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 Fractures are the second most common presentation of child abuse, soft tissue injury 

being the most common.  Femurs are the most common long-bone fractured in inflicted injury.  

When a child presents to the emergency department, a clinician must judge if the child’s fracture 

matches the account provided by the caregiver.  An objective tool is needed to aid in the 

assessment of injury plausibility.  Predicting femur fracture strength is key to developing this 

tool.  Immature porcine femurs are widely used to model pediatric human femurs.  This study 

investigated immature porcine femur fracture load, energy to failure and stiffness in three-point 

bending, torsion and axial compression, with and without soft tissue intact and at different 

displacement rates. 

Significant differences exist between three point bending with soft tissue intact (n=6) and 

devoid of soft tissue (n=6) for stiffness (means=1607.9 lbf/in. and 1981.9 lbf/in, respectively, 

p=0.046) and energy to failure (means=36.9 in-lbf and 25.0 in-lbf, respectively, p=0.046).  

Torsion tests show significant differences in the fracture torque between groups tested at 0.167 

degrees/sec (n=7) and 90 degrees/sec (n=7, means=30.69 in-lbf and 46.13 in-lbf, respectively, 

p=0.018).  Axial compression experiments at 0.04 in/sec (n=5) resulted in fracture load, energy 

to failure and stiffness of 273.4 lbf, 70.7 in-lbf and 829.4 lbf/in, respectively, while axial 

compression experiments at 2 in/sec (n=2) resulted in higher fracture loads, energy to failure and 

stiffness (441 lbf, 154.2 in-lbf and 1894 lbf/in, respectively).  



 

 iv

Three-point bending tests resulted in oblique or transverse fractures, torsion and axial 

compression tests resulted in spiral and growth plate fractures, respectively.  Correlations 

between bone mineral density and structure geometry showed promise as a predictive model for 

femur fracture response in all loading mechanisms.  Multivariable regression modeling resulted 

in high R2 values (0.62 – 0.74) for femurs tested with soft tissue intact in three-point bending, but 

low values (0.22 – 0.29) for femurs tested devoid of soft tissue in three-point bending; relatively 

high R2 values (0.66 – 0.78) for fracture torque in torsion and low R2 values (0.22 – 0.47) for 

energy to failure in torsion. Further investigation with a larger sample is needed to reliably 

predict immature femur fracture response. 
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1.0 INTRODUCTION 

Child abuse and neglect is the leading cause of trauma related death in children 4 years of age 

and younger (1).  Every year nearly 2,000 children die, 18,000 become disabled and 150,000 are 

seriously injured in the United States alone (2).  In 1999, over 166,000 cases of physical child 

abuse were identified(1).  In 2002, 896,000 children were victims of abuse and neglect in the 

United States, almost 179,000 suffering physical abuse (3).  The highest rates of abuse and 

neglect occurred in children three years and younger (4).  Children who were victimized are 

three times as likely to be victimized again (2).  

Fractures are the second most common presentation of child abuse and are an indication 

that the child is being subjected to potentially life threatening trauma (1,5).  Long-bone fractures 

have been identified as the most common fracture seen in inflicted injury (6-9). The most 

common long-bone fractured from abusive trauma is the femur (10,11).  Femur fractures in 

children younger than 1 year are highly suspect for abuse (7,12-14).  In fact, 65% of femur 

fractures in children younger than 1 year were the result of abuse (15).  Transverse fractures of 

the femur are one of the most common fractures observed in child abuse cases, occurring 3 to 4 

times as often as the classic metaphyseal fracture in abused children (12,16). 

 Fracture type alone however is not enough to determine whether a femur fracture was 

accidental or caused by inflicted trauma.  Low bone strength can make a fracture caused by an 
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ordinarily benign accident seem dramatic enough to conclude that the injury was inflicted.  An 

objective tool is needed to aid in the assessment of whether a specific femur fracture is the result 

of accidental or inflicted trauma. 

When a child presents to the emergency department (ED), a clinician must make a 

judgment on whether or not the child’s fracture was caused by the account provided by the 

caretaker or if the fracture was a result of abusive circumstances.  Understanding the levels of 

energy and force required to cause a fracture aids in the assessment of whether the fracture is 

compatible with the reported cause. 

 The forces and mechanisms necessary to generate a specific fracture type have not been 

well studied in the pediatric population.  Understanding how the loading mechanism affects 

fracture type and resulting fracture load and fracture energy is critical to aid a clinician in 

determining between whether a fracture may have been caused by accidental and inflicted 

trauma. 

2 

 When an injured child presents to the emergency department, the caregiver provides an 

account explaining how the injury occurred.  The physician must then judge whether the story 

matches the child’s injury.  An objective tool to aid in making this decision would reduce the 

chances of misdiagnosing child abuse (both false positives and false negatives).  This tool would 

consist of determining the load characteristics associated with common falsely reported accidents 

and determining the loads necessary to cause fractures.  If the expected load characteristics of the 

specifically reported fall match the loads required to cause the observed fracture, then the 

physician may conclude that the account of the scenario does match the injury and 

biomechanical compatibility exists.  No further biomechanical investigation is required.  

However, additional aspects of the case must be evaluated to complete the diagnostic process.  If  



 

 

 

3 

the expected loads of the accident scenario do not match the load characteristics of the observed 

fracture, then the physician would pursue a formal comprehensive investigation with children 

and youth services (figure 1-1). 

 
 
 

 

Figure 1-1 Flow chart demonstrating scenario where predicting femur fracture load aids in 
diagnosing child abuse 

 



 

 

2.0 BACKGROUND 

2.1 PREVIOUS RESEARCH 

A predictor of fracture strength, or femur structural capacity, is key to developing a tool to aid 

the clinician in determining whether a fracture was caused by accidental or inflicted trauma.  

When studying any structure (eg. Steel beam, femur), one must consider several factors such as 

the geometry of the structure (eg, the cross sectional area and shape), as well and the material 

which makes up the structure.  Measurements of femoral geometry could be obtained by 

measuring the radiographs taken in two anatomical positions (medial-lateral and antero-

posterior).  An indicator of bone strength, bone mineral density (BMD) can be measured by 

performing dual energy x-ray absorptiometry (DEXA) scans.  DEXA is a technique by which the 

mineral content of a bone is calculated from measuring the absorption of x-rays by the bone.  

BMD measured from a DEXA scan is calculated in grams per square centimeter (areal density 

rather than volumetric).   

In attempting to develop a predictor of femur fracture strength, one must first begin with an 

animal model before proceeding to human tests. Animals have been used extensively when 

investigating long-bone strength (17-21).  Several studies have investigated bone mineral density 

4 



 

(BMD) as a bone strength predictor, and investigated the relation between BMD and bone cross 

sectional area to bone strength.  In these studies, investigators succeeded in correlating mature 

(porcine, bovine, canine and rat) femoral bone strength to the BMD (using DEXA, qCT and 

ultrasound methods) and cross sectional area (17-21).  Both qCT and ultrasound speed of sound 

measurements of BMD have been found to have strong correlations to DEXA measures of BMD 

(17,19). 

 

2.1.1 Bone Mineral Density Deficiency Studies 

 

DEXA scans measure bone mineral content (BMC) and BMD (areal density) which are 

indicators of bone strength (17,22-26).  DEXA scans were performed on frozen femurs dissected 

both with and without soft tissue intact (if specimen was to be tested without soft tissue, it was 

DEXA scanned without soft tissue and vice versa).     

Mice and rats have been used as models of osteogenesis imperfecta and evaluation of the 

effect of diet on bone strength (18,27-29).  Three of these studies utilized DEXA scans for 

measuring bone mineral density and bone mineral content (BMC) when evaluating bone strength 

in three-point bending and found BMD to be a significant indicator of bone strength (18,27,28).   

Saban investigated the strain of mouse that exhibits the osteogenesis imperfecta (oim) 

phenotype.  The mice were grouped by genotype, that is there was a homozygous oim group, a 

homozygous non-oim group and a heterozygous oim group (30).  Femurs of the mice of each 

group were tested in four-point bending at a displacement rate of 0.5 millimeters per minute and 

were shown to have statistical differences between all groups in ultimate load, energy to failure 
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and stiffness (p=0.001), except when comparing the stiffness of the femurs of the heterozygous 

oim  group to the non-oim group (30). 

Calero investigated the effect of BMD (acquired by ultrasound measurements) on 

resistance to torsion (17).  Calero et al. compared the resistance to fractures caused by torsional 

loading in healthy rats with ooforectomized (surgical removal of one or both ovaries) rats in 

order to study the effect of BMD on fractures caused by torsional loading.  Four groups of 12 

week old rats were studies, two groups were controls which were used to compare to the 

ooforectomized rats three weeks after surgery and six weeks after surgery (controls underwent 

surgical trauma but were not ooforectomized).  The rat femurs (n=74) were dissected, analyzed 

by DEXA scans, ultrasound speed of sound measurement and tested to failure in torsion (10 

degrees per minute) (17).  The femurs of each pair of groups showed statistically significant 

differences between DEXA obtained BMD (BMDDEXA), ultrasound speed of sound (SOS) and 

torque to fracture (p=0.001, 0.05 and 0.05 respectively) (17).  This study found correlations 

between BMDDEXA and SOS (r=0.39, p=0.0008) showing that SOS compares well to DEXA 

methods for evaluating BMD; and BMDDEXA and the failure torque of the femur (r=0.31, 

p=0.03), showing that the torque to failure increases as BMD of the femur increases (17). 

Pierce et al. investigated the failure strength of immature porcine femurs (n=22, age: 3 to 

12 months, weight: 3.6 to 7 kg) and their correlation to BMD, BMC and geometric measures 

(inner and outer diameter, length) (1).  Three point bending was performed (n=15) to failure at a 

displacement rate of 1 millimeter per second (1).  Torsion testing to failure was also performed 

(n=7) at displacement rates of 1 degree per second (1).  Three point bending fracture load was 

found to range from 530 N to 1024 N (mean=726 N, SD=138 N) (1).  Torsion fracture torque 

was found to range from 1383 N-mm to 3559 N-mm (mean=2703 N-mm, SD=826 N-mm) (1).  
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Statistical regression was used to determine an empirically derived parameter (BPAR= function 

of BMD, BMC, mass, length, length between growth plates, inner diameter, outer diameter) to 

correlate to failure load, failure moment and energy to failure in bending (r2=0.84, r2=0.92, 

r2=0.88; p<0.001, p<0.00005, p<0.05 respectively) (1). 

