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Wireless communications rely on access to radio spectrum. With a continuing proliferation

of wireless applications and services, the spectrum resource becomes scarce. The measure-

ment studies of spectrum usage, however, reveal that spectrum is being used sporadically

in many geographical areas and times. In an attempt to promote efficiency of spectrum

usage, the Federal Communications Commission has supported the use of market mecha-

nism to allocate and assign radio spectrum. We focus on the secondary use of spectrum

defined as a temporary access of existing licensed spectrum by a user who does not own a

spectrum license. The secondary use of spectrum raises numerous technical, institutional,

economic, and strategic issues that merit investigation. Central to the issues are the effects

of transaction costs associated with the use of market mechanism and the uncertainties due

to potential interference.

The research objective is to identify the pre-conditions as to when and why the secondary

use would emerge and in what form. We use transaction cost economics as the theoretical

framework in this study. We propose a novel use of agent-based computational economics

to model the development of the secondary use of spectrum. The agent-based model allows

an integration of economic and technical considerations to the study of pre-conditions to the

secondary use concept. The agent-based approach aims to observe the aggregate outcomes as

a result of interactions among agents and understand the process that leads to the secondary

use, which can then be used to create policy instruments in order to obtain the favorable

outcomes of the spectrum management.
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1.0 INTRODUCTION

Innovative wireless communications services are increasingly among the most cutting edge

technologies in the past decade. During this period, wireless communications industry has

grown by orders of magnitude due to enabling technologies which allow widespread deploy-

ment and smaller, more reliable, and more affordable equipments. This explosive growth

has driven regulatory bodies and researchers to look into the use of radiocommunications

spectrum which is the fundamental resource needed for wireless systems to function. This

chapter provides a brief background of radiocommunications spectrum, current issues in

spectrum management, and motivation that leads to this dissertation.

1.1 BACKGROUND

1.1.1 Radiocommunications Spectrum

In order for wireless communications to function, they must have access to a portion of

radiocommunications spectrum resource. Radiocommunications spectrum (hereafter radio

spectrum or spectrum) refers to the range of frequencies of electromagnetic radiation that

is useful for the purposes of communications. Radio spectrum is typically defined as fre-

quencies that lies between 9 kHz and 3,000 GHz. Most of the current technologies, however,

can practically exploit spectrum below 100 GHz. Therefore, allocation of spectrum is only

identified up to 300 GHz.

Different frequencies have different properties and are suitable for different uses. In gen-

eral, lower frequencies can travel further in distance and can penetrate dense materials such

1



as walls, floors, and ceilings, making them suitable for transmissions that demand large cov-

erage areas such as radio and television broadcast. Higher frequencies can travel shorter in

distance, thus making them suitable for short-range or point-to-point transmissions. These

frequencies, however, can be reused to increase overall capacity in a given area. The proper-

ties of radio spectrum cause frequencies below 3 GHz much more crowded with incumbents

compared to the higher frequencies. Other technical limitations also affect the usefulness of

spectrum at different frequencies. For example, certain scientific applications such as radio

astronomy and meteorology need to operate in certain frequencies range and these cannot

be substituted.

Radio spectrum is considered as an intangible commodity necessary to the successful

deployment of wireless communications technologies and services. Its importance as a critical

component of telecommunications systems is rising because of the following factors. First,

spectrum access demand continues to increase due to the well-known advantages of wireless

networks over wired networks in many situations, which include mobility, installation speed

and flexibility, and reduced cost of ownership. Second, technological innovations of wireless

services and applications such as third-generation wireless networks (3G), broadband wireless

networks, and ad hoc networking, create a higher spectrum access demand for certain parts of

radio spectrum. Third, uninterrupted access to the spectrum resource is essential for existing

uses of radio spectrum to continue their operations, including military communications,

public safety uses, and aeronautical communications.

Accordingly, regulators need to provide adequate access for both the existing uses and

new technologies in order to create a balance between protecting the operations of existing

users and fostering new wireless technologies. With a limited amount of spectrum resource,

the stakes are quite high for service providers who are relying on spectrum access to maintain

their operations and for those who seek to provide new services.

1.1.2 Spectrum Scarcity and Harmful Interference

As mentioned earlier, the amount of spectrum that is technically suitable for a particular

application is limited. Spectrum scarcity is further increased because it cannot be shared

2



indiscriminately. This leads to the concept of interference in technical terms which has a

direct relationship to spectrum scarcity in economic terms. Wireless communications may

suffer from interference when the receivers are unable to discriminate signal(s) that they are

supposed to receive from other unwanted signals. Such interference is typically occurs when

users are using similar frequencies at the same point of time and are within close geographical

proximity to each other.

Consequently, one of the main goals of spectrum management is to avoid harmful in-

terference among communication systems. Harmful interference is defined as interference

that endangers the functioning or seriously degrades, obstructs, or repeatedly interrupts a

communications system [1]. A certain amount of interference from one system, however, is

allowed into another system as long as it is not considered harmful. This is the basis of

interference management to define an exclusive frequency license.

In the traditional approach to managing spectrum access, which is typically referred

to as a command and control regime, the government controls the spectrum and decides

how frequencies are distributed. The use of spectrum in the United States is managed

using a dual organization structure. The National Telecommunications and Information

Administration (NTIA) manages the spectrum use of the Federal Government while the

Federal Communications Commission (FCC) regulates all other uses (i.e., non-federal users).

Key terms in spectrum management are allocation, use, and assignment. An allocation of

spectrum designates what radiocommunications service can be used in specific frequencies.

Radio services include fixed, mobile, fixed satellite, mobile satellite, broadcasting, amateur,

aeronautical mobile, maritime mobile, and so forth. The NTIA and the FCC maintain the

U.S. frequency allocation chart.

The regulators also determine the use of spectrum that have been allocated to a specified

radio service. For example, a frequency band allocated for mobile service can be authorized

to operate different uses such as cellular telephony or public safety. Uses for a frequency band

allocated for broadcasting can be television broadcast or radio broadcast. Technical rules

and operation guidelines are tailored to the characteristics of applications and technologies

that are associated with the use of each frequency band.

An assignment, also known as an (exclusive) license or an authorization, is a process of

3



granting permission to utilize a portion of spectrum resource to a specific spectrum user.

Once the license has been granted, other spectrum users are not allowed to operate in those

frequencies in the specified geographical area for the duration of the license. An exclusive

license can be granted in a number of ways. Assignment methods include first-come, first-

served basis, comparative hearings (beauty contests), lotteries, and auctions. The auction

method, however, is gaining popularity in many countries due to its nonsubjective nature

and the attendant financial gains for the government.

This administrative approach in spectrum management is considered inflexible in re-

sponding to changes in technology and changes in market demand for spectrum-based ser-

vices that may affect to demand for spectrum. As the spectrum management is closely tied to

existing services and technologies, changes in spectrum allocation, use, and assignment may

take several years and involve complex negotiation processes and lobbying activities both

domestically and internationally. Accordingly, critics often argue that spectrum scarcity is

artificial because of the command and control regime. More specifically, this traditional

approach is mainly focused on minimizing interference rather than maximizing economic

benefits of using spectrum resource. Since incumbent license holders are protected from

interference, they have little or no incentive to improve the efficiency of their spectrum use.

As a result, incumbent users do not operate efficiently as they could, leading to spectrum

scarcity.

In the United States and many countries, the process of assigning licenses to commercial

uses has settled upon the use of auctions. Tables 1.1 and 1.2 show industries’ willingness-to-

pay for spectrum through the results of the spectrum auctions for 3G licenses in Germany

and the United Kingdom and, more recently, the auction of Advanced Wireless Services

in the United States. These auction data demonstrate that the industry is willing to pay

substantial amounts (in billions of dollars) for exclusive licenses. They also provide evidence

of a high degree of spectrum scarcity and the industries’ perceived advantages of offering

new wireless services with new technologies.

4



Table 1.1: 3G Spectrum Auction Results of Germany and the U.K.

Operator Final Bid Price Spectrum Band Dollars per MHz-POP1

(billions of USD)
Germany
T-Mobile 10.26 2x10 MHz, 5 MHz $6.22
Vodafone D2 10.20 2x10 MHz, 5 MHz $6.18
E-Plus 3G 10.14 2x10 MHz, 5 MHz $6.15
O2 (Germany) 10.20 2x10 MHz $6.18
MobilCom Multimedia 10.14 2x10 MHz, 5 MHz $6.15
Quam (Group 3G) 10.14 2x10 MHz, 5 MHz $6.15
United Kingdom
Hutchison 3G 7.71 2x15 MHz, 5 MHz $4.30
Vodafone 10.48 2x15 MHz $5.84
O2 7.08 2x10 MHz, 5 MHz $5.92
T-Mobile (UK) 7.04 2x10 MHz, 5 MHz $5.89
Orange 3G 7.20 2x10 MHz, 5 MHz $6.02
1 We ignore the unpaired spectrum since bidders place little value on the unpaired
spectrum [2].
Note: Both auctions were held in 2000. License period is 20 years for both countries.
Germany has a population of 82.5 million and the UK has a population of 59.8 million.
Sources: [3], [4], and [5].

Table 1.2: Top 10 Bidders in Spectrum Auction of Advanced Wireless Services in the U.S.

Bidder Final Bid Price
(billions of USD)

T-Mobile 4.18
Verizon Wireless 2.81
SpectrumCo (Comcast, Time Warner, Sprint Nextel, etc.) 2.38
MetroPCS 1.39
Cingular 1.33
Cricket (Leap Wireless) 0.71
Denali Spectrum (Also by Leap Wireless) 0.37
Barat Wireless (U.S. Cellular) 0.17
AWS Wireless 0.12
Atlantic Wireless 0.10
Note: The auction was held in 2006. License period is 15 years.
The total bid is 13.88 billion dollars. The average dollars per MHz-POP is $0.53.
Source: [6].
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1.2 MOTIVATION

Explosive demand for spectrum-based applications and technological advances in spectrum-

based devices are the main driving forces of spectrum policy reform. In the United States,

the FCC, in its Spectrum Policy Task Force (SPTF) report [7], has determined to evolve its

spectrum policies towards more flexible and market-oriented approaches with the goal of pro-

viding incentives for spectrum users to employ technologically innovative and economically

efficient uses of spectrum.

Measurement studies of the spectrum use in the SPTF report indicate that portions of

spectrum are not in use in many geographical areas for significant periods of time. The

sporadic use of spectrum is due to the variation of operations of existing spectrum users over

time and the geographical separation among existing users. In response to this, the FCC has

taken steps to facilitate the development of secondary markets1 for spectrum usage rights

to permit spectrum to flow freely among users in response to economic demand [8]. The

secondary markets would allow incumbent spectrum users to lease unused portions of their

assigned spectrum to third parties who could put them into a better use. If the trade can be

conducted with transparency and accountability, the spectrum trading may impose a clear,

market-based opportunity cost upon incumbents, thereby providing them with incentives to

conserve spectrum. The development of secondary markets includes the markets for license

trading and for temporary access of existing licensed spectrum. This dissertation focuses

on the secondary use of spectrum defined as a temporal use by a user of licensed spectrum

owned by an incumbent who is distinct from the user.

Although the FCC is working on streamlining the administrative processes to encourage

secondary use of spectrum, there are a number of factors that might dampen incumbents’

incentives to share unused portions of spectrum. The outline of the issues and some of the

research results are discussed in our previous work [9, 10, 11, 12]. They are presented in

Chapters 5–7.

1Secondary spectrum market is a market in which spectrum license holders can resell their spectrum
usage rights.
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1.3 PROBLEM STATEMENT

The theme of this dissertation is on the development of secondary use of radio spectrum.

The goal is to identify and study issues that are needed to be resolved for secondary use of

spectrum to become feasible. In this dissertation, a primary spectrum user is defined as an

incumbent spectrum user who holds one or more exclusive licenses, and a secondary spectrum

user is referred to a spectrum user who temporarily leases portion(s) of spectrum from the

primary user. The possibility of spectrum sharing depends on several technical, institutional,

economic, and strategic issues from both sides of the lease. Some types of secondary use of

spectrum are potentially suitable in some environments and for some wireless services and

not in others. It is thus necessary to evaluate the characteristics of both the primary and

the secondary users in a variety of scenarios. Accordingly, the problem statement is given

by the following key research questions:

• Why would a primary user want to share portions of his/her spectrum for secondary

use? What are the conditions?

• Why would a spectrum user want to become a secondary user? What are the conditions?

The outcome of this dissertation will assist policy makers to create interventions (i.e.,

policy instruments) in order to obtain the favorable outcomes of spectrum management. In

particular, it will enlighten the reality of secondary use and is a crucial step towards the

development of secondary spectrum market for a more efficient use of radio spectrum.

1.4 DISSERTATION OUTLINE

The remainder of this dissertation is organized as follows: Chapter 2 provides a literature

review of spectrum sharing approaches. Chapter 3 presents the theoretical framework and

research tool including the transaction cost economics theory and the agent-based computa-

tional economics. Building upon the foundation of Chapters 2 and 3, Chapter 4 elaborates

the research design, research questions, and experiments. Chapter 5 identifies issues in sec-
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ondary use of radio spectrum. The development and specifications of the agent-based model

and the results and discussion of statistical testings are presented in Chapters 6 and 7, re-

spectively. Finally, Chapter 8 concludes this dissertation and discusses the future research.
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2.0 SPECTRUM SHARING TECHNIQUES

In an attempt to improve efficiency of spectrum usage, researchers have identified multiple

approaches to enable spectrum sharing between primary and secondary users. This chapter

presents a review of current literature in spectrum sharing techniques and their associated

issues. Section 2.1 describes how spectrum can be subdivided into portions for sharing.

Section 2.2 provides a general classification of sharing techniques. Sections 2.3 and 2.4

review techniques and issues of cooperative and coexistent sharing approaches, respectively.

Finally, Section 2.5 summarizes the current literature.

2.1 SPECTRUM DIMENSIONING

When considering access to radio spectrum, policy makers and system designers need to

define a set of parameters that spectrum-based devices can be changed in order to access

different parts of spectrum. It is, however, not clear how spectrum should be subdivided as

one does not want to over-specify parameters and create unnecessary complexity. On the

other hand, defining too few parameters could undermine the ability of new technology to

access some parts of spectrum, and hence result in parts of spectrum remains idle.

Spectrum license is primarily defined over geographical area, frequency range, and power.

The FCC has recognized that this traditional definition of spectrum rights limits the full

use of spectrum, and is considering the addition of time dimension to allow more dynamic

allocation and assignment of spectrum usage rights [7].

Identifying dimensions of spectrum (i.e., defining spectrum space) is not only impor-

tant to the development of spectrum regulation to allow innovative approaches of spectrum
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Figure 2.1: Traditional interference management shown in a three-dimensional spectrum

space. The interference management is illustrated as reserving disjoint subspaces for exclu-

sive use; with gaps in all dimensions to keep the acceptable level of interference.

access, but also provide basis to define rights and responsibilities for using spectrum. Sev-

eral researchers have proposed models that capture multiple dimensions of radio spectrum

[13, 14]. The spectrum space is typically defined as an n-dimensional hyperspace in which

dimensions are orthogonal. Each dimension can be divided to provide multiple-access to

the spectrum space. In other words, each wireless signal can be uniquely identified by an

n-dimensional vector V = < v1, v2, . . . , vn >, and non-interfering signals (V1 and V2) will

occupy different points in the spectrum space, V1 6= V2 (see Figure 2.1). Table 2.1 lists the

spectrum dimensions proposed by researchers. This concept, however, is theoretical and is

based on several assumptions such as ideal transmitters, ideal receivers, and negligence of

signal propagation. In the real world, each dimension has its practical limitation as noted in

the table. It should be also noted that not all dimensions are necessarily orthogonal (e.g.,

modulation and coding scheme), but they can still be used to distinguish signals through

probabilistic methods.
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Table 2.1: Dimensions of Radio Spectrum Space

Dimensions Parameters Notes

Frequency Frequency

• Subdivision of too narrow frequency bandwidth
could result in unreasonable requirements for filter and
Doppler effect.
• In some cases, systems that utilize underlay transmis-
sions can coexist with other spectrum users in the same
frequency range.

Geographical space

Latitude

Longitude

Elevation

• Spectrum users cannot practically terminate the prop-
agation of signal right at the physical boundaries. Thus,
subdivision of physical space needs to consider the sig-
nal propagation of the systems and environmental condi-
tions in the area as they directly affect the geographical
coverage.

Time Time

• Subdivision of time influences the degree of coordi-
nation needed. The smaller time scale (in ms or ns)
implies a closer and more complicate coordination (syn-
chronization) between users.

Signal direction

Horizontal angle

• Although it is similar to the geographical division, this
dimension focuses on the benefits of directional antennas
that permit angular subdivision of angle-of-arrival.

(azimuth) • Given a single transmitter-receiver pair, there is no
practical method to generate multiple signals that ap-
pear to the receiver to be coming from different direc-
tions.

Vertical angle

• Signal cannot be perfectly confined to a particular
angle due to the effects of multipath propagation.
• Transmissions between a pair of transmitter and re-
ceiver may not be limited to only a single direct path.
Advanced technologies (e.g., space-time coding) can ex-
ploit multipath to create multiple independent channels
between a transmitter-receiver pair.

Transmission

Modulation/coding
scheme

• These can be viewed as secondary dimensions of radio
spectrum, used as information bearing parameters and
logical channelization. They can be distinguished by
their properties or by probability.

characteristic

Polarization

• There is no modulation or coding scheme that are
orthogonal to all other schemes. Thus, system design-
ers cannot independently choose a particular modula-
tion/coding and be certain that they will be immune to
signals from other systems employing different schemes.
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2.2 TAXONOMY OF SPECTRUM SHARING

There are two fundamental approaches in spectrum sharing. Spectrum-based devices can

coexist or cooperate to utilize the same spectrum space. In cooperative sharing model,

spectrum-based devices communicate with each other using a common protocol to coordinate

spectrum access. For example, devices could form self-organizing wireless mesh networks

and utilize the same spectrum space. Multiple wireless systems could create a common pool

of spectrum and enable sharing through an established protocol (i.e., spectrum pooling).

Spectrum leasing is also considered a cooperative model. In traditional lease, licensees need

to negotiate terms and conditions with the lessees. In short-term lease or spot market, the

negotiation among devices has to take place using a designated protocol to enable real-time

spectrum leasing. Cooperative sharing approaches are further discussed in Section 2.3.

With coexistent sharing, explicit communications between systems do not exist. Unli-

censed spectrum is a prominent example of the coexistence model. Successful products that

use the unlicensed band such as IEEE 802.11 (WiFi), IEEE 802.15 (Bluetooth), and cordless

phones do not communicate across systems. In other words, WiFi devices and Bluetooth

devices do not decode each other’s transmissions to operate in the unlicensed band. They

may, however, detect the presence of other’s transmissions in order to avoid collision. In the

coexistence model, the importance is placed on the development of rules that govern opera-

tions of devices the shared spectrum space. These rules or protocols are known as spectrum

etiquette and are designed according to characteristics of applications in the shared spectrum

space. Section 2.4 presents coexistent sharing techniques in detail.

Taxonomy of spectrum sharing is built around cooperative and coexistent sharing ap-

proaches. Peha [15] offers policy options based on spectrum sharing from primary users and

secondary users’ point of view. Tables 2.2 and 2.3 summarize anticipated spectrum access

approaches versus application requirements of primary and secondary users, respectively.
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Table 2.2: Spectrum Access Approaches of Primary Users

Application Requirements Spectrum Access Approaches
Guaranteed QoS Exclusive licenses

Guaranteed QoS, cooperate Spectrum pooling
with other primary users

No guarantee, cooperate Cooperative wireless mesh networks
with other primary users

No guarantee, coexist Unlicensed spectrum
with other primary users

Table 2.3: Spectrum Access Approaches of Secondary Users

Application Requirements Spectrum Access Approaches
Guaranteed QoS, cooperate Secondary use;
with primary user Primary user guarantees QoS

No guarantee, cooperate Interruptible secondary use
with primary user

No guarantee, coexist Opportunistic access
with primary user
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2.3 COOPERATIVE SHARING TECHNIQUES

This section describes four approaches of cooperative sharing. Section 2.3.1 presents spec-

trum trading and leasing, which is the most relevant literature to this dissertation. Sec-

tions 2.3.2–2.3.4 discuss other approaches of sharing including interruptible sharing, spec-

trum pooling, and virtual network operator.

2.3.1 Spectrum Trading and Leasing

The argument behind market-based spectrum policy has been that the market is a more

efficient way to allocate scarce resources than external regulations. The market creates an

environment in which the resources are transferred to the person who values them most,

thereby creating an incentive for current owners to make efficient use of the resources. Spec-

trum auctions are one method towards the market-based policy, but they do not allow

spectrum to move freely as licenses are still bound to a specific service or application. A

solution to this problem is to set up licenses without restrictions of use and to establish a

free market where license owners can sell or lease spectrum to others.

Not all markets, however, work perfectly. There are a number of factors that could

result in market failures. One such failure that is significant in the case of spectrum is

negative externality (i.e., interference) that could arise from energy spillovers into adjacent

frequencies, geographical areas, or spillovers in other spectrum dimensions. The effects of

externality can be controlled by definition of rights to use spectrum in terms of technical

restrictions regarding power, frequency, place of operations, and limits in other dimensions.

As a result, critics maintain that it is essential to clearly define spectrum property rights

[16, 17, 18, 19].

How does one define property rights to spectrum resource? Researchers have been re-

lating spectrum to land property and treating spectrum as private property, hence termed

spectrum property right [20, 21]. The foundation of this analogy is that both land and

spectrum are scarce resources and the price system with property rights provides efficient

allocation. In the property rights regime, prime spectrum (i.e., frequencies below 3 GHz) is
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regarded as “beachfront property” and the owner has rights of exclusivity and transferability.

Exclusivity means that no one can access the property without permission. Hence, causing

interference is a use without consent or trespassing and will be subjected to penalties. The

owners can use spectrum however they want, keep it indefinitely, or sell or lease to others

(transferability rights).

De Vany et al. [21] and Matheson [22] propose definitions of property rights for spectrum

use. The dimension of property rights follows the dimension of the radio spectrum space in

Section 2.1. The idea is to confine signal radiation within a licensed spectrum space and

allow only very low radiation outside the licensed region. Signals outside the region must be

limited below a specified spectral power flux density, say, x, in watts/m2/MHz. With this

definition of rights, there are no restrictions on types of applications, services, transmitter

power, modulation, antenna height, and so forth, as long as the signal is kept below x in every

dimension. There are, however, a number of problems, mainly of a technical nature, that

complicates practical implementation of this definition. Hatfield and Weiser [23] provide a

comprehensive review of the complexity of the property rights model. The following discusses

general problems with spectrum property rights and its definition.

• Division of spectrum space in any dimension may not be practical in the real environment.

For example, arbitrary division of geographical space may not correspond to achievable

coverage area since different frequencies yields distinct propagation characteristics in

various types of terrains. Division of the time dimension into very short time slots may

result in systems that are not properly synchronized. Similarly, division into very narrow

frequency bandwidth may produce unreasonable filter requirements and Doppler effect.

In the dimension of signal direction, partition of angle-of-arrival may not be accomplished

due to lack of adequate narrow beam-width antenna and unavoidable scattering of radio

wave.

• In the spectrum space, some degree of spillovers in many dimensions are unavoidable.

This makes its analogy to the property system fails to some extent [15]. Propagation

of radio wave is not entirely predictable. The field strength in a particular location is

usually a sum of many multipath signals. These multipath components are fluctuating

and may sometimes produce overall field strength that are larger than the limit. Re-
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searchers propose that definition of field strength limit in the spatial dimension should

include statistical parameter to take into account the unpredictable variations of field

strength due to multipath signals [21, 22]. It is unclear, however, how and what value

this parameter should be defined.

