R2 are connected to ZigBee coordinator 1, while ZigBee routers

R3 and R4 are connected to ZigBee coordinator 2. The double size network can be covered by

two ZigBee tree topological entities as shown in Figure 11.23. With the ZigBee tree

fundamental topological entity defined, existing algorithms can be used to search and find the

two ZigBee tree topological entities (TOP1 and TOP2) contained within the basic

communication graph of the double size example network as shown in Figure 11.23. These

algorithms form the basis for CAD tools for integrated circuit design [46].

 243

Figure 11.23: Covering of the double size network with two ZigBee tree topological entities.

The interaction between the two ZigBee tree topological entities resembles the fully

connected mesh topology on two entities. Both of the ZigBee tree topological entities can be

combined into a single topological entity, the ZigBee multi-tree topological entity. The ZigBee

multi-tree topological entity must perform the same tasks as the ZigBee tree topological entity

and the Markov process for the ZigBee multi-tree topological entity and ZigBee tree topological

entity are identical. The Markov process for the ZigBee multi-tree topological entity is shown in

Figure 11.24. This reduces the order (number of Markov processes) of the network from 6, as

shown in Figure 11.16, to 2, as shown in Figure 11.23. The probability and reward matrices

have the following form.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00

TI

RI

ITIRII

P
P

PPP
P (11-121)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00

TI

RI

ITIRII

R
R

RRR
R (11-122)

 244

Figure 11.24: Markov process describing the ZigBee coordinator tree topological entity.

Each of the ZigBee tree topological entities that are contained in the ZigBee multi-tree

topological entity contribute to the operation of the ZigBee multi-tree topological entity. Thus,

the probability matrix for the ZigBee multi-tree topological entity is obtained by adding the

probability matrices of each of the ZigBee tree topological entities contained in the ZigBee

multi-tree topological entity together and dividing by the number of ZigBee tree topological

entities contained in the ZigBee multi-tree topological entity. Because each task represents

multiple ZigBee tree topological entities performing that task the rewards matrix for the ZigBee

multi-tree topological entity is simply the sum of the rewards matrices of each of the ZigBee tree

topological entities contained in the ZigBee multi-tree topological entity. The network can be

covered by a single ZigBee multi-tree topological entity as shown in Figure 11.25.

Figure 11.25: Covering of the network with a single ZigBee multi-tree topological entity.

 245

With the ZigBee multi-tree fundamental topological entity defined, existing algorithms

can be used to search and find the single ZigBee multi-tree topological entities contained within

the basic communication graph of the double size example network as shown in Figure 11.23.

These algorithms form the basis for CAD tools for integrated circuit design [46]. The order

(number of Markov processes) of the network is reduced from 2 ZigBee tree topological entities

to a single ZigBee multi-tree topological entities as shown in Figure 11.25.

The parameters of all temperature sensors are identical to those used for the used for the

temperature sensors in Section 11.1.4. The parameters for the odd number routers (R1 and R3)

are identical to those used for router R1 in Section 11.1.5. The parameters for the even number

routers (R2 and R4) are identical to those used for router R2 in Section 11.1.5. The parameters

for the four ZigBee coordinators are identical to the parameters used for the ZigBee coordinator

in Section 11.1.6. The parameters for the ZigBee star topological entity TOPS1 are identical to

those used for the ZigBee star topological entity TOPS1 in Section 11.1.10. Likewise, the

parameters for the ZigBee star topological entity TOPS2 are identical to those used for the star

topological entity TOPS2 in Section 11.1.10. The parameters used for the two ZigBee tree

topological entities (TOP1 and TOP2) are identical to those used for the ZigBee tree topological

entity in Section 11.1.15.

When the network is quadrupled, three additional coordinators and six additional star

topologies are added as shown in Figure 11.26.

Again, each star topological entity contains five temperature sensors and one ZigBee

router as shown in Figure 11.31 through Figure 11.38. The quadruple size network contains four

ZigBee tree topological entities (TOP1, TOP2, TOP3, and TOP4) each containing one ZigBee

coordinator and two ZigBee star topological entities.

The ZigBee tree topological entity, TOP1, having ZigBee coordinator 1 as the root is

shown in Figure 11.27. The ZigBee tree topological entity, TOP2, having ZigBee coordinator 2

as the root of the tree is shown in Figure 11.28. The ZigBee tree topological entity, TOP3,

having ZigBee coordinator 3 as the root of the tree is shown in Figure 11.29. The ZigBee tree

topological entity, TOP4, having ZigBee coordinator 4 as the root of the tree is shown in Figure

11.30.

 246

Figure 11.26: Quadruple size example network.

Figure 11.27: ZigBee tree topological entity, TOP1, rooted at ZigBee coordinator 1.

 247

Figure 11.28: ZigBee tree topological entity, TOP2, rooted at ZigBee coordinator 2.

Figure 11.29: ZigBee tree topological entity, TOP3, rooted at ZigBee coordinator 3.

Figure 11.30: ZigBee tree topological entity, TOP4, rooted at ZigBee coordinator 4.

 248

The eight ZigBee star topological entities (TOPS1, TOPS2, TOPS3, TOPS4, TOPS5, TOPS6,

TOPS7, and TOPS8) shown in the previous four figures are reduced to their base level entities in

the following eight figures. The four individual ZigBee star topological entities TOPS1, TOPS2,

TOPS3, TOPS4, TOPS5, TOPS6, TOPS7, and TOPS8, are shown in the following eight figures.

The base entities contained in TOPS1 are shown in Figure 11.31. The base entities

contained in TOPS2 are shown in Figure 11.32. The base entities contained in TOPS3 are shown

in Figure 11.33. The base entities contained in TOPS4 are shown in Figure 11.34. The base

entities contained in TOPS5 are shown in Figure 11.35. The base entities contained in TOPS6 are

shown in Figure 11.36. The base entities contained in TOPS7 are shown in Figure 11.37. The

base entities contained in TOPS8 are shown in Figure 11.38.

Figure 11.31: ZigBee star topological entity 1, TOPS1.

Figure 11.32: ZigBee star topological entity 2, TOPS2.

 249

Figure 11.33: ZigBee star topological entity 3, TOPS3.

Figure 11.34: ZigBee star topological entity 4, TOPS4.

Figure 11.35: ZigBee star topological entity 5, TOPS5.

 250

Figure 11.36: ZigBee star topological entity 6, TOPS6.

Figure 11.37: ZigBee star topological entity 7, TOPS7.

Figure 11.38: ZigBee star topological entity 8, TOPS8.

 251

With the ZigBee tree fundamental topological entity defined, existing algorithms can be

used to search and find the four ZigBee tree topological entities contained within the basic

communication graph of the quadruple size example network as shown in Figure 11.26. These

algorithms form the basis for CAD tools for integrated circuit design [46]. The order (number of

Markov processes) of the network is reduced from 52 base level entities to 4 ZigBee tree

topological entities as shown in Figure 11.39.

The interaction between the four ZigBee tree topological entities resembles the fully

connected mesh topology. The four ZigBee tree topological entities can be combined into a

single topological entity, the ZigBee multi-tree topological entity. The ZigBee multi-tree

topological entity must perform the same tasks as the ZigBee tree topological entity and the

Markov process for the ZigBee multi-tree topological entity and ZigBee tree topological entity

are identical. The Markov process for the ZigBee multi-tree topological entity is shown in

Figure 11.40. The probability and reward matrices have the following form.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00

TI

RI

ITIRII

P
P

PPP
P (11-123)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

00
00

TI

RI

ITIRII

R
R

RRR
R (11-124)

Figure 11.39: Covering of the quadruple size network with the four ZigBee tree topological entities.

 252

Figure 11.40: Markov process describing the ZigBee coordinator tree topological entity.

Each of the ZigBee tree topological entities that are contained in the ZigBee multi-tree

topological entity contribute to the operation of the ZigBee multi-tree topological entity. Thus,

the probability matrix for the ZigBee multi-tree topological entity is obtained by adding the

probability matrices of each of the ZigBee tree topological entities contained in the ZigBee

multi-tree topological entity together, and then dividing the sum by the number of ZigBee tree

topological entities contained in the ZigBee multi-tree topological entity. Because each task

represents multiple ZigBee tree topological entities performing that task the rewards matrix for

the ZigBee multi-tree topological entity is simply the sum of the rewards matrices of each of the

ZigBee tree topological entities contained in the ZigBee multi-tree topological entity. With the

ZigBee multi-tree fundamental topological entity defined existing algorithms can be used to

search and find the single ZigBee multi-tree topological entities contained within the basic

communication graph of the quadruple size example network as shown in Figure 11.39. These

algorithms form the basis for CAD tools for integrated circuit design [46]. The order (number of

Markov processes) of the network is reduced from 4 ZigBee tree topological entities to a single

ZigBee multi-tree topological entities as shown in Figure 11.41.

Figure 11.41: Covering of the network with a single ZigBee multi-tree topological entity.

 253

The parameters of all temperature sensors are identical to those used for the used for the

temperature sensors in Section 11.1.4. The parameters for the odd number routers (R1, R3, R5,

and R7) are identical to those used for router R1 in Section 11.1.5. The parameters for the even

number routers (R2, R4, R6, and R8) are identical to those used for router R2 in Section 11.1.5.

