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ELLIPTIC EQUATIONS IN GRAPHS VIA STOCHASTIC GAMES

Alexander P. Sviridov, PhD

University of Pittsburgh, 2010

Consider a connected finite graph E with set of vertices X. Choose a nonempty subset

Y ⊂ X, not equal to the whole X, and call it the boundary Y = ∂X. We are given a real

valued function F : Y → R. Our objective is to find function u on X, such that u = F on Y

and u satisfies the following equation for all x ∈ X \ Y

u(x) = α max
y∈S(x)

u(y) + β min
y∈S(x)

u(y) + γ

(∑
y∈S(x) u(y)

#(S(x))

)
, (1)

where α, β, and γ are some predetermined non-negative constants such that α + β + γ = 1,

for x ∈ X, S(x) is the set of vertices connected to x by an edge, and #(S(x)) denotes the

cardinality of S(x). We prove existence and uniqueness of the solution of the above Dirichlet

problem and study qualitative properties of the solutions.

Keywords: p-harmonic function, infinity harmonic function, p-harmonious function, stochas-

tic games, unique continuation.
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1.0 INTRODUCTION

The main object of our interest is the p-Laplacian. The standard p-Laplacian for 1 < p <∞
is the Euler-Lagrange equation of the functional

1

p

∫
|∇u(x)|p dx.

This is a solution to Euler-Lagrange equation.

− div(|∇u|p−2∇u) = 0 (1.1)

The following are two well-known problems in the theory of p-harmonic functions in Rn.

Problem 1. Assume that u : Rn → R is p-harmonic in B2(0) and u ≡ 0 in B1(0). Does

it imply that u ≡ 0 in B2(0)?

Problem 2. Assume that u and v are p-harmonic in B1(0), u ≤ v, and u(0) = v(0).

Does it follow that u = v in B1(0)?

The answers to both problems are known in R2 for all p, 1 < p < ∞ [19] and in Rn for

p = 2. The case of n 6= 2 remains open. In this dissertation we consider these problems

for p-harmonious functions on graphs. These are discretization of p-harmonic functions

suggested by random tug-of-war games [26], [20]. The answer to the problem 1 is false even

for p = 2 in the case of graphs (see example in section 3.6). On the contrary the answer to

problem 2 is true (see Theorem 6 and [20]).

We begin by considering the following ternary tree. We set the last row of the vertices

{e000, ..., e022} to be the boundary of the tree. We define a function F on this boundary by

F (e000) = 2, F (e022) = −1, and

1
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Figure 1: Ternary tree

F (e001) = F (e002) = F (e010) = F (e011) = F (e012) = F (e020) = F (e021) = 0.

Let us play a very simple game with only one player on this tree. At the beginning of the

game a token is placed at one of the vertices. The token moves to one of the three succeeding

vertices with equal probabilities. Once the boundary is reached, the player receives a payoff

equal F (ei) dollars, where ei denotes the vertex to which the token has arrived. Let u(ej)

be the amount the player can expect to earn, if the game starts at a vertex ej. For example,

if game start at e00, then player can expect to receive 2/3 dollar. If game starts at e02, then

player can expect to pay 1/3 dollar. Finally, if game starts at e0, then player can expect to

get 1/9 dollar. Observe that function u satisfies the mean-value property:

u(ej) =
1

3
u(ej0) +

1

3
u(ej1) +

1

3
u(ej2)

where {ej0 , ej1 , ej2} are the immediate successors of the vertex ej.

Since the function u satisfies mean-value property, we can expect it to be a solution of

some equation. In particular, we shall see that u solves the discrete Laplace equation in the

tree.

To relate our example to the partial differential equations on Rn we introduce the fol-

lowing definitions.

Definition 1. The gradient of a function u defined on the tree at vertex ei is

∇u(ei) = (u(ei0)− u(ei), u(ei1)− u(ei), u(ei2)− u(ei))

where ei0, ei1, ei2 are succesors of ei

2



Definition 2. The averaging operator or divergence of a vector X = (x, y, z) ∈ R3 is

div(X) = x+ y + z

Definition 3. The function u defined on the tree above is harmonic, if it satisfies Laplace

equation

div(∇u) = 0

It is now clear that a function is harmonic if and only if it satisfies the mean value

property

u(ei) =
u(ei0) + u(ei1) + u(ei2)

3
.

This setup has been described in detail for example in Kaufman, Llorente, and Wu in [13].

Next, let us consider another game with two players on the same tree. At the beginning

of the game a token is placed at some vertex ej and players toss a fair coin to decide who

gets to move the token. If the outcome of the toss is heads, then player I moves the token

to a succeeding vertex of his choice. In the case of tails, player II gets to move the token.We

require the player always to move the token down the tree, since the tree is a directed graph.

We also do not allow player to remain in the same position whenever it is his turn to move

the token. The game stops once the token reaches some boundary vertex ei. At this moment

player I receives from player II F (ei) dollars. The goal of each player is to maximize the

payoff. Let function u(ej) be the expected payoff to player I, when the game starts at a

vertex ej. In this simple situation we can directly compute

u(e00) = 1, u(e01) = 0, u(e02) = −1/2, u(e0) = 1/4

Observe that this function u satisfies a variant a mean-value property:

u(ej) =
1

2
max

y∈{ej1 ,ej2 ,ej3 ,}
u(y) +

1

2
min

y∈{ej1 ,ej2 ,ej3 ,}
u(y)

This is the mean-value property of the infinity Laplacian studied by Le Gruyer [8] and by

Peres, Schramm, Sheffield, and Wilson in [26].

The goal of this dissertation is to extend the above ideas to include the study of ∞-

Laplacian in infinite trees and p-Laplacian in graphs following the work of Manfredi, Parvi-

ainen, and Rossi [20] in Rn.
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1.1 THE DIRICHLET PROBLEM ON GRAPHS

Consider a graph E with a finite set of vertices X. Choose a nonempty subset of X and call

it the boundary Y . Let F : Y → R be a given function. We consider the following problem.

Find a function u on X, such that u = F on Y and u satisfies the following equation in X

u(x) = α max
y∈S(x)

u(y) + β min
y∈S(x)

u(y) + γ

(∑
y∈S(x) u(y)

#(S(x))

)
(1.2)

where α, β, and γ are predetermined non-negative constants such that α+β+ γ = 1, x ∈ X,

S(x) is the set of vertices connected to x by an edge, and #(S(x)) is the cardinality of S(x).

For a function u : X→ R we use

∫
S(x)

u =

∑
y∈S(x) u(y)

#(S(x))

We can also state this Dirichlet problem in more traditional notation. We will need the

following definitions.

Definition 4. The Laplace operator on the graph is given by

∆u(x) = div(∇u) =

∫
S(x)

u− u(x)

Definition 5. The infinity Laplacian on the graph is given by

∆∞u(x) =
1

2
(max
S(x)

u+ min
S(x)

u)− u(x)

Definition 6. For X = (x, y, z) ∈ R3 we define the analog of the maximal directional

derivative

〈X〉∞ = max{x, y, z}.

4



With the above notation in mind we can write (1.2) as

(α− β) 〈∇u〉∞ + 2β∆∞u+ γ∆u = 0. (1.3)

We call equation (1.3) the biased the p-Laplacian. Observe that when α = β we obtain the

regular p-Laplacian, when α = β = 0 we obtain the 2-Laplacian, and when α 6= β and γ = 0

we obtain the biased ∞-Laplacian. In this dissertation we study existence, uniqueness and

a qualitative properties of the solutions to this equation.

