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The generation of the pro-inflammatory cytokines IL-6 and TNF-α by macrophages recruited to 

adipose tissue facilitates obesity-induced inflammation resulting in insulin resistance and type 2 

diabetes (T2D).  Increased adipose tissue is associated with inflammation and expression of 

acute phase response (APR) proteins secreted by the liver.  Proper homeostasis of the liver is 

regulated by IL-6-depdendent expression of Hepatocyte Growth Factor (HGF) upon cleavage to 

its active form (aHGF) by the urokinase-type plasminogen activator (uPA).  Plasminogen 

Activator Inhibitor Type-1 (PAI-1) is a pro-thrombotic APR protein known to inhibit the 

function of uPA; however, since HGF’s activation, interaction and signaling through its receptor, 

MET are dependent upon uPA, PAI-1 is also capable of regulating the function of hepatic HGF.  

In vitro data demonstrates that aHGF significantly suppressed IL-6 production by macrophages 

stimulated with LPS via an increase in phosphorylation of GSK3β, rendering it inactive.  

Phosphorylated GSK3β correlated with increased retention of the phosphorylated NF-κB p65 

subunit in the cytoplasm and an enhanced interaction between CBP and phosphorylated CREB 

resulting in IL-10 cytokine production.  These changes were a direct result of signaling through 

MET, as effects were reversed in the presence of a selective inhibitor of MET (SU11274) or 

when using BMM from macrophage-specific conditional MET knockout mice. 

It is known that obese T2D patients present with an accumulation of PAI-1, which we 

hypothesize, results in the inactivation of HGF.  The loss of HGF-MET signaling results in 
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increased active GSK3β and the progression to unchecked inflammation and disease progression.  

In vivo studies using male, C57BL6 mice on a high fat diet alongside control fed mice 

demonstrates move severe hepatic steatosis in obese mice at 44 weeks compared to control.  

Steatosis coincided with the decrease in aHGF and elevated levels of PAI-1 protein.  These 

results demonstrate that elevated levels of PAI-1 inhibit aHGF, leading to unresolved chronic 

inflammation in obesity and T2D.   
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graduate student in our lab, has gotten me through perhaps the hardest parts of graduate school 

and life.  I thank you for letting me vent my frustrations numerous times, for sharing in my 
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1.0  INTRODUCTION 

1.1 INNATE IMMUNITY 

Our immune system equips us with a set of biological mediators to fight infection and disease 

and eventually regain homeostasis.  The immune system is divided into two arms: the innate and 

the adaptive.  Innate immunity, present in almost all multicellular organisms, is the more 

primitive of the two components and acts as the first line of defense against invading 

pathogens[1].  How the host senses these microbes through receptor-ligand interaction is a 

complex and critical event in host-pathogen recognition and clearance.  Cells of the innate 

immune system include granulocytes, macrophages, dendritic cells, mast cells, neutrophils, 

eosinophils, and natural killer cells[2].  These cells possess germ-line encoded pattern 

recognition receptors (PRRs), which have been evolutionarily selected to recognize conserved 

pathogen-associated molecular patterns (PAMPs)[3].  The PRRs allow the innate immune system 

to quickly recognize foreign molecules and begin to mount a potent immune response via 

activation of intracellular signaling cascades including 1) generation of reactive oxygen and 

nitrogen species, 2) production of cytokines, chemokines, adhesion molecules, and acute phase 

proteins, and 3) upregulation of costimulatory molecules as signals for T cell activation[3].  

Therefore, the hallmark of innate immunity resides in a select group of highly conserved 

microbial antigens resulting in an immediate effector response against infection.   
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On the other hand, adaptive immunity is comprised of specialized lymphocytes including 

CD4+ and CD8+ T cells (MHC class II and MHC class I restricted, respectively) and antibody 

producing B cells[4].  The receptors of adaptive immune cells are generated somatically, giving 

them structural uniqueness; however, these receptors remain exclusive to the host and cannot be 

passed on to their progeny[1].  The large and diverse population of lymphocytic antigen 

receptors capable of specific antigen recognition and immunological memory are what set the 

two arms of the immune system apart.  As a result, each lymphocyte has a unique receptor and 

participates in antigen-specific clonal expansion, which can take from 3 to 5 days and is 

necessary in order to mount an efficient immune response[1].  Consequently, the rapid induction 

of the innate immune system serves to restrict pathogen load until the adaptive immune system 

has expanded enough to exert specific clearance of the infectious agent (Figure 1). 
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Figure 1.  The Innate and Adaptive Immune Response 

The innate immune response functions as the first line of defense against infection.  The adaptive 

immune response is slower to develop, but manifests as increased antigenic specificity and 

memory.  Figure taken from[5].   

1.1.1 Toll-like receptors 

One group of PPRs, the Toll family of receptors, was first identified in Drosophila as 

contributing to the signaling cascade responsible for dorsoventral polarity in fly embryos[6].  

This family of receptors, referred to as the toll-like receptors (TLRs), has been identified in mice 

and humans as playing a key role in inducing inflammation.  TLRs are transmembrane proteins 

with large leucine-rich repeat extracellular domains.  Their cytoplasmic domains are similar to 

the interleukin-1 receptor and therefore, induce nuclear factor-κB (NF-κB) activation to 
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perpetuate the innate immune response[6].  Ten TLRs have been identified in humans and 12 in 

mice, where TLR1 through TLR9 are conserved in both[7].  TLRs are more sophisticated than 

other PPRs because they are able to recognize and differentiate between various types of 

pathogens and require the recruitment of adapter proteins for signal transduction.  TLR1, 2, 4, 5, 

6, and 11 are expressed on the cell surface and recognize microbial membrane components 

including lipids, lipoproteins, and proteins.  TLR3, 7, 8, and 9 recognize microbial nucleic acids 

and are present in intracellular vesicles such as the endoplasmic reticulum (ER), endosomes, 

lysosomes, and endolysosomes [7,8](Figure 2).  

Figure 2.  Human Toll-like Receptors 

Schematic diagram of human Toll-like receptors showing adaptors, cellular orientation and 

examples of ligands.  Figure taken from[8]. 
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TLR2 and TLR4 both function as important receptors in innate immunity.  TLR4, the 

receptor for lipopolysacharride (LPS), was the first TLR identified in humans[6]. The TLR4-LPS 

interaction induces NF-κB activation to perpetuate the innate immune response.  LPS, a 

component of gram-negative bacteria, binds to the serum protein, LPS-binding protein, which 

transfers LPS to CD14, a macrophage receptor anchored to the cell surface by a 

glycosylphosphoinositol tail.  MD-2 is another protein required for TLR4-mediated recognition 

of LPS.  CD14 and MD-2 then facilitate binding of LPS to TLR4.  Upon activation, TLR4 forms 

a homodimer and the adapter protein MyD88, which is associated with the serine-threonine 

protein kinase IL-1 receptor-associated kinase (IRAK), is recruited to the membrane.  IRAK 

autophosphorylates and dissociates from the receptor complex, which recruits the TNF receptor-

associated factor 6 (TRAF-6) adapter protein, leading to the activation of downstream signaling 

pathways, including NF-κB[1] (Figure 3).   
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Figure 3.  The Signaling Pathway of Toll-like Receptors 

Schematic diagram of TLR signaling and activation of NF-κB.  Figure taken from[1].  

1.1.2 Nuclear Factor-κB activation 

NF-κB was originally discovered in B cells and was thought to be a B cell specific transcription 

factor; however, it is now known to be present in several different cell types[9], acting as a major 

regulator of immune, inflammatory, apoptotic and pro-survival gene expression[3].  Microbial 

products, proinflammatory cytokines, T and B cell mitogens, and physical and chemical stresses 
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can activate NF-κB all in order to regulate the expression of activators such as cytokines, 

chemokines, and acute phase proteins[3].  The family of NF-κB transcription factors includes 5 

members: NF-κB1 (p50 and its precursor p105), NF-κB2 (p52 and its precursor p100), RelA 

(p65), c-Rel and RelB, the latter three being characterized by their N-terminal Rel homology 

domain (RHD).  This domain is responsible for DNA binding, dimerizing, and inhibitory protein 

interaction.  The active form of NF-κB is a heterodimer clasically consisting of RelA and p50 

subunits.  Both homo- and heterodimers may form; however, in order for transcription to occur, 

RelA, c-Rel or RelB must be present whereas p50/p50 and p52/p52 homodimers repress 

transcription.  Inhibitors of NF-κB, the IκB proteins, maintain negative regulation of NF-κB 

activation.  These proteins function via ankyrin repeats which facilitate IκB binding and masking 

of the Rel proteins’ nuclear localization sequences, retaining them in the cytoplasm[9]. 

Positive regulation of NF-κB is maintained by IκB kinase (IKK) trimers consisting of 

catalytic IKKα and IKKβ, and the regulatory IKKγ.  These protein kinases are specific for IκB 

N-terminal regulatory serines[10,11].  In order for NF-κB activation to take place, the inhibitory 

IκB proteins in complex with NF-κB in the cytoplasm must be phosphorylated and degraded.  

For example, once phosphorylated at serines 32 and 26 at the N-terminus[12], IκBα becomes 

ubiquinated at lysines 21 and 22[13], resulting in proteasome-mediated degradation[14].  Once 

released from the inhibitors, NF-κB translocates to the nucleus where it may bind to the promoter 

of target genes[15] (Figure 4).  Taken together, the initiation of innate immunity via TLRs 

induces NF-κB activation and resultant expression of various immune mediators including pro-

inflammatory cytokine and chemokine production, enzymes that generate mediators of 

inflammation, immune receptors, and adhesion molecules that recruit leukocytes to the site of 

inflammation[15].  Without sufficient innate immune function, the adaptive immune response is 
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blunted as the two systems act in concert in order to effectively clear infection and promote 

immunological memory for future contact with specific pathogens.  

Figure 4.  Activation of the NF-κB Signaling Pathway 

Schematic diagram of NF-κB activation.  Figure taken from[15]. 

1.1.3 Macrophages 

Macrophages are phagocytic white blood cells derived from blood monocytes and are involved 

in many innate and adaptive immune processes[16].  The functions of macrophages include 
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phagocytosis, antigen presentation and cytokine production.  Many tissues susceptible to 

infection and injury, including lung, liver and bone, contain fixed or resident macrophages 

(alveolar macrophages, Kupffer cells, and osteoclasts, respectively)[16,17].  The expression of 

many cell surface molecules identify cells as macrophages including CD11b, F4/80 and 

CD68[16].  TLR4 is also present on macrophages, contributing to their activation through the 

activation of NFκB.   

Macrophages are one of the primary effector cells of the innate immune system.  At the 

site of damage, resident macrophages become activated and start producing NF-κB dependent 

cytokines and chemokines.  These mediators serve to chemotactically recruit additional cells to 

the site of injury.  Circulating blood leukocytes participate in leukocyte extravasation whereby 

selectin and integrin receptor/ligand interactions mediate “rolling” of the cells, leading to 

eventual migration through the endothelium[18].  Once they arrive at the site of infection/injury, 

blood monocytes differentiate into macrophages, become activated and start to ameliorate the 

injury.  When a bacterial infection is present, macrophages exert anti-microbial actions by killing 

bacteria via reactive oxygen species[19].  In most cases, this process of inflammation results in 

clearance of the injury, thus regaining homeostasis.  However, when innate immunity cannot 

resolve the pathogen, macrophages work in concert with adaptive immunity.  Through the 

process of phagocytosis, macrophages will present digested antigenic peptides in the context of 

the major histocompatibility complex (MHC) molecules to T cells via the T cell receptor 

(TCR)[2].  Upon MHC-TCR engagement and costimulatory molecule interaction, the T cell is 

activated and mediates further immune function to clear the pathogen. 

