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LARGE EDDY SIMULATION OF A TURBULENT NONPREMIXED JET

FLAME USING A FINITE-RATE CHEMISTRY MODEL

Patrick H. Pisciuneri, M.S.

University of Pittsburgh, 2008

Large eddy simulation (LES) is conducted of a turbulent piloted nonpremixed methane jet

flame. This flame has been studied experimentally at Sandia National Laboratories.1, 2 The

subgrid scale (SGS) closure in LES is based on the scalar filtered mass density function

(SFMDF) methodology.3 The SFMDF is essentially the mass weighted probability density

function (PDF) of the SGS scalar quantities.4 The SFMDF is obtained from an exact trans-

port equation which provides a closed form for the chemical reaction effects. The unclosed

terms in this equation are modeled by a set of stochastic differential equations (SDEs). The

SDEs are solved by a hybrid finite-difference/Lagrangian Monte Carlo procedure. This flame

exhibits little local extinction. In previous work,5 the instantaneous flame composition was

related to the mixture fraction based on the flamelet model at low strain rates. In the present

work, this assumption is relaxed, and a direct solver is employed for finite-rate chemistry.

The results via this method agree favorably with those obtained experimentally. The end

result is an accurate and affordable method for the LES of realistic turbulent flames.
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1.0 INTRODUCTION

The filtered density function (FDF) methodology is becoming very popular for subgrid scale

(SGS) modeling as required for large eddy simulation (LES) of turbulent reacting flows.6, 7

The FDF methodology was first introduced by Givi8 and Pope,9 and it serves as a counterpart

to the probability density function (PDF) approach used in Reynolds averaged simulations

(RAS).9 The LES/FDF methodology is inherently suited for the treatment of large scale,

unsteady phenomena. Thus, in comparison to RAS, it provides a more detailed and reliable

prediction of turbulent reacting flows.

The FDF method has evolved considerably since its inception. The marginal scalar FDF

(SFDF) provides the solution of the transported FDF, and it was first developed by Colucci

et al.10 for constant density flows. The variable density form of the SFDF was developed

by Jaberi et al.,3 and it is known as the scalar filtered mass density function (SFMDF).

Gicquel et al.11 developed the velocity FDF (VFDF) method in which the effects of SGS

velocity convection appear in closed form. Joint velocity-scalar approaches was developed

for constant density (VSFDF) and variable density (VSFMDF) flows by Sheikhi et al.12, 13

In this work, the SFMDF is employed for the simulation of a piloted jet flame studied in

the experiments of the Combustion Research Facility at the Sandia National Laboratories.1, 14

In these experiments, three turbulent flames were considered, labeled Flames D, E and F.

The three flames are of the same geometrical configuration; however, the jet inlet velocity is

varied for each flame. Sandia Flame D has the smallest jet inlet velocity, and it is such that

the flame is close to equilibrium. Sandia Flames E and F have higher jet inlet velocities,

such that noticeable non-equilibrium effects are present. Because Sandia Flame D is close

to equilibrium, it is possible to determine all thermochemical variables from the mixture

fraction,15 as this has been demonstrated by Sheikhi et al.5 However, due to the non-

1



equilibrium effects in Sandia Flames E and F, the near equilibrium assumption is not valid,

and finite-rate chemistry models are required. The objective of this work is to simulate

Sandia Flame D using a finite-rate chemistry model. The success of this work is necessary

before we hope to successfully simulate Flames E and F.
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2.0 FORMULATION

2.1 GOVERNING EQUATIONS

Implementation of LES involves the use of the spatial filtering operation,4, 16

〈f(x, t)〉` =

∫ +∞

−∞

f(x′, t)G(x′,x)dx′ (2.1)

where G denotes the filter function of width ∆G, 〈f(x, t)〉` represents the filtered value of the

transport variable, f(x, t). In variable density flows it is convenient to consider the Favre

filtered quantity 〈f(x, t)〉L = 〈ρf〉`/〈ρ〉`. We consider spatially and temporally invariant

and localized filter functions, G(x′,x) ≡ G(x′ − x), with the properties G(x) = G(−x) and
∫ +∞

−∞
G(x)dx = 1.17 Moreover, we only consider “positive” filter functions for which all the

moments
∫ +∞

−∞
xmG(x)dx exist for m ≥ 0.18

Formulation is based on the compressible form of the continuity, Navier-Stokes, energy

and species mass fraction conservation equations in a low Mach number flow. These equations

govern the space (x ≡ xi, i = 1, 2, 3) and time (t) variations of the fluid density (ρ(x, t)),

the velocity vector (u ≡ ui(x, t)), the specific enthalpy (h(x, t)), and the mass fractions of

Ns species (Yα (α = 1, 2, . . . , Ns)). Further, we consider Fourier’s law of heat conduction,