The parameters for the four ZigBee coordinators are identical to the parameters used for the

ZigBee coordinator in Section 11.1.6. The parameters for the odd numbered ZigBee star

topological entities (TOPS1, TOPS3, TOPS5, and TOPS7) are identical to those used for the ZigBee

star topological entity TOPS1 in Section 11.1.10. Likewise, the parameters for the even

numbered ZigBee star topological entities (TOPS2, TOPS4, TOPS6, and TOPS8) are identical to

those used for the ZigBee star topological entity TOPS2 in Section 11.1.10. The parameters used

for the four ZigBee tree topological entities are identical to those used for the ZigBee tree

topological entity in Section 11.1.15.

The time to evaluate the model using the base level entities and the model using the tree

topological entities was determined. Each model was executed 100 times in Matlab and the total

time for all 100 runs was obtained, dividing this time by 100, gives the average time for the

model to be evaluated once. Each model was run 100 times in order to remove influences such

as start-up times and context switches in the computing environment. The reported energy

consumption of each network for a period of 1 day is also reported and used to verify the

accuracy of the tree topological entity model with the base level entity model for each case. The

time to evaluate the single size example networks 100 times and the average time for evaluation

are listed in Table 11.11. The time to evaluate the double size example networks 100 times and

the average time for evaluation are listed in Table 11.12. The time to evaluate the quadruple size

example networks 100 times and the average time for evaluation are listed in Table 11.13.

Table 11.11: Time to evaluate single size example networks.

Entity Time for 100 Evaluations

(seconds)

Average time for 1

Evaluation (seconds)

Tree Topological Entity T1 0.076856 seconds 0.000769 seconds

Base Level Entities 0.446643 seconds 0.004466 seconds

 254

Table 11.12: Time to evaluate double size example networks.

Entity Time for 100 Evaluations

(seconds)

Average time for 1

Evaluation (seconds)

Multi-Tree Topological Entity 0.175654 seconds 0.001757 seconds

Base Level Entities 0.779505 seconds 0.007795 seconds

Table 11.13: Time to evaluate quadruple size example networks.

Entity Time for 100 Evaluations

(seconds)

Average time for 1

Evaluation (seconds)

Multi-Tree Topological Entity 0.185993 seconds 0.001860 seconds

Base Level Entities 1.319124 seconds 0.013191 seconds

The time to evaluate each of the three different size models scales better than linearly

with the size of the network. For example, determining the energy consumed by the single size

example network using the tree topological entity requires 0.8 ms (milliseconds), and the

evaluation of the energy consumption of the quadruple size example network requires 1.9 ms

(milliseconds). If the execution time of the model scales linearly with the size of the network,

the quadruple size example should take four times as much time as the single size example, in

this case 3.2 ms (milliseconds). The time required to evaluate the quadruple size network is

2.375 times the time required to evaluate the single size network. Hence, the execution time of

the method verses the size of the network clearly scales better than linearly in relation to network

size.

The energy consumed by the single, double, and quadruple size example networks as

well as the percent difference, D, between the base level and tree topological entity models for

each of the three cases is shown in Table 11.14.

 255

The percent differences between the model using the base level entities and the model

using the single tree topological entity are within 1 % for the three different size example

networks.

Table 11.14: Energy consumption and percent difference between models for single, double, and

quadruple size example networks.

Size Entity Energy Consumed (mJ) Percent Difference

(%)

Base Level Entities 151006451.54 mJ Single

Tree Topological Entity T1 150875856.85 mJ

0.0865 %

Base Level Entities 302012903.08 mJ Double

Tree Topological Entity T1 301751713.69 mJ

0.0865 %

Base Level Entities 604025806.15 mJ Quadruple

Tree Topological Entity T1 603503427.38 mJ

0.0865 %

11.5 BURST SWITCH RECEIVER

All three components in the example ZigBee network required an active receiver to

receive requests and readings. The active receiver consumes approximately, 99.9 mW

(milliWatts) when active, compared to only 13.5 μW (microwatts) when asleep [61]. The

components in the example network spend the majority of the time in the idle state, listening for

an incoming message. The burst switch, developed at the University of Pittsburgh RFID Center

of Excellence, offers an alternative to the active receiver. The burst switch detects the presence

of a message rather than the actual data in the message (1s and 0s). The burst switch is a passive

receiver that is coupled with a low power processor and monitors for the presence of a message.

 256

Once the presence of a message is detected, the processor takes whatever action necessary to

react to the message. A prototype burst switch has been developed and technically consumes

only 6 nA when monitoring for a message, and 100 μA (microamps) when processing a message

[67].

Both the routers and coordinator must receive readings and require the data in the

message. The burst switch could be used to wake up the active receiver in the routers and

coordinator once the presence of the preamble has been detected. The preamble consists of 4

bytes and at the specified ZigBee data rate of 250 kbps, the preamble is transmitted for 1024 μs

(microseconds) which is long enough for the device to detect the preamble and wake-up the

active receiver. However, the transceiver used in the devices in this example decodes the packet

internally and thus needs the preamble to detect and decode messages [66]. Hence, the burst

switch is not a viable alternative for the router or the coordinator when using the MC13192

transceiver. The temperature sensors only receive the command for a temperature request and

this command is distinguished from a temperature reading by the length of the message.

Therefore, only the transmitter portion of the transceiver will be used in the temperature sensor.

Thus, the burst switch will be added to the temperature sensor only.

The energy consumed by the ZigBee tree topological entity described in Section 11.1.13

through Section 11.1.15 will is calculated when the active receivers on the temperature sensors

are replaced with the burst switch receiver. The process to calculate the energy consumption is

the same as described in Section 11.1.13 through Section 11.1.15. By using the burst switch

instead of the active receiver in the temperature sensors, the energy consumed by the temperature

sensors will decrease. This situation results in a longer lifetime for the temperature sensors using

the same battery. The power consumption values for the temperature sensor that are changed as

a result of using the burst switch are listed in Table 11.15. The other parameters for the ZigBee

tree topological entity are identical to those used in the analysis in Section 11.1.15. The

temperature sensor still must receive the message for the same amount of time as when using the

active receiver to be able to distinguish between a request and a reading.

The energy consumed by the network over 1 day, calculated using the base level entities

model and the tree topological model with the temperature sensors employing the burst switch is

listed in Table 11.16.

 257

Table 11.15: Power consumption of the temperature sensor with the burst switch.

Parameter Value

PWPR-T 17.85 mW

Table 11.16: Energy consumption of the network with the temperature sensors employing the burst

switch calculated using the base level entities and the tree topological entity.

Model Energy Consumption (mJ)

Base Level Entities 65941530.28 mJ

Tree Topological Entity 65849528.15 mJ

The percent difference, D, between the energy consumption calculated from the model

where the Markov process for each base level entity was evaluated, EBase-Level, and the model

using the tree topological entity, ETree-Topology, is calculated using,

LevelBase

TopologyTreeLevelBase

−

−− −
=

E

EE
D (11-125)

The difference in the reported energy consumption of the two models, D, is 0.1395 %.

This result indicates that the model employing the tree topological entity is accurate.

 258

12.0 ANALYSIS OF THE METHOD

Exploration of design alternatives requires investigating a group of components, investigating the

energy consumption of the network in the short term and in the long term, and simulating

different topological configurations of the network. The method developed in this work,

illustrated in the two examples presented in Sections 10 and 11, enables the designer to quickly

and efficiently analyze these three sets of alternatives.

Selecting the best component(s) for an application is difficult and often many

components can perform the needed task. In a sensor or RFID network, selecting the component

that can perform the task and consume the least amount of energy is critical to maximizing the

lifetime of the network. When using a simulator, the network must be resimulated for each of

the components and variations. Often tradeoffs are involved and improving one area have a

negative affect on performance in another area. Looking at the entire network is the best way to

evaluate these tradeoffs. With many different components and variations, this leads to a large

number of simulations each of which may take several minutes, hours, or even days. Changing

hardware components involves changes to the rewards matrix and possibly to the time matrix

(time matrix must be updated only if time for a task changes). Using the method developed in

this work, the designer would need to update the appropriate elements of the reward matrix, find

the new q-vector, update the time matrix, recalculate tA, and finally recalculate the energy

consumption. The π-vector depends only on the probability matrix, and once it is found, the π-

vector can be saved and reused as long as the probability matrix is not changed. If the

probability matrix is changed the π-vector must be recalculated. Structural changes to a

topological entity normally result in changes to the probability matrix requiring recalculation of

the π-vector.

Recall that the reward matrix, R, has the following form,

 259

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NNNN

N

N

rrr

rrr
rrr

R

...
............

...

...

21

22221

11211

 (12-1)

Both the reward matrix, R, and the probability matrix, P, are N x N matrices, where N is

the number of states in the Markov process describing the network. Recall that the q-vector, q, is

computed from, P, and R.

(∑
=

=
N

j
kjkjk rpq

1
*)

)

 (12-2)

()

(

()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

∑

∑

∑

=

=

=

N

j
NjNj

N

j
jj

N

j
jj

N
rp

rp

rp

q

q
q

q

1

1
22

1
11

2

1

*

:

*

*

:
 (12-3)

Assuming that no changes are made to, P, (therefore π-vector does not have to be

recalculated) and that element, rjk, of the reward matrix is changed, then only the value of the

element, qk, of the q-vector must be updated. The example of the simple temperature sensor

from Section 4.3 will be used to demonstrate the recalculation of the q-vector. Recall the

example of the temperature sensor discussed in Section 4.3, the Markov process describing the

simple temperature sensor is shown in the following figure. The probability and rewards

matrices, and the π-vector (from the example in Section 4.3) are repeated for clarity,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

30.0070.0
60.020.020.0
01.029.070.0

TXTXTXRDTXWT

RDTXRDRDRDWT

WTTXWTRDWTWT

PPP
PPP
PPP

P (12-4)

 260

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1704
1755
362

TXTXTXRDTXWT

RDTXRDRDRDWT

WTTXWTRDWTWT

RRR
RRR
RRR

R (12-5)

[]0.19260.21480.5926=π (12-6)

Figure 12.1: State diagram of the Markov process for the simple temperature sensor.