Much like the way T lymphocytes are divided into phenotypic subsets (TH1 and TH2, for 

example) a new line of research is aimed at investigating the phenotypic switch of macrophages, 
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that depends on their cytokine profiles for characterization.  The classically activated 

macrophages, termed ‘M1’, are induced by LPS and IFNγ and have a pro-inflammatory profile 

producing and secreting molecules including IL-6, TNF-α, MCP-1 and NO[20,21].  The 

alternatively activated macrophages, or ‘M2’, are induced by IL-4 and IL-13.  M2 polarized 

macrophages are characterized by expression of CD206, arginase-1, Mgl1, and IL-10 and exhibit 

anti-inflammatory properties[20,22,23]. The phenotypic “switching” of macrophages, 

specifically those that reside in the adipose tissue, is of great interest in the progression of insulin 

resistance[24].   

1.2 THE ACUTE PHASE RESPONSE 

Innate immune activation and inflammation are accompanied by the acute phase response (APR) 

and production of acute phase proteins (APP) by hepatocytes.  The APR orchestrates a number 

of endocrine and metabolic or neurological changes observed a short time after injuries, the onset 

of infections, and inflammatory processes.  Derek Willoughby coined the term “pillars of 

inflammation” to include the tell tale signs of the inflammatory process as: heat, redness, 

swelling, pain, and loss of function[25] (Figure 5).   

APPs are defined as “proteins whose plasma concentration increases (positive acute-

phase proteins) or decreases (negative acute-phase proteins) by at lease 25% during 

inflammatory disorders”[26] (Figure 6).  Examples of APP include: C-reactive protein, urokinase 

(uPA) and plasminogen activator inhibitor type-1 (PAI-1)[27].  Instances where significant 

changes in these proteins occur include infection, surgery, and advanced cancers, while moderate 

changes may occur after heatstroke and childbirth[26].  Pro-inflammatory cytokines, namely 
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interleukin-6 (IL-6), produced by macrophages promote the production of APPs and aid in the 

transition from neutrophilic to monocytic recruitment at the site of injury[28] via MCP-1[29].  

However, the main goal of the APR is to ameliorate the stress and regain whole body 

homeostasis[26].   

Figure 5.  The Pillars of Inflammation 

For years, the five "pillars of inflammation" figure provided the centerpiece for any major 

discussion in inflammation.  Figure taken from[25].  
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Figure 6.  Acute Phase Proteins 

Characteristic Patterns of Change in Plasma Concentrations of Some Acute-Phase Proteins 

after a Moderate Inflammatory Stimulus.  Figure taken from[26]. 

1.2.1 Interleukin-6 

IL-6 type-cytokines including IL-6, IL-11, leukemia inhibitory factor (LIF), oncostatin M 

(OSM), ciliary neurotrophic factor (CNTF) and cardiotrophin (CT-1) are classified by a four-α-

helix bundle structure and use gp130 for signal transduction with Janus kinase (Jak)/STAT 

activation.  IL-6 is about 20 kDa in size with an N-terminal signal peptide and is N-glycosylated.  
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The IL-6R is a type 1 membrane protein of 80 kDa, a member of the cytokine receptor class 1 

family and contains cytokine-binding modules (CBM) and an IgG-like domain.  Residues 

located in the CBM are critical for biological activity, and ligand binding is contained to this 

region and the IgG-like domain[30].  Upon ligand binding, gp130 is recruited to the receptor 

complex and induces homodimerization[31].  IL-6 utilizes the Jak/STAT family as the major 

mediator of signal transduction.  Jak1, Jak2, and Tyk2, all gp130 associated kinases, become 

activated upon stimulation of the receptor causing the cytoplasmic tail of gp130 to be 

phosphorylated.  STAT3 and STAT1 are recruited to phospho-tyrosines of gp130.  The STATs 

become phosphorylated, dimerize, and translocate to the nucleus to initiate transcription of target 

genes, including many of the APP such as C-reactive protein.  Src homology region 2 domain-

containing phosphatase-2 (SHP2), a tyrosine phosphatase, can bind gp130, leading to IL-6 

mediated mitogen-activated protein kinase/ERK (MAPK/ERK) pathway activation[30] (Figure 

7).   
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Figure 7.  IL-6 Signaling Pathway 

Interleukin-6 is a cytokine that provokes a broad range of cellular and physiological responses, 

including the immune response, inflammation, hematopoiesis, and oncogenesis by regulating cell 

growth, gene activation, proliferation, survival, and differentiation.  Figure taken from[32]. 

IL-6 is an NF-κB dependent cytokine, and together with TNF-α and IL-1β, is critical in 

initiating a robust immune response.  IL-6 deficient mice fail to mount a normal inflammatory 

response and induction of the APR is weakened in a turpentine model; however, when LPS is the 

stimulus, the presence of other NF-κB dependent cytokines may compensate for the loss of IL-

6[27,33].  However, IL-6 plays an important role as an anti-inflammatory cytokine as well.  IL-6 
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knockout mice have greater pro-inflammatory cytokine production with local endotoxic lung 

injury, and this systemic injury results in increased mortality with lethal endotoxin exposure[27].  

This suggests a feedback loop in which IL-6 also aids in contraction of inflammation by 

promoting the generation of anti-inflammatory mediators such as the IL-1 receptor 

antagonist[34] and expression of the Suppressor of Cytokine Signaling (SOCS) genes, thus 

promoting homeostasis.  It was found that resultant effects of IL-6 deletion could not be 

compensated for by other anti-inflammatory cytokines like IL-10, suggesting the importance of 

IL-6’s anti-inflammatory role [27].  Taken together, cytokines are key mediators of innate 

immunity fueling the APR to fight infection, diminish stress and regain homeostasis.   

1.3 INSULIN AND GLUCOSE 

1.3.1 Insulin signaling 

Insulin, a potent anabolic hormone, is responsible for growth and development, as well as proper 

metabolic control, including maintenance of normoglycemia and normolipidemia.  Produced by 

pancreatic β-cells, insulin signaling increases energy storage into cells by stimulating the 

translocation of the glucose transporter, Glut4, concentrating it in the plasma membrane of fat 

and muscle cells where it facilitates glucose uptake[35].  Insulin signaling also maintains 

euglycemia by suppressing hepatic gluconeogenesis.   

Insulin binds to the insulin receptor (IR), a receptor tyrosine kinase present in many 

insulin-sensitive tissues, including skeletal muscle, adipose, liver, and pancreas, to facilitate 

glucose uptake from the blood.  Upon insulin binding, the cytoplasmic kinase domains 
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transphosphorylate Tyr 1158/62/63 in the catalytic loop of the kinase domain, followed by 

phosphorylation of the C-terminal Tyr 1328/34 and the juxtamembrane region Tyr 972, which is 

the major docking site for downstream interacting proteins[36].  These downstream proteins 

include the insulin receptor substrate (IRS) proteins.  The phosphorylated tyrosines in these 

substrates serve as docking sites for proteins containing Src-homology-2 (SH2) domains, 

propagating the insulin-signaling cascade.  Pleckstrin homology (PH) domains at the N-terminus 

in IRS proteins bring the phosphotyrosine binding (PTB) domains in close proximity to the cell 

membrane where they can bind to the IR at Tyr 960 in a NPXY motif of the juxtamembrane 

region[37] leading to insulin signaling within the cell.  The phosphatidylinositol 3-kinases (PI3-

K) pathway plays a critical role in metabolic and mitogenic actions of insulin signaling.  PI3-K is 

translocated to the plasma membrane where its p85 regulatory and p110 catalytic subunits may 

bind IRS tyrosine phosphorylated YMXM and YXXM motifs via SH2 domains[38].  These 

interactions allow for the interaction between PI3-K and phosphatidylinositol (PtdIns) (4,5)P2, 

yielding the second messenger PtdIns(3,4,5)P3 and resulting in the binding of PH domains of 

many other signaling molecules including Akt.  Overall, the signaling partners involved in PI3-K 

signaling alter their activation via phosphorylation or subcellular localization resulting in Glut 4 

translocation, glycogen synthesis, and lipogenesis[36].   

1.3.2 Glucose metabolism 

Glucose is the energy source for humans and may be used directly or stored as glycogen.  The 

liver is capable of de novo glucose production via gluconeogenesis.  Glycogen is stored by the 

liver and muscle, therefore, they both are capable of breaking down existing glycogen stores into 

glucose by glycogenolysis, or in the event of excess glucose, can form glycogen from glucose 
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via glycogenesis[39].  As discussed above, insulin signaling is key to glucose metabolism.  The 

liver, muscle and adipose tissues are insulin responsive and metabolize glucose, however skeletal 

muscle mediated glucose uptake accounts for 70 – 90% of glucose disposal[39].  Upon insulin 

signaling, glucose enters cells via Glut4 and is phosphorylated by hexokinase yielding glucose-6-

phosphate (G6P)[38].  From here, G6P can either be utilized by the glycolytic pathway or stored 

as glycogen.  Insulin-dependent PI3-K activation results in the regulation of many signaling 

molecules, however the phosphoinositide-dependent kinase 1 (PDK1) activation of Akt/PKB is 

best characterized.  Akt has a PH domain that directly interacts with PtdIns(3,4,5)P3 resulting in 

insulin-dependent inactivation of glycogen synthase kinase 3 (GSK3)[36,38].  Akt thus decreases 

the rate of phosphorylation of glycogen synthase, thereby rendering it active and resulting in 

increased glycogen storage at peripheral sites[40].  The regulation of hepatic gluconeogenesis by 

insulin signaling is a hallmark to maintaining euglycemia.  Under fasting conditions, hepatic 

glycogen stores are mobilized in order to maintain circulating glucose concentrations.  In 

hepatocytes, insulin signals to inhibit the transcription of the gene encoding 

phosphoenolpyruvate carboxylase, the rate-limiting step in gluconeogenesis, and also decreases 

the transcription of other genes encoding gluconeogenic proteins, including the enzymes 

fructose-1,6-bisphosphate and glucose-6-phosphatase.  Insulin increases the transcription of 

glycolytic enzymes such as glucokinase and pyruvate kinase and lipogenic enzymes such as fatty 

acid synthase and acetyl-CoA carboxylase[38].  There are a number of transcription factors and 

co-factors that partake in insulin-dependent decreases of gluconeogenesis, including sterol 

regulatory element binding protein (SREBP)-1, hepatic nuclear factor (HNF)-4, the forkhead 

protein family (Fox) and PPAR-γ co-activator 1 (PGC1).   
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1.3.3 Dysregulated insulin signaling 

Although tyrosine phosphorylation is critical in activating the IR and IRS proteins to propagate 

the signaling cascade, serine phosphorylation is also important for contraction of insulin 

signaling, which may result from direct phosphorylation by serine/threonine kinases, cross talk 

from other signaling pathways, or by protein tyrosine phosphatases (PTPases)[38].  