• In the frequency dimension, transmitter can radiate signal inside the licensed bandwidth

and keep signal below x outside the licensed band. If this rule is enforced in all spatial

locations, the transmitter must drop signal below x very rapidly over a small change of

frequency. This absolute limit x may not be practical especially in the location very close

to the transmitter where the field strength is very high [22]. Another phenomenon that

may cause problems in the frequency domain is the effect of intermodulation in which

two radio signals of different frequencies are mixed together, forming additional signals

of different frequencies. The extra signals could interfere other systems that are not even

in the adjacent frequency bands.

• In the time dimension, synchronization mechanism is a key to maintain the transmission

within the licensed time slot. Spillovers, however, are still possible due to the propagation

delay of the signal and power ramp-up and ramp-down delays of a transmitter.

• Another major limitation of using the spectrum space is the assumption of ideal receivers.

An ideal receiver can theoretically separate signals that locate on different spectrum space

coordinates. In reality, some spectrum space dimensions are easier to differentiate than

others. A non-ideal simple receiver can easily separate two signals that are geographically

far apart and reject other signals in distant frequencies. It may, however, have difficulties

in separating signals with different angle-of-arrival. In fact, the ability to reject unwanted

signal is dependent on the quality of the receiver. When interference occurs at the

receiver, there is no definite rule that it is caused by offensive transmitters or by poor

receiver performance. Accordingly, researchers and regulators support the need for the

development of minimum receiver standards [7, 22]. The definition of technically and

economically adequate receivers is still questionable.

• In the spectrum property rights regime, resolving disputes about spectrum use can be-

come problematic [18, 24]. Radio signals from multiple sources can aggregate and cause

interference to other parties. One interfering signal from a particular user may not exceed
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the limit, but the accumulation of signals from all users may. As a result, it is not clear

who is liable for interference. Also, unlike land and other natural resources, identifying

the source and measuring the magnitude of interference may be a complicated task espe-

cially in the presence of a large number of spectrum users [21]. These issues could make

the spectrum property regime difficult to administer and generate high enforcement cost.

• Spectrum users must tolerate some degree of interference due to the characteristics of

radio waves as mentioned earlier. There is, however, no universal and comprehensive

definition as to what constitutes acceptable interference and what describes harmful

interference. It is likely that these definitions are highly dependent on applications and

services of the spectrum users as well as the receiver standard.

• Flexibility on types of applications and service could inhibit the adoption of standards,

which creates substantial problem for spectrum use unlike the zoning restrictions of land

properties [15, 18, 25]. In many situations, such as television and radio broadcast, a

single standard ensures compatibility and leads to greater benefits from economies of

scale in manufacturing of standardized equipments.

• Some unconventional uses of spectrum may not easily fit in with the spectrum prop-

erty regime. For example, underlay transmission (i.e., ultra wideband)—using a small

amount of power and operating in the same frequency bands as existing communications

without producing significant interference—is a promising technology to deliver a high

data rate; however, its controversial operation is oftentimes viewed as incompatible with

the spectrum property rights [15]. Hence, strictly defined dimension of the spectrum

property may cause trouble for the deployment of innovative technologies.

• Similar to the standardization problem, there is an international issue in the spectrum

management [25]. First, flexibility of spectrum property creates difficulties, if not impos-

sible, to follow country borders and/or providing a cross-border service without rigorous

international coordination. Second, it may prevent standardization of equipment and

systems for international services.

In addition to the spectrum property right, transaction costs associated with moving

spectrum from less efficient to more efficient use is another significant factor. It is generally

agreed among researchers that transaction costs are central to the success of spectrum trading
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and leasing [7, 16, 18, 26]. Transaction costs include the expenditure of resource and time

for a secondary user to obtain spectrum access right from the primary user. The magnitude

of transaction costs will determine the efficiency of this sharing scheme.

Peha and Panichpapiboon [27] take an initial step to quantitatively assess the secondary

use of spectrum. In their model, the primary user is a GSM-based cellular operator who

wants to share spectrum of the downlink channels (i.e., communications channels from a base

station to mobile devices). The secondary user is prescribed to be a stationary user such as

fixed broadband wireless networks or point-to-point wireless links. The model imposes two

constraints: the secondary users must not interfere with the primary users and vice versa.

With assumptions of GPS-capable devices, software-defined radio, and cooperation mecha-

nism, both parties can coordinate their locations and adjust their frequency assignments to

avoid interference. In these particular settings, they were able to demonstrate the financial

incentive of the GSM operator for secondary usage.

Other studies focus on the economic aspect of spectrum trading. Leese et al. [28] and

Nolan [29] provide similar models to investigate the potential economic effects of spectrum

trading among firms. The outputs of firms (e.g., the number of subscribers in the case of

GSM operators) are determined by the quantity of spectrum they own. The model confirms

that spectrum trading between firms with a homogeneous service can increase efficiency by

transferring spectrum licenses to the firm that values them most. Trading between firms with

heterogeneous services is more complex because it involves a higher degree of interference

coordination. Thus, the costs of reaching agreement and strategic behavior of firms can

be significant. The results also show that the initial spectrum assignments among firms

significantly determine trading equilibrium that arises.

2.3.2 Interruptible Spectrum Sharing

There are some spectrum incumbents whose spectrum use is highly unpredictable. Such

spectrum users are not willing to participate in spectrum trading or leasing as the demand

for spectrum access may arise after a spectrum sale or during a lease. A major spectrum user

of this type is a public sector user. Public safety spectrum users such as police, firefighters,
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and paramedics, require reliable wireless communications in the event of an emergency. The

amount of spectrum that is allocated and assigned to public safety typically corresponds to

the worst-case scenario. Marsh [30] shows that the average usage is, however, less than 35%

of the system capacity, and even at 5% in the rural areas. Thus, several researchers assert

that granting the ability to lease spectrum of public safety can provide significant advantages

for both public safety and commercial users [16, 30, 31]. A sharing method for this type of

users must be able to preempt or interrupt the secondary users when the primary users need

spectrum access. This interruptible sharing scheme is a subset of the spectrum trading and

leasing in Section 2.3.1.

Bykowsky and Marcus [31] propose a cooperative method that allows the primary user to

exercise rights to preempt or call back its lease when needed. Their mechanism requires the

public sector user to have a combination of software-defined radio and a specialized beacon

transmission. The primary user who wishes to allow secondary use during the period of low

spectrum utilization will transmit a beacon signal in a specified frequency band. The beacon

signal indicates whether and what frequencies are available for sharing at the moment. The

secondary user has to repeatedly detect and decode the beacon signal in order to operate in

the sharing band, and must cease its transmission immediately when it fails to detect the

beacon signal. With this mechanism, the secondary user takes the risk of being interrupted

at any time at the discretion of the primary user.

2.3.3 Spectrum Pooling

Most current communications networks have variations in spectrum usage in time and ge-

ographical area. Therefore, spectrum can be underutilized in one system while another

system may experience a spectrum shortage at the same time and location. The spectrum

pooling concept is proposed to take advantage of this characteristic. A spectrum pooling

system represents the idea that multiple spectrum owners merge their assigned frequencies

into a common pool, and the pool members share the spectrum through coordination. The

concept is also referred to as dynamic spectrum allocation (DSA) scheme. A number of

European research projects under the headings of DRiVE [32], OverDRiVE [33], and E2R
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[34] have been investigating the potential of the DSA scheme. The DRiVE and OverDRiVE

projects primarily focus on the specification of spectrum sharing between the Universal Mo-

bile Telecommunications System (UMTS) 3G cellular network and the digital video broad-

casting terrestrial (DVB-T) network. The E2R project emphasis on designing infrastructure

for the beyond-third-generation wireless environments in which radio spectrum is shared

seamlessly across spectrum-based services [35]. These projects are, however, high-level stud-

ies of architectural design of reconfigurable devices and their supporting functions for the

DSA scheme [36].

A similar approach is called spectrum brokerage. In this case, the access to the spectrum

pool is controlled and coordinated by a centralized entity called a spectrum broker. The

spectrum broker can be an automatic agent or an entity that owns spectrum licenses. Weiss

and Jondral [37] demonstrate that with a certain degree of flexibility of the transmitted

signal, the spectrum brokerage is feasible from a technical perspective. Kamakaris et al. [38]

and Buddhikot and Ryan [39] provide initial studies on the spectrum broker mechanism in the

context of cellular networks. The major difficulties are in the coordinated DSA mechanisms

between systems with different transmission schemes (i.e., frequency-division, time-division,

and code-division).

2.3.4 Virtual Network Operators

Sharing spectrum through sharing network infrastructure is the most common form of sharing

at present. Unlike other forms of cooperative sharing, the primary users do not directly share

access to their spectrum resource. Rather, they share access to their network infrastructure

(i.e., sharing network capacity). This type of sharing typically requires secondary users to

utilize spectrum-based devices that are compatible with the primary system. The prime

example of this sharing scenario is in the cellular phone service providers.

The cost of providing cellular phone services is expensive, especially in 3G. Service

providers need to invest in cost of spectrum, cost of building out the networks, and marketing

and selling the services. Thus, it is imperative that the providers need to acquire subscribers

as quickly as possible to start earning a return on their investments. This creates a strong
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incentive for providers to lease portions of their network capacity to value-added resellers

called Mobile Virtual Network Operators (MVNOs). An MVNO is defined as a service

provider who does not own spectrum licenses and does not have network infrastructure.

However, it has a complete control of its branding, marketing, subscriber acquisition, billing,

and customer service. The brand image and customized services allow MVNO to target

specific market segments more efficiently than the network providers themselves.

There are several MVNOs operating in the U.S. market. For example, Sprint—as a

cellular carrier—share its network with Virgin Mobile, Mobile ESPN, Disney Mobile, and

Boost Mobile. Some MVNOs operate on a number of carriers. TracFone—as an MVNO—

has relationships with multiple existing providers, using a combination of CDMA and GSM

technologies depending on region.

Linsenmayer [40] studies the MVNO business model as a form of secondary markets

for spectrum. The study suggests that MVNO could lead to segmentation of markets for

wireless services into two layers: the network companies who only provide infrastructures

and supports, and the service companies who focus on the relationships with end-users.

The adoption of MVNO continues to increase worldwide due to its simplicity in technical

coordination compared to other cooperative schemes.

2.4 COEXISTENT SHARING TECHNIQUES

As a counterpart of cooperative sharing, coexistent sharing operates on a non-cooperative

basis between spectrum-based systems. At present, unlicensed spectrum access is a leading

model of coexistent sharing and is discussed in Section 2.4.1. Opportunistic spectrum access

is a futuristic coexistent model and is presented in Section 2.4.2.

2.4.1 Unlicensed Spectrum Access

Wireless systems using unlicensed spectrum do not incur licensing costs. The unlicensed

access also eliminates the lengthy and complicated licensing process. Accordingly, new
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spectrum-based devices can be readily adopted and quickly deployed. A wide range of

unlicensed devices such as wireless LAN devices (IEEE 802.11), Bluetooth devices (IEEE

802.15), cordless telephones, and garage door openers represents the proliferation of unli-

censed spectrum access. The key attribute of the unlicensed band is the absence of the right

to exclude. The spectrum space is shared among devices and each of them can transmit

at will without coordination. Besides, unlicensed users have less incentive to conserve the

free-to-use spectrum compared to those who are using the licensed spectrum. Hence, catas-

trophic interferences among unlicensed users may occur. This consequence is referred to

as the tragedy of the commons; a term that describes how unpunished greed can lead to a

shared resource being unusable. Thus, it is essential to have a mechanism to manage the

shared access.

From the technical perspective, a set of rules or operation guidelines (i.e., spectrum

etiquette) can be used to manage unlicensed access. These rules have been defined and ex-

ercised in a number of dedicated unlicensed bands in the United States including Industrial,

Scientific and Medical (ISM) band, Unlicensed Personal Communications Service Devices

(UPCS) band, Unlicensed National Information Infrastructure Devices (U-NII) band, and

Millimeter Wave band. The protocols, however, have been designed according to the ex-

pected characteristics of applications in each of the designated bands.

Satapathy and Peha [41, 42] investigate the potential risk of the tragedy of the commons

and offer some preliminary designs of etiquette from the technical standpoints. Recently,

Lehr and Crowcroft [43] address the challenge of managing non-exclusive use of spectrum

and propose a set of design principle for etiquette that will govern the shared spectrum

access.

Underlay transmission is another option for unlicensed access in addition to the dedicated

unlicensed bands. Ultra-wideband (UWB) transmission is the technology under the current

debate. As the name suggested, UWB trades off a large amount of power for a large amount of

frequency bandwidth. Therefore, its bandwidth spans a large fraction of the total spectrum

frequency. With its very low power, UWB signals appear as underlaying noises at many

frequency bands of primary licensed users. The applicability of UWB systems is, however,

limited to short-range uses (e.g., less than 10 meters and serve as wireless connectivity
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between consumer electronic devices) due to strict power limits.

2.4.2 Opportunistic Spectrum Access

Opportunistic spectrum access is a coexistent technique that allows secondary users to access

spectrum of primary users without causing interference and without coordination. Oppor-

tunistic spectrum users automatically adapt their transmissions to occupy spectrum space

where no other systems are operating. Thus, this method can increase utilization of spec-

trum in parts that would otherwise remain fallow. The opportunistic access creates numerous

research questions and generates its own set of research areas.

Two enabling technologies are Software-Defined Radio (SDR) and cognitive radio. Re-

configurability is the main feature that describes the SDR. SDR-based devices can adapt

their operating parameters such as frequency range (multiband), air interface (multimode),

modulation scheme, power, and so forth by making a change in software [44]. Cognitive

radio—also referred to as spectrum agile radio or smart radio—is a technology that is built

on SDR. Cognitive radio devices have abilities to sense its surrounding environment and

perform real-time changes in its operating parameters to provide reliable and efficient use of

radio spectrum [45, 46].

The research framework in opportunistic access has been largely put down by the Defense

Advanced Research Projects Agency: neXt Generation Communications (DARPA’s XG)

program (see for example [17, 47, 48]). The basic approach of opportunistic spectrum access

is given as follows:

• Spectrum sensing and characterization: Detect and predict spectrum access opportunities

that will not interfere with the operation of licensed primary users. The identification

process is regulated by policies, which determine when spectrum is considered available

and specify possibilities of using the available spectrum.

• Adaptive spectrum access : Cognitive radio constantly monitors the spectrum and adapts

its transmission waveform to exploit the idle spectrum.

The implementation of opportunistic spectrum access involves a variety of research areas

including software-defined radio, digital signal processing, radio devices, data and knowledge
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Figure 2.2: Evolution of spectrum sharing approaches.

representations and so forth.

2.5 SUMMARY

This chapter reviews the literature of spectrum sharing techniques between primary and

secondary users. Under the cooperative sharing schemes, the studies on spectrum trading and

leasing is very limited and mostly focuses on policy and regulatory aspects. The spectrum

property right model has shown its technical complexity. Although preliminary studies

has demonstrates the potential of spectrum leasing, an appropriate framework will need

to address a combination of technical, economic, and strategic issues as well. Under the

coexistent sharing, the opportunistic spectrum access generates a number of studies. Their

emphasis is mostly on establishing the research framework and on technologies that will

enable this ambitious form of spectrum sharing. However, the complexity of the sensing,
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agility, and protocol requirements at the spectrum-based devices is quite high. Thus, it is

unlikely to be deployable in the near future. Figure 2.2 summarizes the current state of

spectrum access and its evolution as envisioned by researchers in the field.
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3.0 THEORETICAL FRAMEWORK AND COMPUTATIONAL TOOL

This chapter reviews the theoretical framework and tool in this study. First, Section 3.1

introduces transaction cost economics (TCE) theory, its major assumptions, and assesses its

key constructs. TCE is an underlying framework in this study of secondary use of spectrum.

Next, Section 3.2 presents the concept of agent-based computational economics (ACE) which

is used as a computational tool in this dissertation.

3.1 TRANSACTION COST ECONOMICS (TCE)

Transaction cost economics theory is an economic theory concerned with the analysis of

buyer-supplier relationships using transaction costs as an argument. Here, the transaction

cost is analogous to the economic equivalent of friction in the physical system. TCE was

developed early by Ronald Coase [49] and was later greatly refined by Williamson [50, 51,

52]. The theory provides a set of principles for analyzing buyer-supplier transactions and

determining the most efficient form of structuring and managing the transactions.

TCE uses the term “governance structure” to denote the organizational form in which

a transaction between buyer and supplier can take place. Two polar forms are markets and

firms (hierarchy). A transaction to obtain products or services can take place in markets

(i.e., buy) or through coordination inside the firm (i.e., make). Thus, TCE is typically

known as the study of make-or-buy decision. Between these two extreme forms, several

intermediate forms exist including different types of contractual arrangement, alliances, and

joint ventures. These intermediate governance structure are categorized as hybrid forms.

The preferred choice of organizational form obviously depends on the comparison of the
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transaction costs under each alternative. The theory provides a framework to assess the

strengths and weaknesses of alternative forms under different circumstances through the

analysis of transaction characteristics and behaviors of economic agents.

When comparing the uses of markets and firms to organize a transaction, markets are

characterized by the price mechanism based on demand and supply to achieve efficient re-

source allocation. Market price serves as a signal to inform market participants of potential

exchanges that would leave them better off. The price signal provides powerful incentives

for participants to recognize profit opportunities and allows them to adapt to changes in

demand and supply as the price reflects the value of the trading commodity. The use of the

price mechanism, however, incurs a number of inherent activities, which can be translated

into transaction costs as follows:

• Search and information costs include gathering information about possible trade solu-

tions, find potential trading partners and their quality of products or services. These are

ex ante (i.e., before the transaction).

• Negotiation costs are another ex ante. They are resulting from negotiation over possible

solutions and aligning conflicting interests of the transacting parties.

• Monitoring and enforcement costs are ex post transaction costs (i.e., after the agreement

has been reached). Once the transaction is underway transacting partners have to ensure

compliance with the specified terms and respond when the agreement is violated. The

resulting costs are in forms of costs of inspection and auditing, costs of arbitration, and

court fees.

According to Coase [49], the existence of these transaction costs through the use of

price mechanism creates a resource burden and the firm exists because the costs of some

specific transactions are lower when carry out inside the firm. Compared to a market,

organizing the transaction under unified ownership offers greater administrative control,

facilitates coordination, and creates higher protection for specific investments. Especially

in the situations where adaptation to changes by coordination is significant, firms are more

likely to outperform markets [53]. Although these benefits can reduce the transaction costs

occurred in the market, they are countered by the added bureaucratic costs and weaker
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Markets Hybrid Forms Firms
(Hierarchy)

Strong economic incentives Weak economic incentives

Autonomous control Administrative control

Use court system
to resolve disputes

Authority relation
(senior manager resolves dispute)

Autonomous adaptation Coordinated adaptation

Figure 3.1: Governance structures in transaction cost economics.

economic incentives. The shift from the market to the hybrid form, and to the firm creates

tradeoffs between stronger economic incentives and adaptive properties of the market, and

stronger protections and coordination properties of the firm. The empirical studies show

that a number of economic activities across various industries are generally aligned with this

central theoretical framework of TCE [54, 55, 56, 57]. Figure 3.1 illustrates a market-firm

continuum of governance structures as described by TCE.

As developed by Williamson [50, 51, 52], TCE explains the decisions made by the trading

partners on the choices of organizational structures using human behaviors and transaction

characteristics. Two major behavioral assumptions underlying the existence of transaction

costs are bounded rationality and opportunism. The following describes rationale behind

these assumptions.

1. Bounded rationality refers to the limited capability of decision makers to be rational

even they are intended to be. People have limited cognitive and information processing

capabilities. This is contrast to neoclassical economics, which assumes perfect rational-

ity. Due to this limitation, decision makers have imperfect foresight and cannot fully

recognize potential hazards that might occur in the future. Accordingly, they cannot

create contracts that will protect them against all possible events that might occur in a
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trade. Thus, TCE maintains that complex contracts are typically incomplete1. This is

particularly problematic when transactions take place in uncertain environments. The

incompleteness could expose transacting parties to transactional hazards from potential

opportunism.

2. Opportunism refers to the assumption that transacting partners are driven by their self-

interest seeking behaviors and they have a potential to behave opportunistically in order

to take advantages in a trade. According to TCE, opportunistic behavior explicitly refers

to acting in bad faith including providing misleading information, creating confusion, vi-

olating agreements with the goal of taking advantages in the buyer-supplier relationship.

It is considered that merely the possibility of opportunism will raise the transaction costs

as transacting partners try to safeguard their investment from transaction hazards. Such

an opportunistic behavior, however, can be discouraged by transacting under the proper

organizational form, depending on the transaction characteristics.

The characteristics of the transaction determine the magnitude of transaction costs. In

TCE, there are three principal attributes which affects the degree of transaction costs [51]:

1. Asset specificity is considered a key factor in TCE. Specific assets are valuable in the

context of a specific transaction and have much lower value in the best alternative uses.

They are likely to produce sunk costs when the relation between buyers and suppliers

terminates prematurely2. Transactions that involve specific assets force economic agents

to put higher safeguard into their investment. This type of transactions is particularly

vulnerable to opportunism. On the other hand, non-specific assets pose fewer hazards,

because buyers can easily switch to alternative sources, and suppliers can sell products

or services to other buyers without difficulty.

2. Uncertainty refers to the possibility that unforeseen circumstances arise during the rela-

tion and the parties involving in the transaction need to adapt to. Transactions under

1A contract would be “complete” if the parties to an agreement could specify their respective rights and
obligations for every possible future state of the world.

2The most popular example has been the relationship between General Motors and Fisher Auto Body.
At the time, auto bodies were produced by using a specific machine to stamp the metal into its required
shape. The machine was specific to individual car design. Fisher could hold up GM by demanding monopoly
prices, because stopping production was extremely costly to GM who could not obtain auto bodies from
other sources on short notice.
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relatively high uncertainty environments require buyers and suppliers to be aware of the

potential complication and subsequent costs of adaptation. Thus, a higher level of uncer-

tainty often makes contracting difficult and produces higher transaction costs, as both

parties will spend more effort to monitor the transaction. Uncertainty also introduces

the risk of opportunism during the adaptation process.

3. The frequency in which the transaction occurs can influence the appropriate organiza-

tional choice. Transaction that occurs rarely may not worth investing in an expensive

form of organization.

These attributes of the transaction are used as proxies to analyze transaction costs in em-

pirical studies, because direct measurement of transaction costs is difficult if not impossible.

The combination and interaction of these three attributes serve to justify the appropriate

form of organization to carry out the transaction.

In summary, TCE uses transaction costs to provide the key to understanding alternative

forms of organization and contractual arrangement. The main focus is on the relative costs

of conducting transactions in one organizational form relative to others. Therefore, what

matters is not the absolute value of transaction costs, but rather the relative ranking of

the costs associated with different organizational forms or contractual arrangement. Other

details of TCE theory are beyond the scope of this study.

3.2 AGENT-BASED COMPUTATIONAL ECONOMICS (ACE)

ACE is a computational study of economies modeled as dynamic systems of autonomous

interacting agents [58]. The term “agent” refers to an entity in a computational world and is

described by its behavior and function. In ACE, agents can represent a broad range of entities

such as individuals (e.g., consumers, producers, and intermediaries), groups of individuals

(e.g., firms, agencies), other social and environmental entities (e.g., markets, infrastructure,

and geographical area).

The merit of ACE is often compared with the mainstream, neoclassical approach in eco-

nomics. With the neoclassical analysis, agents are typically assumed to be homogeneous and
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fully rational. The goal is largely on deriving analytic closed-form solutions (i.e., equilibria)

of an economic system. Accordingly, ACE researchers often argue that this conventional

analysis is a top-down and deductive approach. The analysis tends to oversimplify and rep-

resent stylized settings of the economic system and would only be suitable for the system

where agents do not vary much in their characteristics.

While knowing the outcomes of the system is considered interesting, other important

aspects could not be easily obtained from the conventional analysis. As Schelling [59] ob-

served,

. . . there is nothing particularly attractive about an equilibrium. An equilibrium is simply
a result. It is what is there after something has settled down, if something ever does settle
down. The idea of equilibrium is an acknowledgement that there are adjustment processes;
and unless one is particularly interested in how dust settles, one can simplify analysis by
concentrating on what happens after the dust has settled.