The q-vector found in Section 4.3 for the probability and reward matrices above is,

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

90.7
20.12
17.3

3

2

1

q
q
q

q (12-7)

For example, if a different temperature sensor is used that consumes more energy to take

a reader then the rewards matrix must be updated to reflect this. Assuming that the new

temperature sensor only affects the RD to RD transition, then only element, RRDRD (row 2

column 2), of the reward matrix must be changed. For example, assume this change requires

changing, RRDRD, from 5 to 8. The new rewards matrix, R’, is shown below (with the modified

element in bold),

 261

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1704
175
362

' 8RRDRD

TXTXTXRDTXWT

RDTXRDWT

WTTXWTRDWTWT

RRR
RR
RRR

R (12-8)

The entire q-vector, q’, is recalculated to illustrate that only element, q’2, changes and

that only element, q’2, really needs to be recalculated.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

90.7
80.12
17.3

'
'
'

'

3

2

1

q
q
q

q (12-9)

Likewise, if two of the entries on row 2 of R (row 2 columns 2 and 3) are changed,

shown in R’’, (altered values are in bold) q’’2, is still the only affected element of the q-vector,

q’’ and this is shown below.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1704
5

362
'' 208RR RDTXRDRD

TXTXTXRDTXWT

RDWT

WTTXWTRDWTWT

RRR
R

RRR
R (12-10)

The new q-vector, q’’, is below, note that only element q’’2 of the q-vector is changed.

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

90.7
60.14
17.3

''
''
''

''

3

2

1

q
q
q

q (12-11)

Again, only the value of element, q’’2, changes. Changing multiple elements on the same

row, row j, of the reward matrix still alters only one value in the q-vector, qk. Thus, for each row

of the reward matrix that is changed, N, scalar multiplications and, N, scalar additions are

required to find the updated, qk. Changing the values of the elements on M different rows of the

reward matrix results in the alteration of M of the elements in the q-vector. Thus, if M rows of

the rewards matrix are modified, M elements in the q-vector (corresponding to those M rows of

the rewards matrix) must be recomputed. If, M, rows are changed in the reward matrix a total of

 262

M*N scalar multiplications, and M*N scalar additions are required. With the new q-vector and

the previously obtained π-vector, the gain, g, is obtained,

πqg = (12-12)

Calculating the gain requires multiplying the π-vector, which is a row vector, with the q-

vector, a column vector, with each vector having length N. This results in the dot product of two

vectors. The dot product of two vectors, of length N, requires N scalar multiplications and N

scalar additions. Finally, the gain, g, is multiplied by the number of transitions to obtain the

energy consumption for the network for a specific time. This step requires a single scalar

multiplication.

Hence, if values in M rows of the reward matrix are changed and the probability matrix

are unchanged, the total number of operations to obtain the energy consumed by the new

network requires (M*N + N + 1) scalar multiplications and (M*N + N) scalar additions. These

operations can be computed very quickly on a modern processor. A simulator would normally

require that the entire network be simulated again with the new values requiring at least as long

as the original simulation run (most likely more than one second). Therefore, the method

described in this work allows the designer to quickly and efficiently evaluate many different

components in order to select the component that minimized overall energy consumption.

Recall that the time matrix described in Section 4.3 and the probability matrix were used

to determine the average time for a single transition, tA, in the Markov process. This average

time, tA, was then used to determine the value of n. The time matrix, TA, is shown below,

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

NNNN

N

N

A

ttt

ttt
ttt

T

...
............

...

...

21

22221

11211

 (12-13)

Recall that each entry, tij, in, TA, represents the average time of the operation of all

entities performing a task for the i to j transition. The average time per transition, tA, should be

weighted to those transitions that happen more frequently to obtain better accuracy in the

 263

solution. To appropriately weight, tA, to those transitions the average time per transition q-

vector, qA, must be found,

()

(

()
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

∑

∑

∑

=

=

=

N

j
NjNj

N

j
jj

N

j
jj

AN

A

A

A

tp

tp

tp

q

q
q

q

1

1
22

1
11

2

1

*

:

*

*

:
)

)

 (12-14)

With, qA, the weighted average time per transition, tA, is simply,

AA πqt = (12-15)

Once, tA, is calculated the number of transitions is found by simply dividing the desired

length of time to investigate, LTime, by, tA,

(

A

Time

t
Ln = (12-16)

If any of the times for the subtasks are altered the time matrix, TA, should be recalculated.

Using the new, TA, the q-vector, qA, can be recomputed and then the weighted average time per

transition, tA, can be found. Recalculating tA is advisable as the value of tA will affect the

accuracy of the energy consumption obtained from the model.

Recalculating the time matrix, TA, may require several additions and one division to

compute the average time for all subtasks represented in a given transition. If, M, rows are

changed in the time matrix, TA, a total of M*N scalar multiplications, and M*N scalar additions

are required to recalculate, qA. Calculating tA, from qA (it is assumed that the π-vector is

unchanged) requires taking the dot product of the row vector, π, and the column vector, qA, each

having length N. This requires N scalar multiplications and N scalar additions. Therefore, the

total number of operations, excluding the operations necessary to recalculate TA, is (M*N + N)

 264

scalar multiplications and (M*N + N) scalar additions. One scalar division is required to

compute n.

Often, designers find it useful to investigate the energy consumption of a network for

different lengths of time. In this method, once the gain, g, has been calculated, the energy

consumed by the network for different lengths of time is easily calculated by changing, n, to the

appropriate value using (12-16). Once, the appropriate value for n has been found, a single

scalar multiplication is required to find the energy consumed by the network for that period of

time. Finding the value of, n, usually requires only one scalar division and a handful of scalar

multiplications to put the time terms in the numerator (LTime) and denominator (tA) in the same

units. The value of, n, can be found by using (12-16) with the appropriate value for LTime and tA.

Scalar multiplications may be needed to convert LTime into the proper units of time (i.e.

milli-seconds, seconds, micro-seconds). The quantities, LTime, and tA, must be in the same time

units. A single scalar division is required to evaluate (12-16). The example in Section 4.3

determined the energy consumption for the example simple temperature sensor for periods of 1-

day, 1-month, 1-year, and 10-years by simply changing the value of, LTime, to the appropriate

value for the time in question and recalculating, n, using (12-16).

This results in a faster exploration of the design alternatives than current simulators

allow. With the information obtained from the exploration the designer can choose those

components that optimize the performance of the sensor or RFID network in question with

respect to minimizing energy consumption.

 265

13.0 CONCLUSIONS AND FUTURE WORK

13.1 REVIEW

Current sensor and RFID networks contain large numbers of entities, while future sensor and

RFID networks are projected to contain many hundreds or thousands or millions of entities. An

on-board battery usually powers the sensors and RFID devices in these networks. Hence, the

energy consumption of the network as a whole must be minimized to maximize the lifetime of

the network. An efficient and reliable method of determining the energy consumption of the

entire network is critical because optimizations to one entity may result in an increase of the

energy consumption of several other entities, ultimately increasing the energy consumption of

the entire network. Several factors contribute to energy consumption, and these factors are often

interrelated so tradeoffs must be evaluated. Evaluating these tradeoffs requires the evaluation of

a large number of design alternatives.

Current methods to evaluate the energy consumption of the network require the

simulation of all entities within the network. This results in simulations having large numbers of

entities passing very large numbers of messages among themselves. In a discrete event

simulation the main bottleneck is in determining which messages are safe to process, and to

which simulation entities those messages must be passed [4]. As the size of the network grows,

more messages are sent between entities, increasing the execution time of the simulation. The

resulting long runtime prevents designers from exploring multiple design alternatives.

 266

13.2 THE RESEARCH

The method developed in this research provides for order reduction (in terms of the number of

entities in the network) and facilitates a reduction of the number of intermediate entities that

must be evaluated. Entities within a sensor or RFID network implicitly group themselves

together into topological groups (topologies) to perform the tasks required by the network. By

identifying these topological groups and providing an analytical methodology, it is possible to

replace all entities within a given topological group with a single reduced topological unit. This

reduces the order (number of entities in the network) significantly, and through repeated

application, these groupings can reduce the number of entities within the network to a handful of

topological units, ideally, to a single topological entity. An algorithm has been developed in this

research to identify the topological entities in a given network. This algorithm is presented in

Section 9.

A modeling framework was developed using Markov processes with rewards to

determine the energy consumption of the entire network and was presented in Section 4. In

order to keep the dimension of the Markov processes describing the energy consumption of the

topological entities within a reasonable degree, the concept of tasks was developed. Each

topology must perform a set of specific tasks (i.e. take a reading or process a message).

Identifying these tasks makes it convenient to model the behavior of a topological entity using a

Markov process while keeping the dimensionality within limits. The Markov process contains

one state per task, plus one state for the idle state. If a task is very complex, it can be broken into

multiple states. Tasks also help the designer to identify and determine how best to deploy each

topological entity.

