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MODULATION OF MEG SIGNALS DURING OVERT AND IMAGINED 

WRIST MOVEMENT FOR BRAIN-COMPUTER INTERFACES 

Gustavo Sudre, M.S. 

University of Pittsburgh, 2008 

 

This work uses Magnetoencephalography (MEG) to investigate movement-related neural 

activity in the cerebral cortex. MEG is an effective non-invasive tool to study cortical activity 

because it has higher temporal and spatial resolutions than other non-invasive methods, such as 

fMRI and EEG. One objective of the proposed study is to characterize MEG signal modulation 

during overt and imagined movements. Such characterization can then be implemented to study 

motor control and cortical plasticity. In the future, this information can be used to aid the 

mapping of motor regions of the brain prior to surgical implantation of electrodes for brain-

computer interface (BCI) applications.  For the current experiments, four right-handed subjects 

were asked to perform wrist movements with their dominant hand in four directions (radial 

deviation, ulnar deviation, flexion, and extension) following a visual cue (up, down, left, and 

right, respectively). In separate sessions, subjects were then asked to imagine performing the 

same movements following the visual cue. Frequency-domain analysis of the MEG signals 

reveals consistent modulation during both overt and imagined movements on sensors overlaying 

sensorimotor areas of the brain. Modulation preceded movement onset and was characterized as 

a decrease in power in low frequency bands (10-30Hz) and increase for lower bands (0-10Hz), 

starting 200 ms after the visual cue and lasting 500 ms, which was accompanied by an increase 

of power in the 65-90Hz band during the same period. This sequence is followed by an increase 

in power in the 10-30Hz band. Several of these modulations in cortical activity were also 
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significantly tuned (p < 0.05) to movement direction in both overt and imaginary tasks. Two 

methods were used for decoding: Optimal Linear Estimator (OLE) and Bayesian. The decoding 

accuracy of a given target for the imagined wrist movement data varied among subjects from 

29.4% to 49.75% (mean: 41.4%) correct trials for OLE, and 30.1% to 50.9% (mean: 41.5%) for 

Bayesian. For overt wrist movement data, decoding accuracy for a given target ranged from 

34.1% to 67.4% (mean: 48.3%) correct trials for OLE, and 33.1% to 66.9% (mean: 48.0%) for 

Bayesian. MEG can detect cortical areas that show significant modulation during overt and 

imagined wrist movement. We conclude that MEG can be an important tool for quantitatively 

studying cortical activity for motor tasks, conducting non-invasive BCI research in humans, and 

pre-surgical identification of optimal implantation sites of microelectrodes for neuroprosthetic 

control. 
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1.0  INTRODUCTION 

Magnetoencephalography (MEG) is an efficient non-invasive tool to study cortical activity 

because of its high temporal and spatial resolutions. The main goal of this project is to use MEG 

to investigate movement-related neural activity in the cerebral cortex. Such knowledge can then 

be used for studying human motor control and non-invasive brain-computer interfaces research, 

as well as for localizing optimal implantation sites of microelectrodes for neuroprosthetic 

applications.  

1.1 BACKGROUND 

Brain-machine interfaces (BMIs) have the potential to provide people with severe motor 

impairments the ability to control devices that act in their environment, such as computers, 

power wheelchairs, and prosthetics. This technology has been studied for a few decades using 

different methods for neural recording and signal processing (Schwartz, et al. 2006). One of the 

key factors for a successful BCI application is identifying cortical representation of movement, 

and several studies have previously shown that hand movement (e.g. hand positions, movement 

direction and speed) can be predicted from the activity of populations of motor cortical neurons 

(Georgopoulos, Schwartz and Kettner 1986) (Moran and Schwartz 1999) (Wang, et al. 2007). 

The work presented in this thesis focuses on studying how MEG can be used to study the cortical 
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representation of movement, and also to better examine cortical processes that can be used to 

control BMIs. As a research tool, MEG can be used to locate optimal sites in the brain for 

implantation of electrodes, as well as to conduct pre-surgical training of subjects so they learn to 

better modulate brain activities in order to control BMIs. 

MEG has been previously used in a wide variety of studies, from sensory mapping 

(Druschky, et al. 2003), to attention (Amorim, et al. 2000), language (Kim and Chung 2008), and 

neurological disorders (Georgopoulos, et al. 2007), because of its superior temporal (less than 1 

millisecond) and spatial (several millimeters) resolutions (Hari and Forss 1999). It records the 

magnetic activity generated by the electrical currents, which can be modeled as dipoles, 

produced by neuronal activity in the brain. It is estimated that about 104 to 105 neurons must be 

simultaneously activated to generate a signal strong enough to be captured by MEG sensors. 

These sensors are usually magnetometers (measuring the absolute magnitude of a magnetic field) 

or gradiometers (measuring the gradient of the magnetic field), which can be planar or radial 

depending on the position of the sensing coils (Diekmann and Becker 1999). The magnetic 

activity captured by MEG is generated by the post-synaptic activity of neurons, which is slow 

enough (compared to action potentials) to allow for temporal summation. 

The dipole sources of magnetic activity detectable by MEG are thought to be tangential 

to the skull (see Figure 1). Conversely, MEG has difficulties capturing dipole sources radial to 

the skull (Hämäläinen, et al. 1993). This property of MEG contrasts with the characteristics of 

electroencephalography (EEG), arguably the most commonly used recording technique in BCI 

applications to date, which has its strengths in capturing sources located radially to the skull. 

Therefore, EEG and MEG can be used complementarily. Another important point to mention is 
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that while some of the electric activity in the brain gets attenuated and spatially smeared by the 

skull, the magnetic fields pass through it undistorted. 