As described above, tyrosine phosphorylation occurs at the level of the IR and serves to 

propagate insulin signaling by the recruitment of other signaling molecules.  Continual Tyr 

phosphorylation will drive positive feedback control; whereas controlled Ser/Thr 

phosphorylation will uncouple the IRS proteins from upstream and downstream effectors, 

resulting in negative feedback regulation, terminating the signal[41].  Serine phosphorylation 

also leads to degradation of the IRS proteins via the proteasomal degradation pathway, which 

also attenuates insulin actions[42].  It is important to note that Ser/Thr phosphorylation may 

occur both by insulin and agents that promote insulin resistance; therefore, a threshold serine-

phosphorylation level is necessary for IRS protein function, and in fact phosphorylation of Ser 

1177/78/82 located C-terminal to the IR kinase domain is required to achieve phosphorylation of 

IRS1 and IRS2[43].  It has also been shown that phosphorylation of Ser residues within the 

phospho-tyrosine-binding domain of IRS1 (by insulin-stimulated PKB) protects IRS proteins 

from PTPs, enabling IRS proteins to maintain their phospho-tyrosine active conformations[41].  

However, inappropriate Ser/Thr phosphorylation and inactivation of the insulin signaling 

pathway may lead to insulin resistance, a pathological state and progression to diabetes.  

Dysregulation of Ser/Thr phosphorylation can result in negative metabolic outcomes because it: 

• inhibits further Tyr phos of IRS proteins 

• induces the dissociation of IRS proteins from the IR 
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• hinders phospho-Tyr sites 

• releases the IRS proteins from intracellular complexes that maintain them in close 

proximity to the receptor 

• induces IRS degradation  

• turns IRS proteins into inhibitors of IRK[41] 

Many of the serine/threonine kinase pathways activated by the innate immune system are 

responsible for the disruption in insulin signaling (Figure 8).  For example, high fat diet-fed mice 

are protected from insulin resistance when serines 302, 307, and 612 of the muscle-specific IRS-

1 are mutated to alanines preventing serine-phosphorylated inactivation of insulin signaling[44].  

Therefore, inflammation is a major perpetrator in the development of insulin resistance and 

progression of Type 2 diabetes (T2D).  The first signs of pathological abnormalities in glucose 

homeostasis due to insulin resistance are seen in muscle and adipose tissue as a delayed response 

to insulin results in increased circulating glucose and fatty acids[36].  This is followed by 

increased hepatic gluconeogenesis and hyperglycemia.  Pancreatic β-cells try and compensate for 

the increases in circulating glucose by secreting more insulin, however when the insulin 

secretory response cannot compensate for the defects in peripheral insulin action, diabetes 

ensues[36,45].   
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Figure 8.  The Role of Serine Kinase Activation in Insulin Resistance 

The activation of serine/threonine kinases lead to the phosphorylation of multiple targets, such 

as the IR and IRS proteins.  Increased phosphorylation of IR or IRS proteins on discrete serine 

or threonine sites (pS/T) decreases the extent of insulin-stimulated tyrosine phosphorylation 

(pY).  Consequently, the association and/or activities of downstream signaling molecules (e.g., 

phosphatidylinositol 3-kinase [PI3K]) are decreased, resulting in reduced insulin action (insulin 

resistance).  Figure modified from[46].  
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1.4 TYPE 2 DIABETES 

23.6 million people or 7.8% of the population is afflicted with diabetes.  Of those individuals, 

90-95% are diagnosed with Type 2 Diabetes (T2D) (2007 National Diabetes Fact Sheet).  The 

first symptoms of T2D may include increased thirst, appetite and urination, blurred vision and 

fatigue.  These symptoms are the results of the first pathological events of T2D including insulin 

resistance, hyperglycemia and glucose intolerance.  Over time, glucotoxicity can lead to several 

T2D-related complications including: heart disease, stroke, blindness, kidney failure, leg and 

foot amputations, and pregnancy complications (The Obesity Society).   

Traditionally called non-insulin-dependent diabetes mellitus (NIDDM), or adult-onset 

diabetes, T2D typically presents itself later on in life whereas juvenile onset or Type 1 Diabetes, 

an autoimmune disease, presents as young as 1 year.  The risk factors for T2D, in addition to old 

age, include family history of diabetes, history of gestational diabetes, impaired glucose 

metabolism, race/ethnicity, and inactivity and obesity.  However, since obesity rates are 

increasing world wide in adults and children, the overall prevalence of T2D in all age groups is 

on the rise, as roughly 90% of people with T2D are overweight (Figure 9).   
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Figure 9.  United States Obesity Prevalence in 2009 

The data shown in this map was collected through the CDC's Behavioral Risk Factor 

Surveillance System (BRFSS).  Figure taken from[47]. 

1.4.1 Obesity and inflammation 

Obesity is a major risk factor for the development of T2D and is defined as an abnormal 

accumulation of body fat, usually 20% or more over an individual's ideal body weight (Figure 

10).  An adult is considered obese when he or she has a body mass index (BMI) greater than 

30[48].  Obesity has become an epidemic with an estimated 1 billion overweight adults globally 

(BMI between 25 – 29.9), where at least 300 million of these individuals are considered 

obese[49]. 

 

http://apps.nccd.cdc.gov/brfss�
http://apps.nccd.cdc.gov/brfss�
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Figure 10.  BMI of Individuals Diagnosed with Type 2 Diabetes 

The CDC reports that among people diagnosed with Type 2 diabetes, 85 percent have a BMI > 

25 (classified as falling within the overweight range) and 55 percent have a BMI > 30 (classified 

as obese)[50]. 

Additionally, substantial literature supports the hypothesis that obesity is linked to 

chronic inflammation via a currently unknown mechanism[51,52,53,54,55].  This low-grade 

inflammatory response is thought to stimulate a state of insulin resistance and impaired glucose 

tolerance that ultimately leads to diabetes.  Significant advances have been made in 

understanding the roles of glucotoxiciy, lipotoxicity, and cellular nutrient excess and how the 

three contribute to the pathogenesis of T2D in obese individuals[54].  Nevertheless, a universally 

accepted and pathophysiologically conclusive explanation linking the three primary components 

of the disease: excessive adiposity, insulin resistance and insulin secretory dysfunction, has not 

been fully demonstrated[54]. 
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It is well known that infection, tissue damage or other stressors lead to the activation of 

the innate immune response in order to mobilize the necessary cells to the affected target site to 

resolve the damage[1,2].  Pickup and Crook made the early observation that short-term innate 

immune activation is beneficial for not only controlling infection and tissue damage, but also to 

restore homeostasis after stress; however, in chronic states of inflammation, such as T2D, the 

innate and acute phase responses are sustained and therefore disease progression ensues[52].  

The ungoverned response is likely a result of obesity fueling innate immune-derived pro-

inflammatory cytokine synthesis through the continuous activation of the NF-κB pathway.  NF-

κB activation is not resolved in cases of continued accumulation of adipose tissue and therefore 

perpetuates the acute phase response to evolve into a chronic state resulting in inflammation 

induced insulin resistance.   

To further ascribe a role for NF-kB’s involvement in the unresolved inflammation, 

studies have revealed that salicylates, or aspirin, reduce the activation of NF-κB, an important 

transcription factor responsible for fueling inflammation[56].  This effects was shown to occur 

through the direct molecular targeting of IKK-β, the kinase that directly activates NF-κB, is a 

direct molecular target of the salicylates[57].  IKK-β contributes to insulin resistance by directly 

phosphorylating serine residues on IRS1[57,58].  Mice devoid of myeloid IKK-β develop global 

insulin sensitivity, and obese mice devoid of hepatic IKK-β are protected from insulin 

resistance[59].  Therefore, enhanced NF-κB activity is a key inducer of cytokine-induced insulin 

resistance.   

NF-κB dependent pro-inflammatory cytokines, including TNFα, IL1β and IL-6, further 

promote serine phosphorylation either directly or by activation of other kinases. For example, 

TNFα was among the first molecular links between inflammation and insulin resistance, 
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impairing insulin-stimulated uptake of glucose as well as reducing tyrosine IRS-1 

phosphorylation[60].  Furthermore, TNFα will activate c-Jun N-terminal kinase (JNK) that in 

turn phosphorylates IRS-1 at Ser 307[61], making JNK a crucial component of the biochemical 

pathway responsible for obesity-induced insulin resistance in vivo[62].  IL-6 has been shown to 

inhibit tyrosine phosphorylation of IRS-1, decrease the association of the p85 subunit of PI3-K 

with IRS-1, reduce the activation of Akt, and inhibit insulin-induced glycogen synthesis by 

75%[63].  Systemic addition of a neutralizing IL-6 antibody improved insulin resistance in IKK-

β transgenic mice[64].  Taken together, inhibition of NF-κB dependent pro-inflammatory 

cytokine production is key in ameliorating obesity-induced insulin resistance and progression of 

T2D.   

Obesity results from the accumulation of adipose tissue, a metabolically active entity, 

characterized by abnormal cytokine production, increased acute-phase proteins, and 

inflammatory activation, and is a primary risk factor for developing T2D.  In a resting individual, 

the adipose is responsible for producing 10 – 35% of IL-6, with production increasing as 

adiposity elevates[65].  In addition to IL-6, the adipose tissue of obese individuals expresses 

elevated levels of: TNF-α, iNOS, TGF-β1, C-reactive protein, soluble ICAM, MCP-1, PAI-1, 

tissue factor, and factor VII[55].  It has been described that the adipose-induced infiltration of 

macrophages is likely responsible for the increased generation of pro-inflammatory 

mediators[55] and that MCP-1 is a critical chemokine produced by adipose tissue responsible for 

the increase of macrophage content, as well as the T2D phenotype[51].  Furthermore, CSF-1 

dependent F4/80+ cells, or bone marrow-derived adipose tissue macrophages, are present in 

obese mice[55] (Figure 11). 
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Figure 11.  Macrophages Infiltration of Adipose Tissue 

Obese adipose tissue is characterized by inflammation and progressive infiltration by 

macrophages as obesity develops.  Changes in adipocyte and fat pad size lead to physical 

changes in the surrounding area and modifications of the paracrine function of the adipocyte.  

Figure modified from[66]. 

1.5 THE LIVER’S ROLE IN T2D 

Increased adiposity requires the body to store excess fat in peripheral sites such as liver and 

muscle.  Excess fat accumulation in the liver, or hepatic steatosis, further perpetuates chronic 

inflammation by increasing the production of glucose, VLDL, cytokines and acute phase proteins 

including CRP, PAI-1, fibrinogen and IL-6[67].  Given that not all insulin resistant subjects are 
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overtly obese and that constitutive IKK-β activity in hepatocytes induces NF-κB activity in the 

absence of adiposity, it appears as if steatosis alone is sufficient to induce subacute inflammation 

contributing to overall insulin resistance and T2D progression[64].  These observations suggest 

the important role the liver plays in the development of T2D.   

1.5.1 Hepatocyte growth factor 

Hepatocyte growth factor (HGF) is a potent mitogeneic, motogenic, and morphogenic cytokine 

and is the primary growth factor involved in liver development and repair.  It is a heparin-

binding glycoprotein secreted as a single-chain inert precursor, produced by hepatic stellate cells 

and Kuppfer cells, as well as several other tissues including the lung and kidney[68].  Since HGF 

is similar in structure to plasminogen, it becomes a suitable substrate for the urokinase-type and 

tissue-type plasminogen activators (u-PA and t-PA, respectively)[69].  HGF is cleaved from its 

inactive, single chain form by proteolytic digestion at the Arg-Val-Val (aa494-495) site[70] to 

the mature, two-chain bioactive form (Figure 12).   