We start by answering the question of existence of the solution of Dirichlet problem 1.2 in

Theorem 1. In Theorem 3 we answer the question of uniqueness through comparison principle

(Theorem 2) employing a martingale approach as the main tool. Theorem 4 emphasizes

the connection between the optimal strategies and the solution of (1.2). A particular case

of existence and uniqueness proof is presented in Theorem 5. Theorem 6 is the strong

comparison principle. The case of a ternary directed tree includes the extension of some

ideas obtained for finite graphs. In particular, the measure induced by the game on the

boundary of a ternary directed tree is discussed in Theorem 7. Theorem 8 answers the

question of existence and uniqueness of the solution of Dirichlet problem on the ternary

directed tree. The example in the section 3.6 clarifies the problem of unique continuation.
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2.0 GAME SETUP AND DEFINITIONS

We consider the following game on a connected graph E with vertex set X. The set X is

finite unless stated otherwise. We equip X with the σ-algebra F of all subsets of X. For an

arbitrary vertex x we define S(x) the collection of vertices, which are connected to the vertex

x by a single edge. In case X is infinite, we require that X is at least locally finite; i.e. the

cardinality of S(x) is finite. At the beginning of the game a token is placed at some point

x0 ∈ X. Then we toss a three-sided virtual coin. The side of a coin labeled 1 comes out with

probability α and in this case player I chooses where to move the token among all vertices

in S(x). The side of a coin labeled 2 comes out with probability β and in this case player

II chooses where to move the token among all vertices in S(x). Finally, the side of a coin

labeled 3 comes out with probability γ and in this case we choose the next point randomly

(uniformly) among all vertices in S(x). This setup has been described in [26] and in [24] and

is known as “biased tug-of-war with noise”. The game stops once we hit the boundary set

Y . The set Y is simply predetermined non-emplty set of vertices at which game terminates.

In the game literature set Y is the called set of absorbing states. Let F : Y → R be the

payoff function defined on Y . If game ends at some vertex y ∈ Y , then player I receives from

player II the sum of F (y) dollars.

Let us define the value of the game for player I. Firstly, we formalize the notion of a pure

strategy. We define a strategy SI for player I as a collection of maps {σkI }k∈N, such that for

each k

σkI : Xk → X

σkI (x0, ..., xk−1) = xk,

where Xk = X× X× ...× X︸ ︷︷ ︸
k times

6



Hence, σkI tells player I where to move given (x0, ..., xk−1) - the history of the game up to the

step k. We call a strategy stationary if it depends only on the current position of the token.

Given two strategies for player I and II the transition probabilties for k ≥ 1 are given by

πk(x0, ..., xk−1; y) = αδσkI (x0,...,xk−1)(y) + βδσkII(x0,...,xk−1)(y) + γUS(xk−1)(y),

where we have set

US(xk−1) is a uniform distribution on S(xk−1) and π0(y) = δx0(y).

We equip Xk with product σ-algebra Fk

Fk = F ⊗ F ⊗ ...⊗F︸ ︷︷ ︸
k times

and then we define a probability measure on (Xk,Fk) in the following way:

µ0 = π0 = δx0 ,

µk(A
k × A) =

∫
Ak
πk(x0, ..., xk−1;A)dµk−1,

where Ak−1 × A is a rectangle in (Xk,Fk). The space of infinite sequences with elements

from X is X∞. Let Xk : X∞ → X be the coordinate process defined by

Xk(h) = xk, for h = (x0, x1, x2, x3, ...) ∈ X∞.

We equip X∞ with product σ-algebra F∞. For precise definition of F∞ see [11].

The family of {µk}k≥0 satisfies the conditions of Kolmogorov extension theorem [29],

therefore, we can conclude that there exists a unique measure Px0 on (X∞,F∞) with the

following property:

Px0(Bk × X× X××X...) = µk(Bk), for Bk ∈ Fk (2.1)

and

Px0 [Xk ∈ A|X0 = x0, X1 = x1, ..., Xk−1 = xk−1] = πk(x0, ..., xk−1;A). (2.2)

7



We are now ready to define the value of the game for player I. The boundary hitting time is

τ = inf
k
{Xk ∈ Y }.

Consider strategies SI and SII for player I and player II respectively. We define

F x
−(SI , SII) =

ExSI ,SII [F (Xτ )] if PxSI ,SII (τ <∞) = 1

−∞ otherwise

(2.3)

F x
+(SI , SII) =

ExSI ,SII [F (Xτ )] if PxSI ,SII (τ <∞) = 1

+∞ otherwise

(2.4)

The value of the game for player I is

uI(x) = sup
SI

inf
SII

Fx−(SI , SII)

and the value of the game for player II is

uII(x) = inf
SII

sup
SI

Fx+(SI , SII)

These definitions penalize players severely for not being able to force the game to end.

Whenever player I has a strategy to finish the game almost surely, then we simplify notation

by setting

uI(x) = sup
SI

inf
SII

Ex
SI ,SII

[F (Xτ )].

Similarly, for player II we set

uII(x) = inf
SII

sup
SI

Ex
SI ,SII

[F (Xτ )].

The following lemma states rigorously whether player I has a strategy to finish the game

almost surely:

Lemma 1. If X is a finite set, then player I (player II) has strategies to finish the game

almost surely.

Proof. When γ = 0, this result was already proven by Peres, Schramm, Sheffield, and Wilson

in [26] in Theorem 2.2. When γ 6= 0, the statement follows from the fact that random walk

on a finite graph is recurrent.

We always have uI(x) ≤ uII(x). Whenever uI(x) = uII(x) for all x ∈ X we say that

game has a value.

8



2.1 GAME THEORY FORMULATION

Following the notation of Maitra and Sudderth [17] we describe our game in the standard

term used in Game Theory.

Our state space S is X. Consider the gambling house at the point xk−1 ∈ X given by

Γ(xk−1) =

{
αδy1 + βδy2 + γUS(xk−1) : y1, y2 ∈ S(xk−1)

}
(2.5)

This is a collection of probabilities in Sxk−1
. We call this gambling house a p-Laplacian

gambling house. In the game described above we only consider pure strategies, i.e. given

the history (x0, x1, ...xn) a player chooses next point xn+1 in S(xn) with probability one.

However, we can generalize the notion of strategies to align it with standard for Game

Theory terms.

Definition 7. A strategy σ is a sequence σ0, σ1, ... such that σ0 is a probability on X and, for

n = 1, 2, ..., σn is a mapping, which assigns to each partial history p = (x1, ..., xn) of length

n a probability σ(x1, ..., xn) on X

We also would like to reproduce here the definition of conditional strategy from [17],

since this notion is critical to the proof of mean-value property in general case.

Definition 8. Suppose a player following the strategy σ has played for n periods and has

experienced the partial history p = (x1, ..., xn). The conditional strategy σ[p] governs the

continuation of play and is defined by setting

σ[p]0 = σn(x1, ..., xn)

and

σ[p]m(y1, ..., ym) = σm+n(x1, ...xn, y1, ..., ym)

for all partial histories (y1, ..., y2).

One can check that

Pσ[Xn+1 = y1, ..., Xn+m = ym|X1 = x1, ..., Xn = xn] = Pσ[p][X1 = y1, ..., Xm = ym],

whenever Pσ[X1 = y1, ..., Xm = ym] > 0.

9



3.0 MAIN RESULTS

3.1 EXISTENCE

Here is the first existence result for the equation (1.2).

Theorem 1. (Dynamic Programing Principle = Mean Value Property)

The value functions uI and uII satisfy the Dynamic Programing Principle (DPP) or

Mean Value Property (MVP):

uI(x) = α max
y∈S(x)

uI(y) + β min
y∈S(x)

uI(y) + γ

∫
S(x)

uI(y)dy, (3.1)

uII(x) = α max
y∈S(x)

uII(y) + β min
y∈S(x)

uII(y) + γ

∫
S(x)

uII(y)dy. (3.2)

The above result is true in the general setting of discrete stochastic games (see Maitra

and Sudderth, chapter 7 [17]). Here we provide a proof in the easier Markovian case. It

turns out that optimal strategies are Markovian (see chapter 5 of [17]).