 

2.1.2 Effect of Displacement Rate on Fracture Load 
 

 
Another study investigated the relation between BMD and bone longitudinal cross sectional area 

with fracture load in three-point bending of immature porcine femurs and humeri (25).  Koo et 

al. tested the long bones at two different displacement rates (0.1 millimeters per second and 

1millimeters per second) to investigate the effect of displacement rate on fracture load (25).  This 

study utilized DEXA scans to measure BMD but rather than use the bone cross sectional area, 

the investigators used the bone longitudinal cross sectional area (ie. the area of the shadow 

produced by shining a light perpendicular to the axis of the bone) (25).  This study found strong 

correlations between bone mineral density and the energy to failure, moment at failure and 

flexural stiffness for the long bones tested (25).  However, based on engineering principles, 

structural resistance to fracture is more likely related to the cross sectional area of the femur, and 

not the longitudinal bone area. 
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2.2 BEAM THEORY 
 

Though bones are biologic tissue, they can be considered an engineering solid and engineering 

solid mechanics can be applied to the analysis of bone response to loading in various fracture 

modes.  Classic beam theory states that the strength of a solid structure is a function of the cross 

sectional area of the structure (31).  This theory takes on different forms for each mode of 

loading.   

 

2.2.1 Bending 
 

 
In bending, the applicable function of cross sectional area is called the area moment of inertia.  

The area moment of inertia, I, is a measure of a beam’s resistance to bending.  The area moment 

of inertia for hollow rod of concentric circular cross section that can be used to approximate a 

long bone is given in equations 1 and 2 where ro is the outer radius, ri is the inner radius, Do is 

outer diameter and Di is inner diameter (31). 

 

( )44

4 io rrI −=
π   (1) 

or 

( )44

64 io DDI −=
π   (2) 

 

The area moment of inertia can be normalized to the outer radius of the beam resulting in 

equation 3 and 4 (31).  This normalized parameter is called the section modulus, Z. 
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( )44

4 io
o

rr
r

Z −=
π   (3) 

or 

( )44

32 io
o

DD
D

Z −=
π  (4) 

 

2.2.2 Torsion  
 

 
The polar moment of inertia is a measure of a beam’s resistance to torsion.  This is also the case 

with a long bone.  The polar moment of inertia, J, for a hollow rod of concentric circular cross 

section is given in equations 5 and 6 where ro is the outer radius, ri is the inner radius, Do is outer 

diameter and Di is inner diameter (31). 

( )44

2 io rrJ −=
π   (5) 

or 

( )44

32 io DDJ −=
π   (6) 

 

2.2.3 Buckling 
 

 
In axial compressive loading, buckling is what would normally be of concern in traditional beam 

theory.  However, what is typically referred to as a buckle fracture (in bone) is a result of axial 

compression, but not a result of beam buckling, but rather beam compression fracture.  Beam 

buckling states that in an axially compressed beam, the beam will bow out at or near half the 
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length of the beam and cause failure ultimately from the bending that is induced.  In the case of 

immature porcine femurs in axial compression, a buckle or impaction (or compression) fracture 

is what actually results from axial compression testing.  This is because the slenderness ratio of 

the immature porcine femur does not exceed the strength limit for the material and therefore 

should be considered a short column (32).  Mechanics of materials states that the key factors of 

the measure of resistance is the material which constitutes the beam and the cross sectional area 

of the beam (31).  The cross sectional area, CSA, for hollow rod of concentric circular cross 

section is given in equations 7 and 8 where ro is the outer radius, ri is the inner radius, Do is outer 

diameter and Di is inner diameter (31). 

 

( )22
io rrCSA −= π   (7) 

or 

( )22

4 io DDCSA −=
π   (8) 
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3.0 OBJECTIVE AND SPECIFIC AIMS 

3.1 OBJECTIVE 

The objective of this project was to develop an in vitro animal model for predicting pediatric 

femur fracture strength.  This model must account for bone developmental progress.  Towards 

this objective, immature femurs were mechanically tested to various loading conditions (tested 

using different displacement rates and both with and without soft tissue intact).  Relationships 

between fracture strength, stiffness, strain energy to failure and bone geometry, bone mineral 

content (BMC) and bone mineral density (BMD) were also investigated. 

3.2 SPECIFIC AIMS 

Specific Aim #1: Investigate the effect of loading rate on fracture load, stiffness and strain 

energy to failure of immature porcine femurs. 
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Hypothesis #1: Faster loading rates will increase the fracture load, stiffness and strain 

energy to failure.  

Specific Aim #2: Investigate the effect of soft tissue presence on fracture load, stiffness and 

strain energy to failure of immature porcine femurs. 

Hypothesis #2: The presence of soft tissue will have no effect on the stiffness or fracture 

load while increasing the strain energy to failure. 

Specific Aim #3: Develop a model for predicting the fracture load, stiffness and strain 

energy to failure of immature porcine femurs based on BMC and BMD 

data from DEXA scans and bone geometry measured from radiographs. 

Hypothesis #3: Femur fracture load and strain energy to failure will be correlated with 

DEXA and radiograph data. 
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4.0 METHODS 

Immature porcine femurs were tested in three loading mechanisms, three point bending, torsion 

and axial compression.  Femurs tested in three point bending were divided into two groups: 

femurs tested with soft tissue intact (n=6) and femurs tested devoid of soft tissue (n=6).  Both 

groups tested in three point bending were tested at a displacement rate of 2 inches per second.  

Femurs tested in torsion were separated into two groups as well: femurs tested at a displacement 

rate of 0.167 degrees per second (n=7) and femurs tested at a displacement rate of 90 degrees per 

second (n=7).  The immature porcine femurs tested in axial compression were similarly 

separated into two groups: femurs tested at 0.04 inches per second (n=5) and femurs tested at a 

displacement rate of 2 inches per second (n=2).  Specimens tested in torsion and axial 

compression were tested devoid of soft tissue while leaving the periosteum intact.  Research 

performed was approved by the University of Pittsburgh’s Institute for Animal Care and Use 

Committee protocol number 0304451.  
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4.1 SPECIMEN 

 

Porcine legs were obtained (Thomas D. Morris Inc., Towson MD 21286) and shipped frozen, 

packed with ice.  The porcine legs were immediately put in freezers at -20oC.  The porcine legs 

were thawed by removing them from the freezer and placing them in a room temperature setting.  

After thawing (approximately 30 hours), the hind legs were disarticulated at both the hip joint 

and the knee joint.  During dissection for disarticulation, the femurs were separated at the hip by 

severing the iliofemoral ligaments, the pubofemoral ligament and the ligamentum teres carefully 

to avoid cutting the periosteum and the bone.  The knee was disarticulated by dissecting away 

the patella and severing the ligaments of the knee, including the anterior cruciate ligament, the 

posterior cruciate ligament, the medial collateral ligament and the lateral collateral ligament.  

The meniscus was also carefully removed without cutting into the bone or the periosteum. 

 

4.1.1 Three Point Bending test specimen preparation 

 

Twelve femurs were disarticulated at the hip and knee for testing in three point bending.  The 

femurs were then divided into two groups of six with one femur from each piglet assigned to a 

group and the contralateral femur assigned to the other group.  The femurs in one group were left 

unaltered with all soft tissue intact, including the skin (group 1, n=6).  The femurs in the other 

group were dissected free of all soft tissue except for the periosteum (group 2, n=6).  Once 

prepared, the femurs were wrapped in physiologic saline solution (0.9% saline) soaked gauze to 

avoid dehydration of the bone and frozen at -20o C. 
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4.1.2 Torsion test specimen preparation 

 

Fourteen femurs were disarticulated at the hip and knee in the previously described fashion.  All 

femurs which were tested in torsion were dissected free of soft tissue, leaving the periosteum 

intact.  Femurs were divided into two groups of seven with one femur from each piglet assigned 

to one group (Group 3: femurs which were tested in torsion at an angular displacement rate of 

0.167 degrees per second) and the contralateral femur assigned to the other group (Group 4: 

femurs which were tested in torsion at an angular displacement rate of 90 degrees per second).  

Once prepared, the femurs were wrapped in physiologic saline solution (0.9% saline) soaked 

gauze to avoid dehydration of the bone and frozen at -20o C. 

 

4.1.3 Axial Compression test specimen preparation 

 

Fourteen femurs were disarticulated at the hip and knee as previously described.  All femurs 

which were tested in axial compression were dissected free of soft tissue, leaving the periosteum 

intact.  Femurs were then divided into two groups, one group of femurs (group 5, n=5) was 

tested at a displacement rate of 0.04 inches per second and the other group (group 6, n=2) was 

tested at a displacement rate of 2 inches per second.  Once prepared, the femurs were wrapped in 

physiologic saline solution (0.9% saline) soaked gauze to avoid dehydration of the bone and 

frozen at -20o C. 

 

 

 

15 



 

4.2 RADIOGRAPHY 
 

Once the prepared specimens were ready to be tested, the frozen femurs underwent dual-energy 

x-ray absorptiometry (DEXA) scans to measure the bone mineral content (BMC) and bone 

mineral density (BMD) of each femur.  Following DEXA scans, the femurs were then allowed to 

thaw by placing them in a cold room kept at constant temperature of 4o C for no more than 24 

hours.  Once thawed, the femurs were radiographed in the medial-lateral (M-L) and antero-

posterior (A-P) directions.  The femurs were tested within 2 hours of being x-rayed.   

