
 

 

EFFECTS OF MISSING VALUE IMPUTATION ON DOWN-STREAM ANALYSES 

IN MICROARRAY DATA  

 

 

 

 

 

 

 

 

by 

 

Sunghee Oh 

 

BSc, Cheju National University, Republic of Korea, 2001 

MA, Yonsei University, Republic of Korea, 2003 

 

 

 

 

 

 

 

 

 

 

Submitted to the Graduate Faculty of 

 

Department of Biostatistics 

 

Graduate School of Public Health in partial fulfillment 

 

of the requirements for the degree of 

 

Doctor of Philosophy  

 

 

 

 

 

University of Pittsburgh 

 

2009 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12209298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 ii 

UNIVERSITY OF PITTSBURGH 

 

Graduate School of Public Health 

 

This dissertation was presented 

 

by 

 

  Sunghee Oh 

 

It was defended on 

 

 June 19, 2009 

 

and approved by 

 

Dissertation Advisor: 

George C.Tseng, Sc.D 

Assistant Professor 

Biostatistics and Human Genetics 

Graduate School of Public Health 

University of Pittsburgh 

 

Committee Member: 

Jonghyeon Jeong, Ph.D 

Associate Professor 

Biostatistics 

Graduate School of Public Health 

University of Pittsburgh 

 

Committee Member: 

Lan Kong, Ph.D 

Assistant Professor 

Biostatistics 

Graduate School of Public Health 

University of Pittsburgh 

 

Committee Member: 

Yan Lin, Ph.D 

Assistant Professor 

Biostatistics and Human Genetics 

Graduate School of Public Health 

University of Pittsburgh 

 

 

 

 

 

 



 iii 

Copyright © by Sunghee OH 

2009 



 iv 

 

 

 

Amongst the high-throughput technologies, DNA microarray experiments provide 

enormous quantity of genes and arrays with biological information to disease. The studies of 

gene expression values in various conditions and various organisms in public health have led to 

the identification of genes to the comparison between tumor and normal, clinically relevant 

subtypes of tumor, and prognostic signatures and have ultimately provided the potential targets 

for specific therapy of public health disease.  Despite such advances and the popular usage of 

microarray, the microarray experiments frequently produce multiple missing values due to many 

flaw factors such as dust, scratches on the slides, insufficient resolution, or hybridization errors 

on the chips. Thus, gene expression data contains missing entries and a large number of genes 

may be affected. Unfortunately, many downstream algorithms for gene expression analysis 

require a complete matrix as an input. Therefore effective missing value imputation methods are 

needed and have been developed in the literature so far. There exists no uniformly superior 

imputation method and the performance depends on the structure and nature of a data set.  In 

addition, imputation methods have been mostly compared in terms of variants of RMSEs (Root 

Mean Squared Error) to compare similarity between true expression values and imputed 

EFFECTS OF MISSING VALUE IMPUTATION ON DOWN-STREAM ANALYSES IN 

MICROARRAY DATA 

Sunghee OH, PhD 

University of Pittsburgh, 2009 

 

 

Sunghee OH, PhD  

 

University of Pittsburgh, 2009

 



 v 

expression values.  The drawback of RMSE-based evaluation is that the measure does not reflect 

the true biological effect in down-stream analyses.  

In this dissertation, we will investigate how missing value imputation process affects the 

biological result of differentially expressed genes discovery, clustering and classification. 

Multiple statistical methods in each of the downstream analysis will be considered. Quantitative 

measures reflecting the true biological effects in each down-stream analysis will be used to 

evaluate imputation methods and be compared to RMSE-based evaluation. 
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1.0  INTRODUCTION 

1.1 THE BACKGROUND OF MICROARRAY EXPRESSION DATA 

The microarray experiment is a new technology to investigate the expression levels of thousands 

of genes simultaneously. It has become one of the most indispensable tools that many biologists use to 

monitor genome wide expression levels of genes in a given organism. A microarray is typically a glass 

slide, which contains thousands of spots and each spot may contain a few million copies of identical DNA 

molecules that uniquely correspond to a gene. There are mainly two basic microarray technologies, cDNA 

array of dual-channel by Stanford group and high-density oligonucleotide arrays of one channel pioneered 

by Affymetrix. Each technology has its own merits and demerits. Figure 1 represents the schematic 

illustration of how microarrays experiments are performed for cDNA (a) and Oligonucleotide (GeneChip 

experiment) (b) microarrays. The main difference between two different platforms is how the genes are 

represented on the arrays, and the way that relative abundances of the transcripts are calculated. The 

cDNA microarray has two-color hybridization to be able to eliminate array to array noise and it is cheaper 

than Affymetrix. While cDNA produces relative abundant levels for target mRNAs corresponding to all 

probes on the array, the oligonucleotide array has only one sample, which hybridizes to a single array 

rather than target and reference sample and then returns an absolute mRNA level. In both platforms, the 

microarray gene expression data are represented as a G (gene) S (sample) matrix, 

! 

