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The purpose of this study was to examine the effect of incremental levels of isokinetic concentric 

muscle exertion on passive reproduction of passive positioning (PRPP) and active reproduction 

of passive positioning (ARPP) at the knee joint in male and female collegiate soccer and 

basketball players. 

Subjects for this study included 20 (10 males and 10 females) volunteers.  Subjects 

performed knee extension and flexion concentric isokinetic exercise until torque output fell 

below the 10%, 30%, or 50% of maximum hamstring torque for three consecutive repetitions.  

Subjects were then tested on either PRPP or ARPP following the isokinetic exercise session.  

Following testing of the first independent measure, subjects were given a 20 minute rest period.  

Following the rest period, the procedure was repeated for two more exercise sessions.  Testing of 

PRPP and ARRP was counterbalanced between trials and sessions in order to decrease the 

chance of a learning effect on the results of each testing session. 

The major findings of this study indicate that increasing levels of exertion do not have a 

significant effect on either active reproduction ability [ARPP-45° (F2,38 = 0.88, p = 0.42), ARPP-

30° (F2,38 = 0.69, p = .51), and ARPP-15° (F2,38 = .23, p = 0.80) or passive reproduction ability 

[PRPP-60°⋅s-1 (F2,38 = 0.25, p = .78) , PRPP-90°⋅s-1 (F2,38 = 0.31, p = 0.73), and PRPP120°⋅s-1 

(F2,38 = 1.58, p = 0.22)].  However, the reliability of all PRPP and ARPP measures at 15° 

demonstrated poor reliability. 

 iii



Fatigue has long been theorized to be a contributing factor in decreased proprioceptive 

acuity, and therefore a contributing factor to joint injury.  The lack of significant findings may be 

explained by the idea that as the level of muscle fatigue increases muscle spindle discharge 

increases.  Poor reliability for all PRPP and ARPP at 15° draws into question the meaningfulness 

of the results for these measures. 
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CHAPTER 1 

INTRODUCTION 

Research Problem 

Ligament injuries of the knee represent a significant percentage of lower extremity injuries 

during athletic participation.  Epidemiological studies indicate that female soccer and basketball 

players have a higher incidence of ligament injury, particularly the anterior cruciate ligament 

(ACL), when compared to their male counterparts (23, 64, 103).  Studies involving college age 

males and females showed female soccer players were 2.3 and female basketball players were 

2.9 times more likely to sustain an ACL injury compared to males in the same sports (3, 4, 17).  

At the high school level, studies indicate ACL injuries in female basketball players are 3.5 to 3.8 

times more common than in male basketball players (45, 101, 120).  Other studies indicate that 

the occurrence of ACL injuries in females are up to eight times that of males (3, 109).  Several 

factors have been suggested for these differences including hormonal factors (2, 56, 64, 84, 140, 

158, 159), anatomic factors (3, 65, 104, 138, 147), fatigue (58, 63, 74, 107, 108, 128-130, 139), 

joint laxity (96, 98, 128, 129), inadequate kinesthetic/proprioceptive sensibility (74, 128, 129), 

and decreased neuromuscular control (43, 62, 128, 135, 160).  Fatigue is perhaps the single most 

important due to fatigue’s manageability via training and fitness.  Of particular interest here is 

the role of fatigue in the underlying mechanisms involved in proprioceptive sensibility. 

 Kinesthetic sense (kinesthesia) is defined as the awareness of body position and body 

movement (91, 123, 155).  Kinesthesia, which includes proprioceptive sense, is a key factor 

involved in injury avoidance and skilled movement.  Kinesthesia and proprioception are needed 

to provide crucial position, movement, and force information.  As effectors, muscles merely 

obey the commands of the central nervous system (CNS).  A strong fit muscle is of no use if the 
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muscle is not activated in time to protect itself, a joint, or other muscles (138), and, the CNS 

commands are only as good as the sensory information on which they are based. 

Proprioception, the sense of joint position and movement of a joint, is one component of 

kinesthesia (68, 76-82, 91, 126).  Proprioceptors (position sensors) are found in muscles, joints, 

and skin.  These receptors are sensitive to changes in stretch, and relay information regarding 

joint movement and position to the CNS for interpretation and evaluation.  Studies of ligament 

and muscle receptors indicate that ligament receptors are more sensitive near the end limits of a 

joint’s motion (22, 29, 49, 68, 73, 127, 141, 166), whereas muscle receptors may play a key role 

in the mid-range of motion (49, 68, 76, 91, 126, 141).  Using afferent information provided by 

proprioceptors, the CNS relays efferent signals to muscles to generate a muscle contraction or 

does not relay efferent signals resulting in muscle relaxation. 

Fatigue is generally associated with failure of muscle to sustain a contraction.  Other 

definitions include, an inability to maintain a given force and an inability to maintain a given 

exercise intensity (11, 19, 24, 39, 40, 47).  Central factors (CNS factors), however, should not be 

overlooked.  At the very least, painful input due to exertion from free nerve endings 

(nociceptors) may reduce an athlete’s motivation to continue.  At the extreme, reduced output 

from sensory receptors and delayed output from CNS integration centers, and/or the alpha and 

gamma motor systems may cause a reduction in the protective reflex mechanisms of muscles 

(11, 14) (Figure 1). 
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Previous research has shown a decrease in neuromuscular control (104, 105, 128, 129, 

160) and proprioception (74, 100, 104, 105, 130, 139, 153) following maximal fatigue of 

muscles surrounding the knee joint, during mild fatigue in anterior cruciate ligament deficient 

(ACL-D) individuals (75), and following low intensity work to fatigue (18).  During athletic 

competition, athletes commonly slow down or are unable to generate the same amount of force 

that they could during earlier phases of the activity.  In this investigator’s opinion, however, it is 

rare to see an athlete fatigued to the point of collapse (maximum fatigue) in sports such as soccer 

or basketball.  Fatigue, therefore, should be viewed as a continuum ranging from minimal to 

maximum levels (Figure 2). 

 
 

 
      Minimal         Moderate         Maximum 
Figure 2.  Fatigue continuum 
 
 

There is a link between information provided by sensory inputs to the CNS and the 

performance of an appropriate motor task.  This link requires proper functioning of sensory 

receptors, CNS integrating centers, sensory cortex, cerebellum, spinal cord, alpha motor neurons, 

gamma loops, motor end plates, and muscle cells, for appropriate performance of motor tasks 

(10, 14, 24, 36, 43, 93, 122, 141).  Deficiencies, related to fatigue at any of these levels may 

result in decreased motor performance (18, 86, 88, 145). 

 

Statement of Purpose 

The purpose of this study was to examine the effect of incremental levels of isokinetic concentric 

muscle exertion on passive reproduction of passive positioning (PRPP) and active reproduction 
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of passive positioning (ARPP) at the knee joint in male and female collegiate soccer and 

basketball players. 

 

Significance of Study 

The effect of increasing levels of exertion on knee joint proprioception has not been investigated 

to date.  Information obtained from this study will add to the general database of knowledge 

concerning the effects of exertion on proprioception.  Specifically, this study hopes to establish 

that PRPP and ARPP scores plateau between moderate and maximum levels of exertion.  If a 

plateau relationship is demonstrated, it may provide evidence that proprioceptive abilities are 

decreased to a level that might prevent muscles from reacting to injurious forces at the knee joint 

prior to maximum muscle fatigue.  If correct, this study would provide a potential link between 

non-maximal exertion levels, diminished proprioception, and knee joint ligament injury. 

 

Hypotheses 

It is expected that: 

1. A difference in PRPP and ARPP scores for all conditions will be found between males and 

females. 

2. Ratings of perceived exertion will not be different between males and females for each level 

of exertion. 

3. Passive Reproduction of Passive Positioning ability at a knee joint velocity of 60°/s will be 

different at exertion levels of 10% below maximum isokinetic torque, 30% below maximum 

isokinetic torque, and 50% below maximum isokinetic torque. 
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4. Passive Reproduction of Passive Positioning ability at a knee joint velocity of 90°/s will be 

different at exertion levels of 10% below maximum isokinetic torque, 30% below maximum 

isokinetic torque, and 50% below maximum isokinetic torque. 

5. Passive Reproduction of Passive Positioning ability at a knee joint velocity of 120°/s will be 

different at exertion levels of 10% below maximum isokinetic torque, 30% below maximum 

isokinetic torque, and 50% below maximum isokinetic torque. 

6. Active Reproduction of Passive Positioning ability at a knee joint angle of 15° will be 

different at 10% below maximum isokinetic torque, 30% below maximum isokinetic torque, 

and 50% below maximum isokinetic torque. 

7. Active Reproduction of Passive Positioning ability at a knee joint angle of 30° will be 

different at 10% below maximum isokinetic torque, 30% below maximum isokinetic torque, 

and 50% below maximum isokinetic torque. 

8. Active Reproduction of Passive Positioning ability at a knee joint angle of 45° will be 

different at 10% below maximum isokinetic torque, 30% below maximum isokinetic torque, 

and 50% below maximum isokinetic torque. 

 

Limitations 

1. Experience in sport varied among subjects. 

2. Maximum torque production varied between testing trial and/or test day for each subject. 

3. Testing was not conducted at every possible isokinetic speed. 

4. Testing was not conducted across a wide spectrum of subjects. 

5. Results cannot be generalized to non-isokinetic movements. 

6. The training level of each subject was not controlled. 
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7. Motivation and anxiety related to testing may have affected the subject’s torque production 

and PRPP and ARPP scores. 

8. Isokinetically induced concentric hamstring muscle fatigue may not involve the same 

mechanisms involved in muscle fatigue induced by sport participation. 

 

Delimitations 

1. Subjects were confined to isokinetic movement patterns of knee flexion and extension. 

2. Subjects’ muscle contractions were confined to concentric tension. 

3. Subjects were confined to a seated position for isokinetic exercise and proprioception testing 

procedures. 

4. Study was confined to a small subset of isokinetic speeds. 

 

Assumptions 

It was assumed that: 

1. Each subject produced maximum effort during each isokinetic exercise session. 

2. The subjects honestly reported their leg dominance. 

3. Subjects honestly reported any orthopedic or other health related problems that might prevent 

inclusion in this study. 

  



   

CHAPTER 2 

REVIEW OF LITERATURE 

Anatomy and Biomechanics of the Knee Joint 

The knee joint is a compound synovial joint which functions as a modified hinge and is 

comprised of three bones, the femur, tibia, and patella, and three articulating surfaces, the medial 

tibiofemoral, lateral tibiofemoral, and the patellofemoral articulations.  The three articulating 

surfaces are enclosed in a common joint capsule with the tibiofemoral articulations involved in 

movement of the knee joint (125, 142).  Motion of the knee joint is constrained to six degrees of 

freedom:  flexion-extension, axial rotation, varus-valgus, anterior-posterior translation, medial-

lateral translation, and compression-depression (83, 102, 142).  Movements of flexion and 

extension involve a combination of the femoral condyles rolling and gliding over the tibial 

articulating surfaces. 

The knee functions to withstand large forces, provide great stability, and afford a large 

range of motion (41, 142, 155-157).  The combination of anatomical mobility and high 

movement demand causes the knee joint to be the “weak link” in the lower extremity (89, 98, 

142, 155, 156).  Mobility is primarily provided by the bony structure, whereas, stability is 

primarily provided by muscles, ligaments, and cartilage (25, 66, 142).  Injury to these stabilizing 

structures is common in athletics (5, 156). 

Bony Anatomy and Biomechanics 

The superior portion of the knee joint is made up of the distal enlargements of the medial and 

lateral femur known as the condyles.  The condyles are convex both longitudinally and 

transversely and are separated by the intercondylar fossa (125, 142).  The femoral condyles 

articulate with the two smaller tibial condyles which are both slightly concave with the lateral 
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tibial condyle also convex anteriorly and posteriorly (142).  Together with the intercondylar 

eminence, which helps to increase the congruity of the joint, these structures make up what is 

referred to as the tibial plateau (125, 142).  Compressive forces created by the “closed-pack-

position”, have been found to be an important factor in providing stability to the knee joint and 

preventing shear forces that create anterior-posterior translation of the tibia relative to the femur 

(38). 

