
USE OF SIMULTANEOUS INFERENCE UNDER

ORDER RESTRICTION, STEPDOWN TESTING

PROCEDURE AND STAGE-WISE SEQUENTIAL

OPTIMAL DESIGN IN CLINICAL DOSE STUDY

by

Gang Jia

B.S. Management Science, Fudan University, 1991

M.A. Statistics, University of Pittsburgh, 1998

Submitted to the Graduate Faculty of

the Department of Statistics in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2004

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12209351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH

DEPARTMENT OF STATISTICS

This dissertation was presented

by

Gang Jia

It was defended on

December 6th, 2004

and approved by

Leon J. Gleser, Department of Statistics

Allan R. Sampson, Department of Statistics

Henry W. Block, Department of Statistics

Harry S. Wieand, Department of Biostatistics

Dissertation Director: Leon J. Gleser, Department of Statistics

ii



USE OF SIMULTANEOUS INFERENCE UNDER ORDER RESTRICTION,

STEPDOWN TESTING PROCEDURE AND STAGE-WISE SEQUENTIAL

OPTIMAL DESIGN IN CLINICAL DOSE STUDY

Gang Jia, PhD

University of Pittsburgh, 2004

This dissertation discusses the design approaches of adaptive dose escalation study and the

analysis methods of dose study data, and the relationship between the study design approach

and data analysis methods.

A general max-min approach to construct simultaneous confidence intervals for the mono-

tone means of correlated and normally distributed random samples is proposed to analyze

correlated dose response data. The approach provides an accurate, flexible and computation-

ally easy way to obtain critical values of simultaneous confidence intervals under monotone

order restriction.

A stepdown testing procedure for analyzing dose study data is examined and a modified

stepdown testing approach is proposed to incorporate the adaptive sampling nature of the

study data. A mixture normal approximate approach of the dose response is proposed to

analyze the binary outcome with small sample size at the first stage of the adaptive design.

Finally, an optimal stage-wise adaptive clinical dose study design is proposed to be

applied in a dose escalation study with binary outcome and correlated dose response. The
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study design criteria is defined as a weighted average power to identify all effective dose

levels. A back-induction algorithm is used to obtain the optimal design parameters. The

values of optimal design parameters vary when different analysis methods are used to analyze

the study data.

Simulation studies are performed to illustrate the two proposed analysis methods and

the proposed optimal design approach.
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1.0 INTRODUCTION AND BACKGROUND

1.1 INTRODUCTION

Dose study is an important part in drug development. A safe and potentially effective dose

strategy needs to be identified before a full-scale phase III clinical trial can start. Especially

in areas involving severe or life threatening outcomes, due to the usually very low event rate

which in turn requires large sample size, only one or two dose groups are feasible in the final

study.

Phase II clinical trials are conducted to screen experimental drugs and select promising

candidates to be tested in Phase III confirmatory trials. Information obtained in Phase II

studies also provides critical information for the efficient design of Phase III trials. Tradi-

tionally, Phase II trials have focused on a single dose level that has been determined in Phase

I studies. MED-Minimum Effective Dose, is often used when toxicity is of primary concern,

and MTD-Maximum Tolerated Dose, is often used when the targeted disease is severe and

the risk of not being sufficiently treated is high. In modern drug development, however, it

is increasingly common for potential therapies to enter into Phase II testing where the best

choice of dose level is less clear. This is often the case in modern cancer therapeutics and

cardiovascular medicines, where many new agents under development work in biologically

complex ways and might not have a steep dose-response relationship.
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1.2 BACKGROUND

The proposed research has been motivated by a multi-center Phase II clinical trial that was

coordinated in the Cleveland Clinic Foundation Heart Center. I participated in the trial as

a project statistician. The trial was conducted to assess the effect of a new cardiovascular

drug to reduce the risk of procedure-related restenosis and subsequent adverse cardiac events.

A brief background of the experimental drug and its targeted disease are described in the

following paragraph from the study protocol:

Restenosis is a gradual loss of vessel lumen diameter resulting from thrombogenic and
wound healing processes at the site of vessel wall injury following endovascular interven-
tions and graft surgery. Restenosis is the predominant cause of failure following PTCA and
hemodialysis shunt insertions, occurring at rates of 30% and 50% respectively. Morbidity
and secondary interventions due to restenosis following PTCA (Percutaneous Transluminal
Coronary Angioplasty / Stent) is estimated to cost 2,500 lives and 2.5 billion dollars per
year in the U.S. No medical therapy is available for effective prevention of restenosis. Hep-
arin is the commonly used drug in patients undergoing PTCA or other invasive vascular
procedures. While heparin reduces the risk of acute thrombosis, it has no beneficial effect
on restenosis. TTD, a new cardiovascular medicine, was being developed to provide safe
medical prevention of immediate thrombus formation and restenosis. TTD exerts its ben-
eficial effect by diminishing the triggering of coagulation and is therefore expected to be
more efficient than other anti-thrombotic drugs in preventing the generation of thrombin
and recruitment of platelets.

The objective of this trial was to compare the efficacy of 6 different dosing strategies of

TTD with heparin in patients undergoing elective or urgent PTCA with respect to treating

the incidence of death, Myocardial Infarction and/or urgent revascularization of the target

coronary vessel within the index hospitalization or 7 days following the index PTCA. The

safety of different doses of TTD in patients undergoing elective or urgent PTCA was also

assessed with respect to the incidence of major and minor bleeding, death and hemorrhagic

stroke. The result of the Phase II trial was used to assess whether there exists a potentially

superior effect of the new drug indicating that a Phase III confirmatory trial should be con-
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ducted to verify that it can be marketed as an alternative treatment. The logical endpoint

in a cardiovascular medicine study is usually mortality, or a composite endpoint of recurrent

Myocardial Infarction, urgent target vessel revascularization and/or mortality. An alterna-

tive endpoint that can be used is the treatment success of the cardiovascular drug used with

the PTCA procedure, which can be defined as the significant reduction of lumen stenosis.

Recent development of the IVUS technique, an approach that utilizes ultrasound to measure

the lumen wall and vessel volume, make it possible to precisely measure the actual thickness

of harmful plaque inside the coronary vessel. The significant reduction of the stenosis is an

important indicator of the long term success of the treatment.

Due to the severe nature of the disease, the new drug had to be administrated in con-

junction with a partial dose of heparin. On the other hand, the potential side effects of

the new drug are also very serious, including major bleeding, disabling stroke and deadly

intracranial hemorrhage. Hence it was decided by the medical staff that a conservative dose

escalation approach would be used. The study would start from the lowest dose level. The

results of the lower dose groups would be analyzed before escalating to the next higher dose.

By escalating the dose level of the new drug, one hopes to see an increasing drug effect

in treating the target cardiovascular disease. The dose escalation continues until all of the

planned dose levels are studied, or unacceptable increased risk of the adverse events is ob-

served. Zero-dose placebo is not ethically acceptable here, so an active control arm with

full-dose heparin is used for comparison. It is assumed that the effect size increases as the

dose of new drug increases, and so does the risk of adverse events. Thus it is natural and

efficient to incorporate the directional assumption in the statistical design and analysis of

the study. Because the level of maximum tolerance has been studied in the Phase I study,

stopping the dose escalation due to safety concerns is not expected to happen and the study

will most likely to go through all the planned dose levels. Therefore, adjustment for overall

3



Type I error for safety monitoring won’t be necessary.

1.3 RESEARCH OUTLINE

The thesis can be outlined as two major parts: the adaptive experiment design, and the

analysis of the dose study data. At the experiment design stage, we propose an adaptive

design at each dose level to improve the efficiency of subject allocation. Starting from the

lowest dose level, the data will be analyzed after part of the planned number of subjects are

enrolled at the dose level. If the efficacious effect is not obvious enough, we will move to

the next higher dose level without enrolling the rest of the subjects and will subsequently

assign saved subjects to the remaining higher dose levels. By doing that, we will have more

power to analyze the drug effect if it only exists at higher dose levels, and can have a better

estimate of the effect size. On the other hand, although the study drug is presumably

more effective at high dose levels, we still need to have enough subjects at lower levels to

study its possible adverse effects, and to detect its potential effect at lower levels. Indeed,

estimating the effective dose range is also an important part of the study objective. A wider

effective dose range means that the drug can be used in broader patient population. After the

study enrollment is finished and follow up data collected, we propose to use the approaches

of simultaneous confidence intervals and stepdown testing procedure to analyze the study

data.

Topics on sequential adaptive design have been researched extensively, especially in the

area of clinical trials. However, in the area of clinical dose studies that have multiple dose

groups with monotone increasing / decreasing drug response, there has not been adequate

research on sequential adaptive design to improve study designs using the order restriction
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information. It is often assumed that the conventional hypothesis testing and/or confidence

region approaches will be used at the end of the study. As the first objective of the thesis,

I propose an optimal adaptive study design that is tailored based on the analysis approach

to be used to analyze the study data. A flexible study design criteria is defined using the

weighted expected proportion of identified effective dose levels.

At the data analysis stage, single-step or stepwise multiple testing procedures will be ex-

plored to compare the control group and each of the dose levels. The parametric regression

strategy would be normally considered to analyze the dose-response relationship. However,

the most important objection to such an approach is that we are usually interested in esti-

mations at the extreme dose range, where the choice of the form of regression model is much

more critical. Moreover, the experiment itself, rarely consisting of more than 6-7 dose levels

in a Phase II study, will provide insufficient evidence for determining the correct regression

model.

We need to perform the data analysis to find those dose levels which are effective and to

estimate their effect sizes relative to the control; such information will be important in making

the decision whether to conduct the Phase III trial and will also provide crucial information

for the design of Phase III trial. A stepdown testing procedure (Chapter 3) is a powerful

approach to identify the effective levels, as the type I error probability of each individual test

doesn’t need to be penalized to ensure that the overall family-wise type I error probability

is controlled. On the other hand, the approach of simultaneous confidence intervals has

the advantage over stepdown testing procedures in that it provides interval estimates of the

effect size, and can be used to verify a hypothesized parametric dose response relationship.

Simultaneous confidence intervals are usually overly conservative. As the second part of

this thesis, ways to improve the simultaneous confidence intervals, such as only looking at

effective dose levels and incorporating the assumption of monotone effective sizes into the

5



construction of the confidence intervals, will be studied. The third part of the thesis will

be to explore the stepwise testing procedures when the data is from studies with sequential

adaptive designs.

The data to be collected in this study is dichotomous, recorded as treatment success or

whether an endpoint event occurred. The therapeutic effect of the new drug relative to the

active controlled arm in such cases is usually measured using odds ratio, relative risk, or

difference of event rates. A problem arises at the early stages of the trial when the number

of subjects enrolled in the controlled arm is low, and the number of events that occurs is not

big enough for any asymptotic-theory-based inference to be used. Thus, it will be necessary

to explore and evaluate the performance of various normal based approaches when they are

applied in binomial settings. We will address this practical issue in each of three parts of

the thesis.

Because our proposed adaptive design involves the analysis approaches that are used to

analyze the study data, we organize the thesis in the following order: Chapter 2 discusses

simultaneous confidence intervals for correlated drug effect estimates under order restric-

tion, Chapter 3 discusses stepdown testing procedures for ordered dose effect with adaptive

sampling data, and Chapter 4 discusses a stage-wise sequential adaptive design in Phase II

clinical dose studies. The last chapter discusses my plans for future research in the three

areas studies in this thesis.

6



2.0 SIMULTANEOUS CONFIDENCE INTERVALS OF MONOTONE DOSE

RESPONSE

2.1 INTRODUCTION

In a clinical dose study, it is often of interest to have confidence bands for dose-response

curves. These confidence bands can be used to form simultaneous confidence intervals for

drug response at multiple doses, or to form a confidence interval for doses yielding a given

drug response. If a parametric family of dose-response relationships can be assumed, the

parameters and the curve can be estimated using a regression approach, and the simultaneous

confidence intervals can be obtained based on the estimates of these parameters. However,

in studies of new drug development, more often than not such a parametric assumption is

not available, except that one can reasonably assume that the underlying dose response is

non-increasing or non-decreasing depending on the nature of the drug effect.

A natural estimator of the dose response under such an isotonic assumption is the isotonic

regression, which is the conventional least squares estimate of the dose response curve under

the isotonic restriction. The approach of simultaneous confidence intervals we will study in

this chapter is based on the same idea of isotonic regression, aimed to utilize the assumption

of isotonic dose response to achieve accurate and efficient interval estimates.
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2.2 PROBLEM AND MATHEMATIC MODEL

In a Phase II clinical dose study, drug response data yi1, yi2, . . . , yini
have been collected at

dose levels di, i = 0, 1, 2, . . . , k. Dose level d0 represents the control arm, which can be a

zero-dose placebo group or an active control group treated with a different drug. The yij

are assumed to be normally distributed with mean µi and variance σ2
i . Although in most

occasions, the variance is not known, we will assume that it is known here, and the extension

of our approach to the cases with unknown variance is straightforward. We assume that the

mean drug responses at dose levels d1, d2, . . . , dk are non-increasing: µ1 > µ2 > . . . > µk.

Notice that the drug response of zero-dose arm µ0 is not included in the inequality.

The drug effect at dose level di is defined as θi = µi − µ0, the relative therapeutic effect

of the experiment drug compared to the placebo or active control. It is obvious that the dose

effects defined in this way also satisfy the inequality θ1 > θ2 > . . . > θk. The simultaneous

confidence intervals with 1− α coverage probability are defined as

P{θi ∈ (li, ui) : i = 1, 2, . . . , k} = 1− α (2.1)

Notice that estimates of θi, 1 6 i 6 k, will be correlated because all are measured

relative to the same control. In this chapter, we will introduce an approach to derive the

simultaneous confidence intervals based on the above relative dose effect variables using a

max-min procedure and the maximum modulus of the multivariate distribution. The max-

min procedure was first suggested by Korn [14](1982) to construct simultaneous confidence

intervals for independent dose response variables under isotonic restriction. We will prove

that this approach can be extended to correlated dose response variables.

It is well known that Tukey’s procedure based on the Studentized range distribution

and Scheffé’s procedure based on the F -distribution enable us to make multiple comparisons

8



among a set of sample means while controlling the overall simultaneous probability coverage.

However, in practice we often only need to make comparisons between one common control

and each of the experimental treatment groups. In our case, as well as in many other

practical applications, we also have prior knowledge about the order of the expected means

of treatment groups. Although procedures by Tukey and Scheffé still apply, they are too

conservative and it is possible to derive more precise confidence intervals.

2.3 LITERATURE REVIEW

One of the earliest attempts to increase the efficiency of Scheffé’s confidence bounds for mul-

tiple comparisons by incorporating additional information was by Bohrer in 1967. Bohrer [3]

suggested in his paper a sharper extension of Scheffé’s confidence bounds for linear functions

of independent normal random variables when assuming all coefficients of the linear function

are nonnegative. Bohrer gave tables of the critical values, and also showed that when the

sample size is large, the common width of the improved simultaneous confidence bounds is

about 70.7% of the common width of Scheffé ’s confidence bounds.

Marcus et al [19](1976) developed flexible simultaneous lower confidence bounds for the

means in a one-way ANOVA model when the means are restricted to a certain subset of

Rk as long as this subset is closed under multiplication by a positive scalar. They gave the

result when all means are nonnegative and the result when the means are ordered. Marcus

[17](1982) pointed out that the approach can also be used to obtain two-sided simultaneous

confidence intervals.

D. A. Williams [36](1977) discussed the limiting distributions of the estimated maximum

and range of a set of ordered normal means when all means are in fact equal. Williams showed
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that approximate 1 − α simultaneous confidence intervals for all ordered contrasts of the

normal means can be obtained by using the percentile points of these limiting distributions.

Dunnett [8] [9](1955 and 1964) developed an approach to obtain simultaneous confidence

intervals for comparing the means of multiple treatment groups to the mean of a common

control group when the response variable is normally distributed with all groups having a

common variance. Tables of exact critical values for one-sided and two-sided confidence

limits are given when the assumed common variance σ2 is known or when it is not known.

In problems when the outcome is a proportion, which is the case in a lot of clinical studies,

a variable transformation yj = arcsin p
1/2
j of the same proportions p can be used. When

the sample sizes nj within each group are reasonably large, yj can be treated as normally

distributed with variance σ2 = 1
4
.

Korn [14](1982) proposed a simple procedure using a modification of the Studentized

maximum modulus technique to construct confidence bands for dose-responses under nonde-

creasing order restriction. This procedure assumes no parametric model for the dose-response

curves.

Schoenfeld [22] (1986) suggested using the intersection of a 1 − α confidence region for

the mean response vector (µ1, µ2, . . . , µk) and the set of all monotone non-decreasing or non-

increasing functions on dose levels to construct 1 − α simultaneous confidence intervals for

µi.

Hayter [12](1990) proposed to use a one-sided studentized range test (OSRT) to con-

struct a simultaneous lower confidence bound for all ordered pair-wise contrasts. C. C. Lee

[15](1996) improved Korn’s procedure by introducing the distribution of a generalization of

the maximum modulus.

Our review of methodology research in the literature tells us that although extensive work
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has been done in the area of simultaneous confidence intervals under the restriction of isotonic

dose response, results have been almost exclusively limited to the assumption of independent

dose response variables. However, as I will argue later, this assumption often fails to hold in

applications. Dose response variables are usually correlated. Thus developing simultaneous

confidence intervals under order restrictions for correlated dose response variables can have

practical importance. In the next section I will give an detailed discussion of Korn’s max-min

procedure because it is closely related to the approach I will propose in this chapter.

2.4 KORN’S MAX-MIN PROCEDURE

Korn’s [14](1982) procedure using a modification of the Studentized maximum modulus

technique provides a simple, intuitive, yet efficient way to construct simultaneous confidence

intervals under order restriction. This procedure assumes no parametric model for the dose-

response curves. Here, we will briefly introduce this procedure and will also provide the

proof of Korn’s claim under more general conditions.

Suppose dose response data yi1, yi2, . . . , yini
are collected at dose level xi, i = 1, . . . , k.

The yij are assumed to be normally distributed with mean f(xi) and common unknown

variance σ2, and write ȳi as the sample mean of dose group i. Model-free simultaneous 1−α

confidence intervals are given by

ȳi −mk,n−ks/
√

ni 6 f(xi) 6 ȳi + mk,n−ks/
√

ni (2.2)

for i = 1, 2, . . . , k, where s2 is the usual pooled estimate of the variance σ2, and mk,n−k is the

upper α point of the Studentized maximum modulus distribution with parameters k, n− k.

If the dose-response curve f(x) is known to be non-decreasing, then the above confidence
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intervals can be modified as

max
l6i

{ȳl −mk,n−ks/
√

nl} 6 f(xi) 6 min
j>i

{ȳj + mk,n−ks/
√

nj} (2.3)

for i = 1, 2, . . . , k. These max-min confidence intervals are derived from the sample means

and the isotonic assumption on f(x): the f(xi) satisfy (2.2) and are a non-decreasing se-

quence if and only if the f(xi) satisfy (2.3). Thus, the simultaneous confidence intervals (2.3)

have exactly 1−α coverage probability. It is possible that these intervals do not contain the

usual isotonic regression estimates, and may even be empty. However, the coverage prob-

ability is true if the monotone assumption is correct. Korn also pointed out at the end of

his paper that the same technique can be used in deriving simultaneous confidence intervals

for contrasts between all doses and a common control using Dunnett’s approach, under the

assumption that the dose response relationship is nondecreasing. However, he didn’t give

further details or examples for the extension.

2.5 SIMULTANEOUS CONFIDENCE INTERVALS FOR MULTIPLE

COMPARISON UNDER RESTRICTION OF ISOTONIC DOSE

RESPONSE

Clinical dose studies in most therapeutic areas are comparative in nature. Subjectiveness of

drug responses, heterogeneity of patient population, uncontrollable effect of different med-

ical practice and continuing development in concomitant medications are among the many

reasons that the absolute drug responses are not very good indication of the actual drug

effect. In these cases, a control group, either a placebo group that receives only a dummy

drug, or an active control group that receives a different treatment (usually some treatment

12



commonly used in standard practice), are enrolled in parallel with the experimental drug

group. Randomization and blinding is often used to ensure unbiased and random patient

recruitment. In a comparative dose study, the approach of comparing each dose group to the

common control group, as introduced earlier in this chapter, is the most common analysis

method used.

The following proof shows that the max-min procedure by Korn can be extended to the

cases of correlated isotonic dose response variables:

2.5.0.1 Proof of the Extension of Korn’s Procedure in Correlated dose response

variables: Suppose yi1, yi2, . . . , yini
are random normal variables distributed as N(µi, σ),

i = 1, 2, . . . , k, and ȳi is the sample mean. Suppose qα
k is the critical value for 1 − α

simultaneous confidence interval such that

Pr
(
µ ⊂ Q

)
= 1− α (2.4)

where

Q = {ȳi − qα
k σ/

√
ni 6 µi 6 ȳi + qα

k σ/
√

ni, i = 1, 2, . . . , k} (2.5)

Now additionally suppose that we know the order restriction that (µ1, µ2, . . . µk) ∈ O,

where O = (µ1 6 µ2 6 . . . , 6 µk) ∩Rk, and we define the confidence set Q̃ as:

Q̃ = { max
l6i

{ȳl − qα
k σ/

√
nl} 6 µi 6 min

j>i
{ȳj + qα

k σ/
√

nj},

i = 1, 2, . . . , k }

It is obvious that Q̃ ⊆ Q. Therefore
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Pr{(µ1, µ2, . . . µk) ∈ Q̃}

6 Pr{(µ1, µ2, . . . µk) ∈ Q}

= 1− α.

