
ANALYSIS OF NON-IGNORABLE MISSING AND 

LEFT-CENSORED LONGITUDINAL BIOMARKER 

DATA 

 
 
 
 

by 
 

Abdus Sattar 
 

B.Sc. in Statistics, Jahangirnagar University, Bangladash, 1992 
 

M.Sc. in Statistics, Jahangirnagar University, Bangladesh, 1993 
 

M.S. in Statistics, Texas A& M University, 2003 
 

M.S. in Mathematics, Texas A&M University, 2004 
 
 
 
 
 

Submitted to the Graduate Faculty of 
 

the Graduate School of Public Health in partial fulfillment 
 

of the requirements for the degree of 
 

Doctor of Philosophy 
 
 
 
 

University of Pittsburgh 
 

2009 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12209318?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH

GRADUATE SCHOOL OF PUBLIC HEALTH

This dissertation was presented

by

Abdus Sattar

It was defended on

Sept 29, 2009

and approved by

Lisa Weissfeld, Ph.D., Professor & Associate Chair, Department of Biostatistics, Graduate

School of Public Health, University of Pittsburgh

Chung-Chou Ho Chang, Ph.D., Associate Professor, Department of Biostatistics, Graduate

School of Public Health, University of Pittsburgh

Jong-Hyeon Jeong, Ph.D., Associate Professor, Department of Biostatistics, Graduate

School of Public Health, University of Pittsburgh

Lan Kong, Ph.D., Assistant Professor, Department of Biostatistics, Graduate School of

Public Health, University of Pittsburgh

Mark Unruh, M.D., Assistant Professor, Renal Electrolyte Division, Department of

medicine, School of Medicine, University of Pittsburgh

Dissertation Director: Lisa Weissfeld, Ph.D., Professor & Associate Chair, Department of

Biostatistics, Graduate School of Public Health, University of Pittsburgh

ii



Copyright c© by Abdus Sattar

2009

iii



ANALYSIS OF NON-IGNORABLE MISSING AND LEFT-CENSORED

LONGITUDINAL BIOMARKER DATA

Abdus Sattar, PhD

University of Pittsburgh, 2009

In a longitudinal study of biomarker data collected during a hospital stay, observations

may be missing due to administrative reasons, the death of the subject or the subject’s

discharge from the hospital, resulting in non-ignorable missing data. Standard likelihood-

based methods for the analysis of longitudinal data, e.g, mixed models, do not include a

mechanism that accounts for the different reasons for missingness. Rather than specifying

a full likelihood function for the observed and missing data, we have proposed a weighted

pseudo likelihood (WPL) method. Using this method a model can be built based on available

data by accounting for the unobserved data via weights which are then treated as nuisance

parameters in the model. The WPL method accounts for the nuisance parameters in the

computation of the variances of parameter estimates. The performance of the proposed

method has been compared with a number of widely used methods. The WPL method is

illustrated using an example from the Genetic and Inflammatory Marker of Sepsis (GenIMS)

study. A simulation study has been conducted to study the properties of the proposed

method and the results are competitive with the widely used methods.

In the second part, our goal is to address the problem of analyzing left-censored lon-

gitudinally measured biomarker data when subjects are lost due to the above mentioned

reasons. We propose to analyze one such biomarker, IL-6, obtained from the GenIMS study,

using a weighted random effects Tobit (WRT) model. We have compared the results of the

WRT model with the random effects Tobit model. The simulation study shows that the

WRT model estimates are approximately unbiased. The correct standard error has been
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computed using asymptotic pseudo likelihood theory. The use of multiple weights across the

panel improves the estimate and produces smaller root mean square error. Therefore, the

WRT model with multiple weights across panels is the recommended model for analyzing

non-ignorable missing and left-censored biomarker longitudinal data.

Model selection is an extremely important part of the analysis of any data set. As

illustrated in these analyses, conclusions, which can directly impact public health, depend

heavily on the data analytic approach.
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1.0 INTRODUCTION

The primary goal of a longitudinal study is to characterize the change in the response variable

during the study period and to measure the effects of factors on the response variable. But

many longitudinal studies suffer from the problem of missing data. The presence of missing

data has many implications in longitudinal data analysis including unbalanced design, loss

of information, bias and hence misleading inferences about the change in the mean response

(Fitzmaurice et al., 2004). To obtain a valid inference, the reasons for any missing data,

known as the missing data mechanism, must be considered with proper care. The missing

data mechanism is said to be missing completely at random (MCAR) if the probability of

missing a response is unrelated to either the unobserved or the observed responses. If the

probability of missing a response depends on the observed response values but does not

depend on the unobserved response values then it is called missing at random (MAR). The

missing data mechanisms, MCAR and MAR, are also known as ignorable because it is not

necessary to model the missing data process as a part of the likelihood based analysis. The

missing data mechanism is said to be missing not at random (MNAR) if the probability of

missing is associated with the unobserved response values that should have been obtained.

This process is often referred to as non-ignorable missingness due to the fact that the missing

data mechanism must be considered to make a valid inference about the distribution of the

responses (Little and Rubin, 2002, Fitzmaurice et al, 2004, Allison, 2002). In a longitudinal

study the term dropout refers to the situation where a response at a particular time being

missing, implies that all the subsequent follow-up responses are also missing (Fitzmaurice

et al, 2004, Little and Rubin, 2002). In the Genetic and Inflammatory Markers of Sepsis

(GenIMS) study (Kellum, et al. 2007), biomarkers were measured daily on many of the

hospitalized subjects for a period of one week or longer. In the GenIMS study (details in
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Figure 1.1: Median Antithrombin levels for a period of seven days by the follow-up category.
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Chapter 3), the data are missing due to death, discharge from the hospital and administrative

reasons. Figure 1.1 presents the median levels and trend of a biomarker, anti-thrombin, over

the first seven days. Anti-thrombin is a small serum protein that interfere with coagulation

cascade in the blood and the deficiency of this protein is associated with increasing risk of

developing blood clot. The subjects who have dropped-out (669 subjects) during the study

period had a higher level of anti-thrombin, followed by completers (330) and deaths (19).

This figure illustrates that dropout and death led to substantial loss of information.

There are a number of approaches for analyzing longitudinal data with different types

of missingness. If the missingness is MCAR then analyzing only the complete subject’s

information is known as a complete-case analysis. Due to the removal of subjects from the

study, the reduced sample size often leads to inefficient estimates and reduced statistical

power. A similar approach for handling missing longitudinal data is the analysis of available

data. Though this approach covers more data when compared to the complete case analysis,

statistical methods used for analyzing available data will produce biased estimates unless the

the missingness is MCAR. A traditional method for handling missing data is the imputation

method in which the missing data are replaced by the imputed data and standard statistical

methods are then used for analyzing the full data set. The issue with the imputation method

is how to obtain a valid data set for the missing data. An alternative approach for handling

missing longitudinal data is to weight observed data (Robins et al., 1995, Fitzmaurice, et

al., 2004, Demirtas, 2004, Dufouil et al., 2004). The attraction of these methods is that once

the data set has been constructed, standard methods for analyzing longitudinal data such

as weighted generalized estimating equations (WGEE) and mixed models can be applied.

In longitudinal studies, the missingness can be due to any of the following reasons: death

of a subject, withdrawal from the study, or loss to follow-up. These differential reasons for

missingness in longitudinal data analyses present a challenge to the statistical analyst. The

losses of data can result in biased estimates and a loss in precision. The loss in precision is

proportional to the amount of missing data. In addition, the effect depends on the association

between the observed data and the missing data. Improper adjustment or no adjustment

for missing data in a regression analysis can result in biased estimates of parameters and

lead to erroneous inferences (Hogan et al., 2004). There are some likelihood based methods

3



such as selection models, mixture models and shared parameter models that can be used for

analyzing non-ignorable missing longitudinal data (details in Chapter 2). In these modeling

approaches identification of parameters is problematic and implementation of these methods

is not trivial. In addition, none of the likelihood based approaches adjust the likelihood

function for differential reasons for missingness. To account for the differential reasons for

missingness, we will compute the probabilities of observing a response for a subject belonging

to a missingness category and invert this probability to obtain the weights. This basic idea

of weighting adjustments to reduce the bias in estimation is common in sample survey for

finite population randomization inference (Horvitz and Thompson, 1952). These derived

weights will be used in weighted pseudo-likelihood (WPL) methods for analyzing differential

reasons for missing longitudinal biomarker data (Lawless et al., 1999). The proposed WPL

methods will be relatively easy to implement using standard statistical software, and provide

an extension to the currently available methods for analyzing differential missingness.

In a longitudinal study of a biomarker with differential reasons for missingness, some

measurements of the biomarker may also be censored. In the GenIMS study there are

measurements that are left-censored for a panel of biomarkers. The left-censored data are

characteristic of many bioassays due to the inherent limit of quantification in the assays. In

the GenIMS study the censoring of the biomarker measurements occurred when the level

of the biomarker was below the detection limit of the assay. Moreover, there are missing

measurements that occurred primarily when the subjects in the study were discharged from

the hospital or died. In addition to differential reasons for dropout and death, left-censoring

leads to another level of complication in analyzing longitudinally measured biomarker data.

There are few methods for analyzing left-censored longitudinal data. Tobit regression

is one of the classical approaches for analyzing left-censored data (Tobin, 1958, Amemiya,

1984). A semi-parametric estimator was derived using a fixed effect tobit model for panel

data (Honore, 1992). A tobit-based variance components method has been developed to

account for the censoring process in a variance component analysis (Epstein et al., 2003).

Standard linear mixed models are used by omitting the censored data or imputing a fixed

value. The most widely used methods for left-censored longitudinal data are imputing the

quantification limit (Keet et al.,1997), using half of this limit (O’Brien et al.,1998) or the
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use of random imputation procedures (Paxton et al.,1997). Omitting censored data clearly

results in a loss of information and the statistical properties of imputing a value are unclear

(Beal, 2001). All of these ad-hoc methods for left-censored longitudinal data produce biased

estimates and incorrect standard errors (Ghebregiorgis, 2008). A more efficient approach to

multiple imputation has been proposed for analyzing censored longitudinal data using a linear

mixed model (Hugues, 1999, Jacqmin-Gadda et al.,2000). In the case of left-censored and

informative dropout longitudinal data, a maximum likelihood method has been developed

to estimate parameters and standard errors (SE) were computed from a numerically derived

observed information matrix (Lyles et al., 2000). All of these approaches are based on the full

likelihood method. Using the full likelihood, the estimation of parameters and computation

of the SE involve a series of multiple integration, numeric and algebraic complexities. When

the rate of censoring is high, the integration becomes prohibitive and estimates are unstable

for more than two random effects (Ghebregiorgis, 2008).

In summary, this research focus on addressing two statistical issues for analyzing longi-

tudinally measured biomarker data.

First. The first issue is the non-ignorable missingness due to the differential reasons

for dropout, and death. We are proposing to extend the pseudo likelihood method to the

weighted pseudo likelihood (WPL) method for analyzing longitudinally measured biomarker

data. In this new method weights will be used for the adjustment of the missing data and

considered as nuisance parameters in the analysis. The consistent estimate of the variance

covariance matrix of the parameters of interest will be computed by considering the fact that

there are an infinite number of nuisance parameters used in the estimation process.

