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SYSTEM IDENTIFICATION OF WRIST STIFFNESS IN PARKINSON’S

DISEASE PATIENTS

Chris Sprague, M.S.

University of Pittsburgh, 2007

The purpose of this work is to investigate the characteristics of motor control systems in

Parkinson’s disease patients. ARMAX system identification was performed to identify the

intrinsic and reflexive components of wrist stiffness, enabling a better understanding of the

problems associated with Parkinson’s disease. The results show that the intrinsic stiffness

dynamics represent the vast majority of the total stiffness in the wrist joint and that the

reflexive stiffness dynamics are attributable to a tremor commonly found in Parkinsons

disease patients. It was found that Parkinsonian rigidity, a symptom of Parkinsons disease,

interferes with the known and traditional methods for separating intrinsic and reflexive

components. Resolving this problem could lead to early detection of Parkinson’s disease

in patients not exhibiting typical symptoms, analytical measurement of the severity of the

disease, and as a testing mechanism for the effectiveness of new medicines.
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1.0 INTRODUCTION

When an active muscle is stretched, the force required to stretch or contract the muscle is

proportional to its length. The proportional dependence of muscle force on length exhibits a

spring-like property that has been shown to play a key role in the control of movement. To

generate external movements about a joint, the net amount of the rotary force, or torque,

required is determined by a combination of the contributions of the muscles. In this case,

torque is calculated as the product of force times the length of the moment arm for each

muscle. The corresponding measure of rotational position of the joint due to the torque is

the change in joint angle. Ultimately, the relationship between joint angle and joint torque

serves to characterize the musculature of the joint as a whole. This characterization of

musculature can be thought of as joint stiffness, or how a joint resists a movement.

Scientific research has been performed in investigating the joint stiffness of various joints

of the human body including the shoulder [1], elbow [2] [3], and ankle [4]. The total stiffness

of a joint can be separated into intrinsic and reflexive contributions. The intrinsic stiffness

will give us insight to the mechanical properties of joints and musculo-skeleton structure.

This includes muscle compliance, skin elasticity, and bone/tissue frictional losses. These

properties are not dependent on the bodys attempts to control motion. The reflexive stiffness,

on the other hand, gives us insight into how the neural system performs the motor control of

the muscles at that particular joint. This includes a reflex delay and the systems controlling

flexion and extension of the muscles.

Joint stiffness and Parkinsons disease are related through a term called Parkinsonian

rigidity. Rigidity is a uniform increase in muscle tone, described as a constant resistance

throughout the range of passive movement and is present during all directions of movement

[5]. Joint movement is only possible because all muscles have an opposing muscle. This means
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that when one muscle contracts the other stretches and vice versa. With Parkinsons disease,

the proper synchronization of opposing actions of the muscle pairs is impaired, resulting

in all muscles remaining in the contracted state when the join is in a relaxed position [6].

This constantly-contracted state has an adverse effect on the spring-like properties of joints,

altering the relationship between joint torque and joint angle and can be depicted as a

constant resistance.

Since intrinsic stiffness is independent of control signals from the neural system, Parkin-

sonian rigidity only has an effect on reflexive stiffness. By separating and identifying the

intrinsic and reflexive components of wrist stiffness, it is possible to gain a better under-

standing of the effect that Parkinson’s disease has on the motor control system. Similar

approaches have been performed on patients exhibiting spastic motions of the elbow [7] and

ankle [8]. While this research is primarily performed for scientific reasons and a general

understanding of the effect of Parkinsons disease on the motor control system, the method

could lead to early detection of Parkinson’s disease in patients not exhibiting typical symp-

toms, a quantitative analytical measurement of the severity of the disease, and as a testing

mechanism for the effectiveness of new medicines.

The main purpose of this work was to apply the parallel pathway joint stiffness model [4]

and test its validity to the wrist joint for Parkinsons disease patients. This was performed

by acquiring data through the use of a test setup designed for the exdperiment, discretzing

the continuous-time models in the parallel pathway model, and performing ARMAX sys-

tem identification techniques to determine the models parameters. The results were then

examined, thus highlighting strengths and weakness in the model.
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2.0 ANALYSIS METHODS

2.1 TEST DESCRIPTION

2.1.1 Apparatus

The test setup consists of an adjustable chair, forearm splint, and servomotor used to stretch

and shorten wrist muscles by applying rotational perturbations to the subject’s wrist joint.

