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The kinetics of the rate-limiting genes of the molecular DNA repair pathways of nucleotide 

excision repair (NER) were quantified from the inner ear as a function of cis-

diamminedichloroplatinum-II (cisplatin) treatment.  The distribution of the post-translational 

products of these genes was evaluated among neurons and sensory hair cells of the inner ear 

following cisplatin treatment.  These NER factors (genes & post-translational products) are only 

potentiated by DNA damage and are particularly sensitive to cisplatin induced DNA damage.   A 

2 x 3 x 2 factorial design, consisting of two treatment conditions (saline and cisplatin treated 

Fischer344 rats), three survival times and two molecular analysis methods (polymerase chain 

reaction and immunohistochemistry) was employed in this dissertation.  The results revealed at 

least five important findings.  First, it revealed for the first time that complex DNA repair 

molecular pathways such as NER exist in the inner ear. Second, it revealed for the first time that 

molecules used by advanced tumor cells to detect and repair damaged DNA from cisplatin 

genotoxicity also generalize to the inner ear and are stimulated by even small sub-toxic doses of 

cisplatin.   Third, it revealed for the first time that NER proteins reside in the cytoplasm of 

neurons under normal conditions and translocate to the nucleus under conditions of genomic 

stress.  Fourth, it revealed for the first time that the basal coil of the mammalian cochlea differs 
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from the apical coil in the magnitude and latency in which NER molecules translocate from the 

cytoplasm to the nucleus under conditions of genomic stress.  Fifth, the current work provides 

the bases for a new line of hearing research focused on molecular mechanisms of inner ear DNA 

repair.   
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PREFACE 
 

 
 Research on cisplatin ototoxicity has revealed that various inner ear epithelia are largely 

resistant to cisplatin chemotherapy.  For instance, the vestibular epithelia are mostly unaffected 

and the nonsensory epithelia of the cochlea survive cisplatin treatment.  Tumor biology has 

revealed that complex DNA repair mechanisms contribute to cell survival after cisplatin 

treatment.  Nucleotide excision repair (NER) is the major defense strategy by which cisplatin-

resistant tumor cells identify and repair cisplatin induced DNA damage.  This suggests, that the 

inner ear also may use NER as a defense strategy.  Gene expression kinetics of the rate-limiting 

genes of global genomic NER were studied as a function of chronic cisplatin chemotherapy to 

test this possibility.  The specific genes studied were xeroderma pigmentosum (XP) c and a.  

These genes are only up-regulated in the presence of DNA damage and cisplatin DNA damage is 

a particularly potent stimulus for their up-regulation.  The results revealed statistically significant 

up-regulation in gene expression for both xpc and xpa after cisplatin treatment. This work is 

significant to hearing research for at least three reasons.  First, it reveals for the first time that 

complex DNA repair molecular pathways such as NER respond to DNA injury in the ear.  The 

NER reaction pathway was originally considered to be a means by which organisms removed 

damaged DNA induced by sun-light (UV radiation).  The ear is embedded in the temporal bone 

shielded from sun-light but the results suggest that the ear has conserved the NER molecular 

pathway.  Second, it reveals for the first time that molecules used by advanced tumor cells to 

detect and repair damaged DNA are normally functional in the ear.  Tumor cells that are hard to 

kill use xpc and xpa to repair damaged DNA and survive cisplatin antineoplatic therapy.   Small 

(sub-toxic) doses of cisplatin were enough to significantly up-regulate xpc and xpa in the ear.  

This suggests, that both genes are highly sensitive to the level of DNA damage in the inner ear. 
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Third, it provides the bases of a new line of hearing research focused on molecular mechanisms 

of inner ear DNA repair.   

 DNA repair may not be equally distributed among cells of the inner ear. For instance, 

although vestibular abnormalities are rare, high frequency hearing loss is characteristic of 

cisplatin chemotherapy.   Experiments have revealed that the neurosensory epithelium of the 

cochlea is highly susceptible to cisplatin toxicity.  Recent research has revealed the presence of 

cisplatin DNA adducts among the various cell types in the cochlea.  The nonsensory epithelia 

survive cisplatin toxicity while the neurosensory epithelia suffer the most damage.  DNA repair 

biology indicates that terminally differentiated cells (e.g., neurons) are less proficient at NER 

than non-terminally differentiated cells.  The cells of the nonsensory cochlear epithelia are able 

to engage in spontaneous mitosis as well as damage induced mitosis, therefore they are non-

terminally differentiated.  Hair cells and neurons of the cochlear neurosensory epithelium are 

unable to undergo mitosis or change there phenotype and are considered terminally 

differentiated.  Therefore, cochlear hair cells and neurons may be deficient in NER and thus 

susceptible to cisplatin DNA damage.  Protein expression of XPC and XPA were assessed in the 

cochlea after cisplatin treatment to test this possibility.  The results revealed that cochlear hair 

cells and neurons expressed both XPC and XPA.  This work is significant for at least three 

reasons.  First, it may serve as the bases for a paradigm-shift in DNA repair pathobiology.  The 

notion that terminally differentiated cells, such as neurons are deficient in NER is based on a 

number of excellent in vitro experiments.  The present in vivo work in the mammalian inner ear 

revealed that XPC and XPA are expressed competently among cochlear hair cells and neurons 

under normal conditions and when antagonized by cisplatin treatment.  This motivates a new line 

of research aimed at further understanding the significance of NER among cochlear hair cells 
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and neurons.  Second, it revealed that although neurons competently express NER proteins, these 

proteins reside in the cytoplasm under normal conditions and translocate to the nucleus under 

conditions of genomic stress.  This is the first demonstration of cytoplasmic to nuclear 

translocation of the rate-limiting factors of NER.  This translocation phenomenon is 

characteristic of neurons and not hair cell.  Third, NER may not fully account for all cell-type 

vulnerabilities (e.g., basal vs. apical hair cells) to cisplatin ototoxicity.  As reviewed in detail in 

Chapter I, the chemical biology of cisplatin is complex and cell damage may occur from a 

variety of biomolecular interactions.  It is unlikely that one specific molecular pathway (e.g, 

DNA repair) completely accounts for cisplatin ototoxicity.  Molecular mechanisms such as free 

radical promotion and altered ionic homeostasis also are involved.    

 The end result of cisplatin ototoxicity is cell death, however, not all cochlear cells show 

the same degree of susceptibility to cisplatin.  For instance the apical outer hair cells (OHCs) and 

neurons are more resistant than basal OHCs and neurons.  Indeed, histopathological studies of 

human temporal bones and animal specimens reveal a base-to-apex pattern of OHC and neural 

loss, where the basal OHCs and neurons suffer the greatest damage.  Recent research has shown 

that the basal OHCs are less proficient at glutathione expression compared to the apical OHCs.  

This is important because glutathione determines cellular availability of sylfhydryls (sulfur) 

which are needed for DNA repair.  Indeed, cancer research has shown that depleted glutathione 

results in reduced NER capacity.  Therefore, NER might be deficient among basal OHCs and 

neurons compared to apical OHCs and neurons.  The expression of the rate-limiting proteins of 

NER (XPC & XPA) was evaluated in the cochlea to test this possibility.  The results revealed 

two important findings.  First, the results showed that OHCs at the base and apical turns of the 

cochlea were competent in XPC and XPA expression.  This result is relevant because it suggests 
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that the difference in succeptability between basal and apical OHCs to cisplatin toxicity may not 

be due to differences in DNA repair molecular pathways.  Second, the results showed that spiral 

ganglion neurons at the basal and apical coils of the cochlea exhibited a difference in XPC and 

XPA protein expression following cisplatin intoxication.  There was a magnitude and latency 

difference between the basal and apical spiral ganglion cells where basal cells responded later 

and with less magnitude than apical cells.  This difference in latency and magnitude may account 

for the difference in susceptibility between neurons at the base compared to those at the apex.  
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I. INTRODUCTION 

 

 

 

 

Cisplatin is an effective anticancer xenobiotic.  It is one of the three most widely used 

chemotherapeutic agents in the world and commands annual U. S. sales of $500 million (Gordon 

& Hollander, 1993; Weiss & Christian, 1993).  It has become a primary agent in the treatment of 

head and neck squamous cell carcinoma, testicular cancer, small cell lung cancer, ovarian cancer 

and a variety of childhood neoplasms (Giaccone, 2000).  Antineoplastic activity increases with 

increasing cisplatin dosage.  Unfortunately, nephrotoxicity and ototoxicity are dose limiting side 

effects.  Nephrotoxicity can be controlled through hydration therapy but ototoxicity remains a 

challenge.  Cisplatin chemotherapy leads to permanent bilateral high frequency sensorineural 

hearing loss and tinnitus.  The reader is referred to the Appendix for a definition of potentially 

unfamiliar terms used throughout this text.   

The audiometric frequencies that are most affected are  ≥  1 kHz and speech recognition is 

impaired (Forastiere, Takasugi, Baker, Wolf & Kudla-Hatch, 1987; van der Hulst, Dreschler & 

Urbanus, 1988).  The degree of sensorineural hearing loss that results from cisplatin 

chemotherapy ranges from 40-90 dB HL (Myers, Blakley, Schwan, Rintelmann & Mathog, 

1991; Kopelman, Budnick, Sessions, Kramer &Wong, 1988).  The slope of the hearing loss 

increases by 45 dB per octave with increasing dosage (Brock et al., 1990).  The reported clinical 

incidence of cisplatin induced hearing loss varies due to confounding variables such as, influence 

of other medications, age, general health of patients, prior noise exposure, pre-existing hearing 
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loss, cumulative dose (Pollera et al, 1988; Schweitzer, 1993a) and the methods used to determine 

ototoxicity (e.g., conventional audiometry, high frequency audiometry, otoacoustic emission, 

auditory brainstem response and acoustic reflex threshold).  Therefore, the incidence estimates 

range from 20 to 90% for adults and 40 to 100% for children (Gratton, 1990; McHaney, 

Thibadoux, Hayes & Green, 1983; Schell et al, 1989; Weatherly, Owens, Catlin & Mahoney, 

1991; Park, 1996).   

The onset of hearing loss may occur as soon as 48 hours post-treatment or may be delayed 

(e.g., 4 days post treatment) and clinical recovery shows no consistent pattern (Aguilar-Markulis, 

Beckley, Priore and Mettlin, 1981; Pollera, et al, 1988).  The vestibular system appears to be 

resistant to permanent damage from cisplatin treatment.  There is significant variability in 

audiologic results among cisplatin treated patients.  Generalizing results beyond the sample of 

patients selected for a particular study remains a challenge.  The development of a sensorineural 

hearing loss that progresses from high to low frequencies with increasing dosage is consistent 

and well documented among cisplatin treated patients (Forastiere, Takasugi, Baker, Wolf & 

Kudla-Hatch, 1987; Van der Hulst, Dreschler & Urbanus, 1988).  In order to develop future 

otoprotective strategies to ameliorate cisplatin induced hearing loss, an understanding of the 

underlying molecular otopathology is required.  The hearing research literature has supported 

two dominant hypotheses regarding the underlying molecular otopathology of cisplatin.  One 

hypothesis suggests that otopathology is due to cisplatin’s reactivity with ion channels that alters 

ionic homeostasis.  The other hypothesis suggests that otopathology is due to cisplatin’s 

reactivity with biomolecules that facilitates the generation of reactive oxygen species (ROS).  

Both hypotheses have empirical support from basic research, however therapeutic approaches 
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based on these hypotheses have not been successful.  This suggests that other reactions are 

involved and a greater understanding of cisplatin’s reactivity is needed.   

 The reactive site on cisplatin is the transition metal ion, platinum(II).  The general 

coordination chemistry of platinum(II) carries over to the compound cisplatin.  For instance, 

platinum(II) is a Lewis acid class B (soft) metal, which means that it will bind preferentially to 

sulfur and nitrogen. The cisplatin molecule also binds preferentially to sulfur and nitrogen.  This 

can be demonstrated in tissue after systemic cisplatin treatment and the use of sulfur to titrate 

cisplatin away from its intracellular binding sites (Guthrie & Balaban, 2004).  The sulfur binds 

with cisplatin to produce a complex that may act as a catalyst and promote electron transfer 

between nucleophilic and electrophylic molecules.  The titration of cisplatin away from its 

intracellular binding sites reveals that intracellular cisplatin may be low-affinity bound and 

active.  Low-affinity bound transition metals will generate free radicals via the metal mediated 

Haber-Weiss reaction (Zdolsek, Roberg & Brunk, 1993).  Cisplatin treatment is known to 

generate free radicals in vivo (Davis, Nick & Agarwal, 2001).  The ability of cisplatin to generate 

free radicals in vivo contributes to its ototoxic effects.  The direct binding of cisplatin to 

biomolecules also may contribute to otoxicity.   

The Lewis acid classification (class B) of platinum predicts that it will bind directly to 

sulfur and nitrogen rich biomolecules.  The platinum(II) ion exhibits a kinetic preference for 

sulfur over nitrogen while the cisplatin molecule exhibits a thermodynamic preference for 

nitrogen over sulfur.  Biochemical research has shown that cisplatin’s binding to sulfur bearing 

biomolecules is unstable and cisplatin bound to sulfur bearing biomolecules do not prevent stable 

binding to nitrogen rich DNA bases. DNA binding underlie cisplatin cytotoxicity and 

antineoplasm (Jamieson & Lippard, 1999).  In addition to altering ionic homeostasis and 
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generating ROS, cisplatin induced ototoxicity may results from DNA binding in the cochlea.  

Recent reseach has revealed significant levels of cisplatin bound to DNA among various cell 

types in the cochlea after systemic treatment (van Ruijven, de Groot, Hendriksen & 

Smoorenburg, 2005).  This suggests that cisplatin’s metabolism from its introduction to the 

blood stream to its interactions in the cytoplasm prepares it for binding to DNA.  

  Research on cisplatin metabolism in the blood is limited.  The cisplatin molecule is inert 

but after metabolism in the blood it becomes reactive. Cisplatin may bind to most, if not all 

plasma proteins through sulfur bonds or nitrogen-termini on amino acids as predicted from its 

Lewis acid classification (Ivanov et al., 1998).  The antineoplastic and cytotoxic activity of 

cisplatin is independent of whether it is bound or unbound to plasma proteins (Pizzo, Swaim, 

Roche & Gonias, 1998).  Plasma protein binding may determine the rate of tissue distribution 

and toxicity.  Cisplatin easily crosses the blood-labyrinthine barrier but the molecular details of 

transport are unknown (Gately & Howell, 1993).  Further research is needed to better understand 

the significance of cisplatin's metabolism in the blood and inner ear fluids. Such information may 

help to explain the heterogeneous distribution of cisplatin DNA adducts in cochlear tissues. 

 The interaction of cisplatin with the plasma membrane is poorly defined and the 

mechanisms by which cisplatin enters and leaves the cell are controversial.  The level of uptake 

and the rate of uptake are the net result of a series of binding and releasing from transferring 

molecules.  Cisplatin has its highest affinity for sulfur and nitrogen atoms but it will weakly 

coordinate with oxygen, phosphates and other anions. Therefore most biomolecules can be 

targeted.  Cisplatin may interact with proteins, peptides, oligosaccharides and cholesterol via 

electrostatic, covalent and coordination binding.  Most of these interactions are temporary and 

may influence membrane permeability, fluidity, enzymology and channel functioning (Wang, 
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Lu, Li, 1996).  These effects may be amplified and propagated throughout the cell.  Cisplatin 

binds preferentially to sulfur bearing plasma membrane proteins and the levels of such proteins 

tend to decrease.  Binding to any plasma membrane protein could lead to conformational 

changes and loss of function.   The net result is a change in the normal biology of the cell and 

perfusion of cisplatin across the plasma membrane.  Ultimately, cisplatin effectively crosses the 

plasma membrane and becomes speciated in the cytoplasm which further prepares it for DNA 

binding.  

 The majority of research related to the speciation of cisplatin in the cytoplasm has 

focused on unbound-unspeciated cisplatin (Kartalou & Essigmann, 2001).  Only about 10% of 

cisplatin may exist in this form, because once cisplatin enters the blood stream, about 90% is 

quickly bound to plasma proteins.  Protein-bound cisplatin remains cytotoxic and may determine 

tissue distribution. Very little is known about the fate of these platinum products.  Of interest is 

how specific protein bound cisplatin molecules cross the plasma membrane and become 

speciated.  The fate of these speciated products may provide new information on antineoplasm 

and side effects of cisplatin treatment.  Unbound-unspeciated cisplatin is transformed in the 

cytoplasm to aqueous platinum species (Kartalou & Essigmann, 2001).  These aqueous platinum 

species are potent electrophiles that exbibit high affinity for sulfur and nitrogen rich 

biomolecules throughout the cytoplasm.  There are multiple sites within the cell that are targeted 

by cisplatin, therefore the interactions with biomolecules are complicated.  The most consistent 

intracellular target for cisplatin is the nitrogen rich DNA bases.  

The ultimate target for cisplatin is DNA.  Speciation of cisplatin in the cytoplasm prepares 

it for covalent binding to the N7 of purine DNA bases (Reedijk, 1999).  The N7 is a highly 

nucleophilic site that is known to attract a number of genotoxic xenobiotics.  Less attention has 
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been focused on cisplatin’s binding to phosphate groups within the DNA. Even though such 

interactions would be weak, they may contribute to DNA conformational changes.  Cisplatin is 

able to access the major groove of the DNA and bend the helix towards the major groove which 

increase the minor groove of the DNA molecules (Jamieson and Lippard, 1999).  The guanine 

residues are targeted particularly by cisplatin because of their nucleophilic nature.  The structural 

and chemical alterations of DNA induced by cisplatin are heterogeneous.  

 Cisplatin DNA adducts induce a variety of structural and chemical alterations to DNA 

that lead to various consequences.  The three most profound consequences are the inhibition of 

replication, inhibition of transcription and induction of apoptosis.  Inhibition of replication may 

facilitate the death of dividing cells but may not explain the death of non-dividing cells, such as 

hair cells and neurons. Transcription inhibition (by stalling of RNA polymerase and/or molecular 

hijacking) is sufficient to initiate cell death among dividing and non-dividing cells.  Molecular 

hijacking also may facilitate the shielding of cisplatin DNA adducts from DNA repair factors 

which increases the tenure of platinum on the DNA helix leading to cell death.  The major cell 

death process induced by cisplatin is apoptosis.   

Human temporal bone studies reveal that cisplatin treatment induces variable damage to 

the cochlea.  A characteristic finding is that basal outer hair cells (OHCs) and neurons are more 

severely damaged than apical OHCs and neurons.  This pattern of damage is consistent with the 

high frequency sensorineural hearing loss revealed by patients after cisplatin treatment (Strauss 

et al., 1983).  Cisplatin also induces OHC damage in experimental animals. The vestibular 

epithelium is less vulnerable than the cochlear epithelia and histomorphological studies may 

reveal normal vestibular epithelia (Schweitzer et al., 1986).   There is great variability in the 

degree and incidence of cell damage, but OHC damage at the base is very consistent.    These 
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morphological findings in animal models support the observations of human temporal bone 

studies (Hinojosa, Riggs, Strauss & Metz, 1995).   

Different cell types exhibit varying degrees of vulnerability to cisplatin.  For instance, 

terminally differentiated cells (e.g., hair cells and neurons) are more vulnerable than non-

terminally differented cells (e.g., cells of stria vascularis).  Additionaly, hair cells at the base of 

the cochlea are more vulnerable than those at the apex.    A possible bassis for these cell-type 

vulnerabilities is DNA repair capacity.  In tumor biology it is known that cells that are vulnerable 

to cisplatin are deficient in DNA repair while cells that are invulnerable are proficient.  The same 

DNA repair molecules that initiate the repair of cisplatin DNA adducts in tumor cells may be 

expressed in the inner ear.  Cell-type vulnerability in the cochlea may be due to differences in the 

expression of these DNA repair molecules.  In order to assess this possibility a chronic, as 

opposed to the usual acute cisplatin dosing regimen would be needed.  Chronic treatment allows 

for data collection at multiple time points during treatment before cochlear degeneration.  The 

lack of degeneration of cochlear cells allows for the study of gene and protein expression as a 

function of cisplatin treatment.  In this dissertation, a chronic cisplatin treatment regimen was 

used, where animals were treated with two cycles of cisplatin.  Each cycle consist of four days of 

treatment (1 mg/kg, i.p., twice daily) separated by 10 days of rest.  Standard methods such as 

real-time reverse-transcription quantitative polymerase chain reaction was used to study gene 

expression and immunohistochemistry was used to reveal protein distribution among cochlear 

cell types.    