It is the adjustment process that is considered more important to understand and, there-

fore, is the objective of the ACE approach. The goal of ACE is not to derive closed-form

solutions, but rather to observe and study the aggregate outcomes and the norms of behavior

that are developed and sustained over time. In contrast to the top-down deductive approach

of neoclassical economics, ACE works from bottom up by creating adaptive, heterogeneous,

and autonomous agents who interact with one another in dynamic environments. It is also

common in the agent-based literature to assume that agents are bounded rational.

The tasks of ACE modeling start from specifying the initial attributes of the agents. The

attributes of any agent may include its type, characteristics, behavioral methods, and internal

information about itself and other agents. These agents are put together to represent the

economic system. The system then evolves over time as a result of interactions among agents

without any intervention from the outside. The agents in ACE are possibly making sub-

optimal decisions as a result of their limited cognitive capabilities and on the basis of their

locally available information. The essence of this approach is to focus on the process in which

the agents interact with each other and adapt their behavior based on their experiences.

These observed processes and outcomes that emerge are used to understand the economic

system.

The usefulness of ACE methodology has been shown in a diverse range of research topics.
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Social scientists use ACE to study the evolution of behavioral norms of individuals in the

society [60, 61]. The agent-based computational model is used to explain how patterned

behavior can arise from interactions among agents. Bottom-up modeling of market processes

is also one of the most active ACE research areas. The agent-based market model is used to

predict and provide explanation for empirically observed data in stock markets and foreign

exchange markets [62, 63, 64]. The ACE methodology is also applied to the restructured

electricity markets to predict the consequences of implementing these new markets, which

are considered difficult to analyze with conventional statistical and analytical tools due to

the complexity of the electric power industry [65]. Several special journal issues have been

devoted to investigate the use of ACE in the topics mentioned earlier as well as other samples

of ACE research [66, 67, 68].

The weaknesses of ACE arise from the nature of the bottom-up modeling approach.

The ACE model requires a complete specification of initial conditions including agent data,

behavior, and institutional arrangement. As the system operates, the chain of causality that

evolves the system over time tends to be highly complicated. Accordingly, the outcomes

that emerge tend not to be direct consequences of the initial specifications of the agents and

their environment. This loss of analytical tractability is observed as a drawback of the ACE

approach. The ACE model is also conditional upon the specific values of the parameters used

in the initial specifications. ACE modeler needs to be careful if the small changes in these

parameters could dramatically affect the types of the outcomes. Intensive experiments using

a wide range of initial specifications may be required to achieve robust prediction [69, 70].
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4.0 RESEARCH DESIGN AND RESEARCH QUESTIONS

Given the background of spectrum sharing techniques in Chapter 2 and the introduction to

theory and tool in Chapter 3, this chapter elaborates the merit of this research and the use of

theory and tool in Section 4.1. Section 4.2 identifies research questions that will be analyzed

by the agent-based model. Finally, Section 4.3 describes multiple sets of experiments to

perform statistical testings.

4.1 RESEARCH OUTLINE

The focus of this dissertation is on the development of secondary use of radio spectrum.

The secondary spectrum markets include the markets of license trading and for temporary

access of existing licensed spectrum. It is the latter that defines secondary use and is the

scope of this research. The review of the literature in Chapter 2 shows that the studies on

secondary use are very limited. Most of them are in early stages and focus on a single aspect

of the problem such as technical, economics, or policy and regulatory issues. We believe

that an appropriate framework will need to address both technical issues and non-technical

issues such as policy and business implementations as well. Accordingly, the theme of this

dissertation is guided by the following key research questions:

• Why would a primary user want to share portions of his/her spectrum for secondary

use? What are the conditions?

• Why would a spectrum user want to become a secondary user? What are the conditions?
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The objective is to identify and study issues that are needed to be resolved for secondary

use to become feasible. The possibility of spectrum sharing depends on several technical,

economic, institutional, and strategic issues from both primary users and secondary users.

Central to the issues are the effects of transaction costs in executing secondary use spectrum

sharing. A number of researchers express concern that the success of secondary use will

largely depend on transaction costs and the ability of the sharing mechanism to minimize

them [7, 16, 18, 26]. Transaction costs associated with secondary use must be reasonable for

spectrum sharing to become practical.

In this dissertation, we propose the use of transaction cost economics (TCE) as the

theoretical framework to study transaction costs in secondary use of radio spectrum. In

Section 3.1, TCE demonstrates that transaction costs depends largely on the choice of or-

ganizational form in which a transaction between buyer and supplier take place. In the

context of secondary use, we expect that transaction costs depend on technical factors (such

as types of wireless services, application requirements, and capabilities of radio devices) and

economic factors (such as number of participants in the secondary use and price settings).

Also, corresponding to TCE, we anticipate that different forms of secondary use could play

an important role on the magnitude of transaction costs as well as the level of uncertain-

ties due to potential interference between primary and secondary users. For example, a

spot market, in which a secondary user obtains spectrum access on demand, might be ap-

propriate only in certain circumstances. In other cases, it might be preferable to use more

complex contractual arrangements such as a long-term leasing or an indirect spectrum access

such as Mobile Virtual Network Operator (MVNO), in which the operations of primary and

secondary users are tightly coupled. In short, we hypothesize that secondary users would

emerge when transaction costs are low compared to alternative methods to obtain spectrum

access.

We also propose the use of agent-based computational economics (ACE) as a compu-

tational tool in this study. We believe that the bottom-up modeling approach of ACE is

appropriate for the problem of secondary use, which has a complex interrelated structure

between primary and secondary users in both technical and non-technical issues; and partly

due to the lack of empirical data on spectrum trading and leasing. Accordingly, ACE will
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be used to model the development of secondary use transactions. As discussed earlier in

Section 3.2, ACE aims to observe the aggregate outcomes and understand the process that

leads to the outcomes as a result of interactions among agents. The understanding of the

process, in our case the conditions that lead to secondary use of spectrum, can then be used

to create interventions (i.e., secondary use policy) in order to obtain the favorable outcomes

of spectrum management.

The following describes more specifically the research deliverables of this dissertation in

the remaining chapters.

• Chapter 5 identifies issues that are needed to be resolved for secondary use of spectrum

to become feasible.

• Chapter 6 describes the effects of transaction costs in secondary use of radio spectrum and

establishes a relationship between transaction cost economics theory and the secondary

use. The focus is on identifying the possible organizational forms to carry out spectrum

access transactions and the relationship among them.

• The development and specifications of the agent-based model for secondary use of radio

spectrum are also presented in Chapter 6. The model integrates technical and economic

considerations for spectrum access transactions. It also incorporates TCE behavioral

assumptions that underlie the existence of transaction costs into agents that represent

spectrum users in the model.

• Experiments on the model to predict the form and fashion with which the secondary use

will develop are set out by various pre-conditions in the research questions in Section 4.2.

The results and discussion of feasible technical parameters are given in Chapter 7. We

assume that both primary and secondary users employ infrastructure networks, and the

primary users share spectrum of their downlink channels (i.e., communications channels

from a base station to mobile devices).

• The solutions derived from the agent-based model will not be closed form solutions, but

can be referenced to gather some insights as to how the spectrum leasing will work on

an expansive macro level. The main contribution of this work is the agent-based model

that can be utilized to form innovative and creative policy instruments for the secondary

markets for spectrum access.
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4.2 RESEARCH QUESTIONS

The use of the agent-based model1 is guided by the following research questions:

• (Q1) Does the secondary use of spectrum only emerge when the number of participants

in the market is high? In other words, given scenarios i and j, if the total number of spec-

trum consumers N total
Ci

> N total
Cj

and the total number of providers N total
Pi

> N total
Pj

, then

the proportion of consumers selecting secondary use to the total number of consumers
Nsecondary

Ci

Ntotal
Ci

>
Nsecondary

Cj

Ntotal
Cj

.

• (Q2) Is the secondary use higher in rural areas (scenario i) than urban areas (scenario

j)? More specifically, let NT denotes the number of transmitters per primary user, NR

is the number of receivers per transmitter, and A is the size of geographical area. If the

path-loss exponent αpli < αplj and the transmitter and receiver densities of the primary

users
NTi

A
<

NTj

A
and

NRi

A
<

NRj

A
, then the proportion of spectrum consumers selecting

secondary use to the total number of consumers
Nsecondary

Ci

Ntotal
Ci

>
Nsecondary

Cj

Ntotal
Cj

.

• (Q3) Is the secondary use higher when primary users have consistent and predictable

spectrum usage (e.g., constant or scheduled spectrum uses of radio or television broad-

casts) compared to other cases (e.g., unpredictable uses of public safety spectrum users)?

In other words, given scenarios i and j, if the spectrum use of the primary users of the

scenario i is a periodic function and the scenario j is an aperiodic function, then the

proportion of consumers selecting secondary use
Nsecondary

Ci

Ntotal
Ci

>
Nsecondary

Cj

Ntotal
Cj

.

• (Q4) Do spectrum users that require larger coverage area obtain spectrum access with

higher degree of control2 than those that require smaller coverage area? In other words,

given scenarios i and j, if the maximum coverage Dmaxi
< Dmaxj

, then the average degree

of control among spectrum consumers d̄i < d̄j.

• (Q5) Do spectrum users with rigid application requirements obtain spectrum access with

higher degree of control than those with flexible application requirements? Assume that

1See Chapter 6 for the complete specifications of the model.
2See Section 6.2 for the definition of “degree of control” among spectrum access choices.
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the exponential utility function3 of the spectrum users is

U(γ) =

αu[1− exp (−(γ − γ∗)/η)] if γ ≥ γ∗

0 otherwise

(4.1)

where γ is the received SINR, γ∗ is the SINR threshold value, and η (> 0) is the parameter

that can be varied to obtain different levels of concavity and correspondingly different

levels of application requirements4. In addition to the application requirements, different

spectrum users may derive different utilities from the same SINR depending on their

spectrum-based services. For example, public safety spectrum users are more sensitive

to the received SINR compared to other spectrum users. Thus, αu is used to capture

user’s sensitivity to the received SINR. With the above definitions, given scenarios i

and j, if ηi < ηj and αui
> αuj

, then the average degree of control among spectrum

consumers d̄i > d̄j.

• (Q6) Does the expansion of unlicensed spectrum only benefit spectrum users with flexible

application requirements and small coverage area? Given scenarios i and j with the

bandwidth of unlicensed spectrum Ui > Uj, if the maximum coverage Dmaxi
< Dmaxj

and ηi > ηj from (4.1), then the proportion of spectrum consumers selecting unlicensed

spectrum to the total number of consumers
Nunlicensed

Ci

Ntotal
Ci

>
Nunlicensed

Cj

Ntotal
Cj

.

4.3 EXPERIMENTAL DESIGN

To perform statistical testings on the research questions, we create four sets of experiments.

The first set is designed to analyze research question Q1. Here, we perform experiments

by varying the number of consumer and provider agents and measure the percentage of

consumers selecting secondary use. The second set is designed to examine research questions

Q2 and Q3 by measuring consumer’s choice of spectrum access in rural and urban settings

and that of different spectrum usage characteristics of primary users. The third set is created

3See Section 6.3 for discussions of the utility-based approach and the application requirements based on
SINR.

4This utility function takes a shape of a step function as η → 0.
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Table 4.1: Full Factorial Design for Q1

Factors Levels
NC {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

NP {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

# of experiments 10× 10× 30 = 3000

to analyze research question Q4 by varying the consumer’s coverage area and measuring the

average degree of control among consumer agents. It can also be used to evaluate research

question Q5 by testing on the rigid and flexible application requirements and consumer’s QoS

sensitivity. Finally, the fourth set is designed to analyze research question Q6. We measure

the percentage of consumers selecting unlicensed spectrum in response to the amount of

spectrum in the unlicensed band, the consumer’s coverage area, and the rigid and flexible

application requirements. Tables 4.1–4.4 summarize respectively factors used in full factorial

design with 30 times replications.

In each experiment, we measure the means of
Nsecondary

C

Ntotal
C

,
Nunlicensed

C

Ntotal
C

,
Nexclusive

C

Ntotal
C

, d̄, and

l̄. Finally, Table 4.5 describes methods to perform statistical testings according to the

experimental design.
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Table 4.2: Full Factorial Design for Q2 and Q3

Factors Levels
NT /A {0.0625, 0.25, 0.5625, 1.0, 1.5625}(transmitters per km2)

Corresponding coverage {4.91%, 19.63%, 44.18%, 78.54%, 90.61%}

NR {1, 5, 10, 15, 20}(receivers per transmitter)

αpl {2.0, 3.5}

Periodic :

{
• Continuous transmission
• Period = 20 model time steps (50% duty cycle)

Aperiodic: Time between spectrum use and duration of use
are exponentially distributed with mean time
between use of 20 and mean usage duration
of 10 model time steps, respectively

Spectrum use of
primary users

# of experiments 5× 5× 2× 3× 30 = 4500

Table 4.3: Full Factorial Design for Q4 and Q5

Factors Levels
Dmax (meters) {10, 100, 250, 500, 1000}

(η, γ∗) {(0.001, 15), (1.0, 10)}

αu {3, 6, 9, 12}

# of experiments 5× 2× 4× 30 = 1200
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Table 4.4: Full Factorial Design for Q6

Factors Levels
U (MHz) {10, 50, 100, 150}

Dmax (meters) {10, 100, 250, 500, 1000}

(η, γ∗) {(0.001, 15), (1.0, 10)}

# of experiments 4× 5× 2× 30 = 1200

Table 4.5: Statistical Testing Methods

Research Question Dependent Variable Independent Variables Methods

Q1 Nsecondary
C

NC , NP

Multiple regression with
two-way interaction and
t-test on the coefficients

Q2, Q3 Nsecondary
C

NT , NR, αpl, Multiple regression with
Spectrum use of a dummy variable,
primary users three-way interaction,

(categorical variable) and t-test on the coefficients

Q4, Q5 d̄ Dmax, (η, γ∗), αu

Multiple regression with
three-way interaction and
t-test on the coefficients

Q6 Nunlicensed
C U , Dmax, (η, γ∗)

Multiple regression with
three-way interaction and
t-test on the coefficients
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5.0 ISSUES IN SECONDARY USE OF RADIO SPECTRUM

This chapter establishes a set of questions and identifies issues relating to the development of

secondary use. The creation of the spectrum markets for secondary use brings about many

research questions necessary to be addressed in order to develop appropriate policies that

lead to a successful market [9, 10]. The feasibility of the market depends not only upon

technical feasibility of various technologies that would contribute various scenarios of how

spectrum can be shared, it is also depend upon economics, regulatory, and political issues.

Some of the issues that have been raised regarding secondary use of spectrum include:

• Capabilities of advanced radio technologies

• Regulatory issues relating spectrum leasing

• Rights, responsibilities, and enforcement problems

• Efficiency of the market

• Pricing and billing

• Secondary use in government frequency bands

• Government control

• Spectrum hoarding, speculation, and monopoly

• Concerns about public safety services

Instead of presenting an exhaustive list of issues, we attempt to outline what we believe

as fundamental elements that would constitute the starting point of the secondary use of

radio spectrum. These would allow us to incorporate miscellaneous issues as listed above

and systematically perform a study. Sections 5.1–5.4 present four fundamental questions

that are needed to be unfolded for the concept of secondary use to become reality. In this

dissertation, we focus on the first two questions in Sections 5.1 and 5.2.
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5.1 WHY WOULD A PRIMARY USER WANTS TO SHARE PORTIONS

OF HIS/HER SPECTRUM FOR SECONDARY USE?

For spectrum sharing to take place, current spectrum incumbents need to have some incen-

tives to sell or lease their own spectrum. From economic and financial standpoints, Peha and

Panichpapiboon demonstrate that a commercial cellular operator has a financial incentive

to lease spectrum for secondary use [27]. However, the interest of trading the spectrum for

secondary use largely depends on the classification of primary users1. For instance, spec-

trum users who are government agencies do not pay for the rights to access radio spectrum.

Therefore, they tend to have fewer financial incentives to share their spectrum than those

who have paid for the spectrum (i.e., commercial spectrum users). Strategic factors also

play an important role among the commercial users. Existing commercial users of spectrum

could have small incentives to sell or lease excess or unused spectrum if potential buyers will

use their acquired spectrum to provide a service competing with the sellers.

In terms of technical issues, spectrum has multiple access dimensions, as described earlier

in Section 2.1. Regardless of the dimensions of sharing, a lessee’s bid and a licensee’s offer

must match in all dimensions for trading to occur. This could imply that the number

of participants in the spectrum market may be low. This lack of liquidity decreases the

likelihood that a trade takes place, leading to the need to develop policies, incentives, and

market mechanisms that increase market liquidity and enhance the willingness of spectrum

users to conduct a trade. The transaction costs of secondary use are still unclear. It is likely

to be related to the negotiation process, which in turns depends on types of spectrum use

and dimensions of sharing.

1See Section 1.3 for the definitions of primary users and secondary users.

42



5.2 WHY WOULD A SPECTRUM USER WANTS TO BECOME A

SECONDARY USER?

While it is clearly necessary to examine the incentives for spectrum sharing, it is equally

important to consider under what circumstances potential secondary users would emerge.

This answer, it turns out, depends in large measure on the application that the secondary

users have in mind. In general, new spectrum users have several options to obtain access to

spectrum as follows:

• Obtain a spectrum license for exclusive use;

• Lease spectrum from existing users (secondary use);

• Use dedicated unlicensed spectrum;

• Use underlay transmission (ultra-wideband);

• Opportunistic access of the idle spectrum through agile radio.

The ultimate advantages of secondary use might be easy to perceive, but its obstacles,

hidden costs, and efficiencies are still unclear. The availability of spectrum and the level of

participation of primary spectrum users have to be taken into account. A limited pool of

usable spectrum can result in insufficient liquidity in the market. Technological factors may

place a limit on spectrum sharing capability. Different technologies of primary and secondary

users may cause barriers in developing secondary use of spectrum. Equipment capabilities

and costs also influence the feasibility of the secondary use. One important assumption we

have to make for this framework is the availability of Software Defined Radios (SDR). The

capabilities of SDR can be used to provide real-time spectrum management functions that

are essential parts of the pre-conditions of the markets. The degree of flexibility a device

should have in order to function in the spectrum market also needs to be determined.

Secondary users hold a risky position in their service operations since they may not

have direct control over the availability of radio spectrum, quality of service, and coverage

expectation. This may make it difficult for the secondary users to control the quality of

service they provide to their clients. Strategic behavior of the primary users is also significant

concern for the secondary users, especially when liquidity is low. To approach this problem,
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we need to analyze the viability of secondary users with respect to the types of services,

transmission technologies, market settings, transaction costs, and requirements and costs of

software defined radios needed in providing spectrum sharing for some levels of quality of

service. The study of necessary conditions and the impacts of the SDR and cognitive radios

to the secondary use of spectrum are, however, beyond the scope of this dissertation.

5.3 HOW DO PRIMARY AND SECONDARY USERS FIND EACH

OTHER?

This question gives a rise to technical and economic issues. The market is framed in signifi-

cant measure by the technical features of the spectrum in question. For example, trading in

higher frequency bands implies a local spectrum market because the higher frequencies suffer

greater attenuation than lower frequencies. Depending on the type of sharing, demand and

supply could become very specific in each of the sharing dimensions, such in time, geograph-

ical location, frequency, and so forth. This may result in more complicated matching and

negotiation mechanisms, especially when the markets progress towards real-time markets.

The trading of secondary use may occur through intermediaries such as bandwidth bro-

kers or distributed market makers or through the process of online-automated spectrum

sharing and trading in a real-time fashion. In general, the mechanisms of searching for a

match between the primary and the secondary users largely rely on types of services, ac-

cess characteristics, and service levels requested by secondary users. The access types could

consist of a long-term lease, a scheduled lease, and a short-term lease or spot markets.

Each type requires different discovery mechanisms and applies with different levels of service

agreements.

44



5.4 WHAT HAS TO BE NEGOTIATED? AND HOW?

The essence of the problem is to identify technical parameters that primary and secondary

users must negotiate for spectrum usage right trading. Hence, the necessity of developing

practical negotiation mechanisms becomes apparent. We need to investigate whether the ne-

gotiation mechanisms can be generalized. In an ideal case, all systems could apply a uniform

negotiation pattern by means of constructing an agreement on standard-based parameters.

However, if the spectrum sharing is highly dependent on technologies, the negotiation mech-

anisms would depend on specific types of technologies or market mechanisms. In both cases,

the development of the negotiation mechanisms needs to be more specifically defined.

Negotiation parameters generally include technical (frequency, location, time, transmit

power, multiplexing form, and so forth), financial (price and payment options), service qual-

ity (interference protection, signal-to-noise ratio, and so on). Actual parameters in nego-

tiation may be more or less specific depending on characteristics of services offered by the

primary user and the secondary user.

Similar to the discovery mechanism, the negotiation mechanism depends on the types

of spectrum use and access models. The performance of each possible mechanism could be

measured by its transaction costs (costs associated with providing information, matching

mechanism, negotiation, payment, enforcement, and so forth), ability to support different

types of services, and ability to support real-time markets.

It is also important to take into account the situation where a secondary user intends

to access radio spectrum on an opportunistic use basis. This type of users must utilize a

cognitive radio system that is capable of detecting spectrum environment for opportunity to

access spectrum and adapting its transmission to avoid harmful interference to the primary

user. In this case, the set of negotiation parameters may be different. The negotiation

process may be a one-time process provided that opportunistic users has equipped with

proven adaptive techniques or has complied with a set of initial agreements.
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6.0 AN AGENT-BASED MODEL FOR SECONDARY USE OF RADIO

SPECTRUM

This chapter introduces and provides description of the agent-based model for secondary

use of radio spectrum. First, Section 6.1 gives the model overview and description of the

modeling toolkit. Next, the governance structures and the incorporation of Transaction

Cost Economics into the agent-based model are discussed in Section 6.2. Section 6.3 de-

scribes specifications of agents in the spectrum access model which consists of consumer

agents and provider agents. Then, Sections 6.4–6.6 explain the behavioral methods of both

agents including agent’s learning algorithm, opportunistic behavior modeling, and pricing

mechanism. Finally, Sections 6.7 and 6.8 discuss agent’s operating environment and model

stopping criteria, respectively.

6.1 MODEL OVERVIEW

This section introduces a discrete-time agent-based economic model for spectrum access. We

use the Recursive Porous Agent Simulation Toolkit (Repast) as an agent modeling toolkit [71,

72]. Repast provides a collection of tools that facilitate model development, data collection,

and analysis on the collected data. The purpose of using the Repast modeling toolkit aims

at increasing the reliability and efficiency of the model, as some of the complex and non-

research-specific parts have been optimized by the toolkits. These advantages also facilitate

the replication of research results.

The model consists of two types of economic agents: spectrum access consumers and

spectrum access providers. A spectrum access consumer is a new spectrum user who is
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seeking to obtain spectrum access. The consumer is a potential secondary user. A spectrum

access provider is a spectrum license holder. The provider may become a primary user if

s/he allows secondary use by leasing portions of spectrum to the consumer. Both types of

agents and their operating environments can be customized to reflect different scenarios.

For example, the spectrum needs of consumers can be set up to represent short-range or

long-range communications according to transmit powers, receiver capabilities, and other

requirements, or to reflect some well-defined wireless standards. Several configurations of

the spectrum use of providers, such as broadcast networks or cellular networks, are possi-

ble by defining, among others, casting and directionality of communications, the range of

frequencies, transmitter and receiver locations, transmit power, and receiver requirements.

The operating environment can be modified to represent urban or rural settings. Our goal

is to explore the emerging behavior among agents when the secondary use of spectrum is

introduced as an additional method to obtain spectrum access. More specifically, we focus

on the questions of when and why consumers would choose secondary use of spectrum and

in what form. This study involves identifying processes or scenarios that leads to outcomes

through the repeated interactions of these autonomous agents.