DEXA scans were conducted using a Lunar Prodigy scanner (GE Lunar Corp., Madison 

Wisconsin, USA).  DEXA scans measure areal bone mineral content (BMC) and bone mineral 

density (BMD), and are readily available at most hospitals.  DEXA scanners can be used to scan 

whole bodies or portions of patients, as well as research specimens such as immature porcine 

femurs.  Each femur was analyzed individually for BMC and BMD. 
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Figure 4-1 Lunar enCORE software (GE Lunar Corp., Madison Wisconsin, USA) utilized in analyzing 
DEXA scans of immature porcine femurs 

 

 

X-rays of the immature porcine femurs were taken just before being tested.  M-L x-rays 

were taken as well as A-P x-rays.  From each view, measurements of diaphysis outer diameter 

(OD), diaphysis inner diameter (ID) and length between growth plates (GPL) were taken using 

hand calipers (accurate to 0.01 inches, product code: MEASECALIPER, General Graphics, 

Kaysville UT 84037) at the location of the minimum aspect ratio of the femur.  Since the femur 

diaphysis is generally considered to have a circular cross section, the measurements taken from 

each view was averaged to obtain a good representation of the actual size of the femurs. 
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Figure 4-2 Femoral geometric data measured from radiographs in A-P and M-L views 

 
 
 
 
 

4.3 TESTING APPARATUS 
 

All Femurs were tested using an Instron model # 8251 (Canton, MA, 02021) servo-hydraulic 

universal testing system (UTS).  The UTS consists of a single actuator which is driven by 

hydraulics which applies a load from above the specimen and a stationary platform where the 

load cell is mounted.  The actuator can move in two degrees of freedom, translational motion 

along the axis of the actuator and rotation about the longitudinal axis of the actuator.  The load 

cell (Lebow model # 6467, Troy MI, 48084) is a two degree of freedom load cell and can 

measure force in the direction of motion of the actuator, as well as moments about the rotational 

axis of the actuator.  The load cell is capable of measuring loads of up to ±5,000 lbf and ±1000 

in-lbf.  Load cell resolution was 0.25 lbs. and 0.025 ft-lbs. 
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4.4 DATA ACQUISITION 
 

A universal data acquisition program was designed and coded for use in all tests performed for 

this project.  The data acquisition system was developed using Labview (Version 6.0, National 

Instruments Corporation, Austin, Texas) to measure and collect femoral loads, moments and 

translational and angular displacements during testing and log the data to a file.  Data acquisition 

rates were user selected in order to accommodate different loading/displacement rates.  The data 

acquisition rates were selected so that the data points would accurately capture the fracture load 

and the complete loading data.  The data acquisition rate for all three-point bending tests was 

chosen to be 2000 Hz.  The data acquisition rate for torsion tests were selected on the basis of the 

displacement rate, the data for specimens tested at the higher displacement rate (90 degrees per 

second) were collected at 2000 Hz, while the data for specimens tested at the lower displacement 

rate were collected at 100 Hz.  Data for specimens tested in axial compression were collected at 

2000 Hz. 

 

 

 
4.5 THREE POINT BENDING 

 
The disarticulated immature porcine femurs were separated into two groups, femurs with soft 

tissue still attached (group 1, n=6) and femurs devoid of soft tissue (group 2, n=6).  Both groups 

were tested at displacement rates of 2 inches per second.  Femurs were placed on the three point 

bending supports oriented such that the middle support (actuator) applies the load to the posterior 
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of the femur (figure 4-3).  In cases where the femurs were tested with soft tissue intact, the 

femoral head and condyles were dissected in order for the outer supports of the three-point 

bending test jigs to be in contact with the femoral head and condyles, while leaving all other soft 

tissue present, including the soft tissue on which the middle support acted.  In all cases, the outer 

supports were separated one inch and three quarters.  This separation represents a distance equal 

to three quarters the distance between the growth plates (cartilage between the epiphysis and 

metaphysic where the longitudinal growth of the bone takes place) on average across all femurs.  

The femurs were supported inside of the growth plates to reduce the potential for shearing at the 

growth plates.  The outer supports of the three point bending test jigs were attached to the UTS 

load cell in order to measure the load applied normal to the femur during three-point bending.  

The femur was placed onto the two supports and the middle support of the three-point bending 

test jig was attached to the UTS actuator, acting downward onto the femur. 
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Figure 4-3 Illustration and pictures of three-point bending testing jig 
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4.6 TORSION 
 

Torsion testing jigs manufactured and one potting block was attached to the actuator via a 

universal joint, and the other potting block was attached to the load cell via a second universal 

joint.  Torsion test jigs incorporated the use of universal joints (Steel Pin & Block Single U-Joint 

with Keyway, part no. 8285K33, McMaster-Carr, Los Angeles, CA 90670) to minimize artifact 

bending caused by improper alignment and the natural curvature of the femur.  The potting 

blocks were manufactured using one half inch thick aluminum plate and the internal 

measurements (potting volume) were 2in x 2in x 2in.  Potting material (Bondo automotive body 

filler, Bondo Corp., Atlanta GA 30331) and hardener was mixed according to product 

specifications and potted before hardening.  Since the potting material heats during hardening, 

the block was kept cool by running cool water over it.  The potting material and pins (1/16 inch 

diameter steel rods inserted into the diaphyses of the femur within one quarter inch of the growth 

plate of the femurs and submerged in the potting material) were used to pot the femur ends to 

apply the torque.  Pins were utilized to aid in fixing the femoral head and condyles in the potting 

material because the periosteum and small amount of soft tissue (no more than 1/16 inch of 

tissue left to prevent cutting into periosteum or bone) remained on the femur thus the potting 

material could not rigidly bond to the femur ends.  The use of inserted pins allowed for the 

potting material to bond to the pins themselves and use the pins to apply the motion to the femur.  

Small holes (3/64 inch diameter) were drilled into the bone where the pins were inserted making 

sure to make the drilled holes slightly smaller than the pins that were inserted into these holes.  

Two groups of femurs were tested in torsion, one group tested at an angular displacement rate of 

0.167 degrees per second (n=7) and the other group was tested at an angular displacement rate of 

90 degrees per second (n=7).  Post-test radiographs were inspected to check if the fracture 
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originated at the pin insertion.  Had any fractures originated at the pin insertion, the test results 

would have been discarded due to the uncertainty of whether or not the fracture resulted from the 

stress riser created by the inserted rod.  Torsion test jigs are illustrated in figure 4-4.  The potting 

block with the distal end of the femur (femoral condyles) was attached to the UTS load cell in 

order to measure the torque applied to the femur during loading. 

 

 

 

Figure 4-4 Illustration and picture of torsion testing jig 
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4.7 AXIAL COMPRESSION 
 

Axial compression test jigs included a single potting block in which the proximal end of the 

femur (femoral head) was potted.  Femurs were potted in the block using Bondo auto body filler 

and were aligned by visual inspection (the femur was aligned using a straight edge rule to ensure 

that the midline of the femoral shaft was properly aligned) to minimize bending on the femur.  

The potting block with the proximal end of the femur was attached to the actuator and loaded 

onto the femoral condyles.  The femoral condyles were partially potted (only half of the condyles 

were submerged in the potting material) in order to prevent lateral slipping of the condyles on the 

flat surface onto which the femurs were compressed.  The potting block containing the distal end 

of the femur (condyles) was mounted onto the load cell of the UTS to prevent lateral motion of 

the potting block (preventing bending) and measure the force applied to the femur.  

Femurs were tested in axial compression at displacement rates of 0.04 inches per second 

(group 5, n=5) and 2 inches per second (group 6, n=2) to identify any effect that loading rate 

may have on the fracture load, stiffness and strain energy to failure of the femur uneven number 

of specimens were tested in this manner due to the limited number of specimens and since the 

specimens were failing at the growth plate, the slower displacement rate was chosen to 

investigate the axial compression tests in a more controlled manner.   
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Figure 4-5 Illustration of axial compression testing jig 

 
 
 
 

4.8 DATA ANALYSIS 
 

Data was processed post testing to determine bone fracture load, stiffness and strain energy to 

failure.  Measured variables associated with the slower strain rates were compared to those from 

the higher strain rates in specimens tested under torsion and axial loading. Variables measured 

from femurs tested with and without soft tissue were compared to determine the effect of soft 

tissue when specimens are subjected to bending loads.  A mathematical model for predicting 

fracture strength based on bone geometry, BMC and BMD was developed. 

  Fracture load, energy to failure and stiffness were evaluated for each loading curve 

(force vs displacement) using Excel spreadsheet software (Microsoft Office XP, Microsoft Corp., 
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Redmond WA 98052).  Fracture load was defined as the highest load of the loading curve.  The 

stiffness of each specimen was calculated by curvefitting a line to the linear portion of the force 

vs displacement curve (typically, from half the fracture load to 90% of the fracture load).  Strain 

energy to failure was calculated using the trapezoid rule to measure the area beneath the force vs 

displacement curve until the point of fracture. 

 

Figure 4-6  Determination of fracture measures 

 
Distribution analysis, comparison of means, correlation and regression analyses were 

performed using SPSS software (version 10.0, Chicago IL 60606).  Kurtosis and skewness of the 

fracture load distribution, stiffness distribution and energy to failure distribution were calculated 

in order to check for normality.  Wilcoxon matched-pairs signed-ranks tests were performed to 

detect statistically significant differences in fracture load, stiffness and strain energy to failure 

between groups tested in three-point bending with and without attached soft tissue structure 

intact, between groups tested in torsion at displacement rates of 10 degrees per minute (0.167 
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deg/sec) and 5400 degrees per minute (90 deg/sec) and between groups tested in axial 

compression at displacement rates of 0.04 inches per second and those tested at 2 inches per 

second.  Non-parametric statistical analysis was performed to study the relation between femur 

radiographic measures (BMD, BMC, Z) with fracture load, stiffness and strain energy to failure.  

Correlation coefficients (Spearman’s rho) were evaluated for variables and parameters under 

each loading condition as illustrated in table 4-1.   

 

Table 4-1  Correlations evaluated between fracture measures and geometric and radiographic data 

 I BMD I*BMD I*BMD*BMC 

Fracture Load x x x x 

Stiffness x x x x 

Strain Energy to Failure x x x x 
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In order to more quantitatively describe the relationship between the fracture measures 

and the radiographic and geometric measures, a regression model was developed to predict the 

fracture measures. Multivariable regressions were performed entering the variables as a block 

(enter method) for each fracture measure (fracture load, stiffness and energy to failure) to the 

geometric and radiographic data (BMD, BMC and I or J or CSA) for both loading conditions in 

three point bending tests and both loading conditions in torsion tests.  The models developed 

utilized the unstandardized coefficients in the regression model equations which are reported in 

the results section. 

 



 

 

 

 

5.0 RESULTS 

 

 

 

 Fracture load, stiffness and energy to failure were calculated for each specimen (Stiffness was 

not calculated for torsion tests due to the non-linearity of the loading curve).  The data for each 

loading mechanism (three point bending, torsion and axial compression) was separated into 2 

groups (with and without soft tissue for the three-point bending loading mechanism and low and 

high displacement rates for the torsion and axial compression mechanisms).  The Fracture 

measures (fracture load, stiffness and energy to failure) were compared between groups to detect 

statistically significant differences between the groups.  Fracture measures were correlated to 

bone densitometry data and geometry data in order to develop a model for predicting femur 

fracture strength.  Multivariable regressions of several different forms were explored, including 

linear models of several different forms and exponential models.  It was determined that the 

linear models were the best fit for this data. 

