

Integrating Protein Data Resources through Semantic Web Services

by

Xiong Liu

B.S., Hefei University of Technology, 1996

M.S., Tsinghua University, 1999

M.S., University of Pittsburgh, 2004

Submitted to the Graduate Faculty of

School of Information Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2006

UNIVERSITY OF PITTSBURGH

SCHOOL OF INFORMATION SCIENCES

This dissertation was presented

by

Xiong Liu

It was defended on

November 7, 2006

and approved by

Dr. Ivet Bahar, Professor, Computational Biology, School of Medicine

Dr. Michael Lewis, Professor, School of Information Sciences

Dr. John Vries, Associate Professor, Computational Biology, School of Medicine

Dr. Vladimir Zadorozhny, Assistant Professor, School of Information Sciences

Dr. Hassan Karimi, Associate Professor, School of Information Sciences
Dissertation Director

 ii

Integrating Protein Data Resources through Semantic Web Services

by

Xiong Liu, PhD

University of Pittsburgh, 2006

Understanding the function of every protein is a goal of bioinformatics. Currently, a large
amount of information (e.g., sequence, structure and dynamics) is being produced by
experiments and predictions that are associated with protein function. Integrating these diverse
data about protein sequence, structure, dynamics and other protein features allows further
exploration and establishment of the relationships between protein sequence, structure, dynamics
and function, and thereby controlling the function of target proteins. However, information
integration in protein data resources faces challenges at technology level for interfacing
heterogeneous data formats and standards and at application level for semantic interpretation of
dissimilar data and queries.

In this research, a semantic web services infrastructure, called Web Services for Protein data
resources (WSP), for flexible and user-oriented integration of protein data resources, is proposed.
This infrastructure includes a method for modeling protein web services, a service publication
algorithm, an efficient service discovery (matching) algorithm, and an optimal service chaining
algorithm. Rather than relying on syntactic matching, the matching algorithm discovers services
based on their similarity to the requested service. Therefore, users can locate services that
semantically match their data requirements even if they are syntactically distinctive.
Furthermore, WSP supports a workflow-based approach for service integration. The chaining
algorithm is used to select and chain services, based on the criteria of service accuracy and data
interoperability. The algorithm generates a web services workflow which automatically
integrates the results from individual services.

A number of experiments are conducted to evaluate the performance of the matching algorithm.
The results reveal that the algorithm can discover services with reasonable performance. Also, a
composite service, which integrates protein dynamics and conservation, is experimented using
the WSP infrastructure.

 iii

TABLE OF CONTENT

1. INTRODUCTION .. 1

1.1. Introduction... 1
1.2. Contributions... 4
1.3. Organization.. 5

2. BACKGROUND AND RELATED WORK .. 7
2.1. Introduction... 7
2.2. Protein Sequence, Structure, Function and Dynamics.. 7
2.3. iGNM Data Resource.. 10

2.3.1. Computational Prediction of Protein Dynamics ... 11
2.3.2. Gaussian Network Model (GNM) .. 12
2.3.3. Internet Accessible GNM (iGNM) ... 17

iGNM Database Server ... 18
oGNM Online Calculation Server .. 22

2.4. Other Protein Data Resources... 23
2.4.1. Protein Structure Data Resources ... 23
2.4.2. Protein Dynamics Data Resources.. 23
2.4.3. Protein Sequence Data Resources... 25

2.5. Traditional Methods for Data Resource Integration ... 26
2.5.1. Data Warehousing ... 26
2.5.2. Data Wrapping .. 27
2.5.3. Link-Based Integration ... 28

2.6. Web Services and Data Resource Integration... 28
2.6.1. Web Services and Service-Oriented Architecture... 29

Service-Oriented Architecture .. 30
Web Services Standards .. 32
Workflow .. 36

2.6.2. Semantic Web Services ... 37
OWL-S Framework .. 38

2.6.3. Web Services Based Methods for Data Resource Integration 39
2.7. Web Services in Bioinformatics ... 41

3. A SEMANTIC WEB SERVICES INFRASTRUCTURE FOR DISTRIBUTED PROTEIN
DATA INTEGRATION ... 43

3.1. Introduction... 43
3.2. Protein Data Resource Integration: Challenges .. 44
3.3. Methodologies for Optimal Integration .. 46
3.4. Computing Platforms .. 49
3.5. Architecture, Components and Tools ... 50

3.5.1. Biological Data Resources and Web Services .. 51

 iv

3.5.2. Semantic Description of Services ... 52
3.5.3. Semantic Publication and Matching of Services .. 53
3.5.4. Chaining of Services ... 54

3.6. The Deployment Process .. 55
4. MODELING PROTEIN WEB SERVICES.. 59

4.1. Introduction... 59
4.2. Protein Features .. 59
4.3. Modeling Protein Feature Services... 61
4.4. Developing Protein Feature Services.. 63
4.5. iGNM Protein Dynamics Web Service... 64
4.6. Protein N-gram Web Service .. 65

4.6.1. Protein N-gram Patterns.. 65
4.6.2. Protein Conservation Profile... 66
4.6.3. N-gram Conservation Profile Web Service .. 73

4.7. Category of WSP Web Services ... 74
5. SEMANTIC DESCRIPTION OF WEB SERVICES ... 76

5.1. Introduction... 76
5.2. The Role of Ontologies... 77
5.3. WSP Ontologies.. 79

5.3.1. Protein Ontology... 79
5.3.2. Extended Protein Ontology... 80
5.3.3. Upper Service Ontology ... 82

5.4. Semantic Description of Protein Web Services .. 83
6. SEMANTIC PUBLICATION AND MATCHING OF WEB SERVICES 87

6.1. Introduction... 87
6.2. Background... 88

6.2.1. Data Structures.. 88
6.2.2. Matchmaking Operations.. 90

6.3. A Semantic Matchmaker Service.. 92
6.3.1. Architecture... 93

6.4. Semantic Publication Algorithm... 95
6.4.1. Algorithm Description and Analysis .. 95
6.4.2. A Service Registration Example... 97

6.5. Semantic Service Matching Algorithm... 98
6.5.1. Algorithm Description and Analysis .. 99
6.5.2. A Service Matching Example ... 100
6.5.3. Comparison with Typical Matching Algorithm.. 101

6.6. WSP Scenario: Discovery of Protein Dynamics Data Resource 104
7. CHAINING OF PROTEIN WEB SERVICES... 107

7.1. Introduction... 107
7.2. Workflow-Based Service Integration ... 108
7.3. WSP Service Integration Process.. 110
7.4. Service Selection Criteria ... 112

7.4.1. Literature Review.. 112
7.4.2. WSP Service Selection Criteria .. 114

7.5. WSP Service Chaining Algorithm.. 115

 v

8. WSP PROTOTYPE .. 119
8.1. Introduction... 119
8.2. Protein Feature Web Services... 119

8.2.1. iGNM Protein Dynamics Web Service... 121
8.2.2. N-gram Conservation Profile Web Service .. 123

8.3. Semantic Descriptions of Services.. 125
8.3.1. Implementation of the EPO Ontology .. 125
8.3.2. Generating OWL-S Service Descriptions... 126

8.4. WSP Matchmaker ... 129
9. WSP EVALUATION ... 130

9.1. Introduction... 130
9.2. Evaluation of the WSP Matchmaker... 130

9.2.1. Experimental Setups ... 130
9.2.2. Analysis of Solution Space ... 133
9.2.3. Analysis of Matching Accuracy.. 140
9.2.4. Analysis of Service Matching Time ... 143

9.3. Evaluation of the WSP Integration Agent .. 147
10. CONCLUSION AND FUTURE RESEARCH... 152

10.1. Summary of the Research ... 152
10.2. Conclusions... 155
10.3. Future work... 157

APPENDIX A... 159
Time Complexity Analysis ... 159

WSP Publication Algorithm ... 159
WSP Matching Algorithm .. 160
Typical Matching Algorithm .. 161
WSP Service Chaining Algorithm.. 163

APPENDIX B ... 165
WSP Service Descriptions without Constraints.. 165
WSP Service Descriptions with Constraints... 167

REFERENCES ... 169

 vi

LIST OF FIGURES

Figure 2-1. (a) The basic structure of amino acid; (b) A peptide chain.......................... 8
Figure 2-2. Protein multiple-level structures (Brown 2003)... 8
Figure 2-3. In the induced-fit model, binding of substrates induces a conformational

change in the enzyme (Griffiths et al. 2002)... 9
Figure 2-4. GNM graphic representation, where there is no distinction between

nonbonded and bonded neighbors. (a) Chain of residues; (b) GNM interaction
network of residues ... 13

Figure 2-5. An example illustrating residue connectivity... 14
Figure 2-6. iGNM architecture: database server + online calculation server 17
Figure 2-7. Data instance example of entity Slow-modes .. 20
Figure 2-8. iGNM-PDB integration snapshot: the results using ‘phospholipase’ as

keyword are shown. The GNM information for all the retrieved structures is
tabulated in the right column .. 22

Figure 2-9. Service-Oriented Architecture ... 31
Figure 2-10. Technology stack diagram for Web services (Booth et al., 2003) 32
Figure 2-11. Sample BLAST WSDL description, adapted from

http://xml.nig.ac.jp/wsdl/Blast.wsdl, which is provided by XML Central of DNA
Data Bank of Japan (DDBJ). .. 33

Figure 2-12. WSDL to UDDI mapping (Brittenham et al., 2001)................................ 35
Figure 2-13. OWL-S upper ontology.. 39
Figure 2-14. Hierarchy of information integration problems 39
Figure 3-1. A hierarchy of information integration problem. The shaded paths and

blocks represent WSP’s integration approach .. 49
Figure 3-2. Mapping of Components to WSP Architecture ... 50
Figure 3-3. The current ad hoc approach for data integration 56
Figure 3-4. The deployment process of WSP ... 57
Figure 4-1. A conservation profile for carbonic anhydrase (PDB ID 1ca2)................. 61
Figure 4-2. Design of the iGNM web service... 64
Figure 4-3. A example of NP{4,2} pattern, where residue H has 10 patterns.............. 66
Figure 4-4. Initial steps in the NPLA algorithm: (a) Identifying and counting the non-

wildcard positions in the n-gram patterns shared by the query sequence and the
target sequences; (b) Dividing the target sequences into 20 bins; (3) Generating
raw conservation profiles. ... 69

Figure 4-5. (a) Distribution of the similarity threshold samples for carbonic anhydrase
(P00918) over the range from 20-80%; (b) The average amplitude of
reconstructions from the first and second eigenvectors for P00918; (c) The
reconstructions using the first eigenvector for similarity ranges from 20-60%. (d)
Invariant conservation profile (ICP) for P00918 reconstructed from the 40%
similarity level. ... 72

Figure 4-6. Sample n-gram service functionalities ... 73

 vii

Figure 4-7. Design of the n-gram conservation web service .. 74
Figure 4-8. Category of WSP services.. 75
Figure 5-1. (a) Overall design of the extended protein ontology (EPO), where new

concepts (blue ellipses) are added to the existing protein ontology (PO). (b) a
fragment showing that new concepts are added as leaves of existing concepts
(yellow ellipses). (c) a fragment showing an independent hierarchy. 82

Figure 5-2. The complementary relationships between OWL-S and WSDL 83
Figure 5-3. Methodology for generating semantic descriptions of web services 85
Figure 6-1. Semantic matching of service descriptions and a service request whose

output concept is “Dynamics”. Each dashed line (red) represents a specific
type of matching between the request and a service... 91

RO

Figure 6-2. Overall Semantic Service Discovery Architecture 93
Figure 6-3. Preprocessing of the domain ontology... 95
Figure 6-4. Pseudo code for the WSP service publication algorithm........................... 97
Figure 6-5. An example of service registration, where a service is pointed to the

conceptual nodes which have relations with the concept in the service. 97
Figure 6-6. Service registration result is a service registration table (or an index table).

... 98
Figure 6-7. Pseudo code for the WSP service matching algorithm. 100
Figure 6-8. Protocol for service matching. Each concept in a service request is matched

against a record in the registration table. The final matched services will be the
intersections of all candidate lists. .. 100

Figure 6-9. Pseudo code for a typical service matching algorithm............................. 102
Figure 6-10. WSP service matching examples ... 106
Figure 7-1. (a) An example of higher-level workflow; (b) an example of abstract

workflow; (c) an example of concrete web services workflow. 110
Figure 7-2. WSP integration process. ... 111
Figure 7-3. An example showing the process of service selection 115
Figure 7-4. An illustration of the service chaining problem....................................... 116
Figure 7-5. Pseudo code for the WSP service chaining algorithm. 118
Figure 8-1. Life cycle to develop biological Web services using AXIS platform...... 120
Figure 8-2. Fragment of iGNM web service’s WSDL interface 122
Figure 8-3. N-gram conservation service’s WSDL interface 124
Figure 8-4. Development of EPO in Protégé.. 125
Figure 8-5. Fragment of the EPO OWL ontology .. 126
Figure 8-6. Sample OWL-S service descriptions for services that provide protein

dynamics data. (a) iGNM mode shape service description; (b) sample ProMode
service description; (c) sample MolMovDB service description........................ 127

Figure 8-7. Two sample OWL-S service requests that look for protein dynamics data.
... 128

Figure 8-8. Sample OWL-S description of n-gram conservation service................... 129
Figure 9-1. Illustration of the matchmaker evaluation process................................... 132
Figure 9-2. Number of matched services when there are 50 WSP services: (a) using 10

requests without constraints; (b) using 10 requests with constraints.................. 134
Figure 9-3. Number of matched services when there are 200 WSP services: (a) using

10 requests without constraints; (b) using 10 requests with constraints. 136

 viii

Figure 9-4. Average number of matched services as a function of search space. 137
Figure 9-5. Sample match score distributions... 138
Figure 9-6. Average match score when there are 200 WSP services: (a) using 10

requests without constraints; (b) using the 10 requests with constraints. 139
Figure 9-7. Average match score as a function of search space. 140
Figure 9-8. Matching accuracy with 200 services: (a) using 10 requests without

constraints; (b) using 10 requests with constraints. .. 142
Figure 9-9. Average accuracy as a function of search space. 143
Figure 9-10. (a) Service matching time for 10 service requests without constraint; (b)

service matching time for 10 requests with constraint; (c) service matching time
for random requests... 145

Figure 9-11. Correlation between matching time and solution space: (a) using 10
service requests without constraint; (b) using 10 requests with constraint; (c)
using random requests... 147

Figure 9-12. A sample workflow for integrating dynamics data with conservation data
... 148

Figure 9-13. Integrating dynamics data with sequence data....................................... 148
Figure 9-14. Sample OWL-S request for protein dynamics (mode shapes) 149
Figure 9-15. Sample OWL-S request for protein conservation 149
Figure 9-16. Correlation between protein dynamics and conservation, using the

carbonic anhydrase (PDB ID: 1ca2) as an example.. 151

 ix

LIST OF TABLES

Table 2-1. iGNM Database schema .. 18
Table 2-2. Sample data resources on protein structural dynamics................................ 24
Table 2-3. Web Applications vs Web Services .. 29
Table 2-4. Sample data resources using Web services/semantic Web technologies 42
Table 6-1. Comparison of OWL-S and WSDL data structure...................................... 89
Table 6-2. Comparing WSP matching algorithm with typical matching algorithm... 103
Table 9-1. Sample WSP service requests ... 131

 x

1. INTRODUCTION

1.1. Introduction

In the post-genomic era, understanding the function of every protein is viewed as a key step

towards effective drug design and a major goal in bioinformatics. Protein function is a dynamic

property closely related to conformational changes accessible to the protein structure under

physiological conditions. Protein catalytic activity, binding and molecular recognition all involve

protein motions (Sinha and Smith-Gill 2002). With the rapid accumulation of protein structures

in the Protein Data Bank (PDB) (http://www.rcsb.org/pdb/; Berman et al., 2000), it is now

widely recognized that efficient methods and tools for predicting dynamics are needed in order to

better understand the function of target proteins.

iGNM is a Web-based system for high throughput analysis and prediction of protein dynamics

(http://ignm.ccbb.pitt.edu; Liu et. al, 2004; Yang et al., 2005). It is a joint project between the

Department of Computational Biology, School of Medicine, and the Geoinformatics Laboratory,

School of Information Sciences, at the University of Pittsburgh. As of August 2006, iGNM

Version 1.2 provides protein dynamics information, i.e., conformational changes, for more than

20,000 protein structures. Due to its efficiency and applicability to large structures and

assemblies, iGNM is gaining attention of researchers in the scientific community.

 1

Integrating iGNM with other protein data resources (see Section 2.4) allows for further

exploration and establishment of the relationships between sequence, structure, dynamics and

function, and thereby controlling the function of target proteins. This motivates the author to

develop a convenient software environment for integrating various types of protein data, ranging

from sequence-derived features (e.g., conservation) to structure-derived features (e.g., dynamics)

and to biophysical features (e.g., hydrophobicity and enzyme active sites).

Currently, many protein data resources are accessible to researchers through Web application

interfaces, e.g., through a HTTP (Hypertext Transfer Protocol) form and a corresponding Java

servlet. Users of these data resources are mainly biomedical researchers and developers. To

integrate data through Web applications (current approach), users have to have prior knowledge

about data resources and write scripts to parse HTML (Hyper Text Markup Language) code to

exact data while ignoring explanatory text and graphics. This approach is labor intensive and

fragile for minor changes in the HTML code of a given Web application may cause failure (Stein

2002). Refer to Section 2.5 for details.

Web services, on the other hand, offer an environment for flexible integration of various types of

information, including data, programs, files and other Web resources (see Section 2.6). Web

services represent underlying information using standard programmatic interfaces so that user

applications can obtain explicit results without tedious HTML code parsing. Also, web services

provide XML (eXtended Markup Language) based protocols and tools that facilitate the

discovery and integration of Web resources developed in different platforms. Since Web services

 2

simplify the information integration process, interest of applying Web services to biological

research has grown in recent years (Stein 2002; Foster 2005; Gao et al., 2005).

Current web services standards (see Section 2.6.1) allow user programs to discover services

based on syntactic descriptions of services, e.g., WSDL (Web Services Description Language).

However, service providers and users may have distinctive perspectives and knowledge about

one service resulting in differing descriptions for the service. In this case, syntactic based

matching, e.g., UDDI (Universal Description Discovery and Integration), will be unable to locate

the service because there are no semantic operations. The term “semantic”, as defined by the

Semantic Web community, refers to a machine’s ability to solve a problem without human

direction by performing well-defined operations on existing well-defined data (W3C Semantic

Web, 2006). The Semantic Web can provide the ability to tag all content on the web and give

semantic meaning to the content item. The potential benefits are that search engines become

more effective than they are now by providing the precise information users are looking for.

To make Web services capable of handling semantic interoperation, the Semantic Web

community has combined semantic markup languages and ontologies* with current web services

standards. This has led to semantic web services, one type of web services that can express not

only interfaces among services but also their capabilities (McIIraith et al., 2001; Paolucci, et al.,

2002). Since the semantics of web services are explicitly stated, services can be automatically

discovered even if the services and the service requested are syntactically distinctive.

* An ontology is a “specification of a conceptualization” (Gruber 1993). In the computer science domain, ontology
provides a commonly agreed understanding of domain knowledge for sharing across applications and organizations.
Typically, ontology consists of a list of terms and the relationships between those terms.

 3

Semantically annotated web services bring new paradigm shift of computing in scientific

research where data are heterogeneous and distributed. This dissertation proposes a semantics-

based Web services infrastructure, called Web Services for Protein data resources (WSP), and

how it can meet the requirements of optimal (automatic and accurate) integration of distributed

protein data. In WSP, data resources (e.g., web databases, computational servers and tools) that

provide protein data are modeled as reusable web services. Each service has a programmatic

interface as well as a semantic description of its capabilities in terms of inputs, outputs and

constraints. The semantic descriptions are published in a service registry and a semantic

matchmaker is designed to perform semantic matching between services and requests. To

facilitate protein data integration, a workflow-based chaining algorithm is designed to pipe

together inputs and outputs of consecutive web services. Potential WSP users include protein

data providers, bioinformatics researchers and developers. WSP allows users to conveniently

publish, discover and assemble various types of protein data (both existing and yet to come) for

their applications (e.g., predicting protein function from dynamics data).

1.2. Contributions

This research yields the following contributions:

• An infrastructure for representing and correlating protein features at a higher semantic level.

By exploiting the features of semantic-based web services, this infrastructure allows

researchers to conveniently discover and assemble various types of protein data for their

applications, e.g., determining the function or other features of proteins.

 4

• Two biological web services that demonstrate the process of developing and using biological

web services. The iGNM web service provides protein dynamics data for more than 20,000

protein structures. The N-gram web service provides conservation profiles for more than

50,000 protein sequences.

• A semantic matchmaker service that allows service providers to publish the description of

their services and allows users to submit requests and obtain semantically matched services.

The matchmaker includes an efficient semantic service matching algorithm.

• An optimal chaining algorithm that considers both accuracy and data interoperability

between services.

1.3. Organization

This dissertation first describes research background and related work. Further, the WSP

infrastructure for optimal data resource integration is presented. From this foundation the

dissertation discusses the major components of the infrastructure, including protein web services,

a semantic matchmaker and chaining of services. The outline of the chapters is as follows.

Chapter 2: Background and Related Work. Covers the basics of proteins, the iGNM system

and other protein data resources, traditional methods for data resource integration, web services

and their applications in bioinformatics.

Chapter 3: A Semantic Web Services Infrastructure for Protein Data Resource Integration.

Discusses the methodologies and components of the WSP infrastructure.

 5

Chapter 4: Modeling Protein Web Services. Details the design and development of protein

web services.

Chapter 5: Semantic Description of Web Services. Describes the role of ontologies and

methods used to semantically describe protein web services’ capabilities.

Chapter 6: Semantic Publication and Matching of Web Services. Describes the design of the

WSP matchmaker, the service publication algorithm, and the service matching algorithm.

Chapter 7: Chaining of Protein Web Services. Presents the methods and criteria used for

chaining protein web services.

Chapter 8: WSP Prototype. Discusses the implementation issues related to WSP components.

Chapter 9: WSP Evaluation. Describes experiments performed to evaluate the service

matching and integration processes.

Chapter 10: Conclusion and Future Research. Summarizes the research and also presents

topics for future work.

 6

2. BACKGROUND AND RELATED WORK

2.1. Introduction

This chapter first presents the background knowledge about proteins, the iGNM data resource,

and other protein data resources. Then it reviews the technologies used to integrate data

resources, including traditional methods (e.g., data warehousing) and web services based

methods. Finally, applications of web services in bioinformatics are discussed.

2.2. Protein Sequence, Structure, Function and Dynamics

Proteins are the most abundant macromolecules in living cells, constituting more than half of the

dry weight of cells (Garrett and Grisham 1999). Proteins consist of amino acids. Figure 2-1(a)

shows the basic structure of an amino acid, where the central alpha carbon (Cα) carries a

carboxyl end (written as COOH), a hydrogen atom (H), an amino end (written as NH2), and a

variable R group. R denotes any one of the 20 possible side chains found in the nature. Two

amino acids connected to form a peptide through dehydration, see Figure 2-1(b), and a sequence

of amino acids form a peptide chain. By convention, an amino acid in a peptide chain is also

called a residue.

 7

H –

H – H –

Figure 2-1. (a) The basic structure of amino acid; (b) A peptide chain.

Protein has multiple levels of structure, see Figure 2-2. The most basic level is the primary

structure, which is simply the sequence of amino acids. The secondary structure refers to certain

common repeating structures found in proteins such as alpha-helix and beta-pleated sheet. The

tertiary structure is the full 3-dimensional folded structure of the polypeptide chain. The

quaternary structure is the joining together of tertiary units, it is only present if there is more than

one polypeptide chain.

Figure 2-2. Protein multiple-level structures (Brown 2003)

 8

While structural genomics attempts to crystallize or predict the structures of all protein in

humans, functional genomics attempts to identify protein’s function or what it does. Protein

function involves the binding of other molecules called ligands, which can be any kind of

molecule, even other proteins. Ligands bind to the protein at a certain site called the binding site.

The binding site is particular to the ligand with respect to shape and chemical properties (Gold

and Jackson, 2006).

Protein function is well illustrated by enzymes, a special type of proteins. Enzymes are

biochemical catalysts that speed up chemical reactions that would occur too slowly for cells to

function. The substrates fit into an enzyme’s active site. Enzymes do their job of catalysis by

providing an optimal chemical environment for bond making or breaking steps. This is usually

achieved by lowering the transition state energy during reaction (Griffiths et al. 2002). Figure 2-3

illustrates the action of a hypothetical enzyme in putting two substrate molecules together, where

“*” represents an active site.

Figure 2-3. In the induced-fit model, binding of substrates induces a conformational change in the enzyme (Griffiths

et al. 2002)

 9

Protein function is a property closely related to the conformational mechanics of the structure in

its physiological environment. Protein catalytic activity, folding, binding and molecular

recognition all involve protein motions or conformational changes (Sinha and Smith-Gill 2002).

The connection between structure and function presumably lies in dynamics, suggesting a

paradigm shift in structural genomics studies from sequence-structure analysis to structure-

dynamics analysis, for gaining a more insightful understanding of sequence-structure-dynamics-

function relations (Yang et al., 2005).

Proteins have uniquely defined native structures under physiological conditions. The motions of

proteins near native state conditions are confined to a subset of conformations in the

neighborhood of the folded state, e.g., the open and closed forms of enzymes. In addition, the

equilibrium dynamics of proteins can be viewed as a collection of normal modes that lead to

experimentally observed residue fluctuations. Fluctuations involve correlated motions of

different structural elements, ranging from atoms, residues to large domains and subunits whose

concerted movements underline biological function (Yang et al., 2005).

2.3. iGNM Data Resource

As dynamics gives insightful picture of the mechanism that dictates protein function, the

collective effort to predict dynamics in a large database scale is relatively less than that for

protein structure information. iGNM is a data resource that provides dynamics information for

more than 20,000 protein structures. This section discusses the computational issues of protein

dynamics, the Gaussian Network Model, and the iGNM system.

 10

2.3.1. Computational Prediction of Protein Dynamics

Experimental methods, such as X-ray crystallography, Nuclear Magnetic Resonance (NMR) and

Hydrogen/Deuterium (H/D) exchange, reveal atomic level information on protein internal

motions. For example, temperature factor or B-factor is used to measure the positional

uncertainty associated with each atom in the thermal fluctuations. Due to experimental cost, a

major endeavor in recent years has been devoted to developing computational models and

methods for simulating protein dynamics using structural data and relating the observed behavior

to other experimental data.

Molecular Dynamics (MD) simulations have proven to be a useful approach for generating

conformational trajectories of macromolecules in order to visualize the correlation of their

dynamics to the biological functions (Brooks and Karplus 1983). However, MD simulations are

expensive in terms of both CPU time and memory. An efficient method for identifying function-

related conformational changes is Normal Mode Analysis (NMA), a method widely used for

characterizing molecular fluctuations near a given equilibrium sate using vibrational modes. The

utility of NMA for protein dynamics has been recognized for the last 20 years (Brooks and

Karplus 1983; Go et al., 1983) but has been revitalized in recent years with the success of elastic

network models used in NMA. In these models, atoms or groups of atoms (e.g., residues or

groups of residues) are modeled as point sites (network nodes) connected by springs, which

account for the force field that stabilizes the native structure. The utility of these models in NMA

was first pointed out by Tirion (Tirion, 1996). Given the insensitivity of the most cooperative

 11

modes to the detailed structure, a large majority of recent analyses have been performed using

lower resolution elastic network models. Among the elastic network models of different

complexities, the simplest is the Gaussian Network Model (Bahar et al., 1997).

2.3.2. Gaussian Network Model (GNM)

GNM is entirely based on inter-residue contact topology in the folded state. GNM requires no a

priori knowledge of empirical energy parameters, based on the original proposition of Tirion

(Tirion, 1996), and most importantly it lends itself to a closed mathematical solution. An

important feature of GNM is the possibility of dissecting the observed motion into a collection of

modes. These modes usually provide information on the molecular mechanisms relevant to

biological function (Tama and Sanejouand, 2001). Several studies (Jernigan and Bahar, 1998;

Bahar et al., 1998; Jernigan and Bahar, 1999; Haliloglu and Bahar, 1999; Rader and Bahar,

2004) have demonstrated the utility of GNM for understanding the machinery of proteins and

their complexes.

 12

 (a) (b)

Figure 2-4. GNM graphic representation, where there is no distinction between nonbonded and bonded neighbors.