Fick’s law of diffusion, and we assume unity Lewis number. Applying the filtering operation

to the conservation equations yields:

∂〈ρ〉`
∂t

+
∂〈ρ〉`〈ui〉L

∂xi

= 0 (2.2)

∂〈ρ〉`〈uj〉L
∂t

+
∂〈ρ〉`〈ui〉L〈uj〉L

∂xi
= −

∂〈p〉`
∂xj

+
∂〈τij〉`
∂xi

−
∂Tij

∂xi
(2.3)

∂〈ρ〉`〈φα〉L
∂t

+
∂〈ρ〉`〈ui〉L〈φα〉L

∂xi
= −

∂〈Jα
i 〉`

∂xi
−
∂Mα

i

∂xi
+ 〈ρ〉`〈Sα〉L (2.4)
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where φα ≡ Yα (α = 1, . . . , Ns), φσ ≡ h =
∑Ns

α=1 hαYα, Sα is the production rate of species

α, and Tij = 〈ρ〉`(〈uiuj〉L − 〈ui〉L〈uj〉L) and Mα
i = 〈ρ〉`(〈uiφα〉L − 〈ui〉L〈φα〉L) represent the

subgrid stress and subgrid mass flux, respectively.

Equations 2.2, 2.3, 2.4 are closed by an equation of state,

〈p〉` = 〈ρ〉`〈RT 〉L (2.5)

where R = R0

∑Ns
α=1 Yα/Wα, R0 is the universal gas constant, Wα is the molecular weight

of species α, and T is the temperature. τij and Jα
i denote the viscous stress tensor and the

scalar fluxes, respectively:

〈τij〉` = 〈µ〉`

(

∂〈ui〉L
∂xj

+
∂〈uj〉L
∂xi

−
2

3

∂〈uk〉L
∂xk

δij

)

(2.6)

〈Jα
i 〉` = −γ

∂〈φα〉L
∂xi

(2.7)

where µ is the molecular viscosity, which increases with temperature (T ) to the power of 0.7,

γ = 〈µ〉`/Sc is the molecular diffusivity, and Sc is the molecular Schmidt number.

The closure problem of the SGS hydrodynamics is associated with the subgrid stress (Tij)

and subgrid mass flux (Mα
i ). To model these terms, the modified kinetic energy viscosity

(MKEV)3 model is used. It is essentially a modified version of the gradient diffusion model

proposed by Bardina et al.19 The SGS stresses are modeled by,

Tij = −2CR〈ρ〉`∆GE
1/2

(

〈Sij〉L −
1

3
〈Skk〉Lδij

)

+
2

3
CI〈ρ〉`Eδij (2.8)

where 〈Sij〉L is the resolved strain rate tensor and E = |〈u∗i 〉L〈u
∗

i 〉L − 〈〈u∗i 〉L〉`′〈〈u∗i 〉L〉`′|, with

u∗i = ui − Ui, where Ui is a reference velocity in the xi direction. The subscript `′ denotes

a filter at a secondary level of size ∆G′ > ∆G. The subgrid eddy viscosity is expressed as

νt = CR∆GE
1/2. The SGS mass fluxes are modeled by a similar model,20

Mα
i = −γt

∂〈φα〉L
∂xi

(2.9)

where γt = 〈ρ〉`νt/Sct is the subgrid diffusivity, and Sct is the subgrid Schmidt number.
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2.2 SCALAR FILTERED MASS DENSITY FUNCTION

The SFMDF of the scalar array, φ (x, t), is denoted by FL (ψ;x, t) where ψ represents the

composition domain of the scalar array. It is responsible for the SGS closure of the scalar

array. A detailed derivation of the SFMDF transport equation was presented by Jaberi et

al.;3 therefore, only the final modeled transport equation will be presented here:

∂FL

∂t
+
∂〈ui〉LFL

∂xi
=

∂

∂xi

[

(γ + γt)
∂FL/〈ρ〉`
∂xi

]

+
∂

∂ψα
[Ωm (ψα − 〈φα〉L)FL] −

∂ŜαFL

∂ψα
(2.10)

In Eq. 2.10, Ŝα indicates that the production rate of species α can be completely described

by the scalar array
(

Sα ≡ Ŝα (φ (x, t))
)

, and Ωm = CΩ (γ + γt) / (〈ρ〉`∆
2
G) is the subgrid

mixing frequency as required by the linear mean-square estimation (LMSE)21, 22 model for

the closure of SGS mixing.