 The longitudinal articulating surface of the femoral condyles is approximately twice the 

length of the surface of the tibial condyles (142).  This difference does not allow for pure rolling 

motion to occur during the motions of knee flexion and extension.  Instead, the condyles execute 

both rolling and gliding movements with varying ratios throughout the range of motion (142).  

Rolling is predominate at the initiation of flexion and gliding occurs more at the end of flexion 

(142).   

Soft Tissue Anatomy and Biomechanics 

Musculature of the Knee.  The knee musculature of the lower extremity is located in the anterior 

and posterior compartments of the thigh and posterior compartment of the lower leg (125, 142, 

149).  The extensor muscles of the knee occupy the anterior compartment of the thigh and are 

innervated by the femoral nerve.  The primary flexor and rotator muscles are located in the 

posterior compartments of the thigh and the lower leg and are innervated by branches of either 

the sciatic or tibial nerve depending on their location (125, 149). 

 The primary knee extensor muscles, commonly referred to as the quadriceps femoris, 

consist of the vastus medialis, vastus intermedius, vastus lateralis, and the rectus femoris, which 

have independent origins and a common insertion at the base of the patella known as the 

quadriceps tendon (125).  The vastus medialis originates from the lower portion of the 
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intertrochanteric line, the medial lip of the linea aspera, and the medial intermuscular septum.  

The vastus intermedius has its origin at the anterior and lateral surface of the femur, and the 

vastus lateralis originates from the greater trochanter and the linea aspera of the femur (149).  

The rectus femoris originates from the ilium by two separate heads, a straight head arises from 

the anterior inferior iliac spine and a reflected head which originates just above the margin of the 

acetabulum (125).  The action of the quadriceps is applied to the knee through the patellar 

ligament, which attaches the apex of the patella to the tibial tuberosity (125, 149).  All four of the 

quadriceps femoris muscles receive innervation from branches of the femoral nerve (125, 142, 

149).  Research indicates that the quadriceps muscle group provides a significant anterior shear 

force to the anterior cruciate ligament (ACL), particularly when the hamstring group is in a 

fatigued state (6, 7, 35). 

 The primary knee flexor muscles of the posterior compartment of the thigh are known 

collectively as the hamstrings, which include the biceps femoris, semitendinosus, and the 

semimembranosus.  The biceps femoris consists of a long and short head.  The long head arises 

from the ischial tuberosity, and the short head originates from the lateral lip of the linea aspera 

and the lateral intermuscular septum.  The two heads converge in the lower third of the thigh and 

insert on the head of the fibula.  The semitendinosus originates from the ischial tuberosity and its 

tendon of insertion passes behind the knee and inserts on the proximal medial surface of the tibia 

just below the medial condyle.  The semimembranosus arises from the lower portion of the 

ischial tuberosity and inserts at the posteromedial side of the medial tibial condyle.  The three 

muscles of the hamstrings receive innervation from branches of the sciatic nerve (125, 142, 149). 

 Carlsöö (28) noted that the mechanical effect of the hamstrings differed from conditions 

of free hanging (open kinetic chain) and when the foot was in contact with the ground.  The 
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investigators found that during the free hanging (open kinetic chain) condition the hamstrings 

created a flexor moment, whereas during the closed kinetic chain condition an extensor moment 

was created.  Escamilla (38), however, noted that the hamstrings exert a posterior force 

throughout the range of motion.   

 The knee flexors located in the posterior compartment of the lower leg are the 

gastrocnemius, popliteus and plantaris.  The two heads of the gastrocnemius have their proximal 

attachment above the femoral condyles and a distal attachment via the tendocalcaneus (Achilles 

tendon) to the calcaneus.  Innervation of the gastrocnemius is from branches of the tibial portion 

of the sciatic nerve.  The popliteus attaches proximally to the lateral condyle of the femur and 

distally to the posterior-medial surface of the tibia above the soleal line.  It receives innervation 

from the tibial nerve (125, 142, 149). 

 Muscles that act as internal rotators of the tibia with respect to the femur are the 

semitendinosus, semimembranosus, popltieus, gracilis, and sartorius.  External rotation of the 

tibia with respect to the femur is produced by the biceps femoris (142).  The gracilis originates 

from the body and inferior ramus of the pubis and inserts on the medial surface of the tibia just 

below the medial condyle and is innervated by the obturator nerve.  The sartorius originates from 

the anterior superior iliac spine and inserts on the upper medial surface of the tibial shaft near the 

gracilis and semitendinosus.  Innervation of the gracilis is via the femoral nerve (125, 149). 

Menisci of the Knee.  The medial and lateral menisci are semilunar shaped fibrocartilage that 

increase the congruency of tibiofemoral articulations and help to distribute pressure by spreading 

joint reaction forces over a larger surface area of the articulating surfaces (142).  Both menisci 

are attached to the tibia at their anterior and posterior horns and through the coronary ligaments.  

The coronary ligaments are a part of the joint capsule that attaches the peripheral edges of the 
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menisci to the margin of the tibia (125).  Further support for the menisci is provided by 

ligamentous and tendonous attachment to the menisci. 

Collateral Ligaments of the Knee.  The medial and lateral collateral ligaments prevent passive 

movement of the knee in the frontal plane (142).  The medial collateral ligament prevents 

abduction of the tibia on the femur and the lateral collateral prevents adduction. 

 The medial collateral ligament is a broad flat band that extends from the medial 

epicondyle to the medial aspect of the tibia below the medial tibial condyle (125, 155).  The 

lateral collateral ligament is cord-like and runs between the lateral femoral epicondyle and the 

apex of the fibula (125).  The attachments of the collateral ligaments on the femoral epicondyles 

are offset posteriorly and superiorly to the axis of rotation, which causes the ligaments to become 

taut when the knee is extended and slack when the knee is flexed (142).  The collateral ligaments 

help to prevent anterior and posterior displacement and tibial rotation when the knee is extended 

and allow these movements as the knee is flexed. 

Cruciate Ligaments of the Knee.  The anterior and posterior cruciate ligaments provide control 

and stability to the knee throughout the motions of flexion and extension (151).  These ligaments 

lie within the femoral intercondylar fossa in the center of the joint.  Although the cruciate 

ligaments are intimately related to the joint capsule, they are extracapsular structures (142).  The 

cruciate ligaments maintain a relatively constant length throughout the motions of flexion and 

extension even though not all parts are taut at the same time.  The relatively constant length of 

the cruciate ligaments helps to force the sliding motions of the condylar surfaces to occur (121, 

155).  In addition to their primary functions, both cruciate ligaments function secondarily as 

internal collateral ligaments, preventing varus and valgus rotation of the knee (103, 110).   
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 The anterior cruciate ligament (ACL) consists of two distinct bundles, the anteromedial 

bundle which is tight in knee flexion and lax in knee extension, and the posterolateral bundle 

which is tight in knee extension and lax in knee flexion (8, 12, 85, 131, 136, 144, 154, 156, 161).  

The ACL attaches to the anterior intercondyler fossa of the tibia and runs laterally and superiorly 

to attach on the inside of the lateral condyle of the femur and is the primary stabilizer preventing 

anterior displacement of the tibia on the femur (152).  The ACL is innervated by a neurovascular 

bundle in the subsynovial connective tissue, and is innervated primarily at its end regions (166). 

The posterior cruciate ligament (PCL) attaches on the posterior intercondylar fossa of the 

tibia and runs medially to attach on the inside of the medial femoral condyle.  The PCL consists 

of two bundles, the anterolateral bundle is tight in flexion and lax in extension while the 

posteromedial bundle is tight in extension and lax in flexion (156, 161).  The PCL limits 

posterior displacement of the tibia on the femur (99). 

Proprioception 

Sir Charles Bell first described the sense of position and actions of the limbs, referring to it as the 

“sixth sense” (91).  This “sixth sense” concerns perceived sensations about the static position or 

velocity of movement of body parts and perceived sensation about the forces generated during 

muscular contractions (91). 

Input from a variety of sources contributes to kinesthetic sense (155).  Some aspects of 

kinesthetic sensibility, such as a sense of effort and heaviness, and a sense of timing, are 

generated by sensory centers that monitor motor commands sent to muscles (155).  Other aspects 

of kinesthesia are generated largely by input from peripheral receptors that monitor the execution 

of the motor command (155).  For example, input from the eyes and ears are responsible for 

generating a sense of body position in space and time (155).  The sense of joint movement and 
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joint position is generated by receptors located in the skin, muscles, tendons, joint capsules, and 

ligaments surrounding the joints (11, 22, 68, 91, 122, 126, 141, 155, 166).  These receptors are 

referred to as proprioceptors and the sensation they provide is called proprioception (91).   

 Proprioceptive organs signal to the central nervous system information about the relative 

position of body parts.  Apart from pressure receptors in the soles of the feet, proprioceptive 

organs do not supply any information as to the orientation of the body with respect to gravity; 

proprioceptors only signal the position of one body part with respect to another (126).  The 

receptors involved lie in muscles and musculotendinous junctions (muscle spindles and Golgi 

tendon organs), joint capsules and ligaments (Pacinian corpuscles and Ruffini end organs), and 

the skin (126).  Research indicates that the function of these sensory organs may be affected by 

the type of activity being performed (59, 77, 93, 94, 122, 132), joint hypermobility (55, 96), 

tendon vibration (31), joint effusion (53), joint anesthesia (29), gender (56, 63, 128, 129), injury 

to joint (9, 20, 72, 78, 80, 82, 138) or musculotendinous structures (80), nervous system injury 

(49), elastic bandages, neoprene sleeves taping and bracing (16, 21, 27, 111), and fatigue (10, 11, 

18, 32, 58, 74, 100, 104-108, 132, 139, 165).  Limb dominance (52, 65) however, does not 

appear to play a role in proprioceptive abilities. 

Joint Capsule and Ligament Proprioceptors 

Several sensory receptors have been identified in the joint capsule.  These sensory receptors have 

been named based on similarities to receptors found in other tissue and include: Ruffini endings 

which are found in the joint capsule, Golgi endings located in the ligaments of the joint, 

encapsulated Paciniform endings found in the fibrous periosteum near articular attachments, and 

free nerve endings found in the joint capsule (68, 155).  The distribution of these receptors is 
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nonuniform within the joint, which may reflect the location of areas of increased stress on the 

joint capsule and ligaments during movement (29, 49, 166). 

Two main types of proprioceptors in the joint capsule and ligaments are the Ruffini end 

organs (Ruffini corpuscles) and Pacinian corpuscles.  Ruffini end organs consist of a small 

number of main terminal branches with a profuse system of small branches on the end of each 

main branch (76, 81, 91, 122, 123, 155).  The end of each main branch and its smaller branches 

are enclosed within a connective tissue covering and the entire corpuscle is located between the 

collagenous fibers of the capsule and ligament (91, 155).  Ruffini end organs are reported to be 

mostly responsive to tension.  Pacinian corpuscles consist of a single terminal branch surrounded 

by several concentric layers of Schwann cells, all of which are enclosed in a connective tissue 

cover (76, 81, 91, 122, 123, 155).  Pacinian corpuscles appear to be responsive to compression 

forces, and are widely distributed between the collagenous fibers of the joint capsule and 

surrounding fascia (76, 81, 91, 122, 123, 155). 

The role of ligaments in proprioception is unclear.  Because tension in ligaments may be 

caused by movement in a number of different directions, proprioceptors within ligaments most 

likely cannot provide information on movement in any specific direction (155).  Ligament 

proprioceptors may make a significant contribution to joint stabilization in reflexive muscular 

activity (22, 29, 49, 67, 142, 155, 166). 