(a) Chain of residues; (b) GNM interaction network of residues

In GNM, the alpha carbon atoms of residues are identified as the junctions or nodes of the

network, and the pairs of nodes closer than a cutoff distance are connected by harmonic

potentials with a uniform spring constant γ (see Figure 2-4). In addition to nonbonded

interactions, the effect of chain connectivity is also considered, as the model automatically

includes the constraints imposed by the first neighboring alpha carbon atoms along the backbone.

Thus, the residues fluctuate under the potentials of their near neighbors. The connectivity (or

Kirchhoff) matrix of contacts, Γ, is used to describe the inter-residue contact topology.

 13

5

1 2 3 4

18

19

20
21

22

238

5

1 2 3 4

18

19

20
21

22

238

1 2 3 4

18

19

20
21

22

238

Figure 2-5. An example illustrating residue connectivity

The definition of Γ is given in Equation 2-1, where i and j are residue index, Rij is the distance

between residue i and residue j, rc is the distance cutoff usually around 5 to 7 angstroms (Å), and

is the number of coordination residues within the cutoff. The off diagonal elements of

Γ are defined as Γ

∑Γik

ij = -1 if Rij is shorter than rc, and zero otherwise; and the ith diagonal terms is

the degree of node i, or the coordination number of residue i.

 2-1

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≠Γ−
>≠
≤≠−

=Γ

∑
≠

jiif
rRandjiif
rRandjiif

kik
ik

cij

cij

ij

,

0
1

1 2 3 4… 18 19 20 21…N

⎪
⎪
⎪
⎪

⎭

⎪⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪

⎨

⎧

−−−−−−−
=Γ

0...1111...1911
)(R 2-2
3

 14

Figure 2-5 shows an example of calculating Γ, where residue “3” is at the center of a cutoff

sphere. The 3rd row of Γ, which is the connectivity between residue “3” and other residues is

given in Equation 2-2.

The statistical thermodynamics of the network are controlled by the Hamiltonian (Bahar et al.,

1998):

 H = (γ/2) [ΔX Γ ΔXT + ΔY Γ ΔZT +ΔZ Γ ΔZT] 2-3

where γ is the spring constant, ΔX, ΔY and ΔZ are the N-dimensional vectors of the X-, Y- and Z-

components of the fluctuation vectors {ΔR1, ΔR2, ..., ΔRN} of the N residues in the examined

protein. The mean-square fluctuations of residue i scale with the ith diagonal element of the

inverse of Γ (Bahar et al., 1997; Haliloglu et al., 1997), as

 <(ΔRi)2> = (3kT/γ) [Γ-1]ii 2-4

and the cross-correlations <ΔRi ΔRj> scale with the ijth off-diagonal elements of Γ-1.

The fluctuation dynamics of the structure results from N-1 superposed GNM modes. The modes

can be extracted by the eigenvalue decomposition of Γ. The decomposition reads Γ = U Λ UT,

where U is an orthogonal matrix whose columns ui (1 ≤ i ≤ N) are the eigenvectors of Γ, and Λ is

the diagonal matrix of the eigenvalues λi, usually organized in ascending order. The ith

 15

eigenvector reflects the shape of the ith mode as a function of residue index. The ith eigenvalue

represents its frequency (Haliloglu et al., 1997).

The eigenvalue decomposition of the connectivity matrix Γ is the most expensive task in GNM

calculations from computational time point of view. Singular value decomposition (SVD)

method (Press et al., 1992) is usually used to this aim, the computing time of which scales with

N3 for a network of N residues. When N is less than 1,500, the computations are performed

within minutes, while the CPU times increased up to 15 days in the case of the largest structures.

An alternative decomposition algorithm that utilizes the BLZPACK software (Marques, 1995) is

based on Block Lanczos Method for large structures. This method evaluates a subset (1 ≤ k ≤

100) of dominant (slowest) modes, within a time scale of N2, i.e. the computing times is more

than 3 orders of magnitude shorter than the routine SVD, when structures of more than 103

residues are analyzed.

The theoretical temperature factor (BBi) predicted by GNM is proportional to the inverse

Kirchhoff matrix and also to the summation of all modes as

 2-5 [] [] []∑
−

=

−− ==
1N

1k
ikik

1
k

2
ii

1
B

2)3/8()/Tk8(uu Bi λπΓγπ

Equation 2-5 follows from Equation 2-4 and the definition BBi = (8π /3) <(ΔR2
i) >.[u2

k]i designates

the i element (corresponding to i residue) of the k eigenvector. th th th

 16

2.3.3. Internet Accessible GNM (iGNM)

The accumulating evidence that supports the utility of GNM as an efficient tool for protein

dynamics has led to the construction of iGNM, a database of GNM results compiled for more

than 20,000 protein structures ranging from small enzymes to large complexes and assemblies.

iGNM is based on a client-server architecture for query and visualization of protein dynamics

(see Figure 2-6). The client is based on standard Web browsers, where the servers include the

iGNM database server and the PDB server. Also, there is an additional online calculation server,

called oGNM, for online calculation of PDB structures that are not deposited in the iGNM

database server (Yang et al., 2006).

oGNM Engine

iGNM
Database

PDB
Databases

Online Calculation Server

PDBID; Keyword search

Query results (20 slowest and 20 fastest modes)

PD
B

ID

G
N

M
 R

es
ul

ts

PDB Server

Retrieve
PDB Data

Visualization

iGNM-PDB
Integration

Visualization

Database Server

User
Browser

Figure 2-6. iGNM architecture: database server + online calculation server

 17

iGNM Database Server

The goal of the database server is to provide information on the dynamics of all proteins beyond

those experimentally provided by B-factors (for X-ray structures), root-mean-square fluctuations

(NMR structures), or by interpolation between existing PDB structures. Currently, the iGNM

database contains visual and quantitative information on the collective modes predicted by GNM

for 20,058 structures deposited in PDB prior to September 15, 2003.

There are five major database entities (tables) in the database server: (1) the GNM entity that

stores both structural and dynamics information for each protein structure; (2) the B-factors

entity that stores equilibrium fluctuations for each residue of a protein structure; (3) the Slow-

modes entity that stores the slowest (lowest frequency) modes; (4) the Fast-modes entity that

stores the fastest (highest frequency) modes; and (5) the Crosscorr entity that stores the

correlation of fluctuations between different residues. The GNM entity has a one-to-one

relationship with the rest of the entities. Table 2-1 shows the iGNM database schema.

Table 2-1. iGNM Database schema

Entity Name Attributes

GNM PDBID, protein name, protein class, structure, description, B-factors, Slow-
modes, Fast-modes, CrossCorr

B-factors PDBID, Residue index, theoretical B-factor, experimental B-factor

Slow-modes PDBID, Residue index, 1st slow mode, 2nd slow mode, …, 10th slow mode

Fast-modes PDBID, Residue index, 1st fast mode, 2nd fast mode, …, 10th fast mode

Crosscorr PDBID, Residue index1, Residue index 2, correlation

 18

The GNM entity contains 9 attributes (see Table 2-1). The first one is the PDBID, which is a key

to a protein record. Attributes such as protein name, protein class, structure and descriptions are

the PDB objects, while attributes such as B-factors, Slow-modes, Fast-modes and Crosscorr are

iGNM objects.

The B-factors entity contains three attributes: the residue index, the GNM calculated theoretical

B-factors, and the X-ray crystallographic B-factors taken from PDB.

The Slow-modes entity contains eleven attributes. The first one refers to residue index.

Attributes 2-11 are slow mode shapes associated with the 10 slowest modes, starting from the

slowest (first) mode. Figure 2-7 shows a data instance example of the Slow-modes entity.

There are also 11 attributes in the Fast-modes entity. The first one refers to residue index.

Attributes 2-11 are fast mode shapes associated with the 10 fastest modes, starting from the

highest mode. Since the last modes reflect localized fast motions in the protein, these modes

have few non-zero elements.

The Crosscorr entity contains three attributes. The first two are the residue indices and the last

one is the correlation value.

 19

Residue
index

Residue
Name

1st slowest
mode

2nd slowest
mode

3rd slowest
mode ...

0 MET 0.00632 0.01597 0.00061

1 VAL 0.00511 0.02603 0.00276

2 LEU 0.0038 0.02323 0.00279

3 SER 0.00327 0.02429 0.00328

4 GLU 0.00277 0.02328 0.00325

5 GLY 0.00243 0.02234 0.00292

6 GLU 0.00249 0.02053 0.00193

7 TRP 0.00204 0.01651 0.00339

8 GLN 0.00165 0.01939 0.00257

9 LEU 0.00152 0.01733 0.00114

Figure 2-7. Data instance example of entity Slow-modes

The design of the iGNM database is customized based on GNM output files. The database has

one instance of the GNM table schema for each protein in PDB. The attributes that are iGNM

objects (e.g., B-factors) are linked through PDB ID to each corresponding table. As the database

schema shows, there is only one-to-one relationship between the GNM table and other tables.

Since there are no complicated join operations between the tables, each GNM instance is

implemented as a folder and the object attributes (e.g., B-factors, Slow-modes) associated with

the instance are stored as text files.

iGNM allows users to retrieve information through a simple search engine by entering the PDB

identifier of the protein structure of interest. For example, “2hmg” is the PDB code for influenza

virus hemagglutinin A (HA). The output includes: (1) the equilibrium fluctuations of residues

and comparison with X-ray crystallographic B-factors; (2) the sizes for residue motions in

different collective modes; (3) the cross-correlations between residue fluctuations, or domain

motions in the collective modes; and (4) the identity of residues that assume a key mechanical

 20

role (e.g., hinge) in the global dynamics, and thereby function, of the molecule, as well as those

potentially participating in folding nuclei/cores (Bahar et al., 1998; Rader and Bahar, 2004).

After a protein structure is retrieved, the fluctuations of each residue are displayed in both 2D

mobility graph and 3D ribbon diagram. iGNM allows the visual query of each residue’s

fluctuation by either interactively clicking a residue’s position in the 2D graph or using

embedded menus to select residues with desired features in the 3D diagrams.

In addition to queries using PDB IDs, iGNM is integrated with the PDB SearchLite query

interface for keyword-based queries (Liu et. al, 2004). By typing keywords related to the

biological macromolecules of interest, users can browse PDB records and iGNM output files for

a given protein family in an integrated environment (see Figure 2-8). The PDB linkage and the

GNM linkage are inserted into each retrieved record for convenient access to both

conformational and dynamic information. The retrieved records can be sorted alphabetically

according to PDB ID and Title, as well as numerically according to protein resolution.

 21

Figure 2-8. iGNM-PDB integration snapshot: the results using ‘phospholipase’ as keyword are shown. The GNM information

for all the retrieved structures is tabulated in the right column

oGNM Online Calculation Server

When the user performs a search for a PDB structure, the iGNM database is checked first for that

structure’s GNM results. If the structure’s results are not found, an interface to the oGNM online

calculation server is automatically provided.

oGNM takes as input a 4-digit PDB ID from the user’s browser. It then retrieves the

corresponding structure from PDB and performs online calculation. Once the calculation is

complete the results are delivered to the visualization engine for visual presentation to the user

(see Figure 2-6).

 22

2.4. Other Protein Data Resources

2.4.1. Protein Structure Data Resources

PDB (Berman et. al, 2000) is the single international repository for the distribution of 3D

macromolecular structure data primarily determined by X-ray crystallography and Nuclear

Magnetic Resonance.

Based on PDB, there are many specialized structure databases for various purposes. For

examples, the SCOP (Structural Classification of Proteins) database (Conte et al., 2000) provides

information on close relatives of a given protein using keywords and homology searches; the

CATH (Class, Architecture, Topology, and Homologous superfamily) database (Pearl et al.,

2001) provides a hierarchical classification of protein domain structures at four levels: class,

architecture, topology and homologous super-family; MMDB (Molecular Modeling Database)

(Chen et. al, 2003) provides graphical summaries of the biological annotation available for each

structure, based on automated comparative analysis.

2.4.2. Protein Dynamics Data Resources

In addition to iGNM (see Section 2.3), there are several other online data resources on protein

dynamics, including MolMovDB (Echols et al., 2003), ElNémo (Suhre and Sanejouand, 2004),

ProMode (Wako et al., 2004), MoViES (Cao et al., 2004), Dynamite (Barrett and Noble, 2005),

and WEBnm (Hollup et al., 2005).

 23

Table 2-2. Sample data resources on protein structural dynamics

System
Name Brief Description Components Model Num. of

Structures

MolMovDB
(USA)

Presenting conformational
changes using motion
trajectories

Database;
Calculation
server

Interpolation between known
Conformations 4400

ElNémo
(France)

Presenting up to 100 slowest
modes of studied structures

Calculation
server Simplified NMA No database

available

ProMode
(Japan)

Presenting collective
motions for 20 slowest
modes

Database All-atom NMA 1,442

iGNM
(USA)

Presenting collective
motions for 20 slowest
modes and 20 fastest modes

Database;
Calculation
server

GNM 22,549

Table 2-2 shows features of some sample data resources. As can be seen, theses data resources

are based on different methods and contain differing information about protein dynamics. For

examples: MolMovDB contains protein motions (also referred to as “morphs”) generated by

interpolation between two known conformations (structures); ElNémo uses a simplified NMA

model at the residue level; ProMode uses all-atom NMA and determines the motions in the space

of dihedral angles, as opposed to Cartesian coordinates used in all other resources; iGNM uses

GNM, which is also at the residue level, but yields N-1 normal modes’ amplitudes, and not 3N-6

node vectors conventionally obtained by NMA.

These data resources have different components for providing dynamics. For examples:

MolMovDB and iGNM have both database and online calculation server; ProMode contains a

database; ElNémo only provides online calculation. In addition, these data resources have

differing data coverage. Due to its simplicity and efficiency, the iGNM database contains the

results for a significantly larger number of protein structures compared to other databases.

 24

2.4.3. Protein Sequence Data Resources

Protein sequence data resources contain sequence information without detailed 3D structure

information. For examples: SwissProt/Trembl (Bairoch et al., 2005) is a database that contains

more than 2 million protein sequences; Pfam (Finn et al., 2006) is a database of multiple

alignments of protein domains or conservation residue regions. Pfam consists of two sets of

protein families: Pfam-A families are based on multiple alignments whereas Pfam-B is an

automatic clustering of the SwissProt/Tremble.

Protein sequences that belong to the same family have conserved regions. Conservation profiles

are a measure of the shared patterns that remain. The conserved regions revealed in profiles are

useful for identifying sites that are important for structure and function (Valdar and Thornton,

2001). Traditionally they have been constructed from multiple alignments (MSA) using scoring

matrices and weighted averages (Valdar and Thornton, 2001). This approach has been effective,

but it also requires a chain of assumptions that may not be valid in all cases. There are many

ways to generate scoring matrices and these matrices vary in their sensitivity to remote homologs

(Johnson and Overington, 1993). Many proteins contain multiple domains or overlapping and/or

nested domains that strongly influence alignment (Raghava et al., 2003). Sequences for multiple

alignments often require preprocessing to eliminate low complexity regions (Wootton and

Federhen, 1996).

A new algorithm based on n-gram patterns has been developed that avoids the assumptions

associated with the MSA approach (Vries et al., 2006a). Due to the advantage of this algorithm,

 25

it has been used to generate conservation profiles for more than 50,000 protein sequences (see

Section 4.6 for more details).

2.5. Traditional Methods for Data Resource Integration

Currently, many bioinformatics resources (e.g., PDB and iGNM) are accessible to researchers

through web application interfaces, e.g., through a HTTP form and a server-side processing

script. There are three main ways to integrate data via web applications: data warehousing, data

wrapping, and link-based integration (Stein 2003).

2.5.1. Data Warehousing

Data warehousing method brings all the data from different databases into a single database.

There are two steps to construct a data warehouse: the first step is to develop a unified data

model that can accommodate all the information contained in various data resources; the second

step is to write a set of scripts to fetch the data from the source databases, transform them to the

unified data model and then load them into the warehouse. The warehouse serves as a centralized

database for answering any of the queries that source databases can handle, as well as cross-

database queries that the individual databases cannot handle.

The major limitation of the data warehousing approach is that the warehouse is fragile to source

database changes. New information is being continuously added to the source databases, which

means that new data must be incorporated into the warehouse or the warehouse will be out of

 26

date. Also, source databases may continuously be modified by adding new data types, changing

fields and the relationships between data types. This means that scripts written for one version of

a database may no longer work with a later version. For example, the Integrated Genome

Database (IGD) project attempted to combine human sequencing data with the multiple genetic

and physical maps using data warehousing approach (Ritter et al., 1994). On average, each of the

source databases changed its data model twice a year, the IGD data import scripts often broke

down and had to be rewritten. Because software maintenance became unmanageable, the IGD

project eventually terminated (Stein 2003).

2.5.2. Data Wrapping

Most online biological databases provide HTTP user interfaces and underlying datasets using

different data formats and access methods. To integrate these databases, the data wrapping

method leaves the information in its source databases, but builds an environment or view on top

of the databases that makes them seem to be part of a logic unit. To this end, the database

community has developed various cross-database query languages. For example, Kleisli and K2

languages can analyze a given query to discover which databases need to be accessed to satisfy

the request, and generates a set of subqueries to fetch data (Davidson et al., 2001). Despite the

appeal of this approach, the data wrapping approach introduces the complexity of writing and

maintaining the database drivers or wrappers. Therefore, languages such as K2 have not been

widely adopted by the bioinformatics community (Stein 2003).

 27

2.5.3. Link-Based Integration

Link-based integration often begins query with one data resource, and then creates hypertext

links to related information in other data resources. In this approach, data resources either

cooperate to create dependable linking rules or links to external databases can be manually

inserted. The sequence retrieval system (SRS) is an example of link-based integration for

biological databases. SRS is more sophisticated than general web-based search tools (e.g.,

Google) because it allows users to explicitly relate a field in one database to a differently named

field in another database (Zdobnov et al., 2002). However, link-based integration is problematic

because it is vulnerable to naming ambiguities. For example, a user might interpret the name of

links differently than the developer and wander into the wrong page. Also, links to external

databases may fail if external databases no longer function.

2.6. Web Services and Data Resource Integration

Traditional web application-based methods (e.g., data warehousing) are tightly-coupled with data

resources. Users need to have prior knowledge about data resources and write scripts to parse

HTML code to extract data while ignoring explanatory text and graphics. This tightly-coupled

approach is labor intensive and fragile for minor changes in the HTML code of a given web

application may cause failure (Stein 2002). In addition, most methods only focus on the data

integration aspect without providing means to integrate computational and visualization tools

such as molecule search engines (e.g., PDB) and homology search tools (e.g., BLAST) (Lacroix

et al., 2003).

 28

Web services, on the other hand, offer a loosely-coupled environment for dynamic integration of

various data resources and software components (see Table 2-3). Web services provide XML-

based programmatic interfaces and communication protocols for user applications to obtain

explicit results without tedious HTML code parsing. Also, web services provide protocols and

tools that facilitate the discovery and aggregation of data resources. This section reviews current

web services technologies and web services-based methods for data resource integration.

Table 2-3. Web Applications vs Web Services

 Web Applications Web Services

User-to-program interaction Program-to-program interaction
Workflow is determined by developer Application determines workflow
Static integration of components Possibility of dynamic integration of components D

es
ig

n

Monolithic service Possibility of service aggregation
Existing web applications are based on either a
specific platform

Doesn't assume any specific platform or
programming paradigm

HTML is the primary data format XML is the foundational enabling technology

D
ev

el
op

er

Application is more difficult to maintain Maintenance of services is easier
Application is described in graphic user interface
(GUI)

Individual services are self describing via
programmatic interfaces

U
se

r

GUI is important GUI may not be necessary

2.6.1. Web Services and Service-Oriented Architecture

The term “Web services”, as defined by the World Wide Web Consortium (W3C)

(http://www.w3.org/), refers to “programmatic interfaces” used for Web application to

application communication. Web services represent an emerging distributed computing paradigm

that differs from other approaches such as Common Object Request Broker Architecture

 29

(CORBA), Remote Procedure Call (RPC) and Java Remote Method Invocation (RMI) in that it

emphasizes Internet-based standards to address heterogeneous distributed computing (Foster et

al., 2002). The aim of Web Services is to exploit XML technology and the Web by integrating

applications that can be published, located and invoked over the Web. An example of Web

services for biology is myGrid which is a middleware for in-silico experiments (Lord et al.,

2004). It contains a number of Web services, such as XEMBL service which displays data from

the EMBL (European Molecular Biology Laboratory) Nucleotide Sequence Databank in XML

formats (http://www.ebi.ac.uk/xembl/).

Service-Oriented Architecture

Web services interact with each other and user applications using the Service-Oriented

Architecture (SOA). There are three entities in any SOA (see Figure 2-9): service providers,

service requestors, and service registry. A service provider is responsible for generating a service

description, publishing that description to one or more service registries, and responding

invocation messages from service requestors. A service registry acts as a central location for

registering all services. A service requestor is a customer of a Web service that can be either a

human or a software agent. The requestor checks for a service description in a service registry

and then binds to the Web service if found. The responsibility of a service registry is receiving

service descriptions from service providers and matching them with requestors’ service requests.

 30

http://www.ebi.ac.uk/xembl/

Service
Requestors

Service
Providers

Binding

Discovery Publication

(WSDL + UDDI) (WSDL)

(SOAP)

Service Registry

Client Service

Service
Descriptions

Figure 2-9. Service-Oriented Architecture

Several technologies are involved in enabling interactions within the web services architecture,

including SOAP (Simple Object Access Protocol) (W3C SOAP, 2001), WSDL (Web Service

Description Language) (Christensen et al., 2001), and UDDI (Universal Description, Discovery

and Integration) (UDDI, 2000). A stack diagram of these component technologies is illustrated in

Figure 2-10.

The lowest layer in the stack diagram is the communications layer which includes standard

Internet protocols such as HTTP. The layer above the communication level is the messages layer,

representing how a message is exchanged between providers and requestors. SOAP is the

framework for functionality in this layer. The description layer is for creating a common

understanding of message structure and data types for both service providers and requestors.

WSDL is currently used to describe the invocation syntax of Web services. The processing layer

contains high-level tools used for service discovery and composition. UDDI is one of the

 31

techniques which could be used in this layer. In addition, composition languages and standards,

such as WSFL (Web Services Flow Language) and BPEL4WS (Business Process Execution

Langue for Web Services), are also used in this layer for representing workflows. The details of

WSDL, SOAP, UDDI and BPEL4WS are discussed below.

Figure 2-10. Technology stack diagram for Web services (Booth et al., 2003)

Web Services Standards

• WSDL

WSDL is an XML-based standard for describing application services that use a standard

messaging layer such as SOAP. A WSDL description is a collection of ports for providing

operations. In WSDL, abstract definitions of data for exchange are called messages, and abstract

collections of operations are called port types. The protocol and data format specifications for a

particular port type form a reusable binding.

 32

 <?xml version="1.0" encoding="UTF-8" ?>
 <definitions name="Blast">

 <message name="searchSimple1In">
 <part name="program" type="xsd:string" />
 <part name="database" type="xsd:string" />
 <part name="query" type="xsd:string" />
 </message>
 <message name="searchSimple1Out">
 <part name="Result" type="xsd:string" />
 </message>

 <portType name="Blast">
 <operation name="searchSimple" parameterOrder="program database query">
 <documentation>Execute Blast</documentation>
 <input name="searchSimple1In" message="tns:searchSimple1In" />
 <output name="searchSimple1Out" message="tns:searchSimple1Out" />
 </operation>
 </portType>

 <binding name="Blast" type="tns:Blast">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http" />
 <operation name="searchSimple">
 <soap:operation soapAction="searchSimple" style="rpc" />
 <input name="searchSimple1In">
 <soap:body use="encoded" namespace="http://tempuri.org/Blast"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </input>
 <output name="searchSimple1Out">
 <soap:body use="encoded" namespace=http://tempuri.org/Blast
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" />
 </output>
 </operation>
 </binding>

 <service name="Blast">
 <port name="Blast" binding="tns:Blast">
 <soap:address location="http://xml.nig.ac.jp/xddbj/Blast" />
 </port>
 </service>

 </definitions>

Figure 2-11. Sample BLAST WSDL description, adapted from http://xml.nig.ac.jp/wsdl/Blast.wsdl, which is

provided by XML Central of DNA Data Bank of Japan (DDBJ).

Figure 2-11 shows a sample WSDL description for Basic Local Alignment Search Tool

(BLAST) (Altschul et al., 1990; Altschul et al., 1997), which is the tool most frequently used for

calculating biological sequence similarity. In the WSDL description, the port type contains an

operation (Java class method) called “searchSimple”, the input message “searchSimpleIn”

contains three parameters called “program”, “database” and “query”, the output message

 33

http://xml.nig.ac.jp/wsdl/Blast.wsdl

“searchSimpleOut” contains one parameter called “Result”, and the binding uses SOAP

messages on top of the HTTP protocol.

• SOAP

SOAP is an XML-based protocol for exchanging information in a distributed environment using

typed message and remote invocation. SOAP supports a framework for describing what is in a

message and how to process it, and there is a set of rules for encoding instances of data types.

This protocol is specific mostly to Web services over HTTP. A Web service could interact with

remote machines through HTTP’s post and get methods, but SOAP is more robust and flexible.

A SOAP message is an XML document that consists of a mandatory SOAP envelope, an

optional SOAP header, and a mandatory SOAP body. The SOAP envelope defines an overall

framework for expressing what the message contains, who should deal with it and whether it is

optional or mandatory. The SOAP encoding rules define a serialization mechanism that can be

used to exchange instances of application-defined data types. The SOAP RPC representation

refines a convention that can be used to represent remote procedure calls and response.

• UDDI

UDDI is a set of services that support the description and discovery of web services. It is the

technical interface, or “yellow page”, to access available services. UDDI contains four core

elements:

 34

(1) Service provider (business) information. Service provider information is described using

the “BusinessEntity” element representing a physical organization. It contains information,

such as name, description and contacts, about the organization.

(2) Service information. Service information is described using the “BusinessService”

element, which groups together a set of services provided by an organization.

(3) Binding information. Binding information is described using the “BindingTemplate”

element, which contains information relevant for application programs that need to connect

to and then communicate with a remote Web service. The instructions can be in the form

of WSDL or a text-based document.

(4) Service specification. Specification for services is described using the “tModel” element,

which supports the registration of attributes of services. In general tModels have two

functions: tagging the type of service advertised and providing abstract keys to be

associated with a service specific value. For example, in myGrid service registry, the

myGrid ontology is represented as a tModel (myGrid, 2002).

Figure 2-12. WSDL to UDDI mapping (Brittenham et al., 2001)

 35

WSDL descriptions are published in UDDI through WSDL-UDDI mapping (see Figure 2-12).

For example, each service element in a service implementation document is used to publish a

UDDI “BusinessService”, and a service interface is published as a tModel in a UDDI registry

(Brittenham et al., 2001).

Workflow

Workflows are representation of structured activities or processes (Singh and Vouk, 1996). A

biological process typically involves the invocation of a series of activities that are invoked in a

routine manner. In workflow management, output from one task is fed as input to the next task

with additional parameters, if necessary. The intermediate results are checked for consistency

and validated to ensure that the computation as a whole remains on track.

A workflow task must be explicitly represented (e.g., as Web services) to enable effective

intervention. In the Web services architecture, executable processes are used to execute

workflows by referencing port types contained in WSDL documents. There are several

languages for specification of executable processes. Examples are WSFL (Web Services Flow

Language) which provides a process model to glue WSDL services together and specify the

order in which operations execute (Staab et al., 2003; Foster et al., 2002) and BPEL4WS

(Business Process Execution Langue for Web Services) which enables specification of

executable processes (composed of Web services) in terms of execution logic or control flow

(Mandell and McIlraith, 2003).

 36

2.6.2. Semantic Web Services

The Semantic Web, coined by Berners-Lee (1998), provides a common interoperable framework

in which information is given a well-defined meaning such that data and applications can be

understood and reasoned by machines for more accurate and automatic discovery and integration

of information resources across organizational boundaries (Berners-Lee, 1998). To make Web

services capable of handling semantic interoperation, the semantic Web community has

combined semantic markup languages grounded in Description Logics with current Web service

standards. This has led to semantic Web services, one type of Web services that can express not

only interfaces among services but also their capabilities (i.e., inputs, outputs, preconditions and

effects) using ontologies (McIIraith et al., 2001; Paolucci, et al., 2002).