Figure 12.  Pro-HGF and Mature HGF 

The structures of proHGF and mature HGF after processing.   Figure taken from[71]. 
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Active HGF is a heterodimer comprised of an alpha and beta chain held together by a 

disulfide bond.  The alpha chain contains a hairpin loop and four kringle domains, and the beta 

chain contains a serine protease-like structure; however, HGF harbors no known protease 

activity since the characteristic amino acids, Histidine and Serine at the catalytic site are replaced 

with Glutamine and Tyrosine[68].  The HGF gene promoter contains four IL-6 response 

elements; therefore, HGF expression is induced by inflammation and the acute phase 

response[72].  The receptor for HGF is the tyrosine kinase, MET, a disulfide linked extracellular 

α and transmembrane β chain heterodimer expressed in almost all tissues.  Both the inactive and 

active forms of HGF protein may bind MET, however only the mature two-chain form of HGF 

exerts biological activity[73].  Before the discovery of HGF, the MET protooncogene was 

discovered for its ability to transform fibroblast cell lines, and it was found that the HGF-MET 

autocrine-loop enhances tumorigenecity in some lung cancers[74]. 

1.5.2 Plasminogen activator inhibitor type-1 

Plasminogen activator inhibitor-1 (PAI-1) is the primary inhibitor of plasminogen activators: 

urokinase-type plasminogen activator (u-PA) and tissue-type plasminogen activator (t-PA) and 

plays a regulatory role in fibrinolysis by inhibiting the production of plasmin.  PAI-1 is an acute 

phase protein normally expressed by adipocytes and endothelial cells and will become elevated 

during injury and inflammation.  Macrophage-derived TNF-α promotes the expression of PAI-1 

through the MAP kinase pathway[75], and as described above, obesity is a major perpetuator of 

inflammation.  Therefore, the link is made between obesity, pro-inflammatory cytokine 

production and the acute phase response (TNF-α, IL-6 and PAI-1) in the progression of insulin 

resistance and T2D.    The variety of plasminogen activator substrates introduces PAI-1’s 
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regulatory role into other systems in addition to fibrinolysis.  u-PA and t-PA are biological 

activators of HGF, cleaving the latent protein to the mature form[69].  Therefore, PAI-1 can 

negatively control the maturation of HGF and downstream signaling with the MET tyrosine 

kinase.  The inactivation of HGF by PAI-1 is a critical event in maintaining metabolic and 

inflammatory homeostasis as HGF is not only the main growth factor involved in liver 

regeneration, but recently has been described as an anti-inflammatory agent (Figure 13).   

Figure 13.  PAI-1 Signaling Cascade 

The signaling pathway of PAI-1 by inactivation of uPA.  Figure taken from WM Mars, 

unpublished.   

1.5.3 HGF signaling 

Recent studies demonstrate how HGF can ameliorate inflammation via inactivation of NF-κB 

gene transcription.  In order to understand this phenomenon, the signaling events of HGF must 
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be examined.  Upon ligand binding, MET undergoes tyrosine phosphorylation allowing for the 

recruitment of SH2-containing proteins including PI3-K.  Particularly in the multidocking site, 

Tyr-1349 and Tyr-1356 are critical for recruiting adaptor molecules for downstream 

signaling[76] (Figure 14).  Much like insulin signaling, HGF signals via PI3-K and Akt.  As 

described above, GSK3β is a downstream target of Akt, and in addition to mediating glycogen 

storage, it has also been described as a powerful governor of inflammation.   

Figure 14.  MET Kinase Signaling Cascade 

Typical biological activities of HGF mediated by c-Met/HGF receptor and intracellular signal 

transducers which associate with tyrosine-phosphorylated c-Met.  Figure taken from[71]. 
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1.5.4 Glycogen synthase kinase 3β 

GSK3β is a constitutively active serine/threonine kinase whose activity is reduced upon 

phosphorylation of an N-terminal serine at position 9, however phosphorylation of tyrosine 216 

results in its activation[77].  GSK3β is the substrate for many protein kinases including Akt, thus 

it mediates regulation of a diverse set of signaling molecules including developmental (Wnt 

signaling), metabolic (insulin signaling) and inflammatory (TLR signaling) pathways.  This 

kinase may be cytosolic as well as nuclear and is involved in promoting apoptosis as well as cell 

survival via regulation of a number of transcription factors including AP-1 and CREB.  

Substrates of GSK3β include glycogen synthase and β-catenin, whereas NF-κB activation can 

also be a GSK3β mediated event.  NF-κB activation requires the interaction with the coactivator 

protein, CBP, for optimal function[78], including pro-inflammatory cytokine production.  

However, CREB also competes for association with CBP, which results in anti-inflammatory 

cytokine production, such as IL-10.  Active GSK3β will inactivate CREB function; however, 

phosphorylating and inactivating GSK3β on serine 9 will allow CREB to freely associate with 

CBP, suppressing inflammation.  It is these events that demonstrate GSK3β’s potent regulation 

of inflammatory activation.  Since Akt is a downstream target of TLR4 signaling, it has been 

postulated that an alternative TLR4 ligand will promote signaling to serine phosphorylate 

GSK3β, leading to anti-inflammatory cytokine production via CREB activation (Figure 15).  

On the other hand, as described above, since innate immunity and the acute phase 

response must resolve in order to regain homeostasis, perhaps the accumulation of a certain acute 

phase reactant, such as HGF, acts as an internal rheostat in resolving inflammatory events.    
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Figure 15.  Alternative GSK3β Signaling Pathway 

TLR activation induces multiple pathways that mediate proinflammatory responses.  Figure 

taken from[79]. 

1.5.5 HGF as an anti-inflammatory agent 

Many studies have demonstrated HGF’s anti-inflammatory role.  For example, HGF attenuated 

renal inflammation in vivo by reducing the expression of MCP-1 and RANTES, as well as in 

vitro by suppressing TNF-α induced expression of MCP-1 and RANTES in tubular epithelial 

cells[80].  HGF also inhibited TNF-α activated monocyte adhesion to an endothelial monolayer, 
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an NF-κB dependent event[81].  Furthermore, HGF gene transfer diminished expression of 

MCP-1 and RANTES while ameliorating renal inflammation[82].  Additionally, the serine 

phosphorylation of GSK3β by HGF signaling prevented GSK3β-mediated phosphorylation of 

NF-κB p65 on serine 468 to inhibit NF-κB activation and downstream inflammation[83].  

Therefore, the mechanism whereby HGF acts in an anti-inflammatory nature might include 

HGF-MET signaling through PI3-K and Akt, resulting in inactivation of GSK3β, promoting the 

interaction of CBP with CREB and subsequent NF-κB inactivation.  However, dysregulation of 

this system will occur in obesity-induced diabetes in the presence of persistent inflammation and 

acute-phase proteins.  In the event of chronic obesity, steatosis will ensue, propagating hepatic 

inflammation including the production of PAI-1, u-PA, IL-6 and TNFα.  IL-6 will fuel HGF 

production and the latent protein will be cleaved and activated by u-PA.  However, as the levels 

of TNF-α increase, so will PAI-1 proteins, resulting in inactivation of u-PA, accumulation of 

inactive HGF and eventual loss of inflammatory control concomitant with progressing insulin 

resistance and hyperglycemia.   

Experiments described herein will further demonstrate HGF’s role in modulating 

cytokine production by macrophages mechanistically through GSK3β in vitro.   Furthermore, 

HGF’s anti-inflammatory effects play a role in obesity-induced inflammation in vivo as 

increasing amounts of hepatic PAI-1 protein prevent the activation of HGF.  The loss of HGF 

signaling results in steatosis, accumulation of hepatic and adipose macrophages, and the 

progression of T2D.  Therefore, we hypothesize that active HGF can ameliorate chronic stress 

induced by obesity, to reset metabolic function, by impeding persistent activation of NF-κB and 

inhibiting downstream inflammation.   



 

 34 

2.0  HEPATOCYTE GROWTH FACTOR MODULATES INTERLEUKIN-6 

PRODUCTION IN BONE MAROW DERIVED MACROPHAGES: IMPLICATIONS 

FOR INFLAMMATORY MEDIATED DISEASES 

2.1 ABSTRACT 

The generation of the pro-inflammatory cytokines IL-6, TNF-α, and IL-1β fuels the acute phase 

response (APR).  To maintain body homeostasis, the increase of inflammatory proteins is 

resolved by acute phase proteins via presently unknown mechanisms.  Hepatocyte growth factor 

(HGF) is transcribed in response to IL-6.  Since IL-6 production promotes the generation of HGF 

and induces the APR, we posited that accumulating HGF might be a likely candidate for quelling 

excess inflammation under non-pathological conditions.  We sought to assess the role of HGF 

and how it influences the regulation of inflammation utilizing a well-defined model of 

inflammatory activation, lipopolysaccharide (LPS)-stimulation of bone marrow derived 

macrophages (BMM).  BMM were isolated from C57BL6 mice and were stimulated with LPS in 

the presence or absence of HGF.  When HGF was present, there was a decrease in production of 

the pro-inflammatory cytokine IL-6, along with an increase in the anti-inflammatory cytokine 

IL-10.  Altered cytokine production correlated with an increase in phosphorylated GSK3β, 

increased retention of the phosphorylated NFκB p65 subunit in the cytoplasm, and an enhanced 

interaction between CBP and phospho-CREB.  These changes were a direct result of signaling 
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through the HGF receptor, MET, as effects were reversed in the presence of a selective inhibitor 

of MET (SU11274) or when using BMM from macrophage-specific conditional MET knockout 

mice.  Combined, these data provide compelling evidence that under normal circumstances, HGF 

acts to suppress the inflammatory response in macrophages. 

2.2 INTRODUCTION 

As a first line of defense in response to infection, tissue injury and stress, macrophages generate 

the NFκB-dependent pro-inflammatory cytokines, TNF-α, IL-1β and IL-6[15].  The expression 

of these pro-inflammatory cytokines serves to facilitate the expeditious infiltration of immune 

cells by rapidly leading to an increase in blood flow and permeability in capillaries.  The immune 

response is tightly regulated and dependent on signaling through ligands binding to Toll-like 

receptors (TLRs) on the surface of macrophages[1,2].  Receptor/ligand interaction initiates a 

signaling cascade that involves the multifaceted enzyme, GSK3β that can then further modulate 

NFκB activity to transition between the generation of pro- and anti-inflammatory 

signals[84,85,86,87].  Although necessary and beneficial during infection and tissue injury, the 

pro-inflammatory cytokine response must be resolved in order to reset the homeostatic threshold 

and subsequently repair affected tissues in the absence of excess inflammatory 

mediators[26,27,88]. 

IL-6 induction serves a dual role in the transition between propagation of the 

inflammatory response and initiation of the APR[27].  The APR serves to reset homeostasis after 

the ensuing inflammation by mediating the production of acute phase proteins from 

hepatocytes[26,89,90].  These proteins include plasminogen activator inhibitor type 1 (PAI-1) 
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and urokinase plasminogen activator (uPA), both of which are involved in the regulation of 

hepatocyte growth factor (HGF) activity[90].  IL-6 also promotes HGF transcription and 

generation of the latent protein[72,91,92].  Since IL-6 production both promotes the increased 

generation of HGF and induces the APR, we hypothesized that accumulating HGF may act to 

resolve inflammation after stress. 

To investigate this hypothesis we sought to assess the role of HGF and its cognate 

receptor, MET, with regard to innate immune activation of LPS-stimulated BMM.  Our results 

demonstrate that in the presence of HGF there is a significant decrease in the secreted levels of 

IL-6, suggesting that HGF suppresses inflammation after injury.  The suppression of IL-6 is 

achieved through HGF-dependent inactivation of GSK3β, a powerful governor of inflammatory 

signaling.  This inactivation of GSK3β enhances the anti-inflammatory pathway by promoting 

the interaction of phospho-CREB with CBP and, occurs in concert with an overall decrease of 

phospho-p65 (Ser 276) and elevated levels of the anti-inflammatory cytokine IL-

10[93,94,95,96,97].  Hence, our results indicate that HGF is a potent anti-inflammatory agent. 