Joint capsule receptors are innervated by distinct nerve branches as well as by branches 

from nerves supplying adjacent muscles and overlying skin.  Most joint capsule receptors appear 

to discharge at the extremes of movement, typically during flexion and extension, providing 

information relative to joint position.  These response properties suggest that proprioceptors 
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located in the joint capsule function as limit detectors, whose role is to signal extreme positions 

of the joint, and in so doing, prevent damage to the joint (49, 63, 67, 76, 91, 155). 

According to Jones (68), joint receptors in the hand appear to play a more important role 

in proprioception than joint receptors do in the proximal areas of an extremity such as the knee.  

Zimny et al. (166), however, found that the anterior cruciate ligament contained not only free 

nerve endings but also Ruffini end organs and Pacinian corpuscles as well.  Zimny et al. (166) 

also indicated that the greatest populations of receptors were in the femoral and tibial attachment 

areas of the ligament, and that the receptors constituted 2.5% of the ligament.  From these 

findings, Zimny et al. (166) concluded that the human anterior cruciate ligament is capable of 

discriminating afferent outflow to the central nervous system.  In cats, Krauspe (73) found that 

most afferent fibers arising from the ACL were activated by the application of local pressure 

near the femoral attachment.  The afferents were activated when the knee was extended, flexed, 

externally rotated, and internally rotated with the greatest activity during hyperextension with 

either external rotation or internal rotation.  Receptor discharge activity was not found at a 

resting length of 30 degrees of flexion.  Krauspe (73) concluded that these results suggested that 

the sensory innervation of the ACL plays an important role in joint stability and maintaining the 

integrity of the ligament. 

A direct reflex arc between the ACL and the hamstring has been proposed (67, 143, 150).  

Solomonow et al. (142) documented that hamstring EMG activity was significantly increased 

during low to moderate load application to the ACL.  Similarly, Johansen (67) found that knee 

joint afferents frequently and powerfully influence fusimotor neurons (γ-motor neurons).  Tsuda 

et al. (150) reported decreased muscle activity in the anesthetized knee due to removal of 

impulses from the neural elements of the ACL.  In contrast, Grabiner et al. (46) refutes a direct 
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reflex arc.  During isometric extension exercise of the knee these investigators found no 

significant difference in hamstring excitation with regard to muscle or joint angle. 

Muscle Receptors 

The Muscle Spindle.  Muscle spindles are elongated structures ranging from 4 to 10 mm in 

length, and consist of a bundle of specialized muscle fibers (intrafusal muscle fibers) lie in 

parallel with the fibers of the extrafusal muscle and are classified by the arrangement of their 

nuclei into nuclear bag fibers and nuclear chain fibers (37, 49, 67, 68, 76, 79, 80, 155).  The 

nuclei of the nuclear bag fibers are clustered in a group, whereas the nuclei of nuclear chain 

fibers are arranged in a line parallel to the long axis of the muscle fiber.  The regions of the fibers 

on each side of the central region contain a large number of myofibrils and are referred to as the 

“polar regions” (37).  The typical muscle spindle consists of two bag fibers and four chain fibers 

(37).  Central regions of both fiber types are supplied with Type Ia and Type II sensory nerve 

endings (68, 126, 155).  The endings of Type Ia fibers spiral around the intrafusal fibers and the 

endings of type II fibers consist of a number of branches comprised of end bulbs which adhere 

closely to the sarcolemma of each fiber. 

Polar regions of the intrafusal fibers are supplied with motor endings from A-beta (A-β) 

and A-gamma (A-γ) motor nerve fibers (49, 67, 68, 126, 155).  Stimulation of the A-β and A-γ 

nerves results in contraction of the polar regions, stretching the polar region and exciting the 

spiral and end bulb nerve endings resulting in sensory discharge via the Type Ia and Type II 

sensory nerve fibers (9, 49, 67, 68, 126, 155).  Type Ia and Type II sensory fibers synapse in the 

spinal cord directly with A-alpha motor neurons that supply the extrafusal fibers (49, 67, 68, 126, 

155).  The level of contraction of the extrafusal fibers depends on the level of activation, which 

depends on the degree of tension in the intrafusal fibers.  Under resting conditions there is 
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always a certain amount of tension in the intrafusal fibers, which is caused by activation by the 

sensory centers of the brain via the A-beta and A-gamma fibers, resulting in a certain amount of 

tension in the extrafusal muscle fibers (49, 67, 68, 126, 133, 155). 

Sensory output from muscle spindles can also be generated by stretching the muscle as a 

whole, as this will cause stretch of the muscle spindle and excite the spiral and end bulb nerve 

endings (49, 67, 68, 126, 155).  Eccentric muscle contraction is an essential component of 

normal movements.  It is thought that sensory information provided by muscle spindles as a 

result of stretching during eccentric tension provides a sense of joint position and joint 

movement, especially during mid-range movements (42, 91, 139).  The rate of sensory 

information generated depends on the muscle tone (resistance to stretch by a relaxed muscle) of 

the intrafusal fiber, increasing intrafusal fiber muscle tone increases the sensitivity of the 

spindles to stretch and increases of spindle sensitivity cause an increase in intrafusal fiber muscle 

tone (37).  Rapid stretch results in reflex contraction of muscles, which is caused by the spindle 

afferent to muscle efferent loop, to prevent subluxation of associated joints.  These stretch 

reflexes are important in protecting joints from injury (54, 60, 94, 108, 133).  Excitation of 

muscle spindles appears to be primarily responsible for initiating reflexive muscle contraction 

(50, 67, 93).   

The Golgi Tendon Organ.  Golgi Tendon Organ’s (GTO) are located at the junction between the 

muscle tendon and the extrafusal fibers (musculotendinous junction) and are said to be in series 

with the extrafusal fibers (68, 126, 142, 155).  Golgi Tendon Organs are simple receptor organs 

containing a single afferent connection and no efferent connections.  The terminal sensory organ 

of the afferent neuron of the GTO is located within a capsule and branches to encircle several 
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strands of collagen in the musculotendinous junction (37).  Each tendon organ is innervated by a 

single Group Ib axon and is attached to 10 to 20 muscle fibers (68, 155). 

When a muscle and its associated connective tissue are stretched either passively or 

actively the strands of collagen pinch and excite the Group Ib afferent.  Given the means by 

which the GTO is activated, it is commonly described as a monitor of muscle force (37).  The 

level of force needed to active a GTO is dependent on the mode of activation.  Passive stretching 

requires greater force than does active stretching to active the tendon organ (37, 68, 155). 

 

Proprioception Assessment Techniques 

The most common method for testing knee proprioception involves a seated (open-chain) 

position (9, 13, 16, 76-80, 112, 124, 138).   However, some previous studies examining the effect 

of fatigue have tested proprioception in an open-chain position (100, 104, 105, 128-130, 139).  

Given that the majority of ligament injuries at the knee occur with the foot in contact with the 

ground and the knee internally or externally rotating around a fixed foot, it would seem that the 

most appropriate means for proprioception testing would be in a closed kinetic chain position.  

Recent studies, however, indicate a strong positive correlation between open and closed-kinetic 

chain measurement techniques (90, 112).   

Procedures for the assessment of joint movement and position sensibility have been well 

documented (9, 16, 20, 27, 31, 52-54, 58, 59, 65, 74, 76-81, 90, 100, 104, 105, 111, 112, 124, 

128-130, 139).  Barrack and Skinner (9, 139) originally described assessment techniques for both 

phenomenons.  Joint movement sensibility is assessed by measuring threshold to detection of 

passive movement (TTDPM).  Joint position sense is determined using either reproduction of 

passive positioning (RPP) or reproduction of active positioning (RAP). 

 



   20

Measurement of joint movement sensibility typically requires the subject to determine 

when a slow (0.5 degrees per second) angular displacement of the joint has occurred.  The slow 

speed of movement is an attempt to eliminate sensory information from muscle receptors (9, 76-

81, 128-130, 139).  Movement is typically restricted to agonist-antagonist patterns (i.e. – flexion 

and extension).  In an attempt to eliminate external stimuli, the subject is blindfolded to eliminate 

visual cues, wears headphones that play “white noise” to eliminate auditory cues, and wears a 

pneumatic compression boot to reduce the activation of sensory receptors in the skin (9, 76-81, 

128-130, 139).  Studies indicate that kinesthetic awareness in the knee is enhanced near the 

limits of the range of motion (9, 139).  These findings parallel neurophysiological studies which 

indicated the existence of a disproportionate distribution of sensory receptors at ligament 

attachment sites and that these receptors produce a maximal discharge at the end limits of motion 

(9). 

Joint position sensibility is assessed by having the subject’s ability to reproduce a 

presented joint angle (9, 76-81, 128-130, 139).  This assessment can be performed passively or 

actively, and in an open- or closed-kinetic chain motion.  The subject is blindfolded and is 

instructed to hold the presented position for 2-4 seconds before returning to the start position, the 

subject is then instructed to reproduce the angle he/she was presented (9, 76-81, 128-130, 139).  

The measures of RPP and RAP stimulate sensory receptors within the joint and the muscle.  

These measures provide a more functional assessment of the afferent pathways (76-81, 128-130).   

 Debate has arisen concerning whether testing for position sensibility should be performed 

in a closed- or open-kinetic chain position.  Previous studies have found that testing 

proprioception in a weight bearing (closed-kinetic chain) position improves the accuracy of 

reproducing joint angles compared to the non-weight-bearing position (open-kinetic chain) (59, 
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100).  Others have found sensation of limb position to be more accurate with an active muscle 

contraction (74).  Some investigators have also suggested that open-kinetic chain assessment 

appears to isolate the cutaneous and joint receptors, whereas closed-kinetic chain assessment 

may isolate the muscle mechanoreceptors (74, 90).  Higgins and Perrin (59) examined joint 

reproduction sensibility in weight bearing and non-weight bearing test situations.  The results 

indicated no difference in position reproducibility sense between testing situations. 

 

Fatigue 

Fatigue has been defined as an inability to maintain a given exercise intensity (24) or as a failure 

to maintain the required amount of force (47).  These definitions, however, imply that fatigue is 

an event that occurs at a specific point in time and fails to consider changing conditions within 

the muscle that ultimately lead to a point of failure (44, 97).  It is possible to have muscle fatigue 

without impaired function of the muscle itself (24).  Proper functioning of sensory receptors, the 

central nervous system (CNS), integrating centers, sensory cortex, spinal and α-motor neurons, 

γ-loops, motor end plates, muscle cells, and the cerebellum are frequently required in the 

performance of motor tasks (24).  These factors may be related to factors specific to the muscle 

itself (peripheral fatigue) or to factors related to the central nervous system (central fatigue) (97, 

130). 

Peripheral Fatigue 

Fitts (39) states that the primary cause of muscle fatigue in highly trained athletes appears to be 

peripheral in nature.  Peripheral fatigue involves the function of the neuromuscular junction and 

the processes related to excitation-contraction (EC) coupling (39, 40).  Several experts have 

debated the exact location/process within EC coupling that causes muscle fatigue. 
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 The process of EC coupling involves the activation of the surface membrane, propagation 

of the signal down the T-tubles, bringing the activation into the depths of the cell leading to the 

release of calcium and finally the activation of the contractile elements (39, 40).  The release of 

inorganic phosphate (92, 130), decreased hydrolysis of ATP (92) and a decreased availability of 

calcium (24) have been linked to decreased force output of muscle.  Shifts in the levels of 

calcium (40, 47), potassium (24), lactate (33); enzymes, and metabolites (92, 148) have also been 

thought to play a role in muscle fatigue.  Shalin (134) however, has stated that no one element, 

enzyme, or metabolite can be independently responsible for peripheral fatigue.  Mair et al. (95) 

suggested that fatigue alone does not play a role in muscle injury at any tissue length.  These 

investigators also suggest that fatigued muscles are able to absorb less energy before reaching the 

degree of stretch that caused injury. 