The SFMDF transport is alternatively represented by the general diffusion process gov-

erned by the SDE,23, 24

dXi (t) = Di (X (t) , t) dt+ E (X (t) , t) dWi (t) (2.11)

where Xi denotes the Lagrangian position, Di is the “drift” coefficent, E is the “diffusion”

coefficient, and Wi denotes the Wiener process.25 The SDEs used in this work are

dx+
i =

[

〈ui〉L +
1

〈ρ〉`

∂ (γ + γt)

∂xi

]

dt+

√

2 (γ + γt)

〈ρ〉`
dWi (t) (2.12)

dφ+
α =

[

−Ωm

(

φ+
α − 〈φα〉L

)

+ Ŝα

(

φ+
)

]

dt (2.13)

where x+
i and φ+

α denote the Lagrangian position and composition, respectively. The solution

of these SDEs represents the solution of the SFMDF transport equation in the probablistic

sense based on the principal of equivalent systems.26, 27
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2.3 CHEMISTRY MECHANISM

The chemical mechanism used in this work is the augmented reduced mechanism (ARM)

of Sung et al.28 It was derived from GRI-mech 1.2 for methane oxidation, and has been

tested, in particular, for counterflow nonpremixed flames with extinction and ignition. This

mechanism has been used extensively in PDF simulations of Sandia Flame D, and it generates

results which are in good agreement with the experimental data.29 It features 16 species and

12 reaction steps, which are presented in Table 1.

Table 1: ARM Reaction Steps and Species

Step Reaction

1 O2 + 2CO = 2CO2

2 H + O2 + CO = OH + CO2

3 H2 + O2 + CO = H + OH + CO2

4 HO2 + CO = OH + CO2

5 O2 + H2O2 + CO = OH + HO2 + CO2

6 O2 + 1
2
C2H2 = H + CO2

7 O2 + CH3 + CO + C2H4 = CH4 + CO2 + CH2O + 1
2
C2H2

8 O2 + 2CH3 = H2 + CH4 + CO2

9 O2 + 2CH3 + CO = CH4 + CO2 + CH2O

10 O2 + CH3 + CO = H + CO2 + CH2O

11 O2 + CO + C2H6 = CH4 + CO2 + CH2O

12 H + OH = H2O

6



2.4 NUMERICAL SOLUTION PROCEDURE

Numerical solution of the equations governing the resolved field is based on a hybrid finite-

difference/Monte Carlo method. In this method, the hydrodynamic variable equations are

integrated by a finite-difference method, whereas the scalar field is simulated by the Monte

Carlo method. More information about all the details and caveats of this solution procedure

can be found in previous work.3, 10

Calculation of the chemical source term proves to be computationally challenging. Meth-

ods, such as ISAT,30 have been developed to efficiently calculate the chemical source term.

However, the gains in efficiency introduce interpolation errors, and are only valid for the

integration of the chemical source term, not the entire RHS of Eq. 2.13. Therefore, some

type of splitting scheme must be used so that the effects of mixing and reaction can be

treated separately. In an effort to avoid these issues, we opted for the direct integration of

Eq. 2.13 by coupling a stiff ODE solver31 with the CHEMKIN libraries.32

7



3.0 RESULTS

3.1 FLOW CONFIGURATION

Sandia Flame D consists of a main jet with a mixture of 25% methane (CH4) and 75% air

(21% O2, 79% N2) by volume in an ambient coflow of air. The main jet is stabilized by a

pilot region consisting of a lean (Φ = 0.77) mixture of acetylene (C2H2), hydrogen (H2), air,

carbon dioxide (CO2) and nitrogen (N2) with the same equilibrium composition as the main

jet at a temperature of 1880 K. A schematic of the flame configuration is presented in Figure

1. The temperature of the jet is maintained at 294 K, and the coflow temperature measures

291 K. The Reynolds number of the jet is Re = 22400, with the jet diameter D = 7.2 mm

and the bulk jet velocity equal to 49.6 m/s. Additional information about all the details of

Sandia Flame D can be found on the Sandia web site.2

3.2 NUMERICAL SPECIFICATIONS

The simulation was conducted on a three-dimensional Cartesian mesh covering a domain of

the size 16D×8D×8D in the x, y, and z directions respectively, mapped out over 81×81×81

uniformly spaced finite-difference grid points, where D is the diameter of the jet. The filter

size is set as ∆G = 2 (∆x∆y∆z)1/3, where ∆x, ∆y, and ∆z denote the grid spacings in

each of the corresponding directions. Other simulation parameters are presented in Table 2.

The composition values at the inflow were set in accordance with the experimental values as

reported by Xu and Pope,29 and are also summarized in Table 3.