The sections below are divided into chapters.  Chapter I provides an integrative view of 

cisplatin ototoxicity by arguing that the two dominant hypotheses regarding cisplatin ototoxicity 

are consistent with the molecular toxicology of cisplatin.  This chapter further reveals that 
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cisplatin directly and indirectly induce DNA damage.  It is well known in tumor biology that 

cisplatin treatment results in DNA damage that leads to cell death.  This DNA damage induced 

cell death is mediated by the tumor’s ability to express DNA repair molecules. Therefore, 

chapter I concludes with three specific aims to assess gene and protein expression of DNA repair 

molecules that are only activated in the presence of damaged DNA.  Chapter II describes the 

methods used to assess gene and protein expression of DNA repair molecules in the cochlea after 

cisplatin treatment.  These methods are standard techniques to assess gene and protein expression 

in the cochlea.  Chapter III presents the results of gene and protein expression after cisplatin 

treatment.  Chapter IV provides a discussion of the results.  The results suggest that cisplatin 

potentiates the molecular DNA repair pathways of nucleotide excision repair in the cochlea.  A 

glossary is provided at the end as an appendix. 
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II. CHAPTER I 

 

 

 

 

Cisplatin is one of the most ototoxic compounds in routine clinical use today (Arslan, Orzan, & 

Santarelli, 1999; Kalinec, Webster, Lim & Kalinec, 2003).  Both human and animal studies have 

characterized the ototoxic effect of cisplatin chemotherapy (Kohn et al., 1988; Strauss et al., 

1983). Human studies typically involve human volunteers and/or human post-mortem temporal 

bones.  Animal studies are predominantly clustered into two types, those that focus on 

morphological alterations and those that focus on functional alterations as a consequence of 

cisplatin treatment.  The sections below provide a review of both human and animal studies on 

cisplatin ototoxicity.   
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A. HUMAN STUDIES ON CISPLATIN OTOTOXICITY 

 

 

Table I summarizes human studies related to csiplatin ototoxicity.  Studies on cisplatin 

ototoxicity were conducted on patients with advanced malignancies who are fighting for their 

lives and hearing assessments are often not a priority. Nephrotoxicity and ototoxicity are the two 

dose limiting variables to cisplatin chemotherapy, however severe ototoxicity may occur with 

minimal nephrotoxicity (Pollera et al., 1988).  The degree of hearing loss varies widely among 

cisplatin treated patients (Naggy et al., 1999).  The antineoplastic effect of cisplatin is dose 

dependent but as the treatment dose increases the degree of hearing loss also increases.  There is 

no clear association between the degree of hearing loss and the route of administration (Pollera et 

al, 1988).  The first phase I clinical trials of cisplatin revealed that it induces severe permanent 

bilateral sensorineural hearing loss (Krakoff & Lippmann, 1974).  Hearing loss is predominantly 

in the high frequencies and may progress to low frequencies with increasing dosage.  Speech 

discrimination is impaired particularly in background noise. Additionally, the relationship 

between dose and tinnitus is poorly understood.  The incidence of tinnitus may range from 2-

36% (Schweitzer, 1993b).  Cisplatin treatment does not lead to significant functional and 

morphological vestibular alterations and clinical reports of vestibular dysfunction are rare 

(Black, Gianna-Poulin & Pesznecker, 2001; Myers, Blakley & Schwan, 1993; Nakayama, Riggs 

& Matz, 1996; Sergi, Ferraresi, Troiani, Paludetti & Fetoni, 2003; Schweitzer, Rarey, Dolan, 

Abrams & Sheridan, 1986).  Human temporal bone studies reveal that cisplatin treatment induces 

variable damage to cochlear structures (Cheng et al., 2001; Strauss et al., 1983; Tange, 1987).   

 

 



 

Table 1.  Summary of Human Studies on Cisplatin Ototoxicity. 
 
 

Reference     Malignancy     Treatment     Findings/Comments   

Talley et al. (1974)  various cancers   
≥ 15 
mg/m2   HFHL & tinnitus  

   life expectancy  of cisplatin   first phase I clinical  
   6 weeks   for 5 days   trial in the U.S.  
            
Wiltshaw et al. (1974)  ovarian tumors  cisplatin   NHS & tinnitus  
         first phase I clinical  
         trial in the U.K.  
            
Krakoff et al. (1974)  various tumor types  cisplatin (>4.0 mg/kg)  bilateral HFHL that   
         increase with dosage  
            
Ellerby et al. (1974)  various incurable  cisplatin combined with  HFHL   
   cancers   5-FU   phase I clinical trial   
         using combination therapy 
            

Wallace et al. (1974)  

advanced 
genitourinary 
cancer   cisplatin & adriamycin  HFHL & tinnitus  

        phase I clinical trial  
         using combination therapy 
            
Hayes et al. (1977)  various cancers  cisplatin (3-5 mg/kg)  HFHL with 90% incidence 
         older patients (54-70) had 
         greater loss than younger 
         patients (19-39)  
            
Aguilar-Markulis et al. (1981) genitourinary cancer  cisplatin (1 mg/kg, i.v.)  HFHL increased with   
         treatment   
            
McHaney et al. (1983)  various cancers  cisplatin (90 mg/m2, i.v.)  88% incidence of HFHL  
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Table 1 (continued) 
 
                     

Strauss et al. (1983)  
various 
cancer   cisplatin (130 mg/m2)  sbHFHL with pSDS  

         deg of basal OHC, IHC & SG 
            
Fausti et al. (1984)  genitourinary tumors  cisplatin   HFHL developed before  
   & head & neck cancer     LFHL   
            
Forastiere et al. (1987)  squamous cell carcinoma  cisplatin (200 mg/m2)  HFHL   
   of the head & neck        
            
Tang 
(1987)   ovarian carcinoma  cisplatin (300 mg/m2)  HFHL   
      bleomycin   deg of basal OHC  
         disordered cochlear   
         vascul  ature

nitus

  
            
van der Hulst et al. (1988) various cancers  cisplatin (20 mg/m2 or 50 mg/m2) HFHL   
      carboplatin (350 mg/m2)     
            
Kopelman et al. (1988)  various cancers  cisplatin (150 to 225 mg/m2) progressive HFHL with   
         100% incidence, SIN deficit & 
         tin    
            
Pollera et al. (1988)  ovarian cancer  cisplatin (200 mg/m2)  HFHL 48 hrs post treatment 
         with an incidence of 75%  
         and minimal nephrotoxicity 
            
Schell et al. (1989)  various tumors  cisplatin   HFHL, normal renal  
         function   
            
Myers et al. (1991)   various cancers   cisplatin (100 mg/m2)   HFHL     

           

Waters et al. (1991)  ovarian cancer  cisplatin (100 or 50 mg/m2) 
progressive HFHL & 
tinnitus  
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Table 1 (continued) 
 
            
            

Hinojosa et al. (1995)  
Various 
cancer   cisplatin (100-250 mg/m2) OHC btadg   

            
Park 
(1996)   various tumors  cisplatin (<150 or >650 mg/m2) HFHL   
            
Hoistad et al. (1998)  various tumors  cisplatin   loss of SG, IHC, OHC & atrophy of Stv 
            
Yardley et al. (1998)  various cancers  cisplatin or carboplatin  abnTEOAE & ePTA   
         after cisplatin treatment  
            
Burris et al. (1998)  tumors of the head, neck  cisplatin/epinephrine-  NHS   
   trunk, tongue, oral pharynx injectable gel (0.56-380 mg)    
   and esophagus        
            
Fausti et al. (1999)  various cancers  cisplatin   94% detection rate of  
         HFHL   
            
Nagy et al. (1999)  esophagus, lung or   cisplatin (20 mg/m2/4 day, i.v.) HL   
   head & neck cancer  radiation therapy     
            
Lauretis et al. (1999)  various cancers  cisplatin (70 mg/m2) or  abnHFABR only after  
      carboplatin (250 mg/m2)  cisplatin treatment   
            
Cevette et al. (2000)  various cancers  cisplatin (75 mg/m2)  fDPOAE with NHS &  

                  HFHL with pDPOAE   

            
Cheng et al. (2001)     cisplatin   HFHL, damaged; STv, IHC, 
         OHC, SG at the cochlear base 
            
Stavroulaki et al. (2001)  various cancers  cisplatin (50 mg/m2)  HFHL & aDPOAE  
            
Strumberg et al. (2002)  testicular cancers  cisplatin   70% HFHL & 27% nTEOAE 

                  47% aTEOAE   
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Table 1 (continued) 

HFHL High Frequency Hearing Loss   abnTEOAE Abnormal Transient Evoked Otoacoustic Emissions  
 
NHS Normal Hearing Sensitivity   ePTA Elevated Pure Tone Average   
LFHL Low Frequency Hearing Loss   HL Hearing Loss    

SIN 
Speech In 
Noise    abnHFABR Abnormal High Frequency Auditory Brainstem Response 

fDPAOE Fluctuating Distortion Product Otoacoustic Emissions pDPAOE Present Distortion Product Otoacoustic Emissions  

aDPOAE 
Absent Distortion Product Otoacoustic 
Emissions  nTEOAE Normal Transient Evoked Otoacoustic Emissions  

aTEOAE 
Absent Transient Evoked Otoacoustic 
Emissions  sbHFHL Severe Bilateral High Frequency Hearing Loss  

pSDS 
Poor Speech Discrimination 
Score   deg Degeneration    

OHC Outer hair cell    IHC Inner Hear Cell    

SG 
Spiral 
Ganglion     Stv Stria Vascularis    

btadg 
Base To Apex Damage 
Gradient                 
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B. 

 

ANIMAL STUDIES ON CISPLATIN OTOTOXICITY 

 

 

Table 2 provides a summary of animal studies related to cisplatin ototoxicity. Cisplatin exerts its 

ototoxic effects mainly on the cochlea.  Anatomical preparations reveal that the basal OHCs are 

the most vulnerable structures in the cochlea while the OHC at the apex are among the least 

vulnerable. The vestibular epithelium is less vulnerable than the cochlear epithelia and  

histomorthological studies may reveal normal vestibular structures (Schweitzer et al., 1986).   

There is great variability in the degree and incidence of cell damage, but OHC loss at the base is 

very consistent (Cardinaal, de Groot, Huizing, Veldman & Smoorenburg, 2000b; Sergi, 

Ferraresi, Troiani, Paludetti & Fetoni, 2003).  Physiological studies demonstrate that cisplatin 

inhibits all mechanical and electrophysiological cochlear responses in a dose dependent manner 

(O’Leary, Klis, de Groot, Hamers & Smoorenburg, 2001).  Treatment typically results in high 

frequency hearing loss.  Vestibular function is less affected than cochlear function (Sergi, 

Ferraresi, Troiani, Paludetti & Fetoni, 2003).  Cisplatin cochlear alterations may induce 

hyperactivity in the cochlear nucleus which may contribute to tinnitus (Rachel, Kaltenbach & 

Janisse, 2002).  Apoptosis is the end result of cisplatin ototoxicity, however, necrosis also may 

occur with high dosages (Devarajan et al., 2002).   

 
 
 
 
 
 
 
 



 

Table  2.  Summary of Animal Studies on Cisplatin Ototoxicity. 
 
 

References     Animal     Treatment     Findings/Comments   

Estrem et al. (1981)  guinea pig (180-360 g)  cisplatin   deg of OHC   
      bleo  m in

copy

chlea

yc      
            
Nakai et al. (1982b)  guinea pig (400-500 g)  cisplatin (2 mg/kg, i.m.)  mOHC   
            
Kohn et al. (1988)  guinea pig (250-350 g)  cisplatin (4 mg/kg/  deg of: MC & IC  

      
5 days 
s.c.)   damaged: ER & OHC  

            
Saito et al. (1994)  guinea pig (300-400 g)  cisplatin (15 mg/kg   cisplatin was detected  
      or 21 mg/kg, i.m.)  in the kidney but not  
         the inner ear using  
         X-ray microanalysis &  
         ion micros   
            
Laurell et al. (1995)  Long-Evans's rat (150-275 g) cisplatin (8 mg/kg, i.p.)  reduced K concentration  
            
         in the co   

Saito et al. (1996)  guinea pig   
cisplatin 
or   cisplatin had no effect on  

      cisplatin metabolites  
isolated OHC but 
cisplatin  

         metabolites induced   
         significant damage  
            
Stengs et al. (1997)  guinea pig (250-350 g)  cisplatin (1.5 mg/kg/  reduced: CM, SP & CAP  

      
8 days, 
i.p.)      

            
Ford et al. (1997)  Wistar rats (250-350 g)  cisplatin (6 μL of 0.54  72 hrs post treatment  
      mg/ml, r.w. or 16 mg/kg  result in mOHC & mIHC.  
      i.p.)   5 fold up-regulation of  
         adenosine receptors after 
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Table 2 (continued) 
 
         24 hrs post treatment.  
            
Stengs et al. (1998a)  guinea pig (250-350 g)  cisplatin (0.7-2.0 mg/kg/  reduced: CM, SP & CAP  

      
8 days, 
i.p.)      

            
Janning et al. (1998)  chinchillas (450-700 g)  cisplatin (25 μl of 0.25 mg/ damaged HC  
      1.0 ml saline, r.w.)     
            
Meech et al. (1998)  Wistar rats (250-400 g)  cisplatin (16 mg/kg)  strial edema   
            
Sie et al. (1999)  gerbils   cisplatin (1 mg/kg/  reduced DPOAE  

      
4 days, 
i.p.)      

            

Tampakopoulou et al. (1999) gerbils   cisplatin (5 mg/kg)  
increased ABR & 
DPOAE  

         thres  holds

, r.w.

n OC

  
            
Cardinaal et al. (2000a)  guinea pig (250-350 g)  cisplatin (0.7-1.5 mg/kg/  atrophy of stria  

      
8 days, 
i.p.)   vacuolation of RM  

            
Cardinaal et al. (2000b)  guinea pig (250-350 g)  cisplatin (1.5 mg/kg/  damaged OC  

      
8 dats, 
i.p.)      

            
Tsukasaki et al. (2000)  chinchillas (500-700 g)  cisplatin (5μl (1 mg/ml)  reduced: EP & CM  
      in saline)       
            
Ekborn et al. (2000)  guinea pig   cisplatin (8 mg/kg, i.v.)  ABR threshold shift  
            
Alam et al. (2000)  gerbils   cisplatin (4 mg/kg/5 days, i.p.) deDPOAE & EP  
         poTUNEL i    
            
O'Leary et al. (2001)  guinea pig   cisplatin (3, 30 or 300  reduced: CAP, CM & EP  
      μg/ml in saline)     
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Table 2 (continued) 
 
 
 
Klis et al. (2002)  guinea pig   cisplatin (1.5 or 2.0 mg/  reduced CAP  
      kg   , i.p

cula.

shift

.)      
            
Rachel et al. (2002)  hamster    cisplatin (15, 11.25 &  increases spontaneous   
   (45-55 days old)  7.5 mg/kg/5 days,  i.p.)  activity in DCN  
            
Hatzopoulos et al. (2002)  Sprague Dawley rat  cisplatin (16 mg/kg, i.p.)  elevated ABR & TEOAE  

   
(210 ± 30 
g)      thresholds   

            
Sluyter et al. (2003)  guinea pig (250-350 g)  cisplatin (1.5 mg/kg/  shrinkage of Stv that  
      5-18 days, i.p.)  did not correlate with  
         redunction of EP  
            
Sergi et al. (2003)  guinea pig (250-300 g)  cisplatin (2.5 mg/kg/  impaired VVOR & slight  

      
6 days, 
i.p.)   loss of HC of crista  

         ampullaris & ma   

         
Massive OHC loss & 
CAP  

         threshold   
            
Wang et al. (2003)  guinea pig (250-300 g)  cisplatin (2 mg/kg/5 days, r.w.) damaged OC  
            

Ekborn et al. (2003)  guinea pig   
cisplatin (4.24 mg/kg, 
i.v.)  MHC = moderate ABR  

      or cisplatin MHC   threshold shift  
      (4 or 8 mg/kg, i.v.)  cisplatin = no ABR   

                  threshold shift   
OHC  Outer Hair Cell     ER Endoplasmic Reticulum  
mOHC  Missing Outer Hair Cell     K Potassium   
deg  degeneration     CM Cochlear Microphonic  
MC  Marginal Cell     SP Summating Potential  
IC  Intermediate Cell     CAP Compound Action Potential 
r.w.  round window     s.c. subcutaneous  
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Table 2 (continued) 
 
 
 
i.p.  intraperitoneal     mIHC Missing Inner Hair Cell  
ABR  Auditory Brainstem Response    EP  Endolymphatic Potential  
RM  Reissner's Membrane     OC Organ of Corti  
DPOAE  Distortion Product Otoacoustic Emissions   MHC Mono-Hydrated Complex  
DCN  Dorsal Cochlear Nucleus         
deDPOAE  Decreased Distortion Product Otoacoustic Emissions      

poTUNEL  
Positive Terminal Deoxynucleotidyl Transferase dUTP-biotin Nick End 
Labeling     

Stv  Stria Vascularis         
VVOR  Vertical Vestibular Ocular Reflex        

HC   Hair Cell                   
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C. CISPLATIN OTOTOXICITY AN INTEGRATIVE VIEW 

 

 

This section provides an integrated overview of the two dominant mechanisms that are believed 

to underlie cisplatin ototoxicity by revealing that each compliments the other.  A review of the 

pharmacokinetics of cisplatin reveals that after systemic treatment the cisplatin molecule exhibits 

high binding affinity for sulfur, is labile and redox-active within the cell.  The high affinity for 

sulfur suggests that the cisplatin molecule will interact with many biomolecules containing 

cysteine and methionine residues.  Cisplatin’s first biomolecular interactions at the level of the 

cell, occur on the plasma membrane.  Ionic homeostasis can be disrupted by binding of cisplatin 

to ion channels in the plasma membrane.  Altering ionic homeostasis is one of the two dominant 

mechanisms of cisplatin ototoxicity. The lability and redox-activity of cisplatin promotes ROS 

generation.  ROS production is the other dominant mechanism that underlie cisplatin ototoxicity. 

Alterations to ionic homeostasis and ROS production each result in DNA damage and cisplatin 

also may directly damage DNA.   From the initial systemic treatment, cisplatin’s interactions in 

the blood stream to its associations with plasma membrane and cytoplasmic proteins prepare it 

for binding to DNA.            
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1. Chemical Biology of Cisplatin 
 

 

Cisplatin (cis-Diamminedichloroplatinum-II) was first synthesized in 1845 and known for 

decades as Peyrone’s chloride.  Since the discovery of its biological activity in the 1960’s, it has 

become one of the most important inorganic compounds in human medicine today.  The 

biological activity of cisplatin was first demonstrated during experiments to evaluate the effects 

of electricity on the growth of prokaryotic cells (Rosenberg, van Camp & Krigas, 1965).  The 

investigators transferred alternating current through Escherichia coli positioned between two 

platinum electrodes in a solution of ammonium chloride.  The results showed that cell division 

was altered even without applying alternating current.  The researchers fortuitously discovered 

that the combination of the platinum electrodes with ammonium chloride inhibited cell division 

but not cell growth and induced filamentous growths up to 300 times the length of a normal cell.  

This new discovery propelled investigations into the antitumor capacity of various platinum 

coordination complexes (Rosenberg, van Camp, Trosko and Mansour, 1969).  Cisplatin was 

shown to be the most successful anticancer platinum complex in pre-clinical experiments by 

inhibiting sarcoma 180, leukemia L1210, Dunning ascetic leukemia, Walker 256 carcinosarcoma 

and methylbenzanthracene-induced mammary carcinoma (Kociba, Sleight & Rosenberg, 1970; 

Rosenberg, van Camp, Trosko& Mansour, 1969; Welch, 1971).    

