
ANALYSIS, OPTIMIZATION & EXECUTION OF GENERAL PURPOSE

MULTIMEDIA APPLICATIONS ON SUBWORD VLIW DATAPATHS

by

Majd F. Sakr

BS, University of Pittsburgh, 1992

MS, University of Pittsburgh, 1995

Submitted to the Graduate Faculty of

the School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12209368?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ii

UNIVERSITY OF PITTSBURGH

SCHOOL OF ENGINNERING

This dissertation was presented

by

Majd F. Sakr

It was defended on

November 18, 2003

and approved by

James T. Cain, Professor, Electrical Engineering

Ronald Hoelzeman, Associate Professor, Electrical Engineering

Ivan Kourtev, Assistant Professor, Electrical Engineering

Donald M. Chiarulli, Professor, Computer Science

Dissertation Director: Steven P. Levitan, Professor, Electrical Engineering

iii

Copyright by Majd F. Sakr

2003

iv

ANALYSIS, OPTIMIZATION & EXECUTION OF GENERAL PURPOSE

MULTIMEDIA APPLICATIONS ON SUBWORD VLIW DATAPATHS

Majd F. Sakr, PhD

University of Pittsburgh, 2003

In this thesis we evaluate the characteristics of multimedia applications and propose a Multi-

ple Instruction Stream Multiple Data Stream (MIMD) subword Very Long Instruction Word

(VLIW) datapath that overcomes the limitations of current architectures to effectively execute

multimedia applications.

The characteristics of multimedia applications differ from these of conventional technical

applications, in that multimedia applications are highly parallel, computationally intensive, and

use low precision (subword) data that can be streaming in nature.

Conventional architectures with fixed-width datapaths cannot effectively perform the required

computation. Current solutions employ media-centric single instruction stream multiple data

stream (SIMD) based instruction set extensions. However, compilers cannot automatically target

these instructions and have to either use hand-tuned assembly libraries or compiler intrinsics.

These restrictions limit the full exploitation of the available parallelism in general purpose media

applications implemented using high-level programming constructs, which limits performance

gains.

We alleviate these restrictions by allowing the compiler to target a flexible MIMD datapath

with support for subword execution. Also, we enable the compiler to better exploit the parallelism

v

within the media applications by introducing simple code transformations. To measure the effec-

tiveness of our solution, we evaluate the performance of multimedia applications on the proposed

subword MIMD VLIW datapath. This evaluation is performed on a set of multimedia benchmark

kernels by analyzing compiler transformations and optimizations and then compiling and execut-

ing each kernel using the set of techniques that best target our architecture.

The result is an architecture and an analysis methodology that exploits parallelism across a

wide range of multimedia applications by providing better performance and enhanced applicabil-

ity which in turn enables the required realism in multimedia applications running on general pur-

pose processors.

DESCRIPTORS

Computer Architecture Processor Design

General Purpose Processors Subword Datapath

Multimedia Applications VLIW Microprocessor

vi

TABLE OF CONTENTS

Page

ABSTRACT . iv

FOREWORD . xv

1.0 INTRODUCTION . 1

1.1 PROBLEM STATEMENT. 3

1.2 STATEMENT OF WORK . 4

1.3 DISSERTATION ROAD MAP . 5

2.0 BACKGROUND AND MOTIVATION . 6

2.1 CURRENT SOLUTIONS TARGETING MULTIMEDIA APPLICATIONS. 7

2.2 MULTIMEDIA APPLICATIONS AND SIMD ISA EXTENSIONS 10

2.3 INTEL’S MMX, SSE AND SSE2 ISA EXTENSIONS. 14

2.3.1 The MMX instruction extensions . 15

2.3.2 Streaming SIMD (SSE) Extensions . 18

2.3.3 SSE2 Extensions . 20

2.3.4 Limitations of Intel’s Subword SIMD Instruction Extensions 23

2.4 EMBEDDED MULTIMEDIA PROCESSORS . 25

2.5 SUMMARY OF RELATED WORK . 28

3.0 CHARACTERISTICS OF MULTIMEDIA APPLICATIONS . 29

3.1 KERNELS OF MULTIMEDIA APPLICATIONS . 30

3.2 GSM - LOSSY SPEECH TRANSCODING ALGORITHM . 31

3.2.1 Kernel of the GSM Encoder . 34

3.3 SPEECH DECOMPRESSION USING THE GSM DECODER 38

3.3.1 Kernel of the GSM Decoder . 38

3.4 PEGWIT ENCRYPTION ALGORITHM . 41

vii

3.4.1 Kernel of the PEGWIT Encryption algorithm . 42

3.5 THE PEGWIT DECRYPTION ALGORITHM . 45

3.5.1 Kernel of the PEGWIT decryption algorithm . 45

3.6 THE ADPCM ENCODER ALGORITHM. 47

3.7 THE ADPCM DECODER ALGORITHM. 50

3.8 THE MPEG-2 ENCODING ALGORITHM . 53

3.9 THE MPEG-2 DECODING ALGORITHM . 58

3.9.1 Kernel of the MPEG-2 decoding algorithm. 59

3.10 THE MPEG-4 (DIVX) ENCODER ALGORITHM. 62

3.10.1 Kernel of motion estimation in the MPEG-4 encoding algorithm. 64

3.11 CHARACTERIZATION SUMMARY OF MULTIMEDIA KERNELS. 70

4.0 PROPOSED ARCHITECTURE. 72

4.1 ARCHITECTURAL REQUIREMENTS OF MULTIMEDIA APPLICATIONS 73

4.2 VLIW ARCHITECTURE. 75

4.3 A SUBWORD MIMD VLIW DATAPATH . 79

4.3.1 Datapath Comparison. 82

4.3.2 Architectural Parameters of a Subword VLIW Datapath . 85

5.0 COMPILER FRAMEWORK AND EXPERIMENTAL METHODOLOGY 88

5.1 THE TRIMARAN FRAMEWORK . 88

5.1.1 Compiler Support. 88

5.1.2 Simulation Engine . 91

5.2 METHODOLOGY . 92

5.2.1 Experimental Setup . 93

6.0 EXPERIMENTAL ANALYSIS . 95

6.1 KERNEL ANALYSIS AND TRANSFORMATIONS . 95

6.1.1 Kernel of the GSM Encoder . 95

viii

6.1.2 Kernel of the GSM Decoder . 98

6.1.3 Performance Analysis of the PEGWIT Encryption . 104

6.1.4 Performance Analysis of the PEGWIT Decryption. 107

6.1.5 Performance Analysis of the ADPCM Encoder . 109

6.1.6 Performance Analysis of the ADPCM Decoder . 111

6.1.7 Performance Analysis of the MPEG-2 Encoder . 114

6.1.8 Performance Analysis of the MPEG-2 Decoder . 117

6.1.9 Performance Analysis of the DIVX Encoder. 119

6.2 ANALYSIS OF EXPERIMENTAL RESULTS. 123

6.3 SUMMARY OF EXPERIMENTAL RESULTS . 132

7.0 SUMMARY AND CONCLUSIONS . 134

7.1 SUMMARY . 134

7.2 CONCLUSIONS. 135

8.0 FUTURE WORK . 138

ix

LIST OF TABLES

Table No. Page

1 Instruction Set Extensions by major microprocessor manufacturers. 11

2 The incremental introduction of SIMD instructions into the Intel Processors 15

3 MMX Instruction Set Summary . 17

4 The multimedia domains and nine applications that are analyzed. 31

5 Characteristics of the multimedia kernels . 70

6 Die area for the fixed-width functional units. 86

7 Die area for the subword functional units . 87

8 The experiments performed. . 94

9 Performance Speedup Summary of the Kernels and Applications 133

x

LIST OF FIGURES

Figure No. Page

1 New data types introduced with the MMX instruction extensions.. 16

2 New data types introduced with the SSE instruction extensions. 19

3 New data types introduced with the SSE2 instruction extensions. 21

4 The Intel NetBurst microarchitecture 20 stage execution hyper pipeline.. 22

5 The block diagram of the GSM Encoder and Decoder Algorithm. 33

6 The kernel of the GSM Encoder accounts for 80% of clock cycles during a typical
execution. 35

7 The code of the kernel GSM Encoder which calculates the LTP parameters. 36

8 The dynamic instruction breakdown of the GSM Compression Kernel.. 37

9 The kernel of the GSM Decoder accounts for 70% of clock cycles during a typical
execution. 39

10 The code of the GSM Decompression Kernel . 40

11 The dynamic instruction breakdown of the GSM Decompression Kernel 41

12 The kernel of the PEGWIT Encryption accounts for 68% of clock cycles during
a typical execution.. 42

13 The code of the gfAddMul Kernel of PEGWIT. 43

14 The code of the gfMultiply Kernel of PEGWIT . 43

15 The dynamic instruction breakdown of the Kernels in the PEGWIT Encryption
Algorithm. . 44

16 The kernel of the PEGWIT Decryption algorithm accounts for 62% of
clock cycles during a typical execution.. 45

17 The dynamic instruction breakdown of the PEGWIT Decryption Kernels. 46

18 The block diagram of the ADPCM Encoder Algorithm.. 47

xi

19 The adpcm_coder kernel of the ADPCM Encoder algorithm accounts for 87%
of clock cycles during a typical execution. . 48

20 The code of the adpcm_coder Kernel of the ADPCM Encoder 49

21 The dynamic instruction breakdown of adpcm_coder kernel of ADPCM. 50

22 The block diagram of the ADPCM Decoder Algorithm.. 51

23 The adpcm_decoder kernel of the ADPCM Decoder algorithm accounts for 84%
of clock cycles during a typical execution. . 51

24 The code of the adpcm_decoder Kernel of the ADPCM Decoder. 52

25 The dynamic instruction breakdown of adpcm_coder kernel of ADPCM. 53

26 The block diagram of the MPEG-2 Encoder Algorithm.. 54

27 The dist1 kernel of the MPEG-2 Encoder algorithm accounts for 79%
of clock cycles during a typical execution. . 55

28 The code of the dist1 Kernel of the MPEG-2 Encoder . 56

29 The continuation of the dist1 Kernel of the MPEG-2 Encoder 57

30 The dynamic instruction breakdown of dist1, the MPEG Encoder Kernel 58

31 The block diagram of the MPEG-2 Decoder Algorithm. . 58

32 The kernel of the MPEG-2 Decoder algorithm accounts for 50% of
clock cycles during a typical execution.. 59

33 The code of the idctcol Kernel of the MPEG-2 Decoder. 60

34 The code of the idctrow Kernel of the MPEG-2 Decoder . 61

35 The dynamic instruction breakdown of the MPEG Decoding Kernel. 62

36 The block diagram of the MPEG-4 Encoder Algorithm.. 63

37 The kernel of the MPEG4 Encoder algorithm accounts for 92% of
clock cycles during a typical execution.. 64

38 The code of the pix_abs16x16 kernel of the MPEG-4 Encoder Algorithm. 65

39 The code of the pix_abs16x16_xy2 kernel of the MPEG-4 Encoder. 66

xii

40 The code of the pix_abs16x16_x2 kernel of the MPEG-4 Encoder. 66

41 The code of the pix_abs16x16_y2 kernel of the MPEG-4 Encoder. 67

42 The dynamic instruction breakdown of functions pix_abs16x16 and
pix_abs16x16_xy2 of the MPEG-4 Encoder Kernel . 68

43 The dynamic instruction breakdown of functions pix_abs16x16_x2 and
pix_abs16x16_y2 of the MPEG-4 Encoder Kernel . 69

44 The control flow from the GSM kernel. . 73

45 The streaming nature of the GSM Decompression Kernel.. 74

46 In the motion estimation kernel of the MPEG-4 encoder, the operations
are independent, the operands are 8-bits. 75

47 A typical VLIW architecture. . 76

48 An example of constructing a sequence of VLIW instructions. 77

49 An example of the datapath of a general purpose VLIW microprocessor. 78

50 A VLIW processor with support for subword execution in the datapath. 80

51 An example of constructing a sequence of subword VLIW instructions. 81

52 An example of a Subword MIMD VLIW datapath which provides
increased execution flexibility to the compiler. 81

53 A n example configuration of Subword SIMD datapath which presents
limited execution flexibility to the compiler. 82

54 Comparing the maximum throughput and instruction mix in three 128-bit datapaths. . 83

55 Scheduling a code segment on three datapaths, a fixed-width MIMD
VLIW, a subword SIMD and subword MIMD VLIW. 84

56 A fixed-width VLIW datapath. . 86

57 A fixed-width VLIW datapath. . 87

58 Machine independent code transformations in Trimaran. 89

59 The performance comparison of fixed-width VLIW vs. subword VLIW
for the GSM Encoder kernel. 96

xiii

60 The performance impact on the GSM Encoder after enabling aggressive compiler
techniques. . 97

61 The performance comparison of using a fixed-width datapath to a subword datapath. 99

62 The performance impact on enabling aggressive compiler techniques. 100

63 The body of the loop after performing a simple unroll of the inner loop. 101

64 The performance impact on performing loop unrolling on the inner loop. 102

65 The body of the loop, after unrolling, moving loop invariant code and pipelining the
unrolled loop. 103

66 The performance impact of pipelining on the inner loop. 104

67 The performance comparison of fixed-width datapath to subword datapath. 105

68 The performance impact on enabling aggressive compiler techniques. 106

69 The performance comparison of executing the decryption algorithm on a fixed-width
datapath and a subword datapath.. 107

70 Performance due to employing hyperblock formation in the compiler. 108

71 The performance impact of executing the adpcm application on both the
fixed-width and subword datapaths.. 109

72 The performance impact of performing hyperblock formation on the kernel. 110

73 The performance impact of unrolling the inner loop and performing hyperblock formation
on the kernels.. 111

74 The performance comparison of targeting a fixed-width datapath and
a subword datapath. . 112

75 The performance comparison of targeting a fixed-width datapath and
a subword datapath. . 113

76 The performance impact of unrolling the inner loop four times and
performing hyperblock formation on the kernels. . 114

77 The performance comparison of executing the mpeg2 kernel on the
fixed-width datapath and subword datapath. 115

xiv

78 The performance impact due to enabling hyperblock formation when targeting
the subword datapath. 116

79 The performance benefit due to loop unrolling. . 117

80 The performance impact on compiling and executing the application on the
fixed-width datapath and the subword datapath. . 118

81 The performance impact on performing hyperblock formation on the kernels. 119

82 The performance impact due to compiling and executing the motion estimation
kernels on the fixed-width datapath and the subword datapath. 120

83 The performance impact due to compiling and executing the motion estimation
kernels using hyperblock formation on the subword datapath. 121

84 The performance after simple code transformations and after using hyperblock
formation when targeting the subword datapath. 122

85 The relative execution times for the GSM Encoder application.. 123

86 The overall performance speedups for the GSM Decoder application.. 124

87 The performance impact of employing aggressive compiler transformations when
targeting the fixed-width VLIW datapath for the GSM Decoder application.. 125

88 The relative performance speedups for the PEGWIT Encryption application. 126

89 The relative performance speedups for the PEGWIT Decryption application. 127

90 The relative performance speedups for the ADPCM Encoder application.. 128

91 The performance speedups for the ADPCM Decoder application. 129

92 The performance speedups for the MPEG2 Encoder application.. 130

93 The performance speedups for the MPEG2 Decoder application. 131

94 The performance speedups for the MPEG4 Decoder application. 132

95 The performance speedups for all the applications examined. 135

xv

FOREWORD

Needless to say, without the guidance, help and support of many kind hearts and bright minds,

this work would not have been possible. I have been very fortunate to have met some special peo-

ple who have had a significant effect on me, professionally and otherwise, while pursuing this

work. It is an impossible task to list everyone and I thank you all.

A special thanks to my advisors, Prof. Steven Levitan and Prof. Donald Chiarulli for their

continued guidance, motivation and support over the years. Steve Levitan is surely a special men-

tor, his high standards, commitment to science, limitless patience and caring create an infectious

environment where learning and improvement are primary. I learned a lot from Don Chiarulli,

especially from his creativity in finding solutions and enjoyment in performing the work.

I am thankful to my committee members, Professors James T. Cain, Ronald Hoelzeman and

Ivan Kourtev. Their feedback and suggestions have significantly improved the dissertation.

I am especially grateful to Prof. Rastislav Bodik for his contributions to the work and, more

importantly, his unwavering support without which this dissertation would not have been com-

pleted. Ras’ clear vision, hard questions and zealous approach shaped my understanding of com-

puter architecture in a fundamental way. Ras always managed to find the time to discuss this work

and provided encouragement no matter how far or how busy he was.

I have had the pleasant opportunity to have met some exceptional people, my current col-

leagues, Jose Martinez, Leo Selavo, Jason Boles, David Reed, Amit Gupta, Craig Windish and

Michael Bails, past colleagues, Joumana Ghosn, Peter Tino, Atif Memon and Jim Plusquellic and

old friends, Mounzer Fatfat, Marj Henningson, Marwan Azzam, and Caesar Azzam. Thanks for

all the wonderful discussions and great times. A big thanks to Sandy Weisberg for all her caring

and support and for making sure that I do graduate.

xvi

Some very special friends and colleagues have had a tremendous impact on many aspects of

my life during this time, Samer Saab, Chakra Chennubhotla, and Lisa Minetti, there are no words

to express my gratitude.

A very special thanks to the woman in my life, Lisa Graff, whose love and support always

injected happiness during the good times and the tough times. Her enthusiasm, commitment and

appreciation for art have inspired me in more ways than she knows.

I am deeply indebted to my family. Thanks to my brothers and sisters, Amer, Ghada, Riad,

Najwa, and their families for their unquestioned love, continued encouragement and support.

Finally, and most importantly, I would like to thank my father and mother, Fouad and Hiam Sakr,

the examples they have set and their commitment to education have instilled in me important val-

ues, the love for life and the pursuit of knowledge. Nothing would have been possible without

their love, guidance and infinite support.

1

1.0 INTRODUCTION

In this dissertation, we propose a solution to effective execution of multimedia based applications

in a general purpose processor environment by employing a subword Multiple Instruction Stream

Multiple Data Stream (MIMD) Very Long Word Instruction (VLIW) datapath. Current general

purpose workloads have shifted towards multimedia applications, therefore, general purpose pro-

cessor architectures must adapt to satisfy the computational requirements of this new workload.

Enabled by technological advancements as well as high network bandwidths, the type of com-

putation we perform using general purpose microprocessors is changing. Consistently, more and

more of the dynamic compute cycles are spent on executing multimedia based applications(1,2)*.

The characteristics of these applications differ from conventional technical applications in that

they are highly parallel, computationally intensive, and use variable precision (subword) data that

is streaming in nature.

Ideally, an effective processing solution that targets these applications has several key compo-

nents. First, a compiler that can extract the parallelism within the media applications and schedule

the required execution in a manner that fully utilizes the hardware available by the processor. Sec-

ond, a memory system that can effectively fetch and store streaming data with minimum address

calculation and memory alignment overhead, since a stream needs to be identified by the address

of its location in memory and its size. Finally, a flexible datapath that aids the compiler in the

scheduling task and then efficiently executes the sequence of operations to satisfy the required

computation.

*Parenthetical references placed superior to the line of text refer to the bibliography.

2

However, the design of a general purpose processor is a careful trade-off between cost, flexi-

bility and performance. The processor must be capable of executing a wide range of general pur-

pose applications in an effective manner while maintaining a reasonable cost. Furthermore,

implementations of general purpose applications are not typically tuned or optimized to target a

specific processor. Functionality, inter-operability and stability are usually a higher priority for

developers of general purpose applications than optimizations to target a specific hardware plat-

form. Hence, the compiler is burdened with the challenge to extract and exploit any parallelism

within these applications.

Conventional architectures are not capable of satisfying the required computation of multime-

dia applications since they were designed to target applications with fixed-precision or fixed data

width operations, highly irregular code on data that exhibits high degrees of locality. In anticipa-

tion of this shift in the workload to multimedia applications, microprocessor designers, motivated

by the need for enhanced performance at a minimal cost, introduced media-centric Single Instruc-

tion Multiple Data (SIMD) based instruction set extensions(3). These instructions execute the

same operation on multiple subword data elements requiring little control overhead and hence

reduced die area cost. However, this solution is incremental due to the fact that current compilers

cannot automatically target these SIMD instructions(4). SIMD execution is restrictive in that it

requires that all parallelism in multimedia applications match the SIMD execution model. This

requirement limits the full exploitation of available parallelism and further performance gains.

Also, since the compiler cannot effectively solve the difficult problem of transforming non-SIMD

code to target a SIMD architecture, the developer is burdened with this task. This architectural

solution enables parallel subword execution in general purpose processors, however, the above

problems have resulted in the limited use of multimedia instruction set extensions in general pur-

pose applications.

3

An effective solution to this problem is one that takes into account the characteristics of multi-

media applications and considers the processor design as well as compiler optimizations required

to produce better performance.

Therefore, in this thesis we evaluate the characteristics of multimedia applications and pro-

pose a variable width augmented VLIW MIMD datapath that overcomes the limitations of current

solutions and satisfies the requirements of general purpose multimedia applications. We evaluate

our solution by simulating the execution of a set of multimedia benchmark kernels on the sug-

gested subword datapath. We analyze the capabilities of available compiler optimizations in

exploiting the available parallelism from the multimedia kernels. Finally, we introduce simple

code transformations that allow the compiler to extract more parallelism from media applications

resulting in enhanced performance.

The results are an architecture and an analysis methodology that exploit parallelism across a

wide range of multimedia applications thus providing better performance.

1.1 PROBLEM STATEMENT

The questions that we address in this dissertation are, can a subword MIMD VLIW datapath cou-

pled with a standard VLIW compiler yield high performance gains given the nature of parallelism

exhibited in multimedia based workloads and what code transformations and compiler techniques

are required in order to achieve better performance?

The goal of this thesis is to develop an architecture and compiler techniques that can exploit

the parallelism in multimedia applications and achieve high performance.

4

1.2 STATEMENT OF WORK

In order to achieve the goals discussed above, we perform the following tasks:

• Multimedia application analysis: Given a set of multimedia applications, identify the
kernels of these applications, analyze the code structure of the kernels through control-
flow and data-flow analyses. Identify the breakdown of the operation types as well as
the data-types of the operands. Perform an overall characterization of the multimedia
applications studied.

• Architectural decisions: Evaluate the architectural benefits and drawbacks of VLIW
processors. Suggest a classical VLIW datapath design and the architectural extensions
required in order to achieve a subword MIMD VLIW datapath. Discuss the overhead of
implementing the suggested datapath.

• Compiler/Simulator infrastructure: Identify a compiler infrastructure that can per-
form analysis of these applications, has the capability of extracting parallelism and per-
forming optimizations on code segments. Further, the compiler must target the subword
VLIW datapath. Finally, employ a simulator to allow the evaluation of the proposed
architecture and code transformations on overall performance.

• Performance evaluation (architecture): Study the effects on performance caused by
changing the architecture of the datapath from a fixed-width to a variable-width datap-
ath which is capable of performing MIMD subword operations on subword operands.

• Performance evaluation, (compiler, code transformations): Study the efficacy of
predicated execution in VLIW processors as well as hyperblock formation and other
code manipulation techniques at exploiting the available subword parallelism in the
multimedia kernels.

The results of this thesis is a novel subword datapath that enables the compiler to achieve bet-

ter scheduling of multimedia applications as well as better exploitation of the available parallel-

ism within the applications by employing compilation techniques and performing code

transformations to achieve significant speedups across a set of multimedia applications.

5

1.3 DISSERTATION ROAD MAP

The dissertation is organized as follows: In Chapter 2.0, we discuss the background and motiva-

tion of this research. We start by presenting the characteristics of multimedia applications in sec-

tion 2.1 and discuss why conventional processors need significant changes in order to match the

media specific computation. In section 2.2 we discuss how SIMD instructions are being employed

in general purpose processors. We then take a detailed look at the specific example of how the

Intel MMX, SSE and SSE2 instruction set extensions are utilized and their limitations in achiev-

ing the desired performance across a wide range of multimedia applications, in section 2.3. In sec-

tion 2.4, we list recent embedded processor architectures and discuss the difference between the

embedded and general purpose domains. We summarize the current solutions and their limitations

in section 2.5. In Chapter 3.0, we perform an extensive analysis on several implementations of

multimedia applications and discuss their characteristics. Then in Chapter 4.0, we present a sub-

word VLIW architecture and how it overcomes the limitations discussed in section 2.3 and pro-

pose our target architecture for this work, a subword VLIW datapath. We present our

methodology and framework for our analysis in Chapter 5.0. We discuss our experimental analy-

sis, results and present code transformation analysis in Chapter 6.0. Finally we present our con-

clusions in Chapter 7.0 and discuss possible future direction in Chapter 8.0.

6

2.0 BACKGROUND AND MOTIVATION

In the past decade, microprocessor designs have targeted two application domains, technical and

scientific applications for desktop computer systems and transaction processing as well as file

serving for server computer systems(1). There is a growing consensus that the target domain is

shifting to multimedia applications which will become the prevalent domain for future computer

systems(2). These changes are primarily in the workload as well as the increase in global network

bandwidth and capabilities. The workload changes are due to the fact that audio/visual realism

found in general purpose multimedia applications such as video conferencing, video authoring,

visualization, virtual reality modeling, 3D graphics, animation, realistic simulation, speech recog-

nition, and broadband communication promise to deliver better efficiency and effectiveness to a

broad range of computer users. The processing is performed on visual and auditory data, such as,

images, frames of video, 3-D objects, animated graphics, and audio. Multimedia applications may

also have to satisfy a real-time constraint, such as quality of service. Furthermore, computer net-

works are now capable of delivering this visual and auditory data in real time.

This trend will continue due to the use of intelligent network processors as well as increases in

network bandwidth. The rate of increase in network bandwidth is one order of magnitude per new

network generation. Currently, a Giga Bit (100MB/sec) optical or copper network can deliver data

at rates equivalent to that of an ATA-100 IDE hard drive. The high network bandwidths extend the

reach of multimedia applications for streaming data beyond the local hard drive and thus increase

the popularity and usefulness of these applications. Hence, with the changes in workload and net-

work capabilities, the challenge posed to computer systems is to perform multimedia processing

in an effective manner in order to enable the new level of realism required from current and

emerging multimedia applications(5,6).