The subject sits in an adjustable chair and places their hand into a U shaped channel which

is connected to the servomotor, as depicted in Figure 1. The axis of the wrist joint is aligned

with the shaft of the servomotor, so that rotation of the servomotors shaft produces an

equivalent angular rotation of the wrist joint. The subjects arm is supported on a horizontal

plane and secured in place using a vacuum bag splint to prevent forearm pronation and

supination. This splint ensures that any torque measured will be purely from the flexor and

extensor muscle groups that control the wrist joint. The servomotor is driven by a computer-

generated pseudo-random binary sequence, as seen in 2. The displacement amplitude was

2.5 degrees in both directions. It is important that the positional rotations must be small

enough to result in a linear joint stiffness characteristic, but large enough so that stiction of

the wrist joint is a small contributor to the dynamic response.
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Figure 1: (a) Horizontal view of test apparatus (b) Top down view of test apparatus.
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2.1.2 Test Subjects

Ten test subjects were recruited and referred by a neurologist from the Department of Phys-

ical Therapy at Creighton University. These subjects experienced joint rigidity as a predom-

inant symptom of Parkinsons disease. Prior to testing, the subjects were rated for severity

of disability and rigidity on the unified Parkinsons disease rating scale (UPDRS) by means

of a motor examination. All subjects had consented to the experiment which was approved

by the Institutional Review Board of Creighton University.

2.1.3 Testing Procedure

Test subjects were asked to be seated in a chair whose height was adjusted until their

forearm rested comfortably on the arm splint. Before starting the test, a neutral position,

defined as zero degrees, was found by both visual alignment and passive force measurement.

Next, test subjects were given practice trials to become accustomed to the device. There

was a two-minute break to prevent fatigue and avoid potential habituation. Each subject

was asked to completely relax the wrist muscles to their maximum capability and then the

pseudo-random binary sequence was applied. To preclude a test subject from predicting

a forthcoming perturbation through habituation and thus preparing a reflexive resistance

before it occurs, however, prediction of a perturbation is not possible during these tests due

to the pseudo-random nature in which the perturbation signal was generated.

Surface EMG signals were recorded from the flexor carpi radialis (FCR), flexor carpi

ulnaris (FCU), extensor carpi radialis (ECR), and extensor carpi ulnaris (ECU) muscles

using differential surface electrodes. The EMG signals were amplified by 10 and band-pass

filtered with a bandwidth 20 - 450 Hz before sampling at a rate of 1 kHz per channel. The

area where the electrodes were applied was properly prepared and the electrodes were placed

over the belly of each muscle. Angular position and velocity were recorded using the encoder

outputs from the servomotor controller. Joint torque was measured with a strain gauge

torque transducer. The angular position, velocity, and joint torque were sampled at 1 kHz

per channel.
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2.2 PARALLEL WRIST STIFFNESS DYNAMICS

The wrist dynamics can be thought of as a parallel combination of intrinsic and reflexive

contributions, as seen in Figure 3. Variations of this idea has been applied to the ankle [4],

shoulder [1], and elbow [2][3]. Even though the motion for these joints and the wrist differ,

it has been theorized that the same model can be used because the mechanical, muscular,

and neural properties are similar.

Figure 3: Parallel Pathway model for joint stiffness.

To separate intrinsic and reflexive torque and to determine the parameters for their

respective systems, it is necessary to analyze position, velocity and torque signals obtained

from testing. Position is the rotational position, or joint angle, of the wrist in degrees.

Velocity is the speed at which the wrist gets to a position. Torque is a rotational force

that causes a change in rotational motion. As it applies to this experiment, the torque is

a measure of the force required to move a subjects wrist during a perturbation. The total

measured torque (from the wrist) Tq is a combination of intrinsic torque, TqI , and the

reflexive torque, TqR, as seen in the relationship

Tq = TqI + TqR. (2.1)

2.2.1 Intrinsic Stiffness

The intrinsic component can be thought of as a measure of joint stiffness over the range of

motion of the wrist joint. Parkinson’s disease and other diseases that affect the central ner-

vous system should not have an effect on any of the intrinsic stiffness parameters. However,

factors such as age, past injuries and diseases that affect the tissues that act as cushions
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inside the joints such as Osteoarthritis and Rheumatoid arthritis can have an affect on these

parameters, therefore, patients in the study were screened for these conditions.

The intrinsic component of torque is due to the force required to overcome the intrinsic

mechanisms of the wrist and is considered to be modeled by a linear, dynamic response to

position with no delay [4]. Consequently, the intrinsic stiffness dynamics can be represented

by the equation

HIS =
TqI(s)

θ(s)
= Is2 + Bs + K (2.2)

where TqI is intrinsic torque, θ is joint angle relative to the rest reference position, I is

inertial parameter, B is viscous damping parameter, K is elastic stiffness parameter and

s is Laplace variable. Since s is dependent upon frequency, K may also be considered the

steady-state gain of the intrinsic stiffness system model. It is important to note that equation

2.2 presumes viscous damping, linear rotational stiffness and no stiction or other frictional

losses that are not linearly related to joint velocity.

2.2.2 Reflexive Stiffness

The reflexive component of torque can be thought of as the force applied by the patient to

overcome the rotational perturbation. Since Parkinson’s disease affects the central nervous

system which therefore affects motor control, reflexive stiffness is expected to be affected by

this disease. In general, reflexive stiffness will be affected by anything that affects the supra

spinal level of the motor system.