 The core of the cisplatin molecule and the site of reactivity is the metal ion platinum(II) 

which facilitates a cis-geometry between diammine [(NH3)2] and dichloride (Cl2) ligands (see 

Figure 1).   The basic coordination chemistry of platinum(II) may predict some biological  
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Figure 1:  Chemical structure of cisplatin [cis-{(H3N)2PtIICl2}]. 

 

 

 

reactions of cisplatin.  Platinum(II) is a soft (class B) Lewis acid metal and its ligand binding 

activities are best described by the Hard-Soft-Acid-Base (HSAB) principle.  The HSAB principle 

states that, soft acids (SA) prefer soft bases (SB) and hard acids (HA) prefer hard bases (HB).  In 

equation form the HSAB principle predicts that the following reaction will move to the right. 

 

         HA[SB] + SA[HB]        →       HA[HB] + [SB]SA                                       (1) 

 

The distinction between hard acids/bases and soft acids/bases is related to parameters such as σp 

(softness parameter), ionic radius, ionic charge and Pauling electronegativity (Newman, 

McCloskey & Tatara, 1998; Wulfsberg, 2000).  The degree of the interaction between metals and 
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biomolecules (lipids, proteins, enzymes, DNA, RNA) is dependent on the hardness/softness of 

the metal (Delnomdedieu & Allis, 1993). 

  The HSAB principle has been used to predict intracellular ligand binding for various 

metals.  Practitioners in the fields of ecotoxicology and environmental safety often assess the 

level of metal pollution in a particular environment by sampling the soil and/or water for metal 

levels.  They also may study metal uptake and distribution in tissues and cells of invertebrate 

organisms in the environment (Soto & Marigomez, 1997; Vandenbulcke, Grelle, Fabre & 

Descamps, 1998; van Straalen, 1993).  Decades of such work has revealed that certain metals 

bind stably and preferentially to certain intracellular ligands.  These observations have lead to the 

development of a biologically relevant metal classification system based on HSAB principles 

(Duffus, 2002; Hopkin, 1989; Nieboer & Richardson, 1980; Wolterbreek & Verburg, 2001).  For 

instance, metals that preferentially bind oxygen (O) on biomolecules are considered class A 

metals or hard acids by HSAB principle.  Metals that preferentially bind sulfur (S) and nitrogen 

(N) on biomolecules are considered class B metals or soft acids by HSAB principle.  Those that 

preferentially bind O, S, and N are considered borderline.  Platinum(II) belongs to the class B 

(soft acids) metals that bind preferentially with S and N (Deubel, 2004).  This ligand binding 

activity of platinum(II) carries over to intracellular cisplatin molecules after systemic treatment 

as revealed by the following reaction in tissue (Guthrie & Balaban, 2004); 

 

 Pt-ligand + S2-    →     PtS + apo-ligand                                                   (2) 

 

where, platinum (Pt) bound to an intracellular ligand (e.g., protein) is titrated by S (a soft base) to 

form a redox-active (catalytic) platinum-sulfide (PtS) product.  The redox-activity of PtS can be 
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demonstrated intracellularly by autometallographic development in a light insensitive physical 

developer (see Figure 2 & see discussion below).  These results suggest that after systemic 

treatment intracellular cisplatin is labile, binds preferentially to sulfur bearing biomolecules and 

redox-active. 
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Figure 2: Platinum-sulfide autometallography (PtSAMG). A. Schematic of PtSAMG, where 
platinum bound to sulfur (PtS) creates a redox-active complex that enhances electron (e-) transfer 
between a nucleophile (δ-) and an electrophile (Ag2+ ).  This redox-activity reduces Ag2+ to 
Ag° ْْ which chelates PtS and is revealed as black silver spheres under the electron or light 
microscope.  B. Photomicrograph of kidney tissue from a Sprague-Dawley rat treated with 13 
mg/kg, i.p. of cisplatin.  Black silver spheres are present at an intermediate depth within the renal 
cortex of the kidney.  Note the prominent black silver spheres deposited in the nuclei of the 
proximal tubule cells and lack of deposits within the renal corpuscle.  This pattern of deposition 
was restricted to the middle third of the cortex.  The nuclear  localization is consistent with the 
known formation of cisplatin-DNA adducts.  The localization of binding to proximal tubule cells 
in the middle third of the cortex suggest a selective affinity of these cells for cisplatin, which is 
consistent with the selective damage to proximal tubule cells after cisplatin treatment. C.  The 
same region of the kidney developed by autometallography from a control Sprague-Dawley rat. 
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2. Intracellular Cisplatin is Labile 
 

 

Reaction (2) only can occur for low-affinity (loosely) bound metals in tissue (Zdolsek, Roberg & 

Brunk, 1993), which suggests that cisplatin bound to some biomolecules is still labile.  

Biochemical experiments have shown that cisplatin exhibits low-affinity binding with thioether 

sulphur (e.g., methionine) which can be disturbed by competing S bearing molecules (Esposito & 

Najjar, 2002; Lempers & Reedijk, 1990).  These findings are particularly important because 

labile Lewis acid metals promote the generation of ROS (Zdolsek, Roberg & Brunk, 1993).  

Cisplatin treatment is known to generate the superoxide anion radical (O2
.-) in the ear and kidney 

(Davis, Nick & Agarwal, 2001; Dehne, Lautermann, Petrat, Rauen & de Groot, 2001). In order 

for dioxygen (O2) to be metabolized to O2
.-, it would need to acquire an electron (e-).  This 

acquisition known as an electron reduction may be achieved by input energy (e.g., sunlight) or a 

chemical reducer (Welch, Davis, van Eden & Aust, 2002).  It is often thought that in cells, 

biomolecules may serve as chemical reducers for O2.  However, ground state O2 is a triplet 

molecule and its reaction with biomolecules (most of which have a singlet ground state) is 

physiologically insignificant (Miller, Buetter & Aust, 1990).  For instance, although the reaction 

between O2 and a biomolecule may be thermodynamically favored, there is a kinetic restriction 

of O2 that inhibits its metabolism to O2
.- in the absence of a catalyst (Miller, Buetter & Aust, 

1990).  Class B Lewis Acid metals are effective catalysts for the metabolism of O2 to O2
.-.  Soft 

Lewis acid metals such as platinum(II) may exist in several spin states and will lift the spin 

restriction on O2 which then promotes radical formation.  For instance, both O2 and a 

biomolecule may coordinate to the d-orbital of a soft Lewis acid metal (Valentine, 1973).  Here, 

the metal (Mn+) acts as a redox-active bridge between O2 and the biomolecule (L) which 
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facilitates the transfer of an e- to generate the O2
.- but may gain an e- to generate O2 (Buetter, 

1988; Khan & Martell, 1967). 

 

 

  O2 + L- Mn+             L- Mn+1 +  O2
.-          (3)  e-  

 

The generation of O2
.-  facilitates the well known metal mediated Haber-Weiss reaction (see 

reactions 4-6) which produces the potent hydroxyl radical (HO.) that damages biomolecules, 

such as proteins and DNA via autoxidation (see reaction 7).  Cisplatin treatment is known to 

generate the HO. in ear and kidney tissues (Baliga, Zhang, Baliga, Ueda & Shah, 1998; Clerici, 

Hensley, DiMartino & Butterfield, 1996).   

 

L-Mn+1 +  O2
.-             O2

    +  L-Mn+         (4) 

L-Mn+ + H2O2            L-Mn+1 +  HO-  +  HO.    (5) 

combined 

O2
.- + H2O2                          O2  +  HO-  +   HO.                                  (6) 

L-Mn+1/ L-Mn+

in vivo consequence 

HO. + protein/DNA         damaged-protein/DNA   (7) 

 

 In summary, after systemic treatment intracellular cisplatin is labile.  The core of the 

cisplatin molecule and the site of reactivity is the metal ion platinum(II).  Platinum(II) is a class 

B Lewis acid metal.  Such metals are highly destructive to organic polymers and easily generates 

ROS in biological mileu.   Systemic cisplatin treatment results in the generation of lethal ROS 
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such as O2
.- and HO. in the kidney and ear. These ROS are particularly toxic to DNA and other 

organic polymers.        

 

 

3. Cisplatin Preferentially Binds to Sulfur Bearing Biomolecules Initially 
 

 

Similar to all class B (soft) Lewis acid metals, cisplatin binds preferentially and covalently to 

available S bearing biomolecules.  This is particularly important because many proteins use S 

and disulfide bonds (-S-S-) to maintain their conformation/function (Ivanov et al., 1998). 

Cisplatin’s first encounter with biomolecules in general and S-bearing biomolecules in particular 

occurs in the blood stream. 

 Cisplatin is usually administered intravenously at doses of 20 mg/m2 per day for 5 days or 

100 mg/m2 once every four weeks.  In the blood, cisplatin may exist as protein bound (~90%) or 

unbound (~10%) (Schweitzer, 1993a).   Rapid protein binding occurs soon after administration 

and the high chloride concentration in serum maintains the remaining cisplatin in the unbound 

state (Nitiss, 2002; Siddik, Newell, Boxall & Harrap, 1987).  After intravenous administration in 

humans, the elimination kinetics are biphasic with half-lives (t ½α) of 23-50 minutes and 24-73 

hours (t ½β) for cisplatin bound to plasma proteins (Gullo et al., 1980).  Unbound cisplatin has a 

significantly shorter half-life of 21.7-23.6 minutes.   Different studies may reveal different times 

which reflect differences in methods and experimental design.  The significance of protein bound 

vs. unbound cisplatin in terms of antineoplasm and/or toxicity is unresolved.  It was previously 

thought that only unbound cisplatin had antineoplastic activities (Patton et al., 1978).  Later 

research demonstrated that administration of even preformed protein-bound cisplatin was 
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therapeutically active and cytotoxic (Holding et al., 1992; Hoshino et al., 1995; Vreeburg, Stell, 

Holding & Lindup, 1992).  Protein bound cisplatin results in significantly less urinary secretion 

and more tissue absorption which may facilitate better therapeutic outcomes as well as increased 

side effects (Gullo et al., 1980).   

When cisplatin enters the blood it reacts readily with S and N rich domains on plasma 

proteins as predicted from its Lewis acid metal classification (see section C.1.).  Albumin is 

considered the major substrate for cisplatin binding in the blood and is the most studied plasma 

protein.  Human serum albumin (66 kDa) exhibits 17 disulfide bridges (-S-S-) and one free thiol 

(S) at Cys34 which has high affinity for class B (soft) Lewis acid metals (Esposito & Najjar, 

2002; Ivanov et al., 1998).  Cisplatin’s interaction with albumin is complex and may yield 

various products such as bifunctional binding to S and N, monofunctional binding to one S and a 

monofunctional binding with S that expels one amine (NH3) from cisplatin (Ivanov et al., 1998).   

Additionally, a trans configuration may be achieved where cisplatin cross-links two albumin 

molecules (Ivanov et al., 1998).   

 Unbound-unspeciated cisplatin is rapidly speciated in the cytoplasm (see Figure 3).  

Outside the cell the relatively high chloride concentration (~100 mM) is believed to maintain 

cisplatin in its native form [cis-{(H3N)2PtIICl2}] (Kartalou & Essigmann, 2001).  Substitution 

reactions also may occur outside the cell, where the chloride on cisplatin is replaced by 

endogenous chloride ions, but the structure remains unchanged.  Inside the cell, the relatively 

low chloride concentration (~4 mM) is believed to facilitate the replacement of one chloride then 

a second chloride for endogenous anions, which results in [cis-{(H3N)2PtIICl(R)}+] and [cis-

{(H3N)2PtII(R)2}2+] species, where R may be various types of small ions or molecules (Lippard, 

1982).  These charged platinum species are potent electrophiles that are ready to react with 
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proteins, nucleic acids, lipids, enzymes and various organelles in the cell.  The toxicity of 

cisplatin is based predominantly on these charged species, particularly [cis-

{(H3N)2PtIICl(H2O)}+], where a chloride ion is replaced by a water molecule.  This species is 

called a monohydrate complex.  Administration of the monohydrate complex, results in more 

hearing loss and systemic toxicity than the unspeciated form of cisplatin (Ekborn et al., 2003).   

  

 

 

cis-[(H3N)2PtIICl2]

cis-[(H3N)2PtIICl2]

cis-[(H3N)2PtIICl(R)]+

cis-[(H3N)2PtII(R)]2+

~100 mM Cl

     ~4 mM Cl

Speciation

R = H2O
R = (H2O)2
R = OH
R = (OH)2
R = (H2O)(OH)
R = NO
R = Br
R = I

Cl2-

Cl-

 Cl-

extracellular

                      cytoplasm

pH

t1/2 ~ 2 h

 

Figure 3:  Speciation of cisplatin [cis-{(H3N)2PtIICl2}] in the cytoplasm. 
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 Speciation is dynamic, where Rs are weakly coordinated to platinum and may replace 

each other leading to deprotonation and a lowered pH (acidic) in the cytoplasm.  Many cisplatin 

sensitive cancer cells have a low intracellular pH than resistant cells and high cochlear pH levels 

protect against cisplatin ototoxicity (Murakami et al., 2001; Tanaka, Whitworth & Rybak, 2004).  

The charged platinum species are short lived because they readily react with various substrates, 

particularly proteins in the cytoplasm.  They are specifically attracted to S and N donor proteins 

and peptides such as those with accessible disulfide bridges, methionines, cysteines and 

histidines (Williams, 1974).  Figure 4 illustrates speciation of the cisplatin molecule in 

preparation for protein binding.  The aquated platinum species react more rapidly with thioether 

sulphur (e.g., methionine) than with thiols (e.g., cysteine) because ligand exchange is slower than 

direct coordination, but the latter is irreversible (Esposito & Najjar, 2002; Wang, Lu & Li, 1996).  

Platinum(II) bound to the thioether sulphur on methionine easily can be reversed with S bearing 

nucleophiles (Lempers & Reedijk, 1990).  Interestingly, an ammonia ligand trans to the 

coordinated S may be activated and expelled (Wang, Lu & Li, 1996).  This trans  effect also has 

been shown when cisplatin coordinates with the methionine of HSA (Ivanov et al., 1998).  

Speciation does not need to occur for cisplatin to bind to S sites on proteins (Dedon & Borch, 

1987).  Many proteins and enzymes use disulfide bridges in protein folding in the endoplasmic 

reticulum.  Protein folding or conformation determines protein function.  The charged or 

uncharged platinum species may disrupt protein and enzyme conformation by targeting S and N 

sites which then result in altered function. For instance, cisplatin will remove S from 

biomolecules at high concentration and/or prolong incubation time (Ivanov et al., 1998).  
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cis-[(H3N)2PtIICl2]

cis-[(H3N)2PtIICl2]

cis-[(H3N)2PtIICl + P]

cis-[(H3N)2PtII + P]

cis-[(H3N)2PtIICl(R)]+

cis-[(H3N)2PtII(R)]2+

Cl-

Cl2
-

Cl-

P = PROTEIN                                                                   BINDING SITE (S)
Chymotrysin                                                                -S-S-, Met, NH3 terminal
Cytochrome-c-                                                            Met, His
Subtilisin                                                                      Met, His
Carboxypeptidase                                                         -S-S-, Met, His, NH3 terminal
Concanavilin
Thermolysin                                                                   His
Triose Phosphate Isomerase                                        SH
Ribonuclease                                                                 Met
GSH  (0.5-10 mM)                                                        Cys
Metallothionine                                                             Cys

extracellular

                      cytoplasm

~100 mM Cl

     ~4 mM Cl

 

 

 
Figure 4:  Example of cisplatin’s binding to proteins in the cytoplasm.   

 

 

In summary, cisplatin binds preferentially to sulfur bearing biomolecules initially.  Sulfur 

bearing biomolecules are ubiquitous throughout the cell, therefore a large variety of 

biomolecules will be tartgeted.  The affinity of platinum(II) (the core of the cisplatin molecule) 

for sulfur is predictable based on HSAB chemistry.   Although the cisplatin molecule exhibits 
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high affinity for sulfur, its binding to sulfur bearing biomolecules is temporary/labile (see 

reaction 2 and discussion above).  This is further supported by the fact that cisplatin binds 

numerous sulfur bearing biomolecules in the blood and on the plasma membrane but ultimately 

binds nitrogen rich subunits of DNA in the nucleus.  The class B Lewis acid classification of 

platinum(II) compliments HSAB chemistry by predicting high affinity binding for both sulfur 

and nitrogen.  Recent experiments applying density functional theory and continuum dielectric 

calculations have revealed that the cisplatin molecule exhibits a kinetic preference for nitrogen 

over sulfur in biologically relevant conditions (Deubel, 2004).  Intracellular cisplatin may bind 

initially to sulfur bearing biomolecules but it eventually migrates to nitrogen rich biomolecules 

such as DNA (van Boom, Chen, Maarten & Reedijk, 1999).  

 

 

4. Cisplatin Bound to Sulfur is Redox-active 
 

 

Cisplatin binds rapidly to thioether sulfur but slowly to thiols such as cysteine (Esposito & 

Najjar, 2002).  This is because direct coordination to the thioether sulfur is faster than ligand 

exchange with the thiol. Ligand exchange with the thiol results in PtS covalent bonds (Esposito 

& Najjar, 2002).  The PtS complex may be redox-active which may easily promote oxidative 

cross-linking of biomolecules in tissue. Results from autometallography are consistent with the 

redox-activity of the PtS complex (see Figure 2; Guthrie & Balaban, 2004).   

Autometallography is the most powerful cytochemical process for characterizing the 

topographical distribution of low-affinity bound redox-active metals (Garner, Roberg, Qian, 

Eaton & Truscott, 2000; Zdolsek, Roberg & Brunk, 1993).  It has been used to locate and map 
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the movement of trace amounts of endogenous and exogenous redox-active metals such as; Fe2+, 

Zn2+, Cu2+, Co2+, Ni2+, Hg2+, Cd2+, Pb2+, As2+, Bi2+, Tl2+, Au2+, and Ag2+ (Danscher, 1981; 

Danscher, 1991). The autometallographic process involves intracellular precipitation of insoluble 

metallic crystallites from the electrovalent bonding of the target metal to a soft Lewis Base such 

as S (Danscher, Stoltenberg, Kemp & Pamphlett, 2000; Zdolsek, Roberg & Brunk, 1993). The 

resulting crystallite is redox-active which may be demonstrated by a physical developer. The 

physical developer contains a nucleophile such as ascorbate and an electrophile such as Ag2+.  

Ag2+ is reduced on the surface of the metal-sulfide crystallite by the nucleophile forming a 

metallic Ag° shell around the metal-sulfide crystallite (Csaki, Kaplanek, Moller & Fritzsche, 

2003; Jackson & Halas, 2001; James, 1939).  Therefore, the physical-development of the metal-

sulfide only occurs if the metal-sulfide complex is redox-active (James, 1939).  Cisplatin-

autometallography has revealed that platinum bound to S yields a redox-active complex in tissue 

(see Figure 2; Guthrie & Balaban, 2004).  This means that cisplatin bound to S or other ligands 

may actively promote cross-linking between endogenous/exogenous nucleophilic and 

electrophilic molecules.  This effect is similar to what occurs when Fe(III) or Fe(III)-EDTA 

complex interact with endogenous nucleophiles (e.g., ascorbate, GSH, H2O2 or reduced NADH) 

to induce the generation of HO. and cross-linking of biomolecules (Dizdaroglu, Olinski, 

Doroshow & Akman, 1993; Murata, Imada, Inoue & Kawanishi, 1998). Cisplatin induced cross-

linking of biomolecules in vitro is well known and results in loss of molecular function (Ivanov 

et al., 1998; Pizzo, Swaim, Roche & Gonias, 1988).   

In summary, cisplatin bound to sulfur is redox-active.  The d-orbital of metals such as 

platinum(II) allows them to serve as a redox-bride between biomolecules (Valentine, 1973).  

Reaction (2) coupled with autometallography reveals that cisplatin bound to sulfur is redox-
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active.  This redox-activity leads to oxidative cross-linking of biomolecules.   This is particularly 

important because cisplatin simultaneously binds DNA and sulfur bearing biomolecules 

(Kartalou & Essigman, 2001).  