7

Enabling this new level of audio/visual realism requires fast execution of algorithms such as

encoding and decoding functions in compression algorithms for visualization and for lowering

communication bandwidth requirements, data encryption and decryption algorithms to ensure

security, translation of geometric models to realistic graphics, as well as analysis algorithms, such

as detection and matching. These algorithms in multimedia applications are inherently parallel,

computationally intensive, and perform a regular set of operations on large data sets. These char-

acteristics are very similar to those of floating point scientific applications. However, the differ-

ence in multimedia computation is the real-time component as well as the characteristics of the

data being processed. The data has two distinct features, varying precision requirements as well as

being streaming in nature. In the next subsection, we illustrate the general characteristics of media

applications in order to understand the challenges(2,5) they pose and to evaluate current micropro-

cessor and compiler designs(6) solutions at addressing these challenges. We dedicate Chapter 3.0

to the detailed analysis of the characteristics of a specific set of multimedia applications.

2.1 CURRENT SOLUTIONS TARGETING MULTIMEDIA APPLICATIONS

Multimedia applications usually contain one or more code kernels which account for the majority

of all dynamic instructions executed(2). The processing performed by these kernels can be charac-

terized as inherently parallel, computationally intensive, where the code has regular control struc-

tures, consisting of operations performed on large sets of contiguous, streaming, low precision

(sub-word) data(5,6).

First, the parallelism stems from the fact that these applications perform the same set of oper-

ations on large independent data sets. Therefore, these operations can be performed in parallel.

Second, a large set of compute intensive operations are typically performed on the data while the

control structure of the code is not complex. The control structure is usually regular with little

branching as compared to typical integer applications. Third, the input and output data is charac-

terized as streaming, for example streaming video frames or audio samples, which exhibit

8

reduced temporal locality compared to technical computation. Streaming data is operated on and

then discarded, or the result is stored straight back to memory or sent onto the network as an out-

put data stream. Fourth, the precision requirements of the data elements vary for different types of

data, such as 8-bits for image pixels and 16-bits for audio samples. In general, the data sizes vary

from 8, 16, 32, and 64-bit integer elements to single (32-bit) and double precision (64-bit) floating

point elements. In summary, these are highly parallel, compute intensive, bandwidth hungry ker-

nels.

The conventional architectures of general purpose processors are not equipped to process

multimedia applications effectively because of fixed-width datapaths and the architecture of

memory hierarchy. The datapaths are usually fixed to operations performed on 32-bit word or 64-

bit double word operands depending on the processor implementation. These datapaths are ineffi-

cient at performing computation on subword operands, for example using a 64-bit wide datapath

to perform an 8-bit addition. Besides limited performance, given the parallel nature of multimedia

applications, using these datapaths for multimedia processing is an inefficient use of the proces-

sor’s die area especially if the subword application exhibits high degrees of parallelism. Further,

the memory interface of general purpose processors does not match the data requirements of mul-

timedia applications due to two factors. First, similar to the datapath inefficiency, data is accessed

as a single 32-bit or 64-bit value which is a significant waste of the valuable memory bandwidth

when accessing subword data. Second, the effectiveness of a memory hierarchy relies on high

data locality, however, given the streaming nature of multimedia data, caches tend to be continu-

ously polluted by streaming data.(7)

The shift in the workload to multimedia applications has forced microprocessor manufactur-

ers to address some of the above limitations of general purpose processors at effectively executing

such application types. As a solution, general purpose microprocessor manufacturers have aug-

mented their conventional microprocessor designs with multimedia enhancements. The enhance-

ments are in the form of a new set of instructions and functional units that better target media

9

processing. We discuss these solutions and their limitations in detail in Section 2.2 and expand on

a specific solution, the Intel media instruction set extensions in Section 2.3.

In another approach, there has been a surge in building multimedia specific processors such as

Sony’s EmotionEngine(15,16), MicroUnity’s MediaProcessor(17), NVIDIA’s Vertex Engine(18) and

Transmeta’s recent TM6000 SOC(19). These processors target primarily the home entertainment

and video game market by achieving higher performance for a specific set of multimedia algo-

rithms such as the MPEG-2 decoding accelerator found in the EmotionEngine. Furthermore, the

application-specific media processors’ priority on offering very high performance for general pur-

pose multimedia applications is not high since they target the embedded system market. In our

analysis, we focus on solutions targeting general purpose multimedia applications. We illustrate

several emerging embedded processors in Section 2.4 and discuss the differences between these

solutions and general purpose processors.

Beyond the solutions that target the processor architecture, there are many new cache memory

designs intended to resolve the pollution of conventional caches by media stream memory

accesses. Streaming media applications exhibit reduced temporal locality when accessing mem-

ory as well as reduced spatial locality when accessing 2D data such as images. The most popular

solution splits the cache into two, a spatial locality and a temporal locality cache(20,21,22). These

approaches statically partition the available die area into the two caches. Other designs propose

dynamically reconfigurable cache partitioning in order to better target the specific cache require-

ments of the processor and software applications(23,24). Another solution allows cache bypass-

ing(25) or provide instructions that can specify the cache level when performing loads and

stores(26). Finally, several software solutions attempt to increase the efficiency of conventional

caches, one approach exploits hardware prefetching for allocating cache blocks of data that exhib-

its 2D spatial locality(27). In our work, we do not attempt to solve the memory access issues when

executing streaming media application. We focus on the design of the datapath design and its

effect on compiler optimizations.

10

In order to gain a better understanding of the above mentioned processor architectures, in the

next three sections, we evaluate the media centric instruction set architecture (ISA) extensions

introduced by mainstream microprocessor manufacturers and discuss their limitations. We also

list the emerging VLIW and other embedded processors and discuss the implications of the differ-

ences between the embedded and general purpose processor domains.

2.2 MULTIMEDIA APPLICATIONS AND SIMD ISA EXTENSIONS

With the current growth of interest in multimedia applications, general purpose microprocessor

manufacturers offered multimedia enhanced versions of their processors. The instruction set

architecture (ISA) was augmented by adding a set of multimedia instruction set extensions. The

multimedia instructions perform a single operation on several subword data elements concur-

rently using the Single Instruction Multiple Data (SIMD) compute model. This decision was

made since the multimedia kernels perform the same set of operations on large data sets and,

hence, exhibit a large amount of parallelism.

Examples of these instruction set extensions include the AMD's 3DNow!(8), Motorola's AltiVec

for the PowerPC(9), Intel's MMX(10) and SSE(11) extensions for its IA-32 processors and IA-64

extensions(11), Compaq's MVI(13) extensions for the Alpha processors and SUN's VIS(14) exten-

sions for the SPARC processors. A more complete list of multimedia ISA extensions is shown in

Table 1.

These instructions include: subword parallel arithmetic instructions, such as addition, subtrac-

tion, multiplication; data manipulation, rearrangement and precision conversion instructions such

as packing and unpacking operations, interleaving operations, shuffle and rotate operations; com-

parison instructions; logic instructions; and complex instructions such as multiply and accumulate

and pixel distance computation instructions. Further, some instructions are needed to convert data

11

between fixed width registers and subword registers. Finally, there are special memory access

operations such as cache-bypassing stores and cache-level specific prefetch instructions.

Table 1 Instruction Set Extensions by major microprocessor manufacturers

Processor ISA Extension Capability

AMD 3DNow! Floating point operations on
4x16, 2x32 and 1x64-bit operands
using a 64-bit datapath.

Hewlett-Packard PA-RISC MAX-1, MAX-2 Integer operations on 4x16-bit
operations using a 64-bit datapath.

Silicon Graphics, MIPS-64 MIPS-3D Floating point operations on
2x32-bit single precision operands
using a 64-bit datapath.

Motorola, PowerPC AltiVec Integer operations on 16x8,
8x16, 4x32-bit operations using a
128-bit datapath.
Floating point operations on
4x32-bit single precision operands
using a 128-bit datapath.

Intel IA-32 MMX, SSE, SSE-2 Integer operations on 8x8, 4x16,
2x32, 1x64-bit operations using a
64-bit datapath.
Integer operations on 16x8,
8x16, 4x32, 2x64-bit operations
using a 128-bit datapath.
Floating point operations on
4x32-bit single precision, 2x64-bit
double precision operands using a
128-bit datapath.

Intel IA-64 A combination of
MAX-1, MAX-2,
MMX, SSE, SSE-2

Integer operations on 8x8, 4x16,
2x32, 1x64-bit operations using a
64-bit datapath.
Floating point operations on
2x32-bit single precision operands
using a 64-bit datapath.

Sun UltraSPARC VIS Integer operations on 8x8, 4x16,
2x32-bit operands using a 64-bit
operand.

12

These instructions execute using a SIMD execution model, however, they differ from the exe-

cution performed in conventional vector architectures. There are two main types of vector archi-

tectures(28,29), the vector-register machine and the memory-memory vector machine. In the

vector-register machine(31), all vector operations are between vector registers except for load/

store operations. In the memory-memory vector machine, all vector operations are from memory

to memory. The first vector machines introduced were of this type. All current mainstream vector

machines, however, use the vector-register architecture. In a vector-register machine, the running

time of a vector operation has two components, the start-up time and the initiation rate. Since the

vector functional units are usually pipelined, the start-up time is the time required (that is, the

number of clock cycles) to fill the pipeline of the functional unit. The initiation rate is the number

of clock cycles required to produce a result. Hence the execution time for a vector instruction is

the startup time added to the multiplication of the initiation time by the length of the vector.

The media centric ISA extensions listed above execute in a pure SIMD fashion. The opera-

tions are performed at once on all data elements that constitute a vector operand. For example, a

SIMD addition operation on an eight element 8-bit vector operand is achieved using a typical 64-

bit add while ignoring the carry bit at the variable width, 8-bit, boundary. It should be noted that

some of the implementations of functional units are pipelined but not all.

Although processors with multimedia ISA extensions have been on the market for several

years, the extensions are not widely used because there are no commercial compilers or even

mature research compilers with optimizations that can effectively target the new hardware(33,34).

This is due to several reasons, the high level languages used to implement most applications do

not support vector types, subword types, or vector operations. The SIMD instructions are custom-

ized with specific applications in mind, in other words, they lack variable precision (subword)

operation generality. The instructions introduced are very specific to what the independent soft-

ware vendors (ISV) asked the processor designers to make available to them. Hence, the compiler

has to transform non-SIMD code to SIMD instructions, which is a challenging task. The quick

13

solution was to develop assembly libraries of popular functions and make them available to code

developers. The libraries enhanced the use of the new SIMD instructions however in a very lim-

ited fashion because of the limited functionality available in the libraries as well as problems with

the interface to these functions. Therefore, the use of SIMD ISA extensions was limited to devel-

opers performing assembly language implementations which required very detailed understand-

ing of the algorithm being implemented as well as the SIMD instruction set and the underlying

hardware. Hand optimizations using assembly code need to be updated manually in order to take

advantage of new capabilities introduced with new processors. Hence, the limited use of these

SIMD ISA extensions implies limited exploitation of available parallelism in multimedia applica-

tions.

The limited targetability of this hardware is not due to a lack of interest or effort, it is due to

the fact that identifying and transforming a code segment to target the SIMD execution units is a

challenging task. The limitation is due to the restrictions applied on executing instructions in the

SIMD unit. The restrictions are due to operand-size specific operations, restrictions on data con-

figuration and layout in memory that must be met in order to enable the use of SIMD operations.

Hence, augmenting the processor by allowing very specific concurrent execution without devel-

oping the capability of the compiler in order to achieve real speedups across applications of inter-

est is not an effective solution.

In summary, one of the limitations in utilizing SIMD ISA extensions is the basic assumption

that all subword parallelism found in multimedia applications can be characterized to match the

SIMD execution model only. This assumption restricts the programmer and the compiler by hav-

ing to exploit the parallelism in multimedia applications specifically using SIMD instructions. In

addition, there are other architectural based limitations to current processors. In order to discuss

these architectural limitations, we need to evaluate a specific architecture and how the SIMD

based functional units are embedded within it. Therefore, in order to understand these restrictions

and limitations of extending the ISA to gain significant speedups, we take a detailed look at the

14

Intel MMX, SSE and SSE2 ISA extensions and their hardware implementation, since they offer a

super set of all available SIMD operations available in general purpose processors as shown in

table 1.

2.3 INTEL’S MMX, SSE AND SSE2 ISA EXTENSIONS

The designers of the Intel microprocessors incrementally added the SIMD functionality to their

IA-32 bit general purpose processors (Table 2). They started by adding the MMX exten-

sions(35,36,37) which are 64-bit integer instructions on packed operands. The MMX unit does not

alter the state of the processor and, hence, requires no operating system (OS) support. Further,

none of the operations raise any exceptions.

The Pentium is an in-order superscalar machine, the next generation processor introduced, the

Pentium Pro, was more revolutionary by implementing a dynamic out of order (OOO) execution

pipeline. The PII combined the out of order execution in the Pentium Pro with the MMX unit. The

PIII offered the SSE extensions(38,40,41), which are packed floating point instructions for 32-bit

single precision operands. The SSE unit is 128-bits wide, has a control and state register and the

floating point operations could raise arithmetic exceptions. Hence, the PIII required some OS

modifications and support. The NetBurst architecture(42,43) was introduced in the P4 processor, it

is a 20 stage hyper pipeline with a trace cache and double clocked integer ALUs, along with the

SSE2 extensions. The 128-bit SSE2 extensions perform packed 128-bit integer operations as well

as packed double precision floating point operations. In the next subsection we take a close look

15

at each of the SIMD extensions and then end this section by discussing the advantages and limita-

tions of these processor enhancements.

2.3.1 The MMX instruction extensions

To enhance the performance of the Pentium processor, Intel introduced 47 new MMX instruc-

tions(44,45) which are parallel operations on packed eight 8-bit, four 16-bit, two 32-bit integer

operands as well as operations on a 64-bit integer operand. The cost of adding the MMX instruc-

tions was approximately 10% of the die area. Eight 64-bit MMX registers are aliased to the eight

x87 floating point (80-bit) registers, hence, no new hardware is required for the MMX register

file. The EMMS (Empty MMX state) instruction is used to switch from MMX mode to x87 mode.

The EMMS instruction can require up to 50 clock cycles to complete. The requirements of adding

the MMX unit were that it maintains full software compatibility and does not require any OS sup-

port. Therefore, the MMX unit does not have a state, there are no control registers or any condi-

tion codes. Also the instructions could not raise any arithmetic exceptions. We discuss how

overflow and underflow conditions are dealt with later in this section. For context switching sup-

Table 2 The incremental introduction of SIMD instructions into the Intel Processors

Intel IA-32
Processor ISA Extension Capability

Pentium MMX 47 integer instructions on packed 8, 16, 32
& 64-bit operands using a 64-bit datapath.

PII Pentium Pro + MMX Out of order (OOO) execution, supersca-
lar processor with MMX instructions.

PIII PII + SSE 70 floating point instructions on packed
32-bit single precision floating point oper-
ands using a 128-bit datapath.

P4 PIII + NetBurst + SSE2 144 integer and floating point instructions
on packed 8, 16, 32 & 64-bit integer oper-
ands and packed 32 & 64-bit floating point
operands.

16

port, the x87 FSAVE and FRSTOR instructions can be used to save and restore values in the

MMX registers.

The SIMD operations can be performed on operands with varying precision. The four differ-

ent data types introduced are shown in Figure 1.

Since the MMX unit cannot raise any numeric exceptions, three new types of arithmetic oper-

ations are introduced in the instruction set in order to eliminate the overflow and underflow condi-

tions:

• Wraparound (W), truncate the result to the available bits in the result register, ignore
the most significant bits that are out of range.

• Signed Saturation (S), saturate the result to either highest positive integer or smallest
negative integer using the available bits in the result register.

• Unsigned Saturation (US), saturate the result to either the highest integer or zero.

This solution is sufficient because saturation arithmetic satisfies the majority of computation

found in multimedia applications.

Packed Byte Integers

Packed Word Integers

Packed Double Word Integers

Quad Word Integers

063

063

063

063

Figure 1 New data types introduced with the MMX instruction extensions.

17

The types of operations available within the MMX instruction set can be categorized as fol-

lows: Data Transfer; Arithmetic; Comparison; Conversion; Unpacking; Logical; Shift; and the

Empty MMX state instruction (EMMS)

The instruction set is mixed and not all types of operations are available for all operand

widths. Instruction types are operand size specific as shown in Table 3 below:

Table 3 MMX Instruction Set Summary

Wraparound Signed
Saturation

Unsigned
Saturation

8bit 16bit 32bit 8bit 16bit 32bit 8bit 16bit 32bit

Arithmetic Addition
Subtraction
Mult save low
Mult save high
Mult and Add

Comparison Compare Eq
Compare GT

Conversion Pack

Unpack Unpack High
Unpack Low

Logical, Shift and Data Transfer Instructions

8 bit 16 bit 32 bit 64 bit

Logical AND
AND NOT
OR
XOR

Shift Shift Left Logical
Shift Right Logical
Shift Right Arithmetic

Data
Transfer

Register to Register
Load from Memory
Store to Memory

Empty MMX

18

The data transfer operations can transfer 32-bit data from memory or general purpose regis-

ters. Furthermore, other operations perform 64-bit data transfers of packed data from memory or

between the MMX registers. Arithmetic operations consist of addition and subtraction. Multipli-

cation is only available for word operands with the ability to store either the high-order or low-

order 16 bits into the destination operand. Multiply instructions require 3 cycle latency, however

the unit is fully pipelined and a multiply instruction can start every cycle. The multiply and add

instruction multiplies four 16-bit operands summing the four intermediate 32-bit values in pairs to

produce two 32-bit results. The comparison operations generate a mask of ones or zeros which are

written to the destination operand. Conversion instructions convert words into bytes and double-

words into words. Unpack instructions unpack bytes, words, doublewords from high or low order

elements from the source operands and interleave them in the destination operand. Logical

instructions perform a bitwise logical operation on quadword operands. Shift instructions shift

each element by a specified number of bit positions. Finally, the EMMS instructions empties the

MMX registers to prepare for x87 FPU instructions.

2.3.2 Streaming SIMD (SSE) Extensions

The new architectural enhancement of the PIII processor was to introduce single-precision float-

ing point SIMD instructions(44,45) on packed 32-bit operands. The implementation of the Stream-

ing SIMD extension unit consumed about 10% of the die area.

SSE instructions are for packed (32-bit) single precision floating point values. The eight

XMM registers are 128 bits wide and the purpose of the SSE functional unit is to execute four 32-

bit microoperations in a single clock cycle. However, Intel’s microprocessor designers achieve

this not by implementing a 128 bit functional unit but by double-clocking a 64-bit execution unit

and performing two microoperations per the shorter clock cycle to produce 4 microoperations in a

single clock cycle of the processor.

19

The SSE adds a new state to the processor and has a control/state MXSCR register.

The XMM register file is flat as opposed to the stacked x87 register file. The SSE unit is

depipelined, has one multiplier and one adder, so it can only run an add and mult operation

back to back.

The new data types are either packed four 32-bit single precision floating point oper-

ands or a scalar single 32-bit floating point operand. The new data types are shown in Fig-

ure 2.

The SSE instructions provide the ability to perform SIMD operations on packed single

precision floating point values as well as scalar instructions. These instructions include,

arithmetic instructions such as addition, multiplication, division, reciprocal, square root,

reciprocal of square roots, max, and min operations. The logical instructions include

AND, AND NOT, OR, XOR. The comparison instructions can compare operands using 12

comparison conditions. The shuffle and unpack operations shuffle or interleave the low or

high pair elements from two source packed operands into one destination operand. The

conversion operations support packed and scalar conversions from single precision float-

ing point to doubleword integer formats. The data transfer instructions move single preci-

sion floating point data between the XMM registers and between an XMM register and

memory. The memory address must be aligned to a 16-byte boundary, otherwise an excep-

tion is generated. To balance the memory bandwidth requirements and execution, new

Contains either a:

0127

Figure 2 New data types introduced with the SSE instruction extensions.

floating point values
- packed 4 single precision

- or a single 32-bit floating
point value in the lower
order bits.

313263649596

20

instructions are provided to allow the programmer to enhance concurrent execution by caching

soon to be used data. Also, non-allocating (streaming) store instructions are available to limit

cache pollution.

Furthermore, some new MMX instructions are also introduced with SSE extensions. They

include computing the average of unsigned packed byte (8-bit) or packed word (16-bit) operands,

return the min or max of unsigned packed byte operands, return min or max of signed packed

word operands, multiply unsigned word operands and return high result, as well as other move,

mask and shuffle instructions.

2.3.3 SSE2 Extensions

The P4(43) introduced 144 new instructions which include support for 128-bit integer arithmetic

operations as well as 128-bit double-precision floating point operations and cache/memory man-

agement operations.

The SSE2 instructions(44,45) introduce six new data types. The include a 128-bit packed dou-

ble-precision (64-bit) floating point values packed into a quad doubleword, 128-bit packed byte

(8-bit) integers, 128-bit packed word (16-bit) integers, 128-bit packed doubleword (32-bit) inte-

gers, 128-bit packed quadword (64-bit) integers. These new types are shown in Figure 3.

The SSE2 extensions maintain the same state as the SSE extensions. The main additions are

the packed double precision floating point operations and the 64-bit as well as 128-bit packed

integer operations. The instruction categories closely match what is available in the MMX and

SSE extensions. Many new conversion instructions are introduced to convert values between sin-

gle, double precision floating point values in the XMM registers and quad double word, quad-

word integer values in the XMM registers as well as quadword values in the MMX registers and

doubleword values in the general purpose integer registers.

21

The only arithmetic exceptions raised in the SSE and SSE2 unit are from the floating point

operations. The SSE2 extensions maintain the capability of storing non-temporal (streaming) data

by bypassing cache.

The SIMD execution units are employed within the Intel netburst architecture. The netburst

architecture is a hyper pipelined architecture with sophisticated hardware based control to

enhance the extraction of Instruction Level Parallelism (ILP) from the executing instruction

stream. The 20 stage hyper pipeline and sophisticated control around the datapath are shown in

Figure 4(43).

The hyper pipelined netburst architecture enables very high clock rate execution by reducing

the amount of logic between pipeline stages. Instructions and data are read from main memory to

L2 cache at a bandwidth of 3.2 GB/s. The trace cache is one of the novel features in the netburst

architecture. Instructions are fetched decoded and stored in the trace cache in a manner that

matches their execution sequence. Further, the trace cache eliminates the overhead of having to

re-decode instructions accessed from the I-Cache as in previous designs. The pipelined execution

shown in Figure 4 performs as follows: Fetch the pointer from the Branch Target Buffer (BTB)

0127
Packed Byte Integers

Packed Word Integers

Packed Double Word Integers

Packed Quad Word Integers

0127

0127

0127

Figure 3 New data types introduced with the SSE2 instruction extensions.

0127

128-bit Packed Double
Precision Floating Point

22

indicating the location of the next instruction in the trace cache; Read the decoded instruction

from the trace cache; Wire delay; Allocate resources; Register renaming (from 8 logical registers

to 128 physical registers); Place microoperation into the queue; Schedule by computing depen-

dencies; Dispatch microoperation to appropriate execution unit; Read the register file; Execute;

Compute flags; Branch check; and drive the result to the front end of the machine.

L2 Cache

Store

Load

ALU

ALU

ALU

ALU

FP MOVE
FP STORE

FMul
FAdd
MMX
SSE
SSE2

L1
 D

at
a C

ac
he

 &
 D

-T
LB

In
te

ge
r R

eg
ist

er
 F

ile

Sc
he

du
le

rs

FP
 R

eg
ist

er
 F

ile

uo
p

Q
ue

ue
s

Re
na

m
e /

 A
llo

ca
te

Tr
ac

e C
ac

he

D
ec

od
er

BT
B

&
 I-

TL
B

BTB

uCode

Figure 4 The Intel NetBurst microarchitecture 20 stage execution hyper pipeline.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

TC nxt IP Drive Alloc Rename QueTC Fetch Sch Sch Sch Disp Disp RF RF Ex Br

20

Flg Drive

23

2.3.4 Limitations of Intel’s Subword SIMD Instruction Extensions

There are several limitations to using subword SIMD instructions to achieve a significant

speedup on multimedia applications. In this thesis we limit our comments to the MMX,

SSE and SSE2 SIMD extensions employed within the P4 execution datapath.

The first limitation is due to the overhead paid in trying to extract instruction level par-

allelism (ILP) from the dynamic instruction stream. The SIMD instructions execute as part

of the hyper pipelined P4 microprocessor. As illustrated in Figure 4 in the previous sub-

section, a large segment of the 20 stage pipeline is spent on dynamic techniques to extract

higher ILP from the instruction streams. Since multimedia applications exhibit regular

control structures as well as being inherently parallel, the complex dynamic ILP extraction

techniques are unnecessary because the compiler should identify and extract the available

parallelism statically. These dynamic hardware techniques offer high ILP for non-media

centric integer-based applications which exhibit complex control structures and, hence, a

lot of branching within the code. Therefore, a large overhead is paid in dynamic control

techniques since the SIMD functional unit is embedded within the hyper pipelined datap-

ath and every instruction targeting it must traverse the pipeline before executing. This con-

trol overhead is significant when executing multimedia applications since the compiler

can analyze their control structure, extract the parallelism and schedule the instructions

statically.

Second, the memory hierarchy is not the best solution for streaming data access. In the

P4 microprocessor, the data is loaded into registers only through the L1 and L2 Caches,

and the data can be stored directly to main memory by bypassing the caches. A 1.5GHz P4

24

has a 4-pumped 100MHz bus with an aggregate off-chip bandwidth of 3.2 GB/s and an on-chip

bandwidth, between L1 and L2 caches, of 48GB/s. If most of the data being processed is stream-

ing and exhibits reduced degrees of locality then the on-chip bandwidth is ineffectively utilized

and the caches only increase the overhead of delivering the data to the execution units. Further,

reading a 128-bit packed data type from L1 cache into the 128-bit register file requires a lengthy 6

clock cycles. Hence, the memory interface is designed to target applications that exhibit high

degrees of locality. This interface is less effective at accessing memory in a streaming fashion to

satisfy the data hungry multimedia applications.

Third, SIMD execution is restrictive, the parallelism is achieved only as a single operation on

packed and aligned data. These restrictions limit the effectiveness of an automatic compiler to uti-

lize these instructions. Further, to enjoy higher performance through concurrent SIMD execution,

the programmer must insure that the overhead due to library function calls, data transport and

manipulation, which is required to enable the SIMD execution, must not override the gains of the

parallel execution.

Lack of language support to enable vectorization using an automatic compiler is a problem.