6.2 TRANSACTION COST ECONOMICS AND SECONDARY USE OF

SPECTRUM

Transaction costs exist because of bounded rationality and the potential for opportunistic

behavior of transacting partners, as mentioned earlier in Section 3.1. In order to gain insight

into the effects of transaction costs, the model incorporates both behavioral assumptions

into its agents.

In the case of bounded rationality, consumer and provider agents are subject to sev-

eral kinds of limitations. In particular, agents do not have complete information about

the environment in which they operate. Each provider does not have access to consumer

preferences and their potential opportunistic behaviors. Similarly, each consumer does not

have information about behaviors of providers or other consumers. An agent must observe
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the outcomes of the transactions, learn from the interactions, and adapt its action in the

dynamic environment. Agents also have limited processing capacity which is implemented

by using learning algorithm with minimal complexity. In particular, we use reinforcement

learning algorithm to serve the purpose. The algorithm is described in Section 6.4.

For opportunistic behavior, we focus on the impact of interference (i.e., wireless signal

interference) on both consumers and providers. To model this, we set up a probability that

provider agents would overstate supply quantities; i.e., lease spectrum that could create

interference to consumers in order to generate more revenue. Likewise, consumers also have

potential to understate their demand quantities; i.e., specify less spectrum than what they

actually need in order to reduce cost. It should be noted that overstating the supply might

not always be the best strategy for providers. Depending on price elasticity of consumers

and characteristics of the market, providers may instead understate their supply quantities

in order to generate a higher market price. Understating the supply quantities, however, will

not create interference to consumers. The implementation of opportunism in the agent-based

model is further explained in Section 6.5.

In the midst of uncertainty, it is not clear how exactly the trading would take place.

We expect that different forms of secondary use could affect the magnitude of transaction

costs and the level of uncertainty due to potential interference. Corresponding to TCE, the

choices of organizational forms are on the market-hierarchy continuum as in Figure 3.1. In

the context of secondary use, the organizational form toward the market side implies the

real-time spot spectrum market or sharing formations of similar configuration, whereas the

hierarchy side suggests the formations similar to the MVNO.

Specifically, we use degree of control as a common indicator to differentiate multiple

forms of economic organization that can be used for organizing spectrum access transactions.

Degree of control refers to the ability of the organizational form to contain opportunistic be-

haviors and to facilitate the compatibility of actions among transacting agents. As suggested

by TCE [53], Figure 6.1 illustrates that markets have relatively the lowest degree of control,

hybrid forms possess intermediate values, and firms (hierarchy) have relatively the highest

degree of control.

Considering opportunistic behaviors and coordination capabilities in terms of their in-
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Figure 6.1: Governance structures in secondary use of radio spectrum.

terference effects, using degree of control as an indicator allows us to incorporate traditional

methods of spectrum access, namely unlicensed spectrum and exclusive license into the pic-

ture. Unlicensed spectrum does not provide interference protection, nor does it facilitate the

coordination among unlicensed users. Harmful interferences between unlicensed users or the

tragedy of the commons that could render unlicensed spectrum unusable may occur. There-

fore, it has lower degree of control compared to markets. On the other hand, a spectrum

license gives a licensee an exclusive access and a full interference protection. Thus, a license

yields higher degree of control than hierarchy.

6.3 AGENTS

Agents are autonomous entities capable of encapsulating their own data and behavioral

methods. Agent’s data may include its current inventory, price, utility function, and others,

while agent’s behavioral methods may comprise market protocols, pricing strategies, learning

algorithms, and others. It is apparent that some of the methods and data, such as protocols

and price, can be publicly accessible to all agents, whereas some of them, such as inven-

tory and strategies, should be contained within an agent. Agents also have communication

capability and continuously exchange information with each other to achieve its own goals.

An agent in the spectrum access model is denoted as a spectrum user who utilizes radio

spectrum resource to provide wireless services and applications (Section 6.3.1). Spectrum
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users are classified into two subclasses: Consumer agents and provider agents. Consumer

agents are spectrum users who are seeking spectrum access. Therefore, they are the potential

secondary spectrum users. Provider agents are spectrum users who hold exclusive spectrum

licenses and hence they are the potential primary users. Sections 6.3.2 and 6.3.3 present the

details of consumer and provider agents, respectively.

6.3.1 Spectrum Users

Spectrum users are characterized by their spectrum needs, which in turn are influenced by

their application requirements and network configurations. Three main parameters used

in the model are frequency bandwidth, duration of access, and utility function. The fre-

quency bandwidth is expressed as a Basic Bandwidth Unit (BBU), the pre-defined amount

of bandwidth in kHz. The duration of access is expressed in the number of model time steps.

We adopt a utility-based approach to provide a unified framework for different spectrum-

based applications and for spectrum users with different priority levels. Specifically, each

spectrum user maintains its utility1 function as a perceived value (utility) of the received

Quality of Service (QoS) of wireless transmission. We assume that the QoS depends on the

received Signal to Interference-plus-Noise Ratio (SINR). We also assume that the data rate is

an increasing function of the received SINR. Different users may have different utilities from

the same QoS depending on the service and application. Thus, various service requirements

can be embedded in each user’s utility function.

Applications with hard requirements on SINR such as a voice service require the received

SINR above a certain threshold to get an acceptable QoS. Users are indifferent to any further

increase in SINR above the threshold. If the received SINR drops below the threshold level,

the QoS is unacceptable and the user acquires zero utility. Therefore, their utility functions

are modeled as a step function, as in Figure 6.2(a). These applications are inelastic in their

demand for SINR. On the other hand, applications such as file transfer and e-mail are

considered elastic. They tend to tolerate delay and can take advantage of the low data rate.

1Utility is an economic term used to express the happiness or satisfaction a person derives from consuming
goods and services. It also reflects the willingness of the person to pay for goods or services. In our case,
the good or service is the QoS that a spectrum user receives.
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Figure 6.2: Utility functions: (a) inelastic application and (b) elastic application.

Their utility functions typically are in the form of diminishing returns to scale and take the

shape of a concave function, as in Figure 6.2(b) [73, 74, 75].

The communications system of each spectrum user is represented by a set of transmitters

and receivers that belong to that user. Obviously, the direction of communications is from the

transmitter to the receiver. Casting (e.g., uni-cast, multi-cast, and broadcast) is achieved by

defining the pair or connectivity between transmitter(s) and receiver(s). Figure 6.3 illustrates

different possible configurations of the spectrum user system.

In summary, the utility-based framework and the configuration of communications system

are used to describe each spectrum user. Table 6.1 presents these general parameters of

spectrum user.

6.3.2 Consumer Agents

Consumer agents are spectrum users who do not currently own exclusive spectrum license

and thus are actively seeking spectrum access. They are the potential secondary spectrum

users. We use degree of control (d) to identify organizational forms that can carry out

spectrum access transactions, as mentioned earlier in Section 6.2. Following our choices of

organizational forms to carry out spectrum transactions in Figure 6.1, we can assign values

of degree of control so that consumers using the unlicensed spectrum will derive zero degree

of control; and those using the exclusive license will acquire degree of control of one, as in
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Figure 6.3: Spectrum user’s wireless system: (a) one-way broadcast network, (b) two-way

infrastructure network, and (c) ad hoc network.
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Table 6.1: General Parameters of Spectrum Users

Symbol Description
i Spectrum user index

NT,i Number of transmitters of spectrum user i

NR,i Number of receivers per transmitter of spectrum user i

Mi Number of BBUs per transmitter of spectrum user i

Dmaxi Maximum coverage of spectrum user i’s transmitters in meters

SENi Receiver sensitivity of spectrum user i in dBm

REUi Frequency reuse factor of spectrum user i

Ui(γ) Utility function of spectrum user i, where γ is the received SINR

γ∗i Spectrum user i’s SINR threshold in dB

ηi Degree of concavity of spectrum user i’s utility function

ui,t Received utility of spectrum user i at period t as a perceived value of the
received quality of service (QoS)

si,t Surplus of spectrum user i at period t

ci,t Cost of spectrum access of spectrum user i at period t

αu,i QoS sensitivity of spectrum user i

αc,i Cost sensitivity of spectrum user i
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Figure 6.4: Degree of control values of different organizational forms in secondary use of

radio spectrum.

Figure 6.4. It should be noted that these degree of control values should be interpreted as

an ordinal measure and not by their absolute values, as the objective here is to convey the

relative ranking of different organizational forms.

Accordingly, consumer agents have three main methods to obtain spectrum access as

follows:

• Unlicensed spectrum: When using unlicensed spectrum (dc = 0.0)2, a consumer agent

randomly selects an operating frequency inside the unlicensed spectrum band at every

model time step. This implementation is similar to the frequency hopping technique

currently used in the unlicensed band. It also implies that the consumer agent is free

to select other spectrum access options as soon as the current time step ends. The cost

of using unlicensed spectrum is zero. The consumer, however, is taking risk of being

interfered with by other unlicensed spectrum users.

• Secondary use: If a consumer agent selects secondary use (0.0 < dc < 1.0), the dc

value will represent the selected degree of control by the consumer. The provider must

guarantee the selected degree of control to be eligible for a transaction with this consumer.

Therefore, consumer’s dc choice can control the outcome of economic organization that

will be used to organize the current spectrum access transaction. The choice of dc implies

the ability to contain opportunistic behaviors of the provider agents. A higher value of dc

provides greater protection against opportunism, as mentioned earlier; it may, however,

incur additional cost as the consumer is trying to structure the transaction to reduce

2dc and dp denote consumer’s and provider’s choices of degree of control, respectively.
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risks of opportunism.

With the chosen value of dc, the consumer agent will announce a spectrum access bid

at period t that includes the following information:

– Amount of spectrum (M total
c )

– Degree of control (dc,t)

– Access duration (lc,t)

– Bid price (pbid
c,t )

The buying bids from consumer agents and selling offers3 from provider agents will enter

a competitive bidding process4. The outcome will determine the transaction partner

(provider), the final secondary use price (i.e., the cost of spectrum access), the operating

frequency, and the organizational form (d) that both parties are agreed upon. We assume

that the provider can arrange secondary access without interference over the entire sim-

ulation area. In other words, we assume that the simulation area represents the unused

part of the provider’s spectrum. We also assume that consumer pays an additional fixed

cost that is linearly increased with d for every secondary use transaction.

• Exclusive license: When selecting an exclusive license (dc = 1.0), consumer pays the

license cost (Clicense). The consumer agent is locked in and cannot select other choices of

spectrum access until the license is expired. We assume that when the consumer agent

exercises the exclusive license option, s/he can expect an interference-free operation over

the entire simulation area.

Given an array of choices to obtain spectrum access, each consumer agent explores spec-

trum access options by repeatedly choosing among several combinations of {degree of control,

access duration} or {dc, lc} to satisfy his/her spectrum demand. Since consumer agents are

also spectrum users, they inherit the general parameters of spectrum users in Table 6.1.

Table 6.2 summarizes notations and parameters of consumer agents in addition to those of

the spectrum users.

For each spectrum transaction, the received utility (u) is the minimum received utility of

all receivers of that consumer. Then, each consumer j calculates a surplus value (sj,t), s/he

3See Section 6.3.3
4See Section 6.6
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Table 6.2: Additional Parameters of Consumer Agents

Symbol Description
M total

cj
Total number of BBUs required by consumer j

Nd Number of degree of control choices for consumers

dcj ,t Degree of control of consumer j at period t

Dc Set of consumer’s degree of control choices,
{

0, 1
Nd−1 , 2

Nd−1 , . . . , Nd−1
Nd−1

}
Nl Number of lease durations for consumers

lcj ,t Lease duration of consumer j at period t

Lc Set of consumer’s lease duration choices in number of model time steps

pbid
cj ,t Bid price per BBU of consumer j at period t

received as a function of the received utility (uj,t) and the cost of spectrum access (cj,t):

sj,t = αu,juj,t − αc,jcj,t (6.1)

The objective of the consumer is commonly assumed to maximize his/her surplus [74, 75].

Accordingly, consumers use a learning algorithm (Section 6.4.1) to adapt their preferences

on dcj ,t and lcj ,t based on the received surplus (sj,t) from each transaction. The price update

of consumer’s bid (pbid
cj ,t) is discussed in Section 6.6.

6.3.3 Provider Agents

Providers in spectrum access model are spectrum users who currently own exclusive spec-

trum licenses. Therefore, they are the potential primary spectrum users. Similar to consumer

agents, provider agents’ spectrum utilization is characterized by their application require-

ments and network configurations. The operating frequency of transmitters and receivers is

within the bounds of provider’s spectrum license. The providers can sublease unused parts of
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their spectrum in terms of the number of BBUs and lease durations specified in consumer’s

spectrum access bids, subjected to availability.

Each provider agent selects a degree of control (dp), which will represent the minimum

threshold that is acceptable for the provider. The consumer must have an adequate degree of

control (dc ≥ dp) to be eligible for a transaction with this provider. Therefore, the dp choice

controls the outcome of organization that will be used to manage spectrum transaction of this

provider. The choice of dp also reflects the ability of the provider to contain opportunistic

behaviors of consumers in the transaction. In this case, the high-level dp may limit the

number of eligible consumers and, hence, the demand for secondary use of spectrum that

the provider may serve.

The range of dp is between 0.0 and 1.0. The minimum value of dp is equal to the minimum

value of dc for secondary use. When the provider selects this minimum value, it indicates

that s/he is willing to conduct a transaction with any consumer agent. The maximum value

of dp is 1.0, which gives the provider an option not to participate in secondary use. This

implementation is feasible because the maximum value of dc for secondary use is always less

than 1.0. With the selected value of dp, the provider agent will announce a spectrum access

offer at period t that includes the following information:

• Amount of share spectrum (M share
p,t )

• Minimum degree of control (dp,t)

• Maximum lease duration (lp,t)

• Frequency channel (fp,t)

• Ask price (pask
p,t )

The values of M share
p,t , lp,t, and fp,t may vary in each model time step depending on the

characteristic of provider’s spectrum usage and the ongoing secondary use transactions. The

secondary use offers from providers and the bids5 from consumers will enter a competitive

bidding process6. The outcome will determine the transaction partner (consumer), the sec-

ondary use price (i.e., revenue from secondary use), and the organizational form (d) of the

5See Section 6.3.2
6See Section 6.6
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Table 6.3: Additional Parameters of Provider Agents

Symbol Description
Mshare

pk,t Number of share BBUs of provider k at period t

dpk,t Degree of control of provider k at period t

Dp Set of provider’s degree of control choices,
{

1
Nd−1 , 2

Nd−1 , . . . , Nd−1
Nd−1

}
lpk,t Maximum lease duration of provider k at period t

fpk,t Frequency channel of provider k for secondary use at period t

pask
pk,t Ask price per BBU of provider k at period t

secondary use transaction. These information will be used by the provider to update the

availability of spectrum in the subsequent offers.

With an array of degree of control choices, each provider agent repeatedly samples dif-

ferent dp choices to find the best option for the current scenario. Like consumer agents,

providers also inherit the general parameters of spectrum users in Table 6.1. Table 6.3

provides additional notations and parameters of provider agents.

For each transaction, the provider calculates the received utility (u), which is the mini-

mum received utility of all of the provider’s receivers. Then, each provider k uses the received

utility (uk,t), the exclusive license cost (Clicense), and the secondary use revenue to compute

the surplus value (sk,t):

sk,t = αu,kuk,t − αc,kClicense + revenue (6.2)

Similar to consumer agents, the objective of providers is assumed to maximize his/her surplus

[74, 75]. Accordingly, providers use a learning algorithm (Section 6.4.2) to adapt their

preferences on dpk,t based on the received surplus (sk,t) from each transaction. The price

update of provider’s offer (pask
pk,t) is discussed in Section 6.6.
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6.4 LEARNING ALGORITHM

Given the result of the transaction, both consumer and provider agents adapt their future

actions in order to maximize their own objectives. One of the popular learning algorithms

used to capture the natural learning process of human and organization is reinforcement

learning [76, 77]. Unlike other supervised learning approaches, such as pattern recognition

and artificial neural networks that learn from examples, reinforcement learning focuses on

real-time adaptive interactions with an uncertain environment which is often difficult to

obtain examples and the desired responses for all situations.

The underlying concept of reinforcement learning is that the propensity to take any

particular action should be increased or reinforced if it produces favorable outcomes and

decreased if it leads to negative results [78]. The algorithm is decentralized and only re-

quired the past information of agent’s actions and the corresponding payoffs. The advantage

of reinforcement learning is in its simplicity that does not require high-level processing ca-

pabilities from the agent. Therefore, this learning algorithm fulfills the notion of bounded

rationality in the transaction cost theory.

In particular, we implement the reinforcement comparison method which establishes

a reference level of result (reference reward) and uses this reference value to evaluate the

outcome of the future transactions [78]. The reinforcement comparison method maintains

the propensity or preference for each action and uses the propensity values to calculate the

probability that the particular action will be chosen in the next transaction. Figure 6.5

illustrates the process of the reinforcement comparison method.

6.4.1 Consumer Learning

Table 6.4 provides notations and parameters of consumer’s learning process. In the case

of consumer agents, the action is the selection of {dc, lc}. The probability of consumer j

selecting any dc and lc at period t1 according to the softmax action selection rules is:

ρcj ,t1(dc, lc) =
exp

[
qcj ,t1(dc, lc)

]∑
a∈Dc,b∈Lc

exp
[
qcj ,t1(a, b)

] (6.3)
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Figure 6.5: Reinforcement comparison learning process.

60



Table 6.4: Learning Parameters of Consumer Agents

Symbol Description
sr

j,t Reference surplus of consumer j at period t

αsc Consumer’s step-size parameter for reference surplus update, 0 < αsc ≤ 1

βsc Consumer’s step-size parameter for propensity values update based on the
surplus received, βsc > 0

qcj ,t(dc, lc) Propensity that consumer j selects a combination of degree of control dc

and lease duration lc at period t; dc ∈ Dc, lc ∈ Lc

ρcj ,t(dc, lc) Probability that consumer j selects a combination of degree of control dc

and lease duration lc at period t; dc ∈ Dc, lc ∈ Lc

δcj Probability that consumer j does not follow the learning algorithm

The consumer obtains spectrum access based on the values of {dcj ,t1 , lcj ,t1} selected from

the probability distribution. Assume that the transaction (i.e., unlicensed, secondary use,

or exclusive license access) concludes at period t2, the propensity of selecting dcj ,t1 and lcj ,t1

is updated by the difference between the received surplus (sj,t2) and the reference surplus

(sr
j,t1

):

qcj ,t2(dcj ,t1 , lcj ,t1) = qcj ,t1(dcj ,t1 , lcj ,t1) + βsc(sj,t2 − sr
j,t1

) (6.4)

According to this update, the probability of selecting the same action on the next transaction

will be increased if the received surplus is higher than the reference value, and decreased if

the received surplus is lower. This adjustment is controlled by the step-size parameter βsc.

After the propensity update in (6.4), the reference surplus is updated to include the

received surplus (sj,t2). Instead of taking an average of all past surpluses as a new reference

value, we weight the recent surpluses more heavily than the older ones. This exponential,

recency-weighted average method is appropriate for a non-stationary environment [78]. The

reference surplus update is as follows:

sr
j,t2

= sr
j,t1

+ αsc(sj,t2 − sr
j,t1

) (6.5)

Here, αsc is the step-size parameter that controls the weight of reference surplus update.
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In addition to this learning process, we want to make sure that consumer agents explore

the whole {dc, lc} space and do not bind to certain solutions. We add a stochastic element into

the model by assigning a small probability, δcj
, that consumer j will not follow the probability

distribution ρcj ,t(dc, lc) as suggested by the reinforcement learning in (6.3). Instead, consumer

j will randomly select {dc, lc} choices (i.e., using the uniform distribution):

ρcj ,t(dc, lc) =


exp

[
qcj ,t(dc, lc)

]∑
a∈Dc,b∈Lc

exp
[
qcj ,t(a, b)

] with probability 1− δcj

1
Nl(Nd − 2)

with probability δcj

(6.6)

Example of the Learning Process

To demonstrate the learning process of spectrum access model, Figure 6.6 shows the pro-

cess of one consumer agent. In this example, there is only one consumer operating in the

environment. Obviously, the best strategy for this consumer is to use unlicensed spectrum

because there is no cost to acquire spectrum access and there is no possibility of interference.

The graph shows that the consumer tries out different combinations of degrees of control

and lease durations (i.e., the duration s/he remains on a particular degree of control), and

finally converges to 0.0 (unlicensed spectrum) as a choice of spectrum access.

Another example demonstrates the surplus-maximizing objective of consumer agents.

Figure 6.7 shows an average surplus of ten consumer agents operating in the same environ-

ment. The graph shows that the average surplus fluctuates over time due to the consumer’s

experiments with various {dc, lc} combinations, in which the current tryout may produce

a lower or higher surplus than the previous one. The reinforcement learning, however, al-

lows each consumer to learn and adapt his/her selection to maximize his/her objective (i.e.,

surplus). As a result, we observe that the average surplus increases over time.

6.4.2 Provider Learning

The learning process of provider agents is the selection of degree of control value (dp) to

control the organization of spectrum access transaction. Table 6.5 summarizes notation and
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Fig. 3. Average surplus of ten consumer agents.

exclusive rights and there is no possibility of interference. The
graph shows that the consumer tries out different combinations
of degrees of control and lease durations (the duration s/he
stays on that degree of control), and finally converges to 0.0
(unlicensed spectrum) as a choice for spectrum access. Fig. 3
shows an average consumer surplus of ten consumer agents
operating in the same environment. The reinforcement learning
allows each consumer to adapt his/her action to maximize
his/her objective (i.e., surplus). Hence, we observe an average
surplus increases over time.

IV. PRELIMINARY RESULTS AND DISCUSSION

In this section, we describe a set of preliminary experiments
to demonstrate some of the important features of our agent-
based model. These are not intended to be final results as
this research project is still in process. The objective is to
produce some baseline results and to provide some degree
of model validation. We study the behavior of consumer
agents in terms of their selections of degree of control (dc)
in response to the existence of secondary use, number of
consumers and providers in the environment, and spectrum
access characteristics of consumer agents.

First, we present the case where the secondary use of
spectrum is not allowed (the current policy scenario). Each
consumer agent has to either use unlicensed spectrum or
acquire an exclusive license in order to obtain spectrum access.

TABLE IV

SIMULATION PARAMETERS

Parameters Values
Environment

A 4 km2

PL 3.5
F 1900 MHz
S 200 kHz
U 50 BBUs

Consumers
NT 1
NR 1
K 2

M1 1 BBUs
M2 10 BBUs
Ndc 5
Dc {0.0, 0.25, 0.5, 0.75, 1.0}
Nl 4
L {0.25, 0.5, 0.75, 1.0}

Providers
Tlicense 10

B 10 BBUs
Nm 4
M {0.0, 0.25, 0.5, 0.75}

In the second scenario, secondary use is permitted, so con-
sumers are allowed to choose intermediate degrees of control.
Here, a larger value for dc means that the spectrum user
would prefer advance planning and specific commitments (i.e.,
greater guarantees) than would be necessary when dc is lower.
When dc is relatively low, the level of guarantees provided by
spot markets (or similar structures) may be adequate.

In all experiments, consumer agents are randomly posi-
tioned in the simulation area and their locations are changed
in each run. For each consumer, the location of the receiver is
within the maximum coverage from its transmitter. The trans-
mit power is calculated to provide reliable communications
(satisfy receiver’s SNR requirement) for any receiver inside
the transmitter’s maximum coverage.

When using unlicensed spectrum, consumer agent randomly
selects an operating frequency channel in every time step. This
implementation is similar to the frequency hopping technique
used in the unlicensed band. The cost of using unlicensed
is zero. If a consumer agent selects secondary use, s/he will
submit a spectrum access request to every provider agents.
The provider with the lowest price will get transacted. At the
moment, we assume that consumer pays an additional fixed
cost that is linearly increased with dc for every secondary
use transaction. When using an exclusive license, consumer
pays the license cost. The agent is locked in and cannot select
other choices of spectrum access until the license expired. In
addition, we assume that if the consumer agent chooses an
exclusive license or a spectrum lease from a provider, s/he can
expect an interference-free operation over the entire simulation
area.