 

 

5. Summary and Implications for Ototoxic Mechanisms 
 

 

Cisplatin binds preferentially to sulfur and nitrogen rich biomolecules.  Most biomolecules 

exhibit sulfur and nitrogen which suggest that cisplatin will be highly promiscuous in 

biomolecular binding. The plasma membrane is composed of many sulfur and nitrogen rich 

biomolecules and serves as the first site of assaul on the cell.  Numerous ion channels on the 

plasma membrane harboring sulfur and nitrogen moieties are direct targets for cisplatin.   

Cisplatin’s interactions with ion channels may be temporary but it elicits signaling cascades that 

may threaten the life of the cell.  Ultimately, cisplatin crosses the plasma membrane to enter the 

cytoplasm.  The redox-capacity of the platinum(II) metal readily induces ROS in the cytoplasm 

of the cell.  Reaction (2) coupled with autometallography reveals that after systemic treatment, 

the cisplatin molecule is redox-active and low-affinity bound in the cell.  The low-affinity 

binding of cisplatin may serve as an intermediate to DNA binding.  For instance, although 

cisplatin may initially bind biomolecules in the cytoplasm, it eventually migrates to the nucleus 

to bind nitrogen rich DNA purines (van Boom, Chen, Teuben & Reedijk, 1999).  It is likely that 

the molecular toxicobiology of cisplatin include, interruption of ionic homeostasis due to 

disruption of plasma membrane ion channels, promotion of ROS due to redox-activity from 

cross-linking biomolecules in the cytoplasm and DNA damage due to high-affinity for N-rich 
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purine DNA bases. These mechanisms are probably not independent and each results ultimately 

in damaged DNA (see Figure 5 for an integrative model of cisplatin ototoxicity).   

In hearing research there are two dominant mechanisms of cisplatin induced ototoxicity 

(Campbell, Kalkanis & Glatz, 2000).  The first mechanism is based on the ion homeostasis 

hypothesis.  This hypothesis suggests that cisplatin disturbes plasma membrane ion channels that 

interferes with cochlear ionic homeostasis leading to apoptosis (Mcalpine & Johnstone, 1990). 

Figures 6 and 7 reveal molecular mechanisms by which cisplatin may alter ionic homeostasis.  

The second mechanism of cisplatin induced ototoxicity is based on the ROS hypothesis.  This 

hypothesis suggests that cisplatin induces ROS that oxidizes biomolecules and promote 

apoptosis (Clerici, DiMartino and Prasad, 1995).  Figure 8 reveals the in vivo molecular pathway 

that underlies cisplatin induced ROS and promotion of apoptosis in the cochlea.  There are many 

impirical evidence in the hearing research literature to support these two hypotheses.  In the 

tumor biology literature the primary mechanism by which cisplatin induces cytotoxicity and 

antineoplasm is based on the formation of cisplatin DNA damage.  Recent research has revealed 

that cisplatin precipitates cisplatin DNA damage among various cell types in the inner ear (van 

Ruijven, de Groot, Hendriksen & Smoorenburg, 2005).  This suggests, that DNA damage may be 

a third mechanism that underlie cisplatin induced ototoxicity.   This is further supported by the 

fact that irregular ionic homeostasis and ROS production may each induce DNA damage (see the 

sections below & Figure 5).   
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Figure 5:  An integrative view of the molecular mechanisms that underlie cisplatin ototoxicity.  
Before entering the cell cisplatin may interact directly with the plasma membrane and ion 
channels (see text for details).  Such, interactions disrupts ionic homeostasis.  Cisplatin easily 
crosses the plasma membrane both by passive diffusion and active transport (see text for details).  
Once inside the cell cisplatin targets a wide variety of biomolecules and intracellular organelles 
(see text for details).  Mitochondria is a consistent intracellular target.  Cisplatin disrupts the 
mitochondria membrane potential, initiates the mitochondria apoptosis pathways and reduce the 
level of ATP available for ion pumps.  ATP-dependent ion pumps such as Ca2+-ATPase and Na+, 
K+-ATPase are specifically disrupted.  Depletion of ATP for the Ca2+-ATPase results in 
excessive influx of calcium (Ca) which intreases intracellular levels to dangerous micromolar 
levels.  High levels of Ca initiates various negative signaling cascades that lead to DNA damage 
(see text for details).  Depletion of ATP for the Na+, K+-ATPase results in excessive influx of 
sodium (Na+) and chloride (Cl-) and efflux of potassium (K+) (see text for details).  Excess Na+ 
and Cl- promotes DNA damage in the form of strand breaks.  Intracellular cisplatin is redox-
active and easily promotes ROS (see text for details).  ROS targets and damage DNA.  Cisplatin 
also targets DNA directly (see text for details).   Abbreviations; Pt, cisplatin; AIF, apoptosis 
inducing factor; endoG, endonuclease G; APAF-1, apoptosis activating factor; DFF, DNA 
fragmentation factor; tBid, truncated BH3 interacting domain death agonist.    
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Figure 6: Cisplatin may alter ionic homeostasis by interacting with the plasma membrane.  A.  
Enzymes and ion channels regulate passage across the lipid bilayer of substrates (s) and ions (i) 
respectively.  B. Cisplatin binds to phospholipids via charge-charge interactions and may 
facilitate the binding of other cisplatin molecules.  The accumulation of cisplatin molecules on 
the lipid bilayer results in altered fluidity, permeability (efflux/influx of small molecules) and 
disruption of enzyme and ion channel activities.  C.  These alterations may be temporary but 
could propagate via signal transduction pathways throughout the cell. 
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Figure 7: Cisplatin may alter ionic homeostasis by interacting with plasma membrane protein(s).  
Cisplatin [cis-(H3N)2PtIIM] binds to plasma membrane proteins at particular sites (N) and induce 
conformational changes.  This change in conformation results in the loss of biological function 
for the affected protein(s). For instance, binding to calcium (Ca2+) plasma membrane proteins 
may lead to excess influx of Ca2+.   
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Figure 8:  Molecular pathway that underlies cisplatin induced ROS and promotion of apoptosis.  
Cisplatin cross-links biomolecules and generate ROS.  ROS attacks mitochondria and alters the 
mitochondrial membrane potential (∆ψ) followed by the release of cytochrome-c.  Cytochrome-c 
binds to apoptotic activating factor-1 (Apaf-1) and activates caspases-9 which activates caspase 3 
which then fascilitates cell death (apoptosis). 
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6. Cisplatin Alters Ionic homeostasis in the Cochlea 
 

 

 McAlpine and Johnstone (1990) reported experiments aimed at elucidating the mechanism of 

cisplatin ototoxicity.  Forty seven pigmented guinea pigs (250-400g) were treated with cisplatin.  

Cisplatin was administered subcutaneously or iontophoresed into scala media.  

Electrophysiological results showed that reduction in OHC receptor current (mechanoelectrical 

transduction) was followed by decreasing N1 (CAP) thresholds within 20 hours after cisplatin (6 

mg/kg, s.c.) treatment.   These authors theorized that cisplatin blocked the number of channels 

available for transduction which lead to hearing loss.  Cisplatin was iontophoresed into scala 

media at the 3 kHz region and N1 threshold decreased basally (towards the higher frequencies) at 

a rate consistent with endolymphatic flow.  These findings further compelled the authors to 

theorize that there is no intrinsic difference in vulnerability between high and low frequency 

regions of the cochlea.  They explained that the reason cisplatin induces high frequency hearing 

loss is because the drug is better able to perfuse the blood-labyrinth barrier at the base than at the 

apex of the cochlea, however this was not measured directly. 

 Saito, Moataz and Dulon (1991) studied cisplatin-induced ion channel blockage by 

isolating OHCs from pigmented guinea pig (200-300g) cochleae.  Isolated OHCs treated with 

cisplatin (1 mM) showed no change in viability out to six hours following removal from the 

cochlea.  Additionally, cisplatin was believed to block calcium ion channels as determined by 

microspectrofluorometry of the dual emission calcium probe indo-1.  These authors argued that 

cisplatin binds to the plasma membrane of the OHCs and blocks calcium channels.  This 

suggests that cisplatin’s interaction with the plasma membrane may alter calcium homeostasis.  
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Interestingly, similar results had been shown for aminoglycosides in previous studies (Dulon, 

Zajic, Aran & Schacht, 1989), which suggest similar mechanisms between the drugs.  

 Kimitsuki, Nakagawa, Hisashi, Komune and Komiyama (1993) evaluated the effects of 

cisplatin on the mechanoelectrical transduction of the cochlear hair cells from hatched chicks (2-

7 days old) by using a whole-cell patch-electrode voltage clamp technique.  The results showed 

that cisplatin treatment modulated mechanoelectrical transduction channels in a dose dependent 

manner with voltage dependent and independent components.  These results support a channel 

blockade role in cisplatin ototoxicity.  Saito and Aran (1994) treated pigmented guinea pigs 

(300-400g) acutely (7.5 mg/kg/2 days) or chronically (1.5 mg/kg/10 days) with cisplatin.  CAP 

(round window electrode placement) was used to assess ototoxicity.  Significant CAP threshold 

shifts were observed after the second dose of acute treatment.  During chronic treatment, 

threshold shifts were observed only at eight or nine days of treatment.  The authors argued that 

the difference in threshold shift between acute and chronic treatment may be attributed to a 

blockade in OHC ion channels.  

 Ernst and Zenner (1995) studied the effects of cisplatin on isolated OHCs from guinea 

pig cochleae.  The whole-cell patch-clamp technique was used to measure the effects of cisplatin.  

The results showed that cisplatin induced hyperpolarization and cellular elongation. From these 

results the authors concluded that cisplatin alter ion channels of the plasma membrane.  Komune 

et al. (1995) treated fifty-eight albino guinea pigs (360-480) with cisplatin (12.5 mg/kg, i.m.).  

The results revealed that cisplatin reduced the EP from 80 mV to 32 mV.  Additionally, there 

was an increase in potassium, sodium and chlorine in the endolymph.  In the perilymph only 

sodium increased while potassium and chlorine stayed the same.  These authors reasoned that 

cisplatin interferes with the normal homeostasis of ion transport in the cochlea.  Peters, 
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Mommersteeg and Heijmen (1999) exposed the electroreceptor organ of the freshwater catfish 

(120-280 g, n = 8) to cisplatin (330 μM) for 1 hour.  Spike trains from the electroreceptor organ 

primary afferents were studied for ototoxic effects.  Cisplatin treatment caused a drop in 

spontaneous activity, reduced sensitivity and disfiguration of the frequency spectrum.  However, 

these effects were reversed 22 days after treatment.  From these results the authors reasoned that 

ion channels were altered by cisplatin.       

 In summary, both in vitro and in vivo studies reveal that cisplatin alters ionic 

homeostasis.  Such observations have generated the hypothesis that the mechanism of cisplatin 

ototoxicity is disturbance of plasma membrane ion channels that result in altered cochlear ionic 

homeostasis.  Ionic homeotasis may not be the only mechanism of ototoxicity since cisplatin 

generates ROS and directly bind to DNA in the cochlea. 

 

 

7. Ionic Mechanisms Can Induce DNA Damage 
 

 

Altered homeostasis of ions such as [Ca2+], [Na+] and [K+] may induce DNA damage and cell 

death (see Figure 5).  High intracellular levels of ([Ca2+]i) my damage DNA by directly 

activating [Ca2+]-dependent nucleases that fragments DNA (Yakovlev et al., 2000).  The altered 

homeostasis of [Ca2+]i may promote nitric oxide synthase (NOS), kinases and enery failure of 

mitochondria, all of which produce ROS induced DNA damage (Fonnum & Lock, 2004).  

Recent experiments have shown that T-type calcium channel blockers partially reduce DNA 

fragmentation in the organ of Corti after cisplatin intoxication (So et al, 2005).  Blocking [Ca2+] 

channels only provided partial protection from DNA damage in the cochlea which suggests that 
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cisplatin may alter cochlear ionic homeostasis by more covert mecahnsims.   For instance, 

cisplatin may reduce intracellular levels of ATP that limits the energy supply available for ion 

pumps that are vital for maintaining ionic homeostasis (Dursun et al., 2006; Pai & Sodhi, 1992).  

This line of thinking is supported by recent studies that reveal that cisplatin targets mitochondria 

and alter activity of both Ca+-ATPase and Na+, K+-ATPase in the cochlea (Cheng, Liu, Hsu & 

Lin-Shiau, 2005; Devarajan et al., 2002).  Reducing the availability of ATP would affect the 

Ca2+-ATPase by inhibiting the efflux of [Ca2+]i, thereby increasing [Ca2+]i from nM to lethal μM 

levels.  Additionally, energy depletion by reducing ATP would affect the Na+, K+-ATPase by 

significantly increasing intracellular level of [Na+]i followed by concomitant influx of [Cl-].  

Therefore, excess [Na+] and [Cl-] would accumulate in the cell.  Excess [Na+] and [Cl-] induces 

DNA strand breaks which are chemically and structurally different than cisplatin DNA adducts 

(Kultz & Chakravarty, 2001).  DNA strand breaks have been found in the cochlea after cisplatin 

treatment (Watanabe et al., 2002).  Another effect of reduced ATP on Na+, K+-ATPase is 

excessive efflux of [K+]i.  This is important because [K+]i prevents apoptosis DNA fragmentation 

by DNA fragmentation fractors (DFF) (Hughes, Bortner, Purdy & Cidlowski, 1997).  Cisplatin is 

known to induce apoptotic DNA fragmentation in the cochlea (Alam et al., 2000).    

 

 

8. Cisplatin Mediates ROS Production in the Ear 
 

 

Class B Lewis acid metals such as cadmium and mercury are known to easily generate ROS by 

crossing the plasma membrane and accumulate in the cytoplasm.  The passage of cisplatin across 

the plasma membrane is currently a controversial issue because different research groups have 
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provided evidence to support at least three different mechanisms of influx.  For instance, 

cisplatin is believed to cross the plasma membrane by passive diffusion via lipid solubility, 

passive diffusion via ion channels and  receptor/carrier-mediated transport (Gately & Howell, 

1993). Class B metals such as cadmium and mercury are known to passively diffuse across the 

plasma membrane.  Cisplatin also may diffuse passively across the plasma membrane and induce 

cooperative uptake, where the initial binding to phospholipids facilitates the entry of other 

cisplatin molecules (Wang, Lu & Li, 1996).   Few experimental observations have supported the 

proposal of passive diffusion of cisplatin across the plasma membrane (Gately & Howell, 1993).  

Conditions that increase plasma membrane permeability such as hyperthermia, radiation and 

chemical treatment have supported the notion of passive diffusion (Ohtsubo et al., 1997; Yang, 

Douple & Wang, 1995).   Systematic work on the uptake and distribution of cisplatin using 

sensitive procedures such as inductively coupled plasma mass spectrometry have concluded that 

cisplatin enters the cell via passive diffusion (Ghezzi, Aceto, Cassino, Gabano & Osella, 2004).   

A few studies have supported the proposal of receptor/carrier-mediated transport of 

cisplatin across the plasma membrane by showing that cisplatin’s accumulation can be 

manipulated (stimulated or inhibited) by pharmacological means and by altering signal 

transduction pathways (Canada, 1993; Gately & Howell, 1993).  Pharmacological agents that do 

not alter plasma membrane permeability may inhibit cisplatin uptake which supports the notion 

of receptor/carrier transport (Andrews, Velury, Mann & Howell, 1988; Desoize & Madoulet, 

2002; Gately & Howell, 1993; Kartalou & Essigmann, 2001).   

There are multiple routes for the passage of cisplatin across the plasma membrane 

depending on its modification in the blood and extracellular mileu.  Most researchers who 

disagree on the exact route of influx generally agree that 50% of cisplatin will passively diffuse 
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across the cell membrane while the remaining 50% is actively transported (Guminski, Harnett & 

de Fazio, 2002; Kelland, 1993). Regardless of the specific mechanism of influx, cisplatin 

efficiently crosses the membrane by weak sequential associations and disassociations between 

biomolecules (Wang, Lu & Li, 1996). Cisplatin’s interaction with the plasma membrane is 

highly complex and there are many routes of entry into the cell (see Figure 9).  Iron and copper 

are transported to various cell types by proteins such as transferin and ceruloplasmin, 

respectively.  Platinum(II) is a more reactive metal than iron and copper therefore molecular 

mimicry may facilitate passage across the membrane.  Once across the membrane, intracellular 

levels are determined by mechanisms of efflux (see Figure 9).   

Cisplatin efflux may be biphasic with an initial rapid phase then a slower phase (Mann, 

Andrews & Howell, 1990).  The efflux of cisplatin may have some relevance to the cochlea. 

The ability of the stria vascularis to recover from cisplatin intoxication may be due to specialized 

drug resistance pumps on the plasma membrane.  For instance, P-glycoprotein is an energy-

dependent efflux pump, also known as the multidrug resistance pump 1 (MRP1).  MRP1 has 

been localized in the stria vascularis and vestibular epithelium but not the organ of Corti (Saito et 

al., 2001).  Experiments on knockout mice suggest that the MRP1 may influence the 

accumulation of various drugs in the inner ear and may mediate ototoxicity (Zhang et al., 2000).  

Another member of the MRP1 family of drug resistance pumps is the so called cisplatin efflux 

pump or canalicular multispecific organic anion transporter (cMOAT), which is now known as 

MRP2.  MRP2 typically functions to transport glucuronide-conguated bile acids into the bile, 

however it may export GSH-drug conjugates.  Experiment on the MRP2 suggested that a 

cisplatin-resistant phenotype can be achieved through controlling the level of cisplatin in the 
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cytoplasm (Taniguchi et al., 1996).   Such control is vital because intracellular cisplatin is redox-

active which means that it will easily promote ROS (Guthrie & Balaban, 2004).  

Research supporting a ROS mechanism of cisplatin ototoxicity has been ongoing since 

the 1990’s. For instance, Clerici, DiMartino and Prasad (1995) studied the direct anatomical 

alterations of ROS on isolated cochlear OHCs.  OHCs were superfused with artificial perilymph 

containing the following ROS; O2
.-, OH. or the ROS inducer H2O2.  The results showed that ROS 

directly induced OHC bleb formation and diminished cell length.  From these results the authors 

concluded that ROS induced OHC changes are consistent with ototoxic hair cell damage.  Clerici 

and Yang (1996) studied the direct effects of ROS on cochlear physiology.  Guinea pigs (250-

350 g) were treated with ROS infused through a hole in the cochlea. Analysis of CAP and CM 

(round window electrode placement) served as functional measurements of the cochlea. ROS 

treatment lead to significant threshold shifts of the CAP in the high frequencies.  There was no 

statistically significant difference between CM of the ROS treated animals and control animals.  

Clerici, Hensley, DiMatino and Butterfield (1996) directly demonstrated the generation of ROS 

as a result of cisplatin ototoxicity.   Guinea pig cochlear explants were studied by using electron 

paramagnetic resonance spectroscopy.  The generation of the hydroxyl radical was particularly 

abundant after cisplatin exposure.  Cisplatin was believed to catalyze hydrogen peroxide to the 

hydroxyl radical.  These direct studies engendered the hypothesis of cisplatin ROS induced 

ototoxicity.   Since these direct experiments, subsequent work has relied on indirect methods to 

support an ROS mechanism of cisplatin ototoxicty (Kamimura, Whitworth & Rybak, 1999; 

Korver, Rybak, Whitworth & Campbell, 2002; Teranishi, Nakashima & Wakayashi, 2001; 

Rybak & Kelly, 2003; Wimmer et al., 2004). 
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Figure 9: Complex interaction of cisplatin with the cell membrane and routes of influx and 
efflux.  1.  membrane protein with disulfide bridge attracts cisplatin.  2.  cisplatin bound to 
phospholipids.  3.  cisplatin may enter the cell via passive diffusion.  4.  cisplatin may enter the 
cell via passive diffusion through channel proteins.  5.  cisplatin may enter the cell by transferin 
& transferring receptor or facilitated diffusion by carrier proteins (energy independent transport).  
6.  cisplatin may enter the cell via energy dependent transport by carrier proteins.  7.  
cerulopasmin bound cisplatin, copper transporter 1 (CTR1) & cell surface reductase (CSR) 
facilitates the transport of cisplatin into the cell.  8.   multidrug resistance protein 1 (MRP1) or 
glutathione S-conjugated export pump (member ABC superfamily) facilitates the efflux of 
cisplatin.  9.  multidrug resistance protein 2 (MRP2) aka canalicular multispecific organic anion 
transporter (cMOAT) facilitates the efflux of cisplatin.  10.  trans-Golgi export system facilitates 
the efflux of cisplatin.  Cisplatin abbreviations = PtII, Pt, cis-DDP. 
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9. Cisplatin Induces DNA Damage 
 

 

The hearing research literature has provided data to suggest that cisplatin targets ion channels 

that alters ionic homeostasis or cross-link biomolecules to promote ROS.  The cancer literature 

has provided data to suggest that cisplatin directly binds to DNA and this binding underlies 

cytotoxicity and antineoplasm.  The early studies on prokaryote cells that discovered the 

biological activity of cisplatin also revealed cisplatin-induced filamentous growths (elongation of 

bacteria without division due to defective replication from DNA damage).  Filamentous growths 

are characteristic of DNA damaging agents (Adler & Hardigree, 1965; Rosenkranz, Garro, Levy 

& Carr, 1966; Witkin, 1967). The majority of cisplatin is found bound to DNA (Harder, 1974).  