Vector standards exist in a few high-level programming languages which further complicates the

problem for automatic targeting of SIMD execution units. However, there is an effort to address

this problem by introducing streaming-data based high-level representation(49).

A minor limitation of the SIMD instruction set extensions is that integer arithmetic operations

do not raise any exceptions which further complicates the compiler’s job when automatically

choosing to use a lower precision data type for a variable. Numeric exceptions allow the complier

to add cleanup code in case of an overflow or underflow condition rather than producing impre-

cise results.

The data that is operated on in the SIMD unit requires several pack and unpack operations to

get the data ready for the packed arithmetic, logical and shift operations. The instruction overhead

25

of these pack/unpack operations can be up to 20% of total dynamic instruction count which is

very significant. For example, for SIMD instructions to provide a significant speedup when per-

forming 3D vertex computations, the data must be in a structure of arrays (SOA) format(40). How-

ever, sometimes 3D data is stored in an array of structures (AOS) format and, hence, must be

transformed to SOA dynamically using data reorganization instructions which incur an instruction

overhead of 20 to 25 percent leading to a dismal 10% speedup. This significant overhead is paid

in order to match the data to SIMD execution and make use of concurrent execution using these

operations which questions the efficiency of the SIMD extensions. A recent study(39) verifies that

the efficiency of the SIMD unit in a processor is very low due to this overhead and introduces a

hardware unit to perform many of the overhead instructions.

SIMD extensions in general purpose processors are not an advantageous solution due to the

limitations listed above. Next, we illustrate the architectures of several embedded processors,

some of them employing similar SIMD extensions as the ones discussed above, and discuss the

difference in targeting multimedia applications in an embedded product versus a general purpose

processor.

2.4 EMBEDDED MULTIMEDIA PROCESSORS

An emerging trend in processor design has been the transition of embedded DSP devices to

employ VLIW processor cores such as the Philips Trimedia processors(46), Equator/Hitachi’s

MAP(47) and BSP(48) processors and Fujitsu’s FR-V family of processors(49). Other novel

approaches are streaming embedded processors such as the Stanford Imagine(50) and the Berkeley

VIRAM(52) architectures which employ streaming register files or on-chip main memory modules

to satisfy the high-bandwidth requirements of streaming media applications.

These devices target the consumer electronics, automotive and communications markets. The

primary design constraints of such devices are low-power, small die area, reduced code size, and

26

high performance for specific applications. These system-on-a-chip (SOC) devices can be used in

several products and are required to have enough flexibility to be capable to perform different

functionality depending on the product and its corresponding applications. This flexibility is

achieved by including a programmable processor within the device which also allows for late

changes in specifications or designs as well as software reusability. These SOCs include several

application-specific hardware modules, coprocessors, that are employed to satisfy the high perfor-

mance and low-power design constraints for certain applications such as video decoding, image

manipulation, FIR filtering, and encryption. The functionality included in the application specific

hardware coprocessors is based on a software/hardware codesign of the target applications. Also,

these devices usually include certain analog input and output modules as well as standard memory

and communication interfaces. We illustrate the different core processor designs within these

embedded devices.

The Philips Trimedia CPU64 architecture(46) is an embedded processor that targets digital

televisions and the set-top box market. The processor architecture is a 5-issue VLIW with a uni-

form 64-bit datapath and memory interface. The trimedia processor is capable of supporting

SIMD subword processing by treating the 64-bit word as a vector of 8, 16, or 32 bit operands. The

subword SIMD media-centric operations are similar to the ones described in the MMX/SSE

instruction sets of the Pentium processors.

Hitachi and Equator’s MAP DSP(47) and BSP processor(48) employ a 4-issue VLIW core. The

Datapath consists of two 32-bit integer functional units and two variable width integer/graphical

functional units that are capable of performing certain operations on 32-bit or 64-bit operands.

Further, the integer/graphical units can achieve subword computation using a SIMD model on a

vector of 8, 16, 32 and 64 bit operands.

Fujitsu’s latest embedded processor design(47) employs an 8-way VLIW core. Four integer

units and four floating/media units. This architecture is an extension of the FR-V embedded pro-

27

cessor family which are a 4-issue VLIW core. The four integer units are 32-bit fixed width units.

The floating/media units are also 32-bits wide, however, they can perform either four concurrent

single precision floating point operations or two SIMD operations on vectors of four 16-bit oper-

ands.

The Imagine architecture(51), uses eight VLIW arithmetic clusters in a SIMD fashion. Each

cluster consists of 8 ALUs, which can execute a sequence of VLIW instructions on 32, 16 and 8-

bit operands. A 128KB streaming register file loads and stores data streams from off-chip mem-

ory modules. The Imagine architecture is deployed as a loosely coupled coprocessor to a host pro-

cessor where the host processor sends stream instructions to the stream controller in Imagine.

Applications targeting the Imagine processor have to be programmed using a special dialect of the

C programming language based on the stream programming model(50).

The VIRAM architecture(52), is a single issue 64-bit MIPS core with a vector coprocessor that

consists of 2 pipelined arithmetic units where each unit contains four 64-bit vector datapaths. The

vector operations can be performed on 64, 32 or 16-bit operands. The VIRAM processor also has

13 MBytes of on-chip main memory. The on-chip memory is targeted at satisfying the high band-

width requirements of streaming media applications.

The domain of embedded computation is very different than the general purpose processing

domain. The target applications of the embedded processor domain are ones that are mature, well

developed and well understood. Furthermore, the processor design constraints are a careful bal-

ance between die area size, performance requirements and power consumption. Subword media

processing is limited to the SIMD model in order to conserve on the die area dedicated to func-

tional units. Therefore, companies developing applications in this domain are required to manu-

ally analyze and optimize their applications to effectively use the SIMD units in order to meet the

performance requirements given the hardware available and the power consumption constraints.

The streaming processors suffer from similar limitations, the VIRAM vectorizing compiler can

28

vectorize simple code structures but requires hand optimizations at the assembly level for other

code structures. The Imagine has a complicated programming model which limits ease of imple-

mentation and software portability.

The hardware specific implementation of hand-optimization of applications is possible to do

in this domain. However, in a general purpose processing domain, we are not granted the benefits

of fixed application implementations targeting fixed architectures. Emerging general purpose

applications are implemented in a general fashion to target a diverse set of processors. Further,

several compiler technologies exist to target many diverse platforms and applications are not usu-

ally hand tuned to execute on one particular platform.

2.5 SUMMARY OF RELATED WORK

In summary, we have discussed the state of the art in general purpose processors and their SIMD

extensions in order to target multimedia applications. We also identified the limitations of using

SIMD instructions within the existing architectures. Also, we have listed the latest architectures in

the embedded processor domain and discussed the implications of having a fixed set of mature

applications targeting a fixed processor architecture, embedded into a product, versus emerging

applications targeting general purpose platforms.

Our goal in this dissertation is to discuss how to overcome the limitations within general pur-

pose processors by employing a MIMD subword-VLIW datapath that can offer more hardware

flexibility to the compiler in order to better target multimedia applications and provide the speed-

ups required to enable the desired audio/visual realism.

Before delving into the details of the proposed architecture, we must take a close look at the

applications being evaluated in this domain. In the next section, we analyze the implementations

of several emerging multimedia applications and evaluate their code structures, data types and

computation requirements.

29

3.0 CHARACTERISTICS OF MULTIMEDIA APPLICATIONS

In this Chapter, we analyze and discuss the execution characteristics of several multimedia and

streaming applications. Specifically, we analyze the kernel of each application and characterize

the types of operations, operand data-types as well as control-flow and data-flow structures. We

end this chapter with a general multimedia application characterization and highlight possible

avenues to exploit the parallelism and streaming data features.

As discussed earlier in Section 2.1, typical multimedia and streaming workloads include

applications such as video conferencing, video authoring, visualization, virtual reality modeling,

3D graphics, animation, realistic simulation, speech recognition, and broadband communication.

The input data to such applications or the output data delivered by these applications is usually

visual and auditory data, such as, images, frames of video, 3-D objects, animated graphics, and

audio. Multimedia applications may also have a real-time constraint to satisfy, such as quality of

service. At the core of these applications are compute intensive algorithms such as, encoding and

decoding functions in compression algorithms for visualization and for lowering communication

bandwidth requirements, data encryption and decryption algorithms to ensure security, translation

of geometric models to realistic graphics, as well as analysis algorithms, such as detection and

matching.

These algorithms in multimedia applications are inherently parallel, compute intensive, and

perform a regular set of operations on large data sets. The input and output data sets have two dis-

tinct features, varying data precision requirements as well as being streaming in nature. In this

chapter, we take a close look at the characteristics of several implementations of multimedia

applications in order to understand the challenges and changes required in microprocessor and

compiler designs in order to achieve better performance.

30

3.1 KERNELS OF MULTIMEDIA APPLICATIONS

Multimedia applications usually contain one or more code kernels which account for the majority

of all dynamic instructions executed. The processing performed by these kernels can be character-

ized as inherently parallel and compute intensive, where the code has regular control structures,

consisting of operations performed on large sets of contiguous, streaming, variable-precision data.

Following is a more detailed description of these four general characteristics of multimedia ker-

nels.

First, the parallelism stems from the fact that the applications perform the same set of opera-

tions on large independent data sets. Therefore, these operations can be performed in parallel.

Second, typically, a large set of compute intensive operations are performed on the data and the

control structure of the code is not complex. The control structure is usually regular with little

branching as compared to typical integer applications. Third, the input and output data is charac-

terized as streaming, for example streaming video frames or audio samples, which do not exhibit

temporal locality. This is because, typically, streaming data is operated on and then discarded, or

the result is stored straight back to memory or sent onto the network as an output data stream.

Fourth, the precision requirements of the data elements varies for different types of data, such as

8-bits for image pixels and 16-bits for audio samples. In general, the data sizes vary from 8, 16,

32, and 64-bit integer elements to single (32-bit) and double precision (64-bit) floating point ele-

ments. In summary, these are highly parallel, compute intensive, bandwidth hungry kernels.

Following this general description, we analyze implementations of popular applications from

the following representative domains, speech transcoding, data encryption audio coding/decoding

31

(codec) and video coding/decoding using the multimedia applications shown in Table 4. These

applications are from the MediaBench and MediaBenchII benchmark suites(70).

First, we look at speech compression and decompression algorithms, specifically that of the

Global System for Mobile (GSM) communication standard. Second, we analyze a general block

data encryption and decryption method, the PEGWIT Algorithm. Third, we will discuss the char-

acteristics of a DVD video encoding and decoding technique, based on the MPEG-2 codec.

Finally, we analyze an implementation of the DivX encoder algorithm based on the MPEG-4

codec.

3.2 GSM - LOSSY SPEECH TRANSCODING ALGORITHM

GSM is an implementation of the final draft of the Global System for Mobile telecommunication,

GSM 06.10(70), standard for full-rate speech transcoding. The GSM speech coding algorithm uses

the Regular-Pulse Excitation Long-Term Predictor (RPE-LTP). This algorithm was chosen for

this domain based on radio channel data bandwidth, subjective speech quality, algorithm com-

plexity, cost, processing delay, and power consumption. Furthermore, this algorithm is a popular

speech codec used in many real-time video conferencing applications.

Table 4 The multimedia domains and nine applications that are analyzed.

Application Domain Multimedia Applications

Speech GSM Encoder
GSM Decoder

Encryption PEGWIT Encryption
PEGWIT Decryption

Audio ADPCM Encoder
ADPCM Decoder

Video MPEG-2 (DVD) Encoder
MPEG-2 (DVD) Decoder
MPEG4 (DivX) Encoder

32

The GSM algorithm compresses a digital speech signal that is generated as follows. An analog

speech signal is digitized on a fixed phone network, such as the Integrated Services Digital Net-

work (ISDN), using Pulse Coded Modulation (PCM). The important frequencies in a speech sig-

nal go up to 4kHz, and, hence, when a speech signal is digitized, it is sampled at 8kHz and

quantized on a linear scale. The digitized speech signal that is used as input to this algorithm con-

sists of 20ms long frames represented as 160 13-bit linear PCM values sampled at 8kHz. The

20ms period represents the typical time between the opening and closing of two vocal folds

caused by air pushed from the lungs when humans speak. During this 20ms period, the speech

signal does not change much, which enhances the opportunity for compression.

The basic idea of the coding algorithm is that information from previous speech samples,

which does not change very quickly, is used to predict the current sample. The speech signal is

represented by the coefficients of the linear combination of the previous samples, adding on to it

an encoded form of the residual. The residual is the difference between the predicted and actual

sample.

The GSM 06.10 algorithm, illustrated in Figure 5, models the speech signal in three phases.

The first is the linear predictive short-term filter which divides the speech signal into short-term

predictable parts. The second is the long-term predictive filter, which calculates the lag and scale

parameters for the long-term predictable parts and finally, the last phase, encodes the remaining

33

residual pulse. The decoder, synthesizes the speech by passing the residual pulse through the

long-term filter and then the short-term filter.

The GSM algorithm encodes the 20ms long frames of 160 13-bit PCM samples into 260-bit

GSM frames, or decodes GSM frames into linear PCM frames. However, this implementation of

the algorithm uses 16-bit values to store the PCM sample and generates 264-bit GSM frames to

satisfy the “power of 2” byte value precision in the C programming language and target proces-

sors. The GSM algorithm compresses a 20ms PCM speech frame into 264 bits, resulting in a total

bit rate of 13 kbps.

This is a lossy compression/decompression technique which stores the linear-predictor filter

parameters as a compression technique and uses them to synthesize the speech signal when

decoding. Running a good PCM speech signal through this encoder and decoder ten times repeti-

tively completely degrades the quality of the speech.

In the next subsection, we identify the code kernels of the GSM encoder and decoder and ana-

lyze their code structure, control flow, data flow and instruction type breakdown. This analysis

Figure 5 The block diagram of the GSM Encoder and Decoder Algorithm.

Short
Term

Analysis
RPE

Encoding

file.pcm
Long
Term

file.pcm

Analysis

file.gsm

GSM Encoder

RPE
Decoding

Short
Term

Synthesis

Long
Term

Synthesis

GSM Decoder

file.gsm

34

allows us to understand the computation requirement of the most significant portion of the GSM

encoder and decoder so that we can identify a means with which we hope to speed up the execu-

tion time of these two applications.

3.2.1 Kernel of the GSM Encoder

The implementation of the GSM encoder consists of the three phases discussed in the previous

section. In the first two phases, the speech samples are analyzed and the short-term and long-term

filter parameters that can best predict the speech samples are computed. These filter parameters

are used to synthesize the signal in the decompression stage. The final phase encodes the residual

signal.

To identify the code kernel in this application, we execute the compression algorithm on a typ-

ical speech signal and record the number of clock cycles spent in each function of the application.

During a typical execution of this speech compression algorithm, over 80% of the execution time

is spent executing a single function that performs the calculation of the Long Term Predictor

(LTP) parameters (Figure 6). The short-term predictor analysis function accounts for 10% of the

total clock cycles. Both of these functions can be considered kernels for this application, however,

we focus our study on the more significant kernel, the calculation of the LTP parameters

(Calculation_of_the_LTP_parameters).

Function Calculation_of_the_LTP_parameters computes the gain and the lag for the long term

analysis filter. This requires calculating a maximum of the cross-correlation function between the

current sub-segment short term residual signal, vector (v), of 40, 16-bit elements and the residual

signal, vector (r), of 120, 16-bit elements as shown in the following equation:

, where and 0 < j < 80max Aj{ } Aj v i[] r i j+[]⋅()

i 0=

39

∑

=

35

The computation required to get the maximum cross-correlation between these two vectors, is

the maximum of the resulting 80 correlation computations.

The code listing for this kernel (Calculation_of_the_LTP_parameters) is shown in Figure 7.

The highlighted portion of the function is the for loop where the cross-correlation is calculated

and is the most computationally intensive segment of the function which accounts for 79% of the

total execution time required by the application to perform the speech encoding.

The control-flow of this kernel is a simple for loop, with a known upper bound, that performs

the cross-correlation computation. The body of the loop consists of the 40 multiplications of two,

16-bit values and their summation. As for the data-flow, there exists true dependence (read after

write) and an output dependence (write after write) between the accumulator (L_result) of all

GSM Encoder

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

4.50E+08

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s

Calculation of the LTP
App Without Kernel

Figure 6 The kernel of the GSM Encoder accounts for 80% of clock cycles during
a typical execution.

80%

36

the multiplications that are performed within the highlighted loop body. Further, the execution of

each iteration of the loop is completely independent of subsequent iterations, therefore, no inter-

loop dependence.

The dynamic instruction distribution for this kernel executing on a fixed width (32-bit) VLIW

processor consisting of a register file with 64 registers, 4 integer ALUs, and 2 memory units using

a typical input data set is shown in Figure 8. As shown, almost 60% of all operations are integer

static void Calculation_of_the_LTP_parameters P4((d,dp,bc_out,Nc_out),
register word* d, /* [0..39]IN */
register word* dp, /* [-120..-1]IN*/
word * bc_out,/* OUT */
word * Nc_out/* OUT */
)
{
register int k, lambda;
word Nc, bc;
word wt[40];

longwordL_max, L_power;
word R, S, dmax, scal;
register wordtemp;

[...] /* code deleted for bervity */

/* Search for the maximum cross-correlation and coding of the LTP lag
 */
L_max = 0;
Nc = 40;/* index for the maximum cross-correlation */

for (lambda = 40; lambda <= 120; lambda++) {

define STEP(k) (wt[k] * dp[k - lambda])

register longword L_result;

L_result = STEP(0) ; L_result += STEP(1) ;
L_result += STEP(2) ; L_result += STEP(3) ;
L_result += STEP(4) ; L_result += STEP(5) ;
L_result += STEP(6) ; L_result += STEP(7) ;
L_result += STEP(8) ; L_result += STEP(9) ;
L_result += STEP(10) ; L_result += STEP(11) ;
L_result += STEP(12) ; L_result += STEP(13) ;
L_result += STEP(14) ; L_result += STEP(15) ;
L_result += STEP(16) ; L_result += STEP(17) ;
L_result += STEP(18) ; L_result += STEP(19) ;
L_result += STEP(20) ; L_result += STEP(21) ;
L_result += STEP(22) ; L_result += STEP(23) ;
L_result += STEP(24) ; L_result += STEP(25) ;
L_result += STEP(26) ; L_result += STEP(27) ;
L_result += STEP(28) ; L_result += STEP(29) ;
L_result += STEP(30) ; L_result += STEP(31) ;
L_result += STEP(32) ; L_result += STEP(33) ;
L_result += STEP(34) ; L_result += STEP(35) ;
L_result += STEP(36) ; L_result += STEP(37) ;
L_result += STEP(38) ; L_result += STEP(39) ;

if (L_result > L_max) {

Nc = lambda;
L_max = L_result;

}

}

[...] /* code deleted for bervity */

}

79%
of the GSM

encoder’s clock
cycles are spent
executing this
code segment

Figure 7 The code of the kernel GSM Encoder which calculates the LTP
parameters.

37

alu operations, 24% are load operations and 16% are store operations. Only 1% of the operations

are branches and compares. The integer operations are due to performing the address calculation

of the two vectors, wt[k] and dp[k - lambda], the multiplication of the two 16-bit values

stored as 32-bit operands and finally their summation. The large number of loads is expected,

however, the large number of stores must be due to register pressure and having to often store and

then re-load temporary variables.

The kernel of the compression algorithm, GSM encoder, has a very simple control flow, the

output data-dependence can be circumvented by using temporary variables and hence the major-

ity of the integer operations have subword operands and can be performed in parallel.

GSM Compression Kernel

load
24%

store
16%

ialu
59%

cmpp
0%

branch
1%

falu
0%

Figure 8 The dynamic instruction breakdown of the GSM Compression Kernel.

38

3.3 SPEECH DECOMPRESSION USING THE GSM DECODER

The speech signals encoded using the GSM encoder in the previous section are then decoded back

into PCM samples using the GSM decoder. The decoder synthesizes a 264bit GSM frame into a

speech signal of 160 16-bit PCM samples. This procedure is performed by first decoding the

residual signal into distinct samples, then the samples are fed through the long-term and short-

term synthesizers using the filter parameters stored in the GSM frame to reproduce the PCM

speech signal. Since this algorithm is lossy, the synthesized speech signal should sound rather like

what was handed to the GSM encoder but is not identical to it.

3.3.1 Kernel of the GSM Decoder

Executing the GSM decoder on a typical input data set, we observed that the GSM decoder spends

70% of all dynamic execute cycles in a single function as shown in Figure 9. This function per-

forms the short term filtering synthesis required to reproduce the original signal.

The code listing for this kernel (Short_term_synthesis_filtering) is shown in Figure 10. The

inner for loop consumes 96% of the total clock cycles of the function. This translates to 66% of

the total execution time required by the application to perform the GSM decoding.

The kernel synthesizes the 160, 16bit PCM samples for each GSM frame. The computation

required to perform this synthesis is a sequence of saturating subtracts, multiplications and addi-

tions of two 16-bit values into a 16-bit result. The control-flow is a pair of nested for loops. The

upper bound of the nested loop is known while that of the outer loop is input dependent. Further,

there is are two if-statements within the nested loop. As for data-flow, there exists a true depen-

dence between every instruction inside the nested loop as well as inter-loop iteration direct data

dependence. The control flow and data dependence of this kernel is more complex than that of the

GSM encoder.

39

The instruction distribution for a typical execution of this kernel executing on a fixed width

(32-bit) VLIW processor with register file of size 64, 4 integer ALUs, and 2 memory units is

shown in Figure 11. The integer alu operations still dominate with 56% of the total number of

operations. As expected from the complex control flow, and unlike the GSM encoder, the percent-

GSM Decoder

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s
Short Term Synthesis
App Without Kernel

Figure 9 The kernel of the GSM Decoder accounts for 70% of clock cycles during
a typical execution.

70%

40

static void Short_term_synthesis_filtering P5((S,rrp,k,wt,sr),
struct gsm_state * S,
register word* rrp,/* [0..7]IN*/
register intk, /* k_end - k_start*/
register word* wt,/* [0..k-1]IN*/
register word* sr/* [0..k-1]OUT*/
)
{
register word * v = S->v;
register int i;
register word sri, tmp1, tmp2;
register longwordltmp;/* for GSM_ADD & GSM_SUB */

#define MIN_WORD ((-32767)-1)
#define MAX_WORD (32767)

/* >> is a signed arithmetic shift right */
#define SASR(x, by) ((x) >> (by))

#define GSM_MULT_R(a, b) /* word a, word b, !(a == b == MIN_WORD) */
 (SASR(((longword)(a) * (longword)(b) + 16384), 15))

#define GSM_ADD(a, b) \
 ((ulongword)((ltmp = (longword)(a) + (longword)(b)) -

MIN_WORD) > \
 MAX_WORD - MIN_WORD ? (ltmp > 0 ? MAX_WORD :

MIN_WORD) : ltmp)

define GSM_SUB(a, b) \
 ((ltmp = (longword)(a) - (longword)(b)) >= MAX_WORD \
 ? MAX_WORD : ltmp <= MIN_WORD ? MIN_WORD : ltmp)

while (k--) {
sri = *wt++;
for (i = 8; i--;) {

tmp1 = rrp[i];
tmp2 = v[i];

tmp2 = GSM_MULT_R(tmp1, tmp2);
sri = GSM_SUB(sri, tmp2);
tmp1 = GSM_MULT_R(tmp1, sri);
v[i+1] = GSM_ADD(v[i], tmp1);

}
*sr++ = v[0] = sri;

}

70%
of application
clock cycles

is spent in this
function

Figure 10 The code of the GSM Decompression Kernel

41

age of branch operations is 23% and compare operations is 11%. The percentage of loads and

stores are 6% and 4% respectively. There are no floating point operations in this kernel.

The kernel of the GSM decoder consists of two nested loops, a extensive direct data depen-

dence in the operations of the nested loop as well as inter-loop data dependence between subse-

quent invocations of the nested loop which limits the opportunity for parallel execution of the

operations. The integer operations are performed on subword 16-bit operands.

3.4 PEGWIT ENCRYPTION ALGORITHM

The PEGWIT algorithm(70) is utilized for performing public key encryption and authentication. It

uses an elliptic curve over Galois Field GF(2225), the SHA1 algorithm for hashing and the sym-

metric block cipher square for encryption. We look at the execution characteristics of both the

encryption and decryption of an ASCII file, the text of the General Public License (GPL).

GSM Decompression Kernel

load
6%

ialu
55%

branch
23%

cmpp
12%

falu
0%

store
4%

Figure 11 The dynamic instruction breakdown of the GSM Decompression Kernel

42

3.4.1 Kernel of the PEGWIT Encryption algorithm

After running the encryption algorithm on an ASCII file, we identified two subkernels. The first

performs a Galois Field (GF) multiply and add operation and the second performs a GF element

multiplication. The two subkernels combined account for 68% of the dynamic execution cycles

when encrypting a typical ascii file as shown in Figure 12.

The code of the first kernel, gfAddMul, is shown in Figure 13. It performs a GF add and mul-

tiply operation on two GF points, each represented as an array of 16-bit elements. The operation

lies within a single-nested loop. The control-flow within the kernel consists of three main loops,

Figure 12 The kernel of the PEGWIT Encryption accounts for 68% of clock cycles
during a typical execution.

PEGWIT Encryption

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s

gfMultiply
gfAddMul
App Without Kernel

68%

43

two while loops and one for loop. The body of the for loop consists of a couple of if-statements.

There exists a direct data dependence between the operations in both while-loops.