8



Figure 1: Sandia Flame D configuration.
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Table 2: Simulations Parameters

Parameter Description Value

CR MKEV model parameter 0.02

CI MKEV model parameter 0.00

CΩ SGS mixing frequency 8.00

Sc Schmidt number 0.75

Sct SGS Schmidt number 0.75

3.3 COMPARISONS WITH EXPERIMENTAL DATA

The predictive capability of LES/SFMDF is demonstrated by comparing flow statistics with

the available experimental data. These statistics are generated by long-time averaging of

the instantaneous filtered flow variables for 2 residence times. For the purpose of flow

visualization, instantaneous contour plots of some of the transport variables are presented

in Figure 2. The figure shows that the growth of perturbations at the inflow is manifested

downstream by the formation of large-scale coherent vortices. The upstream feedback from

the vortices created initially triggers further self-sustaining vortex rollup, and subsequent

pairing and coalescence of neighboring vortices.33, 34 The simulated data are statistically

analyzed. For this purpose, a total of approximately 29,000 samples of several of the flow

variables are collected during this recording period. In Figures 3 - 13 , Q and RMS(Q)

denote, respectively, the time averaged mean and root mean square values of the variable Q.

The mean and RMS values of the axial velocity at the centerline are shown in Figure 3.

The predicted results are in good agreement with the experimental data, indicating that the

flow is adequately excited.

The radial distribution of the mean and RMS values of temperature and mixture fraction

are shown in Figures 4 and 5 respectively. The means of each quantity are in good agreement

10



Table 3: Inlet Compositiona Boundary Conditions

Pilot Coflow Jet

T(K) 1880 291 294

P(atm) .993 .993 .993

H2 1.7762E − 03 0. 0.

H 6.9384E − 04 0. 0.

O2 4.7154E − 02 2.1200E − 01 1.5750E − 01

OH 4.5794E − 03 0. 0.

H2O 1.4512E − 01 1.0000E − 02 0.

HO2 0. 0. 0.

H2O2 0. 0. 0.

CH3 0. 0. 0.

CH4 0. 0. 2.5000E − 01

CO 4.0243E − 03 0. 0.

CO2 6.9245E − 02 0. 0.

CH2O 0. 0. 0.

C2H2 0. 0. 0.

C2H4 0. 0. 0.

C2H6 0. 0. 0.

N2 7.2740E − 01 7.7800E − 01 5.9250E − 01

a Species compositions are in mole fractions

11



with the experimental results, as well as the resolved RMS values. However, the total

RMS values (resolved plus SGS) over-predict the experimental data. This is consistent with

previous results,5 and it has been suggested that this variance might be decreased if a probe

capable of higher resolution measurements is used in the experiments.

Finally, the radial distribution of the mean and RMS values of the mass fractions of

several species are presented in Figures 6 - 13. The mean values of the mass fractions

compare well with the experimental data. The RMS values do not agree with the data quite

as well.
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Figure 2: Instantaneous contours of the mixture fraction (left), temperature (center), and

mass fraction of OH (right).
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Figure 4: Radial distributions of the mean and the RMS values of the temperature at

x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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Figure 6: Radial distributions of the mean and the RMS values of the mass fraction of CH4

at x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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Figure 7: Radial distributions of the mean and the RMS values of the mass fraction of O2 at

x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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Figure 8: Radial distributions of the mean and the RMS values of the mass fraction of CO2

at x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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Figure 9: Radial distributions of the mean and the RMS values of the mass fraction of CO at

x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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Figure 10: Radial distributions of the mean and the RMS values of the mass fraction of

H2O at x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS

value.
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Figure 11: Radial distributions of the mean and the RMS values of the mass fraction of H2

at x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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Figure 12: Radial distributions of the mean and the RMS values of the mass fraction of OH

at x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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Figure 13: Radial distributions of the mean and the RMS values of the mass fraction of N2

at x/D = 7.5, 15. (•) experimental data, ( ) resolved RMS value, (− −) total RMS value.
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4.0 CONCLUSIONS

Large eddy simulation is conducted of Sandia Flame D, which is a turbulent piloted non-

premixed methane jet flame. The subgrid scale closure is based on the scalar filtered mass

density function (SFMDF) methodology. The thermochemical variables are treated using

a finite-rate chemistry model based on an augmented reduced mechanism. The modeled

transport equation for the SFMDF of the thermochemical variables is solved by a hybrid

finite-difference/Monte Carlo method.

The predictive capability of the method is assessed by comparisons with experimental

data. In doing so, the ensemble (long time averaged) values of the thermochemical variables

are considered. It is shown that the mean and the resolved RMS values are generally pre-

dicted well. However, the RMS quantities tend to over-predict the experimental data when

the SGS contribution is taken into account.

This work shows that implementation of complex kinetics schemes in LES is now possible.

The overall result is a scheme that is robust for treatment of turbulent reacting flows, and

that is ready for the consideration of flames that exhibit extinction and re-ignition, such as

Sandia Flames E and F.
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