A breakdown of sensor and RFID networks into fundamental classes was presented in

Section 3 and aids in identifying the tasks a particular network or topological entity must

perform. Topological entities perform a number of different tasks, and a set of basis tasks was

developed from which any task can be constructed. The Markov process contains a set of states,

ideally a single state, for each task that a topological entity must perform. Generic Markov

process structures for the base entities and base topological entity were developed and are

presented in Section 5. These generic Markov processes provide a starting point from which

more complex Markov processes can be developed. The concept of the basic communication

 267

graph, presented in Section 6, was developed to identify interactions between entities and

topologies within a network. The distance graph method presented in Section 7.1.2 is possible

due to the inherent nature of wireless communication and uses the basic communication graph to

identify fundamental and practical topologies in an existing network. The result is in terms of

the vector of absolute state probabilities, π.

Once the π-vector has been obtained from the probability matrix, strategic management

alternatives involving modification of only the reward matrix and/or the simulated period of time

for which the network must be evaluated require only a handful of scalar additions,

multiplications, and divisions as long as the probability matrix is not modified. The procedure

for evaluating these alternations is presented in Section 12. Alterations to the reward matrix

represent changing the power consumed for each task. Some examples of alternatives that

require altering only the reward matrix are investigating the energy consumption when different

components are used, or investigating the energy consumption using a different communication

protocol. One example of investigating different design alternatives is the example presented in

Section 11.5 where the active receiver in the temperature sensors in the ZigBee network is

replaced with the burst switch receiver to determine the energy savings possible employing the

burst switch in place of the active receiver.

Structural changes to the network can be localized to a single topological entity or group

of topological entities. Once the topological entities affected by the structural changes are

updated, the energy consumed by the entire network can be updated using the new energy

consumption values for the affected topologies. Those topological entities unaffected by the

structural changes do not need to be reevaluated. The partition trees presented in Section 7 assist

in identifying the topological entities affected by the structural change.

The method developed in this research facilitates an order reduction of the number of

entities that must be evaluated to determine the energy consumed by a given sensor or RFID

network. With the reduced network, the designer can quickly evaluate different design

alternatives and select the alternative minimizing the energy consumption of the entire network.

The methodology developed in this work is highly scalable as a function of the number of

entities simulated. The example cases presented in Section 10 and 11 demonstrate that the

execution time required for the example networks scale slower than linearly with the size of the

network. The example cases demonstrate that evaluation of the energy consumption of the

 268

networks using the topological entities is accurate, and the energy consumed by the entire

networks found using the topological entities is, at worst, within a few percent of the energy

consumed by the entire networks found when all base level entities were evaluated. These small

differences can be attributed to round-off and combination of constants which reduce the

occurrences of mathematical operations.

The execution speed of this method allows the results to be recalculated quickly. This is

especially useful when the designer makes a typo or sets a parameter to the incorrect value. In a

simulator, errors such as these may not be detected until well into the simulation run (several

hours or even days), forcing the designer to correct the errors and then restart the simulation.

With the quick evaluation time of this method the time wasted is minimal and mistakes can

quickly be found.

The methodology developed in this research provides designers of sensor and RFID

networks with a tool to evaluate the energy consumption of the network. Topological entities are

used to reduce the order of the network, which results in a faster execution time for determining

energy consumption. The tool allows rapid exploration of the design space requiring only a

handful of scalar operations (multiplication, addition, and division) to recomputed the energy

consumption of the network. The rapid exploration of the design space allows designers to make

better, more informed design decisions. This results in the design and creation of better

performing sensor and RFID networks.

13.3 FUTURE WORK

The method developed in this research requires the identification of topologies in a sensor or

RFID network. For a network that already exists or is already deployed, the designer must work

with the basic communication graph for that deployment. The bottom-up method must be used

to extract topological entities from the basic communication graph. Algorithms exist to search a

graph and identify structures matching the fundamental topological entity structures. Integrated

circuit design CAD tools utilize these algorithms to search a designer’s circuit for structures

matching standard cells contained in a technology library, this is called ‘technology mapping’

 269

[46]. No such automated CAD tool exists specifically for use with the method described in this

work. Such an automated tool could be created using two different approaches.

The first method is to modify the basic communication graph structure to match the input

structure of an integrated circuit CAD tool that performs technology mapping. The fundamental

topological entity structures would also need to be converted into a technology library for use

with the CAD tool. This approach reuses the existing CAD tool but requires construction of two

translator programs. The first translator program would convert the sensor or RFID network

from a basic communication graph format to a format recognized by the integrated circuit CAD

tool. The second translation program would convert the fundamental topological structures from

a basic communication graph representation to a technology library format that is understood by

the integrated circuit CAD tool.

The second approach to automating the extraction of topological entities in a network is

to implement the existing algorithms for use on the basic communication graph. This approach

does not require the two translation steps that the other approach requires, but does require the

implementation of the algorithm to search and extract the topological entities from the basic

communication graph.

This research focused on calculating energy consumed by a sensor or RFID network. In

the case of a passive RFID network, the RFID tags are powered by the reader’s inquiry signal

and do not contain an on-board battery. In a passive RFID network, energy consumption is not

as important as in an active RFID network (ISO 18000-7) or a sensor network. However, read

rate, defined here, as the number of successful reads of a RFID tag out of 100 attempted reads, is

an important metric. The primary application of passive RFID networks to date is to track

inventory, hence a read rate as close to 100% is desired to minimize missing any items in an

inventory.

Electromagnetic CAD packages such as Ansoft and Sonnet provide accurate results, but

require a significant amount of computing power and time to evaluate a complex simulation.

The method developed in this work used topological entities to reduce the order of sensor and

RFID networks by grouping base and topological entities together to form larger topological

entities. This same method can be applied to a passive RFID network by redefining the base

entities to consist of environmental entities as well as readers and tags. Examples of

environmental entities could be RFID tags placed on metal or shampoo. Both of these materials

 270

interfere with RFID. An obstacle such as water or a wall between the RFID reader and the RFID

tags is another example of an environmental entity.

A survey of typical environments in which passive RFID networks are deployed would

reveal fundamental environmental entities, from which fundamental topological entities would

be constructed. Existing CAD tools (Ansoft and Sonnet) would then be used to determine the

effect of the environmental entities on the read rate for each fundamental topological entity. The

fundamental topological entity simulations would be able to be kept small to reduce the

computing power and time needed for the CAD tools (Ansoft and Sonnet) to complete the

simulation. With this data and the fundamental topological entities, the read rate for large

passive RFID networks could be quickly and easily obtained, just as the energy consumption for

sensor and RFID networks was in this work.

The methodology developed in this research could be extended in the future to networks

containing mobile entities. The methodology developed in this research may be applicable to

reduce the time required for the evaluation of a power grid. By grouping together components of

the power grid into topological entities, the number of entities that must be evaluated is reduced

and should reduce the execution time. Chip designs are often modeled as state machines and

chips interact with other chips and simulation of these designs is complicated and requires a

great deal of time. Thus, the behavior of each chip can easily be expressed as a Markov process.

Topological entities can be identified based on the interconnections. Markov processes

describing the behavior of these topological entities should be able to be constructed. The

methodology developed in this research may be able to be used to reduce the number of devices

that must be simulated and decrease the time required to analyze the system. Further, the

methodology may be applicable to the system on a chip (SOC) design process where topological

entities could represent individual IP blocks that are combined to form the system. Lastly, the

sizes of the cache and memory bus are important in the performance of a processor. Markov

processes can be used to model the cache and memory interface with a single processor to

determine the optimal size for the cache and memory bus. In a parallel computer multiple

processors are linked together. If topological entities can be identified and Markov processes

can be formulated to describe the behavior of the processors, caches, and memories the

methodology can be used to reduce the number of Markov processes that must be evaluated to

analyze processor, cache, and memory interaction.

 271

REFERENCES NOT CITED

[1] J. Gehrke, S. Madden, "Query processing in sensor networks," IEEE Pervasive
Computing, , vol. 3, no. 1, Jan.-Mar. 2004, pp. 46- 55.

[2] Y. Ma and J. H. Aylor, "System lifetime optimization for heterogeneous sensor networks
with a hub-spoke technology," Mobile Computing, IEEE Transactions on, vol. 3, pp.
286-294, 2004.

[3] C. Schurgers, V. Tsiatsis, S. Ganeriwal, M. Srivastava, "Optimizing sensor networks in
the energy-latency-density design space," IEEE Transactions on Mobile Computing, vol.
1, no. 1, Jan.-Mar. 2002, pp. 70- 80.

[4] S. Ci, H. Sharif, and K. Nuli, "Study of an adaptive frame size predictor to enhance
energy conservation in wireless sensor networks," Selected Areas in Communications,
IEEE Journal on, vol. 23, pp. 283-292, 2005.

[5] A. Cerpa, D. Estrin, "ASCENT: adaptive self-configuring sensor networks topologies,"
IEEE Transactions on Mobile Computing, vol. 3, no. 3, July-Aug. 2004, pp. 272- 285.

[6] S. McGirr, K. Raysin, C. Ivancic, C. Alspaugh, "Simulation of underwater sensor
networks," OCEANS '99 MTS/IEEE Riding the Crest into the 21st Century, vol. 2, 1999,
pp. 945- 950.

[7] K. Sohrabi, J. Gao, V. Ailawadhi, and G. J. Pottie, "Protocols for self-organization of a
wireless sensor network," Personal Communications, IEEE [see also IEEE Wireless
Communications], vol. 7, pp. 16-27, 2000.