Cisplatin is highly attracted to the N-rich purines (guanine & adenine) of DNA (Reedijk, 1999).  

In fact, the basses of the anticancer action of cisplatin, is its ability to precipitate DNA adducts 

(Jamieson & Lippard, 1999).  The adducts formed by cisplatin are monofunctional and 

bifunctional (Eastman, 1986; Fichtinger-Schepman, van Oosterom, Lohman & Berends, 1987; 

Kelland, 2000).  Monoaquated or monospeciated cisplatin forms the monofunctional adducts 

(see Figures 3 and 10). Monofunctional adducts typically bind to the N7 of a single DNA base, 

particularly a guanine residue while coordinated to H2O, HO. or a protein.  These adducts 

account for ~2% of the adducts formed.  Formation of monofunctional adducts have a t1/2 ~0.1 h 

and they may convert to a bifunctional adduct at a t1/2  ~2.1 h (Bancroft, Lepre & Lippard, 1990).     

Bifunctional adducts bind to the N7 position of purines to form interstrand and intrastrand 

cross-links (Jamieson & Lippard, 1999; Kartalou & Essigmann, 2001; Kelland, 2000).  The 

interstrand cross-link is cis-[(H3N)2Pt{d(pGpC)/d(pGpC}] and is often denoted as inter-

d(pGpC)/d(pGpC) or cis-G/G (see Figure 10).   Here cisplatin binds to guanine residues on 
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opposite DNA strands.  The cis-G/G accounts for ~2% of bifunctional adducts (Jamieson & 

Lippard, 1999; Kartalou & Essigmann, 2001).  Among the intrastrand cross-links the most 

abundant is the cis-[(H3N)2Pt{d(pGpG)}] often denoted as 1,2-d(GpG) or cis-GG (see Figure 

10).  Here cisplatin binds to two adjacent guanine (GG) residues.   The cis-GG are the major 

adducts and comprise ~60-65% of the adducts formed (Jamieson & Lippard, 1999; Kartalou & 

Essigmann, 2001).  The second most abundant intrastrand adduct is the cis-

[(H3N)2Pt{d(pGpA)}] often denoted as 1,2-d(ApG) or cis-AG (see Figure 10).  Here cisplatin 

binds to an adenine-guanine (AG) sequence.   The cis-AG comprise ~20-25% of the adducts 

formed (Jamieson & Lippard, 1999; Kartalou & Essigmann, 2001).  The third most abundant 

intrastrand adduct is the cis-[(H3N)2Pt{d(GpXpG)}] often denoted as 1,3-d(GpXpG) or cis-

GXG, where X may be any nucleotide (see Figure 10).  Here cisplatin binds to two guanines 

separated by X.  The cis-GXG comprise ~5-10% of the adducts formed (Jamieson & Lippard, 

1999; Kartalou & Essigmann, 2001).    
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Figure 10:  Structure of cisplatin DNA adducts. A.  cis-GG.  B.  cis-AG.  C.  cis-GXG.  D.   
monofunctional adduct, where R = H2O, HO., etc.  E.  monofunctional adduct, where P = a 
protein.  F.  cis-G/G.  See text for details.  

 

 

All cisplatin DNA adducts may induce structural alterations to the DNA helix.  For 

instance they may significantly bend, unwind and shorten the DNA helix (Bellon, Coleman & 

Lippard, 1991; Cohen, Bauer, Barton & Lippard, 1979).  They bind predominantly in the major 

groove and may bend the DNA helix by ~20-80º and unwind the helix by ~13-80° (Jamieson & 

Lippard, 1999; Kartalou & Essigmann, 2001).  A single adduct may change the angular 

orientation of the DNA helix significantly towards the major groove.  The cis-G/G adduct may 

bend the helix by ~20-47° and unwind it by ~70-87°.  The cis-GG adduct may bend the helix by 

~32-78° and unwind it by ~13-25°.  The cis-AG adduct may bend the helix by ~25-55° and 

unwind it by ~13°.  The cis-GXG adduct may bend the helix by 20-35 ° and unwind it by 19-23°.  

Each adduct induces a unique alteration to the classic Watson-Crick DNA structure.  These 
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alterations to the DNA structure are recognized by a variety of different proteins.  Many of these 

proteins are involved in vital cellular functions such as transcription.   

Cisplatin DNA adducts accumulate in tumor cell as well as cells from a variety of tissues 

such as pancreas, liver, kidney, muscle, brain, testis, duodenum, spleen and heart (Terneggen et 

al., 1987).  DNA adducts also have been localized among various cell types in the inner ear 

(Thomas, Lautermann, Liedert, Seiler & Thomale, 2006; van Ruijven, de Groot, Hendriksen,& 

Smoorenburg, 2005). In addition to platinated DNA adducts, cisplatin may induce single and 

double strand breaks in DNA.  The mechanisms of such strand breaks are less known but the 

redox-activity of platinum(II) may induce ROS that could easily induce strand breaks.    

In summary, DNA is one target for cisplatin.  Speciation of cisplatin in the cytoplasm 

prepares it for covalent binding to the N7 of purine DNA bases.  The N7 is a highly nucleophilic 

site that is known to attract a number of genotoxic xenobiotics.  Less attention has been focused 

on cisplatin’s binding to phosphates on the DNA even though such interactions would be weak.  

Cisplatin is able to access the major groove of the DNA and bend the helix towards the major 

groove thus increasing the minor groove.  The guanine residues are particularly targeted by 

cisplatin because of their high nucleophilic nature.  The structural and chemical alterations of 

DNA induced by cisplatin are heterogeneous which suggest that the molecular pathological 

consequences will be complex. 
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10. Molecular Pathology of Cisplatin Induced DNA Damage 
 

 

Cisplatin DNA adducts may affect replication, inhibit transcription and induce apoptosis.  

Replication is the process by which new DNA is synthesized by polymerases during the S-phase 

of the cell cycle.  Early research on the biological activity of cisplatin suggested that cisplatin 

DNA adducts inhibited replication which by itself could account for the antineoplastic activity.  

Cisplatin DNA adducts inhibit a variety of DNA polymerases.  For instance, cis-GG, cis-AG and 

cis-GXG adducts inhibit DNA polymerase I and III, Taq polymerase and bacteriophage T4 and 

T7 DNA polymerases (Comess, Burstyn, Essigmann & Lippard, 1992).  Even a single cisplatin 

DNA adduct may inhibit DNA polymerases.  However, the death of cancer cells may not 

correlate with inhibition of replication (Chu, 1994; Sorenson & Eastman, 1988).  For instance, 

Chinese hamster ovary cell lines that were deficient in DNA repair died at cisplatin 

concentrations that failed to disrupt replication (Sorenson & Eastman, 1988).  Additionally, cell 

lines that were proficient at DNA repair survived extreme doses of cisplatin that disrupted 

replication (Chu, 1994).  However, the inhibition of replication does not account for cytotoxicity 

of non-replicating (non-dividing) cells, such as neurons and hair cells.   

 Transcription is the process of generating messenger ribonucleic acid (mRNA) leading to 

protein synthesis.  Protein synthesis is essential for cell survival and occurs throughout the cell 

cycle (Bielas & Heddle, 2004).  Tumor cells treated with cisplatin may progress through the S-

phase leading to G2 cell-cycle arrest and apoptosis (Allday, Inman, Crawford & Farrell, 1995; 

Chu, 1994; Kelland 1993).  Here transcription products needed to enter M-phase of the cell-cycle 

are inhibited by cisplatin DNA adducts.  For instance, RNA polymerase is stalled by cisplatin 

DNA adducts during transcription (Corda, Anin, Leng & Job, 1992; Tornaletti, Patrick, Turchi & 

51 



 

Hanawalt, 2003).  Additionally, proteins essential for transcription (e.g., hUBF & TBP), are 

lured to cisplatin DNA adducts which makes them unavailable to participate in transcription 

(Jordan & Carmo-Fonseca, 2000; Kartalou & Essigmann, 2001).  Proteins essential for 

transcription may have as much as a 175 fold increase in binding affinity for a single cisplatin 

DNA adduct compared to their normal binding sites (Cohen, Jamieson & Lippard, 2000).  The 

ability of cisplatin DNA adducts to sequester important transcription proteins is called 

transcription hijacking (Kartalou & Essigmann, 2001; Zhai, Beckmann, Jantzen & Essigmann, 

1998).  Transcription hijacking can trigger apoptosis (Siddik, 2003).  Therefore, a combination 

of both replication inhibition and transcription hijacking are implicated in cisplatin anticancer 

activity.  For non-cancerous cells and non-dividing cells, transcription hijacking may be a 

primary event that leads to apoptosis.   

 The chemical and physical alterations to the DNA duplex by platinated adducts are 

recognized by a variety of proteins involved in vital cellular processes.  The titration of these 

proteins away from their natural binding sites inhibits cell function.  For instance, proteins 

involved in transcription of vital genes may be titrated away from the transcription process by 

cisplatin DNA adducts (Treiber, Zhai, Jantzen & Essigmann, 1994).  As discussed above, this 

process is called transcription hijacking and may directly induce apoptosis.  Proteins unrelated to 

transcription also may be hijacked by cisplatin DNA adducts and platinum-protein adducts may 

hijack other proteins.  Therefore, a more general term, “molecular hijacking” is appropriate (see 

Figure 11).  One of the most well studied groups of proteins involved in molecular hijacking is 

the high-mobility-group (HMG) proteins.  HMG proteins are a family of small, nonhistone 

chromatin-associated proteins involved in gene regulation and maintenance of chromatin 

structure.  These proteins may have a three fold greater binding affinity for cisplatin DNA 
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adducts than their natural binding sites (Treiber, Zhai, Jantzen & Essigmann, 1994).  Multiple 

HMG domains function in an additive way to increase the binding affinity to cisplatin DNA 

adducts (Zhai, Beckmann, Jantzen & Essigmann, 1998).    The binding of HMG proteins to 

cisplatin DNA adducts may shield the adducts from DNA repair factors (Patrick & Turchi, 

1998).  Such repair shielding increases the tenure of platinum on DNA and induces apoptotic cell 

death (see Figure 11).  This is particularly important because cisplatin treatment significantly 

increase protein levels of HMG1 among spiral ganglion neurons in the cochlea (Li, Liu & Frenz, 

2006).  Other proteins beyond HMG proteins also may participate in protein hijacking and repair 

shielding (Yaneva, Leuba, van Holde, & Zlatanova, 1997).  
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Figure 11:  Molecular hijacking and repair shielding.  High mobility group (HMG) protein(s) 
exhibit higher binding affinity for cisplatin DNA adduct (X) than the promoter binding sites 
which disrupts transcription.  Additionally, the binding of HMG protein to cisplatin DNA adduct 
may shield the adduct from DNA repair factors. 

 

 

 

 Cisplatin’s interaction with DNA often results in apoptosis.  Apoptosis can be determined 

by morphological and biochemical changes.  Morphological changes include, cell shrinking with 

membrane preservation, chromatin condensation, membrane blebbing and release of apoptotic 

bodies (Choi, 1996).  The biochemical changes are many but DNA strand breaks often are used 

as a diagnostic estimate of apoptosis.  The balance between proapoptic (e.g., Bax, Bak, Bad, Bcl-

X) and antiapoptotic (e.g., Bcl-2, Bcl-XL, Mcl-1, Bcl-w and A1) proteins determines the 

progression of apoptosis.  Cisplatin increases the level of Bax and Bak while decreasing the level 

of Bcl-2 in tumor cells (Henkels & Turchi, 1999; Jones, Turner, Mcllwrath, Brown & Dive, 

1998).   
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 Nuclear DNA (nDNA) is consistently targeted by cisplatin but mitochondria DNA 

(mtDNA) may accumulate up to 50-fold more cisplatin DNA adducts than nDNA (Giurgiovich 

et al., 1997).  Cisplatin induces the release of cytochrome-c from mitochondria and subsequent 

activation of cysteine-aspartate-specific proteases (caspases) among tumor cells which promotes 

apoptosis (Kojima et al., 1998; Seki et al., 2000).  The death receptor (extrinsic) tumor necrosis 

factor (TNF) apoptotic pathway which also regulates caspases is involved in cisplatin antitumor 

activity (Fulda, Los, Friesen & Debatin, 1998).  These results suggest that multiple apoptotic 

pathways may be involved in the antitumor and cytotoxicity of cisplatin (see Figure 5).    

 In summary, cisplatin DNA adducts induces a variety of structural and chemical 

alterations to DNA that leads to various molecular pathological consequences.  The three most 

profound are inhibition of replication and transcription and induction of apoptosis.  Inhibition of 

replication may facilitate the death of dividing cells but may not explain the death of non-

dividing cells, such as hair cells and neurons. Transcription inhibition by stalling of RNA 

polymerase and/or molecular hijacking is enough to initiate cell death regardless of cell cycle 

status.  Molecular  hijacking also may facilitate the shielding of cisplatin DNA adducts from 

DNA repair factors which increases the tenure of platinum on the DNA helix leading to cell 

death.  The major cell death process induced by cisplatin is apoptosis.  Various apoptotic 

pathways are involved but the mitochondria mediated apoptotic pathway may be particularly 

important because the majority of genomic platinum is bound to mtDNA (see Figure 5).   

Mitochondriae are unable to remove cisplatin from there genome because they lacks specialized 

DNA repair pathways that repair cisplatin induced DNA damage (Salazar & Houten, 1997; 

Olivero, Cheng, Lopez-Larraza, Semino-Mora & Poirier, 1997). 
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11. Repair of Cisplatin Induced DNA Damage 
 

 

Early studies that demonstrated that DNA is a target for cisplatin also revealed that sensitivity to 

cisplatin depends on the tumor’s proficiency at DNA repair (Jamieson & Lippard, 1999).  Upon 

reacting with DNA, cisplatin forms adducts and cross links that globally distort the DNA.  These 

adducts and cross-links, represent covalent bonds between cisplatin and the DNA bases, 

particularly the purines (guanine & adenine) (Redon, Bombard, Elizondo-Riojas & Chottard, 

2003).  There is a positive correlation between the accumulation of cisplatin DNA adducts and 

cell death (Fraval & Roberts, 1979).  The removal of these adducts from the DNA helix is 

accomplished by nucleotide excision repair (NER) pathways (see figure 12).  For instance, 

cisplatin is exceptionally effective at killing testicular cancer cells and may induce a 95% cure 

rate (Kartalou & Essigmann, 2001).  Testicular cancer cells are deficient in NER (Koberle, 

Masters, Hartley & Wood, 1999). Ovarian cancer and small cell lung cancers may initially 

respond to cisplatin treatment but later develop resistance (Ferry, Hamilton & Johnson, 2000; 

Giaccone, 2000).  This resistance is correlated with increased expression of NER protein-

enzymes (Dabholkar et al., 1994; Selvakumaran, Pisarcik, Bao, Yeung & Hamilton, 2003).  

It is accepted that NER is the primary mechanism by which cisplatin resistant tumor cells 

survive cisplatin DNA damage (Wu, Fan, Xu & Zhou, 2003).  For instance, cells that were once 

insensitive to cisplatin may become sensitive by suppressing the NER protein, xeroderma 

pigmentosum A (XPA) (Wu, Fan, Xu & Zhou, 2003).  XPA (32 kDa) is a zinc-finger DNA 

binding protein with high affinity for cisplatin DNA adducts. It also commits a cell to NER and 

coordinates repair activities (Boonstra et al., 2001; de Laat, Jaspers & Hoeijmakes, 1999).  

Beyond NER, XPA has no other known cellular function (de Laat, Jaspers & Hoeijmakes, 1999; 
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Thoma & Vasquez, 2003).  In fact inhibition of XPA renders tumor cells unable to initiate NER 

(Koberle, Masters, Hartley & Wood, 1999; Rosenberg, Taher, Kuemmerle, Farnsworth & 

Valerie, 2001).   

NER mechanisms can be partitioned into two pathways which differ by the way they 

identify lesions (Thoma & Vasquez, 2003; de Laat, Jaspers & Hoeijmakes, 1999).  One pathway 

identifies DNA damage on non-transcribing genes and is called global genomic NER (GG-NER) 

(Costa, Chigancas, Galhardo, Carvalho & Menck, 2003; de Laat, Jaspers & Hoeijmakes, 1999).  

Recognition of lesions in this pathway is accomplished by the NER protein, xeroderma 

pigmentosum C (XPC) (Boonstra et al., 2001; Chen, Xu, Yang & Wang, 2003). XPC (125 kDa) 

is a DNA binding protein that is charged with the task of scanning the entire genome for lesions 

(de Laat, Jaspers & Hoeijmakes, 1999).  In fact, absence of XPC results in failure of GG-NER 

(Costa, Chigancas, Galhardo, Carvalho & Menck, 2003; de Laat, Jaspers & Hoeijmakes, 1999). 

The other pathway responds to DNA damage on transcribed genes and is called transcription 

coupled NER (TC-NER) (de Laat, Jaspers & Hoeijmakes, 1999).  Recognition of lesions in this 

pathway is accomplished by RNA polymerase during transcription.  Here, RNA polymerase is 

stalled at the site of lesion, which allows for quick identification and titration of NER enzymes 

(Tornaletti, Patrick, Turchi & Hanawalt, 2003).  XPA is essential to both pathways (de Laat, 

Jaspers & Hoeijmakes, 1999), for instance, suppression of XPA results in defective GG-NER 

and TC-NER (Boonstra et al., 2001; Rosenberg, Taher, Kuemmerle, Farnsworth & Valerie, 

2001).   Both GG-NER and TC-NER are needed in order to defend the genome from toxic 

insults.  Consequently, cells that lack even one of these NER pathways would be highly 

susceptible to cisplatin. The rate-limiting step for NER activity is lesion 

identification/verification (Thoma & Vasquez, 2003).  In TC-NER this step is accomplished by 
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transcription factors as well as XPA while GG-NER relies on XPC and XPA, both of which have 

no other known cellular function (Costa, Chigancas, Galhardo, Carvalho & Menck, 2003).  

Resent research has demonstrated that XPC first identifies the DNA damage then recruits XPA 

for verification and subsequent commitment of NER (Thoma & Vasquez, 2003).  XPC is a 

marker for only GG-NER activity while XPA is a marker for NER activity in general (de Laat, 

Jaspers & Hoeijmakers, 1999).   Gene expression for these proteins tends to increase among 

cisplatin resistant cells resulting in cell survival (Fuertes, Castilla, Alonso & Perez, 2003).   

In summary, cisplatin induced DNA damage is primarily repaired by the molecular 

pathways of NER.  In fact, tumor cells that are resistant to cisplatin are proficient at NER while 

tumor cells that are susceptible to cisplatin are less proficient at NER.  Over 30 different proteins 

are involved in the NER process (see Figure 12).  The rate-limiting steps of NER are mediated 

by XPC and XPA.  Unlike other NER proteins, XPC and XPA have no other known celluar 

function.  Gene and protein expression of XPC is often used as a measure of GG-NER activity.  