2.3 MATERIALS AND METHODS 

2.3.1 Mouse strains 

C57BL/6J and B6.129P2-Lyz2tm1(cre)Ifo/J mice were purchased from The Jackson Laboratory and 

the MET floxed mice were a gift from Dr. Snorri Thorgeirsson[76].  B6.129P2-Lyz2tm1(cre)Ifo/J 

were crossed with MET floxed mice to produce CRElysZ+ MET+/+ animals.  Male mice 6 – 8 

week of age were used as a source of bone marrow-derived macrophages.  All animals were 
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housed under specific pathogen-free conditions in the Animal Facility at the University of 

Pittsburgh.  This study was carried out in strict accordance with the recommendations in the 

Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.  The 

protocol was approved by the Institutional Animal Care and Use Committee of the University of 

Pittsburgh (Assurance Number A3187-01). 

2.3.2 Isolation of mouse bone marrow derived macrophages 

Bone marrow derived macrophages (BMM) were cultured as previously described[98]. Femurs 

and tibias were dissected from sacrificed mice.  Bone marrow cells were flushed from the bones 

using a 26 g needle until the bone is clear.  The cells were then centrifuged and filtered through a 

cell strainer.  Cells were cultured in 10% L929 conditioned media, with a media change every 

two days.  Cultured cells were harvested and stained with the macrophage specific marker F4/80 

to assess purity 7 days after isolation.  Cells were plated on 24-well tissue culture plates at 1 x 

106 cells/well for supernatant analysis or on 100 cm tissue dishes at 2.5 x 107 cells/dish for 

protein analysis. 

2.3.3 Preparation of samples for ELISA 

BMM plated in 24-well plates were pretreated with recombinant mouse HGF (R&D Systems) for 

24 h at 37°C prior to stimulation with 1 µg/ml lipopolysacharride (LPS) from Escherichia coli 

(055:B5) (Signa Aldrich) for 24 h.  In assays using the MET kinase inhibitor, SU11274 

(Calbiochem), BMM were pretreated with 1 µM of the inhibitor for 2 h at 37°C followed by the 
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24 h HGF incubation and subsequent LPS stimulation.  Cell culture supernatants were collected 

from triplicate wells, pooled and stored at -20°C for further analysis.   

2.3.4 Preparation of protein lysates 

BMM were prepared as above and cultured in 100 mm dishes.  At 15 minutes post-LPS 

stimulation, the BMM were washed with ice cold PBS and cells were harvested with gentle 

scraping and centrifugation.  Cellular extracts were harvested using RIPA buffer supplemented 

with phosphatase and protease inhibitor cocktails (Roche) and 1 mM PMSF (Sigma-Aldrich).  

After the addition of 0.3 ml of lysis buffer, the macrophages were incubated on ice for 20 min, 

vortexed 3 times and centrifuged for 5 min at maximum speed at 4°C.  The supernatant (whole 

cell lysate) was collected and the protein concentration of the lysates was determined by the 

bicinchonninic acid (BCA) protein assay according to the manufacturer’s instruction (Pierce). 

2.3.5 Enzyme linked immunosorbent assay (ELISA) 

Supernatants from BMM pretreated with HGF and/or SU11274 and stimulation with LPS were 

collected at 24 h.  IL-6 and IL-10 cytokines secreted by BMM were measured by ELISA using 

purified capture and biotinylated detection antibody pairs (BD Pharmingen).  The ELISA plates 

were read using a SpectraMax M2 plate reader, and the data was analyzed using SoftMax Pro 

software (Molecular Devices).   
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2.3.6 Western immunoblotting 

Protein lysates were assayed by Western blot as previously described, with minor exceptions 

Tse, 2004 #34.  Anti-phospho-GSK3β (Ser 9), anti-phospho-CREB (Ser 133) and anti-CREB 

used at 1:1000 from Cell Signaling.  Anti-GSK3β was used at 1:1000 from Santa Cruz.  

Secondary antibodies were used from either Cell Signaling or Jackson ImmunoResearch.  Blots 

were analyzed using the Fujifilm LAS-4000 imager and Multi Gauge software (Fujifilm Life 

Science). 

2.3.7 Immunoprecipitation 

1 µg of CBP antibody (Santa Cruz) was added to 100 mg protein from whole cell lysates and 

incubated at 4°C overnight.  The following day, Protein G-conjugated sepharose beads were 

added to the protein/antibody complex tube and incubated for 2 h.  Immunoprecipitates were 

collected by centrifugation, washed twice with PBS, and then boiled in Laemmli sample buffer.  

Western blot was performed as described above. 

2.3.8 Cytospins 

BMMs were washed with PBS and gently scraped from multi-well tissue culture dishes.  Cells 

were collected into centrifuge tubes and spun at high speed for 10 min.  Cell pellets were 

resuspended to 1x103 cells per ml and cytospins were prepared with 100 µl of cells per slide.  

Slides were dried and stored at -80°C until staining.   
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2.3.9 Phospho-NFκB p65 (Ser276) staining 

Cytospin slides were fixed in 2% paraformaldehyde for 5 minutes and blocked with 20% non-

immune normal goat serum for 1 hour at room temperature.  After immuno-staining with 

primary antibody (Rabbit anti-Phospho-NFκBp65 (Ser276) 1:100, (Cell Signaling Technology), 

slides were washed 5 times in PBS and incubated with secondary antibodies Cy3-conjugated 

goat anti-rabbit (Jackson ImmunoResearch).  Nuclear staining (Hoechest staining, Molecular 

Probes) was performed.  Images were viewed at 40x magnification and captured by using a 

Nikon confocal microscope (Nikon D-ECLIPSE C1, Japan).  

2.4 RESULTS 

2.4.1 HGF suppresses inflammation in bone marrow-derived macrophages 

In order to determine that HGF plays a role in regulating the APR to suppress inflammation, we 

utilized a well-defined in vitro model of acute inflammation: LPS stimulation of BMM.  BMM 

were cultured with various physiological concentrations of HGF and then stimulated with LPS.  

Figure 16 demonstrates that 10 pg and 10 ng of HGF exhibit a significant suppression of IL-6 

production in LPS-stimulated BMM after 24 hours.   
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Figure 16.  HGF Modulates IL-6 Production in LPS Stimulation Macrophages 

BMM derived from C57BL6 mice were pretreated with or without 10 pg and 10 ng HGF for 24 

hours and stimulated with 1 µg/ml LPS.  Cell culture media was collected (24 h) and IL-6 levels 

were measured by ELISA.  Results are representative of the mean (± SEM) of three independent 

experiment done in triplicate, * indicates <0.001. 
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2.4.2 Pharmacological inhibition of HGF-MET signaling abolished HGF’s suppressive 

effects in BMM 

To further confirm that the inhibition of IL-6 production was a result of HGF signaling, we 

repeated the in vitro model of acute inflammation, this time in the presence of SU11274, a 

specific MET inhibitor.  An optimal concentration of 1 µM was chosen for the inhibition of 

signaling in BMM.  SU11274[99,100] was added to BMM cultures 2 hr prior to the addition of 

HGF and then cultures were stimulated with LPS.  The results demonstrate that incubation with 

the MET inhibitor abolished the inhibitory effect induced by HGF on IL-6 production in BMM 

stimulated with LPS (Figure 17). 

Figure 17.  A MET Kinase Inhibitor Abrogates HGF Suppression of IL-6 

Using an optimal dose of the MET inhibitor SU11274 (1 µg), BMM were pretreated for 2 hours 

before an overnight incubation with 10 and 100 pg HGF and 24 hour stimulation with LPS.  

Results are representative of the mean (± SEM) of three independent experiments done in 

triplicate.  *, p = 0.02 vs. the respective control group.  
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2.4.3 Conditional deletion of MET-receptor on BMM confirms pharmacoloigical data 

demonstrating HGF’s suppressive effects in BMM 

To rule out any offsite pharmacological effects by the MET inhibitor as the cause for the IL-6 

inhibition and to further study the important role HGF plays in tempering the acute inflammatory 

response, conditional MET flox mice specific for the macrophage lineage were generated.  

Figure 17 demonstrates that BMM isolated from MET conditional knockout mice fail to suppress 

IL-6 production in response to LPS as compared to their wild type littermate controls.  Use of the 

knockout animals confirmed the results demonstrated with the pharmacological MET inhibitor 

whereby the suppressive effect of HGF on IL-6 production was significantly reduced as 

compared with cultures not treated with the inhibitor (Figure 18).  Taken together, these results 

clearly illustrate the interaction of HGF and MET suppresses IL-6, further supporting the 

important role HGF plays in tempering the acute inflammatory response. 
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Figure 18.  Deletion of the HGF Recepotor MET Deomstrates a Reversal in the Effects of HGF on 

LPS Simultated BMM 

BMM derived from either macrophage specific MET conditional knockout mice (METfl/fl:crelysZ+/-

) or their wild type littermate controls (METfl/fl:crelysZ-/-) were pretreated with or without 1, 10 

and 100 pg HGF for 24 hours and stimulated with 1 µg/ml LPS.  Cell culture media was 

collected (24h) and IL-6 levels were measured by ELISA.  Results are representative of two 

independent experiments done in triplicate. 

2.4.4 HGF suppresses inflammation through GSK3β 

To further understand the mechanism in which HGF suppresses the inflammatory response, we 

looked downstream of HGF-MET signaling at potential regulatory targets.  One target, GSK3β, 

is known to regulate inflammation through activation of NFκB, resulting in pro-inflammatory 

cytokine production[77,79,83,85,86,101].  When GSK3β is in its inactive state (phosphorylated), 

its influence over NFκB activation is limited and therefore pro-inflammatory cytokine 

production is quantitatively lessened[85]. GSK3β is known to be a downstream target of 
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HGF[81,82,83].  We found that protein lysates prepared from BMM isolated from C57BL6 mice 

cultured with 10 ng HGF demonstrated an increased in phosphorylated, or inactive GSK3β 

(Figure 19), supporting the idea that HGF-MET interactions lead to inactivation of GSK3β.  

 

Figure 19.  Tretament with HGF Leads to Increased GSK3β Phosphorylation 

(A). Cytoplasmic lysates prepared from BMM were incubated with 10 ng HGF for 24 hours prior 

to stimulation with LPS (1µg/ml) for 15 minutes.  The lysates were separated by SDS-PAGE and 

probed with a phospho-specific GSK3β antibody before re-probing for β-actin.  (B). 

Densitometric analysis for phospho-GSK3β fold induction normalized to β-actin is shown for 3 

separate experiments.  Note that all experiments show induction greater than 1 when HGF is 

present. 
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2.4.5 HGF signaling leads to the interaction of CBP with phospho-CREB by GSK3 

To further determine the downstream signaling that results from HGF’s regulation of 

GSK3, we investigated the interaction of NFB with the CREB-binding protein, CBP.  

Interactions between NFB and CBP are facilitated by activated GSK3 when there is 

promotion of pro-inflammatory cytokine production[79,86].  Our data, however, shows that the 

inhibition of GSK3 following HGF treatment is associated with an increased interaction 

between CBP and phospho-CREB.  Stimulation of BMM with LPS in the presence of HGF led 

to an increase of phosphorylated (inactive) GSK3 (Ser 9) (Figure 19), which correlated with an 

increase in CBP-phospho-CREB (Ser 133) interaction (Figure 20A) followed by an increase in 

the levels of IL-10 production (Figure 20C). 