Second. The second issue is the left-censoring along with the non-ignorable missingness

in analyzing longitudinal biomarker data. We are proposing to extend the theory of Tobit

regression for the left-censored data to develop a Weighted Random Effects Tobit regression

model using WPL theory for non-ignorable missing and left-censored longitudinal biomarker

data. Again, the effect of infinitely many nuisance parameters (weights) in the estimation

process will be taken into account and various censoring process will be compared to find a

best one for analyzing left-censored and non-ignorable missing data. Correct standard errors

of estimates will be computed using WPL theory.
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The performance of the fitted models will be compared with a number of widely used

models. So far to our knowledge no one has utilized the WPL theory in analyzing non-

ignorable missing and/or left-censored longitudinal data.
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2.0 A REVIEW OF LIKELIHOOD METHODS FOR ANALYZING

NON-IGNORABLE MISSING AND LEFT-CENSORED LONGITUDINAL

BIOMARKER DATA

2.1 LIKELIHOOD BASED METHODS FOR ANALYZING

NON-IGNORABLE MISSING LONGITUDINAL DATA

The classical repeated measures design has been used for analyzing longitudinally measured

continuous data. In this design, each subject is measured a fixed number of times under

different conditions to compare the effect of (usually) treatments. In a repeated measures

design the experimental conditions are the within-subject factors which are usually compared

using within-subject contrasts. In this design, each subject acts as his or her own control

and the estimate of the effects of the factor are free of any between subject variation in the

outcome (Fitzmaurice, et al. 2004). This design is not suitable for the case where there

are an unequal number of repeated measures and also has very strict assumptions on the

variance covariance structure of the measures. Moreover, there is no method that allows for

missing data using this design.

The linear mixed model is widely used for modeling longitudinally measured continuous

data. It is a generalization of the standard linear model and allows for flexibility. There are

many choices that can be made for the variance covariance structure of the correlated data

in this modeling. In this model the number of repeated measures can vary from individual

to individual and missing data can be handled under the assumption of missing at random

(MAR). If the data are missing not at random then one can not use the linear mixed model

directly. When the probabilities of response depend on the unobserved level of biomarker

data, then the missingness mechanism is known as not missing at random (NMAR) (Little
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and Rubin, 2002). In such a scenario, the standard likelihood based methods for analyzing

longitudinal biomarker data do not include a mechanism for incorporating different reasons

for loss to follow-up or death. When biomarker measurements are missing due to dropout or

death, the two types of loss to follow-up are different and should not be combined (Dufouil

et al., 2004, p.2215).

The majority of MNAR longitudinal data analysis techniques are based on a factorization

of the joint distribution f(Y,R|X), where Y is the full response data, X is the covariate

and R indicates the missing data mechanism (Hogan et al. 2004, p. 1466). Likelihood

based approaches such as the selection model, mixture model and shared parameter model

are common for modeling non-ignorable missing longitudinal data. If the regression model

is based on the joint distribution which is a product of the full data model, f(y|x) and

f(r|y, x) then it is called a selection model. In selection modeling, the identification of

model parameters depends on some unverifiable model assumptions. Generally this modeling

technique requires specialized numerical routines for maximizing the likelihood function with

the uncertainty of a well behaved likelihood function and consequently unstable estimation

of the model parameters (Kenward, 1998). If the full data is modeled as a mixture over

drop-out categories then it is a (pattern) mixture model (f(y, r|x) = f(y|r, x)f(r|x)). These

models are under-identified and well suited for small percentages of missing observations

(Little, R.J.A., 1994, Little, R.J.A., 1993, Little, R.J.A. and Wang, Y., 1996, Daniels, M.J.

and Hogan, J.W. 2000). In modeling, if a latent random effect is being used to characterize

the dependence between the response, Y, and the missing data indicator, R, then it is known

as shared latent process model. With these models, the identification is heavily dependent

on the distribution of the arbitrarily chosen shared random effects which affects the validity

of the findings (Pulkstenis, et al., 1998).

In the full data modeling setting every observation is equally weighted. For modeling

data with missing observations, weighting techniques have been used for semi-parametric

regression modeling (Robins et al., 1994, 1995). The weighting procedure has been applied

in analyzing many incomplete longitudinal data problems by Rotnitzky and Robins (1997),

Lipsitz et al (1999), Lin (2003), Demirtas (2004), Dufouil et al (2004), Lin et al (2004),

Ibrahim et al (2005). Weights are computed by inverting the probabilities of response. In a
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longitudinal study some subjects are more likely to complete the study than others. There-

fore, our intention is to apply the weighting methodology in the setting of likelihood-based

approaches. The pseudo-likelihood approach has been used for estimating parameters in

generalized linear mixed models (Wolfinger and O’connell, 1993). Therefore, our goal is to

estimate the parameters of a regression model for longitudinal data with differential rea-

sons for loss to follow-up by extending the existing full likelihood approaches such as the

mixed model and pseudo-likelihood methods. In this endeavor, we propose a model for

longitudinal biomarker data with non-ignorable non-monotone missingness using a weighted

pseudo-likelihood method. To our knowledge, these proposed estimation methods for ana-

lyzing longitudinal biomarker data with differential reasons for missingness do not appear in

the literature.

For the pseudo-likelihood methods the weights are treated as the nuisance parameters.

Nuisance parameters are the parameters which are not of direct inferential interest in the

modeling. Our interest is to estimate the usual regression coefficients (parameters) of a

general linear mixed effects model. A general method to eliminate the nuisance parameter is

via the profile likelihood method but the estimates are biased when the number of nuisance

parameters becomes large and the bias does not go away even for large samples, particularly

when there are infinitely many nuisance parameters (Pawitan (2001), p. 274). Rather than

being based on the observed data likelihood function, an estimate of the parameter of interest

can be obtained if we use the observed response only and weight (nuisance parameters) their

contribution to the likelihood function by inverting the probability of response (Lawless et

al. 1999, p. 421). This approach will be called the weighted pseudo maximum likelihood

method of estimation which basically uses the idea of the Horvitz-Thompson estimation

procedure applied in unequal probability sampling (Thompson (2002), p.53).
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2.2 LIKELIHOOD BASED METHODS FOR ANALYZING

NON-IGNORABLE MISSING AND LEFT-CENSORED

LONGITUDINAL DATA

In addition to non-ignorable missingness, analysis of censored longitudinal biomarker data

is a challenge. A standard method for the analysis of censored data is Tobit regression (To-

bin, 1958). Tobit regression has been extended to multivariate regression (Amemiya, 1984).

Recently a Box-Cox transformation has been used for the analysis of left-censored cross sec-

tional data (Han and Kronmal, 2004). In fitting linear mixed effect models, the Markov

Chain Monte Carlo (MCMC) EM algorithm has been used to accommodate censoring in

longitudinal data (Hughes, 1999). Lyles et al (2000) analyzed left-censored and informative

dropout HIV data by maximizing a single likelihood function which has integrated the cen-

soring and informative dropout process. They estimate the parameters from this complicated

likelihood function and compute the standard errors using the observed information matrix

directly. Linkage analysis of left-censored trait data has been based on a variance compo-

nent tobit model (Epstein, et al. 2003). In this modeling approach, the standard generalized

liner mixed model has been modified using the idea of Tobit model to accommodate the

censored data. As used in these references, there are many issues in analyzing left-censored

longitudinal data using a full likelihood. Beyond the algebraic and numeric intractability, it

requires computation of a series of multiple integrals and becomes intractable for the case of

a high rate of censoring. In addition, for more than two random effects the convergence of

the estimates remains uncertain (Ghebregiorgis, 2008). As a remedy, the pseudo likelihood

method has been used for analyzing multivariate longitudinal biomarker with left-censored

data (Ghebregiorgis, 2008). But this method has not been developed for left-censored single

longitudinal biomarker data with non-ignorable missingness.

The above mentioned standard and practiced methods for left-censored longitudinal data

have no mechanism for incorporating differential reasons for loss to follow up, which can

present problems. In this study we are proposing a weighted pseudo likelihood method for

left-censored and non-ignorable missing longitudinal data. This method will be compared

with the un-weighted random effect tobit model, and with the weighted random effect tobit

10



model. The weights will be computed by inverting the probability of measuring a biomarker

measurement from a subject using a multinomial logistic regression model. To the best of our

knowledge, no one has addressed the problem of analyzing left-censored and non-ignorable

missing longitudinal biomarker data using a weighting technique. In addition to the real

data analysis, an extensive simulation will be performed to understand the variability in

the inferences under different scenarios (or designs), percentages of missing and censoring

processes.
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3.0 ANALYSIS OF LONGITUDINAL BIOMARKER DATA WITH

DROPOUT AND DEATH USING WEIGHTED PSEUDO LIKELIHOOD

THEORY

3.1 INTRODUCTION

In longitudinal studies the data are collected over a period of time from each individual in

the study resulting in missing data for a variety of reasons. A popular method for analyzing

longitudinal data is linear mixed model which assumes that the missing data mechanism

is missing at random (MAR). When the missing data mechanism is missing not at ran-

dom (MNAR), then the standard linear mixed model cannot be used in analyzing these

types of data. Though there are a few composite likelihood-based methods for analyzing

non-ignorable missing longitudinal data, there is a lack of statistical methods for analyz-

ing longitudinal data when the data are missing due to premature dropouts, deaths of the

subjects, and administrative reasons, etc. In this work we are proposing a weighted pseudo

likelihood (Lawless, et al. 1999) method for analyzing differential reasons for missing longi-

tudinal continuous biomarker data in the linear mixed model frame work.

The motivation for this study comes from the Genetic and Inflammatory marker of sep-

sis study (GenIMS). The GenIMS study was a longitudinal cohort study of subjects with

community acquired pneumonia that were recruited from 2001-2003 in 28 hospitals located

in Pennsylvania, Connecticut, Michigan and Tennesse. One major goal of the GenIMS study

was to understand the role of inflammatory markers in the progression of pneumonia to sep-

sis (Kellum, et al, 2007). In this study, one of the important biomarkers for understanding

the mechanisms of progression to sepsis is anti-thrombin. Longitudinal anti-thrombin mea-

surements were obtained for the first seven days in the study, but some of the measurements
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are missing due to subject discharge from the hospital or death within the first seven days.

In addition, there was intermittent missingness in the measurements due to administrative

and other reasons. Figure 1.1 presents the median level and the trends of the anti-thrombin

biomarker data for the three groups of subjects over the seven day period. The subjects

who have dropped out from the study (579 subjects) had the highest level of anti-thrombin,

followed by the subjects who have completed the study (341 subjects) due to a full seven

days of hospitalization with no missing data, and the subjects who died during the first seven

days of hospitalization (19 subjects). This mechanism of missingness leads to non-ignorable

missingness which can impact estimation and any inferences drawn from the data (Little and

Rubin, 2002). This plot points to the differences in the anti-thrombin levels in these three

groups of subjects and the need to account for these differences in the analysis as illustrated

by the fact that subjects who died had the lowest anti-thrombin levels during the study.

Many longitudinal methods do not routinely incorporate missing data patterns into the

analysis. The problem is further complicated in settings such as those presented here, where

missing values occur due to reasons that may impact the outcome variable of interest. When

measurements of biomarkers are missing due to dropout or death, the two types of loss to

follow-up are different and should not be combined since the outcome may differ due to

the reason for missingness (Dufouil et al., 2004). Likelihood based approaches such as the

selection model, mixture model, and shared random effects model are common techniques

for modeling non-ignorable missing longitudinal data (Rubin, 1977; Wu and Bailey, 1988;

Little, 1994; Fallmann and Wu, 1995; Kenward, 1998; Hogan et al. 2004). Recently, joint

modeling has also been proposed as another likelihood based method for the modeling of

non-ignorable longitudinal missing data (Tsiatis and Davidian, 2004). A Pseudo-likelihood

approach has also been used for the estimation of parameters in generalized linear mixed

models (Wolfinger and O’connell, 1993).