Proposition 1. (The stationary case proof)

In the game with stationary strategies value functions uI and uII satisfy the Dynamic

Programing Principle (DPP) or Mean Value Property (MVP):

uI(x) = α max
y∈S(x)

uI(y) + β min
y∈S(x)

uI(y) + γ

∫
S(x)

uI(y)dy, (3.3)

uII(x) = α max
y∈S(x)

uII(y) + β min
y∈S(x)

uII(y) + γ

∫
S(x)

uII(y)dy. (3.4)

10



Proof. We will provide proof only for uI ; proof for uII follows by symmetry. Take a set of

vertices X, boundary Y and adjoin one vertex y∗ to the boundary. Denote new boundary by

Y ∗ = Y ∪ {y∗} and the new set of vertices by X∗ = X \ {y∗} and define

F ∗(y) =

F (y) if y ∈ Y

uI(y
∗) if y = y∗.

(3.5)

Let uI(x) be the value of the game with X&Y and u∗I(x) be the value of the game with

X∗&Y ∗ The goal is to show that

u∗I(x) = uI(x).

Once we prove the above, the main result follows by extending F to the set S(x).

Remark 1. The idea to extend F is used by [26] in the proof of Lemma 3.5.

Hence, we have to show u∗I(x) = uI(x). Since we consider only Markovian strategies

we can think of them as mappings SI : X → X. For the game X∗&Y ∗ we define S∗I as a

restriction of SI to X∗ Here are the steps in detail:

u∗I(x) = sup
S∗
I

inf
S∗
II

(
Ex
S∗
I ,S

∗
II
F ∗(Xτ∗)

)
= sup

S∗
I

inf
S∗
II

(
Ex
S∗
I ,S

∗
II
F ∗(Xτ∗)χ{Xτ∗=y∗} + Ex

S∗
I ,S

∗
II
F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗
I

inf
S∗
II

(
Ex
S∗
I ,S

∗
II
uI(y

∗)χ{Xτ∗=y∗} + Ex
S∗
I ,S

∗
II
F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗
I

inf
S∗
II

(
Ex
S∗
I ,S

∗
II

sup
SI

inf
SII

Ey∗

SI ,SII
F (Xτ )χ{Xτ∗=y∗}

+ Ex
S∗
I ,S

∗
II
F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗
I

inf
S∗
II

sup
SI

inf
SII

(
Ex
S∗
I ,S

∗
II

(
Ey∗

SI ,SII
F (Xτ )

)
χ{Xτ∗=y∗}

+ Ex
S∗
I ,S

∗
II
F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
. (3.6)

If we can show that

sup
S∗
I

inf
S∗
II

sup
SI

inf
SII

(
Ex
S∗
I ,S

∗
II

(
Ey∗

SI ,SII
F (Xτ )

)
χ{Xτ∗=y∗} + Ex

S∗
I ,S

∗
II
F ∗(Xτ∗)χ{Xτ∗=y∗}c

)
= sup

S∗
I

inf
S∗
II

sup
SI

inf
SII

(
Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗} + Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}c
)
, (3.7)

11



we can complete the proof in the following way:

u∗I(x) = sup
S∗
I

inf
S∗
II

sup
SI

inf
SII

(
Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗} + Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}c
)

= sup
SI

inf
SII

sup
S∗
I

inf
S∗
II

(
Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗} + Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}c
)

= sup
SI

inf
SII

(
Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗} + Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}c
)

= sup
SI

inf
SII

Ex
SI ,SII

F (Xτ ) = uI(x). (3.8)

Let us clarify (3.7). Actually, we have the following equalities

Ex
S∗
I ,S

∗
II
Ey∗

SI ,SII
F (Xτ )χ{Xτ∗=y∗} = Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗} (3.9)

Ex
S∗
I ,S

∗
II
F ∗(Xτ∗)χ{Xτ∗=y∗}c = Ex

SI ,SII
F (Xτ )χ{Xτ∗=y∗}c (3.10)

Equation (3.9) could be thought as payoff computed for the trajectories that travel through

a point y∗. Roughly speaking we first discount boundary points to the point y∗ and then

discount value at y∗ back to x which is the same as to discount boundary points to x through

trajectories that contain y∗, keeping in mind that S∗i is just a restriction of Si. Equation

(3.10) is a payoff computed for the trajectories that avoid y∗, and, therefore, there is no

difference between S∗i and Si, since S∗i is just a restriction of Si to X \ {y∗}.

A function v that satisfies (3.1) property when α = β is called p-harmonious (see

Manfredi, Parviainen, and Rossi [20]). The proof of Proposition 1 suggests the following

corollary, which we present with the proof for the sake of completeness.

Corollary 1. Consider a game on the graph E with finite set of vertices X and with only

stationary strategies. An optimal strategy for player I (player II) is to always move from

vertex x to the maximum (minimum) of uI (uII) on S(x).

12



Proof. We will prove the result for player I and then by symmetry it follows for player II.

Let us denote S0
I strategy of player I, where he always moves from vertex x to the maximum

of uI on S(x). Then for two arbitrary strategies SI and SII we have to show that

Ex
S0
I ,SII

F (Xτ ) ≥ Ex
SI ,SII

F (Xτ ) (3.11)

The idea of the proof is the same as in the proof of the Proposition 1. We will initially

extend the boundary by one vertex and then will extend the boundary up to S(x), at which

points all arguments become trivial. Fix a pair of arbitrary strategies SI and SII . Take a set

of vertices X, boundary Y and adjoin one vertex y∗ to the boundary. Denote new boundary

by Y ∗ = Y ∪ {y∗} and the new set of vertices by X∗ = X \ {y∗} and define

F ∗(y) =

F (y) if y ∈ Y

Ey∗

SI ,SII
F (Xτ ) if y = y∗

(3.12)

Accordingly, we define

τ = inf{n : Xn ∈ Y }

and

τ ∗ = inf{n : Xn ∈ Y ∗}

Then we claim that the following is true:

Lemma 2. For any pair of stationary strategies SI and SII

Ex
SI ,SII

F (Xτ ) = Ex
SI ,SII

F (Xτ∗). (3.13)

Proof. (of Lemma) The left hand side of formula (3.13) is expected value for the game on X

and boundary Y and the right hand side of formula (3.13) is the expected value the game

on X∗ and boundary Y ∗

Ex
SI ,SII

F (Xτ∗) = Ex
SI ,SII

F (Xτ∗)χ{Xτ∗=y∗} + Ex
SI ,SII

F (Xτ∗)χ{Xτ∗=y∗}c

= Ex
SI ,SII

Ey∗

SI ,SII
F (Xτ )χ{Xτ∗=y∗} + Ex

SI ,SII
F (Xτ∗)χ{Xτ∗=y∗}c

= Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗} + Ex
SI ,SII

F (Xτ∗)χ{Xτ∗=y∗}c

= Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗} + Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}c

= Ex
SI ,SII

F (Xτ ) (3.14)
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Here is a clarification:

Ex
SI ,SII

Ey∗

SI ,SII
F (Xτ )χ{Xτ∗=y∗} = Ey∗

SI ,SII
F (Xτ )E

x
SI ,SII

χ{Xτ∗=y∗}

= Ey∗

SI ,SII
F (Xτ )P

x
SI ,SII

(Xτ∗ = y∗)

=
∑
y∈Y

F (y)P y∗

SI ,SII
(Xτ = y)P x

SI ,SII
(Xτ∗ = y∗)

= (by the Markov property)

=
∑
y∈Y

F (y)P x
SI ,SII

({Xτ = y} ∩ {Xτ∗ = y∗})

= Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}. (3.15)

The following is also true:

Ex
SI ,SII

F (Xτ∗)χ{Xτ∗=y∗}c = Ex
SI ,SII

F (Xτ )χ{Xτ∗=y∗}c , (3.16)

simply because on the set {Xτ∗ = y∗}c Xτ never hits the y∗.