 
Figure 1: A schematic drawing illustrating neuronal activity captured by MEG. The figure depicts a layer of cortical 

tissue and one of its folds. MEG can record magnetic activity generated by Neuron B, but not Neuron A. The red 

arrows show the direction of the dendritic current and the equivalent dipole, and the yellow curves represent the 

magnetic fields induced by the dendritic activity. 

 
 
 
Previous studies have also analyzed MEG activity for BCI purposes during motor tasks, 

but this is the first work to focus decoding the target choice for both overt and imagined wrist 

movements. Waldert et al. used EEG and MEG signals to decode target choice based on subject-

chosen movements of a joystick to 4 different targets (Waldert, et al. 2008). They found increase 

in the power of bands lower than 7 Hz (low-frequency band) and 62– 87 Hz (high- band) and a 

decrease for 10 –30 Hz ( band), but only found useful decoding information in the low-

frequency bands. Georgopolous et al. had subjects draw a pentagon with a MEG-compatible 

joystick (also without visual feedback), and during offline analysis the researchers were able to 

reconstruct with acceptable accuracy the 2D trajectory using a linear summation of weighted 
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contributions of the MEG signals (Georgopoulos, et al. 2005). Finally, Mellinger et al. trained in 

about half-hour a group of subjects to modulate their sensorimotor μ and β rhythms (10-12Hz 

and 20-24Hz, respectively) to control a MEG-BCI in real-time (Mellinger, et al. 2007). They 

used imagined limb movements to send binary decisions to control the feedback paradigm 

(upward or downward movement of the cursor). 

Compared to previous works, this study aims to achieve a reasonable decoding accuracy 

using both overt and imagined wrist movements to four possible directions. By comparing 

different decoding algorithms, two viable options for target decoding are analyzed regarding 

accuracy and speed, which will be used in a real-time MEG-BCI in the near future. Also, 

Leuthardt et al. have shown with ECoG (Electrocorticography) that the high-frequency bands 

(60-200Hz) carry important information about the direction of movement (Leuthardt, et al. 

2004), and high frequency bands have also been shown to be related to other brain functions, 

such as visual perception, attention, memory, and self-paced movements (Kaiser, et al. 2003) 

(Crone, et al. 2001) (Cheyne, et al. 2008). This study hopes to evoke a stronger high-frequency 

response by providing visual feedback of the cursor position to the subject, which will better 

engage his or her attention to the task. Finally, the magnetic activity in each sensor will be 

analyzed to characterize the evolution of the MEG signal over time across the whole head.  

1.2 SPECIFIC AIMS 

This work focuses on characterizing and comparing MEG activity during overt and imagined 

wrist movement in the temporal and frequency domains. It is hypothesized that evoked potentials 

(peaks) will show increasing latencies with respect to visual stimulus onset, as the signal travels 

 4 



from visual to motor cortex. Also, it is expected that sensors closer to the sensorimotor area of 

the cortex will exhibit a decrease and a subsequent increase of the power of low frequency bands 

with respect to the baseline, accompanied by an increase in the activity of the high frequency 

bands.  

Another goal of this study is to examine tuning to target direction for different frequency 

bands, and then decode movement direction for both overt and imagined conditions using two 

different algorithms: Optimal Linear Estimator (OLE) and Bayesian inference. This study will 

also investigate advantages and disadvantages of both methods for decoding movement direction 

from multi-channel MEG recording.  
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2.0  METHODS 

This study is approved by the Institutional Review Board (IRB) at the University of Pittsburgh, 

and all experiments were in accordance with IRB protocol number 07110181. Four subjects were 

recruited. They were right-handed and their ages varied between 25 and 40 years old. Magnetic 

fields generated by brain activity were recorded while the subject performed a center-out task 

using the right wrist. MEG signals were digitized at 1Khz, high-pass filtered at 0.1Hz and low-

pass filtered at 330Hz.  

2.1 RECORDING METHODS 

The MEG Vectorview system by Elekta Neuromag (http://www.elekta.com/) was used to 

record brain activity. This system has a total of 306 channels, of which 102 are magnetometers 

and the other 204 are planar gradiometers. They are distributed in 102 sensor triplets, each of 

them containing one magnetometer and two gradiometers: one measuring the differential 

magnetic field in the longitudinal direction and the other in the latitudinal direction. Figure 2 

shows the location of the 102 sensors triplets in the MEG helmet.  
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Figure 2: A. Subject sitting in the Elekta Neuromag MEG machine. Projection screen was placed to the side to 

show the subject. B: Placement of the 102 sensors within the helmet (Neuromag, Elekta 2006). Each sensor has one 

magnetometer and two gradiometers. 

 
 
 
Muscle activity (electromyography – EMG) of wrist flexor and extensor muscles (flexor 

carpi radialis and extensor carpi radialis) was recorded in all sessions. Electrooculography 

(EOG) was recorded with electrodes placed above, below, and lateral to the eyes. EOG captured 

horizontal and vertical eyes movements, as well as eye blinks. Additionally, four head position 

indicator (HPI) coils were placed on the subject’s scalp to record the position of the head with 

relation to the MEG helmet at the beginning of each session. These coils, along with three 

cardinal points (nasal, left and right pre-auricular), were digitized into the system and were later 

used for pre-processing of the data for head movement compensation. 
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2.2 EXPERIMENTAL SETUP 

Subjects were asked to perform wrist movements with their right (dominant) hand in four 

directions (radial deviation, ulnar deviation, flexion and extension) following a visual cue (up, 

down, left, and right, respectively) while holding a MEG-compatible joystick (Current Designs 