 

 47 

Figure 20.  HGF Promotes the Interaction of Phosphorylated CREB with CBP Along with an 

Increased Production of IL-10 

 (A). Whole cell lysates prepared from BMM were incubated overnight with HGF (10 ng) prior 

to stimulation LPS (1µg/ml) for 15 minutes, then subjected to immunoprecipitation with a CBP 

antibody.  The lysates were separated by SDS-PAGE and probed with a phospho-specific CREB 

antibody before re-probing for β-actin.  (B). Densitometric analysis for phospho-CREB fold 

induction normalized to β-actin. Is shown for 3 separate experiments.  Note that all experiments 

show induction greater than 1 when HGF is present.  (C). BMM were pretreated with or without 

1 µM of the MET kinase inhibitor (SU11274) for 2 h prior to incubation with HGF (1, 10 and 

100 pg) for 24 hours followed by stimulation with 1 µg/ml LPS.  Cell culture media was 

collected (24 h) and IL-10 levels were measured by ELISA.  Results are representative of two 

independent experiments done in triplicate.   

2.4.6 HGF inhibits the phosphorylation of Ser 276 on p65 of NFκB 

The enhanced interaction between CBP and phospho-CREB during the HGF-induced anti-

inflammatory response suggests CBP is being sequestered away from NFκB.  Normally, the 

transcriptional activity of NFκB occurs through the phosphorylation of p65 at Serine 276 

whereby a conformational change takes place that allows its nuclear association with CBP/p300 

[78].  This interaction allows for NFκB-dependent transcription of pro-inflammatory cytokines 

such as IL-6.  Figure 21 demonstrates abundant phosphorylation of p65 at Ser 276 in both the 

nucleus and cytoplasm upon stimulation with LPS alone (Figure 21B).  However, with the 

addition of HGF (10 pg) the overall phosphorylation of p65 is reduced with nuclear localization 

essentially absent (Figure 21C).  Again, the effects of HGF are abrogated when SU11274 is 

added to the cultures, indicating the suppression is mediated via the HGF receptor, MET (Figure 

21D) 



 

 48 

 

Figure 21. HGF Prevents the Nuclear Translocation of Phosphorylated p65 

BMM were (A). untreated (B). stimulated with LPS (1µg/ml) (C). treated with 10 pg HGF and 

stimulated with LPS (1µg/ml) or (D). treated with the MET kinase inhibitor, SU11274, 10 pg 

HGF and stimulated with LPS (1µg/ml).  Cytospin preparations were then stained by 

immunoflourescence for phosphorylated p65 (Ser 276) and for nuclei with DAPI.  The blue 

staining indicates nuclei, red staining indicates phosphorylated p65, and purple staining 

indicates colocalization of phospho-p65 within the nucleus. 
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2.5 DISCUSSION 

IL-6, a key pro-inflammatory cytokine, is upregulated “as a defense mechanism” in order to 

promote the APR and to initiate homeostasis as quickly as possible after an acute injury.  In 

cases of chronic stress; however, IL-6 changes its role by modulating the leukocytic repertoire 

resulting in a chronic inflammatory state[27,89].  Although the presence of IL-6 is imperative 

during early injury and acute inflammation, contraction of the inflammatory process must occur 

in order for the system to regain normal homeostasis and to initiate repair.  As a result, IL-6 is 

also posited to possess anti-inflammatory properties.  Evidence to support this latter hypothesis is 

shown by the enhanced inflammatory responses induced following endotoxin exposure to IL-6-/- 

mice[27], although, the authors never suggest a biochemical mechanism to explain why this 

unanticipated phenomenon occurs.  HGF, a cytokine widely known for perpetuating liver 

regeneration, has also been described as having anti-inflammatory properties in cases of 

persistent inflammation[80,81,82,83,102].  Importantly, the expression of HGF is induced by IL-

6 while its regulation is controlled via acute phase proteins (urokinase and PAI-1) that are also 

induced following IL-6 stimulation.  Hence, we posited a feedback loop wherein the pro-

inflammatory properties ascribed to IL-6 are exhibited through induction of the APR and the 

anti-inflammatory properties are mediated via HGF that is produced in response to IL-6 

stimulation.  

Using LPS stimulated primary BMM cell cultures as a source of IL-6, we demonstrate 

that addition of HGF is in fact anti-inflammatory (Figure 16).  Furthermore, we are able to 

confirm that the HGF-MET interaction propagates the suppression of cytokine production by 

using the pharmacological inhibitor of MET, SU11274 (Figure 17).  Other studies have focused 

on using inhibitors of the PI3K and Akt signaling cascade[86,87], that are down-stream of HGF-
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MET signaling; however, by using a direct MET kinase inhibitor as well as the macrophage -

specific MET floxed mice (Figure 18), we demonstrate that HGF-MET signaling is capable of 

suppressing inflammation.   

Traditionally, GSK3β is known for regulating glycogen synthase and the storage of 

glycogen into peripheral sites[103,104], but recent evidence suggests this kinase may also 

function as a key player in modulating inflammation[86,94].  It is well known that the activation 

of NFκB through TLR signaling leads to the transcription of pro-inflammatory cytokines; 

however, recently data was published indicating that at a more general level, cytokine production 

is regulated through GSK3β, which in turn regulates NFκB activity[86,87].  Hence, GSK3β 

appears to be a pivotal kinase that serves as a nodal point for both the generation and resolution 

of the inflammatory response[82,83,94].  Our data demonstrates that treatment BMM with HGF 

leads to increased phosphorylation and inactivation of GSK3β (Ser 9) (Figure 19) and that this 

response is sustained, even in the presence of LPS.   

Pharmacological inhibitors of PI3K, Akt, and GSK3β induce inactivation of GSK3β.  

Inactive GSK3β can then promote the association of phospho-CREB (Ser 133) with CBP and 

sequester the CBP away from NFκB p65 (Ser 276).  These signaling changes are associated with 

a switch from a pro- to anti-inflammatory pathway with a resultant increase in IL-10 

production[86].  Our data shows that using HGF in place of those inhibitors gives similar results.  

BMM treated with both LPS and HGF demonstrated an increased CBP-phospho-CREB 

interaction, which was reduced in the presence of the MET kinase inhibitor (Figure 20).  

Furthermore, there was an increase in the production of IL-10 (Figure 20C) and, a reduction in 

the nuclear translocation phosphorylated p65.  Combined, the data suggest that during an 
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inflammatory response, active HGF may be key in switching the cellular response from a pro- to 

an anti-inflammatory pathway.  

In addition to the canonical pathway, TLR signaling has been shown to weakly activate 

PI3K.  This then leads to anti-inflammatory events by altering the cytokine repertoire[86].  

Hence, it has been postulated that PI3K is the point at which TLR signaling is differentiated from 

a pro-inflammatory to an anti-inflammatory condition.  Our data indicates that in the absence of 

HGF, TLR signaling promotes the phosphorylation of NFκB along with its translocation to the 

nucleus and that this correlates with the production of the pro-inflammatory cytokine IL-6.  In 

contrast, in the presence of HGF, GSK3β is phosphorylated (inactive) and TLR stimulation leads 

to production of the anti-inflammatory cytokine, IL-10.  Notably, HGF signaling is well known 

to signal through the PI3K pathway[82,83,105].  Hence, we propose that under normal 

circumstances, induction of IL-6 through pro-inflammatory stimuli leads to the eventual 

production of HGF[72,92,106].  HGF-MET interactions then ultimately result in phosphorylation 

of GSK3β and in the continued presence pro-inflammatory stimuli, facilitates an increased 

association of phospho-CREB with CBP.  This then suppresses NFκB’s transcriptional activity 

and results in the resolution of the inflammatory response (Figure 21).  Our data describe the 

intimate interaction between IL-6 and HGF in regulation of inflammation.  Hence we propose 

that HGF acts as an internal rheostat regulating the complex cascade of induction and resolution 

of inflammation (Figure 22). 
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Figure 22. Proposed Mechanism of HGF-Mediated Suppression 

The canonical signaling pathway of LPS-TLR engagement leads to NFκB dependent pro-

inflammatory cytokine production through the interaction of CBP with NFκB.  However, TLR 

signaling has also been shown to weakly activate alternative signaling through PI3K, resulting 

in phosphorylation and inactivation of GSK3β, subsequent sequestration of CBP from NFκB to 

phospho-CREB, and resultant anti-inflammatory (IL-10) production [86].  Our results show that 

the presence of HGF enhances the IL-10 pathway.  We postulate that in order to resolve 

inflammation, the generation of IL-6 by LPS-TLR signaling leads to the production of HGF, 

ultimately leading to the inhibition of inflammation.  Hence, we propose HGF acts as an internal 

rheostat for resolving acute phase inflammatory responses. 
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3.0  THE ROLE OF PLASMINOGEN ACTIVATOR INHIBITOR TYPE 1 IN 

OBESITY-INDUCED DIABETES 

3.1 ABSTRACT 

Increased adipose tissue is associated with chronic inflammation and expression of acute phase 

response (APR) proteins, including elevated levels of PAI-1.  Hence obesity is considered to be a 

major risk factor toward the progression to T2D; aberrant expression of the cytokines TNF-α and 

IL-6 can initiate insulin resistance and lead to T2D.  On the other hand, the liver APR functions 

to ensure that the pro-inflammatory cytokines are down regulated, restoring homeostasis.  

Hepatocyte Growth Factor (HGF) is a key protein responsible for resetting the hepatic 

homeostatic threshold after injury and is cleaved to its active form (aHGF) by the urokinase-type 

plasminogen activator (uPA).  PAI-1, an inhibitor of uPA and anti-fibrinolytic agent, has been 

linked to increased cardiovascular events in obese patients.  Since HGF’s activation, interaction 

and signaling through its receptor MET is dependent upon uPA, by default elevated PAI-1 also 

regulates HGF’s function.  We hypothesized that elevated PAI-1 inhibits HGF’s ability to 

regulate inflammation in vivo, augmenting insulin resistance and hepatic steatosis.  Mice fed a 

high fat diet (HFD) were significantly overweight, glucose intolerant, hyperinsulinemic, and 

steatotic displaying increased macrophage recruitment to the liver and adipose tissue.  

Importantly, HFD fed mice showed a decrease in aHGF and elevated levels of PAI-1 protein.  
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The results demonstrate that inhibition of HGF by PAI-1 may play a role in unresolved 

inflammation seen in obesity and T2D. 

3.2 INTRODUCTION 

Obesity is a leading cause for the development of type 2 diabetes (T2D).  Over nutrition leads to 

increased caloric intake and dysfunction in metabolic homeostasis with the overwhelming 

presence of adipose tissue resulting in obesity-induced T2D[54].  The dysregulation in 

metabolism leads to a state of chronic inflammation, characterized by elevated pro-inflammatory 

cytokine production and the activation of the acute phase response (APR), ultimately leading to 

insulin resistance and dysregulation in hepatic glucose metabolism[52,54,107].  The generation 

of pro-inflammatory cytokines by circulating macrophages recruited to adipose tissue facilitates 

obesity-induced inflammation, resulting in insulin resistance and T2D[51,55,59,64].   