Applying the result of the lemma we can consider the regular game with set of vertices

X and boundary Y and the modified game where the boundary is extended all the way up

to S(x). We still denote such a game by ∗. Therefore, the following is true:

Ex
S0
I ,SII

F (Xτ ) = Ex
S0
I ,SII

F (Xτ∗) ≥ Ex
SI ,SII

F (Xτ∗) = Ex
SI ,SII

F (Xτ ) (3.17)

Example. We would like to warn the reader that the Corollary 1 does not claim that

tugging towards that maximum of F on the boundary would be an optimal strategy to the

player I. Here is an counterexample. The boundary vertices are indicated by the numbers,

which reflect the value of F at each vertex. We consider the game starting at vertex e0 and

require player II always pull towards the vertex labeled -1. For player one we choose SaI to

be the strategy of always tugging towards vertex 3/2 and let SbI be the strategy of moving

towards vertex 1. One can show that

Ee0
SaI ,SII

F (Xτ ) = −1 · 2/3 + 3/2 · 1/3 = −1/6 (3.18)
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Figure 2: Counterexample - tugging towards the boundary

Ee0
SbI ,SII

F (Xτ ) = −1 · 1/2 + 1 · 1/2 = 0 (3.19)

3.2 UNIQUENESS

Uniqueness will follow from the comparison principle below proven by using Doob’s Optional

Sampling Theorem.

Theorem 2. (via Martingale) Let v be a solution of

v(x) = α max
y∈S(x)

v(y) + β min
y∈S(x)

v(y) + γ

∫
S(x)

v(y)dy (3.20)

on a graph E with a countable set of vertices X and boundary Y . Assume

• F (y) = uI(y), for all y ∈ Y ,

• infY F > −∞,

• v bounded from below, and

• v(y) ≥ F (y), for all y ∈ Y

Then uI is bounded from below on X and

v(x) ≥ uI(x), x ∈ X.
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Proof. Note that we only need ” ≤ ” in equation (3.20). The theorem says that uI is the

smallest super-solution with given boundary value F .

We proceed as in Lemma 2.1 in [26]. Since the game ends almost surely,

uI ≥ inf
Y
F > −∞

which proves that uI is bounded from below. Now we have to show that

v(x) ≥ sup
SI

inf
SII

F x
−(SI , SII) = uI(x)

If we fix an arbitrary strategy SI , then we have to show that

v(x) ≥ inf
SII

F x
−(SI , SII) (3.21)

Consider a game that start at vertex x (X0 = x). We have two cases

Case 1: If our fixed SI cannot force the game to end a.s. (i.e. PxSI ,SII (τ < ∞) < 1),

then by the definition of F−, infSII F
x
−(SI , SII) = −∞ and the inequality (3.21) holds.

Case 2: Now assume that our fixed SI forces the game to end despite all the efforts of

the second player. Let player II choose a strategy of moving to miny∈S(x) v(y) - denote such

a strategy ŜII . If we prove that v(Xk) is a supermartigale, then we can finish the proof in

the following way:

inf
SII

ExSI ,SIIF (Xτ ) ≤ Ex
SI ,ŜII

F (Xτ )

≤ Ex
SI ,ŜII

v(Xτ )

= Ex
SI ,ŜII

lim inf
k

v(Xτ∧k)

≤ lim inf
k

Ex
SI ,ŜII

v(Xτ∧k) ≤ ExSI ,SIIv(X0)

= v(X0) = v(x), (3.22)
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where we have used Fatou lemma. The result follows after applying supSI to both sides.

Hence, we only need to prove that v(Xk) is a supermartingale under the expectation Ex
SI ,ŜII

:

Ex
SI ,ŜII

[v(Xk)|X0, ..., Xk−1] = αv(XI
k) + βv(XII

k )

+ γ

∫
S(Xk−1)

v(y)dy

≤ α max
y∈S(Xk−1)

v(y) + β min
y∈S(Xk−1)

v(y)

+ γ

∫
S(Xk−1)

v(y)dy = v(Xk−1), (3.23)

where v(XI
k) indicates the choice of player I and v(XII

k ) indicates the choice of player II.

Then v(XII
k ) = miny∈S(Xk−1) v(y) by choice of strategy for player II.

In case miny∈S(Xk−1) v(y) is not achieved (i.e. graph is not locally finite), we need to

modify the above proof by making player II move within ε neighborhood of miny∈S(Xk−1) v(y).

We can prove similar result for uII . The next theorem is the extension of the result obtained

in [21].

Theorem 3. If graph E is finite and F is bounded below on Y , then uI = uII , so the game

has a value.

Proof. Clearly, finite E implies that F is bounded below. We included this redundant state-

ment to suggest future possible extensions to an uncountable graph. We know that uI ≤ uII

always holds, so we only need to show uI ≥ uII . Assume F is bounded below. Similar

to the proof of Lemma 2 we can show that uI is a supermartingale bounded below by let-

ting player I to choose an arbitrary strategy SI and requiring player II always move to

miny∈S(x) uI(y) from x - strategy SoII . For simplicity of the presentation we consider a case

when miny∈S(x) uI(y) is achievable, for the general case we have to employ ε, like in Theorem
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2. We start the game at x0, so X0 = x0. Recall uII(x) = infSII supSI F+(SI , SII)

uII(x0) ≤ since E is finite ≤ sup
SI

Ex0SI ,SoII [F (Xτ )] = sup
SI

Ex0SI ,SoII [uI(Xτ )]

= sup
SI

Ex0SI ,SoII [lim inf
k

uI(Xτ∧k)] ≤ sup
SI

lim inf
k

Ex0SI ,SoII [uI(Xτ∧k)]

≤ sup
SI

lim inf
k

Ex0SI ,SoII [uI(X0)] = sup
SI

Ex0SI ,SoII [uI(X0)] = uI(x0) (3.24)

3.3 CONNECTIONS AMONG GAMES, PARTIAL DIFFERENTIAL

EQUATIONS AND DPP

This section summarizes some previous results as well as presents new prospectives on known

issues.

Theorem 4. Assume we are given a function u on the set of vertices X and consider a

strategy ŜI (ŜII) where player I (player II) moves from vertex x to vertex z, where

u(z) = max
y∈S(x)

u(y) (u(z) = min
y∈S(x)

u(y))

Then the following are equivalent:

• the process u(Xn) is a martingale under the measure induced by strategies ŜI and ŜII ,

• the function u is a solution of Dirichlet problem (1.2),

In addition, u(Xn) is a martingale under the measure induced by strategies ŜI and ŜII implies

that ŜI and ŜII are the optimal strategies.

Proof. Suppose that u(Xn) is a martingale under measure induced by strategies ŜI and ŜII .

Fix an arbitrary point x ∈ X and consider a game which starts at x = X0, then

Ex
ŜI ,ŜII

[u(X1)|X0] = αu(XI
1 ) + βu(XII

1 ) + γ

∫
S(X0)

u(y)dy

= α max
y∈S(X0)

u(y) + β min
y∈S(X0)

+γ

∫
S(X0)

u(y)dy

= u(X0). (3.25)
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Conversely, assume that u solves Dirichlet problem (1.2), then (3.25) implies that u(Xn) is

a martingale under measure induced by strategies ŜI and ŜII .

Let us show final implication. By optimal strategy we mean

Ex
ŜI ,ŜII

F (Xτ ) = sup
SI

inf
SII

Ex
SI ,SII

F (Xτ ). (3.26)

The result relies on the fact that our game has a value and value of game function is the

solution of the Dirichlet problem (1.2). Since u(Xn) is a martingale under measure induced

by strategies ŜI and ŜII we have

Ex
ŜI ,ŜII

F (Xτ ) = Ex
ŜI ,ŜII

u(Xτ ) = Ex
ŜI ,ŜII

u(X0) = u(x). (3.27)

By Uniqueness result (Theorem 2)

u(x) = sup
SI

inf
SII

Ex
SI ,SII

F (Xτ ). (3.28)

3.4 EXISTENCE AND UNIQUENESS WITHOUT GAMES

The idea of the following existence and uniqueness results is an adaptation of the arguments

of Le Gruyer [8] that arose in the discussion with Adam Oberman.

Theorem 5. Given a finite graph E with set of vertices X and boundary Y , there exists the

unique function u on X, which satisfies for every x ∈ X

u(x) = αmax
S(x)

u+ βmin
S(x)

u+ γ

∫
S(x)

u(y)dy (3.29)

where γ 6= 0
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Proof. We introduce the following non-linear average operator.