Inc. - http://www.curdes.com). They were instructed to make movements solely with their wrist, 

keeping shoulder and arm at rest. The wrist was chosen not only because of previous studies 

relating cortical tuned activity to wrist movement (Kakei, Hoffman and Strick 1999), but also 

because it is relatively far from the MEG helmet, therefore reducing EMG contamination of the 

signal. Monitoring EMG of wrist flexor and extensor muscles was also important to make sure 

that subjects were not moving or co-contracting muscles during imagined sessions. BCI2000, a 

general purpose brain-computer interface software (Schalk, McFarland and Hinterberger 2004), 

was used to present the stimulus and to track joystick position. The joystick was adapted to be 

controlled with wrist movements only (Figure 3).  
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Figure 3: MEG-compatible joystick modified to capture wrist movements. The joystick handle was made of plastic 

in the shape of a T where the subject would grasp to control the joystick. Foam cushion was used to stabilize the arm 

and allow the subject to perform the movements solely with the wrist. 

 
 
 
The subject had visual feedback of the cursor position during the whole session, and each 

session was divided into equal number of random repetitions per target. A repetition starts after 

the subject holds the cursor in the center target, which triggers the appearance of one of the four 

peripheral targets. In a successful repetition, the subject needs to move the cursor to the target 

while fixating the eyes in the center of the screen, and then hold the cursor position at the target. 

If the subject overshoots for the target, or does not get there within a pre-determined amount of 

time, the trial is aborted. The timing information for the repetitions can be seen in Figure 4. 
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Figure 4: Visual feedback of the center-out task. The cursor needs to go to the center and stay there for a hold 

period until the peripheral target appears. Then the cursor moves to the target and stays there until the successful 

repetition is finished. The target changes color when it is hit by the cursor, and disappears when the holding period 

has finished. The time spent in each session is depicted in the picture. (ITI: inter-trial interval). 

 
 
 

In separate sessions, the same subjects were then asked to imagine performing the same 

wrist movements following the visual cue. The cursor moved with a fixed speed toward the 

target after a random delay of 0.5-1 seconds, which simulated the time the subject had to react to 

the target appearance. In order to keep the subject engaged in the task, catch trials were inserted. 

During a catch trial, the cursor stopped moving before it reached the target. The subject was 

instructed to press one of the joystick buttons when a catch trial was recognized. 

Overt and imagined tasks were recorded in different sessions. Regardless of the type of 

the session, the subject was instructed to always hold the joystick handle with the right hand and 

position the left hand ready to press the joystick button. For both types of sessions, in order to 

minimize eye movements the subjects were asked to fixate their eyes in a cross-hair in the center 

of the screen throughout the whole repetition (starting when the target appears at the center). It 

was acceptable to relax the eyes and blink during the inter-trial interval (ITI) after one of the 
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peripheral targets disappeared. Also, the projection screen was positioned at a distance from the 

subject to minimize saccades to the targets. 

Finally, before any overt or imagined tasks were recorded for a given subject, data was 

acquired to quantify the amplitude of his/her characteristic eye-movement. The four targets were 

displayed separately in the screen while the cursor moved linearly to them (similarly to the 

imagined task) for 3 repetitions per target. The subject was asked to move the eyes in the 

direction of the target when it came up in the screen.   

2.3 DATA ANALYSIS 

2.3.1 Pre-processing 

The first step in the analysis process was to perform a spatial filtering on the data using 

the Signal Space Separation (SSS) (Taulu, Simola and Kajola 2005) method. SSS will first 

compensate head movement between sessions and realign all sessions’ data so that they 

correspond to the same head position. SSS will then spatially filter the data so that only signals 

coming from sources within a sphere inside the MEG helmet will be kept, and signals coming 

from sources outside the MEG helmet will be suppressed, which is shown in Figure 5. SSS also 

minimizes the effects of sensor noise. In the current setup at the MEG center, head position can 

only be recorded at the beginning of each session (each session is approximately 5 to 6 minutes 

with 20 movements to each target). It is assumed that the subject’s head position remained 

constant throughout the session.  
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Figure 5: Schematic illustration of how the SSS algorithm works (Neuromag 2006). By using the position of the 

HPI coils and fiducial points, SSS projects a sphere to represent the brain inside the sensor array (space Sin). Noise n 

coming from space ST represents artifacts generated by sources close to the helmet and the sensors themselves. Bout 

is the magnetic field coming from Sout, representing all external sources to the helmet.   

 
 
 
Stimuli presentation was synchronized with the MEG recording system through parallel 

port impulses sent from the computer generating the stimuli. The MEG recording machine saved 

these impulses which were then used to crop the data into individual repetitions. Data for each 

repetition spans 1s before the peripheral target appeared and 1.5s after. Additional information 

about the outcome of the repetition (if the subject successfully hit the target) was also extracted 

from these impulses. 

The last step was to discard repetitions contaminated by eye movements, because such 

activity may bias the data towards certain targets. The threshold of 150mV was applied to each 
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repetition and whenever the peak-to-peak amplitude of the signal of either EOG channel (i.e. 

horizontal or vertical) crossed this threshold, the repetition was marked as invalid. The EOG data 

containing subject-specific intended eye movement cued by the appearance of peripheral targets 

were also analyzed, and in for all subjects the peak-to-peak amplitude was higher than the 

150mV used as threshold.    