D = {Dgs} ,where 

the entry  is the mRNA expression level of gene g in experiment (sample) s. 
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1.2 THE NEED OF MISSING VALUE IMPUTATIONS ON MICROARRAY 

EXPRESSION DATA 

In the microarray experiment as mentioned in the previous subsection, missing values (MVs) 

frequently occur from various sources, such as dust, scratches on slide, insufficient resolution, or 

hybridization error, and etc. However, most statistical downstream analyses for microarray data such as 

DE (differentially expressed) gene detection, clustering and classification analyses require a complete 

data as the input. A naïve solution is simply to ignore and delete genes with missing values as a pre-

processing step or replace missing entries with zero value, however, it may result in the loss of much 

critical information as it is known that microarray datasets have usually more than 5% missing values and 

up to 90% genes might be affected. To utilize the information of genes with missing values, missing 

entries can be substituted with estimated values using more robust imputation method. Even though 

numerous imputation methods have been introduced and are constantly developed during the past decade, 

no uniformly best method exists.(Bo, et al., 2004; Brock, et al., 2008; Kim, et al., 2006; Oba, et al., 2003; 

Troyanskaya, et al., 2001)The main reason is when using imputation methods for missing values that the 

performance of an imputation method strongly depends on the structure, nature and complexity of the 

data. 

1.3 MV IMPUTATION METHODS AND PERFORMANCE MEASURES 

Imputation methods have been usually evaluated by performance measures, such as RMSE. In 

such an evaluation, a complete data matrix with no missing value is used as a reference, a certain 

percentage of missing values are randomly generated and the missing values are imputed by a given MV 

imputation method. Variants of RMSE are used in the literature to quantify the differences of imputed 

values and the original true values. In an early study, (Troyanskaya, et al., 2001) examined a comparative 
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study of three imputation methods (KNN-impute, SVD-impute, Row-avg) for the estimation of missing 

values in gene microarray data with respect to the normalized RMSE by dividing it by average value over 

all observations in the true complete dataset. This measure is denoted here by NRMSE. (See method)He 

suggested KNN-Impute is a robust imputation method when comparing to Row-avg and SVD-impute. 

Even though KNN-Impute has been used as a popular imputation method due to its simplicity and fast 

computation so far, some recent papers have proposed further improved imputation methods. (Nguyen et 

al., 2004) suggested regression methods, which multiple imputations via ordinary least squares (OLS) and 

missing value prediction using partial least squares which accuracy for PLS imputation is higher for some 

ranges beyond moderate expression. From the results, they showed that KNN-impute is still more 

accurate, compared to PLS regression methods, when the true expression is near the mean, however 

outside of this range, PLS outperforms KNN-impute. (Oba, et al., 2003)suggested an imputation method 

based on Bayesian principal component analysis (BPCA). In the paper, estimation ability of BPCA is 

overall the best among KNN-impute, SVM-impute, and BPCA method. They used a normalized RMSE 

by dividing it by the standard deviation of the values corresponding to missing entries in the true 

complete dataset. We call it NRMSE2. (See method.) However, since BPCA assumes only a global 

covariance structure, the estimation with BPCA may not be accurate if genes have dominant local 

similarity structures and KNN-impute will be suitable in the case. (Ouyang, et al., 2004) proposed GMC-

impute based on GMC (Gaussian Mixture Clustering) and model averaging. When using GMC-impute, 

the microarray data are assumed being generated by a Gaussian mixture of some number of components. 

GMC-impute shows better performance compared to naïve methods such as ZERO-impute, Row-avg, 

Col-avg, KNN-impute and SVM-impute in terms of normalized RMSE by dividing it by the root mean 

square of all the observations corresponding to missing entries in the true complete dataset in the study. 

We call it NRMSE3. (See method) (Bo, et al., 2004)introduced LSA-impute which is based on the least 

squares principle and utilizes correlations between both genes and arrays. The accuracy of LSA-impute is 

higher than that of KNN-impute in terms of RMSD (Root Mean Squared Deviation) between the true 

values and the estimated values to show how well predicted the missing values are. This measure is not a 
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normalized measure. (Kim, et al., 2006)suggested a local least squares imputation method (LLS-impute) 

to represent a target gene that has missing values as a linear combination of similar genes. The proposed 

LLS-impute method shows competitive results compared to KNN-impute and BPCA using NRMSE. This 

normalized RMSE is the same as (Oba, et al., 2003). 