NA(u)(x) = αmax
S(x)

u+ βmin
S(x)

u+ γ

∫
S(x)

u(y)dy (3.30)

First let us prove uniqueness by using a comparison principle. We prove that if u and v

satisfy

u(x) = αmax
S(x)

u+ βmin
S(x)

u+ γ

∫
S(x)

u(y)dy, (3.31)

v(x) = αmax
S(x)

v + βmin
S(x)

v + γ

∫
S(x)

v(y)dy (3.32)

and u ≤ v on the boundary Y , then u ≤ v on the whole X. By the argument of contradiction

assume that

M = sup
X

(u− v) > 0

Let

A = {x ∈ X : u(x)− v(x) = M}

By our assumptions A 6= ∅ and A ∩ Y = ∅. Then we claim that exists x0 ∈ A and exists

y ∈ S(x0) such that y 6∈ A. Otherwise, due to connectedness of our graph, if for all x ∈ X

and for all y ∈ S(x) we have that y ∈ A, then we can easily conclude that A ∩ Y 6= ∅. By

definition of M we have

u(x0)− v(x0) ≥ u(x)− v(x), ∀x ∈ S(x0) (3.33)

v(x)− v(x0) ≥ u(x)− u(x0), ∀x ∈ S(x0) (3.34)

In particular

v(y)− v(x0) > u(y)− u(x0), y ∈ S(x0) (3.35)

Now, we apply non-linear average operator to v − v(x0) and u− u(x0)

0 = v(x0)− v(x0) = NA(v − v(x0))(x0) > NA(u− u(x0))(x0) = u(x0)− u(x0) = 0 (3.36)

which gives us a contradiction. Observe that in the last step we used the fact that γ 6= 0.

Now, let us prove existence. We consider a sequence
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un+1 = NA(un) (3.37)

We claim that this sequence converges. We use the following result on convergence in metric

spaces.

If every subsequence of a give sequence has a further subsequence converging to the same

limit, then the whole sequence is convergent.

Choose a subsequence unk , then due to compactness we know that there exist a convergent

subsequence unkl . Similarly, choose a subsequence unm different from unk , and due to com-

pactness conclude existence of a further convergent subsequence unmr . Since we are on the

finite graph, limits of unkl and unmr satisfy equation (3.29), but due to uniqueness of the

solution of (3.29) we obtain

lim
l→∞

unkl = lim
r→∞

unmr (3.38)

Hence, u = limn→∞ un is the solution.

3.5 STRONG COMPARISON PRINCIPLE

Theorem 6. Assume that u and v are solutions of equation (1.2) on X \ Y , γ 6= 0, u ≤ v

on the boudary Y , and exists x ∈ X such that u(x) = v(x), then u = v through the whole X.

Proof. By Theorem 2 from the fact that u ≤ v on the boundary we know that u ≤ v on X.

By definition of p-harmonious function we have

v(x) = α max
y∈S(x)

v(y) + β min
y∈S(x)

v(y) + γ

∫
S(x)

v(y)dy, (3.39)

u(x) = α max
y∈S(x)

u(y) + β min
y∈S(x)

u(y) + γ

∫
S(x)

u(y)dy. (3.40)

Since u ≥ v on X we know that

max
y∈S(x)

v(y) ≤ max
y∈S(x)

u(y),
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min
y∈S(x)

v(y) ≤ min
y∈S(x)

u(y),∫
S(x)

v(y)dy ≤
∫
S(x)

u(y)U(dy).

But since u(x) = v(x), we actually have equalities

max
y∈S(x)

v(y) = max
y∈S(x)

u(y),

min
y∈S(x)

v(y) = min
y∈S(x)

u(y),∫
S(x)

v(y)dy =

∫
S(x)

u(y)dy.

From equality of average values and the fact that u ≥ v we conclude that u = v on S(x).

Since our graph is connected, we immediately get the result.

3.6 UNIQUE CONTINUATION

We can pose the following question. Let E be a finite graph with the vertex set X and let

BR(x) be the ball of radius R contained within this graph. Here we assign to every edge of

the graph length one and let

d(x, y) = inf
x∼y
{|x ∼ y|},

where x ∼ y is the path connecting vertex x to the vertex y and |x ∼ y| is the number of

edges in this path. Assume that u is a p-harmonious function on X and u = 0 on BR(x).

Does this mean that u = 0 on X? It seems like the answer to this question depends on the

values of u on the boundary Y , as well as properties of the graph E itself. Here we can

provide simple examples for particular graph, which shows that u does not have to be zero

through the whole X.
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164 -349 80 163 1 -164 1 163 96 -617 74

-349 -52 -19 28 1 -20 1 28 -38 -9 596

80 -19 -4 1 1 -2 1 1 -1 35 -217

163 28 1 0 0 0 0 0 1 -26 -26

1 1 1 0 0 0 0 0 -2 1 1

-164 -20 -2 0 0 0 0 0 1 7 52

1 1 1 0 0 0 0 0 1 1 1

163 28 1 0 0 0 0 0 -2 1 -53

80 -19 -4 1 1 -2 1 1 -1 -19 80

-349 -52 -19 28 1 -20 1 28 -19 2 -160

164 -349 80 163 1 -164 1 163 77 403 461

Figure 3: p=2, 8 neighbors

-31 21 -11 -5 1 3 1 -5 11 -21 23

21 -5 5 -3 -1 1 -1 3 -5 1 21

-11 5 0 1 -1 0 1 -1 0 5 -11

-5 -3 1 0 0 0 0 0 1 -3 5

3 -1 -1 0 0 0 0 0 -1 -1 3

1 1 0 0 0 0 0 0 0 1 1

3 -1 1 0 0 0 0 0 1 -1 3

-5 3 -1 0 0 0 0 0 -1 3 -5

11 -5 0 1 -1 0 1 -1 0 -5 11

-21 1 5 -3 -1 1 -1 3 -5 5 -21

23 21 -11 -5 1 3 1 -5 11 -21 31

Figure 4: p=infinity, 8 neighbors
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The above example when p = 2 is rather interesting, since regular harmonic function is

known to have the unique continuation property. One way to prove it is to exploit the fact

that harmonic function is analytic and zeros of analytic functions are isolated. We would like

to explore the discrepancy between the discrete example above and the continuous case. To

make our study more general we would like to investigate a reformulation of the question of

unique continuation for regular harmonic functions. In particular, we consider the following

Dirichlet problem Let ∆u = 0, in B(0, 1),

u = F, on ∂B(0, 1).

(3.41)

Assume that F is a continuous function and u ≡ 0 on B(0, ε), where ε << 1. Then we know

that

u(x) = ExF (Xτ ), x ∈ B(0, ε), (3.42)

where Xt is the Brownian motion and τ = inf{t : Xt ∈ ∂B(0, 1)} [12]. We would like to

show that F = 0 on ∂B(0, ε) a.e. This kind of problem is already known is statistics (see

Lehmann and Romano [15]).

Definition 9. A family P of probability distributions P is complete if

EPF (X) = 0 for all P ∈ P (3.43)

implies

F (x) = 0, a.e. P . (3.44)

Lehmann [15] established criterion for the completeness of the family of exponential

probability distribution. In our case we have to work with the family of distributions with

densities

φx(y) =
1− |x|2
|y − x|2 , y ∈ ∂B(0, 1), x ∈ B(0, ε), (3.45)

(see Bass [3]).