On the other hand, for any point A = (a1, a2, . . . , ak) ∈ O ∩Q:

A ∈ O ⇒ a1 6 a2 . . . 6 ak

A ∈ Q ⇒ ȳi − qα
k σ/

√
ni 6 ai 6 ȳi + qα

k σ/
√

ni, i = 1, 2, . . . , k

So the point A has to satisfy

max
l6i

{ȳl − qα
k σ/

√
nl} 6 ai 6 min

j>i
{ȳj + qα

k σ/
√

nj}, i = 1, 2, . . . , k

⇒ A ∈ Q̃

In other words, Q ∩ O ⊆ Q̃. Since we already know (µ1, µ2, . . . µk) ∈ O, the following is

also true:

Pr{(µ1, µ2, . . . µk) ∈ Q̃}

> Pr{(µ1, µ2, . . . µk) ∈ Q ∩O}

= Pr{(µ1, µ2, . . . µk) ∈ Q}

= 1− α

Therefore we have proven that the simultaneous confidence interval Q̃ is the exact con-

fidence set:

Pr{(µ1, µ2, . . . µk) ∈ Q̃} = 1− α
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under the order restriction µ1 6 µ2 6 . . . , 6 µk. Notice that the proof doesn’t require that

the yij’s have to be independent, nor does it require that the variances have to be the same.

In fact, the max-min procedure can also be expressed as

Q̃ = { inf{µi : (µ1, µ2, . . . , µk) ∈ Q ∩O}

6 µi 6

sup{µi : (µ1, µ2, . . . , µk) ∈ Q ∩O}, i = 1, 2, . . . , k}.

The proof is valid for any convex subset O of the parameter space, where a convex subset

guarantees that the resulting simultaneous confidence intervals are dense. Therefore the

above inequality can be applied to other similar distributions such as the multivariate t-

distribution when the σ2
i ’s are not known. Korn [14] studied the efficiency achieved by using

the max-min procedure for independent normal distributions. Korn’s simulation result show

that when the means are in fact equal, the max-min procedure can reduce the average width

of the simultaneous confidence intervals of six normal means by approximately 30%, and the

reduction increases to approximately 50% for ten normal means.

2.5.1 Critical Values of Simultaneous Confidence Intervals for Correlated Dose

Response Variables

Dunnett’s [8] [9] results provided the critical values for comparing multiple treatment groups

to a common control. But Dunnett’s approach only applies to the cases where all the observed

treatment groups’ responses have the same variance σ2
t , although it allows a different variance

σ2
c in the common control group. This translates into the simple equicorrelated covariance

structure. Even in cases when it is usually reasonable to assume equal variance of drug

response among treatment groups, with the increasing use of adaptive study designs, we

often have different sample sizes among the treatment groups. Thus the estimated drug
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response variables have different variances, and the resulting covariance matrix often has

complicated and unpredictable structure.

Somerville [24][25](1997 and 2001) developed computation methodology to calculate the

critical values for a large class of simultaneous confidence intervals. Given k populations with

unknown means µi, i = 1, 2, . . . , k, assume that the location parameter estimates xi have a

joint multivariate normal distribution with mean µ and non-singular covariance matrix σ2Σ

with Σ known and s2 an independent estimate of σ2 with ν degrees of freedom. Suppose

B = {c1, c2, . . . , cm} is a finite collection of linear functions of the xi’s. Somerville shows

that, his approach can solve for the critical value q such that

Pr
(
c′ix/ (var(c′ix))

1/2 ≤ q/
√

2 : ci ∈ B, i = 1, 2, . . . ,m
)

= 1− α (2.6)

for arbitrary values for ci, m, k, ν, Σ within acceptable computing time on computers with

Pentium III processor. Critical values for a large class of simultaneous intervals can be

obtained using this approach, including Tukey’s all pairwise comparisons, Dunnett’s one-

sided and two-sided comparisons with a control, Williams-type comparisons, Marcus-type

comparisons, Hayter’s one-sided simultaneous confidence intervals and others.

Using a computer program based on Somerville’s computing algorithm, critical values

for simultaneous confidence intervals of correlated dose responses variables can be easily

obtained by specifying appropriate covariance structure and contrast vectors. In a typical

dose response study as described at the beginning of the Chapter, k dose groups and a

common control group are used, and the dose response in each group is assumed to be

normally distributed with means µ0, µi, i = 1, 2, . . . , k and variance σ2
i . The drug effect at

each dose group is measured as θi = µi − µ0, i = 1, 2, . . . , k. Suppose the study design

allocates sample size ni to group i, i = 1, 2, . . . , k. The observed drug effects at each dose

x̄i = ȳi−ȳ0, i = 1, 2, . . . , k, have a multivariate normal distribution with mean (θ1, θ2, . . . , θk),
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and covariance matrix Σ, whose diagonal elements are σ2
ii = σ2

i /ni + σ2
0/n0, and off-diagonal

elements are σ2
ij = σ2

0/n0 (i 6= j). Although the covariances are all the same between

each pair of dose effect estimates, the correlation coefficients are different unless all the dose

groups have the same sample size. The relative dose effect can also be viewed as applying the

contrast matrix (c1, c2, . . . , ck) to dose response (µ0, µ1, . . . , µk), where each ci is a contrast

vector with first element equal to −1, ith element equal to 1, and all the rest are zeros.

The computing algorithm can be used to calculate the boundary values for the 1 − α

simultaneous confidence intervals of k dose effect estimates, say qα
ρ,k, such that

P{ ȳi − ȳ0 − qα
ρ,k(σi

√
1/ni + σ0

√
1/n0) ≤ θi ≤ ȳi − ȳ0 + qα

ρ,k(σi

√
1/ni + σ0

√
1/n0),

i = 1, 2, . . . , k } = 1− α (2.7)

We assume the isotonic restriction on dose effect such that θ1 > θ2 > . . . > θk. By

applying the max-min procedure, we have the following simultaneous confidence intervals

under isotonic dose response restriction

max
l6i

{ȳl − ȳ0 − qα
ρ,k(σl

√
1/nl + σ0

√
1/n0)}

6 µi − µ0 6

min
j>i

{ȳj − ȳ0 − qα
ρ,k(σj

√
1/nj + σ0

√
1/n0)}, i = 1, 2, . . . , k (2.8)

The computing algorithm is Monte-Carlo simulation based and can achieve extremely

high accuracies of critical values by increasing the Monte-Carlo sampling sizes. Therefore,

under correct assumption of multivariate normal distributions, the above simultaneous con-

fidence intervals can be treated as having the exact coverage probability 1− α.
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2.6 APPLICATION OF THE GENERAL MAX-MIN APPROACH TO

BINARY DOSE RESPONSE DATA

In this chapter we will apply the approach of simultaneous confidence intervals in a clinical

trial with the endpoint defined as a binary variable. In the dose study we introduced in

Chapter 1, the binary outcome can be defined as the occurrence of death, MI and/or urgent

revascularization of the target coronary vessel within certain period after cardiovascular drug

treatment, or the treatment success defined as successful reduction of vessel stenosis.

2.6.1 Measurements of Drug Effect for Binary Dose Response

Let pi be the observed event rate at dose i and let p0 be the event rate for the control group,

the drug effect at each dose relative to control treatment can be measured using one of the

following four measurements:

• Difference of observed event rate between each dose level and the control: (pi − p0).

• Difference of arcsine of the square root of event rate (arcsin p
1
2
i − arcsin p

1
2
0 ).

• The log odds ratio between each dose level and the control (ln pi(1−p0)
(1−pi)p0

).

• Log of Relative risk between each dose level and the control (ln pi/p0).

Although Brown et al [5] showed that the coverage probability of normal-approximation-

based confidence intervals for binomial data can be unstable for even moderate sample size, he

also pointed out that relative measures such as difference of proportions perform much better.

Therefore, we propose to use the normal distribution based approach we have developed to

obtain simultaneous confidence intervals for the above four comparisons. The covariance

matrix for each of the four measurements can be easily identified with the knowledge of

sample sizes in the treatment groups. Suppose the sample size in dose group i is ni, the
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corresponding number of observed adverse events is mi, and the estimated event rate p̂i =

mi/ni, i = 0, 1, 2, . . . , k. The estimated covariances of the approximate multivariate normal

distributions of the above four measurements of the estimated relative dose effects at dose 1

to k are:

• (pi − p0): σii = p̂i(1−p̂i)
ni

+ p̂0(1−p̂0)
n0

, σij(i6=j) = p̂0(1−p̂0)
n0

• (arcsin p
1
2
i − arcsin p

1
2
0 ): σii = 1

2
, σij(i6=j) = 1

4

• (ln pi(1−p0)
(1−pi)p0

): σii = 1
ni−mi

+ 1
mi

+ 1
n0−m0

+ 1
m0

, σij(i6=j) = 1
n0−m0

+ 1
m0

• (ln pi/p0): σii = 1−p̂i

mi
+ 1−p̂0

m0
, σij(i6=j) = 1−p̂0

m0

2.6.2 Simulation Study

The above four different measures of drug effect are explored. Continuity adjustment is done

by adding 0.5 to the event count. Ten different monotone dose response configurations for

six dose levels are used, and 5000 Monte Carlo simulations are used in each case. The true

event rates for each dose response configuration are as follows:
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Dose Response

Configuration Control Dose 1 Dose 2 Dose 3 Dose 4 Dose 5 Dose 6

1 0.10 0.10 0.10 0.10 0.10 0.10 0.10

2 0.10 0.12 0.12 0.12 0.12 0.12 0.12

3 0.10 0.08 0.08 0.08 0.08 0.08 0.08

4 0.10 0.12 0.11 0.10 0.09 0.08 0.07

5 0.10 0.12 0.12 0.10 0.10 0.08 0.08

6 0.10 0.12 0.12 0.12 0.08 0.08 0.08

7 0.10 0.09 0.08 0.07 0.06 0.05 0.04

8 0.10 0.17 0.16 0.15 0.14 0.13 0.12

9 0.10 0.12 0.08 0.08 0.08 0.08 0.08

10 0.10 0.12 0.12 0.12 0.12 0.12 0.08

These dose response configurations include flat dose response (1 2 3), linear dose response

(4 7 8) and step dose response (5 6 9 10). Table 1 compares the critical values of simultane-

ous confidence intervals for correlated multivariate normal means obtained by Somerville’s

simulation algorithm and those provided by Dunnett [9], Tukey and Hayter. Covariance

matrices used were based on the dose configurations and drug response measurements. For

measurements using relative risk pi/p0 or difference of risk pi−p0, the covariance matrix also

depends on the sample estimates of event rate. However, we calculated the critical values

based on the known true probabilities for the purpose of comparison. When using simulation

to validate the coverage probabilities (Table 2-7), we calculate the critical values based on

the sample probabilities from each random sample. It can be seen that the critical values we

have calculated in most cases are fairly close to Dunnett’s approach. However, the confidence

intervals based on the exact critical values when the actual covariance structure is taken into
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consideration have generally more accurate coverage probability (Table 2). Given easy and

relatively fast computation and the wide availability of high-speed micro computers, the

exact critical values definitely are preferred.

Simulation results of the coverage probability of 95% simultaneous confidence intervals

are presented in Table 2 to Table 7. The results in Tables 2 to 5 are based on sample sizes

of 1500 in the control group, 500 in the first two or four dose groups, and 1000 in the last

four or two dose groups. These sample sizes reflect a simple adaptive design that assigns

more subjects to higher dose groups and the control group to increase overall efficiency.

The simultaneous confidence intervals obtained using the max-min procedure and critical

values based on correlated normal means perform the best (Table 2). The actual coverage

probabilities are very close to 95% even with moderate sample size, and are consistent across

different dose response configurations. The results from using Dunnet’s critical values are

not far off (Table 3), but are clearly not as accurate. On the other hand, we can also see

that the simultaneous confidence intervals using Hayter’s approach (Table 4) and Tukey’s

approach (Table 5) are too conservative, usually having actual coverage probability from

0.965 to 0.985.

It is well known that the normal approximation approach for binary variables usually does

not perform well when the sample sizes are small, or when the expected binomial proportions

are close to 0 or 1. Table 2.6 lists the simulation results when the sample sizes for each group

are reduced by 90%, i.e., 150 in the control group, 50 in the first two or four dose groups,

and 100 in the last four or two dose groups. It is comforting to see that the performance

is actually fairly good. Table 2.7 lists the simulation results when the binomial proportions

for control and each dose group are cut by 50%. The control group has expected event rate

at 5%, and so on. When the drug effect is measured as differences between event rates or

differences between arcsin square root of event rates, the coverage probabilities are still close
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Table 1: Critical Values for Simultaneous Confidence Intervals

Dose Config. pi − p0 arcsin p
1
2
i − arcsin p

1
2
0 ln pi(1−p0)

(1−pi)p0
ln pi/p0

Sample Size: Control=1500 Doses 1-2=500 Dose 3-6=1000

1 2.60232 2.60225 2.60232 2.56773

2 2.60828 2.60225 2.59280 2.55457

3 2.59310 2.60225 2.61098 2.58045

4 2.59894 2.60225 2.60523 2.57180

5 2.60113 2.60225 2.60337 2.56769

6 2.60038 2.60225 2.60392 2.56849

7 2.58011 2.60225 2.61753 2.59227

8 2.61238 2.60225 2.58213 2.54110

9 2.59607 2.60225 2.60867 2.57656

10 2.59604 2.60225 2.60766 2.57698

Sample Size: Control=1500 Doses 1-4=500 Dose 5-6=1000

1 2.60996 2.60990 2.60996 2.56773

2 2.61459 2.60990 2.60308 2.55457

3 2.60332 2.60990 2.61662 2.58045

4 2.60734 2.60990 2.61267 2.57180

5 2.60920 2.60990 2.61130 2.56769

6 2.60909 2.60990 2.61086 2.56849

7 2.59297 2.60990 2.62135 2.59227

8 2.61749 2.60990 2.59450 2.54110

9 2.60538 2.60990 2.61427 2.57656

10 2.60594 2.60990 2.61420 2.57698

Dunnett=2.61611 Hayter=2.82734 Tukey=3.02916
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Table 2: Coverage Probability(%) of 95% Simultaneous Confidence Intervals of Correlated

Dose Response

Dose Config. pi − p0 arcsin p
1
2
i − arcsin p

1
2
0 ln pi(1−p0)

(1−pi)p0
ln pi/p0

Sample Size: Control=1500 Doses 1-2=500 Dose 3-6=1000

1 0.94666 0.94758 0.94614 0.95166

2 0.94650 0.94778 0.94438 0.95142

3 0.94508 0.94628 0.94544 0.95134

4 0.94576 0.94686 0.94554 0.95140

5 0.94600 0.94700 0.94446 0.95094

6 0.94644 0.94860 0.94648 0.95250

7 0.94586 0.94610 0.94780 0.95196

8 0.94834 0.94918 0.94424 0.95270

9 0.94648 0.94772 0.94706 0.95216

10 0.94438 0.94758 0.94700 0.95308

Sample Size: Control=1500 Doses 1-4=500 Dose 5-6=1000

1 0.94306 0.94518 0.94500 0.95092

2 0.94362 0.94608 0.94366 0.95088

3 0.94012 0.94328 0.94406 0.95052

4 0.94272 0.94464 0.94466 0.95040

5 0.94228 0.94436 0.94310 0.94928

6 0.94350 0.94624 0.94542 0.95158

7 0.94090 0.94338 0.94700 0.95096

8 0.94678 0.94782 0.94252 0.95140

9 0.94276 0.94572 0.94606 0.95158

10 0.94096 0.94508 0.94530 0.95142
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Table 3: Coverage Probability(%) of 95% Simultaneous Confidence Intervals Using Dunnett’s

Critical value

Dose Config. pi − p0 arcsin p
1
2
i − arcsin p

1
2
0 ln pi(1−p0)

(1−pi)p0
ln pi/p0

Sample Size: Control=1500 Doses 1-2=500 Dose 3-6=1000

1 0.94086 0.94212 0.94616 0.94668

2 0.94020 0.94292 0.94628 0.94746

3 0.94114 0.94028 0.94452 0.94442

4 0.94106 0.94158 0.94536 0.94604

5 0.94036 0.94116 0.94458 0.94564

6 0.94164 0.94316 0.94650 0.94720

7 0.94336 0.94048 0.94468 0.94448

8 0.94154 0.94378 0.94910 0.95026

9 0.94180 0.94184 0.94632 0.94648

10 0.93946 0.94150 0.94600 0.94718

Sample Size: Control=1500 Doses 1-4=500 Dose 5-6=1000

1 0.93710 0.93972 0.94502 0.94528

2 0.93696 0.94102 0.94536 0.94684

3 0.93622 0.93706 0.94346 0.94292

4 0.93768 0.93990 0.94436 0.94472

5 0.93660 0.93864 0.94318 0.94394

6 0.93874 0.94050 0.94552 0.94570

7 0.93824 0.93758 0.94398 0.94388

8 0.94002 0.94220 0.94712 0.94840

9 0.93840 0.94002 0.94560 0.94544

10 0.93666 0.93928 0.94442 0.94574
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Table 4: Coverage Probability(%) of 95% Simultaneous Confidence Intervals Using Hayter’s

Critical Valus

Dose Config. pi − p0 arcsin p
1
2
i − arcsin p

1
2
0 ln pi(1−p0)

(1−pi)p0
ln pi/p0

Sample Size: Control=1500 Doses 1-2=500 Dose 3-6=1000

1 0.96158 0.96384 0.96670 0.96710

2 0.96206 0.96362 0.96728 0.96754

3 0.96178 0.96148 0.96554 0.96532

4 0.96196 0.96254 0.96536 0.96538

5 0.96122 0.96268 0.96612 0.96626

6 0.96252 0.96336 0.96672 0.96672

7 0.96366 0.96184 0.96568 0.96526

8 0.96358 0.96604 0.96930 0.97030

9 0.96242 0.96258 0.96616 0.96632

10 0.96190 0.96394 0.96718 0.96742

Sample Size: Control=1500 Doses 1-4=500 Dose 5-6=1000

1 0.95886 0.96236 0.96648 0.96680

2 0.95930 0.96208 0.96636 0.96618

3 0.95792 0.95976 0.96564 0.96502

4 0.95884 0.96096 0.96532 0.96538

5 0.95836 0.96084 0.96558 0.96552

6 0.95960 0.96220 0.96616 0.96594

7 0.96020 0.95944 0.96572 0.96494

8 0.96178 0.96524 0.96866 0.96934

9 0.95910 0.96092 0.96604 0.96582

10 0.95856 0.96216 0.96662 0.96656
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Table 5: Coverage Probability(%) of 95% Simultaneous Confidence Intervals Using Tukey’s

Critical Value

Dose Config. pi − p0 arcsin p
1
2
i − arcsin p

1
2
0 ln pi(1−p0)

(1−pi)p0
ln pi/p0

Sample Size: Control=1500 Doses 1-2=500 Dose 3-6=1000

1 0.97934 0.98020 0.98306 0.98306

2 0.97842 0.98042 0.98242 0.98284

3 0.97878 0.97954 0.98200 0.98248

4 0.97896 0.97974 0.98200 0.98212

5 0.97866 0.97944 0.98186 0.98214

6 0.97952 0.98014 0.98194 0.98242

7 0.97922 0.97836 0.98148 0.98158

8 0.98078 0.98216 0.98450 0.98476

9 0.97900 0.97940 0.98194 0.98236

10 0.97916 0.98044 0.98226 0.98240

Sample Size: Control=1500 Doses 1-4=500 Dose 5-6=1000

1 0.97754 0.97964 0.98290 0.98294

2 0.97636 0.97970 0.98206 0.98258

3 0.97646 0.97872 0.98170 0.98226

4 0.97696 0.97884 0.98198 0.98192

5 0.97642 0.97834 0.98164 0.98172

6 0.97714 0.97922 0.98178 0.98234

7 0.97640 0.97744 0.98146 0.98148

8 0.97946 0.98180 0.98366 0.98398

9 0.97664 0.97858 0.98214 0.98254

10 0.97704 0.97960 0.98194 0.98232
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Table 6: Coverage Probability(%) of 95% Simultaneous Confidence Intervals of Correlated

Dose Response with Smaller Sample Size

Dose Config. pi − p0 arcsin p
1
2
i − arcsin p

1
2
0 ln pi(1−p0)

(1−pi)p0
ln pi/p0

Sample Size: Control=150 Doses 1-2=50 Dose 3-6=100

1 0.94602 0.94998 0.96940 0.97368

2 0.94414 0.94546 0.96612 0.97304

3 0.95320 0.94590 0.96578 0.96824

4 0.94860 0.95152 0.96990 0.97366

5 0.94630 0.94812 0.96752 0.97142

6 0.94872 0.94682 0.96900 0.97272

7 0.95380 0.94932 0.96250 0.96142

8 0.93914 0.94754 0.96482 0.97448

9 0.95008 0.94676 0.96750 0.97008

10 0.94392 0.94690 0.96950 0.97384

Sample Size: Control=150 Doses 1-4=50 Dose 5-6=100

1 0.94042 0.94764 0.96688 0.96916

2 0.93640 0.94502 0.96498 0.96858

3 0.94662 0.94450 0.96200 0.96020

4 0.94226 0.94882 0.96562 0.96752

5 0.93980 0.94472 0.96550 0.96700

6 0.93988 0.94564 0.96608 0.96684

7 0.94948 0.94994 0.95558 0.95266

8 0.93206 0.94572 0.96536 0.97294

9 0.94340 0.94504 0.96376 0.96256

10 0.93704 0.94662 0.96706 0.96966
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Table 7: Coverage Probability(%) of 95% Simultaneous Confidence Intervals of Correlated

Dose Response with 50% Smaller Expected Event Rates

Dose Config. pi − p0 arcsin p
1
2
i − arcsin p

1
2
0 ln pi(1−p0)

(1−pi)p0
ln pi/p0

Sample Size: Control=1500 Doses 1-2=500 Dose 3-6=1000

1 0.94208 0.94464 0.94764 0.95352

2 0.94308 0.94540 0.94574 0.95330

3 0.93968 0.94150 0.94864 0.95408

4 0.94150 0.94410 0.94786 0.95252

5 0.94222 0.94436 0.94700 0.95266

6 0.94338 0.94526 0.94818 0.95374

7 0.94134 0.94008 0.95018 0.95434

8 0.94420 0.94768 0.94638 0.95420

9 0.94118 0.94402 0.94950 0.95476

10 0.93966 0.94512 0.94960 0.95426

Sample Size: Control=1500 Doses 1-4=500 Dose 5-6=1000

1 0.93618 0.94184 0.94684 0.95340

2 0.93876 0.94298 0.94636 0.95228

3 0.93314 0.93736 0.94854 0.95340

4 0.93646 0.94176 0.94708 0.95236

5 0.93662 0.94142 0.94568 0.95174

6 0.93808 0.94224 0.94786 0.95330

7 0.93486 0.93700 0.95088 0.95482

8 0.93758 0.94374 0.94414 0.95138

9 0.93402 0.94066 0.94878 0.95452

10 0.93314 0.94206 0.94892 0.95318
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to the target of 95%. But the simultaneous confidence intervals are rather conservative when

odds ratios or relative risks are used. In cases where one of these two measures is desired,

methods using the exact binomial distributions can be used to obtain the boundary points

of confidence intervals at all dose levels, and similar max-min procedures can be applied to

derive the simultaneous confidence intervals of the isotonic dose responses.
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3.0 STEPDOWN TESTING PROCEDURES FOR DOSE FINDING STUDY

WITH ADAPTIVE DESIGN

3.1 INTRODUCTION

The problem of identifying the lowest effective drug dose for which the mean response is

superior to that at the control group is often an important issue in a drug efficacy study.