Novel methods for missing value imputation have been constantly developed during the last 

decade. Moreover, most of previous works on MV have been evaluated a MV method in terms of RMSE 

(Root Mean Squared Error), when comparing the new methods to the existing methods.  Recently, a few 

papers have started to seriously take into account the influence of imputation methods on downstream 

analyses (de Brevern, et al., 2004; Jornsten, et al., 2005; Scheel, et al., 2005; Tuikkala, et al., 2006; Wang, 

et al., 2006). The results are, however, neither comprehensive nor conclusive. In other words, they 

employed the small number of datasets and methods. Additionally, a study is focused on a down-stream 

analysis. Even thougth a few people evoked an importance of biological impact on MV Imputation more 

recently, the take-home message still remained. Hence, in this dissertation, I will examine the biological 

impact assessments as well as classical RMSE-based measurements in comparison study of missing 

imputation methods to serve an insightful framework on MV imputation study. The detailed descriptions 

of MV methods and performance measures will be explained in the section 2. 

1.4 MOTIVATION AND RESEARCH DESIGN OF OUR COMPARATIVE STUDY 

Most evaluation of missing value imputation methods has been addressed by RMSE-based 

measures, instead of considering true biological impacts on down-stream analyses. Recently, a few people 

have issued this topic that the best imputation method detected by classical evaluation such as RMSE-

based do not guarantee the smallest error to the impact of various statistical downstream analyses such as  
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Figure 1.cDNA and Oligonucleotide microarray.It represents how experiments are performed for cDNA (left) and 

Oligonucleotide (right) microarrays. In the top, it shows how microarrays are manufactured; and in the bottom, how 

RNA samples are obtained. In the middle, we can see images obtained after RNA samples hybridize to the 

microarrays. For cDNA microarrays (left), each dot represents a probe, and the red (or green) colors are proportional 

to the counts of RNA hybridized to that probe in the reference (or control) samples. Similarly, the intensity of white 

dots in Oligonucleotide arrays (right) represents the counts of RNA hybridized to that probe. Figure reproduced 

from (Simon, et al., 2004). 

 

most common differentially expressed (DE) gene detection(Jornsten, et al., 2005).(Scheel, et al., 

2005)examined the impact of imputation on the detection of DE (differentially expressed) genes using 

SAM and ANOVA. They proposed a novel imputation method, linear model based imputation (LinImp) 

as well as to have compared existing methods with KNN-impute and LSA-impute. This comparative 
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investigation covers false negative gene list as a biological impact measure. Specifically they counted the 

number of genes to be falsely declared as non-significant genes compared to gold-standard gene list, 

where gold standard gene list is defined by the significantly differentially expressed gene list in complete 

dataset.  The focus has been only on differentially expressed gene detection in this paper. However, to 

draw a more general conclusion to effects of missing values on down-stream analyses, impacts to missing 

values in classification and other down-stream analyses as well as DE gene detection are needed to 

present. In clustering analysis, (de Brevern, et al., 2004) investigated the effects of missing value 

imputation on the stability of gene groups by hierarchical clustering using Conserved Pairs Proportion 

(CPP).  However, in the paper, they presented KNN-imputation method is the most efficient replacement 

for missing value even though other further sophisticated imputation methods have been studied without 

ceasing. The limitation of this study is that they only carried out less powerful and inefficient imputation 

methods such as KNN-impute (KNN.e) and Zero-impute. In classification analysis and functional 

modules,(Wang, et al., 2006)demonstrated the effects of missing values imputation methods posterior to 

down-stream analyses. They compared the accuracy rates of three different classifiers, KNN, SVM, and 

CART classifier on down-stream analyses after imputing missing values using various imputation 

methods such as ZERO-impute, KNN-impute, LLS-impute, and BPCA in investigating which imputation 

tool is most robust. (Tuikkala, et al., 2006) investigated the impact of missing value imputation on K-

means clustering and interpretation of GO terms from gene expression microarray data. Using 4 

imputation methods including naïve method and BPCA, they explored how the agreement of estimated 

values for missing entries with the original data values and the original clustering results are returned by 

each imputation method. They employed ADBP (Average distance between partitions of genes) as a 

biological impact measure as well as normalized RMSE as a classical performance measure. 4 MV 

imputation methods including average methods and one clustering method are not sufficient to draw a 

conclusion in comparative study of MV methods. 
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More recently, (Brock, et al., 2008)showed a more comprehensive comparative study and 

proposed two selection schemes for selecting the best MV imputation method. Naïve and competitive 

imputation methods from the previous papers are utilized in this study. Under the assumption that the best 

MV imputation method depends on the structure and nature of input data, a series of data sets from 

various experimental designs (two-group comparison, multi-exposure and time series) are analyzed. A 

log-transformed version of RMSE (named LRMSE) is used as the performance evaluation measure. 