[8] S.M. Das, H. Pucha, Y.C. Hu, "MicroRouting: A Scalable and Robust Communication
Paradigm for Sparse Ad Hoc Networks," Proc. 19th IEEE Int’l Parallel and Distributed
Processing Symposium, Apr. 2005, pp. 245b- 245b.

[9] S.D. Muruganathan, D.C.F. Ma, R.I. Bhasin, A.O. Fapojuwo, "A centralized energy-
efficient routing protocol for wireless sensor networks," IEEE Communications
Magazine, vol. 43, no. 3, Mar. 2005, pp. S8- S13.

[10] M.J. Miller, N.H. Vaidya, "A MAC protocol to reduce sensor network energy
consumption using a wakeup radio," IEEE Transactions on Mobile Computing, vol. 4,
no. 3, May-June 2005, pp. 228- 242.

 272

[11] M. Hempel, H. Sharif, P. Raviraj, "HEAR-SN: A New Hierarchical Energy-Aware
Routing Protocol for Sensor Networks," Proc. of the 38th Annual Hawaii Int’l Conf. on
System Sciences (HICSS '05), Jan. 2005, pp. 324a- 324a.

[12] N. Thepvilojanapong, Y. Tobe, K. Sezaki, "HAR: hierarchy-based anycast routing
protocol for wireless sensor networks," Proc. of The 2005 Symposium on Applications
and the Internet, Jan.- Feb. 2005, pp. 204- 212.

[13] C. Jaikaeo, C. Srisathapornphat, C. C. Shen, “Diagnosis of sensor networks," IEEE Int’l
Conf. on Communications (ICC 2001), vol.5, 2001, pp. 1627- 1632.

[14] X. Hong, M. Gerla, R. Bagrodia, T. J. Kwon, P. Estabrook, and P. Guangyu, "The Mars
sensor network: efficient, energy aware communications," Military Communications
Conf. Communications for Network-Centric Operations: Creating the Information Force,
(MILCOM 2001), 2001.

[15] M.A. Youssef, M.F. Younis, K.A. Arisha, "A constrained shortest-path energy-aware
routing algorithm for wireless sensor networks," IEEE Wireless Communications and
Networking Conference (WCNC2002), vol. 2, Mar. 2002, pp. 794- 799.

[16] S. Cho and A. P. Chandrakasan, "Energy efficient protocols for low duty cycle wireless
microsensor networks," Proc. IEEE Int’l Conf. on Acoustics, Speech, and Signal
Processing (ICASSP '01), 2001.

[17] M. Younis, M. Youssef, K. Arisha, "Energy-aware routing in cluster-based sensor
networks," Proc. 10th IEEE Int’l Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunications Systems, (MASCOTS 2002), 2002, pp. 129- 136.

[18] V. Srinivasan, P. Nuggehalli, R. Rao, "Design of optimal energy aware protocols for
wireless sensor networks," IEEE VTS 53rd Vehicular Technology Conf. (VTC 2001), vol.
4, 2001, pp. 2494- 2498.

[19] R. Iyer, L. Kleinrock, "QoS control for sensor networks," IEEE International Conf. on
Communications (ICC '03), vol. 1, May 2003, pp. 517- 521.

[20] R. S. Bhuvaneswaran, J. L. Bordim, J. Cui, N. Ishii, and K. Nakano, "An energy-efficient
initialization protocol for wireless sensor networks," Int’l Conf. on Parallel Processing
Workshops, 2001.

[21] A. Sobeih, W.-P. Chen, J. C. Hou, L.-C. Kung, N. Li, H. Lim, H.-Y. Tyan, and H. Zhang,
"J-Sim: a simulation environment for wireless sensor networks," Proc. 38th Annual
Simulation Symposium, 2005.

[22] S. Park, A. Savvides, and M. B. Srivastava, "Simulating networks of wireless sensors,"
Proc. of the Winter Simulation Conf., 2001.

 273

[23] P. Baldwin, S. Kohli, E. A. Lee, X. Liu, and Y. Zhao, "Modeling of sensor nets in
Ptolemy II," Proc. of the 3rd Int’l Symposium on Information Processing in Sensor
Networks (IPSN'04), 2004.

[24] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, T.
Schoellhammer, “A system for simulation, emulation, and deployment of heterogeneous
sensor networks,” Proc. of the 2nd Int’l Conf. on Embedded Networked Sensor Systems
(SenSys '04), Nov. 2004, pp. 201- 213.

[25] B. White, J. Lepreau, S. Guruprasad, “Lowering the barrier to wireless and mobile
experimentation,” SIGCOMM Computer Communication Review vol. 33, no. 1, Jan.
2003, pp. 47- 52.

[26] X. Chang, "Network simulations with OPNET," Proceedings of the 1999 Winter
Simulation Conf., 1999.

[27] S. Park, A. Savvides, M.B. Srivastava, “SensorSim: a simulation framework for sensor
networks,” Proc. of the 3rd ACM Int’l Workshop on Modeling, Analysis and Simulation
of Wireless and Mobile Systems (MSWIM '00), Aug. 2000, pp. 104- 111.

[28] H. Y. Song, "A probabilistic performance model for conservative simulation protocol,"
Proc. 15th Workshop on Parallel and Distributed Simulation, 2001.

 274

REFERENCES

[1] E. H. Callaway, Jr., Wireless Sensor Networks Architectures and Protocols: Auerbach
Publications, 2004.

[2] C. Chee-Yee and S. P. Kumar, "Sensor networks: evolution, opportunities, and
challenges," Proceedings of the IEEE, vol. 91, pp. 1247-1256, 2003.

[3] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin,
"Habitat monitoring with sensor networks " Communications of the ACM, vol. 47, pp.
34-40, 2004.

[4] F. Zhao and L. Guibas, Wireless Sensor Networks An Information Processing Approach:
Morgan Kaufmann Publishers, 2004.

[5] H. Tim Tau, "Using sensor networks for highway and traffic applications," Potentials,
IEEE, vol. 23, pp. 13-16, 2004.

[6] K. Sohrabi and G. J. Pottie, "Performance of a novel self-organization protocol for
wireless ad-hoc sensor networks," presented at Vehicular Technology Conf. , 1999.

[7] F. Mondinelli and Z. M. Kovacs-Vajna, "Self-localizing sensor network architectures,"
Instrumentation and Measurement, IEEE Transactions on, vol. 53, pp. 277-283, 2004.

[8] S. Slijepcevic and M. Potkonjak, "Power efficient organization of wireless sensor
networks," presented at IEEE Int’l Conf. on Communications (ICC 2001), 2001.

[9] J. Qiangfeng and D. Manivannan, "Routing protocols for sensor networks," presented at
1st IEEE Consumer Communications and Networking Conf., 2004.

[10] S. De, Q. Chunming, and W. Hongyi, "Meshed multipath routing: an efficient strategy in
sensor networks," presented at IEEE Wireless Communications and Networking (WCNC
2003), 2003.

[11] V. Tsiatsis, S. A. Zimbeck, and M. B. Srivastava, "Architecture strategies for energy-
efficient packet forwarding in wireless sensor networks," presented at International
Symposium on Low Power Electronics and Design, 2001.

[12] A. Sinha and A. Chandrakasan, "Dynamic power management in wireless sensor
networks," Design & Test of Computers, IEEE, vol. 18, pp. 62-74, 2001.

 275

[13] A. Boulis and M. B. Srivastava, "Node-level energy management for sensor networks in
the presence of multiple applications," presented at Proc. of the 1st IEEE International
Conf. on Pervasive Computing and Communications (PerCom 2003), 2003.

[14] J. Agre and L. Clare, "An integrated architecture for cooperative sensing networks,"
Computer, vol. 33, pp. 106-108, 2000.

[15] C.-C. Shen, C. Srisathapornphat, and C. Jaikaeo, "Sensor information networking
architecture and applications," Personal Communications, IEEE [see also IEEE Wireless
Communications], vol. 8, pp. 52-59, 2001.

[16] Z. Feng, S. Jaewon, and J. Reich, "Information-driven dynamic sensor collaboration,"
Signal Processing Magazine, IEEE, vol. 19, pp. 61-72, 2002.

[17] S. S. Pradhan, J. Kusuma, and K. Ramchandran, "Distributed compression in a dense
microsensor network," Signal Processing Magazine, IEEE, vol. 19, pp. 51-60, 2002.

[18] C. Haowen and A. Perrig, "Security and privacy in sensor networks," Computer, vol. 36,
pp. 103-105, 2003.

[19] A. D. Joseph, "Energy harvesting projects," Pervasive Computing, IEEE, vol. 4, pp. 69-
71, 2005.

[20] R. Want, K. I. Farkas, and C. Narayanaswami, "Guest Editors' Introduction: Energy
Harvesting and Conservation," Pervasive Computing, IEEE, vol. 4, pp. 14-17, 2005.

[21] M. Rahimi, H. Shah, G. S. Sukhatme, J. Heideman, and D. Estrin, "Studying the
feasibility of energy harvesting in a mobile sensor network," presented at IEEE Int’l
Conf. on Robotics and Automation (ICRA '03), 2003.

[22] J. A. Paradiso and T. Starner, "Energy scavenging for mobile and wireless electronics,"
Pervasive Computing, IEEE, vol. 4, pp. 18-27, 2005.

[23] A. Kansal and M. B. Srivastava, "An environmental energy harvesting framework for
sensor networks," 2003.

[24] R. M. Fujimoto, Parallel and distributed simulation systems. New York: John Wiley &
Sons Inc., 2000.