Gene and protein expression of XPA is often used as a measure of overall NER (both GG-NER 

& TC-NER) activity.  Both XPC and XPA recognize a large variety of damaged DNA caused by 

various endogenous and exogenous factors but they exhibit particular affinity for cisplatin DNA 

adducts.  The role of XPC and XPA in cisplatin ototxicity has never been explored but may 

provide new information about the ear’s response to csiplatin intoxication. 
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Figure 12:  Molecular pathway of global-genomic nucleotide excision repair.  See text for 
details. 
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D. RELEVANCE OF NER TO CISPLATIN OTOTOXICITY 

 

 

NER was first demonstrated among prokaryotic cells and believed to be a DNA protection 

mechanism against short wave ultra violet (UV) components of sunlight (Pettijohn & Hanawalt, 

1964).  Subsequent experiments revealed that NER pathways exist also among eukaryotic cells 

and actively repair DNA damage due to UV exposure (Cleaver, 1968). UV exposure leads to 

bulky DNA adducts such as cyclobutane pyrimidine dimers (CPD) and (6-4) photoproducts that 

alters the structure of the DNA helix (de Laat, Jaspers & Hoeijmakers, 1999).  These structural 

alterations are similar to cisplatin induced DNA alterations (see section on cisplatin induced 

DNA damage).  The discovery that the NER proteins XPC and XPA exhibit similar affinity for 

bulky UV DNA adducts and cisplatin DNA adducts suggested that NER substrates extend 

beyond UV DNA damage (Asahina et al., 1994; Trego & Turchi, 2006).  Cisplatin DNA adducts 

stimulate gene expression of XPC and XPA among tumor cells (Weaver et al., 2005).  Although 

the inner ear is embedded in the temporal bone shielded from UV exposure, cisplatin enters the 

inner ear and form DNA adducts among various cell types (Schweitzer et al., 1984; van Ruijven, 

de Groot, Hendriksen & Smoorenburg, 2005).  These findings motivated the hypothesis that gene 

expression for XPC and XPA will increase in the inner ear as a function of cisplatin treatment 

(see aim 1).   

 Within the inner ear the cochlear neurosensory epithelium is more vulnerable to cisplatin 

cytotoxicity than the vestibular epithelium (Black, Gianna-Poulin & Pesznecker, 2001; Myers, 

Blakley & Schwan, 1993; Nakayama, Riggs & Matz, 1996; Sergi, Ferraresi, Troiani, Paludetti & 

Fetoni, 2003; Schweitzer, Rarey, Dolan, Abrams & Sheridan, 1986).    This is particularly 

interesting, since the level of cisplatin is greater in the vestibular epithelium than the cochlear 
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neurosensory epithelia (Schweitzer et al., 1986). The invulnerability of the vestibular epithelium 

to cisplatin intoxication suggests that it may have a greater capacity to defend its genome from 

cisplatin DNA adducts.  Injury to the mammalian vestibular epithelium is known to induce 

mitosis and complete phenotype convertion among hair cells and supporting cells (Berggren, 

Liu, Frenz & van de Water, 2003; Shou, Zheng & Gao, 2003).  Such changes do not occur 

among hair cells and supporting cells of the mammalian cochlea.  In fact, cells from the adult 

mammalian vestibular sensory epithelium have shown pluripotency both in vivo and in vitro and 

can give rise to a variety of cell types representative of ectodermal, mesodermal and endodermal 

lineages (Li, Liu & Heller, 2003).  These findings suggest that hair cells and supporting cells of 

the vestibular and cochlear epithelium are biologically different types of cells in terms of NER 

capacity.      

 Nonsensory epithelium cells of the cochlea such as the stria vascularis, inner spiral sulcus 

cells (ISSC) and outer spiral sulcus cells (OSSC) are able to initiate spontaneous mitosis 

(Conlee, Gerity & Bennett, 1994; Dunaway, Mhaskar, Armour, Whitworth & Rybak, 2003; 

Lang, Schulte & Schmiedt, 2003; Zine & Ribaupierre, 1998).   They may become more mitotic 

as a result of direct damage to themselves or damage to the hair cells (Lang, Schulte & Schmiedt, 

2003; Sluyter, Klis, de Groot & Smoorenburg, 2003; Vago, Humbert & Lenoir, 1998; Zine & 

Ribaupierre, 1998).  For instance, it is known that they will divide and change their phenotype as 

a result of noise damage or exposure to aminoglycosides and loop diuretics (Lang, Schulte & 

Schmiedt, 2003; Vago, Humbert & Lenoir, 1998; Zine & Ribaupierre, 1998).  The functional 

consequence may be alterations in cochlear microstructure that might be revealed in OAE fine-

structure.  Cisplatin ototoxicity research largely has neglected non-sensory epithelium cells 

possibly because they tend to be invulnerable to cisplatin compared to hair cells and neurons.  It 
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is conceivable that cisplatin intoxication of the cochlea may stimulate these cells to divide but 

cisplatin DNA adducts may arrest the cell-cycle during which NER enzymes are up regulated for 

DNA repair that then prevents apoptosis among these cells.  This line of thinking is consistent 

with the accepted notion that cell cycle arrest is needed in order to mobilize NER activity, which 

increases cell survival among cancer cells (Siddik, 2003).  

 Ovarian cancer and small cell lung cancer are susceptible initially to cisplatin but later 

develop resistance which correlates with increased NER activity (Selvakumaran, Pisarcik, Bao, 

Yeung & Hamilton, 2003).  Similarly, the stria vascularis is susceptible to cisplatin (Klis et al., 

2002; Sluyter, Klis, de Groot & Smoorenberg, 2003) but later recovers functionally and 

morphologically (Klis et al., 2002; Sluyter, Klis, de Groot & Smoorenberg, 2003).  This recovery 

phenomenon may represent cell-cycle arrest leading to up regulation of NER protein-enzymes.   

Cells of the stria vascularis are believed to progress through the cell cycle via 

spontaneous mitosis and damage induced mitosis (Conlee, Gerity & Bennett, 1994; Dunaway, 

Mhaskar, Armour, Whitworth & Rybak, 2003).  It is known that cisplatin attacks the stria 

vascularis before the hair cells (Tsukasaki, Whitworth & Rybak, 2000).  Yet, the stria vascularis 

survives while hair cells and neurons die (van Ruijven, de Groot & Smoorenburg, 2004).  

Additionally, systemic administration of radioactive platinum showed a two to three fold uptake 

in the stria vascularis compared to the organ of Corti (Schweitzer et al., 1984; Schweitzer et al., 

1986). This suggests that the stria vascularis is a direct target for cisplatin.  The effect of cisplatin 

on the ISSC and OSSC has not been investigated, however there has been some work with 

aminoglycosides.  In vivo and in vitro studies have shown that aminoglycoside induced hair cell 

damage initiates mitosis among ISSC and OSSC (Vago, Humbert & Lenoir, 1998; Zine & 

Ribaupierre, 1998).  It is possible that cisplatin DNA adducts may inhibit mitosis among these 
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cells until they are removed (repaired) by NER, which may explain their invulnerability to 

cisplatin.   

 Supporting cells of the organ of Corti are unable to divide but they can change their 

phenotype (Smoorenburgh, de Groot, Hamers & Klis, 1999).  For instance, damaged hair cells 

are often replaced by supporting cells, which change their phenotype and become “hair cell like”, 

although in mammals they never fully become hair cells (Cardinaal, de Groot, Huizing, Veldman 

& Smoorenberg, 2000; Lenoir & Vago, 1997; Smoorenburgh, de Groot, Hamers & Klis, 1999; 

Zine & Ribaupierre, 1998). Cisplatin treatment has been shown to induce morphological 

alterations to supporting cells (e.g., Deiter & Hensen) before hair cells and neurons (Ramirez-

Camacho, Garcia-Berocal, Bujan, Martin-Marero & Trinidad, 2004; Schweitzer, 1993a; 

Schweitzer, 1993b).  The supporting cells ultimately recover but hair cells and neurons die 

(Dehne, Lauterman, Petrat, Rauen & de Groot, 2001; Estrem, Babin, Ryu & Moore, 1981) which 

suggests that the supporting cells are initially targeted by cisplatin but have a higher capacity for 

DNA repair. Recovery may be due to up regulation of NER (both GG-NER & TC-NER) which 

then results in survival.   

 The most vulnerable cells are hair cells and neurons while the least vulnerable cells are 

nonsensory epithelium cells.  One basic biological difference between the vulnerable and 

invulnerable cells is that the vulnerable cells (hair cells and neurons) cannot divide or change 

their phenotype while the invulnerable cells are proficient at both cell division and phenotype 

conversion.  This basic biological difference may perpetuate the difference in vulnerability 

between different inner ear cell types. 

It is known in DNA repair biology that terminal differentiation limits NER capacity 

(Nouspikel & Hanawalt, 2002; Nouspikel & Hanawalt, 2000).  Terminally differentiated cells 
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are cells that lack the ability to divide (post-mitotic) and change their phenotype (Nouspikel & 

Hanawalt, 2002).  Neurons and hair cells are examples of such cells (Devarajan et al., 2002).  

Since these cells cannot divide, they are free from the chore of replicating their genome.   They 

could dispense with the energy consuming task of searching for and then repairing DNA damage 

across their entire genome and instead focus on repairing transcribing genes that are essential for 

their survival.  Research on DNA repair has demonstrated that terminally differentiated cells lack 

the capacity to repair global genomic DNA damage but are able to effectively repair transcribed 

genes (Houspikel & Hanawalt, 2002; Houspikel & Hanawalt, 2000).  More specifically, the GG-

NER response is suppressed in terminally differentiated cells while TC-NER activity remains 

active (Bielas & Heddle, 2004; Nouspikel & Hanawalt, 2002: Nouspikel & Hnawalt, 2000).  

This means that DNA damage induced by genotoxins such as cisplatin may be allowed to 

accumulate on non-transcribing genes, since GG-NER is inherently suppressed (Furuta et al, 

2002; Tornaletti, Patrick, Turchi & Hanawalt, 2003).   

In the cochlea, neurons and hair cells are terminally differentiated.  It is known that both 

cochlear neurosensory and nonsensory epithelium cells precipitate cisplatin DNA adduct, yet the 

former dies while the later survives.  One possible explanation is that cellular vulnerability to 

cisplatin intoxication based on cell type is due to differential expression of the rate-limiting GG-

NER protein, XPC (see aim 2).  

Cisplatin treatment leads to the progression of hearing loss from high to low frequencies as a 

function of increasing dosage (Forastiere, Takasugi, Baker, Wolf & Kudla-Hatch, 1987; Van der 

Hulst, Dreschler & Urbanus, 1988).  Post-mortem temporal bones harvested from patients treated 

with cisplatin as well as animal experiments have shown a base-to-apex gradient of OHC 

damage along the cochlear spiral (Hinojosa, Riggs, Strauss & Matz, 1995; Teranishi, Nakashima 
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& Wakabayashi, 2001).  Here, the basal OHCs are severely damaged while the apical OHCs are 

normal.  Cisplatin treatment of isolated OHCs from the base and apex of the cochlea and 

cochlear explants treated with aminoglycosides reveal similar OHC damage gradient as in vivo 

temporal bone studies (Gabaizadeh et al., 1997; Richardson & Russell, 1991; Saito, Yamada, 

Manabe, Yamamoto & Saito, 1996; Zine & de Ribaupierre, 1998). The basis of this damage 

gradient is unknown but it has generated the hypothesis that there is an intrinsic difference 

between basal and apical OHCs (Schacht, 1993; Zajic & Schacht, 1987).  

Glutathione (L-γ-glutamyl-L-cysteinyl-glycine) levels may influence the difference in 

vulnerability between basal and apical OHCs.  Glutathione is known for its cytoprotective 

activities in detoxifying (inactivate and/or efflux) various electrophilic xenobiotics as well as 

serving as a potent antioxidant.  For instance, aminoglycoside ototoxicity may be supressed by 

glutathione conjugation and subsequent detoxification as well as free radical scavenging (Garetz, 

Rhee & Schacht, 1994; Lautermann, Crann, McLaren & Schacht, 1997; Lautermann, McLaren & 

Schacht, 1995).  Cisplatin binds spontaneously with glutathione in solution to form cisplatin-

glutathione-conjugates (Bernareggi et al., 1995; Ishikawa & Ali-Osman, 1993).  These 

conjugates also are formed intracellularly and may be extruded  from the cell (Ishikawa & Ali-

Osman, 1993; Mistry, Loh, Kelland & Harrap, 1993).  Similar to aminoglycosides, glutathione 

may suppress cisplatin cytotoxicity by detoxification and free radical scavenging.  For instance, 

there is a positive correlation between the level of glutathione and the resistance of tumor cells to 

cisplatin (Kato et al., 2000).  Cytosolic glutathione may inhibit apoptosis caused by cisplatin-

induced ROS.  For instance, during mitochondria mediated apoptosis initiated by ROS, oxidized 

cytochrome-c may be released into the cytoplasm to promote cell death (see Figures 5 and 8). A 
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high level of glutathione in the cytoplasm maintains cytochrome-c in a reduced (inactive) state 

which suppresses mitochondria mediated apoptosis (Jefferies et al., 2003).   

In addition to detoxification, free radical scavenging and inactivation of cytochrome-c, 

glutathione also plays a role in DNA synthesis/repair.  Glutathione accounts for the majority of 

non-protein sulfhydryls (SH groups) in a cell (Lai, Ozols, Young & Hamilton, 1989).    

Sulfhydryls are required for the normal operation of DNA polymerase in DNA synthesis/repair 

(Hubscher, Maga, & Spadari, 2002; Lai, Ozols, Young & Hamilton, 1989; Matsukage, Bohn & 

Wilson, 1975).  Previous research has revealed that lowering the level of sulfhydryls suppresses 

DNA polymerase which disables DNA repair (Costellot, Miller, Lehtomaki & Pardee, 1979; 

Kane & Linn, 1981; Matsukage, Bohn, Wilson, 1975; Shaper, Grafstrom & Grossman, 1982).  

Cells with low levels of glutathione may have a more restricted supply of sulfhydryls available 

for DNA repair compared to cells with higher levels of glutathione (Jamieson & Lippard, 1999; 

Kelland, 1993).   

There is a more direct consequence of glutathione level on DNA repair. For instance, 

glutathione is used in the synthesis of deoxyribonucleotide triphosphate (dNTP), which is 

directly involved in DNA repair (Holmgren, 1979; Luthman, Eriksson, Holmgren & Thelander, 

1979).  Lower levels of glutathione may yield lower amounts of sulfhydryls and dNTP available 

for DNA repair.  This is particularly important because glutathione expression is significantly 

lower among basal OHCs compared to apical OHCs (Sha, Taylor, Forge & Schacht, 2001).  

Since, the basal OHCs are selectively vulnerable to cisplatin, it is reasonable to suggest that the 

lower level of glutathione in the basal OHCs may result in less availability of sulfhydryls and 

dNTP, which then leads to lower amounts of DNA repair activity.   Decreasing the level of 

glutathione in cisplatin-resistant ovarian cancer cells resulted in the suppression of DNA repair 
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which then rendered the cells highly vulnerable to cisplatin (Lai, Ozols, Young & Hamilton, 

1989).  Similar to cancer cells, the basal OHCs may not express XPA and XPC proteins which 

could suggests that they are unable to initiate NER pathways while the apical OHCs may express 

XPA after cisplatin treatment which would suggest that they can initiate at least one NER 

pathway (see aim 3).  This would be one possible explanation for the base-to-apex vulnerability 

among OHCs as a function of cisplatin treatment. 
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1. Specific Aims 
 

 

Aim 1:  To test the hypothesis that cisplatin treatment potentiates expression of the lesion 

identification (xpc) and verification (xpa) genes of global genomic-nucleotide excision repair 

(GG-NER) in the cochlea.   

 

Aim 2:  To test the hypothesis that terminally differentiated cochlear cells will not express the 

hallmark GG-NER protein, xeroderma pigmentosum C (XPC), following cisplatin treatment. 

 

Aim 3:  To test the hypothesis that basal OHCs will not express XPC and xeroderma  

pigmentosum A (XPA) proteins while apical OHCs will express XPA following cisplatin 

treatment.   

 

 

 

 

 

 

 

 

 

 

68 



 

III.

A. 

   CHAPTER II 

  

 

 

 

SUBJECTS 

 

 

Research on NER activity is typically conducted on tumor cell lines, cell-free systems, bacteria 

and yeast.  A recent study on hepatocarcinogenesis successfully evaluated the expression of the 

xpc and xpa genes after treatment with tamoxifen (a DNA damaging agent) among female rats 

(Kasahara et al., 2003).  The rat animal model also is used frequently in cisplatin ototoxic 

research and has the following advantage: wide biochemical characterization, resistance to 

middle ear infection and the ability to survive chronic and acute ototoxic and anesthetic 

treatment (Hatzopoulos et al., 2002; Laurell et al., 2002; Martin, et al., 1999). The rat animal 

model was used in this study.  The Fischer344 rat is a widely used albino rat strain, particularly 

in toxicology and cancer research (Popelar, Groh, Mazelova & Syka, 2003). Previous research 

revealed that female Fischer344 rats are excellent models for chronic (multiple injections) 

cisplatin treatment studies (Li et al., 2001; Li et al., 2002; Minami, Sha & Schacht, 2004).  A 

factorial design (2 x 3 x 2) using Fischer344 rats as subjects was implemented in this dissertation 

(see the next section for a detailed decription of the experimental design).  There were two 

treatment groups (cisplatin & saline vehichle), three survival times and two analysis methods 

(polymerase-chain reaction and immunohistochemistry) with five animals per group.  Five 
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animals per group typically provide enough tissue in order to detect significant differences in 

gene expression between experimental and control groups (Balaban, Zhou & Li, 2003; Stankovic 

& Corfas, 2003).  A power analysis (Bausell & Li, 2002) indicated that five rats per group yields 

a 77% chance (i.e., power = 0.77) of detecting an effect size of 2.0 between the experimental and 

control groups using an independent samples t-test (two-tailed alpha = 0.05). 

All Fischer344 rats (140-160 g) were purchased from Charles River Laboratories, Malvern, 

PA, USA.  The animals were housed in a room (23 ± 2° C) on a 12-h light/dark cycle.   All 

experimental protocols were performed according to National Institute of Health (NIH) 

guidelines and were approved by the Institutional Animal Care and Use Committee (IACUC) at 

the University of Pittsburgh, Pittsburgh, PA.   The IACUC approval process certifies that all 

protocols are in compliance with the United States Department of Agriculture and NIH 

guidelines for ethical treatment of animals and that all attempts were made to minimize both 

animal use and suffering.   

 

 

B. EXPERIMENTAL DESIGN 

 

 

Animal studies on cisplatin ototoxicity typically involve acute (single injection) treatment.    For 

instance, in rat studies, a single dose of 16 mg/kg, i.p. is typically administered, which 

effectively results in hair cell and neural degeneration.  Such treatment overdose does not allow 

for the study of gene and protein expression among vulnerable cochlear cells (e.g., hair cells & 

neurons) since they easily degenerate.  Recent work on cisplatin ototoxicity in the Fischer344 rat 

70 



 

established a treatment regimen that does not overdose the animals and allows for tissue 

harvesting after cisplatin treatment (Minami, Sha & Schacht, 2004).  This treatment regimen 

prevents adverse effects such as morbidity, excess weight loss and nephrotoxicity.  For instance, 

Fischer344 rats are treated with two cycles of cisplatin, each cycle consists of four days of 

treatment (1 mg/kg, i.p., twice daily) separated by 10 days of rest.  In order to study gene and 

protein expression of NER factors in the cochlea, this chronic (see Table 3) cisplatin treatment 

regimen (Minami, Sha & Schacht, 2004) was implimented.    Briefly, Fischer344 rats received 

cisplatin (2 x 1 mg/kg, i.p.) and saline (10 ml, s.c.) injections on days 1-4 of the study (treatment 

cycle 1). On day five, 10 of these rats received anesthesia for auditory screening followed by 

pentobarbital overdose and euthanasia.  Five of these rats were perfused transcardially with 

phosphate buffered saline (PBS) followed by periodate-lysine-paraformaldehyde (PLP) for 

immunohistochemistry; tissue from the other five rats was harvested and frozen for polymerase 

chain reaction (PCR).  The remaining 20 animals received saline (10 ml, s.c.) treatment daily for 

hydration on days 5-14.  On days 15-18 the rats received cisplatin (2 x 1 mg/kg, i.p. daily) and 

saline (10 ml, s.c., daily) injections (treatment cycle 2).  On day 19, 10 of these rats were 

anesthetized for auditory screening followed by pentobarbital overdose and euthanasia.  Five of 

these rats were perfused transcardially with PBS followed by PLP for immunohistochemistry; 

tissue from the other five rats was harvested and frozen for PCR. The remaining 10 animals 

received saline (10 ml, s.c.) treatment daily for hydration on days 19-22.  On day 22 the 

remaining rats (N =10) were anesthetized for auditory screening followed by pentobarbital 

overdose and euthanasia.  Five of these rats were perfused transcardially with PBS followed by 

PLP for immunohistochemistry; tissue from the other five rats was harvested and frozen for 
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PCR.  A control group received the same treatment as the experimental group except this group 

received saline vehicle instead of cisplatin. 