 Isokinetic dynamometry has been shown to be an effective means for producing muscle 

fatigue in isolated muscle groups.  Douris (33) found that blood lactate accumulation increased 

significantly as isokinetic velocity increased.  The researcher concluded that increased blood 

lactate levels found as isokinetic velocity increased may be due to greater recruitment of fast 

twitch muscle fibers.  Studies investigating the measurement of isokinetically induced fatigue 

have indicated that the use of a muscle fatigue index is the most reliable method for measuring 

isokinetically induced muscle fatigue (33, 69, 113, 116, 117).  Fatigue indexes are determined by 

dividing the last five torque curves by the first five then multiplying by 100 to obtain a 

percentage value (33, 69, 113).  Douris (33) reported a significant positive correlation between 

muscle fatigue index and blood lactate.  Pincivero et al. (113) found high intraclass correlation 

coefficients for the fatigue index in the non-dominant leg, but not in the dominant leg.   
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Central Fatigue 

Central fatigue has been identified as a progressive reduction in voluntary drive to motor neurons 

during exercise (42).  Central fatigue appears to be related to afferent and efferent signals to 

higher brain centers, central command, recruitment of the α-motor neuron pool, and the α-motor 

nerves themselves (42).  Motor cortical output eventually becomes suboptimal for recruitment of 

motor neurons.  At least some of this central fatigue occurs at sites “upstream” from the motor 

cortex (42).   

 Belhaj-Saif et al. (10) found that firing frequency during fatigue demonstrated the active 

participation of the motor cortex in the control of compensation for peripheral adjustments due to 

muscle fatigue.  Taylor et al. (145) found that fatigue altered EMG responses to transcranial 

stimulation during fatigue suggesting both increased excitation and increased inhibition in the 

motor cortex.  Taylor et al. concluded that since these changes were not affected by manipulation 

of afferent input, the increased excitation and increased inhibition of the motor cortex must result 

from intrinsic cortical processes and/or altered voluntary drive to the motor cortex (145). 

 Electrically induced fatigue has been shown to affect muscle afferents, supraspinal tracts, 

and motoneurons.  Following one minute of electrical stimulation, Loscher et al. (87) 

demonstrated that even though metabolic stress and contractile fatigue were still present, 

supraspinal, muscle spindle, and motoneuronal recovery were allowed.  Darques and Jammes 

(32) established the activation of group IV muscle afferents during electrically induced muscle 

fatigue.  These researches concluded that the mechanisms related to muscle afferent stimulation 

is not solely due to increased extracellular potassium concentrations, but also by the efflux of 

muscle metabolites present during fatiguing contractions. 

 



   24

During fatiguing isometric contractions, at 30 % of MVC, Loscher et al. (88) found that 

the excitatory drive to the triceps surae alpha motoneuron pool increased which the investigators 

proposed was a compensatory mechanism to recruit new unfatigued motor units and/or increase 

motor unit firing rates.  Loscher et al. (88) concluded that muscle twitch at endurance limits and 

an EMG that does not attain its unfatigued MVC level are strong indicators that central fatigue 

occurred during a sustained submaximal contraction (88).  Macefield et al. (93, 94) found that 

during an isometric contraction, the discharge frequency of muscle spindle afferents 

progressively declined as the EMG progressively increased.  The researchers concluded that 

although many factors may contribute to the decline in muscle spindle discharge, the most likely 

result is a progressive disfacilitation of the alpha motoneuron, which may contribute to the 

decrease in motor unit firing rates during sustained contractions. 

Effect of Fatigue on Proprioception 

Studies have suggested that a decrement in proprioception with respect to a loss in joint (58, 74, 

104, 105, 128, 130) and/or muscle (11, 32, 74, 94, 130, 132, 139) receptor function may occur 

with the onset of fatigue.  It has been proposed that joint injuries might be more prevalent as a 

result of a reduction in joint proprioception (9, 20, 21, 78, 79, 81, 82, 138).  In general, it is 

believed that a decline in muscle spindle discharge is accompanied by a progressive increase in 

EMG, representing a clear dissociation between EMG activity and fusimotor-driven spindle 

discharge (94). 

Electrically induced fatigue in cats has shown increased resting discharge and frequency 

of discharge to slow stretch and vibration during fatigue in Type Ia and Type II spindle afferents 

(11).  While another study demonstrated depressed or abolished Ib afferent responses during 

fatigue in static, dynamic, and peak frequency which lasted 10 to 20 seconds indicating slow 
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recovery (11).  In human studies, Lattanzio et al. (74) found a decrease in kinesthetic sensibility 

in males following three maximal fatigue protocols (ramp test, continuous test, and interval test), 

and during the continuous and interval tests in females.  Decreases in joint angle and force 

proprioception were also found to be significantly impaired following eccentric exercise to 

fatigue (132).  Skinner et al. (139) found a decrease in the ability to reproduce joint angles after a 

series of interval running sprints to fatigue, suggesting that this decreased ability was either due 

to a loss of efficiency of muscle spindles, or decreased muscle function.  Others, however, have 

suggested that exercise to fatigue is associated with increased muscle spindle activity in response 

to stretch or vibration and reduced GTO activity, resulting in unopposed alpha and gamma motor 

neuron stimulation to motor units (11). 

In contrast to the findings that fatigue affects proprioception, Marks and Quinney (100) 

ascertained that following 20 maximal isokinetic quadriceps contractions in sedentary females, 

no significant decrease in knee proprioception occurred.  However, others have found that 

isokinetic exercise to fatigue has a significant effect on reproduction sensibility (104, 105, 128, 

129, 153).  Further, it has been demonstrated that low-intensity work to fatigue diminished 

proprioceptive acuity, which could lead to impaired motor control further diminishing position 

sensibility (18).   

Studies of hamstring and quadriceps muscle fatigue have shown decreases in peak knee 

moment at heel strike (107) and delayed muscle activation during fatigue (108).  Mair et al. (95) 

found that fatigued muscles absorb less energy before reaching the degree of stretch of soft tissue 

that causes injury.  Mair et al. indicated a significantly decreased force to failure at 50 percent 

fatigue at isokinetic velocities of 1 and 10 cm⋅s-1, which the investigators concluded was a 

sufficient level of fatigue to interfere with the storage and retrieval of elastic energy (95).  
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During fatigue, biodynamical compensations in the mechanical properties of the knee extensor 

musculature, as evidenced by differences in knee kinematics and muscle activation times, may 

occur to enhance knee stability (108).  Evidence suggests that fast-twitch muscle fibers have a 

greater Type Ia afferent innervation as compared to slow-twitch fibers (24, 61, 87, 94, 97, 130, 

139, 141, 148, 163).  This finding, along with the fact that fast-twitch fibers fatigue faster, would 

seem to suggest that as muscle fatigue increases there will be a decrease in proprioceptive 

awareness which could lead to a decrease in efferent responses. 

Previous research has also indicated that decrements in proprioceptive acuity play a role 

in decreased functional ability.  Wojtys et al. (160) found a 32.5% increase in anterior tibial 

translation (ATT) following fatigue.  This finding indicated that muscle responses of the knee 

musculature originating at the spinal cord and cortical level showed significant slowing, and in 

some cases, an absence of activity following quadriceps and hamstring muscle fatigue.  Muscle 

recruitment patterns have also been shown to be altered following fatigue, particularly in females 

(128, 160). 

 

Isokinetic Dynamometry 

Strength, endurance, and power measurement by isokinetic dynamometry are well documented 

in the literature (2, 26, 51, 70, 71, 115, 118, 119, 146).  Isokinetic measures such as torque, work, 

and power on the Biodex dynamometer have been found to be highly reproducible.  Pincivero et 

al. (119) found ICC values ranging from r = 0.88 to r = 0.97 and r = 0.82 to r = 0.96 for 

isokinetic variables measured at 60°⋅s-1 and 180°⋅s-1 respectively between 2 tests separated by 

seven days.  Gross et al. (51) examined peak extension torque (PET), peak flexor torque (PFT), 

knee extension angular work (EW), and knee flexion angular work (FW) at 180°⋅s-1 on a Biodex 
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isokinetic dynamometer.  They obtained ICC values of 0.97 for PET, 0.91 for PFT, 0.97 for EW, 

and 0.89 for FW.   

 The influence of hip position and isokinetic velocity on quadriceps and hamstring 

isokinetic measures has been documented in previous studies (70, 162, 164).  Worrell et al.. 

(164) found higher peak torque values for the quadriceps and hamstrings in a seated position 

when compared to a supine testing position in both male and female subjects.  In a study 

comparing average torque of the hamstring muscle group in a supine versus prone position it was 

found that the average torque for the hamstrings was higher in a prone position (162).  

Comparison between seated, supine, and prone positions indicated that hamstring peak torque is 

higher when tested in a seated position as opposed to either prone or supine positions (164).  

Kannus and Beynnon (70) ascertained that peak torque values and angle of peak torque changed 

with increases in isokinetic velocity.  Their results indicated that peak hamstring torque values 

decreased from 121 (+ 25) Nm at 60 °⋅s-1 to 88 (+ 20) Nm at 180 °⋅s-1 for males and from 62 (+ 

19) Nm to 42 (+ 15) Nm for females at 60°⋅s-1 and 180°⋅s-1, respectively.  Angle of hamstring 

peak torque was also found to be seven degrees greater for both males and females as speed 

increased from 60°⋅s-1 to 180°⋅s-1 (70).  Worrell et al. found a similar decrease in peak torque for 

the hamstring as isokinetic velocity increased (162, 164). 

Summary and Conclusion 

The function of the knee is to withstand large forces, provide stability to the lower extremity, and 

afford the lower extremity with a large potential range of motion.  The knee is considered the 

“weak link” in the lower extremity kinetic chain due to the relationship between high anatomical 

mobility and the high movement demands.  Stability of the knee is achieved by both passive 

(ligaments, joint capsule, and cartilage) and active (musculotendinous) components.  
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Proprioceptive organs located in musculotendinous structures, ligaments, joint capsules, and skin 

provide information relative to the joints position and motion in space to the CNS.  This 

information, along with feed-forward mechanisms, helps to regulate muscle responses aimed at 

protecting the joint from injury. 

Several factors which may affect the functioning of proprioceptive organs have been 

identified and investigated.  The role of fatigue on diminished proprioceptive acuity is of great 

interest given that the onset of fatigue can be altered through training.  Maximum levels of 

fatigue have been found to diminish joint movement and joint position abilities in athletic and 

non-athletic populations.  Additional evidence suggests that low levels of fatigue may affect 

proprioception in anterior cruciate ligament deficient individuals. 

In conclusion, the role of fatigue on proprioceptive abilities is unclear at this time.  There 

is little information available regarding how proprioceptive abilities decline as the amount of 

exertion increases during exercise.  The purpose of the present study is to determine the role of 

increasing exertion on proprioceptive measures. 

 

 



   

CHAPTER 3 

METHODOLOGY 

 

Experimental Design 

The study utilized a multifactoral repeated measures design.  Subjects were assessed on two 

dependent measures.  The dependent variables included passive reproduction of passive 

positioning (PRPP) and active reproduction of passive positioning (ARPP).  The independent 

variable was muscle fatigue, which was operationalized as a percentage of peak isokinetic 

hamstring muscle torque (10%, 30%, and 50% below peak hamstring torque).  Testing of the 

dependent measures were conducted prior to (pre-test) and following (post-test) the exercise 

intervention.  Change scores for the dependent variables were calculated and used in further 

statistical manipulations.  Exercise intervention and testing of the two dependent measures were 

conducted using a counterbalanced design to control the occurrence of a learning effect on the 

outcomes of the study. 