Table IV presents the common values of parameters used
in the experiment unless specified explicitly. The concepts of
consumer’s money endowment and frequency reuse are not in-
cluded in these preliminary experiments. Results are presented

Figure 6.6: Learning process of one consumer agent.
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Fig. 3. Average surplus of ten consumer agents.

exclusive rights and there is no possibility of interference. The
graph shows that the consumer tries out different combinations
of degrees of control and lease durations (the duration s/he
stays on that degree of control), and finally converges to 0.0
(unlicensed spectrum) as a choice for spectrum access. Fig. 3
shows an average consumer surplus of ten consumer agents
operating in the same environment. The reinforcement learning
allows each consumer to adapt his/her action to maximize
his/her objective (i.e., surplus). Hence, we observe an average
surplus increases over time.

IV. PRELIMINARY RESULTS AND DISCUSSION

In this section, we describe a set of preliminary experiments
to demonstrate some of the important features of our agent-
based model. These are not intended to be final results as
this research project is still in process. The objective is to
produce some baseline results and to provide some degree
of model validation. We study the behavior of consumer
agents in terms of their selections of degree of control (dc)
in response to the existence of secondary use, number of
consumers and providers in the environment, and spectrum
access characteristics of consumer agents.

First, we present the case where the secondary use of
spectrum is not allowed (the current policy scenario). Each
consumer agent has to either use unlicensed spectrum or
acquire an exclusive license in order to obtain spectrum access.

TABLE IV

SIMULATION PARAMETERS

Parameters Values
Environment

A 4 km2

PL 3.5
F 1900 MHz
S 200 kHz
U 50 BBUs

Consumers
NT 1
NR 1
K 2

M1 1 BBUs
M2 10 BBUs
Ndc 5
Dc {0.0, 0.25, 0.5, 0.75, 1.0}
Nl 4
L {0.25, 0.5, 0.75, 1.0}

Providers
Tlicense 10

B 10 BBUs
Nm 4
M {0.0, 0.25, 0.5, 0.75}

In the second scenario, secondary use is permitted, so con-
sumers are allowed to choose intermediate degrees of control.
Here, a larger value for dc means that the spectrum user
would prefer advance planning and specific commitments (i.e.,
greater guarantees) than would be necessary when dc is lower.
When dc is relatively low, the level of guarantees provided by
spot markets (or similar structures) may be adequate.

In all experiments, consumer agents are randomly posi-
tioned in the simulation area and their locations are changed
in each run. For each consumer, the location of the receiver is
within the maximum coverage from its transmitter. The trans-
mit power is calculated to provide reliable communications
(satisfy receiver’s SNR requirement) for any receiver inside
the transmitter’s maximum coverage.

When using unlicensed spectrum, consumer agent randomly
selects an operating frequency channel in every time step. This
implementation is similar to the frequency hopping technique
used in the unlicensed band. The cost of using unlicensed
is zero. If a consumer agent selects secondary use, s/he will
submit a spectrum access request to every provider agents.
The provider with the lowest price will get transacted. At the
moment, we assume that consumer pays an additional fixed
cost that is linearly increased with dc for every secondary
use transaction. When using an exclusive license, consumer
pays the license cost. The agent is locked in and cannot select
other choices of spectrum access until the license expired. In
addition, we assume that if the consumer agent chooses an
exclusive license or a spectrum lease from a provider, s/he can
expect an interference-free operation over the entire simulation
area.

Table IV presents the common values of parameters used
in the experiment unless specified explicitly. The concepts of
consumer’s money endowment and frequency reuse are not in-
cluded in these preliminary experiments. Results are presented

Figure 6.7: Average surplus of ten consumer agents.
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Table 6.5: Learning Parameters of Provider Agents

Symbol Description
sr

k,t Reference surplus of provider k at period t

αsp Provider’s step-size parameter for reference profit update, 0 < αsp ≤ 1

βsp Provider’s step-size parameter for propensity values update based on the
surplus received, βsp > 0

qpk,t(dp) Propensity that provider k selects a degree of control dp at period t; dp ∈ Dp

ρpk,t(dp) Probability that provider k selects a degree of control dp at period t; dp ∈ Dp

δpk
Probability that provider k does not follow the learning algorithm

parameters of provider’s learning. The process follows the reinforcement comparison method.

The probability of provider k selecting any dp at period t1 is:

ρpk,t1(dp) =
exp [qpk,t1(dp)]∑

a∈Dp

exp [qpk,t1(a)]
(6.7)

Assume that the transaction that starts at period t1 concludes at period t2
7, the propensity

of selecting dpk,t1 is updated by the difference between the received surplus (sk,t2) and the

reference surplus (sr
k,t1

):

qpk,t2(dpk,t1) = qpk,t1(dpk,t1) + βsp(sk,t2 − sr
k,t1

) (6.8)

where βsp controls the rate of propensity update. Then, the reference surplus is updated as

follows:

sr
k,t2

= sr
k,t1

+ αsp(sk,t2 − sr
k,t1

) (6.9)

where αsp controls the weight of reference value update.

We also include a stochastic element into the model to make sure that providers explore

the whole {dp} space and do not bind to certain solutions. Here, we assign a small probability,

7Each provider may be involved in many spectrum transactions at a time. The dp update is on a per-
transaction basis.

64



δpk
, that provider k will not follow the probability distribution ρpk,t(dp) as suggested by the

reinforcement learning in (6.7). The provider k will, instead, randomly select {dp} choices

using the uniform distribution:

ρpk,t(dp) =


exp [qpk,t(dp)]∑

a∈Dp

exp [qpk,t(a)]
with probability 1− δpk

1
Nd − 1 with probability δpk

(6.10)

6.5 OPPORTUNISTIC BEHAVIOR MODELING

As mentioned earlier in Section 3.1, transaction costs emerge because transacting partners

have a potential to behave opportunistically in order to take advantages in a trade. In this

section, we incorporate the potential opportunistic behavior into agents in the model.

6.5.1 Consumer Opportunistic Behavior

Recall from Section 6.2, we focus on the impact of interference as a result of opportunistic

transactions. An opportunistic consumer will understate the original demand quantity in

order to reduce secondary use cost. When announcing a spectrum access bid, the original

quantity M total
c will be replaced with the new quantity, M total∗

c . The opportunistic consumer

will operate in provider’s spectrum in excess of the quantity stated in the bid. Hence, the

effect of consumer’s opportunism is the potential interference to the provider’s receivers.

To simplify the model, we use M total∗
c = M total

c /2 for all opportunistic consumer agents8.

Table 6.6 presents the parameters of consumer’s opportunistic behavior modeling.

Opportunistic consumers can also learn from their opportunistic behaviors in the current

transaction and decide whether they should act opportunistically in the future transactions.

We use reinforcement comparison method for this learning process. Let the opportunistic

8Although we expect that opportunistic spectrum users would abuse the transaction at a small margin
(e.g., at 10%), we select an aggressive margin to intensify the effects of opportunistic behavior in order to
speed up the convergence of the agent-based model.
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Table 6.6: Parameters of Consumer’s Opportunistic Behavior

Symbol Description
ocj ,t Opportunistic choice of consumer j at period t, ocj ,t ∈ {0, 1}

πj,t Profit from opportunistic behavior of consumer j at period t

πr
j,t Reference profit from opportunistic behavior of consumer j at period t

αoc Consumer’s step-size parameter for reference profit update, 0 < αoc ≤ 1

βoc Consumer’s step-size parameter for propensity values update based on the
profit received, βoc > 0

qcj ,t(oc) Propensity that consumer j chooses an opportunistic behavior oc at period
t; oc ∈ {0, 1}

ρcj ,t(oc) Probability that consumer j chooses an opportunistic behavior oc at period
t; oc ∈ {0, 1}

Tbase Base-level of trust

TF Trust development rate

Tthres Minimum trust threshold to be considered trustworthy

Tprob Probability of participating in a transaction with an untrustworthy partner
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choice of consumer j, ocj ,t, be 0 when consumer j decides not to become an opportunist and

1 otherwise. The probability that consumer j will act opportunistically at period t1 is:

ρcj ,t1(1) =
exp

[
qcj ,t1(1)

]
exp

[
qcj ,t1(0)

]
+ exp

[
qcj ,t1(1)

] (6.11)

Assume that the transaction concludes at period t2, the propensity of choosing opportunistic

choice ocj ,t1 at period t1 is update by the difference between the received profit (πj,t2) and

the reference profit (πr
j,t1

):

qcj ,t2(ocj ,t1) = qcj ,t1(ocj ,t1) + βoc(πj,t2 − πr
j,t1

) (6.12)

where βoc is the step-size parameter that controls the rate of propensity update. Then, the

exponential, recency-weighted average method is applied on the reference profit update:

πr
j,t2

= πr
j,t1

+ αoc(πj,t2 − πr
j,t1

) (6.13)

where αoc controls the update weight.

The profit from opportunistic behavior can be specified as follows:

• If consumer j does not act opportunistically (i.e., ocj ,t1 = 0), there will be no gain from

this action. Thus, the received opportunistic profit upon the ending of transaction is 0.0

(πj,t2 = 0.0).

• If consumer j acts opportunistically (i.e., ocj ,t1 = 1), the profit of this action will be the

reduced cost of spectrum access transaction. Thus, the received profit upon the ending of

transaction, πj,t2 , is set to the difference between the spectrum access cost with quantity

M total
c and the spectrum access cost with quantity M total∗

c .

• If consumer j receives an interference complaint9 from his/her transacting provider, it

implies that the transacting provider is suffering interference from one or more secondary

use transactions. This situation will obviously discourage the provider from participating

in secondary use of spectrum access in the future. As a consequence, consumer j may

have to rely on an exclusive license for spectrum access due to the limited availability

of spectrum for secondary use. Therefore, upon receiving the interference complaint,

consumer j will update the choice of acting opportunistically (i.e., ocj ,t1 = 1) with the

received profit, πj,t2 , of negative exclusive license cost (−Clicense).

9See Section 6.5.2.
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Fig. 11. Trust development.

tunistic behavior will try to generate additional revenue by
sharing spectrum that could create interferences to consumers
(e.g., leasing the same part of spectrum to more than one
consumer at a time). We assume that consumer agent can
distinguish his/her transacting partners and can develop and
maintain basic trust information on each of his/her partners.
Following Klos’s agent-based modeling of trust [18], trust is
defined as the ability to act according to expectation. In our
case, this refers to secondary use without interference. We fur-
ther assume that trust increases with the number of consecutive
transactions without interference. The development of trust is
specified by the following equation [18]:

trust = b + (1 − b)
(

1 − 1
fx + 1 − f

)
, (9)

where b is the base-level of trust and x is the number of
consecutive transactions without interference. f is a parameter
that controls trust development rate. From the equation, the
range of trust value is [0, 1]. In our case, we use b = 0.5
and f = 0.5. Fig. 11 illustrates the improvement of trust with
the number of transactions without interference.

In this experiment, we apply the following rule. When
consumer i experiences interferences while using spectrum of
provider j, consumer i’s trust in provider j is reduced by half.
If trust drops below 0.3, consumer i will transact with provider
j with probability of 0.5. If consumer i does not experience
interferences while transacting with provider j, the trust starts
to increase from the current trust level at the rate shown in
Fig. 11.

The simulation consists of 5 consumers with M2 = 10,
Max. coverage = 200 meters and αu = 100. We observe
the provider with opportunistic behavior. Fig. 12 presents the
probability that this provider will share spectrum that could
create interferences to his/her transacting partners. The graph
shows that the probability drops as NP increases (note that for
NP = 1, 2, and 3, none of the consumers chooses secondary
use).

The result is the market reaction to opportunism. As the
number of providers increases, the amount of sharable spec-
trum becomes larger. Consumer agents have more choices
in terms of selecting their transacting partners. They can
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Fig. 12. Opportunistic behavior.

switch to other providers with acceptable level of trust. The
provider with opportunistic behavior starts to experience a
drop in revenue, because s/he receives fewer transactions.
Consequently, this provider adapts to the situation by reducing
his/her opportunistic behavior in order to create trust and
acquire more transactions.

V. CONCLUSION AND FUTURE WORK

We propose an agent-based model for spectrum access to
study the effects of transaction costs with the goal of identify-
ing the pre-conditions to the secondary use of spectrum. Al-
though the model is in its infancy, we believe that the strength
of the model is in its ability to simulate different scenarios
of spectrum usage from both supply side and demand side.
By incorporating technical parameters of wireless communi-
cations into economic agents, the model allows us to study
both economic and technical aspects of spectrum sharing. With
certain assumptions, it would be useful to quantify technical
parameters and establish a set of conditions for the feasible
spectrum sharing. As with other research that recognize the
benefit of ACE, the understanding of aggregate behaviors
of the agents can be used to guide policy development for
efficient spectrum markets.

With the research in Software-Defined Radio (SDR) moving
toward commercial implementation, we envision the incor-
poration of SDR into the spectrum access model. In our
context, SDR will provide higher flexibility in spectrum access
for both consumers and providers. Consumers equipped with
SDR-based reconfigurable devices can adapt their operating
parameters such as frequency range (multiband), air interface
(multimode), modulation type, output power, etc. by making
a change in software [19]. Thus, exposing them to a larger
pool of available spectrum. Providers with SDR technology
can adapt their spectrum usage to accommodate consumer’s
demand or to create a larger portion of idle spectrum available
for lease.

In an extreme case, cognitive radio, which is built upon
SDR, can sense its surrounding environment and perform real-
time changes in its operating parameters to provide reliable
and efficient use of spectrum [20], [21]. Conceptually, this
intelligent cognitive radio has the abilities to detect idle part

Figure 6.8: Trust development (Tbase = 0.5 and TF = 0.5).

The remaining of this section describes consumer’s reaction to the opportunistic behavior

of provider agents. We assume that a consumer agent can distinguish his/her transacting

partners and develop as well as maintain basic trust information on each of his/her partners.

Following Klos’s agent-based modeling of trust [79], trust is defined as the ability to act

according to expectation. In our case, consumer agents expect secondary use of spectrum

without interference. We further assume that the consumer’s trust in a particular provider

increases with the number of consecutive transactions without interference when the con-

sumer transacts with that provider. The development of consumer’s trust is specified by the

following equation [79]:

trust = Tbase + (1− Tbase)

(
1− 1

xTF + 1− TF

)
(6.14)

where Tbase is the base-level of trust; x is the number of consecutive transactions without

interference; and TF is a parameter that controls trust development rate. From (6.14), the

range of trust value is [0, 1]. Figure 6.8 illustrates the improvement of trust with the number

of transactions without interference.
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Table 6.7: Parameters of Provider’s Opportunistic Behavior

Symbol Description
opk,t Opportunistic choice of provider k at period t, opk,t ∈ {0, 1}

πk,t Profit from opportunistic behavior of provider k at period t

πr
k,t Reference profit from opportunistic behavior of provider k at period t

αop Provider’s step-size parameter for reference profit update, 0 < αop ≤ 1

βop Provider’s step-size parameter for propensity values update based on the
profit received, βop > 0

qpk,t(op) Propensity that provider k chooses an opportunistic behavior op at period t;
op ∈ {0, 1}

ρpk,t(op) Probability that provider k chooses an opportunistic behavior op at period
t; op ∈ {0, 1}

We apply the following rules to the trust modeling: When consumer j experiences inter-

ferences while using spectrum of provider k, consumer j’s trust in provider k is reduced by

half. If trust drops below Tthres, consumer j will transact with provider k with a probability

Tprob; otherwise, consumer j will always transact with provider k. If consumer j does not

experience interferences while transacting with provider k, then the trust in provider k starts

to increase at the rate shown in Figure 6.8.

6.5.2 Provider Opportunistic Behavior

An opportunistic provider will overstate the original supply quantity in order to generate

more revenue. In doing this, the opportunistic provider will continue to announce a spectrum

access offer even after all spectrum for secondary use has been leased to other consumers.

The consumer who transacts with this provider will operate in the frequencies that are

being used by other consumer agents. Therefore, the effect of provider’s opportunism is the

potential interference to the consumer’s receivers.

Table 6.7 summarizes the parameters of provider’s opportunistic behavior modeling.
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Opportunistic providers use reinforcement comparison to learn and maximize the profit from

opportunistic behavior choices. Let the opportunistic choice of provider k, opk,t, be 0 when

provider k decides not to become and opportunist and 1 otherwise. The probability that

provider j will act opportunistically at period t1 is:

ρpk,t1(1) =
exp [qpk,t1(1)]

exp [qpk,t1(0)] + exp [qpk,t1(1)]
(6.15)

Assume that the transaction concludes at period t2, the propensity of choosing opportunistic

choice (opk,t1) at period t1 is update by the difference between the received profit (πk,t2) and

the reference profit (πr
k,t1

):

qpk,t2(opk,t1) = qpk,t1(opk,t1) + βop(πk,t2 − πr
k,t1

) (6.16)

where βop controls the rate of propensity update. Then, the reference profit is updated as

follows:

πr
k,t2

= πr
k,t1

+ αop(πk,t2 − πr
k,t1

) (6.17)

where αop controls the weight of reference value update.

The profit from provider’s opportunistic behavior is described as follows:

• If provider k does not act opportunistically (i.e., opk,t1 = 0), there will be no gain from

this action. Thus, the received opportunistic profit upon the ending of transaction is 0.0

(πk,t2 = 0.0).

• If provider k acts opportunistically (i.e., opk,t1 = 1), the profit of this action will be

an additional revenue from spectrum access offers in excess of the provider’s truthful

capacity. Thus, the received profit upon the ending of transaction, πk,t2 , is the revenue

of that opportunistic transaction.

• Provider k’s spectrum offers may be rejected by a particular consumer. This implies that

the consumer’s trust on provider k is below Tthres because the consumer has encountered

interference when transacted with provider k. With the low trust value, the consumer

will avoid making secondary use transactions with provider k. As a result, provider k

will receive less transactions and, hence, less secondary use revenue. Therefore, upon

receiving consumer’s rejection of the spectrum offer, provider k will update the choice
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of acting opportunistically (i.e., opk,t1) with the received profit, πk,t2 , equivalent to the

negative revenue had the offer been transacted (i.e., the opportunity cost).

Next, we discuss provider’s reaction to the opportunistic behavior of consumer agents.

Providers expect an interference-free operation when they are sharing spectrum for secondary

use. In contrast to the consumer’s opportunistic modeling where consumers maintain trust

information on his/her partners, providers do not implement the trust model. The rationale

behind this is based on the real-world implementation. In wireless environment, it is consid-

ered difficult and costly for providers to identify the sources of interference (i.e., opportunistic

consumers), especially when each provider can serve multiple spectrum access consumers at

the same time. Instead, provider k will issue an interference complaint to all consumers who

are operating in the provider k’s spectrum as soon as s/he experiences interference while

allowing secondary use to these consumers. In addition to this, provider k will exercise the

choice of minimum degree of control, dp, to limit consumer’s opportunistic behavior.

6.6 SPECTRUM LEASING AND PRICING

We use an auction to determine the prices of spectrum access transactions between consumer

and provider agents. An auction is an institution in which traders exchange messages that

include a bid (offer to buy) and an ask (offer to sell). The process gives higher priority in a

transaction to higher bids and lower asks.

One of the most celebrated auction mechanisms is a continuous double auction (CDA),

which is the dominant institution for real-world equities and derivatives trading. In CDA,

bids and asks are publicly announced and traded at any time during the trading period with-

out relying on a central auctioneer [80]. Experiments also indicate that the CDA mechanism

can produce reliable price convergence close to theoretical equilibria [81].

Several studies examine the agent-based implementation of CDA [82, 83, 84, 85, 86].

They demonstrate that simple adaptive agents can learn to negotiate and trade at equilib-

rium price in an environment where many buyers and sellers are simultaneously negotiating

transactions. In our agent-based model, we follow a persistent shout double auction algo-
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rithm by Preist and Van Tol [85, 86]. The auction algorithm is an extension of Gode and

Sunder’s zero-intelligence (ZI) traders [82] and Cliff’s zero-intelligence-plus (ZIP) traders

[83]. In a persistent shout double auction, an agent may make an offer to buy or offer to

sell at any time. The offer is, however, persistent until the owner revises or removes it in

response to other trading activities. Once bids and asks are met, they are removed and a

trade takes place.

Our objective of using CDA is to determine the equilibrium price of secondary use trans-

actions given the current supply and demand for spectrum access. Although the negotiation

in CDA may result in trades taking place at different prices and away from the equilibrium,

several repetitions of auction with the same bids and asks can converge to the equilibrium

price [86, 81]. Therefore, consumer and provider agents in the model will engage in a series

of mock auctions before the real auction takes place in the final round. These mock auctions

will allow agents to response to market conditions and other trading activities before hold-

ing the final auction. Hence, the final auction will result in trades taking place closer to the

equilibrium than a single auction [86].

In this iterated auction, a double auction is organized into a number of trading periods

(mock auctions). Each trading period consists of multiple discrete time steps called trading

rounds. According to Preist and Van Tol [85, 86], consumer and provider agents who want to

participate in an auction must submit secondary use bids and asks, respectively, in the first

trading round. Agents may also choose to update their bids/asks in any of the subsequent

trading rounds, otherwise their current bids/asks will stand. A trade takes place when the

highest bid is greater than or equal to the lowest ask, and the trade is made at the average

of the two prices.

Each agent has its own reservation price (limit price), which is the maximum price a

consumer is willing to pay for spectrum access or the minimum price a seller is willing to

provide secondary use of spectrum. Reservation prices may vary among agents according to

their desire for spectrum access and additional revenue, which are specified by their surplus

functions. In the secondary use model, reservation price of consumer agent is calculated such

that it produces the same surplus value as using an exclusive license, whereas a provider

agent uses an amortized exclusive license cost as its reservation price. Both consumers and
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providers continue to trade until there is no bid or ask left, or their bids and asks have

reached the reservation price, in which case trade can no longer occur. These conditions

mark the end of a trading period. Once a trading period is over, a new trading period begins

with all agents submit the same bids and asks in the first trading round, except using the

price information that they have learned from the previous trading period.

From Sections 6.3.2 and 6.3.3, the agent-based model for secondary use operates on a

set of conditions that includes degree of control, lease duration, and amount of spectrum.

These factors create constraints on secondary use transactions in addition to the reservation

price. Let R, D, L, and M denote reservation price, degree of control, lease duration, and

amount of spectrum, respectively. Also, let bi and aj represent bid i and ask j, respectively.

To determine the eligibility of consumer’s bids and provider’s asks, the following conditions

are inspected:

• Reserve Price: Rbi
≥ minj(Raj

) and Raj
≤ maxi(Rbi

)

• Degree of control : Dbi
≥ minj(Daj

) and Daj
≥ mini(Dbi

)

• Lease duration: Lbi
≤ maxj(Laj

) and Laj
≥ mini(Lbi

)

• Amount of spectrum: Mbi
≤ maxj(Maj

) and Maj
≥ mini(Mbi

)

Each bid must have a least one ask that satisfies all four constraints to be considered eligible

and vice versa. At the beginning and during the trading period, if an update alters any of

the four factors or any bid or ask has been removed, the bid-ask eligibility will be rechecked.

All ineligible bids and asks are immediately removed.

In addition to the four constraints, a consumer agent may reject to transact with a

particular provider agent according to the trust modeling in Section 6.5. This implies that

the consumer’s trust on a certain provider is dropped below the trust threshold (Tthres)

because of interference. Thus, if the transaction between these two agents is bound to take

place in this case, it will occur with a probability Tprob, otherwise the provider’s ask will be

removed.