Wrist movement onset was determined by differentiating the cursor position with respect 

to time and identifying the instant when the velocity trace reached 10% of its peak. Conversely, 

movement offset was taken as the last time when a value bigger than 10% of the velocity peak 

was observed. Only repetitions that did not show eye movement contamination and hit the target 

were used in the analysis. Each repetition had its own baseline, taken as the 1s before target 

onset.  

2.3.2 Time-domain analysis 

MEG signals were aligned based on target onset, averaged across repetitions for each target, low-

pass filtered at 10Hz (6th order Butterworth IIR filter) and detrended. The peak onset for each 

channel was taken as the first moment after target onset when the averaged trace crossed ±2 

standard deviations from the baseline. 

2.3.3 Frequency-domain analysis 

The data first were notch-filtered at 60Hz, 120Hz, and 180Hz (Butterworth 4th order) to remove 

line noise and its harmonics, and then converted to the frequency domain using the Maximum 
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Entropy Method (MEM) (McFarland, Lefkowicz and Wolpaw 1997). Baseline period is defined 

as the 1 second prior to visual cue onset.  

For time-averaged analysis, MEM output (28th order) consisted of a single value for each 

frequency from 0 to 200Hz (3Hz steps), corresponding to the power of that frequency during the 

baseline period. The power for the movement period was calculated similarly in the period from 

target onset to movement offset. For continuous time analysis, the spectrograms were generated 

by using a sliding window from -1 to 1.5 sec (200ms window with 50ms steps). Change from 

baseline is calculated as defined in ( 1 ). 

 
Chg

powerbaseline

baseline
100 ( 1 ) 

 

2.3.4 Decoding 

Two different algorithms were used for decoding: Optimal Linear Estimator (OLE) and Bayesian 

inference. The different frequencies were divided into the following bands: 0 – 4Hz, 4 – 12Hz, 

12 – 30Hz, 30 – 55Hz, 65 – 90Hz, 90 – 115Hz, 125 – 150Hz, 150 – 175Hz, 185 – 200Hz. The 

power change from baseline was averaged across the frequencies in the band. The (channel - 

frequency band) pair was called a feature. Given 306 MEG channels and 9 frequency bands per 

channel, there are 306 * 9 = 2754 features. For decoding purposes only, the features contained 

the log of the change, and not the change itself. 

Feature selection was done by using a one-way ANOVA, which was applied to individual 

feature by comparing power of each feature across four different targets. This way, each feature 

had a p-value associated with it that meant the probability of the data for all four targets had 
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come from the same distribution. In other words, the smaller the p-values, the more different the 

data of that feature was per target position. 

Finally, movement direction was decoded from MEG signals both with single-trial data 

and with data averaged over multiple trials or repetitions. For single-trial decoding, the leave-

one-out method was used such that the decoding algorithms were trained with all the data set 

except for one repetition, which was then used for decoding. This was done for all the repetitions 

repetitions were incorrectly decoded. 

  
( 2 ) 

reps

recorded for the subject, and the accu et was measured as in ( 2 ), where reps 

represented the total number of re errors represent how many 

Averaged data decoding was done by averaging a given number of repetitions for 

movement toward the same target before using them as the testing set for decoding. T  

repetiti

al Linear Estimator 

The OLE method (Salinas and Abbott, 1994) was implemented as the matrix operation 

e kinematic predictions for each repetition and P the power 

change

racy for a given targ

petitions for the given target and 

 errors

reps
100

hese

ons were chosen randomly without replacement from the repetition pool and the rest of 

the data were used for training. This process was repeated always 100 times (reps = 100 in ( 2 

))). This study examined decoding accuracies using data averaged over 2, 4, 6, 8, 10, 15, and 20 

repetitions.  

2.3.4.1 Optim

shown in ( 1 ), where K contained th

 value for each feature being used.  

 

 

( 1 ) K2Xreps W2Xfeat  PfeatXreps
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The weight matrix W was calculated during training using the pseudo-inverse matrix of P 

as show

 

( 2 ) 

It is important to note that the rows of K represented the Cartesian coordinates of e

target (

2.3.4.2 Bayesian 

ecoding w  shown in ( 3 ), where the left 

term represented the prob n change in power. Two 

important points needed to be considered when using a Bayesian approach: how to obtain the 

probab

cause of the number of samples recorded for each target, the log transformation 

erformed in the data, and most importantly the Central Limit Theorem, it was assumed 

each probability came from a normal distribution. For computational purposes, these 

distribu

W2Xfeat

n in ( 2 ).   

 1K2Xreps (PfeatXreps) 

ach 

e.g. right was [1 0], down was [0 -1]). 

Bayesian d as performed using Bayes’ theorem

ability of one of the four targets given a certai

ility of a given change in power and how to combine the probability results of different 

features. 

 

 

( 3 ) 

Be

P(tgt | pwr) 
P(tgt) P(pwr | tgt)

P(pwr)

p that 

tions were obtained by simulating a Normal distribution with mean and variance obtained 

from the data for each feature. Finally, the probabilities for each feature were combined in a final 

probability for a target by multiplying all the individual probabilities. 
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3.0  RESULTS 

3.1 TIME-DOMAIN ANALYSIS 

The cortical activity recorded with the whole-head MEG system showed a clear temporal order 

of activation from visual to motor cortex for both overt and imagined movements in all subjects. 

Figure 6 shows the averaged time series for three MEG gradiometers on top of the occipital, 

parietal, and frontal lobes during visually-guided wrist movement. The peak latencies with 

respect to target onset for these three MEG channels are approximately 150ms, 200ms, and 

300ms, respectively, suggesting a propagation of information from the visual to the motor 

cortices.  