The second kernel performs the GF element multiplication. The computation is within a dou-

bly-nested for-loop as shown below. Further, the body of each loop has an if-statement.

static void gfAddMul (gfPoint a, ltemp alpha, ltemp j, gfPoint b)
{
 ltemp i, x, la = logt[alpha];
 lunit *aj = &a[j];

 assert (logt != NULL && expt != NULL);
 while (a[0] < j + b[0]) {
 a[0]++; a[a[0]] = 0;
 }
 for (i = b[0]; i; i--) {
 if ((x = logt[b[i]]) != TOGGLE) { /* b[i] != 0 */

 aj[i] ^= expt[(x += la) >= TOGGLE ? x - TOGGLE : x];
 }
 }
 while (a[0] && a[a[0]]==0) {
 a[0]--;
 }
} /* gfAddMul */

42%
of application
clock cycles

is spent in this
function

Figure 13 The code of the gfAddMul Kernel of PEGWIT.

 void gfMultiply (gfPoint r, const gfPoint p, const gfPoint q)
 /* sets r := p * q mod (x^GF_K + x^GF_T + 1) */
{
 int i, j;
 ltemp x, log_pi, log_qj;
 lunit lg[GF_K + 2]; /* this table should be cleared after

use */

[...] /* code portion deleted for brevity */

/* perform multiplication: */
gfClear (r);
for (i = p[0]; i; i--) {
 if ((log_pi = logt[p[i]]) != TOGGLE) { /* p[i] != 0 */

for (j = q[0]; j; j--) {
if ((log_qj = lg[j]) != TOGGLE) { /* q[j] != 0 */

r[i+j-1] ^= expt[(x = log_pi + log_qj) >=
TOGGLE ? x - TOGGLE : x];

}
 }

 }
}

 r[0] = p[0] + q[0] - 1;

[...] /* code portion deleted for brevity */

x = log_pi = log_qj = 0;
 memset (lg, 0, sizeof (lg));
} /* gfMultiply */

26%
of function clock

cycles

is spent in
this region

Figure 14 The code of the gfMultiply Kernel of PEGWIT

44

The dynamic instruction distribution for the two subkernels executing on a fixed width (32-

bit) VLIW processor with register file of size 64, 4 integer ALUs, and 2 memory units is shown in

the following pie chart

The subkernels perform most computation on 16 bit operands. As shown, 51% of all opera-

tions in gfAddMul and 44% of all dynamic operations in gfMultiply are integer alu operations.

The large percentage is due to extensive address calculation of the arrays used within the loop

bodies. We notice a high percentage of compare and branch operations due to the if statements

and conditional expressions within the bodies of the for & while loops.

Figure 15 The dynamic instruction breakdown of the Kernels in the PEGWIT
Encryption Algorithm.

PEGWIT Encryption Kernel
gfAddMul

load
17%

store
5%

ialu
51%

falu
0%

branch
24%

cmpp
3%

PEGWIT Encryption Kernel
gfMultiply

load
13%

store
4%

ialu
40%falu

0%

branch
30%

cmpp
13%

45

3.5 THE PEGWIT DECRYPTION ALGORITHM

The PEGWIT algorithm(70) is for performing public key encryption, decryption and authentica-

tion. We invoke it to decrypt a previously encrypted ASCII file.

3.5.1 Kernel of the PEGWIT decryption algorithm

For this algorithm, the kernel consists of the same two subkernels shown in the encryption portion

of this application. The first performs a GF multiply and add operation and the second performs a

GF element multiplication. The two subkernels combined account for 62% of the dynamic execu-

tion cycles when decrypting a typical ascii file.

PEGWIT Decryption

0.00E+00

2.00E+06

4.00E+06

6.00E+06

8.00E+06

1.00E+07

1.20E+07

1.40E+07

1.60E+07

1.80E+07

2.00E+07

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s

gfMultiply
gfAddMul
App Without Kernel

Figure 16 The kernel of the PEGWIT Decryption algorithm accounts for 62% of
clock cycles during a typical execution.

62%

46

The dynamic instruction distribution for the two subkernels executing on a fixed width (32-

bit) VLIW processor with register file of size 64, 4 integer ALUs, and 2 memory units is shown in

Figure 17:

The instruction breakdown of the subkernels during decryption varies slightly from the

encryption invocation. As shown, the majority of all dynamic operations in are integer alu opera-

tions due to address calculation and integer operations. Also, a high percentage of compare and

branch operations due to the if statements and conditional expressions within the bodies of the for

and while loops.

Figure 17 The dynamic instruction breakdown of the PEGWIT Decryption
Kernels.

PEGWIT Decryption Kernel
gfAddMul

load
16%

store
5%

ialu
47%

falu
0%

branch
22%

cmpp
10%

PEGWIT Decryption Kernel
gfMultiply

load
13%

store
4%

ialu
40%falu

0%

branch
30%

cmpp
13%

47

3.6 THE ADPCM ENCODER ALGORITHM

The ADPCM application(70), is an implementation of the Intel/DVI ADPCM adaptive pulse code

modulation algorithm (Figure18). It is a simple adaptive differential pulse code modulation

scheme utilized for compression of 16-bit PCM audio stream samples into 4-bit ADPCM sam-

ples.

To identify the kernels of the ADPCM Encoder, we execute the application on a typical input

set and record the clock cycles of each function in the application. For this application, we identi-

fied one function that accounts for a large percentage of the total execution cycles as shown in

Figure 19. This function, adpcm_coder, performs the adaptive compression of the PCM audio

samples.

Figure 18 The block diagram of the ADPCM Encoder Algorithm.

Parser/
Combiner

Input

Output

adpcm_coder

PCM

ADPCM

Sample

48

The code of the adpcm_coder kernel is shown in Figure 20. The input data-types are 16-bit

PCM samples and the output are 8-bit ADPCM samples. The control flow is a single for loop

where the audio samples are compressed. The upper bound of the for loop is data-dependent and

unknown. The body of the loop within this kernel consists primarily of nine if-statements with

simple operations in between. Further, there exists inter-loop dependence of the previous pre-

ADPCM Encoder

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s

adpcm_coder
App Without Kernel

Figure 19 The adpcm_coder kernel of the ADPCM Encoder algorithm accounts for
87% of clock cycles during a typical execution.

87%

49

dicted value. There is extensive data-dependence within the loop body, primarily true depen-

dence.
void adpcm_coder(indata, outdata, len, state)
 short indata[]; char outdata[]; int len; struct adpcm_state *state;
{
 short *inp; /* Input buffer pointer */
 signed char *outp; /* output buffer pointer */

outp = (signed char *)outdata;
 inp = indata;

[...] code deleted for brevity
 valpred = state->valprev;
 index = state->index;
 step = stepsizeTable[index];
 bufferstep = 1;
 for (; len > 0 ; len--) {
 val = *inp++;

 /* Step 1 - compute difference with previous value */
 diff = val - valpred;
 sign = (diff < 0) ? 8 : 0;
 if (sign) diff = (-diff);

 /* Step 2 - Divide and clamp */
delta = 0;

 vpdiff = (step >> 3);

 if (diff >= step) {
 delta = 4;
 diff -= step;
 vpdiff += step;
 }
 step >>= 1;
 if (diff >= step) {
 delta |= 2;
 diff -= step;
 vpdiff += step;
 }
 step >>= 1;
 if (diff >= step) {
 delta |= 1;
 vpdiff += step;
 }

 /* Step 3 - Update previous value */
 if (sign)
 valpred -= vpdiff;
 else
 valpred += vpdiff;

 /* Step 4 - Clamp previous value to 16 bits */
 if (valpred > 32767)
 valpred = 32767;
 else if (valpred < -32768)
 valpred = -32768;

 /* Step 5 - Assemble value, update index and step values */
 delta |= sign;

 index += indexTable[delta];
 if (index < 0) index = 0;
 if (index > 88) index = 88;
 step = stepsizeTable[index];

 /* Step 6 - Output value */
 if (bufferstep) {
 outputbuffer = (delta << 4) & 0xf0;
 } else {
 *outp++ = (delta & 0x0f) | outputbuffer;
 }
 bufferstep = !bufferstep;
 }

 /* Output last step, if needed */
 if (!bufferstep)
 *outp++ = outputbuffer;
 state->valprev = valpred;
 state->index = index;
}

Figure 20 The code of the adpcm_coder Kernel of the ADPCM Encoder

50

The dynamic instruction distribution for the adpcm_coder kernel executing on a fixed width

(32-bit) VLIW processor with register file of size 64, 4 integer ALUs, and 2 memory units is

shown in Figure 21.

As expected, the majority of the code consists of branch operations due to all the if-statements

within the loop body. The computation is performed on subword 8, 16 and 32-bit operands. As

shown, 33% of all dynamic operations are integer alu operations.

3.7 THE ADPCM DECODER ALGORITHM

The ADPCM decoder algorithm(70), converts the 4-bit ADPCM samples back to the 16-bit PCM

audio samples as shown in Figure 22.

To identify the kernels of the ADPCM decoder, we execute the application on a typical input

set and record the clock cycles of each function in the application. For this application, we identi-

Figure 21 The dynamic instruction breakdown of adpcm_coder kernel of ADPCM

ADPCM Encoder Kernel
adpcm_coder

load
4%

ialu
33%

store
1%

falu
0%

branch
44%

cmpp
18%

51

fied one function, adpcm_decoder, that accounts for 84% of the total execution cycles as shown in

Figure 23. This function, adpcm_coder, performs the adaptive compression of the PCM samples.

The code of the adpcm_coder kernel is shown in Figures 24. The input data-types are 8-bit

ADPCM samples and the output are 16-bit PCM audio samples. The control flow is a single for

Figure 22 The block diagram of the ADPCM Decoder Algorithm.

Parser/
Combiner

Input

Output

adpcm_decoder

ADPCM

PCM

Sample

ADPCM Decoder

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s

adpcm_decoder
App Without Kernel

Figure 23 The adpcm_decoder kernel of the ADPCM Decoder algorithm accounts
for 84% of clock cycles during a typical execution.

84%

52

loop where the audio samples are decompressed. The upper bound of the for loop is data-depen-

dent and unknown. The body of the loop within this kernel consists primarily of eight if-state-

ments with simple operations in between. Further there exists inter-loop dependence of the

previous step value. There is extensive data-dependence within the loop body, primarily true

dependence.
void adpcm_decoder(indata, outdata, len, state)
 char indata[]; short outdata[]; int len; struct adpcm_state *state;
{
 signed char *inp; /* Input buffer pointer */
 short *outp; /* output buffer pointer */

[...] code deleted for brevity
 outp = outdata;
 inp = (signed char *)indata;

 valpred = state->valprev;
 index = state->index;
 step = stepsizeTable[index];
 bufferstep = 0;

 for (; len > 0 ; len--) {

 /* Step 1 - get the delta value */
 if (bufferstep) {
 delta = inputbuffer & 0xf;
 } else {
 inputbuffer = *inp++;
 delta = (inputbuffer >> 4) & 0xf;
 }
 bufferstep = !bufferstep;

 /* Step 2 - Find new index value (for later) */
 index += indexTable[delta];
 if (index < 0) index = 0;
 if (index > 88) index = 88;

 /* Step 3 - Separate sign and magnitude */
 sign = delta & 8;
 delta = delta & 7;

 /* Step 4 - Compute difference and new predicted value */
 /*
 ** Computes 'vpdiff = (delta+0.5)*step/4', but see comment
 ** in adpcm_coder.
 */
 vpdiff = step >> 3;
 if (delta & 4) vpdiff += step;
 if (delta & 2) vpdiff += step>>1;
 if (delta & 1) vpdiff += step>>2;

 if (sign)
 valpred -= vpdiff;
 else
 valpred += vpdiff;

 /* Step 5 - clamp output value */
 if (valpred > 32767)
 valpred = 32767;
 else if (valpred < -32768)
 valpred = -32768;

 /* Step 6 - Update step value */
 step = stepsizeTable[index];

 /* Step 7 - Output value */
 *outp++ = valpred;
 }

 state->valprev = valpred;
 state->index = index;
}

Figure 24 The code of the adpcm_decoder Kernel of the ADPCM Decoder.

53

The dynamic instruction distribution for the adpcm_coder kernel executing on a fixed width

(32-bit) VLIW processor with register file of size 64, 4 integer ALUs, and 2 memory units is

shown in Figure 25.

As expected, the majority, 42%, of the dynamic operations consist of branch operations due to

all the if-statements within the loop body. The computation is performed on subword 8, 16 and

32-bit operands. As shown, 34% of all dynamic operations are integer alu operations.

3.8 THE MPEG-2 ENCODING ALGORITHM

The MPEG-2 algorithm, is based on the mpeg2encode algorithm(70) by the MPEG Software Sim-

ulation Group. MPEG-2 is a video sequence coding and decoding method.

The MPEG-2 compression (Figure 26) is performed using the following prediction tech-

niques, motion estimation in the encoder and motion compensation in the decoder. The residual is

Figure 25 The dynamic instruction breakdown of adpcm_coder kernel of ADPCM

ADPCM Decoder Kernel
adpcm_decoder

load
4%

ialu
34%

store
2%

falu
0%

branch
42%

cmpp
18%

54

calculated by subtracting the predicted video frame from the actual frame. The residual is encoded

using the spatial 2 dimensional discrete cosine transform (DCT) which is performed on 8x8

blocks of pixels followed by the quantization of DCT coefficients. Finally, the quantized DCT

coefficients are coded using Huffman and run/level encoding which is combined with the motion

estimation vector to produce the encoded output. A stream of video frames is encoded into three

types of frames, I, P and B frames. The I frames are encoded without any prediction. The P frames

are encoded using prediction from previous frames. While the B frames are encoded using predic-

tion from both previous frames and subsequent frames.

To identify the kernels of the MPEG-2 Encoder, we execute the application on a typical input

set and record the clock cycles of each function in the application. For this application, we identi-

fied one function that accounts for a large percentage of the total execution cycles as shown in

Figure 27. This function, dist1, performs the calculation of the motion vector of a pixel block

between two video frames.

The code of the dist1 kernel is shown in Figures 28 and 29. Depending on the input values to

the function dist1, one of four possible for loops are invoked to calculate the difference between

two pixel blocks. All four loops have a nested for-loop where the upper bound of the outer loop is

data dependent while the upper bound of the inner loop is known. Also, the inner loop of the first

for-loop is unrolled.

Figure 26 The block diagram of the MPEG-2 Encoder Algorithm.

Motion
Estimation

Huffman
RLC

Input

DCT

Decoder

Output
DCT

Quantize

Video

-
+

55

The calculation within the first inner loop is a sequence of if-statements performing the sum

of absolute difference between two pixel blocks. The subtraction is between two 8-bit variables

while the addition goes into a 32-bit accumulator. Besides the output dependence (write after

write) between every statement in the inner loop, the code is completely independent.

MPEG-2 Encoder

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

1.60E+08

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s
dist1
App Without Kernel

Figure 27 The dist1 kernel of the MPEG-2 Encoder algorithm accounts for 79% of
clock cycles during a typical execution.

79%

56

static int dist1(blk1,blk2,lx,hx,hy,h,distlim)
unsigned char *blk1,*blk2;
int lx,hx,hy,h;
int distlim;
{
 unsigned char *p1,*p1a,*p2;
 int i,j;
 int s,v;

 s = 0;
 p1 = blk1;
 p2 = blk2;

 if (!hx && !hy)
 for (j=0; j<h; j++)
 {
 if ((v = p1[0] - p2[0])<0) v = -v; s+= v;
 if ((v = p1[1] - p2[1])<0) v = -v; s+= v;
 if ((v = p1[2] - p2[2])<0) v = -v; s+= v;
 if ((v = p1[3] - p2[3])<0) v = -v; s+= v;
 if ((v = p1[4] - p2[4])<0) v = -v; s+= v;
 if ((v = p1[5] - p2[5])<0) v = -v; s+= v;
 if ((v = p1[6] - p2[6])<0) v = -v; s+= v;
 if ((v = p1[7] - p2[7])<0) v = -v; s+= v;
 if ((v = p1[8] - p2[8])<0) v = -v; s+= v;
 if ((v = p1[9] - p2[9])<0) v = -v; s+= v;
 if ((v = p1[10] - p2[10])<0) v = -v; s+= v;
 if ((v = p1[11] - p2[11])<0) v = -v; s+= v;
 if ((v = p1[12] - p2[12])<0) v = -v; s+= v;
 if ((v = p1[13] - p2[13])<0) v = -v; s+= v;
 if ((v = p1[14] - p2[14])<0) v = -v; s+= v;
 if ((v = p1[15] - p2[15])<0) v = -v; s+= v;

 if (s >= distlim)
 break;

 p1+= lx;
 p2+= lx;
 }
[...] /* continued in the next figure */

Figure 28 The code of the dist1 Kernel of the MPEG-2 Encoder

57

The rest of the loops are not unrolled and they perform the same operation discussed above,

however, using a for-loop structure. There is no inter-loop dependence besides the accumulator s.

The dynamic instruction distribution for the dist1 kernel executing on a fixed width (32-bit)

VLIW processor with register file of size 64, 4 integer ALUs, and 2 memory units is shown in

Figure 30.

As expected, the majority of the code consists of integer alu operations. The computation is

performed on subword 8 bit operands. As shown, 46% of all dynamic operations are integer alu

operations. The compare and branch operations are due to the if statements within the nested for

loops.

 [...] /* continued from the previous figure */
else if (hx && !hy)

 for (j=0; j<h; j++)
 {
 for (i=0; i<16; i++)
 {
 v = ((unsigned int)(p1[i]+p1[i+1]+1)>>1) - p2[i];
 if (v>=0)
 s+= v;
 else
 s-= v;
 }
 p1+= lx;
 p2+= lx;
 }
 else if (!hx && hy)
 {
 p1a = p1 + lx;
 for (j=0; j<h; j++)
 {
 for (i=0; i<16; i++)
 {
 v = ((unsigned int)(p1[i]+p1a[i]+1)>>1) - p2[i];
 if (v>=0)
 s+= v;
 else
 s-= v;
 }
 p1 = p1a;
 p1a+= lx;
 p2+= lx;
 }
 }
 else /* if (hx && hy) */
 {
 p1a = p1 + lx;
 for (j=0; j<h; j++)
 {
 for (i=0; i<16; i++)
 {
 v = ((unsigned int)(p1[i]+p1[i+1]+p1a[i]+p1a[i+1]+2)>>2) - p2[i];
 if (v>=0)
 s+= v;
 else
 s-= v;
 }
 p1 = p1a;
 p1a+= lx;
 p2+= lx;
 }
 }

 return s;
}

Figure 29 The continuation of the dist1 Kernel of the MPEG-2 Encoder

58

3.9 THE MPEG-2 DECODING ALGORITHM

The MPEG-2 algorithm, is based on the mpeg2decode algorithm by the MPEG Software Simula-

tion Group. The MPEG-2 decoder algorithm (Figure 31) receives the MPEG-2 coded data and

decodes it using the Huffman decoder. The first output, the motion vectors, are sent to the motion

compensation predictor. The quantized DCT coefficients are sent through the inverse quantizer

Figure 30 The dynamic instruction breakdown of dist1, the MPEG Encoder Kerne

MPEG2 Encoder Kernel
dist1

load
20%

store
0%

ialu
46%

falu
0%

branch
23%

cmpp
11%

Figure 31 The block diagram of the MPEG-2 Decoder Algorithm.

Huffman
Decoder

Motion
Compensation

Input

IDCT

Output

Inverse
Quantize

MPEG-2

Video

59

and then the IDCT, the inverse discrete cosine transform, to get the residual signal which is added

onto the predicted signal to produce the video frames.

There are two versions of the inverse discrete cosine transform that can be used, the high pre-

cision floating point reference version and the fast, integer only computation, lower precision ver-

sion. We invoke the integer-only version of the transform.

3.9.1 Kernel of the MPEG-2 decoding algorithm

To identify the kernels of the MPEG-2 Decoder(70), we execute the application on a typical

input set and record the clock cycles of each function in the application. For this application, we

identified two functions that account for large percentage of the total execution cycles as shown in

Figure 32.

M P E G 2 D e code r

0.00E + 00

1.00E + 06

2.00E + 06

3.00E + 06

4.00E + 06

5.00E + 06

6.00E + 06

7.00E + 06

8.00E + 06

9.00E + 06

1.00E + 07

32-bit F ix ed-W idth V LIW

C
lo

ck
 C

yc
le

s

idc trow
idc tc ol
A pp W ithout K ernel

Figure 32 The kernel of the MPEG-2 Decoder algorithm accounts for 50% of clock
cycles during a typical execution.

50%}

60

The two code kernels that perform the fast IDCT algorithm, a two dimensional inverse dis-

crete cosine transform, are the idctrow and the idctcol. The IDCT algorithm invokes these two

functions eight times in the body of a single for loop.

The code of the idctcol is shown in Figure 33. It consists of operations on 8-bit and 32-bit

operands. The control flow within the function is an if-statement.
static void idctcol(blk)
short *blk;
{
 int x0, x1, x2, x3, x4, x5, x6, x7, x8;

 /* shortcut */
 if (!((x1 = (blk[8*4]<<8)) | (x2 = blk[8*6]) | (x3 = blk[8*2]) |
 (x4 = blk[8*1]) | (x5 = blk[8*7]) | (x6 = blk[8*5]) | (x7 =

blk[8*3])))
 {

blk[8*0]=blk[8*1]=blk[8*2]=blk[8*3]=blk[8*4]=blk[8*5]=blk[8*6]=blk[8*7]=
 iclp[(blk[8*0]+32)>>6];
 return;
 }

 x0 = (blk[8*0]<<8) + 8192;

 /* first stage */
 x8 = W7*(x4+x5) + 4;
 x4 = (x8+(W1-W7)*x4)>>3;
 x5 = (x8-(W1+W7)*x5)>>3;
 x8 = W3*(x6+x7) + 4;
 x6 = (x8-(W3-W5)*x6)>>3;
 x7 = (x8-(W3+W5)*x7)>>3;

 /* second stage */
 x8 = x0 + x1;
 x0 -= x1;
 x1 = W6*(x3+x2) + 4;
 x2 = (x1-(W2+W6)*x2)>>3;
 x3 = (x1+(W2-W6)*x3)>>3;
 x1 = x4 + x6;
 x4 -= x6;
 x6 = x5 + x7;
 x5 -= x7;

 /* third stage */
 x7 = x8 + x3;
 x8 -= x3;
 x3 = x0 + x2;
 x0 -= x2;
 x2 = (181*(x4+x5)+128)>>8;
 x4 = (181*(x4-x5)+128)>>8;

 /* fourth stage */
 blk[8*0] = iclp[(x7+x1)>>14];
 blk[8*1] = iclp[(x3+x2)>>14];
 blk[8*2] = iclp[(x0+x4)>>14];
 blk[8*3] = iclp[(x8+x6)>>14];
 blk[8*4] = iclp[(x8-x6)>>14];
 blk[8*5] = iclp[(x0-x4)>>14];
 blk[8*6] = iclp[(x3-x2)>>14];
 blk[8*7] = iclp[(x7-x1)>>14];
}

34%
of application
clock cycles

are spent in this
function

Figure 33 The code of the idctcol Kernel of the MPEG-2 Decoder

61

The code structure of the idctrow kernel is shown in Figure 34.

Although the code of idctrow and idctcol is similar, idctrow requires fewer clock cycles

because the probability of going though the shortcut code is much higher, and hence, less code is

executed.

static void idctrow(blk)
short *blk;
{
 int x0, x1, x2, x3, x4, x5, x6, x7, x8;

 /* shortcut */
 if (!((x1 = blk[4]<<11) | (x2 = blk[6]) | (x3 = blk[2]) |
 (x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3])))
 {
 blk[0]=blk[1]=blk[2]=blk[3]=blk[4]=blk[5]=blk[6]=blk[7]=blk[0]<<3;
 return;
 }

 x0 = (blk[0]<<11) + 128; /* for proper rounding in the fourth stage */

 /* first stage */
 x8 = W7*(x4+x5);
 x4 = x8 + (W1-W7)*x4;
 x5 = x8 - (W1+W7)*x5;
 x8 = W3*(x6+x7);
 x6 = x8 - (W3-W5)*x6;
 x7 = x8 - (W3+W5)*x7;

 /* second stage */
 x8 = x0 + x1;
 x0 -= x1;
 x1 = W6*(x3+x2);
 x2 = x1 - (W2+W6)*x2;
 x3 = x1 + (W2-W6)*x3;
 x1 = x4 + x6;
 x4 -= x6;
 x6 = x5 + x7;
 x5 -= x7;

 /* third stage */
 x7 = x8 + x3;
 x8 -= x3;
 x3 = x0 + x2;
 x0 -= x2;
 x2 = (181*(x4+x5)+128)>>8;
 x4 = (181*(x4-x5)+128)>>8;
/* fourth stage */
 blk[0] = (x7+x1)>>8;
 blk[1] = (x3+x2)>>8;
 blk[2] = (x0+x4)>>8;
 blk[3] = (x8+x6)>>8;
 blk[4] = (x8-x6)>>8;
 blk[5] = (x0-x4)>>8;
 blk[6] = (x3-x2)>>8;
 blk[7] = (x7-x1)>>8;
}

16%
of application
clock cycles

are spent in this
function

Figure 34 The code of the idctrow Kernel of the MPEG-2 Decoder

62

The dynamic instruction distribution for the fast idct executing on a fixed width (32-bit)

VLIW processor with register file of size 64, 4 integer ALUs, and 2 memory units is shown in

Figure 35.

As expected, the majority of the code consists of integer alu operations. The computation is

performed on 8 bit operands as well as 32-bit operands. As shown, 61% of all dynamic operations

of idctcol and 58% of idctrow are integer alu operations. We notice a low percentage of compare

and branch operations due to the single if statement within both kernels.

3.10 THE MPEG-4 (DIVX) ENCODER ALGORITHM

MPEG-4 has become one of the dominant standards in multimedia applications. The MPEG-4

video standard is an object based hybrid natural/synthetic coding standard that enables efficient

compression and content-based interactivity, such as object manipulation, scaling and bitstream

editing. A block diagram depicting the algorithm of the MPEG-4 encoder is shown in Figure 36.

Figure 35 The dynamic instruction breakdown of the MPEG Decoding Kernel

MPEG2 Decoder Kernel
idctcol

load
20%

store
18%ialu

61%

falu
0%

branch
1%

cmpp
0%

MPEG2 Decoder Kernel
idctrow

load
20%

store
20%ialu

58%

falu
0%

branch
2%

cmpp
0%

63

In almost all video compression standards, including the MPEG-4 visual part, the block-

matching motion estimation algorithm is the dominant part of the computation load. In a typical

video system, motion estimation requires 80% of the computation for the entire encoding applica-

tion. Motion estimation is performed as a search to find the best matching position of a pixel

block in a video frame with minimum distortion by evaluating the distortion measure between

non-overlapping 16x16 pixel blocks, called macroblocks, across frames. For each macroblock,

the motion vector is generated by finding the macroblock with minimum distortion between the

current and previous frames.

Distortion between two macroblocks is calculated using the sum of absolute differences

(SAD):

; N = 16

where N is the dimension of the macroblock and in our case is equal to 16 pixels. In the imple-

mentation of this algorithm used for this study, there are three slight variants of the distortion

evaluation in addition to the SAD function depicted above. These functions use the pixel average

of several macroblocks in the previous frame. Since the code and control structure of these func-

tions are similar, in the next subsection, we illustrate and discuss the SAD function described

above in detail.