The reflexive component of torque is due to the force required to overcome the reflexive

mechanisms of the wrist and is modeled as a differentiator in series with a delay, a static

nonlinear element, and then a dynamic linear element [4]. The static nonlinear element

is essentially a half-wave rectifier. The reasoning behind the rectifier is that flexion and

extension systems are different. They both are governed by the same model but target

different groups of muscles. Flexion motions target the flexor-pronator group of muscles

including the carpi radialis, palmaris longus, and flexor carpi ulnaris, while extension motions

target the extensor-supinator group including the extensor carpi radialis brevis, extensor
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carpi radialis longus extensor carpi ulnaris. These groups of muscles differ in length and

diameter and they will have different have different values for gain, damping, and natural

frequency.

Reflexive stiffness linear element dynamics can be modeled as a standard second-order

low-pass system in series with a delay such as

HRS =
TqR(s)

V (s)
=

GRω2
0

s2 + 2ξω0s + ω2
0

e−st (2.3)

where TqR is reflexive torque, V is joint angular velocity, GR is the reflexive gain, ω0 is the

natural frequency, ξ is the damping factor, t is the reflex delay, and s is the Laplace variable.

2.2.3 Reflexive Component Delay

When the wrist position is rapidly changed, there is a time delay through the bodys natural

feedback system. Once a disruption has been sensed at the point of origin, the signal must

travel from the point of origin to the spinal cord. Then the spinal cord will send a signal

back to the muscles informing them to resist this movement. During simple movements,

such as the ones used in this experiment, the spinal cord is capable of coordinating muscle

activity without the help of the brain. The brain is only necessary for complex or atypical

motions. In order to accurately identify the system for the reflexive component of torque,

one must determine this delay from the position and electromyography data.

2.3 PARAMETER ESTIMATION

2.3.1 Discretization

The bilinear Transform maps any point on the left half of the s-plane to a point on or

within the unit circle on the z-plane [9]. This complete mapping means that the bilinear

transform has a good characterization of the higher frequency components of a system [10].

The bilinear transform is
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s =
du(t)

dt
≈ 2

T

1− z−1

1 + z−1
(2.4)

where s is the Laplace variable, T is the sampling time, and z is the shift operator for the

z-domain.

However, discretization using the bilinear transform of a continuous-time system with

no poles transforms the system into a discrete system with a pole in the z-domain that

corresponds to an unstable pole on the jΩ axis in the s-domain [11]. For this reason,

Newtons backward difference formula will be used to map derivatives used in intrinsic torque

calculations to the z-domain

s =
du(t)

dt
≈ u(n)− u(n− 1)

T
(2.5)

where s is the Laplace variable and T is the sampling time [12].

2.3.2 ARMAX(Autoregressive Moving Average with eXongenous inputs)

Given a set of time series data, an ARMAX model is a technique for understanding and

predicting future values of the time series. This model contains an autoregressive (AR)

model, a moving average model (MA), and combines linearly current and prior terms of a

known, and external, time series.

The autoregressive model describes a stochastic process that can by described by a

weighted sum of its previous values combined with a white noise error signal [13]. This

means that a value at time t is based upon a linear combination of prior and current values.

The moving average part is used as a low-pass filter in order to smooth out the time series

and reduce some of the high-frequency variance, thus highlighting long-time trends [13].

It is not possible to identify time-varying parameters, therefore, the parameters must have

stationary distribution within the time series being examined. Time-varying parameters can

be estimated by using a recursive identification method, but in the case of wrist stiffness

model, the parameters are considered stationary. It is possible that fatigue could affect the

parameters over time, but the testing duration is short and test subjects are given long

breaks between tests to reduce the potential for fatigue issues.
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The compressed general form of an ARMAX model is: [14]

A(z)y(t) = B(z)u(t) + C(z)e(t) (2.6)

This describes the I/O relationship of a linear system written as a difference equation where

y is the output, u is the exogenous input and e is an uncontrolled input, such as white noise.

A, B, and C are polynomials in z that represent the orders of the models. The higher the

order of these polynomials, the more prior values of the time series are necessary. In the case

of a time series set of data, z does not refer to the z-transform, but it is used just as a shift

operator

z−1X(k) = X(k − 1) (2.7)

After specifying the orders, least squares regression is used to find the coefficients of

the polynomials which minimize the error. For the k-th entry in the time series, the error

varepsilon(k, θ) is defined as

ε(k, θ) = y(k)− ŷ(k) = y(k)− φ(k)T θ (2.8)

where φ(k) is a combination of past input and output values, θ is the vector corresponding

to the parameters, y is the actual output of the system, and ŷ is the estimated output. The

above can be rewritten in vector form:




ε(1, θ)

ε(2, θ)

ε(3, θ)




=




y(1)

y(2)

y(3)



−




φ(1)

φ(2)

φ(3)




θ → EN(θ) = TN − ΦNθ. (2.9)

Ideally, the error for the k-th term should be

E [ε(k, θ) | φ(k)] = 0 (2.10)
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However, the best estimate of parameters will yield the minimum of the sum of the squared

prediction error

minθEN(θ)T EN(θ) (2.11)

By means of orthogonal projection the least squared error estimator is found to be

θLS =
(
ΦT

NΦN

)−1
ΦT

NΦNYN (2.12)
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3.0 IDENTIFICATION METHODS

3.1 INTRINSIC STIFFNESS DYNAMICS

As described earlier, the model for the intrinsic stiffness dynamics are expressed in Eq. 2.2.