 

Subject Characteristics 

Subjects for this study included 10 male (20.8 + 1.1 years of age, 190.0 + 8.9 cm, 91.1 + 11.9 kg, 

and 12.30 + 3.6 years in sport) and 10 female (19.5 + 1.2 years of age, 166.1 + 6.9 cm, 64.5 + 7.1 

kg, and 12.3 + 2.0 years in sport) volunteers.  Subjects were recruited from NCAA Division III 

soccer and basketball athletes.  Individuals with a history of cardiovascular disease, diabetes, 

hypertension, pregnant and/or orthopedic pathology or injury of the knee were excluded from 

participating in this study.  Written informed consent was obtained from each subject in 

 29



   30

accordance with the Institutional Review Board at California Lutheran University and the 

University of Pittsburgh (Appendix A). 

 

Isokinetic Exercise Procedures 

Fatigue of the quadriceps and hamstring muscle groups of the subject’s non-dominant leg was 

induced utilizing a Biodex System 3 Isokinetic Dynamometer (Biodex Medical Inc., Shirley, 

NY, U.S.A.).  The decision to use the non-dominant leg for all testing procedures was made due 

to results of earlier work showing that the non-dominant leg is more reliable in similar 

measurements than the dominant leg (114).   

 Subjects performed the isokinetic exercise protocol in a seated position with knees and 

hips at 90-degree angles on the Biodex dynamometer chair.  Subjects were secured to the chair 

by means of thigh, pelvic, and torso straps to minimize extraneous body movements.  Subjects 

crossed their arms across their chest to further prevent extraneous movements from the upper 

extremity.  The lateral femoral epicondyle of the test leg was used to align the axis of rotation of 

the knee joint with the axis of rotation of the dynamometer resistance adapter.  The resistance 

adapter was strapped into placed approximately three cm above the medial malleolus.  Gravity 

correction was obtained by measuring the torque with the knee in a relaxed state at zero degrees 

of flexion.  The Biodex System 3 Advantage Software Program (version 3.2, Biodex Medical 

Inc., Shirley, NY, U.S.A.) automatically adjusted torque values for gravity.  Calibration of the 

Biodex dynamometer was performed prior to each testing session according to the specifications 

outlined in the manufacturer’s user manual (15). 

Following the setup procedures, isokinetic exercise was performed through an angular 

range of motion of 90 degrees.  Motion stops were set at 0 degrees and 90 degrees of knee 
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flexion.  During the testing procedure, the cushion setting on the control panel for the ends of 

range of motion was set to their lowest (hard) setting in order to reduce the effect of limb 

deceleration on the reciprocal motion.  Reciprocal concentric isokinetic knee extension and 

flexion was performed at the pre-set angular velocities of 90 degrees·s-1 for 10 repetitions, 180 

degrees·s-1 for 15 repetitions, 240 degrees·s-1 for 20 repetitions, and 300 degrees·s-1 for 25 

repetitions.  Prior to each set, subjects performed 5 sub-maximal and 2-3 maximal repetitions for 

warm up and familiarization purposes.  A rest period of 40 seconds was provided between each 

of the four sets (115).  Presentation of isokinetic angular velocities was randomized and counter-

balanced.  Following a rest period of 40 seconds, subjects then performed the reciprocal flexion 

and extension movement at 180 degrees·s-1 until the hamstring (flexion movement) peak torque 

value fell to 90%, 70%, or 50% of the subject’s peak isokinetic torque for three consecutive 

repetitions.  Peak isokinetic torque values were determined by selecting the highest torque value 

during the first five contractions for each trial (33, 100, 116, 117, 139). 

Ratings of perceived exertion (RPE) were collected during the isokinetic exercise 

protocol.  Subjects were asked to determine their level of exertion following the exertion 

protocol to see if their level of perceived exertion matched the level of physiological exertion 

demonstrated by the decrease in isokinetic torque values.  Subjects were read a script prior to 

testing as outlined in the American College of Sports Medicine’s Guidelines for Exercise Testing 

and Prescription (2).  Please see Appendix B for a copy of the script and data recording sheet. 

 

Proprioception Testing Procedures 

Immediately prior to and following each isokinetic fatigue session, subjects were tested on one 

of the dependent measures (PRPP or ARPP).  Testing of these measures was conducted using the 
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Biodex isokinetic dynamometer.  Subjects were blindfolded during testing to eliminate any 

visual cues related to joint position. 

Passive Reproduction of Passive Positioning Protocol 

Testing for PRPP was conducted using the Biodex isokinetic dynamometer.  The subject’s leg 

was placed at an inital angle of 90 degrees of knee flexion for each trial.  The subject’s leg was 

then passively moved to the test angle of 20 degrees of knee flexion by the examiner at an 

angular velocity of 10 degrees·s-1.  Subjects concentrated on the sensation of the presented angle 

(20 degrees of knee flexion) for 3 seconds.  The subject's leg was then returned passively to the 

starting position by the examiner.  Following a three second rest period the dynamometer 

passively moved the subject’s leg at one of the test velocities (60 degrees·s-1, 90 degrees·s-1, or 

120 degrees·s-1). The subject attempted to stop the dynamometer movement at the presented joint 

angle (20 degrees of knee flexion) before the dynamometer initiated the flexion movement at the 

end of the range of motion.  Once the subject felt the test leg was in the position of the presented 

angle, the subject depressed the “hold/resume” switch preventing the dynamometer from further 

movement.  If the subject failed to stop the dynamometer movement prior to moving back into 

flexion, the investigator recorded the end range position (0 degrees) for that trial.  The Biodex 

System 3 software interface recorded the absolute angular difference (AAD) between the 

presented and reproduced angles.  The investigator also recorded the actual angle of detection in 

order to determine if the subjects were stopping the movement prior to, or after, the test angle 

(Appendix C).  Each subject performed three trials at each angular velocity.  The three values 

were averaged and the average AAD was used for further analysis (57).   
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Active Reproduction of Passive Positioning Protocol 

Testing of ARPP was conducted using the Biodex isokinetic dynamometer.  Subjects were 

blindfolded to eliminate visual cues related to joint position.  The subject’s leg was placed at a 

starting angle of 60 degrees of knee flexion for each trial.  The subject’s leg was then passively 

moved to one of the test angles (45 degrees, 30 degrees, or 15 degrees of knee flexion) by the 

examiner.  Subjects concentrated on the sensation of the presented angle for three seconds.  The 

subject's leg was then returned passively to a different position than the starting position by the 

examiner.  Following a three second rest period the subject attempted to actively reproduce the 

presented joint angle.  Once the subject felt the test leg was in the position of the presented angle 

the subject depressed the hold/resume switch preventing the dynamometer from further 

movement.  The Subject had 5 seconds to reproduce the presented angle. 

The Biodex System 3 software package recorded and stored the absolute angular 

difference (AAD) between the presented and reproduced angles.  Each subject performed three 

trials at each angle and the average of the trials was recorded for statistical interpretation (57). 

 

Test Procedures 

Pre-testing evaluation was conducted in the Athletic Training Lab at least 24 hours prior to the 

first testing session.  During the initial pre-testing evaluation, a medical history and demographic 

information (mass, height, age, and years in sport) were obtained.  Leg dominance was 

determined at this time by asking the subject “if you were to kick a soccer ball, with which leg 

would you kick the ball?”  The leg indicated as the non-dominant (non-kicking) leg served as the 

test leg for all testing sessions.  Subjects were also introduced to the Biodex System 3 Isokinetic 

machine and the testing procedure to be used in the study at this time.  During the initial pre-
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testing evaluation, each subject was also introduced to the testing procedures for PRPP and 

ARPP.  Subjects began testing sessions at least 24 hours following the pre-testing evaluation. 

Upon entering the Athletic Training Lab for each testing session, subjects were provided 

5 to 10-minutes for stretching prior to testing.  Following stretching, the subject was pre-tested 

for one of the PRPP or ARPP measures.  Subjects then performed knee extension and flexion 

concentric isokinetic exercise as described above until torque output fell below the 

predetermined percentage of peak torque for three consecutive repetitions.  Subjects were then 

post-tested on the same PRPP or ARPP measure as the pre-test following the isokinetic exercise 

session.  Following testing of the first independent measure, subjects were given a 20 minute rest 

period.  Following the rest period, subjects were pre-tested on a different PRPP or ARPP 

measure.  The subject then performed knee extension and flexion concentric isokinetic exercise 

until torque output fell below the predetermined percentage of peak torque for three consecutive 

repetitions at the same angular velocity used in the first session.  Following the second isokinetic 

exercise session, subjects were post-tested again on the same PRPP or ARPP measure used in the 

pre-test.  This procedure was repeated for a third exercise session. 

 Exercise sessions were separated by a minimum of 48 hours to allow complete recovery.  

Table 1 provides an example of one testing protocol used for one subject.  Exercise intensity was 

counter-balanced between sessions.  Testing of PRPP and ARRP was counterbalanced between 

trials and sessions in order to decrease the chance of a learning effect on the results of each 

testing session.  Subjects were also asked to refrain from participating in any lower extremity 

exercise routines for the remainder of the study. 
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Table 1.  Sample testing protocol 

Test Session % Peak Isokinetic Torque Test Variable 
#1 

Test Variable 
#2 

Test Variable 
#3 

1 70% ARPP 45° PRPP 90°/s ARPP 30° 
2 90% PRPP 120°/s ARPP 30° PRPP 60°/s 
3 50% ARPP 15° ARPP 45° PRPP 90°/s 
4 90% ARPP 15° ARPP 45°  PRPP 90°/s 
5 70% ARPP 15° PRPP 120°/s PRPP 60°/s 
6 50% PRPP 120°/s ARPP 30° PRPP 60°/s 
 
 
 

Data Analysis 

Mean AAD values for ARPP and PRPP were used for further data analyses.  Analysis of 

variance with repeated measures for exertion level at ARPP angles of 15°, 30°, and 45° by 

gender and exertion level at PRPP of 60°⋅s-1, 90°⋅s-1, and 120°⋅s-1 by gender were utilized to 

determine statistical significance.  Ratings of perceived exertion were analyzed using a two way 

analysis of variance (RPE x gender).  All tests of significance were carried out at an alpha level 

of P < 0.05.  Bonferroni pairwise comparisons were used to determine which findings are 

significant at the 0.05 level.  Reliability of the PRPP and ARPP were estimated by computing 

Chronbach’s alpha coefficients for pre-exertion and post-exertion test values.   

 

 



   

CHAPTER 4 

RESULTS 

Rating of Perceived Exertion 

Mean RPE values for exertion levels of 10%, 30%, and 50% below maximum isokinetic 

hamstring torque for males and females are presented in Table 2.  Two-way analysis of variance 

demonstrated a statistically significant main effect for RPE (F2,36 = 328.06, p = 0.00).  Post-hoc 

analysis revealed a statistically significant difference between RPE at 10% and 30% exertion 

(F1,18 = 110.05, p = 0.00) and between RPE at 30% and 50% exertion (F1,18 = 447.426, p = 0.00) 

A statistically significant main effect was also found for gender (F1,18 = 5.92, p = 0.03).  Post-hoc 

analysis revealed a statistically significant difference for gender at an exertion level of 30% 

below maximum isokinetic hamstring torque (t = 2.80, p = 0.03).  A statistically significant 

interaction effect was not found between RPE and gender (F2,36 = 1.60, p = 0.22). (Table 3).   

 

Table 2.  RPE at exertion levels of 10%, 30%, and 50% below max. hamstring torque. 

