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Event surveillance involves analyzing a region in order to detect patterns that are indicative

of some event of interest. An example is the monitoring of information about emergency

department visits to detect a disease outbreak. Spatial event surveillance involves analyzing

spatial patterns of evidence that are indicative of the event of interest. A special case of

spatial event surveillance is spatial cluster detection, which searches for subregions in which

the count of an event of interest is higher than expected. Temporal event surveillance involves

monitoring for emerging temporal patterns. Spatio-temporal event surveillance involves joint

spatial and temporal monitoring.

When the events observed are of direct interest, then analyzing counts of those events

is generally the preferred approach. However, in event surveillance we often only observe

events that are indirectly related to the events of interest. For example, during an in�uenza

outbreak, we may only have information about the chief complaints of patients who visited

emergency departments. In this situation, a better surveillance approach may be to model

the relationships among the events of interest and those observed.

I developed a high-level Bayesian network architecture that represents a class of spatial

event surveillance models, which I call BayesNet-S. I also developed an architecture that

represents a class of temporal event surveillance models called BayesNet-T. These Bayesian

network architectures are combined into a single architecture that represents a class of spatio-

temporal models called BayesNet-ST. Using these architectures, it is often possible to con-

struct a temporal, spatial, or spatio-temporal model from an existing Bayesian network
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event-surveillance model that is non-spatial and non-temporal. My general hypothesis is

that when an existing model is extended to incorporate space and time, event surveillance

will be improved.

PANDA-CDCA (PC) (Cooper et al., 2007) is a non-temporal, non-spatial disease out-

break detection system. I extended PC both spatially and temporally. My speci�c hypothesis

is that each of the spatial and temporal extensions of PC will perform outbreak detection bet-

ter than does PC, and that the combined use of the spatial and temporal extensions will

perform better than either extension alone.

The experimental results obtained in this research support this hypothesis.
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1.0 INTRODUCTION

A new Bayesian network model for spatio-temporal event surveillance is developed and evalu-

ated in this thesis. This chapter �rst describes spatio-temporal event surveillance in general,

and it then summarizes the contributions of this thesis.

1.1 EVENT SURVEILLANCE

Event surveillance consists of analyzing a region in order to detect patterns that are in-

dicative of some event of interest. As examples, we may look for patterns that are indicative

of a forthcoming disaster or a disaster that is in its early stages. Examples of such disas-

ters include hurricanes, terrorist attacks, and outbreaks of diseases. A classic example of

event surveillance involves monitoring some geographical region in order to detect a disease

outbreak. In this thesis, the focus will be on disease outbreaks.

(Le Strat and Carrat, 1999) de�ne an epidemic as �the occurrence of a number of cases

of a disease, in a given period of time in a given population, that exceeds the expected num-

ber,�while (Last, 2000) de�nes a disease outbreak as �an epidemic limited to a localized

increase, as for example in a village, town, or institution.�On a given day, the number of

cases could by chance exceed the expected number, and then return to normalcy. Ordinar-

ily, this would not be considered a disease outbreak. A disease outbreak is characterized

by an increasing trend (with daily �uctuations) in cases until some peak is reached, then

a decline, and then possibly an increase to a second peak, and so on. Disease outbreak

surveillance, also called disease outbreak detection and biosurveillance, consists of

monitoring a community in order to recognize early the onset of a disease outbreak. See
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(Buckeridge, 2007), (Buckeridge et al., 2005a), (Bravata et al., 2004), and (Feinberg and

Shmueli, 2005) for a review of biosurveillance.

1.1.1 Temporal Event Surveillance

Our pattern of interest may or may not be emerging in time. For example, we may be

interested in whether there is a cluster of a particular type of tree in a forest. In this case

there is no change in the pattern from one time period to the next (at least in the units of time

we are considering). On the other hand, in applications such as disease outbreak detection,

the pattern is emerging in time. A method for non-temporal event surveillance only

looks at data from the most recent time period. Such a method can be used to investigate

an emerging pattern such as a disease outbreak. However, the analysis would not look at

data from previous time periods. A method for temporal event surveillance looks for

emerging patterns by analyzing how the situation has changed recently in time. The

analysis is based not only on the data from the most recent time period, but also on data

from previous time periods.

1.1.2 Spatial Event Surveillance

In non-spatial event surveillance, an entire region is monitored globally. For example, if we

were monitoring whether a disease outbreak was occurring in a particular county, we would

monitor the entire county globally, without considering the possibility of localized outbreaks

in subregions.

If an outbreak was occurring in a small subregion of a county and the entire county was

monitored globally, the outbreak may go undetected until it spread to a larger subregion.

In spatial event surveillance, we search for patterns in spatial subregions. That is, we

individually monitor both small and large subregions of the region of interest. In this way,

we not only may detect an emerging event sooner, but we may also learn its location.

For example, Figure 1.1 shows how a disease outbreak might emerge in Allegheny County,

Pennsylvania. If we were investigating a spatial subregion near the center of the county, we

might detect the outbreak earlier and pinpoint its location.
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Figure 1.1: The progression of a �ctitious outbreak in Allegheny County. The progression is

from top left to top right to bottom left to bottom right.
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1.1.3 Spatio-Temporal Event Surveillance

In spatio-temporal event surveillance, we look for patterns that are emerging in time

both by investigating subregions of a region of interest and by analyzing how the situation

is changing in time.

1.1.4 Importance of Spatio-Temporal Event Surveillance

Early, reliable, and accurate detection of disease outbreaks remains an important research

topic. Even modest improvements in disease outbreak detection could have signi�cant impact

on public health in terms of lives saved and reduced economic cost. The induced long-term

economic costs were estimated to be as high as 250 million dollars per hour for some types

of outbreaks (Kaufmann et al., 1997; Wagner et al., 2001). We need to further improve

our outbreak detection systems to detect outbreaks earlier and more reliably than currently

done. We also need to further improve the capability of our detection systems in pinpointing

the geographical subregion where an outbreak is taking place. Ideally, we want a system

that is not only able to pinpoint the geographical subregion of an outbreak but also able to

identify the type/bioagent of the outbreak among all possible outbreaks.

1.1.5 Spatial Cluster Detection and Spatial Event Surveillance

Spatial cluster detection is one statistical technique used for spatial event surveillance. Meth-

ods for spatial cluster detection attempt to locate spatial subregions of some larger region

where the count of occurrences of some event is higher in one subregion relative to other

subregions. The classic technique for analyzing these counts is the spatial scan statistic

(Kulldor¤, 1997, 1999). In the case of disease outbreak detection, we want to �nd clusters

of disease cases so as to pinpoint where the outbreak is occurring. Other applications of

spatial cluster detection include mining astronomical data, medical imaging, and military

surveillance. In all these applications, the goal is to identify the location, shape, and size of

possible clusters, and to determine how likely it is that the cluster is due to the event with

which we are concerned (e.g., a disease outbreak) verses how likely it is that the cluster is
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merely a chance occurrence.

1.1.6 Bayesian Networks and Spatial Event Surveillance

When the events observed are the events of interest, then directly analyzing counts is likely

to be a good surveillance method. However, in event surveillance in general, and disease-

outbreak detection in particular, we often may only observe events that are related to the

events of interest. As an example, when we are interested in whether there is an outbreak of a

certain disease, we observe individuals with symptoms of the disease rather than more direct

evidence of the disease being present. Instead of using a summary statistic, we may obtain

better results if we model the relationships among the event of interest, and the observable

events using a Bayesian network (see Section 2.1 for an introduction to Bayesian networks).

The Bayesian network is then used to determine the posterior probability of each subregion

containing the event of interest. A strength of this method is that it can model multiple

causes of the observed occurrences. For example, in disease outbreak detection, it can model

any number of possible disease outbreaks using a single Bayesian network. Such a Bayesian

network approach is developed in this thesis.

1.2 CONTRIBUTIONS OF THIS THESIS

A high-level Bayesian network architecture, representing a class of spatial event surveillance

models called BayesNet-S, is developed. Then a high-level Bayesian network architecture

representing a class of temporal event surveillance models called BayesNet-T is developed.

These Bayesian network architectures are then combined into one high-level Bayesian net-

work architecture that represents a class of spatio-temporal model called BayesNet-ST. Using

these high-level Bayesian network architectures, it is often possible to construct a temporal,

spatial, or spatio-temporal model from an existing Bayesian network model for non-spatial,

non-temporal event surveillance. This is called extending the existing model. My general

hypothesis is that event surveillance will be improved when an existing model is extended to
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incorporate space and time within domains where space and time are relevant.

PANDA-CDCA (PC) (Cooper et al., 2007) is a previously developed disease-outbreak-

detection system that uses a Bayesian network to model the relationships among the events

of interest and those observed. However, PC does not use a temporal or spatial model of

disease outbreaks. Using my high-level Bayesian network architectures, I have extended the

PC algorithmic framework to include spatial and temporal models, and I have extended

the PC disease-outbreak domain model to consider spatial and temporal aspects of disease

outbreaks. My speci�c hypothesis is that both the spatial and temporal extensions of PC will

perform outbreak detection better than does PC and that the combined use of the spatial and

temporal extensions will perform better than either extension alone. Chapter 4 describes

experiments that evaluate this hypothesis.

1.2.1 Contribution to Spatial Event Surveillance

A BayesNet-S model may show better detection performance than the spatial scan statistic

(Kulldor¤, 1997) because such a model has the following potential advantages. A BayesNet-

S model can readily include multinomial variables, whereas the spatial scan statistic cannot.

The spatial scan statistic only investigates whether a cluster is occurring in a given subregion,

whereas a BayesNet-S model can use a Bayesian network to model the causal mechanisms

by which the clusters might occur. A BayesNet-S model can report the posterior probability

of an outbreak in each subregion. Also, as will be shown in Section 2.3, the spatial scan

statistic uses computationally expensive randomization methods to determine the likelihood

of an outbreak.

1.2.2 Contribution to Temporal Event Surveillance

A system that looks only at each day�s data might signal an outbreak one day and not signal it

the next. Such a system will confuse the user as to whether or not there truly is an outbreak.

For example, (Cooper et al., 2007) obtained such results when evaluating the ability of PC

to detect a laboratory validated outbreak of in�uenza in Allegheny County. Under a false

alarm rate of zero, PC detected in�uenza approximately one day before the �rst positive
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viral cultures of in�uenza were taken. However, during the start of the in�uenza outbreak,

the posterior probability of in�uenza �uctuated between very high and very low values. It

seems that these �uctuations may be due to PC only considering the most recent 24 hours

of data in performing outbreak detection. By extending PC to a BayesNet-T model, which

is done in Section 3.3.2, the �uctuations of the posterior for in�uenza should be attenuated.

1.2.3 Contribution to Spatio-Temporal Event Surveillance

To my knowledge, BayesNet-ST is the �rst Bayesian network, spatio-temporal event surveil-

lance model that has been developed. This model combines the strengths of BayesNet-S and

BayesNet-T.

1.2.4 Contribution to Overall to the Field of Biomedical Informatics

Applications of my architectures extend beyond biosurveillance. My spatial architecture is

applicable to many types of anomaly detection including medical imaging for the purpose of

pathology detection. My temporal architecture is applicable to any type of monitoring that

concerns a system which changes over time. For example, it may be used in a medical expert

system, which is deployed in an intensive care unit (ICU), and which monitors changes in a

patient�s condition over time.

1.3 OUTLINE OF THIS THESIS

Chapter 2 provides background on statistical methods, Bayesian networks, and existing

methods for event surveillance. The BayesNet-S, BayesNet-T, and BayesNet-ST classes of

models are developed in Chapter 3. Furthermore, PC (Cooper et al., 2007) is extended

to spatial, temporal, and spatio-temporal models in that chapter. Chapter 4 shows the

results of experiments evaluating the performance of these extensions. The purpose of these

experiments is to validate the hypotheses of this thesis. Chapter 5 further evaluates the

performance of the extensions of PC by comparing their performance to that of state-of-
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the-art event surveillance systems. In particular, the spatio-temporal extension of PC is

compared to the spatio-temporal spatial scan statistic (Kulldor¤, 2001; Kulldor¤ et al.,

2005), which is discussed in Section 2.3.3.2. Finally, Chapter 6 o¤ers some conclusions and

suggestions for future research.
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2.0 BACKGROUND

Methods that use frequentist and Bayesian statistics are presented and compared in this

thesis. This chapter �rst discusses di¤erences between frequentist and Bayesian methods, it

then reviews Bayesian networks, and �nally it provides an overview of methods that have

previously been developed for event surveillance, with a focus on disease outbreak detection

(biosurveillance).

2.1 FREQUENTIST VERSES BAYESIAN STATISTICS

A classic example of probability concerns tossing a coin. If the coin is symmetrical, we can

use the Principle of Indi¤erence to assign

P (Heads) = P (Tails) = 0:5

The Principle of Indi¤erence says that outcomes are to be considered equiprobable if

there is no reason to expect one over the other. Suppose that we toss a thumbtack. It can

also land one of two ways. Because the thumbtack is not symmetrical, we have no reason

to apply the Principle of Indi¤erence and assign probabilities of 0.5 to both outcomes. In

the case of the coin, when we assign P (heads) = 0:5, we are implicitly assuming that if we

tossed the coin a large number of times it would land heads about half the time. (von Mises,

1919) used the limit of the fraction of heads as the de�nition of probability. That is, if n is

the number of tosses and Sn is the number of times the thumbtack lands heads (on its �at

end), then

P (Heads) � lim
n!1

Sn
n
:
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This approach to probability is called the relative frequency approach to probability,

and probabilities obtained using this approach are called relative frequencies. A frequen-

tist is someone who feels this is the only way we can conceptualize probabilities. Note that,

according to this approach, we can never know a probability for certain. For example, if

we tossed a coin 10,000 times and it landed heads 7000 times, we could estimate that the

probability is 0.7, but we could not know that this is the probability.

A strict frequentist approach to statistics does not manipulate probabilities because

it assumes probabilities cannot be known for certain. Rather it infers con�dence about

unknown probabilities using techniques such as con�dence intervals and hypothesis testing. A

simple example follows. The technique illustrated in the example is covered in any elementary

frequentist statistics text such as (Anderson, 2005).

Example 2.1. Suppose a nut distributor says that on the average it puts 3 pounds of nuts

in its 3 pound nut containers. We decide to investigate the claim by obtaining a random

sample of size n = 40 nut containers. In this sample, we �nd that the average weight of the

nuts is �x = 2:92 pounds, Suppose further that from years of previous data, we know that the

standard deviation is � = 0:3. We are interested in investigating whether the true mean � is

� 3 because if this is the case the distributor is delivering on the average at least the amount

it says. We call this event the null hypothesis and denote it H0. We call the event that � is

< 3 the alternative hypothesis HA. If the alternative hypothesis is true, the manufacturer is

not supplying enough nuts. Formally, we have the following.

H0 : � � 3

HA : � < 3:

If we assume a normal distribution and perform a Z-test, we obtain a p-value equal to 0:046.

This means that if H0 is true, the probability of getting an average weight of 2:92 pounds or

less is 0:046. Traditionally, such a p-value is interpreted as moderately strong evidence for

rejecting the null hypothesis and thereby accepting the alternative hypothesis HA.

Notice in the previous example that probabilities were never known or manipulated.
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If we tossed a thumbtack 10,000 times and it landed heads 7000 times, a frequentist could

only obtained a con�dence interval for the unknown probability of heads. However, in the

subjective approach to probability, we can say that our belief concerning the outcome

of heads on the next toss is exactly equal to 0.7, and this belief is our probability of heads.

Often this belief is assessed by considering a fair gamble. That is, we would consider it fair

to win $0:30 if the thumbtack landed heads on the next toss and to lose $1� $0:30 = $0:70

if the thumbtack landed tails.1 A subjectivist is someone who feels he or she can assign

probabilities that represent his or her beliefs.

Since a subjectivist can �know�probabilities, the subjectivist can also manipulate them.

This is ordinarily done using Bayes�Theorem, and so subjectivists are also calledBayesians.

A Bayesian approach to statistics is one that infers unknown probabilities from known ones

using Bayes�Theorem. The following is an example of Bayesian statistical inference.

Example 2.2. Suppose a man takes the blood test ELISA (enzyme linked immunosorbent

assay) which tests for the presence of HIV (human immunode�ciency virus), because the

man is applying for a marriage license and the state requires this test. Suppose further that

the true positive rate for the test is 0:999, and the false positive rate is 0:002. Our belief

concerning the probabilities of the man testing positive, given the man either is or is not

infected with HIV, are then as follows:

P (ELISA = posjHIV = yes) = 0:999

P (ELISA = posjHIV = no) = 0:002:

Suppose further that 1 in 100,000 men, who apply for a marriage license in this state, are

infected with HIV. Our prior belief concerning the probability of the man being infected with

HIV is then as follows:

P (HIV = yes) = 0:00001:

Using Bayes�Theorem, we can now compute the posterior probability of the man being in-

fected:

1For simplicity this example assumes the preference for money of this small amount is linear in the amount
of money. If not, a simple modi�cation will preserve the basic principle given in this example.
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HIV ELISA

P(HIV = present) = 0.00001
P(HIV = absent) = 0.99999

P(ELISA = positive | HIV = present) = 0.999
P(ELISA = negative | HIV = present) = 0.001

P(ELISA = positive | HIV = absent) = 0.002
P(ELISA = negative | HIV = absent) = 0.998

Figure 2.1: A two-node Bayesian network.

P (HIV = yesjELISA = pos) =
P (posjyes)P (yes)

P (posjyes)P (yes) + P (posjno)P (no)

=
(0:999)(0:00001)

(0:999)(0:00001) + (0:002)(0:99999)

= 0:00497:

See (Berry, 1996) for more on Bayesian statistics.

2.2 BAYESIAN NETWORKS

Bayesian networks will now be reviewed. See (Castillo et al., 2007; Kjaerul¤ and Madsen,

2008; Jensen, 1997; Jensen and Nielsen, 2007; Neapolitan, 1990, 2004; Pearl, 1988) for a

detailed introduction to Bayesian networks.

In Example 2.2 we computed the probability of a man being infected with HIV given that

he tested positive for HIV using Bayes�Theorem. We can represent the probabilities used

in this computation in Figure 2.1, which is a two-node Bayesian network. In that �gure, the

random variables HIV and ELISA are represented by nodes2 in a directed acyclic graph,

and the relationship between these variables is represented by an edge from HIV to ELISA.

2Nodes in a Bayesian network represents domain variables and in this dissertation I will use these terms
interexchangeably.
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Fraud

  P(F = yes) = 0.00001
P(F = no) = 0.99999

Gas

Age Gender

Jewelry

   P(A = < 30) = 0.25
         P(A = 30 to 50) = 0.40

  P(A = > 50) = 0.35
P(D = male) = 0.5

   P(D = female) = 0.5

  P(G = yes | F = yes) = 0.2
P(G = no |F = yes) = 0.8

  P(G = yes | F = no) = 0.01
P(G = no |F = no) = 0.99

  P(J = yes | F = yes, A = a, D = d) = 0.05
P(J = no | F = yes, A = a, D = d) = 0.95

  P(J = yes | F = no, A = < 30, D = male) = 0.0001
P(J = no | F = no, A = < 30, D = male) = 0.9999

  P(J = yes | F = no, A = < 30, D = female) = 0.0005
P(J = no | F = no, A = < 30, D = female) = 0.9995

P(J = yes | F = no, A = 30 to 50, D = male) = 0.0004
P(J = no | F = no, A = 30 to 50, D = male) = 0.9996

P(J = yes | F = no, A = 30 to 50, D = female) = 0.002
P(J = no | F = no, A = 30 to 50, D = female) = 0.998

  P(J = yes | F = no, A = > 50, D = male) = 0.0002
P(J = no | F = no, A = > 50, D = male) = 0.9998

 P(J = yes | F = no, A = > 50, D = female) = 0.001
P(J = no | F = no, A = > 50, D = female) = 0.999

Figure 2.2: A Bayesian network for detecting credit card fraud.

Before proceeding, let us review some graph theory. Recall that a directed graph is a

graph in which the edges have direction (an arrowhead), and a directed acyclic graph (DAG)

is a directed graph in which there is no path from a node to itself. In a directed graph, node

Y is called a parent of X if there is an edge from node Y to node X, and node Y is called a

nondescendent of node X if there is no path from node X to node Y . For example, in Figure

2.2, Gender is a parent of Jewelry because there is an edge from Gender to Jewelry, while

Gas is a nondescendent of Gender because there is no path from Gender to Gas.

In general, a Bayesian network consists of a DAG, whose edges represent relationships

among random variables that are often causal; the prior probability distribution of every

root variable in the DAG; and the conditional probability distribution of every non-root

variable given each set of values of its parents. Figure 2.2 shows a more complex Bayesian

network representing the causal relationships among variables related to credit card fraud

(taken from (Heckerman, 1997)). Using this Bayesian network, we can determine conditional
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probabilities of interest using the Bayesian network and a Bayesian network inference algo-

rithm. For example, if a given individual is a male, is less than 30 years old, and jewelry was

purchased using the individual�s credit card, we can determine the conditional probability

of the individual�s credit card being used fraudulently. These inference algorithms exploit

Bayes�Theorem and are e¢ cient for a large class of Bayesian networks (Castillo et al., 2007;

Kjaerul¤ and Madsen, 2008; Jensen, 1997; Jensen and Nielsen, 2007; Neapolitan, 1990, 2004;

Pearl, 1988).

In a Bayesian network the product of the conditional probability distributions in the DAG

must equal the joint probability distribution of the random variables. A formal de�nition of

a Bayesian network and a theorem concerning this matter follow.

De�nition 2.1. Suppose we have a joint probability distribution P of the random variables

in some set V and a DAG G = (V;E). We say that (G; P ) satis�es the Markov condition

if for each variable X 2 V; X is conditionally independent of the set of all its nondescendents

given the set of all its parents. That is, if the sets of parents and nondescendents of X are

denoted by PA and ND, respectively, then for all values of X, ND, and PA

P (XjND;PA) = P (XjPA):

If (G; P ) satis�es the Markov condition, we call (G; P ) a Bayesian network.

The proof of the following theorem can be found in (Neapolitan, 2004).

Theorem 2.2. (G; P ) satis�es the Markov condition (and therefore is a Bayesian network)

if and only if P is equal to the product of its conditional distributions of all nodes given their

parents in G, whenever these conditional distributions exist. That is, if our variables are

X1; X2; : : : ; Xn, and PAi is the set of parents of Xi, then

P (X1; X2; : : : ; Xn) =
nY
i=1

P (XijPAi):
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Due to the previous theorem, Bayesian networks are often developed by �rst de�ning a

DAG that satis�es the Markov condition relative to our belief about the probability distribu-

tion of the nodes in the DAG, and then determining the conditional probability distributions

for this DAG. Often the DAG is a causal DAG, which is a DAG in which there is an edge

from X to Y if and only if X is a direct cause of Y relative to the other nodes in the

DAG. See (Neapolitan, 2004) for discussions as to why a causal DAG should often satisfy

the Markov condition with the probability distribution of the variables in the DAG. The

Bayesian networks in Figures 2.1 and 2.2 were developed by identifying causal edges. In

general, however, the edges need not be causal. Rather it is only necessary that the Markov

condition be satis�ed.

Methods for learning Bayesian networks from data have been developed (see (Neapolitan,

2004)).

2.3 OVERVIEW OF METHODS FOR EVENT SURVEILLANCE

This section provides an overview of methods that have previously been developed for event

surveillance, with a focus on disease outbreak detection (biosurveillance). The purpose is

not to be exhaustive, but rather to provide a representative overview of work in the �eld.