Figure 36 The block diagram of the MPEG-4 Encoder Algorithm.

Pre
Processing

Block

Variable
Length
Coding

Input

Motion
Estimation

Motion
Compensation

Output
Texture
Coding

SADN original previous–
i j,

N

∑=

64

3.10.1 Kernel of motion estimation in the MPEG-4 encoding algorithm

The code kernel for this application is the motion estimation algorithm. There have been many

motion estimation algorithm implementations, which usually trade-off precision for computation

load. A full search algorithm for the motion vector exhibiting the least distortion between the cur-

rent object frame and reference frame is the most computationally expensive, however, it pro-

duces the most accurate motion vector and, hence, the most efficient compression ratios. The

dynamic clock cycle breakdown for this application is shown in Figure 37.

The implementation of the MPEG-4 decoder used in this study uses the log-search algorithm

and the distortion function shown below. There are four distinct searches that are used in the log-

search implementation.

MPEG4 Encoder

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

32-bit Fixed-Width VLIW

C
lo

ck
 C

yc
le

s

pix_abs16x16_y2
pix_abs16x16_x2
pix_abs16x16_xy2
pix_abs16x16
App Without Kernel

Figure 37 The kernel of the MPEG4 Encoder algorithm accounts for 92% of clock
cycles during a typical execution.

92%

65

The code structure of the first kernel, which is the most significant during execution, is shown

in Figure 38. The operation lies within a single for loop body. The operations performed are the

sum of absolute differences, which requires subtracting two 8-bit values, finding the absolute

value of the result and adding it to a 32-bit accumulator. The upper bound of the for-loop is data

dependent and unknown. The instructions within the body of the loop have true dependence (read

after write) and an output dependence (write after write) between the variable s and itself in sub-

sequent instructions. The subtraction operations are parallel and independent.

int pix_abs16x16_c(UINT8 *pix1, UINT8 *pix2, int line_size, int h)
{
 int s, i;

 s = 0;
 for(i=0;i<h;i++) {
 s += abs(pix1[0] - pix2[0]);
 s += abs(pix1[1] - pix2[1]);
 s += abs(pix1[2] - pix2[2]);
 s += abs(pix1[3] - pix2[3]);
 s += abs(pix1[4] - pix2[4]);
 s += abs(pix1[5] - pix2[5]);
 s += abs(pix1[6] - pix2[6]);
 s += abs(pix1[7] - pix2[7]);
 s += abs(pix1[8] - pix2[8]);
 s += abs(pix1[9] - pix2[9]);
 s += abs(pix1[10] - pix2[10]);
 s += abs(pix1[11] - pix2[11]);
 s += abs(pix1[12] - pix2[12]);
 s += abs(pix1[13] - pix2[13]);
 s += abs(pix1[14] - pix2[14]);
 s += abs(pix1[15] - pix2[15]);
 pix1 += line_size;
 pix2 += line_size;
 }
 return s;
}

53%
of application
clock cycles

is spent in this
function

Figure 38 The code of the pix_abs16x16 kernel of the MPEG-4 Encoder Algorithm.

66

The code for the second kernel, pix_abs16x16_xy2 is shown below in Figure 39. It is very

similar to the code of the first kernel, however, before the subtraction operation, the average of

four 8-bit values is calculated.

The code for the third kernel, pix_abs16x16_x2 is shown below in Figure 40. It is similar to

the code in the first kernel. However, before the subtraction, the average of two 8-bit values is

performed.

int pix_abs16x16_xy2_c(UINT8 *pix1, UINT8 *pix2, int line_size, int h)
{
 int s, i;
 UINT8 *pix3 = pix2 + line_size;

 s = 0;
 for(i=0;i<h;i++) {
 s += abs(pix1[0] - avg4(pix2[0], pix2[1], pix3[0], pix3[1]));
 s += abs(pix1[1] - avg4(pix2[1], pix2[2], pix3[1], pix3[2]));
 s += abs(pix1[2] - avg4(pix2[2], pix2[3], pix3[2], pix3[3]));
 s += abs(pix1[3] - avg4(pix2[3], pix2[4], pix3[3], pix3[4]));
 s += abs(pix1[4] - avg4(pix2[4], pix2[5], pix3[4], pix3[5]));
 s += abs(pix1[5] - avg4(pix2[5], pix2[6], pix3[5], pix3[6]));
 s += abs(pix1[6] - avg4(pix2[6], pix2[7], pix3[6], pix3[7]));
 s += abs(pix1[7] - avg4(pix2[7], pix2[8], pix3[7], pix3[8]));
 s += abs(pix1[8] - avg4(pix2[8], pix2[9], pix3[8], pix3[9]));
 s += abs(pix1[9] - avg4(pix2[9], pix2[10], pix3[9], pix3[10]));
 s += abs(pix1[10] - avg4(pix2[10], pix2[11], pix3[10], pix3[11]));
 s += abs(pix1[11] - avg4(pix2[11], pix2[12], pix3[11], pix3[12]));
 s += abs(pix1[12] - avg4(pix2[12], pix2[13], pix3[12], pix3[13]));
 s += abs(pix1[13] - avg4(pix2[13], pix2[14], pix3[13], pix3[14]));
 s += abs(pix1[14] - avg4(pix2[14], pix2[15], pix3[14], pix3[15]));
 s += abs(pix1[15] - avg4(pix2[15], pix2[16], pix3[15], pix3[16]));
 pix1 += line_size;
 pix2 += line_size;
 pix3 += line_size;
 }
 return s;
}

24%
of application
clock cycles

is spent in this
function

Figure 39 The code of the pix_abs16x16_xy2 kernel of the MPEG-4 Encoder.

int pix_abs16x16_x2_c(UINT8 *pix1, UINT8 *pix2, int line_size, int h)
{
 int s, i;

 s = 0;
 for(i=0;i<h;i++) {
 s += abs(pix1[0] - avg2(pix2[0], pix2[1]));
 s += abs(pix1[1] - avg2(pix2[1], pix2[2]));
 s += abs(pix1[2] - avg2(pix2[2], pix2[3]));
 s += abs(pix1[3] - avg2(pix2[3], pix2[4]));
 s += abs(pix1[4] - avg2(pix2[4], pix2[5]));
 s += abs(pix1[5] - avg2(pix2[5], pix2[6]));
 s += abs(pix1[6] - avg2(pix2[6], pix2[7]));
 s += abs(pix1[7] - avg2(pix2[7], pix2[8]));
 s += abs(pix1[8] - avg2(pix2[8], pix2[9]));
 s += abs(pix1[9] - avg2(pix2[9], pix2[10]));
 s += abs(pix1[10] - avg2(pix2[10], pix2[11]));
 s += abs(pix1[11] - avg2(pix2[11], pix2[12]));
 s += abs(pix1[12] - avg2(pix2[12], pix2[13]));
 s += abs(pix1[13] - avg2(pix2[13], pix2[14]));
 s += abs(pix1[14] - avg2(pix2[14], pix2[15]));
 s += abs(pix1[15] - avg2(pix2[15], pix2[16]));
 pix1 += line_size;
 pix2 += line_size;
 }
 return s;
}

8%
of application
clock cycles

is spent in this
function

Figure 40 The code of the pix_abs16x16_x2 kernel of the MPEG-4 Encoder.

67

Finally, the code for the fourth kernel, pix_abs16x16_y2 is shown below in Figure 41. The

computation is the sum of absolute difference between two 8-bit values which is added into a 32-

bit accumulator.

As shown, these kernels exhibit a lot of parallelism. All the average operations are indepen-

dent, as are all the subtraction operations. There is a true dependence between each average oper-

ation and each subtraction. There is a true dependence and an output dependence between the

accumulator s and itself in subsequent instructions. The upper bound of the loop is data dependent

and unknown.

int pix_abs16x16_y2_c(UINT8 *pix1, UINT8 *pix2, int line_size, int h)
{
 int s, i;
 UINT8 *pix3 = pix2 + line_size;

 s = 0;
 for(i=0;i<h;i++) {
 s += abs(pix1[0] - avg2(pix2[0], pix3[0]));
 s += abs(pix1[1] - avg2(pix2[1], pix3[1]));
 s += abs(pix1[2] - avg2(pix2[2], pix3[2]));
 s += abs(pix1[3] - avg2(pix2[3], pix3[3]));
 s += abs(pix1[4] - avg2(pix2[4], pix3[4]));
 s += abs(pix1[5] - avg2(pix2[5], pix3[5]));
 s += abs(pix1[6] - avg2(pix2[6], pix3[6]));
 s += abs(pix1[7] - avg2(pix2[7], pix3[7]));
 s += abs(pix1[8] - avg2(pix2[8], pix3[8]));
 s += abs(pix1[9] - avg2(pix2[9], pix3[9]));
 s += abs(pix1[10] - avg2(pix2[10], pix3[10]));
 s += abs(pix1[11] - avg2(pix2[11], pix3[11]));
 s += abs(pix1[12] - avg2(pix2[12], pix3[12]));
 s += abs(pix1[13] - avg2(pix2[13], pix3[13]));
 s += abs(pix1[14] - avg2(pix2[14], pix3[14]));
 s += abs(pix1[15] - avg2(pix2[15], pix3[15]));
 pix1 += line_size;
 pix2 += line_size;
 pix3 += line_size;
 }
 return s;
}

8%
of application
clock cycles

is spent in this
function

Figure 41 The code of the pix_abs16x16_y2 kernel of the MPEG-4 Encoder.

68

The dynamic instruction distribution for the SAD distortion computation between two 16x16

pixel macroblocks executing on a fixed width (32-bit) VLIW processor with register file of size

64, 4 integer ALUs, and 2 memory units is shown in the Figure 42.

Figure 42 The dynamic instruction breakdown of functions pix_abs16x16 and
pix_abs16x16_xy2 of the MPEG-4 Encoder Kernel

MPEG4 Encoder Kernel
pix_abs16x16

load
20%

store
10%

ialu
47%

falu
0%

branch
20%

cmpp
3%

MPEG4 Encoder Kernel
pix_abs16x16_xy2

load
24%

store
16%ialu

52%

falu
0%

branch
7%

cmpp
1%

69

The dynamic instruction distribution for the SAD distortion computation between two 16x16

pixel macroblocks executing on a fixed width (32-bit) VLIW processor with register file of size

64, 4 integer ALUs, and 2 memory units is shown in the Figure 43.

The instruction breakdown of all four kernels are very similar to one another. There is a large

percentage of loads/stores, however, the kernels do load the pixel values but do not store anything

but the overall result. Hence, we hypothesize that due to register pressure on the 64 registers in the

register file, many registers need to be reused causing a large number of stores. Furthermore, the

significant percentage of branch instructions are due to the if-statements within and abs operation.

Finally, close to 50% of all operations are integer ALU for all four kernels.

Figure 43 The dynamic instruction breakdown of functions pix_abs16x16_x2
and pix_abs16x16_y2 of the MPEG-4 Encoder Kernel

MPEG4 Encoder Kernel
pix_abs16x16_x2

load
23%

store
14%

ialu
50%

falu
0%

branch
11%

cmpp
2%

MPEG4 Encoder Kernel
pix_abs16x16_y2

load
23%

store
14%

ialu
50%

falu
0%

branch
11%

cmpp
2%

70

3.11 CHARACTERIZATION SUMMARY OF MULTIMEDIA KERNELS

The characteristics of the kernels of the nine representative applications chosen and analyzed in

the previous sections are summarized in Table 5. As was discussed above, many of these kernels

consist of a single or nested loops, where some have known bounds.

Table 5 Characteristics of the multimedia kernels

Application Kernels Data
Type

Control
Flow

Data
Dependence

GSM Encoder Calculation of LTP 16-bit
32-bit

Simple (single for loop) Simple (output & true
dependences)

GSM Decoder Short Term Synthesis 16-bit
32-bit

Complex (nested loops) Complex (true depen-
dence)

PEGWIT
Encryption

gfAddMul
gfMultiply

16-bit
32-bit

very complex (nested
loops with unknown
upper bounds)

true dependence
inter-loop dependence

PEGWIT
Encryption

gfAddMul
gfMultiply

16-bit
32-bit

very complex (nested
loops with unknown
upper bounds)

true dependence
inter-loop dependence

ADPCM
Encoder

adpcm_coder 8-bit
16-bit
32-bit

complex (single for loop
with unknown upper
bound and many if-state-
ments)

true dependence
inter-loop dependence

ADPCM
Decoder

adpcm_decoder 8-bit
16-bit
32-bit

complex (single for loop
with unknown upper
bound and many if-state-
ments)

true dependence
inter-loop dependence

MPEG-2
Encoder

dist1 8-bit
32-bit

simple (single for loop
with known upper
bound)

true dependence
output dependence

MPEG-2
Decoder

idctcol
idctrow

8-bit
32-bit

simple (single for loop
with known upper
bound)

true dependence

MPEG-4
Encoder

pix_abs16x16
pix_abs16x16_xy2
pix_abs16x16_x2
pix_abs16x16_y2

8-bit
32-bit

simple (single for loop
with known upper bound
and many if-statements)

Complex (unknown loop
bounds output depen-
dence, true dependence)

71

The body of the loops are either free of control-flow, or have some if-statements. Some loop

bodies, such as the PEGWIT kernels, have very complex control-flow. The compiler is capable of

optimizing the loops with apparent parallelism. The complex loops pose a challenge.

The majority of the data dependence between the operations in the loop bodies is of the true

dependence (read after write) and output dependence type (write after write). Where the result of

one operation is a source operand in a subsequent instruction.

The data-types of operands within the loop bodies are mostly a mix between 8-bit, 16-bit and

32-bit operands. Where 32-bit operands account for the accumulators used in most loops. This

mix of operands strengthens the need for the ability to perform different operations on different

operand sizes concurrently.

Finally, the instruction breakdown is quite similar between most kernels except for ADPCM

where there are more branch instructions than integer alu instructions.

In the next chapter, we specify architectural designs of the datapath based on these character-

istics in order to construct a datapath that can target these applications effectively.

72

4.0 PROPOSED ARCHITECTURE

In this chapter we present the reasoning justifying a subword VLIW datapath as an adequate solu-

tion for executing the multimedia applications examined in the previous chapter.

As discussed in Chapter 2.0, to carefully design a processing system that targets media appli-

cations, the complete chain, from the application implementation to the capability of the compiler

technology and the underlying processor architecture, should be examined. General purpose

applications are typically implemented using high-level programming languages which are plat-

form independent. Therefore, to gain better performance, we can attempt to design new compiler

techniques and more effective processor architectures. However, these designs cannot depend

entirely on hardware specific alterations that have to be made to the high-level implementation of

general purpose applications.

With that in mind, and since the majority of the dynamic cycles of general purpose processors

are spent on media applications, we take the results of the analysis performed in Chapter 3.0 to

design a new and effective solution for general purpose processing.

We commence with evaluating the architectural requirements of media applications. Then we

discuss the general VLIW architecture by presenting a classical fixed-width VLIW datapath and

present its benefits as well as limitations when targeting general purpose applications and exam-

ine the important role of the compiler in VLIW architectures. Finally, we present our extensions

to the classical VLIW architecture to achieve a MIMD subword VLIW datapath and discuss how

these extensions match the requirements of media applications.

73

4.1 ARCHITECTURAL REQUIREMENTS OF MULTIMEDIA APPLICATIONS

To enable the effective execution of real-time multimedia applications, given the characteristics

summarized in Section 3.11, we itemize the architectural requirements that closely satisfy the

specified characteristics as follows:

First, the code kernels of multimedia applications consist of regular control structures that can

be statically analyzed and scheduled by a compiler. An example from the GSM compression ker-

nel, is shown below in Figure 44.

The for loop has known bounds which the compiler can normalize and then optimize stati-

cally. Therefore, since the control structure of these code segments is visible to the compiler, a

simple control mechanism around the datapath will suffice. This eliminates the overhead paid in

complex control techniques that analyze the code dynamically.

Second, the computation performed in the code kernels is intensive, as seen in the kernel of

the MPEG-2 decoder (Figures 33 and 34) and, hence, a powerful mix of operations is required to

allow effective execution of these kernels. Furthermore, we can achieve substantial performance

gains through media specific instructions. The primary operations in the motion estimation kernel

for (lambda = 40; lambda <= 120; lambda++) {

define STEP(k) (wt[k] * dp[k - lambda])

L_result = STEP(0) ; L_result += STEP(1) ;
L_result += STEP(2) ; L_result += STEP(3) ;
[...] code deleted for brevity
L_result += STEP(38) ; L_result += STEP(39) ;

if (L_result > L_max) {

Nc = lambda;
L_max = L_result;

}
}

Figure 44 The control flow from the GSM kernel.

74

of the MPEG-4 decoder consists of finding the average of 2 or 4 operands as well as the sum of

absolute differences (SAD) between 2 operands (Figures 39 and 40).

Third, the input and output data sets are large and streaming in nature. A data element is read

once, processed and stored. Streaming data exhibits very little temporal locality as shown in the

GSM decode kernel below in Figure 45.

Therefore, a high bandwidth streaming memory interface that can bypass the cache memories

is desirable. Further, special on-chip stream-based buffer structures, similar to the streaming reg-

ister buffers in the Imagine processor(51), that hold data before and after processing is required.

Fourth, the code kernels are inherently parallel. An example from the motion estimation ker-

nel is shown in Figure 46 below. As seen, the instructions in the for loop have an output depen-

dence (write after write). However, the compiler can easily transform this code and yield

independent instructions. Hence, the data path should have the capability of processing the data in

a parallel fashion to allow concurrent execution on independent functional units.

Fifth, the execution is performed on variable precision, or subword, data. An example is

shown in Figure 46. Both pix1 and pix2 arrays are unsigned 8-bit integers. Therefore, the proces-

sor must be capable of subword data transfer, storage and processing. This enables efficient use of

memory bandwidth and functional units, the latter also decreases the amount of power dissipated

by the processor.

register word* wt,/* [0..k-1]IN*/
register word* sr/* [0..k-1]OUT*/

while (k--) {
sri = *wt++;
for (i = 8; i--;) {

tmp1 = rrp[i];
tmp2 = v[i];

tmp2 = GSM_MULT_R(tmp1, tmp2);
sri = GSM_SUB(sri, tmp2);
tmp1 = GSM_MULT_R(tmp1, sri);
v[i+1] = GSM_ADD(v[i], tmp1);

}
*sr++ = v[0] = sri;

}

Figure 45 The streaming nature of the GSM Decompression Kernel.

75

These general architectural characteristics are necessary in order to achieve large data

throughput by the processor to effectively target multimedia applications. The proposed subword

VLIW architecture takes into consideration the architectural requirements presented above.

Before we present the proposed architecture, we first present the characteristics of a classical

VLIW architecture and discuss its benefits as well as its drawbacks. We then argue that a VLIW

architecture is a good match to the architectural requirements listed above.

4.2 VLIW ARCHITECTURE

The VLIW architecture(30,31,32,53) offers concurrent execution through a simple and flexible exe-

cution model. The premise behind this architecture is that the compiler is capable of effectively

analyzing an application statically in order to extract the available parallelism and target the avail-

able hardware resources. Hence, such an architecture does not require complex hardware tech-

niques to dynamically perform this task. A typical VLIW architecture is shown in Figure 47. It

consists of a memory interface, a multiported register file and several independent pipelined func-

tional units. All operations to be simultaneously executed by the functional units are synchronized

int pix_abs16x16_c(UINT8 *pix1, UINT8 *pix2, int line_size, int h)
{
 int s, i;

 s = 0;
 for(i=0;i<h;i++) {
 s += abs(pix1[0] - pix2[0]);
 s += abs(pix1[1] - pix2[1]);
 s += abs(pix1[2] - pix2[2]);
 s += abs(pix1[3] - pix2[3]);
 s += abs(pix1[4] - pix2[4]);
 s += abs(pix1[5] - pix2[5]);
 s += abs(pix1[6] - pix2[6]);
 s += abs(pix1[7] - pix2[7]);
 s += abs(pix1[8] - pix2[8]);
 s += abs(pix1[9] - pix2[9]);
 s += abs(pix1[10] - pix2[10]);
 s += abs(pix1[11] - pix2[11]);
 s += abs(pix1[12] - pix2[12]);
 s += abs(pix1[13] - pix2[13]);
 s += abs(pix1[14] - pix2[14]);
 s += abs(pix1[15] - pix2[15]);
 pix1 += line_size;
 pix2 += line_size;
 }
 return s;
}

Figure 46 In the motion estimation kernel of the MPEG-4 encoder, the operations
are independent, the operands are 8-bits.

76

in a VLIW instruction. The instruction parallelism and data transfer is completely specified stati-

cally, at compile time.

In a VLIW architecture, the flexibility in concurrent execution extends the types of parallel-

ism to be identified and exploited by the compiler. The extent of exploitable parallelism is depen-

dent on the mix of operations available in the hardware resources to the compiler while building

the VLIW instruction. Given an application, the compiler analyzes it through control-flow and

data-flow analysis. The compiler then transforms the application in order to highlight possibilities

for parallel execution. Finally, given the underlying hardware, the compiler maps the sequential

instructions onto the datapath (Figure 48), scheduling as many instructions in parallel as resources

and data-dependence allows. Therefore, the success of this architecture depends primarily on the

effectiveness of the compiler in extracting the available parallelism in the application and sched-

uling the instruction execution in a fashion that makes use of all the parallelism available in hard-

ware. This is achieved by profiling the execution of the application to reveal the dynamic

behavior.

The compiler explicitly encodes the parallelism in long instructions. Therefore, a VLIW pro-

cessor does not incur the overhead of hardware support required to detect parallelism dynami-

cally. However, due to the lack of such dynamic techniques, VLIW architectures do not promise

load/
store

FP
Unit

Int
Unit

Int
Unit

Register File

Main
Memory

Figure 47 A typical VLIW architecture.

Memory
Interface

77

high performance on applications with a complex control structure that is data (value) dependent.

In other words, if static compiler analysis cannot extract parallelism from the application, then the

performance gains are limited. Further, VLIW architectures suffer from limited binary compati-

bility across processor generations, although some techniques overcome this limitation, full per-

formance gains require recompilation of the code to better target the new processor generation.

The VLIW architecture is a close match to several of the execution characteristics of multime-

dia applications. Since these applications have regular control structures, the compiler can effec-

tively analyze them and achieve fast execution through the low overhead execution datapath.

Further, the pipelined functional units, equipped with a powerful instruction set, can satisfy the

compute intensive computation required by multimedia applications. Finally, the limited execu-

tion restrictions allows a greater flexibility in the types of parallelism that a VLIW can target. The

flexibility in the architecture is extended to the compiler and eases the path to more powerful

exploitation of parallelism and good targetability.

An example of a fixed-width VLIW datapath is illustrated in Figure 49. The datapath is 128

bits wide, consisting of four 32-bit fixed width registers and functional units. This MIMD datap-

Subword Operations

Figure 48 An example of constructing a sequence of VLIW instructions.

A = B + C;

D = E * F;

L = M + N;

R = P + Q;

G = A - D;

Compiler
A=B+C D=E*F

Architecture:
1 mult FU, 2 add FUs

L=M+N

R=P+Q G=A-D NOP

Sequence of VLIW instructions

Application

VLIW2

VLIW1

78

ath can be described as 128-bits wide; has an instruction mix of 4, meaning it can perform four

different instruction concurrently; and has a throughput of 4, meaning it produces 4 distinct

results. The throughput measure is an important measure of performance and instruction mix is an

important attribute This description is used in the next subsection to compare this datapath to a

subword VLIW datapath.

Although a classical VLIW architecture satisfies some of the media requirements, it does not

fully address the architectural requirements of multimedia applications, particularly because it

does not incorporate subword execution and streaming memory access. In the next section, we

discuss how to extend the above VLIW architecture in order to achieve an execution engine that

closely matches all the multimedia execution requirements.

Figure 49 An example of the datapath of a general purpose VLIW microprocessor.

src1

src2

dest

0127

0127

+

0127

*& -

79

4.3 A SUBWORD MIMD VLIW DATAPATH

A VLIW architecture offers many desirable features, however, to better target the architectural

requirements specified in Section 4.1, the following enhancements are required.

Since we are targeting streaming applications, it is essential that the memory interface effec-

tively deliver streaming data to the processor. Specifically, we need a high bandwidth interface

that transfers streaming data from and to memory. Furthermore, stream-based on-chip data buffers

that store and deliver the data to the functional units are required.

As shown in Chapter 3.0 and discussed in section 4.1, media applications perform many oper-

ations on subword operands. Subword operands are 8-bits (char) and 16-bits (short). Hence, in

order to use the processor real estate more effectively, subword compatibility in the datapath

should be enabled in all functional units, register files, streaming buffers and the memory inter-

face. Furthermore, compared to fixed-width datapaths, subword datapaths increase the ability to

perform concurrent execution. This flexibility enables the compiler to achieve shorter schedules

which translate into better performance.

A rich and general subword instruction set is required. Many general operations are already

available in most fixed-width VLIW architectures and must be extended to target subword opera-

tions. Furthermore, introducing several specialized media centric operations, that replace a

sequence of several instructions, within the datapath is beneficial.

In this thesis, we do evaluate the benefits of enabling subword computation in the datapath.

However, we do not study the effects of employing a high bandwidth streaming memory interface

nor do we evaluate the performance benefits of including media-centric operations. We leave this

study to a future time as discussed in the Future Work section.

80

An example of a general purpose processor employing a subword MIMD VLIW datapath is

shown in Figure 50. The subword extensions are limited only to the integer units and register file.

We evaluate the efficacy of this datapath at targeting multimedia applications.

With a subword datapath, the compiler has access to more hardware resources when schedul-

ing the execution of a sequence of instructions. As illustrated in Figure 48, when the compiler tar-

gets a fixed-width datapath, it must schedule the execution of a subword operation on a wider

register and functional unit. However, we can see in Figure 51 that the compiler can schedule

more concurrent execution now that more hardware resources are available in a subword datap-

ath.

An example block diagram depicting an instance of the variable-width subword MIMD

VLIW datapath is illustrated in Figure 52. The datapath is 128 bits wide, consisting of four 8, 16,

or 32-bit variable width registers and functional units. This subword MIMD datapath can be

described as 128-bits wide; has a maximum instruction mix of 16, meaning it can perform up to

load/
store

Sub-

Unit

FP
Unit

Multi-ported Subword Register File

Main
Memory

Figure 50 A VLIW processor with support for subword execution in the datapath.