 

 

 

 

 

28 



 

5.1 THREE POINT BENDING 
 

The immature porcine femurs tested in three point bending were groups by whether they still had 

soft tissue intact (group 1, n=6) or whether the soft tissue had been removed from the femur 

(group 2, n=6).  Fracture load, energy to failure and stiffness were calculated for each specimen. 

Table 5-1 Summary of radiographic and geometric parameters in three point bending tests 

 
Average 

Inner 
Radius(in) 

Average 
Outer Radius 

(in) 

Growth Plate 
Length (in) Z (in3) BMC (g) BMD (g/cm2) 

Group 1, n=6 
Mean 
Range 
S.D. 

 
0.110 

0.095 – 0.131 
0.013 

 
0.220 

0.211 – 0.232
0.008 

 
2.244 

2.178 – 2.327 
0.057 

 
0.008 

0.007 – 0.009 
0.001 

 
4.31 

3.87 – 5.21 
0.488 

 
0.51 

0.422 – 0.567 
0.053 

Group 2, n=6 
Mean 
Range 
S.D. 

 
0.110 

0.094 – 0.130 
0.015 

 
0.206 

0.192 – 0.218
0.011 

 
2.317 

2.203 – 2.386 
0.072 

 
0.006 

0.005 – 0.007 
0.001 

 
5.04 

3.33 – 6.68 
1.092 

 
0.57 

0.481 – 0.690 
0.073 

 
 

A representative load deformation curve is shown in figure 5-1.  As previously mentioned, the 

fracture load can be seen as the highest point on this curve and the stiffness can be observed as 

the linear region of the upward sloping part of the curve.  The energy to failure is the area under 

this curve up to the fracture point.  Load vs deformation curves for group 1 are shown in 

appendix A and for group 2 in Appendix B. 
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Three Point Bending, Specimen 28L, No Soft Tissue Intact
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Figure 5-1 Load – deformation curve for specimen 28L, tested in three point bending devoid of soft tissue 

 
 

5.1.1 Fracture Morphology (Three Point Bending) 
 
 
Radiographs were taken post testing of each specimen and showed that all specimens failed with 

oblique fractures or transverse fractures.  Furthermore, all specimens in group 2 showed 

transverse fractures whereas four of the femurs in group 1 showed transverse fractures and the 

other two specimens showed oblique fractures.  All fractures, whether transverse or oblique 

occurred at the mid diaphysis of the femur as shown in figure 5-1.   
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Figure 5-2  X-ray showing transverse fracture of femur tested in three-point bending with soft tissue intact 

 
 
 
5.1.2 Statistical Analysis (Three Point Bending) 
 

Statistical analysis was performed on the data in order to test the hypotheses 2 and 3.  The 

fracture load, energy to failure and stiffness were determined and are summarized in table 5-1. 
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Table 5-2  Summary of fracture measures in three-point bending 

 
 Fracture Load 

(lbf) 

Stiffness 

(lbf/in.) 

Energy to failure 

(lbf*in.) 

Group 1 (Soft tissue intact, n=6) 

      Mean 

      Range 

      Standard Dev. 

 

290.2 

252.9-321.9 

27.5 

 

1607.9 

1218.8-2125.2 

402.9 

 

36.9 

26.9-49.4 

8.3 

Group 2 (No soft tissue, n=6) 

      Mean 

      Range 

      Standard Dev. 

 

286.0 

234.7-321.0 

30.6 

 

1981.9 

1540.5-2278.3 

268.2 

 

25.0 

21.4-29.4 

2.9 

 

The data from two groups of data were analyzed using SPSS software (SPSS Inc., 

Chicago, IL).  A one-sample Kolmogorov-Smirnov test was used to compare the data from each 

group to a normal distribution.  In both cases the data indicates that a normal distribution can not 

be assumed.  Therefore non-parametric statistics were used to compare the means of the fracture 

measures of the two groups and both parametric and non-parametric techniques were used to 

determine correlations between the fracture measures of each specimen and radiographic data. 
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5.1.2.1  Comparison of means (Three Point Bending)  A Wilcoxon matched-pairs signed-

ranks test was used to compare whether the fracture load, stiffness and strain energy to failure 

had statistically significant differences between the groups.  The data indicates that there is no 

statistically significant difference between the fracture load of each group (p=0.917), though 

there was statistically significant differences between groups for stiffness and strain energy to 

failure (p=0.046 and p=0.046 respectively). 



 

 

Table 5-3  Correlations coefficients of fracture measures and radiographic and geometric data in three-point 
bending  

 BMD Z BMD * Z BMD * BMC * Z 
Group 1 (Soft tissue intact, n=6) 
   Fracture Load 
   Stiffness 
   Energy to failure 

 
0.143 
0.543 
-0.257 

 
-0.086 
-0.086 
0.314 

 
0.029 
0.314 
0.086 

 
0.371 
0.714 
-0.086 

Group 2 (No soft tissue intact, n=6) 
   Fracture Load 
   Stiffness 
   Energy to failure 

 
-0.657 
-0.371 

-0.943** 

 
-0.371 
0.029 
0.429 

 
-0.714 
-0.371 
-0.314 

 
-0.486 
-0.029 
-0.429 

** Significant at 0.01 level 
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5.1.2.2  Correlations (Three Point Bending)  Fracture loads, stiffnesses and energies to failure 

for each group were correlated with BMD, Z, BMD*Z, BMD*BMC*Z.  The results for each 

group are shown in the table below.  In the cases where the immature porcine femurs were tested 

with soft tissue intact, the correlations show that fracture load are weakly correlated to 

BMD*BMC*Z (spearman’s rho = 0.371) and stiffness has a strong correlation to BMD*BMC*Z 

(spearman’s rho  = 0.714) while energy to failure is weakly correlated to Z (spearman’s rho = 

0.314).  In the cases where the immature porcine femurs were tested without soft tissue intact, 

the correlations show that fracture load has a strong indirect correlation to BMD*Z (spearman’s 

rho = -0.714) and stiffness has a weak indirect correlation to BMD*Z (spearman’s rho = -0.371) 

while energy to failure has a very strong indirect correlation to BMD (spearman’s rho = -0.943, 

p<0.01). 

 



 

 

2.518*4.12434*5.428*2.20 +−−= ZBMDBMCFxLoad     (9) 

 

5.53*6.3725*6.113*8.2 ++−= ZBMDBMCEnergy    (10) 

 

8.1885*5.96083*4078*5.591 +−−= ZBMDBMCStiffness  (11) 

 

The values calculated from three point bending are plotted to the values calculated from the 

models and the coefficient of determination (R2) is reported for each.   
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5.1.2.3  Multivariable Regression (Three Point Bending)  Multivariable Regression was 

performed on the data in order to develop a predictive model for fracture load, energy to failure 

and the stiffness for both groups tested in three point bending.  The regressions produced the 

following equations for predicting the fracture load, energy to failure and stiffness of immature 

porcine femurs when tested in three-point bending with all soft tissue intact (group 1). 
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Figure 5-3 Comparison of regression model and experimentally determined fracture load for group 1 
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Figure 5-4 Comparison of regression model and experimentally determined energy to failure for group 1 
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Three Point Bending
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Figure 5-5 Comparison of regression model and experimentally determined stiffness for group 1 

 
 

The regression models for predicting the fracture measures of immature porcine femurs 

tested in three-point bending without soft tissue (group 2) are expressed below.  

 

7.87*16078*9.97*1.8 +++= ZBMDBMCFxLoad   (12) 

 

6.17*3.78*9.39*1.3 +++−= ZBMDBMCEnergy    (13) 

 

1.161*8.144502*8.712*6.99 +++= ZBMDBMCStiffness     (14) 
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Plots comparing the measured experimental values to the regression model predictions are shown 

below for each fracture measure (R2 values are reported on each graph). 
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Figure 5-6 Comparison of regression model and experimentally determined fracture load for group 2 
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Figure 5-7 Comparison of regression model and experimentally determined energy to failure for group 2 
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Figure 5-8 Comparison of regression model and experimentally determined stiffness for group 2 

 

 

 
5.2 TORSION 

The immature porcine femurs tested in torsion were grouped according to the angular 

displacement rate used to test the specimens.  Specimens tested at an angular displacement rate 

of 0.167 degrees per second were designated group 3 (n=7) and specimens tested at an angular 

displacement of 90 degrees per second were designated group 4 (n=7).  Fracture Load and 
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energy to failure were calculated for each specimen.  The torsion stiffness was not calculated for 

torsion tests because the torque vs angular displacement curves did not show a linear region.   

 
Table 5-4 Summary of radiographic and geometric parameters for torsion tests 

 
Average 

Inner 
Radius(in) 

Average 
Outer Radius 

(in) 

Growth Plate 
Length (in) J (in4) BMC 

(g) BMD (g/cm2) 

Group 3, n=7 
Mean 
Range 
S.D. 

 
0.104 

0.083 – 0.115 
0.012 

 
0.169 

0.150 – 0.193
0.013 

 
2.325 

2.12 – 2.54 
0.136 

 
0.001 

0.001 – 0.002
0.0001 

 
3.57 
3 - 5 
0.787 

 
0.448 

0.412 – 0.499
0.032 

Group 4, n=7 
Mean 
Range 
S.D. 

 
0.103 

0.080 – 0.120 
0.016 

 
0.170 

0.145 – 0.190
0.014 

 
2.338 

2.15 – 2.56 
0.125 

 
0.001 

0.001 – 0.002
0.002 

 
3.57 
2 – 5 
0.976 

 
0.460 

0.407 – 0.511
0.041 

 

A representative load deformation curve is shown in figure 5-9.  As previously mentioned, the 

fracture load can be seen as the highest point on this curve and the energy to failure is the area 

under this curve up to the fracture point.  Load vs deformation curves for group 3 are shown in 

appendix C and for group 4 in Appendix D. 
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Torsion, Specimen 26R, 90 degrees per second
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Figure 5-9 Torque – angular displacement curve for specimen 26R, tested in torsion at 90 deg/sec 

 

 

5.2.1 Fracture Morphology (Torsion) 
 
 
 
Radiographs were taken post testing of each specimen and showed that all specimens failed with 

spiral fractures.  It was not evident that any of the spiral fractures originated at the pin insertions 

of the femur.  Another important result was that none of the femurs resulted in shearing of the 

growth plates. 
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Figure 5-10 Spiral fracture resulting from torsion loading mechanism applied to immature porcine femur 
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5.2.2 Statistical Analysis (Torsion) 
 
 

Statistical analysis was performed on the data in order to test the hypotheses 1 and 3.  The 

fracture load and energy to failure were determined and are summarized in table 5-3. 