Increased adiposity is associated with chronic inflammation and expression of APR 

proteins that are secreted by the liver[52,54,107].  These proteins reflect the presence and 

intensity of inflammation and are part of how the liver attempts to maintain body homeostasis 

during stress, infection and/or injury[27,89].  On the other hand, proper homeostasis of the liver 

itself is regulated by a protein known as Hepatocyte Growth Factor (HGF), a mitogen for liver 

repair and maintenance that is transcribed in response to the pro-inflammatory cytokine IL-6[72].  

Among its other physiological roles in liver, HGF also plays a key role in resetting resetting the 

hepatic homeostatic threshold after injury and is cleaved to its active form (aHGF) by the 

urokinase-type plasminogen activator (uPA)[73,92,108].  Plasminogen activator inhibitor type-1 

(PAI-1), an acute phase protein, inhibitor of uPA and anti-fibrinolytic agent, is upregulated in 
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obesity and has been linked to increased cardiovascular events in obese 

patients[109,110,111,112].  Since HGF’s activation, interaction and signaling through its 

receptor MET are dependent upon uPA[90,113], and because PAI-1 inhibits the function of u-

PA, by default elevated PAI-1 also regulates HGF’s function.   

We have shown that aHGF is palliative in chronic inflammatory conditions by 

suppressing IL-6 production in a GSK3β dependent manner[114]; therefore in T2D, aHGF is a 

likely candidate for controlling excess inflammation.  Early cytokine and APR protein 

production promotes the generation of aHGF, leading to suppression of inflammation and 

inflammatory associated pathologies.  However over time, increasing adiposity generates pro-

inflammatory cytokines, such as TNF-α, leading to accumulations of PAI-1 resulting in 

increased levels of inactive HGF, chronic inflammation and progression to T2D.   

3.3 MATERIALS AND METHODS 

3.3.1 Animals and diet 

Early diabetes: Male C57BL/6J mice were purchased from Jackson Laboratory.  At 6 weeks of 

age, the mice were divided into two groups.  One group (n=4) was fed a high fat diet (HFD) 

consisting of 60% kCal fat (Research Diets, Inc) and the other group (n=5) was fed the standard 

chow diet used as controls.  The animals were fed the diet for 12 weeks.  Late diabetes: Male 

C57BL/6J mice (n=18) were fed the HFD and housed at the Jackson Laboratory through the diet-

induced obesity service.  The animals were fed for 40 weeks before being transferred to the 
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University of Pittsburgh animal facility.  Age matched retired male breeder C57BL/6J mice 

(n=16) purchased from Charles River fed the standard chow diet were used as controls.   

All animals were housed under specific pathogen-free conditions in the Animal Facility 

at the University of Pittsburgh.  This study was carried out in strict accordance with the 

recommendations in the Guide for the Care and Use of Laboratory Animals of the National 

Institutes of Health.  The protocol was approved by the Institutional Animal Care and Use 

Committee of the University of Pittsburgh (Assurance Number A3187-01). 

3.3.2 Biological parameters 

Body weight was recorded weekly up until termination of the experiment.  At the time of 

sacrifice, whole body composition was evaluated by quantitative nuclear magnetic resonance 

scans using the EchoMRI system.  The scans result in body composition including lean and fat 

mass per animal.  Fasting serum insulin was evaluated for the long term-HFD fed animals (43 

weeks).  Blood samples were collected and serum insulin levels were measured with a mouse 

insulin enzyme-linked immunosorbent assay (ELISA) kit (Mercodia).  The ELISA plates were 

read using a SpectraMax M2 plate reader, and the data was analyzed using SoftMax Pro software 

(Molecular Devices). 

3.3.3 Intraperitoneal glucose tolerance test (IPGTT) 

A 20% glucose solution (2.5 g/kg) was intraperitonealy administered to fasted mice at 9 weeks of 

HFD feeding (short term) and 44 weeks of HFD feeding (long term).  Blood samples were taken 
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at 0 (before glucose injection), 30, 60 and 120 minutes after glucose injection.  Blood glucose 

levels were measured using a glucometer (Ascensia Breeze, Bayer).   

3.3.4 Histology 

Livers and adipose tissue of sacrificed animals fed the standard or HFD were harvested and 

either fixed in 10% formalin and embedded in paraffin or frozen in OCT freezing medium.  Cut 

paraffin sections were stained with hematoxylin and eosin and an F4/80 antibody.  Frozen 

sections were cut and stained with Oil Red O.   

3.3.5 Tissue lysates preparation 

Protein lysates were prepared from snapfrozen tissue using a detergent-free lysis buffer (10 mM 

Tris-HCl, pH 7.5) with inhibitors as previously described[113,115,116].  Amiloride and aprotinin 

were used in the lysis buffer as they specifically inhibit u-PA and plasminogen activities, 

respectively.  Briefly, frozen chunks of tissue were weighed, homogenized and centrifuged for 3 

h in a refrigerated microfuge at 21,000 x g.  The supernatant was removed and save and the 

pellets were further solubilized in 1% SDS with inhibitors.  The Bicinchoninic Protein Assay 

(Pierce, Rockford, Il) will be used to determine the protein concentrations.  Supernatants are 

enriched for cytosolic proteins; pellets represent a nuclear-, matrix- and membrane-enriched 

fraction. 
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3.3.6 Western blot 

Lysates (preparation described above) were separated electrophoretically on a 10% SDS gel.  

The gel was then transferred onto a PVDF membrane, blocked and probed with a HGF or PAI-1 

antibody.  In order to distinguish between latent HGF and aHGF, these lysates will be assayed 

under reduced conditions (addition of DTT) since the HGF isoforms are different sizes (scHGF: 

~92kD, hcHGF: ~60kD, lcHGF: ~33kD). Alternatively, non-reducing (without DTT) conditions 

will provide the level of total HGF protein in the sample.  Densitometry will be used in order to 

quantitate the differences in protein levels between each group of mice. 

3.3.7 Statistics 

Prior work from our laboratory has demonstrated that group sizes ≥5 are sufficient for generating 

statistically meaningful results with significance is set at a p value <0.05.  For the hepatic 

studies, we propose to use 6 animals (6 male) per time point unless differences related to sex are 

noted.  If so, for statistical purposes we will increase the test cohort to 10.  Comparisons between 

groups will be evaluated by analyses of variance (ANOVA) with post-analyses performed using 

the Tukey multiple-comparison test.  Either the InStat program (GraphPad Software) or JMP 

statistical package software (SAS) will be used. 
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3.4 RESULTS 

3.4.1 Weight gain and body composition of C57BL6 mice fed a high fat diet 

In order to test our hypothesis that aHGF is lost due to the accumulation of PAI-1 as a result of 

obesity-induced diabetes, we placed C57BL/6 mice on a 60% kCal high fat diet for 12 (early 

diabetes) and 44 (late diabetes) weeks.  Mice fed a control diet were also monitored for the 

duration of the study.  Figure 23 shows the body weight composition of both cohorts of control 

and HFD fed mice.  As expected, the body weight of HFD fed mice (early and late) was 

significantly increased due to the presence of fat mass as compared to mice fed the control diet. 

Figure 23. Body Weight and Composition of Control and HFD Fed Mice 
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3.4.2 HFD-fed mice are glucose intolerance and hyperglycemic 

In an effort order to determine that the HFD was indeed leading to advanced metabolic 

dysfunction and glucose intolerance, we performed an intraperitoneal glucose tolerance test 

(IPGTT).  The early cohort of diabetic mice fed the HFD presented with only mildly glucose 

intoleranance peaking at 30 minutes and then returning to normal blood glucose levels (Figure 

23).  However the mice fed HFD for 44 weeks were significantly glucose intolerant and 

demonstrated elevated blood glucose levels near 600 mg/dL for the full 2 hrs post initial 

challenge (Figure 25). 

Figure 24. IPGTT for Mice Fed HFD for 9 Weeks 

Mice fed HFD or standard chow for 9 weeks were subjected to an IPGTT.  Animals were fasted 

overnight and given a dose of glucose (2.4 g/kg) IP.  Blood glucose levels were recorded at 0, 

30, 60 and 120 minutes post-glucose challenge.  Values are mean ± SEM post glucose challenge; 

n=5 per group for 0 minutes control; n=9 per group for 30 and 120 minutes control; n=8 per 

group for 60 minutes control and all HFD time points.  * indicates p < 0.0001. 
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Figure 25. IPGTT for Mice Fed HFD for 44 Weeks 

Mice fed HFD or standard chow for 44 weeks were subjected to an IPGTT.  Animals were fasted 

overnight and given a dose of glucose (2.4 g/kg) IP.  Blood glucose levels were recorded at 0, 

30, 60 and 120 minutes post-glucose challenge.  Values are mean ± SEM post glucose challenge; 

n=17 per group for all control time points; n=10 per group for all HFD time points.  * indicates 

p < 0.0001. 

In addition, the late stage diabetic mice (44 weeks) were significantly (p <0.0001) 

hyperinsulinemic compared to the control fed mice.  Fasting insulin levels (pmol) for control vs. 

HFD fed mice measured 150.92 ± 22.32 vs. 806.94 ± 67.13, respectively (Figure 26).  These 

results corroborate the glucose intolerance results. 

 

 

 

Figure 26. Fasting Serum Insulin 
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3.4.3 HFD feeding induces hepatic steatosis and macrophages infiltration 

A histological examination of livers from mice in the HFD study illustrates lipid 

accumulation as seen by H & E staining (Figure 27A).  Whereas the early diabetic mice begin to 

show a slight hepatic lipid accumulation, the 44-week HFD fed animals present with a dramatic 

increase in the accumulation of lipid droplets.  The elevated lipid accumulation in the 44 weeks 

HFD animals as compared to the standard chow fed animals was further confirmed by Oil Red O 

staining of liver sections (Figure 27B).   

 

Figure 27. Histological Examination of Livers From Mice Fed HFD 

 (A) Paraffin sections of livers harvested from 12 week and 44 week HFD fed animals were 

stained with hematoxylin and eosin.  Lipid droplets, indicative of hepatic steatosis, can be seen 

in the livers of the HFD fed mice with an increase in steatosis in the late stage diabetics.  (B).  

These results are further confirmed using the lipid specific dye, Oil Red O, on frozen liver 

section of mice fed a HFD for 44 weeks.  The red stain shows the presence of lipids within the 

liver tissue.  Shown are single tissue sections representative of each group, 40x magnification. 
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In addition to hepatic lipid accumulation, immune cells such as macrophages will also be 

activated and recruited to peripheral sites including the liver and adipose tissues[55,66,117].  The 

presence of macrophages can perpetuate insulin resistance with the over production of NF-κB-

dependent[59,64] pro-inflammatory cytokines such as IL-6 and TNF-α[60,63,118].  To 

determine the presence of macrophages, we stained both adipose and liver sections with an 

antibody specific to the F4/80 antigen present on macrophages; as resported in adipose tissue, 

macrophages formed a “crowning” pattern around adipocytes[119] (Figure 28A).  In the liver the 

macrophages focused around lipid droplets (Figure 28B).  

Figure 28. Histological Examination of F4/80 Positive Cells in Liver and Adipose Tissue 

Adipose (A) and liver (B) tissue from mice fed a HFD for 44 weeks (Late Diabetes) were 

examined for the macrophage marker F4/80.  Panel (A) shows significant F4/80+ 

staining/accumulation, and characteristic crowning, in the adipocytes from HFD fed mice 

compared to control.  Shown are single tissue sections representative of each group.  400x 

Magnification. Percent positive pixels were determined by Image J Analysis.  (B) shows a 

significant increase of F4/80+ cells in the mice fed HFD versus the control fed mice, indicative of 

infiltration.  Note the characteristic ‘crowns’ of F4/80 staining appears circling accumulated 
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lipid droplets in the hepatic tissue.  Three sections each were analyzed from three individual 

animals / group, HFD vs control to calculate mean ± SEM, followed by Student’s T-test for 

significance. 