Another important point to consider is that movement usually occurred around 450ms, so 

all three evoked potentials precede the movement, and all of them go back to baseline values 

around 700ms. It is also interesting to notice that, for the sensor on top of the motor cortex, its 

peak amplitude is significantly lower for imagined than for overt movement, suggesting that this 

signal is more related to the motor output. 

 17 



 

Figure 6: Details of the MEG traces for three different gradiometers in overt and imagined conditions (left and 

right, respectively). Inset shows the location of the channels in the helmet, where F denotes the front of the helmet, 

and L and R the left and right ears. The red channel is assumed to cover motor cortex, green is parietal, and blue is 

visual. The traces were low-pass filtered at 40Hz and represent an average of all the repetitions for subject S1 

(approximately 100 repetitions) for a given target. Time 0 is target onset. 

 
 
 
Figure 7 shows the temporal evolution of MEG signal amplitude over the whole head. It 

is evident that the contra-lateral sensorimotor areas were activated around 0.5 sec after target 

onset with a clear dipole pattern composed of a positive peak of 100fT/cm and a negative peak of 

50fT/cm. 
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Figure 7: MEG signal amplitude over the whole head and across time for overt movements. This figure shows 

cortical activity at five different time points with five color plots/snapshots showing MEG signal amplitude across 

the head. MEG signals were averaged across all targets and repetitions for subject S3 and low-pass filtered at 40Hz. 

Color represents MEG signal amplitude with units of fT/cm. The white trace shows velocity profile, with target 

onset marked by the dotted line. Red circles on the velocity profile and arrows indicate the time points when the 

snapshots were taken. 
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3.2 FREQUENCY-DOMAIN ANALYSIS 

The first step of the data analysis in the frequency domain was to examine which cortical areas 

showed clear modulation of frequency bands during movement. Figure 8 shows the spatial and 

temporal patterns of low frequency band (10-30Hz) modulation. During movement time there is 

a decrease in the power for the low frequency band, and after the movement there is a rebound or 

increase in power of the same band. Overall, the strongest low frequency band modulation 

occurs in the sensors around the sensorimotor area, and both the overt and imaged movements 

show a similar spatiotemporal pattern of modulation.  

 

Figure 8: Modulation of mu and beta bands over time. Top row corresponds to overt movement and the bottom row 

corresponds to imagined movement. Right-most plots show the overall modulation during movement. Data were 

averaged over targets and repetitions. Time 0 (T=0) is target onset. Color bars for first two columns represent the 

percent of modulation from baseline, and color bar for last column shows the total percent modulation over the trial 

period. 
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Figure 9 shows the power spectrum for an MEG sensor during both overt and imagined 

movement as an example of the pattern of modulation encountered among subjects. 

 

Figure 9: Comparison of frequency power for movement and rest during overt and imagined conditions for subject 

S3. Data for one gradiometer situated over the contralateral sensorimotor area (see inset), averaged over all targets 

(162 repetitions per target) during move and baseline periods (red and blue traces, respectively). Light blue shades 

show significant differences (p < 0.05). 

 
 
 
The figure shows a decrease in power of low frequency bands as well as an increase in 

power for high bands in both overt and imagined conditions. More specifically, the overt 

condition causes significant decrease in activity of lower bands up until 40Hz, and also an 

increase of activity of bands from 65Hz to 90Hz. The power decrease of low frequency bands for 

imagined movement goes from 10-35Hz, and the increase happens in the range of 50-80Hz. 

Overall, the change from rest to move conditions is more evident in overt than imagined 

condition.   
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After showing that there is significant modulation of several frequency bands during the 

task, a closer look was necessary to understand how these modulations evolve over time. Figure 

10 depicts this evolution for the same channel analyzed above.  

 
Figure 10: Frequency modulation evolution over time. Hotter colors indicate percent increase in power with respect 

to the baseline. White vertical dashed line shows the onset of the target and the solid white trace is the velocity 

profile of the cursor in the screen. Data from overt movement averaged over all targets and repetitions (162 

repetitions per target) for subject S3, aligned on visual cue onset. 

 
 
 
The power modulation over time shows the decrease in power of bands 20-40Hz 

preceding the movement, and then the “post-movement rebound” (increase in power) after the 

movement is completed, which has also been reported in previous studies (Jurkiewicz, et al. 

2006). We also see an increase of the low frequency activity in the period that precedes the 

movement, which some researchers have associated in the past with a motor readiness field 

(Salmelin, et al. 1995). Finally, the picture shows a 30% increase in the power of frequencies 
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from 70-90Hz, similar to what has been reported before for local field potential recordings 

(Heldman, et al. 2006).  

The final step in this analysis was to verify if the frequency modulation seen above is 

tuned to particular targets. Figure 11 reveals that the patterns seen before are still present in a 

target by target basis for both overt and imagined conditions. However, it is noticeable that the 

amount of modulation for the overt movement is considerable stronger than the modulation of 

the same bands in imagined movement. Still, for both conditions it is possible to note differences 

in the modulation based on target position, and this difference will be used as the basis for 

decoding target position from the data. 

 

Figure 11: Frequency modulation over time for each specific target. Position of the spectrograms corresponds to 

their associated targets. The first four plots (A) correspond to overt movement, and the last 4 (B) show data from the 

imagined condition. Data averaged over all repetitions of a given target (162 – subject S3), aligned on visual cue 

onset. 
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3.3 DECODING 

After scoring the features with p-values as described in the Methods section, both OLE and 

Bayesian estimators were used to predict target direction. Only the 100 features with the smallest 

p-values (all smaller than 0.05) were used for decoding, because that not only sped up the 

decoding time, but it helped to remove unstable features (i.e. features that did not show similar 

behavior for the majority of repetitions). The same feature space was used for decoding with 

OLE and Bayesian algorithms. 