Likewise, one of the most important goals in a toxicity study is to identify the highest safe

dose, which is defined as the highest safe drug dose for which the mean safety response is not

worse than that at the control group. Stepdown testing procedure is a widely used approach

in this area. Under the assumption of a monotone mean configuration, the stepdown testing

procedure is particularly powerful and easy to perform. In this chapter we will concentrate

on the dose studies for finding the lowest effective dose. The testing approach for finding

the highest safe dose can be formulated in exactly the same way.

Suppose the drug response variables have means µi at dose levels di, i = 1, 2, . . . , k, and

µ0 is the mean drug response of the control group. Drug efficacy is measured as the relative

drug response such as µi−µ0. Write the means of relative drug efficacy as θi, i = 1, 2, . . . , k.

Dose level di is defined to be effective if θi > 0. Notice that the dose responses don’t have

to be independent of each other, as we have discussed in the previous chapter. Suppose

that we can assume θ1 6 θ2 6 . . . 6 θk. Then dE is the lowest effective dose if θj 6 0 for

j < E and θj > 0 for E 6 j 6 k. In practice, people usually define the lowest effective
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dose in a dose study as dose level dE if θj 6 0 for j < E and θj > δ(δ > 0) for E 6 j 6 k.

δ here is usually referred to as the smallest (clinically) meaningful drug effect. The use

of δ is useful in comparing statistical approaches, because no statistically procedure can

discriminate between the effective and noneffective dose groups if the means of the dose

effects can be arbitrarily close to each other [31].

The design and validity of a stepdown testing procedure to find the lowest effective dose

level follows a general procedure given by Marcus, Peritz and Gabriel [18]. For a family

of hypotheses {H0i : i = 1, 2, . . . , k} in a multiple testing problem, the family-wise error

rate(FWE) is defined as

FWE = Pr{at least one true H0i is rejected}.

A step testing procedure controls the family-wise error rate strongly if FWE is controlled

when any subgroup of the family of null hypothese are true. If a step testing procedure

satisfies the conditions of closed procedure, which we will define in section 3.3, the procedure

controls the family-wise error rate strongly.

3.2 LITERATURE REVIEW ON STEPWISE TESTING PROCEDURE IN

DOSE STUDY

Stepwise testing procedures in dose study with isotonic dose responses have been extensively

researched. The earliest well known result is by Williams [34] [35] (1971 and 1972). Williams

proposed a stepwise testing procedure to compare the mean responses of k dose levels with a

zero-dose control by using the isotonic regression estimates. The table of upper α percentage

points of the distribution of the comparisons is provided by Williams for equal allocation of

subjects (1971) and for unequal allocation of subjects (1972).
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Tamhane et al [28](1996) did a comparison study of the stepwise testing procedures using

William’s approach and various linear contrasts. He showed that William’s procedure, the

stepdown procedure using Helmert Contrast and critical value of correlated t-statistics, and

the stepdown procedure using linear contrast and critical value for simple t-statistics have

the highest average powers, and their performances are relatively stable for different values

of MED (Minimum Effective Dose), δ (smallest meaningful difference between treatment and

control) and the type of dose response function.

Bauer [1] (1997) in a follow-up paper pointed out that the strong control of family-wise

Type I error rate is guaranteed in stepwise procedures only if monotone order restriction is

assumed to hold among response means. The claim made by Tamhane [28] et al (1996) that

the monotone assumption in response means is not required is only true for many-to-one

pairwise comparisons.

Bauer et al [2] (2001) proposed stepwise procedures when both efficacy and safety need

to be considered. A stepwise procedure for suitably defined subfamilies is used to control

the overall family-wise error, and order restrictions for both efficacy and safety are assumed.

Similarly, Tamhane et al [29] (2002) provided a stepwise testing procedure for detecting the

minimum effective (MINED) and maximum safe dose (MAXSD) using the joint t-distribution

of efficacy response and safety response variables at each dose level.

Channon et al [6] (2001) pointed out that although stepdown testing procedures provide

powerful tools for identifying the minimum effective and/or maximum safe dose, simultaneous

inference about dose responses after the testing is still desirable in practice. Channon et al

performed simulation studies to compare the actual coverage of the proposed simultaneous

confidence intervals. It is shown that although the minimum coverage is not theoretically

guaranteed, the actual coverage ranges from 93% to 97%, which should be satisfactory for
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practical purposes.

Bretz et al [4] (2003) suggested that usually the relative difference between treatments

and control is of interest instead of absolute measures of treatments. They proposed to

conduct stepdown procedures based on the ratio of the drug responses between each dose

level and the control.

One common shortcoming of the previous research is that the proposed testing procedures

have implicitly assumed that the dose study data are randomly collected from the probability

distributions. In a clinical study with adaptive design, this assumption is not correct because

the data collected are not totally random samples. It is necessary to tailor stepwise testing

procedures for non-random samples in order to draw valid statistical inference. We will try

to address this problem in this chapter.

3.3 CLOSED TESTING PROCEDURE

Let {H0i : 1 ≤ i ≤ k} be a finite family of null hypotheses. One can form the closure of this

family by taking all the nonempty intersections H0p =
⋂

i∈P H0i for ∅ ⊂ P ⊆ {1, 2, . . . , k}.

If an α-level test of each hypothesis H0p is available, then a closed testing procedure can be

constructed by rejecting any null hypothesis H0p only if every H0q is rejected by its associated

α-level test for all H0q ⊇ H0p. As pointed out by Marcus et al [18](1976), a closed testing

procedure strongly controls the Type I family-wise error probability in multiple comparisons,

i.e., the Type I family-wise error probability is controlled under any configuration of the null

hypotheses family.

Suppose in a dose study, one can assume that the drug responses at control group and

dose levels 1 to k are normal random variables with the means as µi, i = 0, 1, 2 . . . , k, and
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a common variance σ2. One can further assume that µ1 6 µ2 6 . . . 6 µk. Suppose that

the drug effect at each dose level is defined as the difference between the drug response of

the control and each dose group: θi = µi − µ0, i = 1, 2, . . . , k. We can estimate the mean

drug effects by sample mean differences ȳi− ȳ0, i = 1, 2, . . . , k, with corresponding standard

errors as ( 1
n0

+ 1
ni

)
1
2 σ, where n0, n1, . . . , nk are the sample sizes in each group correspondingly.

Consider the family of null hypotheses H0i : 0 > θi > θi−1 > . . . > θ1, i = 1, 2, . . . , k, and the

corresponding alternative hypotheses H1i : θi > 0. It is obvious that, under the isotonic dose

response µ1 6 µ1 6 . . . 6 µk, the set of all null hypotheses form a closure since it contains

the intersections of all possible subsets of the family of the null hypotheses. In fact, we have

H0k ⊇ H0k−1 ⊇ . . . ⊇ H01. Write Z1−α as the 1− α percentile point of the standard normal

distribution. The following stepdown one-sided testing procedure is a closed procedure and

strongly controls the Type I family-wise error probability at level of α:

• If ȳk − ȳ0 6 ( 1
nk

+ 1
n0

)
1
2 σZ1−α, then accept the null hypothesis H0k and stop the testing

procedure;

else then reject H0k and go to the next step.

• If ȳk−1 − ȳ0 6 ( 1
nk−1

+ 1
n0

)
1
2 σZ1−α, then accept the null hypothesis H0k−1 and reject H0k,

and stop the testing procedure;

else then reject H0k and H0k−1 and go to the next step.

• · · · · · ·

• If ȳ1 − ȳ0 6 ( 1
n1

+ 1
n0

)
1
2 σZ1−α, then accept H01 and reject H0k, H0k−1, . . . , H02, and stop

the testing procedure;

else then reject H0k, . . . , H01 and stop the testing procedure.

Proposition 3.3.1. The above stepdown testing procedure strongly controls the family-wise

error rate.
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Proof.

Suppose that for the k dose levels, we have the set of true null hypotheses T such that,

0 > θj > θj−1 > . . . > θ1, for j ∈ T . Let J = max{j : j ∈ T}. Write ω as the event that at

least one true null hypothesis is rejected, and ωJ as the event that H0J is rejected. By the

definition of the stepdown procedure, we know that we have to reject H0J in order to reject

any H0i, i ∈ T . Therefore we have

ω ⊆ ωJ ⇒

Pr{ω} 6 Pr{ωJ} ⇒

Pr{Reject any true null hypothesis} 6 Pr{Reject H0J}

= α

Although the above proof does not use the order restriction assumption about the means

of dose responses, the construction of the closed family of null hypotheses H0i,i ∈ 1, 2, . . . , k,

has implicitly used the assumption.

3.4 MODIFIED STEPDOWN TESTING PROCEDURES IN ADAPTIVE

SAMPLING

In studies using adaptive designs, the usual likelihood based approaches for hypothesis testing

and confidence interval are not valid because the data being analyzed are not i.i.d. random

samples from the assumed distributions. Modifications of such approaches are needed to

perform valid statistical analysis for such data. For example, Jennison and Turnbull [13] in

their book discussed approaches to derive statistical inference for the data collected from

adaptive clinical trials.
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For an adaptive design where the study only stops when evidence of null hypothesis

is observed, the actual type I error probability is slightly smaller than the nominal size of

the test when the adaptive sampling is ignored, therefore leading to a conservative testing

procedure. For this reason, in practice people rarely adjust the test for the adaptive sampling.

It is not hard to see that the power of the test also suffers a slight loss too, which people tend

to ignore because the loss is usually insignificant. However, in a stepdown testing procedure

when we are interested in the power to detect the lowest effective dose level, the loss in

the power is exponentially increased when the number of effective dose levels increases, and

should not be ignored. For example, suppose in a single test the power of the accurate test

is 90% and the power of the conservative (unadjusted) test is 87%. The loss of power is

3.33%, which is ignorable. However, in a stepdown test for a dose finding study, if the lowest

effective dose can be as low as the sixth largest dose, the power to find the lowest effective

dose becomes 90%6 = 53% and 87%6 = 43%, correspondingly. The loss of power is increased

to 19%. It is thus important to perform the stepdown test procedure with accurate size that

takes into consideration the adaptive sampling.

In a typical adaptive design for dose study, part of the subjects planned for the dose

group will be enrolled first. If the observed drug effect for a given dose group is smaller than

a certain pre-specified cut point, the rest of the subjects planned for this dose group will

not be enrolled. They can either be allocated to other potentially effective dose groups, or

won’t be enrolled to save resources for other studies. Suppose instead at dose level i, that

the observed drug effect at the first stage is larger than the cut point, then the rest of the

planned subjects for dose i will be enrolled. Usually only the dose groups fully enrolled will

be analyzed as potentially effective dose groups. Also an active control group or a placebo

group are continuously enrolled in parallel with the study drug at each dose group. In an

adaptive dose study like this, the data in each dose group are not random samples and the
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adaptive sampling needs to be incorporated into the data analysis.

Let’s assume the same distributions of drug responses discussed in section 3.2. Let the

cut point for adaptive sampling be λi, i.e., the planned subjects of dose level i will be fully

enrolled if ȳi1− ȳ01 > λi, where ȳi1 and ȳ01 are sample means of drug responses of dose group

i and the control group after the first stage of the study. The planned sample size and the

sample size at first stage of the study for dose group i are ni and ni1 correspondingly, and

the planned sample size and the sample size enrolled at the first stage of the study in the

control group are n0 and n01 correspondingly. Write the mean drug effect observed at the

first stage and the second stage of dose group i as ȳi1 and ȳi2. Let ni2 = ni − ni1, then

ȳi = ni1

ni
ȳi1 + ni2

ni
ȳi2. Also write the mean drug effect observed for the subjects in control

group enrolled after the first stage of the study as ȳ02 with sample size n02, then we have

ȳ0 = n01

n0
ȳ01 + n02

n0
ȳ0. The 1− α percentile point c1−α for drug effect estimate ȳi − ȳ0 can be

obtained by solving

Pr(ȳi − ȳ0 > c and ȳi1 − ȳ01 > λi)

= Pr(ȳi1 − ȳ01 > λi)× Pr(ȳi − ȳ0 > c|ȳi1 − ȳ01 > λi)

= α (3.1)

Under the null hypothesis H0i, the above probabilities can be expressed separately as
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Pr(ȳi − ȳ0 > c|ȳi1 − ȳ01 > λi)

=

∫ +∞

λi

fȳi1−ȳ01(w)
1∫ +∞

λi
fȳi1−ȳ0i

(v)dv

∫ c

−∞
f(ȳi−ȳ0)|ȳi1−ȳ0i=w(z)dzdw

and

Pr(ȳi1 − ȳ01 > λi) = 1− Φ(
λi

σi1

) (3.2)

Here Φ is the cumulative distribution function of standard normal distribution. The condi-

tional densities f(ȳi−ȳ0)|(ȳi1−ȳ01) can be easily obtained by noticing that under H0i, fȳi1−ȳ01 ∼

N(0, σ2

ni1
+ σ2

n01
), fȳi−ȳ0 ∼ N(0, σ2

ni
+ σ2

n0
), and ȳi1− ȳ01 and ȳi− ȳ0 are bivariate normal random

variables with covariance σ2

ni
+ σ2

n0
.

3.5 A STEPDOWN TESTING PROCEDURE WITH ADAPTIVE

SAMPLING INFERENCE

In order to take advantage of the power of stepdown testing procedures and also avoid the

bias introduced by adaptive sampling at each dose i, the following stepdown testing approach

is proposed :

• If ȳk1 − ȳ0 6 ( 1
nk1

+ 1
n0

)
1
2 σc1−α, then accept the null hypothesis H0k1 and stop the testing

procedure;

else then reject H0k1 and go to the next step.
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• If ȳk1−1 − ȳ0 6 ( 1
nk1−1

+ 1
n0

)
1
2 σc1−α, then accept the null hypothesis H0k1−1 and reject

H0k1 , and stop the testing procedure;

else then reject H0k1 and H0k1−1 and go to the next step.

• · · · · · ·

• If ȳ1−ȳ0 6 ( 1
n1

+ 1
n0

)
1
2 σc1−α, then accept the null hypothesis H01 and reject H0k1 , . . . , H02,

and stop the testing procedure;

else then reject H0k1 , H0k1−1 . . . , H01 and stop the testing procedure.

Here c1−α is the critical value derived in section 3.4 by taking into consideration the

adaptive design, and k1 is the number of dose groups fully enrolled.

3.6 APPLICATION OF THE MODIFIED STEPDOWN TESTING

PROCEDURE IN ADAPTIVE DOSE STUDY WITH A BINARY

ENDPOINT

As discussed in the previous chapter, the outcome in clinical studies is often expressed as a

binary variable. Usually we can use the approaches of adaptive design and stepdown testing

based on normal distribution theory as long as the sample size is moderate or large, and the

expected proportion is not very close to 0 or 1. However, in an adaptive study with small to

moderate sample size, the sample size at the first stage is usually small, and thus cut points

specified based on the continuous normal approximation of testing statistics usually can not

be achieved. The cut point is often defined in terms of the number of events instead. In a

comparative dose study, the cut points are most conveniently specified as the difference in

the number of events between the control group and the dose groups. A cut point specified in

this way does not always define a unique cut point when some relative drug efficacy measure
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is used. For example, suppose at dose level di, odds ratio pi×(1−p0)
(1−pi)×p0

is defined as the drug

effect variable. Use the same notation of sample sizes ni, ni1, n0 and n01 as before, and write

the number of event observed in dose i group and the control group at the first stage as

mi1 and m01 correspondingly, and the critical point for mi1 −m01 is Mi. The corresponding

critical value λi for odds ratio observed at the first stage is

λi =
mi1 × (n01 −m01)

(ni1 −mi1)×m01

=
(m01 + Mi)× (n01 −m01)

(ni1 − (m01 + Mi))×m01

= g(m01, Mi),

Hence λi is a function of both Mi and m01, and the cut point Mi does not uniquely define

the cut point for the odds ratio. Although the actual corresponding odds ratio cut point can

be calculated at the time of testing, the conditional distribution of the observed overall odds

ratio can not be derived based on it. The same kind of difficulty will be encountered if the

relative risk pi/p0 or difference of arcsin square-root of proportions, arcsin p
1
2
i − arcsin p

1
2
0 are

used as the drug effect variables. We will propose an approach to deal with this difficulty

by using an approximate mixture normal distribution for the odds ratio. The result can be

easily applied to relative risk and other similar measurements with minor modifications.

3.6.1 Expected conditional distribution approach for stepdown testing in clin-

ical study with binary outcome

Using the above notation, if at dose level di the critical value for adaptive sampling is Mi, then

the corresponding critical value for odds ratio can be expressed as λi = (m01+Mi)×(n01−m01)
(ni1−(m01+Mi))×m01

.

Under the null hypothesis, the numbers (m01) of event in control group and the number

(mi1) of event in dose group i have binomial distributions with common probability p and
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sample sizes n01 and ni1. Let set Ui be all the possible values of the odds ratio given sample

sizes n01 and ni1 and difference in number of events Mi. For any value ω ∈ Ui, write the set

of m01 as Vω = {m : Max(0, −Mi) 6 m 6 Min(n01, ni1 −Mi) and (m+Mi)×(n01−m)
(ni1−(m+Mi))×m

= ω}.