In modeling settings where there are no missing data, each observation is equally weighted.

For modeling data with missing observations, inverse probability weighting (IPW) techniques

(Horvitz and Thomson, 1952) have been applied to semi-parametric regression modeling to

give different weights to account for the probability of missingness (Robins et al., 1994,

1995). In the current literature, this weighting procedure has been applied for analyzing
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many incomplete longitudinal data problems (Rotnitzky and Robins, 1997; Lipsitz et al,

1999; Lin, 2003; Demirtas, 2004; Lin et al, 2004; Ibrahim et al, 2005). Our objective here

is to estimate the parameters of a linear mixed model for longitudinal data with differential

reasons for loss to follow-up by utilizing the weighted pseudo-likelihood (WPL) theory. We

will estimate weights for each observation by inverting the probabilities of response. These

estimated probabilities are proportional to the likelihood of measuring the values of the

biomarker and computed using the logistic regression. Since most statistical packages con-

tain options for accommodating weights, the estimated IPW can easily be placed into the

log-likelihood function and hence the estimated quantities and inference will account for the

non-ignorable missingness in the data. These weights will be used as an adjustment of the

loss to dropout or death data. The price for incorporating these estimated weights into the

likelihood function is that the number of nuisance parameters becomes large. The number

of nuisance parameters is proportional to the number of occasions of measurement and the

number of subjects in the study. So there is a need for statistical methods for estimating

the parameters of interests in the presence of a large number of nuisance parameters in like-

lihood based inferences that include differential reasons for missing longitudinal data. In

this endeavor our proposed WPL approach, which is an extension of the pseudo-likelihood

approach (Lawless et al., 1999), will eases the numerical complexities. The wide use of longi-

tudinal data modeling in many fields of application with the challenge of differential reasons

for missingness is improved with these weighted estimation methods in the framework of

standard statistical software.

Under the different underlying assumptions about the populations and pattern of missing-

ness, we will compare the performance of the standard linear mixed model and the weighted

linear mixed model with the proposed weighted linear mixed model fitted by the WPL the-

ory. The methods are compared in terms of the bias, efficiency, root mean square error, and

coverage probability. In the next section, we will describe likelihood based methods as well

as our proposed methods for analyzing non-ignorable missing longitudinal biomarker data.

In section 3.3 we will present the results from the analysis of GenIMS study data and in

section 3.4 we will describe a simulation study to judge the performance of all estimators.

In the section 3.5 will provide a discussion.
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3.2 NOTATIONS AND MODEL FRAME WORK

Let Yij denote the measurement of a biomarker from the ith subject at the jth wave of

measurements at time tij, i = 1, 2, ..., N, j = 1, 2, ..., ni and Xij = (Xij1, Xij2, ..., Xijp)
′ denote

a p× 1 vector of covariates associated with Yij. In vector notation, Yi = (Yi1, Yi2, ..., Yini
)′ is

the ni-dimensional vector of biomarker measurements and Xi is the ni×p matrix of covariates

from the ith subject. However, in most longitudinal study the vector, Yi is not always fully

observed. Suppose that the observed and missing component of Yi are denoted by Yo
i and

Ym
i respectively. We define the missingness indicator vector Ri = (Ri1, Ri2, ..., Rini

)′ where

Rij =0 if Yij is observed, =1 otherwise. Note, in this paper we will assume that Yi and Yi′ ,

(i 6= i′), are independent and the covariates vector Xij is fully observed.

Little and Rubin (2002, p. 118) defined the joint density of the full data (Yi,Ri) as,

f(yi, ri|Xi, Zi, γ,ψ) (3.1)

where Xi and Zi are design matrices for fixed and random effects respectively, and (γ, ψ)

is the parameter space for this joint density. Let β and α denote the parameter vectors

associated with Xi and Zi respectively, then γ=(β,α) and ψ characterizes the observed

response and missingness process respectively. Replacing Yi by (Yo
i ,Y

m
i ) the full data

density can be written as,

f(yo
i ,y

m
i , ri|Xi, Zi,γ,ψ) (3.2)

Using the full data density (2), the full likelihood function of the parameter space (γ,

ψ) can be written as

L∗(γ,ψ) =
N∏

i=1

f(yo
i ,y

m
i , ri|Xi, Zi, γ,ψ) (3.3)

Since parameter estimation and inference are based on the observed data, so the full
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likelihood function (3) is proportional to following observed data likelihood:

L(γ, ψ) =
N∏

i=1

f(yo
i , ri|Xi, Zi, γ,ψ)

=
N∏

i=1

∫
f(yi, ri|Xi, Zi,γ, ψ)dym

i

=
N∏

i=1

∫
f(yo

i ,y
m
i |Xi, Zi,γ)f(ri|yo

i ,y
m
i , Xi,ψ)dym

i

(3.4)

where the limits of integration are over the values of unobserved biomarker, Ym
i .

If the distribution of observed response and probability of missingness can be specified

correctly, then the maximum likelihood estimates can be obtained using likelihood equation

(4) and the asymptotic covariance matrix of the estimates can be obtained by inverting the

observed Fisher information matrix (Little and Rubin (2002), p. 315). The full specification

of the likelihood function (4) involves the identification of the distribution of f(yi|Xi, Zi,γ)

and multinomial distribution of the probability of missingness, f(ri|yi, Xi, Zi,ψ). Estimation

of the parameter of interest, γ, involves the estimation of many nuisance parameters ψ. The

number of nuisance parameters increases as to the number of subjects and measurement time

increases. A general method to eliminate the nuisance parameter is via the profile likelihood

method but the estimates are biased when the number of nuisance parameters become large

and the bias persists for large samples, particularly when there are infinitely many nuisance

parameters (Pawitan (2001), p. 274). Rather than basing the estimation on the observed

data likelihood function (4), an estimate of γ can be obtained if we use the observed response

and weight (nuisance parameters) their contribution to the likelihood function by the inverse

of the probability of observing the response (Lawless et al. 1999, p. 421). This approach will

be denoted as the weighted pseudo maximum likelihood method (WPL) which applies the

idea of the Horvitz-Thompson estimation procedure for unequal probability sampling to this

problem (Thompson (2002), p.53). Therefore, an alternative to deal with the complicated

observed data likelihood (4) would be the following weighted pseudo loglikelihood,

l(γ,ωi) = ωilogf(yo
i |Xi, Zi,γ) (3.5)
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where ωi = π−1
i = (

∑H
h=1 pihδih)

−1; pih is the probability of observing the biomarker from the

ith subject belongs in dropout category h, and δih = 1 if the ith subject belongs to category

h, 0 otherwise. We assume that the estimate of pih will be obtained by a method that

produces a consistent estimate and, not necessarily by the method of maximum likelihood.

Inference for pseudo-likelihood estimates is based on the asymptotic theory and accounts for

the extra variability introduced by the use of nuisance parameters estimates. Now the score

function of the parameter of interest, γ, is

S(γ,ω) =
N∑

i=1

Riωi
∂

∂γ
logf(yo

i |Xi, Zi,γ). (3.6)

The solution of S(γ, ω̂i)=0 will provide a unique Weighted Pseudo Maximum Likelihood

Estimates(WPL) of γ. The asymptotic covariance matrix of WPL γ̂ has the following form

(Lawless et al. 1999, p. 426),

V ar(γ̂) = ı−1
11 (11 − ı12ı

−1
22 ıT12)ı

−T
11 (3.7)

where

ı11(γ, ω) = E

[
N∑

i=1

−ω̂i
∂2

∂γ∂γ′
logf(yo

i |Xi, Zi; γ)|γ=γ̂

]
(3.8)

ı12(γ, ω) = E

[
N∑

i=1

{
S∗(ωi)

∂

∂γ
logf(yo

i |Xi, Zi; γ)

}
|γ=γ̂,ωi=ω̂i

]
(3.9)

ı22(ω) = E

[
N∑

i=1

I∗(ωi)|ωi=ω̂i

]
(3.10)

11 = Var(S) =
N∑

i=1

SiS
T
i (3.11)

=
N∑

i=1

Ri{(
H∑

h=1

pihδih)
−1 ∂

∂γ
logf(yo

i |Xi, Zi, γ)}{(
H∑

h=1

pihδih)
−1 ∂

∂γ
logf(yo

i |Xi, Zi, γ)}T

and S∗(ωi) and I∗(ωi) are the score function and Fisher informatiton for the nuisancee

parameters ωi respectively. Since differential missingness or dropout is a categorical variable,

a multinomial logistic regression model and hence a likelihood function for the parameters

of the model will be developed to estimate ωi, S∗(ωi) and I∗(ωi).
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Let us define a categorical variable D which represent three categories of patients such as

completers, dropout and death, coded as 0, 1 and 2 respectively. For simplicity in notations,

the multinomial logistic regression model will be formed by taking one covariate (observed

response, yo
i ) and a constant term, denoted by the vector, x∗ = (1, yo

i )
′, of length 2. This one

covariate model can easibly be extended to the p covariate model. Now, taking completers(0)

as the reference category, dropout(1) and death(2) as comparison categories, the multinomial

logistic regression model (Agresti(2004, p.268)), can be written as

log

(
πhi

π0i

)
= gh(x

∗
i ) = λh0 + λh1y

o
i , h = 1, 2

= (x∗i )
′θh

It follows that the conditional probability given the covariate vector in the three category

model can be obtained by the following formula:

πhi =
exp(gh(x

∗
i ))∑2

h=0 exp(gh(x∗i ))
(3.12)

where the vector θ0 = 0 and g0(x
∗) = 0. Each probability is a function of the vector of 4

parameters θ = (θ1
′, θ2

′). According to the outline in Hosmer and Lemeshow (2000, p. 262),

for the development of the likelihood function of the parameter vector θ, we define three(3)

dummy variables that coded as 0 or 1 to indicate the group membership of an observation.

These variables are coded as follows: if D=0 then D0 = 1, D1 = 0 and D2 = 0; if D=1 then

D0 = 0, D1 = 1 and D2 = 0; if D=2 then D0 = 0, D1 = 0 and D2 = 1. Note,
∑2

h=0 Dh = 1

and these dummy variables are introduced for the construction of the likelihood function

and are not used in the actual multinomail logistic regression analysis. Using this notation,

the likelihood function for the parameter vector θ is

L(θ) =
N∏

i=1

[
π0(xi

∗)d0iπ1(xi
∗)d1iπ2(xi

∗)d2i
]

(3.13)

Putting d0i = 1 − d1i − d2i for each i and taking the logarithm, the log-likelihood function

can be expressed as

logL(θ) = l(θ) =
N∑

i=1

[d1ig1(xi
∗) + d2ig2(xi

∗)− log {1 + exp(g1(xi
∗)) + exp(g2(xi

∗))}]
(3.14)
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Taking the derivative of the log-likelihood function with respect to each of the unknown

parameters of θ, the general form of the score function is

S(θ) =
∂

∂λhk

l(θ) =
N∑

i=1

xki(dhi − πhi) (3.15)

for h=1,2; k=0,1 (subscripts for covariates) with x0i = 1 and x1i = yo
i for each subject.

Equating the score to zero an iterative solution of θ can be obtained from these equations.