Through evaluation by LRMSE, they proposed two useful selection schemes of imputation methods, EBS 

(Entropy based selection) and STS (Simulation based self-training selection). In this comprehensive 

comparative study, they concluded that there is no universally best MV imputation method although three 

top methods such as LLS-impute, LSA-impute, and BPCA are very competitive and the accuracy on MV 

imputation depends on structure and nature of given data set. Even though the study tried to perform a 

large-scale comparative study, their focus is limited by RMSE-based evaluation. Thus, the previous 

works on MV imputation methods presents some partial conclusions using smaller number of data sets, 

comparing fewer MV methods, including fewer down-stream analysis methods in each category or 

applying inadequate evaluation indices. Hereby, the purpose of this dissertation is to provide a 

comprehensive comparative analysis to examine the biological impact of MV imputation in all three areas 

of down-stream analyses by addressing three major aims: (Aim 1A) To investigate whether applying 

different RMSE measures affects the performance ranking and decision of MV imputation method 

selection.; (Aim IB) To investigate whether applying different down-stream analysis methods in each 

category (i.e. SAM, LIMMA and t-test+BH for DE gene detection; LDA, KNN,SVM, and PAM for 

classification ;K-means, SOM for gene clustering) affects the performance ranking and decision of MV 

imputation method selection. (Aim 2) If selection of RMSE measure greatly affects the selection of MV 

imputation method in Aim 1A, investigate which RMSE measure is more consistent (correlated) with the 

biological impact measure. (Aim 3) Evaluate the consistency and correlation of the best RMSE measure 

(determined by Aim2) with the biological impact measures in performance ranking and selecting the best 

MV imputation method.  In the beginning, we considered 10 imputation methods including naïve 
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methods of column and row average method. These two methods are obviously of bad performance and 

are removed. Eight remaining MV imputation methods will keep being discussed in further sections. 

Eight MV imputation methods (1!m!M=8; KNN.e, KNN.c, SVD, OLS, PLS, LSA, LLS and BPCA) are 

considered, eight data sets (1!d!D1=8) for DE gene detection and classification and six data sets 

(1!d!D2=3) for gene clustering are evaluated, four missing value percentages (1!p!P=4; (r1, r2, r3, 

r4)=(1%, 5%, 10% and 20%)) are considered and finally 100 independent simulations (1!n!N=100) are 

performed. In total, 8"11"4"100=35,200 times of random deletion from complete data matrix and then 

missing value imputation need to be performed. Due to the already high demand of computing, we skip 

the procedure of finding the optimal parameter for each MV imputation method in each data set and use 

the optimal parameters in the comparative study by Brock et al. (2008). For the optimal parameter in 

KNN and SVM classification, we fixed with the K=5 and linear kernel function, respectively after doing 

several simulation examinations, from k=1 to k=15 and 4 kernel functions using GOL, ALO, and LUO 

data set.  To investigate quantitative and biological criteria for deciding which MV imputation methods 

perform better, three RMSE measures (NRMSE, LRMSE and RAE), three DE detection methods (SAM, 

LIMMA and t-test+BH), four classification methods (LDA, KNN, PAM, SVM) and two gene clustering 

methods (K-means and SOM) are considered. In gene clustering, the number of clusters is usually not 

known and usually difficult to estimate from the data. We perform k=5, 10 and 15 to select the best. 

Therefore, we have 8"11"4"100"3=105,600. RMSE evaluations, 8"8"4"100"3=76,800 DE gene 

detection evaluations, 8"8"4"100"4=102,400 classification evaluations and 8"3"4"100"2"3=57,600 for 

gene clustering evaluations. Throughout above proposed research design and 3 main Aims, we believe 

that the conclusions could provide an insightful conclusion for biological impact of MV imputation on 

down-stream analyses. To investigate the three Aims above, we apply Spearman’s rank correlation 

to quantify the consistency of selecting (ordering) MV imputation methods given any two 

criteria of either RMSE measures or biological impact measures. For example, figure 3 shows 

the plot containing averaged rank of each imputation method for N=100 times using LRMSE and 
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BLCI. The exact consistency score from Spearman correlation is formulated below. For Aim 1A, 

we define, 

where RMSEmdpni is the RMSE measure from MV imputation method m, data set d, MV 

percentage p, and simulation n and the RMSE measure i(i=1 meaning NRMSE, 2 for LRMSE 

and 3 for RAE). The measure corsp(!,!) is obtained by Spearman’s rank correlation. Intuitively, 

if

! 