Agent’s algorithm in the auction process has minimal complexity. It consists of simple

heuristics and uses simple learning rules. Each agent i maintains a profit margin, µi, which

govern the buying/selling price relative to agent’s reservation price, Ri. Individual agent
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calculates the current price, pi, as follows:

pi = Ri(1 + µi) (6.18)

For a provider agent, the price pi represents the minimum price at which the provider will

make a trade. The profit margin for providers must lies in [0,∞). This implies that a

provider’s margin can be raised by increasing µi and lowered by decreasing µi. In the case of

a consumer agent, the price pi represents the maximum price at which the consumer is willing

to pay. The profit margin for consumers is in the range [−1, 0]. Therefore, a consumer’s

profit margin can be increased by decreasing µi and reduced by increasing µi.

Each agent initially assigns a random profit margin. The profit margin µi is then adjusted

dynamically in response to the actions of other agents and the trading activities. If the agent

sets the profit margin too low, it will not make as much profit as it should. On the other

hand, if the profit margin is too high, it may be undercut by other agents and will not be

able to secure a deal. The decision to increase or decrease the profit margin is based on an

objective of maintaining the competitive bids/asks price compared to other agents. In order

to do this, an agent maintains a target price, τi (τi = Ri(1 + µi)), and follows the simple

heuristics: If trades are not taking place in the current trading period, an agent should

set its target to become the most competitive bid/ask. Thus, the target price should be

slightly better than its competition. If, however, trades are taking place, an agent should

set its target to be slightly better (i.e., higher profit) than the best price that can obtain a

transaction. Here, the agent anticipates that it could have asked even a higher profit and

still secured a deal.

Let τi denotes a target price, bmax represents the highest bid, amin the lowest ask in

the current trading round, and r is a small random variable. The following pseudocode

summarizes the heuristic for consumer agents.

For consumer agents:

if amin > bmax then

τi = (1 + r)bmax

else

τi = (1− r)amin
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end if

The heuristic for provider agents is as follows:

For provider agents:

if amin > bmax then

τi = (1− r)amin

else

τi = (1 + r)bmax

end if

Following Preist and Van Tol [85, 86], we implement r as a random variable uniformly

distributed over the range [0, 0.2].

Agents who are not participating in an auction (i.e., they are successfully engaged in a

trade or they do not wish to participate at the current period) also continuously observe the

activities of other agents. In this case, they have little or no incentive to lower their profit

margins. However, if the trade activities suggest that they could benefit from raising the

profit margin, they should do so. Thus, both active and inactive agents can increase their

profit margins, but only active agents can reduce their margin in response to the current

condition.

With the target price τi, an agent adjusts its current price pi towards the target using the

Widrow-Hoff with momentum learning rule, which is the adaptation algorithm used in back-

propagation in neural networks [87]. The algorithm specifies two parameters: The learning

rate coefficient β and the momentum γ. Given the price pi(t) at time t, the price at time

t + 1 is given by:

pi(t + 1) = γpi(t) + (1− γ)β(τi(t)− pi(t)) (6.19)

Here, the price will moves towards the target with the speed determined by β. The momen-

tum γ is used to reduces oscillation in the price adjustment. In our experiments, the values

of β and γ are set to 0.3 and 0.05, respectively [85, 86].

As mentioned earlier, consumer and provider agents will participate in a series of trading

periods (i.e., mock auctions) and the real auction will take place in the final period, in which

the price has stabilized. We fix the number of mock auctions to 500 auctions. Figure 6.9
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Figure 6.9: Trade Price vs. Trading Period (NC = 13 and NP = 2).

demonstrates the price adjustment and trade activities in a series of mock auctions.

6.7 OPERATING ENVIRONMENT

Consumer and provider agents reside in an operating environment that is described by a set

of parameters in Table 6.8. These parameters can be customized to create different operating

scenarios in addition to the parameters of consumer and provider agents.

Consider communications between a transmitter and a receiver, we assume that all agents

use omni-directional antennas. Path loss is assumed to satisfy a log-distance path loss model:

P0 = GtGr

(
λ

4πdref

)2

Pt (6.20)

Pr = P0d
−αpl (6.21)

76



Table 6.8: Parameters of the Operating Environment

Symbol Description
NC Number of consumer agents

NP Number of provider agents

A Size of the geographical area (km2)

αpl Path-loss exponent of the geographical area

f Frequency band under consideration (MHz)

S Size of a Basic Bandwidth Unit (BBU)

U Number of BBUs in the unlicensed spectrum band

E Number of BBUs in an exclusive spectrum license

Clicense Cost of an exclusive spectrum license

where P0 is the received power at a reference distance from the transmitter, dref ; Pt represents

the transmitted power, Pr the received power; Gt and Gr are the transmitter and receiver

antenna gains; λ is the wavelength of the carrier frequency, f ; d is the propagation distance;

and αpl is the path-loss exponent.

6.8 STOPPING CRITERIA

Sections 6.3–6.7 describe the attributes of the agents, their behavioral methods, and operat-

ing environment. Consumer agents are continuously making choices of spectrum access and

learning from their experiences, whereas provider agents are exploring alternative options

for organizing spectrum access transactions. Thus, the agent-based model evolves over time

as a result of interactions among agents who are trying to maximize their surpluses in the

dynamic environment. The results of interest are extracted from the model when the system

is stable and the agents’ decisions are firmly established. Since the research questions require
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an evaluation of consumers’ choices, the stopping criteria are based on the consumer agents’

decisions. For each run, the agent-based model is terminated when one of the following

conditions is satisfied:

1. The probability that consumer j selects the choice {d∗cj
, l∗cj
} is greater than or equal to

the probability threshold of 0.9, for all consumers.

ρcj ,t(d
∗
cj

, l∗cj
) ≥ 0.9 ∀j (6.22)

2. The reference surplus is stable and the selection of choices does not change during the

ten latest samples. We use the standard deviation function, STDEV (), to determine

the dispersion of data.

STDEV (sr
j,t) <= 0.001

STDEV (d∗cj
) = 0.0

STDEV (l∗cj
) = 0.0 (6.23)
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7.0 RESULTS AND DISCUSSION

The results and discussion of the agent-based model for secondary use of radio spectrum are

presented in this chapter. The model described in Chapter 6 is put into use to understand

when and why consumer agents would choose secondary use of spectrum and in what form.

First, Section 7.1 describes the parameter setup for the agent-based model. Next, Section 7.2

presents a set of experiments on the existence of secondary use concept which its results are

also served as a model validation. Then, Sections 7.3–7.8 discuss the outcomes and statistical

testings of secondary use based on different conditions as outlined in research questions

Q1–Q6, respectively. Finally, Section 7.9 discusses the implications and limitations of the

experimental results.

7.1 MODEL SETUP

In all experiments, each spectrum user is represented by a wireless system that consists of

a set of wireless transmitters and receivers. We assume that consumer’s wireless system is

a two-way infrastructure network that comprises one base station and five wireless clients1.

In contrast, provider’s wireless system is modeled as a one-way infrastructure network, since

we assume that primary users (i.e., provider agents) share spectrum of their downlink chan-

nels2. The number of base stations (transmitters) and clients (receivers) of provider agents

are varied, depending on experiments. The default values are 0.5625 transmitter per sq.

km and ten receivers per transmitter. These settings represent a medium-level density of

1Wireless clients refer to wireless devices that communicate with the base station, such as laptops, PDAs,
and workstations.

2Communications channels from the base station to wireless clients.
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Figure 7.1: Example of three consumer agents: (a) With small coverage area and (b) With

large coverage area.

transmitters and receivers, as specified in the experimental design. In both consumer and

provider cases, base stations are randomly placed in the environment and wireless clients

are randomly positioned inside the coverage area of their base station. An example configu-

ration of consumer’s wireless system is shown in Figure 7.1. The locations of base stations

and wireless clients are also randomly changed in every run.

Transmit power is calculated to provide reliable communications (i.e., satisfy receiver’s

SINR requirement) for any receiver inside the transmitter’s coverage area. As mentioned

earlier, the utility function of both consumers and providers is defined as:

U(γ) =

αu[1− exp (−(γ − γ∗)/η)] if γ ≥ γ∗

0 otherwise

(7.1)

Unless otherwise specified, we assume that each spectrum user has a hard requirement on

the received SINR with η = 0.001, as in Figure 7.2.
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Figure 7.2: Utility function of spectrum users (η = 0.001).

We also assume that all spectrum users have a potential to behave opportunistically in

order to take advantage in a trade. Table 7.1 presents the default values of parameters for all

experiments, unless specified explicitly. Results are presented as average values over multiple

runs.

7.2 MODEL VALIDATION AND THE EXISTENCE OF SECONDARY USE

In this section, we describe the first set of experiments and results of our agent-based model.

The objective of these experiments is to produce some baseline results and to provide certain

degree of model validation. We study the behavior of consumer agents in terms of their

selections of degree of control (dc) in response to the existence of secondary use, number of

consumers in the environment, and spectrum access characteristics of consumer agents.

Section 7.2.1 presents a case where secondary use of spectrum is not allowed, which

is the current policy scenario. In this scenario, each consumer agent has to either use

unlicensed spectrum or acquire an exclusive license in order to obtain spectrum access.

Next, Section 7.2.2 presents the second case where secondary use is introduced. Consumers

are allowed to choose intermediate values of degree of control. Here, a larger value for dc

means that the spectrum user would prefer advance planning and specific commitments (i.e.,
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Table 7.1: Model Parameters

Parameters Values Parameters Values
Environment

NC 13 NP 13
A 16 sq. km S 200 kHz
αpl 3.5 U,E 50 BBUs
f 1,900 MHz Clicense 1.0 (normalized)

Thermal noise −174 dBm/Hz
Consumer agents

NT 1 NR 5
M 5 BBUs Dmax 250m

SEN −100 dBm γ∗ 15 dB
REU N/A η 0.001
αu 3.0 αc 1.0

M total
c 10 BBUs Nd 5
Dc {0.0, 0.25, 0.5, 0.75, 1.0} Nl 3
Lc {1, 5, 10} αsc 0.1
βsc 0.5 / (αu + αc) δc 0.1
αoc 0.1 βoc 0.2 / (αu + αc)
βpc 0.3 γpc 0.05

Tbase 0.5 TF 0.5
Tthres 0.3 Tprob 0.5
Gt, Gr 1 dref 1 m

Receiver noise figure 5 dB
Provider agents

NT 9 (0.5625 per sq. km) NR 10
M 5 BBUs Dmax 500m

SEN −100 dBm γ∗ 15 dB
REU 7 η 0.001
αu 3.0 αc 1.0

Spectrum usage Continuous Dp {0.25, 0.5, 0.75, 1.0}
αsp 0.1 βsp 2
δp 0.1 αop 0.1
βop 1 βpp 0.3
γpp 0.05 Gt, Gr 1
dref 1 m Receiver noise figure 5 dB
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Table 7.2: Full Factorial Design for Secondary Use Experiments

Factors Levels
Scenario {without secondary use, with secondary use}

Dmax (meters) {250, 500, 1000}

αu {3.0, 6.0, 9.0}

NC {5, 13, 19}

# of experiments 2× 3× 3× 3× 30 = 1620

greater guarantees) provided by hierarchies or similar structures. When dc is relatively low,

it implies that the level of guarantees provided by spot markets or similar structures may be

adequate. Table 7.2 presents the design of these experiments.

Finally, Section 7.2.3 demonstrates the effects of incorporating the opportunistic behavior

(i.e., another root of transaction costs) into an agent, as described in Section 6.5. In this

case, we study the behavior of an opportunistic agent.

7.2.1 Spectrum Access Without Secondary Use

In this scenario, we assume that the number of spectrum licenses is greater than the number

of consumers. In other words, an exclusive license is available for each and every consumer

agent. Figure 7.3 shows the percentage of spectrum access options for different maximum

coverage (Dmax) and QoS sensitivity (αu) of five consumer spectrum users. For comparison,

the results of this scenario are displayed together with the case of spectrum access with

secondary use, which is discussed in Section 7.2.2.

Since secondary use option is not allowed in this scenario, spectrum access choices are

limited to unlicensed spectrum and exclusive licenses and the degree of control value for

each consumer is either 0.0 or 1.0. From Figure 7.3, all consumers operate in the unlicensed

spectrum when Dmax is 250m and αu is 3.0. As the QoS sensitivity (αu) increases, the

negative effects of interferences in the unlicensed band start to outweigh the cost of an
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Figure 7.3: Percentage of spectrum access options (for NC = 5).

exclusive license. In other words, these consumers with stringent QoS requirements have

less tolerance to interference. As a result, some of the consumer agents switch to exclusive

licenses. The percentage of exclusive license is, however, less than 10%.

The graph also shows an increasing use of exclusive license as the maximum coverage

of each consumer increases. The larger coverage requires a transmitter to raise its transmit

power, thus producing higher interference to other unlicensed spectrum users. At Dmax of

500m, there is an evidence of exclusive license usage as early as αu of 3.0. Once we increases

αu, the effects of larger coverage result in more than 35% and 40% of exclusive license use

for αu values of 6.0 and 9.0, respectively. The results continue to follow this trend at Dmax of

1000m. It should be noted that although the unlicensed band can accommodate at least five

consumers (U/M total
c = 50/10 = 5), the results show that the exclusive license choice does

existed in most of the scenarios. Such an outcome is not unexpected, considering that the

unlicensed spectrum does not facilitate any coordination among the unlicensed users. As a

result, operating frequencies of unlicensed users may be overlapped and create interferences.
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Figure 7.4: Percentage of spectrum access options (for NC = 13).

These interference effects, oftentimes, are too severe that some agents opt for exclusive

licenses.

Using the similar design, Figures 7.4 and 7.5 present the results where NC is 13 and 19,

respectively. With an increase in NC , the unlicensed spectrum is getting crowded. The figures

show that an increase in number of consumers operating in the same area yields a higher use

of exclusive licenses as expected. With 13 consumer agents in Figure 7.4, the exclusive license

usage appears at all parameter levels, starting from 4.62% (Dmax = 250, αu = 3.0) to the

highest value of 99.74% (Dmax = 1000, αu = 9.0). These percentages are even higher when

we have 19 consumer agents in Figure 7.5, ranging from 11.58% (Dmax = 250, αu = 3.0) to

100% (Dmax = 1000, αu = 9.0).
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Figure 7.5: Percentage of spectrum access options (for NC = 19).

7.2.2 Spectrum Access With Secondary Use

The following set of experiments is similar to the previous one, except that we introduce

the concept of secondary use into the model in addition to the unlicensed spectrum and the

exclusive licenses. With secondary use, the role of provider agents (spectrum incumbents)

comes into play. Each provider holds an exclusive license and shares an unused amount

of spectrum to consumers for a period of time, lc ∈ Lc. We assume that the number of

provider agents is 19, which represents the maximum level specified in the research question.

The effects of number of consumers and providers are studied in research question Q1 in

Section 7.3 and thus are not considered here. In this set of experiments, we study the

behavior of consumer agents in response to the number of consumers and spectrum access

characteristics of consumer agents. The results of this scenario are displayed in a striped

pattern along with the results of Section 7.2.2 in Figures 7.3–7.5.

Consider Figure 7.3 at Dmax of 250m and αu of 3.0, all consumer agents choose unlicensed
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spectrum when secondary use is not permitted. With secondary use, the result shows that

12% of consumers choose secondary use and transact with providers. Here, the utility and

cost of using secondary use option outweighs the utility of using the unlicensed spectrum.

This outcome implies that secondary use is a viable alternative for spectrum access when

an exclusive license is considered too expensive. The percentage of secondary use is also

higher when αu is increased to 6.0, as expected. The difference between αu of 6.0 and 9.0

is, however, less noticeable because agents who are suffering interference in the unlicensed

band have already chosen secondary use.

The amount of secondary use also increases with the maximum coverage. As the coverage

increases, consumer agents are more likely to encounter interferences from other agents using

the unlicensed spectrum. Therefore, some of them switch to secondary use as an alternative

to the crowded unlicensed band and the expensive exclusive license. The results also show

that when secondary use option is introduced, it can completely replace the demand for

exclusive license, except for one case where NC = 5, Dmax = 1000, and αu = 9.0, which the

percentages of exclusive license and secondary use are 10.67% and 69.33%, respectively. Such

results are the effects of opportunism and small numbers [50]. Since the number of consumers

is only five and each consumer has a potential to behave opportunistically, these two factors

together cannot create enough competitive force to drive secondary use transactions. The

trace data confirms that exactly one consumer agent can accommodate the unlicensed band.

The other four only select secondary use in some runs or only use exclusive licenses in other

runs. In the runs that all of four consumers choose exclusive licenses, the data reveals that

providers suffer interference from opportunistic consumers. As a result, they select not to

participate in secondary use by choosing a high value of degree of control (dp). The average

dp in these runs are greater than 0.95. Hence, the four consumers do not have other options

but to exercise the exclusive license use. This situation does not occur when the number of

consumers is higher, as in Figures 7.4 and 7.5.

Another point of interest is the percentage of unlicensed spectrum use when secondary

use is allowed. At Dmax of 1000m, Figure 7.5 shows that the percentages of unlicensed

spectrum are higher than those of the case without secondary use. In such scenarios where

a large number of consumers have strict QoS requirements and the coverage is also large,
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the unlicensed spectrum becomes over-saturate due to high contention for the shared spec-

trum resources. Without the secondary use option, this tragedy of the commons render the

unlicensed band unusable. As a result, the unlicensed use is dropped to 0.53% at αu of

6.0 and down to 0% at αu of 9.0. On the other hand, when secondary use is introduced,

some consumers opt for secondary use, making others experience less contention for the un-

licensed spectrum. Thus, the unlicensed band becomes accessible again. In this case, the

occupant of the unlicensed spectrum is often the consumer agent who is the first mover into

the unlicensed band.

These experiments demonstrate that the agent-based model can produce outcomes cor-

responding to the real-world spectrum use. Unlicensed spectrum can accommodate a limited

number of spectrum users without causing excessive interference. In addition, spectrum users

whose application requires a large geographical coverage or demand a high-level QoS tend

to acquire exclusive licenses for spectrum access. The introduction of secondary use allows a

portion of consumers who cannot afford exclusive licenses to become secondary users. The

pre-conditions to secondary use are further examined by research questions (Q1)–(Q6) in

Sections 7.3–7.8.

7.2.3 Secondary Use with Opportunism

To demonstrate another important feature of the agent-based model, we consider a scenario

that contains one provider with an opportunistic behavior. Recall that the provider with

opportunistic behavior will try to generate additional revenue by sharing spectrum that could

create interferences to consumers (e.g., leasing the same part of spectrum to more than one

consumer at a time).

This experiment consists of five consumers with Dmax of 200m. The total number of

provider agents, NP , is ranging from one to ten providers. We observe the adaptation of the

only provider with opportunistic behavior. As discussed in Section 6.5, the opportunistic

provider agent uses the reinforcement learning to adapt its probability to act opportunisti-

cally. Figure 7.6 presents the probability that this provider will share spectrum that could

create interference with his/her transacting partners. The graph shows that the probability
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Fig. 11. Trust development.

tunistic behavior will try to generate additional revenue by
sharing spectrum that could create interferences to consumers
(e.g., leasing the same part of spectrum to more than one
consumer at a time). We assume that consumer agent can
distinguish his/her transacting partners and can develop and
maintain basic trust information on each of his/her partners.
Following Klos’s agent-based modeling of trust [18], trust is
defined as the ability to act according to expectation. In our
case, this refers to secondary use without interference. We fur-
ther assume that trust increases with the number of consecutive
transactions without interference. The development of trust is
specified by the following equation [18]:

trust = b + (1 − b)
(

1 − 1
fx + 1 − f

)
, (9)

where b is the base-level of trust and x is the number of
consecutive transactions without interference. f is a parameter
that controls trust development rate. From the equation, the
range of trust value is [0, 1]. In our case, we use b = 0.5
and f = 0.5. Fig. 11 illustrates the improvement of trust with
the number of transactions without interference.

In this experiment, we apply the following rule. When
consumer i experiences interferences while using spectrum of
provider j, consumer i’s trust in provider j is reduced by half.
If trust drops below 0.3, consumer i will transact with provider
j with probability of 0.5. If consumer i does not experience
interferences while transacting with provider j, the trust starts
to increase from the current trust level at the rate shown in
Fig. 11.

The simulation consists of 5 consumers with M2 = 10,
Max. coverage = 200 meters and αu = 100. We observe
the provider with opportunistic behavior. Fig. 12 presents the
probability that this provider will share spectrum that could
create interferences to his/her transacting partners. The graph
shows that the probability drops as NP increases (note that for
NP = 1, 2, and 3, none of the consumers chooses secondary
use).

The result is the market reaction to opportunism. As the
number of providers increases, the amount of sharable spec-
trum becomes larger. Consumer agents have more choices
in terms of selecting their transacting partners. They can

Number of providers (NP )

P(
op

po
rt

un
is

tic
be

ha
vi

or
)

109876543210

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0

Fig. 12. Opportunistic behavior.

switch to other providers with acceptable level of trust. The
provider with opportunistic behavior starts to experience a
drop in revenue, because s/he receives fewer transactions.
Consequently, this provider adapts to the situation by reducing
his/her opportunistic behavior in order to create trust and
acquire more transactions.

V. CONCLUSION AND FUTURE WORK

We propose an agent-based model for spectrum access to
study the effects of transaction costs with the goal of identify-
ing the pre-conditions to the secondary use of spectrum. Al-
though the model is in its infancy, we believe that the strength
of the model is in its ability to simulate different scenarios
of spectrum usage from both supply side and demand side.
By incorporating technical parameters of wireless communi-
cations into economic agents, the model allows us to study
both economic and technical aspects of spectrum sharing. With
certain assumptions, it would be useful to quantify technical
parameters and establish a set of conditions for the feasible
spectrum sharing. As with other research that recognize the
benefit of ACE, the understanding of aggregate behaviors
of the agents can be used to guide policy development for
efficient spectrum markets.

With the research in Software-Defined Radio (SDR) moving
toward commercial implementation, we envision the incor-
poration of SDR into the spectrum access model. In our
context, SDR will provide higher flexibility in spectrum access
for both consumers and providers. Consumers equipped with
SDR-based reconfigurable devices can adapt their operating
parameters such as frequency range (multiband), air interface
(multimode), modulation type, output power, etc. by making
a change in software [19]. Thus, exposing them to a larger
pool of available spectrum. Providers with SDR technology
can adapt their spectrum usage to accommodate consumer’s
demand or to create a larger portion of idle spectrum available
for lease.

In an extreme case, cognitive radio, which is built upon
SDR, can sense its surrounding environment and perform real-
time changes in its operating parameters to provide reliable
and efficient use of spectrum [20], [21]. Conceptually, this
intelligent cognitive radio has the abilities to detect idle part

Figure 7.6: Behavior of the opportunistic provider (for NC = 5 and Dmax = 200m).

drops as NP increases3.

The result is the market’s reaction to opportunism. As the number of providers increases,

the amount of sharable spectrum for secondary use becomes larger. Consumer agents have

more choices in terms of selecting their transacting partners. According to the trust model in

Section 6.5.1, consumers will avoid transacting with providers that create interference. With

a large number of providers, they can switch to other providers with an acceptable level

of trust. As a result, the provider with opportunistic behavior starts to experience a drop

in revenue, because s/he receives fewer transactions. Consequently, this provider adapts to

the situation by reducing his/her opportunistic behavior in order to build trust and acquire

more transactions.

3For NP = 1, 2, and 3, none of the consumer agents chooses secondary use.
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Table 7.3: Parameters for Research Question Q1

Parameters Values
NC {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

NP {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}

Note: See Table 7.1 for other parameters.

7.3 Q1: NUMBER OF PARTICIPANTS

In Q1, we examine if the secondary use of spectrum only emerges when there is a large

number of participants. Therefore, we perform experiments on the number of consumer and

provider agents and measure the percentage of consumers selecting secondary use as the

spectrum access option in each experiment. Table 7.3 summarizes factors and values in this

experimental design.

Figure 7.7 presents the results of percentage of secondary use for different numbers of

consumers and providers in the environment. The figure shows that secondary use increases

as the number of consumers and providers increases. With a small number of providers,

there is a lack of viable competition. Thus, these providers enjoy monopoly advantages.