Ontologies describe concepts and their relationships for a domain (Gruber, 1995). Several

ontology languages have been developed for describing ontolgoies. For example, OWL (Web

Ontology Language) (W3C OWL, 2004) is a Web ontology language that is widely used to

formally describe various types of concepts and relationships. Based on OWL, OWL-S (OWL-

based Web Service Ontology) (W3C OWL-S, 2004) is a set of interrelated OWL ontologies that

provide a set of well-defined terms for describing Web services (see Section 2.5.1). By having

service descriptions and requests refer to the same ontological concepts, semantic matching

algorithms can be designed to reason about similarities between services and requests in an

unambiguous and machine-interpretable form (Paolucci et al., 2002). Thus services that provide

 37

solutions to a request can be automatically discovered even if the services and the service

requested are syntactically distinctive.

A typical semantic Web services architecture contains five major components: (1) service

interfaces using some form of programmatic access; (2) semantic descriptions about service

capabilities; (3) a domain ontology which provides terms or key concepts used with semantic

descriptions of Web services; (4) a registry service that advertises the availability of services and

searches over the semantic descriptions made available to it; and (5) messaging that enables

service requestors to treat data from different service providers in a uniform fashion (Lord et al.,

2004).

OWL-S Framework

The most prominent semantic Web services framework is OWL-S. OWL-S is an OWL-based

upper ontology that describes three key aspects of a service: “service profile” which states

abstract description of service capabilities; “service model/process” which states how requestors

interact with services; and “service grounding” which states actual messages that are exchanged

among services (see Figure 2-13) (Paolucci et al., 2002). OWL-S supports semantic

representation of services through its tight connection with OWL. OWL supports subsumption

reasoning on taxonomies of concepts. It also facilitates relations definition between concepts.

 38

ServiceWeb Resources

Service Profile

Service Model

presents

described by

supports

provides

What the service does

How the service works

How to access the service

Service Grounding

Figure 2-13. OWL-S upper ontology

2.6.3. Web Services Based Methods for Data Resource Integration

Several methods have been proposed to enable automatic or semi-automatic integration or

composition of web services. These methods usually fall in the realm of workflow composition

or AI planning (Rao and Su, 2004), see Figure 2-14.

AI Planning

Composition
Descriptions

Composition
Descriptions

Traditional Approaches

Automatic Selection
& Binding of Services

Information Integration

Web Service Based Approaches

Workflow Composition

States & ActionsStatic Workflow

Manual Process Model

Automatic Selection
& Binding of Services

Dynamics Workflow

Automatic Process Model Task Planning Theorem Proving

Figure 2-14. Hierarchy of information integration problems

 39

The goal of workflow composition is to create a composite service which is a set of atomic

services together with the control and data flow among the services. For the workflow based

methods, the workflow can be generated either statically or dynamically. In the static workflow

category, users have to manually create an abstract process model, while the selection and

binding of services is done automatically. In the dynamic workflow category, both the abstract

process model and the section and binding of services are done automatically.

The AI planning based methods usually assume relevant service descriptions are already loaded

into the reasoning engine. Traditional AI planning techniques such as theorem proving

(McIlraith and Son, 2002; Ponnekanti and Fox, 2002) and hierarchical task planning (Wu et al.,

2003) are applied to derive the final composition descriptions.

Workflow composition requires service discovery or searching all services to find most relevant

services for workflow tasks. The major issue is that when the number of all the services is large,

the discovery process may not be efficient (Constantinescu et al., 2004). AI planning does not

require service discovery. However, it requires users to have prior knowledge about all the

services, which may not be feasible.

As discussed in Sections 2.6.1 and 2.6.2, several initiatives have been conducted to provide

platforms and languages that will allow web services based integration. In particular, WSDL,

OWL-S, UDDI, and SOAP define standards ways for service discovery, description and

invocation; BPEL4WS and OWL-S service model provide means for representing web service

integrations or compositions.

 40

Despite all these efforts, web service composition still is a complex task. First, the number of

available services has increased dramatically in the recent years. Finding suitable services that

provide a solution to the problem at hand becomes more complex than ever. Second, services can

be created and updated on the fly. The composition system needs to detect the updating at

runtime and the decision should be based on up-to-date information. Third, services are

developed by different organizations, which use different concept models to describe services;

and different data schema for service parameters (Rao and Su, 2004).

2.7. Web Services in Bioinformatics

Recently, interest in applying Web services and semantic Web technologies to bioinformatics

has grown (see Table 2-4 for example projects). For example, PDB is currently in the early

implementation stage of providing Web services that will allow users to use XML and SOAP to

perform queries and retrieve results programmatically from the PDB Beta Web site (Deshpande

et al., 2005); BSML (Bioinformatics Sequence Markup Language (http://www.bsml.org/) is an

XML that encodes biological sequence information and includes graphic representations of

sequences, genes, electrophoresis gels, and multiple alignments (Spitzner, J.); SBML (Systems

Biology markup language) is a language for representing biochemical reaction networks serving

as a standard exchange format for computational models of biochemical networks (Hucka et al.,

2003); BioSimGrid is a project for archiving and analyzing MD trajectories and making them

accessible to the biological community (Tai et al., 2004); the myGrid (Lord et al., 2004) project

aims to provide high-level middleware to support personalized in-silico bio experiments using

 41

http://www.bsml.org/

semantic Web services technologies, namely WSDL and UDDI; the MOBY services (Lord et al.,

2004) use user created and centrally stored Gene Ontology (GO) style ontologies for semantic

descriptions; the Semantic-MOBY (Lord et al., 2004) services use semantic Web technology to

improve automation; the N-Glycosylation Process (NGP) project (Sahoo et al., 2005) uses Web

services to expose computational tools for different Web process phases and uses two glycomics

domain ontologies to annotate data with different formats such as image and raw data.

Table 2-4. Sample data resources using Web services/semantic Web technologies

Data
Resources Brief Description Web

Services
Semantic
Web

PDB A public data resource of protein structures Yes No
BSML Bioinformatics Sequence Markup Language No Yes
SBML Systems Biology markup language No Yes

BioSimGrid Data resource for archiving and analyzing MD
trajectories No Yes

myGrid A high-level middleware for personalized in silico bio
experiments Yes Yes

MOBY A prototype semantic web service for the investigation
of biological problems in different organisms Yes Yes

NGP A semantic web service for N-glycosylation process Yes Yes

 42

3. A SEMANTIC WEB SERVICES INFRASTRUCTURE
FOR DISTRIBUTED PROTEIN DATA INTEGRATION

3.1. Introduction

Bioinformatics research relies on techniques for describing and performing experiments that

retrieve data from distributed resources. Such computational techniques, or in silico experiments,

are an important tool for researchers because they can validate and motivate experiments

performed in conventional laboratories or “wet” laboratories (Hull et al., 2005).

Understanding the function of every protein is one of the major objectives of bioinformatics.

Currently, there is a lot of information (e.g., sequence, structure and dynamics) being produced

by experiments and predictions that are associated with protein function. Integrating these

diverse data resources about protein sequence, structure, dynamics and other protein features

allows further exploration and establishment of the relationships between protein sequence,

structure, dynamics and function, and thereby controlling the function of target proteins

(Marcotte and Date, 2001). However, researchers from different organizations develop

algorithms, tools and resources on protein data—often with no thought on how other researchers

are doing the same tasks. Consequently, an integration problem may require interactions with

many incompatible data resources with many different interfaces (Gao et al., 2005).

Currently, researchers use ad hoc scripts and programs to retrieve data from these distributed and

heterogeneous data resources (see Section 2.5 for more details). There are no systematic methods

 43

for accessing and integrating those heterogeneous data resources for collaborative research and

large-scale knowledge discovery. Also, there are no available architectures and tools that allow

automatic discovery, selection and invocation of accurate data resources that meet specific

research requirements from users’ perspectives. To facilitate knowledge discovery and stimulate

collaboration in the research community, architectures that provide efficient and automatic

solutions for biological data resource integration are critical.

In this research, a Web services infrastructure (WSP) for flexible integration of various protein

data resources, is presented. The main features of this architecture include component-based

design of service functionalities and semantics-based description and matching of web services

using ontologies (i.e., domain and upper service ontologies). The architecture allows researchers

to conveniently discover and assemble various types of protein data (both existing and yet to

come) for their applications (e.g., determining the function or other features of proteins).

This chapter discusses the challenges for distribute protein data integration, WSP’s strategies for

optimal integration, WSP’s computing platform and major components, and the WSP

deployment process. The details of WSP’s major components are discussed in the Chapters 4–7.

3.2. Protein Data Resource Integration: Challenges

 44

Stein (2002) envisioned a “bioinformatics nation” in which previously fragmented organizations

provide standard web service interfaces to their resources so that performing in silico

experiments is potentially quicker and easier than the ad hoc methods (e.g., data warehousing).

Recently, the interest of applying web services in bioinformatics has grown. For example, as of

2005, the myGrid project has a registry of more than 1000 web services provided by a wide

range of third parties (Hull et al., 2006). The number of available web services will continue

growing as the impetus behind the technology grows (Greenbaum et al., 2005).

Despite the advantageous features of web services (see Section 2.6), there are a series of

challenges to apply web services in protein data resource integration:

(1) Unlike traditional web applications, the purpose of developing web services is to wrap

reusable software components with standard programmatic interfaces so that application

programs can automatically obtain data/results. However, current research only focuses on

delivering the final results to end users without exposing some intermediate data that can

benefit other users. To maximize the utilization of available resources that provide protein

data, the first challenge is how to define common elements in protein data resources that can

be shared by different applications.

(2) Users usually have specific requirements about the data used for their applications. However,

service providers and users may have distinctive perspectives and knowledge about one

service resulting in differing descriptions for the service. In this case, syntactic-based

matching cannot locate the service. In order to allow semantic interpretation of dissimilar

 45

data and query expressions, common concept models (i.e., ontologies) have to be adopted.

The challenge is what ontologies provide the necessary terminologies for expressing various

perspectives/requirements related to protein data and data integration.

(3) As number of biological Web services increases, finding suitable services that provide a

solution to the problem at hand becomes more important than ever. The XML-based web

services standards (i.e., WSDL and UDDI) do not support operations at semantic level,

leaving the promise of automatic discovery and integration of services incomplete. The

challenge is how to design service matching algorithms that can efficiently retrieve the most

accurate service required to perform a given task.

(4) An in silico experiment or integration problem usually involves many data resources or

services. For an integration problem, bioinformatics researchers usually have a high-level

workflow without knowing a concrete and executable web services workflow. Because

services are developed by different organizations, they may have different concept models

and data schema for service parameters (i.e., inputs and outputs). Semantic interoperability

(interoperable concepts) and data interoperability (interoperable data schema) become major

issues. The challenge is how to design automatic means of integrating heterogeneous data

resources with little or no user interventions.

3.3. Methodologies for Optimal Integration

 46

WSP exploits the potential of semantic web services to address the aforementioned challenges.

The goal of WSP is to provide optimal solutions for protein data resource integration. In this

research, optimal solutions include three major components: (1) web services granularity, (2)

matching accuracy, and (3) automation.

(1) Granularity. Web services granularity means the identification of common atomic

components which can be published as web services (Yang 2003). The goal is to maximize

the utilization of available data resources. In WSP, atomic components are identified as

protein features, which are functions of a protein sequence. This is based on the observation

that the core of most protein research is related to some biological sequences. Whatever

features proteins have, they are functions of some operations of a position in a sequence.

Examples are: conservation is a function which tells how each residue in a sequence is

repeated across the protein family; enzyme active site is a function which tells whether a

residue in a sequence is an active site or not; slow mode is a function of fluctuation of each

residue in a sequence. Therefore, protein features represent common atomic components in

protein data resources that can be shared by many different studies. For example, enzyme

active site data can be used for correlating with other protein features and also for developing

prediction models. Refer to Chapter 4 for details.

(2) Accuracy. Matching accuracy is a measure of how a service request semantically matches a

service. Unlike syntactic matching which operates on unannotated descriptions, WSP relies

on semantic annotation and matching to discover services. By having service parameters (i.e.,

inputs and outputs) in requests and service descriptions refer to the concepts in the same

 47

domain ontology, a semantic matching algorithm is designed to reason about similarities

between requests and service descriptions in an unambiguous and machine-interpretable

form. WSP ranks matched services based on their similarity score to the request. Services

with the highest similarity score represent the most accurate solutions. Refer to Chapters 5

and 6 for details.

(3) Automation. A set of methodologies are designed to enhance the level of automation for

integration problems. First, protein feature data are modeled as web services with

programmatic interfaces so that user applications can automatically call exposed

functionalities and obtain explicit results without tedious HTML code parsing. Secondly, a

semantic matching mechanism is used to locate most accurate services so that users do not

need to have prior knowledge about data resources. Especially, services that provide

solutions to a request can be automatically discovered even if the services registered and the

services requested are syntactically distinctive. Thirdly, a service chaining strategy is adopted

to automate the process of data integration for in silico experiments. One way of performing

in silico experiments is to pipe together inputs and outputs of consecutive web services in a

workflow environment. Usually, scientists would like to create a high-level “abstract”

workflow and not bother about low-level details of web service, e.g., urls, parameter passing,

data transformations, and control flow (Ludascher et al., 2003). Due to the nature of scientific

workflows, a static-workflow based approach is chosen for service integration (see Figure 3-

1). In this approach, a higher-level workflow is created by the user, and the system is

responsible for mapping the higher-level workflow to an invokable workflow which consists

of real web services. Refer to Chapter 7 for details.

 48

AI Planning

Composition
Descriptions

Composition
Descriptions

Traditional Approaches

Automatic Selection
& Binding of Services

Information Integration

Web Service Based Approaches

Workflow Composition

States & ActionsStatic Workflow

Manual Process Model

Automatic Selection
& Binding of Services

Dynamics Workflow

Automatic Process Model Task Planning Theorem Proving

Figure 3-1. A hierarchy of information integration problem. The shaded paths and blocks represent WSP’s

integration approach

3.4. Computing Platforms

WSP is a web services environment where protein data resources are wrapped with uniform

WSDL programmatic interfaces and SOAP is used as the protocol for communications between

these data resources. Unlike generic service oriented architectures, UDDI is not used as the

registry for locating services because it can only perform syntactic but not semantic matching

between user requests and services. Instead, a semantic registry is designed to meet the

requirement of providing accurate solutions from user’s perspectives. This matchmaker registry

uses current Semantic Web standards such as OWL and OWL-S to capture the capabilities of

web services and the data requirements of user applications.

 49

3.5. Architecture, Components and Tools

As any Web services architecture (see Section 2.6.1), WSP has three entities: the service

provider, the service requestor, and the service registry (see Figure 3-2). The provider refers to

an organization that provides protein data and Web services. The requestor refers to users

(researchers) that require protein Web services. The registry refers to a middle registry service

that contains registered services and facilitates discovery of services requested.

Integration Agent

User Application

Web Services

Data Resources

Ontologies

Service Requestor Service Provider

Service Registry

Matchmaker

Discovery Publish

Binding

Semantic ProfileSemantic Request

Figure 3-2. Mapping of Components to WSP Architecture

On the service provider side, there is a set of components, including data resources which

provide protein feature data, tools for developing web services, tools for semantic description

and publication of services. On the service registry side, there is a matchmaker service and

 50

community-agreed domain ontologies. On the service requestor side, there are tools for

representing integration problems (in silico experiments), tools for semantic description of

service requests and an integration agent which interacts with the service registry and the service

provider to obtain results.

These components and tools can be classified into four categories: tools for biological data

resources and web services; tools for semantic description of web services; tools for semantic

publication and matching of web services; and tools for chaining of web services. The following

sections provide a brief review for each category.

3.5.1. Biological Data Resources and Web Services

In WSP, protein data resources are modeled as Web services by providers. Web services

represent reusable components with certain query functionalities. The query functionalities

(operations) are data and application specific. For sharing of protein data, it is expected that a

service’s basic (atomic) operation is a functionality that provides a certain protein feature. A

complex service may contain several such functionalities.

In this research, two methods for developing biological web services are considered. One method

is based on the existing Web applications of protein data. The other method is about building

web services from scratch. Despite their differences, the common goal is to identify appropriate

query functionalities and implement them as WSDL programmatic interfaces.

 51

For example, iGNM’s functionality for providing dynamics information (mode shape) is

modeled as a Mode Shape Service with a WSDL interface. To invoke the Mode Shape Service, a

SOAP client is written to acquire the service’s WSDL description and generate a SOAP request

to the service. Similarly, any protein data resources that provide protein features can be modeled

as web services. These resources include other protein dynamics data resources besides iGNM,

protein sequences data resources, structure and function data resources.

Web services can be implemented in many different platforms (e.g., Microsoft .NET, IBM

WebSphere/J2EE) according to the web services standards. In WSP, the Apache Axis

(http://ws.apache.org/axis/java/) is adopted as the development platform because it has a SOAP

engine for processing service requests and toolkits for generating WSDL interfaces.

3.5.2. Semantic Description of Services

The purpose of semantic description of web services is to describe service capabilities (what a

service can do) and user requests (what a user wants) in machine-understandable format so that

algorithms can be designed to automatically discover semantically matched services.

There are two ways to semantically describe service capabilities. The first one assumes

onotlogies that provide an explicit representation of the operations (tasks) performed by web

services. In those ontologies, each operation is described by a different concept. The second one

describes web services by the state transformation and the information transfer that they produce.

In this case, the operation is implicitly represented by the state transformation. Since web

 52

http://ws.apache.org/axis/java/

services can perform many different operations, the first way will lead to very large ontologies

that is unmanageable and may not scale up when new capabilities become available. The implicit

representation does not suffer from those shortcomings since they only require concepts that

describe the domain of the web services (Sycara et al., 2003). Therefore, implicit representation

of service operations is used in this research.

WSP provides an extended version of the Protein Ontology (PO) (Sidhu et al., 2005) and a

semantic profile generator that allows a wide range of semantic descriptions of web services on

complex protein data related issues. PO is implemented in OWL language using the Protégé

ontology editor (Protégé, 2002). The service descriptions are implemented in OWL-S data

format using the profile generator. While the protein ontology represents common perspectives

of the research community, the descriptions of web services are based on individual researchers’

perspectives and data requirements.

3.5.3. Semantic Publication and Matching of Services

A semantic matchmaker is used to identify accurate services for service requests. The

matchmaker includes a client-server architecture. The server is a centralized registry service. It

implements two algorithms, one for publication and one for matching of services. There are two

SOAP clients for interacting with the registry services. One client is designed for service

providers to publish their service descriptions to the registry. The other client is designed for

users to send their requests and obtain information (i.e., URL) about semantically matched

services.

 53

The matchmaker is capable of locating the most accurate services among all registered services.

That is when there are exactly matched services, it will be automatically discovered. When there

are no exact matches, the most semantically accurate services will be provided.

3.5.4. Chaining of Services

Scientific workflows are usually subject-specific and exploratory-based (require an iterative

procedure) (Rygg et al., 2005; Ludascher et al., 2003). It is important for users to interact with

the integration program during the generation and execution of the web service workflow.

Due to the nature of scientific workflows, an integration problem is represented as an abstract

workflow of service requests (tasks). The abstract workflow defines data dependencies between

services and the control flow (i.e., order of execution). Each request is expected to be

implemented by a web service.

An integration agent (a program that performs integration tasks) is used to select and chain

services. First, requests are generated using the profile generator. Then the agent will send the

requests to the matchmaker and determine a concrete web services workflow. Since each request

may return several semantically matched services (candidate services), the agent needs to

perform service selection. WSP adopts two selection criteria: (1) select the service with the

highest score (most accurate service) for each request and (2) when there are multiple services

with the highest score (equivalent services) for a request, select a service that is compatible with

 54

the previously selected service. Here “compatible” means that the input data schema of the

current service is the same or similar to the output schema of the previous service. WSP

performs three types of comparisons between the output and the input of adjacent services,

including all-or-nothing compatibility, subset compatibility and arbitrary compatibility (Spillner

et al., 2006).

By combining the two selection criteria, WSP handles both semantic interoperability

(interoperable concepts) and data interoperability (interoperable data schema) at design time.

However, due to the nature of scientific workflows, users are expected to interact with the

integration agent to produce a production web service workflow (e.g., modifying requests in the

abstract workflow). A production workflow is fully automatic. It works as a logic unit or a global

data resource so that automatic integration of various types of protein data can be achieved.

3.6. The Deployment Process

The purpose of this section is to compare the current approach and the WSP approach for protein

data integration.

 55

Manually looking for
data resources Ri or
having prior knowledge

Writing scripts Si

Combining results

User Application …

…

…

T1 T2 Tn

R1 R2 Rn

Screen scraping to
Obtain results Ui

…

S1 S2 Sn

U1 U2 Un

Integration Script

Final result Final

Figure 3-3. The current ad hoc approach for data integration

With the current approach for integrating data resources (see Figure 3-3), researchers are

required to either have prior knowledge or manually look for data resources (i.e., Web

applications) for workflow tasks. Then they have to write a screen-scraping script for each

selected data resource to obtain a semi result. These screen-scraping scripts are non-reusable

because different Web applications have different HTML coding and a script written for a given

Web application cannot be used for other Web applications. The intermediate results from all

screen-scarping scripts are then combined to form the final result. The integration script is also

non-reusable because it is designed according to the specific data formats of intermediate results

and cannot handle new results. The iGNM-PDB integration (see Section 2.3.3) shows an

example of screen-scraping based data integration.

 56

Given an integration problem (i.e., integrating protein features), WSP uses the OWL-S profile

generator to generate service requests. It then uses the matchmaker to discover data resources

(i.e., web services) that semantically match the user’s requests. Finally, the integration agent is

used to select and chain services to obtain the final result (see Figure 3-4). The profile generator,

the matchmaker and the integration agent are all reusable components because they can handle

different service requests by exploiting standards such as OWL-S upper ontology and WSDL

interface.

Request Generation

Abstract Workflow

Service Matching

Service Selection &
Service Chaining

Web Services Workflow

Candidate Services
S1,1

S1,m

…

…

…

…

T1 T2 TnUser Application

Sn,m

……
S2,1 Sn,1

…

SnS1 S2

R2

Semantic Matchmaker

S2,m

Integration Agent

Profile Generator

R1 Rn

Figure 3-4. The deployment process of WSP

The WSP approach has several advantages over the current web application-based approach for

protein data resource integration:

 57

• Desired solutions from user’s perspectives. By exploiting the potential of semantic web and

ontologies, WSP allows users to discover desired services among all registered services.

• Higher level of automation. With the WSP approach, researchers only need to specify their

service requirements (i.e., desired output) without having to manually look for data

resources. The system will automatically discover, select and integrate appropriate services.

• No duplication of effort. With the current approach, researchers are required to perform such

tedious tasks as writing scripts to parse the HTML code from every data resource (i.e., Web

application). The scripts are non-reusable and new scripts have to be developed when new

data resources are incorporated. With the WSP approach, reusable components such as the

matchmaker and the integration agent are used to handle any data resources (i.e., Web

services). There is no development overhead when new data resources are incorporated.

• Less fragile to Web site changes. In the current approach, the screen-scraping scripts are

fragile for a minor change in the HTML code of a given Web application may cause failure.

With the WSP approach, data resources/services are discovered and integrated dynamically.

Whenever a service changes or fails, alternative services will be selected and invoked

without modifying existing software components.

 58

4. MODELING PROTEIN WEB SERVICES

4.1. Introduction

Web services are self-contained, self-describing, modular applications that can be published,

located, and dynamically invoked across the Web (Gao et al., 2005). By modeling protein

information resources (e.g., iGNM) as Web services, different types of biological data can be

dynamically assembled from multiple network-enabled Web services for a variety of user

applications.

This research contributes two biological web services: the iGNM web service that provides

protein dynamics data for more than 20,000 protein structures; and the N-gram web service that

provides conservation profiles for more than 50,000 protein sequences. These two services

demonstrate the process of developing and utilizing biological web services.

This chapter discusses the issues for modeling protein feature web services, the approaches for

developing web services, the iGNM web service, the N-gram web service, and the category of

WSP web services.

4.2. Protein Features

 59

Understanding protein function is the key to understand health and diseases. In many cases,

however, it is difficult to directly determine the function of a specific protein. In experimental

context, a protein has many attributes or features (e.g., the binding sites, enzymatic activities, and

ability to fold). These diverse features are associated with protein function and can be integrated

to determine the function of proteins (Greenbaum, 2004).

The core of most protein research is related to some biological sequences. Whatever features

proteins have, they are function of sequences. A fundamental way is to relate protein features to

sequences. Each feature is a function of some operation of a position in a sequence. For

instances, conservation is a function which tells how each residue in a sequence is presented

across the protein family; enzyme active site is a function which tells whether a residue in a

sequence is an active site or not; slow mode is a function of fluctuation of each residue in a

sequence. Figure 4-1 shows an example of protein conservation feature, where the x-axis

represents the residue position and the y-axis represents the percentage of occurrence across the

protein family.

 60

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120 140 160 180 200 220 240 260

P
er

ce
nt

ag
e

(m
ea

n
ta

ke
n

of
f)

Residue position

Figure 4-1. A conservation profile for carbonic anhydrase (PDB ID 1ca2)

4.3. Modeling Protein Feature Services

Many research questions can be asked for protein features, e.g., how does one feature relate to

another feature, and how does one do that? These are no easy problems because features

provided by different organizations have heterogeneous format and semantic quality

(capabilities) associated with them. Web services are widely regarded as a way to solve this

integration problem (Stein 2002; Foster 2005; Gao et al., 2005). Web services provide a higher

level layer of abstraction that hides implementation details from applications so that each

organization can concentrate on its own competence and still leverage the services provided by

other research groups (Gao et al., 2005). By developing web services which provide protein

features, it is possible to build high throughput features maps and correlations in theory.

 61

A Web service is a set of application operations or functionalities that can be programmatically

invoked over the Internet (IBM 2006). A functionality may take one or more input parameters

and return one or more output parameters (Spillner et al., 2006). The definition of service

functionalities and parameters are dependent on specific requirements. For information

integration, it is valid to assume that the functionality of a service represents an atomic operation

that can be assembled into many different applications (Rao and Su, 2004).

To model protein feature web services, we define a protein feature Fi as a function fi of

coordinate system (x, y, z, t), see Equation 4-1. The coordinate is the residue position (x, y, z)

and/or time t. Fi can be any protein feature such as motions and conservation. Function fi refers

to some model or algorithm that has certain operations of residues to produce the feature. For

example, the GNM model is a function that generates fluctuation for each residue.

),,(tzyx,fF ii = 4-1

We define a service operation Oj as a function which maps a protein identity Ii into a protein

feature Fi, see Equation 4-2. Ii refers to an identifier that distinguishes a protein. It can be protein

name, PDB ID, protein sequence or structure. Oj represent a query functionality (operation) that

takes a protein and returns the protein’s feature. For example, the PDB SearchLite query

interface is an operation that takes a protein’s ID (PDB ID) and returns the protein’s structure.

iij FIO →)(4-2

 62

We define a feature web service Sk as a set of operations Oj for providing feature data, see

Equation 4-3. A simple service only contains one operation (j = 1); while a complex service

many contain multiple operations (j >1). For example, N-gram service can be designed to just

provide one feature, e.g., ICP profile, or it can be designed to provide both ICP profile and

Valdar profile (see Section 4.6).

},...,,{ 21 jk OOOS = 4-3)1(≥j

Protein feature web services allow users to develop a wide range of applications. The service

operations that provide protein features constitute basic building blocks out of which new

applications are created. For example, enzymatic sites feature can be used in many different

applications. One application can be using enzymatic feature to develop prediction models for

protein function. Other applications can be correlating enzymatic feature to conservation,

hydrophobicity or dynamics.

4.4. Developing Protein Feature Services

There are two approaches to design service operations or functionalities: (a) the Web application

approach and (b) the bootstrapping approach. The Web application approach is based on existing

functionalities provided by Web applications. For example, Gao et al. (2005) built Web services

based on existing Web applications such as IBM’s Genes@Work (Califano et al., 2000) and the

National Center for Biotechnology Information’s Entrez Databases (Wheeler et al., 2003). An

 63

example of existing functionality in iGNM is mode shape query that can be used for developing

Web services (see Section 2.3.3). The bootstrapping approach is a from-scratch design of Web

service’s functionality. For example, N-gram conservation service is build on top of ICP profiles

without reference to existing systems (see Section 4.6).

4.5. iGNM Protein Dynamics Web Service

While iGNM web service could be built upon iGNM existing components (i.e., program for

processing protein dynamics data), it is important to analyze the granularity of functionalities for

web services. For example, iGNM’s mobility query extracts a user selected mode from the slow

mode or fast mode file and inserts it to the PDB file for visualization. The selected mode,

however, is not returned to the user explicitly. A finer functionality for returning a selected mode

is desired for user applications that process the mode for other purposes rather than visualization.

extract

getSlowModes

Other methods

PDB ID, Mode
Type, Mode ID

PDB ID

??