% Exertion N Mean Std.Dev. Std.Error 
10%                                        0 
                                              1 
                                       Total 

10
10
20

10.64
9.70

10.17

1.46
1.25
1.41

0.46
0.40
0.32

30%                                        0 
                                              1 
                                       Total 

10
10
20

14.06
12.77
13.42

1.05
1.02
1.21

0.33
0.32
0.27

50%                                        0 
                                              1 
                                       Total 

10
10
20

18.00
17.77
17.88

0.75
0.80
0.77

0.24
0.25
0.17

0 = Male, 1 = Female 
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Table 3.  Two-Way ANOVA Table for RPE at 10%, 30%, and 50% max. hamstring torque. 
 Df Mean Square F Sig. 
Gender 1 3.371 5.923 .026 
Error (Gender) 18    
RPE 2 299.961 328.055 .000 
RPE*Gender 2 1.460 1.597 .217 
Error (RPE) 36 .914   
 

 

Passive Reproduction of Passive Positioning 

Table 4 presents mean change score values for PRPP absolute angular difference by test angular 

velocity for males and females.  Figures 3-5 display the mean change AAD scores for PRPP by 

gender at joint angular velocities of 60°⋅s-1, 90°⋅s-1, and   120°⋅s-1. 

 
 

Table 4.  Mean Change Scores for PRPP Absolute Angular Difference* 
Exertion Level (% below maximum hamstring torque) 
10% 30% 50% 

Joint 
Angular 
Velocity Gender N Mean Std. Dev Mean Std. Dev Mean Std. Dev 

60°⋅s-1 
Male 
Female 
Total 

10 
10 
20 

-0.51 
-0.33 
-0.42 

2.45 
2.53 
2.43 

-0.82 
0.56 
-0.13 

2.12 
2.89 
2.57 

-0.31 
-1.07 
-0.69 

4.10 
2.22 
3.23 

90°⋅s-1 
Male 
Female 
Total 

10 
10 
20 

-0.32 
-1.09 
-0.75 

2.82 
4.15 
3.47 

-0.27 
-1.38 
-0.83 

2.00 
4.44 
3.40 

1.14 
-1.08 
0.03 

4.22 
3.45 
3.92 

120°⋅s-1 
Male 
Female 
Total 

10 
10 
20 

-0.09 
-0.93 
-0.51 

2.59 
3.76 
3.17 

-0.66 
-4.13 
-2.40 

5.07 
3.41 
4.57 

1.40 
-1.38 
0.01 

5.71 
4.44 
5.18 

*(-) values indicate a decrease in pre-test to post-test (pre-post = change score) values 
 
 
 

PRPP at Angular Velocity of 60°⋅s-1 

Reliability for PRPP at 60°⋅s-1 was estimated by computing Chronbach’s alpha coefficients for 

pre-exertion and post-exertion test values.  As can be seen in Table 5 these coefficients ranged 

from -0.08 to 0.74 and had a mean value of 0.53.  Maulchy’s Test of Sphericity (ε = 0.85, p = 

0.24) revealed that the assumption of sphericity had been met for PRPP at an angular velocity of 
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60°⋅s-1 between exertion levels of 10%, 30%, and 50% below maximum hamstring torque.  

Repeated measures analysis of variance for PRPP at 60°⋅s-1 (Table 6) did not reveal a statistically 

significant main effect for exertion (F2,36 = 0.25, p = 0.78).  Neither a statistically significant 

main effect for gender (F1,18 = 0.10, p = 0.76), nor an interaction effect between exertion and 

gender for PRPP at 60°⋅s-1 (F2,36 = 0.90, p = 0.41) were found.   

 
 

Table 5.  Measurement Reliability of PRPP at 60°⋅s-1  
% of Maximum Exertion F p Chronbach’ Alpha 

pre-test 1.61 0.21 0.66 10% below max 
Post-test 0.52 0.60 0.65 
pre-test 0.29 0.75 0.73 30% below max 
Post-test 4.66 0.02 0.74 
pre-test 0.11 0.90 0.47 50% below max 
Post-test 0.71 0.50 -0.08 

 
 
 

Table 6.  PRPP at 60°⋅s-1 Repeated Measures ANOVA Table 

Source df Mean Square F Sig. 
Gender 1 1.08 0.10 0.76 
Error (Gender) 18 10.73   
Exertion 2 1.58 0.25 0.78 
Exertion * Gender 2 5.77 0.90 0.41 
Error (Exertion) 36 6.39   
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Figure 3.  Absolute Angular Difference for PRPP at 60°⋅s-1. 
(Values in lower panel are means) 
 
 

PRPP at Angular Velocity of 90°⋅s-1 

Reliability for PRPP at 90°⋅s-1 was estimated by computing Chronbach’s alpha coefficients for 

pre-exertion and post-exertion test values.  As can be seen in Table 7 these coefficients ranged 

from 0.43 to 0.67 and had a mean value of 0.56.  Maulchy’s Test of Sphericity (ε = 0.99, p = 

0.93) revealed that the assumption of sphericity had been met for PRPP at an angular velocity of 

90°⋅s-1 between exertion levels of 10%, 30%, and 50% below maximum hamstring torque.  

Repeated measures analysis of variance for PRPP at 90°⋅s-1 (Table 8) did not reveal a statistically 

significant main effect for exertion (F2,36 = 0.30, p = 0.74).  Neither a statistically significant 

main effect for gender (F1,18 = 2.65, p = 0.12), nor an interaction effect between exertion and 

gender for PRPP at 90°⋅s-1 (F2,36 = 0.20, p = 0.82) were found.   
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Table 7.  Measurement Reliability of PRPP at 90°⋅s-1 

% of Maximum Exertion F p Chronbach’s Alpha 
pre-test 0.20 0.82 0.64 10% below max 
Post-test 1.77 0.18 0.67 
pre-test 0.41 0.66 0.46 30% below max 
Post-test 2.17 0.13 0.66 
pre-test 0.23 0.79 0.43 50% below max 
Post-test 0.43 0.66 0.49 

 
 
 
Table 8.  PRPP at 90°⋅s-1 Repeated Measures ANOVA Table 

Source df Mean Square F Sig. 
Gender 1 28.02 2.65 0.12 
Error (Gender) 18 10.57   
Exertion 2 4.29 0.30 0.74 
Exertion * Gender 2 2.88 0.20 0.82 
Error (Exertion) 36 14.35   
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Figure 4.  Absolute Angular Difference for PRPP at 90°⋅s-1. 
(Values in lower panel are means) 
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PRPP at Angular Velocity of 120°⋅s-1 

Reliability for PRPP at 120°⋅s-1 was estimated by computing Chronbach’s alpha coefficients for 

pre-exertion and post-exertion test values.  As can be seen in Table 9 these coefficients ranged 

from -0.42 to 0.56 and had a mean value of 0.31.  Maulchy’s Test of Sphericity (ε = 0.76, p = 

0.10) revealed that the assumption of sphericity had been met for PRPP at an angular velocity of 

120°⋅s-1 between exertion levels of 10%, 30%, and 50% below maximum hamstring torque.  

Repeated measures analysis of variance for PRPP at 120°⋅s-1 (Table 10) did not reveal a 

statistically significant main effect for exertion (F2,36 = 1.53, p = 0.23).  A statistically significant 

main effect for gender (F1,18 = 6.22, p = 0.02) was found.  Pairwise comparisons between gender 

for PRPP at 120°⋅s-1 showed a mean difference between males and females of 2.36 (p = 0.02).  A 

statistically significant interaction effect between exertion and gender for PRPP-120°⋅s-1 was not 

found (F2,36 = 0.45, p = 0.64). 

 

Table 9.  Measurement Reliability of PRPP at 120°⋅s-1 
% of Maximum Exertion F p Chronbach’s Alpha 

pre-test 3.10 0.06 0.33 10% below max 
post-test 0.48 0.62 0.56 
pre-test 0.91 0.41 -0.42 30% below max 
post-test 0.36 0.70 0.31 
pre-test 1.61 0.21 0.55 50% below max 
post-test 2.00 0.15 0.55 

 
 
 
Table 10.  PRPP at 120°⋅s-1 Repeated Measures ANOVA Table 

Source df Mean Square F Sig. 
Gender 1 83.70 6.22 0.02 
Error (Gender) 18    
PRPP - 120°/s 2 32.04 1.53 0.23 
PRPP - 120°/s * Gender 2 9.32 0.446 0.64 
Error (PRPP - 120°/s) 36 20.90   
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Figure 5.  Absolute Angular Difference for PRPP at 120°⋅s-1. 
(Values in lower panel are means) 
 
 
 

Active Reproduction of Passive Positioning 

Table 11 presents mean change score values for ARPP absolute angular difference by test angle 

for males and females.  Figures 6-8 display the mean change AAD scores for ARPP by gender at 

joint angles of 15°, 30°, and 45° of knee flexion. 
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Table 11.  Mean Change Scores for ARPP Absolute Angular Difference* 
Exertion Level (% below maximum hamstring torque) 

10% 30% 50% Joint 
Angle Gender N Mean Std. Dev Mean Std. Dev Mean Std. Dev 

15° 
Male 
Female 
Total 

10 
10 
20 

-0.09 
1.15 
0.53 

0.74 
2.24 
1.74 

-0.71 
0.60 
-0.06 

2.20 
2.24 
2.26 

-0.61 
0.22 
-0.20 

1.45 
1.70 
1.59 

30° 
Male 
Female 
Total 

10 
10 
20 

-0.47 
-0.88 
-0.68 

2.57 
2.76 
2.60 

0.05 
-0.48 
-0.22 

1.90 
1.80 
1.82 

-1.08 
-0.89 
-0.99 

2.84 
2.97 
2.83 

45° 
Male 
Female 
Total 

10 
10 
20 

-0.81 
-1.19 
-1.00 

1.21 
1.99 
1.61 

-0.20 
-1.14 
-0.67 

1.71 
2.63 
2.21 

-0.16 
-1.07 
-0.62 

1.45 
1.91 
1.71 

*(-) values indicate a decrease in pre-test to post-test (pre – post = change score)values 
 

 
ARPP at Angular Position of 15° 

Reliability for ARPP at 15° was estimated by computing Chronbach’s alpha coefficients for pre-

exertion and post-exertion test values.  As can be seen in Table 12 these coefficients ranged from 

0.28 to 0.80 and had a mean value of 0.57.  Maulchy’s Test of Sphericity (ε = 0.80, p = 0.14) 

revealed that the assumption of sphericity had been met for ARPP at a knee joint angle of 15° 

between exertion levels of 10%, 30%, and 50% below maximum hamstring torque.  Repeated 

measures analysis of variance for ARPP at 15° (Table 13) did not reveal a statistically significant 

main effect for exertion (F2,36 = 0.84, p = 0.44).  A statistically significant main effect for gender 

(F1,18 = 6.10, p = 0.02) was found.  Pairwise comparisons between gender for ARPP at 15° 

showed a mean difference between males and females of -1.13 (p = 0.02).  A statistically 

significant interaction effect between exertion and gender for ARPP at 15° was not found (F2,36 = 

0.10, p = 0.91).   

 

 

 

 



   44

Table 12.  Measurement Reliability of ARPP at 15° 
% of Maximum Exertion F p Chronbach’s Alpha 

pre-test 1.15 0.23 0.80 10% below max 
post-test 2.26 0.12 0.67 
pre-test 2.71 0.08 0.41 30% below max 
post-test 3.34 0.05 0.80 
pre-test 0.85 0.44 0.47 50% below max 
post-test 2.19 0.13 0.28 

 

 
Table 13.  ARPP at 15° Repeated Measures ANOVA Table 

Source df Mean Square F Sig. 
Gender 1 19.00 6.10 0.02 
Error (Gender) 18 3.11   
Exertion 2 2.97 0.84 0.44 
Exertion * Gender 2 0.34 0.10 0.91 
Error (Exertion) 36 3.54   
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Figure 6.  Absolute Angular Difference for ARPP at 15°. 
(Values in lower panel are means) 
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ARPP at Angular Position of 30° 

Reliability for ARPP at 30° was estimated by computing Chronbach’s alpha coefficients for pre-

exertion and post-exertion test values.  As can be seen in Table 14 these coefficients ranged from 

0.56 to 0.83 and had a mean value of 0.73.  Maulchy’s Test of Sphericity (ε = .75, p = 0.09) 

revealed that the assumption of sphericity had been met for ARPP at a knee joint angle of 30° 

between exertion levels of 10%, 30%, and 50% below maximum hamstring torque.  Repeated 

measures analysis of variance for ARPP at 30° (Table 15) did not reveal a statistically significant 

main effect for exertion (F2,36 = 0.66, p = 0.53).  Neither a statistically significant main effect for 

gender (F1,18 = 0.10, p = 0.76), nor an interaction effect between exertion and gender for ARPP at 

30° (F2,36 = 0.16, p = 0.85) was not found.   