However, the system identification of such a model’s parameter’s is difficult. The models lack

of poles causes instability at high frequencies causing it to grow without bounds. Therefore,

it was suggested that it was necessary to invert intrinsic stiffness dynamics and obtain its

inverse, intrinsic compliance dynamics instead [4]. The resulting equation becomes

HIC(s) =
θ(s)

TqI(s)
=

1

Is2 + Bs + K
. (3.1)

This system resembles the well known mechanical spring where I is the mass, B is the

coefficient of viscous damping parameter and K is the spring stiffness. When the intrinsic

stiffness dynamics are discretized using Newtons backward formula, the intrinsic stiffness

dynamics become

HIS(z) =
(

I

T 2
+

B

T
+ K

)
+

(
− 2I

T 2
− B

T

)
z−1 I

T 2
z−2 (3.2)

which is a moving average FIR filter. Using equation 3.2, it is not necessary to find intrinsic

compliance first because the system is always stable. In addition, finding intrinsic stiffness

directly has an advantage over finding intrinsic compliance first. The ARMAX identification

procedure, like any optimization routine, attempts to minimize the error between the actual

output and the estimate. In the case of a noisy input signal, this error would be additive

measurement noise. Using the intrinsic stiffness model, intrinsic torque can be described as

12



TqI(z) = B(z)θ(z) + ηs (3.3)

where TqI(z) is intrinsic torque, B(z) is a polynomial in z, θ(z) is joint angle, and ηS is the

noise associated with intrinsic stiffness model. Using the intrinsic compliance model, joint

angle can be described as

θ(z) =
B(z)

A(z)
TqI(z) + ηc (3.4)

where TqI(z) is intrinsic torque, B(z) and A(z) are polynomials in z, θ(z) is joint angle, and

ηC is the noise associated with intrinsic compliance model.

As stated earlier, the ARMAX identification procedure minimizes the noise during its

identification of the parameters. However, the noise associated with intrinsic stiffness, ηS,

is not the same as the noise associated with intrinsic compliance, ηC . If the inverse of

intrinsic compliance was used as intrinsic stiffness, the models and parameters would not be

optimized.

Due to the reflexive delay, it can be assumed that from the beginning of a rotational

displacemtn perturbation and up until the reflexive delay of the torque response occurs,

the torque is purely due to the intrinsic stiffness dynamics. Although the reflexive delay is

assumed to be accurate, it is only an estimate. It is known that the first 40 ms of response to

a perturbation is purely intrinsic [4] and, knowing that the intrinsic dynamics can be modeled

as a FIR filter of the second order, the system response should have occurred within this

40 ms period. Consequently, an accurate identification of the intrinsic system is possible.

Therefore, only the first 40 ms of torque response after a perturbation occurs is used in the

identification procedure to determine the intrinsic compliance dynamics.

Since there are numerous perturbations and torque responses per test, it is necessary to

create average perturbation and torque response waveforms. To create an average waveform,

the segments of perturbations and torque responses were gathered separately. The waveforms

were then analyzed and were chosen or rejected due to their maximum value, minimum value,

and area under the curve. After outliers were removed, the waveforms were averaged together

to create an average perturbation. The averaging process is beneficial because the noise in
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the signal is assumed to be Gaussian white noise and the average process should minimize

the noise resulting in a cleaner waveform.

Figure 4: Average position perturbation (a) and average torque response (b).

Once the average perturbation and torque response waveforms are obtained, the ARMAX

identification procedure is used to obtain an initial estimate of the intrinsic torque. Using

this estimate, the ARMAX identification procedure is performed on the entire data set to

find the proper order I/O relationship of the form

TqI(z)

θ(z)
=

(
a0 + a1z

−1 + a2z
−2

)
(3.5)

Relating 3.2 and 3.5 and using linear algebra, it is possible find the relationship between

the discrete-time and continuous time parameters:




a0

a1

a2




=




1
T 2

1
T

1

− 2
T 2 − 1

T
0

1
T 2 0 0







I

B

K




. (3.6)

3.2 REFLEXIVE DELAY

The delay is defined to be the time between a change in rotational position of the wrist and

a corresponding spike recorded in the EMG. Since EMG signals are very noisy, due to the

fact that the measurement may not come from a single muscle and that, consequently, there
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is a lot of measurement noise, a spike in the EMG is only considered substantial if it passes

a threshold substantially greater than the variance of the noise in the signal. This threshold

is set to be two standard deviations above the mean of the EMG. Figure 5 shows an example

of an EMG and the peaks located above the threshold.
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Figure 5: Typical EMG signal depicting significant peaks above a set threshold.