The information matrix for θ̂ can be computed by taking second partial derivatives of the

above log-likelihood function:

∂2

∂λhk∂λhk′
l(θ) = −

N∑
i=1

xk′iπhi(1− πhi) (3.16)

and

∂2

∂λhk∂λh′k′
l(θ) =

N∑
i=1

xk′ixki′πhiπh′i (3.17)

for h 6= h′=1,2 and k 6= k′=0,1. By negating these two sets of equations and evaluating

at θ̂ a 4 × 4 observed information matrix I(θ̂) can be obtained. The ultimate purpose of

the above derivations is to derive the score function and Fisher information matrix of the

function of parameter vector θ. The score function and Fisher information of ωi which is a

function of the parameter vector θ can be derive in the following way:

S∗(ωi) =
∂

∂ωi

logL(θ) =
∂θ

∂ωi

∂

∂θ
logL(θ) =

[(
∂ωi

∂θ

)−1
]

S(θ) (3.18)

and

I∗(ωi) = varS∗(ωi) =

[(
∂ωi

∂θ

)−1
]′

I(θ)

[(
∂ωi

∂θ

)−1
]

(3.19)

where

∂ωi

∂θ
=

∂

∂λhk

[∑2
h=0 exp(gh(x

∗
i ))

exp(gh(x∗i ))

]

= xki(1− ωhi)
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Now we will derive the score and Fisher information of the parameter vector γ to compute

ı11 and ı12 respectively. A popular model for fitting inherently unbalanced longitudinal

continuous biomarker data is the linear mixed model(LMM). A LMM for the ith subject can

be written in the following form(Laird and Ware 1982):

Yi = Xiβ + Zibi + ei (3.20)

and the vector Yi is distributed as multivariate normal with the following specification:

Yi|bi ∼ N(Xiβ + Zibi,Σi) (3.21)

bi ∼ N(0,D) (3.22)

where Xi is the ni × p design matrix for the fixed effects, β; Zi is the ni × q design matrix

for the random effects, bi; D = Cov(bi) and Σi=Cov(ei) are the covariance matrices of the

random effects and errors respectively.

From (20) the marginal distribution of Yi is normal with mean Xiβ and covariance

matrix Vi=Σi+ ZiDZ′i, so the log-likelihood function of the fixed parameters β is

logL(β) = −N

2
log2π − 1

2
log|V| − 1

2
(Yi −Xiβ)′V−1(Yi −Xiβ). (3.23)

By differentiating the log-likelihood function (23) with respect to the parameter vector of β

one and two times we can compute the score and observed Fisher information respectively:

∂logL(β)

∂β
= −X′

iV
−1Xiβ + X′

iV
−1Yi (3.24)

∂2logL(β)

∂β∂β′
= X′

iV
−1Xi (3.25)
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3.3 APPLICATION: ANALYSIS OF ANTITHROMBIN BIOMARKER

DATA FROM GENIMS STUDY

The GenIMS study was a large cohort study of patients with community acquired pneumonia

followed over time. In this study, a series of biomarkers were measured daily on a subset of

hospitalized patients for seven days. These biomarkers assessed the potential pathways of

inflammation and coagulation related to the development of sepsis. The primary objective

of the GenIMS study was to identify the potential biomarkers of sepsis. There were 2320

patients enrolled through the emergency departments in 28 hospitals in PA, CT, MI, and

TN (2001-2003). From the pool of 2320 subjects we have found 939 subjects had at least

some biomarkers measurements as well as covariates information from day 1 to day 7. The

data set for our analysis consisted of 341 (36.3%) patients with seven full days of data, 579

(61.7%) patients who were discharged before the full seven days, and 19 (2.0%) patients

who died during the first 7 days. The outcome variable for our analysis is the longitudinally

measured anti-thrombin biomarker. The median level of the anti-thrombin biomarker for

patients who dropped-out was higher followed by completers, and subjects who died (Figure

1). Higher levels of anti-thrombin indicate better health condition of the subject and hence

their discharge from the hospital which resulted in drop out from the study. Patients,

who died during the study, and obviously their biomarker measurements, are missing. This

missingness mechanism of the biomarker, due to better health condition and death, is missing

not at random (MNAR) and suggests taking this into account during the analysis.

We are applying our proposed WPL method for analyzing differential reasons for miss-

ingness in the anti-thrombin longitudinal biomarker data. We will compute the weights by

inverting the probability of observing anti-thrombin biomarker data. Details on the IPW

technique have been described in section 2. These weights will account for the differential

reasons for missingness and are treated as nuisance parameters in the estimation process.

Inferences for the parameter of interests in the presence of infinite number of nuisance pa-

rameters are made using the asymptotic PL theory. We are comparing the WPL method

with the standard and weighted linear mixed models. In fitting the standard linear mixed

model it is assumed that the missingness is missing at random. In our anti-thrombin anal-
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ysis, we are considering time, time2 and statin use as fixed effects and the intercept as a

random effect in the linear mixed model.

Table 3.1 presents the results from the analysis of differential reasons for missing lon-

gitudinal anti-thrombin biomarker data using WPL method. Weighted estimates of the

parameters are larger compared to the estimates obtained from the SMM. Also the SE of

the estimate from the weighted models are larger than the corresponding SMM estimate.

Z-values for the quadratic term Day2 and Statin use by the WPL method are substantially

different from the other three methods. According to the WPL method, the Day2 term

should be dropped from the model and statin use is marginally significant. Note that the

standard error of the estimate of WPL is the largest among the four methods followed by

WMME, WMM and SMM. Again, the WPL accounts the nuisance parameters (weights) in

the computation of the variance of the estimates.

3.4 SIMULATION STUDY FOR NON-IGNORABLE MISSING

LONGITUDINAL BIOMARKER DATA

To evaluate the performance of the proposed weighted pseudo likelihood (WPL) methods,

an extensive simulation study was conducted. Using theis approach we have compared the

following models:

i) SMM: Standard linear mixed model with the SE of the estimates computed using the

Fisher information

ii) WMM: Weighted linear mixed model with the SE of the estimates computed using the

Fisher information

iii)WMME: Weighted linear mixed model with the SE of the estimates computed using the

sandwich estimator

iv) WPL: Weighted linear mixed model with the SE of the estimates computed using asymp-

totic pseudo-likelihood (PL) theory.

For our simulation study, we have generated the anti-thrombin biomarker data from
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Table 3.1: Analysis of non-ignorable missing longitudinal anti-thrombin biomarker data using

weighted pseudo likelihood method

Variable Model Coef. Std.Err. Z-statistic p-value

Intercept

SMM 4.441 0.011 399.630 <.0001

WMM 4.473 0.012 385.920 <.0001

WMME 4.473 0.025 182.500 <.0001

WPL 4.473 0.123 36.376 <.0001

Day

SMM -0.020 0.005 -4.000 <.0001

WMM -0.034 0.005 -6.470 <.0001

WMME -0.034 0.015 -2.210 0.027

WPL -0.034 0.019 -1.830 0.034

Day2

SMM 0.005 0.001 7.580 <.0001

WMM 0.006 0.001 8.130 <.0001

WMME 0.006 0.002 2.770 0.006

WPL 0.006 0.009 0.640 0.261

Statin Use

SMM 0.039 0.018 2.210 0.027

WMM 0.043 0.018 2.420 0.016

WMME 0.043 0.016 2.630 0.009

WPL 0.043 0.032 1.360 0.087
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a multivariate normal distribution with a specified mean vector and variance-covariance

matrix. The mean vector and covariance matrix were obtained from the GenIMS data. The

mean vector of the MVN distribution was as follows:

µjh = α + β0 dayj + β1 Statin Use

where Statin Use is a binary variable indicating whether patients were using statins prior

to hospitalization; j(day) = 1,...,7 and h (dropout categories) =0, 1, or 2. The covariance

of the MVN distribution has been drawn from the GenIMS study. The true values of the

parameters were set to β0=0.1 and β1=0.56. The number of subjects (sample size, N)

considered in the simulation study are 200, 500, and 1000 with a follow-up period of seven

days. One thousand iterations were performed in each simulation study. There are three

designs or scenarios have been considered for the simulation. In the first design, D1, 30% of

the subjects have complete biomarker measurements at each of the seven days (completers)

, 60% of the subjects have dropped out from the study (dropouts) , and 10% of the subjects

died (death) in the study period. For the second design D2, there are 60% completers, 30%

dropouts and 10% deaths. Third design, D3, consists of 70% completers and 30% dropouts.

The generated anti-thrombin data were set to missing from the categories of dropouts and

deaths at a rate of 10%, 20% and 30% at each wave of measurement to create missing data

in the simulation study.

After generating the longitudinal biomarker data for seven days, we have created a drop-

out categorical variable representing the three categories of subjects in the study: completers,

dropouts, deaths. Then we fitted the following multinomial logistic regression model with a

generalized logit function to compute the probabilities of observing anti-thrombin biomarker

data:

log(
φhi

φ0i

) = gh(x
∗
i ) = λh0 + λh1 dayij + λh2 Statin Usei + λh3 Antithrombini1

where i=1,2,...,N; 1 ≤ j ≤ 7 and h=1, 2. Note, baseline anti-thrombin (antithrombini1) has

been used in this logistic regression model. Using equations (12), (18), and (19), as derived

in section 2, we have computed the weights, the score, and the Fisher information to obtain

SE of the WPL estimates. The linear mixed model (20) has been fitted by considering time
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(days) and statin use as fixed effects, and by including the intercept as a random effect in the

model. Maximum likelihood estimates of the fixed effects parameters are compared in terms

of the bias, standard error (SE), root mean square error (RMSE), and coverage probability.

Table 3.2 presents the results from the analysis of simulated non-ignorable missing longi-

tudinal anti-thrombin biomarker data with 30% completers, 60% dropouts, and 10% deaths.

Results are presented for sample sizes of 200, 500, and 1000 subjects with 10% and 30% of

the outcomes subject to missing values. Biases of the estimates from the standard linear

mixed model, and weighted linear mixed models are minimal and negligible. There is no

pattern in the bias due to the sample size and percentage of missingness. The SE of the

estimates from the WPL model is the largest among the four SEs considered for the compar-

ison. Consequently, the RMSE and the coverage probabilities of the WPL estimate are also

the largest among the four estimates. The RMSE decreases with the increase in the sample

size but there is no pattern that can be observed for the percentages of missing observations

at each wave of measurement.