2.3.1 Methods for Non-Spatial Event Surveillance

2.3.1.1 Methods that Analyze Counts Often the count of occurrences of some phe-

nomenon increases during a disease outbreak. For example, Figure 2.3 (a) shows an epidemic

curve constructed from a sample of the population a¤ected by a Cryptosporidium outbreak

in North Battleford, Saskatchewan in spring, 2001. The outbreak was caused by a conta-

mination of public drinking water. Cryptosporidium infection causes diarrhea. Figure 2.3

(b) shows the weekly counts of units of over-the-counter (OTC) antidiarrheal medicine sold

at one pharmacy in North Battleford during the time period a¤ected by the outbreak. The

correlation between these two curves suggests that by monitoring OTC sales of such medicine
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Figure 2.3: An epidemic curve for a Cryptosporidium disease outbreak in North Battleford,

Saskatchewan is in (a), while weekly OTC sales of antidiarrheal drugs at one pharmacy in

North Battleford is in (b). The data for these curves ware obtained from (Stirling et al.,

2001).

we can possibly detect a Cryptosporidium outbreak at an early stage. Similarly, the number

of patients visiting the emergency department (ED) with respiratory symptoms ordinarily

increases during an in�uenza3 outbreak.

To monitor and analyze the counts, we �rst articulate a unit of time, which is ordinarily

one day, but could be one hour, or any other unit. For the sake of discussion, in what follows

it is assumed that the time unit is one day. A count is then obtained separately for each

day.

Non-Temporal Methods:

Non-temporal methods look at counts from some recent period of time only, such as the

previous 24 hours. One method for analyzing these daily counts is to �rst derive the mean

� and standard deviation � of the daily counts over a period of time when no outbreak is

presumed to be occurring, and �x these values in the outbreak detection system. An alert

is then issued whenever the daily count exceeds � by k�, where k is usually 2 or 3. (Wong

3In the �gures of this thesis we will use ��u�as a short name for �in�uenza�.
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and Moore, 2006) discuss problems with this method and improvements to it.

Temporal Methods:

Temporal methods detect an outbreak based on how the situation has changed recently

in time. The determination of an outbreak is based not only on the count from the most

recent day, but also on counts from previous days.

There are a number of temporal (time series) methods that look at the count of occur-

rences of a single phenomenon. Some of these methods are discussed in (Wong and Moore,

2006). (Moore et al., 2003) provide a summary of many known methods. Brie�y, they include

the Ser�ing method (Ser�ing, 1963; Tsui et al., 2001), the ARMA, ARIMA, and SARIMA

models (Box et al., 1994; Hamilton, 1994), univariate hidden Markov models (Rabiner, 1989;

Moore, 2001b), Kalman �lters (Hamilton, 1994), support vector machines (Burgess, 1998;

Moore, 2001c), and CUSUM (Bos and Fetherston, 1992). Other frequentist methods ap-

pear in (Burkom et al., 2007), (Buckeridge et al., 2005b), (Ries and Mandl, 2003), (Ries at

al., 2003), and (Soneson and Bock, 2003). A Bayesian method is developed in (Jiang and

Wallstrom, 2006).

CUSUM is one of the most widely used temporal methods, and it is used in an experiment

in Section 5.3.2. Therefore, I provide some details of the CUSUM algorithm here. CUSUM

analyzes the counts from the previous i time slots. Let �0 be the mean of the counts during

some background period when no outbreak is occurring, � be the standard deviation of the

counts during the background period, and

H = d�.

It is recommended that d = 5. Let X1; X2; : : : Xi be the counts from the past i time periods,

and let

S1 = X1 � �0

S2 = (X1 � �0) + (X2 � �0) = S1 + (X2 � �0)
...

Si =
iX
j=1

(Xj � �0) = Si�1 + (Xi � �0) :
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To determine when to signal an alarm, we look at this sequence:

C1 = max(0; X1 � (�0 +K))
...

Ci = max(0; Ci�1 +Xi � (�0 +K)):

We signal an alarm whenever

Ci > H:

Temporal methods that look at several counts, each recording occurrences of a di¤erent

phenomenon, appear in (Burkhom et al., 2004), (Burkhom et al., 2005), (Moore et al., 2006),

and (Shmuel and Feinberg, 2006). (Reis et al., 2007) developed an epidemiological network

model that monitors the relationships among di¤erent data streams instead of monitoring

the data streams themselves. The Bayesian method developed in (Jiang and Wallstrom,

2006) can look at several counts, but in the implementation which they evaluated it did not.

Methods that look at several counts are called multivariate.

2.3.1.2 Entity-Based Methods Rather than analyzing data aggregated over the entire

population (i.e., daily counts of some observable events), another approach is to model the

relationships among disease outbreaks and probabilistic properties of each individual in a

population. This is an entity-based approach. By modeling each individual in the population,

we can base our analysis on more information than that contained in a summary statistic

such as the number of patients who visited the ED with respiratory symptoms on a given

day. Methods that use this approach will now be presented.

Non-Temporal Methods:

PANDA-CDCA (PC) (Cooper et al., 2007) is a non-temporal method that models the

CDC Category A diseases, namely, anthrax, plague, smallpox, tularemia, botulism and hem-

orrhagic fever, and also several diseases that may be confused with them, namely in�uenza,

Cryptosporidium, and hepatitis (see http://www.bt. cdc.gov/agent/ agentlist-category.asp).

PC consists of a large Bayesian network that contains a set of nodes for each individual in a
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region. PC takes as input a time series of chief complaints, one for each ED patient in the

region. There are 54 chief complaints, including a catchall category of �other�. Each hour,

based on the previous 24 hours (one day) of data, it outputs the posterior probability of each

disease. PC not only can inform us if an outbreak is likely, but also what type of outbreak

it might be. Note that, even though PC is run each hour and the data is collected over

24 hours, we still do not consider it a temporal model. The frequency with which we run

the model does not determine whether we call it temporal. In order to label a surveillance

method as temporal, we require that it consider patterns of evidence over time, not just

evidence during a single time period. The details of PC are provided in Section 3.1.3.

BARD (Bayesian Aerosol Release Detector) (Hogan et al., 2007) is a Bayesian network,

entity-based system designed to compute the posterior probability of an outdoor, wind-borne

release of anthrax spores. BARD�s goal is to perform earlier, more sensitive detection of

wind-borne outbreaks by recognizing a characteristic dispersion pattern. It not only detects

an outbreak, but characterizes it as wind-borne. Furthermore, it determines estimates of

release location, quantity, and time.

Temporal Methods:

A predecessor to PC, PANDA (Population-wide ANomaly Detection and Assessment)

(Cooper et al., 2004) is an entity-based, Bayesian network method that has a simple temporal

and spatial model of an outbreak disease. PANDA is designed speci�cally to detect non-

contagious outbreak diseases such as airborne anthrax or West Nile encephalitis. PANDA

currently is able to detect disease outbreaks due to inhalational anthrax, and the only clinical

evidence considered by this system is whether an individual presented to the ED with respi-

ratory symptoms or not. The Bayesian network in PANDA contains a set of nodes for each

individual in a region. These person nodes represent properties of the individual such as age,

gender, home location, the anthrax infection state of the individual, and the ED admission

state of the individual. The Bayesian network also contains a global node representing the

location of the anthrax release and a global node representing the time of the anthrax release.

Temporal information is represented by states of nodes in the network. For example, the

global node Time of Release has states never, today, yesterday, and day before yesterday,
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and the person node Anthrax infection has states AAA (anthrax was absent for the past 3

days), AAI (within the past 24 hours the patient was infected with anthrax), AII (patient

we infected with anthrax between 24 and 48 hours ago and is still infected today), and III

(patient was infected between 48 and 72 hours ago and is still infected today). Although

PANDA models the time period of the outbreak (in days), it does not model a progressive

increase in the number of expected outbreak cases over time.

There is a version of PANDA that incorporates the spatial distribution of cases into the

model. In this version a node called Angle of release is added to the model. This node

describes the direction of the airborne anthrax release. The possible values of this node

include north, northeast, east, southeast, south, southwest, west, and northwest. The model

de�nes eight types of rectangular regions centered at the centroid of a zip code. These eight

types of regions are also named north, northeast, east, southeast, south, southwest, west, and

northwest respectively according to their direction relative to the centroid of a zip code. For

example, assuming the release zip code of an airborne anthrax is 15237 and the value of the

angle of release node is northwest, if the centroid of an individual�s home zip code fell in the

northwest rectangular region relative to zip code 15237, this individual would be considered

to be potentially exposed to anthrax.

2.3.2 Spatial Event Surveillance

2.3.2.1 Methods that Analyze Counts The known methods for spatial event surveil-

lance that analyze counts are the ones that are classi�ed as spatial cluster detection.

Non-Temporal Methods:

Recall that methods for spatial cluster detection attempt to locate spatial subregions of

some larger region where the count of occurrences of some event is higher than expected.

Non-temporal methods detect clusters based only on the most recent count. Inherent in

these methods is that they do not look at patterns of counts over time.

(Kulldor¤, 1997, 1999; Kulldor¤ and Nagarwalla, 1995) developed a classic frequentist

non-temporal method called the spatial scan statistic, which was implemented in the

SaTScanTM software package (Kulldor¤, 2004). The scan statistic was �rst proposed by
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(Naus, 1965) as a solution to the multiple hypothesis testing problem. Scan statistics have

been used to �nd clusters of chronic diseases such as breast cancer (Kulldor¤et al., 1997) and

leukemia (Hjalmars et al., 1996). They have also been used to detect clusters of work-related

hazards (Kulldor¤ et al., 2003) and West Nile virus (Mostashari et al., 2003).

(Jung et al., 2007) developed a version of the spatial scan statistic that considers multino-

mial variables whose values are ordinal. That is, for each individual in the population it

identi�es a variable which can have two or more values. It then counts the number of times

the variable takes each of its values. We call this a multinomial method. This spatial scan

is similar to the methods described previously, except in those methods the variable can only

have two values. (Kulldor¤ et al., 2007) developed a version of the spatial scan statistic that

considers several counts, each recording occurrences of a di¤erent phenomenon. We call this

a multivariate method.

(Neill et al., 2005a) developed the Bayesian spatial scan statistic. A multivariate version

appears in (Neill et al., 2007) and (Neill and Cooper, 2008).

(Neill and Moore, 2004) developed overlapped kd-trees which enable them to speed up the

search for clusters over rectangular subregions. (Duczmal and Assuncão, 2004), (Patil and

Taillie, 2004), (Kurki and Saarinen, 2006), (Assuncao et al., 2006), (Wieland et al., 2007),

and (Duczmal et al., 2008) developed methods for searching arbitrarily shaped subregions,

while (Jiang and Cooper, 2007) developed a recursive algorithm that searches over arbitrary

subsets of a rectangular grid.

Temporal Methods:

Temporal methods detect clusters based not only on a single set of recent counts, but

also on patterns of counts over time.

A spatio-temporal extension of the spatial scan statistic appears in (Kulldor¤, 2001) and

in (Kulldor¤ et al., 2005). (Takahashi et al., 2008) developed a �exibly shaped space-time

scan statistic. (Neill et al., 2005b) developed a Bayesian expectation-based scan statistic

that takes time into account by using historical data to model the expected distribution of

counts in each spatial subregion.
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2.3.2.2 Entity-Based Methods PANDA (Cooper et al., 2004), which was discussed in

Section 2.3.1.2, can be considered an entity-based, spatio-temporal event surveillance system

because it contains nodes for the location and time of the anthrax release. However, it does

not attempt to locate a subregion in which an event may be occurring. To my knowledge, the

method developed in this thesis is the �rst method for developing entity-based systems that

investigate subregions. However, as will be discussed in Chapter 3, although entity-based

systems can be developed using the method in this thesis, it is more general and can be used

to develop methods that are not entity-based.

2.3.3 Details of the Spatial Scan Statistics

I will extend PC to both spatial and spatio-temporal systems. In Chapter 5 these systems

will be contrasted and compared with the frequentist spatial scan statistic (Kulldor¤, 1997,

1999; Kulldor¤ et al., 2005; Kulldor¤ et al., 2007), and the Bayesian spatial scan statistic

(Neill et al., 2005a; Neill et al., 2007; Neill and Cooper, 2008). So the details of these

statistics are presented.

2.3.3.1 The Frequentist Spatial Scan Statistic When doing spatial cluster detection,

we �rst articulate the subregions of some geographical region G. For example, (Kulldor¤,

1997) places a circular window over the region and lets the center of the circle move over

the region. For each center, the radius of the circle is varied. (Neill et al., 2005a) represent

the entire region by a rectangular grid, and search over rectangular subregions of the grid.

Inherent in these methods is that we assume that the entire region G is composed of cells

ci. For example, if we cover G with an m� n grid, each grid element is a cell. A subregion

S of G is the union of any number of cells that form a rectangle. Figure 2.4 illustrates this

model.

We are interested in whether some subregion S of G contains a cluster. The null hy-

pothesis H0 is that there is no cluster, and the alternative hypothesis HS is that subregion

S contains a cluster. (Kulldor¤, 1997) developed two di¤erent scan statistic models, the

Bernoulli model and the Poisson model.
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A Subregion

Figure 2.4: An example in which the entire region is covered by a 5� 5 grid. One subregion,

which is a rectangle, is shown.

In the Bernoulli spatial scan model, every cell ci � G contains a discrete number

of entities. Each entity either does or does not have some property X. For example, the

entities could be people, and the property could be that a person visited the Emergency

Department with a cough during the past 24 hours. We would be interested if there is a

cluster of such entities in some subregion of a particular city or county. As another example,

the entities could be stars, and the property could be that the star is a neutron star. We

would be interested in whether there is a cluster of neutron stars in some subregion of space.

The statements of the hypotheses for the Bernoulli model are as follows:

H0: For entities in the entire region G, the probability of the entity having property X

is q. The event of any one entity having the property is independent of another entity

having it.

HS: For entities in subregion S, the probability of the entity having property X is p.

For entities in subregion G � S, the probability of the entity having property X is q,

where p > q: The event of any one entity having the property is independent of another

entity having it.
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De�ne the following variables:

B: Total number of entities in G.

B
(S)
in : Total number of entities in S.

B
(S)
out : Total number of entities in G� S.

C: Total number of entities in G with property X.

C
(S)
in : Total number of entities in S with property X.

C
(S)
out : Total number of entities in G� S with property X.

(Kulldor¤, 1997) shows that the data has highest likelihood under alternate hypothesis

HS for the subregion S that maximizes the following Bernoulli spatial scan statistic:

L(S) =

 
C
(S)
in

B
(S)
in

!C(S)in
 
1� C

(S)
in

B
(S)
in

!B(S)in �C(S)in
 
C
(S)
out

B
(S)
out

!C(S)out
 
1� C

(S)
out

B
(S)
out

!B(S)out�C
(S)
out

�
C

B

�C �
1� C

B

�B�C (2.1)

if
C
(S)
in

B
(S)
in

>
C
(S)
out

B
(S)
out

;

otherwise

L(S) = 1:

If subregion S� has the highest value of the test statistic among all the subregions being

tested, we only know that S� is the most likely subregion to contain a cluster. We deter-

mine the statistical signi�cance of the test using a form of Monte Carlo simulation called

randomization testing. The technique was originally proposed in (Dwass, 1957), and it was

�rst used in the context of a scan statistic in (Turnball et al., 1990). In this technique, we

obtain a large number N of replications of the data set, each of which is generated under

the null hypothesis. The p-value of HS is then equal to

Nbeat + 1

N + 1
;

where Nbeat is the number of replications in which the subregion with the highest value of

the test statistic has a higher value than L(S�). For example, with 999 such replications,

the p-value is .05 if L(S�) is the 50th highest value obtained relative to the 999 replications.
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In the Poisson spatial scan model, every cell ci � G contains a variable number of

points (entities), which we count. For example, the count may be the number of entities with

some property. It is assumed that counts are being generated according to an inhomogeneous

Poisson process. The statement of the hypotheses are as follows:

H0: For every cell ci, the counts are distributed as follows:

Ci � PoissonDist(qbi):

where bi is a baseline count associated with cell ci.

HS: For cells ci � S, the counts are distributed as follows:

Ci � PoissonDist(pbi);

and for cells ci * S, the counts are distributed as follows:

Ci � PoissonDist(qbi);

where p > q.

De�ne the following variables:

B =
P
i

bi.

B
(S)
in =

P
i:ci�S

bi.

B
(S)
out =

P
i:ci*S

bi.

C =
P
i

ci.

C
(S)
in =

P
i:ci�S

ci.

C
(S)
out =

P
i:ci*S

ci.
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(Kulldor¤, 1997) shows that the most signi�cant subregion S is the one that maximizes

the following Poisson spatial scan statistic:

F (S) =

 
C
(S)
in

B
(S)
in

!C(S)in
 
C
(S)
out

B
(S)
out

!C(S)out

�
C

B

�C (2.2)

if
C
(S)
in

B
(S)
in

>
C
(S)
out

B
(S)
out

;

otherwise

F (S) = 1:

As is the case for the Bernoulli spatial scan statistic, we determine the statistical signif-

icance of our �nding by doing randomization testing using a large number of replications of

the data set.

2.3.3.2 The Temporal and Multivariate Frequentist Scan Statistics A temporal

version of the spatial scan statistic appears in (Kulldor¤, 2001) and (Kulldor¤ et al., 2005).

It is much like the basic version described above except that instead of a circular window

in two dimensions, the space-time scan statistic searches over cylindrical windows in three

dimensions. The base of the cylinder represents space in the same way as the basic scan

statistic, while the height of the cylinder represents time. When a disease outbreak occurs,

the counts ordinarily increase (with daily �uctuation) until some peak is reached, and then

decline. Kulldor¤�s temporal spatial scan statistic does not consider this phenomenon. (Neill

et al., 2005b) developed a temporal version of the spatial scan statistic that does model

increasing counts. This version looks at counts from previous days, and, in the alternative

hypothesis, uses a di¤erent parameter p for each day, where the values of these parameters

are assumed to be monotonically increasing. For example, suppose we are looking at data

from day1, day2, day3 and day4, where day4 is today, day3 is yesterday, day2 is two days

ago, and day1 is three days ago. It is assumed that the count for a cell ci � S on day1 are

distributed PoissonDist(p1bi), the count on day2 is distributed PoissonDist(p2bi), and so on.

It is further assumed that the sequence [p1; p2; p3; p4] is monotonically increasing.
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(Kulldor¤ et al., 2007) developed a multivariate version of the spatial scan statistic

that considers several counts, each recording occurrences of a di¤erent type of event. For

example, we may be looking at over-the-counter (OTC) sales of di¤erent products. One

type of event (product) could be the purchase of antidiarrheal medication, a second type

could be the purchase of cold/cough medication, and a third type could be the purchase of a

thermometer. A count would be recorded for each of these three types of events. The total

log likelihood in this multivariate version is the sum of the individual log likelihoods for each

separate event type (Equation 2.1 or 2.2).

All these spatial scan statistics have been implemented in the SaTScanTM software pack-

age, which is available for free at http://www.satscan.org/. Methods available there include

the basic spatial scan statistic, a temporal spatial scan statistic, a multivariate spatial scan

statistic, and a spatial scan statistic which is both temporal and multivariate.

2.3.3.3 The Bayesian Spatial Scan Statistic There are several problems with the

frequentist spatial scan statistic. First, it is quite di¢ cult to incorporate any prior informa-

tion about the outbreak. For example, it would be hard to use our prior beliefs about the size

of a possible outbreak and its impact on our observed counts. Second, its accuracy depends

on the correctness of our maximum likelihood parameter estimates. This means the model

is prone to parameter over�tting, and therefore may lose detection power because of model

misspeci�cation. Finally, the statistic is computationally very costly due to the necessity to

create replica grids.

(Neill et al., 2005a) remedied these problems by developing a Bayesian spatial scan

statistic. Their Bayesian model uses prior information about the likelihood, size, and impact

of an outbreak. If these priors are well-chosen, it should exhibit better detection performance

that the frequentist model. Second, the Bayesian approach averages over possible values of

the model parameters rather than using maximum likelihood estimates of these parameters.

This approach is less prone to over�tting. Finally, in this approach there is no need to create

replica grids.

As in the frequentist approach, the Bayesian approach compares the null hypothesis

H0 with the alternative hypotheses HS; each of which represents that there is a cluster in
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subregion S. This approach makes the following assumptions, which are like those in the

frequentist approach (the variables used here are the same as those de�ned in Section 2.3.3.1):

H0: For every cell ci, the counts are distributed as follows:

Ci � PoissonDist(qallbi):

where bi is a baseline count associated with cell ci.

HS: For cells ci � S, the counts are distributed as follows:

Ci � PoissonDist(qinbi);

and for cells ci * S, the counts are distributed as follows:

Ci � PoissonDist(qoutbi):

The di¤erence between the Bayesian approach and the frequentist approach is that this

approach assumes a hierarchical Bayesian model in which the disease rates q and p are them-

selves drawn from Gamma distributions. Speci�cally, this approach assumes the following:

H0: For every cell ci, the disease rate are distributed as follows:

qall � GammaDist(�all; �all):

HS: For cells ci � S, the disease rates are distributed as follows:

qin � GammaDist(�in; �in)

and for cells ci * S, the disease rates are distributed as follows:

qout � GammaDist(�out; �out):
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(Neill et al., 2005a) discuss how to obtain the parameters � and �.

Based on this model, (Neill et al., 2005a) derive the following likelihoods (the variables used

here are the same as those de�ned in Section 2.3.3.1):

P (DatajH0) =
(�all)

�all � (�all + C)

(�all +B)
�all+C � (�all)

P (DatajHS) =

�
�
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The Bayesian spatial scan statistic is computed by calculating P (DatajHS)P (HS) for

each subregion S, and then using Bayes�Theorem to compute

P (HSjData) =
P (DatajHS)P (HS)P
R P (DatajHR)P (HR)

:

We see that since this approach determines posterior probabilities, there is no need to

use randomization to create replications of the data set and to determine signi�cance, which

greatly decreases its time complexity relative to the frequentist spatial scan statistic.

2.3.3.4 The Multivariate Bayesian Scan Statistic A multivariate version of the

Bayesian spatial scan statistic appears in (Neill et al., 2007) and (Neill and Cooper, 2008).

They combine the prior probability of an outbreak in each spatial region with the likelihood of

the multivariate data using Bayes�Theorem. To compute the data likelihood given the either

the null or alternative hypothesis, they use a Gamma-Poisson model (as in the univariate

Bayesian spatial scan statistic) for each event type. They assumed that the counts for

each event type are conditionally independent given the outbreak type, a¤ected region, and

outbreak parameters. The parameter priors for each event type are learned from the time

series of past counts.
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3.0 METHODOLOGY

This chapter describes Bayesian network architectures for event surveillance, spatial event

surveillance, temporal event surveillance, and spatio-temporal event surveillance. Each ar-

chitecture is an enhancement of the previous one. The architectures are created in sequence:

1. An event surveillance architecture.

2. A spatial event surveillance architecture.

3. A temporal event surveillance architecture.

4. A spatio-temporal event surveillance architecture.

3.1 THE BAYESNET CLASS OF EVENT SURVEILLANCE MODELS

This section presents a description of the high-level Bayesian network architecture represent-

ing the BayesNet class of event surveillance models and then gives several concrete examples.

3.1.1 The High-Level Bayesian Network Architecture

Suppose we are investigating whether there is an event of interest in some region. Let E

be a random variable whose value is �yes�if the event of interest occurred or is occurring,

and whose value is �no�otherwise. Besides the variable E, there can be a set of attribute

variables which represent properties of the event of interest, a set of intermediate variables

which depend on the properties of the event of interest, and a set of observable variables which

depend on the intermediate variables. These observable variables comprise our Data. Figure

3.1 shows a high-level Bayesian network architecture representing this class of models. Any
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Intermediate
Variables

Observable
Variables

Data

. . . . Attribute
Variables

Figure 3.1: The high-level BayesNet Bayesian network architecture. The value of E is �yes�

if the event of interest occurred, and is �no�otherwise. The sets of variables enclosed by

ovals represent Bayesian subnetworks. The attribute variables are properties of the event of

interest, the intermediate variables depend on the properties of the event of interest, and the

observable variables depend on the intermediate variables. The shaded observable variables

are the measured variables and comprise our Data. The unshaded variables are unmeasured.