The reason why we are looking for the new proof of unique continuation property is that

due to stochastic game approach to the study of p-harmonic function, we might expect the

following representation of p-harmonic function to hold for certain measure Px

u(x) = ExF (Xτ ). (3.46)
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With this representation the proof of unique continuation for the case p = 2 combined with

the the notion of completeness of the family of measures could be used to prove the result

for general p.
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4.0 THE CASE OF A COUNTABLE DIRECTED GRAPH (TERNARY

DIRECTED TREE)

All previous results were true for the case of a finite graph. In this chapter we will consider

an extension to the case of a ternary directed tree. Our main goal would be as before finding

functions satisfying certain mean value properties, as well as determining a measure on the

boundary of a graph induced by our game. Let us first describe the graph in detail. As

usual, we will denote our directed ternary tree by E and set of vertices by X. Here is a

drawing of sample graph:

∅

0

0

0 1 2

1

0 1 2

2

0 1 2

1

0

0 1 2

1

0 1 2

2

0 1 2

2

0

0 1 2

1

0 1 2

2

0 1 2

1

Figure 5: Directed tree - moving from top to bottom only

Every vertex is labeled either 0, 1 or 2. Each vertex has three successors. Therefore,

on level 0 we only have one vertex labeled ∅, on level 1 we have 3 vertices, on level 2 we

have 9 vertices, and on lever r we have 3r vertices. We denote by S(x) the three immediate

successors of a vertex x. The boundary of our tree is different from what we had in the finite

case.
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Definition 10. A branch of E is an infinite sequence of vertices, each followed by its

immediate successor. The collection of all branches forms the boundary of the tree E and

is denoted by Y .

There is natural surjective mapping between set Y and the interval [0, 1]. Every element

of Y could be thought of as an ternary expansion of a number in the interval [0, 1]. To be

more precise we define the map for

v = (a1, a2, ..., ak, ...) ∈ Y,

ψ(v) =
∞∑
n=1

an
3n

= x ∈ [0, 1]. (4.1)

Whenever vk = (a1, a2, ..., ak) is only a finite sequence of vertices, we set

ψ(a1, a2, a3, ..., ak) = ψ(a1, a2, a3, ..., ak, 0, 0, 0, ...). (4.2)

The function ψ is not a bijection simply because 1/3 (in general all triadic rationals) does

not have a unique ternary expansion

ψ(10̄) = ψ(02̄) = 1/3.

We also associate to a vertex v represented by a finite sequence vk = (a1, a2, a3, ..., ak) an

interval Iv of length 1
3k

as follows

θ : v 7→ Iv = [
ψ(v)

3k
,
ψ(v)

3k
+

1

3k
]. (4.3)

With the above surjection in mind we consider a function F : [0, 1]→ R and redefine it

on the set Y by the following formula

F (v) = F (ψ(v)), for v ∈ Y, (4.4)

where ψ is defined by (4.1).

Dirichlet problem: Given bounded function F : [0, 1]→ R find a function u such that

u(v) = αmax
S(v)

u+ βmin
S(v)

u+ γ

∫
S(v)

u(w)dw (4.5)
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and takes boundary values F in the sense that

lim
n→∞

u(vn) = u(v) = F (v), for all v ∈ Y. (4.6)

The value function of appropriate tug-of-war with noise game solves the problem as shown

in [22]. Since game is different in the case of a ternary tree, let us provide some extra details.

4.1 GAME SETUP

We play the following game on this tree. We start the game by placing a token on some

vertex and then toss a virtual coin with three sides. We require that the side of the coin

labeled 0 comes out with probability α ≥ 0, the side of the coin labeled 1 comes out with

probability γ ≥ 0, and the side of the coin labeled 2 comes out with probability β ≥ 0,

where α + γ + β = 1. If the outcome of the toss is 0, then player I chooses where to move

the token among the three succeeding vertices {0, 1, 2}. If the outcome if the toss is 2, then

player II chooses where to move the token among the three succeeding vertices {0, 1, 2}. If

the outcome of the toss is 1, then we move the token randomly uniformly among the three

succeeding vertices {0, 1, 2}. Formally, this game never stops and every run of the game

generates an infinite sequence composed of 0, 1 and 2. Therefore, unlike the previous games

we can not define a stopping time of hitting the boundary set Y , but we still can associate

a payoff from player II to player I for a ∈ Y by the equation (4.4). Hence, if game generates

sequence a ∈ Y , then player I receives from player II F (a) dollars. Now we need to define the

expected pay off for an individual game and in order to do it we have to describe a measure

on either set Y or on the interval [0, 1], which is related to Y by (4.1). We accomplish this

in the following section for particular choice of boundary function F in order to make the

details of the construction more transperant. From now on it would be helpful to think of

set Y in terms of interval [0, 1] and vice versa.
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4.1.1 CONSTRUCTION OF THE MEASURE WHEN F IS MONOTONE

When F is monotonically decreasing, the optimal strategy for player I is to always choose a

node labeled 0 and the optimal strategy for player II is to choose a node labeled 2. As before

the measure on the interval [0, 1] should depend on the starting point of the game and two

strategies used by two players. Therefore, the measure that we about to describe should be

properly denoted by

PvSI ,SII ,

where v ∈ X. For brevity we will write PxSI ,SII = P. We will define the measure on the algebra

of intervals in [0, 1] and then uniquely extend it to the σ−algebra generated by the collection

of these intervals. By the ternary map (4.1) every infinite sequence in Y starting with 0 will

end up in the interval [0, 1/3]. Therefore, we set P([0, 1/3]) = α + 1/3γ. Accordingly, every

infinite sequence in Y starting with 1 will end up in the interval [1/3, 2/3] and we should set

P([1/3, 2/3]) = 1/3γ. Finally, we conclude that P([2/3, 1]) = β + 1/3γ. The interval [0, 1/9]

corresponds to the collection of sequences having first two coordinate equal 0. Therefore,

P([0, 1/9]) = (α + 1/3γ)2. Continuing similarly we see that

P([0, 1/9]) = (α + 1/3γ)2, P([1/9, 2/9]) = (α + 1/3γ)1/3γ,

P([2/9, 1/3]) = (α + 1/3γ)(β + 1/3γ),

P([1/3, 4/9]) = 1/3γ(α + 1/3γ), P([4/9, 5/9]) = (1/3γ)2,

P([5/9, 2/3]) = 1/3γ(β + 1/3γ),

P([2/3, 7/9]) = (β + 1/3γ)(α + 1/3γ), P([7/9, 8/9]) = (β + 1/3γ)(1/3γ),

P([8/9, 1]) = (β + 1/3γ)2.

Since every interval could be written as a union on intervals with triadic rational endpoints,

we obtain a measure defined on the algebra of subintervals of [0, 1]. Observe that when

α < 1, β < 1 and γ < 1 the measure defined above, in general, does not have atoms and,

therefore, we do not have to worry about the endpoints of the intervals as well as set of

triadic rationales, since both have measure zero.
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We streamline the notation by setting

a = α +
1

3
γ, b =

1

3
γ, c = β +

1

3
γ. (4.7)

With this notation we choose node labeled 0 with probability a, node labeled 1 with prob-

ability b, and node labeled 2 with probability c. Hence, we can compute the probability

of sequence (a1, a2, a3, ..., ak) which is equal to the probability of the interval associated to

(a1, a2, a3, ..., ak) by (4.3).

Theorem 7. Let v = (a1, a2, a3, ..., ak) be a vertex at level k, then

P(Iv) = an(0)bn(1)cn(2), (4.8)

where n(0) is the number of 0 in (a1, a2, a3, ..., ak), n(1) is the number of 1 in (a1, a2, a3, ..., ak),

and n(2) is the number of 2 in (a1, a2, a3, ..., ak).

Jose Llorente offered the following observation along with the idea of the proof.

Proposition 2. Except for the case α = β = γ = 1
3
, the probability P is singular with respect

to Lebesgue measure.

Proof. We will rely on the Proposition 1.1 from [16]. We will show that

lim sup
n→∞

P(In)

|In|
=∞, for P−a.e. x ∈ [0, 1], (4.9)

where {In}n≥1 is a decreasing sequence of intervals and | · | denotes Lebesgue measure. The

above implies that measure P is singular with respect to Lebesgue measure. Theorem 7

shows that

P(In) = αn(0)βn(1)γn(2), (4.10)

where n(0) is the number of 0 in the vertex associated to In, n(1) is the number of 2 in the

vertex associated to In and n(2) is the number of 2 in the vertex associated to In. Observe

that

|In| = 3−n, (4.11)

then
P(In)

|In|
= 3nαn(0)βn(1)γn(2),
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(
P(In)

|In|

) 1
n

= 3α
n(0)
n β

n(1)
n γ

n(2)
n ,

lim
n→∞

(
P(In)

|In|

) 1
n

= lim
n→∞

3α
n(0)
n β

n(1)
n γ

n(2)
n = 3ααββγγ.