By comparing the all of the simulation results presented in Tables 3.2 - 3.4, we can report

that bias depends on the number of subjects with incomplete measurements due to dropouts

and deaths. Biases of the estimates are the smallest for design D3, where only 30% of the

subjects have incomplete measurements due to the dropouts. The SE of the WPL is either

a compromise or a competitor to the SE of the estimates of WMME. Similar observations

can be found in terms of RMSE. In most cases, the RMSE increases with the increase in

the percentages of missing observations but it decreases with the increases in the number

of subjects. Also the RMSE of the WPL estimator is either a compromise or a competitor

to the RMSE of the estimates of WMME. In terms of coverage probability, the WMM has

poor performance while the WPL performs as expected.
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Table 3.2: Analysis of differential reasons for missing longitudinal Anti-thrombin biomarker data with 30% completers, 60%

dropouts, and 10% deaths(True value of the parameters: β0(time)=0.1 and β1(StatinUse)=0.56)

Sample Size, N=200 Sample Size, N=500 Sample Size, N=1000

10% missing 30% missing 10% missing 30% missing 10% missing 30% missing

Statistics Model β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s

Bias*100

SMM -0.024 0.043 0.016 0.046 0.004 -0.006 0.002 -0.012 0.000 -0.007 0.002 0.042

WMM -0.024 0.039 -0.003 0.047 -0.021 0.032 -0.007 -0.004 -0.033 0.042 -0.002 0.036

WMME -0.024 0.039 -0.003 0.047 -0.021 0.032 -0.007 -0.004 -0.033 0.042 -0.002 0.036

WPL -0.024 0.039 -0.003 0.047 -0.021 0.032 -0.007 -0.004 -0.033 0.042 -0.002 0.036

SE*100

SMM 0.200 0.963 0.187 0.973 0.127 0.619 0.148 0.624 0.090 0.438 0.105 0.442

WMM 0.198 0.965 0.198 0.979 0.126 0.622 0.146 0.631 0.089 0.441 0.103 0.447

WMME 0.319 1.038 0.295 1.028 0.207 0.672 0.220 0.660 0.148 0.480 0.157 0.471

WPL 0.368 1.288 0.402 1.236 0.234 0.823 0.320 0.785 0.166 0.580 0.227 0.558

RMSE*100

SMM 0.202 0.964 0.188 0.974 0.127 0.619 0.148 0.624 0.090 0.439 0.105 0.444

WMM 0.200 0.966 0.198 0.980 0.128 0.623 0.146 0.631 0.095 0.443 0.104 0.449

WMME 0.320 1.039 0.295 1.029 0.208 0.673 0.220 0.660 0.151 0.482 0.157 0.472

WPL 0.369 1.289 0.402 1.236 0.235 0.824 0.320 0.785 0.169 0.582 0.227 0.560

95%CP

SMM 0.85 0.95 0.88 0.95 0.86 0.92 0.85 0.92 0.86 0.94 0.84 0.94

WMM 0.75 0.92 0.81 0.95 0.80 0.89 0.78 0.91 0.76 0.95 0.82 0.95

WMME 0.94 0.95 0.96 0.96 0.95 0.92 0.95 0.93 0.96 0.97 0.97 0.96

WPL 0.96 0.99 1.00 0.99 0.96 0.97 1.00 0.97 0.97 0.99 1.00 0.98
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Table 3.3: Analysis of differential reasons for missing longitudinal Anti-thrombin biomarker data with 60% completers, 30%

dropouts, and 10% deaths (True value of the parameters: β0(time)=0.1 and β1(StatinUse)=0.56)

Sample Size, N=200 Sample Size, N=500 Sample Size, N=1000

10% missing 30% missing 10% missing 30% missing 10% missing 30% missing

Statistics Model β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s

Bias*100

SMM 0.015 -0.078 0.016 -0.072 0.002 -0.074 -0.002 -0.031 -0.008 -0.018 -0.006 -0.009

WMM -0.013 -0.029 -0.003 -0.043 -0.013 -0.053 -0.009 -0.030 -0.043 0.043 -0.011 -0.005

WMME -0.013 -0.029 -0.003 -0.043 -0.013 -0.053 -0.009 -0.030 -0.043 0.043 -0.011 -0.005

WPL -0.013 -0.029 -0.003 -0.043 -0.013 -0.053 -0.009 -0.030 -0.043 0.043 -0.011 -0.005

SE*100

SMM 0.177 0.970 0.187 0.976 0.112 0.614 0.119 0.617 0.079 0.435 0.084 0.436

WMM 0.185 0.978 0.198 0.983 0.117 0.619 0.125 0.622 0.083 0.438 0.089 0.439

WMME 0.308 1.066 0.295 1.030 0.196 0.679 0.189 0.658 0.139 0.480 0.135 0.465

WPL 0.302 1.229 0.402 1.192 0.192 0.777 0.256 0.757 0.136 0.551 0.180 0.535

RMSE*100

SMM 0.177 0.973 0.188 0.979 0.112 0.618 0.119 0.618 0.079 0.435 0.084 0.436

WMM 0.186 0.978 0.198 0.984 0.118 0.621 0.126 0.622 0.093 0.440 0.089 0.439

WMME 0.308 1.066 0.295 1.031 0.197 0.681 0.190 0.659 0.146 0.482 0.135 0.465

WPL 0.302 1.229 0.402 1.193 0.192 0.778 0.256 0.758 0.143 0.552 0.181 0.535

95%CP

SMM 0.85 0.94 0.86 0.95 0.87 0.94 0.87 0.95 0.872 0.95 0.86 0.95

WMM 0.77 0.91 0.79 0.95 0.76 0.91 0.78 0.93 0.742 0.95 0.82 0.94

WMME 0.94 0.93 0.94 0.95 0.95 0.94 0.94 0.95 0.942 0.96 0.94 0.95

WPL 0.95 0.96 0.99 0.98 0.93 0.97 0.99 0.97 0.944 0.98 0.99 0.98
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Table 3.4: Analysis of differential reasons for missing longitudinal Anti-thrombin biomarker data with 70% completers and 30%

dropouts (True value of the parameters: β0(time)=0.1 and β1(StatinUse=0.56)

Sample Size, N=200 Sample Size, N=500 Sample Size, N=1000

10% missing 30% missing 10% missing 30% missing 10% missing 30% missing

Statistics Model β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s β̂t β̂s

Bias*100

SMM -0.015 -0.007 -0.027 -0.031 0.011 -0.049 0.005 -0.023 0.011 0.005 -0.002 0.018

WMM -0.004 -0.024 -0.015 -0.045 0.014 -0.053 0.006 -0.025 0.014 0.001 0.000 0.016

WMME -0.004 -0.024 -0.015 -0.045 0.014 -0.053 0.006 -0.025 0.014 0.001 0.000 0.016

WPL -0.004 -0.024 -0.015 -0.045 0.014 -0.053 0.006 -0.025 0.014 0.001 0.000 0.016

SE*100

SMM 0.238 0.982 0.363 1.009 0.151 0.619 0.229 0.639 0.107 0.438 0.162 0.452

WMM 0.238 0.977 0.363 1.001 0.151 0.618 0.229 0.638 0.107 0.437 0.162 0.451

WMME 0.324 1.010 0.480 1.036 0.205 0.644 0.304 0.662 0.145 0.456 0.216 0.469

WPL 0.354 1.134 0.492 1.068 0.220 0.690 0.305 0.651 0.155 0.487 0.216 0.460

RMSE*100

SMM 0.239 0.982 0.364 1.010 0.151 0.621 0.229 0.639 0.108 0.438 0.162 0.452

WMM 0.238 0.977 0.363 1.002 0.152 0.620 0.229 0.638 0.108 0.437 0.162 0.451

WMME 0.324 1.011 0.481 1.037 0.206 0.647 0.304 0.662 0.146 0.456 0.216 0.469

WPL 0.354 1.135 0.493 1.069 0.220 0.692 0.305 0.652 0.156 0.487 0.216 0.460

95%CP

SMM 0.87 0.95 0.86 0.95 0.86 0.96 0.84 0.94 0.85 0.94 0.86 0.93

WMM 0.89 0.95 0.85 0.95 0.86 0.96 0.84 0.94 0.84 0.94 0.86 0.93

WMME 0.97 0.95 0.95 0.95 0.95 0.96 0.93 0.95 0.95 0.94 0.96 0.95

WPL 0.98 0.98 0.96 0.96 0.97 0.97 0.94 0.95 0.96 0.96 0.96 0.94
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3.5 DISCUSSION ON THE FINDINGS OF NON-IGNORABLE MISSING

LONGITUDINAL BIOMARKER DATA ANALYSIS

For longitudinal biomarker data with differential reasons for dropout and death, the correct

specification of the full likelihood function and estimation of parameters requires infinite

dimensional integrations. Weighted pseudo likelihood (WPL) method has been proposed

for these types of longitudinal biomarker data. This WPL approach to the analysis of

longitudinally measured biomarker data with differential reasons for dropout and death is a

generalization of the weighted pseudo approach used by Lawless et al (1999). Weights were

computed by inverting the probability of response which was originally used in differential

sampling rate problems by Horvitz and Thompson. Recently Robins et al used IPW methods

in the semi-parametric regression models. Our proposed methods can be implemented using

existing statistical software. We have described and compared four models: SMM, WMM,

WMME and WPL for analyzing longitudinal biomarker data with differential reasons for

missing. Results of the WPL approach have been compared with the results of SMM, WMM

and WMME via a real data analysis and a simulation study. The WPL approach, unlike the

other weighted methods, accounts the fact that weights has been used as nuisance parameters

(weights) in the estimation.

The simulation study suggests that the WPL approach performs reasonably well com-

pared to the other standard and weighted approaches. It suffers from the fact that the

estimation of the weights is taken into account when adjusting for the missingness, resulting

in larger standard errors. The results obtained by WPL method are competitive with the

results of WMME. For all methods the bias, SE and RMSE increase with the increase in

missing observations. In terms of coverage probability the WMM is the worst performer and

WPL is a competitor to the WMME.

29



4.0 ANALYSIS OF LEFT-CENSORED AND NON-IGNORABLE MISSING

LONGITUDINAL BIOMARKER DATA USING WEIGHTED PSEUDO

LIKELIHOOD THEORY

4.1 INTRODUCTION

Missing data is a persistent problem in longitudinal studies, presenting challenges at the

analysis stage and resulting in a need for methodology to address these issues. The data

may be missing due to subject drop out or death, failure to collect a subset of the data at

follow up for administrative reasons, or missing due to censoring or truncation. This loss

of data can result in biased estimates and a loss in precision. In addition, the relationship

between the outcome and predictors may vary depending on the reason for missingness and

failure to account for this in an analysis can affect the results.

The modeling of missing data has been an ongoing issue in the Genetic and Inflamma-

tory Markers of Sepsis Study (GenIMS). The GenIMS study is a longitudinal cohort study

of subjects with community acquired pneumonia that were recruited from 2001-2003 in 28

hospitals located in Pennsylvania, Connecticut, Michigan and Tennesse. One major goal of

this study was to understand the role of inflammatory markers in the progression of pneu-

monia to sepsis (Kellum, et al, 2007). The biomarkers were collected daily throughout the

first seven days of hospitalization and may be missing due to death in the hospital during

the first seven days, discharge from the hospital before day 7 or for administrative reasons.

In these settings it is likely that the pattern of any given biomarker will differ depending

on the reason for the missing data. One of the markers of greatest interest in GenIMS was

the pro-inflammatory marker IL-6; however, the measurement of IL-6 was limited due to the

sensitivity of the assay resulting in left censoring of the measure at the lower limit of detec-
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tion. Figure 4.1 presents plots of IL-6 over the seven days of measurement for three groups

of subjects; those with complete observations over days 1 - 7, those who have incomplete

observations due to hospital discharge and those who have incomplete observations due to

death during the first seven days of hospitalization. This plot points to the differences in

these groups and the need to account for this in the analysis as illustrated by the fact that

subjects who died had the highest IL-6 levels during the study.

Many methods exist for the handling of missing data in longitudinal studies when the

data are missing at random (MAR) and missing not at random (MNAR) including those

based on imputation (Rubin, 1976; Rubin, 1996, Schafer, 1997) and those based on weighting

(Robins, Rotnitzky and Zhao, 1995; Rotnitzky and Robins, 1997; Lipsitz, Ibrahim and Zhao,

1999; Lawless, Kalbfleisch and Wild, 1999; Dufouil, Brayne and Clayton, 2004; Fitzmaurice,

et al., 2005; Ibrahim et al., 2005). Using the method of weighting, greater weight is placed

on those observations that are less likely to be observed. The attraction of both imputation

and weighting is that standard methods can be used for analysis. There are also likelihood-

based methods, including selection, pattern mixture, and shared parameter models, (Little

and Rubin, 2002; Hogan et al., 2004) for analyzing MNAR or non-ignorable missing longi-

tudinal data. However, these likelihood based methods do not allow for differential reasons

for missingness and censored observations to be included in the analysis. In addition, the

estimation of the weights has not been studied in these likelihood based methods.