Memory
Interface word

Int
Sub-

Unit

word
Int

81

16 different instructions concurrently when performing 8-bit operations; and has a maximum

throughput of 16, meaning it is capable of producing 16 distinct results.

A = B + C;

D = E * F;

L = M + N;

R = P + Q;

G = A - D;

Figure 51 An example of constructing a sequence of subword VLIW instructions.

Compiler
A=B+C D=E*F

Subword Architecture:
1 mult FU, 2 add FUs

L=M+NR=P+Q

G=A-D NOP

Sequence of subword VLIW instructions

Application

VLIW2

VLIW1

NOP

Subword Operations

Figure 52 An example of a Subword MIMD VLIW datapath which provides
increased execution flexibility to the compiler.

0127

0127

+

0127

& +- * ^

src1

src2

dest

*

82

Hence, our hypothesis is that an augmented subword VLIW processor coupled with a sub-

word targeting VLIW compiler is a suitable match to executing multimedia application kernels

and can achieve high performance through shorter schedules or increased parallel execution on

available data while incurring low overhead.

Next, we compare the throughput and instruction mix measures with a fixed-width VLIW

datapath as well as a variable-width subword SIMD datapath.

4.3.1 Datapath Comparison

A subword SIMD datapath issues a single instruction that is executed on several data operands.

An example block diagram depicting an instance of the variable-width subword SIMD datapath is

illustrated in Figure 53. The datapath is 128 bits wide, consisting of four 8, 16, or 32-bit variable

width registers and functional units. This subword SIMD datapath can be described as 128-bits

wide; has a maximum instruction mix of 1, meaning it can only perform a single instruction at

once; and has a maximum throughput of 16, meaning it is capable of producing 16 distinct results.

Figure 53 A n example configuration of Subword SIMD datapath which presents
limited execution flexibility to the compiler.

0127

0127

+ + + +

0127

+ + + +

src1

src2

dest

83

The subword SIMD datapath provides parallel execution of subword data, however, it can

only perform a single operation on all the subword data in parallel. The benefits of such an archi-

tecture are limited control overhead as well as small die area usage. The drawbacks, however, are

that the compiler cannot automatically schedule non-SIMD implementations of media applica-

tions onto a SIMD datapath.

In Figure 54, we compare the flexibility and throughput of each of the three datapath architec-

tures discussed. All three datapaths are 128-bits wide, the fixed-width MIMD datapath, offers

limited instruction flexibility and limited throughput. The MIMD subword datapath offers a lot of

flexibility and a lot of throughput, when performing operations on 8-bit operands. The SIMD sub-

word datapath offers a lot of throughput but with extremely limited flexibility.

Datapath Comparison

0

2

4

6

8

10

12

14

16

fixed-width MIMD subword MIMD subword SIMD

Datapaths (128-bits wide)

Throughput
Instruction mix

Figure 54 Comparing the maximum throughput and instruction mix in three 128-bit
datapaths.

84

The SIMD subword datapath conserves die-area by executing a single operation on several

operands in order to offer parallel execution. This trade-off seriously limits the ability of the com-

piler to achieve efficient schedules when targeting a SIMD datapath.

An example of scheduling a code segment on the three discussed architectures, fixed-width

MIMD VLIW, subword-MIMD VLIW and subword-SIMD is presented in Figure 55.

This scheduling example highlights the characteristics of the three datapath architectures. The

code segment includes four independent operations, two additions of 8-bit variables, an addition

of 16-bit variables, a subtraction of 16-bit variables and a multiplication of 16-bit variables. Only

two operations can be scheduled concurrently on the fixed-width datapath. The two 8-bit addition

operations can be scheduled on one of the subword-SIMD ALUs since SIMD requires operations

to be of the same precision in order to execute concurrently on an ALU. Hence, the 16-bit addi-

tion operation can be scheduled to execute on the other ALU in parallel. This requires the 16-bit

multiplication operation and the 16-bit subtraction operation to be scheduled subsequent to the

a = a+b c = c+d

ALU1

Figure 55 Scheduling a code segment on three datapaths, a fixed-width MIMD VLIW, a
subword SIMD and subword MIMD VLIW.

e = e+f x = y*z

{
char a,b,c,d;
short e,f,g,h;
short x,y,z;

a = a+b;
c = c+d;
e = e+f;
g = g-h;
x = y*z;

}

a = a+b e = e+fc = c+d

x = y*z g = g-h

a = a+b e = e+fc = c+d g = g-h

Fixed-width MIMD
VLIW Datapath:

Subword SIMD
Datapath:

Subword MIMD
VLIW Datapath:

Scheduling a code segment
on two, 32-bit ALUs

ALU2

32-bit32-bit

g = g-h nop

x = y*z

85

execution of the addition operations. However, all the operations can be scheduled concurrently

on the subword-MIMD VLIW datapath, since it is capable of concurrently executing operations

of different precision on the same ALU as well as different types of operations on the same ALU.

The subword MIMD datapath offers a lot of flexibility as well as a lot of parallelism, however,

there is a high die-area cost associated with this design. In the next section we discuss the archi-

tectural support required to achieve a subword MIMD datapath.

4.3.2 Architectural Parameters of a Subword VLIW Datapath

The architectural support required to extend a fixed-width MIMD VLIW datapath into a subword

MIMD VLIW datapath are the following:

• Variable width Functional Units; Modular 8-bit functional units that can be pro-
grammed to perform computation on variable width (8,16 and 32-bit) operands. The 8-
bit operations within modular units can be combined to perform a 32-bit operation. A
carry skip adder can be used using four 8-bit adder modules. A 32-bit*32-bit Wallace
Tree multiplier can be extended to support four 8-bit*8-bit multiply operations and two
16-bit*16-bit multiply operations with a 10% increase in die area cost(55).

• Subword register files; Modular multiported 8-bit register file, with enough ports to
match the number of functional units.

These general architectural characteristics are necessary in order to achieve large data

throughput through the processor to effectively target multimedia applications. The die area cost

associated with the above design is important and is discussed next.

We evaluate the die-area cost of a 32-bit fixed-width MIMD VLIW datapath and compare it to

the cost of extending this datapath to a subword MIMD datapath that is capable of performing

operations on 8, 16 and 32-bit operands. The design of the fixed-width datapath is shown in Fig-

ure 56.

86

The fixed-width 32-bit datapath consists of four 32-bit functional units, two 32-bit load/store

units, and a 16-port 64x32-bit registers. Based on a study that performs VLSI modeling of designs

of different processor components at 0.25um technology(56), we deduce that the area required by a

multiported register file is substantial. Based on designs of ALUs and multipliers(56,57,58), using

the same technology, we list the die-area cost of the functional units in Table 6.

The subword datapath, shown in Figure 57, consists of sixteen 8-bit functional units, two 32-

bit load/store units, and a 64-port 256x8-bit register file.

Based on the literature, the 64-port 256 8-bit register file will be significantly larger than that

of the fixed-width, on the order of 5 to 10 times its size. However, there are several approaches

that resolve this problem be employing multiple register files with reduced number of ports. Fur-

ther, several effective scheduling techniques have been developed to target this architecture.

Table 6 Die area for the fixed-width functional units

Module Width Area (mm2)

ALU 32-bit 0.6 (x4)

Multiplier 32-bit*32-bit 9 (x4)

Total 38.4

Int
Unit

Figure 56 A fixed-width VLIW datapath.

16-port 64x32-bit Register File

Int
Unit

Int
Unit

Int
Unit

load/
store

load/
store

to Memory
Interface 32-bit

87

Based on designs of ALUs and multipliers(56,57,58), and the fact that a Wallace Tree multiplier

extended to support subword multiplication grows in size by 10%(55), we illustrate the die-area

cost of the functional units in Table 7.

The subword functional units require 14% more die area than the fixed-width datapath. Need-

less to say, there are other factors that might contribute to increased die area such as busses and

control lines.

In the following chapter, we present the compiler and architecture simulator infrastructure.

Also, we present the methodology used to evaluate the effectiveness of a subword MIMD VLIW

at executing multimedia applications.

Table 7 Die area for the subword functional units

Module Width Area (mm2)

ALU 8-bit 0.26 (x16)

Multiplier four 8-bit*8-bit
two 16-bit*16-bit
one 32-bit*32-bit

9.9 (x4)

Total 43.76

Figure 57 A fixed-width VLIW datapath.

64-port 256 8-bit Register File

load/
store

load/
store

to Memory
Interface 8-bit

123416

32-bit

15

88

5.0 COMPILER FRAMEWORK AND EXPERIMENTAL

METHODOLOGY

In order to perform our analysis, we need a compiler that can extract the parallelism within the

multimedia applications and target the architectures defined above. Also, a simulation engine that

is capable of simulating the execution of the compiled applications onto the architectures speci-

fied in the previous section are required. The Trimaran(59) compiler infrastructure enables us to

perform the required analysis and evaluation.

5.1 THE TRIMARAN FRAMEWORK

Trimaran is a compilation, simulation and monitoring infrastructure. It was developed by a con-

sortium from the Impact Research Group at University of Illinois at Urbana Champaign, the Com-

piler and Architecture Research Group at Hewlett Packard Laboratories and Center for Research

on Embedded Systems and Technology (CREST) at the Georgia Institute of Technology. (CREST

was the ReaCT-ILP Laboratory at New York University). It consists of three parts, the front-end

machine independent compiler, Impact(60), the back-end machine targeting compiler, Elcor(61)

and the system simulation engine(59). We first discuss the compiler specifications, capabilities,

and limitations and then move on to describe the simulation engine.

5.1.1 Compiler Support

The front-end compiler, Impact, performs program analysis and transformation that requires

high level program structure information. The Impact compiler performs all the classical program

optimizations. It also has the capability of performing more aggressive transformations, such as

89

loop unrolling, predicated execution(62), basic block, superblock(63) and hyperblock(64) forma-

tion. The following optimization paths can be invoked:

• Basic block: The Impact front-end compiler performs the classical optimizations.
Then, Elcor, the back-end compiler, performs Loop Region Formation, Modulo Sched-
uling, Rotating register allocation, Pre-pass scheduling, Register allocation and Post-
pass scheduling. Trimaran offers documentation on each segment of the infrastructure
at (59).

• Superblock: The Impact front-end performs superblock formation using profile infor-
mation and classical optimizations. The back-end performs Superblock scheduling,
Loop region formation, Modulo Scheduling, Rotating register allocation, Pre-pass
scheduling, Register allocation and Post-pass scheduling.

• Hyperblock: The Impact front-end performs hyperblock formation, predicated execu-
tion, loop unrolling and classical optimizations. The back-end performs Hyperblock
scheduling, Loop region formation, Modulo Scheduling, Rotating register allocation,
Pre-pass scheduling, Register allocation, and Post-pass scheduling.

Identifying basic blocks is the result of conventional control-flow analysis to generate code

blocks containing a sequence of instructions that are surrounded by branches. Superblock forma-

Basic block Hyperblock
• profiling
• predication

Superblock:
• profiling

Figure 58 Machine independent code transformations in Trimaran.

90

tion uses profiling information to transform a frequently taken path through the code into a con-

tiguous portion of code called a superblock. An example is shown in Figure 58, the frequently

executed red basic blocks are transformed into a single superblock. In case the predicted path in

the superblock is not taken, the compiler generates clean up code to recover from that situation.

Hyperblock formation is more aggressive, it uses profiling information as well as if-conversion,

which is enabled by predicated execution, to remove all the control-flow of a frequently executed

segment of code and generates a single hyperblock encompassing all the instructions. Predicated

execution allows the results of the valid operations to be committed, while those of the specula-

tive operations are discarded.

These techniques perform program transformations based on profile information that aim at

increasing the amount of parallelism visible to the back end compiler, Elcor.

Elcor, is a retargetable compiler back-end that uses a machine-description language, Play-

Doh(67,68,69) (HPL-PD), to customize the optimizations, transformations and code generation to

the specific processor specified by its description. This compiler makes queries to a machine-

description database (mdes), which provides the processor information needed by the compiler.

The compiler can be retargeted to different processors by changing the contents of this database.

These processors may vary widely, by changing the:

• Functional Units: number of functional units, their pipeline structure and latencies;

• Operations: the set of opcodes that each functional unit can execute;

• Data Types: the set of data types required;

• Storage: the number of register files, the number of registers in each register file;

• Interconnect: register file accessibility from the various functional units and the bus-
ing structure between the register files and the functional units; and

91

• I/O: the number of channels to external memory.

Although these processor descriptions could be varied in mdes, Elcor, in its current state, does

not allow the user to vary all of the above variables. For example, Elcor hardcodes the set of

opcodes that it can target, hence, even if a new set of opcodes can be specified within mdes, Elcor

does not make use of them. However, even with Elcor’s current limitations, we are able to study

and target the architecture specified in Chapter 4.0.

In order to perform this study, we need a powerful compiler that can exploit the parallelism

provided by the subword datapath. Fortunately, Elcor is equipped with very aggressive optimiza-

tion, scheduling and register allocation techniques which are suitable for the analysis we perform.

Besides program transformation, machine dependent optimizations and register allocation, the

biggest responsibility of a back-end compiler is to produce the best schedule possible. Elcor

achieves that by performing specific superblock and hyperblock scheduling as well as Modulo

Scheduling(65,66) on counted loops. Modulo scheduling is a software pipelining technique which

moves operations from future loop iterations, and, hence, overlaps the execution of different iter-

ations of a loop.

5.1.2 Simulation Engine

The simulator uses the HPL-PD processor description, it transforms the Elcor intermediate repre-

sentation of a function into low-level C code. This code is then linked with a library that consists

of the HPL-PD virtual machine. It is basically an interpreter and a set of emulation routines from

the HPL-PD virtual machine. On every procedure entry, the interpreter is invoked and it emulates

the instruction stream until the procedure returns. There is one emulation function for each HPL-

PD operation.

Therefore, for each application, code is generated as an executable that emulates the execution

of the machine specified using HPL-PD. Furthermore, the executable is instrumented to generate

92

several execution statistics of interest. We primarily collect the execution time, in clock cycles,

that each function consumed.

5.2 METHODOLOGY

Execution performance of an application depends on several factors: first, algorithm design and

implementation; second, the effectiveness of the compiler optimizations and code generation; and

third, the underlying processor and system architecture. Since we are performing this datapath

performance evaluation for general purpose applications, we need to ignore the impact on perfor-

mance that major algorithmic changes can have. We assume a single design and implementation

of an algorithm.

Our goal is to evaluate the performance of a subword MIMD VLIW datapath at executing an

application’s time-dominant kernels and loop structures that exhibit large degrees of parallelism,

as presented in Chapter 3.0. We compare this performance to the performance of a fixed-width

VLIW datapath. We employ a wide VLIW datapath as the subword MIMD datapath and execute

only the kernel code, which includes most of the subword operations, on this datapath. This is per-

formed to limit the effect of employing a wide VLIW datapath on the remaining portion of the

application.

Further, we examine the performance benefits gained from using aggressive code transforma-

tion techniques to extract parallelism hindered by control-flow. Specifically, we evaluate the

effectiveness of hyperblock formation.

Finally, we perform simple high-level code transformations to the kernels in order to reveal

more parallelism that the compiler is unable to extract at its current state. We argue that the code

transformations performed are very simple and that they do not constitute major algorithmic

changes and can easily be automated by a compiler.

93

5.2.1 Experimental Setup

For each application discussed in Chapter 3.0, we perform four experiments. First, we execute the

application on a fixed-width datapath to identify the code kernels of the multimedia applications.

The architecture is a basic VLIW processor. The application is compiled and executed on the

fixed-width processor using a fixed input data set. Using the execution statistics gathered by the

simulator, the time-dominating functions or kernels of the application are identified and the over-

all clock cycle count is recorded. This experiment is considered the base case, the performance

results of all subsequent experiments are compared to it.

Second, these kernels are then compiled to target the subword-VLIW datapath being evalu-

ated. We choose two specific sets of optimization paths through the front-end and back-end com-

pilers. The significant difference in code transformations take place at the front-end of the

compiler, where the high-level program structure is very visible and hence can be exploited.

Hence, we evaluate the efficacy of a subword VLIW datapath at executing the kernel portion of

the application compiled using basic block formation. This result is compared against the base

case discussed above. Third. aggressive compiler techniques are enabled and evaluated. Namely,

hyperblock formation. The result is also compared to the base case.

Fourth, A series of simple code transformations are performed on the loops inside the kernels.

Transformations such as, loop unrolling, embedding temporaries, simple code motion. These are

performed only when we observe that the compiler should have taken advantage of parallel exe-

94

cution within the loop, however, it can not due to compiler constraint parameters. These four

experiments are listed in Table 8.

In the next chapter, we carry out the four experiments specified above using the applications

presented in Chapter 3.0.

Table 8 The experiments performed.

Experiments Datapath Compiler

Base Case, 32-bit fixed-width Datapath 64 Registers
4 Functional Units
2 Load/Store Units

Basic Block

Performance evaluation of 8-bit subword
Datapath

256 Registers
16 Functional Units
2 Load/Store Units

Basic Block

Performance Impact when utilizing a subword
datapath and aggressive compiler techniques

256 Registers
16 Functional Units
2 Load/Store Units

Hyperblock

Performance Impact when utilizing a subword
datapath and aggressive compiler techniques
and simple high-level code transformations.

256 Registers
16 Functional Units
2 Load/Store Units

Hyperblock +
code transfor-

mations

95

6.0 EXPERIMENTAL ANALYSIS

In this chapter we discuss the performance analysis of the execution of the multimedia kernels

discussed in Chapter 3.0 on the variable width VLIW datapath. We also compare the performance

of this datapath to a classical VLIW datapath. Our hypothesis is that a subword VLIW processor

is able to achieve high throughput when targeting multimedia applications compared to a fixed-

width VLIW processor.

In this chapter we present the experiments performed, report the results of our simulations and

discuss their outcome. We evaluate the efficacy of the architectures presented in Chapter 3.0 at

executing nine multimedia based applications, encoding and decoding a stream of audio using the

GSM(70); encryption and decryption using the PEGWIT(70) algorithm; encoding and decoding an

audio stream using ADPCM(70); encoding and decoding a video stream using the MPEG-2(70)

decompression algorithm; and finally, encoding a video stream using MPEG-4. All these algo-

rithms are part of the MediaBench(70) and MediaBenchII benchmark suites.

We chose these algorithms in order to capture a wide range of multimedia applications by

evaluating speech, encryption, audio and video based applications.

6.1 KERNEL ANALYSIS AND TRANSFORMATIONS

6.1.1 Kernel of the GSM Encoder

The GSM Encoder has a highly parallel kernel, however, it does include true data dependences

and output dependences in the loop body. We anticipate the compiler to overcome the limitations

due to these dependences and exploit most of the available parallelism.

96

We execute this application on the fixed-width 32-bit VLIW datapath, and on a subword VLIW

datapath. For this initial test, we do not utilize any aggressive compiler techniques to extract par-

allelism by performing code transformations. This allows us to evaluate the ability of classical

compiler techniques to take advantage of more hardware resources when targeting the subword

datapath. The results are shown in Figure 59.

As expected, the compiler removed most of the data dependences in this kernel by using tem-

porary variables to store the results of the multiplications which are then summed with all the

other 40 multiplications. This compiler technique increased the amount of parallelism in the ker-

nel. Executing the kernel on a subword VLIW datapath, the GSM Encoder application was speed

up by a factor of 3.51.

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

GSM Encoder

Calculate LTP
App without Kernel

3.51x

Figure 59 The performance comparison of fixed-width VLIW vs. subword VLIW
for the GSM Encoder kernel.

97

Next, we evaluate the ability of aggressive compiler code transformations to highlight more

parallelism in the kernel. We employ hyperblock formation in the compiler and compare the result

to the base case as shown in Figure 60.

As can be observed, hyperblock formation further improved the performance and increased

the speedup to 4.73. For this application, the compiler was capable of exploiting most of the avail-

able parallelism. When we implemented simple code transformations on the kernel we did not

record any further speedups when executing this application on a subword-VLIW datapath.

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

GSM Encoder

Calculate LTP
App without Kernel

4.73x

Figure 60 The performance impact on the GSM Encoder after enabling
aggressive compiler techniques.

98

6.1.2 Kernel of the GSM Decoder

The kernel for the GSM decoder algorithm was identified in section 3.3. As observed, the GSM

decoder spends 70% of all dynamic execute cycles in a single function, which is the short term fil-

tering synthesis required to reproduce the original speech signal.

The code structure of this kernel was discussed in detail in section 3.3. In summary, the con-

trol flow is a pair of nested for loops where the upper bound of the nested loop is known while

that of the outer loop is input dependent. There exists a true dependence between every instruction

inside the nested loop as well as inter-loop iteration direct data dependence. Hence, this kernel

does not exhibit a lot of parallelism which limits the opportunity for parallel execution.

99

We perform the base case simulation on a fixed-width datapath. Also, we execute this kernel

on the subword datapath with minimal compiler optimizations and observe the results in Figure

61.

As expected, the simple compiler techniques are not able to extract parallelism from the ker-

nel due to the nested loop structure and the extensive dependence in the loop body. Therefore, in

the next simulation, we compile the application and enable hyperblock code transformations

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

GSM Decoder

Short term synthesis
App without Kernel

1x

Figure 61 The performance comparison of using a fixed-width datapath to a
subword datapath.

100

which overcomes control-flow limitations by performing code speculation using predication. The

result compared to the base case is shown in Figure 62.

The compiler is capable of extracting some parallelism and achieving a speedup of 1.29.

In order to take advantage of the parallel execution modules available within the subword

VLIW datapath, we must first highlight and extract some parallelism from the kernel. In order to

accomplish this task, we employ simple code transformations of the kernel and evaluate their

impact on performance.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

GSM Decoder

Short term synthesis
App without Kernel

1.29x

Figure 62 The performance impact on enabling aggressive compiler techniques.

101

Since the upper bound of the nested loop is known, we simply unroll the inner loop in order to

highlight any resulting independent inter-loop operations. The resulting body of the kernel is

shown below:

 while (k--) {
 sri = *wt++;

 /* iteration #1 */
 tmp1_7 = rrp[7];
 tmp2_7 = v[7];
 tmp2_7 = GSM_MULT_R(tmp1_7, tmp2_7);
 sri = GSM_SUB(sri, tmp2_7);
 tmp1_7 = GSM_MULT_R(tmp1_7, sri);
 v[8] = GSM_ADD(v[7], tmp1_7);

 /* iteration #2 */
 tmp1_6 = rrp[6];
 tmp2_6 = v[6];
 tmp2_6 = GSM_MULT_R(tmp1_6, tmp2_6);
 sri = GSM_SUB(sri, tmp2_6);
 tmp1_6 = GSM_MULT_R(tmp1_6, sri);
 v[7] = GSM_ADD(v[6], tmp1_6);

 /* iteration #3 */
 tmp1_5 = rrp[5];
 tmp2_5 = v[5];
 tmp2_5 = GSM_MULT_R(tmp1_5, tmp2_5);
 sri = GSM_SUB(sri, tmp2_5);
 tmp1_5 = GSM_MULT_R(tmp1_5, sri);
 v[6] = GSM_ADD(v[5], tmp1_5);

 /* iteration #4 */
 tmp1_4 = rrp[4];
 tmp2_4 = v[4];
 tmp2_4 = GSM_MULT_R(tmp1_4, tmp2_4);
 sri = GSM_SUB(sri, tmp2_4);
 tmp1_4 = GSM_MULT_R(tmp1_4, sri);
 v[5] = GSM_ADD(v[4], tmp1_4);

 /* iteration #5 */
 tmp1_3 = rrp[3];
 tmp2_3 = v[3];
 tmp2_3 = GSM_MULT_R(tmp1_3, tmp2_3);
 sri = GSM_SUB(sri, tmp2_3);
 tmp1_3 = GSM_MULT_R(tmp1_3, sri);
 v[4] = GSM_ADD(v[3], tmp1_3);

 /* iteration #6 */
 tmp1_2 = rrp[2];
 tmp2_2 = v[2];
 tmp2_2 = GSM_MULT_R(tmp1_2, tmp2_2);
 sri = GSM_SUB(sri, tmp2_2);
 tmp1_2 = GSM_MULT_R(tmp1_2, sri);
 v[3] = GSM_ADD(v[2], tmp1_2);

 /* iteration #7 */
 tmp1_1 = rrp[1];
 tmp2_1 = v[1];
 tmp2_1 = GSM_MULT_R(tmp1_1, tmp2_1);
 sri = GSM_SUB(sri, tmp2_1);
 tmp1_1 = GSM_MULT_R(tmp1_1, sri);
 v[2] = GSM_ADD(v[1], tmp1_1);

/* iteration #8 */
 tmp1_0 = rrp[0];
 tmp2_0 = v[0];
 tmp2_0 = GSM_MULT_R(tmp1_0, tmp2_0);
 sri = GSM_SUB(sri, tmp2_0);
 tmp1_0 = GSM_MULT_R(tmp1_0, sri);
 v[1] = GSM_ADD(v[0], tmp1_0);

 *sr++ = v[0] = sri;
 }

Figure 63 The body of the loop after performing a simple unroll of the inner loop.

102

The performance results of performing loop unrolling is shown in Figure 64. As expected, the

aggressive compiler transformations already unrolled the loop and took advantage of the parallel-

ism that became apparent. That is why we do not gain any additional speedups due to this code

transformation.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

GSM Decoder

Short term synthesis
App without Kernel

1.29x

Figure 64 The performance impact on performing loop unrolling on the inner
loop.