By considering f(x, y) = xxyy(1− x− y)1−x−y for 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 we conclude that

3ααββγγ > 1,

except when α = β = γ = 1
3
. For some fixed α, β and γ there is η > 0 such that

lim
n→∞

(
P(In)

|In|

) 1
n

= 3ααββγγ ≥ 1 + η.

By definition of the limit for η/2 there is N , such that for all n ≥ N

(
P(In)

|In|

) 1
n

≥ 1 + η/2,

P(In)

|In|
≥ (1 + η/2)n

and

lim sup
n→∞

P(In)

|In|
=∞
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4.2 EXISTENCE AND UNIQUENESS

The expected payoff of an individual game is

∫
[0,1]

F (y)PvSI ,SII (dy) = EvSI ,SII [F ].

We also define value of the game for the first player as

uI(v) = sup
SI

inf
SII

∫
[0,1]

F (y)PvSI ,SII (dy),

and value of the game for the second player as

uII(v) = inf
SII

sup
SI

∫
[0,1]

F (y)PvSI ,SII (dy).

The fact that the value function of a tug-of-war with noise game satisfies (4.5) is a restatement

of the DPP [22]. Uniqueness follows by noting that the argument of Theorem 2 applies here

as well.

Theorem 8. The solution to Dirichlet problem (4.5) and (4.6) is unique and is given by the

value of the game function

u(v) = sup
SI

inf
SII

∫
[0,1]

F (y)PvSI ,SII (dy) = inf
SII

sup
SI

∫
[0,1]

F (y)PvSI ,SII (dy).
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4.2.1 SPECIAL CASES

Special cases of the above game are interesting.

Case: p = 2 (γ = 1, α = 0, β = 0) In this case equation (4.5) is

u(x) =

∫
S(x)

u(y)dy (4.12)

and the solution is given by running random walk on the tree. The expression for the value

of the game in this case simplifies to

u(v) =

∫
Iv

F (y)Pvdy =
1

|Iv|

∫
Iv

F (y)dy, (4.13)

We remark that the last integral in (4.13) is with respect to Lebesgue measure.

Case: p = ∞ (γ = 0, α > 0, and β > 0) and F is monotonically decreasing This

is a case of tug-of-war and the answer to Dirichlet problem is give by the value of the

game function, which in this case has particularly simple form due to existence of optimal

strategies.

u(x) = sup
SI

inf
SII

∫
[0,1]

F (y)PxSI ,SII (dy) =

∫
[0,1]

F (y)PxS∗
I ,S

∗
II

(dy) (4.14)

The optimal strategy S∗I for player I is alway to pull to the left or to choose vertex labeled 0

and the optimal strategy S∗II is to always pull to the right or to choose vertex labeled 2. If

one tries to visualize the dynamics of this game, one can notice that the boundary set in this

case is Cantor set. For the rigorous proof we can use the characterization of a Cantor set

as set of real numbers whole triadic expansion does not contain digit 1. In addition, when

α = β = 1/2 the resulting measure on the unit interval PxS∗
I ,S

∗
II

is the Cantor measure. This

fact is remarkable enough to be stated as a theorem.

Theorem 9. (Infinity Laplacian in ternary trees and the Cantor-like measure.)

Let F : [0, 1] → R bounded and monotonically decreasing. The solution to the Dirichlet

problem u(v) = 1
2

maxw∈S(v) u(w) + 1
2

minw∈S(v) u(w), v ∈ X

u(y) = F (y), for all y ∈ Y
(4.15)
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is given by

u(v) =

∫
Iv

F (z)Cv(dz), (4.16)

where Cv is the Cantor like measure.

Proof. By the notation Cv we mean the Cantor measure on the interval Iv with Cv(Iv) = 1. It

is the measure corresponding to the distribution function given by the Cantor step function,

which is constructed inductively by split Iv into three equal parts and setting the function

to be constant on the middle part.

The only claim in the theorem that requires proof is

PvS∗
I ,S

∗
II

= Cv,

but it follows by checking that both measure coincide on the algebra of triadic intervals. By

a triadic interval we mean an interval whose endpoints are triadic rational numbers.

An interesting observation suggested by David Futer is the following one. In case F is

not monotonically decreasing we can employ graph automorphism to describe the boundary

measure P in more familiar terms. In particular, at each vertex of our tree we introduce a

permutation σ such that

u(σ(vik)) ≤ u(σ(vi+1
k )), 0 ≤ i ≤ 1.

Then we define

w(vik) = u(σ(vik)).

If we extend the notion of the permutation on the tree to the permutation of the interval

[0, 1] and define F ∗ to be the boundary function obtained from F through our permutation,

then we can apply Theorem 9:

u(σ(v)) = w(v) =

∫
Iv

F ∗(z)Cv(dz),

u(σ(v)) = w(v) =

∫
Iv

F ∗(z)Cv(dz) =

∫
Iv

F (σ(z))Cv(dz).

If we change variables, we obtain
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u(σ(v)) =

∫
Iσ−1(v)

F (z)Cσ
−1(v) ◦ σ−1(dz).

Properties of the measure Cσ
−1(v) ◦ σ−1 present a definite research interest.

4.3 ITERATED FUNCTIONS SYSTEMS

The boundary set and the measure on this set that we described in this section could also

be studied in terms of Iterated Functions Systems (IFS) (see [2]). We give here a definition

IFS which suites our purpose.

Definition 11. The Iterated Function Systems with probabilities is a collection of contractive

mappings

Si : [0, 1]→ [0, 1], i = 1, ..., n

with collection of weights

pi,
n∑
i=1

pi = 1.

According to Theorem 2 [2], there exists a unique set B called attractor of the IFS with

the property

B =
n⋃
i=1

Si(B). (4.17)

The existence of set B follows from the contraction mapping principle. We can find set B by

applying iteratively all mappings Si to the interval [0, 1]. Further we define Markov operator

M : P([0, 1]) → P([0, 1]), where P([0, 1]) is a set of probability measures on the interval

[0, 1].

M(ν) =
n∑
i=1

piν ◦ S−1
i . (4.18)

In proper settings [2] this operator is a contraction and, therefore, exists unique probability

measure with the property

Mµ = µ. (4.19)
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This measure µ is know as invariant or self-similar. One of the central questions is the study

of singularity or absolute continuity of measure µ with respect to Lebesgue measure. This

question is already very interesting in case of only two contractive mappings as shown by

the following example from [14].

Example.

S1(x) = ρx, S2(x) = 1− ρx, 0 < ρ < 1.

The invariant measure µ(= µρ)is

µ =
1

2
µ ◦ S−1

1 +
1

2
µ ◦ S−1

2 .

For 0 < ρ < 1
2
µ is a Cantor type measure and for 1

2
< ρ < 1 the measure is much more

complicated. Due to Solomyak [27] we only know that µ is absolutely continuous with

respect to Lebesgue measure. There is exist a remarkable connection to algebraic integers.

In particular, when ρ−1 is Pisot-Vijayarahavan (P.V.) number, the invariant measure µ is

singular. See [14] for this result and the definition of P.V. number. Let us demonstrate the

connection of the IFS theory to our game.

Case: p = 2 (γ = 1, α = 0, β = 0) We define the IFS with probabilities

Si : [0, 1]→ [0, 1]; Si(x) =
1

3
x+

i

3
, for i = {0, 1, 2}, (4.20)

p0 = α +
1

3
γ, p1 =

1

3
γ, p2 = β +

1

3
γ. (4.21)

The attractor set B is the boundary of our ternary tree (4.1) and in our case it is simply the

interval [0, 1]. The invariant measure µ is the measure on the boundary of our tree induced

by the game i.e. µ = P. Since in our case is α = β = 0 and γ = 1, µ is a Lebesgue measure

supported on [0, 1].