Mode

20 slow modes

??

iGNM Mode Shape Service

Figure 4-2. Design of the iGNM web service

 64

Figure 4-2 shows the iGNM mode shape service with a set of operations. For example, the

“extract” operation takes a PDB ID, mode type and mode ID, and returns the PDB structure’s

given mode. The PDB ID is a 4-digit string. The mode type is a string which takes a value of

“slow” or “fast”. The mode ID is an integer ranging from 1 to 20 (because iGNM provides up to

20 slow modes and 20 fast modes). The output mode is a dynamics feature which is represented

as a vector of fluctuations (functional motions) associated with each residue position. Similarly,

the service provides a “getSlowModes” operation which takes a PDB ID and returns all 20 slow

modes. Also, the iGNM web service is extensible by adding new operations.

4.6. Protein N-gram Web Service

4.6.1. Protein N-gram Patterns

N-gram patterns (NP{n,m}) are sets of n residues and m gaps in windows of size n+m that start

with a residue. Figure 4-3 shows an example of NP{4,2} patterns, where a pattern consists of 4

residues and 2 gaps in a window of 6. For each residue position, there are 10 patterns based on

combinatorics.

Interest in these patterns was sparked by the success of an alignment-independent protein

classification algorithm based on the distribution of NP{4,2} patterns (Vries et al, 2004).

Features of interest in NP{4,2} patterns included: (1) the inclusion of all possible n-gram

combinations for 1≤ n≤ 4; (2) a window wide enough to capture n+k periodicities for 2 ≤ k ≤ 5;

(3) an implied scoring matrix due to the presence of gaps at variable positions; (4) a low

 65

probability for finding redundant n-gram patterns in the same sequence; (5) a high probability of

family membership for two sequences that contain the same pair of non-overlapping NP{4,2}

patterns; and (6) the existence of all theoretically possible NP{4,2} patterns in nature.

These features, together with our recent studies on protein conservation and secondary structure

prediction (Vries et al., 2006a; Vries et al., 2006b), have lead support to the utility of n-gram

patterns for characterizing protein structure propensities, conservation, dynamics and other

protein features. In this research, we focus on n-gram’s utility for capturing protein invariant

conservation profiles and how n-gram conservation profiles can be developed into a web service.

10 pattern

C(2, 5)

NP{4,2} Example:
4 residues, 2 gaps

S H H W G Y G K H N G P E H W H K D …

H * * G Y
* W * Y G
* W G * G
* W G Y *

* * Y G
* G * G
* G Y *

* * G
* Y *

* *

 G
H
H
H
H H
H H
H H
H H W
H H W
H H W G

Current residue
Sliding window of 6

Figure 4-3. A example of NP{4,2} pattern, where residue H has 10 patterns.

4.6.2. Protein Conservation Profile

 66

Protein homologs are amino acid sequences with a common evolutionary ancestor. Substitutions,

insertions and deletions over the course of evolutionary time cause the patterns of residues and

gaps in homologs to drift away from each other (Dayhoff, 1976;Henikoff and Henikoff, 1992).

Conservation profiles are a measure of the shared patterns that remain. The conserved regions

revealed in profiles are useful for identifying sites that are important for structure and function

(Valdar and Thornton, 2001). Traditionally they have been constructed from multiple alignments

(MSA) using scoring matrices and weighted averages (Valdar and Thornton, 2001). This

approach has been effective, but it also requires a chain of assumptions that may not be valid in

all cases. There are many ways to generate scoring matrices and these matrices vary in their

sensitivity to remote homologs (Johnson and Overington, 1993). Many proteins contain multiple

domains or overlapping and/or nested domains that strongly influence alignment (Raghava et al.,

2003). Sequences for multiple alignments often require preprocessing to eliminate low

complexity regions (Wootton and Federhen, 1996). The protein sequence samples available for

multiple alignment are frequently skewed requiring the application of weighting algorithms

(Karchin and Hughey, 1998). Finally, multiple alignment requires a parameterized gap penalty

(Altschul et al., 1997).

A new algorithm based on n-gram patterns, called n-gram pattern local alignment (NPLA), has

been developed that avoids the assumptions associated with the MSA approach. The goal of the

NPLA algorithm is to generate a conservation profile that is specific to a given query sequence

when the family membership of the sequence is unknown. The first step is to identify and count

the non-wildcard positions in the NPLAs shared by the query sequence and a representative set

of 2.1 million target PDB chains (sequences). This process is illustrated in Figure 4-4(a). A

 67

collection sequence equal in length to the query sequence is initialized to zero for each target

sequence. The non-wildcard position in the collection sequence for each common element in

shared NPLAs is set to 1. The combinatorics associated with NP{4,2} patterns generates 10

different patterns for each position in the query sequence. These patterns are tested in an order

that favors the longest contiguous residue runs. The algorithm stops when the first pair of

NP{4,2} patterns is found. This provides an implicit substitution matrix and it insures that each

position is counted only once. Summing the 1s for each collection sequence also provides a

measure of similarity with respect to the query sequence for each target sequence.

The similarity threshold with respect to the target sequence is used as the basis for separating the

2.1 million target sequences into 20 samples with increasing levels of identity. This process is

illustrated in Figure 4-4(b). The 95% bin for example represents all target sequences with 95% or

greater similarity. The 0% bin represents all sequences in the target set. The collection sequences

in each subset are then summed and normalized with respect to sample size to provide 20 raw

conservation profiles. This is process is shown in Figure 4-4(c).

 68

T*SK*D AD*TL*query

target

pattern1

d1

d1 = d2

d2

A

pattern2

Similarity(query, target) = Sum(1’s in A)/query length

size(A) = query length
101101 110110

T*SK*D AD*TL*

(a)

query

target1

targetn

SPT
Sequences

bin1 bin2 bin20

Similarity ≥0% ≥5%

bin19

≥90% ≥95%

Determine the cumulative bins

…

…

Subfamilies

(b)

query

target1

targetn

…
… 0 0 0 0 1 1 1 1 1 1 0 0 …

… 0 1 1 1 1 1 1 0 0 0 0 0 …

A1

An

raw profile … 0 1 1 1 2 2 2 1 1 1 0 0 … n

Target
List

Sum occurrence per position

(c)

Figure 4-4. Initial steps in the NPLA algorithm: (a) Identifying and counting the non-wildcard positions in the n-

gram patterns shared by the query sequence and the target sequences; (b) Dividing the target sequences into 20 bins;

(3) Generating raw conservation profiles.

 69

A covariance matrix is generated from the 20 raw profiles and subjected to singular value

decomposition (SVD) (Fogolari et al, 2002). Reconstructions of the 20 raw profiles are generated

for each individual eigenvector with a significant eigenvalue (> 0.01). The applicability of the

algorithm is then assessed based on the sample and eigenvalue distribution and the amplitude

profiles of the reconstructions (Vries et al., 2006a).

The carbonic anhydrase (P00918) from Pfam-A family PF00194 is characteristic of the

sequences that meet these criteria. The sample distribution from a similarity thresholds ranging

from 15% to 95% is shown in Figure 4-5(a). The sample is distributed over the range and large

enough for statistical analysis. The percentage of variance associated with the first two

eigenvalues is 0.75 and 0.20. A plot of the amplitude of the samples reconstructed from the first

two eigenvectors is shown in Figure 4-5(b). The average amplitude of the reconstructions from

the first eigenvector goes from low to high as the percentage of family members in the sample

increases. The reconstructions from the second eigenvector go in the opposite direction. It can

also be seen that the amplitude of the reconstruction from the first eigenvector is invariant over

the central part of the the similarity range. Reconstructions of the raw profiles using the first

eigenvector are shown in Figure 4-5(c) for similarity thresholds varying from 20-60%. The final

plots have been subjected to 16 iterations of nearest-neighbor smoothing to eliminate high

frequency noise. The conservation profiles over this range are nearly invariant. The final

conservation profile (ICP) is selected from this set by identifying the profile with the least rmsd

difference with its neighbors. The ICP trace representing the 40% similarity level is shown in

Figure 4-5(d) with and without smoothing.

 70

0

50

100

150

200

250

20 25 30 35 40 45 50 55 60 65 70 75 80

N
um

be
r o

f c
ha

in
s

Similarity Cutoff (%)

 (a)

0

5

10

15

20

25

30

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

1st Eigen Vector (E1)
2nd Eigen Vector (E2)

To
ta

l P
ow

er

Similarity Cutoff (%)

 (b)

 71

-40

-30

-20

-10

0

10

20

30

40

0 20 40 60 80 100 120 140 160 180 200 220 240 260

E1-20
E1-30
E1-40
E1-50

P
er

ce
nt

ag
e

(m
ea

n
ta

ke
n

of
f)

Residue position

 (c)

-60

-40

-20

0

20

40

0 20 40 60 80 100 120 140 160 180 200 220 240 260

ICP
Smoothed ICP

P
er

ce
nt

ag
e

(m
ea

n
ta

ke
n

of
f)

Residue position

 (d)

Figure 4-5. (a) Distribution of the similarity threshold samples for carbonic anhydrase (P00918) over the range from

20-80%; (b) The average amplitude of reconstructions from the first and second eigenvectors for P00918; (c) The

reconstructions using the first eigenvector for similarity ranges from 20-60%. (d) Invariant conservation profile

(ICP) for P00918 reconstructed from the 40% similarity level.

 72

4.6.3. N-gram Conservation Profile Web Service

Due to the utility of n-gram patterns in characterizing protein features, several web service

functionalities can be designed to provide reusable protein features such as conservation profile,

slow mode profile, and hydrophobicity profile (see Figure 4-6).

getConservationProfile

getSlowmodeProfile

getHydroProfile

Protein Sequence

Protein Sequence

Protein Sequence

Conservation
Profile

iGNM Slow
mode profile

 Hydrophobicity
profile

N-gram Attribute Profile Service

Figure 4-6. Sample n-gram service functionalities

To demonstrate how features derived by n-gram patterns can be modeled as web services using

the boot strapping approach, a conservation profile web service was developed in this research.

Figure 4-7 shows the n-gram conservation service with a set of operations. For example, the

“extrct_ICP” operation takes a PDB ID and a chain ID, and returns the PDB chain’s ICP profile.

The PDB ID is a 4-digit string. The chain ID is a string which represents the chain (sequence)

name of a PDB structure. The output ICP profile is a conservation feature which is represented

as a vector of conservation percentage associated with each residue position. The n-gram

conservation service is extensible by adding new operations. For example, an operation called

 73

“extract_Valdar” can be added to provide MSA-based conservation profile using Valdar and

Thornton’s method (Valdar and Thornton).

extract_ICP

extract_Valdar

PDB ID, Chain ID

PDB ID, Chain ID

ICP Profile

Valdar Profile

N-gram Conservation Profile Service

Figure 4-7. Design of the n-gram conservation web service

4.7. Category of WSP Web Services

In addition to protein feature web services, other types of services can also be introduced in

WSP, including tool services and analysis services (see Figure 4-8). Feature services are the core

services that provide protein feature data. For example, the iGNM Mode Service provides

protein functional motion data. Tool services are used to facilitate the processing or presentation

of protein feature data. For example, the PDB Replacer Service is used to present feature data in

standard PDB format. Analysis services are used to integrate or analyze protein features. For

example, the Feature Overlay Service is used to overlay two (or many) features in the same

normalization scale and compare the values at each residue position.

 74

Tool Services Feature Services Analysis Services

Feature Overlay Service

Prediction ServiceHydrophobicity Service

File Downloader

Query Interface

Visualization Service

… … …

iGNM Mode Service

ngram Profile Service

PDB Replacer

Figure 4-8. Category of WSP services

Protein feature services represent the common elements or basic building blocks that can be

shared by different user applications. Once a desired service is located, users can submit queries

to obtain features for specific proteins. Once the feature data is obtained, users can either use tool

services and analysis services (if available) for further analysis, or develop their own standalone

applications.

WSP services can also be dynamically assembled to perform in silico experiments. As shown in

Figure 4-8, the iGNM mode service and the n-gram profile service can be linked with the feature

overlay service to study the correlation between protein motions and conservation. Further, the

feature overlay service and the PDB replacer service can be linked with the visualization service

to visualize the motion-conservation correlation.

 75

5. SEMANTIC DESCRIPTION OF WEB SERVICES

5.1. Introduction

There are many types of service descriptions which are used for different purposes. For example,

WSDL is used as the programmatic interface to bind to the service. Also, there are quality of

service (QoS) parameters or non-functional parameters (e.g., availability, reliability and

reputation) that can be used as the criteria to select and chain services (Cardoso and Sheth, 2003;

Zeng et al., 2004; Rao and Su, 2004).

To enable effective and user-oriented discovery of web services, it is now widely recognized that

ontologies are needed for semantically describing the capabilities of web services (i.e., what a

service can do) (Paolucci et al., 2002; Hull et al., 2005). To semantically describe protein web

services, domain ontologies used by the biological community and service ontologies used by the

web services community need to be considered.

This chapter first reviews the role of ontologies. It then describes the ontologies adopted by WSP

and a semantic profile generator that generates semantic service descriptions and semantic

service requests.

 76

5.2. The Role of Ontologies

Ontology originated from philosophy as a reference to the nature and the organization of reality.

In general, an ontology is a “specification of a conceptualization” (Gruber 1993). In the

computer science domain, ontology provides a commonly agreed understanding of domain

knowledge in a generic way for sharing across applications and organizations (Chandrasekaran et

al., 1999). Typically, ontology consists of a list of terms and the relationships between those

terms. The terms denote the domain concepts (or classes of objects). The relationships indicate

hierarchies of concepts. They also provide property information, value restrictions and

specifications of logical relationships between objects.

An ontology may take a variety of forms (e.g., object-oriented design), but it will necessarily

include a vocabulary of terms and some specification of their meaning. This includes definitions

and an indication of how concepts are inter-related which collectively impose a structure on the

domain and constraint the possible interpretations of terms (Uschold and Jasper, 1999).

The database community as well as the object-oriented design community also build domain

models using concepts, relations, properties, etc., but in general both communities impose less

semantic constraints that those imposed in heavyweight ontologies (Gómez-Pérez et al., 2004).

Ontologies are largely used for representing domain knowledge. A common use of ontologies is

data standardization and conceptualization via a machine-understandable language. Existing

 77

ontology languages include RDF (Resource Description Framework), DAML-OIL (DARPA

Agent Markup Language-Ontology Interface Language), OWL and OWL-S.

Typical ontologies include taxonomies on the web (e.g., Amazon’s product catalog), domain

specific standard vocabularies (e.g., Gene Ontology) and ontologies for data integration (e.g.,

semantic interoperation between XML schemas) (Cruz, I.F. and Xiao, H., 2005).

There are three approaches to use ontologies for data integration (Cruz, I.F. and Xiao, H., 2005;

Wache et al., 2001):

• Single ontology approach. The schemas used by data resources are directly related to a

shared global ontology that provides a uniform interface to the user. This approach requires

that all resources have the same view on a domain.

• Multiple ontology approach. Each data resource has its own local ontology. Instead of using

a common ontology, local ontologies are mapped to each other. Therefore, additional

representation formalization is required for inter-ontology mapping.

• Hybrid ontology approach. This approach combines the above two approaches. First, each

local resource has its own local ontology. Then, each local ontology is mapped to a global

shared ontology. New data resources can be added without modifying existing mappings.

 78

5.3. WSP Ontologies

Much progress has been made in proteomics ontologies to semantically integrate heterogeneous

protein data resources, including approaches to systematic structural and functional classification

and initial work towards developing standardized and unified descriptions for protein properties.

For examples, CATH (Pearl et al., 2003) describes protein folds; SPINE (Bertone et al., 2001)

focuses on biophysical characteristics; Gene Ontology (GO) (Gene Ontology Consortium, 2004)

is a controlled vocabulary of nearly 17,500 terms for describing function of gene products;

Protein Ontology (PO) (Sidhu et al., 2005) is a recent effort in building a common structured

vocabulary in OWL for sharing knowledge in proteomics domain, including concepts for

proteomics data and the relations among these concepts. The details of the protein ontology are

reviewed in the following section.

5.3.1. Protein Ontology

The Protein Ontology or PO (Sidhu et al., 2005) is a recent effort in building a common

structured vocabulary in OWL for sharing knowledge in proteomics domain, including concepts

for proteomics data and the relations among them. Currently, PO contains 92 concepts

implemented as OWL classes.

The Protein Ontology shows the value of hierarchy and relationships present in proteomics data.

The creation of a Protein Ontology provides understanding of diverse types of data: (1) Protein

Entry Details, (2) 3D Structural Representations of Proteins, (3) Structural Folds and domains

 79

conserved in proteins, (4) Functional Domains and Families created based on Physiological and

Pathological Functions of Proteins, and (5) Various Constraints like Genetic Defects and

Chemical Properties of Cell that affect Final Stable Molecular Structure of Protein. Protein

Ontology describes the concepts of interest in protein complex mechanisms and proteomics

process (Sidhu et al., 2005).

5.3.2. Extended Protein Ontology

For semantic description of protein web services, existing ontologies that provide terminologies

for describing protein identities and features need to be considered. For protein features that

cannot be described by existing ontologies, existing ontologies need to be expanded or new

ontologies need to be developed. Based on literature survey, we identified that PO already

provides a set of standard terminologies that can be used to describe protein identities and

features (e.g., “structure”, “sequence”, and “active binding sites”). However, there are also many

protein features that cannot be described by PO, e.g., dynamics and conservation. Therefore, we

try to use the established PO conceptualization as much as possible, and try to enhance PO’s

expression power by adding more terminologies regarding protein features. We call the enhanced

version of the protein ontology as the Extended Protein Ontology (EPO).

Figure 5-1 shows the design of EPO, where the yellow ellipses represent the existing concepts in

the protein ontology and the blue ellipses represent new concepts about protein features (e.g.,

dynamics, n-gram pattern and conservation). The new concepts are either inserted as leave

 80

nodes of existing concepts (see Figure 5-1(a)) or organized as an independent hierarchy—a

branch that is directly connected to the root node “Protein Ontology”.

Dynamics Method Conservation Method

Sequential parameter3D parameter

Structure

Protein Ontology

…

(a)

Protein

ATOMSequence PDB_ID

Functional Domains

Residue Sequence

Structure

Catalytic Sites

Binding Sites

(b)

 81

Density

3D parameter

Mode_Shape

Dynamics

Trajectory

(c)

Figure 5-1. (a) Overall design of the extended protein ontology (EPO), where new concepts (blue ellipses) are added

to the existing protein ontology (PO). (b) a fragment showing that new concepts are added as leaves of existing

concepts (yellow ellipses). (c) a fragment showing an independent hierarchy.

5.3.3. Upper Service Ontology

OWL-S is an OWL-based upper ontology that describes key aspects of a service: “service

profile” which states abstract description of service capabilities; “service model” which states

how services interact with each other; and “service grounding” which states actual message that

are exchanged among services (W3C OWL-S, 2004). The OWL-S Profile ontology is adopted to

describe WSP web services. In an OWL-S profile, the service input and output are explicitly

labeled with concepts in a domain ontology (e.g., EPO).

OWL-S and WSDL have a complementary relationship (see Figure 5-2). OWL-S defines

message types (inputs and outputs) in terms of OWL classes (ontological concepts), which

allows for a richer semantic foundations underlying the type specifications. However, OWL-S

 82

profile is an abstract specification; it does not specify the details of message formats, protocols,

and network addresses by which a web service is instantiated. Since WSDL provides a well

developed means of specifying these kinds of details, it is used as the protocol to access the

service (Ankolekar et al., 2004).

C8 Req1
OWL-S
(abstract)

Ontological concepts (OWL class)

C2

XSD schema
(e.g., xsd:string)

<Output><Input>
(concrete)
WSDL

Web Service

Matchmaker

WSDL1

Figure 5-2. The complementary relationships between OWL-S and WSDL

5.4. Semantic Description of Protein Web Services

OWL-S profile provides the data structure for describing capabilities of services. As defined in

OWL-S (see Section 2.6.2), the upper ontology for service profile includes three parts: the actor,

the functional attributes, and the functional description. The actor class records information

about service providers. The functional attributes include parameters such as service category,

the rating assigned to the services and the geographic constraints to the service. The functional

description describes the capabilities of services in terms of inputs, outputs, preconditions, and

effects.

 83

In WSP, OWL-S service profile is used for describing both service descriptions (capabilities) and

service requests. The service description of a request contains 3 categories of functional

parameters: input, output and constraint. The input refers to the value passed to the service

operation, the output refers to the value returned by the service operation, and the constraint

refers to quality requirements on the output. For example, for a service that provides protein

dynamics, the input could be a protein identity (e.g., a PDB ID), the output could be the mode

shape, and the constraint could be the requirement that the mode shape should provide motion

data (fluctuations) at atomic level.

In theory, the input can contain multiple values/parameters, so are the output and the constraint.

To semantically annotate these values, multiple concepts are needed. However, it is valid to

assume a single parameter for input, output and constraint each, if the parameter is considered to

be complex structure on their own (Spillner et al., 2006). Based on this assumption, the input is

annotated using only one concept. The output and the constraint are also annotated using one

concept respectively.

Figure 5-3 shows an example of how service capabilities can be described by incorporating

OWL ontologies and OWL-S profile. By having service descriptions and requests dynamically

refer to the OWL concepts defined in the same ontology (i.e., EPO), semantic matching

algorithms can be designed to reason about similarities between services and requests in an

unambiguous and machine interpretable form (Paolucci et al., 2002).

 84

input
output

Service Description

Domain
Ontology

OWL-S Profile

OWL Ontology

OWL-S Profile

webURL
serviceName
Input
Output
…

Web Service 1 constraint

Static Ontological
RelationshipClass

subClassOf
Object Property
Datatype Property
…

webURL
serviceName
Input
Output
…

Dynamic
Reference

Legend:

input
output

Service Request

Web Service 2 constraint

Figure 5-3. Methodology for generating semantic descriptions of web services

An OWL-S profile generator is developed to create OWL-S service profile. Given a domain

ontology (i.e., EPO), the profile generator parses the ontology into a list of concepts. To generate

a profile about service capabilities, the generator selects a concept as service input, a concept as

service output and another concept as service constraint. For service descriptions, input, output

and constraint are based on the functionalities provided by Web services. For example,

“getAllSlowModes” provided by iGNM Mode Shape Service has one “PDB ID” as input and 20

“mode shape” as output, where “PDB ID” and “mode shape” are both EPO concepts. For service

requests, input, output and constraint are based on user requirements. For example, a user who is

looking for a service that provides protein dynamics information may specify the input as

“protein” and the output as “dynamics”, where “protein” and “dynamics” are both EPO concepts.

 85

After generating the inputs and outputs for a service, the generator creates an OWL-S profile

according to the OWL-S profile specification.

 86

6. SEMANTIC PUBLICATION AND MATCHING OF
WEB SERVICES

6.1. Introduction

Web services are an emerging technology for bioinformatics research. As number of biological

web services increases, finding suitable services that provide a solution to the problem at hand

becomes more important than ever. Therefore, service discovery is a critical component in web

services integration.

Current web services standards provide a standard means of interoperating between different

software components (see Section 2.6). However, they do not support operations at semantics

level, leaving the promise of automatic and user-oriented discovery of Web services incomplete.

For example, service providers and requestors may have distinctive perspectives and knowledge

about one service resulting in differing descriptions for the service. In this case, UDDI will be

unable to locate the service because it can only perform syntactic, and not semantic, matching

between the service requested and the services advertised.

By having service advertisements and requests refer to the concepts defined in the same

ontology, semantic matching algorithms can be designed to reason about similarities between

service descriptions and requests in an unambiguous and machine-interpretable form (Paolucci et

al., 2002). Thus services that provide solutions to a request can be automatically discovered even

if the services registered and the service requested are syntactically distinctive.

 87

This research contributes a semantic matchmaker service that allows service providers to publish

the description of their services and allows users to submit requests and obtain semantically

matched services. The matchmaker implements a service publication algorithm (see Section 6.4)

and an efficient service discovery (matching) algorithm (see Section 6.5). By adopting an

ontology-based service indexing strategy during the publication phase, the service matching

algorithm has lower time complexity than existing algorithms.

6.2. Background

In this section, we will give an overview of data structures and matchmaking operations that are

relevant to the WSP matchmaker’s design and implementation.

6.2.1. Data Structures

In this research, we assume each web service has both an OWL-S semantic description and a

WSDL description. These two descriptions are coupled with each other and have one-to-one

relationship. While the OWL-S description is used for service discovery, the WSDL description

is used for service binding.

Table 6-1 shows that a service functionality contains four basic parameters: operation, input,

output, and constraint. These parameters are represented differently in OWL-S and WSDL. In

OWL-S, an operation is referred as an atomic process. The input, output and constraint

 88

parameters associated with an atomic process are annotated using ontological concepts. In

WSDL, the operation name is explicitly presented. The input and output are presented as

messages. There is no presentation for constraint.

Table 6-1. Comparison of OWL-S and WSDL data structure.

Service Functionality Semantic Description
(OWL-S)

Programmatic Interface
(WSDL)

Operation Atomic process Operation name
Input Ontological concept Message name, data schema
Output Ontological concept Message name, data schema
Constraint (optional) Ontological concept N/A

OWL-S profiles contain more explicit semantics than WSDL descriptions and act as the main

data structure for service matching/discovery. Formally, an OWL-S web service description S is

described by a tuple:

>=< COIS ,, 6-1

where I is an concept (OWL class) that specifies the service’s input, O is an concept (OWL

class) that specifies the service’s output, and C is an optional concept (OWL class) that specifies

the service’s output constraint.

The tuple representation is isomorphic to the more common XML serialization of OWL-S, but

more explicit for processing. The discovery of service is performed at the semantic level by

comparing the service’s tuple and the request’s tuple. More specifically, the service input

concept is compared with the request input concept, the service output concept is compared with

the request output concept, and the service constraint concept is compared with the request

 89

constraint concept (if available). Therefore, to reason the similarity between two semantically

annotated service descriptions, we need to know the degree of match between concepts.

6.2.2. Matchmaking Operations

Since providers and users may have differing service descriptions, the output concept of a

service may not match that of a request exactly. For example, iGNM Mode Shape Service which

provides “mode shape” for a “PDB ID” does not exactly match a request that looks for

“dynamics”. However, the iGNM service can be used for such request and should appear in the

result list of the service request. Such implicit relationships between service descriptions and

requests can be derived through reasoning the degree of match between two output (or input and

constraint) concepts.

There are four degrees of similarity match between the output of a service () and the output

of request ():

SO

RO

• Exact. If and are the same, the match gets a score of 3 (highest similarity) RO SO

• Plug-in. If subsumes , then can be plugged instead of . The match gets a

score of 2.

RO SO SO RO

• Subsumption. If subsumes , then the service may not completely satisfy the request.

The match gets a score of 1.

SO RO

• Fail. If and do not have either plug-in or subsumption relations, then the match fails

and gets a score of 0.

RO SO

 90

These definitions of match degrees are based on previous studies on semantic matching (e.g.,

Paolucci et al., 2002; Li and Horrocks, 2003) but with different scoring matrix. With these

definitions of match degrees, the similarity between a service request and a service description

will be realized. For example, in Figure 6-1, if a request has as “Dynamics”, then the match

between the request and a service whose is the “Dynamics” class is exact. If a service has

 as “Mode Shape”, then the match is plug-in. If a service has as “3D Parameter”, then the

match is subsumption.

RO

SO

SO SO

Request

Service

EPO Ontology

?

If O_R = O_S
core=3Exact, S

If O_S O_R
core=2Plugin, S

If O_S O_R
Subsumption, Score=1

3

2

1
3D parameter

Static
Relationship

Legend:

Dynamic
Reference

DensityDynamics

Mode_Shape Trajectory

RO

output

SO

Figure 6-1. Semantic matching of service descriptions and a service request whose output concept is

“Dynamics”. Each dashed line (red) represents a specific type of matching between the request and a service.

RO

 91

The matching between inputs and constraints is computed following the same procedure.

Equation 6-2 generalize the comparison between a service concept and a corresponding

request concept :

S
iC

R
iC

⎪
⎪
⎩

⎪
⎪
⎨

⎧

⊃
⊂
=

=

else
CCif
CCif
CCif

CCmatch R
i

S
i

R
i

S
i

S
i

R
i

S
i

R
i

0
1
2
3

),(6-2

Assuming there are m concepts in a service description and there are m corresponding concepts

in a service request, the similarity or global match between the request R and the service S can be

derived by summing up the match scores between the a concept pair:

∑
=

=
m

i

S
i

R
i CCmatchSRsimilarity

1
),(),(6-3

Therefore, the matching between a request and a set of services can be quantitatively measured.