The aims of this study were concerned with gene and protein expression of cochlear cells 

(e.g., hair cells and neurons).  Cisplatin easily compromises cochlear integrity by damaging 

cochlear cells.  In order to assess gene and protein expression, the cochlear cells must be 

functioning. Previous experiments using the same cisplatin treatment regimen used in this 

dissertation (see table 3) revealed that damage to cochlear cells only occur when the mean 

difference in auditory brainstem response thresholds between cisplatin and saline treated rats 

exceeded 40 dB at 16 kHz or higher frequencies (Minami, Sha & Schacht, 2004). In this 

dissertation two physiological measures were used to monitor cochlear integrity after cisplatin 

treatment to verify appropriate cell function.   The auditory brainstem response (ABR) and 

otoacoustic emission (OAE) served as physiological screening measures of cochlear integrity 

among experimental and control animals.  The OAE measurements are sensitive to changes in 

cochlear mechanics.  This is particularly important because normal cochlear mechanics are 

dependent on adequate OHC function and cisplatin damage OHCs.  The ABR measurements are 

sensitive to changes in cochlear mechanics and neural synchrony.  This is particularly important 

because cisplatin preferentially kills OHCs and neurons.  The combined use of both OAE and 

ABR allows for monitoring of cochlear and neural alterations as a function of cisplatin treatment.   

The ABR was recorded under general anesthesia (ketamine 75 mg/kg, i.p. & xylazine 8 

mg/kg, i.p.) (Minami, Sha & Schacht, 2004).  The rats were placed on a heating pad maintained 

at 38° ± 5° C.  All recordings were performed in a sound isolation chamber.  Six subdermal 

needle electrodes were used for two channel recordings.  Two electrodes (positive) were placed 

on the vertex, two were placed below the right and left mastoids (negatives) and one electrode 
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(ground) was placed in the dorsum close to the tail.  The stimuli were synthesized digitally and 

presented through an insert earphone (Etymotic Research ER-3A).  The transducer was coupled 

acoustically to the ear with a pediatric probe tip.   The intensity of the acoustic stimuli was 

expressed in decibel sound pressure level (dB SPL).  The animals were presented with a stimulus 

intensity series that was initially presented at 90 dB SPL and progressively lowered in 10 dB 

steps.  The stimulus frequencies were 4, 8 and 16 kHz tone pips (1 ms rise-fall time, 10 ms 

plateau).  Each ABR recording represented the average of individually amplified and filtered 

responses.  The cubic 2f1-f2 distortion product otoacoustic emission (DPOAE) was recorded 

using two primaries, f1 and f2 (ratio f2/f1 = 1.22).  The primary tone levels (L) for f1 and f2 were  

L1/L2 = 60/50 dB SPL.  DP-grams (the function of DPOAE level on increasing stimulus 

frequency) were recorded with a resolution of four points per octave regarding f2.  Both ABR and 

DPOAE were recorded using Intelligent Hearing System’s Smart EP/DPOAE technology.   
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Table 3: Cisplatin Treatment Regimen 

 
 

Group Days 1-4 
(cycle 1) 

Day 5 Days 5-14 Day 15-18 
(cycle 2)  

Day 19 Day 19-21 Day 22 
n = 60  n = 60 - 20 n = 40 n = 40 - 20 n = 20 n = 20 - 20 

 n = 60 n = 40 
Experimental Cisplatin 

treatment 
ABR & OAE 
(N =10) 
 
euthanasia 
for:  
1. IHC, N =5 
2. PCR, N =5  

Rest period 
for  the 20 
remaining 
rats 

Cisplatin 
treatment 
N = 20 

ABR & OAE 
(N =10) 
 
euthanasia 
for:  
1. IHC, N =5 
2. PCR, N =5 

Rest period 
for  the 10 
remaining 
rats 

ABR & OAE 
(N =10) 
 
euthanasia 
for:  
1. IHC, N =5 
2. PCR, N =5 

N = 30 
N = 30 

Control Saline 
treatment N = 30 

IHC = immunohistochemistry     

N = 30 

ABR & OAE 
(N =10) 
 
euthanasia 
for:  
1. IHC, N =5 
2. PCR, N =5 

Rest period 
for  the 20 
remaining 
rats 

Saline 
treatment 
N = 20 

ABR & OAE 
(N =10) 
 
euthanasia 
for:  
1. IHC, N =5 
2. PCR, N =5 

Rest period 
for  the 10 
remaining 
rats 

ABR & OAE 
(N =10) 
 
euthanasia 
for:  
1. IHC, N =5 
2. PCR, N =5 

PCR = polymerase chain reaction    
ABR = auditory brainstem response 
OAE = otoacosutic emissions 
n = total animals in both groups 
N = total animals within a group 
 
 
 
 

C. PROTOCOL FOR AIM 1 

 

 

In aim one, the hypothesis was that cisplatin treatment potentiates expression of the lesion 

identification (xpc) and verification (xpa) genes of GG-NER in the cochlea.  Real-time reverse-

transcription quantitative polymerase chain reaction (rt-RT-qPCR) was used to quantify changes 

in expression of the xpc and xpa genes after cisplatin treatment.   

Two month old Fischer344 female rats (140-160 g) were sacrificed by decapitation 

following pentobarbital anesthesia (100 mg/kg, i.p.).  Cochlear tissues were rapidly dissected 

under a stereomicroscope in ice-cold PBS (pH 7.4), frozen with dry ice and stored in TRIzol™ 
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reagent (Gibco, Gaithersburg, MD, USA) at -80˚C for later processing. Tissues were then thawed 

and homogenized in TRIzol™ reagent (1 ml per 50-100 mg of tissue).  Chloroform was then 

added and the mixture was centrifuged in order to separate the RNA phase from the DNA phase.  

The RNA phase was used for RNA precipitation using isopropyl alcohol.  The RNA samples 

were rinsed with 75% ethanol and solubilized with RNase-free water.  The RNA was then 

digested with DNase I (Ambion, Austin, TX, USA) to remove DNA contamination. 

The DNA-free RNA was converted to recombinant DNA (cDNA) through RT.  The RT 

reaction included 10 μl of 10 x PCR Taq Gold Buffer II (Applied Biosystems Inc., Foster City, 

CA), 30 μl of 25 mM MgCl2, 4 μl of 25 mM of each dNTP, 5 μl of 100 μM of random primer 

(GIBCO), 2 μl of RNasin (40 units; Applied Biosystems Inc.), 1.25 μl of SuperScript II (250 

units; GIBCO) and 200 ng of DNA-free total RNA. The reaction mixture was incubated at 25o C 

for 10 min, 48o C for 30 min, and 95o C for 5 min in a 9600 thermocycler (Applied Biosystems 

Inc.).   

SYBR Green PCR chemistry (Applied Biosystems Inc.) was used for real-time PCR 

amplification.  The PCR reaction included 5 µL of 10X SYBR PCR Buffer, 6 µL of 25 mM 

MgCl2, 4 µL of each dNTPs (blended with 2.5 mM dATP, dGTP and dCTP, and 5 mM dUTP), 

2.5 µL of each gene-specific primer (5 µM), 0.5 µL of AmpErase UNG (0.5 unit), 0.25 µl of 

AmpliTaq Gold (1.25 units) and 5 µL of cDNA in a final volume of 50 µL.  The conditions for 

the TaqMan PCR were as follows: 50o C for 2 min, 95o C for 12 min, and 40 cycles at 95o C for 

15 sec, and 60o C for 1 min in an ABI PRISM 7700 Sequence Detection system (Applied 

Biosystems Inc.).  Gene-specific primers for the target molecules are shown in Table 4. 
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Table 4: Gene-specific primers for PCR of xpc, xpa and 18S rRNA genes 

 
_____________________________________________________________________________ 
xpc (accession no. XM_232194) 
Forward primer    5'-CAGCCTTTGCCCACCTCCA-3' 
Reverse primer    5'-TCCACGACAATACCCAAGGAC-3' 
 
xpa (accession no. XM_216403) 
Forward primer    5'-AAGAAGAACCCTCGCCATTCA-3' 
Reverse primer    5'-TTCAAGAGCCCGCTTTACAAC-3' 
 
Rat 18S rRNA (accession no. X01117) 
Forward primer    5'-AAGCCATGCATGTCTAAGTACGCA-3' 
Reverse primer    5'-AAGTAGGAGAGGAGCGAGCGACCA-3' 
 
xpc/a: xeroderma pigmentosum c/a 
 
 

 

 

1. Data Analysis for Aim 1 
 

 

The 7700 Sequence Detection Software (Applied Biosystems Inc.) was used for instrument 

control, automated data collection, and data analysis.  For each assay, logarithmic amplification 

plots were constructed based on cDNA copy number of a target gene normalized to the ROX 

internal passive reference (log ∆Rn) versus cycle number.  The cycle number at which the signal 

crossed the mid-linear portion of the log ∆Rn-cycle function was defined as the cycle threshold 

(Ct) (Schmittgen et al., 2000).  Because the input cDNA copy number and Ct are inversely 

related, a sample that contains more copies of the template will have a data line that crosses the 

Ct at an earlier cycle compared to one containing fewer copies of the template.  The level of gene 

expression was calculated using 2 ─∆Ct (Livak & Schmittgen, 2001).    The ∆Ct represents the Ct 
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of the target gene normalized to the rat endogenous 18S rRNA (∆Ct = CtTarget ─ Ct18S rRNA).   The 

2 ─∆Ct calculation satisfies assumptions for the use of parametric statistics such as t-tests and 

ANOVA (Livak & Schmittgen, 2001). 

 

 

D. PROTOCOL AND DATA ANALYSIS FOR AIMS 2 AND 3 

 

 

In aim two, the hypothesis was that terminally differentiated cochlear cells will not express the 

hallmark GG-NER protein, XPC, following cisplatin treatment. Immunohistochemical staining 

of para-mid-modiolar cochlear sections was used to demonstrate post-translational protein 

expression of XPC among various cochlear cells as a function of the cisplatin treatment 

regiment.  In aim three, the hypothesis was that basal OHCs will not express XPC and XPA 

proteins while apical OHCs will express XPA following cisplatin treatment.  

Immunohistochemical staining of para-mid-modiolar cochlear sections was used to demonstrate 

post-translational protein expression of XPC and XPA among basal and apical cells as a function 

of the cisplatin treatment regiment.  Immunohistochemistry reveals the location of a target 

molecule in cells/tissues.  Data analysis is based on microscopic evaluation of cells/tissues 

embedded on glass slides.  Dr. Balaban and the author evaluated the slides and agreed on the 

presence or absence of positive staining.  Spiral ganglion cells with or without positive staining 

were counted by the author. The proportion of cells with nuclear or cytoplasmic staining were 

determined from the total number of cells at each cochlear turn.  
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Animals were sacrificed with pentobarbital anesthesia (100 mg/kg, i.p.) and perfused 

transcardially with phosphate-buffered saline (PBS; 0.9% NaCl in 50 mM phosphate buffer, pH 

7.3), followed by periodate-lysine-paraformaldehyde (PLP) fixative (McLean and Nakane, 

1974).  The heads were removed, skinned and then post-fixed in 4% paraformaldehyde for at 

least 24 hrs at 22˚ C.  Decalcification occurred in 10% formic acid then neutralized overnight in 

5% sodium sulfite by standard methods prior to trimming and paraffin embedding.  Paraffin 

embedded sections were cut with a microtome at 8 μm and mounted on subbed slides.  The 

sections were then stored at 22˚ C prior to immunohistochemistry.   

For immunohistochemistry, the sections were de-paraffinized and treated for 10 minutes 

with 30% H2O2 in dH2O and then rinsed thoroughly with dH2O.  They were then heated for 20 

minutes at 90-98˚ C in a low pH (0.80-3.06) sodium citrate-citric acid buffer and rinsed 

thoroughly with PBS.  Afterwards, the sections were pre-treated with a blocking solution of 10% 

Triton X-100 and 2% bovine serum albumin (BSA; Sigma, St. Louis, MO, USA) in PBS for 1 

hour.  The primary antibodies were diluted in the blocking solution at a 1:200 concentration.  

The primary antibodies were anti-XPC and anti-XPA (Santa Cruz Biotechnology, Inc.). For 

negative controls the primary antibody was omitted.  After 24 hour incubation at 22˚ C with the 

primary anti-bodies the sections were rinsed with PBS.  A biotinylated secondary antibody 

(Vector Laboratories, Temecula, CA, USA) was diluted 1:500 in PBS +2% BSA for one hour at 

22˚ C.  The sections were then rinsed in PBS, incubated with Vectastain ABC reagent (Vector 

Laboratories) for one hour, rinsed again with PBS and then treated with a solution of Trizma pre-

set crystals (1.58 g; Sigma).  After this the sections were washed in PBS and then stained for 10 

minutes with 3.3’-diaminobenzidine tetrahydrochloride (DAB staining).   
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IV. CHAPTER III 

 

 

 

 

Previous research implementing the exact cisplatin treatment regimen as described in this 

dissertation revealed that cochlear cell loss only occured when the mean ABR threshold shift 

(threshold after cisplatin treatment for the experimental group minus threshold after saline 

treatment for the control group) exceeded 40 dB (Minami, Sha & Schacht, 2004).   The mean 

ABR threshold difference between groups from the current work did not exceed 14 dB (see 

Table 5).  The mean OAE amplitude difference between groups (amplitude after saline treatment 

for the control group minus amplitude after cisplatin treatment for the experimental group) were 

at worst only 6 dB (see Table 6).  Microscopy of the cochlea supported the ABR and OAE 

results by showing that hair cells and neurons did not degenerate after cisplatin treatment (see 

Figures 17 & 18).  Therefore, the combined results verified that cochlear hair cells and neurons 

did not degenerate.   This is important because cochlear hair cells and neurons are needed to 

measure gene and protein expression after cisplatin treatment. 
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Table 5: mean ABR difference between groups 

 
_____________________________________________________________________________________________ 

Day                         4 kHz               8 kHz               16 kHz 
 

 
 
5                        14(6)                14(5)    13(4)                
     
 
19                        3(5)                                   8(4)               9(4) 
   
 
22                        9(5)                11(4)              12(5) 
______________________________________________________________________________ 
Numbers in parenthesis represent standard error 

 
 
 
 
 
 

Table 6:  mean OAE difference between groups 

 
_____________________________________________________________________________________________ 

Day       1kHz  2kHz        3kHz             4 kHz       5kHz 6kHz       7kHz 8 kHz 
 
5        5(4)                  2(4)         2(3)             0(3)        2(2)                 3(2)        2(3)                 6(3) 
  
19         3(5)    -3(4)         0(3)             1(2)                5(4)                 0(2)            0(3)                -4(3) 
  
22         -5(3)      -5(2)           -4(2)           -4(2)              -7(2)                 -5(2)          -4(2)                -7(3) 
_____________________________________________________________________________________________ 
Numbers in parenthesis represent standard error 
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A. RESULTS FOR AIM 1 

 

 

In aim one, the hypothesis was that cisplatin treatment potentiates expression of the lesion 

identification (xpc) and verification (xpa) genes of GG-NER in the cochlea.  Real-time reverse-

transcription quantitative polymerase chain reaction (rt-RT-qPCR) was used to quantify changes 

in expression of the xpc and xpa genes after cisplatin and saline (control) treatment.  Figure 13, 

shows cumulative gene expression level for xpc after cisplatin and saline treatment.  The level of 

expression of xpc is greater after cisplatin treatment compared to expression after saline 

treatment.    An independent samples t-test comparing mean xpc gene expression after cisplatin 

and saline treatment found a significant difference between the means of the two treatment 

groups (t(34) = -6.648, p < .001).  Figure 14, shows the level of expression of xpc after the first 

(day 5) and second (day 19) treatment cycles and fours days after the last treatment cycle (day 

22).  The level of xpc mRNA expression was greater after cisplatin treatment on all days 

compared to saline treatment.  An independent samples t-test comparing mean xpc mRNA 

expression for day 5 (t(10) = -3.164, p < .05), day 19 (t(10) = -3.817, p < .01) and day 22 (t(10) 

= -5.622, p < .001) found a significant difference between the means of the cisplatin and saline 

treated groups on each of the three days.  Further analysis using a one-way repeated measures 

ANOVA revealed that xpc gene expression did not significantly change across days during 

saline (F(2,10) = 1.763, p > .05) or cisplatin (F(2,10) = .503, p > .05) treatment.  Although, the 

difference in mRNA expression between cisplatin and saline treatment is statistically significant 

this difference is less that 2-fold and represents a small change in gene expression. 

 Figure 15 shows cumulative gene expression level for xpa after cisplatin and saline 

treatment.  The level of expression of xpa is greater after cisplatin treatment compared to 
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expression after saline treatment.    An independent samples t-test comparing mean xpa gene 

expression after cisplatin and saline treatment found a significant difference between the means 

of the two treatment groups (t(34) = -3.926, p < .001).  Figure 16 shows the level of expression 

of xpa after the first (day 5) and second (day 19) treatment cycles and four days after the last 

treatment cycle (day 22).  The level of xpa gene expression was greater after cisplatin treatment 

on days 5 and 19 compared to gene expression after saline treatment.  An independent samples t-

test comparing mean xpa gene expression for day 5 (t(10) = -2.706, p < .05) and  day 19 (t(10) = 

-6.899, p < .001) found a significant difference between the means of the cisplatin and saline 

treated groups on each day.    There was no difference in xpa gene expression between cisplatin 

and saline treated groups four days after the last treatment cycle (day 22).  An independent 

samples t-test was calculated comparing the mean xpa gene expression between cisplatin and 

saline treated groups.  No significant difference was found (t(10) = .186, p > .05) between the 

means on day 22.  Further analysis using a one-way repeated measures ANOVA revealed that 

xpa gene expression significantly changed across days during saline (F(2,10) = 56.390, p < .001) 

treatment while there was no significant differences during cisplatin (F(2,10) = 2.478, p > .05) 

treatment.  Post-hoc analysis using the protected t-test revealed that during saline treatment xpa 

gene expression significantly changed between days 5 and 19, and days 19 and 22.  There was no 

significant difference between days 5 and 22.  Although, the difference in mRNA expression 

between cisplatin and saline treatment on days 5 and 19 is statistically significant this difference 

is less that 2-fold and represents a small change in gene expression.   
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Figure 13:  Cumulative XPC gene expression level for saline and cisplatin treated groups.  Each 
bar represents mean ± S.E. 
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Figure 14:  XPC gene expression level for saline and cisplatin treated groups.  Each bar 
represents mean ± S.E. 
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Figure 15:  Cumulative XPA gene expression level for saline and cisplatin treated groups.  Each 
bar represents mean ± S.E. 
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Figure 16:  XPA gene expression level for saline and cisplatin treated groups.  Each bar 
represents mean ± S.E. 

 

 

 

 

 

 

 

 

 

86 



 

B. RESULTS FOR AIM 2 

 

 

In aim two, the hypothesis was that terminally differentiated cochlear cells will not express the 

hallmark GG-NER protein, xeroderma pigmentosum C (XPC), following cisplatin treatment.  