˜ r dpij

RMSE"RMSE
=1, the two RMSE measures i and j give exactly the same rank order of the M=8 

MV imputation methods and are considered consistent in MV imputation method selection. 

Similarly, we define the consistency score for any two down-stream analysis measures in 

DE gene detection (BLCI), classification (YI) and clustering (ARI) for Aim 1B as 

! 

rdpnij

BLCI"BLCI = corsp (BLCI1dpni,BLCI2dpni,...,BLCIMdpni),(BLCI1dpnj ,BLCI2dpnj ,...,BLCIMdpnj )( )
˜ r dpij

BLCI"BLCI = median of rdpnij

BLCI"BLCI
,1# n # N{ } ,

 

! 

rdpnij

YI "YI = corsp (YI1dpni,YI2dpni,...,YIMdpni),(YI1dpnj ,YI2dpnj ,...,YIMdpnj )( )
˜ r dpij

YI "YI = median of rdpnij

YI "YI
,1# n # N{ } ,

 

! 

rdpnij

ARI"ARI = corsp (ARI1dpni,ARI2dpni,...,ARIMdpni),(ARI1dpnj ,ARI2dpnj ,...,ARIMdpnj )( )
˜ r dpij

ARI"ARI = median of rdpnij

ARI"ARI
,1# n # N{ } ,

 

, where

! 

BLCImdpni,, 

! 

YImdpni,  and 

! 

ARImdpni,are the BLCI, YI or ARI measures from MV 

imputation method m, data set d, MV percentage p, and simulation n and the different selections 

of down-stream analysis i (SAM, LIMMA, t-test+BH; LDA, KNN, PAM, SVM; K-means, 

SOM, hierarchical clustering). 

Finally, we define the consistency measure for RMSE and biological impact measures as 
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! 

rdpnij

RMSE"BLCI = corsp (RMSE1dpni,RMSE2dpni,...,RMSEMdpni),(BLCI1dpnj ,BLCI2dpnj ,...,BLCIMdpnj )( )
˜ r dpij

RMSE"BLCI = median of rdpnij

RMSE"BLCI
,1# n # N{ } ,

 

! 

rdpnij

RMSE"YI = corsp (RMSE1dpni,RMSE2dpni,...,RMSEMdpni),(YI1dpnj ,YI2dpnj ,...,YIMdpnj )( )
˜ r dpij

RMSE"YI = median of rdpnij

RMSE"YI
,1# n # N{ } ,

 

! 

rdpnij

RMSE"ARI = corsp (RMSE1dpni,RMSE2dpni,...,RMSEMdpni),(ARI1dpnj ,ARI2dpnj ,..., ARIMdpnj )( )
˜ r dpij

RMSE"ARI = median of rdpnij

RMSE"ARI
,1# n # N{ } ,

 

,where i is an index for RMSE measure and j for a down-stream analysis method. 

In Aim 3, in addition to using the consistency measure for RMSE and biological impact 

measures for MV imputation method ranking, we further apply the following simple linear 

regression model to investigate the degree of correlation and the slope: 

! 

BLCImdpni ="dpnij

BLCI
+ #dpnij

BLCI $ RMSEmdpnj + %mdpnij  

,where the linear model interprets how well RMSE measures can predict BLCI measures 

and !dpnij reflects the slope in data set d, MV proportion p, simulation n, RMSE measure i and DE 

detection method j. We further define 

! 

"dpij
*(BLCI ) =  median of ˆ " dpij

BLCI
, 1# n # N{ } and the 95% 

confidence interval 

! 

("dpij

L ;(BLCI )
,"dpij

H ;(BLCI )
)as the 2.5% and 97.5% quantile of the N slope estimate

! 

ˆ " dpij
BLCI

, 1# n # N{ }. Intuitively, good missing value imputation results in low RMSE and high 

BLCI and we expect the ! estimates to be negative. When ! is negative and large in absolute 

value, differences of RMSE among different MV imputation methods contribute to real 

biological impact in BLCI and the method selection by RMSE is meaningful. If ! is negative but 

close to zero, difference of RMSE does not affect the biological impact measure in BLCI and the 

selection by RMSE is redundant.  
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Figure 2.Research Design. It summarizes our comparative study 
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2.0  METHODS 

2.1 DATA COLLECTION AND PREPROCESSING 

For each data set that has MVs in the step to collect dataset, we deleted genes and 

samples with missing entries so that a complete data matrix without MVs can be used in the 

study.  Thus, original size represents the size of matrix prior to pre-processing to delete missing 

values, whereas used size is matched by the matrix to be analyzed and evaluated in this 

comparative study. For clarity, Table 1 lists important features and characteristics of the data sets 

more details. 