The inverse probability weighting (IPW) method has been used for the differential sam-

pling rate problem to account for the fact that the data are not obtained from a random

sample(Horvitz and Thompson, 1952). The idea of the IPW method is that if the prob-

ability of selecting a unit is πi then the total π−1
i units in the population should be used

in the estimation. Recently, the IPW method has been used for handling dropouts or an

under-represented response profile in non- or semi-parametric models (Robins and Rotnitzky,

1995). “The underlying idea is to base estimation on the observed responses but weight them

to account for the probability of remaining in the study (Fitzmaurice et al, 2004)”.

Since left-censored data arise in a variety of applications, there are many methods avail-

able to account for left-censoring in the outcome, with the tobit regression model being one

of the first models developed for this problem (Tobin, 1958). Other approaches include the
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Figure 4.1: Comparison of IL-6 levels over 7 days period by the follow-up category.
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use of variance components (Epstein et al, 2003), imputation of the quantification limit (Keet

et al, 1997), using half of the lower limit of detection (O’Brien et al, 1998) and the use of

random imputation procedures (Paxton et al, 1997). A more efficient approach to multiple

imputation has also been proposed for analyzing censored longitudinal data using a linear

mixed model (Hugues, 1999, Jacqmin-Gadda et al, 2000).

The goal of this work is to address the problem of differentially missing longitudinal data

when the outcome is subject to left-censoring. We are proposing to extend the theory of

tobit regression and the random effects tobit model (Tobin, 1958, Epstein et al, 2003) to

develop a weighted random effects tobit (WRT) model for analyzing non-ignorable missing

and left-censored longitudinal biomarker data. The performance of the WRT model will be

compared with the random effects tobit (RT) model as well as weighted linear mixed models

(Laird and Ware, 1982). In this setting, weighted linear mixed models (WMM) will be fit by

replacing the censored values with the half of the detection limit and a randomly imputed

value. In sample survey theory the weights have been assumed to be fixed and known. Here

the IPW are computed from the observed data and hence their sampling variability will be

taken into account in the inference (Little and Rubin, 2002, p. 53). We will also consider the

IPW as nuisance parameters in the WRT model and use pseudo likelihood (PL) theory to

account for the uncertainty associated with the estimation of an infinite number of nuisance

parameters (Gong and Samaniego, 1981).

In section 4.2 we will describe the random effects tobit model and weighted random effects

tobit model for analyzing non-ignorable missing and left-censored longitudinal biomarker

data. In section 4.3 we will present an analysis of the IL-6 biomarker data from the GenIMS

study. In section 4.4 we will demonstrate the performance of the proposed model using a

simulation study. In the section 4.5 we will offer a discussion on the findings.
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4.2 NOTATION AND WEIGHTED RANDOM EFFECTS TOBIT MODEL

FORMULATION

Let Yij denote the measurement of a biomarker from the ith subject on the jth day of

measurement at time tij, i = 1, 2, ..., N, j = 1, 2, ..., ni and Xij = (Xij1, Xij2, ..., Xijp)
′ denote

a p × 1 vector of covariates associated with Yij. In vector notation, Yi = (Yi1, Yi2, ..., Yini
)′

is the ni-dimensional vector of biomarker measurements and Xi is the ni × p matrix of

covariates for the ith subject. Suppose the observed, censored and missing components of

Yi are denoted by Yo
i , Yc

i and Ym
i respectively. Define the missingness indicator vector as

Ri = (Ri1, Ri2, ..., Rini
)′, where Rij =0 if Yij is observed, and =1 otherwise. Note, in this

paper we will assume that Yi and Yi′ , (i 6= i′), are independent and that the covariate vector

Xij is fully observed.

Suppose we observe Yij = Y o
ij only if Y o

ij > c (a constant) and Yij = c if Y o
ij ≤ c. In this

scenario, we have censored observations, since we do not observe any Yij that is less than c.

For the observations where Yij = c all we know is that Y o
ij ≤ c, i.e., Pr(Yij = c) = Pr(Y o

ij ≤ c).

Under the assumption that the missing data mechanism is missing at random (MAR), the

left-censored longitudinal biomarker (e.g., IL-6) data can be analyzed utilizing the following

tobit model (Tobin, 1958, Amemiya, 1974):

Yo
i = Xiβ + εi ifYo

i > c, (4.1)

where εi is the usual error vector and is assumed to be distributed as a multivariate normal

with mean vector zero and variance covariance matrix Σ. To estimate the parameters in

model (1) we can use the maximum likelihood procedure. For the two sets of observations:

(i) Yij = Y o
ij with Y o

ij > c we can write the density function as φ[(Yi −Xiβ)/Σ] where φ(.)

is the pdf of the standard multivariate normal distribution, and (ii) Yij = c with Y o
ij ≤ c

having the following probability

Pr[Yi = c] = Pr[Yo
i ≤ c] = Pr[Xiβ + εi ≤ c] = Pr[εi ≤ c−Xiβ] = Φ(co), (4.2)
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where Φ(.) is the cumulative density of the multivariate normal distribution and co = (c −
Xiβ)/Σ. From these probability specifications, the likelihood function for the parameters

associated with model (1) is given by:

L(β,Σ) =
∏
Yi>c

(2π)−
N1
2 |Σ|− 1

2 exp(Yi −Xiβ)′Σ−1(Yi −Xiβ)
∏

Yi≤co

Φ((c−Xiβ)/Σ). (4.3)

Without loss of generality we can assume that the first N1 subjects have Yij = Y 0
ij and that

the remaining N0 = N −N1 have Yij = c. So the log-likelihood function can be written as

lnL = −N1

2
ln(|2πΣ|)− 1

2

N1∑
i=1

(Yi−Xiβ)′Σ−1(Yi−Xiβ)+
N∑

i=N1+1

ln[Φ((c−Xiβ)/Σ)]. (4.4)

Epstein et al. (2003) have developed a tobit variance components method in the linear mixed

model (LMM) frame work, a popular model for fitting inherently unbalanced longitudinal

continuous biomarker data. A LMM for the ith subject can be written in the following form

(Laird and Ware 1982):

Yi = Xiβ + Zibi + ei, (4.5)

where the vector Yi is distributed as multivariate normal with the following specification:

Yi|bi ∼ N(Xiβ + Zibi,Σi) (4.6)

bi ∼ N(0,D), (4.7)

where Xi is the ni × p design matrix for the fixed effects, β; Zi is the ni × q design matrix

for the random effects, bi; and D = Cov(bi) and Σi=Cov(ei) are the covariance matrices of

the random effects and errors respectively.

If there is no left-censoring in the measurements, then from (5), the marginal distribution

of Yi is normal with mean Xiβ and covariance matrix Vi=Σi+ ZiDZ′i. So inferences for

the fixed parameters β can be based on the following log-likelihood function:

logL(β) = −N

2
log2π − 1

2
log|V| − 1

2
(Yi −Xiβ)′V−1(Yi −Xiβ). (4.8)
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If there is left-censoring in the biomarker measurements, the likelihood function for the

random effects tobit (RT) model (Epstein et al, 2003) can be written as

L(β,ηi) =
∏
Yi>c

f(yo
i |Xi, Zi,β,ηi)

∏
Yi≤c

Pr(yc
i < c|Xi, Zi, β,ηi), (4.9)

where ηi denotes the ith component of Vi. Now, the conditional distribution of Yc
i |Yo

i is

multivariate normal (Johnson and Wichern, 2001):

Yc
i |Yo

i ∼ N(µ
c|o
i ,V

c|o
i ), (4.10)

where the mean vector and covariance matrix can be written as

µ
c|o
i = Xc

iβ + ηco
i ηoo

i
−1(yo

i − µo
i )

V
c|o
i = ηc

i − ηco
i ηoo

i
−1ηoc

i .

Using the above quantities, the likelihood function (9) can be re-written as

L(β,ηi) =
∏
Yi>c

1

2π|ηoo|1/2
e−

1
2
(yo

i−Xo
i β)Tηoo

i
−1(yo

i−Xo
i β) (4.11)

×
∏
Yi≤c

∫ ci1

−∞

∫ ci2

−∞
· · ·

∫ cini

−∞

1

2π|ηc|o|1/2
e−

1
2
(u−µc|o

i )Tηc|o
i

−1
(u−µc|o

i )du.

So the log likelihood function is

l(β,ηi) =
∑
Yi>c

[−log(2π)− 1

2
log|ηoo

i | −
1

2
(yo

i −Xo
i β)T ηoo

i
−1(yo

i −Xo
i β)] (4.12)

+ log
∏
Yi≤c

∫ ci1

−∞

∫ ci2

−∞
· · ·

∫ cini

−∞

1

2π|ηc|o|1/2
e−

1
2
(u−µc|o

i )Tηc|o
i

−1
(u−µc|o

i )du.

When applying the pseudo maximum likelihood method, the likelihood function is maximized

for the parameters of interest and all other parameters are treated as nuisance parameters

(Gong and Samaniego, 1981). These nuisance parameters are replaced by their consistent

estimates in the likelihood function. Treating η as a nuisance parameter vector, the pseudo

log-likelihood and the corresponding score functions for the parameter vector β are as follows:

l(β, η̂) = l(β,η)|η=η̂ (4.13)

S(β, η̂) =
∂

∂β
l(β, η̂). (4.14)
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Equations (13) and (14) define the log-likelihood function and the score function correspond-

ing to the RT model, respectively. If the missing data are ignorable, then the inferences can

be based on the RT model’s pseudo log-likelihood function (13) and its score equation (14).

For the left-censored IL-6 longitudinal biomarker data subject to non-ignorable missingness,

the likelihood function is complex (Little and Rubin, 2002). To simply this likelihood, the

pseudo likelihood method is implemented with weighting to account for missing data (Law-

less et al., 1999). These weights are incorporated by multiplying the pseudo log-likelihood

function (eq. 13) and the score function (eq. 14) of the RT model by weights. Now, the

weighted pseudo log-likelihood function and weighted score function of the RT model can be

defined as,

l(β, η̂, ω̂) =
N∑

i=1

Riω̂il(β, η̂) (4.15)

S(β, η̂, ω̂) =
N∑

i=1

Riω̂i
∂

∂β
l(β, η̂). (4.16)

where ωi = π−1
i = (

∑H
h=1 pihδih)

−1; pih is the probability of observing the biomarker from

the ith subject in dropout category h with δih = 1 if the ith subject belongs to category

h and 0 otherwise. We assume that the estimate of pih will be obtained by a plausible

estimation procedure and need not be obtained by the method of maximum likelihood. The

probability of observing a biomarker is modeled with a generalized logit model (Hosmer and

Lemeshow, 2000). The generalized logistic regression model will be fitted with covariate

vector, xi, observed response vector prior to time tj, yo
ij=(Yo

i1, ..., Y
o
i,j−1), and unobserved

response, ym
ij as described by Hogan and Laird (1997) in p. 263. Now, taking completers(0)

as the reference category, and dropout(1) and death(2) as comparison categories, the logistic

regression model can be written as

log

(
πhi

π0i

)
= gh(x

∗
i ) = λh0 + λ′h1xi + λ′h2y

o
ij + λh3y

m
ij h = 1, 2. (4.17)

It follows that the conditional probability given the covariate vector x∗i in this three category

model can be obtained by the following formula:

πhi =
exp(gh(x

∗
i ))∑2

h=0 exp(gh(x∗i ))
. (4.18)
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The inference for the pseudo-likelihood estimates obtained from equation (16) is based on

asymptotic theory. The PL asymptotic SE of the estimates accounts for the extra variability

due to the use of the estimated weights, in the estimation process (Gong and Samaniego,

1981). The asymptotic covariance matrix for the parameter of interest will be obtained using

the following formula (Lawless et al. 1999, p. 427):

V ar(β̂) ∼= A11 + A−1
11 Ṽ A−T

11 , (4.19)

where

Ã11 = −
N∑

i=1

Riω̂i
∂2

∂β∂β′
l(β, η̂)|β=β̂. (4.20)

Letting, ξ̃i = ∂
∂β

l(β, η̂) and ¯̃ξ(h) = 1
nh

∑
i∈Dh

ξ̃i, Ṽ can be defined as

Ṽ =
N∑

i=1

(ω2
i − ωi)

∑
i∈Dh

(ξ̃i − ¯̃ξ(h))(ξ̃i − ¯̃ξ(h))T . (4.21)

Equations (15) and (16) are the log-likelihood function and score equation of the proposed

weighted random effects tobit (WRT) model, respectively. The SE of the WRT model’s

parameter estimate will be computed using formulas (19) - (21).