[25] G. F. Riley, "Large-scale network simulations with GTNetS," presented at Proceedings of
the 2003 Winter Simulation Conference, 2003.

[26] Z. Ji, J. Zhou, M. Takai, and R. Bagrodia, "Scalable simulation of large-scale wireless
networks with bounded inaccuracies," in Proceedings of the 7th ACM international
symposium on Modeling, analysis and simulation of wireless and mobile systems.
Venice, Italy: ACM Press, 2004.

 276

[27] V. Naoumov and T. Gross, "Simulation of large ad hoc networks," in Proceedings of the
6th ACM international workshop on Modeling analysis and simulation of wireless and
mobile systems. San Diego, CA, USA: ACM Press, 2003.

[28] H. Akhtar, "An overview of some network modeling, simulation and performance
analysis tools," presented at Proc., 2nd IEEE Symposium on Computers and
Communications, 1997.

[29] F. Dia and J. Wu, "On Constructing k-Connected k-Dominating Set in Wireless
Networks," presented at Proc. 19th IEEE Int’l Parallel and Distributed Processing
Symposium (IPDPS 2005), 2005.

[30] R. Min and A. Chandrakasan, "Energy-efficient communication for ad-hoc wireless
sensor networks," presented at Conf. Record of the 35th Asilomar Conference on Signals,
Systems and Computers, 2001.

[31] "GloMoSim Manual Version 1.2," UCLA Parallel Computing Laboratory
http://pcl.cs.ucla.edu/projects/glomosim/GloMoSimManual.html.

[32] X. Zeng, R. Bagrodia, and M. Gerla, "GloMoSim: a library for parallel simulation of
large-scale wireless networks," presented at Proc. Twelfth Workshop on Parallel and
Distributed Simulation (PADS 98), 1998.

[33] R. Bagrodia, R. Meyer, M. Takai, Y.-A. Chen, X. Zeng, M. Jay, and H. Y. Song, "Parsec:
a parallel simulation environment for complex systems," Computer, vol. 31, pp. 77-85,
1998.

[34] D. Cavin, Y. Sasson, and A. Schiper, "On the accuracy of MANET simulators," in
Proceedings of the second ACM international workshop on Principles of mobile
computing. Toulouse, France: ACM Press, 2002.

[35] C. F. Chiasserini and M. Garetto, "Modeling the performance of wireless sensor
networks," presented at 23rd Annual Joint Conference of the IEEE Computer and
Communications Societies (INFOCOM 2004), 2004.

[36] D. L. Isaacson and R. W. Madsen, Markov Chains, Theory and Applications, 1976.

[37] R. A. Howard, Dynamic programming and Markov processes. Cambridge: M.I.T. Press,
1966.

[38] B. L. Fox and D. M. Landi, "An Algorithm for Identifying the Ergodic Subchains and
Transient States of a Stochastic Matrix," Communications of the Association for
Computing Machinery, vol. 11, pp. 619-621, 1968.

[39] J. G. Kemeny, J. L. Snell, and G. L. Thompson, Introduction to Finite Mathematics, 3rd
ed. Englewood Cliffs: Prentice-Hall, 1974.

 277

[40] M. H. Mickle and T. W. Sze, Optimization in Systems Engineering. Scranton: Intext
Educational Publishers, 1972.

[41] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing.
Upper Saddle River, NJ: Prentice-Hall, Inc., 1999.

[42] E. Kamen, Introduction to Signals and Systems. New York, NY: Macmillan Publishing
Company, 1987.

[43] K. Dantu, M. Rahimi, H. Shah, S. Babel, A. Dhariwal, and G. S. Sukhatme, "Robomote:
enabling mobility in sensor networks," 2005.

[44] J. Luo and J. P. Hubaux, "Joint mobility and routing for lifetime elongation in wireless
sensor networks," 2005.

[45] W. J. Kaiser, G. J. Pottie, M. B. Srivastava, G. S. Sukhatme, J. Villasenor, and D. Estrin,
"Networked Infomechanical Systems (NIMS) for Ambient Intelligence," Technical
Report 31, UCLA-NSF Center for Embedded Networked Sensing December 2003.

[46] G. De Micheli, Synthesis and Optimization of Digital Circuits: McGraw-Hill, 1994.

[47] B. A. Forouzan and S. C. Fegan, TCP/IP Protocol Suite. New York, NY: McGraw-Hill,
2003.

[48] W. Stallings, Data & Computer Communications, 6th ed. Upper Saddle River, NJ:
Prentice Hall, 2000.

[49] T. H. Cormen, C. E. Lieserson, R. L. Rivest, and C. Stein, Introduction to Algorithms:
McGraw-Hill, 2001.

[50] B. Bollobás, Modern Graph Theory. New York, NY: Springer, 1998.

[51] R. E. Neapolitan and K. Naimipour, Fundamentals of Algorithms Using Java
Pseudocode: Jones and Bartlett Publishers, Inc., 2004.

[52] D. Geer, "Users Make a Beeline for ZigBee Sensor Technology," Computer, vol. 38, pp.
16-19, 2005.

[53] J. L. Hennessy and D. A. Patterson, Computer Architecture A Quantitative Approach, 3rd
ed. San Fancisco, CA: Morgan Kaufmann Publishers, 2003.

[54] Z. Alliance, "ZigBee Specification v1.0," 2005.

[55] K. Finkenzeller, RFID Handbook : Fundamentals and Applications in Contactless Smart
Cards and identifcation: Wiley, 2003.

[56] Savi, "Savi SensorTag ST-674," 2005.

[57] Savi, "Savi SensorTag ST-673," 2006.

 278

[58] Savi, "Savi SensorTag ST-676," 2006.

[59] "Information Technology – Radio-frequency Identification for Item Management – Part
7: Parameters for Active Air Interface Communications at 433 MHz," ISO/IEC FDIS
18000-7, 2004.

[60] H. Cho and Y. Baek, "Design and implementation of an active RFID system platform,"
presented at Applications and the Internet Workshops, 2006. SAINT Workshops 2006.
International Symposium on, 2006.

[61] Atmel, "ATmega128(L) Datasheet," vol. 2006, 2006.

[62] Semtech, "XE1203F Datasheet," vol. 2006, 2005.

[63] "ZigBee Alliance," http://www.zigbee.org/.

[64] "IEEE Standard for Information Technology - Telecommunications and Information
Exchange Between Systems Local and metropolitan area networks - Specific
requirements Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),"
IEEE Std 802.15.4-2003, 2003.

[65] National Semiconductor, "LM70 SPI/MICROWIRE 10-Bit plus Sign Digital
Temperature Sensor," vol. 2006, 2006.

[66] Freescale Semiconductor, "MC13192/MC13193 Datasheet," vol. 2006, 2005.

[67] P. J. Hawrylak, L. Mats, J. T. Cain, A. K. Jones, S. Tung, and M. H. Mickle, "Ultra-Low
Power Computing System for Wireless Devices," International Review on Computers
and Software, vol. 1, pp. 1-10, 2006.

 279

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE

	ABSTRACT

	TABLE OF CONTENTS
	 LIST OF TABLES
	LIST OF FIGURES
	1.0 INTRODUCTION
	1.1 CURRENT/RELATED WORK IN SENSOR NETWORKS
	1.2 DISCRETE EVENT SIMULATION
	1.3 CURRENT/RELATED WORK IN SENSOR NETWORK SIMULATION
	Table 1.1: Number of times each method is used in the 19 papers surveyed.
	Figure 1.1: Graph showing usage of simulators.
	Figure 1.2: A network of 13 nodes, divided into nine smaller areas.

	1.4 BACKGROUND SUMMARY
	1.5 STATEMENT OF THE PROBLEM

	2.0 COMPONENTS OF A SENSOR AND RFID NETWORK
	2.1 NODES
	Figure 2.1: Block diagram of a node.

	2.2 SINKS
	Figure 2.2: Type 1 sink node.
	Figure 2.3: Type 2 sink node.

	3.0 CLASSIFICATION OF SENSOR AND RFID NETWORKS
	3.1 CLASSES OF SENSOR AND RFID NETWORKS
	Figure 3.1: Top-level breakdown of wireless networks.
	Figure 3.2: Sub-division of networks containing mobile entities.
	Figure 3.3: Sub-division of the networks containing only stationary entities.
	Figure 3.4: Two entities (Entity 1 and Entity 2) can communicate directly because they are within range of each other.
	Figure 3.5: Two entities (Entity 1 and Entity 2) are not within range of each other, messages must be relayed by the Relay Entity.
	Figure 3.6: Two entities (Entity 1 and Entity 2) are not within range of each other, messages must be relayed by multiple Relay Entities.
	Figure 3.7: Division of the Respond to Commands class of networks based on the communication schemes.
	Figure 3.8: Division of the Monitor/Measure Environmental Phenomenon class of networks based on the communication schemes used.
	Figure 3.9: Division of the Respond to Environmental Stimulus class of networks based on the communication schemes used.

	4.0 MARKOV PROCESS
	Figure 4.1: State diagram of the Markov process for the simple temperature sensor.
	Figure 4.2: Example Markov process with two chains.
	Figure 4.3: Example Markov process with two recurrent chains.
	4.1 STEADY STATE RESPONSE
	Figure 4.4: Example of a periodic Markov process.
	Figure 4.5: Example of an aperiodic Markov process.