Table 1.The description of 11 datasets used in down-stream analyses. 

       

DE/CL GOL 7129X72 1994X72 AML = 25 

ALL = 47 

Affy Min(expr)*=0 

Max(expr)*=16.12 

DE/CL ALO 6500X62 2000X62 Colon cancer = 40 

Normal = 22 

Affy Min(expr)*= 2.54 

Max(expr)*=14.35 

 
DE/CL LUO 6500X25 6433X25 PA*=16 

BP*=9 

cDNA Min(expr)*=0 

Max(expr)*=9.6 

DE/CL 

 

 

SIN 12600X102 1662X102 PT*=52 

AP*=50 

Affy Min(expr)*=1 

Max(expr)*=14.10 

DE/CL 

 

LAP 39009 X112 3098X71 PC*=62 

M-PC*=9 

cDNA Min(expr)*=-8.83 

Max(expr)*=12.36 
DE/CL VAN 25000X117 3196 X 97 BC*=51 

BC-M*=46 

cDNA Min(expr)*=0.87 

Max(expr)*=1.20 

DE/CL YU 37777X152 2532X89 Prostate cancer=66 

Normal=23 

Affy Min(expr)*=0 

Max(expr)*=13.04 

DE/CL BEE 7129X96 3577 X 96 OD*=10 

AC*=86 

Affy Min(expr)*=-3.32 

Max(expr)*=17.01 
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Table 1 continued. 

Gene 

clustering 

SP.AFA 7681X18 4480X18 Time series,cyclic 

 

 

cDNA Min(expr)*=-2.71 

Max(expr)*=4.76 

Gene 

clustering 

SP.ELU 7681X14 5766X14 Time series, cyclic 

 

 

cDNA Min(expr)*=-6.22 

Max(expr)*=4.95 

Gene 

clustering 

CAU 4682X45 4616X45 Multi exposure 

Time series 

 

cDNA Min(expr)*=3.00 

Max(expr)*=11.44 

DE: Differentially expressed gene detection, CL: Classification. PA*=Prostate adenocarcinoma, 

BP*= benign prostatic hyperplasiaz specimens, PT*=Prostate tumor samples, AP*=Adjacent 

Prostate, OD*= organ donors normal samples, AC*= adenocarcinoma, BC*=Breast Cancer, BC-

M*=Breast Cancer with metastasis, PC*=Prostate Cancer, M-PC*= Metastasis Prostate Cancer 

in lymph node, Min(expr)*=minimum expression value after gene filtering and log 

transformation and Max(expr)*=maximum expression value after gene filtering and log 

transformation. 

 

2.1.1 Datasets used in DE gene detection and classification 

In differentially expressed (DE) gene detection analysis and classification, datasets are 

analyzed to search for differentially expressed genes in patients with two types or multi-class and 

to identify molecular biomarkers of disease classification and prediction to diverse tumor types. 

(Golub, et al., 1999) with two leukemia (ALL and AML), (Alon, et al., 1999) of colon tumor, 

and two prostate cancer datasets of (Yu, et al., 2004)and  (Luo, et al., 2001) are analyzed.  And 

four survival datasets are assessed to identify differentially expressed (DE) genes linked to 

survival outcome. One is (Singh, et al., 2002) including 102 prostate tissue samples, 52 tumor 

samples with 8 recurrent and 13 non-recurrent with survival time.  Another is (Beer, et al., 2002) 

with 86 primary lung adenocarcinomas, including 67 stage I and 19 stage III tumors, and 10 non-

neoplastic normal lung samples.  And Stage I and III were also grouped into high-risk and low-

risk subgroup, respectively.  Another is prostate cancer dataset with relapse survival information 

by (Yu, et al., 2004). It contains including 23 organ donors normal samples and 66 tumors. 

Another is van’tVeer dataset collected in Nature 2002 by (van't Veer, et al., 2002). The data set 
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is composed of 97 primary breast cancers including 46 from patients who developed distant 

metastases within 5 years, 51 from patients who continued to be disease-free after a period of at 

least 5 years. For above four survival data sets with multi-class, we only select two sub groups 

from full samples in original data. We summarize the descriptions of original datasets and 

subgroups selected from original data sets used in DE gene detection and classification more 

details in Table 1 and following sections more details. 

A. Golub (GOL) data 

This Leukemia dataset (Golub, et al., 1999) is one of the most well known data set for 

methodological development. It contains 47 samples of acute lymphoblastic leukemia (ALL) and 

25 samples of actue myeloid leukemia (AML) samples which are the combined training samples 

( 38 samples: 27 ALL, 11 AML) as the primary samples and test samples (34 samples: 24 bone 

marrow and 10 peripheral blood samples) as the independent samples. The samples were assayed 

using Affymetrix Hgu6800 chips and data on the expression of 7129 human genes are collected 

initially. And then we deleted negative and zero gene expression values and then take log 

transformation. Finally, 1994 genes and 72 samples remained. The dataset has 0 and 16.1230 

gene expression value as the minimum and maximum, respectively. 