Figure 12 shows the results of single trial decoding for both overt and imagined 

movements using Bayesian and OLE for decoding. Decoding results varied tremendously across 

subjects, and it is clear that the features do not tend to favor all targets equally. Still, both 

decoding methods achieved accuracies well above chance level for the majority of targets and 

subjects. Accuracy for overt movement was higher than in imagined as expected in both 

decoders, peaking 69.5% for subject S3 in OLE and 68% with Bayesian. Accuracy in imagined 

movements peaked at 50% accuracy for three of the subjects using both methods of decoding.  
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Figure 12: Single trial decoding results for OLE and Bayesian decoders (left and right, respectively) for overt (top) 

and imagined (bottom) conditions. Horizontal dashed line represents chance level. Results obtained with leave-one-

out method using 80% of the total number of repetitions for each subject (overt – imagined, S1: 72 – 82, S2: 122 – 

142, S3: 129 – 107, S4: 108 – 100). Error bars show the standard error from running the leave-one-out method 20 

times, selecting the repetitions at random from the total pool of repetitions of each subject. 

 
 
 
 
The next step was to plot where these 100 best features used in the decoding were 

situated in the MEG helmet. Figure 13 shows the spatial relationship of these features used for 

the subject with the best accuracy results (S3).  
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Figure 13: Spatial distribution of the 100 best features used for decoding (subject S3). Plots on the left are for overt 

condition and the right for imagined. Each helmet has 102 sensor positions and their colors indicate how many 

channels were used as features for that particular frequency band: white – 0, blue – 1, yellow – 2, red – 3. Overall 

plots are a summation of all features in all bands used. Hotter colors represent more features for that sensor. 

 
 

 
Although this subject did not have features above 90Hz among the best ones for the overt 

condition, it is clear that the majority of his features are around the sensors covering regions 

involved in the movement (visual, parietal, motor). The imagined condition showed features in 

very high frequencies for areas involved in the movement, but also in sensors that are not 

directly related to the task. Still, the majority of its features surrounded visual and parietal 

regions, as shown in the overall plot.  

One of the drawbacks of choosing the best features solely by their p-values is ignoring 

the spatial organization of the sensors in the helmet. Although the majority of the features used 

in the decoding were located in the regions directly related to the movement, it was interesting to 

check if the decoding results would improve if the features used were further restricted to the 

sensorimotor region only. This region was arbitrarily chosen as depicted in Figure 14, which also 
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shows the relationship of all significant low-frequency features across the sensorimotor areas 

between overt and imagined conditions. This figure summarizes the idea that the majority of the 

features seen in the sensorimotor region during overt movement are also present in imagined 

tasks. 

 

Figure 14: Low-frequency features (0-40Hz) and their significance for all channels in the sensorimotor band. Red 

means that their p-value was below 0.05. Tables show the features present in imagined and overt movements for 

subject S3. The right-most table shows the intersection of the first two. Also shown in the picture the layout of the 

sensors chosen as part of the sensorimotor area. 

 
 
 
Decoding results using the best features restricted to the sensors on top of sensorimotor 

area are shown in Table 1. For all subjects, restricting the features decreased the average 

decoding accuracy. In other words, there is important information relative to target position in 

sensors other than the ones selected as part of the sensorimotor area. Still, it is not always true 

that the accuracy of decoding will be proportional to the number of features used: when all 

significant features were used for decoding (instead of just the 100 best ones), the accuracy went 
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down, meaning that some features were either too noisy or inversely contributed to the accuracy 

of the decoding. 

 

Table 1: Decoding accuracies  (%) averaged across targets for overt and imagined conditions. OLE decoder was 

used to compare the accuracies of movement decoding using all the best features against using only the ones 

covering the sensorimotor cortex.  

 

Finally, decoding using averaged data was performed. These results are displayed in 

Figure 15, which plots decoding accuracy as a function of number of repetitions averaged for 

decoding. The signal-to-noise ratio (SNR) in MEG is relatively low, so averaging the repetitions 

promotes increase in SNR and subsequently improves accuracy. Therefore, the decoding results 

for both imagined and overt conditions increased with data-averaging as expected. However, 

decoding overt movement seemed to gain the most with this approach because after 8 repetitions 

it had close to 100% accuracy for both OLE and Bayesian decoders. With 10 averaged 

repetitions the imagined condition still had decoding accuracies between 70 – 90% for both OLE 

and Bayesian decoders.  

Overt Imagined Subjects 

Best Sensorimotor Best Sensorimotor 

S1 55 (±2.11) 43.54 (±1.91) 43.07 (±1.82) 40.52 (±1.78) 

S2 39.16 (±1.42) 34.96 (±1.65) 39.50 (±1.39) 35.46 (±1.53) 

S3 54.70 (±1.32) 49.03 (±1.43) 41.85 (±1.50) 40.27 (±1.93) 

S4 44.50 (±1.75) 42.89 (±1.48) 41.01 (±1.73) 34.67 (±1.61) 
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Figure 15: Decoding results for averaged data of subject S3. Horizontal axis shows how many repetitions were 

averaged before testing to obtain the accuracy in vertical axis. Training was done in 129 and 107 (overt and 

imagined, respectively) repetitions. Shaded fills around traces represent 95% confidence interval after running the 

leave-one-out method 20 times. 
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4.0  DISCUSSION 

This study characterized the MEG activity during overt and imagined wrist tasks. The temporal 

evolution of the MEG signal amplitude over the course of a center-out movement was consistent 

across all four subjects. In the frequency domain, the decrease in activity of low frequency bands 

preceding movement and the rebound when the movement is finished were also consistent within 

the subject population. Also consistent was the increase in power of 0-10Hz. On the other hand, 

the increase in power of higher bands was less salient and the degree of power increase varied 

among the subjects.  