When m01 ∈ Vω, we have

mi1 −m01 > Mi ⇐⇒
(m01 + Mi)× (n01 −m01)

(ni1 − (m01 + Mi))×m01

> ω

Therefore the probability of the discrete distribution of the critical value in terms of odds

ratio can be evaluated as

Pr(λi = ω) = Pr {m01 ∈ Vω}

=
1

Gp

∑
m∈Vω

(
n01

m

)
pm(1− p)n01−m, (3.3)

where

Gp =

Min(n01,ni1−Mi)∑
m=Max(0,−Mi)

(
n01

m

)
pm(1− p)n01−m (3.4)

Since p is usually unknown, the estimate p̂ = (m0 + mi)/(n0 + ni) can be plugged into the

equation, where m0,n0,mi and ni represent the total number of events and subjects in control

group and dose group i. Thus, approximately,

Pr(λi = ω) =
1

Gp̂

∑
m∈Vω

(
n01

m

)
p̂m(1− p̂)n01−m (3.5)

Under the null hypothesis, the log odds ratio zi1 = log(oddi1) has the approximate normal

distribution N(0, σ̃2), where σ̃2 = 1
m01

+ 1
n01−m01

+ 1
mi1

+ 1
ni1−mi1

. And zi = log(oddi) has

the approximate normal distribution N(0, σ2), where σ2 = 1
m0

+ 1
n0−m0

+ 1
mi

+ 1
ni−mi

. The

marginal distribution of the test statistics

zi = log(oddi) = log

(
mi × (n0 −mi)

(ni −mi)×m0

)
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can be obtained by the following expected conditional distribution:

f(zi|mi1 −m0i > Mi)

=
∑
ω∈Ui

Pr {λi = ω}f(zi|zi1 > log(λi))

And the critical value c1−α for level α hypothesis testing of drug effect at dose group i

can be obtained by solving the following:

Pr(mi1 −m01 > Mi and zi > C)

= Pr(mi1 −m01 > Mi)× Pr(zi > C|mi1 −m01 > Mi)

= α

Under the null hypothesis Hi, the above probabilities can be expressed separately as:

Pr(zi > C|mi1 −m01 > Mi)

=
∑
ω∈Ui

Pr(λi = ω)

∫ +∞

log(ω)

fzi1
(w)

1∫ +∞
log(ω)

fzi1
(v)dv

∫ c1−α

−∞
fzi|zi1=w(z)dzdw

and

Pr(mi1 −m01 > Mi)

=

Min(n01,ni1−Mi)∑
m01=0

ni1∑
mi1=Max(0,m01+Mi)

{
(

n01

m01

)
pm01(1− p)n01−m01

×
(

ni1

mi1

)
pmi1(1− p)ni1−(mi1)}
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The probability density function fzi|zi1
(z) of the conditional distribution of zi can be

easily obtained since the covariance between zi and zi1 is known to be approximately equal

to σ2.

3.6.2 A Monte Carlo Simulation Approach to Obtain the Critical Values

Solving for the critical values of testing statistics zi involves a double integral of the condi-

tional distribution:

∫ +∞

log(ω)

fzi1
(w)

1∫ +∞
log(ω)

fzi1
(v)dv

∫ c1−α

−∞
fzi|zi1=w(z)dzdw

A closed mathematical form of the density function is unavailable. However, we can use

Monte Carlo simulation approach to generate a sufficiently large sample from the marginal

distribution of zi, and estimate the desired percentage point from the empirical distribution.

We propose to use a Monte Carlo Composition [30] with Rejective/Acceptance method for

our problem. The simulation can be performed in the following three steps to sample from

the marginal distribution fzi
(z):

1. Draw ω∗ from pm(ω)

2. Draw y∗ from fzi1
(y)

3. If y∗ > ω∗, then keep y∗ and go to step 4. Else then go back to step 2

4. Draw z∗ from fzi|y∗(z)

The point (ω∗, y∗, z∗) is an observation from the joint distribution, while z∗ is an ob-

servation from the marginal fzi
. The SAS macro program I wrote to perform the above

simulations only needs about 3 to 5 minutes in an artificial trial to compute all the critical

values for each of the possible adaptive designs.
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3.6.2.1 Example The following example of a clinical dose study is used to illustrate the

steptest procedure that incorporates adaptive design. Suppose in an adaptive clinical dose

trial the treatment outcome is a binomial random variable, which indicates the number of

treatment successes. An experimental drug is studied at multiple dose levels for its effect on

increasing the success rate. An active control treatment is used, and the drug effect at each

dose group is measured as odds ratio relative to the control group. From past data, patients

who received the control treatment have been observed to have a 10% success rate following

the treatment. The dose study is designed such that 150 patients are enrolled in each of the

dose groups and the control group at the first stage. If after the first stage, the number of

patients having the adverse outcome at any dose group is no more than that in the control

group minus a certain pre-specified number δ (δ is an integer but could be negative or zero),

then at the second stage 350 more subjects will be enrolled into each dose group and the

control group.

After completion of the second stage, data from the dose groups that have been fully

enrolled will be analyzed for potential drug efficacy. If the dose response can be reasonably

assumed to be isotonic, i.e., the drug at higher dose levels is at least as effective as the

lower doses, finding the lowest effective dose level is usually desired and a stepdown testing

procedure is the most widely used approach. The natural logarithm of the odds ratio is used

as the testing statistic and is assumed to be normally distributed. However, the critical value

for test statistics at each step has to be adjusted for the adapative sampling. Table 3.1-3.3

list the one-sided critical values to be used for the test. These critical values are calculated

using the Monte Carlo Composition [30] with Rejective/Acceptance method. We assume

that the treatment success rate is 10% in the control group, and the treatment success rate

is 15% when calculating the power of the test.

The simulation results indicate that the actual Type I error probability for the log odds
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Table 8: Adjusted Critical Values for One-sided Test with α=0.1

δ for Probability of Critical Value Simulated Adjusted Unadjusted

Adaptive 2nd Stage for Log of Type I Error Power Power

Design Under H0 Odds Ratio Probability

-8 0.94936 0.26718 0.10351 0.84147 0.83745

-7 0.92599 0.26685 0.10268 0.84186 0.83777

-6 0.89510 0.26509 0.10437 0.84345 0.83651

-5 0.85578 0.26577 0.10221 0.84174 0.83560

-4 0.80752 0.26404 0.10370 0.83995 0.83154

-3 0.75044 0.26351 0.10252 0.83682 0.82866

-2 0.68540 0.26216 0.10234 0.83127 0.82131

-1 0.61399 0.26049 0.09965 0.82240 0.81188

0 0.53847 0.25553 0.09865 0.81404 0.79839

1 0.46153 0.24789 0.09898 0.80172 0.78074

2 0.38601 0.23526 0.09909 0.78525 0.75592

3 0.31460 0.21705 0.09872 0.76048 0.72453

4 0.24956 0.18938 0.10138 0.72816 0.68491

5 0.19248 0.14802 0.10176 0.68632 0.63985

Pnull = 0.1 pa = 0.15 n1 = 150 n2 = 350
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Table 9: Adjusted Critical Values for One-sided Test with α=0.05

δ for Probability of Critical Value Simulated Adjusted Unadjusted

Adaptive 2nd Stage for Log of Type I Error Power Power

Design Under H0 Odds Ratio Probability

-8 0.94936 0.34493 0.052680 0.72500 0.72285

-7 0.92599 0.34351 0.052610 0.72834 0.72338

-6 0.89510 0.34167 0.054145 0.73024 0.72230

-5 0.85578 0.34284 0.052045 0.72729 0.72230

-4 0.80752 0.34119 0.053775 0.72722 0.71933

-3 0.75044 0.34164 0.053080 0.72560 0.71749

-2 0.68540 0.34080 0.053180 0.72064 0.71261

-1 0.61399 0.34108 0.050935 0.71483 0.70699

0 0.53847 0.33896 0.050020 0.70802 0.69719

1 0.46153 0.33400 0.050495 0.70221 0.68482

2 0.38601 0.32659 0.050110 0.69228 0.66633

3 0.31460 0.31527 0.050510 0.68009 0.64285

4 0.24956 0.29924 0.051105 0.66015 0.61170

5 0.19248 0.27558 0.050385 0.63656 0.57675

Pnull = 0.1 pa = 0.15 n1 = 150 n2 = 350
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Table 10: Adjusted Critical Values for One-sided Test with α=0.025

δ for Probability of Critical Value Simulated Adjusted Unadjusted

Adaptive 2nd Stage for Log of Type I Error Power Power

Design Under H0 Odds Ratio Probability

-8 0.94936 0.41194 0.026690 0.59685 0.59685

-7 0.92599 0.41048 0.027710 0.59985 0.59670

-6 0.89510 0.40903 0.027700 0.60472 0.59539

-5 0.85578 0.41005 0.027400 0.60212 0.59607

-4 0.80752 0.40953 0.027420 0.60000 0.59411

-3 0.75044 0.41116 0.027300 0.59722 0.59412

-2 0.68540 0.41078 0.026935 0.59353 0.59037

-1 0.61399 0.41111 0.025995 0.58987 0.58691

0 0.53847 0.41057 0.025200 0.58307 0.58020

1 0.46153 0.40717 0.025480 0.58236 0.57161

2 0.38601 0.40201 0.025650 0.57799 0.55990

3 0.31460 0.39422 0.025560 0.57610 0.54350

4 0.24956 0.38172 0.026200 0.56595 0.52147

5 0.19248 0.36618 0.026420 0.55490 0.49586

Pnull = 0.1 pa = 0.15 n1 = 150 n2 = 350
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ratio using normal approximation is very close to the nominal level in a clinical study with

sample size of a typical Phase II trial. The corresponding power under the alternative hy-

pothesis and the probability of subjects at second stage being saved under the null hypothesis

can be easily calculated, and these numbers can be used for choosing the best design when

the appropriate criteria are given.
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4.0 OPTIMAL STAGE-WISE ADAPTIVE CLINICAL DOSE STUDY

DESIGN

4.1 INTRODUCTION

Sequential clinical study designs consist of one or more interim analyses/comparisons in

addition to the final analysis/comparison at the end of the study. The study can be stopped

if the treatment is found to be inferior or superior to the control at any interim analysis. The

use of sequential design is motivated by both the ethical consideration to assign more patients

to the effective treatment as soon as possible, and by the economical need to reach the reliable

conclusion with the minimum resources. Extensive discussions on various approaches to

design sequential studies as well as the theoretical background are available in the books by

Jennison and Turnbull [13](2000) and Whitehead [33](1997).

Sequential designs have been widely studied and used in Phase II clinical study involving

treatment selection or treatment screening. In drug development process, usually the toxicity

and/or tolerability is studied in Phase I study. If the toxicity level is acceptable, potential

efficacy is studied in Phase II trials to determine whether a confirmatory Phase III trial,

which is often large-scale and very costly, should be conducted. Phase II trial that involves

dose response study has become increasingly common, and the parallel multiple dose study

is one of the typical Phase II dose designs.
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The results of a Phase II drug study often show that a drug candidate believed to be

promising lacks sufficient efficacy to warrant further Phase III confirmatory trial. ”Futility

analysis”, which refers to the interim analysis that assesses the probability of the drug being

found promising, enables us to stop the study early and allocate the saved resources to more

promising studies. In a multi-dose Phase II trial, futility analysis can be conducted at each

dose level so that we can allocate more resources to more promising dose groups.

4.2 LITERATURE REVIEW ON ADAPTIVE PHASE II CLINICAL

STUDY DESIGNS

Simon [23](1989) proposed an approach to design the optimal two-stage single-arm phase II

study. It allows the study to stop after the first stage if there is no sufficient evidence of

drug activity. Minimum expected sample size and/or minimum maximum sample size are

used to choose the optimal design. Chen [7] (1997) proposed the extension of the design

to three-stage. Hanfelt [11](1999) extended Simon’s design to phase II studies where choice

of dosage is not clear. Hanfelt’s design has two stages at each dose, and permits one dose

escalation if the drug effect can’t be verified after first and/or second stage of the initial

dose. Different optimization criteria are discussed, including expected sample size, median

or mode sample size, and minimum maximum sample size.

Feder et al [10](1991) discussed a two-stage adaptive dose allocation optimal design for

parametric dose response estimation. At the first stage, subjects are allocated to dose levels

such that the parameters can be best estimated based on the prior assumption. At the

second stage, the data from the first stage are used to update the function form and the

subjects allocation is modified accordingly.
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Thall [31][32](1988 and 1989) studied a two-stage design with binary outcome that se-

lects the best treatment at the first stage, and conduct the second stage study only on the

selected treatment if the observed treatment effect crosses some pre-specified boundary in

first stage. He proposed to use two quantities, marginal improvement δ1, and significant im-

provement δ2 to derive the Least Favorable Configuration (LFC), and to calculate the power

and Type I error probability based on LFC. The optimal design is obtained to minimize

the weighted average of the sample sizes of the two stages of study. Schaid, Wieand and

Therneau [21](1990) proposed a similar design when the endpoint variable is a survival time.

Stallard [26](2003) extended the work by Thall and Schaid by using the efficiency score as

the test statistic, and incorporating sequential design in studying the single experimental

treatment at the second stage after the best treatment has been selected at the first stage.

Leung [16](2001) incorporated the usually assumed monotone relationship between toxi-

city and dosage into the design. He suggested a sequential dose finding study that performs

isotonic regression after each stage of the study, and uses the isotonic regression estimate of

the drug effect as a test statistic to decide whether to stop the study or to continue to the

next dose level.

Pallay [20](2001) discussed a Phase II two-dose futility study using a decision analytic

approach. Two-stage sequential design is used at each dose. Cost and gain functions are

pre-specified and the study design is optimized based on the eventual profit of the drug

development. Stallard [27] [26] (1998 and 2003) proposed to use decision-theoretic design

based on more general gain function of drug effect and subjects allocation. The opportunity

cost of not6 spending resources on other competing treatments is also considered.

Previous studies of adaptive design for Phase II clinical trial have been limited to one or

more of the following areas, therefore can not be readily applied to the kind of Phase II dose
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study we have described: 1. Frequently, usually in early stage toxicity study, parametric

dose response estimation is desired. In those cases, the optimal design is aimed to achieve

the minimum variance in parameter estimation(s). 2. In a Phase II study when multiple

treatments are compared to a control group to select potentially effective treatment(s) to

enter a Phase III study, the monotone assumption of effect exists in dose study either does

not exist or is not taken in consideration into the study design. 3. Usually only a continuous

response with a normal distribution is considered. In case of binary or categorical responses,

certain types of normal approximation and/or data transformation are used without validity

and sensitivity analysis. 4. Most study designs simply use the minimum expected sample

size or min-max sample size as the optimization criteria. However, sometimes the total

resources to be expended has already been decided and efficiency of resource allocation is

the study design objective. 5. Extensive research has been concentrated on Phase II cancer

study, where the tumor reduction probability is examined to assess the potential therapeutic

effect of new chemical compounds. Therefore, the studies are singled-armed and are not

comparative in nature.

In practical clinical studies, the study process and design are in general constrained by

scientific and clinical considerations and operation logistics. A general statistically optimal

design doesn’t always find its way into the application. In this chapter we will propose a

study design that satisfies the constraints of certain type of dose escalation studies and also

achieves the maximum statistical efficiency under the study constraints.
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4.3 AN ADAPTIVE STUDY DESIGN FOR DOSE ESCALATION STUDY

The study design we will discuss here is aimed to achieve optimal efficiency for a comparative

dose escalation Phase II clinical study similar to the cardiovascular clinical study mentioned

in the first chapter. Such a dose escalation study is commonly used in clinical studies

involving severe medical conditions. The efficacy of the drug is often measured using a

binary variable that indicates the treatment success of the target disease or the occurrence

of the target adverse outcome. Usually two to six pre-specified dose levels of the experimental

drug are studied and isotonic dose response can be assumed. An active control arm that uses

the standard treatment is used, and the drug effect is measured by a relative measurement

such as difference of proportions, relative risk or odds ratio.

4.3.1 Proposed Study Design

Suppose there are k dose levels, d1, d2, . . . , dk, and an active control arm d0, and the measure

of drug effect at the control group and each dose level is normally distributed with the same

known variance σ2, and with means µ0, µ1, . . . , µk, respectively. The study starts from the

lowest dose level, and escalates to the second lowest dose level after the study enrollment

in the lowest doses is finished and study data has been collected and analyzed. The study

continues in this way until the highest dose level is studied, or the study is terminated due

to safety concerns. To keep the treatment allocation blinded and also the control population

comparable, the subjects in the control arm are continuously enrolled along with subjects

to be allocated to each dose level. Randomization by block is used to maintain the desired

ratio of the numbers of subjects between control and treatment.

I propose to use a two-stage adaptive enrollment design at each dose step. The enrollment

design is aimed to use the subjects more efficiently by performing a futility assessment after
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the first stage enrollment, and skipping the second stage enrollment if the observed drug

effect of the dose group is smaller than a pre-specified cut point. The saved second stage

subjects of the abandoned dose group are then equally allocated to the remaining higher-

dose groups. The number of subjects at first stage enrollment is the same at every dose step.

Suppose at a dose step, say dose i, the observed drug effect after the first stage enrollment is

larger than the cut point λi, then the second stage enrollment will proceed. After the dose

step i is completed, all the higher dose level will be fully enrolled without first stage futility

assessment.

Suppose the total planned number of subjects for k dose groups and the control group is

N . At the first stage enrollment of each dose step only n1 (n1 < N
k+1

) subjects are enrolled.

I propose the following subject allocation scheme which ensures that the control group and

all the dose groups that pass the first stage screen have the same number of subjects. Also

suppose that after the first stage of the adaptive enrollment, the drug effect for the control

group and dose group i, i = 1, 2, . . . , k, is estimated using the observed sample means x̄0i

and x̄i1 respectively. Write the cut point at dose group i as λi. The dose escalation study

starts from the lowest dose group:

1. Enroll n1 subjects in the lowest dose group and N
2k(k+1)

subjects in the control group.

Calculate the drug effect estimate in the control group and the lowest dose group, x̄01

and x̄11.

• If x̄11− x̄01 6 λ1 then stop enrollment for the lowest dose group and go to the second

lowest dose group (Step 2).

• Else if x̄11 − x̄01 > λ1, then enroll additional N
k+1

− n1 subjects to the lowest dose

group, and additional N
2k(k+1)

subject to the control group. In each of the higher

dose steps, enroll N
k+1

and N
k(k+1)

subjects to the dose group and the control group,

respectively. (Study enrollment finished)
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2. Enroll n1 subjects in the second lowest dose group, and N−n1

2k(k−1)
− N

2k(k+1)
subjects in the

control group. Calculate the drug effect estimate in the control group (use all data) and

the second lowest dose group, x̄02 and x̄21.

• If x̄21 − x̄02 6 λ2 then stop enrollment for the second lowest dose group and go to

the third lowest dose group (Step 3).

• Else if x̄21− x̄02 > λ2, then enroll additional N−n1

k
−n1 subjects to the second lowest

dose group, and additional N−n1

2k(k−1)
subject to the control group. In each of the higher

dose steps, enroll N−n1

k
and N−n1

k(k−1)
subjects to the dose group and the control group,

respectively. (Study enrollment finished)

· · · · · ·

I. Enroll n1 subjects in dose group i, and N−(i−1)n1

2(k−i+1)(k−i+2)
− N−(i−2)n1

2(k−i+2)(k−i+3)
subject in the

control group. Calculate the drug effect estimate in the control group (use all the data

collected in the control group) and the second highest dose group, x̄0i and x̄i1.

• If x̄i1 − x̄0i 6 λi then stop enrollment for dose group i and go to dose group i + 1.

• Else if x̄i1 − x̄0i > λi, then enroll additional N−(i−1)n1

k−i+1
− n1 subjects to dose group i,

and additional N−(i−1)n1

2(k−i+1)(k−i+2)
subject to the control group. In the highest dose step,

enroll N−(i−1)n1

k−i+1
and N−(i−1)n1

(k−i+1)(k−i+2)
subjects to the dose group and the control group,

respectively. (Study enrollment finished)

· · · · · ·

K. In the highest dose step, enroll N−(k−1)n1

2
and N−(k−1)n1

2
− N−(k−2)n1

12
subjects to the dose

group and the control group, respectively. (Study enrollment finished)

Dose groups that stop enrollment after the first stage are considered not having sufficient

evidence of efficacy to be further studied. Suppose at dose level dj, we observed that x̄j1 −

x̄0j > λj for the first time, and therefore enroll the remaining subjects such that the control
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group and the dose groups at or above dose level j have the same sample size. The final

estimates of drug effect for all the dose groups at or above dose level dj are correlated with

x̄j1 − x̄0j because they use the common control group. Since the distribution of x̄j1 − x̄0j is

truncated by the adaptive sampling procedure, the marginal distributions of the drug effect

estimates for all the higher dose group are all biased. Therefore the statistical inferences we

use to analyze the study data need to be adjusted.