 

Table 5-5  Summary of fracture measures in torsion 

 
 Fracture Torque 

(in-lbf) 

Energy to 

Failure (in-lbf) 

Group 3 (0.167degrees/s, n=7) 

      Mean 

      Range 

      Standard Dev. 

 

30.7 

26.0-37.1 

4.6 

 

16.7 

9.4-24.7 

5.9 

Group 4 (90 degrees/sec, n=7) 

      Mean 

      Range 

      Standard Dev. 

 

46.1 

29.6-55.0 

9.4 

 

15.4 

8.5-34.5 

8.8 

 

The data from two groups of data were analyzed using SPSS software (SPSS Inc., 

Chicago, IL).  One-sample Kolmogorov-Smirnov test was used to compare the data from each 

group to a normal distribution.  As a result, normal distributions could not be assumed for either 

group and non-parametric comparison of means was used to test hypothesis one.  Hypothesis 

three however was tested using both parametric and non-parametric techniques to investigate the 

correlations between the fracture measures and radiographic data. 
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Table 5-6 Summary of angular displacement to fracture in torsion 

 Angular Displacement (degrees) 

Group 3 (0.167degrees/s, n=7) 

      Mean 

      Range 

      Standard Dev. 

 

48.2 

31.3 – 78.8 

17.6 

Group 4 (90 degrees/sec, n=7) 

      Mean 

      Range 

      Standard Dev. 

 

33.8 

19.8 – 62.3 

16.0 
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5.2.2.1  Comparison of means (Torsion)  A Wilcoxon matched-pairs signed-ranks test was 

used to compare whether the fracture torque and strain energy to failure had statistically 

significant differences between the groups.  The data indicates that there is a statistically 

significant difference between the fracture torque of each group (p=0.018) though there was no 

statistically significant differences between groups when evaluating strain energy to failure 

(p=0.499). 

Angular displacement to failure was also compared between groups three and four.  

Wilcoxon matched pairs signed ranks test showed no statistically significant differences in the 

angular displacement to failure of the femurs tested in torsion (p<0.05). 

 



 

 

Table 5-7  Correlations coefficients of fracture measures and radiographic and geometric data in torsion 

 BMD J BMD * J BMD * BMC * J 
 
Group 3 (0.167degrees/s, n=7) 
   Fracture Torque 
   Energy to failure 

 
 

-0.318 
0.214 

 
 

0.430 
-0.286 

 
 

0.430 
-0.107 

 
 

0.730 
0.071 

 
Group 4 (90 degrees/sec, n=7) 
   Fracture Torque 
   Energy to failure 

 
 

-0.429 
0.500 

 
 

0.821* 
-0.679 

 
 

0.857* 
-0.571 

 
 

0.786* 
-0.571 

* Significant at 0.05 level 

 

46 

5.2.2.2  Correlations (Torsion)  Correlations between fracture torques and energies to failure 

calculated for each group and BMD, J, BMD*J, BMD*BMC*J were explored.  The results for 

each group are shown in the table below.  In the cases where the immature porcine femurs were 

tested at low displacement rate (0.167 degrees per second), the correlations show that fracture 

torque has a strong correlation to BMD*BMC*J (spearman’s rho = 0.730) and energy to failure 

has a weak correlation to BMD (spearman’s rho = 0.214).  In the cases where the immature 

porcine femurs were tested at the higher displacement rate (90 degrees per second), the 

correlations show that fracture torque has a very strong correlation to BMD*J (spearman’s rho = 

0.857, p<0.05) and energy to failure is moderately correlated to BMD (spearman’s rho = 0.500). 

5.2.2.3  Multivariable Regression (Torsion)  Multivariable Regression was performed on the 

data in order to develop a predictive model for fracture torque and energy to failure for immature  



 

3.11*1.7679*1.9*6.2 +++= JBMDBMCFxTorque   (15) 

 

5.34*9.6359*0.99*46.0 −++= JBMDBMCEnergy   (16) 

 

Graphs comparing the experimental data to the data from the regression model are presented 

below.  The coefficient of determination for the fit is reported with each graph. 
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Figure 5-11 Comparison of regression model and experimentally determined fracture torque for group 3 
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porcine femurs tested in groups 3 and 4.  The regressions produced the following equations for 

predicting the fracture torque and energy to failure of the specimen in group 3. 
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Figure 5-12 Comparison of regression model and experimentally determined energy to failure for group 3 

 

The regression models developed for the fracture torque and energy to failure for specimens in 

group 4 are expressed below. 

 

8.96*1.8308*6.199*4.9 ++−= JBMDBMCFxTorque   (17) 

 

48.0*5.5210*3.8*7.4 −−+= JBMDBMCEnergy   (18) 

 

48 



 

Torsion

Disp Rate = 90 deg/s

Regression Model Prediction of Fracture Torque (in-lbf)

1007550250

Fr
ac

tu
re

 T
or

qu
e 

(in
-lb

f)

100

75

50

25

0 Rsq = 0.6623 

 

Figure 5-13 Comparison of regression model and experimentally determined fracture torque for group 4 
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Figure 5-14 Comparison of regression model and experimentally determined energy to failure for group 4 
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5.3 AXIAL COMPRESSION 

 
 

The immature porcine femurs tested in axial compression were grouped by the displacement rate 

at which they were tested.  Group 5 (n=5) was tested at a displacement rate of 0.04 inches per 

second and group 6 (n=2) was tested at a displacement rate of 2 inches per second. 

Table 5-8 Summary of radiographic and geometric parameters for axial compression tests 

 
Average 

Inner 
Radius(in) 

Average 
Outer Radius 

(in) 

Growth Plate 
Length (in) CSA (in2) BMC 

(g) BMD (g/cm2) 

Group 5, n=5 
Mean 
Range 
S.D. 

 
0.097 

0.083 – 0.113 
0.013 

 
0.161 

0.130 – 0.178
0.022 

 
2.237 

2.14 – 2.38 
0.098 

 
0.052 

0.030 – 0.066
0.015 

 
3.2 

2 - 4 
0.837 

 
0.443 

0.403 – 0.464
0.024 

Group 6, n=2 
Mean 
Range 
S.D. 

 
0.101 

0.093 – 0.110 
0.012 

 
0.155 

0.140 – 0.170
0.021 

 
2.323 

2.265 – 2.38 
0.081 

 
0.044 

0.035 – 0.053
0.013 

 
3 

2 – 4 
1.414 

 
0.429 

0.377 – 0.480
0.073 

 

A representative load deformation curve is shown in figure 5-15.  The fracture load is the highest 

point on this curve as determined from the slight decrease in load followed by a second ramping 

phase during which the growth plate of the femur was already fractured (this second part of the 

curve showing a second ramping was omitted for clarity).  The stiffness can be observed as the 

linear region of the upward sloping part of the curve.  The energy to failure is the area under this 

curve up to the fracture point.  Load vs deformation curves for group 5 are shown in appendix E 

and for group 6 in Appendix F. 
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Axial Compression, Specimen 14L, 2 inches per second
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Figure 5-15 Load – deformation curve for specimen 14L, tested in axial compression at 2 in/sec 

 

 

5.3.1 Fracture Morphology (Axial Compression) 
 

Radiographs were taken post testing of each specimen and showed that all specimens failed at 

the condylar growth plate.  The condyles failed at the growth plate with the condyles sliding to 

the posterior of the femur. 
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Figure 5-16 Fracture at growth plate resulting from axial compression 

 
 
 
  
5.3.2 Statistical Analysis (Axial Compression) 

 
Statistical analysis was performed on the data in order to test the hypotheses 1 and 3.  The 

fracture load and energy to failure were determined and are summarized in table 5-5. 

 

Table 5-9  Summary of fracture measures in axial compression 
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 Fracture Load 

(lbf) 

Stiffness 

(lbf/in.) 

Energy to failure 

(lbf*in.) 

Group 5 (0.04 in / sec, n=5) 

      Mean 

      Range 

      Standard Dev. 

 

273.4 

211.6-390.6 

68.4 

 

829.4 

529-1173 

248.1 

 

70.7 

29.9-132.5 

38.9 

Group 6 (2 in / sec, n=2) 

      Mean 

      Range 

      Standard Dev. 

 

441.1 

351.6-530.6 

126.6 

 

1894 

1894-1894 

0 

 

154.2 

134-174.4 

28.6 

 



 

 

The data from two groups of data were analyzed using SPSS software (SPSS Inc., 

Chicago, IL).  A one-sample Kolmogorov-Smirnov test was used to compare the data from each 

group to a normal distribution and data indicates that a normal distribution can not be assumed.  
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5.3.2.1  Comparison of means (Axial Compression)  Comparison of group means for femurs 

loaded in axial compression was not performed because of the sample size of the group 6 

(specimens tested at a displacement rate of 2 inches per second, n=2).  Since group 6 has such a 

small sample size, one can not make a conclusive determination about the mean at all.    

 

5.3.2.2 Correlations and Multivariable Regressions (Axial Compression)  Correlations and 

multivariable regressions were not calculated for the axial compression due to the fact that the 

measures to which fracture load , stiffness and energy to failure were to have been correlated to 

describe the bone substance of the femur and not the growth plate where the fractures occurred.  

That is, when deciding what factors (independent variables) to correlate and use in the regression 

analysis, these variables should be previously determined to have an effect on the dependent 

variable.  Since Bone mineral content and bone mineral density are not a measure associated 

with the growth plate, they should not be used as independent variables in the correlations or 

regression analyses. 