	4.2 ANALYSIS OF MARKOV PROCESS WITH Z-TRANSFORM
	4.3 ANALYSIS OF THE SIMPLE TEMPERATURE SENSOR MARKOV PROCESS
	Figure 4.6: State diagram of the Markov process for the simple temperature sensor.
	Table 4.1: Value of n from (435) and the energy consumed by the simple temperature sensor for four different periods of operation.

	5.0 SINGLE ENTITY MARKOV PROCESSES
	5.1 NODE MARKOV PROCESS
	Figure 5.1: Generic Markov process for a node.

	5.2 TYPE 2 SINK MARKOV PROCESS
	Figure 5.2: Generic Markov process for a Type 2 Sink.

	5.3 TYPE 1 SINK MARKOV PROCESS
	Figure 5.3: General Markov process for a Type 1 Sink.

	5.4 MARKOV PROCESSES FOR TOPOLOGICAL ENTITIES
	5.4.1 Tasks of a Sensor Network
	Figure 5.4: Six basis tasks forming a basis for all tasks of a sensor network.
	Figure 5.5: General Markov process for a topological entity.

	5.5 MOBILITY

	6.0 BASIC COMMUNICATION GRAPH
	Figure 6.1: Example of a basic communication graph of a mesh network.

	7.0 SENSOR AND RFID NETWORK TOPOLOGY IDENTIFICATION
	7.1 BOTTOM-UP CONSTRUCTION
	Figure 7.1: Example sensor network consisting of twenty-five entities.
	Figure 7.2: Example sensor network at entity level.
	Figure 7.3: Top layer topology of the example sensor network shown in Figure 7.2.
	Figure 7.4: Example sensor network with each entity assigned an ID. The example tree structure will be constructed using this network.
	Figure 7.5: The reduced example sensor network with topology entities replacing groups of individual entities shown in Figure 7.4.
	Figure 7.6: Lowest two layers of the partition tree for the example sensor network.
	Figure 7.7: Final partition tree constructed using the bottom-up method of the example sensor network shown in Figure 7.4.
	7.1.1 Cell-Library Binding Method
	Figure 7.8: Sensor network containing three disconnected portions.

	7.1.2 Distance Graph Method
	Figure 7.9: Basic communication graph, G, of the example sensor network. The numbers next to each edge are the edge weight representing the distance between the two end points in meters.
	Figure 7.10: The distance unit graph, GD, created from the graph G in Figure 7.9.
	Figure 7.11: Distance graph GD1 showing only communication links of 1 distance unit or less.
	Figure 7.12: Distance graph GD2 showing only communication links of 2 distance units or less.
	Figure 7.13: Distance graph GD3 showing only communication links of 3 distance units or less.
	Figure 7.14: Basic communication graph, G’, showing the example sensor network at the first level of topological abstraction.
	Figure 7.15: Distance unit graph, GD’ with one distance unit equal to 3.4 meters (or feet).
	Figure 7.16: Distance graph GD1’.
	Figure 7.17: Distance graph GD2’.

	7.2 TOP-DOWN CONSTRUCTION
	Figure 7.18: Footprint of simple chemical production plant consisting of four buildings.
	Figure 7.19: Chemical plant with top-level sensor network topology shown.
	Figure 7.20: Sensor network for the chemical plant to monitor ethylene oxide at the basic entity level of detail.
	Figure 7.21: Final partition tree constructed using the top-down method of the example sensor network shown in Figure 7.4.

	8.0 BASE SENSOR AND RFID NETWORK TOPOLOGIES
	8.1 MESH TOPOLOGY
	Figure 8.1: A 3x3 mesh topology.

	8.2 STAR TOPOLOGY
	Figure 8.2: General depiction of the star topology, all entities in the star topology are connected to the central entity.

	8.3 CLUSTER TOPOLOGY
	Figure 8.3: Example of a single cluster within a cluster topology.

	8.4 TREE TOPOLOGY
	Figure 8.4: Data fusion in a network of temperature sensors arranged in a binary tree topology. All sensor nodes have taken readings and the lowest level (leaf nodes) have transmitted their readings to the next highest level.
	Figure 8.5: The data fusion process started in Figure 8.4 has progressed to the next higher level.
	Figure 8.6: The data fusion process has processed from Figure 8.5 with only the sensor node that is the root of the tree remaining.
	Figure 8.7: The data fusion process is complete and the sensor node at the root of the tree has sent the data to the sink (or next highest level).

	8.5 SINGLE LINK TOPOLOGY
	Figure 8.8: Example single link topology.

	9.0 TOPOLOGICAL ENTITIES GENERATION ALGORITHM
	10.0 ISO 18000-7 RFID NETWORK EXAMPLE
	10.1 EXAMPLE ISO 18000-7 NETWORK
	Figure 10.1: Topologies used to group a single ISO 18000-7 reader and associated tags together.

	10.2 ANALYSIS OF ISO 18000-7 NETWORK
	10.2.1 Step 1: Identification of the Base Entities
	10.2.2 Step 2: Identification of Tasks of the Base Level Entities
	Table 10.1: ISO 18000-7 commands and abbreviations.
	Table 10.2: Number of entities in example ISO 18000-7 network.
	Figure 10.2: Example ISO 18000-7 network.
	Figure 10.3: Basic communication graph of the ISO 18000-7 example network.
	Table 10.3: Number of each inquiry sent by each of the readers in the ISO 18000-7 example.

	10.2.3 Step 3: Development of Markov Process and Probability and Reward Matrices for the Base Level Entities
	10.2.4 Step 3 for the Single ISO 18000-7 Tag
	Figure 10.4: Markov process describing the energy consumption of an ISO 18000-7 RFID tag based on the tasks performed.
	Table 10.4: Values of power consumption parameters tag developed by Cho and Baek.
	Figure 10.5: Example of Manchester encoding used in ISO 18000-7, the byte ‘00101010’ is illustrated.
	Table 10.5: Non-power parameters for the ISO 18000-7 tag.
	Table 10.6: Message and reply length parameters.
	Table 10.7: Energy consumed by each tag in one day.

	10.2.5 Step 3 for Single ISO 18000-7 Reader
	Figure 10.6: Markov process for an ISO 18000-7 reader.
	Table 10.8: Power consumption for the reader under different conditions.
	Table 10.9: Parameters for the single reader model.
	Table 10.10: Energy consumption of the four readers operating for one day.

	10.2.6 Step 4: Identification of Interactions between the Base Level Entities
	10.2.7 Step 5: Identification of the Single Reader and Associated Tags Topological Entities
	Figure 10.7: Entities contained in topology, TOP1, built around reader R1.
	Figure 10.8: Entities contained in topology, TOP2, built around reader R2.
	Figure 10.9: Entities contained in topology, TOP3, built around reader R3.
	Figure 10.10: Entities contained in topology, TOP4, built around reader R4.
	Figure 10.11: Example ISO 18000-7 network from Figure 10.2 covered using four single reader and associated tags topological entities.

	10.2.8 Step 6: Identification of Tasks for the of Single Reader and Associated Tags Topological Entity
	10.2.9 Step 7: Markov Process for the Single Reader and Associated Tags Topological Entity
	Figure 10.12: Markov process for a topological entity containing one reader and all tags associated with that reader.
	Figure 10.13: Basic communication graph of the example ISO 18000-7 network (readers are shaded and tags are not shaded).
	Table 10.11: Value of MOVER for each of the four topologies.
	Table 10.12: Degree of each tag in the example network.
	Table 10.13: Value of MReader for each topology.
	Table 10.14: Value of the power consumption parameters for a reader and a tag.
	Table 10.15: Values of the time parameters for the single reader and associated tags topology.
	Table 10.16: Number of messages each topology sends to the outside world per day.
	Table 10.17: Miscellaneous parameter values for single reader and associated tags topology.
	Table 10.18: Energy consumed over 1 day for each of the four single reader and associated tag topologies and for the entire network.

	10.2.10 Step 8 for the Single Reader and Associated Tags Topological Entities
	Figure 10.14: Basic communication graph of the example ISO 18000-7 network (readers are shaded and tags are not shaded).
	Figure 10.15: Entities contained in topology, TOP1, built around reader R1.
	Figure 10.16: Entities contained in topology, TOP2, built around reader R2.
	Figure 10.17: Entities contained in topology, TOP3, built around reader R3.
	Figure 10.18: Entities contained in topology, TOP4, built around reader R4.
	Figure 10.19: Basic communication graph of the four single reader and associated tags topological entities.

	10.2.11 Step 9: Identification of the Multi-Reader Topological Entity
	Figure 10.20: The entire ISO 18000-7 example network is covered using a single multi-reader topological entity.

	10.2.12 Steps 6 through 9 for the Multi-Reader Topological Entity
	Figure 10.21: Markov process for highest-level topology containing multiple readers.

	10.2.13 Step 10: Covering the Network with a Single Entity

	10.3 SUMMARY OF THE ENERGY CONSUMPTION
	Table 10.19: Energy consumed calculated using the three different sets of entities and percent difference from the energy consumption of the base level entities.