A service with the highest similarity score represents the most accurate service for the request.

There may be more than one most accurate service. Besides the most accurate service(s), those

services with a similarity greater than zero are still useful as backup services.

6.3. A Semantic Matchmaker Service

 92

In this research, we developed a semantic matchmaker for user-oriented discovery. The

matchmaker performs service publication and service discovery by interacting with a

matchmaker client. Two algorithms are implemented in the matchmaker, one for publication and

one for discovery. During the publication phase, the publication algorithm creates a hash index

table (or registration table) of services by traversing the ontology. Then the discovery algorithm

operates on the registration table without traversing the ontology (as in existing algorithms). By

introducing service indexing, the time complexity associated with service discovery is reduced.

6.3.1. Architecture

Figure 6-2 shows the client-server architecture of the matchmaker service. The client has two

modules, one for publication and one for discovery. The publication client is used by service

providers to publish the OWL-S descriptions of their services. The discovery client is used by

requestors (users) to submit OWL-S requests and obtain matched services.

Ontology
Loader

Matching
Algorithm

Matchmaker Client Matchmaker Service

Publish MatchingLegend:

Discovery
Client

Publication
Client

Communication
Interface

Registration
Table

Publication
Algorithm

Figure 6-2. Overall Semantic Service Discovery Architecture

 93

There matchmaker service has four components: the communication interface, the ontology

loader, the publication module, the registration table and the matching module. The matchmaker

receives messages from the client through the communication interface. When a message is a

service description, the interface sends it to the ontology loader and the publication module for

publication. The result of the publication is stored in the registration table. When a message is

service request, the communication interface sends it to the matching module for service

discovery. The result of the matching is set of semantically matched services, which will be sent

to the discovery client.

The WSP matchmaker assumes there is only one centralized domain ontology (i.e., EPO), which

is referenced by the OWL-S service description and the OWL-S service request. The ontology

loader preprocesses the domain ontology and creates data structures necessary for semantic

service publication and matching. The ontology loader parses the OWL file of the ontology and

creates a hierarchical data structure to store all the OWL classes (concepts) based on their

relationships defined in the OWL file. For each concept of the ontology, there is a list which

stores the entire super and sub classes of the concept. Figure 6-3 shows an example of the

hierarchical structure, where concept C2 has a super class C1 and a sub class C4. Based on the

list associated with C2, we can infer that C1 subsumes C2, C2 subsumes C4, and C2 has no

relation with C3.

 94

C3

C1

C2

C4

Ontology Super

C2, C3, C4

Sub

C1

Super Sub

C1

Super

C4

Sub

C2, C1

Super Sub

concept
Relationship

Legend:

Pointer

Figure 6-3. Preprocessing of the domain ontology

6.4. Semantic Publication Algorithm

The purpose of the publication algorithm is to store and index service descriptions. Each service

description is assigned a unique ID and store in a local database. Also, each service description is

indexed using the domain ontology. The indexing result is stored in the registration table, which

is used as the main data structure for service matching.

6.4.1. Algorithm Description and Analysis

Figure 6-4 shows the pseudo code of the publication algorithm. For a concept C in a service

description, the publication algorithm performs a graph traversal to identify C’s relations with

each node (concept) of the graph (ontology). At a node u, the algorithm compares C with u and

u’s super and sub classes. If C is the same as u, then the service gets an “exact” match score at u.

 95

If C is a subclass of u, then the service gets a “plug” match score at u. If C is a super class of u,

then the service gets a “subsumption” match score. Otherwise, the service does not have a score

at u, which means the service cannot provide the capability represented by u. If the service has a

score at u, it is indexed by u and the match result is inserted into a hash table called service

registration table.

The index table is a survey of all services’ capabilities. It associates a service’s concept

(capability) at relevant concepts (nodes) in the ontology. The benefit is that when we need to

search for a capability (concept), we can search the index table and find all services that can

provide the capabilities.

A time complexity analysis was performed for the algorithm (see Appendix A). The analysis

shows the time complexity is O(m(|V| + |E|)), where |V| is the number of vertices in G, |E| is the

number of edges, and m is number of concepts in service.

 procedure register(service, G)

1. registration = empty hash table
2. parse service into concepts c[m]
3. for i = 1 to m do
4. u0 = the root vertex in G
5. DFS(u0, c[i])
6. return registration

//service is a service description
//G is an ontology; G = <V, E>

//m = number of concepts

//depth-first traversal of G

 procedure DFS(u, c)

1. degreeOfMatch(u, c)
2. status[u] = “processed”
3. for each neighbor v of u do
4. if status[v] != “processed” then
5. DFS(v, c)
6. return

//u, c are concepts

 procedure degreeOfMatch(u, c)

1. if c = u then
2. service.score = “exact” or 3

//measure match between u and c

 96

3. if c is subclass of u then
4. service.score = “plugin” or 2
5. if c is superclass of u then
6. service.score = “subsumption” or 1
7. if service.score != null then
8. registration.add(u, service)
9. return

Figure 6-4. Pseudo code for the WSP service publication algorithm

6.4.2. A Service Registration Example

C3

output

S1

Service
C1

C2

C4

C2

Ontology

S1

S1

S3

Static
Relationship

Legend:

Dynamic
Reference

S2

S2

S2

S2

S3

S3

S1

S2 C1

S3 C4

Figure 6-5. An example of service registration, where a service is pointed to the conceptual nodes which have

relations with the concept in the service.

Figure 6-5 shows an example of registering three semantic service descriptions S1, S2 and S3

with the domain ontology, where S1 has an output concept C2, S2 has an output concept C1, and

S3 has an output concept C4.

 97

For S1, the algorithm traverses the ontology graph and compares C2 with each node. At node

C1, the service gets a match score of 2 because C2 has a “plugin” match with C1; at node C2, the

service gets a match score of 3 because C2 has an “exact” match with C2; at node C4, the service

gets a match score of 1 because C2 has an “subsumption” match with C4; at node C3, the service

gets a match score of 0 because C2 has no match with C3. Similarly, S2 gets a score of 3 at node

C1; a score of 1 at node C2; a score of 1 at node 4; and a score of 1 at node C3. S3 gets a score of

2 at node C1; a score of 2 at node C2; a score of 3 at node C4; and a score of 0 at node C3. The

registration result is shown in Figure 6-6.

Mapping ScoreServiceConcept

Score (c4, S3) = 3S3
Score (c4, S2) = 1S2
Score (c4, S1) = 1S1

C4

Score (c2, S3) = 2S3
Score (c2, S2) = 1S2
Score (c2, S1) = 3S1

C2

Score (c1, S3) = 2S3
Score (c1, S2) = 3S2
Score (c1, S1) = 2S1

C1

Concept Service Mapping Score

Score (c4, S3) = 3S3
Score (c4, S2) = 1S2
Score (c4, S1) = 1S1

C4

Score (c2, S3) = 2S3
Score (c2, S2) = 1S2
Score (c2, S1) = 3S1

C2

Score (c1, S3) = 2S3
Score (c1, S2) = 3S2

S1 Score (c1, S1) = 2
C1

Figure 6-6. Service registration result is a service registration table (or an index table).

6.5. Semantic Service Matching Algorithm

The matching algorithm compares the concepts (requirements) in an OWL-S request with the

concepts (capabilities) in an OWL-S service description. The global match between the request

and the service description is a summation of the degree of match between concepts, see

Equation 6-3.

 98

6.5.1. Algorithm Description and Analysis

Figure 6-7 shows the pseudo code of the matching algorithm. For each concept Ci in a service

request, the algorithm looks up the registration table for a record associated with it. This record

contains a list of services that could provide the capability represented by Ci. This list is called a

candidate list for Ci. After all candidate lists are retrieved, the algorithm tries to find the

intersection of those lists. Services that appear in all the candidate lists represent the final

matched services—services that can provide all the concepts (capabilities) in the request. Finally,

the matched services are sorted based on their global match scores.

A time complexity analysis was performed for the algorithm (see Appendix A). The best case

time complexity is O((m)(N)), the worst case time complexity is O((m)(N) + n2), where m is the

number of concepts in request, N is the total number of registered services, and n is the number

of matched services.

 procedure match (request, registration)

1. parse request into concepts c[m]
2. var service[], candidateList[m][]
3. for i = 1 to m do
4. candidateList[i] = services indexed by c[i]
5. service = candidateList[1]
6. for i = 2 to m do
7. for j = 1 to N do
8. if service[j] != candidateList[i][j] then
9. remove service[j]
10. for k = 1 to length(services) do
11. for i = 1 to m do
12. service[k].match += service[k].score(c[i])
13. insertion_sort(service)
14. return service

//request is a service description
//registration is an index table

//m = number of concepts
//hash table search

//N = all registered services

//n = matched services (n < N)

//calculate total match score
//sort matched services

 99

 procedure insertion_sort(A)

1. for j = 2 to length(A) do
2. key = A[j]
3. i = j – 1
4. while i > 0 and A[i] > key do
5. A[i+1] = A[i]
6. i = i – 1
7. A[i+1] = key
8. return

//insert A[j] into the sorted list
A[1...j-1]

Figure 6-7. Pseudo code for the WSP service matching algorithm.

6.5.2. A Service Matching Example

Concept

Request

Cm

C1 S1,1 S1,2 S1,j

CiR1 Si,1 Si,2 Si,j

Sm,1 Sm,2 Sm,j

…

…

Registration
Table

…

Figure 6-8. Protocol for service matching. Each concept in a service request is matched against a record in the

registration table. The final matched services will be the intersections of all candidate lists.

Figure 6-8 shows an example of the service matching process, where the service request R1 has

m required concepts {C1, …, Cm}. For C1, there is a list of matched services L1 = {S1,1, …,

S1,j}. Similarly, Cm has a list of matched services Lm = {Sm,1, …, Sm,j}. The m lists are joined

to find the common services—the final results.

 100

6.5.3. Comparison with Typical Matching Algorithm

Existing service matching algorithms usually perform a pair-wise comparison between a service

request and all the registered services (e.g., Paolucci et al., 2002; Li and Horrocks, 2003). A

match between a request and a service consists of the match of the request concept and the

service concept . In order to find the similarity between a request concept and a service

concept, a matching algorithm needs to search the ontology graph to find the locations of the two

concepts and then determines if they have any ontological relationship using the scoring matrix

defined in Equation 6-2 (Section 6.2.2).

R
iC

S
iC

Assuming the ontology is preprocessed such that each concept has a record of its subclasses and

superclasses (see Section 6.3.1), then either or needs to be searched but not both. For

example, to determine the match between a request output and a service output , an

algorithm can search the ontology graph to find the location of and determine and degree of

match between the two concepts by checking if appears in ’s list of subclasses and

superclasses. Similarly, the match between a service input and a request input and the match

between a service constraint and a request constraint all require traversal of the ontology graph.

R
iC S

iC

RO SO

RO

SO RO

 procedure match(request, All, G)

1. var service[]
2. for i = 1 to length(All) do
3. match = serviceMatch(request, All[i])
4. if match != null then
5. add All[i] to service
6. sort(service)
7. return service

//G is an ontology, G = <V, E>
//All is a list of all registered services

//N = number of all services

 101

 procedure serviceMatch(request, service)

1. parse request into concepts c1[m]
2. parse service into concepts c2[m]
3. for i = 1 to m do
4. u0 = the root vertex in G
5. score[i] = DFS’(u0, c1[i], c2[i])
6. service.match += score[i]
7. return service.match

//compare a request with a service

//depth-first search of service concept
//calculate match score

procedure DFS’(u, x, y)

1. if u = y then
2. score = degreeOfMatch(y, x)
3. return score
4. else
5. status[u] = “processed”
6. for each neighbor v of u do
7. if status[v] != “processed” then
8. DFS’(v, x, y)

//x is request concept
//y is corresponding service concept

procedure degreeOfMatch(u, c)
1. if c = u then
2. score = “exact” or 3
3. if c is subclass of u then
4. score = “plugin” or 2
5. if c is superclass of u then
6. score = “subsumption” or 1
7. return score

Figure 6-9. Pseudo code for a typical service matching algorithm

Figure 6-9 shows the pseudo code of a typical service matching algorithm. In the main control

procedure “match” of the matching algorithm, a service request is matched against all the

registered services. Whenever a match between the request and any of the services is found, it is

recorded and scored to find the services with the highest similarity.

A match between a request and a service consists of the match of all the request concepts and the

service concepts (see procedure “serviceMatch”). A match is recognized if and only if for each

request concept, there is a matching service concept. To determine if there is a match, the

algorithm first searches for the service concept in the ontology and then calls the scoring matrix

 102

(see procedure “degreeOfMatch”) to calculate the degree of match (or match score). The match

scores for all concepts are summed up as the global match score (or similarity score) between the

request and the service.

The last piece of the algorithm is to sort the resulting matches. The sorting is based on the

similarities scores of all matched services. Traditional sorting algorithms (e.g., insertion sort) can

be applied here.

A time complexity analysis was performed for the algorithm (see Appendix A). The best case

time complexity is O((N)(m)(|V|+|E|)), and the worst case time complexity is O((N)(m)(|V|+|E|)

+ n2), where N is the total of registered services, m is the number of concepts in service request,

|V| is the number of vertices in G, |E| is the number of edges in G, and n is the number of

matched services.

Table 6-2. Comparing WSP matching algorithm with typical matching algorithm

 Typical WSP
Service Publication No service indexing O(m(|V|+|E|))
Service Matching
(best case)

O((N)(m)(|V|+|E|)) O((m)(N))

Service Matching
(worst case)

O((N)(m)(|V|+|E|) + n2) O((m)(N) + n2)

Table 6-2 compares the time complexity for typical service matching and WSP service matching.

The typical matching algorithm does not have service indexing strategy. The matching between a

service request and all the registered services is dependent on the size of the ontology and the

number the registered services. When the number of the registered services increases or (and) the

size of the ontology increases, the matching time also increases significantly. By introducing

 103

service indexing, the time complexity associated with WSP matching is reduced. It is not

dependent on the size of the ontology.

6.6. WSP Scenario: Discovery of Protein Dynamics Data Resource

With the rapid accumulation of protein structures in PDB, it now widely recognized that efficient

methods and tools are needed for understanding the protein dynamics, and thereby controlling

the function of target proteins (Yang et al., 2005). Indeed, researchers have built a wide range of

Web servers and databases on protein structural dynamics, including MolMovDB (Echols et al.,

2003), DynDom (Lee et al., 2003), ElNemo (Suhre and Sanejouand, 2004), ProMode (Wako et

al., 2004), MoViES (Cao et al., 2004), Dynamite (Barrett and Noble, 2005), WEBnm (Hollup et

al., 2005), and iGNM (Yang et al., 2005), see Section 2.4.2.

Although these data resources all provide protein dynamics data, they have different capabilities

and semantic meanings associated with them. This is because there are many types of dynamics

data derived from different methods. For example, the data provided by iGNM is the mode

shapes predicted by the GNM model at the residue level; the data provided by ProMode is the

mode shapes predicted by NMA at the atom level; the data provided by MolMovDB is the

trajectories derived by interpolations between two conformations. Despite their heterogeneity,

OWL-S semantic descriptions can be generated to precisely capture the capabilities of these data

resources (see Section 8.3.2).

 104

By having service descriptions and service requests refer to the EPO ontology, the semantic

matching algorithm can quantitatively measure the similarity between a service and a request.

Therefore, for a given request, the WSP matchmaker can perform user-oriented discovery by

retrieving services that semantically meet the request.

Figure 6-10 shows two service discovery examples. In the first example, the input of iGNM gets

a score “2” (because “PDB ID” is a subclass of “protein”), and the output of iGNM gets a score

“2” (because “mode shape” is a subclass of “dynamics”). So iGNM gets a global match score of

“4”. Similarly, ProMode and MolMovDB also gets a score of “4”. In this case, all three services

have equal capabilities for the request R1, which looks for general (any type) protein dynamics

data.

In the second example, the input of iGNM gets a score “3”, the output of iGNM gets a score “3”

and the constraint gets a score “3”. So iGNM get a global match score of “9”. The input of

ProMode gets a score “3”, the output of ProMode gets a score “3”, and the constraint gets a score

“0” (because “atoms” is different from residues”). So ProMode gets a global match score of “6”.

The input of MolMovDB gets a score “3”, but the output and the constraint both get a score “0”

(because “trajectory” is different from “mode shape” and there is no constraint concept in the

description). So MolMovDB gets a global match score of “3”. In this case, iGNM is the most

accurate service because it provides the same capability that is being looked for—providing

mode shape data for PDB structures at the residue level.

 105

output

protein

input

dynamics

Semantic Matching

OWL-S Descriptions

PDB_ID

PDB_ID

PDB_ID

Request

R1

Mode_Shape

ProMode

MolMovDB Trajectory

residues

iGNM

Mode_Shape

atoms

output

input Service

constraint

Semantic Matching Score:

2 + 2 = 4

Semantic Matching Score:

2 + 2 = 4

Semantic Matching Score:

2 + 2 = 4

input output

(a)

Mode_Shape

PDB_ID

residues

Semantic Matching

Mode_Shape

OWL-S Descriptions

PDB_ID

PDB_ID

PDB_ID

ProMode

MolMovDB Trajectory

residues

iGNM

Mode_Shape

atoms

output

input Service

constraint

Semantic Matching Score:

3 + 3 + 3 = 9

R2

output

input Request

constraint

input output constraint

Semantic Matching Score:

3 + 3 + 0 = 6

Semantic Matching Score:

3 + 0 + 0 = 3

(b)

Figure 6-10. WSP service matching examples

 106

7. CHAINING OF PROTEIN WEB SERVICES

7.1. Introduction

Protein feature web services and associated analysis web services (see Chapter 4) allow users to

develop a wide range of applications. The service operations that provide protein features

constitute basic building blocks out of which new applications are created. For example,

enzymatic sites feature can be used in many different applications. One application can be using

enzymatic feature to develop prediction models for protein function. Other applications can be

correlating enzymatic feature to conservation, hydrophobicity or dynamics.

This chapter presents a workflow-based approach for integrating protein feature web services. In

this approach, a WSP application (i.e., an integration task) is represented as an abstract workflow

of service requests, where each request is expected to be implemented by a web service. An

integration agent is used to select and chain services, based on the criteria of service accuracy

and data interoperability. The agent finally generates a concrete workflow of web services,

which automatically integrates the results from individual services.

 107

7.2. Workflow-Based Service Integration

WSP allows users to integrate protein features through protein web services. As discussed in

Section 2.6.3 and Section 3.3, one way of performing service integration is to pipe together

inputs and outputs of consecutive web services in a workflow environment.

In WSP, there are three types of workflows, namely application or higher level workflow,

abstract workflow and concrete web services workflow. The higher level workflow is used to

represent a user application (i.e., integration task). It is a directed acyclic graph (DAG) of tasks,

where each task is to obtain a protein feature or correlate two protein features. Figure 7-1(a)

shows a higher level workflow for protein feature integration/correlation, where the initial

condition (input) T0 is a protein, the first task T1 is to obtain a structure of the protein, the second

task T2 is to obtain dynamics for the structure, the third task T3 is to obtain the conservation

profile of the protein, the four task T4 is to correlate the dynamics feature with the conservation

feature, and the fifth task T5 is to visualize the correlation map.

Given a higher-level workflow, the OWL-S profile generator (see Section 5.4) is used to

generate a semantic service request for each task. The resulting workflow is called an abstract

workflow which consists of service requests. The abstract workflow has the same topology (data

dependency) as the higher-level workflow. Figure 7-1(b) shows an example of abstract

workflow. The first request R1 is to find a service that provide protein structure, it is formulated

according to the first task T1 in the high-level workflow by the user. Similarly, the second

request R2 is to find a service that provide protein dynamics, and so on.

 108

Given an abstract workflow, WSP generates a web services workflow which consists of web

services. The web services workflow has the same topology as the higher-level workflow and the

abstract workflow. Figure 7-1(c) shows a web services workflow, where each node is a service

that implements a task. For example, service S2 is used to implement T1, S7 is used to implement

T2, and so on.

Protein

Conservation

Structure Dynamics

Correlation VisualizationT1 T2

T3

T4 T5

Legend:

Initial Condition

Task

Dependency

Tn

T0

T0

(a)

R5

R1

R3

R4

R2

Legend:

Initial Condition

Service Request

Dependency

Rn

T0

T0

(b)

 109

Legend:

Initial Condition

Web Service

Data Dependency

S18

S502 Sn

Sn

S2 S7

T0

T0

(c)

Figure 7-1. (a) An example of higher-level workflow; (b) an example of abstract workflow; (c) an example of

concrete web services workflow.

As discussed in Section 3.3, WSP adopts a static-workflow based integration approach (see

Figure 3-1), where the higher-level workflow is provided by the user. Based on a higher-level

workflow, users can generate semantic service requests using the OWL-S profile generator (see

Section 5.4). Once an abstract workflow is generated, the integration agent is responsible for

generating the web services workflow. The details of service integration are presented in the

following section.

7.3. WSP Service Integration Process

Figure 7-2 shows the WSP service integration process. Given a higher-level workflow, the

OWL-S profile generator (see Section 5.4) is used to generate a semantic service request for each

task. The result is an abstract workflow. The semantic matchmaker (see Chapter 6) is then used

to discover services for all requests. The result is a list of candidate services for each request.

 110

After that an integration agent is used to select and chain services. The resulting workflow is a

web services workflow which consists of web services.

Request Generation

Abstract Workflow

Service Matching

Selecting one service
for each request

Web Services Workflow

Candidate Services
S1,1

S1,m

…

…

…

…

T1 T2 TnUser Application

Sn,m

……
S2,1 Sn,1

…

SnS1 S2

R2

Semantic Matchmaker

S2,m

Service Selection

Profile Generator

R1 Rn

Service ChainingChaining all selected
services

Integration
Agent

Figure 7-2. WSP integration process.

The integration agent contains two modules, the first is service selection module and the second

is service chaining module. Service selection is to select a service for each request using the

WSP selection criteria: service accuracy and data interoperability (see Section 7.4 for details).

Service chaining is to generate SOAP requests to all selected services and chain the service

operations (functionalities) according to the data dependencies (links) defined in the abstract

workflow. A service chaining algorithm is developed based on the WSP service selection criteria

(see Section 7.5).

 111

It should be noted that the mapping from an abstract workflow to a concrete web services

workflow may require a number of user interactions (e.g., providing additional input parameters

or modifying the abstract workflow). This is because adjacent services may have dissimilar

service parameters (i.e., input and output data schema) that prevent a web services workflow

from being fully automatic. The problem of user involvement in service chaining is not unique to

WSP, scientists using workflows of web services have experienced similar problems (Hull et al.,

2005; Kim et al., 2004; Cardoso and Sheth, 2003; Sirin et al., 2003), so it seems that this problem

is general rather than specific to WSP.

7.4. Service Selection Criteria

7.4.1. Literature Review

Given a workflow of service requests (abstract work), the integration problem is to discover,

select and chain services to generate an invokeable workflow of web services. Service selection

is a critical step wherein a specific service instance is chosen based on user requirements. These

requirements represent a wide range of quality expectations (e.g., accuracy, response time and

reputation) for the services.

Several service composition systems have been proposed to select services based on

nonfunctional attributes such as quality of services (QoS) and trust. For example, Maximilien

and Singh (2004) proposed a framework for service selection based on a QoS ontology. In their

 112

framework, both users and providers can specify QoS policies using notations in the QoS

ontology. A matching algorithm is used to match user policies to provider service policies and

thereby select services according to user QoS requirements. Using a QoS model, Zeng et al.

(2004) proposed two service selection approaches, namely local optimization and global

planning. In the local optimization approach, the system selects the web service which has the

maximum QoS score for a given task. In the global planning approach, all possible execution

paths are generated and the one which maximizes the user’s QoS requirements is selected.

In addition to QoS-based service selection, there are service selection methods based on the

interoperability at the WSDL interface level. For example, Spillner et al. (2006) proposed an

approach to select services based on data interoperability between consecutive services. This

approach checks for the compatibility of the output message of one service operation with the

input message of the other operation. For each check, there are three possible outcomes: (1) all-

or-nothing compatibility: the output message and the input message are either fully compatible

(i.e., identical) or not at all; this can be easily checked for simple data types and recursively

checked for complex data types; (2) subset compatibility: the input of the second operation is a

subset of the output of the first one, in this case some output values of the first operation will

have to discarded; or the output of the first operation is a subset of the input of the second

operation, in this case some additional values will have to be provided in order to invoke the

second operation; (3) arbitrary compatibility: there is a certain percentage of compatibility

between the output message and the input message, e.g., two complex XML schema may have

some compatible or overlapping parts. Similar to Spillner’s approach, Cardoso and Sheth (2003)

proposed a method that checks the structural properties of service inputs and outputs. When this

 113

is no perfect match between two services, the system will prompt the user to manually establish

the connections among web service interfaces, e.g., manually connect the outputs of one service

with inputs of the next service.

7.4.2. WSP Service Selection Criteria

WSP adopts two criteria to select services: service accuracy and data interoperability. Service

accuracy means that the most accurate service is selected for each request (task). The accuracy is

measured by the semantic similarity between the request and the service. For each request, the

WSP matchmaker returns a list of semantically matched services sorted based on their similarity

score to the request (see Section 6.5). Therefore, services with the highest score are selected.

These services represent the services that can best meet the data requirements for each task.

The second criterion is to consider data interoperability between adjacent services. More

specifically, the output schema of one service is compared with the input schema with the next

services. Figure 7-3 shows an example of selecting services based on data interoperability, where

the first request R1 is to find protein members for a given protein family, and the second request

R2 is to find dynamics data for protein members. Through semantic matching, the system

discovers a list of candidate services for each request. For R1, there is only one service called

“Pfam” that semantically matches R1. Therefore, “Pfam” is selected. For R2, there are two

services “oGNM” and “iGNM” that semantically match R2. As can be seen, “oGNM” and

“iGNM” have the same matching score and thereby the same capabilities to provide dynamics

data (i.e., slow mode). Since “oGNM” and “iGNM” have the same capabilities, the system will

 114

consider their interoperability with “Pfam”. By checking the WSDL interfaces of “oGNM” and

“iGNM”, the system selects “iGNM” because its input data schema (XSD:String) is the same as

the output schema of “Pfam”.

family Pfam structure oGNM

output

family

Requestinput

R1 dynamicsprotein R2

PDBID iGNM

PDBID

protein

Slow mode

Matching Score:

2 + 2 = 4

Matching Score:

2 + 2 = 4

Slow mode

XSD:String

WSDL1

XSD:String

<Input> <Output>

<Output><Input>

Complex type

Semantic Matching

Service Grounding

OWL-S

OWL-S

(abstract)

(abstract)

outputServiceinput

WSDL <Output> <Input> WSDL2(concrete)

WSDL3

Figure 7-3. An example showing the process of service selection

7.5. WSP Service Chaining Algorithm

Service chaining is a complex problem. Assuming there are N requests (tasks) and each request

has M candidate services, then there are NM possible solution paths (i.e., chain of services), see

 115

Figure 7-4. As discussed in Section 7.4.1, many algorithms have been proposed to select and

chain services. These algorithms generally fall into two categories: local optimization algorithms

and global optimization algorithms. The main feature for a local optimization algorithm is to

select a service for each task without considering the relationships between selected services.

The main feature of a global optimization algorithm is to select a solution path that maximizes

the optimization parameter (e.g., QoS or interoperability).

R3 RN
…R1

Abstract Workflow

Web Service Workflow

R2

S3

S11

S2

S7

S20

S18

S56

S501

S103

S80

1
:
M

S1

S77

Figure 7-4. An illustration of the service chaining problem

Based on the WSP service selection criteria (see Section 7.4.2), we designed a service chaining

algorithm that considers both semantics and data interoperability. This algorithm is a hybrid of

local optimization and global optimization, because service accuracy is used for local

optimization (vertical) and data interoperability is used for global optimization (horizontal).

 116

Figure 7-5 shows the pseudo code of the chaining algorithm. There are three major steps in the

main procedure “serviceIntegration”. The first step is to perform service discovery for each

request by traversing the abstract workflow G. After service discovery, each request has a list of

candidate services, which are matched services sorted based on their matching score. If there is

no candidate service for a request, the algorithm will prompt the user to modify the request. The

second step is to perform initial service selection based on the matching score of candidate

services. For each request, the service with the highest match score is selected. If there is more

than one service with the highest score, all such services are selected. The selected service(s) for

each request is stored in “semiList”. The third step is to perform final service selection by

choosing a service from the “semiList” for each request. The selection is based on the data

interoperability. That is a service is selected if its input schema is compatible with the output

schema of the previous selected service.