I will describe the stepdown testing procedure that incorporates the adaptive enrollment

in a three-dose dose escalation study. Write the drug effect estimate for dose group i as

x̄i − x̄0, i = 1, 2 or 3. Also write the event that the null hypothesis Hi0 : µi − µ0 6 0 is

rejected when Hi0 is in fact true as Si, i.e., Si is the event the a Type I error occurs in the

testing procedure at dose level i. When i = 1:

Prob(S1)

= Prob(x̄1 − x̄0 > C1 and x̄11 − x̄01 > λ1|µ1 6 µ0)

6 Prob(x̄1 − x̄0 > C1 and x̄11 − x̄01 > λ1|µ1 = µ0)

= Prob(x̄1 − x̄0 > C1|x̄11 − x̄01 > λ1 , µ1 = µ0)× Prob(x̄11 − x̄01 > λ1|µ1 = µ0)

Therefore the derivation of the critical value C1 is reduced to the problem we have discussed

in chapter 3 (3.1) by setting the last probability to α and solving for C1. When i = 2, the

event S2 can be expressed as:

S2 = {x̄11 − x̄01 6 λ1, x̄21 − x̄02 6 λ2, x̄2 − x̄0 > C21 | µ2 6 µ0}⋃
{x̄11 − x̄01 > λ1, x̄2 − x̄0 > C22 | µ2 6 µ0}

Since the two subsets of S2 are mutually exclusive, we have
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Prob(S2) = Prob(x̄11 − x̄01 6 λ1, x̄21 − x̄02 6 λ2, x̄2 − x̄0 > C21 | µ2 6 µ0)

+ Prob(x̄11 − x̄01 > λ1, x̄2 − x̄0 > C22 | µ2 6 µ0)

6 Prob(x̄21 − x̄02 > λ2, x̄2 − x̄0 > C21 | µ2 = µ0)

+ Prob(x̄11 − x̄01 > λ1, x̄2 − x̄0 > C22 | µ2 = µ1 = µ0)

= Prob(x̄2 − x̄0 > C21|x̄21 − x̄02 > λ2 , µ2 = µ0)× Prob(x̄21 − x̄02 > λ2|µ2 = µ0)

+ Prob(x̄2 − x̄0 > C22|x̄11 − x̄01 > λ1 , µ1 = µ2 = µ0)

×Prob(x̄11 − x̄01 > λ1|µ1 = µ0)

I propose to use the Bonferroni method to assign Type error rate α
2

to each of the two

probabilities at the last step of above inequality. Again the critical values C21 and C22 can

be solved by using the simulation approach I proposed in Chapter 3. Under the proposed

study design, the testing at the highest dose level (dose 3) is always performed irrespective

of the results of futility assessments at early dose steps. Although the results of the futility

assessments affect the sample size of the dose effect estimates at dose level 3, the correlation

between x̄3 − x̄0 and the first stage estimates at earlier dose levels, x̄11 − x̄01 and x̄21 − x̄02,

is usually small. This is easy to understand since the only common data used is the first

stage data in the control group, which is usually a fraction of the sample size at the last

dose group. Therefore I propose to use 1√
2/n

σZα as the critical value of the testing at dose

level 3, which is essential the usual Z-test. Here Zα is the α percentile of standard normal

distribution, σ is the common standard deviation of drug response, and n is the final sample

size in the control group and each dose group that is fully enrolled. The simulation study I

performed shows that the actual Type I error is very close the nominal level α.

When inference on simultaneous confidence intervals (SCI) is desired, the modified max-

min procedure can be used to derive the simultaneous conference intervals of the correlated
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dose effects, and a similar adjustment for the adaptive enrollment at dose i can be made.

The modification for adaptive enrollment using SCI will be discussed later in this chapter.

The modified stepdown testing procedure or the one-sided modified simultaneous confi-

dence intervals approach to find the effective dose levels are the two approaches most widely

used to analyze comparative multi-dose study. I propose a stage-wise optimization method

to obtain the cut points for adaptive sampling at each dose level when these two analysis

approaches are used. However, the optimization method can also be applied when other

analysis approaches are used or these two analysis approaches are modified.

4.3.2 Optimal Adaptive Design When Stepdown Testing Procedure is Used to

Analyze the Study Data

The goal of using the cut points to assess the drug futility in this adaptive design is to

make the best decision on whether the second stage enrollment at a dose step should be

proceeded based on the observed drug effect from the first stage data. In order to discuss

the optimization approach to decide these cut points, I’ll first define the design criteria that

I will use to evaluate different cut points.

In a Phase II dose study, one desired property of a study design is to detect the effective-

ness of the experimental drug with as much power as possible, which is also the objective

of any Phase II clinical study. In a dose study, if the efficacy exists at multiple dose levels,

we also wish to identify the lowest effective dose level that is studied. These two competing

objectives require somewhat different subject allocation strategies. To have good power to

detect the effectiveness of a experimental drug, we should assign as many subjects to the

highest dose level as possible, since the highest dose level is the most effective under isotonic

dose response assumption. On the other hand, to identify the lowest effective dose level, we
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need to assign more subjects to all of the effective dose groups. Average power to detect all

the effective dose groups is often used as one of the criteria to evaluate the performance of

dose study analysis approaches. Tamhane [29] used this criteria along with other quantities

to compare the efficiency of various step testing procedures to analyze dose study data. In

order to choose the study design that achieves the optimal balance between the two objec-

tives of a dose study, we propose to use a weighted average power to find all the effective dose

groups as the study design criteria. Suppose we have k dose levels d1, d2, . . . , dk, r effective

dose levels dk−r+1, dk−r+2, . . . , dk. Write the event that dose i(k − r + 1 6 i 6 k) and all

higher dose levels being identified to be effective as Ii, for a specific study design, the design

criteria Gr is defined as

Gr =
k∑

i=k−r+1

γiPr(Ii|s) /
k∑

i=k−r+1

γi , γk−r+1 > γk−r+2 > . . . > γk

The relative values of γi’s should be decided based on the nature of the therapeutic area

studied by the dose study and the corresponding study goal. Specifically, γ1 = γ2 = . . . = γk

is used in cases where the target disease is extremely severe and there is no alternative

effective treatment. In such cases, the goal is to identify the tolerable effective dose level as

soon as possible, and identifying lower effective dose levels provides little additional benefit

as long as some higher effective dose level(s) can be identified. On the other hand, weights

γ1, γ2, . . . , γk that reflect steep decrease in Gs when the number of identified effective dose

levels decreases can be used in cases where the degree of effectiveness is less important,

and higher doses often involve serious side effects, difficulty in administration and/or much

higher cost. In these cases, finding the lowest effective dose level is the most important

objective. Appropriate selection of γi’s can achieve the desired balance when both objectives

are important.

I assume that the drug response variables in the control group and each dose group
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are normally distributed, with means of the distributions as µ0, µ1, . . . , µk correspondingly.

The dose level i is defined to be effective if µi > µ0, and ineffective otherwise. Let δ

be the smallest meaningful drug effect that is measured as the difference between drug

responses of the control group and each of the dose groups, and we will be interested in the

power of the analysis procedure to detect the dose levels that have drug effect higher than

δ (µi > µ0 + δ). The use of smallest meaningful effect δ is also statistically useful since the

power to distinguish between effective and ineffective dose levels can not be analyzed if µi

and µ0 are allowed to be arbitrarily close to each other [31].

4.3.2.1 A Conservative Stage-Wise Optimization Approach Under Least Favor-

able Configurations Optimization of study design parameters are usually achieved under

a set of possible drug effect configurations. For example, Simon [23], Hanfelt [11] and Chen

[7] provided the optimal cut points for their adaptive designs under a list of possible drug

effect configurations in the treatment group and/or the control group. However, in a Phase

II study with multiple dose groups, the dose response of the experimental drug is usually

not clear, and it is unrealistic to specify a set of possible drug effects at each dose with any

confidence. Thall [31] [32] in his proposed adaptive 2-stage design derived the optimal cut

points under the least favorable configuration (LFC). The LFC in Thall’s study design is the

drug effect configuration under which the overall power to find the effective drug group(s)

achieves the minimal. This is justified by the fact that in a well studied therapeutic area

in treating serious diseases, one usually expects the improvement of treatment effect of any

experimental medicine over the standard therapy to be only marginal, if any.

I propose to use a conservative stepwise optimization approach for the adaptive study

design here. The least favorable configurations are defined at each dose step such that the

probability of making the unfavorable enrollment decision is the highest, and the weighted
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average power to find all effective dose groups is the smallest. Suppose the study is at dose

step i, and we have the observed treatment effect after the first stage enrollment x̄i1 − x̄0i.

The unfavorable enrollment decision is made if we observe x̄i1−x̄0i > λi when in fact µi 6 µ0,

or if we observe x̄i1 − x̄0i 6 λi when in fact µi > µ0 + δ. I define the opportunity loss of

using the adaptive design as the decrease in weighted average power when the unfavorable

enrollment decision is made. The optimal value of the cut point λi is derived such that under

least favorable configurations the maximum opportunity loss achieves its minimum.

Define the following two dose response configurations at dose step i, i = 1, 2, . . . , k − 1,

• LFCi
1: µk = µk−1 = . . . = µi+1 = µ0 + δ; µi = µ0

• LFCi
2: µi = µi+1 = . . . = µk = µ0 + δ

I’ll prove as following that under each of the two dose response configurations at dose

i, the probability of making a unfavorable enrollment decision after the interim look is the

biggest, while in the same time the expected weighted average power is the smallest.

Proposition 4.3.1. Suppose the drug responses have the normal distributions as described

earlier in this Chapter. At dose level i, i = 1, 2, . . . , k − 1, define

pi1 = Prob(x̄i1 − x̄0i > λi | µi 6 µ0)

pi2 = Prob(x̄i1 − x̄0i 6 λi | µi > µ0 + δ)

1. pi1 or pi2 achieves the maximum under LFC1 or LFC2, correspondingly.

2. The weighted average power to identify all effective dose levels (G) achieves its minimum

under LFC1 or LFC2, correspondingly.

Proof.

61



1.

pi1 = Prob(x̄i1 − x̄01 > λi | µi 6 µ0)

= Prob(
(x̄i1 − x̄01)− (µi − µ0)√

σ2/ni1 + σ2/n01

>
λi − (µi − µ0)√
σ2/ni1 + σ2/n01

| µi 6 µ0)

= Prob(Z >
λi − (µi − µ0)√
σ2/ni1 + σ2/n01

| µi 6 µ0) (Z ∼ N(0, 1))

6 Prob(Z >
λi − (µi − µ0)√
σ2/ni1 + σ2/n01

| µi = µ0)

= Φ(
λi√

σ2/ni1 + σ2/n01

)

Similarly, we can also show that

pi2 = Prob(x̄i1 − x̄01 6 λi | µi > µ0 + δ)

= Prob(
(x̄i1 − x̄01)− (µi − µ0)√

σ2/ni1 + σ2/n01

6
λi − (µi − µ0)√
σ2/ni1 + σ2/n01

| µi > µ0 + δ)

= Prob(Z 6
λi − (µi − µ0)√
σ2/ni1 + σ2/n01

| µi > µ0 + δ)

6 Prob(Z 6
λi − (µi − µ0)√
σ2/ni1 + σ2/n01

| µi = µ0 + δ)

= 1− Φ(
λi − δ√

σ2/ni1 + σ2/n01

)

2. Suppose there are r effective dose levels. By the assumption of isotonic dose response,

we have the effective dose groups as k− r +1, k− r +2, . . . , k. When a stepdown testing

procedure is used to identify the effective dose levels, we have

Gr =
k∑

i=k−r+1

γiPr(Ii) /
k∑

i=k−r+1

γi

=
k∑

i=k−r+1

γiPr(Reject Hk0, Hk−1 0, . . . , Hi0 | µk > . . . > µi > µ0 + δ) /

k∑
i=k−r+1

γi

>
k∑

i=k−r+1

γiPr(Reject Hk0, Hk−1 0, . . . , Hi0) | µk = . . . = µi = µ0 + δ) /

k∑
i=k−r+1

γi

(4.1)
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Since Pr(Ii) 6 Pr(Ii) 6 . . . 6 Pr(Ik), it is obvious that for, any given sampling scheme,

Gr achieves the minimum when the number of effective groups r is as large as possible.

Under any given drug effect configuration, the weighted expected power is a function of

the cut point λi. At dose level i, write the opportunity loss under LFCi
1 and LFCi

2 as Li
1

and Li
2 respectively, they can be expressed as:

Li
1 = Gk−i(No 2nd Stage Enrollment | LFCi

1) − Gk−i(λi | LFCi
1)

Li
2 = Gk−i+1(Full Enrollment | LFCi

2) − Gk−i+1(λi | LFCi
2)

Li(λi) = max(Li
1, L

i
2)

The weighted average power Gk−i(No 2nd Stage Enrollemnt | LFC1) is equivalent to

setting the cut point λi at +∞ when the dose response configuration is under LFCi
1, and

the weighted average power Gk−i+1(Full Enrollment | LFCi
2) is equivalent to setting the

cut point λi at −∞ when the dose response configuration is under LFCi
2. The optimal cut

point λi is chosen such that the maximum opportunity loss Li at dose step di achieves the

minimum. As the dose step moves up, the sample size available increases and the number

of dose groups higher than the dose step decreases. The optimization procedure is then

performed at each dose step to derive the cut points for the adaptive design.

4.3.2.2 A Back-Induction Algorithm to Solve for the Optimal Cut Points If

after the first stage enrollment of dose step i, i = 1, 2, . . . , k − 1, we observe x̄i1 − x̄0i > λi,

then the second stage enrollment will be proceeded, and all the higher dose group will be

enrolled with the same sample size. The weighted average power for finding the effective

dose groups under a given dose response configuration can be calculated. However, we
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observe x̄i1 − x̄0i 6 λi, the study escalates to dose step i + 1, and adaptive enrollment

will be implemented again. The calculation of the weighted average power of the study

then will involve the cut point λi+1. Actually, the cut points for all the higher dose steps

λi+1, λi+2, . . . , λk−1 need to be known to calculate the weighted average power. Therefore, I

propose to use a back-induction algorithm to derive the optimal cut points λ1, λ2, . . . , λk−1

for the adaptive dose escalation study.

I will derive the proposed back-induction optimization algorithm in a dose escalation

study with three dose groups. Suppose the total sample size for the dose study is N , and

sample size for the first stage enrollment at each dose step is n1. Using the treatment

allocation scheme presented previously in the chapter, the sample size of each treatment

group under different enrollment decision can be expressed as:

• x̄11 − x̄01 < λ1 and x̄21 − x̄02 < λ2: N3 = (N − 2n1)/2

• x̄11 − x̄01 < λ1 and x̄21 − x̄02 > λ2: N2 = (N − n1)/3

• x̄11 − x̄01 > λ1: N1 = N/3

Write the event that lowest effective dose level 1, 2 or 3 is identified using the stepdown

testing procedure as I1, I2 and I3, correspondingly, and the weights of the weighted average

power are γ1, γ2 and γ3. The optimal cut points are derived using the 2-step procedure:

1. Suppose x̄11 − x̄01 < λ1 is observed, therefore the second stage enrollment of dose step

1 is skipped. Observed drug effect of dose level 2 after the first stage enrollment is

x̄21− x̄02. Using cut point λ, the expected weighted average power under LFC2
1 (µ2 = µ0
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and µ3 = µ0 + δ) and LFC2
2 (µ2 = µ3 = µ0 + δ) can be calculated as

E(G2
1|λ) = Prob(x̄21 − x̄02 > λ | µ2 = µ0)× Prob(I3|N2)

+Prob(x̄21 − x̄02 < λ | µ2 = µ0)× Prob(I3|N3)

E(G2
2|λ) = Prob(x̄21 − x̄02 > λ | µ2 = µ0 + δ)

×(γ2Prob(I2|N2) + γ3Prob(I3|N2))/(γ2 + γ3)

+Prob(x̄21 − x̄02 < λ | µ2 = µ0 + δ)× Prob(I3|N3)
γ3

γ2 + γ3

The weighted average power when ”correct” enrollment decision is made, i.e., skip the

second stage enrollment at dose step 2 under LFC2
1 , or proceed to the second stage

enrollment under LFC2
2 , can be calculated as

G̃2
1 = Prob(I3|N3)

G̃2
2 = (γ2Prob(I2|N2) + γ3Prob(I3|N2))/(γ2 + γ3)

The optimal cut point at dose step 2 λ2 can be derived by minimize the maximum

opportunity loss as following:

L2(λ) = Max(G̃2
1 − E(G2

1|λ), G̃2
2 − E(G2

2|λ))

2. At the lowest dose step (dose 1), observed drug effect after the first stage enrollment is

x̄11 − x̄01. Notice that the drug effect configuration for dose level 2 and 3 under least

favorable configuration LFC1
1 is the same as LFC2

2 (µ2 = µ3 = µ0 + δ). Using the cut
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point λ at dose step 1, the expected weighted average power under LFC1
1 (µ1 = µ0 and

µ3 = µ2 = µ0 + δ) and LFC1
2 (µ1 = µ2 = µ3 = µ0 + δ) can be calculated as

E(G1
1|λ, λ2) = Prob(x̄11 − x̄01 > λ|µ1 = µ0)× (γ2Prob(I2|N1) + γ3Prob(I3|N1))

/(γ2 + γ3) + Prob(x̄11 − x̄01 < λ|µ1 = µ0)× E(G2
2|λ2)

E(G1
2|λ, λ) = Prob(x̄11 − x̄01 > λ|µ1 = µ0 + δ)

×(γ1Prob(I1|N1) + γ2Prob(I2|N1) + γ3Prob(I3|N1))/(γ1 + γ2 + γ3)

+Prob(x̄11 − x̄01 < λ|µ1 = µ0 + δ)× E(G2
2|λ2)

γ2 + γ3

γ1 + γ2 + γ3

The weighted average power when ”correct” enrollment decision is made, i.e., skip the

second stage enrollment at dose step 1 under LFC1
1 , or proceed to the second stage

enrollment under LFC1
2 , can be calculated as

G̃1
1 = (γ2Prob(I2|N2) + γ3Prob(I3|N2))/(γ2 + γ3)

G̃1
2 = (γ1Prob(I1|N1) + γ2Prob(I2|N1) + γ3Prob(I3|N1))/(γ1 + γ2 + γ3)

The optimal cut point at dose step 1 λ1 can be derived by minimize the maximum

opportunity loss as following:

L1(λ) = Max(G̃1
1 − E(G1

1|λ, λ2), G̃1
2 − E(G1

2|λ, λ2))

In general, in a k dose group dose escalation study, the cut point at dose level i can be

derived by minimizing the maximum opportunity loss:

Li(λ) = Max(G̃i
1 − E(Gi

1|λ, λi+1, λi+2, . . . , λk−1), G̃i
2 − E(Gi

2|λ, λi+1, λi+2, . . . , λk−1))

The search for optimal critical values can be done by using numerical methods since the

analytic methods are not available to solve the optimal cut point values. In most clinical

studies where the actual response is a dichotomous variable, and the values of the cut points
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are restricted to a set of limited number of integers. The numerical search of the critical

values can be performed by comparing the maximum opportunity loss among all possible

choices. When a continuous dose response is used, the maximum loss function about the cut

points is generally unimodal, which makes the efficient numerical search feasible. However,

computing algorithm to search for the continuous cut point is not pursued in this thesis.

4.3.3 Optimal Adaptive Design When Simultaneous Confidence Intervals are

Used to Analyze the Study Data

Similar conservative stage-wise optimization approach to derive the values of the cut points

for adaptive design is proposed when inference of simultaneous confidence intervals is used to

analyze the study data. The least favorable configurations LFCi
1 and LFCi

2 (i = 1, 2, . . . , k−

1) defined in Section 4.3.2 have the same implication: they are the configurations under

which that the probability of making the unfavorable decisions of enrollment after interim

look is the biggest, while the weighted average power to identify all effective dose levels is the

smallest. The proof of that the probability of making the unfavorable decisions of enrollment

after interim look is the biggest is the same as I did earlier in the chapter and will not be

repeated here.

Suppose after the adaptive study enrollment is finished, dose group k − h + 1, k − h +

2, . . . , k are fully enrolled and thus enter the final analysis, and the effective dose groups are

k− r + 1, k− r + 2, . . . , k. In other words, there are r dose groups that are effective relative

to the control group and h dose groups that enter the analysis. Let t be the maximum of

k − r + 1 and k − s + 1. Write the estimates of the drug response at the control group

and each dose group as x̄0, x̄t, . . . , x̄k. Considering the max-min procedure in deriving the

simultaneous confidence intervals, we have the expression of G as:
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G =
k∑

i=t

γiPr(Ii) /

k∑
i=t

γi

=
k∑

i=t

γiPr(Reject Hi0) /

k∑
i=t

γi

=
k∑

i=t

γiPr(max
l6i

{(x̄l − x̄0) /
√

σ2/ni + σ2/n0} > mα
Σ,h) /

k∑
i=t

γi

(4.2)

where mα
Σ,h is the critical value of simultaneous confidence intervals discussed in Chapter

2. The isotonic assumption of dose dose effect means and the use of max-min procedure to

derive the lower bounds of SCI ensures that that Pr(Ik) > Pr(Ik−1) > . . . > Pr(Ik−r+1),

which in turns indicates that the weighted average power to identify all effective dose levels is

the smallest under LFCi
1 and LFCi

2. Therefore the least favorable configurations LFCi
1 and

LFCi
2 have the same implications when the approach of simultaneous confidence intervals is

used.