3.4.4 Obesity leads to increases in PAI-1 protein resulting in decreases levels of aHGF 

Recently we reported that HGF plays a key role in contracting the innate immune 

response by suppressing and shifting cytokine production[114] in models of inflammation. In the 

context of T2D, the presence of increased adipose tissue feeds chronic inflammation and the 

acute phase reaction resulting in insulin resistance, glucose intolerance and exacerbation of the 

disease (Figs 24, 25, 26).  We propose that the increase of the acute phase protein PAI-1 by the 

adipose tissue negatively regulates the activation of HGF and therefore abolishes its anti-

inflammatory effects.  Using the diet induced obesity model of T2D we were able to further 

examine the expression and regulation of these proteins.  At 12 weeks, HFD fed animals were 

obese and displayed an abnormal response to glucose challenge (Figure 24).  Consequently, there 

is an increase the presence of aHGF in the cytosol indicative of its activation and signaling likely 

due to the stress of diet-induced obesity. (Figure 29A).  At 12 weeks, there is also an increase in 

PAI-1 protein the presence of which indicates induction of the acute-phase response.  By 44 

weeks when the animals fed a HFD were fully insulin resistant (Figure 25), latent HGF was 

highly elevated on the cell surface, in conjunction with elevated surface PAI-1 (Figure 29B).  

These data support the hypothesis that elevated levels of obesity-induced PAI-1 on the cell 

surface will inactivate u-PA, leading to loss of aHGF. 
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Figure 29. Effects of High Fat Diet on HGF and PAI-1 

 (A) Early diabetic mice (12 weeks) were sacrificed, cytoplasmic-enriched proteins were 

isolated, and lysates were subjected to western blot analyses for HGF and PAI-1.  The HFD fed 

mice demonstrate an apparent increase in aHGF as well as PAI-1 compared to the lean controls.  

(B) Late diabetic mice subjected to the same assay demonstrate an apparent increase in the 

latent form of HGF in the membrane-enriched lysates as compared to the early diabetic mice. 

3.5 DISCUSSION 

The diet-induced obesity model is a standard approach to induce the T2D phenotype in male 

C57BL6 mice.  We chose this model over the genetically predisposed mouse strains of obesity, 

the leptin deficient (ob/ob) or leptin receptor deficient (db/db) strains because the HFD model 

most likely reflects was is occurring in the human population: a polygenic and 

environmentally/lifestyle-induced disease.  In our hands, diet-induced obesity was evident as 

early as 12 weeks of feeding and lasted into late stage diabetes (44 weeks of feeding).  The 
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weight gain contributed to the glucose intolerance and was correlated with an increase in fat 

mass, not lean mass present in these animals (Figure 23).  The early stage diabetic animals had 

only a slightly abnormal glucose intolerance test, however the presence and intensity of the fat 

mass over time (44 weeks) resulted in the obese mice failing the glucose tolerance test 

concomitant with hyperinsulinemia (Figures 23 - 26).  These data strengthen the hypothesis that 

increases in obesity will perpetuate the metabolic syndrome leading to severe glucose 

intolerance.   

Recent studies have demonstrated the significance of NFκB-dependent pro-inflammatory 

cytokines fueling inappropriate insulin signaling resulting in insulin resistance[53,59,64,120].  

IL-6 and TNF-α promote serine phosphorylation of the insulin receptor substrates as well as 

JNK activation all of which result in abnormalities in glucose metabolism[54,60,62,121].  Cells 

of the innate immune system, including macrophages become activated and are the chief 

producers of these cytokines.  Additionally, adipocytes are also described to be ‘metabolically 

active’ capable of producing cytokine and chemokines.  As the caloric intake is exceeded in 

individuals by overnutrition and lack of exercise, surplus fat accumulates in peripheral sites, 

including the liver, resulting in hepatic steatosis.  Increased hypertrophy of adipocytes as a result 

of overnutrition leads to hypoxia induced oxidative stress and the production of MCP-

1[122,123].  MCP-1 produced by adipocytes will recruit circulating macrophage into the adipose 

tissue or any other tissue where adipocytes exist.  As macrophages are also able to produce 

MCP-1, a paracrine loop forms and macrophage infiltrates occur within peripheral 

organs[51,55,66,124].  Overtime, an excess of pro-inflammatory cytokines exist and disrupts 

insulin signaling and progression to T2D ensues.  Our data supports this mechanism as we see 

hepatic steatosis increasing in severity in animals on the HFD from 12 to 44 weeks  (Figure 27) 
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as evidenced by H&E and Oil Red O staining.  This occurs in concert with an increase in the 

presence of F4/80+ cells (Figure 28), indicative of macrophages within the liver and adipose 

tissue of obese versus lean mice.   

Pro-inflammatory cytokines are responsible for the production of APR proteins from 

hepatocytes, including HGF, uPA and PAI-1[26,89].  Obesity, as a result of chronic HFD 

feeding stimulates inflammation activating the APR resulting in elevated levels of PAI-

1[52,107,124].  In cases of acute stress, the acute phase proteins serve to clear the injury and 

return the system to homeostasis.  We and others have demonstrated HGF’s anti-inflammatory 

role in several incidences of inflammation[80,81,82,83,114].  Traditionally, uPA and PAI-1 have 

been associated with cardiovascular complications.  Their alternate function however is in the 

regulation of HGF activation, as urokinase activators (uPA and tPA) cleave HGF from its latent 

form to the biologically active form[70].  Since PAI-1 inhibits the function of uPA, indirectly it 

negatively regulates HGF.  Therefore we hypothesize that increasing amounts of obesity-induced 

PAI-1 inhibits the activation of GF thus negating its anti-inflammatory effects.  Our data 

demonstrates that livers from HFD fed mice at 12 weeks show an increase in aHGF and PAI-1 

protein as a result of the activation of the APR (Figure 29A).  However, livers from mice fed 

HFD for 44 weeks continue to demonstrate increased levels of PAI-1, but show an accumulation 

of inactive HGF (Figure 29B).  A proposed model for PAI-1’s negative regulation of HGF is 

shown in figure 30. 
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Figure 30. Hypothesized Model of Hepatocyte Growth Factor (HGF) Activation and Control of the 

Inflammatory Response 

Stimulation of the transcription factor NF-κB leads to production of pro-inflammatory cytokines 

and acute phase proteins, including TNF-α, IL-6, urokinase-type plasminogen activator (u-PA) 

and plasminogen activator inhibitor 1 type I (PAI-1).  Production of TNF-α promotes production 

of PAI-1 and also leads to further activation of NF-κB.  mRNA for HGF are transcribed in 

response to IL-6 resulting in enhanced translation of the protein through NF-κB activation.  

PAI-1 can inactivate u-PA, a protease that activates latent HGF to active HGF (aHGF). 

Therefore when high levels of aHGF are present, inflammatory signaling of cytokine production 

through the NF-κB pathway is inhibited 
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4.0  CONCLUSIONS AND FINAL REMARKS 

The best treatment for obesity-induced diabetes is a balanced diet and regular exercise.  Not only 

are BMIs of 30 and above a primary risk factor for a plethora of diseases including stroke, 

hypertension, and cancer, increase adiposity also feeds low-grade inflammation and perpetuates 

insulin resistance and T2D.  Obesity is becoming an epidemic worldwide and childhood obesity 

rates are increasing at alarming rates, having tripled in the past 30 years[125].  It is this time, 

more than ever, that our youth requires early education on eating well and staying active.  

However, when diet and exercise are not enough, pharmaceuticals and even surgical procedures 

are implemented in order to combat obesity and diabetes.  Traditionally aspirin therapy was 

utilized for T2D therapy, and presently there are 6 classes of oral medications to lower blood 

glucose including sulfonylureas (Glucotrol) and thiazolidinediones (Avanida) as well as 

injectable medications (Byetta) (diabetes.org).  Additionally, weight loss or bariatric surgery is 

popular for severely obese individuals with a BMI of at least 40.  However, with all of these 

options, risk factors are always a concern, particularly with diabetes medications being ‘pulled 

from the shelves’ (Avandia) and possible mortalites of surgical procedures.  Therefore 

prevention is key in avoiding extreme and often times fatal treatment options.   
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Figure 31. The Contribution of Obesity to Disease 

Figure taken from[126].   

One way to improve prevention strategies is to understand the mechanism of the disease.  

Luckily, as of 2010 we have a great understanding of how environmental stress, such as over 

nutrition and obesity fuels inflammation by interrupting insulin signaling resulting in insulin 

resistance and the deleterious effects of hyperglycemia on the body.  Ultimately, suppressing 

inflammation was the primary focus of my research.  The early observation that HGF acts to 

suppress pro-inflammatory cytokine production in bone marrow derived macrophages, one of the 

key cells involved in pressing the inflammatory cascade as a result of obesity, lead to unraveling 

the mechanism of HGF signaling through the MET kinase, thus inactivating GSK3β allowing for 

CBPs association with phospho-CREB skewing the cytokine profile from pro-inflammatory (IL-

6) to anti-inflammatory (IL-10).  In non-pathological conditions, the anti-inflammatory effects of 

HGF in concert with the acute phase response are enough to suppress inflammation enabling the 
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system to regain homeostasis.  However, how the effects of HGF are lost in pathological, 

inflammatory mediated diseases is the greater question.   

Realizing the redundancy of signaling pathways is the first step in understanding the 

intersection of inflammation and metabolic dysfunction.  For example, GSK3β is not only a key 

enzyme in promoting glycogen storage (phosphorylating glycogen synthase), but it also key in 

embryonic development (Wnt pathway) as well as a potent regulator of inflammation (TLR 

signaling).  More importantly, the fibrinolytic system parallels HGF activation.  Since HGF and 

plasminogen are structurally similar, they are both substrates of u-PA.  This becomes important 

in obesity as the inhibitor of u-PA, PAI-1 is upregulated in response to the production of TNF-α 

a proinflammatory cytokine.  This leads to the inactivation and u-PA preventing the maturating 

of HGF and loss of its anti-inflammatory effects further contributing to insulin resistance.  

Therefore, it is no surprise that obesity not only leads to cardiovascular complication, but also 

T2D.   

As a result of my research efforts, I see this pathway as a therapeutic avenue for exploit 

to control the aberrant inflammatory responses. For example, one potential therapeutic target is 

the use of MET kinase agonist that are not inhibited by elevated PAI-1, but act in the same 

manner as HGF in suppressing cytokine production.  However the concern is tumor formation as 

HGF-MET signaling has been described in different cancer models.  Nevertheless, the 

inactivation of HGF by PAI-1 can clearly be seen in the liver of mice fed HFD.  This is 

accompanied by severe glucose intolerance and hyperinsulinemia as well as steatosis.  Therefore, 

it is worth exploring as regaining the physiological effects of HGF signaling may ameliorate the 

progression of obesity-induced T2D.  Dysregulation of metabolic functions leads to a complex 

and difficult syndrome to treat since many physiological systems become involved.  It is clear 
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that the best treatment is one of proactive education of diet and exercise, however when these fail 

efforts to reset the APR and normal liver function may provide critical steps to ameliorate the 

ensuing obesity induced unchecked inflammation.  
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