B. Alon (ALO) data 

This dataset is originally collected in PNAS (1999) by (Alon, et al., 1999). The data 

matrix of Affymetrix oligonucleotide array contains about 6500 features and 62 samples. Some 

of the features display a hybridization signal that is many times stronger than their neighbors (~ 

4% of the intensities are > 3 SD away from the mean for expressed tags(ESTs) as mentioned in 



 15 

the original paper. These outliers are deleted. To compensate of each EST on an array was 

normalized by dividing with the mean intensity of all ESTs on that array and multiplying with a 

nominal average intensity (50). The expression values of 2000 genes and 62 samples of 40 tumor 

and 22 normal colon tissues are finally remained.  The dataset was downloaded on the web at 

http://www.molbio.princeton.edu/colondata.  

C. Luo (LUO) data 

The data were originally published in Cancer Research by (Luo, et al., 2001). The data 

included 16 prostate adenocarcinoma samples from Johns Hopkins Hospitals during October 

1998 and March 2000, and 9 benign prostatic hyperplasia specimens from Johns Hopkins 

Hospital during February 1999 and November 2000. Total 25 samples and 6500 human genes 

were analyzed using cDNA microarray. We deleted some genes with zero and negative gene 

expression values, and took log2 transformation. Finally, 6433 genes and 25 samples remained. 

D. Singh (SIN) data 

The data set was originally published in Cancer Cell by (Singh, et al., 2002). The initial 

data set is composed of 12,600 genes and 102 samples including 52 prostate tumors and 50 non-

tumor prostate samples using oligonucleotide microarrays. In the original dataset, it is already 

log2-transformed dataset. However, there exist too many zero values. After filtering out gene 

with zero values, 1662 genes remained for the further analysis in this study. In the original paper, 

this dataset indicated that 317 genes had up-regulated in the tumor samples and 139 genes had 

up-regulated in the normal samples. Additionally, this dataset has 21 patients with respect to 
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recurrence following surgery with 8 patients having relapsed and 13 patients having remained 

relapsed free for at least 4 years. 

E. Lapointe (LAP) data 

The prostate cancer dataset was originally published in PNAS by (Lapointe, et al., 2004). 

It contains 39009 genes and 112 samples with 62 prostate cancers, 41 normal samples, and 9 

metastasis prostate cancer samples in lymph node. This original dataset has log2 transformation 

and some of missing values. After filtering out genes with missing values and additional filtering 

criterion, 3098 genes remained finally. Here the used specific criterion is to delete some more 

genes with low gene expression values such as mean < 1.5 and standard deviation < 1.2 for gene 

expression value in each gene.  

F. van’tVeer (VAN) data 

The data were collected in Nature 2002 by (van't Veer, et al., 2002). The data set is 

composed of 97 primary breast cancers including 46 from patients who developed distant 

metastases within 5 years, 51 from patients who continued to be disease-free after a period of at 

least 5 years. From the raw dataset, after eliminating gene with missing values and low 

expression values of less than log2 gene expression value 0.7,3176 genes are used for further 

analysis in this study. 

G. Yu (YU) data 

The data set was originally published in JCO 2004 by (Yu, et al., 2004). The initial data 

set contains 152 samples, which contain 89 samples with 66 primary prostate cancer samples and 
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23 organ donor normal samples and 37777 genes. All samples were analyzed using Affymetrix 

U95A microarray chips. In the original paper, they deleted some genes whose expression was 

very similar throughout all the samples to maximize the difference between the three groups (PC: 

prostate cancer, OD: donor prostate, AT: prostate tissues adjacent to cancer) and eliminated 

genes with low gene expression value less than the arbitrary cut-off value. And 19139 genes 

remained. After data preprocessing in which is filtered out genes with negative (or zero) gene 

expression value and missing values and log transformation are taken respectively. Finally, 2532 

genes remained in the dataset for further analysis. 

H. Beer (BEE) data 

The data were originally published in Nature Medicine 2002 by (Beer, et al., 2002). The 

86 lung adenocarcinoma samples were collected from the University of Michigan Hospital 

between May 1994 and July 2000 from 67 stage I and 19 stage III patients, and 10 non-

neoplastic lung tissues were also obtained during that time. The total 96 samples were analyzed 

using Affymetrix HG6800 microarray chips. From the raw data set, after deleting negative and 

zero expression values and taking log transformation, 3577 genes remained in the dataset. In DE 

gene detection and classification, 86stage I and 10 non-neoplastic lung tissues are used. 