The double arrowed edges indicate that there can be more than one edge from each variable

in a given set to the variables in the set below it. In general, there need not be any attribute

or intermediate variables.
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Ir

P(Ir = mk | E = yes) = pk
P(Ir = mk | E = no) = qk

E
P(E = yes) = b
P(E = no) = 1­b

Ir+1
...

Data

... Observable
Variables

Figure 3.2: A simple example of a BayesNet model.

model in this class is called aBayesian Network (BayesNet) model. If each intermediate

variable represents an individual in a population, and there is a set of observable variables for

each such individual, it would be an entity-based model. In this thesis only BayesNet models

that are entity-based will be considered. However, the theory does not require that they be

entity-based. For example, suppose E represents the occurrence of an in�uenza outbreak,

and the only observable variables is C, which is the count of OTC sales of thermometers.

The variable C depends on E, and we can model this dependency using the DAG E ! C.

This is a BayesNet model containing no attribute or intermediate variables and which is not

entity-based.

In a non-spatial, non-temporal model, the data are obtained from the entire region being

monitored, and new data are obtained each day (or at whatever our time unit may be). The

Bayesian network is used to compute

P (E = yesjData):

3.1.2 A Simple Example of a BayesNet Model

3.1.2.1 The Model Figure 3.2 shows a simple example of a BayesNet model, which has

no global or intermediate variables. For the sake of concreteness, let us give the variables
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meaning. Suppose that the variable E has value �yes� if there is currently an outbreak of

in�uenza and the value �no�otherwise. There is a variable Ir for each individual r in the

entire region G. So this is an entity-based system. There are no variables describing proper-

ties of the event per se (beyond data about entities in the population) and no intermediate

variables. The possible values of Ir are our manifestations mk for each individual. In this

example, suppose that they are the chief complaints with which the individual might present

in the Emergency Department, where one value is �noED�, which means the individual did

not visit the Emergency Department. Other possible chief complaints include cough, and

fever/chills. Note that Ir = mk is an assignment of chief complaint mk for individual Ir.

The following is a concrete example.

Example 3.1. The Bayesian network in Figure 3.2 could have these chief complaints and

probability distributions:

m1 = cough

m2 = fever=chills

m3 = noED

P (E = yes) = 0:0001

P (Ir = coughjE = yes) = 0:001

P (Ir = fever=chillsjE = yes) = 0:002

P (Ir = noEDjE = yes) = 0:997

P (Ir = coughjE = no) = 0:0003

P (Ir = fever=chillsjE = no) = 0:0005

P (Ir = noEDjE = no) = 0:9992:
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3.1.2.2 The Inference Algorithm The Data consists of the values of Ir for all indi-

viduals r in region G. Since there could be thousands, or even millions, of individuals in G,

we would not explicitly construct the Bayesian network in Figure 3.2, and instantiate Ir for

all r. Rather, due to the fact that the Bayesian network structure entails that individuals�

chief complaints are conditionally independent given the value of E, we can compute the

likelihoods of the data as follows:

P (DatajE = yes) =
Y
k

(pk)
Ck

P (DatajE = no) =
Y
k

(qk)
Ck ;

where Ck is the number of individuals with the kth chief complaint, and pk and qk are de�ned

in Figure 3.2. Then using Bayes�Theorem, we compute that

P (E = yesjData) = P (DatajE = yes)P (E = yes)
P (DatajE = yes)P (E = yes) + P (DatajE = no)P (E = no) :

3.1.3 PANDA-CDCA

I now describe a more complex example of a BayesNet model, namely the Bayesian network

in PANDA-CDCA (PC). This system was developed in (Cooper et al., 2007) and not in this

thesis. However, it is discussed in detail because it was used as the basis for the domain

models that are developed and evaluated in this dissertation.

3.1.3.1 The Model Figure 3.3 shows the Bayesian network in PC. There are nodes Dr

and Ir corresponding to each individual r in the population. In Figure 3.3 I denoted these

multiple nodes by showing a couple of them. An alternative representation is to use a plate

as described in (Buntine, 1994) and (Spiegelhalter, 1998). This representation appears in

Figure 3.4. The box (plate) around the subgraph D ! I indicates that this subgraph is

repeated N times, where N is the number of individuals in the population.

Each node in the network is described next.
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FO

Dr+1

Ir+1

Dr

Ir

...

P(O = flu | E = yes) = 0.8
P(O = botulism | E = yes) = 0.01
....
P(O = none | E = yes) = 0
P(O = none | E = no) = 1

P(F = 0.0000118) = 0.0667
P(F = 0.0000236) = 0.0667
....

P(Dr = flu | O = flu, F = 0.0000118) = 0.0000118
P(Dr = botulism | O = flu, F = 0.0000118) = 0
....
P(Dr = other | O = flu, F = 0.0000118) = 0.00203298
P(Dr = noED | O = flu, F = 0.0000118) = 0.99795522
....

P(Dr = flu | O = none, F = 0.0000118) = 0
P(Dr = botulism | O = none, F = 0.0000118) = 0
....
P(Dr = other | O = none, F = 0.0000118) = 0.002033
P(Dr = noED | O = none, F = 0.0000118) = 0.997967

P(Ir = chest pain | Dr = flu) = 0.064626
P(Ir = diarrhea | Dr = flu) = 0.014422
P(Ir = cough | Dr = flu) = 0.309299
....
P(Ir = other | Dr = flu) = 0
....
P(Ir = chest pain | Dr = other) = 0.022528
P(Ir = diarrhea | Dr = other) = 0.010549
P(Ir = cough | Dr = other) = 0.032272
....
P(Ir = other | Dr = other) = 0.485912

.
...

P(Ir = noED | Dr = noED) = 1

Data

E P(E = yes) = 0.05
P(E = no) = 0.95

...

...

...

Attribute
Variables

Intermediate
Variables

Observable
Variables

Figure 3.3: The PC Bayesian network. See the text for a description of the variables.
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Figure 3.4: The Bayesian network in PC using a plate to represent multiple occurrences

of the subgraph D ! I. This subgraph is repeated N times where N is the number of

individuals in the population.
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E: This node represents whether there is an ongoing outbreak. The value �yes�repre-

sents that there is an ongoing outbreak of one of the outbreak diseases represented by O

during the previous 24-hour period.

Note that P (E = yes) = 0:05. This prior probability is fairly high because in�uenza

is one of the diseases being modeled, and it is relatively common during any given year.

PC does not currently model di¤erent seasons of the year, and thus, this probability is a

constant throughout the year.

O: This node represents which outbreak disease is occurring if there is an outbreak.

The prior probabilities for variable O were assessed by the project�s infectious disease

expert, Dr. John Dowling, based on the literature and subjective estimates. There are 13

possible outbreak diseases, two of which are shown in Figure 3.3 (in�uenza and botulism).

The possible outbreak diseases include the following CDC Category A diseases:

1. anthrax stage 1

2. anthrax stage 2

3. plague stage 1

4. plague stage 2

5. smallpox

6. tularemia

7. botulism

8. marburg hemorrhagic fever stage 1

9. marburg hemorrhagic fever stage 2.

The CDC Category A diseases can be either easily transmitted from person to person

or easily disseminated, result in high mortality rates with a potential for major public

health impact, might cause public panic and social disruption, and require special action

for public health preparedness.

The other possible outbreak diseases included are the following ones that may be

confused with CDC Category A diseases:

1. �u
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2. Cryptosporidium

3. hepatitis A.

The 13th value of O is �none�, which represents a population-disease state in which

there is no outbreak disease. Note that P (O = none j E = no) = 1:0. Thus, each of the

outbreak diseases listed above has a probability of 0, when E = no.

PC assumes that outbreak diseases are mutually exclusive. For example, it assumes

there would not be in�uenza and botulism outbreaks occurring simultaneously. Although

in reality di¤erent outbreaks could occur concurrently, this event is unlikely, and therefore

the model currently assumes it does not happen.

F : The value of this node is itself a probability. This node represents the probability of

an individual both being a­ icted with the outbreak disease and going to the ED, given

that an outbreak is ongoing. For computational e¢ ciency reasons, the states of this node

were discretized into 15 numerical values, two of which are shown in Figure 3.3. This

node indicates the extent of the outbreak, if one is occurring. Since the value f of F is

a probability, the probability distribution of F is a higher order probability distribution.

The population being monitored by the EDs for which PC obtains data is estimated

to be 423,076 people. This number is 29% of the 1,458,883 people who live in Allegheny

County, according to the 2000 US census. The value of 29% is an estimate of the ED

coverage of Allegheny County represented in the biosurveillance database that I used.

The possible values of F correspond to expected number of outbreaks cases of 5, 10,

15, 20, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, and 275 according to the following

calculations. The mean number of ED cases per day when there is not an outbreak

is estimated to be 577 according to the 2004 biosurveillance data, and the standard

deviation is about � = 54. It was assumed that the expected value of the increased

number of ED cases during an outbreak ranged between 0:1� = 0:1 � 54 � 5 to 5� =

5� 54 � 275. The 15 values above were then taken from this range. Finally, the values

of F were obtained by dividing these numbers by 423,076, which is the number of people
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in the population. For example,

5

423; 076
= 1: 18� 10�5:

In general, there would be an edge from O to F , which allows the distribution of F to

depend on which outbreak disease (if any) is occurring in the population. That is, some

outbreak diseases might be expected to a¤ect a larger fraction of the population than

other outbreak diseases. However, the current 24 hours of data considered by PC can

represent any stage of a disease outbreak. Earlier stages would tend to have lower values

of F , whereas later stages would tend to have higher values of F . Given the uncertainty

of the disease stage, PC currently does not include an arc from O to F , because for any

given disease many di¤erent distributions of F are possible, depending on the stage.

Dr: This node represents the ED disease state of the rth individual. There is one such

node for each individual r in the population. So this is an entity-based system. The

value �noED�means the individual does not visit the ED. The value �other�means

the individual arrives in the ED only with some non-outbreak disease (e.g., a broken

arm). The value �anthrax�, for example, means the individual arrives in the ED with

an anthrax infection. This means that the individual arrived with anthrax due to an

outbreak, and not due to a natural, sporadic anthrax. An individual presenting with

sporadic anthrax would be classi�ed as having value �other�disease. The same holds for

the other outbreak diseases.

The probabilities for node Dr were obtained as follows. If there is no outbreak occurring

in the population, it is assumed the individual could not have an outbreak disease.

Therefore, when there is no outbreak, the individual could arrive in the ED only with

a non-outbreak disease. The probability of this event is called pother. So when there is

no outbreak, the probability of not visiting the ED is 1� pother. These probabilities are

estimated using the ED data from the previous year. In this dissertation, I use data from

2005 for testing outbreak detection performance, as described in Chapter 4. Therefore,
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I use data from 2004 for estimating model parameters. In 2004 in Allegheny County

probability estimates for PC are as follows:

P (Dr = otherjO = none; F = f) = pother

= 0:002033

P (Dr = noEDjO = none; F = f) = 1� pother

= 0997967:

The probabilities of arriving in the ED with outbreak diseases given there is an outbreak

of disease d is based on the value of F as follows:

P (Dr = djO = d; F = f) = f

P (Dr = cjO = d; F = f) = 0 for c 6= d:

It is assumed that the factors that inhibit an individual from going to the ED with an

outbreak disease act independently of the factors that inhibit the individual from going

to the ED with a non-outbreak disease. Accordingly, a noisy-OR relationship (Pearl,

1988) is used as follows:

P (Dr = noEDjO = d; F = f) = (1� pother)(1� f):

Finally,

P (Dr = otherjO = d; F = f)

= 1� P (Dr = djO = d; F = f)� P (Dr = noEDjO = d; F = f)

= 1� f � (1� pother)(1� f)

= pother(1� f):
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Ir: This node represents each of the possible chief complaints individual r could have

when arriving in the ED. There are 54 possible chief complaints, one of which is �other�,

which means the chief complaint was not one of the 53 speci�c chief complaints repre-

sented in the network. The 55th value of the node is �noED�, which means the individual

did not visit the ED and thus did not have a literal chief complaint.

Typically, a patient can have many �ndings. The PC model, however, needs the

probability that a �nding is a chief complaint, because for patients who come to the ED,

the chief complaint is typically the only clinical information that is given to PC. The

probability of a patient having a �nding (e.g., a �nding of fever) and having the �nding be

his or her chief complaint (e.g., a chief complaint of fever) are in general not the same. A

chief-complaint probability is almost always lower. In PC, the �nding probabilities were

provided by an infectious disease expert, and a method was used by the PC developers

to transform �nding probabilities to chief complaint probabilities.

3.1.3.2 Mapping Chief Complaint Data ED chief complaints are a popular data

source used by many biosurveillance related systems due to their timeliness and availability

(Chapman et al., 2004; Chapman et al., 2005; Espino et al., 2001). PC uses ED chief

complaints data as its input. A chief complaint is ordinarily a free-text phrase entered by

triage personnel. PC maps such a phrase to one of the 54 chief complaints it represents.

First, I brie�y review methods for handling chief complaint data. Then I describe how PC

maps a phrase to a chief complaint.

The methods for handling chief complaint data can be categorized into two main cat-

egories: the rule-based approach and the probabilistic approach. The rule-based approach

often consists of two steps. In the �rst step, the chief complaint records are converted to

a group of prede�ned terms by performing either a table lookup or keyword match. In the

second step, the groups of prede�ned terms are translated into �nal syndromic categories

using a set of rules. With the rule-based approach it is di¢ cult to handle new symptoms

that are not previously encountered. Examples of the rule-based approach include EARS

(Hutwagner et al., 2003), ESSENCE (Lombardo et al., 2003), DOHMH syndromic coding

system (Mikosz et al., 2004), and an ontology-enhanced approach discussed in (Lu et al.,
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2008). Both the EARS and the DOHMH systems use the keyword matching scheme and a

set of prede�ned mapping rules. The ESSENCE system uses a weighted key word matching

scheme. It treats each chief complaint as a document and it runs a query against documents.

In (Lu et al., 2008), an ontology-enhanced method that basically follows a rule-based de-

sign was introduced. This method focuses on automatically expanding the coverage of the

symptom lookup table by exploiting the semantic relations between symptoms.

The probabilistic approach often uses a Bayesian network model to classify chief com-

plaint records. In this approach, a Bayesian network model is used to identify the most likely

syndromic category for a given a chief complaint record through its built-in inference engine.

Examples of the probabilistic approach include CoCo naïve Bayesian classi�er (Tsui et al.,

2003; Olszewski, 2003) and the Medical Probabilistic Language Understanding System (M+)

introduced in (Chapman et al., 2005). M+ is a robust chart-based syntactic parser with a

Bayesian network-based semantic model for extracting information from text records. M+

has been applied to the �elds of chest radiography and brain CT scans. In (Chapman et al.,

2005) M+ was trained to perform the task of free-text triage chief complaints classi�cation.

The rule-based approach is used in PC. I describe the details of it next. In what follows I

call the chief complaints in PC ��ndings�so as to distinguish them from the actual free-text

chief complaint strings. A table was constructed that lists each �nding with a set of search

phrases. Both the �ndings and the search phrases were developed with the guidance of an

infectious disease expert. The following is a portion of the table:

Finding Search Phrases

di¢ cult swallowing di¢ cult swallowing, swallowing di¢ culty, dysphagia

dyspnea dyspnea, shortness of breath, sob

fever/chills fever, chills, high temperature

insomnia insomnia, cannot sleep, di¢ culty sleep

nausea/vomiting nausea, vomit

For each individual�s chief complaint string, the algorithm visits the �ndings in sequence,

and checks whether a search phrase, which is associated with a �nding, is contained in the

chief complaint string. When a search phrase is found to be contained in a chief complaint

string, we say that a match is found. When a match is found, the algorithm assigns the
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�nding associated with the search phrase as the individual�s chief complaint. For example,

if the chief complaint is �di¢ culty sleeping,� the search phrase �di¢ culty sleep� should

be a matching phrase when the �insomnia��nding was visited, and so �insomnia�would

be assigned as the individual�s chief complaint. If no match is found for any �nding, the

individual�s chief complaint is assigned the value �other_�nding�. Note that if more than

one �nding has a search phrase contained in the chief complaint string, only the �rst �nding

encountered will be assigned.

3.1.3.3 The Inference Algorithm A large Bayesian network containing a node for

each patient in the population exists conceptually, but we do not need to actually create

and perform inference using an explicit Bayesian network. Rather, to do inference with the

network, we can proceed as follows. On each day, we know the value of Ir for each individual

r in the population. The set of all these values is our Data.

First, we have that1

P (DatajE = no) = P (DatajO = none)

=
Y
k

(P (Ir = mkjO = none))Ck ; (3.1)

where Ck is the number of individuals with the kth chief complaint mk. Note that one of the

chief complaints is �noED�, which means the individual did not visit the ED. The reason

we can compute P (DatajO = none) by multiplying the individual probabilities is that the

nodes labeled Ir are conditionally independent given values of O and F , and by construction

F�s value is irrelevant when O = none.

The value of P (Ir = mkjO = none) for each patient who went to the ED could be

computed by performing inference using the Bayesian network in Figure 3.3. However, we

can obtain this value more e¢ ciently as follows:

1Note that E = no and O = none designate the same event of there being no outbreak in the population.
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P (Ir = mkjO = none) =
X
c

P (Ir = mkjDr = c)P (Dr = cjO = none)

= P (Ir = mkjDr = other)P (Dr = otherjO = none) +

P (Ir = mkjDr = noED)P (Dr = noEDjO = none)

= P (Ir = mkjDr = other)� pother +

P (Ir = mkjDr = noED)� (1� pother): (3.2)

Next, we have that

P (DatajO = d) =
X
f

P (DatajO = d; F = f)P (F = f): (3.3)

To obtain the terms in the expression on the right of Equation 3.3, we have that

P (DatajO = d; F = f) =
Y
k

(P (Ir = mkjO = d; F = f))Ck : (3.4)

where Ck is the number of individuals with the kth chief complaint mk.

Again, rather than performing direct inference using a Bayesian network, we proceed as

follows.

P (Ir = mkjO = d; F = f)

=
X
c

P (Ir = mkjDr = c)P (Dr = cjO = d; F = f)

= P (Ir = mkjDr = d)P (Dr = djO = d; F = f) +

P (Ir = mkjDr = other)P (Dr = otherjO = d; F = f) +

P (Ir = mkjDr = noED)P (Dr = noEDjO = d; F = f)

= P (Ir = mkjDr = d)f + P (Ir = mkjDr = other)pother(1� f) + (3.5)

P (Ir = mkjDr = noED)(1� pother)(1� f):

Using Bayes�Theorem,

P (O = djData) = P (DatajO = d)P (O = d)P
c

P (DatajO = c)P (O = c) : (3.6)
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The prior probability of an outbreak disease is computed as follows:

P (O = d) = P (O = djE = yes)P (E = yes) + P (O = djE = no)P (E = no)

= P (O = djE = yes)P (E = yes):

Finally, the probability of an outbreak is given by

P (E = yesjData) =
X

d6=none

P (O = djData): (3.7)

3.1.3.4 A Time Complexity Analysis of the Inference Algorithm Let us �rst

analyze the time complexity of computing the value of P (E = yesjData) in Equation 3.7.

To compute this value, we must do the calculations in Equations 3.1 through 3.6.

First de�ne the following variables:

NC : Number of chief complaints.

NF : Number of values of F .

ND: Number of outbreak diseases.

To do the calculation in Equation 3.1, NC computations of Equation 3.2 are required.

The calculation in Equation 3.2 requires constant time. The calculation in Equation 3.3

requires NF computations of Equation 3.4. Each computation of Equation 3.4 requires

NC computations of Equation 3.5. The calculation in Equation 3.5 requires constant time.

Equation 3.6 must be computed for every outbreak disease d, which means the computation

of Equation 3.3 must be done ND times. Finally, we must sum over all outbreak diseases

to obtain the denominator in Equation 3.6, compute Equation 3.6 for all outbreak diseases,

and sum over all outbreak diseases in Equation 3.7. Therefore, in total the time to compute

P (E = yesjData) in Equation 3.1 is

NC +NC �NF �ND + 3ND 2 �(NC �NF �ND):

In deriving this result, we have assumed that the probabilities in the Bayesian network can

be obtain in �(1) time by a table look-up.
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The algorithm has constant running time relative to the number of individuals in the

population. However, we need to pre-process the data to obtain the values of Ck for every

chief complaint mk. This calls for checking a record for every individual who visited the ED.

Let NED be the number of individuals who visited the ED. So the overall running time of

the algorithm is

�(NED +NC �NF �ND):

3.2 THE BAYESNET-S CLASS OF SPATIAL EVENT SURVEILLANCE

MODELS

This section presents a description of the high-level Bayesian network architecture represent-

ing the BayesNet-S class of spatial event surveillance models and then gives several concrete

examples.

3.2.1 The High-Level Bayesian Network Architecture

Let G be the spatial region we are monitoring. We start with the high-level Bayesian network

architecture in Figure 3.1. Then one additional random variable SUB is added to the set of

attribute variables. The value of SUB is Sj if there is an event of interest in subregion Sj

and is �none� if there is no event of interest in any subregion. Recall from Section 2.3.3.1

that a subregion is the union of any number of cells. In the applications considered here,

G is covered with an n � n grid, each grid element is a cell, and only subregions that are

rectangles are considered.

A high-level Bayesian network architecture representing this class of models appears in

Figure 3.5. Any model in this class is called a Bayesian Network Spatial (BayesNet-S)

model.
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. . . .

. . . .

Intermediate
Variables

Observable
Variables

Data

SUB . . . . Attribute
Variables

Figure 3.5: The high-level BayesNet-S Bayesian network architecture. The discussion in the

caption of Figure 3.1 pertains to this �gure. There is always one attribute variable SUB,

whose value is the subregion in which the event is occurring if there is an event.
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3.2.2 A Simple Example

This section provides a simple example of a BayesNet-S model, and this instance is used to

show that, in a sense, the frequentist spatial scan statistics (see Section 2.3.3.1) are special

cases of BayesNet-S.

3.2.2.1 The Model Consider the BayesNet-S model in Figure 3.6. It is based on a

Bayesian network like the one in Figure 3.2, except each observable variable has only two

possible values. The value X means an individual has property X and the value noX means

the individual does not. If there is an event (E = yes), the probability of a subregion Sj

containing the event is b (i.e. a uniform distribution over the subregions is assumed), while

if there is no event (E = no), the probability that there is no event in any subregion is 1.

For each individual r, there is a location variable Locr, whose value is known at run-time

and which represents the individuals home location such as zip code. For each value of Locr

and each value Sj of SUB, we need to know whether or not Locr 2 Sj.

3.2.2.2 The Inference Algorithm De�ne the following variables, which are the same

variables de�ned in Section 2.3:

B: Total number of individuals in region G.

B
(Sj)
in : Total number of individuals in Sj.

B
(Sj)
out : Total number of individuals in G� Sj.

C: Total number of individuals in G with property X.

C
(Sj)
in : Total number of individuals in Sj with property X.

C
(Sj)
out : Total number of individuals in G� Sj with property X.

Data
(Sj)
in : The data on individuals in Sj.

Data
(Sj)
out : The data on individuals in G� Sj.

Then from the Bayesian Network in Figure 3.6 we see that

P (DatajSUB = none) = qC(1� q)B�C ;
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Ir

P(Ir = X | SUB = Sj, Locr e Sj) = p
P(Ir = noX | SUB = Sj, Locr e Sj) = 1­p

P(Ir = X | SUB = Sj, Locr e G­Sj) = q
P(Ir = noX | SUB = Sj, Locr e G­Sj) = 1­q

P(Ir = X | SUB = none) = q
P(Ir = noX | SUB = none) = 1­q

E

SUB

P(E = yes) = a
P(E = no) = 1­a

P(SUB = Sj | E = yes) = b
P(SUB = none | E = no) = 1

Ir+1
...