Each muscle may not necessarily demonstrate a spike due to each position change. There-

fore, it is necessary to measure the delay associated between the position signal and all

measured EMGs. The measured delays are then pooled together, outliers are removed and

finally the mean of the delays is considered to be the measured delay.

This is not necessarily the true delay; it is only an estimate. The process identifies when

a typical peak of a spike occurs, but that is not necessarily when the reflex occurs. It is

unclear whether the actual reflex delay occurs at the peak of a spike, at the beginning or at

the end. In addition, there is no way to tell the exact beginning or end of a spike. Therefore,

it is necessary to test a range of delays spanning from before to after the calculated delay.

The delay that yields the best fit of the data will be assumed to be the correct delay.
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3.3 REFLEXIVE STIFFNESS DYNAMICS

As described previously, flexion and extension parameters are different. In order to determine

the flexion and extension parameters, velocity and torque signals are half-wave rectified twice

accordingly in order to separate flexion and extension torque responses. Reflexive delays may

differ between the two systems, but the difference is negligible.

The second order model of the reflexive stiffness dynamics system is described by Eq.

2.3. This model is discretized using the bilinear transformation to become

HRS(z) =
TqR(z)

V (z)
=

b0 (1 + 2z−1 + z−2)

a0 + a1z−1 + a2z−2
z−τ (3.7)

b0 = GRω2
0

a0 = 4
T 2 + 4ξω0

T
+ ω2

0

a1 = − 8
T 2 + 2ω2

0

a2 = 4
T 2 − 4ξω0

T
+ ω2

0

(3.8)

The coefficients of the numerator polynomial in Eq. 3.7 must be one, two, one in order to re-

turn to the Laplace domain, with the same continuous-time system, from the z-domain.

Performing the ARMAX identification procedure while using this constraint is difficult.

Therefore, the data will be filtered to eliminate this constraint. The transfer function then

becomes

HRS(z) =
TqR(z)

V ′(z)
=

b0

a0 + a1z−1 + a2z−2
z−τ (3.9)

where

V ′(z) =
(
1 + 2z−1 + z−2

)
V (z) (3.10)

The continuous time delay is transformed into a discrete time delay, τ ,

τ =
⌈ t

T

⌉
(3.11)
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where t is the continuous time delay and T is the sampling time. Using 3.8 and 3.9 it is

possible to obtain the continuous-time parameters by

ω0 =

√
a1+ 8

T2

2

ξ = (a0−a2)T
8ω0

GR = b0
ω2

0

(3.12)

3.4 IDENTIFICATION PROCEDURE

The parameter identification procedure is outlined below:

1. The reflexive component delay estimate is determined using the position and electromyo-

graphy data according to the methods of section 3.2.

2. Parameters for the intrinsic stiffness model are then calculated, as outlined in 3.1, and

an intrinsic torque estimate is calculated, T̂ qI

3. Using the reflexive delay and intrinsic torque estimates, one can separate reflexive torque

from the net torque,

T̂ qR = TqN − T̂ qI (3.13)

This will then be used to determine the parameters for the reflexive stiffness model, as

in section 3.3, and generate a reflexive torque estimate based on that model.

4. The estimated net torque

T̂ qN = T̂ qI + T̂ qR (3.14)

is now computed and the model is compared to the actual net torque by a percentage

variance accounted for (%VAF) calculation. The %VAF is a measurement of the variance

between an estimated signal and the actual signal,

%V AF = 1−
∑N

1

(
TqN − T̂ qN

)2

∑N
1 (TqN)2 (3.15)
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where N is the length of the observation

5. A new intrinsic torque estimate is computed using

T̂ qI = TqN − T̂ qR (3.16)

and the estimation procedure is repeated from step 3 using this new estimate until

successive iterations did not increase %VAF.
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4.0 RESULTS

4.1 DATA PREPARATION

It was suggested that there are no significant frequency components in the torque signal

above 100 Hz [4][11]. For this reason, all data was first filtered at a cutoff frequency of 100

Hz using an 8th order Butterworth filter to attenuate high frequency noise and was then

resampled, implementing an anti-aliasing filter, at 200 Hz. All data was filtered using the

same filter to ensure that the group delay, the sample delay induced by the filter, be the

same for all signals. Figure 6 shows a grouping of the typical signals collected during an

experiment including joint angle, joint velocity, and joint torque.

4.2 REFLEXIVE DELAY

The reflexive delay is, as it pertains to this test, the time it takes the nerves to register a

position change, send the signal up to your spinal cord and return to the muscle for actions.

It was measured to be the time between a position change and a significant peak in the EMG

signal. Table 1 shows the results for the reflexive delay associated with each test subject.

Some error is expected due to the band-pass filtering of the EMG signal outlined in 2.1.3.

However, as mentioned in 3.2, delays before and after these values will be tested to eliminate

this error. An example or a position change and a corresponding spike can be seen in the

EMG in Figure 7, the time difference was measured as the delay.
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Figure 6: Typical signals collected during an experiment including joint angle, velocity, and

torque.