Case: p = ∞ (γ = 0, α > 0, and β > 0) and F is monotonically decreasing We

define IFS with probabilities

Si : [0, 1]→ [0, 1]; Si(x) =
1

3
x+

i

3
, for i = {0, 2}, (4.22)
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p0 = α, p2 = β. (4.23)

In this case the attractor set B is the Cantor set. When α = β = 1
2

we see that the invariant

measure in this case is the Cantor measure.

Case: 2 < p < ∞ ⇔ γ >, α > 0, and β > 0 and F is monotonically decreasing

Similar to the previous cases we define the IFS with probabilities

Si : [0, 1]→ [0, 1]; Si(x) =
1

3
x+

i

3
, for i = {0, 1, 2}. (4.24)

p0 = α +
1

3
γ, p1 =

1

3
γ, p2 = β +

1

3
γ. (4.25)

The attractor set B is the interval [0, 1]. The invariant measure in this case is singular with

respect to Lebesgue measure, except when p0 = p1 = p2 = 1
3
, as shown by Proposition 2.
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5.0 CONNECTIONS TO RN

The connections between discrete results presented above and the partial differential equa-

tions on Rn are well illustrated by the following publications. -“Tug-of-war and infinity

laplacian” Y. Peres, O. Schramm, S. Sheffield, and D. Wilson [26]; -“Tug-of-war with noise:

a game theoretic view of the p-Laplacian” Y. Peres and S. Sheffield [25]; -“On absolutely

minimizing lipschitz extensions and PDE ∆∞ = 0” E. Le. Gruyer [8]; -“On the definition

and properties of p-Harmonious functions” Manfredi, M. Parviainen, and J.D. Rossi [21].

The following three concepts are important.

5.1 VISCOSITY SOLUTION

Viscosity solution of the ∞-Laplacian. One way to extent the results obtained in

the previous sections is to approximate some subset of Rn by a sequence of graphs with

decreasing length of the edges. Given the approximating sequence one can employ the

notion of expansion in viscosity sense as studied by Manfredi, Parviainen, and Rossi in [20].

An alternative approach to connecting discrete results and the continuous case is to use the

following notions: viscosity solution, AMLE and comparison with cones as outlined in [26].

For the sake of completeness we present here some details of the second approach. Consider

the partial differential equation

∆∞u = 0 on U,

u = F on ∂U.

(5.1)
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where ∆∞u is give by

∆∞u =
〈
D2uDu,Du

〉
.

The 1-homogenous version is

∆∞u =
〈D2uDu,Du〉
〈Du,Du〉 .

Definition 12. Let Tx be the set of real valued functions φ such that

• φ ∈ C2 in some neighborhood of x,

• ∆∞φ is defined in some neighborhood of x in the following sense. Either Dφ(x) 6= 0 or

Dφ(x) = 0 and the limit

∆∞φ(x) = lim
y→x

2
φ(y)− φ(x)

|y − x|2

exists.

Let Ω be a domain in Rn and let u : Ω→ R be continuous. Set

∆+
∞u(x) = inf{∆∞φ(x) : φ ∈ Txand x is a local minimum of φ− u}.

We say that u satisfies ∆+
∞u ≥ g in a domain Ω, if for every φ ∈ C2 s.t. φ − u has a

local minimum at some x ∈ Ω satisfies ∆+
∞φ(x) ≥ g(x). In this case u is called viscosity

subsolution of ∆∞(u) = g. Similarly, we set

∆−∞u(x) = inf{∆∞φ(x) : φ ∈ Txand x is a local maximum of φ− u}

and call u a viscosity supersolution of ∆∞(·) = g if ∆−∞u ≤ g in Ω u is a viscosity

solution of ∆∞(·) = g if ∆−∞u ≤ g ≤ ∆+
∞u(x) in Ω (i.e., u is both a supersolution and a

subsolution).
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5.2 ABSOLUTELY MINIMAL LIPSCHITZ EXTENSIONS

The second important concept is Absolutely Minimal Lipschitz Extensions (AMLE)

introduced by G. Aronsson [1]. Consider the following problem. Given a metric space (X, d)

set Y ⊂ X and function F defined on ∂Y , find F̃ which is an extension of F to Y s.t.

Lip∂Y F = LipY F̃ . Where

LipΩf = sup

{ |f(x)− f(y)|
d(x, y)

: x, y ∈ Ω,

}
.

The answer to this problem was found by McShane [18] and Whitney [28]

F̃ (x) = inf
y∈Y

[F (y) + LipY d(x, y)].

Now consider the problem of finding an extension F̃ such that

for all open U ⊂ X \ Y, we have that Lip∂U F̃ = LipU F̃ .

Such an F̃ is called an absolutely minimal Lipschitz extension. Function F is Absolutely

Minimal (AM), if it is defined on a domain Ū and it is the AMLE of its restriction to ∂U .

5.3 COMPARISON WITH CONES

Definition 13. Let b, c ∈ R, then function φ(y) = b|y − z| + c is called the cone based at

z ∈ Rn.

Definition 14. Let U ⊂ Rn and u ∈ C(U,R), then u satisfies comparison with cones

from above on U , if for every open W ⊂ W̄ ⊂ U , for every z ∈ Rn \ W and for every

cone φ based at z such that the inequality u ≤ φ holds on ∂W , the same inequality is valid

throughout W .
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Comparison with cones from below is defined similarly using the inequality u ≥ φ.

It turns out that all three concepts mentioned above (viscosity solution of infinity Lapla-

cian, AMLE, and comparison with cones) are equivalent. Jensen [10] proved that viscosity

solutions to ∆∞u = 0 for domains in Rn satisfy comparison with cones (from above and

below), and Crandall, Evans, and Gariepy [4] proved that

a function on Rn is absolutely minimal in a bounded domain U , if and only if it satisfies

comparison with cones in U .

The authors of the first paper [26] discovered that a random turn zero-sum game “tug-of-

war” provides insight into the question of existence and uniqueness of the solution of infinity

Laplacian. Let us briefly describe the game. The game is played by 2 players on a graph E

with vertex set X and boundary set Y ⊂ X. At the beginning of the game a token is placed

at some vertex x0, then a fair coin is tossed and whichever player wins the coin toss moves

the token to some vertex x1. The vertex x1 must be connected to x0 by single edge. Then

the coin is tossed again. The game stops when the token reaches any point at the boundary

y ∈ Y . At the end of the game player I receives from player II the amount of F (y) dollars.

The value of the game is the expected payoff that player I can get from player II, provided

they both play their best.

The game also could be played on the length space with a step size less than some fixed ε.

It seems like, it was Peres et al. observation that the value of the game satisfies comparison

with cones that led them to the proof that value of the game function is the unique viscosity

solution of infinity Laplacian.

The second paper by Peres et al. deals with the existence of the solution for p-Laplacian.

tug-of-war with noise is the game suggested for this problem. Similar to “tug-of-war”, there

are 2 players. At the beginning of the game a token is placed at some point x0 ∈ U , where

U is a bounded subset of a length space (X, d). Then a fair coin is tossed and whoever

wins the coin toss moves a token to some point x1, s.t. x1 ∈ B(x0, ε), after that a vector v1

perpendicular to x1 − x0 is added. The magnitude of v is random, with a variance related

to ε. Whenever, the game hits some point y ∈ ∂U , game stops and player I receives from

player II F (y) dollars.
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6.0 FUTURE WORK

6.1 HARNACK’S INEQUALITY

Another direction of the research could be the proof of Harnack’s inequality. If X is the finite

set of vertices and BR is a ball of radius R such that 2BR ⊂ X, then we would like to check

whether the following holds for some constant c

sup
BR

u ≤ c inf
BR

u,

where u is non-negative solution of (1.2). One way to prove this inequality and get an

estimate of c would be through the use of conditioning.
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