For comparison, we will fit a weighted linear mixed model (WMM) to the non-ignorable

missing and left-censored longitudinal data. In the WMM, the weights will be used as a

remedy for the non-ignorable missingness, and the censored values will be replaced by half

of the detection limit or a randomly imputed value. The score equation for the parameters

of interest from the WMM will be as follows,

∂logL(β)

∂β
= −X′

iV
−1
ω Xiβ + X′

iV
−1
ω Yi, (4.22)

where Cov(Y) = Vω = ZGZ′ + LRL with L = diag(ω− 1
2 ). The parameters of the WMM

will be estimated by the score equation (22) and the SEs of the estimated parameters will

be computed by the variance formula in (19)-(21).

We will compare the performance of the proposed WRT model with a number of different

models. Each of these models is denoted with a subscript on both the left and right side.

The subscripts on the left side are a and r denoting the asymptotic SE from the PL theory
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and the robust SE, respectively. The subscripts on the right side are 1 , m, 7 , h, and r

denoting the use of a single weights across the wave of measurements, mis-specified weights,

seven(multiple) weights, half of the detection limit, and a randomly imputed value in the

model respectively. The models are,

(i) rRT: denotes a random effects tobit model with the SEs of the estimates computed using

the sandwich estimator.

(ii) rWRT1: denotes a weighted random effects tobit model with the SEs of the estimates

computed using the sandwich estimator.

(iii) aWRT1: denotes a weighted random effects tobit model with the SEs of the estimates

computed using the asymptotic PL theory.

(iv) aWRTm: denotes a weighted random effects tobit model with the SEs of the estimates

computed using the asymptotic PL theory. In this model, a small perturbation has been

applied to the observed probabilities (0.10 added to the observed probabilities) and hence

the weights are mis-specified.

(v) aWRT7: denotes a weighted random effects tobit model with the SEs of the estimates

computed using asymptotic PL theory. In this model, multiple (seven) weights are computed

for the multiple waves (seven days) of the IL-6 measurements.

(vi) aWMMh: denotes a weighted linear mixed model with the SEs of the estimates com-

puted using the asymptotic PL theory. In this model censored values are replaced by half of

the detection limit.

(vii) aWMMr: denotes a weighted linear mixed model with the SEs of the estimates computed

using the asymptotic PL theory. In this model censored values are replaced by randomly

imputed values.
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4.3 APPLICATION: ANALYSIS OF LEFT-CENSORED AND

NON-IGNORABLE MISSING LONGITUDINAL IL-6 BIOMARKER

DATA

The GenIMS study was a large cohort study that was designed to gain an understanding

into the role of both genetic and inflammatory biomarkers in the development of sepsis. The

study focused on recruiting patients with community acquired pneumonia (CAP) to insure

a relatively homogenous group of subjects, since sepsis can result from multiple illnesses.

A total of 2320 patients were enrolled into the study through the emergency departments

in 28 hospitals in Pennsylvania, Connecticut, Michigan, and Tennessee (2001-2003). The

focus of this analysis is on the biomarkers that were measured as part of the study. One

marker of inflammation that was obtained was interleukin-6 (IL-6), which is thought to be

a pro-inflammatory maker. The IL-6 measurements were left-censored due to the limit of

quantification and were measured daily during the first seven days of the hospitalization.

Thus the IL-6 data could be missing due to death, discharge from the hospital before day

7 or for administrative reasons. Figure 4.1 presents the plot of IL-6 over time and indicates

that the level of this biomarker depends on the reasons of missingness. This leads to non-

ignorable missingness and points to the need to take this into account in the analysis. In

this analysis, we have 330 subjects with complete IL-6 measurements, 699 subjects with

incomplete IL-6 measurements due to hospital discharge and 19 subjects with incomplete

data due to death during the first 7 days of hospitalization. We are analyzing the IL-6 data

with non-ignorable missingness using the proposed WRT method that has been described

in Section 2. In this weighted analysis the computed weights are obtained for the observed

response to account for the non-ignorable missingness. The probability of an IL-6 value being

missing is computed from a multinomial logistic regression model with dropout category as

the outcome and the following covariates: logarithm of IL-6, steroid use, pneumonia severity

index (PSI), acute physiology and chronic health evaluation (APACHE). The weights are

then computed by inverting the probabilities estimated from this model. For this example,

we fitted all of the models that have been described in section 2. The SE of the estimates has

been computed using either the sandwich estimator or the asymptotic estimator obtained

from the PL theory.
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Table 4.1: Analysis of left-censored and non-ignorable missing longitudinal IL-6 biomarker

data obtained from the GenIMS study

Covariate Model Estimate S.E. z-value p-value

Day

rRT -0.4134 0.0186 -22.24 <.0001

rWRT1 -0.3580 0.0216 -16.60 <.0001

aWRT1 -0.3580 0.0171 -20.89 <.0001

aWRTm -0.4102 0.0480 -8.55 <.0001

aWRT7 -0.4063 0.2221 -1.83 0.0673

aWMMh -0.3316 0.0134 -24.71 <.0001

aWMMr -0.3434 0.0143 -24.02 <.0001

Race

rRT 0.1167 0.1123 1.04 0.2988

rWRT1 0.1426 0.1171 1.22 0.2237

aWRT1 0.1426 0.1126 1.27 0.2041

aWRTm 0.1613 0.1431 1.13 0.2585

aWRT7 0.0823 0.1146 0.72 0.4715

aWMMh 0.1163 0.0898 1.30 0.1936

aWMMr 0.1194 0.0927 1.29 0.1971

APACHE

rRT 0.0424 0.0040 10.57 <.0001

rWRT1 0.0349 0.0044 7.92 <.0001

aWRT1 0.0349 0.0049 7.06 <.0001

aWRTm 0.0390 0.0067 5.81 <.0001

aWRT7 0.0413 0.0140 2.94 0.0029

aWMMh 0.0350 0.0038 9.13 <.0001

aWMMr 0.0354 0.0039 9.02 <.0001
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Table 4.1 presents the results obtained from the weighted random effects tobit (WRT)

analysis of IL-6 biomarker data. The parameter estimates obtained from the WRT models

are different from the estimates obtained from the RT model. The parameter estimates of

intercept, day and race obtained from the weighted random effects tobit models (rWRT1 and

aWRT1) are larger than the estimates obtained from the random effects tobit model. The

corresponding SE of the WRT model’s parameter estimates is also larger when compared to

the SE of the rRT estimates. For most of the covariates in the weighted linear mixed models

(aWMMh or aWMMr) which are fitted by replacing the censored values with half of the detec-

tion limit or a randomly imputed value, parameter estimates and SEs are relatively smaller.

Small perturbations of the computed probabilities, resulting in mis-specified weights, have

little effect on the parameter estimates and SEs. Generally, the aWRT7 model estimates are

smaller and it’s SEs are larger, hence the corresponding z-values of this model are smaller

resulting in some covariates being insignificant when compared to the other methods.

4.4 SIMULATION STUDY FOR LEFT-CENSORED AND

NON-IGNORABLE MISSING LONGITUDINAL BIOMARKER DATA

To compare the performance of the proposed weighted random effects tobit (WRT) model

with the random effects tobit (RT) model, we conducted a simulation study that was designed

to address the following issues: the handling of the missing data through the estimation of

the weights used in the model, the definition of the censored outcome, the estimation of

the variance of the estimators, and the sensitivity of the model to mis-specification of the

weights. We used several different approaches to compare methods for the estimation of

the weights and to examine the sensitivity of the estimates to potential mis-specification.

We compared the rWRT1, aWRT1, aWRTm, and aWRT7 models, with the left subscripts r

and a indicating standard errors based on the sandwich estimator and asymptotic pseudo

likelihood theory respectively. The right subscripts are 1 indicating that only one weight

is used across the wave of measurements (constant weights), m indicating that the weights

are misspecified and, 7 indicating that the weights are estimated for each of the 7 time
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points. The impact of the estimation of the variance was examined via the models rWRT1

and aWRT1, which are both weighted random tobit models with r denoting the sandwich

estimator and a denoting the asymptotic variance based on the PL theory. Finally, the

impact of ignoring the left censoring of the outcome was examined by replacing censored

values either by half of the lower limit of detection or by a randomly imputed value with the

models aWMMh and aWMMr, respectively.

We generated outcome data from a multivariate normal (MVN) distribution with a spec-

ified mean vector and variance-covariance matrix. The mean vector and covariance matrix

were obtained from the GenIMS data and all simulations are based on this underlying co-

variance structure. Based on these assumptions, the mean vector has the following form,

µjh = α + β0dayj + β1APACHEh,

where APACHE denotes a severity of illness measure that was used in the GenIMS study, j

(day) = 1,..., 7 and h(dropout categories) = 0, 1, or 2. The true values of the parameters

were set to β0=-0.1 and β1=0.07. The outcome variable was then censored based on a rate of

10%, 25% and 40% for the simulation studies. We created the missing patterns for the data

and estimated the weights based on the multinomial logistic regression model as described

in section 2 and equation (17):

log

(
πhi

π0i

)
= gh(x

∗
i ) = λh0 + λh1dayj + λh2APACHEi + λh3(1)IL–6o

(1)+

· · ·+ λh3,(j−1)IL–6o
(j−1) + λhjIL–6m

j , h = 1, 2; j > 1.

All simulations were run with three different sample sizes of 1000, 500 and 200 subjects and

a follow up period of 7 days. The results presented are based on 500 samples and three

different designs. The first design, D1, is constructed so that 60% of the subjects have

complete observations, that is, data are present for all 7 days, and the remaining 40% of the

observations are subjects to missing due to drop out. For the second design, D2, 60% of

the subjects have complete data, 30% of the subjects are missing due to drop out and the

remaining 10% have missing data due to death. Design 3, D3, consists of 30% of subjects

with complete data, 60% of the subjects missing due to drop out and the remaining 10%
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missing due to death. The missingness across waves of time points was generated in the

following manner, 5% of subjects were removed starting from the 2nd wave at all waves.