A time complexity analysis was performed for the algorithm (see Appendix A). The analysis

shows the time complexity is O(|V| + |E|), where |V| is the number of vertices (requests) in G,

and |E| is the number of edges.

 117

 procedure serviceIntegration(G, registration)

1. reqest0 = the root vertex in G
2. discovery(request0, registration)
3. initialSelection(request0)

4. finalSelection(request0)
5. return

//G is an abstract workflow
//G = <V, E>, where V is requests
//and E is request dependencies

//perform service discovery
//select services based on matching
//score
//further select services based on data
//interoperability

 procedure discovery(u, registration)

1. status[u] = “processed”
2. candidates[u] = match(u, registration)
3. for each neighbor v of u do
4. if status[v] != “processed” then
5. discovery(v, registration)
6. return

//depth-first traversal of G
//u is a service request

 procedure initialSelection(u)

1. status[u] = “processed”
2. if candidates[u] = null then
3. return
4. semiList[u] = top services in candidates[u]
5. for each neighbor v of u do
6. if status[v] != “processed” then
7. initialSelection(v)
8. return

//depth-first traversal of G
//u is a service request

//check if there are candidate services

//select services with highest score

 procedure finalSelection(u)

1. status[u] = “processed”
2. if u is root vertex in G then
3. service[u] = first service in semiList[u]
4. lastS = service[u]
5. for i = 1 to m do
6. S = semiList[u][i]
7. if S.inputSchema = lastS.outputSchema then
8. service[u] = S break
9. if service[u] = null then
10. service[u] = first service in semiList[u]
11. for each neighbor v of u do
12. if status[v] != “processed” then
13. lastS = service[u]
14. finalSelection(v)
15. return

//depth-first traversal of G
//u is a service request

//m is the number of services in
//semiList[u], m ranges from 1 to 5

Figure 7-5. Pseudo code for the WSP service chaining algorithm.

 118

8. WSP PROTOTYPE

8.1. Introduction

A WSP prototype was developed using the methodologies proposed in Chapters 3–7. This

chapter discusses the implementation issues related to protein web services, ontologies, semantic

service descriptions, and the WSP matchmaker.

8.2. Protein Feature Web Services

A protein feature web service contains operations that process protein features (see Chapter 4).

Once a protein feature web service is appropriately modeled, it will be implemented as a reusable

component wrapped with standard interfaces for invocation and discovery.

 119

Web Application
Server

Query
Functionality

WSDL

Web service
deployment
descriptor

Axis Admin
Client

Axis Server Invocation Client
(SOAP Clinet)

Axis Platform
Java code

Java2WSDL
Converter

Experimental DataModel/Algorithm

New Protein
Feature

Boot strapping

HTTP User
Interface

optional

Legend New
Component

Existing
Component

Web application

Figure 8-1. Life cycle to develop biological Web services using AXIS platform

Web services can be implemented in many different platforms (e.g., Microsoft .NET, IBM

WebSphere/J2EE) according to the web services standards. In WSP, the Apache Axis

(http://ws.apache.org/axis/java/) is adopted as the development platform because it has a SOAP

engine for processing service requests and toolkits for generating WSDL interfaces. Figure 8-1

shows the life cycle of Web services development. The boxes in the figure represent activities

that the developer needs to perform. The parallelograms in the figure represent tools provided by

Axis. The document symbols represent code or file that the developer needs to generate, possibly

with the assistance of tools.

 120

http://ws.apache.org/axis/java/

For cross-platform interoperability, we implement Web services using Java. The Java code is

converted into WSDL automatically with the Java2WSDL Converter. A Web Service

Deployment Descriptor (WSDD) contains information to be deployed into Axis, i.e., service

name, Java class name, and allowed methods. Once a WSDD file is generated, it is sent to the

Axis Server by the Axis AdminClient in order to actually deploy the described service. After

that, a binding agent based on Axis Client is used to invoke the service through the WSDL

description.

8.2.1. iGNM Protein Dynamics Web Service

The iGNM service operations are implemented in Java. The implementations are then published

to the Apache Axis engine using a publish client and a deployment file. The deployment file

explicitly lists all the allowed operations (methods) and their Java class names:

 <deployment name="test" xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="ignm-mode-service" provider="java:RPC">
 <parameter name="className" value="ignm.ignmModeService"/>
 <parameter name="allowedMethods" value="extract test2"/>
 <parameter name="allowedRoles" value="user1,user2"/>
 <parameter name="wsdlServicePort" value="GetQuote"/>
 <requestFlow name="checks">
 <handler type="java:org.apache.axis.handlers.SimpleAuthenticationHandler"/>
 <handler type="java:org.apache.axis.handlers.SimpleAuthorizationHandler"/>
 </requestFlow>
 </service>
 </deployment>

Once a service and its operations are published, Apache Axis automatically generates a WSDL

programmatic interface based on the definitions of iGNM service operations. Figure 8-2 shows a

portion of the iGNM service’s WSDL interface, where the operation name is called “extract”, the

input message is called “extractRequest” and the output message is called “extractResponse”.

 121

The data schemas for both input message and output message are explicitly defined. For

example, the input data schema consists of two strings and one integer, and the output data

schema consists of a double array.

Figure 8-2. Fragment of iGNM web service’s WSDL interface

A SOAP client is used to invoke the iGNM web service. The client first reads the definition of

the selected operation and its input and output schema. Then it passes in the input values and

makes binds to the iGNM service to obtain the output values. For example, to obtain the 1st slow

mode for the PDB structure 101m, the following service binding command is used:

java ignm.ignmClient -lhttp://gis35.exp.sis.pitt.edu:8080/axis/services/ignm-mode-service -uuser1

-wpass1 101m slowmode 1

 122

where the SOAP client is called “ignm.ignmClient”, the iGNM service is called “ignm-

modeshape-service”, and the default account and password are called “user1” and “pass1”

respectively. This command returns an array of residue fluctuations, where each fluctuation is a

double value.

8.2.2. N-gram Conservation Profile Web Service

The n-gram conservation operations are implemented in Java. The implementations are then

published to the Apache Axis engine using a publish client and deployment file. The deployment

file lists the allowed operations (methods) and their Java class names:

 <deployment name="test" xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
 <service name="ngram-profile-service" provider="java:RPC">
 <parameter name="className" value="ngram.ngramService"/>
 <parameter name="allowedMethods" value="extract"/>
 <parameter name="allowedRoles" value="user1,user2"/>
 <parameter name="wsdlServicePort" value="GetNgram"/>
 <requestFlow name="checks">
 <handler type="java:org.apache.axis.handlers.SimpleAuthenticationHandler"/>
 <handler type="java:org.apache.axis.handlers.SimpleAuthorizationHandler"/>
 </requestFlow>
 </service>
 </deployment>

Once n-gram service is published, Apache Axis automatically generates a WSDL interface based

on its definitions. Figure 8-3 shows a portion of the n-gram conservation service’s WSDL.

 123

Figure 8-3. N-gram conservation service’s WSDL interface

A SOAP client is used to invoke the n-gram conservation service. For example, to obtain the

PDB structure 101m’s chain “0”, the following service binding command is used:

java ngram.ngramClient -lhttp://gis35.exp.sis.pitt.edu:8080/axis/services/ngram-profile-service -

uuser1 -wpass1 101m 0

where the SOAP client is called “ngram.ngramClient”, the service is called “ngram-profile-

service”, and the default account and password are called “user1” and “pass1” respectively. This

operation call returns an array of conservation percentages for residues in chain “0”.

 124

8.3. Semantic Descriptions of Services

8.3.1. Implementation of the EPO Ontology

EPO (see Section 5.3.2) is implemented in OWL using the Protégé OWL Editor (Protégé, 2002),

see Figure 8-4. The current implementation of EPO contains 122 concepts, including 92 PO

concepts and 30 additional concepts. Figure 8-5 shows a fragment of EPO OWL ontology, where

each class element represents a concept, and the “subClassOf” attribute provides the hierarchy

relationship between concepts. For example, “Protein” is a subclass of

“ExtendedProteinOntologyConcept”, and “Dynamics” is a subclass of “ThreeD_Parameters”.

Figure 8-4. Development of EPO in Protégé

 125

 <owl:Class rdf:about="#Protein">
 <rdfs:subClassOf rdf:resource="#ExtendedProteinOntologyConcept"/>
 </owl:Class>
 <owl:Class rdf:about="#Dynamics">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#ThreeD_Parameters"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="PDB_ID">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#Structure"/>
 </rdfs:subClassOf>
 </owl:Class>
 <owl:Class rdf:ID="PhysiologicalFunctions">
 <rdfs:subClassOf>
 <owl:Class rdf:about="#BiologicalFunction"/>
 </rdfs:subClassOf>
 </owl:Class>

Figure 8-5. Fragment of the EPO OWL ontology

8.3.2. Generating OWL-S Service Descriptions

The OWL-S profile generator (see Section 5.4) is implemented in Java. It incorporates EPO

OWL ontology and OWL-S profile ontology to generate a wide range of semantic descriptions of

web services on complex protein data related issues.

Figure 8-6 shows the sample OWL-S service descriptions for iGNM, ProMode, and MolMovDB,

using the EPO ontology. The description of iGNM specifies the input as “PDB ID”, the output as

“mode shape” and the constraint as “residues”, which means that iGNM provides mode shape at

the residue level for a given PDB ID. The description of ProMode specifies the input as “PDB

ID”, the output as “mode shape” and the constraint as “atoms”, which means that ProMode

provides mode shape at the atom level for a PDB structure. The description of MolMovDB

specifies the input as “PDB ID” and the output as “Trajectory”, which means that MolMovDB

provides protein motion trajectories for PDB structures.

 126

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#PDB_ID
 </parameterType>
</Input>
<Output rdf:ID=”mode_shape”>
 <parameterType>http://ontologyURL/EPO.owl#Mode_Shape
 </parameterType>
</Output>
<Constraint rdf:ID=”Residues”>
 <parameterType>http://ontologyURL/EPO.owl#Residues
 </parameterType>
</Constraint>
<profile rdf:ID="dynamics service">
 <serviceName>iGNM_Mode_Shape</serviceName>
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#mode_shape"/>
 <hasConstraint rdf:resource=”#Residues”/>
</profile>

(a)

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#PDB_ID
 </parameterType>
</Input>
<Output rdf:ID=”mode_shape”>
 <parameterType>http://ontologyURL/EPO.owl#Mode_Shape
 </parameterType>
</Output>
<Constraint rdf:ID=”Atoms”>
 <parameterType>http://ontologyURL/EPO.owl#atoms
 </parameterType>
</Constraint>
<profile rdf:ID="dynamics service">
 <serviceName>ProMode</serviceName>
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#mode_shape"/>
 <hasConstraint rdf:resource=”#Atoms”/>
</profile>

(b)

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#PDB_ID
 </parameterType>
</Input>
<Output rdf:ID=”trajectory”>
 <parameterType>http://ontologyURL/EPO.owl#Trajectory
 </parameterType>
</Output>
<profile rdf:ID="dynamics service">
 <serviceName>MolMovDB</serviceName>
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#trajectory"/>
</profile>

(c)

Figure 8-6. Sample OWL-S service descriptions for services that provide protein dynamics data. (a) iGNM mode

shape service description; (b) sample ProMode service description; (c) sample MolMovDB service description.

Similarly, users looking for protein dynamics data may have different requirements. In this case,

OWL-S semantic descriptions of expected services can be generated to precisely capture the

user’s data requirements. For example, if a user is looking for general protein dynamics data,

 127

he/she can submit a request which specifies the input as “protein” and the output as “dynamics”,

see Figure 8-7(a). However, if a user is looking for specific protein dynamics data, e.g., the mode

shape for a PDB structure at the residue level, he/she can submit a request which specifies the

input as “PDB ID”, the output as “mode shape” and the constraint as “residues”, see Figure 8-

7(b).

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#Protein
 </parameterType>
</Input>
<Output rdf:ID=”Dynamics”>
 <parameterType>http://ontologyURL/EPO.owl#Dynamics
 </parameterType>
</Output>
<profile rdf:ID="dynamics service">
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#Dynamics"/>
</profile>

(a)

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#PDB_ID
 </parameterType>
</Input>
<Output rdf:ID=”mode_shape”>
 <parameterType>http://ontologyURL/EPO.owl#Mode_Shape
 </parameterType>
</Output>
<Constraint rdf:ID=”Residue”>
 <parameterType>http://ontologyURL/EPO.owl#Residues
 </parameterType>
</Constraint>
<profile rdf:ID=”dynamics service">
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#mode_shape"/>
 <hasConstraint rdf:resource=”#Residue”/>
</profile>

 (b)

Figure 8-7. Two sample OWL-S service requests that look for protein dynamics data.

Figure 8-8 shows a portion of a sample service description used to describe the N-gram

Conservation Profile Service, which takes a PDB structure as input and produces a conservation

profile as output. The description contains information about the input, output and constraint.

More specifically, the input refers to the EPO concept of “PDB ID”, the output refers to the EPO

concept of “conservation”, and the constraint refers to the EPO concept of “Ngram”.

 128

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#PDB_ID
 </parameterType>
</Input>
<Output rdf:ID=”conservation”>
 <parameterType>http://ontologyURL/EPO.owl#Conservation
 </parameterType>
</Output>
<constraint rdf:ID=”method”>
 <parameterType>http://ontologyURL/EPO.owl#Ngram
 </parameterType>
</constraint>
<profile rdf:ID="conservation service">
 <serviceName>ProMode</serviceName>
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#conservation"/>
 <hasConstraint rdf:resource=”#method”/>
</profile>

Figure 8-8. Sample OWL-S description of n-gram conservation service

8.4. WSP Matchmaker

The Apache JUDDI (http://ws.apache.org/juddi/) is selected as the development platform for the

WSP matchmaker (see Chapter 6). The advantage of JUDDI is that it is an open source Java

implementation of the UDDI specification for Web Services. The WSP publication algorithm

(see Section 6.4) and the WSP service matching algorithm (see Section 6.5) are integrated with

JUDDI for semantic publication and discovery. Also, Jena toolkit (http://www.hpl.hp.com/sem

web/jena.htm) is used to parse OWL ontologies for model representation and service matching.

 129

http://ws.apache.org/juddi/

9. WSP EVALUATION

9.1. Introduction

A number of experiments were performed to evaluate the performance of the WSP matchmaker.

The parameters tested include: (1) solution space, (2) accuracy and (3) time efficiency. The

results show that the matchmaker can efficiently match services from registered services. Also, a

composite service, which integrates protein dynamics and conservation, is developed to

demonstrate the effectiveness of the integration agent.

9.2. Evaluation of the WSP Matchmaker

9.2.1. Experimental Setups

Two hundred OWL-S service descriptions were generated using the OWL-S profile generator

(see Section 5.4 and Section 8.3). These service descriptions reflect a wide range of possible

protein web services, from protein dynamics services to protein conservation services and to

functional domains services (see Appendix B).

Twenty OWL-S descriptions were randomly selected from the 200 OWL-S files to represent

possible service requests. The 20 requests include 10 requests without constraints (2 concepts:

 130

input and output) and 10 with constraints (3 concepts: input, output and constraint), see Table 9-

1.

Table 9-1. Sample WSP service requests

Request Index Service Input Service Output Constraints
1 Protein Dynamics
2 Protein Conservation
3 Protein Catalytic Sites
4 Protein Active Binding Sites
5 Structure Hydrophobicity
6 Structure Ngram Patterns
7 Structure Residue Sequence
8 PDB_ID Mobility
9 PDB_ID 3D Parameters

10 PDB_ID Physiological Functions
11 Protein Dynamics Experimental
12 Protein Dynamics NMA
13 Protein Conservation Multiple Alignment
14 Protein Conservation Ngram
15 Structure Dynamics Computational
16 Structure Catalytic Sites Experimental
17 Structure Catalytic Sites Computational
18 PDB_ID Hydrophobicity Residues
19 PDB_ID Hydrophobicity Atoms
20 Chains Functional Domains Computational

Figure 9-1 shows the process to perform service matching. The 200 services are randomly

divided into 20 sets, each containing 10 services. The 20 sets are published to the WSP

matchmaker sequentially. After a set is published, service matching is performed using the 20

requests (see Table 9-1). The matching results (e.g., matched services for each request) are

recorded for further analysis.

 131

WSP
Matchmaker

Request 1–10

no constraints

Request 10–20

constraints

WSP
Matchmaker

Request 1–10

Request 10–20

200 WSP
Services

publish
match

10 services

…
10 services

1st set

last set

Repeat

Figure 9-1. Illustration of the matchmaker evaluation process

Currently, EPO and PO have limited number of concepts, which in turn leads to limited number

of semantic service descriptions about protein web services. As the ontology development in the

protein domain continues to grow, the size of EPO/PO is expected to grow. To test the matching

algorithm’s scalability with respect to the ontology size, a 1000-concept random ontology was

generated. To test the algorithm’s scalability with respect to the number of registered services,

1000 service descriptions (500 with constraints and 500 without constraints) were generated

using the 1000-concept random ontology.

To generate the random ontologies, concept names were created in the form of “conceptX”

where X varies from 1 to N (e.g., N = 1000 for the 1000-concept ontology). The concept names

are then randomly linked through a subclass relation. The services and requests are generated by

randomly selecting concepts for inputs, outputs and constraints from the randomly generated

ontology.

 132

The experimental process for the 1000 random service descriptions is the same as that for the

200 WSP service descriptions. 20 service requests (10 with constraints and 10 without

constraints) were randomly selected and used to match against the 1000 random services.

9.2.2. Analysis of Solution Space

For a give request, the matched services constitute its solution space. The solution space is

dependent on the available services registered in the matchmaker. Figure 9-2 shows the number

of matched services for the 20 requests (see Table 9-1) when there are only 50 WSP services. As

can be seen, the number of matched services varies from request to request. For example,

“Request 1” has 25 matched services in its solution space while “Request 18” does not have

matched services and thereby a null solution space.

Also, it can be seen that the solution space for requests without constraints (see Figure 9-2(a)) is

in general larger than that for requests with constraints (see Figure 9-2(b)). This can be explained

by the number of concepts that need to be matched. For requests without constraints, there are

only two concepts (input and output) that need to be matched, while for requests with

constraints, there are three concepts (input, output and constraint) that need to be matched.

Therefore, requests with constraints require stricter matching and thereby a smaller solution

space (see Section 6.6).

 133

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

No constraint

N
um

be
r o

f M
at

ch
ed

 S
er

vi
ce

s

Request Index

Match against 50 services

(a)

0

5

10

15

20

25

30

11 12 13 14 15 16 17 18 19 20

Constraint

N
um

be
r o

f M
at

ch
ed

 S
er

vi
ce

s

Request Index

Match against 50 services

(b)

Figure 9-2. Number of matched services when there are 50 WSP services: (a) using 10 requests without constraints;

(b) using 10 requests with constraints.

 134

Figure 9-3 shows the number of matched services for 20 requests when all the 200 WSP services

are registered in the matchmaker. As it is obvious (compared with the 50 services situation

shown in Figure 9-2), the solution space for each request in the case of 200 services increases.

This is because there are more services for matching, i.e., with a larger search space, there is a

larger solution space.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10

No Constraint

Request Index

Match against 200 services

N
um

be
r o

f M
at

ch
ed

 S
er

vi
ce

s

(a)

 135

0

10

20

30

40

50

60

70

80

11 12 13 14 15 16 17 18 19 20

Constraint

Request Index

Match against 200 services

N
um

be
r o

f M
at

ch
ed

 S
er

vi
ce

s

(b)

Figure 9-3. Number of matched services when there are 200 WSP services: (a) using 10 requests without

constraints; (b) using 10 requests with constraints.

Figure 9-4 illustrates the increase of solution space when the search space (registered services)

increases from 10 to 200. It can be seen that there is a linear increase of solution space for both

types of requests (without or with constraints). When the search space is creased 300% (from 50

to 200), there is a 1000% increase (from 2.7 to 30.3) in solution space for the 10 requests without

constraints, and there is a 255% increase (from 3.3 to 11.7) for the 10 requests with constraints.

 136

0

5

10

15

20

25

30

35

0 50 100 150 200

No Constraint Request
Constraint Request

y = 0.15808x R= 0.99856

y = 0.059827x R= 0.99933

Av
er

ag
e

nu
m

be
r o

f m
at

ch
ed

 s
er

vi
ce

s

Number of registered services

Figure 9-4. Average number of matched services as a function of search space.

The services in a solution space have differing match scores and thereby differing capabilities to

meet the requirements of the request. There is a distribution of match scores associated with a

solution space. Figure 9-5 shows four examples of score distributions, where (a) is the score

distribution for “Request 1” with 50 services, (b) is the score distribution for “Request 1” with

200 services, (c) is the score distribution for “Request 15” with 50 services, and (d) is the score

distribution for “Request 15” with 200 services. These distributions show that there are only a

few services with the highest match score.

 137

0

5

10

15

20

0 1 2 3 4 5 6

0 0 0 0

1

17

7C
ou

nt

Match Score

Request 1 with 50 Services

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6

C
ou

nt

Match Score

Request 1 with 200 Services

 (a) (b)

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8 9

C
ou

nt

Match Score

Request 15 with 50 Services

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9

C
ou

nt

Match Score

Request 15 with 200 Services

 (c) (d)

Figure 9-5. Sample match score distributions.

Figure 9-6 shows the average match score for the solution space (each for a request) when there

are 200 services. It can be seen that the average score for a solution space varies from request to

request. Figure 9-7 shows the average match score as a function of the search space (registered

services). It can be seen that the average match score for both types of requests (without or with

constraints) does not scale with the search space.

 138

0

1

2

3

4

5

6

1 2 3 4 5 6 7 8 9 10

No constraint

Request Index

Av
er

ag
e

M
at

ch
 S

co
re

Match against 200 services

(a)

0

2

4

6

8

10

1 2 3 4 5 6 7 8 9 10

Constraint

Request Index

Av
er

ag
e

M
at

ch
 S

co
re

Match against 200 services

(b)

Figure 9-6. Average match score when there are 200 WSP services: (a) using 10 requests without constraints; (b)

using the 10 requests with constraints.

 139

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200

No Constraint Request
Constraint Request

Av
er

ag
e

m
at

ch
 s

co
re

Number of registered services

Figure 9-7. Average match score as a function of search space.

9.2.3. Analysis of Matching Accuracy

In this research, accuracy acc is a measure of how a service request semantically matches a

service. It is defined as the match score x divided by the largest possible match score max, see

Equation 9-1. For request without constraints, the largest possible match score is 6 (3 for input

and 3 for output). For requests with constraints, the largest possible match score is 9 (3 for input,

3 for output and 3 for constraint).

)100(≤≤≤≤= accmax,x
max

xacc

 140

⎪
⎪
⎩

⎪
⎪
⎨

⎧

=

intconstrax

intconstranox

9

6 9-1

The accuracy of each matched service was calculated using the math score x. The average

accuracy for each request’s solution space is also calculated. For requests without constraints, the

average accuracy is within 40% ~ 85%, see Figure 9-8(a). For requests with constraints, the

average accuracy falls within 60% ~ 95%, see Figure 9-8(b).

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Request Index

Match against 200 services

(a)

 141

0

20

40

60

80

100

11 12 13 14 15 16 17 18 19 20

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Request Index

Match against 200 services

(b)

Figure 9-8. Matching accuracy with 200 services: (a) using 10 requests without constraints; (b) using 10 requests

with constraints.

Figure 9-9 shows the average accuracy as a function of the search space. It can be seen that the

average accuracy for both types of requests (without or with constraints) does not scale with the

search space. Also, the average accuracy for requests with constraints appears to be higher than

the accuracy for requests without constraints. This suggests that formulating requests with

constraints could improve accuracy.

 142

0

20

40

60

80

100

0 50 100 150 200

No Constraint Request
Constraint Request

Av
er

ag
e

A
cc

ur
ac

y
(%

)

Number of registered services

Figure 9-9. Average accuracy as a function of search space.

9.2.4. Analysis of Service Matching Time

Figure 9-10(a) shows the average matching time for the 10 WSP requests without constraints.

The value varies from 360ms to 420ms. Figure 9-10(b) shows the average matching time for the

10 WSP requests with constraints. The value varies from 350ms to 380ms. Figure 9-10(c) shows

the average matching time using the 1000-cocnetp random dataset. The value varies from 465ms

to 530ms. These time ranges show that the matchmaker can discover services within seconds.

The data also shows that the matching time increases as the number of registered services

increases, which is consistent with the matching time complexity, see Section 6.5.1. In terms of

trend, the data shows that the percentage of time increase is small as the number of registered

services increases. Therefore, the overhead of service matching is small.

 143

0

100

200

300

400

500

0 50 100 150 200

y = 354.54 + 0.31077x R= 0.9928

Av
er

ag
e

m
at

ch
in

g
tim

e
(m

s)

Number of registered services

(a)

0

100

200

300

400

0 50 100 150 200

y = 353.12 + 0.13763x R= 0.9029

Av
er

ag
e

m
at

ch
in

g
tim

e
(m

s)

Number of registered services

(b)

 144

0

100

200

300

400

500

600

200 300 400 500 600 700 800 900 1000

y = 439.53 + 0.087833x R= 0.98036

Av
er

ag
e

m
at

ch
in

g
tim

e
(m

s)

Number of registered services

(c)

Figure 9-10. (a) Service matching time for 10 service requests without constraint; (b) service matching time for 10

requests with constraint; (c) service matching time for random requests.

Figure 9-11 correlates the average matching time with the average number of matched services

(size of solution space). It can be seen that the number of matched services has a strong

correlation with the average matching time. This is consistent with the matching process and the

time complexity discussed in Section 6.5.1.

 145

360

380

400

420

440

0

10

20

30

40

50

0 50 100 150 200

Matching time Matched services

y = 354.54 + 0.31077x R= 0.9928
y = 1.6126 + 0.14713x R= 0.99856

Av
er

ag
e

m
at

ch
in

g
tim

e
(m

s) Average m
atched services

Number of registered services

(a)

350

360

370

380

390

0

5

10

15

20

0 50 100 150 200

Matching time Matched services

y = 353.12 + 0.13763x R= 0.9029
y = 0.31776 + 0.057669x R= 0.99933

Av
er

ag
e

m
at

ch
in

g
tim

e
(m

s) Average m
atched services

Number of registered services

(b)

 146

440

460

480

500

520

540

560

5

10

15

20

200 300 400 500 600 700 800 900 1000

Matching time Matched services

y = 439.53 + 0.087833x R= 0.98036

y = -0.41667 + 0.014883x R= 0.97509
M

at
ch

in
g

tim
e

Average M
atched services

Number of registered services

(c)

Figure 9-11. Correlation between matching time and solution space: (a) using 10 service requests without constraint;

(b) using 10 requests with constraint; (c) using random requests.

9.3. Evaluation of the WSP Integration Agent

In this section, we present a WSP scenario describing the integration of protein dynamics data

with sequence data. Figure 9-12 shows the higher-level workflow. The initial condition is a

protein name or ID. The first task is to obtain the protein’s dynamics information. The second

task is to obtain the protein’s conservation profile. The third task is to correlate the dynamics

information with the conservation profile.

 147

Initial condition
Protein name or ID

(e.g., 1ca2)

Task 1

Obtain protein
dynamics information

Task 2

Obtain protein
conservation profile

Task 3

Correlate dynamics with
conservation

Figure 9-12. A sample workflow for integrating dynamics data with conservation data

Figure 9-13 shows the process of integrating dynamics data with sequence data, using the

workflow shown in Figure 9-12. First, the integration agent takes the workflow and generates

semantic service requests for each task (Step 1 in Figure 9-13). For Task 1, the request is to find

a service which provides specific protein dynamics data (e.g., the mode shape at residue level)

for a given protein (e.g., PDB ID). For Task 2, the request is to find a service which provides

conservation profile (e.g., n-gram based conservation) for the protein. For Task 3, the request is

to find a service which correlates two profiles at each residue position.

Figure 9-13. Integrating dynamics data with sequence data

 148

Figure 9-14 shows a portion of an OWL-S request that is used to describe the task. The input

refers to the EPO concept of “PDB ID”, the output refers to the EPO concept of “Mode Shape”

and the constraint refers to the EPO concept of “Residues”.

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#PDB_ID
 </parameterType>
</Input>
<Output rdf:ID=”mode_shape”>
 <parameterType>http://ontologyURL/EPO.owl#Mode_Shape
 </parameterType>
</Output>
<Constraint rdf:ID=”Residues”>
 <parameterType>http://ontologyURL/EPO.owl#Residues
 </parameterType>
</Constraint>
<profile rdf:ID="dynamics service">
 <serviceName>iGNM_Mode_Shape</serviceName>
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#mode_shape"/>
 <hasConstraint rdf:resource=”#Residues”/>
</profile>

Figure 9-14. Sample OWL-S request for protein dynamics (mode shapes)

Figure 9-15 shows a portion of an OWL-S request that is used to describe Task 2. The input

refers to the EPO concept of “PDB ID”, and the output refers to the EPO concept of

“conservation”.