Locr Locr+1

Figure 3.6: A simple example of a BNetScan-S model.
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and for subregion Sj that is hypothesized to contain an outbreak we have the following:

P (Data
(Sj)
in jSUB = Sj) = pC

(Sj)

in (1� p)B
(Sj)

in �C
(Sj)

in

P (Data
(Sj)
out jSUB = Sj) = qC

(Sj)

out (1� q)B
(Sj)

out �C
(Sj)

out

P (DatajSUB = Sj) = P (Data
(Sj)
in jSUB = Sj)P (Data(Sj)out jSUB = Sj)

= pC
(Sj)

in (1� p)B
(Sj)

in �C
(Sj)

in qC
(Sj)

out (1� q)B
(Sj)

out �C
(Sj)

out : (3.8)

We then use Bayes�Theorem to compute

P (SUB = SjjData)

=
P (DatajSUB = Sj)P (SUB = Sj)P
i

P (DatajSUB = Si)P (SUB = Si)

=
pC

(Sj)

in (1� p)B
(Sj)

in �C
(Sj)

in qC
(Sj)

out (1� q)B
(Sj)

out �C
(Sj)

out P (Sj)P
Si 6=none

pC
(Si)
in (1� p)B

(Si)
in �C(Si)in qC

(Si)
out (1� q)B(Si)out �C

(Si)
out P (Si) + qC(1� q)B�CP (none)

:

The probability that there is an event in some subregion is equal to

X
Si 6=none

P (SUB = SijData):
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3.2.2.3 The Spatial Scan Statistic Method as a Special Case In a sense, the

frequentist spatial scan statistics are special cases of the model just developed. I will now

show this. Suppose that our estimates of the conditional probabilities in Equation 3.8 are

based on the fraction of people who showed the respective behaviors in the subregions. We

then have

P (DatajSUB = Sj)

=

 
C
(Sj)
in

B
(Sj)
in

!C(Sj)in
 
1� C

(Sj)
in

B
(Sj)
in

!B(Sj)in �C
(Sj)

in
 
C
(Sj)
out

B
(Sj)
out

!C(Sj)out
 
1� C

(Sj)
out

B
(Sj)
out

!B(Sj)out �C
(Sj)

out

which is the numerator in the Bernoulli spatial scan statistic (i.e., Equation 2.1) when

C
(Sj)
in

B
(Sj)
in

>
C
(Sj)
out

B
(Sj)
out

:

Since the denominator in that statistic is the same for all subregions, the Bernoulli spatial

scan statistic has been derived.

Suppose now that we do not know how many individuals are in the region, and our

observations consist only of the individuals who have property X. Then Data(Sj)in consists

only of individuals in the in region who have property X, and Data(Sj)out consists only of

individuals in the out region who have property X. We then have

P (DatajSUB = Sj) = P (Data(Sj)in jSUB = Sj)P (Data(Sj)out jSUB = Sj) = pC
(Sj)

in qC
(Sj)

out

Suppose that our estimates of these conditional probabilities are based on the fraction of

people who showed the respective behaviors in the subregions. We then have

P (DatajSUB = Sj) =
 
C
(Sj)
in

B
(Sj)
in

!C(Sj)in
 
C
(Sj)
out

B
(Sj)
out

!C(Sj)out

which is the numerator in the Poisson spatial scan statistic (i.e., Equation 2.2) when

C
(Sj)
in

B
(Sj)
in

>
C
(Sj)
out

B
(Sj)
out

:
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3.2.3 A Spatial Extension of PC (PCS)

In this section PC is extended to be a spatial model within the BayesNet-S class of models.

3.2.3.1 The Model Figure 3.7 shows the BayesNet-S model obtained by extending PC

(Figure 3.3) to a spatial model.

3.2.3.2 The Inference Algorithm De�ne the following variables:

Data
(Sj)
in : The data on individuals in Sj.

Data
(Sj)
out : The data on individuals in G� Sj.

Then from the Bayesian Network in Figure 3.7, we see that

P (DatajSUB = none) = P (DatajE = no):

To compute this value, we simply use Equation 3.1.

For each subregion Sj and outbreak disease d we have the following:

P (DatajSUB = Sj; O = d)

= P (Data
(Sj)
in jSUB = Sj; O = d)P (Data(Sj)out jSUB = Sj; O = d) (3.9)

The value of

P (Data
(Sj)
in jSUB = Sj; O = d)

can be obtained using Equation 3.3, while restricting our data to Data(Sj)in . The value of

P (Data
(Sj)
out jSUB = Sj; O = d)

can be obtained using Equation 3.1, while restricting our data to Data(Sj)out .

We then have that

P (DatajSUB = Sj) =
X

d6=none

P (DatajSUB = Sj; O = d)P (O = djSUB = Sj)

=
X

d6=none

P (DatajSUB = Sj; O = d)P (O = djE = yes):
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F

E

Dr+1

Ir+1

P(Dr= flu | O = flu, F = 0.0000118, SUB = Sj, Locr e Sj) = 0.0000118
P(Dr= botulism | O = flu, F = 0.0000118, SUB = Sj, Locr e Sj) = 0

......
P(Dr = other |O = flu, F = 0.0000118, SUB = Sj, Locr e Sj) = 0.00203298
P(Dr = noED |O = flu, F = 0.0000118, SUB = Sj, Locr e Sj) = 0.99795522

P(Dr= flu | O = flu, F = 0.0000118, SUB = Sj, Locr e G­Sj) = 0
P(Dr = botulism | O = flu, F = 0.0000118, SUB = Sj, Locr e G­Sj) = 0

     ......
P(Dr = other | O = flu, F = 0.0000118, SUB = Sj, Locr e G­Sj) = 0.002033
P(Dr = noED | O = flu, F = 0.0000118, SUB = Sj, Locr e G­Sj) = 0.997967

  ......
P(Dr = flu | O = none) = 0
P(Dr = botulism | O = none) = 0

   ......
P(Dr = other | O = none) = 0.002033
P(Dr = noED | O = none) = 0.997967

Dr

Ir

...

O

P(SUB = Sj | E = yes) = b
P(SUB = none | E = no) = 1

SUB

P(E = yes) = 0.05
P(E = no) = 0.95

P(O = flu | E = yes) = 0.8
P(O = botulism | E = yes) = 0.01

.....
P(O = none | E = yes) = 0
P(O = none | E = no) = 1

P(F = 0.0000118) = 0.0667
P(F = 0.0000236) = 0.0667

.....

...

...

...

Locr Locr+1

Figure 3.7: The BayesNet-S model obtained by extending PC to a spatial model. The

conditional probability distributions for node Ir are the same as those in the Bayesian network

for PC, which appears in Figure 3.3.
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P (O = djE = yes) is equal to P (O = djSUB = Sj) because P (E = yesjSUB = Sj) = 1,

and E d-separates SUB from O.

We then use Bayes�Theorem to compute

P (SUB = SjjData) =
P (DatajSUB = Sj)P (SUB = Sj)P
i

P (DatajSUB = Si)P (SUB = Si)
:

The probability that there is an event in some subregion is as follows:

X
Si 6=none

P (SUB = SijData):

In this application, we also want to know the probability of each type of event (outbreak).

We have that

P (DatajO = d) =
X

Si 6=none

P (DatajSUB = Si; O = d)P (SUB = SijO = d)

: =
X

Si 6=none

P (DatajSUB = Si; O = d)P (SUB = Si)

=
X

Si 6=none

P (DatajSUB = Si; O = d)� b;

where 1=b is the number of subregions. The terms in the expression on the right above have

already been computed in Equation 3.9. Furthermore,

P (DatajO = none) = P (DatajSUB = none);

which has already been computed.

Using Bayes�Theorem,

P (O = djData) = P (DatajO = d)P (O = d)P
c

P (DatajO = c)P (O = c) ;

where c is taken over all its possible values including �none�.

Finally,

P (E = yesjData) =
X

d6=none

P (O = djData):
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3.2.3.3 A Time Complexity Analysis of the Inference Algorithm De�ne the fol-

lowing variables:

NC : Number of chief complaints.

NF : Number of values of F .

ND: Number of outbreak diseases.

NS: Number of subregions.

NED: Number of individuals who visited the ED.

Recall from Section 3.1.3.4 that PC requires �(NC � NF � ND) time. Since we need to

do the computations in PC for every subregion S, the running time of this algorithm is

�(NED +NS �NC �NF �ND):

The experiments described in Chapter 4 will consider a monitored region using an n�n

grid similar to the one shown in Figure 2.4. Each grid element is called a cell, and every

subset of cells represents a subregion. However, only subregions that are rectangles are

investigated. The number of rectangular subregions is

n2(n+ 1)2

4
:

So the running time in terms of the grid size is

�(NED + n
4 �NC �NF �ND):

3.3 THE BAYESNET-T CLASS OF TEMPORAL EVENT

SURVEILLANCE MODELS

This section presents a description of the high-level Bayesian network architecture represent-

ing the BayesNet-T class of temporal event surveillance models and then gives a concrete

example.
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3.3.1 The High-Level Bayesian Network Architecture

We start with the high-level Bayesian network architecture in Figure 3.1. Then two additional

random variables, Y and F , are added to the set of attribute variables. These variables are

de�ned as follows:

F : severity or extent of the outbreak if there is an ongoing outbreak.

Y : number of days into the outbreak, if there is an ongoing outbreak.

The speci�c nature of the variable F depends on the particular application. As to the

intermediate and observable variables, there are a set of these variables for today (day 0)

and for each day preceding today (day i denotes i days prior to the current day). Their

probability distributions are conditional on the values of F , Y , and the day i. The nature of

this dependence also depends on the application. The data on day i is denoted Data(i). A

high-level Bayesian network architecture representing this class of models appears in Figure

3.8. Any model in this class is called a Bayesian Network Temporal (BayesNet-T)

model.

Note that my temporal model would only be useful in types of event surveillance that

are similar to disease outbreak detection in that the severity of some event increases in each

time unit (with possibly �uctuations) up to some point. An example of an event in this

category would be a storm that may become a category one hurricane or a category two

hurricane, etc. An example of an event that would not be in this category would be the

event that there is a cluster of a particular type of tree in the forest. The trees in a possible

cluster do not change with time, at least not during the time period in which we are doing

the investigation. So there is no purpose in doing temporal modeling. Rather we just look

for a cluster at one snapshot in time.

3.3.2 A Temporal Extension of PC (PCT)

3.3.2.1 The Model Figure 3.9 shows the BayesNet-T model obtained by extending PC

(Figure 3.3) to a BayesNet-T model.
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E

. . . .

. . . .

Data(0)

FY . . . .

. . . .

. . . .

Data(1)

. . . .

Intermediate
Variables

Observable
Variables

Attribute
Variables

Figure 3.8: The high-level BayesNet-T Bayesian network architecture. The discussion in

the caption of Figure 3.1 pertains to this �gure. There is always one attribute variable

F representing the severity of the outbreak and one attribute variable Y representing the

number of days into the outbreak.
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Dr+1(0)

Ir+1(0)

Dr(0)

Ir(0)

...

E

Dr+1(1)

Ir+1(1)

Dr(1)

Ir(1)

......

Y

Data(0)Data(1)

... ... ...

...

...

. . . .

Figure 3.9: The BayesNet-T model obtained by extending PC to a temporal model.
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Each day this model bases its outbreak posterior probabilities on the most recent T days2

(including today) of ED data. I will now describe the nodes in the network.

E: This node represents whether there is an ongoing outbreak. It is the same node as

in PC, and its probability distribution is the same as the one in PC.

O: This node represents which outbreak disease is occurring given that there is an

outbreak. It is the same node as in PC, and its probability distribution is the same as

the one in PC.

F : As in PC, this node represents the probability of an individual both being a­ icted

with the outbreak disease and showing up today at one of the EDs being monitored,

given that an outbreak is ongoing. Its probability distribution is the same as the one in

PC.

Y : This node represents the number of days into the outbreak, as of today, if there

is an ongoing outbreak. The prior probability over its values is a uniform distribution

over f1; 2; : : : Tg, where T is the maximum time span over which we are modeling an

outbreak.

Dr(i): This node represents the ED disease state of the rth individual i days ago,

where i = 0 represents today. It has the same values as node Dr in PC. Its conditional

probability distribution will be discussed shortly.

Ir(i): This node represents the chief complaint of the rth individual i days ago. It has

all the same properties as the node Ir in PC. Its conditional probability distributions are

the same as those in PC.

The probability distributions of Dr(i) is conditional on O, F , and Y . First, note that

the Bayesian network structure in Figure 3.9 entails that, given values of O, F , and Y , the

ED disease states (values of Dr(i)) and therefore the chief complaints (values of Ir(i)) for

an individual on di¤erent days are independent. For example, conditional on these three

variables, if an individual went to the ED yesterday with in�uenza, it does not change the

probability that the individual will go to the ED today with in�uenza. This assumption

allows for a given individual going to the ED two or more times during an outbreak. This

2In general, the unit of time need not be a day.
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Figure 3.10: Number of days into the outbreak is plotted horizontally, and the prevalence of

the outbreak is plotted vertically.

is certainly possible, especially in the case of an outbreak disease with severe symptoms.

Further justi�cation for this independence assumption is provided in Section 3.3.2.3 after

su¢ cient notation is introduced.

To develop the conditional probability distribution for node Dr(i), it is useful to �rst

de�ne the following random variable:

F (i): Probability of an individual both being a­ icted with the outbreak disease and

going to the ED i days ago.

Recall that the value f of F is the probability of an individual both being a­ icted with the

outbreak disease and going to the ED today, given that an outbreak is ongoing. Early in

the outbreak, which is when we hope to detect the outbreak, it is reasonable to assume that

the increase in cases can be approximated by a linear increase. Therefore, I assume that

the value f(i) of F (i) is related to the values f of F and y of Y as shown in Figure 3.10.

This assumption entails that the outbreak extent is at level 0 when we are 0 days into the
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outbreak, reaches level f today, and the increase over that period of time is linear. Thus

f(i)

y � i =
f

y
;

which implies that

f(i) =
y � i
y
f: (3.10)

Given Equation 3.10 and the discussion in Section 3.1.3.1 concerning PC, the conditional

probability distributions for D(i)
r are as follows:

P (Dr(i) = otherjO = none; F = f; Y = y) = pother

P (Dr(i) = noEDjO = none; F = f; Y = y) = 1� pother

P (Dr(i) = djO = d; F = f; Y = y) =
y � i
y
f i < y (3.11)

= 0 i � y

P (Dr(i) = cjO = d; F = f; Y = y) = 0 for c 6= d

P (Dr(i) = otherjO = d; F = f; Y = y) = pother

�
1� y � i

y
f

�
i < y (3.12)

= pother i � y

P (Dr(i) = noEDjO = d; F = f; Y = y) = (1� pother)
�
1� y � i

y
f

�
i < y (3.13)

= 1� pother i � y:

Let us discuss the boundary condition in Equation 3.11. Recall that Y is uniformly

distributed between 1 and T . It is assumed that we must be at least 1 day into the outbreak

for the individual to contract the disease and arrive with it in the ED. The value of Dr(i)

is the rth individual�s ED disease state i days ago. If i � y, it is the individual�s disease

state before we are into the outbreak. For example, if y = 1, we are one day into they

outbreak today, and so if i � 1, then i days ago we had not progressed into the outbreak

yet. Therefore, in that case the probability of the rth individual having the outbreak disease

is 0 as Equation 3.11 entails. A similar discussion pertains to the boundary conditions in

Equations 3.12 and 3.13.
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3.3.2.2 The Inference Algorithm On each day i, we know the value of Ir(i) for each

individual r in the population. Data(i) is the set of these values for day i, and Data is the

set of all these values.

Since the data items are conditionally independent given that O = none, we have that

P (DatajE = no) = P (DatajO = none) =
T�1Y
i=0

P (Data(i)jO = none): (3.14)

Note that the product goes from 0 to T � 1, which means we look at T days of data. The

terms in the product on the right in Equation 3.14 are given by

P (Data(i)jO = none) =
Y
k

(P (Ir(i) = mkjO = none)Ck(i) ;

where Ck(i) is the number of individuals i days ago with chief complaint mk.

The value of P (Ir(i) = mkjO = none) is the same as the value of P (Ir = mkjO = none),

which is given by Equation 3.2. So

P (Ir(i) = mkjO = none)

= P (Ir(i) = mkjDr(i) = other)� pother + P (Ir(i) = mkjDr(i) = noED)� (1� pother):

Next, we have that

P (DatajOD = d) =
X
f;y

T�1Y
i=0

P (Data(i)jO = d; F = f; Y = y)P (F = f)P (Y = y): (3.15)

The �rst term in the product on the right in Equation 3.15 is given by

P (Data(i)jO = d; F = f; Y = y) =
Y
k

(P (Ir(i) = mkjO = d; F = f; Y = y)Ck(i)); (3.16)

where Ck(i) is the number of individuals i days ago with chief complaint mk.

The term in the product on the right in Equation 3.16 above is computed as follows:
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P (Ir(i) = mkjO = d; F = f; Y = y)

=
X
c

P (Ir(i) = mkjDr(i) = c)P (Dr(i) = cjO = d; F = f; Y = y)

= P (Ir(i) = mkjDr(i) = d)P (Dr (i) = djO = d; F = f; Y = y) + (3.17)

P (Ir(i) = mkjDr(i) = other)P (Dr(i) = otherjO = d; F = f; Y = y) +

P (Ir(i) = mkjDr(i) = noED)P (Dr(i) = noEDjO = d; F = f; Y = y):

The conditional probabilities of values of D(i)
r in the previous expression are computed using

Equations 3.11, 3.12, and 3.13.

Using Bayes�Theorem, we have that

P (O = djData) = P (DatajO = d)P (O = d)P
c P (DatajO = c)P (O = c)

:

Finally,

P (E = yesjData) =
X

d6=none

P (O = djData):

3.3.2.3 Justi�cation for the Independence Assumption Recall that the model as-

sumes that, given values of O, F , and Y , the chief complaints of an individual on di¤erent

days are independent. I will now discuss the justi�cation for this assumption, which serves

as an approximation.

First, I assume that the number of days of data T (time window) is fairly small. In my

experiments I used T = 5. For the sake of simplicity, in the discussion that follows, I use

T = 3. Also, for the sake of brevity, in what follows I denote the event

O = d; F = f; Y = y

by e.

Next, note that P (Ir = NoEDje) � 1 for any set of values of O = d; F = f; and Y = y.

This can been seem by looking at Figure 3.3. We see from that �gure that, for example,

P (Dr = noEDjO = flu; F = 0:0000118) = :9979552 (3.18)

P (Dr = noEDjO = none; F = 0:0000118) = :997967 (3.19)
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P (Ir = noEDjDr = noED) = 1: (3.20)

Equations 3.18 and 3.19 are exemplary of what is true in general. Namely, regardless of the

value of O or F (and of Y in the temporal model), an individual will most probably not go

to the ED. We see from Equation 3.20 that if an individual does not go to the ED, then the

value of Ir is noED.

Now I will discuss the justi�cation for the independence assumption separately for three

types of individuals.

1. Individual r does not visit the ED during the time window.

My assumption relevant to these individuals is that if an individual does not go to the

ED on one or more days in a row, it is still most probable that the individual will not go

to the ED the following day. Let Ir(k) be the individual�s chief complaint on the kth day.

Due to the chain rule, we then have that (recall that for simplicity we assumed T = 3)

P (Ir(0) = noED; Ir(1) = noED; Ir(2) = noEDje)

= P (Ir(0) = noEDjIr(1) = noED; Ir(2) = noED; e)�

P (Ir(1) = noEDjIr(2) = noED; e)� P (Ir(2) = noEDje)

� 1

� P (Ir(0) = noEDje)� P (Ir(1) = noEDje)� P (Ir(2) = noEDje): (3.21)

The approximations hold because all terms in the �rst product are assumed to be near

1, all terms in the second product are near 1, and we have assumed the time window is

small. Now

P (Ir(0) = noED; Ir(1) = noED; Ir(2) = noEDje)

is the actual conditional probability of the data concerning individual r, and

P (Ir(0) = noEDje)� P (Ir(1) = noEDje)� P (Ir(2) = noEDje)

is the value used by my model. So my assumption implies that the value used by my

model is a close approximation.
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The assumption made here is wrong only if not going to the ED several days in a row

somehow made it probable an individual would go to the ED the following day, which

does not seem reasonable. So the assumption concerning these individuals is cogent, and

this assumption concerns most of the individuals in the population since most individuals

do not visit the ED in a short time window (unless there was a very severe outbreak in

which case computer-assisted outbreak detection would probably not be needed).

It is believed that no outbreak occurred in Allegheny County during the calendar year

2004. Using ED data from that county during that calendar year, I evaluated the ac-

curacy of the assumption concerning these individuals as follows. I determined whether

these data indicated that Equation 3.21 held for T = 5 and

e = (O = none; F = f; Y = y):

To accomplish this, for each day j in the 365 day period I counted the number Nj of

individuals who did not visit the ED. I then estimated that

P (Ir(k) = noEDje) =

P365
j=1

�
Nj
N

�
365

=

P365
j=1Nj

365�N ; (3.22)

where N is the number of individuals in the population and Ir(k) is individual r�s chief

complaint on the kth day. This value is an estimate of the probability of an individual

not visiting the ED on any given day. My estimate of the product on the right in Equation

3.21 when T = 5 is then  P365
j=1Nj

365�N

!5
:

To estimate the value on the left in Equation 3.21 when T = 5, I looked at the 361

�ve-day windows in the time period. That is, �rst I looked at January 1, 2004 - January

5, 2004, next I looked at January 2, 2004 - January 6, 2004, and so on. For each window

i, I counted the number Ni of individuals who did not visit the ED during the entire

window. My estimate of the value on the left in Equation 3.21 is then

P361
i=1

�
Ni
N

�
361

=

P361
i=1Ni

361�N :
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My results were as follows:  P365
j=1Nj

365�N

!5
= 0:99006P361

i=1Ni
361�N = 0:99032:

These numbers are equal to the third decimal place.

2. Individual r visits the ED once during the the time window.

My assumption relevant to these individuals is that if an individual goes to the ED on day

2, the probability of not going to the ED on day 1 remains very high. Furthermore, if the

individual goes to the ED on day 2, and does not go to the ED on day 1, the probability

of not going to the ED on day 0 remains high. In general, the assumption is that if an

individual goes to the ED on day i and does not go the ED on days j + 1; :::; i� 1, then

the probability of not going to the ED on day j remains high, where j < i and j and i

are both in the window. This assumption seems reasonable. If an individual goes to the

ED one day, one might argue that it would increase the probability of going to the ED a

second day because the individual is sick. Or one might argue that it would decrease the

probability of going to the ED another day because the individual has already been to

ED. Regardless of which of these might be correct, it does not seem like the probability

would change much. My assumption would only be incorrect if an ED visit on one

day made the probability of an ED visit another day substantially di¤erent. So this

assumption is reasonable, but perhaps not at compelling as the assumption for Type 1

individuals which was discussed above.

Without loss of generality, assume that the individual�s sole ED visit is on day 2 and

that the chief complaint is mk. Given the assumption above, due to the chain rule we

then have that

P (Ir(0) = noED; Ir(1) = noED; Ir(2) = mkje)

= P (Ir(0) = noEDjIr(1) = noED; Ir(2) = mk; e)� P (Ir(1)jIr(2) = mk; e)�

P (Ir(2) = mkje)

� P (Ir(2) = mkje)

� P (Ir(0) = noEDje)� P (Ir(1) = noEDje)� P (Ir(2) = mkje): (3.23)
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Now

P (Ir(0) = noED; Ir(1) = noED; Ir(2) = mkje)

is the actual conditional probability of the data concerning individual r, and

P (Ir(0) = noEDje)� P (Ir(1) = noEDje)� P (Ir(2) = mkje)

is the value used by my model. So my assumption implies that the value used by my

model is a close approximation.