Decoding of target choice (i.e. movement direction) based on MEG data has also been 

accomplished with accuracy above chance level for single-trial decoding. The method for 

selecting the features used for decoding had a big impact in the final results, but using the 100 

best features as shown before gave the highest accuracy of decoding. Although restricting  

features used for decoding to those from sensors located on top of the sensorimotor cortex did 

not improve the decoding accuracy, it is important to note that the definition of a sensorimotor 

area in the sensor space is very coarse and therefore very subjective. In order to truly select 

features coming from the sensorimotor region, a source localization technique would need to be 

employed prior to using the data for decoding. 

Both OLE and Bayesian decoders showed similar results for target prediction. Bayesian 

results can potentially be higher if different models of the probability distributions are used to 

 30 



better fit the data, and if the correlation between features is taken into account when combining 

the probabilities obtained for individual features. In terms of computational cost, OLE was 

noticeable faster as the number of features increased, which will be an important factor later for 

real-time decoding if the number of features needed is much bigger than 100. 

Finally, the high accuracy results obtained by decoding on averaged data suggest that the 

information about target position is embedded in the data, but the MEG signal is too noisy to be 

used for single-trial decoding and still obtain such high accuracy results. Still, new approaches 

for data analysis and feature selection (see Future Work) may increase the accuracy of single-

trial decoding using the same dataset as before. It is true that achieving this goal is crucial for 

using MEG as a real-time BCI research tool, but it has been shown that the cortical activity is 

plastic and it adapts to the decoding algorithm and the degree of signal modulation increased 

with real-time closed-loop brain-controlled cursor movement training (Taylor, Tillery and 

Schwartz 2002). Therefore, it is expected that during real-time MEG-controlled cursor 

movement, the plasticity of the subject’s brain signals may also play an important role in 

increasing the signal-to-noise ratio of the MEG recordings, this way improving the decoding 

accuracy on itself. 
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5.0  FUTURE GOALS 

This work has been successful in proving the feasibility of using MEG to conduct BCI research, 

as well as studying cortical representation of movement. Still, several areas can be identified that 

could potentially further improve this work, either by improving the accuracy of the results or by 

offering different insights in the cortical processes studied here. 

5.1 TIME-POINT DECODING 

The target decoding presented here is essentially a classification problem for four different 

categories (up, down, left, and right) based on multiple features from MEG signals (specific 

frequency bands from specific MEG sensors). For a real-time BCI system, cursor position needs 

to be updated in a very fast rate (> 10 to 20 times per second), and it is desirable for the subject 

to be able to move the cursor on the computer screen in arbitrary directions instead of the four 

specific discrete categories. Therefore, it will be interesting to test whether the position and/or 

the velocity of the cursor can be decoded continuously in time instead of using the average 

activation over a certain period of time. Furthermore, the current study used frequency band 

power to decode target direction. However, previous studies in MEG and ECoG have suggested 

that rich movement-related modulation also exist in the very low frequency band (<3 Hz) and in 

 32 



time domain signals. Thus, it is worth trying to decode target direction using the MEG signals in 

the time domain, instead of converting it to the frequency domain in the beginning as done here. 

In theory, this could be accomplished by repeating the same decoding schemes used here 

using a sliding window (e.g. 200~300 ms) with a small time step (e.g. 50 ms) to predict 

instantaneous cursor movement velocity vector. The movement to target is essentially the 

integration of the cursor velocity over time. 

5.2 DELAY ANALYSIS: PLANNING VS. MOVEMENT 

There is a big debate about whether the information decoded here comes from the intention of 

movement (motor commands) or if sensory processes (e.g. visual feedback of the cursor 

position) provide the main source of information used in the decoding analysis.  

In order to try to answer this question, two subjects were scanned using a paradigm that 

included a variable delay period before the subjects were asked to move. More specifically, after 

the period of holding the cursor in the center was over, one of the peripheral targets would 

appear but the center target did not disappear. The subject was instructed to only move to the 

target when the center target disappeared (go-cue), which happened within 0.5-1.5s after the 

presentation of the peripheral targets. The same change was applied to the imagined sessions, but 

in that case the subjects were asked to only start imagining the wrist movement when the center 

target disappeared. 

The goal of implementing this modification was to try to decode the target choice based 

only in the planning period (excluding the movement time), and compare that with the results 

obtained when decoding using data from both planning and movement time. Also, it would be 
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interesting to analyze the frequency modulation and temporal patterns in the MEG sensors while 

the subject is planning the movement.  

The initial results from this analysis show that similar decoding accuracy seen using the 

data of planning and movement can be obtained from just using the planning data (from target 

onset to movement onset), for this specific wrist task. Decoding target position using just the 

movement data (from movement onset to movement offset) did not show a decoding accuracy 

comparable to previous results. 

5.3 DIFFERENT APPROACHES FOR DATA ANALYSIS 

Different techniques in the data analysis process can also be tried in order to obtain better results. 