<Input rdf:ID=”Protein”>
 <parameterType>http://ontologyURL/EPO.owl#PDB_ID
 </parameterType>
</Input>
<Output rdf:ID=”conservation”>
 <parameterType>http://ontologyURL/EPO.owl#Conservation
 </parameterType>
</Output>
<profile rdf:ID="conservation service">
 <serviceName>ProMode</serviceName>
 <hasInput rdf:resource="#Protein"/>
 <hasOutput rdf:resource="#conservation"/>
</profile>

Figure 9-15. Sample OWL-S request for protein conservation

 149

The matchmaker is used to perform semantic matching between each service request and

registered service descriptions (Step 2 in Figure 9-13), and returns a set of matched services for

each request (Step 3 in Figure 9-13). After obtaining all matched services (candidate services)

from the matchmaker, the chaining algorithm is applied to select and chain services. For

example, the chaining algorithm selects iGNM Mode Shape Service for Task 1 based on the high

match score between the iGNM service description and the service request (see Section 6.6).

Similarly, the algorithm selects the N-gram Conservation Profile Service for Task 2 and the

feature overlay service (see Section 4.7) for Task 3. The integration agent then invokes the

selected services as a group by sending SOAP requests (Steps 4-7 in Figure 9-13). The output of

the iGNM Mode Shape Service (e.g., 1st slow mode) and the output of the N-gram Conservation

Profile Service are used as the input to the feature overlay service (Step 8 in Figure 9-13). The

output (a correlation map) of the feature overlay service constitutes the final result (Step 9 in

Figure 9-13).

Figure 9-16 shows a sample correlation map between dynamics and conservation for carbonic

anhydrase (PDB ID: 1ca2). It can be seen that conserved regions tend to have small motions

(e.g., position 100) while non-conserved regions tend to have large motions (e.g., position 20).

This kind of statistical relationships could potentially lead to prediction models that predict

dynamics directly from sequence data instead of 3D structure data.

 150

Figure 9-16. Correlation between protein dynamics and conservation, using the carbonic anhydrase (PDB ID: 1ca2)

as an example.

 151

10. CONCLUSION AND FUTURE RESEARCH

10.1. Summary of the Research

Understanding the function of every protein is one of the major objectives of bioinformatics.

Currently, there is a lot of information (e.g., sequence, structure and dynamics) being produced

by experiments and predictions that are associated with protein function. Integrating these

diverse data about protein sequence, structure, dynamics and other protein features allows further

exploration and establishment of the relationships between protein sequence, structure, dynamics

and function, and thereby controlling the function of target proteins.

Currently, many protein data resources are accessible to researchers through Web application

interfaces, e.g., through a HTTP form and a corresponding Java servlet. To integrate data

through Web application interfaces (current approach), users (researchers) need to perform such

tedious tasks as screen scraping or writing scripts to extract data while ignoring explanatory text

and graphics associated with the HTML code. Since different web applications have different

HTML code, this approach is labor intensive and not scalable.

Web services, on the other hand, offer an environment for flexile integration of various data

resources, including databases, web servers and software tools. Web services provide standard

programmatic interfaces (e.g., WSDL interface) for user applications to obtain explicit results

without tedious screen scraping tasks. Also, web services provide protocols and tools that

 152

facilitate the discovery and integration of data resources. However, current web service standards

(e.g., WSDL and UDDI) do not support operations at semantic level, leaving the promise of

automatic discovery and integration of web services incomplete. For example, service providers

and requestors may have distinctive perspectives and knowledge about one service resulting in

differing descriptions for the service. In this case, a UDDI registry will be unable to locate the

service because it can only perform syntactic, and not semantic, matching between the service

requested and the services registered.

In this research, a semantics-based web services infrastructure, called WSP, for semantic and

user-oriented integration of protein data resources, is proposed. In WSP, protein data resources

are modeled as reusable web services that provide protein features. In addition to the WSDL

programmatic interface, each service has a semantic description which precisely describes the

service’s capabilities in terms of inputs, outputs and constraints. The semantic descriptions of

web services are generated using the OWL-S upper service ontology and the EPO domain

ontology. These semantic descriptions are then published in the WSP matchmaker for service

discovery and integration. Rather than relying on syntactic matching (e.g., UDDI service

discovery), the matchmaker discovers services based on their similarity to the service request.

Therefore, users can locate services that semantically match their data requirements even if the

services and the service requested are syntactically distinctive. In addition to service discovery,

WSP supports a workflow-based approach for service integration. In this approach, an

integration problem is represented as an abstract workflow of service requests, where each

request is expected to be implemented by a web service. An integration agent is used to select

and chain services, based on the criteria of service accuracy and data interoperability. The agent

 153

finally generates an invokeable web services workflow, which automatically integrates the

results from individual services.

A number of experiments were conducted to evaluate the performance of the WSP matchmaker.

The parameters tested included solution space, accuracy and time efficiency. The results show

that the size of solution space (number of matched services) is dependent on the size of the

search space (number of registered services); the larger the search space, the larger the solution

space. The solution space is larger for (service) requests without constraints (i.e., 2 concepts:

input and output) than for (service) requests with constraints (i.e., 3 concepts: input, output and

constraint). However, the average match score for both types of requests, without or with

constraints, does not scale with the search space. This is also true for the accuracy of the matched

services; the matching accuracy does not scale with the search space. The matchmaker can

efficiently discover semantically matched services, and the matching time increases as the search

space becomes larger. However, the percentage of time increase is relatively small which means

the overheard of service matching is small.

A composite service, which integrates protein dynamics and conservation, is experimented using

the WSP integration agent (i.e., service chaining algorithm). The experiment shows that the

agent can select the most desirable (accurate) services and integrate the results (i.e., protein

features) from selected services.

 154

The contributions of this research are:

• An infrastructure for representing and correlating protein features at a higher semantic level.

By exploiting the features of semantic-based web services, this infrastructure allows

researchers to conveniently discover and assemble various types of protein data for their

studies, e.g., determining the function or other features of proteins.

• Two biological web services that demonstrate the process of developing and using biological

web services. The iGNM web service provides protein dynamics data for more than 20,000

protein structures. The N-gram web service provides conservation profiles for more than

50,000 protein sequences.

• A semantic matchmaker service that allows service providers to publish the description of

their services and allows users to submit requests and obtain semantically matched services.

The matchmaker includes an efficient semantic service matching algorithm.

• A service chaining algorithm that considers both service accuracy and data interoperability

between services.

10.2. Conclusions

This research explores a semantic web services approach for protein data integration. Several

conclusions can be drawn:

• It is feasible to integrate protein data resources (e.g., online databases and web servers)

through web services. By modeling protein features (e.g., dynamics and conservation) as web

 155

services, WSP allows users to conveniently share and retrieve protein data for many different

applications.

• Using the OWL-S upper service ontology and the EPO domain ontology, it is feasible to

generate a wide range of semantic descriptions of web services on complex protein data

related issues. The semantic descriptions of protein web services precisely describe service

capabilities (i.e., what a service can do) and user requests (i.e., what a user wants) in

machine-understandable format so that algorithms can be designed to automatically discover

and integrate semantically matched services.

• It is feasible to apply semantics-based service discovery mechanism for protein data resource

integration. Semantic matching of web services’ capabilities is an effective way to discover

semantically matched services from users’ own perspectives. Semantic matching is more

robust than syntactic matching (e.g., UDDI service discovery), because the most accurate

services can be discovered from all registered services even if the services and the service

requested are syntactically distinctive.

• Workflow-based web services integration is an effective way to integrate protein data

resources. An abstract workflow allows users to precisely define individual service requests

and their data dependencies. Given an abstract workflow, service chaining algorithms can be

designed to discover, select and chain services. Since web services are developed by different

organizations and have heterogeneous interfaces, it is important to consider both semantics

and data interoperability for service selection and integration.

• The proposed semantic web services approach (WSP) provides a more convenient

environment for protein data resources integration than the current approach (i.e., web

applications based integration): (1) With WSP, researchers only need to specify their service

 156

requirements (i.e., desired output) without having to manually look for data resources. Using

the web application approach, users have to write ad hoc scripts for different data resources.

However, there is no duplication of effort with the WSP approach because the semantic

matchmaker and the chaining algorithm can be applied to many different data resources; (2)

The web application approach is fragile for a minor change in the HTML code of a given

web application may cause failure. The WSP approach is less fragile to web site changes

because data resources/services can be discovered and integrated dynamically.

10.3. Future work

Using semantic web services for bioinformatics is an emerging area for research. Many problems

in this field remain to be studied. In light of this research, some topics that need further

investigation are:

• Granularity of web services. In this research, protein features are identified as the atomic

elements that can be shared by many protein-related problems. However, other

bioinformatics topics (e.g., microarray data analysis) may require different methods to define

the atomic elements. A valid design of granularity needs further investigation.

• Ontology development. In this research, the EPO ontology is developed by extending the

Protein Ontology. To allow a wider range of applications, it is necessary to further evaluate

the construct of the EPO ontology. Also, other proteomics ontologies need to be investigated

and incorporated for richer descriptions of complex protein data related issues.

 157

• Semantic matching. The semantic matching of web services’ capabilities is dependent on the

comparison of concepts in domain ontology. In this research, four relationships between

concepts are adopted: “exact match”, “plug-in match”, “subsumption match” and “no

match”. However, other scoring methods could be studied and compared with the current

scoring method.

• Service chaining. Service selection and integration is a complex problem. In this research, a

workflow-based chaining algorithm is developed based on the service accuracy (semantics)

and data interoperability. However, more complex algorithms can be designed to support

various user requirements. For example, it is useful to develop service selection algorithms

based on a combination of semantics, data interoperability and QoS parameters. In addition

to workflow based approaches, it is useful to explore AI planning based approaches for

service integration.

 158

APPENDIX A

Time Complexity Analysis

WSP Publication Algorithm

Cost

C1
C2
C3
C4
C5
C6

procedure register(service, G)

1. registration = empty hash table
2. parse service into concepts c[m]
3. for i = 1 to m do
4. u0 = the root vertex in G
5. DFS(u0, c[i])
6. return registration

Times

1
1
m+1
m
m
1

//service is a service description
//G is an ontology; G = <V, E>

//m = number of concepts

//depth-first traversal of G

C7
C8
C9
C10
C11
C12

procedure DFS(u, c)
1. degreeOfMatch(u, c)
2. status[u] = “processed”
3. for each neighbor v of u do
4. if status[v] != “processed” then
5. DFS(v, c)
6. return

|V|
|V|
|E|+|V|
|E|
|V|
|V|

//u, c are concepts

C13
C14
C15
C16
C17
C18
C19
C20
C21

procedure degreeOfMatch(u, c)
1. if c = u then
2. service.score = “exact” or 3
3. if c is subclass of u then
4. service.score = “plugin” or 2
5. if c is superclass of u then
6. service.score = “subsumption” or 1
7. if service.score != null then
8. registration.add(u, service)
9. return

1
1
1
1
1
1
1
1
1

//measure match between u and c

Figure A-1. Pseudo code for the WSP service publication algorithm

A time complexity analysis for the algorithm was performed as follows:

Time
Cost

=
=

=

=

=
=

C1(1) + C2(1) + C3(m+1) + C4(m) + C5(m) + C6(1)
C1 + C2 + C3 + C3(m) + C4(m) + [C7(|V|) + C8(|V|) + C9(|E|+|V|) + C10(|E|) + C11(|V|) +
C12(|V|)](m) + C6
C1 + C2 + C3 + C3(m) + C4(m) + {[C13(1) + C14(1) + C15(1) + C16(1) + C17(1) + C18(1) +
C19(1) + C20(1) + C21(1)]|V| + C8(|V|) + C9(|E|+|V|) + C10(|E|) + C11(|V|) + C12(|V|)}(m) + C6
(C1+ C2 + C3 + C6) + (m)(C3 + C4) + m(|V|)(C13 + C14 + C15 + C16 + C17 + C18 + C19 +
C20 + C21 + C8 + C11 + C12) + (m)(|E|+|V|)(C9) + (m)(|E|)(C10)
C1’m + C2’(m)(|V|) + C3’(m)(|E|+|V|) + C4’(m)(|E|)
O(m(|V|+|E|))

 159

Note that “DFS” is a recursive function, which is called at each node of G. Therefore, line 1 and

line 2 are visited |V| times. Line 3 is visited = |E| + |V| times. Similarly,

line 4 is visited = |E| times. Line 5 and line 6 are visited |V| times each.

Therefore, time complexity is O(m(|V| + |E|)), where |V| is the number of vertices in G, |E| is
the number of edges, and m is number of concepts in service.

)1)((
|V|

1i
i +∑

=

uneighbors

∑
=

|V|

1i
i)(uneighbors

WSP Matching Algorithm

cost

C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14

procedure match (request, registration)

1. parse request into concepts c[m]
2. var service[], candidateList[m][]
3. for i = 1 to m do
4. candidateList[i] = services indexed by c[i]
5. service = candidateList[1]
6. for i = 2 to m do
7. for j = 1 to N do
8. if service[j] != candidateList[i][j] then
9. remove service[j]
10. for k = 1 to length(services) do
11. for i = 1 to m do
12. service[k].match += service[k].score(c[i])
13. insertion_sort(service)
14. return service

 Times

 1
 1
 m+1
 m
 1
 m
 (m-1)(N+1)
 (m-1)(N)
 (m-1)(N)
 n+1
 n(m+1)
 n(m)
 1
 1

//request is a service description
//registration is an index table

//m = number of concepts
//hash table search

//N = all registered services

//n = matched services (n < N)

//calculate total match score
//sort matched services

C15
C16
C17

C18

C19

C20

C21
C22

procedure insertion_sort(A)
1. for j = 2 to length(A) do
2. key = A[j]
3. i = j – 1

4. while i > 0 and A[i] > key do

5. A[i+1] = A[i]

6. i = i – 1

7. A[i+1] = key
8. return

 n
 n-1
 n-1

∑
=

n

2j
jt

∑ −
=

n

2j
j)1(t

∑ −
=

n

2j
j)1(t

 n-1
 1

//insert A[j] into the sorted list
A[1...j-1]

//tj = the number of times the
while loop test for that value of j

Figure A-2. Pseudo code for the WSP service publication algorithm.

A time complexity analysis for the algorithm was performed as follows:

Time
cost

=

=

=

C1(1) + C2(1) + C3(m+1) + C4(m) + C5(1) + C6(m) + C7(m-1)(N+1) + C8(m-1)(N) + C9(m-
1)(N) + C10(n+1) + C11(n)(m+1) + C12(n)(m) + C13(1) + C14(1)
(C1 + C2 + C3 + C5 + C14 – C7 + C10 + C14) + (m)(N)(C7 + C8 + C9 + C11 + C12) + N(–C7 –
C8 – C9) + m(C3 + C4 + C6 + C7) + n(C10 + C11) + nm(C11 + C12) + C13
C1’(m)(N) + C2’(N) + C3’(m) + C4’(n) + C5’(nm) + [C15(n) + C16(n-1) + C17(n-1) +

 160

=

C18() + C19 () + C20() + C21(n-1) + C22(1)] ∑
=

n

2j
jt ∑ −

=

n

2j
j)1(t ∑ −

=

n

2j
j)1(t

C1’(m)(N) + C2’(N) + C3’(m) + C4’(n) + C5’(nm) + C6’() + C7’() ∑
=

n

2j
jt ∑ −

=

n

2j
j)1(t

Best
case

= (m)(N) + [(n-1) + 0]

 = O((m)(N))
Worst
Case

= (m)(N) + [)1

2
)1n(n(−

+ +
2

)1n(n −]

 = O((m)(N) + n2)

As can be seen, the best case time complexity is O((m)(N)), the worst case time complexity is
O((m)(N) + n2), where m is the number of concepts in request, N is the total number of registered
services, and n is the number of matched services. The time complexity for this algorithm is
lower than existing algorithms (see Section 6.2.3).

Typical Matching Algorithm

cost

C1
C2
C3
C4
C5
C6
C7

procedure match(request, All, G)

1. var service[]
2. for i = 1 to length(All) do
3. match = serviceMatch(request, All[i])
4. if match != null then
5. add All[i] to service
6. insertion_sort(service)
7. return service

times

1
N+1
N
N
N
1
1

//G is an ontology, G = <V, E>
//All is a list of all registered services

//N = number of all services

C8
C9
C10
C11
C12
C13
C14

procedure serviceMatch(request, service)
1. parse request into concepts c1[m]
2. parse service into concepts c2[m]
3. for i = 1 to m do
4. u0 = the root vertex in G
5. score[i] = DFS’(u0, c1[i], c2[i])
6. service.match += score[i]
7. return service.match

1
1
m+1
m
m
m
1

//compare a request with a service

//depth-first search of service concept
//calculate match score

C15
C16
C17
C18
C19
C20
C21
C22

procedure DFS’(u, x, y)

1. if u = y then
2. score = degreeOfMatch(y, x)
3. return score
4. else
5. status[u] = “processed”
6. for each neighbor v of u do
7. if status[v] != “processed” then
8. DFS’(v, x, y)

|V|
|V|
|V|
|V|
|V|
|E|+|V|
|E|
|V|

//x is request concept
//y is corresponding service concept

C23
C24

procedure degreeOfMatch(u, c)
1. if c = u then
2. score = “exact” or 3

1
1

 161

C25
C26
C27
C28
C29

3. if c is subclass of u then
4. score = “plugin” or 2
5. if c is superclass of u then
6. score = “subsumption” or 1
7. return score

1
1
1
1
1

C30
C31
C32

C33

C34

C35

C36
C37

procedure insertion_sort(A)
1. for j = 2 to length(A) do
2. key = A[j]
3. i = j – 1

4. while i > 0 and A[i] > key do

5. A[i+1] = A[i]

6. i = i – 1

7. A[i+1] = key
8. return

 n
 n-1
 n-1

∑
=

n

2j
jt

∑ −
=

n

2j
j)1(t

∑ −
=

n

2j
j)1(t

 n-1
 1

 //insert A[j] into the sorted list
 A[1...j-1]

 //tj = the number of times the
 while loop test for that value of j

Figure A-3. Pseudo code for a typical service matching algorithm

A time complexity analysis for the algorithm was performed as follows:

Time
Cost

=
=
=
=

=

=

=

=

C1(1) + C2(N+1) + C3(N) + C4(N) + C5(N) + C6(1) + C7(1)
(C1 + C2 + C7) + N(C2 + C4 + C5) + C3(N) + C6
C1’(N) + (N)C3 + C6
N + (N)[C8(1) + C9(1) + C10(m+1) + C11(m) + C12(m) + C13(m) + C14(1)] + [C30(n) + C31(n-

1) + C32(n-1) + C33() + C34() + C35() + C36(n-1) + C37(1)] ∑
=

n

2j
jt ∑ −

=

n

2j
j)1(t ∑ −

=

n

2j
j)1(t

N + (N)[(C8 + C9 + C10 + C14) + m(C10 + C11 + C13) + (m)C12] + [n + +] ∑
=

n

2j
jt ∑ −

=

n

2j
j)1(t

N + (N)(m) + (N)(m)C12 + [+] ∑
=

n

2j
jt ∑ −

=

n

2j
j)1(t

N + (N)(m) + (N)(m)[C15(|V|) + C16(|V|)[C23(1) + C24(1) + C25(1) + C26(1) + C27(1) +
C28(1) + C29(1)] + C17(|V|) + C18(|V|) + C19(|V|) + C20(|E|+|V|) + C21(|E|) + C22(|V|)] +

[+] ∑
=

n

2j
jt ∑ −

=

n

2j
j)1(t

(N)(m) + (N)(m)(|V|+|E|) + [+] ∑
=

n

2j
jt ∑ −

=

n

2j
j)1(t

Best
case

= (N)(m)(|V|+|E|) + [n + (n-1) + 0]

 = O((N)(m)(|V|+|E|))
Worst
case

= N + (N)(m)(|V|+|E|) + [n +)1
2

)1n(n(−
+ +

2
)1n(n −]

 = O((N)(m)(|V|+|E|) + n2)

The best case time complexity is O((N)(m)(|V|+|E|)), and the worst case time complexity is O(
(N)(m)(|V|+|E|) + n2), where N is the total of registered services, m is the number of concepts in

 162

service request, |V| is the number of vertices in G, |E| is the number of edges in G, and n is the
number of matched services.

As can be seen, the matching between a service request and all the registered services is
dependent on the size of the ontology and the number the registered services. When the number
of the registered services increases or (and) the size of the ontology increases, the matching time
also increases significantly.

WSP Service Chaining Algorithm

cost

C1
C2
C3

C4
C5

procedure serviceIntegration(G, registration)

1. reqest0 = the root vertex in G
2. discovery(request0, registration)
3. initialSelection(request0)

4. finalSelection(request0)
5. return

times

1
1
1

1
1

//G is an abstract workflow
//G = <V, E>, where V is requests
//and E is request dependencies

//perform service discovery
//select services based on matching
//score
//further select services based on data
//interoperability

C6
C7
C8
C9
C10
C11

procedure discovery(u, registration)

1. status[u] = “processed”
2. candidates[u] = match(u, registration)
3. for each neighbor v of u do
4. if status[v] != “processed” then
5. discovery(v, registration)
6. return

|V|
|V|
|E|+|V|
|E|
|V|
|V|

//depth-first traversal of G
//u is a service request

C12
C13
C14
C15
C16
C17
C18
C19

procedure initialSelection(u)

1. status[u] = “processed”
2. if candidates[u] = null then
3. return
4. semiList[u] = top services in candidates[u]
5. for each neighbor v of u do
6. if status[v] != “processed” then
7. initialSelection(v)
8. return

|V|
|V|
|V|
|V|
|E|+|V|
|E|
|V|
|V|

//depth-first traversal of G
//u is a service request

//check if there are candidate services

//select services with highest score

C20
C21
C22
C23
C24
C25
C26
C27
C28
C29

procedure finalSelection(u)

1. status[u] = “processed”
2. if u is root vertex in G then
3. service[u] = first service in semiList[u]
4. lastS = service[u]
5. for i = 1 to m do
6. S = semiList[u][i]
7. if S.inputSchema = lastS.outputSchema then
8. service[u] = S break
9. if service[u] = null then
10. service[u] = first service in semiList[u]

|V|
|V|
|V|
|V|
(m+1)(|V|)
(m)(|V|)
(m)(|V|)
(m)(|V|)
|V|
|V|

//depth-first traversal of G
//u is a service request

//m is the number of services in
//semiList[u], m ranges from 1 to 5

 163

C30
C31
C32
C33
C34

11. for each neighbor v of u do
12. if status[v] != “processed” then
13. lastS = service[u]
14. finalSelection(v)
15. return

|E|+|V|
|E|
|V|
|V|
|V|

Figure A 4. Pseudo code for WSP service matching algorithm

A time complexity analysis for the algorithm was performed as follows:

Time
Cost

=
=

=

C1(1) + C2(1) + C3(1) + C4(1) + C5(1)
C6(|V|) + C7(|V|) + C8(|E|+|V|) + C9(|E|) + C10(|V|) + C11(|V|) + C12(|V|) + C13(|V|) + C14(|V|)
+ C15(|V|) + C16(|E|+|V|) + C17(|E|) + C18(|V|) + C19(|V|) + C20(|V|) + C21(|V|) + C22(V|) +
C23(|V|) + C24((m+1)|V|) + C25(m|V|) + C26(m|V|) + C27(m|V|) + C28(|V|) + C29(|V|) +
C30(|E|+|V|) + C31(|E|) + C32(|V|) + C33(|V|) + C34(|V|)
O(|V| + |E|)

Time complexity is O(|V| + |E|), where |V| is the number of vertices in G, and |E| is the number
of edges.

 164

APPENDIX B

WSP Service Descriptions without Constraints

Service ID Service Input Service Output Constraints
1 Protein Dynamics
2 Protein Mode_Shape
3 Protein Fluctuation
4 Protein Trajectory
5 Protein Mobility
6 Protein Conservation
7 Protein Hydrophobicity
8 Protein Catalytic Sites
9 Protein Structure

10 Protein Sequential Parameters
11 Protein 3D Parameters
12 Protein Ngram Patterns
13 Protein Family
14 Protein Chains
15 Protein Functional Domains
16 Protein Biological Function
17 Protein Structural Domains
18 Protein Source Cell
19 Protein Active Binding Sites
20 Protein Physiological Functions
21 Protein Pathological Functions
22 Protein Density
23 Protein Residues
24 Protein Atomic Bind
25 Protein Molecule
26 Protein Residue Link
27 Protein CISPeptide
28 Protein Description
29 Protein Reference
30 Protein Helix Structure
31 Protein Modified Residue
32 Protein Residue Sequence
33 Protein ATOM Sequence
34 Structure Dynamics
35 Structure Mode_Shape
36 Structure Fluctuation
37 Structure Trajectory
38 Structure Mobility
39 Structure Conservation
40 Structure Hydrophobicity
41 Structure Catalytic Sites
42 Structure Sequential Parameters
43 Structure 3D Parameters
44 Structure Ngram Patterns
45 Structure Family
46 Structure Chains
47 Structure Functional Domains

 165

48 Structure Biological Function
49 Structure Structural Domains
50 Structure Source Cell
51 Structure Active Binding Sites
52 Structure Physiological Functions
53 Structure Pathological Functions
54 Structure Density
55 Structure Residues
56 Structure Atomic Bind
57 Structure Molecule
58 Structure Residue Link
59 Structure CISPeptide
60 Structure Description
61 Structure Reference
62 Structure Helix Structure
63 Structure Modified Residue
64 Structure Residue Sequence
65 Structure ATOM Sequence
66 PDB_ID Dynamics
67 PDB_ID Mode_Shape
68 PDB_ID Fluctuation
69 PDB_ID Trajectory
70 PDB_ID Mobility
71 PDB_ID Conservation
72 PDB_ID Hydrophobicity
73 PDB_ID Catalytic Sites
74 PDB_ID Structure
75 PDB_ID Sequential Parameters
76 PDB_ID 3D Parameters
77 PDB_ID Ngram Patterns
78 PDB_ID Family
79 PDB_ID Chains
80 PDB_ID Functional Domains
81 PDB_ID Biological Function
82 PDB_ID Structural Domains
83 PDB_ID Source Cell
84 PDB_ID Active Binding Sites
85 PDB_ID Physiological Functions
86 PDB_ID Pathological Functions
87 PDB_ID Density
88 PDB_ID Residues
89 PDB_ID Atomic Bind
90 PDB_ID Molecule
91 PDB_ID Residue Link
92 PDB_ID CISPeptide
93 PDB_ID Description
94 PDB_ID Reference
95 PDB_ID Helix Structure
96 PDB_ID Modified Residue
97 PDB_ID Residue Sequence
98 PDB_ID ATOM Sequence
99 PDB_ID Chemical Bonds

100 PDB_ID UnitCell

 166

WSP Service Descriptions with Constraints

Service ID Service Input Service Output Constraints
101 Protein Dynamics Experimental
102 Protein Dynamics Computational
103 Protein Dynamics MD Simulation
104 Protein Dynamics NMA
105 Protein Dynamics Simplified NMA
106 Protein Dynamics Full-Atomic NMA
107 Protein Mode_Shape Residues
108 Protein Mode_Shape Atoms
109 Protein Mode_Shape NMA
110 Protein Mode_Shape Simplified NMA
111 Protein Mode_Shape Full-Atomic NMA
112 Protein Fluctuation Residues
113 Protein Fluctuation Atoms
114 Protein Fluctuation NMA
115 Protein Fluctuation MD Simulation
116 Protein Mobility Experimental
117 Protein Mobility Computational
118 Protein Mobility NMA
119 Protein Mobility MD Simulation
120 Protein Conservation Multiple Alignment
121 Protein Conservation Ngram
122 Protein Catalytic Sites Experimental
123 Protein Catalytic Sites Computational
124 Protein Active Binding Sites Experimental
125 Protein Active Binding Sites Computational
126 Protein Hydrophobicity Residues
127 Protein Hydrophobicity Atoms
128 Protein Structure Xray
129 Protein Structure NMR
130 Protein Functional Domains Experimental
131 Protein Functional Domains Computational
132 Protein Structural Domains Experimental
133 Protein Structural Domains Computational
134 Structure Dynamics Experimental
135 Structure Dynamics Computational
136 Structure Dynamics MD Simulation
137 Structure Dynamics NMA
138 Structure Dynamics Simplified NMA
139 Structure Dynamics Full-Atomic NMA
140 Structure Mode_Shape Residues
141 Structure Mode_Shape Atoms
142 Structure Mode_Shape NMA
143 Structure Mode_Shape Simplified NMA
144 Structure Mode_Shape Full-Atomic NMA
145 Structure Fluctuation Residues
146 Structure Fluctuation Atoms
147 Structure Fluctuation NMA
148 Structure Fluctuation MD Simulation
149 Structure Mobility Experimental

 167

150 Structure Mobility Computational
151 Structure Mobility NMA
152 Structure Mobility MD Simulation
153 Structure Catalytic Sites Experimental
154 Structure Catalytic Sites Computational
155 Structure Active Binding Sites Experimental
156 Structure Active Binding Sites Computational
157 Structure Hydrophobicity Residues
158 Structure Hydrophobicity Atoms
159 Structure Conservation Multiple Alignment
160 Structure Conservation Ngram
161 Structure Functional Domains Experimental
162 Structure Functional Domains Computational
163 Structure Structural Domains Experimental
164 Structure Structural Domains Computational
165 PDB_ID Dynamics Experimental
166 PDB_ID Dynamics Computational
167 PDB_ID Dynamics MD Simulation
168 PDB_ID Dynamics NMA
169 PDB_ID Dynamics Simplified NMA
170 PDB_ID Dynamics Full-Atomic NMA
171 PDB_ID Mode_Shape Residues
172 PDB_ID Mode_Shape Atoms
173 PDB_ID Mode_Shape NMA
174 PDB_ID Mode_Shape Simplified NMA
175 PDB_ID Mode_Shape Full-Atomic NMA
176 PDB_ID Fluctuation Residues
177 PDB_ID Fluctuation Atoms
178 PDB_ID Fluctuation NMA
179 PDB_ID Fluctuation MD Simulation
180 PDB_ID Mobility Experimental
181 PDB_ID Mobility Computational
182 PDB_ID Mobility NMA
183 PDB_ID Mobility MD Simulation
184 PDB_ID Catalytic Sites Experimental
185 PDB_ID Catalytic Sites Computational
186 PDB_ID Active Binding Sites Experimental
187 PDB_ID Active Binding Sites Computational
188 PDB_ID Hydrophobicity Residues
189 PDB_ID Hydrophobicity Atoms
190 PDB_ID Conservation Multiple Alignment
191 PDB_ID Conservation Ngram
192 PDB_ID Structure Xray
193 PDB_ID Structure NMR
194 PDB_ID Functional Domains Experimental
195 PDB_ID Functional Domains Computational
196 PDB_ID Structural Domains Experimental
197 Chains Structural Domains Computational
198 Chains Functional Domains Experimental
199 Chains Functional Domains Computational
200 Chains Structural Domains Experimental

 168

REFERENCES

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic local alignment
search tool. J Mol Biol, 215:403-410.

Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.
(1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.
Nucleic Acids Res 25:3389-3402.

Ankolekar, A., Martin, D., McGuinness, D., McIlraith, S., Paolucci, M., and Parsia, B. (2004).
OWL-S' Relationship to Selected Other Technologies, W3C Member Submission 22 November
2004. Accessed at http://www.w3.org/Submission/2004/SUBM-OWL-S-related-20041122/.

Bahar, I., Atilgan, A.R. and Erman, B. (1997). Direct evaluation of thermal fluctuations in
protein using a single parameter harmonic potential. Folding & Design 2, 173-181.

Bahar, I., Wallqvist ,A., Covell, D.G., and Jernigan, R.L. (1998). Correlation between native
state hydrogen exchange and cooperative residue fluctuations from a simple model. Biochemistry
37, 1067-1075.

Bairoch, A., et al. (2005) "The Universal Protein Resource (UniProt)." Nucleic Acids Res. 33,
D154-D159.

Barrett, C.P. and Noble, M.E. (2005). Molecular motions of human cyclin dependent kinase 2. J.
Biol. Chem., 280, 13993–14005.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N.,
and Bourne, P.E. (2002). The Protein Data Bank. Nucleic Acids Res. 28, 235-242.

Berners-Lee, T. (1998). Semantic Web road map. Retrieved March 21, 2006 from
http://www.w3.org/DesignIssues/semantic.html

Bertone, P., Kluger, Y., Lan, N., Zheng, D., Christendat, D., Yee, A., Edwards, A.M.,
Arrowsmith, C.H., Montelione, G.T. and GersteinM. (2001). SPINE: an integrated tracking
database and data mining approach for identifying feasible targets in high-throughput structural
proteomics, Nucleic Acid Res., 29, (13), 2884-98.

Brittenham, P., Cubera, F., Ehnebuske, D., and Graham, S. (2001). Understanding WSDL in a
UDDI registry: how to publish and find WSDL service descriptions. IBM developerWorks,
http://www-128.ibm.com/developerworks/webservices/library/ws-wsdl/ .

Brooks,B. and Karplus,M. (1983) Harmonic dynamics of proteins: normal modes and
fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. U.S.A., 80, 6571–6575.

 169

mailto:peterbr@us.ibm.com
mailto:curbera@us.ibm.com
mailto:davide@us.ibm.com
mailto:sggraham@us.ibm.com
http://www128.ibm.com/developerworks/webservices/library/ws-wsdl/
http://www128.ibm.com/developerworks/webservices/library/ws-wsdl/

Califano, A., Stolovitzky, G., and Tu, Y. (2000). Analysis of gene expression microarrays for
phenotype classification. Proc. Int’l Conf. Intelligent Systems for Molecular Biology, vol. 8,
AAAI Press, 2000, pp.75-85.

Cao,Z.W. et al. (2004) MoViES: molecular vibrations evaluation server for analysis of
fluctuational dynamics of proteins and nucleic acids. Nucleic Acids Res., 32, W679–W685.

Cardoso, J. and A. Sheth (2003). Semantic e-Workflow Composition. Journal of Intelligent
Information Systems (JIIS).

Chandrasekaran, B., Johnson, T., and Benjamins, V. (1999). Ontologies: what are they? Why do
we need them? IEEE Intelligent Systems and Their Applications, 14(1), 20-26.

Christensen, E., Curbera, F., Meredith, G., and Weerawarana, S. (2001). Web services
description language 1.1, http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

Constantinescu, I., Faltings, B., and Binder, W. (2004). Large scale, type-compatible service
composition. In Proceedings of the International Conference on Web Services (ICWS 2004),
506-513.

Cruz, I.F. and Xiao, H. (2005). The role of ontologies in data integration. Journal of Engineering
Intelligent Systems, 13(4), December 2005.

Dayhoff, M. O. (1976). The origin and evolution of protein superfamilies. Fed.Proc. 35.10:
2132-38.

Davidson, SB, Crabtree, J, Brunk, BP, Schug, J, Tannen, V, Overton, GC, Stoeckert, CJ. (2001).
K2/Kleisli and GUS: Experiments in integrated access to genomic data sources. IBM Systems
Journal, 40(2).

Deshpande, N., Addess, K.J., Bluhm, W.F., Merino-Ott, J.C., Townsend-Merino, W., Zhang, Q.,
Knezevich, C., Chen, L., Feng, Z., Kramer Green, R., Flippen-Anderson, J.L., Westbrook, J.,
Berman H.M., and Bourne, P.E. (2005). The RCSB Protein Data Bank: A Redesigned Query
System and Relational Database Based on the mmCIF Schema Nucleic Acids Research. 33:
D233-D237.

Echols, N., Milburn, D., Gerstein, M. (2003). MolMovDB : analysis and visualization of
conformational change and structural flexibility. Nucleic Acids Res. 31, 478-482.

Eckman,B.A., Lacroix,Z. and Raschid,L. (2001) Optimized seamless integration of biomolecular
data. IEEE symposium on Bio-Informatics and Biomedical Engineering (BIBE’2001),
Washington DC, nov 2001, p.23-32.

Finn, R. D., et al. (2006). "Pfam: clans, web tools and services." Nucleic Acids Res. 34, D247-
D251.

 170

http://lsdis.cs.uga.edu/lib/download/TM02-004-Cardoso-Sheth.pdf

Fogolari, F., Tessari,S. and Molinari, H. (2002). Singular value decomposition analysis of
protein sequence alignment score data. Proteins 46.2: 161-70

Foster, I. (2005). Service-Oriented Science. Science, 308, pp 814-17.

Foster, I., Kesselman, C., Nick, J., Tuecke, S. (2002). The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Globus Report.

Gao, H.T., Hayes, J.H., and Cai, H. (2005). Integrating biological research through Web
services. IEEE Computer, 38(3):26–31, March 2005.

Garrett, R.H. and Grisham, C.M. (1999). Biochemistry, 2nd ed. Harcourt Brace College
Publishing, Fort Worth.

Gene Ontology Consortium, http://www.geneontology.org/, 2004.

Go, N., Noguti, T. and Nishikawa, T. (1983) Dynamics of a small globular protein in terms of
low-frequency vibrational modes, Proc. Natl. Acad. Sci. USA, 80, 3696.

Gold, N.D. and Jackson, R.M. (2006). SitesBase: a database for structure-based protein ligand
binding site comparisons. Nucleic Acids Research, 34, D231-234.

Gómez-Pérez, A., González-Cabero, R., and Lama, M. (2004). A Framework for Design and
Composing Semantic Web Services. IEEE Intelligent Systems, vol. 16, pp. 24–32.

Greenbaum, D., Smith, A. and Gerstein, M. (2005). Impediments to database interoperation:
legal issues and security concerns. Nucleic Acids Research, 33:D3-D4, 2005.

Greenbaum, D.S. (2004) Dictionary of Bioinformatics and Computational Biology. Edited by
Hancock and Zvelebil. Page 108.

Griffiths, A.J.F., Miller, J.H., Suzuki, D.T., Lewontin, R.C., Gelbart, W.M. (2002). An
introduction to Genetic Analysis 7th ed., W.H. Freeman and Company, New York.

Gruber, T. (1993). A translation approach to portable ontologies. Knowledge Acquisition, 5(2),
199-220.

Gruber, T.R. (1995). Toward principles for the design of ontologies used for knowledge
sharing, International Journal of Human-Computer Studies, 43(5-6):907-928.

Haarslev, V., Moller, R. (2001). RACER System Description. In: Proc. of the International Joint
Conference on Automated Reasoning (IJCAR’2001), Siena, Italy, Springer Verlag (2001) 701–
705.

 171

Haliloglu, T. and Bahar, I. (1999). Structure-based analysis of protein dynamics: Comparison of
theoretical results for hen lysozyme with X-ray diffraction and NMR relaxation data. Proteins:
Structure, Function, & Genetics 37, 654-667, 1999.

Hollup SM, Salensminde G, Reuter N. WEBnm@: a web application for normal mode analyses
of proteins. BMC Bioinformatics. 2005 Mar 11;6(1):52.

Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ, Bray
D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin II, Hedley
WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A, Kummer U, Le
Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama Y, Nelson MR,
Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD, Stelling J, Takahashi
K, Tomita M, Wagner J, Wang J; SBML Forum. (2003) The systems biology markup language
(SBML): a medium for representation and exchange of biochemical network models
Bioinformatics. 19, 524-31.

Hull, D., Stevens, R. and Lord, P. (2005). Describing web services for user-oriented retrieval. In
W3C Workshop on Frameworks for Semantics in Web Services, Digital Enterprise Research
Institute (DERI), Innsbruck, Austria. June 9-10, 2005, 2005.

IBM (2006). Web Services Overview. http://www.ibm.com/developerworks/webservices.

Jernigan, R.L. and Bahar, I. (1998). Coarse Grained Searches over Protein Conformations.
Encyclopedia of Computational Chemistry. Schleyer, P. v.R.; Allinger, N. L.; Clark, T.;
Gasteiger, J.; Kollman, P. A.; Schaefer III, H. F.; Schreiner, P. R. (Eds.) John Wiley & Sons:
Chichester, 1998.

Johnson, M. S. and J. P. Overington. (1993). A structural basis for sequence comparisons. An
evaluation of scoring methodologies. J.Mol.Biol. 233.4: 716-38.

Karchin, R. and R. Hughey. (1998). Weighting hidden Markov models for maximum
discrimination. Bioinformatics 14.9: 772-82.

Kim, J., Gil, Y., and Spraragen, M. (2004). A knowledge-based approach to interactive workflow
composition. In Planning and Scheduling for Web and Grid Sciences workshop at the 14th
International Conference on Automatic Planning and Scheduling (ICAPS 04), Whistler, Canada.

Lacroix, Z, Boucelma, O, Essid, M. (2003) The biological integration system. In Proceedings of
the Fifth ACM CIKM International Workshop on Web Information and Data Management
(WIDM 2003), 45-49, New Orleans, Louisiana, USA.

Lan N, Montelione GT, Gerstein M. Ontologies for proteomics: towards a systematic definition
of structure and function that scales to the genome level. Curr Opin Chem Biol. 2003 Feb; 7:44-
54.

 172

http://www.ibm.com/developerworks/webservices
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/b/Boucelma:Omar.html
http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/e/Essid:Mehdi.html

Lee,R.A., Razaz, M., Hayward, S. (2003). The DynDom Database of protein domain motions.
Bioinformatics 19(10): 1290-1291.

Li, G., and Cui, Q. (2002). A coarse-grained normal mode approach for macromolecules: an
efficient implementation and application to Ca(2+)-ATPase, Biophys. J..83, 2457-2474.

Li, L., and Horrocks, I. (2003). Matchmarking Using an Instance Store: Some Preliminary
Results. Description Logics 2003.

Liu, X., Karimi, H., Yang, L-.W. and Bahar, I. (2004). Protein Functional Motion Query and
Visualization. In IEEE 28th Annual International Computer Software and Applications
Conference.

Lord, P., Bechhofer, S., Wilkinson, M.D., Schiltz, G., Gessler, D., Hull, D., Goble, C., and Stein,
L. Applying semantic web services to bioinformatics: Experiences gained, lessons learnt. In
International Semantic Web Conference, pages 350-364, 2004.

Ludascher, B., Altintas, I., and Gupta, A. (2003). Compiling Abstract Scientific Workflows into
Web Service Workflows. In Proceedings of the 15th International Conference on Scientific and
Statistical Database Management.

Mandell, D.J. and McIlraith, S.A. (2003). Adapting BPEL4WS for the Semantic Web: The
Bottom-Up Approach to Web Service Interoperation. Proceedings of the Second International
Semantic Web Conference (ISWC2003), Sanibel Island, Florida.

Marcotte E. and Date S. (2001) Exploiting big biology: Integrating large-scale biological data for
function inference. Brief Bioinform. 2: 363-374.

Marques, O. (1995). BLZPACK: Description and User's Guide, TR/PA/95/30. CERFACS,
Toulouse, France.

Maximilien, E.M. and Singh, M.P. (2004). A Framework and Ontology for Dynamic Web
Services Selection. IEEE Internet Computing, 8(5):84–93, 2004.

McIlraith, S. and Son, T.C. (2002). Adapting golog for composition of semantic web services. In
Proceedings of the 8th International Conference on Knowledge Representation and Reasoning
(KR2002), 482-493.

McIlraith, S., Son, T.C. and Zeng, H. (2001). Semantic Web services. IEEE Intelligent Systems.
Special Issue on the Semantic Web. 16(2):46-53, March/April.

myGrid (2002). Comments on registry personalization and metadata.

Paolucci, M., T. Kawamura, T. R. Payne & K. Sycara (2002): Semantic Matching of Web Service
Capabilities, in: Horrocks, I. & J. Hendler (eds.): 1st International Semantic Web Conference
(ISWC2002).

 173

http://www.informatik.uni-trier.de/%7Eley/db/indices/a-tree/h/Hayward:Steven.html

Pearl, F. M., C. F. Bennett, et al. (2003). "The CATH database: an extended protein family
resource for structural and functional genomics." Nucleic Acids Res 31(1): 452-455.

Press, W.H., et al. Numerical Recipes in Fortran: 2nd Ed., (1992) Cambridge University Press
Chapter 2.6, pp 51–62.

Protégé (2002). Protege Frequently Asked Question. Accessed at
http://portege.stanford.edu/faq.html

Rader, A.J. and Bahar, I. (2004) Folding core predictions from network models of proteins.
Polymer, 45, 659–668.

Raghava, G. P., et al. (2003). OXBench: a benchmark for evaluation of protein multiple
sequence alignment accuracy. BMC Bioinformatics 4 (2003): 47.

Rao, J. and Su, X. (2004). A survey of automated web service composition methods. In
Proceedings of First International Workshop on Semantic Web Services and Web Process
Composition.

Ritter, O., Kocab, P., Senger, M., Wolf, D. and Suhai, S. (1994). Prototype implementation of
the integrated genomic database. Comput. Biomed. Res. 27, 97-115.

Rygg, A., Mann, S., Roe, P., and Wong, O. (2005) Bio-workflows with BizTalk: using a
commercial workflow engine for eScience. In Proceedings of the First International Conference
on e-Science and Grid Computing (e-Science’05).

Sahoo, S.S, Sheth, A.P., York, W.S., Miller, J.A. (2005). Semantic Web Services for N-
glycosylation Process. International Symposium on Web Services for Computational Biology and
Bioinformatics, VBI, Blacksburg, VA, May 26-27, 2005.

Sidhu, A.S., Dillon, T.S., and Chang, E. (2005). Creating a protein ontology resource. IEEE
Computational Systems Bioinformatics Conference. Stanford University.

Singh, M.P. and Vouk, M.A. (1996). Scientific Workflows. Position paper in Reference Papers
of the NSF Workshop on Workflow and Process Automation in Information Systems: State-of-
the-art and Future Directions, May 1996.

Sinha N, Smith-Gill SJ (2002). Protein structure to function via dynamics. Protein and Peptide
Letters, 9: 367–377.

Sirin, E., Hendler, J. and Parsia, B. (2003). Semi-automatic composition of web services using
semantic descriptions. In Web Services: Modeling, Architecture and Infrastructure workshop in
conjunction with ICEIS2003.

 174

Snell, J. (2002). Implementing Web services with the WSTK v3.3. Part 1. IBM Developer
Works, Dec. 2002, pp.5-6.

Spillner, J., Braun, I., and Schill, A. (2006). WSInterConnect: dynamic composition of web
services through web services. In Proceedings of the 6th International Conference on Distributed
Applications and Interoperable Systems (DAIS 2006): 181-186.

Spitzner, J.H. Bioinformatic Sequence Markup Language, on-line, available at
http://www.visualgenomics.com/bsml.

Staab, S., van der Aalst, W., Benjamins, V.R., Sheth, A., Miller, J.A., Bussler, C., Maedche, A.,
Fensel, D., Gannon, D. (2003). Web services: been there, done that? IEEE Intelligent
Systems, Volume: 18 , Issue: 1, Pages:72 – 85.

Stein, L. (2002). Creating a bioinformatics nation. Nature, 417, 119 - 120.

Stein, L. (2003). Integrating biological databases. Nature Rev. Genet., 4: 337-345.

Suhre K. and Sanejouand, Y.H. (2004). ElNemo: a normal mode web-server for protein
movement analysis and the generation of templates for molecular replacement. Nucleic Acids
Research, 32, W610-W614.

Sycara, K., Paolucci, M., Ankolekar A. and Srinivasan, N. (2003). Automated Discovery,
Interaction and Composition of Semantic Web services, Journal of Web Semantics, Volume 1,
Issue 1, September 2003, pp. 27-46.

Tai, K., Murdock, S., Wu, B., Hong Ng, M., Johnston, S., Fangohr, H., Cox, S.J., Jeffreys, P.,
Essex, J.W., Sansom, M.S.P. (2004). BioSimGrid: towards a worldwide repository for
biomolecular simulations. Org. Biomol. Chem. 2:3219–3221 DOI: 10.1039/b411352g.

Tai, S., Khalaf, R., and Mikalsen, T. (2004) Composition of coordinated web services. In
Middleware 2004, pp. 294-310.

Tama, F., Gadea, F.X., Marques, O. & Sanejouand, Y.H. (2000) Building-block approach for
determining low-frequency normal modes of macromolecules, Proteins, 41, 1.

Tirion, M.M. (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic
analysis, Phys. Rev. Lett., 77, 1905.

UDDI. The UDDI technical white paper. http://www.uddi.org, 2000.

US Census Bureau. North American industry classification system.
http://www.census.gov/epcd/www/naics.html, 1997.

Uschold, M. and Jasper, R. (1999). A Framework for Understanding and Classifying Ontology
Applications. In Proceedings of the IJCAI-99 Workshop on Ontologies and Problem-Solving

 175

http://nar.oupjournals.org/cgi/content/full/32/suppl_2/W610
http://nar.oupjournals.org/cgi/content/full/32/suppl_2/W610

Methods. V.R. Benjamins, B. Chandrasekaran, A. Gomez-Perez, N. Guarino, and M. Uschold
(Ed.).

Valdar, W.S. and Thornton, J.M. (2001). Conservation helps to identify biologically relevant
crystal contacts. J.Mol.Biol. 313.2: 399-416.

Vries, J.K., Munshi, R., Tobi, D., Klein-Seetharaman, J., Benos, P.V., and Bahar, I. (2004). A
sequence algnment-independent method for protein classification. Applied Bioinformatics, 2004,
3(2-3): 137-148.

Vries, J.K., Liu, X., and Bahar, I. (2006a). Invariant Conservation Signatures for Proteins based
on N-gram Patterns”, to be submitted to a referred journal.

Vries, J.K., Liu, X., and Bahar, I. (2006b). The Relationship between N-Gram Patterns and
Secondary Structure, submitted to Proteins: Structure, Function and Bioinformatics.

W3C OWL. (2004). http://www.w3.org/TR/owl-guide/.

W3C OWL-S (2004). http://www.w3.org/Submission/2004/07/, 2004

W3C RDF. (2004). http://www.w3.org/TR/rdf-schema/.

W3C Semantic Web. (2006). http://www.w3.org/2001/sw/

W3C SOAP. (2001). http://www.w3.org/TR/soap/

Wache, H., Vogele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., and Hubner,
S. (2001). Ontology-Based Integration of Information - A Survey of Existing Approaches. In
Proceedings of the IJCAI-01 Workshop on Ontologies and Information Sharing, 2001.

Wako, H., Kato, M and Endo, S. (2004). ProMode: a database of normal mode analyses on
protein molecules with a full-atom model. Bioinformatics, 20, 2035-2043.

Wheeler, D.L., et al. (2003). Databases resources of the National Center for Biotechnology.
Nucleic Acids Research, vol. 31, no.1, 2003, pp. 28-33.

Wootton, J. C. and S. Federhen. (1996). Analysis of compositionally biased regions in sequence
databases. Methods Enzymol. 266: 554-71.

Yang, J. (2003). Web Service Componentization: Towards Service Reuse and Specialization.
Communications of ACM, October, 2003.

Yang, L.W., Liu, X., Jursa, C.J., Holliman, M., Karimi, H.A., and Bahar, I. iGNM: A Database
of Protein Functional Motions Based on Gaussian Network Model. Bioinformatics, pp. 2978-
2987, Vol. 21, No. 13, 2005.

 176

http://infolab.uvt.nl/pub/yangj-2003-53.pdf

Yang, L.W., Rader, AJ, Liu, X., Jursa, C.J., Chen, S.C., Karimi, H.A., and Bahar, I. (2006).
oGNM: Online Computation of Structural Dynamics Using the Gaussian Network Model,
Nucleic Acids Research, 34, W24-31, 2006.

Zdobnov, E.M., Lopez, R., Apweiler, R. and Etzold, T. (2002). The EBI SRS server – new
features. Bioinformatics 18, 1149-1150.

Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., and Chang, H. (2004). QoS-
aware middleware for web services composition. IEEE Transaction on Software Engineering,
Vol. 30, No. 5, May 2004.

 177

	1. INTRODUCTION
	1.1. Introduction
	1.2. Contributions
	1.3. Organization

	2. BACKGROUND AND RELATED WORK
	2.1. Introduction
	2.2. Protein Sequence, Structure, Function and Dynamics
	2.3. iGNM Data Resource
	2.3.1. Computational Prediction of Protein Dynamics
	2.3.2. Gaussian Network Model (GNM)
	2.3.3. Internet Accessible GNM (iGNM)
	iGNM Database Server
	oGNM Online Calculation Server

	2.4. Other Protein Data Resources
	2.4.1. Protein Structure Data Resources
	2.4.2. Protein Dynamics Data Resources
	2.4.3. Protein Sequence Data Resources

	2.5. Traditional Methods for Data Resource Integration
	2.5.1. Data Warehousing
	2.5.2. Data Wrapping
	2.5.3. Link-Based Integration

	2.6. Web Services and Data Resource Integration
	2.6.1. Web Services and Service-Oriented Architecture
	Service-Oriented Architecture
	Web Services Standards
	Workflow

	2.6.2. Semantic Web Services
	OWL-S Framework

	2.6.3. Web Services Based Methods for Data Resource Integration

	2.7. Web Services in Bioinformatics

	3. A SEMANTIC WEB SERVICES INFRASTRUCTURE FOR DISTRIBUTED PROTEIN DATA INTEGRATION
	3.1. Introduction
	3.2. Protein Data Resource Integration: Challenges
	3.3. Methodologies for Optimal Integration
	3.4. Computing Platforms
	3.5. Architecture, Components and Tools
	3.5.1. Biological Data Resources and Web Services
	3.5.2. Semantic Description of Services
	3.5.3. Semantic Publication and Matching of Services
	3.5.4. Chaining of Services

	3.6. The Deployment Process

	4. MODELING PROTEIN WEB SERVICES
	4.1. Introduction
	4.2. Protein Features
	4.3. Modeling Protein Feature Services
	4.4. Developing Protein Feature Services
	4.5. iGNM Protein Dynamics Web Service
	4.6. Protein N-gram Web Service
	4.6.1. Protein N-gram Patterns
	4.6.2. Protein Conservation Profile
	4.6.3. N-gram Conservation Profile Web Service

	4.7. Category of WSP Web Services

	5. SEMANTIC DESCRIPTION OF WEB SERVICES
	5.1. Introduction
	5.2. The Role of Ontologies
	5.3. WSP Ontologies
	5.3.1. Protein Ontology
	5.3.2. Extended Protein Ontology
	5.3.3. Upper Service Ontology

	5.4. Semantic Description of Protein Web Services

	6. SEMANTIC PUBLICATION AND MATCHING OF WEB SERVICES
	6.1. Introduction
	6.2. Background
	6.2.1. Data Structures
	6.2.2. Matchmaking Operations

	6.3. A Semantic Matchmaker Service
	6.3.1. Architecture

	6.4. Semantic Publication Algorithm
	6.4.1. Algorithm Description and Analysis
	6.4.2. A Service Registration Example

	6.5. Semantic Service Matching Algorithm
	6.5.1. Algorithm Description and Analysis
	6.5.2. A Service Matching Example
	6.5.3. Comparison with Typical Matching Algorithm

	6.6. WSP Scenario: Discovery of Protein Dynamics Data Resource

	7. CHAINING OF PROTEIN WEB SERVICES
	7.1. Introduction
	7.2. Workflow-Based Service Integration
	7.3. WSP Service Integration Process
	7.4. Service Selection Criteria
	7.4.1. Literature Review
	7.4.2. WSP Service Selection Criteria

	7.5. WSP Service Chaining Algorithm

	8. WSP PROTOTYPE
	8.1. Introduction
	8.2. Protein Feature Web Services
	8.2.1. iGNM Protein Dynamics Web Service
	8.2.2. N-gram Conservation Profile Web Service

	8.3. Semantic Descriptions of Services
	8.3.1. Implementation of the EPO Ontology
	8.3.2. Generating OWL-S Service Descriptions

	8.4. WSP Matchmaker

	9. WSP EVALUATION
	9.1. Introduction
	9.2. Evaluation of the WSP Matchmaker
	9.2.1. Experimental Setups
	9.2.2. Analysis of Solution Space
	9.2.3. Analysis of Matching Accuracy
	9.2.4. Analysis of Service Matching Time

	9.3. Evaluation of the WSP Integration Agent

	10. CONCLUSION AND FUTURE RESEARCH
	10.1. Summary of the Research
	10.2. Conclusions
	10.3. Future work

	 APPENDIX A
	Time Complexity Analysis
	WSP Publication Algorithm
	WSP Matching Algorithm
	Typical Matching Algorithm
	WSP Service Chaining Algorithm

	 APPENDIX B
	WSP Service Descriptions without Constraints
	WSP Service Descriptions with Constraints

	 REFERENCES