In order to adjust for the adaptive procedure used in study subjects enrollment, I propose

to use the following approach to derived the critical value for simultaneous confidence inter-

vals. Suppose the common standard deviation of normally distributed drug effect variables is

σ. At dose level i (i 6 k−1), after the first stage enrollment x̄i1− x̄0i > λi is observed for the

first time, and thus dose i and all the higher dose groups are fully enrollment, with sample

size in each treatment group as n. The 1 − α one-sided simultaneous confidence intervals

for comparisons between each dose group and the control group (µj − µ0, i 6 j 6 k) can be

obtained by inverting the rejection region of the following simultaneous one-sided hypothesis

testing with type I error rate α:

H0 : There is at least one j, i 6 j 6 k, such that µj 6 µ0

H1 : µj > µ0 for all i 6 j 6 k
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The desired rejection region can be obtained by solving the critical value m in the following

equation:

Prob(
⋃

i6j6k

{x̄j − x̄0 > miσ
1√
2/n

| µj = µ0}) = α

Take into consideration the adaptive enrollment that we use, and the positive correlations

between the drug effect estimate of any dose group higher than dose i, x̄h− x̄0 (i 6 h 6 k),

and the first stage observed drug effect of any dose group lower tha dose i, x̄l1−x̄0 (1 6 l < i),

the following inequality can be used to find the critical values of the simultaneous confidence

intervals:

Prob(
⋃

i6j6k

{x̄j − x̄0 < miσ
1√
2/n

|µj = µ0}|x̄i1 − x̄0i > λi; x̄j1 − x̄0j 6 λj for 1 6 j < i)

6 Prob(
⋃

i6j6k

{x̄j − x̄0 > miσ
1√
2/n

} | µ1 = . . . = µj = µ0; x̄i1 − x̄0i > λi)

= α

The marginal multivariate distribution of observed relative drug effects x̄j − x̄0 (i 6 j 6 k)

can be obtained using the Monte Carlo Composition algorithm with rejective/acceptance

method. The computing algorithm introduced in chapter 2 then can be used to search for

the critical value m using the empirical estimates of the correlation matrix. The max-min

procedure then can be applied to obtain the simultaneous confidence intervals under order

restriction µi 6 µi+1 6 . . . µk:

µj − µ0 > max
l6j

{x̄l − x̄0 −miσ
1√
2/n

} for all i 6 j 6 k
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4.3.4 Case Study

In this section I will illustrate the above optimal adaptive dose study designs using an

example study. The example dose escalation study I am using has only three dose levels for

ease of presentation. However, the design approach, analysis approaches and programming

algoruthm can be readily extended to dose escalation studies with more than three dose

levels.

As in the previous chapters, the dose response is measured by a binary variable and we

use logarithm of the odds ratio between each dose group and the control group as the study

endpoint. The binary variable represents treatment success of the target disease in each

study group. Write the probability of observing the treatment success within the follow up

period of the study as p0 in the control group, and pi in dose group i, where i = 1, 2 or 3.

Suppose we know in advance that the expected success rate in the control group is 10%, and

we decide that for the experiment drug to be considered as effective, the success rate needs

to be increased to no less than 14%.

Write zi = log( pi/(1−pi)
p0/(1−p0)

), i = 1, 2, 3. Dose level i will be declared to be effective if

the null hypothesis Hi0 : zi 6 0 is rejected by one-sided test with alternative hypothesis

H1i : zi > 0, and type I error probability at 0.05. The analysis approach to be used to

conduct the test is the General Max-min Approach of Simultaneous Confidence Intervals we

proposed in Chapter 2, or the Modified Stepdown Testing Procedure in Adaptive Dose Study

with a Binary Endpoint we proposed in Chapter 3. Computer programming algorithms are

developed based on the backward induction approach introduced in this Chapter.

The number of subjects at the first stage of the adaptive design in a dose escalation study

is usually decided largely based on clinical considerations. Sufficient number of subjects need

to be studied for the mechanism of drug effect and safety concern before the study can be
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escalated to the next higher dose level. Simulation studies with different numbers of subjects

at the first stage are performed to explore the design efficiency variation when the number of

subjects enrolled at the first stage vary. Another parameter of such study that has multiple

treatment groups and a common control group is the ratio of sample sizes between the

common control and each treatment group. Williams [36] concluded that, to achieve the

highest power, the ratio should be equal to approximately the square root of the number of

treatment groups. However, in a phase II dose escalation study, clinicians usually prefer to

have more subjects in the treatment groups to evaluate various safety aspect of the drug.

Therefore, we use the same number of subjects in each dose group and the control group.

The total sample size for the three dose groups and the control group is 4000.

The cut points of adaptive design are listed in the following tables. These cut points are

decided in terms of the difference in numbers of treatment success between the control group

and each dose group. Some of the notations in the tables are described as following:

Weights: The weights of G based on the number of effective dose levels identified (1 dose:

2 doses: 3 dose)

Dose: The dose level at which the adaptive sampling performed.

M : The cut points defined in terms of the difference between the number of the observed

success in dose group i (mi1) and the number of treatment success in the control group

(m0i) after the first stage enrollment :mi1 −moi

p1: The probability that the dose group has second stage enrollment under LFC1

p2: The probability that the dose group has second stage enrollment under LFC2

G2: Weighted average power under LFC2 with adaptive design

G̃2: Weighted average power under LFC2 without adaptive design

G1: Weighted average power under LFC1 with adaptive design
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G̃1: Weighted average power under LFC1 without adaptive design

In each of the three tables, the benefit of using adaptive enrollment when compared to

the non-adaptive enrollment with equal sample size in each treatment group is clearly seen.

The weighted average power is substantially improved (G1 vs G̃1) when the current dose level

is not effective, while the decrease of weighted average power (G2 vs G̃2) is almost negligible

when the current dose level is actually effective. The flexibility of using appropriate weights

in the weighted average power based on clinical considerations, and the easy to perform

adaptive sampling rules make this design very attractive in practice.

It can also be noticed that the critical values for the adaptive design with stepdown

testing procedure are consistently larger than the critical values for the adaptive design

with simultaneous confidence intervals. This confirms our previous prediction that limiting

enrollment in ineffective dose groups has bigger impact when the study data are analyzed

using SCI, since it both increases sample sizes in effective dose groups and enables us to

focus on less dose levels. Also by comparing the weighted average power across three tables,

we can see that the variation of the weighted average power under both Least Favorable

Configurations remain fairly stable given the same weights.

72



Table 11: Adaptive Dose Study Design: 200 Subjects Enrolled at the First Stage of Each

Dose Level

Analysis Approach: Stepdown Testing Procedure

Weights Dose M p1 p2 G2 G̃2 G1 G̃1

1:2:3 2 1 0.467 0.877 0.850 0.869 0.958 0.917

1:2:3 1 5 0.226 0.705 0.669 0.682 0.827 0.749

1:3:5 2 0 0.533 0.906 0.837 0.846 0.958 0.917

1:3:5 1 4 0.279 0.756 0.642 0.654 0.805 0.722

1:3:7 2 0 0.533 0.906 0.838 0.846 0.958 0.917

1:3:7 1 3 0.338 0.802 0.604 0.615 0.799 0.722

1:4:9 2 0 0.533 0.906 0.827 0.840 0.958 0.917

1:4:9 1 3 0.338 0.802 0.604 0.620 0.787 0.710

Analysis Approach: Simultaneous Confidence Intervals

Weights Dose M p1 p2 G2 G̃2 G1 G̃1

1:2:3 2 1 0.467 0.877 0.882 0.900 0.908 0.832

1:2:3 1 6 0.179 0.650 0.776 0.786 0.825 0.716

1:3:5 2 0 0.533 0.906 0.859 0.877 0.908 0.832

1:3:5 1 5 0.226 0.705 0.747 0.757 0.788 0.676

1:3:7 2 0 0.533 0.905 0.859 0.877 0.908 0.832

1:3:7 1 4 0.279 0.756 0.694 0.710 0.780 0.676

1:4:9 2 0 0.533 0.905 0.844 0.865 0.908 0.832

1:4:9 1 4 0.279 0.756 0.697 0.710 0.774 0.656
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Table 12: Adaptive Dose Study Design: 300 Subjects Enrolled at the First Stage of Each

Dose Level

Analysis Approach: Stepdown Testing Procedure

Weights Dose M p1 p2 G2 G̃2 G1 G̃1

1:2:3 2 3 0.367 0.884 0.845 0.867 0.960 0.909

1:2:3 1 6 0.227 0.794 0.679 0.682 0.817 0.747

1:3:5 2 2 0.419 0.907 0.831 0.853 0.956 0.909

1:3:5 1 6 0.227 0.794 0.647 0.654 0.799 0.722

1:3:7 2 2 0.419 0.907 0.831 0.853 0.956 0.909

1:3:7 1 5 0.270 0.828 0.613 0.625 0.795 0.722

1:4:9 2 1 0.473 0.927 0.829 0.846 0.951 0.909

1:4:9 1 5 0.270 0.828 0.612 0.622 0.791 0.710

Analysis Approach: Simultaneous Confidence Intervals

Weights Dose M p1 p2 G2 G̃2 G1 G̃1

1:2:3 2 3 0.367 0.884 0.882 0.890 0.927 0.818

1:2:3 1 8 0.153 0.714 0.795 0.786 0.840 0.715

1:3:5 2 2 0.419 0.907 0.856 0.865 0.918 0.818

1:3:5 1 8 0.153 0.714 0.762 0.756 0.809 0.675

1:3:7 2 2 0.419 0.907 0.856 0.865 0.918 0.818

1:3:7 1 7 0.188 0.756 0.709 0.709 0.804 0.675

1:4:9 2 2 0.419 0.907 0.841 0.852 0.918 0.818

1:4:9 1 7 0.188 0.756 0.710 0.710 0.784 0.655
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Table 13: Adaptive Dose Study Design: 400 Subjects Enrolled at the First Stage of Each

Dose Level

Analysis Approach: Stepdown Testing Procedure

Weights Dose M p1 p2 G2 G̃2 G1 G̃1

1:2:3 2 5 0.298 0.895 0.841 0.854 0.959 0.899

1:2:3 1 9 0.158 0.793 0.681 0.682 0.821 0.747

1:3:5 2 4 0.360 0.914 0.825 0.834 0.955 0.899

1:3:5 1 8 0.188 0.823 0.653 0.654 0.800 0.722

1:3:7 2 4 0.340 0.914 0.825 0.839 0.955 0.899

1:3:7 1 7 0.222 0.850 0.635 0.797 0.625 0.722

1:4:9 2 3 0.384 0.930 0.821 0.831 0.952 0.899

1:4:9 1 7 0.222 0.850 0.619 0.622 0.785 0.710

Analysis Approach: Simultaneous Confidence Intervals

Weights Dose M p1 p2 G2 G̃2 G1 G̃1

1:2:3 2 5 0.297 0.895 0.880 0.889 0.930 0.803

1:2:3 1 11 0.107 0.725 0.803 0.806 0.840 0.715

1:3:5 2 4 0.339 0.913 0.851 0.853 0.923 0.803

1:3:5 1 10 0.131 0.760 0.772 0.786 0.803 0.675

1:3:7 2 4 0.339 0.913 0.851 0.853 0.923 0.803

1:3:7 1 9 0.157 0.793 0.719 0.724 0.799 0.675

1:4:9 2 3 0.383 0.929 0.840 0.839 0.915 0.803

1:4:9 1 9 0.157 0.793 0.722 0.722 0.789 0.655
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5.0 FUTURE RESEARCH PLAN

Although the General Max-Min procedure for deriving the simultaneous confidence intervals

is developed under the assumption of multivariate normal distribution, it is certainly feasible

to extend the approach to other multivariate distribution. Specifically, in a clinical study

with adaptive enrollment design, the distribution of the study data is not normal even if the

original drug responses are normally distributed. I plan to extend the computing approach

based on Somerville’s algorithm to simulate the critical values of the simultaneous confidence

intervals with the biased sample from adaptive clinical study.

Schoenfeld [22] (1986) suggested that, under the assumption of isotonic dose response,

one can use the isotonic regression estimates and likelihood ratio test to derive the critical

point for one-sided test in dose study. The test can improve the efficiency over the usual

test performed individually at each dose level without considering the monotonicity of the

dose response means. When the dose response means at the tested dose levels are very close

to each other, which is usually the case in well-studied disease areas, Schoenfeld’s test is

especially powerful. Therefore, by adopting Schoenfeld’s test at each step of a stepdown

testing procedure, we can increase the power the testing procedure. However, Schoenfeld’s

approach is limited to the cases of independent dose responses. In fact, most of the isotonic

regression related research is limited to the independent cases. I plan to develop a testing

procedure similar to Schoenfeld’s for correlated dose response, which also utilizes the isotonic
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dose response assumption to improves the power of the test.

As we have illustrated in the previous chapter, the optimal parameters of the adaptive

design depend on the approach used to analyze the study data. Once we have improved

the analysis methods, the adaptive design parameters should be updated, too. Also I plan

to extend the design approach to the more general situations when the dose study can be

restricted by different clinical and logistic constraints. Also I plan to explore the adaptive

design of dose study when the study endpoint is an ordinal and/or Poisson random variable.
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APPENDIX A

SAS PROGRAMS USED TO DERIVE THE CRITICAL VALUES OF

MODIFIDED SIMULTANEOUS CONFIDENCE INTERVALS

/* Input parameter for Somerville Simulation Programs

SAS/IML program for calculating critical values of multiple

comparison procedures.

Input : (Required parameters)

swcov : Flag to include var-covar matrix (=0) or not (=1)

swtype : Type of multiple comparison procedure

conf : Confidence level

givense : User requested SE of estimates, if alternate

procedure is used

k : Number of treatment groups

seed : Seed for random number generator

ndenom : Degrees of freedom

mocar : Number of random directions

irep : Number of prliminary estimates (if negative,

alternate procedure is performed)

(Optional parameters)

mm : Number of contrasts (if swtype = 0)

vc : Var-covar matrix (if swcov = 0)

contr : Contrasts (if swtype = 0 or 20)

icontrol: Control group {if [(swtype=4 OR 5) AND (swcov=0)]

OR [(swtype=9)]}

iflo : Lower bound for peak (swtype = 10)

ighi : Higher bound for peak (swtype = 10)
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znn : Vector of sample sizes (swtype = 11-15)

Output :

*/

** Derive critical values when difference of probailitie is used **;

%macro rn(nn1=, nn2=, nn3=, nn4=, nn5=, nn6=, nn7=);

%do ii=1 %to 2;

%do iii=1 %to 7;

%let n&iii=%scan(&&nn&iii,&ii);

%end;

data _null_;

array varlist v1-v14;

do i=4 to 17;

varlist(i-3)=(i/100)*(1-i/100);

end;

call symput(’var4’, trim(left(put(v1, 8.6))));

call symput(’var5’, trim(left(put(v2, 8.6))));

call symput(’var6’, trim(left(put(v3, 8.6))));

call symput(’var7’, trim(left(put(v4, 8.6))));

call symput(’var8’, trim(left(put(v5, 8.6))));

call symput(’var9’, trim(left(put(v6, 8.6))));

call symput(’var10’, trim(left(put(v7, 8.6))));

call symput(’var11’, trim(left(put(v8, 8.6))));

call symput(’var12’, trim(left(put(v9, 8.6))));

call symput(’var13’, trim(left(put(v10, 8.6))));

call symput(’var14’, trim(left(put(v11, 8.6))));

call symput(’var15’, trim(left(put(v12, 8.6))));

call symput(’var16’, trim(left(put(v13, 8.6))));

call symput(’var17’, trim(left(put(v14, 8.6))));

run;

%let charc1=" &var10 &var10 &var10 &var10 &var10 &var10 &var10";

%let charc2=" &var10 &var12 &var12 &var12 &var12 &var12 &var12";

%let charc3=" &var10 &var8 &var8 &var8 &var8 &var8 &var8 ";

%let charc4=" &var10 &var12 &var11 &var10 &var9 &var8 &var7 ";
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%let charc5=" &var10 &var12 &var12 &var10 &var10 &var8 &var8 ";

%let charc6=" &var10 &var12 &var12 &var12 &var8 &var8 &var8 ";

%let charc7=" &var10 &var9 &var8 &var7 &var6 &var6 &var4 ";

%let charc8=" &var10 &var17 &var16 &var15 &var14 &var13 &var12";

%let charc9=" &var10 &var12 &var8 &var8 &var8 &var8 &var8 ";

%let charc10="&var10 &var8 &var8 &var8 &var8 &var8 &var12";

%do j=1 %to 10;

data _null_;

array varlist v1-v7;

%do i=1 %to 7;

varlist(&i)=%scan(&&charc&j,&i," " )/&&n&i;

%end;

call symput(’va1’, trim(left(put(v1, 8.6))));

call symput(’va2’, trim(left(put(v2, 8.6))));

call symput(’va3’, trim(left(put(v3, 8.6))));

call symput(’va4’, trim(left(put(v4, 8.6))));

call symput(’va5’, trim(left(put(v5, 8.6))));

call symput(’va6’, trim(left(put(v6, 8.6))));

call symput(’va7’, trim(left(put(v7, 8.6))));

run;

options nosource;

proc iml;

/* INSERT SITUATION PARAMETERS HERE */

swcov = 0 ;

swtype = 0 ;

conf = .975 ;

givense= 999 ;

k = 7 ;

seed = 1893 ;

ndenom = -1 ;
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mocar = 5000 ;

irep = 10 ;

mm = 6 ;

vc={&va1 . . . . . . ,

0 &va2 . . . . . ,

0 0 &va3 . . . . ,

0 0 0 &va4 . . . ,

0 0 0 0 &va5 . . ,

0 0 0 0 0 &va6 . ,

0 0 0 0 0 0 &va7 } ;

contr={1 0 0 0 0 0 -1,

1 0 0 0 0 -1 0,

1 0 0 0 -1 0 0,

1 0 0 -1 0 0 0,

1 0 -1 0 0 0 0,

1 -1 0 0 0 0 0};

/* END SITUATION PARAMETERS */

............................................................

(simulation programs by Somerville)

%end;

%end;

*quit;

%mend;

%rn(nn1=1500 1500, nn2=500 500, nn3=500 500, nn4=1000 500, nn5=1000 500,

nn6=1000 1000, nn7=1000 1000)

** Derive critical values when relative risk is used **;

%macro rn(nn1=, nn2=, nn3=, nn4=, nn5=, nn6=, nn7=);
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%do ii=1 %to 2;

%do iii=1 %to 7;

%let n&iii=%scan(&&nn&iii,&ii);

%end;

data _null_;

array varlist v1-v17;

do i=4 to 17;

varlist(i-3)=(1-i/100);

end;

call symput(’var4’, trim(left(put(v1, 8.6))));

call symput(’var5’, trim(left(put(v2, 8.6))));

call symput(’var6’, trim(left(put(v3, 8.6))));

call symput(’var7’, trim(left(put(v4, 8.6))));

call symput(’var8’, trim(left(put(v5, 8.6))));

call symput(’var9’, trim(left(put(v6, 8.6))));

call symput(’var10’, trim(left(put(v7, 8.6))));

call symput(’var11’, trim(left(put(v8, 8.6))));

call symput(’var12’, trim(left(put(v9, 8.6))));

call symput(’var13’, trim(left(put(v10, 8.6))));

call symput(’var14’, trim(left(put(v11, 8.6))));

call symput(’var15’, trim(left(put(v12, 8.6))));

call symput(’var16’, trim(left(put(v13, 8.6))));

call symput(’var17’, trim(left(put(v14, 8.6))));

run;

%let charc1="&var10 &var10 &var10 &var10 &var10 &var10 &var10";

%let charc2="&var10 &var12 &var12 &var12 &var12 &var12 &var12";

%let charc3="&var10 &var8 &var8 &var8 &var8 &var8 &var8";

%let charc4="&var10 &var12 &var11 &var10 &var9 &var8 &var7";

%let charc5="&var10 &var12 &var12 &var10 &var10 &var8 &var8";

%let charc6="&var10 &var12 &var12 &var12 &var8 &var8 &var8";

%let charc7="&var10 &var9 &var8 &var7 &var6 &var6 &var4";

%let charc8="&var10 &var17 &var16 &var15 &var14 &var13 &var12";

%let charc9="&var10 &var12 &var8 &var8 &var8 &var8 &var8";

%let charc10="&var10 &var8 &var8 &var8 &var8 &var8 &var12";
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%do j=1 %to 10;

options nosource;

data _null_;

array varlist v1-v7;

%do i=1 %to 7;

p_1=%scan(&&charc&j, &i, " ");

varlist(&i)=p_1/(&&n&i*(1-p_1));

%end;

call symput(’va1’, trim(left(put(v1, 8.6))));

call symput(’va2’, trim(left(put(v2, 8.6))));

call symput(’va3’, trim(left(put(v3, 8.6))));

call symput(’va4’, trim(left(put(v4, 8.6))));

call symput(’va5’, trim(left(put(v5, 8.6))));

call symput(’va6’, trim(left(put(v6, 8.6))));

call symput(’va7’, trim(left(put(v7, 8.6))));

run;

proc iml;

/* INSERT SITUATION PARAMETERS HERE */

swcov = 0 ;

swtype = 0 ;

conf = .975 ;

givense= 999 ;

k = 7 ;

seed = 1893 ;

ndenom = -1 ;

mocar = 5000 ;

irep = 10 ;

mm = 6 ;

vc={&va1 . . . . . . ,

0 &va2 . . . . . ,

0 0 &va3 . . . . ,
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0 0 0 &va4 . . . ,

0 0 0 0 &va5 . . ,

0 0 0 0 0 &va6 . ,

0 0 0 0 0 0 &va7 } ;

contr={1 0 0 0 0 0 -1,

1 0 0 0 0 -1 0,

1 0 0 0 -1 0 0,

1 0 0 -1 0 0 0,

1 0 -1 0 0 0 0,

1 -1 0 0 0 0 0};

/* END SITUATION PARAMETERS */

............................................................