 

5.4 CROSS MECHANISM COMPARISON 

 
In order to compare the results of the three loading mechanisms tests, the energy to failure of 

each specimen loaded in each mechanism was averaged.  The average energy to failure of 

specimens tested in three-point bending was 31.0 lbf-in.  The average energy to failure of 

specimens tested in torsion was 16.1 lbf-in, just over half of the energy for the specimens tested 

in three-point bending.  The average energy to failure for specimens tested in axial compression 

is 94.6 lbf-in, just over 300% of the energy calculated for specimens tested in three-point 

bending. 
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Figure 5-17 Cross Mechanism Comparison of Energy to Failure 
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6.0 DISCUSSION 

 

Correlation coefficients were determined for fracture measures (fracture load, stiffness and 

energy to failure) to radiographic (bone mineral density and bone mineral content) and geometric 

variables (section moduli, etc).  This model was chosen because bone mineral density (BMD) 

and bone mineral content (BMC) are indicators of bone material properties and the geometric 

variables are characteristics of the structural capacity of any structure.  Carter and Hayes 

reported high correlation of bone strength to the square of bone mineral density (33).   
 

 

 
6.1 THREE POINT BENDING 

 
No statistically significant differences in fracture load were observed in three-point bending 

across groups tested both with and without soft tissue intact .  The fact that the presence of soft 

tissue does not affect fracture load might be explained by the way fracture was defined, which 

for both groups was the fracture of the femur (and in no way encompassed the soft tissue).  

Power analysis was performed to determine the necessary sample size in order to detect 

statistically significant differences in the data.  It was calculated that the sample size of each 

group would have to be 750, meaning that based on the standard deviations observed, no 
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statistically significant differences in fracture load exist.  The differences in stiffness and energy 

to failure were also expected since soft tissue is less stiff than bone and when tested together, the 

lower stiffness of the soft tissue lowers the overall stiffness of the specimen; similar to testing 

two springs in series.  Specimens tested with soft tissue intact also showed higher energy to 

failure which is consistent with the premise that soft tissue shows energy absorption during 

impacts. 

Results of the three-point bending tests showed that statistically significant differences 

exist between femurs tested with soft tissue intact and femurs tested devoid of soft tissue in 

stiffness and energy to failure of immature porcine femurs.  Three-point bending resulted in 

fracture loads about twice as high as values reported by Pierce et al., 726 N (163.2 lbf) (1).  

Higher values may be due to the higher displacement rates in this study, the fact that the 

periosteum was left intact and the loading alignment (Pierce tested femurs in medial-lateral 

direction) (1).   

Pierce found fracture moments to range from approximately 4500 N-mm (39.8 in-lbf) to 

approximately 8000 N-mm (70.8 in-lbf) (1).  These values were slightly lower than values 

determined in this study (mean = 125.1 in-lbf) for femurs tested devoid of soft tissue.  Koo et al 

reported the mean failure moment for femurs tested in three point bending at displacement rate 

of 1 mm/s (0.04 inches per second) to be 10.8 N-m (99.5 in-lbf) (25).  These values are all 

similar and slightly higher values may be due to testing at displacement rate of 2 inches per 

second in this study where as Pierce and Koo tested at 1 mm per second (0.04 inches per second) 

(1,25).  Also, Pierce tested femurs in three-point bending in the medial lateral direction, where as 

femurs in this study were tested in the antero-posterior direction, the same anatomical direction 

tested by Koo (1,25).   However, comparing these failure moments to data collected for a child’s 
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femur reported by Sturtz et al (52 Nm or 460 in-lbf), shows that there is almost a four fold 

increase between the child’s femur fracture moment and that of the immature porcine femurs in 

this study (34).  This however, might be the result of Sturtz’s data reporting the fracture moment 

of a segment of the child’s femur, rather than of the entire femur (34). 

Energy to failure in three point bending for femurs tested devoid of soft tissue (mean = 

25.0 in-lbf) were similar to values reported by Pierce et al for failure energy, ranging from about 

0.75 J (6.6 in-lbf) to approximately 2.4 J (21.2 in-lbf) and Koo with a mean value of 1.575 N-m 

(13.9 in-lbf) (1,25).  Slightly higher values found in this study may be due to higher 

displacement rates, two inches per second contrary to Pierce and Koo’s 0.04 inches per second 

(1,25). 

Energy available during a fall is a common way to evaluate potential injury risk and 

therefore is important in evaluating the plausibility of a fracture occurring from a specific fall.  

Mechanisms similar to three point bending occur relatively frequently during child falls in which 

the upper leg of the child strikes on object upon landing.  The immature porcine femurs tested in 

three-point bending with soft tissue intact are representative of impacts which occur in these 

types of falls.  Higher values of energy to failure determined for femurs tested with soft tissue 

intact means that these femurs are more resistant to fracture and that more energy will be 

required to cause fracture when compared to bone without soft tissue.  It is deduced that the soft 

tissue provides this energy absorption mechanism during impacts. 

Femurs tested devoid of soft tissue showed weaker correlations when compared to the 

correlations determined for femurs tested with soft tissue intact.  Correlations between femurs 

tested with soft tissue intact showed best correlations of fracture load and stiffness to 

BMD*BMC*Z (Spearman’s rho = 0.371 and 0.714 respectively) as expected.  The energy to 
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failure however was weakly correlated to BMD (Spearman’s rho = 0.314).  This is counter 

intuitive and may be due in part to the relatively low sample size as well as the lack of a term to 

describe the energy absorption capacity of the soft tissue.   

Correlations between femurs tested devoid of soft tissue showed negative correlations for 

fracture load and stiffness to BMD*Z (Spearman’s rho = -0.714 and -0.371 respectively).  The 

energy to failure however was best correlated to BMD (Spearmn’s Rho = -0.943, p<0.01).  This 

may be due in part to the fact that BMD is proportional to bone brittleness and as BMD 

decreases, the femur is more compliant and may therefore absorb more energy. 

Multivariable regression analysis indicates that the correlation coefficients (constants of 

the terms BMC, BMD, Z) did not have statistical significance.  This means that though the 

coefficients were calculated optimize the model, the values can not be conclusively stated (that 

is, these values may change with further experiments).  The Regression model for fracture load 

of group 1 (femurs tested with soft tissue intact) had an R2 value of 0.74 which indicates that this 

model accounts for 74% of the variability of the fracture load data for this group.  The model for 

stiffness and energy to failure for group 1 indicate that 62% and 66% of the variability of each 

fracture measure is explained by the model respectively.  R2 values for the regression models 

determined for group 2 (femurs tested without soft tissue) were determined to be 0.24, 0.29 and 

0.22 for fracture load, stiffness and energy to failure respectively.  The higher R2 values for 

femurs tested with soft tissue intact shows promise for the use of such a model in a clinical 

setting. 

Fracture patterns in specimens tested in three point bending were expected to be 

transverse and oblique fractures.  Three point bending tests of specimens in group 1 resulted in 4 

transverse fractures and 2 oblique factures.  The testing of group 2 resulted in all specimens 
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failing with transverse fractures.  This indicates that femurs with soft tissue intact (group 1) can 

absorb more energy and results in similar fracture patterns to those of group 2 when tested in 

three point bending.  Fracture patterns observed in this study are consistent with those observed 

by Kress et al. in human cadaver three point bending (impact) tests on femurs and tibias (35).   

 

  

6.2 TORSION 
 

Statistically significant differences in fracture torque between groups 3 and 4 were observed for 

immature porcine femurs tested in torsion.  This difference may be due to viscoelastic properties 

that bone exhibits.  Viscoelastic models predict that as the (angular) displacement rate of a 

specimen increases, the failure load (torque) will also increase (36).  No statistically significant 

differences were observed in energy to failure.  Power analysis was performed to determine the 

necessary sample size in order to detect statistically significant differences in the data.  It was 

calculated that the sample size of each group would have to be 520, meaning that based on the 

standard deviations observed, no statistically significant differences in energy to failure were 

observed in torsion.   

Torsion tests performed at an angular displacement rate of 0.167 degrees per second 

resulted in fracture torques (mean = 30.69 in-lbf) greater than values reported by Pierce et al., 

2703 N-m (23.9 in-lbf) (1).  Values lower than those of Pierce were expected since Pierce tested 

at a higher angular displacement rate (1 degree per second) (1).  Pierce’s mean fracture torque 

was calculated from data which included specimens whose fracture mode was not consistent, but 

60 



 

rather, 5 of the 7 specimen experienced shearing at the growth plates (1).  Therefore it is not 

appropriate to make a direct comparison.  Therefore, comparing the highest fracture torque value 

reported by Pierce shows a more comparable value for the expected trend based on angular 

displacement rate (3559 N-mm or 31.5 in-lbf) (1).  Pierce’s slightly higher maximum value for 

fracture torque compared to the mean of the fracture toque in determined here may be due to 

piglet preparation in that this study left the periosteum of the femur intact whereas Pierce did not 

leave the periosteum intact (1).  Femurs tested at a higher angular displacement rate (90 degrees 

per second) in this study showed a mean fracture torque of 46.13 in-lbf consistent with the 

hypothesis that fracture torque would be higher when tested at a higher angular displacement 

rate. 

Energy to failure in torsion did not show statistically significant differences between the 

two groups tested (angular displacement rates: 0.167 degrees per second and 90 degrees per 

second).   

Mechanisms consistent with torsional loading occur relatively frequently during child 

falls in which the child’s torso is rotating and the foot of the child is fixed without rotation.  Case 

studies indicate that spiral fractures are commonly associated with children who twist when 

running (37).  Higher values of failure torque determined for femurs tested at a higher 

displacement rate shows fracture load is rate dependent and therefore exhibits viscoelastic 

properties.    

When investigating correlations between biomechanical response and material properties 

and geometric parameters, fracture torque was found to have strong correlations to 

BMD*BMC*J at both displacement rates (0.73 for group 3 and 0.786 for group 4).  At the higher 

displacement rate (group 4), fracture load had very strong correlations to J and BMD*J (0.82 and 
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0.857 respectively).  Similarly, Calero found a linear correlation (r=0.31, p=0.03) between 

fracture torque in rat femurs and BMD (17).  Calero’s results support the results obtained in 

piglets in this study that fracture torque can be correlated to radiographic measures. 

Battaglia et al investigated the relationship between ash content of mice femora and 

torsional fracture measures such as fracture torque and energy to failure (38).  A displacement 

rate of 1 degree per second was used and the fracture torque exhibited a good fit to ash content 

(R2=0.68) (38).  Energy to failure however, did not show any correlation to ash content 

(R2=0.01) (38).  Similarly, this study found strong correlations for radiographic and geometric 

parameters to fracture torque, but weak correlation for energy to failure.   