They can charge the most profitable price that the consumers would accept (i.e., near or

at consumer’s reservation price). A small number of providers also limit the amount of

spectrum available for secondary use. In addition to this, a small number of participants,

whether they are consumers or providers, can invoke opportunistic behaviors and result in

interference among agents. This is in contrast to the situation where there is a large number

of participants. As Williamson [50] observed: “...rivalry among large numbers of bidders will

render opportunistic inclinations ineffectual. Parties who attempt to secure gains by strategic

posturing will find that such behavior is nonviable.” The effects of number of agents on the

opportunistic behavior are demonstrated in Section 7.2.3. As a result, consumers may find

the secondary use option undesirable when the number of participants in secondary use is

low.
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Figure 7.7: Percentage of secondary use vs. Number of consumer and provider agents.

Figure 7.8: Contour lines of the percentage of secondary use.
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Figure 7.9: Percentage of unlicensed use vs. Number of consumer and provider agents.

Figure 7.8 is a contour plot of percentage of secondary use in Figure 7.7. The contour

lines demonstrate that consumer agents are taking advantage of secondary use at a 5% level

even there is a small number of consumers in the environment (NC = 3). However, the 5%

secondary use only emerged when there are at least seven provider agents in the environment.

At NC = 9, the secondary use can reach a 20% level with NP of at least 15. The percentage

does not go beyond 20% because the unlicensed spectrum can accommodate the other 80%

without harmful interference. As the number of consumers increases, the percentage of

secondary use becomes higher because of the congestion in the unlicensed band. The higher

percentage also requires a higher number of providers in the environment. For example, the

secondary use can reach a 30% level when there are at least 15 consumers and 15 providers.

Figures 7.9 and 7.10 display the results of the other two spectrum access options, unli-

censed spectrum and exclusive license, respectively. The results of unlicensed spectrum usage

show that a small number of consumers (i.e., NC = 1 and 3) select the unlicensed spectrum

on average more than 90% of the time because they can coexist without interference. As
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Figure 7.10: Percentage of exclusive license use vs. Number of consumer and provider agents.

NC increases, the unlicensed spectrum gets crowded and the effects of interference starts to

outweigh the zero cost. Thus, consumer agents seek other alternatives. From Figure 7.9, the

deviation from the unlicensed spectrum (i.e., the percentage drops) occurs in two situations:

(1) when the number of consumers and providers increases or (2) when only the number of

consumers increases.

The first situation can be explained by comparing Figure 7.9 to Figure 7.7. The increases

in NC and NP result in a higher percentage of secondary use. Thus, the unlicensed spectrum

usage is reduced. The drop in percentage of unlicensed usage is particularly noticeable when

NP ≥ 9. Similarly, the comparison between Figure 7.9 to Figure 7.10 can describe the second

situation. The increase in NC alone when the number of providers is low (i.e., less than nine

in most cases) leads to an increasing use of exclusive license. This outcome develops from two

factors: (1) unlicensed spectrum is crowded resulting in interferences among users and (2)

secondary use is undesirable due to a small number of providers as mentioned earlier. The

data shows that consumers start operating in an exclusive license spectrum from NC = 5.
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Table 7.4: Regression Analysis of Percentage of Secondary Use on Number of Consumers

and Providers (Q1)

Model 1 Model 2
Variable b Beta b Beta
NC .754∗∗∗ .327 −.602∗∗∗ −.261

(.031) (.056)

NP 1.357∗∗∗ .588 .000 .000
(.031) (.056)

NC ×NP .136∗∗∗ .898
(.005)

Constant −11.326 2.235

Adjusted R2 .452 .567

Note: N = 3000; b = unstandardized regression coefficient with standard error
in parentheses; Beta = standardized regression coefficient.
∗p ≤ .05, ∗∗p ≤ .01, ∗∗∗p ≤ .001

The percentage increases noticeably at NC ≥ 11 and reaches as high as 9.82% at NC = 19.

In order to conduct a statistical testing on Q1, we perform a multiple regression analysis

with the percentage of secondary use as a dependent variable and the number of consumers

(NC) and the number of providers (NP ) as independent variables. Table 7.4 presents two

regression models for Q1. Model 1 uses NC and NP as independent variables without con-

sidering the interaction effect. The result shows that both NC and NP have a significant

effect on the percentage of secondary use. The R2 value for this model is .452. Once we

incorporate the interaction term, NC × NP , into the regression, Model 2 achieves a higher

R2 of .567. From Table 7.4, the regression equation for Model 2 is

Percentage of secondary use = 2.235− 0.602NC + 0.136NCNP

= 2.235 + (−0.602 + 0.136NP )NC (7.2)

Both NC and NC × NP are significant in this model, while NP is not significant. Since

the dependent variable measures the choices of consumers, the change in NP alone does
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not effect the percentage of secondary use. However, the increases in both NC and NP

result in a higher percentage of secondary use, which confirms our analysis of Figures 7.7–

7.10. The number of consumers alone also significantly influences the secondary use because

the capacity and interference effects in the unlicensed spectrum varies with the number of

consumers. The regression in (7.2) shows that the increase in NC will produce a higher

percentage of secondary use (i.e., the coefficient of NC will become positive) when NP is at

least five.

In summary, the statistical testing shows that the secondary use of spectrum only emerges

when there is a large number of participants.

7.4 Q2: OPERATING ENVIRONMENTS

Research question Q2 concerns with the effects of operating environments on the emergence

of secondary use of radio spectrum. We consider the spectrum usage in two scenarios, rural

area and urban. Assume that the differences between these two environments are defined by

the density of primary user’s wireless devices and the path-loss exponent. In a rural area,

the primary users have less device density than those in an urban area. Also, the rural area

has a lower path-loss exponent compared to the urban area. The experiments in Q2 measure

the consumer’s choice of spectrum access by varying five levels of provider’s transmitter and

receiver density and two levels of path-loss exponent. Here, we examine if the proportion of

secondary use is higher in a rural environment than an urban environment. The experiments

are described in Table 7.5, which is also used by research question Q3 in Section 7.5. Thus,

the characteristics of primary user’s spectrum usage is also included.

Figures 7.11(a)–(f) illustrate the results of percentage of secondary use for two αpl values

in three different scenarios of primary user’s spectrum use. The figures show that the per-

centage of secondary use does not change with an increase in transmitter density (NT /A).

The differences between number of receivers (NR) is also negligible. In the case of con-

tinuous spectrum use, Figure 7.11(a) with αpl of 2.0 shows the secondary use is selected

between 30.77% and 35.38% of consumer agents. The percentages drop to between 21.54%
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Table 7.5: Parameters for Research Questions Q2 and Q3

Parameters Values
NT /A {0.0625, 0.25, 0.5625, 1.0, 1.5625}

NR {1, 5, 10, 15, 20}

αpl {2.0, 3.5}

Periodic :

{
• Continuous transmission
• Period = 20 model time steps (50% duty cycle)

Aperiodic: Time between spectrum use and duration of use
are exponentially distributed with mean time
between use of 20 and mean usage duration
of 10 model time steps, respectively

Spectrum use of
primary users

Note: See Table 7.1 for other parameters.

and 26.92% once αpl is increased to 3.5 in Figure 7.11(b). For periodic spectrum use in Fig-

ures 7.11(c) and (d), the percentage is between 12.56% and 21.54% for αpl of 2.0 and drops

to between 2.05% and 7.69% for αpl of 3.5. The results are similar in the case of aperiodic

spectrum use, where the secondary use is selected between 11.54% and 21.28% for αpl of 2.0

and between 4.62% and 7.95% for αpl of 3.5.

Although these outcomes suggest that the density of primary user’s wireless devices does

not affect the consumer’s choice of spectrum access, the path-loss exponent (αpl) appears to

lower the percentage of secondary use. Figures 7.12(a)–(c) present a comparison of path-

loss exponents on the choices of spectrum access. The figures show that the percentage of

secondary use drops with an increase in path-loss exponent. The decrease in secondary use

is as much as 11.79%, 17.44%, and 16.15% for continuous, periodic, and aperiodic spectrum

use, respectively. The figures also present the percentage of unlicensed use for both path-

loss exponents. It appears that the choice of secondary use is, in fact, shifted towards the

unlicensed spectrum use as we increase αpl from 2.0 to 3.5. The percentage of unlicensed use

is increased in all three scenarios with the maximum changes of 11.79%, 17.95%, and 18.2%

for continuous, periodic, and aperiodic spectrum use, respectively.
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Figure 7.11: (a)–(f) Percentage of secondary use vs. Primary user’s device density.
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Figure 7.12: Effects of path-loss exponent on the percentage of spectrum access options: (a)

continuous, (b) periodic, and (c) aperiodic (for NR = 10).
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Table 7.6: Regression Analysis of Percentage of Secondary Use on Operating Environment

Parameters (Q2)

Continuous Periodic Aperiodic
Variable b Beta b Beta b Beta
NT /A −.185 −.009 −.96 −.042 −.411 −.018

(.457) (.539) (.557)

NR .006 .004 .044 .024 .029 .016
(.036) (.043) (.044)

αpl −6.126∗∗∗ −.433 −6.974∗∗∗ −.421 −5.99∗∗∗ −.36
(.329) (.388) (.402)

Constant 45.915 29.619 27.062

Adjusted R2 .186 .178 .128

Note: N = 1500; b = unstandardized regression coefficient with standard error in parentheses;
Beta = standardized regression coefficient.
∗p ≤ .05, ∗∗p ≤ .01, ∗∗∗p ≤ .001

To explain these results, we conduct a statistical testing on Q2 with the percentage of

secondary use as a dependent variable. The independent variables include the primary user’s

transmitter density (NT /A), the number of receivers (NR), and the path-loss exponent (αpl).

Table 7.6 presents the results of three multiple regressions for continuous, periodic, and

aperiodic spectrum use scenarios. All three regressions show that only αpl has a significant

effect on the percentage of secondary use, whereas NT /A and NR do not influence the choice

of spectrum access.

The statistical analysis confirms that the density of primary user’s wireless devices does

not affect the outcomes. The main reason stems from the implementation of frequency reuse

concept in the agent-based model. Frequency reuse allows the same part of spectrum to

be used repeatedly across the system. It enables the system to handle a large number of

devices with a limited amount of spectrum. Therefore, the amount of spectrum available for

secondary use is not severely reduced by a large number of primary user’s devices. In addi-

tion, this set of experiments uses a large number of provider agents (NP = 13), so consumer
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agents do not need to be concerned about the limited supply of spectrum for secondary use.

Conducting experiments with a smaller number of provider agents could generate a different

set of results in which the effects of limited supply and potential opportunism could play

an important role in selecting the choices of spectrum access. This topic is left for a future

work.

The analysis also shows that the effect of path-loss exponent (αpl) is highly significant.

In a rural environment where αpl is low, the signal can propagate farther. Therefore, con-

sumer agents are more likely to experience interference from other signals in the unlicensed

spectrum. As a result, some of them switch to the secondary use option. In an urban environ-

ment, αpl is relatively high and the signal quality degrades quickly as the distance increases

due to obstacles. This environment facilitates the coexistence of devices in the unlicensed

spectrum because they are less likely to create harmful interference to each other, given an

adequate distance. Hence, the results show a higher percentage of unlicensed spectrum and

lower percentage of secondary use associated with a higher value of αpl.

In summary, the statistical testing shows that the operating environment does not in-

fluence the choices of spectrum access if the definitions of rural and urban area include the

density of primary user’s wireless devices. However, if the definition is given by the path-loss

exponent, the proportion of secondary use is higher in a rural environment than an urban

environment.

7.5 Q3: SPECTRUM USAGE CHARACTERISTICS OF PRIMARY USERS

In this research question, we study the effects of primary user’s spectrum usage characteristics

on the consumer’s secondary use decision. The provider’s characteristics are categorized into

two types: (1) constant or scheduled spectrum use and (2) unpredictable spectrum use. The

first type represents primary users with predictable spectrum usage such as radio or television

broadcasters, whereas the second type attempts to establish inconsistent spectrum usage of

public safety users. In Q3, the dependent variable is the consumer’s percentage of secondary

use and the independent variable is the spectrum usage characteristics of providers. We
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combine the experiments with research question Q2, therefore the experimental design is

described in Table 7.5.

The experiments consist of three characteristics of spectrum use by primary users. First,

a continuous spectrum use is where the primary user (i.e., provider agent) provides a constant

amount of spectrum available for secondary use. Second, a periodic or scheduled spectrum

use is modeled as the primary user periodically utilizes his/her own spectrum. In this case,

there is a fixed duration (busy duration) in which the primary user needs spectrum access

and therefore does not allow secondary use. It is followed by another fixed duration (idle

duration) in which the primary user does not utilize spectrum and therefore releases all of

his/her spectrum for secondary use. The third characteristic is an aperiodic spectrum use.

It is similar to the periodic spectrum use, except that the time between use and duration

of use are determined by exponentially distributed random variables. The continuous and

periodic characteristics represent a predictable spectrum use or spectrum use defined by a

periodic function, as stated in the research question. The aperiodic characteristic represents

the unpredictable spectrum use of primary users defined by an aperiodic function.

Figure 7.13 presents the percentage of secondary use for the three spectrum usage char-

acteristics. The effects of transmitter density and number of receivers have already been

rejected in research question Q2. Therefore, the focus in this research question is only on

the effects of spectrum use by primary users. From the figure, the continuous case achieves a

higher level of secondary use with values between 32.56% and 35.38%. The other two cases

have similar results with the percentage of secondary use between 13.08% and 21.54% for

the periodic case and between 13.33% and 20.77% for the aperiodic case.

In order to clarify the results, Figures 7.14 and 7.15 display the results of the other two

spectrum access options, unlicensed use and exclusive license use, respectively. The periodic

and aperiodic cases show similar results with the unlicensed spectrum use of more than

75.9%, while the continuous case has the unlicensed use from 64.62% to 67.44%. Figure 7.15

shows that consumer agents in the continuous case do not employ exclusive license as a

spectrum access option. The consumers in periodic and aperiodic cases, however, show

minimal use of exclusive license (i.e., less than 3.33%).

The results demonstrate that secondary use is less preferable when the spectrum usage
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Figure 7.13: Percentage of secondary use vs. Spectrum use of primary user (for NR =

10, αpl = 2.0).

of providers is not continuous. There are two main causes. The first is the fluctuation of

the amount of spectrum available for secondary use. With the periodic and aperiodic cases,

there is a limited duration in which provider’s spectrum is available for secondary use. Once

the duration ends, the provider reclaims the spectrum for his/her own use. Thus, the overall

spectrum supply for secondary use is fluctuating. Consumers in this case often encounter

with a shortage of spectrum supply. The second cause comes from an access duration con-

straint imposed by provider agents. Providers with periodic or aperiodic spectrum use only

accept secondary use transactions with consumers who could vacate the spectrum before

the provider’s next spectrum access. This constraint implies that the consumer must have a

lease duration less than or equal to the provider’s remaining idle duration so that s/he can

vacate the spectrum before the provider’s idle duration expires.

The fluctuation of supply and the constraint on access duration make the secondary

use of spectrum less desirable. The results show a higher use of unlicensed spectrum as
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Figure 7.14: Percentage of unlicensed use vs. Spectrum use of primary user (for NR =

10, αpl = 2.0).

a compromised solution for spectrum access. However, as a shared resource, unlicensed

spectrum cannot accommodate all consumer agents. Therefore, there is a minor use of

exclusive license, as shown in Figure 7.15.

Table 7.7 presents the results of statistical testing with the percentage of secondary use

as a dependent variable. The multiple regressions include the primary user’s transmitter

density (NT /A), the number of receivers (NR), the path-loss exponent (αpl), and types of

spectrum use as independent variables. From the research question proposed in Chapter 4,

the spectrum usage characteristics of primary users are categorized into two types defined

by: (1) a periodic function and (2) an aperiodic function. Hence, the continuous and the

periodic spectrum use are classified as a periodic function and the aperiodic use is classified

as an aperiodic function. The regression for this case is shown as Model 1 in the table.

The Model 1 regression shows that αpl and the spectrum use as a periodic function have
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Figure 7.15: Percentage of exclusive license use vs. Spectrum use of primary user (for

NR = 10, αpl = 2.0).

significant effects to the selection of secondary use4. Although the effects of primary user’s

spectrum use is significant, the analysis of Figures 7.13–7.15 suggests that the significant

effect of the spectrum use modeled as a periodic function is biased by the continuous use

case. From the figures, the periodic and aperiodic cases exhibit very similar outcomes. Thus,

we propose a reorganization of primary user’s spectrum use into two types as follows:

Spectrum use of primary users =



Continuous: Continuous transmission

Intermittent:



• Period = 20 model time steps (50% duty cycle)
• Time between spectrum use and duration of use

are exponentially distributed with mean time
between use of 20 and mean usage duration
of 10 model time steps, respectively

The multiple regression of continuous vs. intermittent spectrum use is shown as Model 2

in Table 7.7. The results show that αpl and the continuous spectrum use have significant

4The influence of αpl is demonstrated and discussed in research question Q2.
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Table 7.7: Regression Analysis of Percentage of Secondary Use on Spectrum Usage Charac-

teristics of Primary Users (Q3)

Model 1 Model 2
Variable b Beta b Beta
NT /A −.519 −.019 −.519 −.019

(.367) (.300)

NR .026 .012 .026 .012
(.029) (.024)

αpl −5.99∗∗∗ −.304 −.6.482∗∗∗ −.329
(.458) (.265)

Periodic (1) vs. 10.552∗∗∗ .337
Aperiodic (0) spectrum use (1.6)

Periodic spectrum use −.561 −.054
×αpl (.561)

Continuous (1) vs. 17.612∗∗∗ .562
Intermittent (0) spectrum use (1.308)

Continuous spectrum use .356 .033
×αpl (.459)

Constant 27.164 28.328

Adjusted R2 .187 .457

Note: N = 4500; b = unstandardized regression coefficient with standard error in
parentheses; Beta = standardized regression coefficient.
∗p ≤ .05, ∗∗p ≤ .01, ∗∗∗p ≤ .001
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effects to the secondary use. Model 2 appears to be a better regression model. The coefficient

b of continuous spectrum use is 17.612, compared to 10.552 for the periodic function in

Model 1. Model 2 also produces R2 of .457, while the R2 for Model 1 is .187. Both models

show no significant effect from the interaction between spectrum usage characteristic and

αpl.

From the statistical results, the secondary use is higher when primary users have con-

sistent and predictable spectrum usage. The consistency and predictability, however, only

refers to the case where primary users share a fixed amount of spectrum for secondary use.

In the case where spectrum use of primary users is periodic, we believe that consumer agents

need to coordinate the timing with provider agents. The synchronization of spectrum ac-

cess between consumers and providers should eliminate the constraint on access duration, as

mentioned earlier. Without the synchronization capabilities, the continuous vs. intermittent

spectrum usage appears to be a proper model than the periodic vs. aperiodic usage. We

also believe that the effects of the access duration constraint depend on the busy and idle

durations of primary users as well as the access duration demanded by secondary users. If

the secondary user’s access duration is relatively short compared to the duration of primary

users, the secondary use should be higher. These topics are assigned to a future work.

7.6 Q4: COVERAGE REQUIREMENTS

In this research question, we analyze if consumers who require a large coverage area will ob-

tain spectrum access with a higher degree of control than those with a smaller coverage area.

Thus, the experiments in this research question consist of varying five levels of consumer’s

coverage area (Dmax) as shown in Table 7.8, which is also used to analyze research question

Q5 in Section 7.7. In this set of experiments, we measure the average degree of control (d̄)

among consumer agents. As mentioned earlier in Sections 6.2 and 6.3, the degree of control

refers to the ability to control opportunistic behaviors and to facilitate coordinations among

agents. The unlicensed spectrum yields the lowest degree of control (dc = 0.0), the secondary

use provides the intermediate values (0.0 < dc < 1.0), and the exclusive license offers the
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Table 7.8: Parameters for Research Questions Q4 and Q5

Parameters Values
Dmax (meters) {10, 100, 250, 500, 1000}

(η, γ∗) {(0.001, 15), (1.0, 10)}
Application requirements {Rigid, Flexible}

Consumer’s αu {3.0, 6.0, 9.0, 12.0}

Note: See Table 7.1 for other parameters.

highest degree of control (dc = 1.0). Within the secondary use, the lower the degree of

control implies a shift towards a spot market organization, while the higher degree of control

suggests a movement towards firms (hierarchy) to organize spectrum access transactions.

Figures 7.16 and 7.17 present the average degree of control by varying the consumer’s

coverage area (Dmax) for rigid and flexible application requirements, respectively. Both fig-

ures show that the average degree of control increases as the coverage area increases. At

Dmax of 10m, the coverage is relatively small and the transmit power is relatively low. There-

fore, the unlicensed spectrum can be reused more effectively. As a result, the average degree

of control values in this case are less than 0.01. Once the coverage is increased, it requires

consumer’s device to raise its transmit power, which could easily generate harmful interfer-

ence to other spectrum users. This situation discourages the use of unlicensed spectrum and

the secondary use with high potential of opportunistic behaviors. Thus, consumers in this

case are shifting towards advance planning and greater guarantees provided by hierarchies

or similar structures. Hence, they obtain spectrum access with a higher degree of control. It

should be noted that the results of flexible application requirement in Figure 7.17 are similar

to the rigid application case. The comparison of rigid and flexible application requirements

are given later in Section 7.7.

Figures 7.18(a)–(d) display the percentages of spectrum access choices by varying the

coverage area for rigid application requirement. In all cases, the percentage of unlicensed use

drops as the coverage increases. The percentage drops are similar in all four cases, implying
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Figure 7.16: Average degree of control vs. Coverage area for rigid application requirement.

αu

αu
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Figure 7.17: Average degree of control vs. Coverage area for flexible application requirement.
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(a) (b)

(c) (d)

Figure 7.18: Percentage of spectrum access options vs. Coverage area for rigid application

requirement: (a) αu = 3, (b) αu = 6, (c) αu = 9, and (d) αu = 12.
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that the unlicensed spectrum can accommodate a limited number of users given a coverage

requirement. The figures show that the secondary use of spectrum is substituted for the

unlicensed use as the coverage increases. Consider Figures 7.18(a) and (b), the percentage

of unlicensed use is equivalent to the secondary use at the coverage greater than 400m for

consumer’s QoS sensitivity (αu) of 3 and less than 400m for αu of 6. In Figure 7.18(c) with αu

of 9, the results show 2.82% of exclusive license use at Dmax of 250m and continue to increase

to 18.46% at Dmax of 1000m. As αu is increased to 12 in Figure 7.18(d), the exclusive license

use begins as early as Dmax of 100m at 1.28% and increases to 86.15% at Dmax of 1000m. The

percentage increases of exclusive license are substituted for the secondary use. In particular,

Figure 7.18(d) shows that the exclusive license is taking the place of the secondary use to a

great extent that the percentage of secondary use drops as Dmax is larger than 500m.

These outcomes develop from two factors. First, the substitution of the secondary use

for the unlicensed use is explained by the harmful interference in the unlicensed band. As

the coverage increases, the higher transmit power creates interference among unlicensed

spectrum users and therefore they switch towards secondary use. Second, as αu increases,

consumers are less tolerant to interference. Therefore, the negative effects of the unlicensed

band are more intense. In addition, the negative effects of the secondary use (i.e., uncertainty

and potential opportunistic behavior) can become significant. With a large coverage area,

the provider’s opportunistic behavior (i.e., sharing spectrum that is being used by other

consumer agents) can be easily detected and produce harmful interferences to the consumers.

Especially in the cases of high αu (αu = 9 and 12) and large coverage (Dmax = 500m and

1000m), the cost of an exclusive license justifies the potential negative effects in the unlicensed

and secondary spectrum access. Hence, the results show an increase in the percentage of

exclusive license use and a decline in the percentages of both unlicensed and secondary use.