Again using ED data from Allegheny County during the calendar year 2004, I evaluated

the accuracy of the assumption concerning these individuals as follows. I determined

whether these data indicated that Equation 3.23 held for T = 5,

e = (O = none; F = f; Y = y);

and one particular common chief complaint, namely �cough.�To accomplish this, I �rst

estimated that

P (Ir(2) = coughje) =

P365
j=1

�
Mj

N

�
365

=

P365
j=1Mj

365�N ; (3.24)

where Mj is the number of individuals who presented in the ED with a cough on the jth

day of the period. For each �ve-day window i, I counted the number Ki of individuals

who did not visit the ED on four of those days and who visited the ED with a cough on

the other day. I then computed P361
i=1

�
Ki

N

�
361

=

P361
i=1Ki

361�N ;

and compared the result to

5

 P365
j=1Nj

365�N

!4 P365
j=1Mj

365�N

!
:

In this last expression, the term on the left is from Equation 3.22, and the factor 5 is

present because the ED visit could occur on any of the �ve days in the window.

My results were as follows: P361
i=1Ki

361�N = 0:0002508
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5

 P365
j=1Nj

365�N

!4 P365
j=1Mj

365�N

!
= 0:000 2540 :

These number are equal to the �fth decimal place.

3. Individual r visits the ED more than once during the time window.

Assuming conditional independence means that the naive Bayes assumption is being

made. Although in many cases this assumption is not literally true, it often has been

shown to perform well in practice on classi�cation tasks (Sun and Shenoy, 2006).

Again using ED data from Allegheny County during the calendar year 2004, I evaluated

the accuracy of the assumption concerning these individuals as follows. In the same way

as done for Type 2 individuals, I investigated the assumption for one particular common

chief complaint, namely �cough�. For each �ve-day window i, I let Li be the number of

individuals who did not visit the ED on three of those days and who visited the ED with

a cough on the other two days. I then computedP361
i=1

�
Li
N

�
361

=

P361
i=1 Li

361�N ;

and compared the result to

10

 P365
j=1Nj

365�N

!3 P365
j=1Mj

365�N

!2
:

In this last expression, the term on the left is from Equation 3.22, the term on the right

is from Equation 3.24, and the factor 10, which is the value of the binomial coe¢ cient�
5

2

�
, is present because the two ED visits could occur on any of the two days in the

�ve-day window.

My results were as follows: P361
i=1 Li

361�N = 2:027� 10�6

10

 P365
j=1Nj

365�N

!3 P365
j=1Mj

365�N

!2
= 2:6� 10�8:

The value obtained using the independence assumption is two orders of magnitude smaller

than the other value. The independence assumption substantially underestimates the

probability of the data. However, it seems plausible that it should underestimate the
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probability of the data in a similar way for all hypotheses because each of them assumes

the same type of independence; thus, the net e¤ect of the underestimation would likely

be attenuated.

Since it seems that the assumption for Type 3 individuals may not hold, I investigated

what fraction of individuals fall into this category. My investigation proceeded as follows.

Again, I analyzed ED data from Allegheny County during the calendar year 2004. For

each �ve-day window i and for 0 � j � 5, I determined N (j)
i , which is the total number

of individuals visiting the ED j times during the window. I then estimated for 0 � j � 5

that

P (V isits = j) =

P361
i=1

N
(j)
i

N

361
=

P361
i=1N

(j)
i

361�N ;

where N is the number of individuals in the population, and P (V isits = j) is an estimate

of the probability of an individual visiting the ED j times during a �ve-day window. The

resultant distribution is as follows:

P (V isits = 0) = 0:990320292

P (V isits = 1) = 0:009359424

P (V isits = 2) = 0:000298369

P (V isits = 3) = 0:000018714

P (V isits = 4) = 0:000002512

P (V isits = 5) = 0:000000686:

The probability of an individual not going to the ED is close to 1. The probability of

an individual going to the ED one time is two orders of magnitude smaller than the

probability of not going to the ED. The probability decreases exponentially thereafter

for higher numbers of visits. The probability of an individual going to the ED two or

more times is equal to

0:000298369 + 0:000018714 + 0:000002512 + 0:000000686 = 0:000320281;

which is about 29 times less than the probability of an individual going exactly once to

the ED. I conclude that a very small percentage of individuals are Type 3.
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The independence assumption being made holds well in those cases that are most likely

to happen (no visits or one visit per period). Those cases in which it is not well satis�ed

are relatively uncommon (more than one visit per period). Even in those cases, we might

expect that the net e¤ect of the independence assumption would be attenuated because

all the hypotheses assume the same type of independence; this is an issue for further

study.

In another domain this independence assumption may not hold. For example, suppose

we are monitoring computers on a network for the emergence of a virus. If a particular

computer exhibited a manifestation of a virus on one day, the probability of such a

manifestation on the next day would become greater (because the probability of a virus

spreading has increased). So my independence assumption may not hold well.

3.3.2.4 A Time Complexity Analysis of the Inference Algorithm De�ne the fol-

lowing variables:

NC : Number of chief complaints.

NF : Number of values of F .

ND: Number of outbreak diseases.

NED: Number of individuals who visited the ED in the past T days (including today).

T : Number of days of data investigated by the model. This variable was previously de�ned.

Note that this is also the number of di¤erent values of random variable Y .

For a given value of d, it is necessary to compute NF � T 2 terms using Equality 3.15.

Each of these computations requires that we compute NC terms using Equality 3.16. Each

term in Equality 3.16 can be computed in constant time using Equality 3.17. Since there

are ND outbreak diseases, we conclude that the time complexity of the algorithm is

�(NED +NC �NF �ND � T 2):

As in Section 3.1.3.4, we have included the time to pre-process the data.
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3.3.2.5 A Comparison to Other Methods As mentioned in Section 2.3.3.2, a tem-

poral version of the spatial scan statistic appears in (Kulldor¤, 2001) and (Kulldor¤ et al.,

2005). It is like the basic version except that instead of a circular window in two dimensions,

the space-time scan statistic searches over cylindrical windows in three dimensions. This

method does not model the phenomenon that counts ordinarily increase during a disease

outbreak. It was further mentioned in Section 2.3.3.2 that (Neill et al., 2005b) developed a

temporal version of the spatial scan statistic that does model increasing counts. This version

looks at counts from previous days, and, in the alternative hypothesis, uses a di¤erent para-

meter p for each day, where the values of these parameters are assumed to be monotonically

increasing. My extension of PC to PCT is similar to this latter frequentist model because

I assumed that the prevalence of the outbreak (value of f) is increasing linearly. However,

in general a (BayesNet-T) model could assume a non-linear increase, a decrease, or even a

constant value. For example, we would assume a constant value in the case of a persistent

cluster, which is a cluster which starts at some point in time but does not change much

after its initial onset. An example, might be a radiation leak in a community. Although it

would emerge in space over time, the radiation level at particular location should not change

much after the initial onset.

3.4 THE BAYESNET-ST CLASS OF SPATIO-TEMPORAL EVENT

SURVEILLANCE MODELS

This section presents a description of the high-level Bayesian network architecture repre-

senting the BayesNet-ST class of spatio-temporal event surveillance models and then gives

a concrete example.

3.4.1 The High-Level Bayesian Network Architecture

The high-level Bayesian network architecture for spatio-temporal event surveillance is a

combination of the high-level Bayesian network architecture for spatial event surveillance in
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Figure 3.11: The high-level BayesNet-ST Bayesian network architecture. The discussion

in the caption of Figure 3.1 pertains to this �gure. There is always one attribute variable

SUB, whose value is the subregion in which the event is occurring if there is an event, one

attribute variable F representing the severity of the outbreak, and one attribute variable Y

representing the number of days into the outbreak.
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Figure 3.5 and the high-level Bayesian network architecture for temporal event surveillance

in Figure 3.8. It appears in Figure 3.11. Any model in the class of models represented by

this Bayesian network is called a Bayesian Network Spatio-Temporal (BayesNet-ST)

model.

3.4.2 A Spatio-Temporal Extension of PC (PCTS)

3.4.2.1 The Model The BayesNet-ST model obtained by extending PC (Figure 3.3) to

a spatio-temporal model appears in Figure 3.12. It is a combination of the spatial Bayesian

network in Figure 3.7 and the temporal Bayesian network in Figure 3.9.

3.4.2.2 The Inference Algorithm The inference algorithm for this model uses the

calculations in the inference algorithm for the temporal model (Section 3.3.2.2) similar to

the way the inference algorithm for the spatial model (Section 3.2.3.2) uses the calculations

in the inference algorithm for the basic PC model (Section 3.1.3.3).

To compute

P (DatajSUB = none) = P (DatajE = no);

we simply use Equation 3.14.

For each subregion S and outbreak disease d we have that

P (DatajSUB = S;O = d) = P (Data(S)in jO = d)P (Data
(S)
outjE = no): (3.25)

The value of

P (Data
(S)
in jO = d)

can be obtained using Equation 3.15, while restricting our data to Data(S)in . The value of

P (Data
(S)
outjE = no)

can be obtained using Equation 3.14, while restricting our data to Data(S)out.

We then have that

73



FO

Dr+1(0)

Ir+1(0)

Dr(0)

Ir(0)

...

E

Dr+1(1)

Ir+1(1)

Dr(1)

Ir(1)

......

Y

Data(0)Data(1)

... ... ...

...

...

. . . .

SUB

Locr Locr+1

Figure 3.12: The BayesNet-ST model obtained by extending PC to a spatio-temporal model.
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P (DatajSUB = S) =
X

d6=none

P (DatajSUB = S;O = d)P (O = djSUB = S)

=
X

d6=none

P (DatajSUB = S;O = d)P (O = djE = yes):

We then use Bayes�Theorem to compute

P (SUB = SjData) = P (DatajSUB = S)P (SUB = S)P
R

P (DatajSUB = R)P (SUB = R) :

The probability that there is an event in some subregion is equal to

X
S 6=none

P (SUB = SjData):

In this application, we also want to know the probability of each type of event (outbreak).

We have that

P (DatajO = d) =
X

S 6=none

P (DatajSUB = S;O = d)P (SUB = SjO = d):

The values on the right have already been computed using Equation 3.25. Furthermore,

P (DatajO = none) = P (DatajSUB = none);

which has already been computed.

Using Bayes�Theorem,

P (O = djData) = P (DatajO = d)P (O = d)P
c

P (DatajO = c)P (O = c) :

Finally,

P (E = yesjData) =
X

d6=none

P (O = djData):
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3.4.2.3 A Time Complexity Analysis of the Inference Algorithm De�ne the fol-

lowing variables:

NC : Number of chief complaints.

NF : Number of values of F .

ND: Number of outbreak diseases.

NS: Number of subregions.

T : Number of days of data investigated by the model.

NED: Number of individuals who visited the ED in the past T days (including today).

Combining the analyses in Section 3.2.3.3 and Section 3.3.2.4, we have that the running

time of the algorithm is

�(NED +NS �NC �NF �ND � T 2):

Furthermore, in terms of the grid size n, the running time is

�(NED + n
4 �NC �NF �ND � T 2):

3.5 ADVANTAGES OF A BAYESNET-ST MODEL

A BayesNet-ST model may show better detection performance (than the spatial scan statis-

tic) because such a model has the following potential advantages:

1. A BayesNet-ST model can readily include multinomial variables. (Jung et al., 2007)

developed a spatial scan statistic that handles a multinomial variable, but it requires

that the values of the variable be ordinal in nature. That is, we must be able to rank

them from lowest to highest. A BayesNet-ST has no such requirement.
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2. The spatial scan statistic only investigates whether a cluster of events related to the

event of interest is occurring in subregion S. A BayesNet-ST model can use a Bayesian

network to model the entire causal mechanism according to which the cluster might

occur. For example, in our application to disease outbreak detection, the spatial scan

statistic only investigates whether a cluster that is indicative of an outbreak is occurring

in a given subregion. A BayesNet-ST model can model the diseases that could be causing

the outbreak, the severity of the outbreak, and the relationship of the observed variables

to the diseases and the severity.

3. A BayesNet-ST model readily allows more than one observable random variable for each

individual. (Kulldor¤ et al., 2007) developed multivariate versions of the spatial scan

statistics. Their method consists of summing the log likelihood ratios over all variables.

This amounts to assuming the variables are independent conditional on whether there

is a cluster in a given subregion. This assumption is restrictive. An advantage of using

a Bayesian network is that a Bayesian network can readily represent the relationships

among all variables in the domain, including any known causal relationships. So it is not

necessary to assume conditional independence.

4. Related to (3) above, A BayesNet-ST model can include nodes for each individual in the

population in the Bayesian network, which means the resultant model is entity-based. As

mentioned in Section 2.3.1.2, by using an entity-based model, we can base our analysis

on more information than that contained in a summary statistic.
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4.0 EXPERIMENTS TESTING THE HYPOTHESES OF THIS THESIS

This chapter �rst states in detail my hypotheses. Then I discuss the methods used to

evaluate the results of the experiments testing the hypotheses. Finally, the experiments and

their results are presented.

4.1 HYPOTHESES

As discussed in Section 2.3.1.2, PC is an entity-based, non-spatial, non-temporal outbreak

detection system that uses a Bayesian network model. In Section 3.2.3, the Bayesian network

in PC was extended to a BayesNet-S model resulting in an entity-based, non-temporal,

spatial outbreak detection system called PCS. In Section 3.3.2, the Bayesian network in PC

was extended to a BayesNet-T model resulting in an entity-based, temporal, non-spatial

outbreak detection system called PCT. In Section 3.4.2 the Bayesian network in PC was

extended to a BayesNet-ST model resulting in an entity-based, spatio-temporal outbreak

detection system called PCTS. The lattice in Figure 4.1 shows a hierarchical structure for

these systems. In that lattice, a parent system X is an enhancement of the systems at X�s

children.

The hypothesis addressed by this research is that the system at each node in the lattice

in Figure 4.1 improves event surveillance relative to the system at each of the node�s children.

The four speci�c hypotheses are as follows:

1. PCS is an improvement on PC in that it will have a smaller mean time to detection at

most false alarm rates. Second, PCS can accurately locate the subregion in which an
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PCTS

PCT PCS

PC

Hypothesis 4Hypothesis 3

Hypothesis 2 Hypothesis 1

Figure 4.1: It is hypothesized that, as we go up this lattice, event surveillance will improve.

outbreak is occurring when the outbreak is restricted to a subregion of the monitored

region.

2. PCT is more stable than PC in that once an outbreak is detected, PCT is better at

maintaining the detection signal on future days. Furthermore, PCT can accomplish this

without adversely a¤ecting the mean time to detection at each false alarm rate.

3. PCTS is an improvement on PCT in that it will have a smaller mean time to detection

at most false alarm rates.

4. PCTS is an improvement on PCS in that once an outbreak is detected, PCTS can better

maintain the detection signal on future days. Furthermore, PCTS can accomplish this

without adversely a¤ecting the mean time detection at each false alarm rate.

I conjecture that the above hypotheses are true for the following reasons: 1) PC and PCT

look for an outbreak only in an entire region, and therefore could easily overlook that the

number of new cases is high in a small subregion. PCS and PCTS look at the entire region

and at subregions. So, when an outbreak starts in a small subregion, they should usually

exhibit better early detection capability. Furthermore, their ability to detect an outbreak

occurring in a subregion should not compromise their ability to detect an outbreak occurring
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in the entire region. The reason is that PCS and PCTS do not look for outbreaks by checking

whether a count in a subregion is greater than the count outside the subregion. Rather, like

PC and PCT, they base detection on whether there is a deviation from what is usual. So

PCS and PCTS should exhibit early detection capability similar to that of PC and PCT,

respectively, even when there are no signi�cant clusters in the region. 2) PC and PCS only

look at each day�s data. During an outbreak, the number of new outbreak cases each day

shows an overall increase as we proceed into the outbreak, but the daily �uctuations in the

number of cases can be dramatic. Therefore, a system that looks only at each day�s data

might signal an outbreak one day because the number of new outbreak cases that day is

high, and not signal one the next day because the number has dropped back down. However

systems like PCT and PCTS, which looks at data from preceding days, would see that the

number of new cases was high yesterday, perhaps 3 days ago, etc., and thus maintain the

signal that there is an outbreak on a day when the number had dropped back down.

4.2 EVALUATION METHODOLOGY

A number of outbreak detection systems were compared in the experiments discussed in

this chapter and in Chapter 5. All the experiments involved simulated outbreaks that use

semi-synthetic data. Presently, the properties of the simulations that are common to all

the experiments are discussed, and the methodologies used to evaluate the results of the

experiments are presented.

4.2.1 The Simulations

Allegheny County, Pennsylvania, which covers 730 square miles, was modeled using a 16�16

grid similar to the one shown in Figure 2.4. Each grid element is one cell. A zip code was

considered entirely within a cell if the zip code�s centroid was in the cell. The actual grid,

along with a rectangular subregion, appears in Figure 4.2. Outbreaks were simulated in

rectangular subregions of that county. In all the experiments, in�uenza and Cryptosporidium
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Figure 4.2: Allegheny County is covered with a 16� 16 rectangular grid. Each grid element

is one cell. A zip code was considered entirely within a cell if the zip code�s centroid was in

the cell.
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outbreaks were simulated because outbreaks of these types have been well studied (Stirling

et al., 2001), (Jiang, 2006), (Cooper et al., 2007). The observed data for both types of

outbreaks consisted of chief complaints presented by patients in the ED.

Each outbreak was simulated by injecting new ED visits into a portion of a one-year

background period when it was assumed no outbreak was occurring. The period chosen was

the entire calendar year 2004. The data for each outbreak consisted of the new injected ED

visits plus the ED data in the background period. So the data was semi-synthetic because

the background data is real and the overlaid outbreak data is synthetic.

Even though some of the systems (e.g., PC and PCS) do not analyze patterns of evidence

over time, the purpose of all the systems is to detect outbreaks that emerge in time. So

emergence in time was simulated. It was assumed that an outbreak started on day 0 of the

outbreak, and that manifestations of outbreak patients were �rst observed on day 1 of the

outbreak, which is said to be 1 day into the outbreak. The number of outbreak patients

with observed manifestations then increased each day after that, except that in some of the

outbreaks daily �uctuation was modeled.

4.2.2 AMOC Curves

AMOC curves (Fawcett and Provost, 1999) were used to evaluate the ability of the systems

to detect the outbreaks. In such curves, the annual number of false alarms is plotted on the

x-axis and the mean days to detection is plotted on the y-axis.

Points for the AMOC curves can be obtained as follows. To produce an AMOC curve

for a given system and a given set of outbreaks, �rst the system is run every day during

the one-year background period, and the value of P (E = yesjData) is computed for each

of these days (note that Data depends on the day). Then these posterior probabilities are

ordered in decreasing order. Let threshold0; threshold1; : : : ; threshold364 be that ordered

list, where duplicate values each occupy their own spot in the list. For example, our list may
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be as follows:

0:95

0:9

0:8

0:8

0:72

...

0:01:

For a given outbreak B, let Data(B)i be the data obtained on the ith day of the outbreak.

For a given false alarm rate r, let ir be the smallest value of i such that

P (E = yesjData(B)i ) > thresholdr: (4.1)

For outbreak B, the days to detection is then equal to ir at an annual false alarm rate of r.

Note that, when there are duplicate values in the list, we only obtain a point on the AMOC

curve for the �rst occurrence of the value.

Example 4.1. Suppose we have the ordered list above. Then threshold2 = 0:8. Suppose

P (E = yesjData(B)1 ) = 0:11

P (E = yesjData(B)2 ) = 0:53

P (E = yesjData(B)3 ) = 0:73

P (E = yesjData(B)4 ) = 0:62

P (E = yesjData(B)5 ) = 0:83

P (E = yesjData(B)6 ) = 0:76

Since 5 is the smallest value of i such that

P (E = yesjData(B)i ) > threshold2 = 0:8;
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the days to detection is equal to 5 at a false alarm rate of 2. We do not obtain a point on

the AMOC curve for a false alarm rate of 3. Since 3 is the smallest value of i such that

P (E = yesjData(B)i ) > threshold4 = 0:72;

the days to detection is equal to 3 at a false alarm rate of 4.

Finally, to obtain the mean days to detection at an annual false alarm rate of r, we compute

the average value of the days to detection at an annual false alarm rate of r, where the

average is taken over all outbreaks.

PC, PCS, PCT, and PCTS not only detect whether an outbreak is present, but also

the type of outbreak. For example, PC not only returns P (E = yesjData(B)i ), but also

P (O = flujData(B)i ). To produce a curve showing how well an in�uenza outbreak, for

example, was detected, the same procedure would be done except that ir would be the

smallest value of i such that

P (O = flujData(B)i ) > thresholdr: (4.2)

4.2.3 Statistical Signi�cance

The performances of some systems were further compared using signi�cance testing (in

frequentist terms), which is equivalent to computing the probability that one system�s average

time to detection is greater than that of another systems (in Bayesian terms). I will now

discuss the methodology I used to determine statistical signi�cance.

Suppose we want to compare two systems, System1 and System2, which detect the same

set of outbreaks. For a given false alarm rate f , we can analyze the signi�cance of the results

using a paired observation t-test. That is, for false alarm rate f , we let

�
(f)
1 be the mean time to detection for System1

�
(f)
2 be the mean time to detection for System2

�(f) = �
(f)
1 � �(f)2 :
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Suppose we are interesting in rejecting the null hypothesis that System1 has a smaller mean

time to detection than System2. Then we want see if we can reject that �
(f)
1 � �(f)2 in favor

of �(f)1 > �
(f)
2 . Our hypotheses are therefore

H
(f)
0 : �(f) � 0

H
(f)
A : �(f) > 0:

The test statistic is then

t(f) =
�d(f)

s(f)=
p
n

(4.3)

where

s(f) =

sPn
i=1(d

(f)
i � �d(f))2

n� 1 ; (4.4)

n is the number of outbreaks, d(f)i is the di¤erence in detection times for the ith outbreak,

�d(f) is the average di¤erence in detection times, and the test statistic has the t distribution

with n � 1 degrees of freedom. Using the test statistic in Equality 4.3, we compute the

p-value p(f) of the result.

Suppose instead we do a Bayesian analysis. In the Bayesian framework, we �rst assume

that the di¤erence X in the detection times is normally distributed with unknown mean

and unknown precision (the precision is one divided by the variance). We represent our

belief concerning the unknown mean and unknown precision with the random variables A

and R respectively. We assume that our prior belief concerning the value of R is represented

by a Gamma probability density function and that our prior belief concerning the value of

A is represented by a conditional Normal density function. Conditional on the Data, we

then compute the posterior probability distributions of R, A, and X. (Neapolitan, 2004,

p. 405) discusses that we can model prior ignorance concerning the mean and precision by

assuming that the prior density function of R is the improper density function 1=r and the

prior density function of A is the improper uniform density function over the whole real line.

Given that we do this, I obtain results in Appendix A which imply that

P (H
(f)
A jData) = P (�(f)1 > �

(f)
2 jData) = 1� p(f): (4.5)

85



where p(f) is the p-value obtained using Equation 4.3. The test was introduced using frequen-

tist terminology because that terminology seems to be more well-known. However, Equality

4.5 (Bayesian terminology) will be used when showing results because that terminology seems

more intuitive.

I deviated from actually performing a paired-observation t-test in two ways. First, due

to the large sample size, I assumed that the sample standard deviation was about equal to

the actual standard deviation. So, instead of using a t-test and Equality 4.4, I was able to

use the Z-test with known variance. That is, the test statistic was

z(f) =
�d(f)

�(f)=
p
n

where

�(f) =

sPn
i=1(d

(f)
i � �d(f))2

n
:

Furthermore, because the systems were run separately, I was only able to obtain the

individual standard deviations, �(f)1 and �(f)2 , for each system. However, since

�
�(f)

�2
=
�
�
(f)
1

�2
+
�
�
(f)
2

�2
� 2Cov(D1; D2)

where Di is a random variable representing the detection time for Systemi; the variance can

be approximated as follows:

�
�(f)

�2 � ��(f)1 �2 + ��(f)2 �2 :
If the random variables were independent, this approximation would be exact. However, it

is more reasonable to assume that the random variables are positively correlated than that

they are independent. That is, if a given outbreak were harder to detect for one system

then in would be harder to detect for the other system. Given this assumption of positive

correlation, the approximation is expected to be an upper bound on the actual variances,

which implies that the p-value obtained is an upper bound on the actual p-value. This means

that the probability that System1 has a larger mean time to detection than System2 is at

least as large as the value obtained (see Equality 4.5).
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Figure 4.3: On the 7th day the signal exceeds 0.4 and stays at or above that level.