Multivariable regression models for fracture torque fit the data for fracture torque 

accounting for 78% and 66% of the data variability for angular displacement rates of 0.167 

degrees per second and 90 degrees per second respectively.  The regression models for energy to 

failure accounted for less that 50% of the variability of the data at both displacement rates 

(R2=0.22 and for an angular displacement rate of 0.167 and R2=0.47 for an angular displacement 

rate of 90 degrees per second). 

Investigating the fracture patterns of torsion tests, the only fracture types observed were 

spiral fractures.   This suggests that torsion loading, no matter what the displacement rate is, will 

result in a spiral fracture.   
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6.3 AXIAL COMPRESSION 
 

Fractures resulting from axial compression all resulted in shearing of the condylar growth plate.  

The fracture load, stiffness and energy to failure all show trends of increasing value with higher 

displacement rates.  Lochmuller et al performed axial compression tests of discs cut from the 

distal end of the radius of mature human specimens (39).  A displacement rate of 0.8 millimeters 

per second was utilized in the testing and fracture load was measured (39).  DEXA obtained 

measurements of BMC were taken to correlate to fracture load (39).  It was found that fracture 

load and BMC correlated strongly (r=0.84) (39).   

Carter and Hayes studied human trabecular bone in compression as a two-phase porous 

structure (40).  They compresses cylinders of human trabecular bone from the femoral condyles 

and tibial plateau and removed the marrow from half their specimens (40).  They found that at 

low strain rates from 0.001 per second to 1.0 per second (corresponding to displacement rates of 

0.0005 mm/s to 0.5 mm/s) showed no statistical significance between specimens tested with and 

without marrow, but at a strain rate of 10 per second (5 mm/s), they discovered that specimens 

tested with and without marrow present displayed statistically significant differences in 

compressive strength (40).  This latter result shows that movement of bone marrow through the 

porous trabecular bone plays a role and at displacement rates similar to or higher than 5 mm/s 

will also be affected by the movement of bone marrow (40).  The axial compression tests 

performed in this study showed trends indicating that sensitivity to displacement rate may exist.  

The movement of marrow through the trabecular bone structure of the femur may contribute to 

this trend. 

The trend indicating sensitivity to displacement rate however may be due more to the 

viscoelastic properties of cartilage than to the viscoelastic properties of the femur in axial 
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compression.  Since the growth plates are composed primarily of cartilage and cartilage is more 

compliant than bone, it is reasonable to assume that the more compliant of the two materials 

(bone and cartilage) will undergo large strains possibly leading to fracture.  It therefore would be 

inappropriate to try to correlate femoral densitometry measures and femoral geometry measures 

to biomechanical response when in fact the fracture did not occur in bone.   

A databases of child fractures compiled from Children’s Hospital of Pittsburgh cases 

show that femoral growth plate fractures are not common (37).  The inconsistencies between 

fractures experienced in vivo by children and the growth plate fractures resulting from axial 

compression may be due to the lack of stabilizing structure for the femoral condyles which the 

tibia and knee ligaments provide.   

Fracture types that resulted from the axial compression tests were not expected and might 

be do to a secondary loading which may have been introduced inadvertently.  The femurs were 

mounted on the UTS and due to their natural curvature may have introduced a shear load onto 

the specimens.  Lundin et al observed that fracture patterns of mature and immature porcine 

spines subjected to axial compression differed, suggesting that maturity level of porcine bone has 

a direct effect on fracture type (41).  This would account for the unexpected shearing at the 

growth plates which are not common fractures observed in children during common falls.  

Rather, buckle fractures were expected but this study was unable to produce a single buckle 

fracture.  One area of concern for this is the natural in-vivo restraints present in children which 

may prevent the shearing of the growth plate.  Knee ligaments, capsules and meniscus may 

combine to contribute the necessary restraints to prevent the shearing of the growth plates to 

occur in-vivo. 
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Another cause of shearing might be attributed to the level of maturity of the femur.  

Immature femurs have a separated and highly cartilaginous growth plates which are by nature 

weaker than the boney structure of the femur.  Extrapolating data from a Lunar Corp study 

(“Bone Growth in Children” in Lunar News, published by G.E. Lunar Corp., Madison, WI 

October 1993), the BMD of immature porcine femurs tested in this study correspond to the 

human BMD equivalent of about a 1 to 2 year old child (extrapolated value would be near 0.5 

g/cm2).  As a child matures, the growth plates fuse and harden into bone which may reduce the 

chances of causing a fracture at the growth plate and may lead to buckle fractures. 

 

 
 

6.4 CROSS MECHANISM COMPARISON  
 

In order to compare fracture types, one must look at measures which can be computed and 

compared across all mechanisms of loading.  Energy to failure is the only fracture measure 

which can be compared from one loading mechanism to another.  Comparing the observed 

energies to failure shows that femurs require just over half the energy to cause a spiral fracture 

resulting from a torsion mechanism when compared to a transverse fracture resulting from three-

point bending (figure 5-14).  Axial growth plate fractures require more than double the energy as 

compared to transverse fractures.  This higher value for energy to failure for axial compression 

may be due to the fact that the cartilage is also being loaded in compression, and therefore 

compressing the cartilage and the bone whereas the other test methods (three point bending and 

torsion) only loaded the boney part of the femur.  
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The higher values calculated for energy to failure required to cause transverse fractures in 

three-point bending compared to the energy required to cause spiral fractures supports the idea 

that transverse fractures of the femurs occur in higher energy trauma events such as motor 

vehicle accidents or child abuse, where as spiral fractures may be more common in accidental 

trauma such as ground based falls.  This is supported by databases of child fractures kept from 

Children’s Hospital of Pittsburgh which shows that abuse cases have a higher percentage of 

transverse fractures than do accidental cases and spiral fractures have a higher percentage of 

occurrence in accidental cases than in abuse cases.   

 

 

 6.5 LIMITATIONS 
 

A limitation of this study is the use of quasi-static (non-dynamic) nature of the loading 

mechanism.  The UTS used in this study does allow for pseudo-dynamic testing, but 

displacement rates are limited and may not achieve impact speeds associated with childhood 

femur fractures.  This study also, did not investigate combined loading, but rather focused on 

simple and pure loading mechanisms.  In scenarios when children fall, it is rarely the case that 

their femur experiences pure loading conditions.  However, in order to proceed to combined 

loading, pure loading must first be understood.  The methods used in this study did not allow for 

the detection of small abnormalities in the geometry or bone mineral density of the femurs.  

Furthermore, this study assumed that the femur geometry was that of a tube and that the bone 

mineral density of the femur is homogenous throughout the entire femur.  It has been reported 
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that freezing of bone for a short time does not have a major effect on bone mechanical properties, 

it has been shown to be greatest in long bones (36).  However, after thawing, protease and 

collagenase may become active and degrade the tissue, in fact enzymatic degradation is not 

totally halted at 20oC (36). 

This study utilized an animal model for developing a predictor of femur fracture strength, 

while the ideal would have been to use immature human cadaveric femurs.  The use of a linear 

multivariable regression is a limitation because it does not explore the possibilities of a non-

linear relationship between BMC, BMD and Z (or J or CSA) to fracture load (or torque), energy 

to failure and stiffness.  However, since the sample size is small, non-linear regression models 

explored did not fit the data better than a linear multivariable regression.  However, a larger 

sample size might prove useful in exploring the nonlinear relation between BMC, BMD and Z 

(or J or CSA) to fracture load (or torque), energy to failure or stiffness. 

Using porcine femurs of varying age (including mature and immature specimen) would 

be useful in more effectively understanding the effect of maturity level on fracture pattern of the 

femurs based upon the differences in fracture patterns observed by Lundin between mature and 

immature porcine bone specimen (41). 
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7.0 CONCLUSIONS 

 

Data showed that there are significant differences between when testing immature porcine 

femurs in three point bending with soft tissue intact (n=6) and devoid of soft tissue (n=6) for 

stiffness (means = 1607.9 ± 402.9 lbf. and 1981.9 ± 268.2 lbf respectively, p=0.046) and energy 

to failure (means = 36.9 ± 8.3 lbf and 25.0 ± 2.9 lbf respectively, p=0.046).  Torsion tests show 

significant differences in fracture torque between groups tested at 0.167 degrees per second 

(n=7) and 90 degrees per second (n=7, means = 30.69 ± 4.58 in-lbf and 46.13 ± 9.42 in-lbf, 

respectively, p=0.018).  Axial compression experiments performed at a displacement rate of 0.04 

inches per second (n=5) resulted in fracture load, energy to failure and stiffness of 273.4 ± 68.4 

lbf, 70.7 ± 38.9 in-lbf and 829.4 ± 248.1 lbf/in respectively.  Axial compression of femurs tested 

at 2 inches per second (n=2) resulted in trends of higher fracture loads, energy to failure and 

stiffness (441 lbf, 154.2 in-lbf and 1894 lbf/in respectively).   

Development of a predictive model plays an important role in developing an objective 

tool to aid in the diagnosis of child abuse.  In cases where a child presents to the emergency 

department with a fracture, the model could predict the force and energy needed to cause that 

fracture and if the account used to explain the fracture is inconsistent with the fracture load or 

energy to failure, then child abuse can be suspected.  Correlations of fracture measures (fracture 

load or torque) and stiffness show strongest correlations to a radiographic measure which 

combines femur densitometry data and femur geometric data.  This shows promise in developing 

a model to predict fracture load or torque based on densitometry and radiographic geometric 
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data.  Energy to failure was most strongly correlated to BMD in three point bending and 

geometric data (J) in torsion.  This too shows promise in using both densitometry data and 

geometric data to develop a predictive model for these measures.   

The regression models predicting the fracture measures for femurs with soft tissue intact 

better fit the data (fracture load R2 = 0.74, Energy to failure R2 = 0.66 and stiffness R2 = 0.62) 

than the regression models for femurs tested devoid of soft tissue in three point bending (fracture 

load R2 = 0.24, Energy to failure R2 = 0.22 and stiffness R2 = 0.29).  Regressions for torsion 

testing showed promise in predicting fracture torque (0.167 deg/sec R2 = 0.78 and 90 deg/sec R2 

= 0.66).  The model for predicting energy to failure in torsion had weaker fits (0.167 deg/sec R2 

= 0.22 and 90 deg/sec R2 = 0.47) to the data showing that more is needed in this area. 