(simulation programs by Somerville)

%end;

%end;

*quit;

%mend;

%rn(nn1=1500 1500, nn2=500 500, nn3=500 500, nn4=1000 500, nn5=1000 500,

nn6=1000 1000, nn7=1000 1000)

** Derive critical values when log odds ratio is used **;

%macro rn(nn1=, nn2=, nn3=, nn4=, nn5=, nn6=, nn7=);

%do ii=1 %to 2;

%do iii=1 %to 7;

%let n&iii=%scan(&&nn&iii,&ii);

%end;

data _null_;

array varlist v1-v17;

do i=4 to 17;
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varlist(i-3)=1/(i/100)+1/(1-i/100);

end;

call symput(’var4’, trim(left(put(v1, 8.6))));

call symput(’var5’, trim(left(put(v2, 8.6))));

call symput(’var6’, trim(left(put(v3, 8.6))));

call symput(’var7’, trim(left(put(v4, 8.6))));

call symput(’var8’, trim(left(put(v5, 8.6))));

call symput(’var9’, trim(left(put(v6, 8.6))));

call symput(’var10’, trim(left(put(v7, 8.6))));

call symput(’var11’, trim(left(put(v8, 8.6))));

call symput(’var12’, trim(left(put(v9, 8.6))));

call symput(’var13’, trim(left(put(v10, 8.6))));

call symput(’var14’, trim(left(put(v11, 8.6))));

call symput(’var15’, trim(left(put(v12, 8.6))));

call symput(’var16’, trim(left(put(v13, 8.6))));

call symput(’var17’, trim(left(put(v14, 8.6))));

run;

%let charc1="&var10 &var10 &var10 &var10 &var10 &var10 &var10";

%let charc2="&var10 &var12 &var12 &var12 &var12 &var12 &var12";

%let charc3="&var10 &var8 &var8 &var8 &var8 &var8 &var8";

%let charc4="&var10 &var12 &var11 &var10 &var9 &var8 &var7";

%let charc5="&var10 &var12 &var12 &var10 &var10 &var8 &var8";

%let charc6="&var10 &var12 &var12 &var12 &var8 &var8 &var8";

%let charc7="&var10 &var9 &var8 &var7 &var6 &var6 &var4";

%let charc8="&var10 &var17 &var16 &var15 &var14 &var13 &var12";

%let charc9="&var10 &var12 &var8 &var8 &var8 &var8 &var8";

%let charc10="&var10 &var8 &var8 &var8 &var8 &var8 &var12";

%do j=1 %to 10;

options nosource;

data _null_;

array varlist v1-v7;

%do i=1 %to 7;

varlist(&i)=%scan(&&charc&j, &i, " ")/&&n&i;
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%end;

call symput(’va1’, trim(left(put(v1, 8.6))));

call symput(’va2’, trim(left(put(v2, 8.6))));

call symput(’va3’, trim(left(put(v3, 8.6))));

call symput(’va4’, trim(left(put(v4, 8.6))));

call symput(’va5’, trim(left(put(v5, 8.6))));

call symput(’va6’, trim(left(put(v6, 8.6))));

call symput(’va7’, trim(left(put(v7, 8.6))));

run;

proc iml;

/* INSERT SITUATION PARAMETERS HERE */

swcov = 0 ;

swtype = 0 ;

conf = .975 ;

givense= 999 ;

k = 7 ;

seed = 1893 ;

ndenom = -1 ;

mocar = 5000 ;

irep = 10 ;

mm = 6 ;

vc={&va1 . . . . . . ,

0 &va2 . . . . . ,

0 0 &va3 . . . . ,

0 0 0 &va4 . . . ,

0 0 0 0 &va5 . . ,

0 0 0 0 0 &va6 . ,

0 0 0 0 0 0 &va7 } ;

contr={1 0 0 0 0 0 -1,

1 0 0 0 0 -1 0,

1 0 0 0 -1 0 0,

1 0 0 -1 0 0 0,

1 0 -1 0 0 0 0,
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1 -1 0 0 0 0 0};

/* END SITUATION PARAMETERS */

%end;

%end;

*quit;

%mend;

%rn(nn1=1500 1500, nn2=500 500, nn3=500 500, nn4=1000 500, nn5=1000 500,

nn6=1000 1000, nn7=1000 1000)

** Derive critical values when difference of arcsinc of square root of

probailitie is used **;

%macro rn(nn1=, nn2=, nn3=, nn4=, nn5=, nn6=, nn7=);

%do ii=1 %to 2;

%do iii=1 %to 7;

%let n&iii=%scan(&&nn&iii,&ii);

%end;

data _null_;

array varlist v1-v14;

do i=4 to 17;

varlist(i-3)=0.25;

end;

call symput(’var4’, trim(left(put(v1, 8.6))));

call symput(’var5’, trim(left(put(v2, 8.6))));

call symput(’var6’, trim(left(put(v3, 8.6))));

call symput(’var7’, trim(left(put(v4, 8.6))));

call symput(’var8’, trim(left(put(v5, 8.6))));

call symput(’var9’, trim(left(put(v6, 8.6))));

call symput(’var10’, trim(left(put(v7, 8.6))));

call symput(’var11’, trim(left(put(v8, 8.6))));

call symput(’var12’, trim(left(put(v9, 8.6))));

call symput(’var13’, trim(left(put(v10, 8.6))));
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call symput(’var14’, trim(left(put(v11, 8.6))));

call symput(’var15’, trim(left(put(v12, 8.6))));

call symput(’var16’, trim(left(put(v13, 8.6))));

call symput(’var17’, trim(left(put(v14, 8.6))));

run;

%let charc1="&var10 &var10 &var10 &var10 &var10 &var10 &var10";

%let charc2="&var10 &var12 &var12 &var12 &var12 &var12 &var12";

%let charc3="&var10 &var8 &var8 &var8 &var8 &var8 &var8";

%let charc4="&var10 &var12 &var11 &var10 &var9 &var8 &var7";

%let charc5="&var10 &var12 &var12 &var10 &var10 &var8 &var8";

%let charc6="&var10 &var12 &var12 &var12 &var8 &var8 &var8";

%let charc7="&var10 &var9 &var8 &var7 &var6 &var6 &var4";

%let charc8="&var10 &var17 &var16 &var15 &var14 &var13 &var12";

%let charc9="&var10 &var12 &var8 &var8 &var8 &var8 &var8";

%let charc10="&var10 &var8 &var8 &var8 &var8 &var8 &var12";

%do j=1 %to 10;

options nosource;

data _null_;

array varlist v1-v7;

%do i=1 %to 7;

varlist(&i)=%scan(&&charc&j,&i," " )/&&n&i;

%end;

call symput(’va1’, trim(left(put(v1, 8.6))));

call symput(’va2’, trim(left(put(v2, 8.6))));

call symput(’va3’, trim(left(put(v3, 8.6))));

call symput(’va4’, trim(left(put(v4, 8.6))));

call symput(’va5’, trim(left(put(v5, 8.6))));

call symput(’va6’, trim(left(put(v6, 8.6))));

call symput(’va7’, trim(left(put(v7, 8.6))));

run;

proc iml;
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/* INSERT SITUATION PARAMETERS HERE */

swcov = 0 ;

swtype = 0 ;

conf = .975 ;

givense= 999 ;

k = 7 ;

seed = 1893 ;

ndenom = -1 ;

mocar = 5000 ;

irep = 10 ;

mm = 6 ;

vc={&va1 . . . . . . ,

0 &va2 . . . . . ,

0 0 &va3 . . . . ,

0 0 0 &va4 . . . ,

0 0 0 0 &va5 . . ,

0 0 0 0 0 &va6 . ,

0 0 0 0 0 0 &va7 } ;

contr={1 0 0 0 0 0 -1,

1 0 0 0 0 -1 0,

1 0 0 0 -1 0 0,

1 0 0 -1 0 0 0,

1 0 -1 0 0 0 0,

1 -1 0 0 0 0 0};

/* END SITUATION PARAMETERS */

%end;

%end;

*quit;

%mend;

%rn(nn1=1500 1500, nn2=500 500, nn3=500 500, nn4=1000 500, nn5=1000 500,
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nn6=1000 1000, nn7=1000 1000)

** Programs to obtain max-min Simultaneous Confidence Intervals for

simulated data **;

libname save ’/proj/c5/combo/gurm/wbc_10107/analysis’;

libname dat ’/proj/c5/combo/gurm/wbc_10107/analysis/ana/proposal/programs’;

%macro simu(dat=,l=);

proc sort data=&dat out=simu; by situ;

run;

data ana6;

merge simu

dat.crit_multinorm;

by situ;

array crt{4} crit_p crit_ars crit_lod crit_lrr;

array low{4,6} low_p1-low_p6 low_ars1-low_ars6 low_lod1-low_lod6

low_lrr1-low_lrr6;

array up{4,6} up_p1-up_p6 up_ars1-up_ars6 up_lod1-up_lod6

up_lrr1-up_lrr6;

array wid{4,6} widp1-widp6 widars1-widars6 widlod1-widlod6

widlrr1-widlrr6;

array wid1{4,6} wid1p1-wid1p6 wid1ars1-wid1ars6 wid1lod1-wid1lod6

wid1lrr1-wid1lrr6;

array ral{4,6} dp_r1-dp_r6 dap_r1-dap_r6 lods_r1-lods_r6 lrr_r1-lrr_r6;

array indc{4} dp_i dap_i lods_i lrr_i;

array m{4,6} dp1-dp6 dap1-dap6 lods1-lods6 lrr1-lrr6;

array q{4,6} dpq1-dpq6 dapq1-dapq6 lodsq1-lodsq6 lrrq1-lrrq6;

do j=1 to 4;

indc(j)=1;

do h=1 to 6;

low(j,h)=ral(j,h)-q(j,h)*crt(j);

up(j,h)=ral(j,h)+q(j,h)*crt(j);

wid1(j,h)=up(j,h)-low(j,h);

do ii=1 to h;
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up(j,h)=min(ral(j,ii)+q(j,ii)*crt(j),up(j,h));

end;

do iii=h to 6;

low(j,h)=max(ral(j,iii)-q(j,iii)*crt(j),low(j,h));

end;

if m(j,h)>ral(j,h)+q(j,h)*crt(j) or m(j,h)<ral(j,h)

-q(j,h)*crt(j) then indc(j)=0;

wid(j,h)=up(j,h)-low(j,h);

end;

end;

widavp=mean(widp1, widp2, widp3, widp4, widp5, widp6);

widavars=mean(widars1, widars2, widars3, widars4, widars5, widars6);

widavlod=mean(widlod1, widlod2, widlod3, widlod4, widlod5, widlod6);

widavlrr=mean(widlrr1, widlrr2, widlrr3, widlrr4, widlrr5, widlrr6);

widav1p=mean(wid1p1, wid1p2, wid1p3, wid1p4, wid1p5, wid1p6);

widav1ars=mean(wid1ars1,wid1ars2,wid1ars3,wid1ars4,wid1ars5,wid1ars6);

widav1lod=mean(wid1lod1,wid1lod2,wid1lod3,wid1lod4,wid1lod5,wid1lod6);

widav1lrr=mean(wid1lrr1,wid1lrr2,wid1lrr3,wid1lrr4,wid1lrr5,wid1lrr6);

ratio_p=mean(widp1/wid1p1,widp2/wid1p2,widp3/wid1p3,widp4/wid1p4,

widp5/wid1p5,widp6/wid1p6);

ratio_ars=mean(widars1/wid1ars1,widars2/wid1ars2,widars3/wid1ars3,

widars4/wid1ars4,widars5/wid1ars5,widars6/wid1ars6);

ratio_lod=mean(widlod1/wid1lod1,widlod2/wid1lod2,widlod3/wid1lod3,

widlod4/wid1lod4,widlod5/wid1lod5,widlod6/wid1lod6);

ratio_lrr=mean(widlrr1/wid1lrr1,widlrr2/wid1lrr2,widlrr3/wid1lrr3,

widlrr4/wid1lrr4,widlrr5/wid1lrr5,widlrr6/wid1lrr6);

run;

title "&l";

proc means data=ana6 noprint;

var dp_i dap_i lods_i lrr_i;

class situ;

output out=out;

run;

data out1;
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set out;

where _stat_="MEAN";

keep situ dp_i dap_i lods_i lrr_i;

run;

proc print; run;

/*

proc means data=ana6 noprint;

var widavp widav1p ratio_p widavars widav1ars ratio_ars widavlod

widav1lod ratio_lod widavlrr widav1lrr ratio_lrr;

class situ;

output out=out;

run;

data out1;

set out;

where _stat_="MEAN";

keep situ widavp widav1p ratio_p widavars widav1ars ratio_ars

widavlod widav1lod ratio_lod widavlrr widav1lrr ratio_lrr;

run;

proc print; run;

*/

%mend;

%simu(dat=save.simu10000_uq, l=’control-30000 (123)-10000 (456)-20000’);
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APPENDIX B

SAS PROGRAMS USED TO DERIVED THE CRITICAL VALUES FOR

MIXTURE NORMAL APPROXIMATION APPROACH

options symbolgen mprint mlogic;

%macro monte(p=,pa=,ni1=,n01=,n0=,ni=,d=, msz=);

title "P=&p Pa=&pa Sample Size(TRT:Control): N1=&ni1:&n01 N=&ni:&n0";

data report;

dm=.; pct_low=.; err90=.; power90=.; pct_med=.; err95=.;

power95=.; pct_high=.; err975=.; power975=.; errr90=.; powerr90=.;

errr95=.; powerr95=.; errr975=.; powerr975=.;

run;

%let i=1;

%do %until(%scan(&d, &i, " ")=);

%let di=%scan(&d, &i);

%if %substr(&di,1,1)=n %then %do;

%let di=(-%substr(&di,2));

%end;

data tmp1;

d=&di;

p1=0;

** probability of crossing cut point after first stage under

null hypothesis **;
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do m=0 to &n01;

do n=0 to &ni1;

if n-m>=&di then do;

if m>0 and n>0 then tmp=(probbnml(&p,&n01,m)-probbnml(&p,&n01,m-1))

*(probbnml(&p,&ni1,n)-probbnml(&p,&ni1,n-1));

if m=0 and n>0 then tmp=probbnml(&p,&n01,m)

*(probbnml(&p,&ni1,n)-probbnml(&p,&ni1,n-1));

if m>0 and n=0 then tmp=(probbnml(&p,&n01,m)-probbnml(&p,&n01,m-1))

*probbnml(&p,&ni1,n);

if m=0 and n=0 then tmp=probbnml(&p,&n01,m)*probbnml(&p,&ni1,n);

end;

else tmp=0;

p1=p1+tmp;

end;

end;

p90=trim(left(put((1-0.1/p1)*100,8.7)));

p95=trim(left(put((1-0.05/p1)*100,8.7)));

p975=trim(left(put((1-0.025/p1)*100,8.7)));

call symput("p90",p90);

call symput("p95",p95);

call symput("p975",p975);

p2=0;

** probability of crossing cut point after first stage under alternative

hypothesis **;

do m=0 to &n01;

do n=0 to &ni1;

if n-m>=&di then do;

if m>0 and n>0 then tmp=(probbnml(&p,&n01,m)-probbnml(&p,&n01,m-1))

*(probbnml(&pa,&ni1,n)-probbnml(&pa,&ni1,n-1));

if m=0 and n>0 then tmp=probbnml(&p,&n01,m)

*(probbnml(&pa,&ni1,n)-probbnml(&pa,&ni1,n-1));

if m>0 and n=0 then tmp=(probbnml(&p,&n01,m)-probbnml(&p,&n01,m-1))

*probbnml(&pa,&ni1,n);

if m=0 and n=0 then tmp=probbnml(&p,&n01,m)*probbnml(&pa,&ni1,n);

end;

else tmp=0;

p2=p2+tmp;
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end;

end;

p_1=trim(left(put(p1,8.7)));

p_2=trim(left(put(p2,8.7)));

call symput("p1",p_1);

call symput("p2",p_2);

run;

/*

proc print; var d p1 p2 p90 p95 p975; run;

*/

data tmp2;

s1=sqrt(1/(&p*&n01)+1/(&n01-&p*&n01)+1/(&p*&ni1)+1/(&ni1-&p*&ni1));

s2=sqrt(1/(&p*&n0)+1/(&n0-&p*&n0)+1/(&p*&ni)+1/(&ni-&p*&ni));

rho=(s2*s2)/(s1*s2);

pp95=trim(left(put(s2*probit(0.95),8.7)));

pp90=trim(left(put(s2*probit(0.9),8.7)));

pp975=trim(left(put(s2*probit(0.975),8.7)));

call symput("pp90",pp90);

call symput("pp95",pp95);

call symput("pp975",pp975);

** mixture normal distribution simulation **;

do i=1 to &msz;

m=ranbin(1009, &n01, &p);

if m+&di>0 then do;

n=m+&di-.5;

lambda=((n+0.5)/(&ni1-n+0.5)) / ((m+.5)/(&n01-m+.5));

end;

else if m+&di<=0 then lambda=0.00000001;

k=0;

do until(k>10000);

z1=rannor(k);

zi1=z1*s1;

if zi1>=log(lambda) then k=10001;

end;

z2=rannor(i);

zi=rho*s2*z1+sqrt(1-rho*rho)*s2*z2;

output;
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end;

** exact distribution simulation **;

n02=&n0-&n01;

ni2=&ni-&ni1;

i=0;

do until(i>=&msz);

m01=ranbin(1009,&n01,&p);

mi1=ranbin(1009,&ni1,&p);

if mi1-m01>=&di then do;

m02=ranbin(1009,n02,&p);

mi2=ranbin(1009,ni2,&p);

m0=m01+m02;

mi=mi1+mi2;

odds=((mi+0.5)/(&ni-mi+0.5))/((m0+0.5)/(&n0-m0+0.5));

zi=log(odds);

output;

i=i+1;

end;

end;*/

run;

** percentiles of the marginal distribution of testing statistics **;

proc univariate data=tmp2 noprint;

var zi;

output out=out mean=mean std=std pctlpts=&p90 &p95 &p975 pctlpre=pct_

pctlname=low med high ;

run;

/*

proc print data=out; run;

*/

data validate dat;

set out;

n02=&n0-&n01;

ni2=&ni-&ni1;

** error rates when adjusted critical values used **;
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err90=0;

err95=0;

err975=0;

** error rates when unadjusted critical values used **;

errr90=0;

errr95=0;

errr975=0;

** simulate the error rate **;

do i=1 to &msz;

m01=ranbin(1009,&n01,&p);

mi1=ranbin(1009,&ni1,&p);

if mi1-m01>=&di then do;

m02=ranbin(1009,n02,&p);

mi2=ranbin(1009,ni2,&p);

m0=m01+m02;

mi=mi1+mi2;

odds=((mi+0.5)/(&ni-mi+0.5))/((m0+0.5)/(&n0-m0+0.5));

z=log(odds);

output dat;

if z>pct_low then err90=err90+1;

if z>pct_med then err95=err95+1;

if z>pct_high then err975=err975+1;

if z>&pp90 then errr90=errr90+1;

if z>&pp95 then errr95=errr95+1;

if z>&pp975 then errr975=errr975+1;

end;

end;

err90=err90/&msz;

err95=err95/&msz;

err975=err975/&msz;

errr90=errr90/&msz;

errr95=errr95/&msz;

errr975=errr975/&msz;

** testing power when adjusted critical values used **;

power90=0;

power95=0;

power975=0;
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** testing power when unadjusted critical values used **;

powerr90=0;

powerr95=0;

powerr975=0;

do j=1 to &msz;

m01=ranbin(1009,&n01,&p) ;

mi1=ranbin(1009,&ni1,&pa);

if mi1-m01>=&di then do;

m02=ranbin(1009,&n0.-&n01,&p);

mi2=ranbin(1009,&ni.-&ni1,&pa);

m0=m01+m02;

mi=mi1+mi2;

odds=((mi+0.5)/(&ni-mi+0.5))/((m0+0.5)/(&n0-m0+0.5));

z=log(odds);

if z>pct_low then power90=power90+1;

if z>pct_med then power95=power95+1;

if z>pct_high then power975=power975+1;

if z>&pp90 then powerr90=powerr90+1;

if z>&pp95 then powerr95=powerr95+1;

if z>&pp975 then powerr975=powerr975+1;

end;

end;

power90=power90/&msz;

power95=power95/&msz;

power975=power975/&msz;

powerr90=powerr90/&msz;

powerr95=powerr95/&msz;

powerr975=powerr975/&msz;

dm=&di+0;

p1=&p1+0;

p2=&p2+0;

output validate;

keep z dm pct_low err90 power90 pct_med err95 power95 pct_high err975

power975 errr90 powerr90 errr95 powerr95 errr975 powerr975 p1 p2;

run;

/*

proc univariate data=dat;
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var z;

run;