Firstly, it is known from the data that some MEG sensors show very high correlation in temporal 

domain. It is also known that the MEG signal-to-noise ratio is low compared to other recordings 

techniques, especially for higher frequency bands (> 40 Hz). Thus, it may be beneficial to 

combine these correlated MEG sensors in a way to reduce noise and decrease the dimensionality 

of the data. The first method one may try is to combine MEG signals (by using Principal 

Component Analysis, Pitagorean sum, or any other method) recorded from the two gradiometers 

that are positioned in the same location in the helmet. However, the highest correlation values in 

the data (in the temporal domain) do not necessarily come from gradiometers at the same sensor 

location, so ideally this method should be run for any pair of highly correlated channels. 

Another approach that may improve the decoding results would involve choosing a better 

method to select the frequency bands used for decoding. This work used frequency bands well-

known in the literature to be involved with sensorimotor processes, such as 1-3Hz, 4-12Hz and 

 34 



10-30Hz. However, there is little work relating the function of higher frequencies to this task. 

The approach used in this experiment was to take small incremental steps to cover all ranges up 

to 200Hz (65-75Hz, 75-85Hz, etc). Alternatively, one can use a sliding window of a certain 

width (e.g. 10 Hz) and slide it across 0 to 200 Hz with a small step size (e.g. 2~3 Hz) to find the 

frequency bands that contain significant information about movement direction. Then, those 

frequency bands can be used to further improve decoding accuracy. 

Finally, the work done in the frequency domain used as a measure the percent change of 

power with respect to a baseline. Here, baseline was defined as the time the subject held the 

cursor in the center. Although this can be considered an unbiased estimate of the baseline (i.e. 

there is no preference for any of the targets), it may be the case that using other periods for 

baseline would result in more meaningful percent changes for decoding. Other options one may 

want to try in the future are the baseline acquired in the beginning of recording sessions (the 

subject is resting staring at the center of the screen), an average of all hold-center baselines, or 

the average of the activity during the planning and movement for all targets.  

5.4 STATISTICAL METHODS 

Several assumptions are made when conducting the analysis described here. In particular, some 

of the assumptions that could be improved upon are related to the Bayesian decoding. Each 

feature used to decode target choice had its own prediction for a given repetition, and all these 

predictions were multiplied to obtain a final prediction for the repetition. Such method assumes 

that the features are independent of each other, which is not completely true. Because some of 

the channels are located in the same sensor, some of their signals are very likely to be correlated. 
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In fact, many channels showed high correlation in time domain even when they did not share a 

sensor. Ideally, one would make the features as independent as possible before using them in this 

Bayesian decoding algorithm. 

Another improvement that could be made to the Bayesian decoding is the way in which 

the probabilities of a target for a given feature are obtained. One could try to model these 

probabilities with different known distributions, and maybe this way even account for the 

correlation between channels. Also related to decoding, having a better way to select the best 

features (instead of the ANOVA, which assumes the normality of the data) may help increase 

accuracy. Feature selection is a very active topic in machine learning, which means that there are 

innumerous options from which one could choose, but non-parametric methods such as Kruskal-

Wallis or looking at covariances to pick more stable features could be a good start. 

Finally, one could look at the correlation between different channels to do the decoding 

instead of the signals themselves (Langheim, Leuthold and Georgopoulos 2006). It would also be 

interesting to look at Granger causality in this situation. 

5.5 REAL TIME MEG 

One of the future goals of this work is to have the subject control the cursor with his or her brain 

activity using the MEG signals in real-time. It is expected that the brain will adapt to the 

classification method used here, and therefore the signal-to-noise ratio will go up. A real-time 

MEG-based BCI system can be used for user training and pre-surgical screening of optimal 

implantation sites for future BCI devices based on implanted microelectrodes. 
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Considerable work has been done in the course of this project to capture the MEG signals 

in real time.  At the present, we can interact with the MEG system and capture the signals in real 

time with a maximum lag of 32ms. This was measured by using a function generator to send a 

sine wave to the MEG acquisition system through its sensors and also its A/D converter. An 

auxiliary PC read the sine wave recorded by the MEG system using UDP and sent a pulse to the 

MEG system with polarity based on the sign of the sine wave. This pulse signaled to the MEG 

system the time when the PC identified the sine wave. Finally, the delay was measured by only 

using the data recorded in the MEG system, calculating the difference between the sine wave 

(e.g. the actual data) and the pulse (when the PC “saw” the data). Figure 16 describes the test that 

was used to measure the inherent delay for streaming the MEG data in real-time.  

 

Figure 16: Experiment to test real-time MEG delay. A. The computer recording MEG signals received a sine wave 

as an analog input and also as a measurement by its sensors. It also received a pulse generated by the computer that 

received the data packets with the MEG data. B. Plotting the two signals sent on the network by the MEG machine 

against the pulse generated by the recording computer. 

 
 
 
The next step towards a real-time MEG-BCI system and have the subject control the 

cursor with brain activity is to develop a software module that interfaces with our current 

BCI2000 platform software, which should be ready shortly.  
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5.6 SOURCE LOCALIZATION 

While the current analysis has all been done in the sensor space, it is evident that the spatial 

resolution of such method is low because each MEG sensor records brain activity averaged over 

a large area. Also, the position of the sensor with respect to the cortex highly depends on the 

head shape, as well as its position with respect to the MEG helmet. One of the goals of this 

project to eventually map the MEG activity from the MEG sensor space onto the cortex and 

therefore to better characterize the anatomical location of the source of MEG signals being 

analyzed in this study. 

Another challenge to be taken in future endeavors is to check if decoding the target 

direction using signals that have been previously localized to certain parts of the brain will 

increase accuracy. If that is true, then a second difficult task would be to identify an optimal 

source localization algorithm that would perform its operations within a short time frame, which 

is necessary in order to make these signals feasible for real time control.  
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