 Data presented shows the completion of the specific aims proposed for this project, 

showing that displacement rate when testing immature porcine femurs does have a significant 

effect on fracture torque but not on energy to failure when tested in torsion.  Displacement rate 

appears to have some effect on fracture load, stiffness and energy to failure for specimens tested 

in axial compression. This supports hypothesis one with the exception of the energy to failure of 

the torsion tests.  Specific aim two, was fulfilled by testing immature porcine femurs in three 

point bending and hypothesis two was partially supported by the significant effect that soft tissue 

presence had on the energy to failure and while having no significant effect on fracture load.   

 Specific aim three was carried out by analyzing the data and performing Wilcoxon 

matched-pairs signed-ranks tests on the data to correlate fracture measures to geometric and 

radiographic data.  Furthermore, multivariable regressions were performed on the data to develop 

a regression model for prediction of the fracture measures.  Hypothesis three was supported for 

three point bending and torsion. 
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 Further investigation needs to be performed in order to fully understand the relationship 

between bone mineral content, bone mineral density and bone geometry as well as to develop a 

more reliable model for predicting immature femur fracture load, energy to failure and stiffness. 
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8.0 FUTURE WORK 

 

Future work towards the goal of developing a model for predicting immature femur fracture 

load, stiffness and energy to failure may include testing femurs in combined loading 

(compression and bending together for example).  Further studies should also focus on testing 

the immature femurs as close to in-vivo conditions as possible such as developing a way to test 

these femurs with the hip and knee joints intact.    

Future work towards developing a model for predicting immature femur fracture strength 

may also include the use of a more complex model incorporating the use of finite element 

methods.  However, before this work can proceed, material properties of immature femurs must 

first be determined.  This would include testing immature femoral bone samples in compression 

in the anisotropic directions.  Furthermore, since the periosteum is believed to be a contributor to 

bone fracture measures of interest, material properties for this tissue should also be mapped for 

use in the finite element model (42).  Perhaps bone mineral density and bone mineral content can 

be used as predictors of strength and ultimate load of the samples of the immature femur, rather 

than of the entire femur.  A more detailed volumetric bone mineral density may be a key to 

determining the material properties of bone throughout the entire femur and has been utilized to 

obtain a more accurate representation of bone mineral density (33,43).  This model might be 

validated by performing virtual three point bending and torsion experiments and comparing the 

results to the real experiment of the immature femur. 
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 APPENDIX A 
 
 
 
 
 

LOAD DEFORMATION CURVES FOR THREE POINT BENDING TESTS 
PERFORMED ON FEMURS WITH SOFT TISSUE INTACT AND RESULTING 

FRACTURES 

  

72 



 

 
 

Three Point Bending, Specimen 11L, Soft Tissue Intact 
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Figure A-1 Force – displacement curve for specimen 11L 

 

 

Figure A-2 Specimen 11 L post fracture 
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Three Point Bending, Specimen 13L, Soft Tissue Intact
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Figure A-3 Force – displacement curve for specimen 13L 

 

 

 

Figure A-4 Specimen 13 L post fracture 
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Three Point Bending, Specimen 22L, Soft Tissue Intact
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Figure A-5 Force – displacement curve for specimen 22L 

 

 

Figure A-6 Specimen 22 L post fracture 
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Three Point Bending, Specimen 24L, Soft Tissue Intact
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Figure A-7 Force – displacement curve for specimen 24L 

 
 

 

Figure A-8 Specimen 24L post fracture 
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Three Point Bending, Specimen 28R, Soft Tissue Intact

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Displacement (in)

Fo
rc

e 
(lb

f)

 

Figure A-9 Force – displacement curve for specimen 28R 

 
 

 

Figure A-10 Specimen 28 R post fracture 
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Three Point Bending, Specimen 30L, Soft Tissue Intact
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Figure A-11 Force – displacement curve for specimen 30L 
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Figure A-12 Specimen 30 L post fracture 
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APPENDIX B 

 
 
 
 
 

LOAD DEFORMATION CURVES FOR THREE POINT BENDING TESTS 
PERFORMED ON FEMURS WITH NO SOFT TISSUE INTACT AND RESULTING 

FRACTURES 
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Three Point Bending, Specimen 11R, No Soft Tissue Intact
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Figure B-1 Force – displacement curve for specimen 11R 

  
 

 

Figure B-2 Specimen 11 R post fracture 
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Three Point Bending, Specimen 13R, No Soft Tissue Intact

0

50

100

150

200

250

300

350

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Displacement (in)

Fo
rc

e 
(lb

f)

 

Figure B-3 Force – displacement curve for specimen 13R 

 
 

 

Figure B-4 Specimen 13 R post fracture 
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Three Point Bending, Specimen 22R, No Soft Tissue Intact
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Figure B-5 Force – displacement curve for specimen 22R 

 
 

 

Figure B-6 Specimen 22 R post fracture 
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Three Point Bending, Specim n 24R, No Soft Tissue Intact
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Figure B-7 Force – displacement curve for specimen 24R 
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Figure B-8 Specimen 24 R post fracture
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Three Point Bending, Specimen 28L, No Soft Tissue Intact
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Figure B-9 Force – displacement curve for specimen 28L 

 
 

 

Figure B-10 Specimen 28 L post fracture
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Three Point Bending, Specimen 30R, No Soft Tissue Intact
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Figure B-11 Force – displacement curve for specimen 30R 

 

 

Figure B-12 Specimen 30 R post fracture 
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APPENDIX C 
 
 
 
 
 

TORQUE VS  ANGULAR DEFORMATION CURVES FOR TORSION TESTS 
PERFORMED ON FEMURS AT 0.167 DEGREES PER SECOND AND RESULTING 

FRACTURES 
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Torsion, Specimen 4L, 0.167 degrees per second
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Figure C-1 Torque – angular deformation curve for specimen 4L 

 
 

 

Figure C-2 Specimen 4 L post fracture
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Torque, Specimen 5L, 0.167 degrees per second
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Figure C-3 Torque – angular deformation curve for specimen 5L 

 
 

 

Figure C-4 Specimen 5 L post fracture 
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Torsion, Specimen 20L, 0.167 Degrees per second
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Figure C-5 Torque – angular deformation curve for specimen 20L 

 

 

Figure C-6 Specimen 20 L post fracture
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Torsion, Specimen 26L, 0.167 Degrees per second
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Figure C-7 Torque – angular deformation curve for specimen 26L 

 
 

 

Figure C-8 Specimen 26 L post fracture
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Torsion, Specimen 27L, 0  Degrees per second

0

10

20

40

50

60

0 10 20 30 40 50 60 70 80 90

Angular Dislacement (degrees)

To
rq

ue
 (i

n-
lb

f)

 

Figure C-9 Torque – angular deformation curve for specimen 27L 
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Figure C-10 Specimen 27 L post fracture
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Torsion, Specimen 8L, 0.167 degrees per second
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Figure C-11 Torque – angular deformation curve for specimen 8L 

 

 

Figure C-12 Specimen 8 L post fracture
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Torsion, Specimen 17 L, 0.167 degrees per second
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Figure C-13 Torque – angular deformation curve for specimen 17L 

 

 

Figure C-14 Specimen 17 L post fracture
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APPENDIX D 
 
 
 
 
 

TORQUE VS  ANGULAR DEFORMATION CURVES FOR TORSION TESTS 
PERFORMED ON FEMURS AT 90 DEGREES PER SECOND AND RESULTING 

FRACTURES 
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Torsion, Specimen 4R, 90 degrees per second
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Figure D-1 Torque – angular de ve for specimen 4R 
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Figure D-2 Specimen 4 R post fracture
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Torsion, Specimen 5R, 90 degrees per second
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Figure D-3 Torque – angular deformation curve for specimen 5R 

  

 

Figure D-4 Specimen 5 R post fracture 
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Torsion, Specimen 20R, 90 degrees per second
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Figure D-5 Torque – angular deformation curve for specimen 20R 

  

 

 

Figure D-6 Specimen 20 R post fracture
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Torsion, Specimen 26R, 90 degrees per second
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Figure D-7 Torque – angular deformation curve for specimen 26R 

 

Figure D-8 Specimen 26 R post fracture
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Torsion, Specimen 27R 0 degrees per second
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Figure D-9 Torque – angular deformation curve for specimen 27R 
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Figure D-10 Specimen 27 R post fracture
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Torsion, Specimen 8R, 90 degrees per second
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Figure D-11 Torque – angular deformation curve for specimen 8 R 

  

 

Figure D-12 Specimen 8 R post fracture
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Torsion, Specimen 17R, 90 degrees per second
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Figure D-13 Torque – angular deformation curve for specimen 17R 

  

 

Figure D-14 Specimen 17 R post fracture 
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APPENDIX E 
 
 
 
 
 

FORCE VS DEFORMATION CURVES FOR AXIAL COMPRESSION TESTS 
PERFORMED ON FEMURS AT 0.04 INCHES PER SECOND AND RESULTING 

FRACTURES 
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Axial Compression, Specimen 14R, 0.04 inches per second
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Figure E-1 Force – displacement curve for specimen 14R 

 

 

Figure E-2 Specimen 14 R post fracture 
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Axial Compression, Specimen 10R, 0.04 inches per second
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Figure E-3 Force – displacement curve for specimen 10R 

 

 

Figure E-4 Specimen 10 R post fracture 
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Axial Compression, Specimen 16L, 0.04 inches per second
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Figure E-5 Force – displacement curve for specimen 16L 

 

 

Figure E-6 Specimen 16 L post fracture 
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Axial Compression, Specimen 19L, 0.04 inches per second
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Figure E-7 Force – displacement curve for specimen 19L 

 

 

Figure E-8 Specimen 19 L post fracture 
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Axial Compression, Specimen 19R, 0.04 inches per second
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Figure E-9 Force – displacement curve for specimen 19R 

 

 

Figure E-10 Specimen 19 R post fracture 
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APPENDIX F 

ERFORMED ON FEMURS AT 2 INCHES PER SECOND AND RESULTING 
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Axial Compression, Specimen 14L, 2 inches per second
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Figure F-1 Force – displacement curve for specimen 14L 

 

Figure F-2 Specimen 14 L post fracture 
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Axial Compression, Specimen 10L, 2 inches per second
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Figure F-3 Force – displacement curve for specimen 10L 
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Figure F-4 Specimen 10 L post fracture 
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