The multiple regression analysis with the average degree of control as a dependent vari-

able is presented in Table 7.9. The regression result confirms that Dmax has a significant

effect on the degree of control, as expected. The interaction effect between Dmax and αu is

also highly significant. As discussed earlier, the combination of both factors is making the

negative effects of unlicensed and secondary use more intense. Therefore, consumers switch

to the secondary use with a higher degree of control or an exclusive license.
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Table 7.9: Regression Analysis of Degree of Control on Characteristics of Secondary Users

(Q4, Q5)

Model 1
Variable b Beta
Dmax .001∗∗∗ .681

(.000)

Rigid application (1) vs −.001 −.001
Flexible application (0) (.018)

αu .001 .008
(.002)

Dmax× Rigid application 1.05E−005 .011
(.000)

Dmax × αu 2.87E−005∗∗∗ .307
(.000)

Rigid application ×αu .001 .014
(.002)

Dmax× Rigid application −1.0E−006 −.009
×αu (.000)

Constant .003

Adjusted R2 .914

Note: N = 1200; b = unstandardized regression coefficient
with standard error in parentheses; Beta = standardized
regression coefficient.
∗p ≤ .05, ∗∗p ≤ .01, ∗∗∗p ≤ .001
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The regression result suggests that spectrum users that require a larger coverage area

obtain spectrum access with a higher degree of control than those that require a smaller

coverage area. The coverage area also interacts with the user’s QoS sensitivity and drives

spectrum users towards hierarchies or similar structures to organize spectrum access trans-

actions.

7.7 Q5: APPLICATION REQUIREMENTS

The purpose of research question Q5 is to analyze the effects of consumer’s application

requirement on the average degree of control among consumer agents. In the real-world

spectrum usage, different spectrum users can derive different utilities from the same received

SINR depending on their spectrum-based applications or services. For example, public

safety spectrum users are more sensitive to the received SINR than other spectrum users.

Therefore, we perform experiments on the type of application requirements and consumer’s

QoS sensitivity (αu). There are two types of application requirements: rigid and flexible

applications. Both are described by the parameters (η, γ∗), which is used to alter the shape

of the following exponential utility function:

U(γ) =

αu[1− exp (−(γ − γ∗)/η)] if γ ≥ γ∗

0 otherwise

(7.3)

The experiments in this research question are combined with research question Q4 and is

shown in Table 7.8. From the table, rigid and flexible application requirements have the

parameters (η, γ∗) of (0.001, 15) and (1.0, 10), respectively. Figure 7.19 illustrates the

utility functions of both rigid and flexible applications.

Rigid applications, such as a voice service, have a hard requirement on SINR. Such an

application requires the received SINR above the threshold (γ∗ = 15 dB), otherwise the

QoS is unacceptable and users will derive zero utility. Any further increase in SINR above

the threshold is indifferent to users of this type of application. On the other hand, flexible

applications, such as e-mail or file transfer, can still benefit from a received SINR less than

112



αu

Rigid: (η, γ∗) = (0.001, 15)

Flexible: (η, γ∗) = (1.0, 10)

Figure 7.19: Utility functions for H5 experiments: Rigid and flexible application require-

ments.

15 dB. From the figure, users of this application acquire positive utility whenever the received

SINR is above 10 dB (γ∗ = 10 dB); the utility continues to increase to the maximum utility

as the SINR reaches 15 dB, which is the same point as the rigid application type. In both

cases, αu defines the maximum utility value and is used to capture the consumer’s sensitivity

to the received SINR.

We examine if consumers with rigid application requirements and higher sensitivity to the

received SINR will obtain a spectrum access option that has a higher degree of control. The

experiments in this research question are combined with research question Q4 in Section 7.6.

We measure the average degree of control among consumer agents and vary consumer’s

coverage area, QoS sensitivity, and types of application requirements. The experimental

design is provided in Table 7.8.

Figure 7.20 presents a comparison of average degree of control between rigid and flexi-

ble application requirements. As discussed in Section 7.6, the coverage area (Dmax) has a

significant effect on the degree of control. Therefore, the degree of control is always higher
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Figure 7.20: Average degree of control: A comparison between rigid and flexible application

requirements.

for the larger coverage. The comparison between application requirements shows that there

is a small variation between rigid and flexible applications for the same Dmax and αu. The

flexible application obtains spectrum access with a lower degree of control than the rigid

application. The soft SINR requirement of the flexible application allows consumers to tol-

erate a higher level of interference as long as they can derive SINR greater than 10 dB.

The regression result in Table 7.9, however, shows that the application requirement does not

have a significant effect on the degree of control. We believe that the outcome is a result

of the specification of the utility functions. Although the flexible application can acquire

a positive utility when the received SINR is greater than 10 dB, the utility cannot reach

the maximum value of αu until the received SINR is 15 dB. In addition, the received SINR

must be between 10 and 15 dB in order to create a variation of results between the two.

Therefore, adjusting the utility functions of rigid and flexible applications could produce a

larger variation. Although the current specification demonstrates a lower degree of control
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Figure 7.21: Percentage of spectrum access options vs. αu for rigid application requirement:

(a) Dmax = 10m, (b) Dmax = 100m, (c) Dmax = 250m, (d) Dmax = 500m, and (e) Dmax =

1000m.
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for the flexible application, the result cannot be concluded statistically.

Figures 7.21(a)–(e) show the percentages of spectrum access choices by varying αu for

rigid application requirement. In Figure 7.21(a), consumers select the unlicensed use more

than 99% and αu does not affect the choices of spectrum access as well as the average degree

of control. As the coverage is increased to 100m and 250m in Figures 7.21(b) and (c),

respectively, the unlicensed use starts to drop and the secondary use is taking the place. In

Figures 7.21(d) and (e) with Dmax of 500m and 1000m, respectively, the secondary use takes

over the unlicensed use and the exclusive license emerges at a high level of αu. In all cases,

the unlicensed use is relatively constant across the αu values (i.e., the lines are relatively

flat in every cases), showing that the unlicensed spectrum can only accommodate a limited

number of users. The changes in αu also do not affect the choices of spectrum excess in

Figures 7.21(a)–(c). However, Figures 7.21(d) and (e) demonstrate a substitution between

the secondary use and the exclusive license, especially at αu of 9 and 12. The negative effects

of the unlicensed and secondary use in a scenario where the combination of Dmax and αu is

at a high level are already discussed in Section 7.6. The statistical result in Table 7.9 shows

that αu by itself does not influence the average degree of control, whereas the interaction

between αu and Dmax does. The result also shows no significant effect on other interaction

terms.

The analysis of result shows that although the flexible application acquires a lower degree

of control than the rigid application, they are not statistically different using the current

specifications of the utility functions. In the case of user’s QoS sensitivity, the sensitivity

does not affect the choices of spectrum access as well as the average degree of control.

However, once the user’s sensitivity is coupled with a scenario where spectrum users require

a larger coverage area, spectrum users will move towards organization structures with a

higher degree of control to carry out spectrum access transactions.
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Table 7.10: Parameters for Research Question Q6

Parameters Values
U (MHz) {10, 50, 100, 150}

Dmax (meters) {10, 100, 250, 500, 1000}

(η, γ∗) {(0.001, 15), (1.0, 10)}
Application requirements {Rigid, Flexible}

Note: See Table 7.1 for other parameters.

7.8 Q6: EXPANSION OF UNLICENSED SPECTRUM

Throughout this dissertation, we examine the technical, institutional, economic, and strategic

issues surrounding the development of secondary use of radio spectrum. Although secondary

use is the main subject of this research, it is not the only model for spectrum management.

The expansion of the existing unlicensed spectrum also shows a potential to reduce the

problem of spectrum scarcity. The concept of expanding the shared commons in conjunction

with the market approach for managing spectrum has been advocated by many researchers,

such as Lehr [88], Benkler [89], and Lessig [90]. Therefore, we apply the agent-based model

to examine the effects of increasing the amount of unlicensed spectrum on the consumer’s

choice of spectrum access in this final research question.

In Q6, we examine if the additional spectrum in the unlicensed band only benefits spec-

trum users with flexible application and small coverage requirements. Thus, the experiments

consist of varying the amount of spectrum in the unlicensed band (U) and the coverage area

(Dmax). Also, we perform experiments on two types of applications: Rigid and flexible,

which are described by parameters (η, γ∗), as in Section 7.7. Table 7.10 summarizes the

parameters in this set of experiments.

Figure 7.22 presents the percentage of unlicensed spectrum use vs. the amount of spec-

trum in the unlicensed band for rigid application requirement. The figure shows an increas-

ing use of unlicensed spectrum as U increases. This outcome corresponds to the results

117



Dmax

Dmax

Dmax

Dmax

Dmax

Figure 7.22: Percentage of unlicensed use vs. Amount of unlicensed spectrum for rigid

application requirement.

of Sections 7.6 and 7.7, in which the unlicensed band demonstrates a limited capacity to

accommodate spectrum users without creating harmful interference. Therefore, an increase

in the amount of unlicensed spectrum directly contributes to the capability to support more

unlicensed users.

Comparing the results across Dmax reveals an interesting observation. At small cov-

erage values (Dmax = 10m and 100m), an increase in U does not significantly affect the

percentage of unlicensed users, since most of the consumers are already using the unlicensed

spectrum. At Dmax of 250m, 50 MHz of the unlicensed spectrum can support more than 99%

of consumer agents. At Dmax of 500m, the percentage increases significantly from 38.46%

to 87.94% as U increases from 10 MHz to 50 MHz. Similarly, the percentage moves up from

14.87% to 40.26% at Dmax of 1000m. From the figure, the overall trend indicates that the

percentage of unlicensed use starts as a concave function when Dmax is low and transforms

into a linear function as Dmax increases. The results imply that consumers with lower cov-

erage requirements can derive greater benefits from the expansion of unlicensed spectrum
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Figure 7.23: Percentage of unlicensed use: A comparison between rigid and flexible applica-

tion requirements.

than those with higher coverage requirements.

A comparison between rigid and flexible application requirements are presented in Fig-

ure 7.23. Both rigid and flexible applications exhibit almost identical percentages of unli-

censed spectrum use. The only exception is the case of Dmax = 1000m, in which the flexible

application obtains 3% higher for the unlicensed spectrum access, as expected. The soft

requirement on the received SINR of the flexible application allows consumers to tolerate

a higher level of interference in the unlicensed spectrum band. The differences between

the utility functions of both applications, however, are not large enough to create a signifi-

cant variation between the two outcomes. We believe that minor adjustments of the utility

functions could produce a significant effect on the result of Figure 7.23.

Figures 7.24(a)–(e) shows the percentages of spectrum access choices by varying the

amount of unlicensed spectrum for rigid application requirement. In Figure 7.24(a), an

increase in U does not affect the choices of spectrum access. As Dmax is increased to 100m

and 250m in Figures 7.24(b) and (c), respectively, the unlicensed users experience a higher
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Figure 7.24: Percentage of spectrum access options vs. Amount of unlicensed spectrum for

rigid application requirement: (a) Dmax = 10m, (b) Dmax = 100m, (c) Dmax = 250m, (d)

Dmax = 500m, and (e) Dmax = 1000m.
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Table 7.11: Regression Analysis of Percentage Unlicensed Use on Amount of Unlicensed

Spectrum and Characteristics of Secondary Users (Q6)

Model 1
Variable b Beta
U −.010 −.022

(.007)

Dmax −.096∗∗∗ −1.355
(.001)

Rigid application (1) vs −.423 −.008
Flexible application (0) (.502)

U ×Dmax .001∗∗∗ .971
(.000)

Constant 104.647

Adjusted R2 .882

Note: N = 1200; b = unstandardized regression coefficient
with standard error in parentheses; Beta = standardized
regression coefficient.
∗p ≤ .05, ∗∗p ≤ .01, ∗∗∗p ≤ .001
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level of interference. Therefore, there is a substitution effect between the unlicensed use and

the secondary use. As the coverage is increased to 500m and 1000m in Figures 7.24(d) and

(e), respectively, the substitution effect becomes highly noticeable.

We perform a statistical testing on Q6 with a multiple regression analysis shown in

Table 7.11. The dependent variable in this case is the percentage of unlicensed spectrum

use among consumer agents. The independent variables are U , Dmax, and the application

requirements. The regression shows that Dmax has a significant negative effect on the per-

centage of unlicensed use. It implies that an increase in Dmax will result in a decrease in

the unlicensed use. The interaction effect between U and Dmax also significantly influences

the percentage of unlicensed use. As shown in Figures 7.24(a)–(e), the increase in U must

be combined with the large coverage scenarios for the increase in unlicensed use to become

significant.

In summary, the results show that the rigid and flexible application requirements are

not statistically different using the current specifications of the utility functions. Also, the

expansion of unlicensed spectrum does not only benefit spectrum users with flexible appli-

cation requirement and small coverage area, it is also useful for users with large coverage

requirements. The results, however, demonstrate that, given a limited increase in the unli-

censed band, those users with smaller coverage requirements can derive greater benefits by

switching to the unlicensed use in a larger portion than spectrum users with large coverage

requirements.

The results also suggest that the high-powered and large-coverage spectrum applications

suffer greatly from the effect of the tragedy of the commons in the unlicensed band. In

this case, the expansion of the unlicensed band alone cannot effectively accommodate this

type of application. The benefits of the secondary use in this research question show that

it is still essential to develop a flexible and market-based spectrum management approach.

The additional allocation of spectrum for unlicensed use remains desirable especially for

the low-powered and small-coverage applications. In this case, the risk of the tragedy of

the commons can be reduced by the designs of etiquette for coexistence spectrum access

[41, 42, 43]. Another technique is to implement a cognitive radio system, which can be used

to achieve cooperative spectrum access [91]. Cognitive radio can be applied to both market-
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based and unlicensed spectrum sharing. However, this radio technology relies heavily on the

capabilities of the wireless devices and the system architecture.

7.9 IMPLICATIONS AND LIMITATIONS OF RESULTS

As with other agent-based computational models, the limitations of results from the sec-

ondary use of spectrum model arise from the nature of the bottom-up modeling approach.

Since the model requires a complete specification of initial parameters, behaviors, protocols,

and institutional arrangement, the results are conditional upon the specific values of those

parameters in the initial specifications. This section discusses two key issues that directly

affect the experimental outcomes.

First, we assume that there is sufficient market thickness in the secondary use of radio

spectrum. Raising the market thickness (i.e., the effective number of participants) increases

the number of providers available to each consumer and the number of consumers available to

each provider. In the analysis of research questions Q2–Q6 in Sections 7.4–7.8, the thickness

needs to be sufficient in order to create secondary use activities and allow us to study

the effects of other factors. The default numbers of consumers and providers in Table 7.1

are derived from the experiments on the number of participants (Q1) in Section 7.3. The

default number of participants generate a moderate level of secondary use and are being

used throughout Q2–Q6.

Second, the results are influenced by the initial specifications. For example, if the re-

quirement of unlicensed spectrum access is changed from the frequency hopping scheme to

CSMA/CA5 protocol, the results of spectrum access options will also change. Any new

results, however, should follow the same trend as demonstrated in this chapter. The goal

of developing the agent-based model for secondary use is to provide the trend of spectrum

access options in each scenario to assist policy makers in creating policy instruments rather

than to give specific measurement in each of the special cases. The initial specifications

of the model are derived from the fundamental concept of wireless communications and do

5Carrier Sense Multiple Access with Collision Avoidance.
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not rely on any specific technology. Still, the model is sufficiently flexible to replicate the

real-world settings if the specific numerical results are needed.
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8.0 CONCLUSION AND FUTURE WORK

The necessity of spectrum reform as a result of ever-increasing demand for spectrum-based

applications and services is evidenced by the outcomes of spectrum auctions. The tech-

nological advances in wireless devices create a possibility of moving towards more flexible

and market-oriented approaches to spectrum management. In this dissertation, we focus on

the development of secondary use of spectrum, defined as a temporary access of existing

licensed spectrum by a user who does not own a license. We provide a comprehensive review

of spectrum sharing approaches in Chapter 2, all of which aim to improve the efficiency

of spectrum usage. The literature, however, shows that the studies on spectrum trading

and leasing are very limited and mostly focus on policy and regulatory aspects. There are

technical, economic, and strategic issues that must be considered all together for this new

spectrum management approach to become feasible. Therefore, as a contribution, we provide

a framework that combines issues necessary to be addressed in order to develop appropriate

spectrum policies in Chapter 5.

One of the main concerns in secondary use of spectrum is the effects of transaction cost. It

is generally agreed among researchers that transaction costs are the friction impeding market

power and can prevent some desirable transactions from taking place. Instead of quantifying

the amount of transaction costs directly, we propose the use of transaction cost economics

(TCE) as a proxy. With TCE, we can define different forms of secondary use as well as

incorporate the existing spectrum access methods (i.e., unlicensed use and exclusive license)

into the model. The forms of secondary use may range from a spot spectrum market to a

long-term lease or an MVNO, each of which can result in different magnitudes of transaction

costs and levels of uncertainty due to interference between primary and secondary users. We

also propose a common metric, degree of control, to differentiate and arrange organizational
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forms in which a spectrum transaction can take place. The degree of control allows us to

speculate the trend of spectrum access methods from the outcome of each scenario.

As the main contribution of this dissertation, we propose a novel use of agent-based com-

putational economics in conjunction with TCE to study the secondary use of radio spectrum

in Chapter 6. The bottom-up approach of the agent-based spectrum access model allows

an integration of economic and technical considerations to determine the pre-conditions of

the secondary use concept. The agent-based modeling of spectrum users as consumer agents

and provider agents, their learning processes, and the wireless environment in the spectrum

access context are original. In addition to the specifications of agents, we also propose

agent’s opportunistic behavior in spectrum access transactions, which is one of the sources

of transaction costs. Opportunism allows agents to take advantages in a trade and therefore

could create interference to the transacting partners. We also implement a continuous dou-

ble auction as a mechanism to determine the prices of spectrum access transactions between

consumer and provider agents.

We use the agent-based model to conduct experiments in six research questions. The re-

sults in Chapter 7 show that the introduction of secondary use allows a portion of consumers

who cannot afford an exclusive license or find it impractical to use to become secondary users.

The following summarizes the findings of statistical testings.

• Secondary use of spectrum only emerges when there is a large number of participants.

This condition creates a competitive market force to drive secondary use transactions

and suppresses opportunistic behaviors of the secondary use participants.

• The density of wireless devices does not affect the choices of spectrum access. However,

the path-loss exponent of the rural environment creates a higher secondary use than that

of the urban environment.

• Secondary use is higher when primary users have continuous spectrum usage than inter-

mittent spectrum usage. Synchronization between primary and secondary users appears

to be a major factor in developing secondary use for primary users who exhibit an inter-

mittent spectrum use.

• Spectrum users who require a large coverage area will move towards an exclusive li-

cense or hierarchy to organize spectrum access transactions because these organizational
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structures can provide greater guarantees against uncertainty and interference.

• Given the current specifications of rigid and flexible application requirements, the effect

of application requirement and user’s QoS sensitivity do not statistically influence the

choices of spectrum access or the degree of control. However, the combination of a high-

level sensitivity and a large coverage requirement produces a significant effect that will

move users towards an exclusive license or hierarchy to obtain spectrum access.

• The expansion of unlicensed spectrum is useful for both spectrum users with small and

large coverage requirements. The users with smaller coverage, however, can derive greater

benefits from an additional spectrum in the unlicensed band.

There is a great potential for future research. The agent-based model is a bottom-up lay-

ered design with fundamental elements in wireless communications such as transmitters and

receivers. The association between these wireless devices forms a network configuration

of spectrum users. Using an object-oriented technology, a new type of agents, behavioral

method, and operating environment can be developed independently and easily integrated

into the model. This modularity benefit allows the model to be customized for conducting

experiments in various scenarios. The following discusses the possibility of extending the

agent-based model for secondary use as well as studying other aspects of spectrum sharing.

• Secondary use of spectrum in the current model concerns with a temporary access of

existing licensed spectrum owned by a primary user. The future model may include

exclusive license trading in which a buyer would automatically become a primary user

once s/he obtains an exclusive license.

• A new type of agent that represents a spectrum reseller or a speculator can be introduced

into the model. A reseller would purchase spectrum with an intention of selling them

for profit rather than using them. A speculator, on the other hand, has an intention

of holding them and selling at some future time for profit. In the model, the spectrum

users can be extended so that they can become spectrum resellers or speculators. In this

case, they would buy excess amounts of spectrum and resell it, either on a temporary or

permanent basis, to smaller users.

• As long as spectrum property right is not fully resolved, spectrum may not be allowed to
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trade freely without restrictions. The government may create an open-access spectrum

band with minimal technical restrictions and license the spectrum to a private-sector

band manager. The band manager needs to manage and monitor spectrum access to

avoid interference within the band as well as to the outside. This spectrum management

approach can be implemented as a band manager agent in the model. The commercial

band manager will have a financial incentive in promoting both efficient use and technical

innovation. Therefore, instead of using a double auction, the band manager may act as

a central auctioneer who optimizes spectrum leasing in his/her own spectrum band.

• The experiments on the agent-based model are currently simplified by having homo-

geneous consumer agents and provider agents. A mixed population that reflects the

real-world settings may produce interesting results. Each consumer and provider can

be initialized with different parameter values including network configuration, coverage,

spectrum requirement, utility function, and pricing parameters.

• In the agent-based model, the changes in parameters can reduce the amount of spectrum

available for secondary use. However, most of the experiments are conducted with a large

number of providers. Therefore, the reduction in spectrum supply only shows minimal

effects. Conducting experiments with a smaller number of providers could generate a

different set of results in which the effects of limited spectrum supply and potential

opportunism could play a more important role.

• When provider agents utilize spectrum periodically, consumers may need to coordinate

the timing with providers in order to efficiently operate as secondary users. The synchro-

nization of spectrum access between consumers and providers can eliminate the constraint

of access duration as mentioned in Section 7.5. In addition, the busy/idle duration of

primary users and the access duration demanded by consumers should play an important

role in secondary use, especially in the scenario where providers share variable amounts

of spectrum. The future work can implement the synchronization mechanism and study

the effects of spectrum access durations of both providers and consumers.

• In many cases, providers may not be able to continuously share a fixed amount of spec-

trum for secondary use. They may allocate a fixed portion for secondary use and reserve

the rest for their own systems. This scenario creates a two-tier spectrum sharing for
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secondary use in which there is always a fixed amount available and the rest is subjected

to provider’s current spectrum usage. The two-tier spectrum sharing is not currently

explored in this dissertation.

• The current spectrum access demand of consumers is a constant function. The future

work can include an intermittent spectrum usage using periodic functions or aperiodic

functions of spectrum demand into consumer agents, as in the current provider agents.

In addition, two interesting parameters are not included in the current model: Money

endowment and mobility. Spectrum users may be given an initial money endowment or a

lifetime money endowment profile that represent a spectrum access budget. Using one of

the mobility models in wireless communications also allows us to model mobile wireless

devices in the secondary use environment. These two parameters are likely to produce

another sets of results on the secondary use of radio spectrum.

• The transmitters and receivers in the model can be extended to study spectrum sharing

in other dimensions such as time, geographical area, or spread spectrum. The potential

subject in this area is the effects of advanced radio technologies, such as software-defined

radio or cognitive radio, on the spectrum access methods. The reconfigurability ca-

pabilities of wireless devices and unconventional methods of spectrum access, such as

ultra-wideband, are expected to favor the open spectrum policy, which calls for more

spectrum for unlicensed access, rather than using market forces in the market-based

spectrum management.

• It is also possible to apply the agent-model to other spectrum sharing techniques. In

cooperative sharing schemes, interruptible spectrum sharing can be implemented by de-

veloping a new protocol and a new agent behavioral method. For example, a secondary

user may be required to detect a positive signal from a primary user before s/he can

transmit in the primary user’s spectrum band. In coexistent sharing schemes, the agent-

based model can be used to test different spectrum etiquette protocols for an unlicensed

access. The effectiveness of each technique under consideration can be evaluated by in-

specting the consumer’s choice of spectrum access in the same way as this dissertation

did for the secondary use.
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