103

In order to extract even more parallelism, we introduce temporary variables to hold intermedi-

ate results and then perform data dependence analysis to identify more independent operations

within the kernel. The resulting body of the pipelined kernel is shown below:

In order to compare the performance of the base version of the kernel to the unrolled and the

pipelined versions of the kernel, we compile the application using different optimization paths,

basic block, and hyper block. Further we simulate the execution of the resulting kernel on a sub-

tmp1_7 = rrp[7];
tmp1_6 = rrp[6];
tmp1_5 = rrp[5];
tmp1_4 = rrp[4];
tmp1_3 = rrp[3];
tmp1_2 = rrp[2];
tmp1_1 = rrp[1];
tmp1_0 = rrp[0];
while (k--) {

 sri = *wt++;

 tmp2_7 = v[7];tmp2_6 = v[6];tmp2_5 = v[5];tmp2_4 = v[4];tmp2_3 = v[3];
 tmp2_2 = v[2];tmp2_1 = v[1];tmp2_0 = v[0];

 tmp2_7 = GSM_MULT_R(tmp1_7,tmp2_7); tmp2_6 = GSM_MULT_R(tmp1_6,tmp2_6);
 tmp2_5 = GSM_MULT_R(tmp1_5, tmp2_5);
 tmp2_4 = GSM_MULT_R(tmp1_4,tmp2_4); tmp2_3 = GSM_MULT_R(tmp1_3,tmp2_3);
 tmp2_2 = GSM_MULT_R(tmp1_2, tmp2_2);
 tmp2_1 = GSM_MULT_R(tmp1_1, tmp2_1); tmp2_0 = GSM_MULT_R(tmp1_0, tmp2_0);

 sri_7 = GSM_SUB(sri, tmp2_7); /* iteration #1 */

 tmp1_7 = GSM_MULT_R(tmp1_7, sri_7); /* iteration #1 */
 sri_6 = GSM_SUB(sri_7, tmp2_6); /* iteration #2 */

 v[8] = GSM_ADD(v[7], tmp1_7); /* iteration #1 */
 tmp1_6 = GSM_MULT_R(tmp1_6, sri_6); /* iteration #2 */
 sri_5 = GSM_SUB(sri_6, tmp2_5); /* iteration #3 */

 v[7] = GSM_ADD(v[6], tmp1_6); /* iteration #2 */
 tmp1_5 = GSM_MULT_R(tmp1_5, sri_5); /* iteration #3 */
 sri_4 = GSM_SUB(sri_5, tmp2_4); /* iteration #4 */

 v[6] = GSM_ADD(v[5], tmp1_5); /* iteration #3 */
 tmp1_4 = GSM_MULT_R(tmp1_4, sri_4); /* iteration #4 */
 sri_3 = GSM_SUB(sri_4, tmp2_3); /* iteration #5 */

 v[5] = GSM_ADD(v[4], tmp1_4); /* iteration #4 */
 tmp1_3 = GSM_MULT_R(tmp1_3, sri_3); /* iteration #5 */
 sri_2 = GSM_SUB(sri_3, tmp2_2); /* iteration #6 */

 v[4] = GSM_ADD(v[3], tmp1_3); /* iteration #5 */
 tmp1_2 = GSM_MULT_R(tmp1_2, sri_2); /* iteration #6 */
 sri_1 = GSM_SUB(sri_2, tmp2_1); /* iteration #7 */

 v[3] = GSM_ADD(v[2], tmp1_2); /* iteration #6 */
 tmp1_1 = GSM_MULT_R(tmp1_1, sri_1); /* iteration #7 */
 sri_0 = GSM_SUB(sri_1, tmp2_0); /* iteration #8 */

 v[2] = GSM_ADD(v[1], tmp1_1); /* iteration #7 */
 tmp1_0 = GSM_MULT_R(tmp1_0, sri_0); /* iteration #8 */

 v[1] = GSM_ADD(v[0], tmp1_0); /* iteration #8 */

 *sr++ = v[0] = sri_0;
 }

Figure 65 The body of the loop, after unrolling, moving loop invariant code and
pipelining the unrolled loop.

104

word VLIW machine with register file of size 256, 16 integer ALUs, and 2 memory units. The

performance results of the above transformation is shown in Figure 66.

The code transformations proved extremely useful at easing the level of data-dependence.

Due to these transformations, the performance speedup increased to a factor of 2.1 over the base

case.

6.1.3 Performance Analysis of the PEGWIT Encryption

The kernel of the PEGWIT algorithm consists of two functions. The first performs a Galois Field

(GF) element multiplication and the second performs a GF multiply and add operation. These ker-

nels have been analyzed in section 3.4. The kernels have a complex control-flow structure con-

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

GSM Decoder

Short term synthesis
App without Kernel

2.1x

Figure 66 The performance impact of pipelining on the inner loop.

105

sisting of a series of nested for-loops and if-statements. Further, the bodies of these nested

structures contain a single operation. This limits the chances for parallel execution.

For the PEGWIT encryption algorithm, we anticipate little speedup due to the complex con-

trol structure in the nested loops as well as the data dependences. We execute this application on

the fixed-width datapath and compare the performance to executing on the subword datapath. The

results are shown in Figure 67.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

PEGW IT Encryption

gfMultip ly
gfAddMul
App without Kernel

-2%

Figure 67 The performance comparison of fixed-width datapath to subword
datapath.

106

As anticipated, the application incurred a slight slowdown using the subword datapath. Next,

we enable the complex compiler code transformations and perform the same experiment on the

subword datapath. The results are shown in Figure 68.

The hyperblock formation optimization managed to extract some parallelism from the appli-

cation in spite of the complex control-structure. The compiler took advantage of the subword

datapath and achieved a speedup of 20% over the base case.

Finally, code transformations that did not include a redesign of the loop structure code in the

kernel did not result in any further speedups. We do not evaluate code transformations that require

altering the implementation of the algorithm under the constraint that we cannot require the devel-

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

PEGWIT Encryption

gfMultiply
gfAddMul
App without Kernel

20%

Figure 68 The performance impact on enabling aggressive compiler techniques.

107

opers to re-implement general purpose applications with intimate knowledge of the underlying

architecture in order to achieve significant speedups.

6.1.4 Performance Analysis of the PEGWIT Decryption

For decryption algorithm, the two kernels are the same ones as the encryption algorithm. The first

performs a Galois Field (GF) element multiplication and the second performs a GF multiply and

add operation.

We perform the base case execution of the application on the fixed-width VLIW datapath and

compare the performance to the subword datapath. The comparison is depicted in Figure 69.

0.00E+00
2.00E+06
4.00E+06
6.00E+06
8.00E+06
1.00E+07
1.20E+07
1.40E+07
1.60E+07
1.80E+07
2.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

PEGWIT Decryption

gfMultiply
gfAddMul
App without Kernel

1x

Figure 69 The performance comparison of executing the decryption algorithm on
a fixed-width datapath and a subword datapath.

108

As expected, due to the complex structure in the kernel code, the compiler without aggressive

code transformations cannot achieve any speedup.

We enable complex compiler transformations and measure the clock cycle count for executing

the pegwit decryption algorithm on the subword datapath. The comparison to the base case is

depicted in Figure 70.

The compiler is capable of extracting some parallelism from the application and better sched-

uling it on the subword datapath. A speedup of 10% is achieved. The speedup is not equivalent to

that of the encryption algorithm since the control flow is data dependent and hence executing dif-

ferent portions of the kernels where little parallelism exists.

0.00E+00
2.00E+06
4.00E+06
6.00E+06
8.00E+06
1.00E+07
1.20E+07
1.40E+07
1.60E+07
1.80E+07
2.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

PEGWIT Decryption

gfMultiply
gfAddMul
App without Kernel

10%

Figure 70 Performance due to employing hyperblock formation in the compiler.

109

6.1.5 Performance Analysis of the ADPCM Encoder

The code structure of the ADPCM kernel is a single loop. The upper loop bound is data dependent

and hence unknown at compile time. We compile and execute this application on the fixed-width

datapath and compare the performance to that of the subword datapath using simple compiler

techniques. The results are depicted in Figure 71.

The compiler is not capable of extracting any parallelism from the loop of the adpcm_coder

kernel when targeting the subword datapath. This resulted in no performance speedup.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

ADPCM Encoder

adpcm_coder
App without Kernel

1x

Figure 71 The performance impact of executing the adpcm application on both
the fixed-width and subword datapaths.

110

However, if we enable more aggressive compiler algorithms, such as hyperblock formation,

the compiler is capable of achieving a better schedule and a speedup of 1.5 as shown in Figure 72.

Figure 72 The performance impact of performing hyperblock formation on the
kernel.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

ADPCM Encoder

adpcm_coder
App without Kernel

1.5x

111

If we perform code transformations and unroll the inner loop once, the compiler is capable of

achieving an even better schedule and a speedup of 1.85 as shown in Figure 73.

6.1.6 Performance Analysis of the ADPCM Decoder

The loop body for the adpcm_decoder kernel is slightly different than the encoder (section 3.7),

however, the complexity is the same. When we compare the performance of compiling and exe-

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

ADPCM Encoder

adpcm_coder
App without Kernel

1.85x

Figure 73 The performance impact of unrolling the inner loop and performing
hyperblock formation on the kernels.

112

cuting this application on the fixed-width datapath and the subword datapath using simple com-

piler transformations and optimization techniques, we do not observe any speedup (Figure 74).

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

ADPCM Decoder

adpcm_decoder
App without Kernel1x

Figure 74 The performance comparison of targeting a fixed-width datapath and
a subword datapath.

113

However, when we allow the compiler to perform aggressive code transformations, hyper-

block formation, it is able to extract enough parallelism and a better schedule to achieve a speedup

of 1.95 compared to the base case. This comparison is depicted in Figure 75.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

ADPCM Decoder

adpcm_decoder
App without Kernel

1.95x

Figure 75 The performance comparison of targeting a fixed-width datapath and
a subword datapath.

114

If we perform simple code transformations, such as unrolling the loop of the adpcm decoder

kernel 4 times, we get an even greater speedup of 2.46 as shown in Figure 76.

Although the loop has inter-loop data dependence, unrolling the loop exposes more opportu-

nity for parallel execution.

6.1.7 Performance Analysis of the MPEG-2 Encoder

The kernel for the MPEG-2 encoder is the motion estimation vector computation. The kernel con-

tains a sequence of four nested loops, where the top loop has been unrolled (section 3.8). We com-

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

ADPCM Decoder

adpcm_decoder
App without Kernel

2.46x

Figure 76 The performance impact of unrolling the inner loop four times and
performing hyperblock formation on the kernels.

115

pile and execute the application on both the fixed-width VLIW datapath and the subword

datapath. The results are shown below in Figure 77.

The simple compiler techniques are not capable of extracting any parallelism in order to

exploit the parallel subword hardware resources in the subword-VLIW datapath.

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG2 Encoder

dist1
App without Kernel1x

Figure 77 The performance comparison of executing the mpeg2 kernel on the
fixed-width datapath and subword datapath.

116

When we enable the hyperblock formation algorithm in the compiler, it is then capable of

exploiting more parallelism and achieving shorter schedules. This is interpreted through the

speedup of 1.38 shown in Figure 78.

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG2 Encoder

dist1
App without Kernel

1.38x

Figure 78 The performance impact due to enabling hyperblock formation when
targeting the subword datapath.

117

When we perform code transformations by unrolling the three inner loops of motion estima-

tion we observe (Figure 79) a slight increase in speedup to 1.41. This is due to the fact that the

aggressive compiler techniques are already performing similar transformations and hence the

minimal increase in speedup.

6.1.8 Performance Analysis of the MPEG-2 Decoder

The code kernel is the fast IDCT algorithm, a two dimensional inverse discrete cosine transform

(section 3.9). When we compile and execute the kernel of this application using standard optimi-

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG2 Encoder

dist1
App without Kernel

1.41x

Figure 79 The performance benefit due to loop unrolling.

118

zation methods, on both the fixed-width datapath and subword datapath, we observe a speedup of

1.68 (Figure 80).

These two kernels do not require advanced compilation techniques for the compiler to extract

some parallelism and exploit it while scheduling onto the subword-VLIW datapath.

0.00E+00
1.00E+06
2.00E+06
3.00E+06
4.00E+06
5.00E+06
6.00E+06
7.00E+06
8.00E+06
9.00E+06
1.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG2 Decoder

idctrow
idctcol
App without Kernel

1.68x

Figure 80 The performance impact on compiling and executing the application
on the fixed-width datapath and the subword datapath.

119

When we enable advanced compiler techniques, a slight speedup increase to 1.7 is achieved as

shown in Figure 81.

Performing simple code transformations did not result in any further speedups for this kernel.

6.1.9 Performance Analysis of the DIVX Encoder

The kernel for the DIVX encoder algorithm was identified in Section 3.10. The DIVX encoder

spends 88% of all dynamic cycles in 4 small functions, which perform the motion estimation anal-

ysis. As discussed earlier, these four functions constitute the kernel of the DIVX encoder algo-

0.00E+00
1.00E+06
2.00E+06
3.00E+06
4.00E+06
5.00E+06
6.00E+06
7.00E+06
8.00E+06
9.00E+06
1.00E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG2 Decoder

idctrow
idctcol
App without Kernel

1.7x

Figure 81 The performance impact on performing hyperblock formation on the
kernels.

120

rithm. Compiling and executing this application on a fixed width and a subword-VLIW datapath

using simple compiler transformations has shown a speedup of 1.48 (Figure 82).

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG-4 Encoder pix_abs16x16_x2
pix_abs16x16_y2
pix_abs16x16_xy2
pix_abs16x16
App without Kernel

1.48x

Figure 82 The performance impact due to compiling and executing the motion
estimation kernels on the fixed-width datapath and the subword
datapath.

121

Next, we enable hyperblock formation for these kernels and target the subword datapath. We

observe a speedup of 1.61 as shown in Figure 83.

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG-4 Encoder pix_abs16x16_x2
pix_abs16x16_y2
pix_abs16x16_xy2
pix_abs16x16
App without Kernel

1.61x

Figure 83 The performance impact due to compiling and executing the motion
estimation kernels using hyperblock formation on the subword datapath.

122

Finally, we perform code transformations, where we transform all the abs operations to if-

statements and add a few temporary variables in the loop bodies. We compile this kernel using

hyperblock formation and compare the execution results to the base case in Figure 84.

Now that the loop bodies include only if-statements surrounded by other operations, the com-

piler can transform the loop into a single hyperblock by using if-conversion on the if-statements

as well as other optimizations. This speedup of 8.12 is very significant.

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

C
lo

ck
 C

yc
le

s

fixed-width VLIW Subword-VLIW
Datapaths

MPEG-4 Encoder pix_abs16x16_x2
pix_abs16x16_y2
pix_abs16x16_xy2
pix_abs16x16
App without Kernel

8.12x

Figure 84 The performance after simple code transformations and after using
hyperblock formation when targeting the subword datapath.

123

6.2 ANALYSIS OF EXPERIMENTAL RESULTS

In this section, we plot the performance results of the four experiments performed for each appli-

cation.

For the GSM Encoder, the results of all the experiments performed are summarized in Figure

86. This application exhibits a lot of parallelism and, hence, simple compiler techniques are

enough to extract a significant amount of parallelism. Subsequently, this parallelism is then

exploited by targeting the subword VLIW datapath. More complex code transformations lead to

more parallelism and higher speedups. Since the parallelism is explicit in this applications kernel

Figure 85 The relative execution times for the GSM Encoder application.

0.00E+00

5.00E+07

1.00E+08

1.50E+08

2.00E+08

2.50E+08

3.00E+08

3.50E+08

4.00E+08

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW

Subword-
VLIW+HB

Subword-
VLIW+HB+CT

Datapaths

GSM Encoder

Calculation of the LTP

Rest of Application

124

and since there are no control-flow structures within the body of the loop, we conjecture that a

subword-SIMD datapath will perform equally well for this application.

The performance results of the GSM decoder are depicted in Figure 86. This application

exhibits little parallelism and requires an aggressive compiler in order to extract some parallelism

using speculative execution enabled by predicated execution in VLIW processors. Further, perfor-

mance speedup due to simple code transformations indicates that more parallelism exists within

the current implementation of the application and, hence, an opportunity for compiler optimiza-

tions to exploit.

Figure 86 The overall performance speedups for the GSM Decoder application.

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW

Subword-
VLIW+HB

Subword-
VLIW+HB+CT

Datapaths

GSM Decoder

Short term synthesis

Rest of Application

125

It is important to point out that the extraction of parallelism through aggressive compiler

transformations can lead to performance slowdowns if the hardware resources cannot satisfy the

overhead of executing speculative instructions. This behavior is shown in Figure 87, where per-

forming hyperblock formation and code transformations will lead to a significant slowdown when

targeting a fixed-width VLIW datapath.

Figure 87 The performance impact of employing aggressive compiler transformations
when targeting the fixed-width VLIW datapath for the GSM Decoder
application.

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

7.E+07

8.E+07

C
lo

ck
 C

yc
le

s

fixed-width VLIW

fixed-width VLIW+HB

fixed-width VLIW+HB+CT

Subword-VLIW

Subword-VLIW+HB

Subword-VLIW+HB+CT

Datapaths

GSM Decoder
short term synthesis

Rest of Application

126

The kernels of the PEGWIT encryption algorithm proved to be problematic for the compiler

since it was not able to extract a lot of parallelism and achieve significant speedups when target-

ing the subword-VLIW datapath. The relative speedup results are depicted in Figure 88.

The conclusion of the experiments using the PEGWIT decryption application, are similar to

that of the encryption application since the code kernels are the same functions. The functions

include complex control structures with limited opportunities for parallelism for the compiler to

Figure 88 The relative performance speedups for the PEGWIT Encryption application.

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

3.50E+07

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW+HB

Datapaths

PEGWIT Encryption
gfMultiply
gfAddMul
Rest of Application

127

extract and exploit. We achieved our lowest speedup result of 10% for this application, the results

of all the experiments performed are summarized in Figure 89.

The results of all the experiments performed for the ADPCM encoder are shown in Figure 90.

This kernel contains some complex control-flow and data dependence within the loop body, how-

ever, aggressive compiler techniques and code transformations are able to extract some parallel-

ism and exploit the flexibility underlying subword MIMD datapath. This combination of

Figure 89 The relative performance speedups for the PEGWIT Decryption application.

0.00E+00

2.00E+06
4.00E+06

6.00E+06

8.00E+06
1.00E+07

1.20E+07

1.40E+07

1.60E+07
1.80E+07

2.00E+07

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW+HB

Datapaths

PEGWIT Decryption
gfMultiply
gfAddMul
Rest of Application

128

aggressive compiler transformations and flexible datapath is capable of achieving significant

speedups for the adpcm_coder kernel.

Figure 90 The relative performance speedups for the ADPCM Encoder application.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

9.00E+06

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW

Subword-
VLIW+HB

Subword-
VLIW+HB+CT

Datapaths

ADPCM Encoder

adpcm_coder
Rest of Application

129

For the ADPCM decoder, the conclusion of the results is similar to that of the encoder. The

performance for all the experiments done for this application are summarized in Figure 91.

Figure 91 The performance speedups for the ADPCM Decoder application.

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW

Subword-
VLIW+HB

Subword-
VLIW+HB+CT

Datapaths

ADPCM Decoder

adpcm_decoder
Rest of Application

130

The results of all the experiments performed on the MPEG2 encoder are summarized in Fig-

ure 92. Similar to other applications, this kernel also requires the compiler to perform complex

code transformations using speculative execution in order to achieve good speedups.

Figure 92 The performance speedups for the MPEG2 Encoder application.

0.00E+00

2.00E+07

4.00E+07

6.00E+07

8.00E+07

1.00E+08

1.20E+08

1.40E+08

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW

Subword-
VLIW+HB

Subword-
VLIW+HB+CT

Datapaths

MPEG2 Encoder

dist1
Rest of Application

131

The results for the MPEG2 decoder are summarized in Figure 93. This kernel does not require

complex compiler transformations to take advantage of the parallel subword resources in the sub-

word VLIW datapath..

Finally, the results for the four experiments performed using the MPEG4 Decoder application

are shown in 94. Simple code transformations achieve significant speedups, however the anoma-

lous result is that if-conversion within hyperblock formation is not yielding any improvements in

performance. This is due to the fact that the abs function calls are system library calls and hence

the high level code is not available for the compiler to perform code transforms in order to remove

the restrictions of the control-flow within the body of the loop. Once we overcome this restriction

Figure 93 The performance speedups for the MPEG2 Decoder application.

0.00E+00

1.00E+06
2.00E+06

3.00E+06

4.00E+06
5.00E+06

6.00E+06

7.00E+06

8.00E+06
9.00E+06

1.00E+07

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW+HB

Datapaths

MPEG2 Decoder
idctrow
idctcol
Rest of Application

132

by exchanging the abs calls with if-statements within the loop body, the hyperblock code transfor-

mations yielded our best result, a speedup by a factor of 8.12.

6.3 SUMMARY OF EXPERIMENTAL RESULTS

For all the kernels examined, the subword VLIW datapath alone is not enough to achieve signifi-

cant speedups over fixed-width datapath. Aggressive compiler techniques are required to extract

the parallelism in these applications and then schedule them effectively onto the datapath. How-

ever, the MPEG-2 decoder (IDCT) and the GSM encoder did not need any advanced compiler

techniques to achieve a high speedup.

Figure 94 The performance speedups for the MPEG4 Decoder application.

0.00E+00

2.00E+08

4.00E+08

6.00E+08

8.00E+08

1.00E+09

1.20E+09

C
lo

ck
 C

yc
le

s

fixed-width
VLIW

Subword-
VLIW

Subword-
VLIW + HB

Subword-
VLIW + HB +

CT
Datapaths

MPEG-4 Encoder
pix_abs16x16_x2
pix_abs16x16_y2
pix_abs16x16_xy2
pix_abs16x16
Rest of Application

133

In some situations, such as the GSM decoder and the MPEG-4 decoder, the simple code trans-

formations led to a very significant increase in performance.

Table 9 Performance Speedup Summary of the Kernels and Applications

Application Kernels Kernel Speedups
(by a factor of)

Application
Speedups

(by a factor of)

GSM Encoder Calculation of LTP 42.13 4.73

GSM Decoder Short Term Synthesis 4.72 2.23

PEGWIT Encryption gfAddMul
gfMultiply

1.33
(combined kernels)

1.2

PEGWIT Encryption gfAddMul
gfMultiply

1.17
(combined kernels)

1.1

ADPCM Encoder adpcm_coder 2.1 1.85

ADPCM Decoder adpcm_decoder 3.35 2.46

MPEG-2 Encoder dist1 1.59 1.41

MPEG-2 Decoder idctcol
idctrow

5.79
(combined kernels) 1.7

MPEG-4 Encoder pix_abs16x16
pix_abs16x16_xy2
pix_abs16x16_x2
pix_abs16x16_y2

19.65
(combined kernels)

8.12

134

7.0 SUMMARY AND CONCLUSIONS

In this chapter we present a summary of work performed in this dissertation. Following the sum-

mary, we present our conclusions based on the studies performed in the preceding chapters.

7.1 SUMMARY

In this dissertation we have presented the need for an improvement over current solutions at tar-

geting the effective execution of emerging multimedia applications in the domain general purpose

domain. In chapter 2.0, we discussed the benefits and limitations of several approaches, particu-

larly, the SIMD instruction set extensions in general purpose processors. These solutions,

although cost effective, introduce significant implementation restrictions which have limited the

wide spread use of these SIMD instructions.

In Chapter 3.0, we performed a rigorous analysis of multimedia kernels and evaluated their

characteristics, code structures and data-types. These findings are summarized in Table 5.

In Chapter 4.0, we presented a classical VLIW architecture and discussed the manner in

which to extend it to achieve a subword VLIW datapath.

In Chapter 5.0, we presented our compilation and simulation infrastructure that was used to

perform kernel analysis, evaluation of the proposed architecture as well as compilation techniques

and code transformations.

The experimental evaluation and analysis was presented in Chapter 6.0. We evaluated the pro-

posed architecture on nine multimedia applications. Further, we assessed the impact of predicated

execution on performance. Finally, we evaluated the performance benefits of simple code trans-

formations which attempt to highlight more parallelism within the code kernels. The results, sum-

135

marized in Table 9 and shown in Figure 95, present significant speedups for the majority of the

multimedia applications tested.

The arithmetic mean of the speedups achieved over all nine applications is 2.75. The more

conservative geometric mean of the performance speedups across all nine applications is 2.22.

7.2 CONCLUSIONS

A subword VLIW MIMD datapath is a viable solution as an extension of the VLIW programming

paradigm when targeting general purpose multimedia applications. Significant speedups were

Figure 95 The performance speedups for all the applications examined.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

R
el

at
iv

e
Ex

ec
ut

io
n

Ti
m

e

136

achieved due to the flexibility in the datapath which allowed the compiler to better schedule the

optimized kernels. However, a flexible parallel architecture is not enough to achieve good perfor-

mance, a powerful compiler which is capable of performing code transformations to tease apart

the control-flow within the loop bodies is also essential.

Furthermore, we conclude that predicated execution is a very important tool in order to allow

the compiler to extract more parallelism from multimedia kernels. Hyperblock formation

removed many of the control-flow in the loop bodies that was hindering performance. Therefore,

if-conversion enabled by hardware predication is a powerful technique to reveal parallelism in

media applications by performing speculative execution and discarding incorrect results.

Simple code transformations, such as loop unrolling of critical loops, including temporaries to

ease data dependence, substitution of simple functions and code pipelining have lead to increased

parallelism and a boost in performance.

We have shown that subword multimedia kernels can be statically analyzed by a compiler

yielding a large amount of extracted parallelism. However, in order to exploit this extracted paral-

lelism, flexible hardware resources must be available to achieve significant performance gains. A

low overhead MIMD VLIW datapath that supports subword operations is an effective solution.

The number of clock cycles spent executing multimedia applications on general purpose pro-

cessors continues to grow. Dynamic techniques to extract instruction level parallelism (ILP) are

not needed for these applications since enough parallelism can be extracted statically. The over-

head in die area, power dissipation and clock cycles spent performing these dynamic analyses will

prove unwarranted once the percentage of time spent on media applications grows beyond a sen-

sitive threshold.

137

Using SIMD functional units to target multimedia applications in general purpose processors

is not a favorable solution. These designs require low die-area cost and low power dissipation,

however, they suffer from inefficiency due to a restrictive programming paradigm, high data reor-

ganization overhead and lack of automatic techniques to target these units. Further, we conjecture

that if the same experimental procedure was performed targeting a subword-SIMD datapath, sig-

nificant speedups would have been had only for the GSM Encoder algorithm.

A less restrictive MIMD programming model is more suited for media applications and it cap-

italizes on the well developed set of code transformation and optimization to target MIMD sys-

tems. A subword capable MIMD datapath enables effective and efficient execution of multimedia

applications.

138

8.0 FUTURE WORK

There are several interesting studies that can be pursued. First, a cost/performance analysis that

evaluates this paradigm and these applications using performance cost constraints.

Another study involves evaluating the impact on performance from using multiple multi-

ported register files. Large multiported register files require a lot of die area and increase the

access delay.

A direct performance comparison with SIMD architectures is important but it is not straight

forward since there are many parameters that could offset performance. One such parameter is the

compiler tool set used to optimize and then target each datapath type. Second is the simulation

environment that allows precise performance comparison.