Table 1: Table of reflexive delays

Test Subject Delay(s)
1 0.0770
2 0.0805
3 0.0875
4 0.0745
5 0.0793
6 0.0703
7 0.0613
8 0.0569
9 0.0777
10 0.0775
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Figure 7: Beginning of a perturbation and corresponding peak in the EMG.

4.3 INTRINSIC STIFFNESS

Initially, the intrinsic stiffness parameters were to be determined by using Eq. 3.2. It became

immediately apparent, as can be seen in Figure 8, that a second order FIR moving average

filter was not poor fit based on the data collected, yielding a fit accuracy of less than sixty

percent.
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Figure 8: Joint position perturbation and corresponding torque response depicting a poor

fit of the discretized intrinsic stiffness model.

It was determined that a IIR system better described the intrinsic stiffness dynamics.

To determine the I, B, and K parameters, this system was then approximated by an FIR

system using a new technique. Intrinsic torque can be described by the following system,

TqI(s) =
(
Is2 + Bs + K

)
θ(s). (4.1)

The steady state gain K, can be found by taking the ratio of torque to position when

s = 0,

K =
TqI(s)

θ(s)

∣∣∣∣
s=0

(4.2)

This means, that given a substantial amount of time after perturbation, when the position

has not been changed, the intrinsic response should die out leaving only the intrinsic gain

steady state gain. Once K is known, then from 4.1

TqI(s)−Kθ(s) = (Is + B) sθ(s) (4.3)
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Now by recognizing that sθ(s) is velocity then

TqI(s)−Kθ(s) = (Is + B) V (s) (4.4)

This procedure reduces the system identification process down to the first order case. Dis-

cretization of this model is still necessary. However, it was already shown that Newtons

backward formula and the bilinear transform are not good approximations to a derivative,

so for this case, a higher order approximation is necessary. By definition,

s = jΩ (4.5)

where Ω is the continuous-time frequency and the corresponding continuous-time filter is

H(ejΩ) = jΩ, for|Ω| ≥ π (4.6)

The discrete approximation of Eq. 4.6 will be of the form

HN(z) =
N∑

n=1

an

2

(
zn − z−n

)
(4.7)

where N is the order of the approximation. By substituting z = ejΩ and then using Eulers

identity, the following expression is obtained

HN(ejΩ) = j
N∑

n=1

an sin nΩ (4.8)

By comparing the continuous time filter with the discrete approximation, it can be seen that

Ω ≈
N∑

n=1

an sin nΩ (4.9)

Expansion of the right-hand side of equation 4.9 using a Taylor series results in

Ω ≈
N∑

n=1

ann(2m+1)
∑

m≥0

(−1)m Ω2m+1

2m + 1
(4.10)

Ω ≈
N∑

n=1

an

[
nΩ− n3Ω3

3!
+

n5Ω5

5!
− . . .

]
(4.11)
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Ω ≈
N∑

n=1

anC1Ω− C3Ω
3 + C5Ω

5 − . . . (4.12)

Cn =





1 if n = 1

0 if n 6= 1
(4.13)

Through linear combinations of the elements it is possible to determine the ans




1

0

0
...




=




1 2 3 . . .

1 23 33 . . .

1 25 35 . . .
...

...
...

. . .







a1

a2

a3

...




(4.14)

With this method, it is possible to generate any order approximation. Figure 9 shows

the differentiating filters magnitude frequency response up to a 5th order approximation. As

can be seen, increasing the order improves the approximation to a true derivative, but comes

at a cost of increasing filter coefficients and, consequently, more values from the time series.
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Figure 9: Comparison of actual derivative to discrete approximations.
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Returning back to equation 4.4, the discrete domain derivative approximation replaces

the s variable. As an example, the 2nd order approximation this becomes

Tq(z)−Kθ(z)

V (z)
= I

(
2∑

n=1

an

2T

(
zn − z−n

))
z−2 + B (4.15)

The ARMAX procedure only works with causal systems so the coefficients of the derivative

approximation must be shifted in order to make the approximation causal.

Tq(z)−Kθ(z)

V (z)
= I

(
a1

2T
z − a1

2T
z−1 +

a2

2T
z2 − a2

2T
z−2

)
z−2 + B (4.16)

Tq(z)−Kθ(z)

V (z)
= I

(
a1

2T
z−1 − a1

2T
z−3 +

a2

2T
− a2

2T
z−4

)
+ B (4.17)

Tq(z)−Kθ(z)

V (z)
=

(
a2

2T
I + B

)
+

(
a1

2T
z−1 − a1

2T
z−3 − a2

2T
z−4

)
(4.18)

Parameter identification using the ARMAX procedure yields an I/O relationship of the form

Tq(z)−Kθ(z)

V (z)
= c0 + c1z

−1 + c3z
−3 + c4z

−4 (4.19)

where c2 has been set to zero to correspond with the discrete approximation of the derivative.