Once a subject’s data is set to missing all data at the remaining time points is also missing.
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Table 4.2: Analysis of simulated left-censored and non-ignorable missing longitudinal IL-6 biomarker data with 60% completers

and 40% dropouts(True value of the parameters: β0=-0.1 and β1=0.07)

Sample Size, N=200 Sample Size, N=1000

Censored Model β̂0 β̂1 RMSE(β̂0) RMSE(β̂1) β̂0 β̂1 RMSE(β̂0) RMSE(β̂1)

10%

rRT -0.0183 0.0085 0.0818 0.1141 -0.0916 0.0683 0.0119 0.1856

rWRT1 -0.0183 0.0082 0.0818 0.1137 -0.0912 0.0653 0.0127 0.1826

aWRT1 -0.0183 0.0082 0.1030 0.8099 -0.0912 0.0653 0.0122 0.1934

aWRTm -0.0157 0.0108 0.1166 0.7814 -0.0912 0.0654 0.0122 0.1932

aWRT7 -0.0885 0.0637 0.0327 0.4038 -0.0894 0.0661 0.0135 0.1935

aWMMh -0.0179 0.0084 0.0996 0.7884 -0.0899 0.0664 0.0127 0.1932

aWMMr -0.0180 0.0083 0.1081 0.8376 -0.0898 0.0668 0.0138 0.1961

40%

rRT -0.0133 0.0083 0.0870 0.1145 -0.0678 0.0548 0.0351 0.1753

rWRT1 -0.0122 0.0074 0.0880 0.1132 -0.0622 0.0496 0.0403 0.1694

aWRT1 -0.0122 0.0074 0.1288 0.7817 -0.0622 0.0496 0.0401 0.1794

aWRTm -0.0123 0.0074 0.1287 0.7780 -0.0623 0.0496 0.0400 0.1792

aWRT7 -0.0589 0.0487 0.0692 0.4069 -0.0612 0.0495 0.0412 0.1792

aWMMh -0.0116 0.0067 0.1039 0.5406 -0.0596 0.0460 0.0414 0.1636

aWMMr -0.0117 0.0070 0.1130 0.6273 -0.0594 0.0467 0.0420 0.1685
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Table 4.2 presents the results obtained from design D1 where 60% of the subjects have

complete observations. Results are presented for sample sizes of 200 and 1000 subjects with

10% and 40% of the outcomes subject to censoring. Note that the bias of the estimates

is heavily dependent on the sample size with the estimates for a sample size of 200 being

severely biased while the results for a sample size of 1000 indicate that the estimates are

much closer to the true values. The bias is also substantially larger when comparing the

scenarios with 10% censoring to those with 40% censoring. In all cases the estimates for

aWRT7 are the least biased and for some of the settings these are the only estimates that

are close to the true values. While the results for 25% censoring and a sample size of 500

are not presented, the overall pattern was the same. For a sample size of 200 the results for

the RMSE varied widely across the methods. For estimation of the β0 term, aWRT7 had the

smallest RMSE followed by rRT and rWRT1 while the results were flipped for the β1 term.

For a sample size of 1000, the methods were comparable across the two censoring scenarios

with RMSE increasing as the percentages of censoring increased.

In Table 4.3 we have presented the simulation results for design D2, where 30% of the

subjects are missing due to drop out and 10% have missing data due to death. For N=200

and 10% censored observations, biases associated with all of the parameter estimates are very

high with the exception of aWRT7 model parameters. Again, the aWRT7 model parameter

estimates improve consistently as the sample size increases and the censoring percentage

decreases. In most cases, the RMSE for the parameter estimates associated with the model

aWRT7 are the smallest among all weighted estimates based on the asymptotic SE of the

estimates obtained from the PL theory. Simulation results obtained from design D3 (not

presented), where 60% subjects are missing due to drop out and 10% are missing due to

death, are similar to those obtained from the other two designs. Again, the biases of the

parameter estimates are minimal for a sample size of N=1000 and the biases are large for a

sample size of N=200.

When comparing the estimates across the three simulation designs (D1 with 40% dropouts;

D2 with 30% dropouts and 10% deaths; D3 with 60% dropouts and 10% deaths) we found

that the biases of the estimate of β1 generally increased as the percentages of missing obser-

vations increased, while this was not the case for the term β0. We also found that the RMSE

46



for the parameter estimates obtained from the largest sample sizes considered (N=1000)

were very similar across the designs while the results obtained for the smaller sample sizes

were more variable. Specifically for sample sizes of 200 and 500, the RMSE increased as the

percentage of censoring increased. When comparing the methods, models that accounted for

the censoring through use of tobit regression performed better than models where censored

observations were replaced by a randomly imputed value or a half of the lower limit of detec-

tion. Overall, the weighted random effects tobit model with multiple weights produced the

best estimates for small and moderate sample sizes, even with large percentages of missing

and censored observations, making this the method of choice for small and moderate sample

sizes.
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Table 4.3: Analysis of simulated left-censored and non-ignorable missing longitudinal IL-6 biomarker data with 60% completers,

30% dropouts and 10% deaths (True value of the parameters: β1=-0.1 and β2=0.07))

Sample Size, N=200 Sample Size, N=1000

Censored Model β̂0 β̂1 RMSE(β̂0) RMSE(β̂1) β̂0 β̂1 RMSE(β̂0) RMSE(β̂1)

10%

rRT -0.0183 0.0182 0.0818 0.1225 -0.0912 0.0695 0.0121 0.1839

rWRT1 -0.0165 0.0173 0.0836 0.1216 -0.0826 0.0650 0.0194 0.1800

aWRT1 -0.0165 0.0173 0.0989 0.6109 -0.0826 0.0650 0.0195 0.1858

aWRTm -0.0165 0.0172 0.0985 0.6009 -0.0827 0.0651 0.0194 0.1856

aWRT7 -0.0905 0.0889 0.0262 0.3027 -0.0906 0.0716 0.0130 0.1894

aWMMh -0.0179 0.0179 0.0966 0.5728 -0.0895 0.0681 0.0135 0.1867

aWMMr -0.0179 0.0179 0.1026 0.6050 -0.0895 0.0681 0.0145 0.1883

40%

rRT -0.0141 0.0106 0.0861 0.1155 -0.0681 0.0534 0.0348 0.1710

rWRT1 -0.0132 0.0104 0.0870 0.1153 -0.0637 0.0525 0.0389 0.1701

aWRT1 -0.0132 0.0104 0.1179 0.4739 -0.0637 0.0525 0.0388 0.1717

aWRTm -0.0133 0.0104 0.1171 0.4652 -0.0639 0.0527 0.0386 0.1717

aWRT7 -0.0667 0.0613 0.0489 0.2611 -0.0655 0.0507 0.0372 0.1698

aWMMh -0.0123 0.0096 0.1016 0.3472 -0.0597 0.0463 0.0414 0.1579

aWMMr -0.0124 0.0095 0.1079 0.3852 -0.0596 0.0466 0.0419 0.1606
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4.5 DISCUSSION ON THE FINDINGS OF LEFT-CENSORED AND

NON-IGNORABLE MISSING LONGITUDINAL BIOMARKER DATA

ANALYSIS

Analyzing left-censored and non-ignorable missing longitudinal biomarker data is a challenge.

For analyzing this type of data, we have proposed a weighted random effects tobit model. We

have compared the proposed model with the random effects tobit model (RT), a standard

model for analyzing left-censored longitudinal data. Using simulated data, four (4) WRT

models have been fitted by considering various combinations of SE and weights computation.

By replacing the censored values with a half of the detection limit or randomly imputed

values, two linear mixed models have been fitted and compared with the WRT models.

The weights are obtained by the IPW methodology, that is, the probabilities of observing a

biomarker value have been computed and inverted. These weights are used with the observed

data for recovering the contribution of missing observations in the analysis. In the estimation

process, these weights have been treated as nuisance parameters. Our interest lies in the

estimation of parameters of a weighted random effects tobit model. We have adjusted the

effects of nuisance parameters in the estimation of the SEs of the parameter estimates of

interest. Through the simulation study, we have compared the proposed WRT model with

a random effects tobit model, mis-specified WRT model, and linear mixed models.

In the simulation study, we have simulated three (3) scenarios or designs with various

percentages of missing and censored observations. Irrespective of the design, for small and

moderate sample sizes, both estimates of the coefficients are biased unless they are estimated

using the multiple weights model. Using the multiple weights model produces the smallest

bias in the estimation of parameters for both small and moderate sample sizes. All estimates

are very close to each other for large sample sizes (N=1000). Biases of the estimates increase

as the percentage of missingness increases. Biases of the estimates also depend on the

percentages of censored observations. For heavily censored data, the estimates are badly

biased though estimates obtained from using the multiple weights model are relatively less

biased. Mixed models and WRT models based on single weights produce similar estimates.

The mis-specified model which has been constructed based on a small perturbation of the
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computed probabilities, gives very similar estimates to those based on single weight WRT

and mixed models. From this simulation study we have seen that the multiple weight model’s

(aWRT7) estimates are the least biased across the designs, sample sizes, and percentages of

missing and censored observations.

For analyzing non-ignorable missing and left-censored longitudinal continuous biomark-

ers, we extend the theory of random effects tobit model. We propose the use of a multiple

weights random effects tobit model for settings where data are subject to missingness for

different reasons. We have corrected the SEs using the PL theory for the use of a large num-

ber of nuisance parameters (weights) in the estimation process. The proposed model works

well even in the setting of small to moderate sample sizes. In addition, the estimates have

the smallest bias and RMSE for small percentages of missing and censored observations.
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5.0 CONCLUSIONS

There are two issues in analyzing longitudinal biomarker data that have been addressed in

this endeavor. The first issue is the analysis of longitudinal biomarker data with dropout

and death. Though there are some likelihood based methods for analyzing non-ignorable

missing biomarker data, these methods have some concern on the issue of identifiability

along with their requirement of a rigorous computational approach for implementation. To

avoid this issue and for easy implementation in the standard software, we proposed weighted

pseudo likelihood (WPL) methods for analyzing non-ignorable missing longitudinally mea-

sured biomarker data. The proposed method has been compared with a number of methods.

We have tested the method by analyzing a real data set obtained from the GenIMS study

and performed a simulation study. A standard method for analyzing longitudinal data is the

standard linear mixed (SMM) model. Though the SMM model fit gives smaller biases, SE

estimates, and RMSE estimates, it does not account the fact that the data are non-ignorable

missing. The weighted linear mixed model (WMM) has been fitted with the intention to

capture the missing data. Using this method, the SE of the estimate was not corrected due

to the uncertainty of estimating weights. For comparison, we have fitted the WMM with

the robust SE estimate. This SE estimate does not take into consideration the fact that the

nuisance parameters have been used in the estimation process either. The proposed WPL

method corrects the computed SE estimate. The three weighted methods produce same bi-

ases. The SE and RMSE of the WPL method estimate are competitive to the SE and RMSE

of the WMME method estimate. The coverage probabilities for the regression coefficients

estimates by the WMME and WPL methods vary according to the designs. No method is

consistently performing over the other method across the designs.

The second issue for analyzing longitudinal biomarker data is the left-censoring. In addi-
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tion to the non-ignorable missingness, left-censoring gives another non-trivial challenge to the

analyst. Though there are some likelihood based methods for analyzing left-censored and/or

non-ignorable missing longitudinal data, none of these methods are based on weighting tech-

niques. We proposed a weighted random effect tobit (WRT) model based on weighted pseudo

likelihood theory. This proposed model has been compared with the un-weighted random

effects tobit model. Also for the comparison, several WRT models have been fitted either

by varying the SE estimation procedure or by varying replacement methods for the censored

observations. The real (IL-6 biomarker) data analysis shows that the z-values differs among

the weighted methods. Again, only the SE estimates based on the WPL method account

for the effect of nuisance parameters in the estimation process. From the simulation study

it can be inferred that the WRT model using WPL theory and censored values replaced by

the detection limit produce smallest root mean square error (RMSE). Simulation study also

indicates that, instead of using a single weight across the panels, use of multiple weights

produce smallest RMSE. Therefore, for analyzing non-ignorable missing and left-censored

longitudinal biomarker data, a WRT model based on WPL theory with censored values

replaced by the detection limit and use of multiple weights would be recommended.
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