 
 
Table 14.  Measurement Reliability of ARPP at 30° 

% of Maximum Exertion F p Chronbach’s Alpha 
pre-test 1.15 0.33 0.79 10% below max 
post-test 0.95 0.39 0.69 
pre-test 2.91 0.07 0.79 30% below max 
post-test 0.70 0.50 0.56 
pre-test 4.50 0.02 0.72 50% below max 
post-test 0.38 0.69 0.83 

 
 
 
Table 15.  ARPP at 30° Repeated Measures ANOVA Table 

Source df Mean Square F Sig. 
Gender 1 0.94 0.10 0.76 
Error (Gender) 18 9.83   
Exertion 2 3.00 0.66 0.53 
Exertion * Gender 2 0.74 0.16 0.85 
Error (Exertion) 36 4.58   
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Figure 7.  Absolute Angular Difference for ARPP at 30°. 
(Values in lower panel are means) 
 
 
 
ARPP at Angular Position of 45° 

Reliability for ARPP at 45° was estimated by computing Chronbach’s alpha coefficients for pre-

exertion and post-exertion test values.  As can be seen in Table 16 these coefficients ranged from 

0.56 to 0.90 and had a mean value of 0.79.  Maulchy’s Test of Sphericity (ε = 0.78, p = 0.13) 

revealed that the assumption of sphericity had been met for ARPP at a knee joint angle of 45° 

between exertion levels of 10%, 30%, and 50% below maximum hamstring torque.  Repeated 

measures analysis of variance for ARPP at 45° (Table 17) did not reveal a statistically significant 

main effect for exertion (F2,36 = 0.22, p = 0.81).  Neither a statistically significant main effect for 

gender (F1,18 = 3.26, p = 0.09), nor an interaction effect between exertion and gender for ARPP at 

45° (F2,36 = 0.13, p = 0.88) were found.   
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Table 16.  Measurement Reliability of ARPP at 45° 

% of Maximum Exertion F p Chronbach’s Alpha 
pre-test 1.26 0.30 0.86 10% below max 
post-test 0.51 0.61 0.81 
pre-test 3.10 0.06 0.56 30% below max 
post-test 0.14 0.87 0.79 
pre-test 0.76 0.47 0.84 50% below max 
post-test 2.81 0.07 0.90 

 
 
 
Table 17.  ARPP at 45° Repeated Measures ANOVA Table 

Source df Mean Square F Sig. 
Gender 1 8.29 3.26 0.09 
Error (Gender) 18 2.55   
Exertion 2 0.87 0.22 0.81 
Exertion * Gender 2 0.50 0.13 0.88 
Error (Exertion) 36 3.97   
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Figure 8.  Absolute Angular Difference for ARPP at 45°. 
(Values in lower panel are means) 
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Summary 

Chronbach’s alpha for PRPP scores indicate these measures should be interpreted cautiously.  

Active reproduction of passive positioning demonstrated adequate to good reliability at joint 

angles of 30° and 45°, but poor reliability at a joint angle of 15°.  The results of the current study 

showed a statistically significant gender main effect for PRPP at 120°⋅s-1 and for ARPP at a joint 

angle of 15°.  Chronbach’s alpha coefficients for those two measures, mean α for PRPP at 

120°⋅s-1 = 0.31 and mean α for ARPP at a joint angle of 15° = 0.57, indicate that caution must be 

used when interpreting these findings.  Statistically significant interaction effects for PRPP by 

gender and ARPP by gender were not found.  The major findings of this study indicate that 

increasing levels of exertion do not have a statistically significant effect on either passive or 

active reproduction of passive positioning ability.  Poor Chronbach’s alpha for all PRPP 

measures and ARPP at 15° cause the findings for those measures to be inconsistent. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



   

 
CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

The purpose of this study was to examine the influence of increasing levels of physical exertion 

on passive and active reproduction of passive positioning ability.  The results of the current study 

showed a statistically significant gender main effect for PRPP at 120°⋅s-1 and for ARPP at a joint 

angle of 15°.  Chronbach’s alpha for those two measures, mean α for PRPP at 120°⋅s-1 = 0.31 

and mean α for ARPP at a joint angle of 15° = 0.57, indicate that the findings associated with 

these measures should be interpreted cautiously.  Statistically significant interaction effects for 

PRPP by gender and ARPP by gender were not found.  The major findings of this study indicate 

that increasing levels of exertion do not have a statistically significant effect on either passive or 

active reproduction of passive positioning ability.  Poor Chronbach’s alpha coefficients for all 

PRPP measures and ARPP at 15° indicate the reliability of these findings is not as strong as 

previously reported.  Passive and active reproduction of passive position measures demonstrated 

large variability.  The large variability in these measures may be linked to the generally poor 

reliability of these measures. 

 

Rating of Perceived Exertion 

The results from the present study showed a statistically significant difference for RPE and for 

gender at an exertion level of 30%.  The RPE values reported corresponded to the level expected 

during the exercise interventions.  Although RPE corresponded to the level of expected exertion 

during the exercise trials, isokinetically induced muscle exertion of the hamstring and quadriceps 

muscles may be too localized to cause neuromuscular deficits at a level sufficient to create 
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changes in proprioceptive acuity.  Subjects indicated their overall feeling of exertion for a given 

exercise session. 

A gender effect for RPE was not found at exertion levels of 10% and 50%.  A statistically 

significant effect for gender was found at an exertion level of 30%.  Previous studies have shown 

differences in RPE values between males and females at maximum exertion (113, 115, 116).  

However, these studies used untrained subjects.  Green et al. (48) did not demonstrate a gender 

effect during exercise at a moderate work rate.  Green et al. indicated that the use of subjects 

involved in the same sport or activity will result in similar RPE values between gender groups 

(48).  The current study used subjects who participate in soccer and basketball at the collegiate 

level.  The findings from the current study are in agreement with the findings of Green et al. 

(48). 

 

Passive Reproduction of Passive Positioning 

The results from the present investigation demonstrated that isokinetic hamstring exercise to 

exertion levels of 10%, 30%, and 50% below maximum hamstring torque did not have a 

significant effect on PRPP ability at angular velocities of 60°⋅s-1, 90°⋅s-1, and 120°⋅s-1.  A 

statistically significant gender main effect was found at an angular velocity of 120°⋅s-1. 

The apparent lack of a gender difference may be due in part to the poor reliability of 

these measures.  However, other investigators have also failed to show a gender difference for 

PRPP measures (16, 58, 129).  Callaghan, et al. (16) did not find a statistically significant 

difference in PRPP between males and females.  However, these investigators did not report the 

reliability of the PRPP measure.  The finding of a gender effect at an angular velocity of 120°⋅s-1 

should be interpreted cautiously due to the poor reliability associated with this angular velocity. 
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To date, no study has examined the effect of increasing levels of exertion on passive 

reproduction ability at the knee joint.  Previous studies have suggested that a decrement in 

proprioception as measured by a loss in joint and muscle receptor function may occur with the 

onset of maximum fatigue (128, 130).  Bentley (11) suggested that exercise to fatigue is 

associated with increased muscle spindle activity in response to stretch or vibration and reduced 

GTO activity, resulting in unopposed alpha and gamma motor neuron stimulation to motor units.  

Sensory output from muscle spindles can be generated by stretching the muscle as a whole, as 

this will cause stretch of the muscle spindle and excite the spiral and end bulb nerve endings (49, 

67, 68, 126, 155).  In general, the faster the rate of stretch, the greater the discharge from the 

muscle spindles.  The current study demonstrated no increase in PRPP for pre to post-test values 

at all angular velocities and levels of exertion except for angular velocities of 90°⋅s-1 and 120°⋅s-1 

at an exertion level of 50% below maximum hamstring torque.  These later angular velocities did 

not change in post-test reproduction ability.  As muscle fatigue increased and the speed of joint 

motion (stretch) increased, there was no change in pre-test to post-test passive reproduction 

ability.  These results are in agreement with those of Bentley (11).   

Sensory input to the CNS from cutaneous and joint proprioceptors may significantly 

affect passive reproduction ability.  McCabe et al. (90) hypothesized that cutaneous, joint, and 

muscle mechanoreceptors may act independently in transmitting proprioceptive information to 

the CNS.  Cutaneous and joint proprioceptors consist primarily of Ruffini end organs and 

Pacinian corpuscles, which are sensitive to tension and compression forces respectively and 

produce discharges at the extreme limits of the joints range of motion (76, 81, 91, 122, 123, 155).  

The test angle of 20 degrees of flexion for the current study may not have been sufficient to 

cause a discharge of the receptors located in the joint and joint capsule (46).  As such, sensory 
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receptors located in the ligaments and joint capsule of the knee joint may not have played a 

significant role in position sensation. 

The lack of demonstrated reliability for PRPP measures means that the present findings 

must be interpreted cautiously.  Reliability data for these measures is not present in 

proprioception literature.  However, the PRPP test used presently has been used by other 

investigators with varying findings (16, 27, 90).  McCabe, Myers, and Lephart (90) demonstrated 

moderate correlation coefficients for PRPP (r= 0.52 and r= 0.58).  Correlation coefficients, 

however, are statistical tests used to determine the relation between two or more different 

measures (heart rate and RPE for example) not measures of the same task.  The methods used in 

the current study were similar to these previous studies in the areas of instrumentation, setup, and 

movement of the limb into extension.  The current study did investigate different velocities of 

joint movement which was different from those reported previously. 

The lack of reliability for PRPP measures may be due to either the reaction or 

anticipation skill level of the individual subject, or a combination of both factors.  Reaction time 

is an indication of the speed with which one can perceive and respond to the environment (34).  

Anticipation time requires the subject to coordinate and synchronize a motor response with an 

external event (34).  Birmingham et al. (16) attempted to address the problem of reaction time 

and PRPP by asking each subject if they were satisfied that their knee position reflected the 

target angle and allowed the subject to correct the position if desired.  These previous 

investigations do not indicate if corrections were actually made by subjects during passive 

testing.  In the current study, it would seem that both reaction time and anticipation time played a 

role in PRPP ability as the subjects were required to perceive the appropriate angle and 

coordinate the appropriate response to stop limb movement.  An area of particular interest would 
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seem to be latency time.  Latency time is the time between perceiving the stimulus and reacting 

to it.  Subjects in the current study were required to stop dynamometer movement by depressing 

the hold/resume switch for the dynamometer.  The times between sensory receptor activation, 

position recognition, and depressing the switch were not accounted for in the present study and 

may have contributed to the decreased reliability of PRPP measures. 

 

Active Reproduction of Passive Positioning 

Active reproduction of passive positioning measures has been shown to be a valid and reliable 

measure when testing absolute error scores (13, 90).  The methods used in the current study were 

similar to these previous studies in the areas of instrumentation, setup, movement of the limb 

into extension only, and using test angles of 15° and 45°.  The current study did investigate an 

additional test angle, 30° of joint flexion.  The lack of demonstrated reliability for ARPP at a 

joint angle of 15° indicates that the findings for this joint angle should be interpreted cautiously.  

A possible reason for the decreased reliability at a joint angle of 15° might be that the knee 

attachment for the Biodex System 3 Isokinetic Device produced 6 N⋅m of torque at this angle.  