After evaluating the characteristics of media applications, we observed that media centric

operations could highly impact performance. An architectural enhancement would utilize new

media centric instructions that collapse several conventional instructions into one and reduce the

number of clock cycles required to perform the complex operation. Examples are instructions

such as sum of absolute differences (SAD) and tree adder to satisfy accumulator arithmetic. This

task requires extending the compiler to understand the new set of special complex operations in

order to utilize them and include them in the scheduling analysis. Adding new operations to the

compiler requires extending all six intermediate representations of the compiler to support the

operations, which is a substantial effort.

The design, evaluation and implementation of a high bandwidth memory interface is worth-

while. An interface that satisfies streaming accesses at minimum address calculation overhead.

Finally, extending the profiling idea into a feedback analysis, where several iterations of com-

pilation and execution are performed to better understand program behavior and hence develop

better and shorter schedules.

139

BIBLIOGRAPHY

1. Kozyrakis, C.E., Patterson, D.A., “A new direction for computer architecture
research,” IEEE Computer, pp. 24-32, November 1998.

2. Diefendorff, K., Dubey, P.K., “How multimedia workloads will change processor
design, “IEEE Computer, pp. 43 - 45, September 1997.

3. R.B., Lee, “Multimedia Extensions for General-Purpose Processors,” Proceedings
of the IEEE SIPS, November 1997.

4. R., Leupers, “Code Selection for Media Processors with SIMD Instructions,” In
the Proceedings of the Conference on Design, Automation and Test in Europe,
March 2000.

5. Conte, T.M., Dubey, P.K., Jennings, M.D., Lee, R.B., Peleg, A., Rathnam, S.,
Schlansker, M., Song, P., Wolfe, A., “Challenges to combining general-purpose
and multimedia processors,” IEEE Computer, pp. 33-37, December 1997.

6. Tremblay, M., Grohoski, G., Burgess, B., Killian, E., Colwell, R., Rubinfeld, P.I.,
“Challenges and Trends in Processor Design,” IEEE Computer, pp. 39-50, January
1998.

7. Deepu Talla and Lizy John, “Execution Characteristics of Multimedia Applica-
tions on a Pentium II Processor,” In Proceedings of the IEEE International Perfor-
mance, Computing and Communications Conference, pages 516-524, 2000.

8. Oberman, S., Favor, G., and Weber, F., “AMD 3DNow! Technology: Architecture
and Implementations,” IEEE Micro, pp. 37-48, March-April 1999.

9. Gwennap, L., “AltiVec Vectorizes PowerPC,” Microprocessor Report, pp. 1,6-9,
May 1998.

10. Peleg, A., Weiser, U., “MMX Technology Extensions to the Intel Architecture,”
IEEE Micro, pp. 42-50, August 1996.

140

11. Thakkar, S., Huff, T., “Internet Streaming SIMD Extensions,” IEEE Computer,
November 1999.

12. Lee, R.B., A.M. Fiskiran and A. Bubshait, “Multimedia Instructions in IA-64,”
Proceedings of ICME 2001 IEEE International Conference on Multimedia and
Expo, August 2001.

13. Carson, D.A., “Multimedia Extensions for a 550MHz RISC Microprocessor,”
IEEE Journal of Solid-State Circuits, 1997.

14. Tremblay, M., O’Connor, M., Narayan, V., He, L., “VIS Speeds New Media Pro-
cessing,” IEEE Micro, pp. 10-20, August 1996.

15. Diefendorff, K., “Sony’s Emotionally Charged Chip,” Microprocessor Report, pp.
1,6-11, April 1999.

16. Oka, M. and Suzukoi, M, “Designing and Programming The Emotion Engine,”
IEEE Micro, pp. 20-28, November-December 1999.

17. Hansen, C., “MicroUnity’s MediaProcessor Architecture,” IEEE Micro, pp. 34-51,
August 1996.

18. Lindholm, E., Kilgard, M.J., Moreton, H., “A User-Programmable Vertex Engine,”
In Proceedings of ACM SIGGRAPH, 12-17 August 2001.

19. Glaskowsky, P.N., “Transmeta Tips the TM6000,” Microprocessor Report, Octo-
ber 2001.

20. F. Jesus Sanchez, Antonio Gonzalez, and Mateo Valero, “Software management of
selective and dual data caches,” IEEE Technical Committee on Computer Architec-
ture Newsletter, March 1997.

21. M. Tomasko, S. Hadjiyiannis, and W. Najjar, “Experimental Evaluation of Array
Caches,” In IEEE Computer Society Technical Committee on Computer Architec-
ture: Special Issue on Distributed Shared Memory and Related Issues, March
1997.

141

22. G. Faanes, “A CMOS Vector Processor with a Custom Streaming Cache,” In Hot
Chips 10, August 1998.

23. P. Ranganathan, S. Adve, and N. P. Jouppi, “Reconfigurable caches and their appli-
cation to media processing,” In Proceedings of the 27th Annual International Sym-
posium on Computer Architecture, June 2000.

24. D. Chiou, P. Jain, L. Rudolph and S. Devadas, "Application-Specific Memory
Management for Embedded Systems Using Software-Controlled Caches," Pro-
ceedings of the 37th Design Automation Conference (DAC'00), June 2000.

25. P. Y. T. Hsu, “Design of the R8000 microprocessor. IEEE Micro,” April 1994.

26. Intel Corporation, “The Intel Itanium 2 Processor, Hardware Developer’s Man-
ual,” Document Number 251109-001, July 2002.

27. R. Cucchiara, M. Piccardi, and A. Prati, "Exploiting cache in multimedia," In the
Proceedings of the IEEE International Conference on Multimedia Computing and
Systems, June 1999.

28. Wawrzynek J., Asanovic K., Kingsbury B., Beck J., Johnson D., and Morgan N.,
"SPERT-II: A Vector Microprocessor System," IEEE Computer, pp. 79-86, March
1996.

29. Asanovic K., Kingsbury B., Irissou B., Beck J., and Wawrzynek J., "T0: A Single-
Chip Vector Microprocessor with Reconfigurable Pipelines," In Proceedings 22nd
European Solid-State Circuits Conference, September, 1996.

30. Fisher, J.A., “A very long instruction word architecture and the ELI-512,” Pro-
ceedings of the 10th Annual International Symposium on Computer Architecture
(ISCA) , Stockholm, 1983.

31. Hwang, K., Advanced Computer Architecture, McGraw-Hill, 1993.

142

32. W G Rudd , Duncan A Buell , Donald M Chiarulli, “A High Performance Factor-
ing Machine”, Proceedings of the 11th Annual International Symposium on Com-
puter Architecture (ISCA), p.297-300, January 1984.

33. Conte, G., Tommisani, S., and Zanichelli, F., “The Long and Winding Road to
High-Performance Image Processing with MMX/SSE,“ In Proceedings of the Fifth
IEEE International Workshop on Computer Architectures for Machine Perception
(CAMP'00), pp. 302-310, Padova, Italy, September, 2000.

34. Talla, D., and Kurian John, L., “Execution Characteristics of Multimedia Applica-
tions on a Pentium II Processor,” In Proceedings of the IEEE International Perfor-
mance, Computing and Communications Conference, pp. 516-524, 2000.

35. Peleg, A., and Weiser, U., “MMX Technology Extension to the Intel Architecture,”
IEEE Micro, Vol.16, No. 4, pp. 42-50, August 1996.

36. Gwennap, L., “Intel’s MMX Speeds Multimedia,” Microprocessor Report, Vol. 10,
No. 3, March 1996.

37. Lempel, O., Peleg, A., and Weiser, U., “Intel’s MMX Technology - A New Instruc-
tion Set Extension,” In Proceedings IEEE COMPCON 97, San Jose, CA, USA,
February, 1997.

38. Diefendorff, K., “Katmai Enhances MMX,” Microprocessor Report, Vol. 12, No.
13, October 1998.

39. D. Talla, L. John, and D. Burger, “Bottlenecks in multimedia processing with
SIMD style extensions and architectural enhancements,” IEEE Transactions on
Computers, pages 35--46, August 2003.

40. Thakkar, S., and Huff, T., “Internet Streaming SIMD Extensions,” IEEE Com-
puter, Vol. 32, No. 12, December 1999.

41. Diefendorff, K., “Pentium III = Pentium II + SSE,” Microprocessor Report, Vol.
13, No. 3, March 1999.

143

42. Bik, A. Girkar, M., Grey, P., and Tian, X., “Effecient Exploitation of Parallelism on
Pentium III and Pentium 4 Processor-Based Systems,” Intel Technology Journal,
Q1, 2001.

43. Hinton, G., Sager, D., Upton, M., Boggs, D., Carmean, D., Kyker, A., and Roussel,
P., “The Microarchitecture of the Pentium 4 Processor,” Intel Technology Journal,
Q1, 2001.

44. Intel Corporation, “IA-32 Intel Architecture Software Developer’s Manual - Vol-
ume 1: Basic Architecture,” Order Number 245470, 2001.

45. Intel Corporation, “IA-32 Intel Architecture Software Developer’s Manual - Vol-
ume 2: Instruction Set Reference,” Order Number 245471, 2001.

46. van Eijndhoven, J.T.J., F. W. Sijstermans, K. A. Vissers, E.- J. D. Pol, M. J. A.
Tromp, P. Struik, R. H. J. Bloks, P. van der Wolf, A. D. Pimentel, and H. P. E.
Vranken, "TriMedia CPU64 Architecture," in International Conference on Com-
puter Design, Austin, Texas, 1999, pp. 586--592.

47. Hitachi, Ltd, Equator Technologies, Inc. “MAP-CA DSP Datasheet,” Document
Number HWR.CA.DS.2001.06.20, June 2001.

48. Hitachi, Ltd, Equator Technologies, Inc. “BSP-15 Processor Datasheet,” Docu-
ment Number HWR.BSP15.DS.REV.H, September 2002.

49. Hayakawa, F.; Okano, H.; Suga, A., “An 8-way VLIW embedded multimedia pro-
cessor with advanced cache mechanism,“ Proceedings of the 2002 IEEE Asia-
Pacific Conference ASIC, August 2002.

50. B. Khailany, W. Dally, U. Kapasi, P. Mattson, J. Namkoong, J. Owens, B. Towles,
A. Chang, and S. Rixner, “Imagine: Media Processing With Streams,” IEEE
Micro, 21(2):35--47, 2001.

51. Ujval J. Kapasi, William J. Dally, Brucek Khailany, John D. Owens, and Scott Rix-
ner, “The Imagine Stream Processor,” In Proceedings of the IEEE International
Conference on Computer Design, September 2002.

144

52. Kozyrakis, C.; Patterson, D, “Vector vs. superscalar and VLIW architectures for
embedded multimedia benchmarks,“ Proceedings. 35th Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO-35), November 2002.

53. Thies, B., Karczmarek, M., and Amarasinghe, M., “StreaMIT: A Language for
Streaming Applications, “ MIT/LCS Technical Memo MIT-LCS-TM-620, August
2001.

54. Hennessy, J.L., and Patterson, D.A., Computer Architecture A Quantitative
Approach, Morgan Kaufmann, 1996.

55. S., Vagnier, H., Essafi, A., Merigot, “Impact of Configurable Processor in Parallel
Architecture for Document Management,“ The 2000 International Conference on
Parallel and Distributed Processing Techniques and Applications (PDPTA'2000),
June 26 - 29, 2000

56. S. Dutta, K.J., O’Connor, W., Wolfe, A., Wolfe, “A Design Study of a .25um Video
Signal Processor,” IEEE Transactions on circuits and sustems for video technoogy,
August 1998.

57. N. Ohkubo, et. al., “A 4.4ns CMOS 54x54-b Multiplier Using Pass-transistor Mul-
tiplexer,” In Proc. of 1994 IEEE Custom Integrated Circuits Conf, 1994.

58. M. Suzuki, et al., “A 1.5ns, 32b CMOS ALU in Double Pass Transistor Logic,” In
Proc. of International Solid State Circuits Conf., 1993.

59. The Trimaran Consortium, http://www.trimaran.org/.

60. August, D.I., Connors, D.A., Mahlke, S.A., Sias, J.W., Crozier, K.M., Cheng, B.C.,
Eaton, P.R., Olaniran, Q.B., and Hwu, W.W., “Integrated Predicated and Specula-
tive Execution in the IMPACT EPIC Archtecture,” Proceedings of the 25th Inter-
national Symposium on Computer Architecture, July 1998.

61. Rau, B.R., Kathail, V., Aditya, S., “Machine-Description Driven Compilers for
EPIC Processors,” HPL Technical Report, HPL-98-40, Hewlett Packard Laborato-
ries, 1998.

145

62. Mahlke, S., Hank, R., McCormick, J., August, D., Hwu, W., “A Comparison of
Full and Partial Predicated Execution Support for ILP Processors,” Proceedings of
the 22nd Annual International Symposium on Computer Architecture, pp. 138-149,
June 1995.

63. Richard E. Hank, Scott A. Mahlke, Roger A. Bringmann, John C. Gyllenhaal, and
Wen-mei W. Hwu, “Superblock Formation Using Static Program Analysis,” Pro-
ceedings of the 26th Annual ACM/IEEE Int’l Symposium on Microarchitecture, pp.
247-256, December 1993.

64. Mahlke, S., Lin, D., Chen, W., Hank. R., Bringmann, R., “Effective Compiler Sup-
port for Predicated Execution Using the Hyperblock,” Proceedings of the 25th
International Symposium on Microarchitecture, pp. 45-54, December 1992.

65. Rau, B.R., “Iterative Modulo Scheduling: An algorithm for software pipelined
loops,” Proceedings of the 27th international Symposium on Microarchitecture,
pp. 63-74, December 1994.

66. Rau, B.R. “Iterative Modulo Scheduling,” International Journal of Parallel Pro-
cessing, pp. 3-64, February 1996.

67. Kathail, V., Schlansker, M., and Rau, B.R., ”HPL-PD Architecture Specification
Version 1.1,” Technical Report HPL-93-80 (R.1). Hewlett-Packard Laboratories,
February 1994 (revised July 1999).

68. Gyllenhaal, J.C., Hwu, W.-m.W., and Rau, B.R., “HMDES Version 2.0 Specifica-
tion,” Technical Report IMPACT-96-3. University of Illinois at Urbana-Cham-
paign, 1996.

69. S. Aditya, V. Kathail and B. R. Rau., “Elcor’s Machine Description System: Ver-
sion 3.0,” HPL Technical Report HPL-98-128, Hewlett-Packard Laboratories, July
1998.

70. Chunho Lee; Potkonjak, M.; Mangione-Smith, W.H., “MediaBench: a tool for
evaluating and synthesizing multimedia and communications systems,” Proceed-

146

ings of Thirtieth Annual IEEE/ACM International Symposium on Microarchitec-
ture, pp. 330-335, 1997.

147

REFERENCES NOT CITED

Rastislav Bodik, “Personal Communication”.

Seth Goldstein, “Personal Communication”.

Randolph Harr, “Personal Communication”.

	1.0 INTRODUCTION
	1.1 PROBLEM STATEMENT
	1.2 STATEMENT OF WORK
	1.3 DISSERTATION ROAD MAP

	2.0 BACKGROUND AND MOTIVATION
	2.1 Current Solutions Targeting Multimedia Applications
	2.2 Multimedia Applications and SIMD ISA Extensions
	Table 1 Instruction Set Extensions by major microprocessor manufacturers

	2.3 Intel’s MMX, SSE and SSE2 ISA Extensions
	Table 2 The incremental introduction of SIMD instructions into the Intel Processors
	2.3.1 The MMX instruction extensions
	Figure 1 New data types introduced with the MMX instruction extensions.
	Table 3 MMX Instruction Set Summary

	2.3.2 Streaming SIMD (SSE) Extensions
	Figure 2 New data types introduced with the SSE instruction extensions.

	2.3.3 SSE2 Extensions
	Figure 3 New data types introduced with the SSE2 instruction extensions.
	Figure 4 The Intel NetBurst microarchitecture 20 stage execution hyper pipeline.

	2.3.4 Limitations of Intel’s Subword SIMD Instruction Extensions

	2.4 Embedded Multimedia Processors
	2.5 Summary of related work

	3.0 CHARACTERISTICS OF MULTIMEDIA APPLICATIONS
	3.1 Kernels of Multimedia Applications
	Table 4 The multimedia domains and nine applications that are analyzed.

	3.2 GSM - Lossy Speech Transcoding Algorithm
	Figure 5 The block diagram of the GSM Encoder and Decoder Algorithm.
	3.2.1 Kernel of the GSM Encoder
	Figure 6 The kernel of the GSM Encoder accounts for 80% of clock cycles during a typical execution.
	Figure 7 The code of the kernel GSM Encoder which calculates the LTP parameters.
	Figure 8 The dynamic instruction breakdown of the GSM Compression Kernel.

	3.3 Speech Decompression using the GSM Decoder
	3.3.1 Kernel of the GSM Decoder
	Figure 9 The kernel of the GSM Decoder accounts for 70% of clock cycles during a typical execution.
	Figure 10 The code of the GSM Decompression Kernel
	Figure 11 The dynamic instruction breakdown of the GSM Decompression Kernel

	3.4 PEGWIT Encryption Algorithm
	3.4.1 Kernel of the PEGWIT Encryption algorithm
	Figure 12 The kernel of the PEGWIT Encryption accounts for 68% of clock cycles during a typical e...
	Figure 13 The code of the gfAddMul Kernel of PEGWIT.
	Figure 14 The code of the gfMultiply Kernel of PEGWIT
	Figure 15 The dynamic instruction breakdown of the Kernels in the PEGWIT Encryption Algorithm.

	3.5 The PEGWIT Decryption Algorithm
	3.5.1 Kernel of the PEGWIT decryption algorithm
	Figure 16 The kernel of the PEGWIT Decryption algorithm accounts for 62% of clock cycles during a...
	Figure 17 The dynamic instruction breakdown of the PEGWIT Decryption Kernels.

	3.6 The ADPCM Encoder Algorithm
	Figure 18 The block diagram of the ADPCM Encoder Algorithm.
	Figure 19 The adpcm_coder kernel of the ADPCM Encoder algorithm accounts for 87% of clock cycles ...
	Figure 20 The code of the adpcm_coder Kernel of the ADPCM Encoder
	Figure 21 The dynamic instruction breakdown of adpcm_coder kernel of ADPCM.

	3.7 The ADPCM Decoder Algorithm
	Figure 22 The block diagram of the ADPCM Decoder Algorithm.
	Figure 23 The adpcm_decoder kernel of the ADPCM Decoder algorithm accounts for 84% of clock cycle...
	Figure 24 The code of the adpcm_decoder Kernel of the ADPCM Decoder.
	Figure 25 The dynamic instruction breakdown of adpcm_coder kernel of ADPCM.

	3.8 The MPEG-2 Encoding Algorithm
	Figure 26 The block diagram of the MPEG-2 Encoder Algorithm.
	Figure 27 The dist1 kernel of the MPEG-2 Encoder algorithm accounts for 79% of clock cycles durin...
	Figure 28 The code of the dist1 Kernel of the MPEG-2 Encoder
	Figure 29 The continuation of the dist1 Kernel of the MPEG-2 Encoder
	Figure 30 The dynamic instruction breakdown of dist1, the MPEG Encoder Kernel

	3.9 The MPEG-2 Decoding Algorithm
	Figure 31 The block diagram of the MPEG-2 Decoder Algorithm.
	3.9.1 Kernel of the MPEG-2 decoding algorithm
	Figure 32 The kernel of the MPEG-2 Decoder algorithm accounts for 50% of clock cycles during a ty...
	Figure 33 The code of the idctcol Kernel of the MPEG-2 Decoder
	Figure 34 The code of the idctrow Kernel of the MPEG-2 Decoder
	Figure 35 The dynamic instruction breakdown of the MPEG Decoding Kernel

	3.10 The MPEG-4 (DivX) Encoder Algorithm
	Figure 36 The block diagram of the MPEG-4 Encoder Algorithm.
	3.10.1 Kernel of motion estimation in the MPEG-4 encoding algorithm
	Figure 37 The kernel of the MPEG4 Encoder algorithm accounts for 92% of clock cycles during a typ...
	Figure 38 The code of the pix_abs16x16 kernel of the MPEG-4 Encoder Algorithm.
	Figure 39 The code of the pix_abs16x16_xy2 kernel of the MPEG-4 Encoder.
	Figure 40 The code of the pix_abs16x16_x2 kernel of the MPEG-4 Encoder.
	Figure 41 The code of the pix_abs16x16_y2 kernel of the MPEG-4 Encoder.
	Figure 42 The dynamic instruction breakdown of functions pix_abs16x16 and pix_abs16x16_xy2 of the...
	Figure 43 The dynamic instruction breakdown of functions pix_abs16x16_x2 and pix_abs16x16_y2 of t...

	3.11 Characterization Summary of Multimedia Kernels
	Table 5 Characteristics of the multimedia kernels

	4.0 PROPOSED ARCHITECTURE
	4.1 Architectural Requirements of Multimedia Applications
	Figure 44 The control flow from the GSM kernel.
	Figure 45 The streaming nature of the GSM Decompression Kernel.
	Figure 46 In the motion estimation kernel of the MPEG-4 encoder, the operations are independent, ...

	4.2 VLIW Architecture
	Figure 47 A typical VLIW architecture.
	Figure 48 An example of constructing a sequence of VLIW instructions.
	Figure 49 An example of the datapath of a general purpose VLIW microprocessor.

	4.3 A Subword MIMD VLIW Datapath
	Figure 50 A VLIW processor with support for subword execution in the datapath.
	Figure 51 An example of constructing a sequence of subword VLIW instructions.
	Figure 52 An example of a Subword MIMD VLIW datapath which provides increased execution flexibili...
	4.3.1 Datapath Comparison
	Figure 53 A n example configuration of Subword SIMD datapath which presents limited execution fle...
	Figure 54 Comparing the maximum throughput and instruction mix in three 128-bit datapaths.
	Figure 55 Scheduling a code segment on three datapaths, a fixed-width MIMD VLIW, a subword SIMD a...

	4.3.2 Architectural Parameters of a Subword VLIW Datapath
	Figure 56 A fixed-width VLIW datapath.
	Table 6 Die area for the fixed-width functional units
	Figure 57 A fixed-width VLIW datapath.
	Table 7 Die area for the subword functional units

	5.0 COMPILER FRAMEWORK AND EXPERIMENTAL METHODOLOGY
	5.1 The Trimaran Framework
	5.1.1 Compiler Support
	Figure 58 Machine independent code transformations in Trimaran.

	5.1.2 Simulation Engine

	5.2 Methodology
	5.2.1 Experimental Setup
	Table 8 The experiments performed.

	6.0 EXPERIMENTAL ANALYSIS
	6.1 Kernel Analysis and Transformations
	6.1.1 Kernel of the GSM Encoder
	Figure 59 The performance comparison of fixed-width VLIW vs. subword VLIW for the GSM Encoder ker...
	Figure 60 The performance impact on the GSM Encoder after enabling aggressive compiler techniques.

	6.1.2 Kernel of the GSM Decoder
	Figure 61 The performance comparison of using a fixed-width datapath to a subword datapath.
	Figure 62 The performance impact on enabling aggressive compiler techniques.
	Figure 63 The body of the loop after performing a simple unroll of the inner loop.
	Figure 64 The performance impact on performing loop unrolling on the inner loop.
	Figure 65 The body of the loop, after unrolling, moving loop invariant code and pipelining the un...
	Figure 66 The performance impact of pipelining on the inner loop.

	6.1.3 Performance Analysis of the PEGWIT Encryption
	Figure 67 The performance comparison of fixed-width datapath to subword datapath.
	Figure 68 The performance impact on enabling aggressive compiler techniques.

	6.1.4 Performance Analysis of the PEGWIT Decryption
	Figure 69 The performance comparison of executing the decryption algorithm on a fixed-width datap...
	Figure 70 Performance due to employing hyperblock formation in the compiler.

	6.1.5 Performance Analysis of the ADPCM Encoder
	Figure 71 The performance impact of executing the adpcm application on both the fixed-width and s...
	Figure 72 The performance impact of performing hyperblock formation on the kernel.
	Figure 73 The performance impact of unrolling the inner loop and performing hyperblock formation ...

	6.1.6 Performance Analysis of the ADPCM Decoder
	Figure 74 The performance comparison of targeting a fixed-width datapath and a subword datapath.
	Figure 75 The performance comparison of targeting a fixed-width datapath and a subword datapath.
	Figure 76 The performance impact of unrolling the inner loop four times and performing hyperblock...

	6.1.7 Performance Analysis of the MPEG-2 Encoder
	Figure 77 The performance comparison of executing the mpeg2 kernel on the fixed-width datapath an...
	Figure 78 The performance impact due to enabling hyperblock formation when targeting the subword ...
	Figure 79 The performance benefit due to loop unrolling.

	6.1.8 Performance Analysis of the MPEG-2 Decoder
	Figure 80 The performance impact on compiling and executing the application on the fixed-width da...
	Figure 81 The performance impact on performing hyperblock formation on the kernels.

	6.1.9 Performance Analysis of the DIVX Encoder
	Figure 82 The performance impact due to compiling and executing the motion estimation kernels on ...
	Figure 83 The performance impact due to compiling and executing the motion estimation kernels usi...
	Figure 84 The performance after simple code transformations and after using hyperblock formation ...

	6.2 Analysis of Experimental Results
	Figure 85 The relative execution times for the GSM Encoder application.
	Figure 86 The overall performance speedups for the GSM Decoder application.
	Figure 87 The performance impact of employing aggressive compiler transformations when targeting ...
	Figure 88 The relative performance speedups for the PEGWIT Encryption application.
	Figure 89 The relative performance speedups for the PEGWIT Decryption application.
	Figure 90 The relative performance speedups for the ADPCM Encoder application.
	Figure 91 The performance speedups for the ADPCM Decoder application.
	Figure 92 The performance speedups for the MPEG2 Encoder application.
	Figure 93 The performance speedups for the MPEG2 Decoder application.
	Figure 94 The performance speedups for the MPEG4 Decoder application.

	6.3 Summary of Experimental Results
	Table 9 Performance Speedup Summary of the Kernels and Applications

	7.0 SUMMARY AND CONCLUSIONS
	7.1 Summary
	Figure 95 The performance speedups for all the applications examined.

	7.2 Conclusions

	8.0 FUTURE WORK