Immunohistochemistry was used to assess XPC protein expression among terminally 

differentiated cochlear cells following cisplatin treatment. In the cochlea terminally 

differentiated cells are neurons and hair cells. Figure 17 shows XPC protein expression in 

cochlear neurons (spiral ganglion cells) following cisplatin treatment.  The XPC protein is shown 

localized in the nucleus of spiral ganglion cells after cisplatin treatment.  After saline treatment 

the XPC protein was localized in the cytoplasm of spiral ganglion cells.  Figure 18 shows XPC 

protein expression in cochlear hair cells following cisplatin treatment.  The XPC protein is 

consistently localized in the nucleus of hair cells regardless of saline or cisplatin treatment. 
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C. RESULTS FROM AIM 3 

 

 

In aim three, the hypothesis was that basal OHCs will not express XPC and xeroderma  

pigmentosum A (XPA) proteins while apical OHCs will express XPA following cisplatin 

treatment.  Immunohistochemistry was used to assess XPC and XPA protein expression among 

hair cells from both the basal and apical coils of the cochlea.  Figure 18, reveals that both XPC 

and XPA were expressed in the nucleus among OHCs at the basal and apical coils of the cochlea.   

 Further analysis revealed that there was a difference in XPC and XPA protein expression 

between basal and apical spiral ganglion cells.  Figure 19, plots the proportion of spiral ganglion 

cells expressing XPC in their nucleus or cytoplasm after either cisplatin or saline treatment.  A 

series of 3 (days; 5, 19 & 22) x 2 (treatment; saline vs. cisplatin) between subjects factorial 

ANOVAs was calculated comparing the proportion of immunoreactive spiral ganglion cells at 

the apex, middle and basal turns of the cochlea.  Table 7 summarizes the ANOVA analysis.    

Nuclear immunoreactivity at the apex of the cochlea revealed significant main effects for days 

and treatment and an interaction effect.  Post-hoc analysis revealed significant differences 

between the proportion of immunoreactive cells on day 5 compared to day 19 (Bonferroni/Dunn-

test: p < .05) and day 22 (Bonferroni/Dunn-test: p < .05).  Cytoplasmic immunoreactivity at the 

apex of the cochlea revealed a significant interaction effect and no main effects.  Nuclear 

immunoreactivity at the middle of the cochlea revealed significant main effects for days and 

treatment and an interaction effect.  Post-hoc analysis revealed significant differences between 

the proportion of immunoreactive cells on day 5 compared to day 19 (Bonferroni/Dunn-test: p < 

.05) but not day 22 (Bonferroni/Dunn-test: p > .05).  Cytoplasmic immunoreactivity at the 

middle of the cochlea revealed no significant interaction or main effects. Nuclear 
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immunoreactivity at the base of the cochlea only revealed a significant main effect for treatment.  

Cisplatin treatment resulted in significantly greater immunoreactive cells in the nucleus than 

saline treatment.  Cytoplasmic immunoreactivity at the base of the cochlea revealed a significant 

interaction effect and no main effects.  These results suggest that a nuclear pattern of 

immunoreactivity is characteristic of cisplatin intoxication.  

 

 

Table 7:  Results of Six two-way ANOVAs for XPC. 

 
    

       F-values                                      
  ______________________________________________ 

 
        Apex                                Middle                       Base 
                  ___________________________________________________________________ 
Source       df    Nuclear       Cytoplasmic      Nuclear     Cytoplasmic          Nuclear      Cytoplasmic 
_____________________________________________________________________________________________ 
Days (D)      2      9.610a 3.047        9.760a 0.986           0.941    2.815 
Treatment (T)      1      10.521a 1.093        13.459a 2.170           5.990b    0.080 
D x T       2      9.675a 3.696b        5.170b 1.750           0.717    3.744b

MS Error       24      0.018  0.046        0.006 0.059           0.025    0.026 
a = p < .01 
b = p < .05 
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 Figure 20 plots the proportion of spiral ganglion cells expressing XPA in their nucleus or 

cytoplasm after either cisplatin or saline treatment.  A series of 3 (days; 5, 19 & 22) x 2 

(treatment; saline vs. cisplatin) between subjects factorial ANOVAs was calculated comparing 

the proportion of immunoreactive spiral ganglion cells at the apex, middle and basal turns of the 

cochlea.  Table 8 summarizes the ANOVA analyses.    Nuclear immunoreactivity at the apex of 

the cochlea revealed only a significant main effect for treatment where cisplatin treatment 

resulted in greater nuclear immunoreactivity.  Cytoplasmic immunoreactivity at the apex of the 

cochlea revealed only a significant main effect for treatment where saline treatment resulted in 

greater cytoplasmic immunoreactivity. Nuclear immunoreactivity at the middle of the cochlea 

revealed only a significant main effect for treatment where cisplatin treatment resulted in greater 

nuclear immunoreactivity.  Cytoplasmic immunoreactivity at the middle of the cochlea revealed 

only a significant main effect for treatment where saline treatment resulted in greater 

cytoplasmic immunoreactivity. Nuclear immunoreactivity at the base of the cochlea revealed 

only a significant main effect for treatment where cisplatin treatment resulted in greater nuclear 

immunoreactivity.  Cytoplasmic immunoreactivity at the base of the cochlea revealed a 

significant main effect for treatment and an interaction effect. The total number of 

immunoreactive cells is approximately equal for the saline or cisplatin treated groups.  For 

instance, after saline treatment about 50% of spiral ganglion cells showed cytoplasmic 

immunoreactivity and about 50% showed nuclear immunoreactivity after cisplatin treatment.  

This suggests that protein translocation is occurring among a particular population of spiral 

ganglion cells.  Among this population, under normal conditions the proteins are in the 

cytoplasm where they are synthesized and primed but after cisplatin treatment they translocate to 

the nucleus where they are needed. 
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Table 8:  Results of Six two-way ANOVAs for XPA. 

 
    

       F-values                                      
  ______________________________________________ 

 
        Apex                                Middle                       Base 
                  ___________________________________________________________________ 
Source       df    Nuclear       Cytoplasmic      Nuclear     Cytoplasmic          Nuclear      Cytoplasmic 
_____________________________________________________________________________________________ 
Days (D)      2      2.186  1.357        2.648 0.740           2.178    0.645 
Treatment (T)      1      6.538b  8.069a        8.740a 9.459a           6.244b    10.609a

D x T       2      3.256  1.430        3.119 2.632           3.113    3.595b

MS Error       24      0.040  0.056        0.036 0.027           0.040    0.018 
a = p < .01 
b = p < .05 
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Figure 17: Intracellular distribution of the XPC protein in cochlear neurons (spiral ganglion 
cells).  A: Immunoreactivity is absent when anti-XPC antibody is omited (negative control) 
during immunohistochemistry (Bar = 50 μm).  B: High magnification (100x oil immersion 
objective) of a selected region of A (Bar = 10 μm).  C, Schematic description of cellular 
appearance with negative immunoreactivity.   D: XPC is present in spiral ganglion neurons under 
normal conditions (control).  E: High magnification of a selected region of D reveals XPC- 
immunoreactivity in the cytoplasm of normal spiral ganglion neurons. F: Schematic description 
of cellular appearance with cytoplasmic immunoreactivity.  G: XPC is present in spiral ganglion 
neurons after cisplatin treatment (experimental condition).  H: High magnification of a selected 
region of G reveals prominent XPC-immunoreactivity in the nucleus of spiral ganglion cells.  I: 
Schematic description of cellular appearance with nuclear immunoreactivity.      
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Figure 18:  Representative distribution of XPC and XPA proteins among cells of the organ of 
Corti after cisplatin treatment cycles (days 5 and 19) and four days after the last treatment cycle 
(day 22).  Both proteins were expressed among supporting cells and hair cells.  Outer hair cells 
(OHC, see arrows) showed prominent immunoreactivity.  A: Schematic representation of the 
organ of Corti showing hair cells.  B: Immunoreactivity is absent when anti-XPC or anti-XPA 
antibody is omited (negative control) during immunohistochemistry.  C-E: XPC is present 
among OHCs at all turns of the cochlea.  F-H: XPA is present among OHCs at all turns of the 
cochlea.  Bars = 10 μm. 
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Figure 19:  Proportion of nuclear or cytoplasmic XPC immunoreactive spiral ganglion cells at 
apical, middle and basal turns of the cochlea.  A-B, immunoreactive cells on day 5.  C-D, 
immunoreactive cells on day 19.  E-F, immunoreactive cells on day 22. 
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Figure 20: Proportion of nuclear or cytoplasmic XPA immunoreactive spiral ganglion cells at 
apical, middle and basal turns of the cochlea.  A-B, immunoreactive cells on day 5.  C-D, 
immunoreactive cells on day 19.  E-F, immunoreactive cells on day 22. 
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V. CHAPTER IV 

 

 

 

 

Aim 1 of this dissertation tested the hypothesis that cisplatin treatment would potentiate 

expression of the xpc and xpa genes.  The results revealed that cisplatin treatment lead to a 

statistically significant increase in gene expression.  Aim 2 of this dissertation tested the 

hypothesis that terminally differentiated cells (e.g., neurons and hair cells) would not express 

XPC.  The results showed for the first time that neurons and hair cells are capable of expressing 

XPC.  Aim 3 of this dissertation tested the hypothesis that basal OHCs will not express XPC and 

XPA while apical OHCs would express XPA following cisplatin treatment.  The results revealed 

that XPC and XPA were expressed among hair cells from all cochlear turns.  An integrated view 

of these and related findings are discussed below. 

The GG-NER pathway is the major defense strategy by which cisplatin resistant tumors cells 

identify and repair cisplatin induced DNA damage.  The rate-limiting steps in this pathway are 

controlled by the XPC and XPA proteins.  Therefore, the production of these proteins is 

important to defend the genome from cisplatin DNA damage.  Protein production first begins 

with transcription.  Transcription is the process of producing mRNA molecules.  The mRNAs are 

short polymers that carry the genetic code represented by the gene being transcribed.  The 

mRNA from the xpc and xpa genes were quantified among cisplatin and saline treated groups.  

The level of mRNA was statistically significant between groups but may not be biologically 

important because the difference was less than two fold. This suggests that the activity of the 

protein may be more informative than the mRNA level.  The second step in protein production is 
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translation.  Translation occurs at ribosomes on rough endoplasmic reticulum (and free 

ribosomes) which are located in the cytoplasm. Translation is the process of converting the 

genetic code carried by the mRNA molecules into assembled polypeptides.   

XPC and XPA are termed nuclear enzymes because they only function in the nucleus by 

binding damaged DNA.  In cellular terms, this activation requires that the enzyme translocate 

from the cytoplasm to the nucleus.  Figures 17, 19 & 20 reveal that under normal conditions 

XPC and XPA are expressed predominantly in the cytoplasm of approximately 50% of spiral 

ganglion cells.  This suggests that XPC and XPA are being translated but are not yet needed for 

any substantial amount of DNA repair.  Therefore, accumulation of XPC and XPA in the 

cytoplasm of a proportion of spiral ganglion cells implies that these cells produce more of the 

enzymes than are needed to meet the immediate need for DNA damage.  Here, cytoplasmic 

expression of these enzymes in ganglion cells may represent a functional reserve for response to 

fluxes in DNA damage.   Under normal conditions OHCs express XPC and XPA in their nucleus 

which suggests that all of the translated enzyme is needed to bind to basal levels of damaged 

DNA.  Hence, it is suggested that hair cells lack a functional reserve capacity for GG-NER.  This 

framework is further supported by the observation that cisplatin treatment results in translocation 

of XPA and XPC from the cytoplasm to the nucleus among spiral ganglion cells. This implies 

that GG-NER capacity may be calibrated to basal demand in hair cells, but capable of dealing 

with surges in demand in ganglion cells. 

Figures 19 and 20 revealed that XPC and XPA respond (translocate) to cisplatin treatment.  

The response of XPC and XPA to DNA damage is expected given their roles in GG-NER 

(Thoma & Vasquez, 2003).  XPC binds to sites of cisplatin damage across the genome (Riedl, 

Hanaoka & Egly, 2003).  Once XPC localizes DNA damage it is replaced by XPA at the sight of 
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damage (de Laat, Jaspers & Hoeijmakes, 1999).  XPA verifies the damage and remains at the site 

until the damage is repaired (de Laat, Jaspers & Hoeijmakes, 1999; Riedl, Hanaoka & Egly, 

2003).  Figures 19 and 20 reveal that initial treatment with cisplatin (day 5) resulted in a 

significant increase in the proportion of spiral ganglion cells with XPC translocation to the 

nucleus (relative to control). This pattern is consistent with mobilization of a GG-NER response 

to cisplatin DNA damage in the nucleus.  XPA also showed significant nuclear translocation on 

day 5 which further supports a GG-NER response to cisplatin DNA damage in the nucleus.  On 

day 19 XPC revealed significant cytoplasmic reactivity which suggests an increase in translation 

but no nuclear translocation while XPA remained significantly expressed in the nucleus.  This 

suggests that XPC was no longer needed for lesion localization but remained primed in the 

cytoplasm.  XPA would be expected to remain significantly expressed in the nucleus because it 

determines whether a particular DNA damage is worth repairing and it oversees the repair 

process.  This is further supported by the fact that no XPA nuclear translocation was observed 

after the animals recovered from cisplatin treatment (day 22).  Additionally, on day 22 XPC 

remained in the cytoplasm (e.g., no nuclear translocation), which suggest that repair was 

completed before day 22. 

 Figures 19 and 20 further revealed that all turns of the cochlea responded similarly to 

cisplatin treatment; however the degree and latency of response differed between turns.  For 

instance, on day 5 all turns showed XPC and XPA nuclear translocation; however the base 

revealed the lowest degree of nuclear translocation compared to the other turns and unlike the 

other turns, was not significantly different from the control.  The XPC protein exhibited greater 

variability in nuclear translocation at the base than the XPA protein.  This may be because XPC 

DNA binding is labile while XPA DNA binding is stable.  For instance, XPC binds each site of 
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DNA damage but it is replaced by XPA which remains at the site of damage until repair is 

complete.  This suggests that the base may initially exhibit greater levels of DNA damage than 

other cochlear turns and is manifested as labile XPC DNA binding coupled with stable XPA 

DNA binding. On day 19 all turns showed nuclear translocation of XPA which was significantly 

different from the control; however the base revealed the highest degree of nuclear translocation 

compared to the other turns, which suggest a latent response by the base.  No significant nuclear 

translocation was observed for XPC regardless of cochlear turn, which would be expected 

because XPC is no longer needed on day 19. On day 22 (after recovery) there was no difference 

in response between cochlear turns for either protein.  This uniformed response by all cochlear 

turns supports the hypothesis that repair was completed before day 22. 

 In summary, the current work has demonstrated that spiral ganglion cells exhibit a 

reserved capacity of translated XPC and XPA in their cytoplasm primed for nuclear translocation 

from cisplatin intoxication.  This nuclear translocation is more efficient among apical spiral 

ganglion cells than basal spiral ganglion cells.  Basal spiral ganglion cells translocate XPC and 

XPA slower and with less magnitude than apical cells.  This novel finding is important because 

basal spiral ganglion cells degenerate before apical cells and typically exhibit greater damage 

than apical cells.  Therefore, the difference in nuclear translocation between basal and apical 

ganglion cells may underlie their difference in susceptibility to cisplatin ototoxicity. 
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APPENDIX 
 
 
 
 
 

GLOSSARY 
 
Acid    a substance that has the ability to react with bases  

and certain metals to form salts 
Adenine    a purine  
Adduct a combination of two or more independently stable 

compounds by means of van der Waals’ forces, coordinate 
bond or covalent bonds.  An example of an adduct would 
be platinum or cisplatin bound to DNA 

Affinity    preference 
Amino acid    protein constituent 
Antineoplastic    destroying, inhibiting or preventing the growth of tumors 
Apoptosis    cell death 
ATP     adenosine triphosphate, energy source in a cell 
Autometallography a chemical proceduce used to reveal the distribution of 

metals in cells/tissues 
Base     a substance that reacts with an acid to form a salt 
Conformation    structure 
Coordination    the binding of a non-metal to a metal 
Cysteine     amino acid 
Cys     cysteine 
DNA     deoxyribonucleic acid 
Efflux     refers to the exit of substances from the cell 
Electrophilic    electron accepting 
Eukaryote  single celled or multicellular organism whose cells  

contain a distinct membrane bound nucleus 
Filament    a threadlike structure, fiber 
Free radical or radical   ion or molecule with an unpaired (extra) electron 
Genotoxic    toxic to DNA 
Glutathione A polypeptide of glycine, cystine (a sulfur containing 

amino acid) and glutamic acid that occurs widely in plant 
and animal tissues and is important in biological oxidation-
reduction reactions.   

Ground state    the electron configuration of a an atom, ion or  
molecule 

Guanine    purine 
hHR23B             human homologue of RAD 23B, a protein that   
     binds XPC 
Homeostasis the tendency of physiological systems to maintain internal 

stability 
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Influx     refers to the entry of substances in the cell 
In vivo     occurring within a living organism 
In vitro     in an artificial environment outside the living organism 
Labile  constantly undergoing or likely to undergo change 
Lewis acid classification  a classification system that considers acids as an electron 

pair acceptor 
Ligand     a molecule that is attached to another molecule 
Ligase     an enzyme (protein) that connects broken ends of DNA  
Methionine     one of two amino acids that contain sulfur 
Mitosis    cell division 
Mitochondria    an organelle in the cytoplasm of nearly all eukaryotic cells  

that is important for cellular metabolism 
Monohydrate     a hydrate that contains one molecule of water 
Necrosis  the sum of the morphological changes indicative of cell 

death and caused by the progressive degenerative action of 
enzymes.  It may affect groups of cells or part of a structure 
or an organ 

Nephrotoxicity   the state of being toxic to the kidney 
NER      nucleotide excision repair 
Nucleophilic    electron emitting 
Ototoxicity    the state of being toxic to the inner ear 
PCNA     proliferating cell nuclear antigen, a protein involved  
     in cell replication 
pH the symbol for the logarithm of the reciprocal of hydrogen 

ion concentration in gram atoms per liter, used to express 
the acididty or alkalinity of a solution on a scale of 0 to 14, 
where less than 7 represents acidity, 7 represents neutrality 
and more than 7 is alkalinity  

Pharmacokinetics    the branch of pharmacology that studies the fate of  
pharmacological substances in the body, as their 
absorption, distribution, metabolism and elimination 

Phenotype    appearance 
Polymerase    a molecule that synthesizes DNA or RNA 
Prokaryote    a cellular organism that has no nuclear membrane 
Purine     DNA bases (adenine and guanine) 
Rate-limiting    the rate-controlling step (bottleneck) in a reaction  
RFC     replication factor C, a protein involved in    
     replication 
RPA     replication protein A, a protein that binds to single-  
     stranded DNA 
ROS    reactive oxygen species (an oxygen based  

free radical) 
Redox-active  refers to the ability of an atom, ion or molecule to catalize 

oxidation or reduction reactions 
Replication    DNA synthesis 
RNA     ribonucleic acid 
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Speciation the exact chemical form or compound in which an element 
occurs in a sample 

Spin state    the direction in which an electron circles an atom or  
ion 

Sulfhydryl a sulfur atom (S) bonded to a hydrogen (H) atom is a 
sulfhydryl (SH).   

Terminally differentiated cells cells that do not divide or change their appearance 
Termini the final point; the end 
TFIIH transcription factor two H, a protein complex 
Thermodynamic  using or producing heat 
Titration method or process of determining the concentration of a 

dissolved substance in terms of the smallest amount of a 
reagent of known concentration required to bring about a 
given effect     

Translocation to move from one site to the other as in movement from the 
cytoplasm to the nucleus  

Trans having a pair of identical atoms on opposite sides of two 
atoms linked by a double bond 

Transcription gene expression 
Transition metal a metallic ion that is able to change electron configuration 
Up-regulate    increase 
Uptake     entry into the cell by either an active or passive process 
Xenobiotic    a substance foreign to living systems 
XP     xeroderma pigmentosum, seven proteins    
     labeled from A-G (e.g., XPA to XPG).  Mutations in the  
     genes that represent these proteins results in NER failure  
     and increased cancer incidence. 
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