The torque produced by the knee attachment may have been sufficient to cause a decrease in trial 

to trial reliability especially following the 50% below hamstring maximum torque exercise 

sessions.  Chronbach’s alpha for joint angle of 30° and 45° from the current investigation 

indicate that these measures have good reliability (mean values = 0.73 and 0.79 respectively). 

The apparent lack of a gender difference may be due in part to the poor reliability of 

these measures.  However, other investigators have also failed to show a gender difference in 

ARPP measures (74, 100, 129).  Marks and Quinney, did not find a gender effect for ARPP 

following isokinetically induced fatigue.  The current study failed to demonstrate a gender effect 
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for joint angles of 30° and 50°.  The findings from the current study are in agreement with those 

of Marks and Quinney (100).  The gender effect found at 15° should be interpreted cautiously 

due the the poor reliability of this test angle. 

To date, no study has examined the effect of increasing levels of exertion on ARPP at the 

knee joint.  The results from the present investigation demonstrated that isokinetic hamstring 

exertion at levels of 10%, 30%, and 50% below maximum hamstring torque did not have a 

significant effect on ARPP ability at joint angles of 45°, 30°, and 15° of knee flexion.  In an 

earlier study of the effect fatigue has on knee joint proprioception, Lattanzio et al. (74) found a 

decrease in kinesthetic sensibility in males following three maximal fatigue protocols (ramp test, 

continuous test, and interval test), and during continuous and interval tests in females.  Decreases 

in joint angle and force proprioception were also found to be significantly impaired following 

eccentric exercise to fatigue (132).  Skinner et al. (139) found a decrease in the ability to 

reproduce joint angles after a series of interval running sprints to fatigue, suggesting that this 

decreased ability was either due to a loss of efficiency of muscle spindles, or decreased muscle 

function.  Bentley (11), however, suggested that exercise to fatigue is associated with increased 

muscle spindle activity in response to stretch or vibration and reduced GTO activity, resulting in 

unopposed alpha and gamma motor neuron stimulation to motor units.  The current study did not 

demonstrate a statistically significant relation between ARPP for pre to post-test values for all 

joint angles and levels of exertion.   

During fatigue, biodynamical compensations in the mechanical properties of the knee 

extensor musculature, as evidenced by differences in knee kinematics and muscle activation 

times, may enhance knee stability (108).  Evidence suggests that fast-twitch muscle fibers have a 

greater type Ia afferent innervation as compared to slow-twitch fibers (24, 61, 87, 94, 97, 130, 
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139, 141, 148, 163).  This finding, along with the fact that fast-twitch fibers fatigue 

comparatively faster, would suggest that as muscle fatigue increases there will be a decrease in 

proprioceptive awareness which could lead to a decrease in efferent responses.  The findings 

from the current study are not in agreement with these previous findings. 

In contrast to the findings that fatigue affects proprioception, Marks and Quinney (100) 

ascertained that following 20 maximal isokinetic quadriceps contractions in sedentary females, 

no significant decrease in knee proprioception occurred.  However, others have found that 

isokinetic exercise to fatigue has a significant effect on reproduction sensibility (104, 105, 128, 

129, 153).  The findings of the current study seem to agree with those of Marks and Quinney 

(100), as non-significant differences in ARPP were found between pre- and post-test 

measurements for all levels of exertion.   

 

Summary and Conclusion 

Fatigue has long been theorized to be a contributing factor in decreased proprioceptive abilities, 

and therefore a contributing factor to joint injury.  The results from the present study indicate 

that three levels of isokinetically induced exertion do not affect PRPP or ARPP.  The lack of 

significant findings may be explained by Bentley’s (11) theory that as the level of muscle fatigue 

increases muscle spindle discharge increases.  This increase in muscle spindle discharge as 

muscle fatigues may actually provide a protective mechanism producing increased joint stability.  

The findings in the current study, however, may not relate to sport activity situations since the 

induced exertion was localized to the musculature of one thigh.  Further, Chronbach’s alpha 

coefficients for all PRPP measures and ARPP at a joint angle of 15° demonstrated that the 

reliability of these measures was not strong.   
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 In conclusion, the role of fatigue on proprioceptive abilities is unclear at this time.  There 

is little information available regarding how proprioceptive abilities decline as a function of 

increasing levels of physical exertion.  The isokinetic exercise intervention used in the current 

study did not produce significant differences in PRPP and ARPP.  An investigation examining 

the effect of increasing levels of exertion using methods that more closely approximate sport 

activities may produce levels of fatigue that are sufficient to alter PRPP and ARPP measures.  

The inclusion of reaction time and/or anticipation time as a covariable for PRPP may provide 

improved reliability of these measures. 

Research Recommendations 

It is recommended that future research of PRPP focus on the roles reaction time and anticipation 

time play in PRPP measurements.  These may be important covariables that could improve the 

reliability of the measures used for PRPP.  However, it is unclear if the primary covariable in this 

regard is reaction time or anticipation time as both might affect PRPP outcomes.  It is 

recommended that methods in future investigations incorporate the movement of knee extension, 

the angular velocities of the movements, and the use of a hand switch in the determination of 

reaction and anticipation time in order to closely replicate the PRPP skill tested.  It is also 

recommended that it be determined if the torque produced by the knee attachment caused a 

decrease in reliability at angular positions greater than 30°. 

It is recommended that future research focus on an exercise protocol that produces 

increasing levels of exertion that more closely replicate sport and athletic activities.  Significant 

differences in proprioception measures were found by Lattanzio et al. (74) and Skinner et al. 

(139) while using fatigue interventions that replicate sport activities and activities that were 

longer in duration than the current exertion protocol.  These investigators only examined the 
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effect of fatigue interventions following maximum exertion levels.  It is recommended that the 

effect of increasing levels of exertion be reexamined using methods that more closely 

approximate sport activities.  It is a further recommendation that the assessment of exertion level 

include measures that can ascertain overall body exertion and not rely only on anatomically 

localized perception.  Measures such as oxygen consumption to target specific percentages of 

maximum oxygen consumption and electromyographic activity of the muscles tested may 

provide better assessments of the amount of exertion attained at each exertion level tested. 

 

 



   

APPENDIX A 
 
 

CONSENT TO ACT AS A SUBJECT IN AN EXPERIMANTAL STUDY 
 

TITLE:  The Effect of Increasing Levels of Exertion on Knee Joint Proprioception 
 
INVESTIGATOR:  William S Gear, MS, ATC 

Chair, Exercise Science and Sports Medicine; Director, Athletic 
Training Education 

     MC #3400 
     California Lutheran University 
     (805) 493-3547 
 
SOURCE OF SUPPORT:  None 
 
DESCRIPTION: 

 
I understand that I have been asked to participate in this research study because I am a volunteer 
male or female between 18-30 years of age and have no previous history of knee injury.  I 
understand that I will be assessed on my ability to reproduce joint angles passively and actively 
before and after an exercise period to induce varying levels of muscle exertion. The investigator 
in this study hopes to determine if varying levels of exertion affect knee joint proprioception 
which may provide information as to these variables role in joint injury. 
 Prior to testing, your leg dominance will be determined by asking you which leg you 
would use to kick a ball, this leg will be used as the test leg for the proprioception and single leg 
hop tests.  Base line measures for active and passive repositioning sensibility tests will be 
conducted two days prior to the start of exercise interventions. 

You will be familiarized with the testing procedures prior to initiation of testing.  You 
will be asked to perform a joint position sense test actively and passively prior to and following 
the exercise session.  For the muscle exertion inducing exercise session, you will be asked 
perform knee joint flexion and extension exercise on the Biodex Isokinetic Dynamometry.  The 
exercise session will be stopped when a torque production value of 90%, 70%, or 50% below the 
maximum torque output occurs for three consecutive trials.  You will be asked to report to the 
Exercise Science Laboratory, F-4 for six testing sessions over a period of three weeks. 
 
RISKS AND BENEFITS: 
  
I understand that all tests will be implemented within my discretion and that I may choose to 
withdraw from the study at any time.  Possible risks from this study may include mild to 
moderate muscle soreness during and immediately following the exercise sessions.  If this 
discomfort exceeds my tolerance, testing will be discontinued.  I understand that the investigator 
is a Certified Athletic Trainer, and as such can provide me with treatment options if needed.  I 
understand that there may be no direct benefit to me for participating in this study.  However, the 
results of this study may lead to a better understanding of how moderate levels of fatigue relate 
to joint injury. 
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ALTERNATIVE TREATMENTS: 
  
No additional treatments will be available. 
 
COST AND PAYMENTS: 
  
I understand that I will not be charged nor paid for participation in this study 
 
CONFIDENTIALITY: 
  
All records pertaining to my involvement in this research study will be stored in a locked file 
cabinet in the investigator’s office.  My identity on these records will be indicated by a case 
number.  This information will only be accessible to the investigator listed on the first page of 
this document.  I understand that any information about me or my treatment will be handled in a 
confidential (private) manner consistent with other hospital records.  I will not be specifically 
identified in any publication or the research results.  However, in unusual cases, my research 
records may be inspected by appropriate government agencies or released to an order from a 
court of law. 
 
RIGHT TO WITHDRAW: 
  
I understand I do not have to take part in this research study and, if I change my mind, that I can 
withdraw at any time.  My other care and benefits will be the same whether I take part in this 
study or not.  I also understand that I may be removed from this research study by the 
investigator in the event of my inability to complete the testing procedures. 
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VOLUNTARY CONSENT: 
The above information has been explained to me and all of my questions have been answered.  I 
understand that I will receive a copy of this consent form signed by myself and a witness.  If I 
have any questions I may contact the investigator, William S. Gear at (805) 493-3547.  By 
signing this form I agree to participate in this study. 
 
           
  Subject Signature     Date 
 
 
           
  Witness Signature     Date 
 
INVESTIGATOR’S CERTIFICATION: 
 
I certify that I have explained to the above individual the following aspects of this study:  The 
nature and purpose, the potential benefits and possible risks associated with participating in this 
study and that I have answered any questions that have been raised and witnessed the above 
signature. 
 
           
Investigator’s Signature     Date 
 

 



   

APPENDIX B 
 

RPE Script 
 

“During the exercise test I want you to pay close attention to 
how hard you feel the exercise work rate is.  This feeling should 
reflect your total amount of exertion and fatigue, combining all 
sensations and feelings of physical stress, effort, and fatigue.  
Don’t concern yourself with any one factor such as leg pain, 
shortness of breath or exercise intensity, but try to concentrate 
on your total, inner feeling of exertion.  Try not to underestimate 
or overestimate your feeling of exertion; be as accurate as you 
can.” 
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RPE Data Sheet 

Subject ID           
 
 

Test Intensity RPE post 1 RPE post 2 RPE post 3 

    

    

    

    

    

    

 

 



   

APPENDIX C 
DATA COLLECTION SHEETS 

 
PRPP Data Sheet 

 
Subject ID             
 
Exertion level       
 
Test 
Speed 

Rep 1 Rep 2 Rep 3 

Pre 
 
 
 

   

Post 
 
 
 

   

 
 
Test 
Speed 

Rep 1 Rep 2 Rep 3 

Pre 
 
 
 

   

Post 
 
 
 

   

 
 
Test 
Speed 

Rep 1 Rep 2 Rep 3 

Pre 
 
 
 

   

Post 
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ARPP Data Sheet 
 
Subject ID             
 
Exertion level       
 
Test 
Angle 

Rep 1 Rep 2 Rep 3 

Pre 
 
 
 

   

Post    
 
 
 

 
 
Test 
Angle 

Rep 1 Rep 2 Rep 3 

Pre 
 
 
 

   

Post    
 
 
 

 
 
Test 
Angle 

Rep 1 Rep 2 Rep 3 

Pre 
 
 
 

   

Post    
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