4.2.4 AMOC-M Curves

We are not only interested in how early a system can detect an outbreak, but also in how

early the system maintains the detection of an outbreak. AMOC-M curves were used to

evaluate the latter. An AMOC-M curve (AMOC-Maintain curve)1 is just like an

AMOC curve except that the y-axis plots the average of the time at which an outbreak

signal is detected and maintained thereafter. For example, if the threshold is .04, and the

sequence of signals is [.01, .02, .05, .03, .04, .02, .05, .06, .05, .07], then the time at which

the signal is maintained is 7 because on the 7th day the probability is .05, which exceeds

.04, and it stays at or above .04 after that. This example is shown in Figure 4.3.

Note that an AMOC-M curve represents a family of performance measures. That is,

in general there would be a parameter t, whose value is the time period over which the

signal must stay above the threshold. For example, if t = 3, the signal would need to be

1To my knowledge, an AMOC-M curve has not been previously de�ned. It is innovative in this thesis.
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maintained for 3 days, while if t = 5 the signal would need to be maintained for 5 days. In

my experiments, I required that the signal be maintained for the duration of the simulation,

which was 15 days. For example, if the signal was below the threshold on the 6th of the

simulation and stayed above the threshold from the 7th day until the 15th day, then I

would say that the signal was detected and maintained on the 7th day. When we set t to

the outbreak duration, the AMOC-M curve measures how well a method can help public

health o¢ cials in their action/investigation phase after the initial detection is made. For

example, if the signal is maintained long enough, then it may suggest that the outbreak is

stable enough to warrant sending investigators into the community to better understand the

outbreak. If the signal does not persist very long, then it may suggest that the outbreak is

too tenuous to warrant an extensive investigation. However, my requirement that the signal

must be maintained for the duration of the outbreak is somewhat severe. In practice, public

health o¢ cials must typically make the decision whether to respond to the outbreak signal

long before the outbreak has reached its peak, and therefore they might need to make their

decision by the time the signal has been maintained for 5 days or even 3 days. So assuming

t is equal to the outbreak duration is not suitable for measuring the usefulness of a method

for detection. To solve this problem, we should consider using a �xed value of t instead.

However, when using a �xed value of t with an AMOC-M curve, it is important to further

investigate how we determine a practical value of t relative to various potential applications

of AMOC-M curve such as the early and reliable detection of an outbreak, the decision

making of public health o¢ cials, and the evaluation of a detection method by researchers.

4.2.5 Subregion Detection

The systems that perform spatial analysis not only detect an outbreak, but also determine

the spatial subregion in which the outbreak is occurring. There are three ways in which the

accuracy of the subregion region detected was analyzed, namely the overlap coe¢ cient, the

precision, and the spatial recall. Let S be the correct subregion (i.e. the subregion in which

the outbreak was injected), T be the detected subregion, and # returns the number of zip
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codes in a subregion. The values of these measures are then as follows:

overlap coefficient(S; T ) =
# (S \ T )
# (S [ T )

precision(S; T ) =
# (S \ T )
# (T )

spatial recall(S; T ) =
# (S \ T )
# (S)

:

The overlap coe¢ cient is 0 if and only if two the two subregions do not intersect, while it is

1 if and only if they are the same subregion. The value of the precision is 0 if and only if the

two subregions do not intersect, while it is 1 if and only if T � S. The value of spatial recall

is 0 if and only if the two subregions do not intersect, while it is 1 if and only if S � T .

4.3 EXPERIMENTS

Next I show results of experiments testing the four hypotheses of this thesis.

4.3.1 Method

As discussed in Section 4.2.1, Allegheny County, Pennsylvania was modeled using a 16� 16

grid, and each grid element is one cell. Both in�uenza and Cryptosporidium outbreaks were

simulated in rectangular subregions of that county. The properties of the simulations were

as follows.

1. Epidemic Curve Function: I simulated outbreaks that increase according to linear,

quadratic, and cubic functions.

2. Outbreak Severity: For each cell, I determined the mean and standard deviation �cell

of the number of real ED visits during a one-year background period when it was assumed

no outbreak was occurring. The period chosen was the entire calendar year 2004. An

outbreak was simulated by injecting simulated ED visits into the background period of

real data. The data for each simulation consisted of the new injected ED visits plus the

ED data in the background period. So the data was semi-synthetic. The severity level of
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an outbreak was based on a multiple of �cell. If, for example, the severity level was based

on 2�cell, the average daily number of injected ED visits was 2�cell. The duration of all

outbreaks was set equal to 30 days. Therefore, if the severity level was based on 2�cell,

the total number of ED visits injected into the cell during the simulation was given by

totcell = 30� 2�cell:

The multiples of �cell used for each epidemic curve function were as follows:

Function Severity Level 1 Severity Level 2

linear 1:5�cell 2�cell

quadratic 2�cell 2:5�cell

cubic 2:5�cell 3�cell

I used larger multiples in the case of quadratic and cubic functions because otherwise it

would have taken too long for the number of injections to reach a detectable level.

3. Daily Increase: I assumed that half of the injected ED visits occurred during the

�rst half of the outbreak. In the case of outbreaks that methodically exhibited a linear

increase in outbreak cases, we would assume that 4 of them occur on day one of the

outbreak, 24 occur on day two, and so on. The value of 4 can therefore be determined

by solving

4+ 24+ � � �+ 30
2
4 =

totcell
2
;

which is the same as
(30
2
)(30

2
+ 1)

2
4 =

totcell
2
:

To simulate an outbreak that methodically exhibited a linear increase in outbreak cases,

4 new outbreak cases would be injected into the background data on day one of the

simulation period, 24 on day two, and so on. Figure 4.4 shows the total ED visits for

such a simulated outbreak.

The formula for determining � for an outbreak that shows a quadratic increase is

124+ 224+ � � �+
�
30

2

�2
4 =

totcell
2
;
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Figure 4.4: A simulated outbreak.

which is the same as �
30
2

� �
30
2
+ 1
� �
2
�
30
2

�
+ 1
�

6
� =

totcell
2
:

Finally, the formula for determining � for an outbreak that shows a cubic increase is

134+ 234+ � � �+
�
30

2

�3
4 =

totcell
2
;

which is the same as  �
30
2

� �
30
2
+ 1
�

2

!2
� =

totcell
2
:

To simulate an outbreak that methodically exhibited a quadratic increase, 4 new out-

break cases would be injected into the background data on day one of the simulation

period, 224 on day two, and so on. To simulate an outbreak that methodically exhibited

a cubic increase, 4 new outbreak cases would be injected into the background data on

day one of the simulation period, 234 on day two, and so on.
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To force daily �uctuations, I deviated from simply making the number of new cases on

day t equal to t� (linear case), t2� (quadratic case), or t3� (cubic case). Rather, I made

the injection curve multimodal as follows. In half the simulations, on even numbered

days I made the number of new cases 25% of the previous day�s number, and in the other

half I made it 50% of the previous day�s number. I imposed daily �uctuations so I could

evaluate the detection maintenance capability of the systems. If PC �rst detected an

outbreak on day t when the number of injections was, for example, 100, it is likely that it

would not detect it on day t+ 1 if the number of injections was only 50. However, since

PCT would be looking at the data from both day t and day t + 1 it seems likely that

it would maintain the detection signal on day t + 1. Perhaps it would be more realistic

to generate the number of daily injections using Poisson distributions, where each day

the mean of the distribution increases. However, my purpose was to make certain that

I used simulations that challenged the detection maintenance capability of the systems,

and forcing daily �uctuations guaranteed that my simulations exhibited day �uctuations.

If I used Poisson distributions instead, I may have had to do many more simulations to

get a good sample of the kinds of outbreaks I needed to investigate.

4. Chief Complaint: To determine the chief complaint of each injected case, the chief

complaint was generated at random using a probability distribution Q of the chief com-

plaints given the disease (in�uenza or Cryptosporidium) whose outbreak was simulated.

Recall that PC contains a probability distribution P of the chief complaints given each

of the outbreak diseases. In order to test the robustness of the systems, Q was allowed

to vary signi�cantly from P .

To obtain a conditional probability distribution Q, I let the conditional probabilities of

the chief complaints in PC be the means of Dirichlet distributions. For example, if an

in�uenza outbreak was being simulated, if p1, p2, :::, and p54 are the conditional proba-

bilities in PC for each of the chief complaints given in�uenza, and N is our subjective

prior sample size, I set

ai = piN

to obtain parameters for a Dirichlet distributions. Once such a Dirichlet distribution was

developed, I randomly generated a probability distribution Q according to this distrib-
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Figure 4.5: The shapes of the injected subregions.

ution. As N increases, the likelihood of Q being similar to the conditional probability

distribution P in PC increases. In these experiments I used N = 5. Ten di¤erent

probability distributions were generated.

5. Outbreak Subregions: Outbreaks that occur in rectangles that are 2 cells by 1 cell,

2 cells by 2 cells, and 3 cells by 2 cells were developed. The 2 by 1 rectangles and 3

by 2 rectangles could go either north-south or east-west. Figure 4.5 shows the shapes of

the various rectangles. Not all cells had su¢ cient background ED visits to qualify for

containing an outbreak. All those cells that had �cell < 1 were eliminated. Each 2 by

1 rectangle, for example, was generated by randomly choosing two contiguous cells. If

either cell had �cell < 1, a new rectangle would be generated. This was done until a 2 by

1 rectangle was obtained that did not have �cell < 1 in either cell.

For each outbreak disease, for each type of increase (linear, quadratic, cubic), I performed

4 simulations with each of the 10 probability distributions. Therefore, there were a total

of 40 simulations for each type of increase, and a total of 120 simulations total for each

93



outbreak disease. The properties of the 40 outbreaks for each outbreak disease and type of

increase were determined as follows:

Variable Values # Occurrences Total #

of Each Value Occurrences

Prob. Dist. 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 4 40

Month 1� 12 3� 4 40

Day 1� 30 1� 2 40

Severity 1; 2 20 40

Percent 25%; 50% 20 40

Subregion 4 each of types 2 by 1; 2 by 2; and 3 by 2 3� 4 40

TheMonth and Day variables determined the starting date for the simulated outbreak. For

example, if Month = 3 and Day = 5, the simulated outbreak started on March 5 of the

one-year background period.

For each variable, a list of the 40 occurrences was created. To develop each outbreak, a

value of each variable in the table above was sampled at random without replacement from

each list.

Example 4.2. Suppose the sampled values were as follows: Prob: Dist: = 4; Month = 7;

Day = 23; Severity = 2; Percent = 25%; Subregion = 2 by 1. Then the 4th probability

distribution was used, injections started on date 7=23=2004 of the background time period,

the severity level was 2, the percent factor was 25%, and the injections occurred in a 2 by 1

cell subregion.

The AMOC curves in all the results that follow show the abilities of PC, PCS, PCT,

and PCTS to detect the speci�c disease in the outbreaks. That is, Equation 4.2 was used to

produce the AMOC curves.

4.3.2 Results of Testing Hypothesis 1 (PCS Improves PC)

4.3.2.1 AMOC Curves Figure 4.6 shows AMOC curves comparing the detection per-

formance of PCS and PC. In the cases of both Cryptosporidium and in�uenza outbreaks,

they indicate that PCS performs better.
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Figure 4.6: AMOC curves comparing the detection performance of PCS and PC.
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FAR P (�PCc > �PCSc) P (�PCf > �PCSf )

0 1 1

5 1 1

10 1 1

15 1 1

Table 4.1: At various false alarm rates (FAR), the posterior probabilitiy that PCS has a

smaller mean day to detection than PC.

4.3.2.2 Signi�cance Testing of Detection Power Table 4.1 shows the posterior prob-

ability that PCS has a smaller mean day to detection than PC at various false alarm rates

(FAR). In this and similar tables the value 1 denotes that the probability is greater than

0:99999. Furthermore, in this table the following notation was used to refer to the systems:

PCc: PC detecting Cryptosporidium outbreaks.

PCSc: PCS detecting Cryptosporidium outbreaks.

PCf : PC detecting in�uenza outbreaks.

PCSf : PCS detecting in�uenza outbreaks.

These results support the �rst part of hypothesis 1, namely that PCS is an improvement

on PC in that it will have a smaller mean time to detection at most false alarm rates.

4.3.2.3 Subregion Detection Figure 4.7 shows the average values of the overlap coe¢ -

cient, precision, and spatial recall for PCS. The subregion S that maximized P (DatajSUB =

S) was considered to be the subregion detected by PCS. Note that this is the same subregion

with maximum posterior probability if we assume that all subregions have the same prior

probability. As expected, the values �uctuate up and down because we injected fewer cases

on alternate days. However, by the 7th day, all values are fairly good (in particular spatial

recall) on the high days. These results support the second part of hypothesis 1, namely
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Figure 4.7: The average values of the overlap coe¢ cient, precision, and spatial recall for

PCS.
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FAR P (�PCc > �PCTc) P (�PCf > �PCTf )

0 0:9038 0:1291

5 0:6791 0:9132

10 0:0877 0:9087

15 0:0198 0:5630

Table 4.2: At various false alarm rates (FAR), the posterior probabilitiy that PCT has a

smaller mean day to detection than PC when.

that PCS can accurately locate the subregion in which an outbreak is occurring when the

outbreak is restricted to a subregion of the monitored region.

4.3.3 Results of Testing Hypothesis 2 (PCT Improves PC)

4.3.3.1 AMOC Curves Figure 4.8 shows AMOC curves comparing the detection per-

formance of PCT and PC. In the case of Cryptosporidium outbreaks PCT performed better

for small false alarm rates, but worse for large false alarm rates. In the case of in�uenza

outbreaks the performance of the two systems was about the same.

4.3.3.2 Signi�cance Testing of Detection Power Table 4.2 shows the posterior prob-

ability that PCT has a smaller mean day to detection than PC at various false alarm rates

(FAR). In that table the following notation was used:

PCc: PC detecting Cryptosporidium outbreaks.

PCTc: PCT detecting Cryptosporidium outbreaks.

PCf : PC detecting in�uenza outbreaks.

PCTf : PCT detecting in�uenza outbreaks.

In �ve out of 8 cases, the results in Table 4.2 favor PCT. Furthermore, according to

traditional standards for statistical signi�cance, only one result is signi�cant. Namely for

FAR = 15, P (�PCc > �PCTc) = 0:0198. Ordinarily, we would not run a detection system
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Figure 4.8: AMOC curves comparing the detection performance of PCT and PC.
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FAR P (�PCc > �PCTc) P (�PCf > �PCTf )

0 1 0:9990

5 1 1

10 1 1

15 1 1

Table 4.3: At various false alarm rates (FAR), the posterior probabilitiy that PCT has a

smaller mean day to maintaining detection than PC.

with an annual false alarm rate equal to 15. So this result is not very signi�cant either.

We conclude that the results support the second part of hypothesis 2, which is that initial

detection performance is not compromised when we use PCT.

4.3.3.3 AMOC-M Curves Figure 4.9 shows AMOC-M curves comparing the detec-

tion maintenance performance of PCT and PC. For both Cryptosporidium and in�uenza

outbreaks, the performance of PCT is superior to that of PC for all false alarm rates.

4.3.3.4 Signi�cance Testing of Detection Maintenance Power Table 4.3 shows

the posterior probability that PCT has a smaller mean day to maintaining detection than

PC at various false alarm rates (FAR). In that table the following notation was used to refer

to the systems:

PCc: PC detecting Cryptosporidium outbreaks.

PCTc: PCT detecting Cryptosporidium outbreaks.

PCf : PC detecting in�uenza outbreaks.

PCTf : PCT detecting in�uenza outbreaks.

These results support the �rst part of hypothesis 2, which is that PCT is more stable

than PC in that once an outbreak is detected, PCT is better at maintaining the detection

signal on future days.
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Figure 4.9: AMOC-M curves comparing the detection maintenance performance of PCT and

PC.
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FAR P (�PCTc > �PCTSc) P (�PCTf > �PCTSf )

0 0:9999 1

5 1 1

10 1 1

15 1 1

Table 4.4: At various false alarm rates (FAR), the posterior probabilitiy that PCTS has a

smaller mean day to detection than PCT.

4.3.4 Results of Testing Hypothesis 3 (PCTS Improves PCT)

4.3.4.1 AMOC Curves Figure 4.10 shows AMOC curves comparing the detection per-

formance of PCTS and PCT. These curves illustrate the superior detection performance of

PCTS.

4.3.4.2 Signi�cance Testing of Detection Power Table 4.4 shows the posterior prob-

ability that PCTS has a smaller mean day to detection than PCT at various false alarm rates

(FAR). In that table the following notation was used to refer to the systems:

PCTc: PCT detecting Cryptosporidium outbreaks.

PCTSc: PCTS detecting Cryptosporidium outbreaks.

PCTf : PCT detecting in�uenza outbreaks.

PCTSf : PCTS detecting in�uenza outbreaks.

These results support hypothesis 3, which states that PCTS is an improvement over PCT

in that it will have a smaller mean time to detection at most false alarm rates.

4.3.5 Results of Testing Hypothesis 4 (PCTS Improves PCS)

4.3.5.1 AMOC Curves Figure 4.11 shows AMOC curves comparing the detection per-

formance of PCTS and PCS. In the case of the Cryptosporidium outbreaks, PCTS performed
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Figure 4.10: AMOC curves comparing the detection performance of PCTS and PCT.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 4.11: AMOC curves comparing the detection performance of PCTS and PCS.

104



FAR P (�PCTc > �PCTSc) P (�PCTf > �PCTSf )

0 0:9647 0:0402

5 0:3909 0:0406

10 0:5218 0:1192

15 0:4332 0:0662

Table 4.5: At various false alarm rates (FAR), the posterior probabilitiy that PCTS has a

smaller mean day to detection than PCT.

slightly better than PCS early in the outbreak, and performed slightly worse very late in the

outbreak. In the case of the in�uenza outbreaks, PCTS performed slightly worse than PCS.

4.3.5.2 Signi�cance Testing of Detection Power Table 4.5 shows the posterior prob-

ability that PCTS has a smaller mean day to detection than PCT at various false alarm rates

(FAR). In that table the following notation was used to refer to the systems:

PCTc: PCT detecting Cryptosporidium outbreaks.

PCTSc: PCTS detecting Cryptosporidium outbreaks.

PCTf : PCT detecting in�uenza outbreaks.

PCTSf : PCTS detecting in�uenza outbreaks.

In the case of Cryptosporidium, only one result (FAR = 0) would be considered signif-

icant by traditional standards, and that result favors PCTS. In the case of in�uenza, two

results (FAR = 0 and FAR = 5) would be considered signi�cant by traditional standard,

and those result favors PCS. We conclude that PCTS may show slightly degraded perfor-

mance relative to PCS, but such degradation is not strongly supported by the results.

4.3.5.3 AMOC-M Curves Figure 4.12 shows AMOC-M curves comparing the detec-

tion maintenance performance of PCTS and PCS. PCTS�s performance is far superior.
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Figure 4.12: AMOC-M curves comparing the detection maintenance performance of PCTS

and PCS.
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FAR P (�PCSc > �PCTSc) P (�PCSf > �PCTSf )

0 1 1

5 1 1

10 1 1

15 1 1

Table 4.6: At various false alarm rates (FAR), the posterior probabilitiy that PCTS has a

smaller mean day to maintaining detection than PCS.

4.3.5.4 Signi�cance Testing of Detection Maintenance Power Table 4.6 shows

the posterior probability that PCTS has a smaller mean day to maintaining detection than

PCS at various false alarm rates (FAR). In that table the following notation was used:

PCSc: PCS detecting Cryptosporidium outbreaks.

PCTSc: PCTS detecting Cryptosporidium outbreaks.

PCSf : PCS detecting in�uenza outbreaks.

PCTSf : PCTS detecting in�uenza outbreaks.

These results support the �rst part of hypothesis 4, which is that once an outbreak is

detected, PCTS can better maintain the detection signal on future days.

4.3.5.5 Subregion Detection Figures 4.13, 4.14, and 4.15 show the average values of

the overlap coe¢ cient, precision, and spatial recall respectively for PCTS and PCS. In all

cases, PCTS and PCS perform about the same on odd numbered days (when a large number

of cases was injected), but the performance of PCS degrades much more on even numbered

days (when a smaller number of cases was injected) than does the performance of PCTS. So

temporal modeling is also bene�cial as far as maintaining detection of the correct subregion.
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Figure 4.13: The average values of the overlap coe¢ cent for PCTS and PCS.
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Figure 4.14: The average values of the precision for PCTS and PCS.
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Figure 4.15: The average values of spatial recall for PCTS and PCS.
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5.0 ADDITIONAL EXPERIMENTS

In this chapter I show the results of experiments, which do not directly address the hypotheses

of this thesis. Rather they compare the extensions of PC (PCS, PCT, and PCTS) to existing

state-of-the art outbreak detection systems, and in doing so provide information with which

to assess the performance and contributions of these systems.

5.1 EXPERIMENTS COMPARING PCS TO SATSCANTM AND BSS

The detection power of PCS was compared to the spatial scan statistic (SaTScanTM) (Kull-

dor¤, 1997, 1999), and the Bayesian spatial scan statistic (BSS) (Neil et al., 2005a). I used

the SaTScanTM software package, which is available free at http://www.satscan.org/, to im-

plement the spatial scan statistic, the implementation of BSS implemented by Daniel Neill,

and my own implementation of PCS. SaTScanTM searched over circular subregions, while

BSS and PCS searched over rectangular subregions.

An important question is whether good results can be obtained using a Bayesian net-

work model even if the conditional probability distributions that are in the detection model

signi�cantly di¤erent from distributions used to generate outbreak data. This question was

also investigated in these experiments.

5.1.1 Method

As was done in Section 4.3.1, Allegheny County, Pennsylvania was modeled using a 16� 16

grid. Again, both in�uenza and Cryptosporidium outbreaks were simulated in rectangular
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subregions of that county. The properties of the simulations were as follows.

1. Outbreak Severity: The method for determining outbreak severity was exactly like

that discussed in Section 4.3.1. Outbreaks were simulated in which the average daily

number of injected ED visits in each cell was equal to 2� �cell.

2. Daily Increase: The daily increase was exactly like that discussed in Section 4.3.1.

However, only outbreaks that exhibited a linear increase were simulated.

3. Chief Complaint: In the same was as described in Section 4.3.1, to determine the chief

complaint of each injected case, the chief complaint was generated at random using a

probability distribution Q of the chief complaints given the outbreak disease (in�uenza

or Cryptosporidium). However, I used values of N = 1, 5, 30, and 1 instead of just

N = 5, and I analyzed each case separately.

4. Outbreak Subregions: The outbreak subregions were determined as discussed in Sec-

tion 4.3.1. I determined four di¤erent subregions of each of the types discussed in Section

4.3.1.

The Kullback-Leibler divergence (Kullback and Leibler, 1951) was used to measure the

di¤erence between Q and P for each generated distribution Q. For probability distributions

Q and P of the same �nite random variable, the Kullback�Leibler divergence of Q from

P is de�ned to be

DKL(P jjQ) =
nX
i=1

P (i) log2
P (i)

Q(i)
;

where n is the number of alternatives.