*/

data report;

set report validate;

run;

%let i=%eval(&i+1); %end;

data report;

set report;

if _n_=1 then delete;

run;

proc print noobs;

var dm p1 pct_low err90 power90 errr90 powerr90;

run;

proc print noobs;

var dm p1 pct_med err95 power95 errr95 powerr95;

run;

proc print noobs;

var dm p1 pct_high err975 power975 errr975 powerr975;

run;

%mend;

%monte(p=0.1, pa=0.15, ni1=150, n01=150, n0=500, ni=500,

msz=200000, d=n8 n7 n6 n5 n4 n3 n2 n1 0 1 2 3 4 5);

%monte(p=0.1, pa=0.13, ni1=300, n01=300, n0=1000, ni=1000, msz=200000,

d=n15 n14 n13 n12 n11 n10 n9 n8 n7 n6 n5 n4 n3 n2 n1 0 1 2 3 4 5 6 7 8 9);
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APPENDIX C

SAS PROGRAMS USED TO OBTAIN THE OPTIMAL CUT POINTS

WHEN SCI APPROACHED IS USED

options symbolgen mprint mlogic;

%macro dsn(p=, pa=, ni1=, n01=, nni=, nn0=, msz=, r3=, r2=, r1=, seed=1009);

%let cr3=1.645;

%let cr2=2.080;

%let cr1=2.329;

data design;

dose=.; di=.; p1=.; p2=.; pct_pt2=.; pct_pt3=.; err2=.; err3=.; power2=.;

power3=.; g11=.; g01=.; g03=.; l1=.; g01=.; g02=.; l0=.; l_max=.; g_min=.;

run;

%do i=1 %to 2;

data report;

dose=.; di=.; p1=.; p2=.; pct_pt2=.; pct_pt3=.; err2=.; err3=.; power2=.;

power3=.; g11=.; g01=.; g03=.; l1=.; g01=.; g02=.; l0=.; l_max=.; g_min=.;

run;

%let dose=%eval(3-&i);

%let pdose=%eval(3-&i+1);

** sample sizes at dose step 1 and first stage of dose step 2 **;

%let ni=%sysevalf((&nni-&ni1)*(&dose-1)/(3-&dose+1)+&nni);
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%let n0=%sysevalf((&nn0-&n01)*(&dose-1)/(3-&dose+1)+&nn0);

%let ni2=%sysevalf((&nni-&ni1)*(&dose)/(3-&dose)+&nni);

%let n02=%sysevalf((&nn0-&n01)*(&dose)/(3-&dose)+&nn0);

data _null_;

** standard error of log odds ratio at dose level 1 & 2 **;

mu=log(&pa/(1-&pa)/(&p/(1-&p)));

s1=sqrt(1/(&p*&n01)+1/(&n01-&p*&n01)+1/(&p*&ni1)+1/(&ni1-&p*&ni1));

s2=sqrt(1/(&p*&n0)+1/(&n0-&p*&n0)+1/(&p*&ni)+1/(&ni-&p*&ni));

s3=sqrt(1/(&p*&n02)+1/(&n02-&p*&n02)+1/(&p*&ni2)+1/(&ni2-&p*&ni2));

rho=(s2*s2)/(s1*s2);

call symput("s1", trim(left(put(s1,10.6))));

call symput("s2", trim(left(put(s2,10.6))));

call symput("s3", trim(left(put(s3,10.6))));

call symput("rho", trim(left(put(rho,10.6))));

call symput("mu", trim(left(put(mu,10.6))));

run;

data rn1 rn2 rn3;

** simulated sample to be used in the program **;

do i=1 to &msz;

m=ranbin(&seed,&n01,&p);

z1=rannor(&seed);

z2=rannor(&seed);

output rn1;

end;

do i=1 to &msz;

m02=ranbin(&seed,&n0.-&n01,&p);

mi2=ranbin(&seed,&ni.-&ni1,&p);

m01=ranbin(&seed,&n01,&p) ;

mi1=ranbin(&seed,&ni1,&p);

output rn2;

end;

do i=1 to &msz;

m01=ranbin(&seed,&n01,&p);

mi1=ranbin(&seed,&ni1,&pa);

m02=ranbin(&seed,&n0.-&n01,&p);
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mi2=ranbin(&seed,&ni.-&ni1,&pa);

output rn3;

end;

run;

%do di=-50 %to 50;

%let va=0;

data _null_;

p1=0;

p2=0;

** calculated probabilites of second stage enrollment **;

min=max(0, &di);

max=min(&ni1, &n01+&di);

if max<&ni1 then do;

p1=p1+(1-probbnml(&p, &ni1,max));

p2=p2+(1-probbnml(&pa,&ni1,max));

end;

do n=min to max;

if n>0 then do;

p1=p1+(probbnml(&p,&ni1,n)-probbnml(&p,&ni1,n-1))

*probbnml(&p,&n01,n-&di);

p2=p2+(probbnml(&pa,&ni1,n)-probbnml(&pa,&ni1,n-1))

*probbnml(&p,&n01,n-&di);

end;

else if n=0 then do;

p1=p1+probbnml(&p,&ni1,n)*probbnml(&p,&n01,n-&di);

p2=p2+probbnml(&pa,&ni1,n)*probbnml(&p,&n01,n-&di);

end;

end;

call symput("p1",trim(left(put(p1,8.7))));

call symput("p2",trim(left(put(p2,8.7))));

err2=1-probnorm(&&cr&dose);

err3=1-probnorm(&&cr&pdose);

p95_2=(1-err2/p1)*100;

p95_3=(1-err3/p1)*100;
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call symput("p1", trim(left(put(p1,8.7))));

call symput("p2", trim(left(put(p2,8.7))));

call symput("p95_2",trim(left(put(p95_2,8.7))));

call symput("p95_3",trim(left(put(p95_3,8.7))));

if p1>err2 and p1>err3 and p1<0.99 then call symput("va","1");

run;

%if %substr(&va,1,1)=1 %then %do;

** derive simulated sample of testing statistics **;

data tmp2;

set rn1;

if m+&di>0 then do;

n=m+&di-.5;

lambda=((n+0.5)/(&ni1-n+0.5)) / ((m+.5)/(&n01-m+.5));

end;

else if m+&di<=0 then lambda=0.00000001;

zi1=z1*&s1;

if zi1>=log(lambda) then do;

zi=&rho*&s2*z1+sqrt(1-&rho*&rho)*&s2*z2;

output;

end;

run;

proc univariate data=tmp2 noprint;

var zi;

output out=out pctlpts=&p95_2 &p95_3 pctlpre=pct_ pctlname=pt2 pt3;

run;

data _null_;

set out;

call symput("pct_pt2", trim(left(put(pct_pt2,10.6))));

call symput("pct_pt3", trim(left(put(pct_pt3,10.6))));

run;

data _null_;

set rn2 end=last;
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retain err2 err3;

if _n_=1 then do;

err2=0;

err3=0;

end;

if mi1-m01>=&di then do;

m0=m01+m02;

mi=mi1+mi2;

odds=((mi+0.5)/(&ni-mi+0.5))/((m0+0.5)/(&n0-m0+0.5));

z=log(odds);

if z>&pct_pt2 then err2=err2+1;

if z>&pct_pt3 then err3=err3+1;

end;

if last then do;

call symput("err2", trim(left(put(err2/&msz,10.6))));

call symput("err3", trim(left(put(err3/&msz,10.6))));

end;

run;

data _null_;

** calculate power of the dose level with adaptive sampling **;

set rn3 end=last;

retain power2 power3;

if _n_=1 then do;

power2=0;

power3=0;

end;

if mi1-m01>=&di then do;

m0=m01+m02;

mi=mi1+mi2;

odds=((mi+0.5)/(&ni-mi+0.5))/((m0+0.5)/(&n0-m0+0.5));

z=log(odds);

if z>&pct_pt2 then power2=power2+1;

if z>&pct_pt3 then power3=power3+1;

end;

if last then do;

call symput("power2", trim(left(put(power2/&msz,10.6))));
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call symput("power3", trim(left(put(power3/&msz,10.6))));

end;

run;

/***********************************************************************

g01: gain when current dose not effective and use adaptive

g02: gain when current dose not effective and only enroll first stage

g03: gain when current dose not effective and enroll all subjects

g11: gain when current dose effective and use adaptive

g12: gain when current dose effective and enroll all subjects

************************************************************************/

data tmp2;

** calculate maximum opportunity losses **;

dose=&dose;

p1=&p1;

p2=&p2;

di=&di;

err2=&err2;

err3=&err3;

power2=&power2;

power3=&power3;

pct_pt2=&pct_pt2;

pct_pt3=&pct_pt3;

pow2=probnorm((&mu-&&cr&dose*&s2)/&s2);

pow3=probnorm((&mu-&&cr&pdose*&s3)/&s3);

err=probnorm(-&&cr&dose);

%if &dose=2 %then %do;

g01=err*p1+(1-err)*pow2*p1+pow3*(1-p1);

g11=(power2*&r2+p2*(1-power2/p2)*pow2*&r3+(1-&p2)*pow3*&r3)/&r2;

g02=pow3;

g12=(pow2*&r2+pow2*(1-pow2)*&r3)/&r2;

g03=err+(1-err)*pow2;

l0=g02-g01;

l1=g12-g11;

g_min=min(g01, g11);

l_max=max(l0, l1);
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%end;

%else %if &dose=1 %then %do;

g01=p1*((1-err/p1)*(1-pow2)*pow2*&r3+(1-err/p1)*pow2*&r2+err/p1*&r2)

/&r2+(1-p1)*&&g1_&pdose;

g02=&&g1_&pdose;

g11=p2*((1-power2/p2)*(1-pow2)*pow2*&r3+(1-power2/p2)*pow2*&r2

+&power2/p2*&r1)/&r1+(1-p2)*&&g1_&pdose*&r2/&r1;

g12=((1-pow2)**2*pow2*&r3+(1-pow2)*pow2*&r2+pow2*&r1)/&r1;

g03=(err*&r2+(1-err)*pow2*&r2+(1-err)*(1-pow2)*pow2*&r3)/&r2;

l0=g02-g01;

l1=g12-g11;

g_min=min(g01, g11);

l_max=max(l0, l1);

%end;

run;

data report;

set report tmp2;

run;

%end;

%end;

data report;

set report;

if _n_=1 then delete;

run;

proc sort data=report out=sorted;

by l_max;

run;

proc print data=report noobs;

var dose di p1 p2 g11 g01 g03 g12 l_max;

run;

** pick the design with minimum maximum opportunity loss **;
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data _null_;

set sorted(obs=1);

call symput("pcut&dose", trim(left(put(p1, 6.5))));

call symput("g0_&dose", trim(left(put(g01, 6.5))));

call symput("g1_&dose", trim(left(put(g11, 6.5))));

run;

data design;

set design sorted(obs=1);

run;

%end;

title "P=&p Pa=&pa Sample sizes=&ni1 &nni weights=&r3 &r2 &r1";

proc print data=design noobs;

where dose>.;

var dose di p1 p2 g11 g01 g03 l_max;

run;

%mend;

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=200000,

r3=1, r2=2, r1=3);

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=200000,

r3=1, r2=3, r1=5);

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=200000,

r3=1, r2=3, r1=7);

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=200000,

r3=1, r2=4, r1=9);

%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=200000,

r3=1, r2=2, r1=3);

%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=200000,

r3=1, r2=3, r1=5);

%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=200000,

r3=1, r2=3, r1=7);
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%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=200000,

r3=1, r2=4, r1=9);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=200000,

r3=1, r2=2, r1=3);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=200000,

r3=1, r2=3, r1=5);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=200000,

r3=1, r2=3, r1=7);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=200000,

r3=1, r2=4, r1=9);
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APPENDIX D

SAS PROGRAMS USED TO OBTAIN THE OPTIMAL CUT POINTS

WHEN STEPDOWN TESTING APPROACHED IS USED

options symbolgen mprint mlogic;

%macro dsn(p=, pa=, ni1=, n01=, nni=, nn0=, msz=, r3=, r2=, r1=, seed=1009);

data design;

dose=.; di=.; p1=.; p2=.; pct_med=.; err95=.; power95=.; g11=.; g01=.;

g03=.; l1=.; g01=.; g02=.; l0=.; l_max=.; g_min=.;

run;

%do i=1 %to 2;

data report;

dose=.; di=.; p1=.; p2=.; pct_med=.; err95=.; power95=.; g11=.; g01=.;

g03=.; l1=.; g01=.; g02=.; l0=.; l_max=.; g_min=.;

run;

%let dose=%eval(3-&i);

%let pdose=%eval(3-&i+1);

%let ni=%sysevalf((&nni-&ni1)*(&dose-1)/(3-&dose+1)+&nni);

%let n0=%sysevalf((&nn0-&n01)*(&dose-1)/(3-&dose+1)+&nn0);

%let ni2=%sysevalf((&nni-&ni1)*(&dose)/(3-&dose)+&nni);

%let n02=%sysevalf((&nn0-&n01)*(&dose)/(3-&dose)+&nn0);

data rn1 rn2 rn3;

do i=1 to &msz;

m=ranbin(&seed,&n01,&p);

z1=rannor(&seed);

z2=rannor(&seed);

output rn1;
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end;

do i=1 to &msz;

m02=ranbin(&seed,&n0.-&n01,&p);

mi2=ranbin(&seed,&ni.-&ni1,&p);

m01=ranbin(&seed,&n01,&p) ;

mi1=ranbin(&seed,&ni1,&p);

output rn2;

end;

do i=1 to &msz;

m01=ranbin(&seed,&n01,&p);

mi1=ranbin(&seed,&ni1,&pa);

m02=ranbin(&seed,&n0.-&n01,&p);

mi2=ranbin(&seed,&ni.-&ni1,&pa);

output rn3;

end;

run;

data _null_;

mu=log(&pa/(1-&pa)/(&p/(1-&p)));

s1=sqrt(1/(&p*&n01)+1/(&n01-&p*&n01)+1/(&p*&ni1)+1/(&ni1-&p*&ni1));

s2=sqrt(1/(&p*&n0)+1/(&n0-&p*&n0)+1/(&p*&ni)+1/(&ni-&p*&ni));

s3=sqrt(1/(&p*&n02)+1/(&n02-&p*&n02)+1/(&p*&ni2)+1/(&ni2-&p*&ni2));

rho=(s2*s2)/(s1*s2);

call symput("s1", trim(left(put(s1,10.6))));

call symput("s2", trim(left(put(s2,10.6))));

call symput("s3", trim(left(put(s3,10.6))));

call symput("rho", trim(left(put(rho,10.6))));

call symput("mu", trim(left(put(mu,10.6))));

run;

%do di=-50 %to 50;

%let va=0;

data _null_;

p1=0;

p2=0;

min=max(0, &di);
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max=min(&ni1, &n01+&di);

if max<&ni1 then do;

p1=p1+(1-probbnml(&p, &ni1,max));

p2=p2+(1-probbnml(&pa,&ni1,max));

end;

do n=min to max;

if n>0 then do;

p1=p1+(probbnml(&p,&ni1,n)-probbnml(&p,&ni1,n-1))

*probbnml(&p,&n01,n-&di);

p2=p2+(probbnml(&pa,&ni1,n)-probbnml(&pa,&ni1,n-1))

*probbnml(&p,&n01,n-&di);

end;

else if n=0 then do;

p1=p1+probbnml(&p,&ni1,n)*probbnml(&p,&n01,n-&di);

p2=p2+probbnml(&pa,&ni1,n)*probbnml(&p,&n01,n-&di);

end;

end;

call symput("p1",trim(left(put(p1,8.7))));

call symput("p2",trim(left(put(p2,8.7))));

if p1>0.05 and p1<0.99 then do;

call symput("va","1");

call symput("p95",trim(left(put((1-0.05/p1)*100,8.7))));

end;

run;

%if %substr(&va,1,1)=1 %then %do;

data tmp2;

set rn1;

if m+&di>0 then do;

n=m+&di-.5;

lambda=((n+0.5)/(&ni1-n+0.5)) / ((m+.5)/(&n01-m+.5));

end;

else if m+&di<=0 then lambda=0.00000001;

zi1=z1*&s1;

if zi1>=log(lambda) then do;

zi=&rho*&s2*z1+sqrt(1-&rho*&rho)*&s2*z2;
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output;

end;

run;

proc univariate data=tmp2 noprint;

var zi;

output out=out pctlpts=&p95 pctlpre=pct_ pctlname=med;

run;

data _null_;

set out;

call symput("pct_med", trim(left(put(pct_med,10.6))));

run;

data _null_;

set rn2 end=last;

retain err95;

if _n_=1 then err95=0;

if mi1-m01>=&di then do;

m0=m01+m02;

mi=mi1+mi2;

odds=((mi+0.5)/(&ni-mi+0.5))/((m0+0.5)/(&n0-m0+0.5));

z=log(odds);

if z>&pct_med then err95=err95+1;

end;

if last then call symput("err95", trim(left(put(err95/&msz,10.6))));

run;

data _null;

set rn3 end=last;

retain power95;

if _n_=1 then power95=0;

if mi1-m01>=&di then do;

m0=m01+m02;

mi=mi1+mi2;

odds=((mi+0.5)/(&ni-mi+0.5))/((m0+0.5)/(&n0-m0+0.5));

z=log(odds);

112



if z>&pct_med then power95=power95+1;

end;

if last then call symput("power95", trim(left(put(power95/&msz,10.6))));

run;

/***********************************************************************

g01: gain when current dose not effective and use adaptive

g02: gain when current dose not effective and only enroll first stage

g03: gain when current dose not effective and enroll all subjects

g11: gain when current dose effective and use adaptive

g12: gain when current dose effective and enroll all subjects

************************************************************************/

data tmp2;

dose=&dose;

p1=&p1;

p2=&p2;

di=&di;

err95=&err95;

pct_med=&pct_med;

power95=&power95;

pow2=probnorm((&mu-probit(0.95)*&s2)/&s2);

pow3=probnorm((&mu-probit(0.95)*&s3)/&s3);

%if &dose=2 %then %do;

g01=pow2*&p1+pow3*(1-&p1);

g11=(p2*pow2*(1-&power95/p2)*&r3+p2*pow2*(&power95/p2)*&r2+(1-&p2)

*pow3*&r3)/&r2;

g02=pow3;

g12=(pow2*(1-pow2)*&r3+pow2**2*&r2)/&r2;

g03=pow2;

l0=g02-g01;

l1=g12-g11;

g_min=min(g01, g11);

l_max=max(l0, l1);

%end;

%else %if &dose=1 %then %do;

g01=p1*(pow2*(1-pow2)*&r3+pow2**2*&r2)/&r2+(1-p1)*&&g1_&pdose;
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g02=&&g1_&pdose;

g03=(pow2*(1-pow2)*&r3+pow2**2*&r2)/&r2;

g11=p2*(pow2*(1-pow2)*&r3+pow2**2*(1-power95/p2)*&r2+pow2**2

*&power95/p2*&r1)/&r1+(1-p2)*&&g1_&pdose*&r2/&r1;

g12=(pow2*(1-pow2)*&r3+pow2**2*(1-pow2)*&r2+pow2**3*&r1)/&r1;

l0=g02-g01;

l1=g12-g11;

g_min=min(g01, g11);

l_max=max(l0, l1);

%end;

run;

data report;

set report tmp2;

run;

%end;

%end;

data report;

set report;

if _n_=1 then delete;

run;

proc sort data=report out=sorted;

by l_max;

run;

proc print data=report noobs;

var dose di p1 p2 g11 g01 g12 g03 l_max;

run;

data _null_;

set sorted(obs=1);

call symput("pcut&dose", trim(left(put(p1, 6.5))));

call symput("g0_&dose", trim(left(put(g01, 6.5))));

call symput("g1_&dose", trim(left(put(g11, 6.5))));
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call symput("g2_&dose", trim(left(put(g03, 6.5))));

run;

title "P=&p Pa=&pa sample sizes=&ni1 &nni weights=&r3 &r2 &r1";

data design;

set design sorted(obs=1);

run;

%end;

proc print data=design noobs;

where dose>.;

var dose di p1 p2 g11 g01 g03 l_max;

run;

%mend;

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=400000,

r3=1, r2=2, r1=3);

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=400000,

r3=1, r2=3, r1=5);

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=400000,

r3=1, r2=3, r1=7);

%dsn(p=0.1, pa=0.14, ni1=200, n01=200, nn0=1000, nni=1000, msz=400000,

r3=1, r2=4, r1=9);

%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=400000,

r3=1, r2=2, r1=3);

%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=400000,

r3=1, r2=3, r1=5);

%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=400000,

r3=1, r2=3, r1=7);

%dsn(p=0.1, pa=0.14, ni1=300, n01=300, nn0=1000, nni=1000, msz=400000,

r3=1, r2=4, r1=9);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=400000,
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r3=1, r2=2, r1=3);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=400000,

r3=1, r2=3, r1=5);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=400000,

r3=1, r2=3, r1=7);

%dsn(p=0.1, pa=0.14, ni1=400, n01=400, nn0=1000, nni=1000, msz=400000,

r3=1, r2=4, r1=9);
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