Relating equation 4.18 to equation 4.19, it is possible to determine the parameters I and B

as

I =
c1 + c3 + c4

b1 + b3 + b4

(4.20)

B = c0 − Ib0 (4.21)

The equation for B, 4.21, will remain the same for any N order approximation of s, but the

parameter I can be generalized to

I =

∑
n6=N cn∑
n 6=N bn

(4.22)
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To gather accurate representations of intrinsic torque and the steady-state gain K, the

identification procedure was first performed using a IIR system that yielded good results in

place of the intrinsic stiffness dynamics

TqI(z)

θ(z)
=

b0 + b1z
−1 + b2z

−2

a0 + a1z−1 + a2z−2
(4.23)

Once successive iterations of the identification procedure failed to make significant improve-

ments, the resulting intrinsic torque and steady state gain K found were used to identify

the parameters I and B. Figure 10 shows a typical intrinsic torque signal obtained from the

identification procedure.Table 2 shows the I, B, and K parameters for each of the ten test

subjects. A 3textrmrd order discrete approximation to the derivative was used to determine

the coefficients as outlined above.
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Figure 10: Typical intrinsic torque signal derived from identification procedure.
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Table 2: Table of intrinsic stiffness parameters.

Test Subject I(Nm/s2/deg) B(Nm/deg/s) K(Nm/deg)
1 277.0941 0.00035323 0.031098
2 175.0191 00033576 0.023278
3 91.7434 -0.00013886 0.0078602
4 248.9691 0.00018931 0.022131
5 220.162 -6.7238e-006 0.0068905
6 210.2832 0.00022184 0.013271
7 -3461.8371 0.088658 0.015227
8 144.7799 0.00030566 0.017641
9 200.562 0.00037608 0.02328
10 169.7191 1.8142e-005 0.014461

4.4 REFLEXIVE STIFFNESS

In tandem with identifying the intrinsic stiffness parameters, the reflexive stiffness parameters

are determined. The reflexive stiffness dynamics are only attributed to the neural systems

response to a perturbation. Reflexive stiffness parameters for flexion can be seen in Table 3

and for extension in Table 4.

Table 3: Reflexive Stiffness Parameters for flexion motions.

Test Subject GR ξ ω0

1 -3.3486e-013 3.354e-008 399.9988
2 1.1351e-012 7.043e-008 399.9988
3 -2.0765e-012 6.2722e-008 399.9988
4 -1.4184e-014 3.024e-009 399.9988
5 -2.5381e-012 4.5278e-008 399.9988
6 -6.7441e-013 4.5331e-008 399.9988
7 5.1146e-009 3.5749e-010 399.999
8 6.8288e-013 2.7966e-006 400.0001
9 -1.5108e-012 4.5676e-008 399.9989
10 -4.1262e-012 3.0446e-008 399.9989

The results for the reflexive torque parameters are very peculiar. In every instance, the

natural frequency is near identical while the reflexive gain and damping factor change. While

this could be a characteristic of Parkinsons disease it is extremely unlikely. In addition, the

reflexive gain in is extremely smals, implying that intrinsic wrist stiffness is dominant. The
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Table 4: Reflexive Stiffness Parameters for extension motions.

Test Subject GR ξ ω0

1 9.9364e-013 4.6632e-008 399.9988
2 -3.2519e-012 3.1629e-008 399.9989
3 7.7576e-013 4.2002e-008 399.9988
4 -2.0859e-012 1.8573e-008 399.9989
5 -3.6761e-012 4.5581e-008 399.9988
6 1.8086e-012 1.1889e-007 399.9988
7 1.3833e-008 2.8085e-009 399.999
8 -1.0725e-011 5.0065e-008 399.999
9 6.4797e-013 2.9852e-009 399.9989
10 -8.2285e-012 6.0816e-008 399.999

results do show that reflexive gain, GR, and the damping factor, ξ, are different for flexion

and extension confirming the prior belief that flexion and extension systems are different.
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Figure 11: Typical reflexive torque signal derived from identification procedure.
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An example reflexive torque signal is shown in Figure 11. The figure shows an oscillat-

ing wave at a much high frequency than that of intrinsic torque. This oscillation can be

attributed to the most prominent sign of Parkinsons disease, the hand tremor. Since the

tremor is not produced by anything intrinsically, its cause is purely reflexive. A normal hand

tremor is in the range of 3 to 8 Hz when the hand is at rest [15]. In contrast, the range

of tremor from these results are in the range of 15 to 20 Hz. It is likely that the higher

frequency range from these results is due to the fact that the hand is not at rest, but moving

according to the position change. It is also apparent from Figure 12 that the tremor is of

greatest magnitude directly following a perturbation, after which it begins to decay. This

can be associated with action tremor which increases with movement and lessens with rest

[15].
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Figure 12: Perturbations and the corresponding reflexive torque signal.
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4.5 NET TORQUE

The total effectiveness of the parallel pathway model and the identification procedure can

be seen in Table 5. Overall, the procedure did a good job in estimating torque , only in two

instances did the identification procedure perform worse than 75% VAF. However, in one of

the two instances, the results failed to converge and did not provide any useful measure of

estimated torque.