Example 5.1. Suppose P (1) = 0:1, P (2) = 0:9, Q(1) = 0:8, and Q(2) = 0:2. Then

DKL(P jjQ) = P (1) log2
P (1)

Q(1)
+ P (2) log2

P (2)

Q(2)

= :1 log2

�
0:1

0:8

�
+ :9 log2

�
0:9

0:2

�
= 1:65:
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Example 5.2. Suppose P (1) = 0:1, P (2) = 0:9, Q(1) = 0:2, and Q(2) = 0:8. Then

DKL(P jjQ) = P (1) log2
P (1)

Q(1)
+ P (2) log2

P (2)

Q(2)

= :1 log2

�
0:1

0:2

�
+ :9 log2

�
0:9

0:8

�
= 0:05:

For each type of outbreak (in�uenza and Cryptosporidium), I developed the number of

outbreaks described by the table that follows. Recall that N is our subjective prior sample

size. N = 1 denotes that the exact probability distributions in PC were used. The table

also shows the average value of the Kullback-Leibler distances of each generated probability

distribution from the probability distribution in PC.

N # Distributions
Generated

# Outbreaks
per Distribution

Average
KL�Dist (
u)

Average
KL�Dist (crypto)

1 1 240 0 0

30 10 60 :24 1:85

5 10 60 1:54 5:86

1 10 60 10:97 22:88

For N =1, the properties of the 240 outbreaks were determined as follows:

Variable Values # Occurrences Total #

of Each Value Occurrences

Duration 30; 40; 50; 60 60 240

Month 1� 12 20 240

Day 1� 30 8 240

Subregion 4 each of types 2 by 1; 2 by 2; and 3 by 2 20 240

For each variable, a list of the 240 occurrences was created. To develop each outbreak, a

variable value in the table above was sampled at random without replacement from each list.

For N = 1, 5, and 30, the properties of the 60 simulated outbreaks for each of the 10

generated probability distributions were determined as follows:
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Variable Values # Occurrences Total #

of Each Value Occurrences

Duration 30; 40; 50; 60 15 60

Month 1� 12 5 60

Day 1� 30 2 60

Subregion 4 each of types 2 by 1; 2 by 2; and 3 by 2 5 60

Since there were 60 simulated outbreaks for each of the 10 generated distributions, there

were a total of 600 simulated outbreaks for each value of N (namely N = 1, N = 5, and

N = 30):

I evaluated �ve methods, namely PCS, two ways of using BSS and two ways of using

SaTScanTM. The two ways of using the latter two systems were as follows. The �rst way

looked for a cluster of individuals presenting in the ED with one of the chief complaints

that the outbreak disease could cause according to the probability distribution in PC. For

example, in the case of in�uenza, if an individual presented in the ED with any one of

the chief complaints, that could be caused by in�uenza, one was added to the count of

observed individuals. There are 12 such chief complaints for Cryptosporidium and 20 such

chief complaints for in�uenza. In the second way, I used the probability distribution in PC

to determine the three chief complaints that are, according to the criterion developed next,

the best indicators of the outbreak disease, and then the systems only looked for clusters

of individuals presenting with one of these chief complaints. The criterion for choosing the

best indicators is as follow. In the case of in�uenza, for example, I �rst assigned a score of 0

to all chief complaints CC such that P (CCjflu) < �, where � is a threshold value. I chose

� = 0:002. In this way, chief complaints that were very unlikely given in�uenza were not

included. Each remaining chief complaint CC was assigned a score as follows:

score(CC) =
P (CCjflu)

P (CCjother ED) :

Recall that the value �other�means the individual visited the ED with something other than

an outbreak disease. I then ranked the chief complaints by their scores, and chose the top

three chief complaints. In this way, these systems were in some way able the take advantage
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of the accessed probability distributions in PC. The following tables summarize the results

for the top three chief complaints for each outbreak disease:

CC P (CCjflu) P (CCjother) P (CCjflu)
P (CCjother)

cough 0:3356 0:0248 13:53

fever/chills 0:4122 :0322 12:80

myalgia 0:0095 0:0013 7:308

CC P (CCjCrypto:) P (CCjother) P (CCjCrypto:)
P (CCjother)

bloody stools 0:03 0:00005 600

sweats 0:1375 0:0003 458:33

diarrhea 0:2643 0:0072 36:71

This table summarizes the inputs to the methods:

Method Input

PCS The chief complaint of every

individual who visited the ED

BSS Method 1 Count of individuals presenting with any chief

complaint caused by injected outbreak disease

BSS Method 2 Count of individuals presenting with

one of the top three chief complaints

SaTScanTM Method 1 Count of individuals presenting with any chief

complaint caused by injected outbreak disease

SaTScanTM Method 2 Count of individuals presenting with

one of the top three chief complaints

Figure 5.1 shows the relationship that would be expected between performance and the

two methods of using BSS and SaTScanTM.
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ED visit
chief complaints

(CC)

Count all ED visits Count visits with
any flu CC

Count visits with
top 3  flu CCs

Performance of SaTScan and BSS should improve

Method 1 Method 2

Figure 5.1: As we go to the right the performance of BSS and SaTScanTM are expected to

improve.

5.1.2 Results

5.1.2.1 AMOC Curves AMOC curves were used to evaluate the ability of the methods

to detect the outbreaks. To create the AMOC curves for SaTScanTM, the likelihood ratio

(Equality 2.2) of the most likely subregion was used instead of a posterior probability.

In the evaluation reported in this section, the focus is on the speci�c detection of Cryp-

tosporidium and in�uenza. For example, Equation 4.2 was used to develop the AMOC curves

in the case of the in�uenza outbreaks. Separate AMOC curves were developed for N =1,

N = 1, N = 5, and N = 30. Recall that for the latter three values of N , 10 probability

distributions were generated, and 60 outbreaks were developed using each of the 10 distri-

butions. To obtain a y-value on the AMOC curve, the mean days to detection over all 600

outbreaks was computed.

Figures 5.2 and 5.3 show the AMOC curves comparing the performance of the �ve meth-

ods. We see from these AMOC curves that PCS, BSS Method 2, and SaTScanTM Method 2

all ordinarily performed much better than BSS Method 1 and SaTScanTM Method 1. The
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(a) N = infinity (b) N = 30

(c) N = 5 (d) N = 1

2520151050

20

15

10

5

0

False Alarms Per Year

M
ea

n
D

ay
s

to
D

et
ec

ti
on

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

2520151050

20

15

10

5

0

False Alarms Per Year

M
ea

n
D

ay
s

to
D

et
ec

ti
on

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

2520151050

20

15

10

5

0

False Alarms Per Year

M
ea

n
D

ay
s

to
D

et
ec

ti
on

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

2520151050

20

15

10

5

0

False Alarms Per Year

M
ea

n
D

ay
s

to
D

et
ec

ti
on

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

Figure 5.2: AMOC curves comparing the performance of systems when detecting Cryp-

tosporidium outbreaks.
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(a) N = infinity (b) N = 30

(c) N = 5 (d) N = 1
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Figure 5.3: AMOC curves comparing the performance of systems when detecting in�uenza

outbreaks.

118



only exception to this is that SaTScanTM Method 1 performed about as well as PCS in the

case of in�uenza outbreaks when N = 1. This result substantiates the usefulness of proba-

bilistic information to outbreak detection. Furthermore, the AMOC curves show that in the

case of Cryptosporidium outbreaks, PCS has better performance than the other methods,

and this is particularly true when the number of false alarms per year is fewer than 3. In the

case of in�uenza outbreaks, the performance of SaTScanTM Method 2 exceeds that of PCS,

but not by as much as PCS�s performance exceeds that of SaTScanTM Method 2 in the case

of Cryptosporidium outbreaks.

Another important result is that the performance of each of the methods does not degrade

very much as the probability distribution used to generate the data increasingly deviates from

the one known to the methods. Of course, the performances of BSSMethod 1 and SaTScanTM

Method 1 would not degrade since these methods do not use probabilistic information.

However, even when N = 1 the mean day at which PCS detects a Cryptosporidium outbreak

is 4.63 when the annual false alarm rate is 0, whereas forN =1 it is 3.56. The corresponding

values for in�uenza outbreak are 10.81 and 8.11 respectively. These results are encouraging,

and are consistent with the �ndings in (Henrion et al., 1996) , which indicated that diagnosis

using Bayesian networks is often insensitive to imprecision in probabilities. In the case of

outbreak detection, it seems that perhaps, as long as we identify some of the most likely

chief complaints given an outbreak disease, we can obtain good detection performance even

if imprecision is high.

Notice that SaTScanTM Method 2 tended to out-perform BSS Method 2. The out-

breaks all occurred in small subregions, and BSS should show better performance relative

to SaTScanTM when the outbreak subregions are larger. SaTScanTM looks at circles whose

maximum radius is such that the window never exceeds more than 50% of the population

at risk. Furthermore, SaTScanTM uses population as its baseline, and considers how the

counts in subregion S and the counts in subregion G � S compare relative to the popula-

tion baselines in those subregions. Therefore, if the subpopulation in outbreak subregion S

exceeded 50% of the population, the detection performance of SaTScanTM would degrade.

This degradation would increase as the size of S increased until �nally there would be no

detection capability when S = G. On the other hand, BSS looks at all rectangles, and uses
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the past 28 days of data to obtain values for the mean and the variance of the disease rate

in each subregion. When conditioning on the presence of an outbreak in subregion S, BSS

multiplies the computed mean for S by a factor m, which is distributed uniformly between

1 and 3. So if G�S is small or even null, an outbreak in subregion S could still be detected

because of the increased conditional probability of the data given that there is an outbreak

in S.

Recall that PCS detects 12 di¤erent types of outbreaks. So it not only reports the prob-

ability of an in�uenza or a Cryptosporidium outbreak, but also the overall probability of

a non-speci�c outbreak. Figure 5.4 contains AMOC curves showing PCS�s performance re-

garding the detection of a non-speci�c outbreak. In that �gure, this performance is compared

to the performance regarding the detection of the speci�c outbreak which was injected. For

example, Equality 4.2 was used to produce the AMOC curve in Figure 5.4 (c), and Equality

4.1 was used to produce the AMOC curve in Figure 5.4 (d). In the case of Cryptosporidium

outbreaks, PCS can detect a non-speci�c outbreak a little worse than it can speci�cally de-

tect a Cryptosporidium outbreak. In the case of in�uenza outbreaks, for most values of N the

performance when detecting a non-speci�c outbreak is about the same as that when detect-

ing an in�uenza outbreak, and when N = 1 it actually detects a non-speci�c outbreak much

better than it detects an in�uenza outbreak. The result for N = 5, 30, and1 may be due to

the fact that in�uenza outbreaks are di¢ cult to detect because in�uenza has symptoms such

as cough and fever/chills, which are not uncommon when no outbreak is occurring. Since

in�uenza outbreaks are di¢ cult to detect, it seems reasonable that it would be no easier to

detect an in�uenza outbreak than a non-speci�c outbreak. The result for N = 1 seems rea-

sonable for the same reason. That is, perhaps, when the conditional probability distributions

of the chief complaints given in�uenza in the detection model are signi�cantly di¤erent from

the conditional probability distributions used to generate the outbreak data, it may be quite

di¢ cult to detect an in�uenza outbreak. However, since there is still a substantial increase

in ED visits during the outbreak, it may not be any more di¢ cult to detect a non-speci�c

outbreak. Note that Cryptosporidium, on the other hand, has very distinct symptoms.
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(a) Mean days to detecting a Cryptosporidium outbreak
when a Cryptosporidium outbreak is injected

(b) Mean days to detecting any outbreak
when a Cryptosporidium outbreak is injected

(c) Mean days to detecting a flu outbreak
when a flu outbreak is injected

(d) Mean days to detecting any outbreak
 when a flu outbreak is injected
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Figure 5.4: AMOC curves comparing PCS�s ability to detect any outbreak (non-disease

speci�c) to its ability to detect the speci�cally simulated outbreak disease.
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FAR P (�Sc > �Pc) P (�Bc > �Pc) P (�Sf > �Pf ) P (�Bf > �Pf )

0 1 1 0 1

5 1 1 0:025 0:896

10 1 0:9998 0:0075 0:971

15 0:9230 0:9999 0:0075 0:936

20 0:9985 0:9998 0:0004 0:806

Table 5.1: At various false alarm rates (FAR), the posterior probabilitiy that PCS has a

smaller mean day to detection than another method when speci�cally detecting the simulated

outbreak disease, when N=1.

5.1.2.2 Signi�cance Testing of Detection Power Recall that PCS not only reports

the posterior probability of an in�uenza or a Cryptosporidium outbreak, but also the over-

all probability of an outbreak. In the statistical signi�cance tests, I compared both the

performance of PCS concerning the detection of the outbreak disease and its performance

concerning the detection of a non-speci�c outbreak to the performances of BSS Method 2

and SaTScanTM Method 2. I did the comparison for N = 1 because, based on the AMOC

curves in Figures 5.2 and 5.3, that seems to be the situation in which PCS performed poorest

relative to the other two. Tables 5.1 and 5.2 show the results. In those tables the following

notation was used to refer to each system:

Sc: SaTScanTM Method 2 detecting Cryptosporidium outbreaks.

Bc: BSS Method 2 detecting Cryptosporidium outbreaks.

Pc: PCS detecting Cryptosporidium outbreaks.

Sf : SaTScanTM Method 2 detecting in�uenza outbreaks.

Bf : BSS Method 2 detecting in�uenza outbreaks.

Pf : PCS detecting in�uenza outbreaks.

Pnc: PCS detecting non-speci�c outbreak during Cryptosporidium outbreaks.

Pnf : PCS detecting non-speci�c during in�uenza outbreaks.
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FAR P (�Sc > �Pnc) P (�Bc > �Pnc) P (�Sf > �Pnf ) P (�Bf > �Pnf )

0 1 1 1 1

5 0:9999 1 1 1

10 0:9437 0:8338 1 1

15 0:618 0:9243 1 1

20 0:639 0:9678 1 1

Table 5.2: At various false alarm rates (FAR), the posterior probabilitiy that PCS has a

smaller mean day to detection than another method when detecting a non-speci�c outbreak,

when N=1.

We see from Table 5.1 that, when PCS is detecting the injected outbreak, in most cases

it is most probable that PCS has a smaller mean time to detection. The exceptions to this

are highlighted in that table. In these highlighted cases, we are comparing PCS�s ability to

detect an in�uenza outbreak to the performance of SaTScanTM Method 2. It has already

been noted that when N = 1, PCS is much better at detecting a non-speci�c outbreak than

it is at detecting an in�uenza outbreak. We see from Table 5.2 that, when PCS is detecting

a non-speci�c outbreak, in all cases it is most probable that PCS has a smaller mean time

to detection than the other systems.

5.1.2.3 Subregion Detection The subregion Sj that maximized P (DatajSUB = Sj)

was considered to be the subregion detected by PCS and the Bayesian spatial scan statistic.

The subregion that maximized the Poisson spatial scan statistic was considered to be the

subregion detected by SaTScanTM. Figures 5.5 and 5.6 show the average values of the

overlap coe¢ cients on each day of the outbreaks. Notice that the variable Day (on the

x-axis) never exceeds 15 even though the simulation lengths were between 30 and 60 days.

The reason is that the simulations were only run for 15 days even though their theoretical

lengths were greater than 15. In all cases the performance of PCS was signi�cantly better

than that of the other methods. In the case of Cryptosporidium outbreaks, PCS performed
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(a) N = infinity (b) N = 30

(c) N = 5 (d) N = 1

1614121086420

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Day
A

vg
.V

al
u

e
of

O
ve

rl
ap

C
oe

ff
ic

ie
n

t

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

1614121086420

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Day

A
vg

.V
al

u
e

of
O

ve
rl

ap
C

oe
ff

ic
ie

n
t

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

1614121086420

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Day

A
vg

.V
al

u
e

of
O

ve
rl

ap
C

oe
ff

ic
ie

n
t

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

1614121086420

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Day

A
vg

.
V

al
u

e
of

O
ve

rl
ap

C
oe

ff
ic

ie
n

t

PCS
BSS­1
BSS­2
SaTScan­1
SaTScan­2

Figure 5.5: The average values of the overlap coe¢ cient for Cryptosporidium outbreaks.
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(a) N = infinity (b) N = 30

(c) N = 5 (d) N = 1
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Figure 5.6: The average values of the overlap coe¢ cient for in�uenza outbreaks.
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substantially better than SaTScanTM Method 2 at both outbreak detection and subregion

detection. However, in the case of in�uenza outbreaks, PCS performed about the same

as SaTScanTM Method 2 at outbreak detection (once the false alarm rate is greater than

four), but it substantially outperformed SaTScanTM Method 2 at subregion detection. As

discussed in Section 5.1.2, PCS was better at detecting a non-speci�c outbreak than it

was at speci�cally detecting an in�uenza outbreak, and its performance when detecting a

non-speci�c outbreak was signi�cantly better than the performance of SaTScanTM. This is

consistent with its superior subregion detection performance (which is not tied to which type

of outbreak disease is detected).

Furthermore, PCS�s performance did not degrade as the probability distributions used

to generate the data increasingly deviated from the simulation model�s distributions (i.e.,

as N went from 1 to 1). These results are expected since the number of cases injected

into the outbreak subregion does not depend on N . That is, if we changed the type of

chief complaints injected but not their number, we may detect a di¤erent outbreak, but we

would not change the subregion most likely to contain the outbreak. In the same way, the

performance of Methods 1 of SaTScanTM and BSS should not deteriorate as we decrease N ,

but the performance of Methods 2 should deteriorate because they only consider a subset of

chief complaints. Figures 5.5 and 5.6 are consistent with these expectations.

5.1.3 Summary

I compared the performance of PCS, SaTScanTM, and BSS. PCS outperformed the other two

methods both in terms of outbreak detection and subregion detection. This was the case

even when SaTScanTM and BSS were able to take advantage of the probabilistic information

in PCS. These results lend support to the conjecture that, in the case of spatial event

surveillance, we may be able to obtain better results by modeling the relationships among

the events of interest and the observable events using a Bayesian network, rather than using

summary statistics.

Perhaps more importantly, the performance of PCS was very robust relative to the prob-

ability distribution generating the data. It is an open question whether we can obtain
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acceptable results using a Bayesian network if the probability distributions in the network,

which are often obtained from limited data and/or subjective judgement, do not closely re-

�ect reality. The results shown here indicate that in the domain of disease outbreak detection

this seems to the case.

Finally, I found that PCS can detect the presence of a non-speci�c outbreak almost as

well (indeed, sometimes better) as it detects a speci�c outbreak.

Recall that SaTScanTM searched over circles, while BSS and PCS searched over rec-

tangles, and our injected subregions were rectangles. So it seems BSS and PCS had an

advantage. However, this advantage is not as great as one might think for the following rea-

son. Even though rectangular subregions were chosen, the injections actually occurred in zip

codes whose centroids were in the cells in the subregions. So the actual injected subregions

were not rectangles.

Since some of the subregions were 1 cell by 2 cells and others were 2 cells by 3 cells, it

may have been better if SaTScanTM searched over ellipses. In some cases, the SaTScanTM

software package does allow us to search over elliptical subregions. However, the information

that we were able to provide consisted of zip codes, which is information about longitude

and latitude. The SaTScanTM software package does not allow searching over elliptical

subregions in this case. Regardless, since our rectangles were not very elongated and since

the injected subregions were actually the zip codes whose centroids were in the rectangles,

it seems that searching over circular subregions instead of elliptical subregions should not

signi�cantly change the results.

5.2 EXPERIMENTS COMPARING PCTS TO MULTIVARIATE,

TEMPORAL SATSCANTM

In these experiments I compared PCTS to the multivariate, temporal version of the spa-

tial scan statistic (Kulldor¤, 2004), which I designate as SaTScanTM-MT. My purpose was

to determine how PCTS fares relatively to a state-of-the-art multivariate, spatio-temporal

cluster detection system.
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5.2.1 Method

The method was identical to that described in Section 4.3.1. Indeed, the same set of simu-

lations were used.

5.2.2 Results

5.2.2.1 AMOC Curves Figure 5.7 shows AMOC curves comparing the detection per-

formance of PCTS and SaTScanTM-MT. In the case of Cryptosporidium outbreaks, PCTS

performed noticeably better than SaTScanTM-MT. In the case of in�uenza outbreaks, PCTS

perform better for very small false alarm rates and for large false alarm rates, but worse for

rates in the middle. Overall, PCTS�s performance appears to be better.

5.2.2.2 AMOC-M Curves Figure 5.8 shows AMOC-M curves comparing the detection

performance of PCTS and SaTScanTM-MT. In the case of Cryptosporidium outbreaks, PCTS

performed noticeably better than SaTScanTM-MT, while in the case of in�uenza outbreaks

SaTScanTM-MT performed much better than PCTS. For completeness I note that, in the

case of in�uenza outbreaks, PCTS did perform better than SaTScanTM-MT when the false

alarm rate is one. Overall, these results do not seem to indicate better performance for either

system.

5.2.2.3 Subregion Detection The subregion S that maximized P (DatajSUB = S)

was considered to be the subregion detected by PCTS, and the subregion that maximized

the Poisson spatial scan statistic was considered to be the subregion detected by SaTScanTM-

MT.

Figures 5.9 shows the average values of the overlap coe¢ cient for PCTS and SaTScanTM-

MT. PCTS outperformed SaTScanTM -MT for both types of outbreaks.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.7: AMOC curves comparing the detection performance of PCTS and SaTScanTM-

MT.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.8: AMOC-M curves comparing the detection maintenance performance of PCTS

and SaTScanTM-MT.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.9: The average values of the overlap coe¢ cient for PCTS and SaTScanTM-MT.
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5.3 EXPERIMENTS COMPARING PCT TO CUSUM

In these experiments I compared PCT to CUSUM (Bos and Fetherston, 1992) to determine

how PCT performs relative to a classic temporal outbreak detection system.

5.3.1 Method

The method was identical to that described in Section 4.3.1. Indeed, the same set of simu-

lations were used.

5.3.2 Results

Figure 5.10 shows AMOC curves comparing the detection performance of PCT and CUSUM.

Notice that CUSUM in Figures 5.10 (b) stops at a false alarm rate of 10. CUSUM returns a

number r where r � 0. Higher numbers are more indicative of an outbreak. There were only

10 days in the background on which this number exceeded 0. So if we signaled an outbreak

whenever r > 0, we would have a false alarm rate equal to 10. The next possible value at

which we could signal an outbreak is whenever r � 0. However, then we would have a false

alarm rate of 365 with a mean day of detection equal to 0.

PCT performed substantially better than CUSUM in the case of the Cryptosporidium

outbreaks, and noticeably better in the case of the in�uenza outbreaks.

5.4 EXPERIMENTS CONCERNING BINARY VERSIONS OF PCS, PCT,

AND PCTS

Binary PCS (B-PCS) is a version of PCS in which the observable variable is binary. The

observable variables in PCS are multinomial because their values can be any one of 54 chief

complaints with which an individual presents to the ED. In B-PCS our data for each individ-

ual consists only of whether the individual arrived at the ED with one of the three primary

chief complaints of an outbreak disease being evaluated. The primary chief complaints are
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.10: AMOC curves comparing the detection performance of PCT and CUSUM.
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the ones speci�ed in Section 5.1.1. So B-PCS has the same input as BSS Method 2 and

SaTScanTM Method 2 had in that section. B-PCT and B-PCTS are likewise binary versions

of PCT and PCTS, respectively.

I compared the performance of each system to its binary version to determine whether

there is any advantage in multinomial modeling in this domain.

5.4.1 Method

The method was identical to that described in Section 4.3.1. Indeed, the same set of simu-

lations were used.