	10.4 SUMMARY OF STEPS IN ALGORITHM TO IDENTIFY TOPOLOGICAL ENTITIES
	10.5 EVALUATION TIME FOR LARGER NETWORKS
	Figure 10.22: Basic communication graph of the double size example network.
	Figure 10.23: Single reader and associated tags topology, TOP1, centered around reader R1 in the double size network.
	Figure 10.24: Single reader and associated tags topology, TOP2, centered around reader R2 in the double size network.
	Figure 10.25: Single reader and associated tags topology, TOP3, centered around reader R3 in the double size network.
	Figure 10.26: Single reader and associated tags topology, TOP4, centered around reader R4 in the double size network.
	Figure 10.27: Single reader and associated tags topology, TOP5, centered around reader R5 in the double size network.
	Figure 10.28: Single reader and associated tags topology, TOP6, centered around reader R6 in the double size network.
	Figure 10.29: Single reader and associated tags topology, TOP7, centered around reader R7 in the double size network.
	Figure 10.30: Single reader and associated tags topology, TOP8, centered around reader R8 in the double size network.
	Figure 10.31: Double size network covered with eight single reader and associated tags topological entities.
	Figure 10.32: The double size network can be covered by a single multi-reader topological entity.
	Figure 10.33: Markov process for the multi-reader topological entity.
	Figure 10.34: Basic communication graph for the quadruple size example network (not to scale).
	Figure 10.35: Single reader and associated tags topology, TOP1, centered around reader R1 in the quadruple size network.
	Figure 10.36: Single reader and associated tags topology, TOP2, centered around reader R2 in the quadruple size network.
	Figure 10.37: Single reader and associated tags topology, TOP3, centered around reader R3 in the quadruple size network.
	Figure 10.38: Single reader and associated tags topology, TOP4, centered around reader R4 in the quadruple size network.
	Figure 10.39: Single reader and associated tags topology, TOP5, centered around reader R5 in the quadruple size network.
	Figure 10.40: Single reader and associated tags topology, TOP6, centered around reader R6 in the quadruple size network.
	Figure 10.41: Single reader and associated tags topology, TOP7, centered around reader R7 in the quadruple size network.
	Figure 10.42: Single reader and associated tags topology, TOP8, centered around reader R8 in the quadruple size network.
	Figure 10.43: Single reader and associated tags topology, TOP9, centered around reader R9 in the quadruple size network.
	Figure 10.44: Single reader and associated tags topology, TOP10, centered around reader R10 in the quadruple size network.
	Figure 10.45: Single reader and associated tags topology, TOP11, centered around reader R11 in the quadruple size network.
	Figure 10.46: Single reader and associated tags topology, TOP12, centered around reader R12 in the quadruple size network.
	Figure 10.47: Single reader and associated tags topology, TOP13, centered around reader R13 in the quadruple size network.
	Figure 10.48: Single reader and associated tags topology, TOP14, centered around reader R14 in the quadruple size network.
	Figure 10.49: Single reader and associated tags topology, TOP15, centered around reader R15 in the quadruple size network.
	Figure 10.50: Single reader and associated tags topology, TOP16, centered around reader R16 in the quadruple size network.
	Figure 10.51: Covering of the quadruple size network with the sixteen single reader and associated tags topological entities.
	Figure 10.52: The double size network can be covered by a single multi-reader topological entity.
	Figure 10.53: Markov process for the multi-reader topological entity.
	Table 10.20: Time to evaluate the single size example networks.
	Table 10.21: Time to evaluate the double size example networks.
	Table 10.22: Time to evaluate the quadruple size example networks.
	Table 10.23: Energy consumption and percent differences between models for single, double, and quadruple size example networks.

	11.0 ZIGBEE NETWORK EXAMPLE
	Figure 11.1: Example of a ZigBee network arranged in a star topology.
	Figure 11.2: Example of a ZigBee network arranged using the Peer-to-Peer topology.
	Figure 11.3: Top-level of the example ZigBee network, represented by a single ZigBee tree topological entity.
	Figure 11.4: Intermediate-level depiction of the ZigBee network used in this example.
	Figure 11.5: ZigBee network example case.
	11.1 ANALYSIS OF ENERGY CONSUMPTION USING BASE LEVEL ENTITIES
	Table 11.1: Components used in the base entities in this example.
	11.1.1 Step 1: Identification of Base Level Entities
	11.1.2 Step 2: Identification of Tasks of the Base Level Entities
	11.1.3 Step 3: Development of the Markov Process, Probability and Rewards Matrices for the Base Level Entities
	11.1.4 Step 3 for the Temperature Sensor
	Figure 11.6: Markov process for the temperature sensor ZigBee end-device.
	Table 11.2: Parameters for evaluation for the energy consumption of the temperature sensor.
	Table 11.3: Energy consumption of the temperature sensors in the example network over 1 day.

	11.1.5 Step 3 for the ZigBee Router
	Figure 11.7: Markov process for a ZigBee router.
	Table 11.4: Parameters for evaluation for the energy consumption of the router.
	Table 11.5: Energy consumption of the routers in the example network over 1 day.

	11.1.6 Step 3 for the ZigBee Coordinator
	Figure 11.8: Markov process for the ZigBee coordinator.
	Table 11.6: Parameters for evaluation for the energy consumption of the coordinator.
	Table 11.7: Energy consumption of the coordinator in the example network over 1 day.

	11.1.7 Step 4: Identification of Interactions between Base Level Entities
	11.1.8 Step 5: Identification of the ZigBee Star Topological Entity
	Figure 11.9: ZigBee base entities contained in topological entity TOPS1.
	Figure 11.10: ZigBee base entities contained in topological entity TOPS2.
	Figure 11.11: Covering of the ZigBee example network using the two ZigBee star topological entities (TOPS1 and TOPS2).

	11.1.9 Step 6: Identification of the Tasks of the ZigBee Star Topological Entity
	11.1.10 Step 7: Development of the Markov Process for the ZigBee Star Topological Entity
	Figure 11.12: Markov process describing the star topological entity.
	Table 11.8: Energy consumed for each entity and the entire network using the Star Topology.

	11.1.11 Step 8 for the ZigBee Star Topological Entity
	11.1.12 Step 9: Identification of the ZigBee Tree Topological Entity
	Figure 11.13: Tree topological entity.
	Figure 11.14: Covering of the ZigBee example network using a single ZigBee tree topological entity.

	11.1.13 Step 6 for the ZigBee Tree Topological Entity
	11.1.14 Step 7 for the ZigBee Tree Topological Entity
	Figure 11.15: Markov process describing the ZigBee coordinator tree topological entity.

	11.1.15 Steps 8, 9, and 10 for the ZigBee Tree Topological Entity
	Table 11.9: Energy consumption of the example using the Tree Topological Entity.

	11.2 SUMMARY OF THE ENERGY CONSUMPTION
	Table 11.10: Energy consumed calculated using the three different sets of entities and percent difference from the energy consumption of the base level entities.

	11.3 SUMMARY OF STEPS IN ALGORITHM TO IDENTIFY TOPOLOGICAL ENTITIES
	11.4 EVALUATION TIME FOR LARGER NETWORKS
	Figure 11.16: Double size example network.
	Figure 11.17: ZigBee tree topological entity, TOP1, in the double size network.
	Figure 11.18: ZigBee tree topological entity, TOP2, in the double size network.
	Figure 11.19: ZigBee star topological entity 1, TOPS1.
	Figure 11.20: ZigBee star topological entity 2, TOPS2.
	Figure 11.21: ZigBee star topological entity 3, TOPS3.
	Figure 11.22: ZigBee star topological entity 4, TOPS4.
	Figure 11.23: Covering of the double size network with two ZigBee tree topological entities.
	Figure 11.24: Markov process describing the ZigBee coordinator tree topological entity.
	Figure 11.25: Covering of the network with a single ZigBee multi-tree topological entity.
	Figure 11.26: Quadruple size example network.
	Figure 11.27: ZigBee tree topological entity, TOP1, rooted at ZigBee coordinator 1.
	Figure 11.28: ZigBee tree topological entity, TOP2, rooted at ZigBee coordinator 2.
	Figure 11.29: ZigBee tree topological entity, TOP3, rooted at ZigBee coordinator 3.
	Figure 11.30: ZigBee tree topological entity, TOP4, rooted at ZigBee coordinator 4.
	Figure 11.31: ZigBee star topological entity 1, TOPS1.
	Figure 11.32: ZigBee star topological entity 2, TOPS2.
	Figure 11.33: ZigBee star topological entity 3, TOPS3.
	Figure 11.34: ZigBee star topological entity 4, TOPS4.
	Figure 11.35: ZigBee star topological entity 5, TOPS5.
	Figure 11.36: ZigBee star topological entity 6, TOPS6.
	Figure 11.37: ZigBee star topological entity 7, TOPS7.
	Figure 11.38: ZigBee star topological entity 8, TOPS8.
	Figure 11.39: Covering of the quadruple size network with the four ZigBee tree topological entities.
	Figure 11.40: Markov process describing the ZigBee coordinator tree topological entity.
	Figure 11.41: Covering of the network with a single ZigBee multi-tree topological entity.
	Table 11.11: Time to evaluate single size example networks.
	Table 11.12: Time to evaluate double size example networks.
	Table 11.13: Time to evaluate quadruple size example networks.
	Table 11.14: Energy consumption and percent difference between models for single, double, and quadruple size example networks.

	11.5 BURST SWITCH RECEIVER
	Table 11.15: Power consumption of the temperature sensor with the burst switch.
	Table 11.16: Energy consumption of the network with the temperature sensors employing the burst switch calculated using the base level entities and the tree topological entity.

	12.0 ANALYSIS OF THE METHOD
	Figure 12.1: State diagram of the Markov process for the simple temperature sensor.

	13.0 CONCLUSIONS AND FUTURE WORK
	13.1 REVIEW
	13.2 THE RESEARCH
	13.3 FUTURE WORK

	REFERENCES NOT CITED
	REFERENCES

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