Table 5: %V AF values for the experiments.

Test Subject %VAF
1 77.73
2 88.47
3 43.04
4 85.23
5 75.89
6 83.33

909 7 < 0
8 86.45
9 86.81
10 85.78

Figure 13 compares actual net torque, TqN , and the net torque estimate, T̂ qN , from the

identification procedure. While the estimated torque is reasonably close to the actual torque,

in more than a few instances the peaks do not match. This may imply that there are some

higher frequency components that were not accounted for in the estimation.
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5.0 DISCUSSION AND CONCLUSION

The parallel pathway for joint stiffness model has been proven to work well for joints such

as the ankle and the results for the experiments conducted for this research indicate that

the same is true for wrist stiffness in Parkinson’s disease patients. It is my belief that with

some improvements, the parallel pathway joint stiffness model would be appropriate for

characterising the intrinsic and reflexive stiffness dynamics of a Parkinsons disease patients

wrist joint.

Adding poles to the system for intrinsic stiffness, changing the system into an IIR system,

drastically improved the results. This implies that the intrinsic stiffness dynamics may be

better described by an IIR system [2] [1]. Furthermore, increasing the order of the IIR

system used to find intrinsic torque did not improve the results. This also suggests that the

system used to determine intrinsic torque is a better system than the one used in the parallel

pathway model.

It has also been shown that the model for the reflexive stiffness dynamics may be incor-

rect [1][16][17], but based upon the high %VAF of net torque produced from the evaluated

reflexive stiffness system it is likely that the model tested is appropriate. However, this is

difficult to discern because the identification procedure hinges on a correct estimation of the

intrinsic stiffness dynamics. If the intrinsic stiffness dynamics estimate from the first 40 ms

of a perturbation response is governed by the wrong model, some intrinsic stiffness dynamics

will be attributed to the reflexive stiffness dynamics.
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The reflexive stiffness dynamics depicted parkinsonian hand tremor as seen in Figure

11. Although the frequency was higher than what is expected of resting tremor, it was

determined that this could be attributed to the rapid change in position resulting in what is

known as an action tremor. As expected, the action tremor was greatest during movement

and decreased with rest as seen in Figure 12.

Something that may reduce the effectiveness of this procedure is that the systems de-

scribed in the parallel pathway model are all continuous-time. The discretization methods

used are not perfect and there is some error associated with each of them. For instance,

Newtons backward formula does not map the left hand side of the s plane on to the entire

unit circle. While the bilinear transformation is able to map the entire jΩ-axis in the s-plane

to one revolution of the unit circle in the z-plane, the transformation between the continuous-

time and discrete-time frequency is nonlinear with respect to frequency [9]. This problem

is usually counteracted by pre-warping the frequency axis but, the desired continuous-time

or discrete-time frequencies variables must be known for an effective warping. In the case of

system identification, these variables are not known thus, pre-warping can not be performed.

A strong concern is how Parkinsons disease affects the validity of the identification

method. As described earlier, Parkinsons disease affects the central nervous system, which in

turn, has an effect on motor control. Parkinsonian rigidity, one characteristic of Parkinsons

disease, places the muscles acting on a joint in constant contraction. This means that the

muscles contribute to the resistance when a perturbation occurs, despite their pseudo ran-

dom nature. Knowing this, it can be assumed that the initial guess of the intrinsic stiffness

dynamics based upon the first 40 ms after a perturbation contains some reflexive compo-

nents. If this is true, it is impossible to separate intrinsic and reflexive torque as described in

this method. This conclusion is supported by my results. The reflexive gain is so small that

the reflexive stiffness is negligible when considering the entire system. This implies that all

wrist joint stiffness is attributable to intrinsic properties only or that reflexive components

are included with the intrinsic stiffness results, the latter is more likely. It is clear that

another way of separating intrinsic and reflexive stiffness components is necessary.
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One possible way to separate intrinsic and reflexive contributions to the wrist stiffness

dynamics is to first have a patient use medication to reduce the symptoms of Parkinsons

disease and then perform the experiment. The intrinsic stiffness dynamics determined from

the experiment could then be combined with data from an experiment where the patient

was not administered medication. Then analysis of the combined data could lead to accu-

rate representations of intrinsic and reflexive stiffness. Another idea is to perform system

identification on the entire model at once. From the techniques described in this paper, it

is not possible due to the ARMAX procedures dependence on linear terms and nonlinearity

of the reflexive pathway. However, NARMAX [11] and other nonlinear system identification

techniques, Wiener kernel approaches [18] and Hammerstein cascade models [19] could be

used and will be investigated.

Despite some flaws in the procedure and model, it was still possible to obtain reasonable

results using the parallel pathway model. With some alterations, the parallel pathway model

could be used to identify intrinsic and reflexive components to wrist stiffness in Parkinsons

disease patients. From this, it would be possible to gain a better understanding of the

problems associated with Parkinson’s disease and develop new diagnosis techniques and

medicines.
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