5.4.2 Results

Figure 5.11, 5.12, and 5.13 show AMOC curves comparing the detection performance of the

systems to their binary counterparts. In the case of Cryptosporidium outbreaks, PCS, PCT,

and PCTS all performed much better than B-PCS, B-PCT, and B-PCTS respectively. In the

case of in�uenza outbreaks, PCS and PCT performed about the same as their binary coun-

terparts, whereas PCTS performed worse than B-PCTS. The results for the Cryptosporidium

outbreaks indicate that multinomial modeling can be useful. As to the results for in�uenza,

recall that the AMOC curves in Figure 5.3 indicate that SaTScanTM Method 2 seems to be a

little better at detecting in�uenza outbreaks than PCS. Like B-PCT, SaTScanTM Method 2

looks only at the three primary chief complaints. Perhaps in the case of in�uenza we obtain

better detection performance by only considering the three primary chief complaints.

5.5 EXPERIMENTS CONCERNING OUTBREAKS EMERGING IN

SPACE

In this set of experiments, I further compared PCTS and SaTScanTM-MT by evaluating how

well they detected outbreaks that were emerging in both time and space.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.11: AMOC curves comparing the detection performance of PCS and B-PCS.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.12: AMOC curves comparing the detection performance of PCT and B-PCT.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.13: AMOC curves comparing the detection performance of PCTS and B-PCTS.
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5.5.1 Method

The method was exactly like that described in 4.3.1 except that the simulated outbreaks

were also made to emerge in space. I modeled time emergence by injecting cases into 1 cell

on days 1 and 2 of the outbreak, into 2 cells on days 3 and 4, into 3 cells on days 5 and 6,

and so until all cells in the injected subregion were receiving injections. I injected cases into

1 cell by randomly selecting one of the cells in the injected subregion, I injected cases into

2 cells by randomly selecting the second cell from all the cells that touched the �rst cell,

and I followed the same procedure when I injected cases into 3 or more cells in the injected

subregion.

5.5.2 Results

5.5.2.1 AMOC Curves Figure 5.14 shows AMOC curves comparing the performance of

PCTS and SaTScanTM-MT when detecting the emerging outbreaks. The curves labeled with

the letter �E�are the ones concerning the emerging outbreaks. The other curves show the

previous results concerning outbreaks that are not emerging. We would expect the results

to be worse for emerging outbreaks because initially not as many cells have cases injected.

The results are consistent with this expectation.

In the case of the Cryptosporidium outbreaks, PCTS performed substantially better for

both emerging and non-emerging outbreaks. In the case of in�uenza outbreaks, PCTS and

SaTScanTM-MT performed similarly.

5.5.2.2 Subregion Detection Figure 5.15 shows the average values of the overlap co-

e¢ cient for PCTS and SaTScanTM-MT on each day of the emerging outbreaks. They also

show the results for the non-emerging outbreaks. PCTS outperformed SaTScanTM-MT in

all cases. That is, regardless of whether the outbreak is in�uenza or Cryptosporidium, and

regardless of whether it is emerging or non-emerging, PCTS performed better.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.14: AMOC curves comparing several systems.
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.15: The average values of the overlap coe¢ cent for several systems.
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5.6 EXPERIMENTS CONCERNING ONE-STEP OUTBREAKS

In this set of experiments, I investigated how well the temporal model (PCT) performed

relative to its non-temporal counterpart (PC) in a situation which seems di¢ cult for the

temporal model. That is, I simulated outbreaks in which the number of new outbreak cases

does not gradually increase each day, but instead the number of new cases jumps to a value

one day into the outbreak, and then each day after that the number of new cases stays �xed

at that value.

5.6.1 Method

The method was exactly like that described in 4.3.1 except that I simulated outbreaks whose

injection curve was a single step function. That is, I injected the same number of cases on

every day of the outbreak. Outbreaks with the following levels of severity were simulated:

Severity Level Avg. Daily # Injected ED Visits

1 1:5�cell

2 2�cell

3 2:5�cell

4 3�cell

If, for example, a severity level 2 outbreak was being simulated and �cell = 4, then the daily

number of injections in the cell would be 2� 4 = 8.

For each outbreak disease, I performed 120 simulations. The properties of the 120 sim-

ulated outbreaks were determined as follows:

Variable Values # Occurrences Total #

of Each Value Occurrences

Prob. Dist. 1; 2; 3; 4; 5; 6; 7; 8; 9; 10 12 120

Month 1� 12 10 120

Day 1� 30 4 120

Severity 1; 2; 3; 4 30 120

Subregion 4 each of types 2 by 1; 2 by 2; and 3 by 2 10 120
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(a) Cryptosporidium outbreaks

(b) Flu outbreaks
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Figure 5.16: AMOC curves comparing PCT and PC when detecting outbreaks that increase

in one step.
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For each variable, a list of the 120 occurrences was created. To develop each outbreak, a

variable value in the table above was sampled at random without replacement from each list.

5.6.2 Results

AMOC curves comparing PC and PCT appear in Figure 5.16. As expected, PCT performed

substantially worse than PC when detecting both types of outbreaks. However, the per-

formance is not as bad as we might have thought. First, at a false alarm rate of 0, PCT

actually performed better than PC when detecting Cryptosporidium outbreaks. Second,

the di¤erence in the detection means is less than two days for in�uenza outbreaks, and it

is less than 0.5 days for Cryptosporidium outbreaks. Recall that the value T = 5 was used

for the parameter T in PCT, which means PCT analyzed up to 4 days of data besides the

current day. Therefore, on the �rst day of the outbreak, PCT was considering up to four

days of data with no injected ED visits and one day of data with injected ED visits. On

the other hand, on the �rst day of the outbreak PC was considering precisely one day of

data with injected ED visits. So PC was looking only at outbreak data from day one of the

outbreak, while PCT was not looking only at outbreak data until day �ve of the outbreak.

5.7 FURTHER COMPARISONS OF PCT TO PC

Recall from Section 4.3.3 that PCT performed about the same as PC, regarding outbreak

detection, when we looked at results aggregated over all the outbreaks. However, perhaps

PCT and PC perform di¤erently for certain subsets of outbreaks. First, I show AMOC

curves comparing their results for two cases in which it seems their performance may di¤er.

Then I perform logistic regression on four variables to learn which variables may a¤ect the

relative performances of PCT and PC.
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5.7.1 AMOC Curves Comparing Impact

5.7.1.1 Impact of Epidemic Curve Function The results in Section 5.6.2 indicate

that PC outperforms PCT in outbreak detection in the case of an outbreak with an extreme

sudden onset (step function). Based on these results, it seems that the performance of PCT

relative to PC would improve as the onset becomes less sudden. If so PCT should exhibit

better performance for linear-increasing outbreaks than for quadratic-increasing outbreaks.

Similarly, its performance for quadratic-increasing outbreaks should be better than its perfor-

mance for cubic-increasing outbreaks. I investigated the relative performances of PCT and

PC separately for linear, quadratic, and cubic-increasing outbreaks using the simulations

described in Section 4.3.1. The results appear in Figures 5.17 and 5.18.

These results mildly substantiate my conjecture. In the case of Cryptosporidium out-

breaks, PCT performs noticeably better than PC when the false alarm rate is less than 10 in

the case of linear-increasing outbreaks, and this is not true for the other types of increases.

In the case of in�uenza outbreaks, PCT performs better than PC when the false alarm rate

is 0 in the case of linear-increasing outbreaks, and this also is not true for the other types of

increases.

Note that another explanation for PCT�s performance being better for linear-increasing

outbreaks is that the PCT model assumes that the outbreak exhibits a linear increase.

5.7.1.2 Impact of Fluctuation on Performance Recall that in half the simulations,

on even numbered days I made the number of new cases 25% of the previous day�s number,

and in the other half I made it 50% of the previous day�s number. It seems that PCT may

exhibit better comparative performance to PC when I use the value 50% relative to when

I use the value 25% because there will be higher counts on the even numbered days. In

general, it seems that PCT�s comparative performance to PC should improve as the daily

�uctuation decreases. Figure 5.19 shows the results separately for �uctuation values of 25%

and 50%. In the case of both Cryptosporidium outbreaks and in�uenza outbreaks, PCT

exhibits better comparative performance to PC when the �uctuation is less (�uctuation

value of 50%) than when the �uctuation is greater (�uctuation value of 25%). These results

144



(a) Cryptosporidium (linear)
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(b) Cryptosporidium (quadratic)
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(c) Cryptosporidium (cubic)
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(d) Cryptosporidium (step)

Figure 5.17: The relative performances of PCT and PC for linear-increasing, quadratic-

increasing, cubic-increasing, and step-function Cryptosporidium outbreaks.
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(a) Flu (linear) (b) Flu (quadratic)

(c) Flu (cubic) (d) Flu (step)
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Figure 5.18: The relative performances of PCT and PC for linear-increasing, quadratic-

increasing, cubic-increasing, and step-function in�uenza outbreaks.
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(a) Cryptosporidium (25 %) (b) Cryptosporidium (50 %)

(c) Flu (25 %)
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(c) Flu (50 %)

Figure 5.19: The relative performances of PCT and PC for di¤erent �uctuation values.
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substantiate my conjecture that PCT�s comparative performance to PC should improve as

the daily �uctuation decreases.

5.7.2 Logistic Regression

I performed logistic regression, using the 240 simulated outbreaks as data points, to discover

the impact of disease type, �uctuation percentage, subregion size, and epidemic curve func-

tion on the relative performances of PCT and PT. The response variable P was given value

zero if PC detected the outbreak at least as early as PCT when the false alarm rate was

zero, and it was given value one if PCT detected the outbreak earlier than PC when the

false alarm rate was zero. The following table shows the variables and their values:

Variable Value When the Variable Takes This Value

D 1 Disease is in�uenza

2 Disease is Cryptosporidium

F 1 Fluctuation is 50%

2 Fluctuation is 25%

S 1 Subregion shape is 1 by 2 or 2 by 1 (smallest size)

2 Subregion shape is 2 by 2

3 Subregion shape is 3 by 2 or 2 by 3 (largest size)

I 1 Linear increasing function

2 Quadratic increasing function

3 Cubic increasing function

P 0 PC detects outbreak at least as early as PCT at FAR = 0

1 PCT detects outbreak earlier than PC at FAR = 0

The following table shows the results of logistic regression:
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Variable Coe¢ cient p-value

Constant -4.87292 0.001

D 2.79111 0.000

F -0.870383 0.042

S -0.457231 0.071

I 0.213026 0.395

The results for disease (D) and �uctuation (F ) are consistent with the results in Section

5.7.1. Based on the AMOC curves in that section, PCT appears to perform relatively

better (at a false positive rate of 0) in the case of Cryptosporidium outbreaks. In our

regression analysis the coe¢ cient for D is positive, indicating performance should be better

for Cryptosporidium outbreaks, and the p-value for that coe¢ cient was reported as 0.000,

which means that it is less than 0.0005. This is very signi�cant. Furthermore, based on the

AMOC curves in Figure 5.19, PCT appears to perform relatively better when the �uctuation

is 50%. In the regression analysis the coe¢ cient for F is negative, indicating performance

should be better for a �uctuation percentage of 50%, and the p-value for that coe¢ cient is

0.042, which is moderately statistically signi�cant. The result for epidemic curve function

are not the same as those discussed in Section 5.7.1.1. We noted in that section that the

AMOC curves gave mild support for the conjecture that PCT should perform the best

when the epidemic curve function is linear and the worst when it is cubic. However, in

our regression analysis the coe¢ cient for I (epidemic curve function) is positive, indicating

the performance of PCT is best for cubic functions. However, the result is not signi�cant,

having a p-value of 0.395. We noted in Section 5.7.1.1 that the AMOC curves results were

not compelling either. Based on both results, we cannot conclude any relationship between

epidemic curve function and the performance of PCT. Finally, in the regression analysis the

coe¢ cient for S (subregion size) was negative, indicating that PCT should perform better for

smaller subregions. The p-value for this result was 0.071, which is close to being considered

signi�cant. This result seems reasonable because we have fewer outbreak cases in smaller

subregions, which means any one day of data might not contain su¢ cient outbreak cases to

allow detection. PC only looks at one day of data, while PCT looks at several days of data.
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Example 5.3. Let us investigate the best-case scenario for PCT according to our logistic

regression results. Suppose we have a Cryptosporidium outbreak (D = 2), a �uctuation

percentage of 50% (F = 1), a subregion of size 1 by 2 (S = 1), and a cubic epidemic curve

function (I = 3). Then according to our regression analysis,

logit = �4:87292 + 2:79111D � 0:870383F � 0:457231S + 0:213026I

= �4:87292 + 2:79111� 2� 0:870383� 1� 0:457231� 1 + 0:213026� 3

= 0:020764;

and therefore our estimate according to the logistic regression model is

P = P (PCT detects the outbreak earlier at FAR = 0)

=
e�0:020764

1 + e�0:020764
= 0:49481:

Note that this is the probability that PCT will perform better than PC. The remaining prob-

ability is allocated to PCT performing the same as PC and to PCT performing worse that

PC.

Example 5.4. Next we investigate the worst-case scenario for PCT. Suppose we have an

in�uenza outbreak (D = 1), a �uctuation percentage of 25% (F = 2), a subregion of size 3

by 2 (S = 3), and a linear epidemic curve function (I = 1). Then

logit = �4:87292 + 2:79111D � 0:870383F � 0:457231S + 0:213026I

= �4:87292 + 2:79111� 1� 0:870383� 2� 0:457231� 3 + 0:213026� 1

= �4: 981 24;

and therefore our estimate according to the logistic regression model is

P = P (PCT detects the outbreak earlier at FAR = 0)

=
e�4: 981 24

1 + e�4: 981 24
= 0:0068187:
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6.0 CONCLUSIONS AND FUTURE RESEARCH

6.1 CONCLUSIONS

This dissertation introduced a high-level Bayesian network architecture representing a class

of Bayesian network models for spatial event surveillance called BayesNet-S. It further intro-

duced a high-level Bayesian network architecture representing a class of Bayesian network

models for temporal event surveillance called BayesNet-T. These architectures were com-

bined into one high-level Bayesian network architecture representing a class of Bayesian

network models for spatio-temporal event surveillance called BayesNet-ST.

As discussed in Section 2.3.1.2, PC is an entity-based, non-spatial, non-temporal outbreak

detection system that uses a Bayesian network model. This dissertation extended PC to be a

BayesNet-S model that is an entity-based, non-temporal, spatial outbreak detection system,

which is called PCS. PC was also extended to be a BayesNet-T model that is an entity-

based, temporal, non-spatial outbreak detection system called PCT. These two models were

combined resulting in an entity-based, temporal, spatial outbreak detection system called

PCTS. The lattice in Figure 6.1 shows a hierarchical structure for these systems. In that

lattice, the system at each node is an enhancement of the system at each of the node�s

children.

I hypothesized that the system at each node in the lattice in Figure 6.1 in some way

improves event surveillance relative to the system at the node�s children. The four speci�c

hypotheses were as follows:

1. PCS is an improvement over PC in that, on the average, it is able to detect earlier that

an outbreak is occurring. Second, PCS can accurately locate the subregion in which an

151



PCTS

PCT PCS

PC

Hypothesis 4Hypothesis 3

Hypothesis 2 Hypothesis 1

Figure 6.1: A hierarchy of systems and hypotheses.

outbreak is occurring when the outbreak is restricted to a subregion of the monitored

region.

2. PCT is more stable than PC in that once an outbreak is detected, PCT is better at

maintaining the detection signal on future days. Furthermore, PCT can accomplish this

without adversely a¤ecting initial detection capability.

3. PCTS is an improvement to PCT in that, on the average, it can detect earlier that an

outbreak is occurring.

4. PCTS is an improvement to PCS in that once an outbreak is detected, PCTS can better

maintain the detection signal on future days. Furthermore, PCTS can accomplish this

without adversely a¤ecting initial detection capability.

Section 4.3.2 provided results that served to validate Hypothesis 1. In simulated out-

breaks using semi-synthetic data, which occurred in spatial subregions, PCS detected the

outbreaks much earlier than PC. Furthermore, the results indicated that PCS can detect

the correct subregion early in the outbreak. Section 4.3.3 discussed results validating Hy-

pothesis 2. In simulated outbreaks using semi-synthetic data, PCT maintained the detection

signal much better than PC. Furthermore, this was accomplished without sacri�cing initial
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detection capability. In Section 4.3.4 results substantiating Hypothesis 3 were presented. In

simulated outbreaks using semi-synthetic data, which occurred in spatial subregions, PCTS

detected the outbreaks much earlier than PCT. Section 4.3.5 provided results substantiat-

ing Hypothesis 4. In simulated outbreaks using semi-synthetic data, PCTS maintained the

detection signal much better than PCS in the case of both Cryptosporidium and in�uenza

outbreaks. Furthermore, PCTS performed as well or better than PCS at initial detection

of the Cryptosporidium outbreaks, while PCTS performed slightly worse that PCS at initial

detection of the in�uenza outbreaks.

The results in Section 5.5.2 indicate that, for the types of outbreaks simulated, PCTSmay

perform moderately better than SaTScanTM-MT at outbreak detection. A result that was

puzzling was that PCTS detected Cryptosporidium outbreaks much better than SaTScanTM-

MT, but detected in�uenza outbreaks about the same. The results in Section 5.5.2 also

indicate that, for the types of outbreaks simulated, PCTS appears to be better at subregion

detection than SaTScanTM-MT.

The results in Section 5.3.2 indicated the PCT is better at outbreak detection than the

classic outbreak detection algorithm CUSUM.

At the beginning of Section 1.1.6, I conjectured that we may obtain better results if we

modeled the relationships among the event of interest, and the observable events using a

Bayesian network instead of using a summary statistic. The results concerning the compar-

isons of PCTS and PCT to SaTScanTM-MT and CUSUM respectively lend support to this

conjecture.

As mentioned in Section 1.2.4, applications of the architectures developed in this thesis

extend beyond biosurveillance. My spatial architecture is applicable to many types of anom-

aly detection including medical imaging for the purpose of pathology detection. My temporal

architecture is applicable to any type of monitoring that concerns a system which changes

over time. For example, it may be used in a medical expert system, which is deployed in an

intensive care unit (ICU), and which monitors changes in a patient�s condition over time.
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6.2 FUTURE RESEARCH

Future research could provide further comparisons of PCTS, SaTScanTM-MT, and the mul-

tivariate version of BSS. Speci�cally, we could investigate the following:

1. We saw that PCTS performed much better than SaTScanTM-MT at detecting Cryp-

tosporidium outbreaks, but not at detecting in�uenza outbreaks. We could compare

detection capability for all 12 types of outbreaks to better evaluate the relative strengths

of the systems.

2. An advantage of PCTS is that it is designed to detect 12 di¤erent types of outbreaks,

while SaTScanTM-MT can only focus on one particular type of outbreak. We would

need to run 12 versions of SaTScanTM-MT to realize the generality of PCTS. How-

ever SaTScanTM-MT and BSS could consider all 54 chief complaints, and report the

occurrence of a non-speci�c outbreak. We could run a set of simulations that included

outbreaks of all 12 types, and compare the abilities of the systems to detect a non-speci�c

outbreak.

3. We could investigate how well the systems detect an outbreak such as Salmonella, which

is not one of the outbreaks considered by PCTS. In these comparisons we would use the

general-purpose versions of SaTScanTM-MT and BSS just mentioned.

4. We could simulate more than one outbreak occurring concurrently. We could compare

how well each system determined a non-speci�c outbreak. In the case of PCTS we could

investigate whether the simulated outbreaks are the ones it considers most probable.

The research just discussed all concerns additional experiments. Future research on

modeling could investigate developing a di¤erent BayesNet-ST extension of PC. For example,

we could investigate the development of a model that does not assume a patient�s ED visits

on di¤erent days are probabilistically independent. Future research on modeling could also

investigate extending a di¤erent Bayesian network than the one in PC to a BayesNet-ST

model. One possibility would be to extend a version of PC that included additional properties

of various outbreaks. For example, if there is a Cryptosporidium outbreak, there is likely to

be contaminated water, and if there is an anthrax outbreak it is likely that spores will be
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discovered. Another possibility would be extend a version of PC that does not assume that

disease outbreak types are mutually exclusive.
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Appendix A

Under certain assumptions the frequentist�s p-value for the null hypothesis H0 is equal to

the Bayesian�s posterior probability of H0. I show this �rst for the case where the mean is

unknown and the variance is known; then I address the case where both the mean and the

variance are unknown.

Unknown Mean and Known Variance

Suppose X is normally distributed with unknown mean and known precision r (the precision

is one divided by the variance). Suppose further that we represent our belief concerning the

unknown mean with a random variable A, which is normally distributed with mean � and

precision v. The probability distribution of X is a relative frequency distribution, while the

probability distribution of A is our subjective probability concerning the value of X�s mean.

Then the prior density function of A is

�A(a) = NormalDen(a;�; 1=v):

Let our Data consists of n values x1; x2; : : : xn of the random variable X, and set

�x =

Pn
i=1 xi
n

:

(Neapolitan, 2004, p. 394) shows that the posterior density function of A is

�A(ajData) = NormalDen(a;��; 1=v�);

where

�� =
v�+ nr�x

v + nr
and v� = v + nr: (6.1)

If we model prior ignorance concerning the value of the unknown mean by assuming that

the prior density function of A is the improper uniform density function over the whole real

line, (Neapolitan, 2004, p. 396) shows further that the posterior density function of A

�A(ajData) = NormalDen(a; �x; 1=nr): (6.2)

164



Intuitively, this result can be obtained by taking the limit as v approaches 0 of the expressions

in Equation 6.1. Writing Equation 6.2 using the variance, we have that

�A(ajData) = NormalDen(a; �x; �2=n):

Let us model prior ignorance in this way, and suppose that our null hypothesis is as

follows:

H0 : a � �:

Then

P (H0jData) =

Z �

�1
NormalDen(a; �x; �2=n)da

= NormalDist(�; �x; �2=n);

where NormalDist denotes the Normal cumulative distribution function.

If we use the standard notation of the z score, and set

z =
� � �x
�=
p
n
;

then

P (H0jData) = NormalDist
�
� � �x
�=
p
n
; 0; 1

�
:

The p-value for H0 is

p =

Z 1

�x

NormalDen(x; �; �2=n)dx

= 1�
Z �x

�1
NormalDen(x; �; �2=n)dx

= 1� NormalDist(�x; �; �2=n):

If we use the standard notation of the z score and set

z =
�x� �
�=
p
n
;
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then

p = 1� NormalDist
�
�x� �
�=
p
n
; 0; 1

�
= NormalDist

�
� � �x
�=
p
n
; 0; 1

�
= P (H0jData):

The second to the last result is due to the symmetry of the normal density function.

Unknown Mean and Unknown Variance

Suppose X is normally distributed with unknown mean and unknown precision r, and that

we represent our belief concerning the mean and precision with the random variables A and

R respectively. Suppose further that we represent our prior belief concerning the value of R

using the GammaDen (r;�; �) density function, and our prior belief concerning the value of

A using the NormalDen (a;�; 1=vr) conditional density function. If we model prior ignorance

concerning the values of R and A by assuming that the prior density function of R is the

improper density function 1=r and the prior density function of A is the improper uniform

density function over the whole real line, (DeGroot, 1970, p. 195) shows that

t =
a� �x
s=
p
n

has the t distribution with n� 1 degrees of freedom, where

s =

�Pn
i=1(xi � �x)2
n� 1

�1=2
:

Let us model prior ignorance in this way, and suppose that our null hypothesis is as

follows:

H0 : a � �:

We then have that

P (H0jData) = P (a � �)

=

Z ���x
s=
p
n

�1
TDen(t; n� 1)dt

= TDist

�
� � �x
s=
p
n
; n� 1

�
;
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where TDist denotes the t cumulative distribution function.

The frequentist test statistic in this case is given by (see e.g. (Anderson et al., 2005))

t =
�x� �
s=
p
n
:

The p-value for H0 is then

p =

Z 1

�x��
s=
p
n

TDen (t; n� 1) dt

= 1�
Z �x��

s=
p
n

�1
TDen (t; n� 1) dt

= 1� TDist
�
�x� �
s=
p
n
; n� 1

�
= TDist

�
� � �x
s=
p
n
; n� 1

�
= P (H0jData):

The second to the last equality is because of the symmetry of the t density function.
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