2.1.2 Datasets used in Cluster analysis 

In gene clustering, all data are pre-filtered (pre-processing) by a criterion to eliminate genes 

with negative and zero expression value. 
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A. Spellman-alpha (SP.AFA) data 

This data set is originally collected to create a comprehensive catalog of yeast genes 

whose transcript levels varied periodically within the cell cycle by (Spellman, et al., 1998). DNA 

microarray samples from yeast cultures were synchronized by alpha factor arrest. It is a time 

series and cyclic data. After pre-processing, 4480 genes and 18 samples remained.  

B. Spellman-elu (SP.ELU) data 

This data set is also collected in(Spellman, et al., 1998). The only difference from 

Spellman-alpha data is the differently synchronized yeast by elutriation. After pre-processing, 

5766 genes and 14 samples remained. 

C. Causton (CAU) data 

This data setis originally collected by (Causton, et al., 2001)to explore how gene 

expression in Saccharomyces cerevisiae is remodeled in response to various changes in 

extracellular environment, including changes in temperature, oxidation, nutrients, pH, and 

osmolarity. After pre-processing, 4616 genes and 45 samples remained.  

2.2 MV METHODS DESCRIPTION 

In microarray expression data, missing values frequently occur due to diverse sources, 

such as scratches, dust, insufficient resolution and hybridization error, etc on arrays. However, 

unfortunately, most of statistical analyses require a complete matrix as the input. Thus, 

estimating missing values are important as they affect downstream analyses such as differentially 
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expressed gene detection analysis, k-means clustering, and classification. One simple strategy is 

to delete genes with missing values and keep a complete matrix. However, this may lead to a loss 

of large useful information. Especially, it is rarely to have a set of complete values over all 

experiments.   Therefore, in microarray experiment, more commonly suggestible strategy is to 

estimate missing values by borrowing the information of genes with similarity structure. During 

the last decade, although various imputation methods have been developed and proposed, as any 

given dataset, uniformly superior imputation is still ambiguous because each imputation method 

has own strength and weakness and imputing missing value largely depends on nature and 

structure of dataset. Some of imputation methods have a good performance on local structure, 

while others show better performance on global data structure. Therefore, in this comparative 

study, we employ 10 imputation methods including global and local imputation method.  

2.2.1 Naïve methods 

The most naïve way to impute missing values in microarray data is to insert the 

corresponding row/column averages or zero value. Such methods are highly inaccurate. In 

addition, (Troyanskaya, et al., 2001) already showed that row/column average method yields 

poor performance comparing to K-nearest neighborhood imputation method described below. 

We will omit the naïve methods in all analyses hereafter and focus on the more robust imputation 

methods. 
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2.2.2 K-nearest neighbor (KNN) based on distance/correlation 

K-nearest neighbor introduced in (Troyanskaya, et al., 2001)finds the most similar k 

genes for the target gene with missing values based on euclidean distance (KNN.e) or pearson 

correlation measure (KNN.c). The method was among the first proposed methods and became 

popular due to its simplicity. The following steps show the algorithm for imputing the missing 

values in a given gene g, 

Step1: Compute the Euclidean distance (or Pearson correlation) between g-th gene and all 

remaining genes using only those co-ordinates not missing in g-th gene. Select the most similar 

K genes. 

Step2: Impute the missing entries of g-th gene by weighted averaging the corresponding 

coordinates of the K genes. The weights are chosen to be the inverse of distances or correlations. 

Previous literatures suggested that although the result depends on K, the range of 10 to 20 

provides good and the consistent imputation results. We will use K=10 in this thesis.   

2.2.3 Singular Value Decomposition (SVD) 

Singular Value Decomposition (SVD) introduced by (Troyanskaya, et al., 2001) 

approach first imputes all missing values using the row average imputation method in a 

preliminary step since SVD cannot handle the data matrix with missing values. It is then applied 

to create a set of mutually orthogonal principal components of expression patterns, so-called 

eigen-genes. SVD is then linear transformation of the expression data (A) from G genes  S 

samples (arrays) to the reduced p S eigen-arrays, where p is the proportion of eigen-genes 
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which correspond to the largest eigen-values are selected values to reconstruct MVs in the 

expression matrix.  

The singular value decomposition of A is  

A = 

! 

U V
T"           (7) 

The columns of form the eigen-genes of , whose contribution to the expression 

in the eigen-space is quantified by corresponding eigen-values on the diagonal of matrix . 

The k most significant eigen-genes are selected to form the basis for the imputation process. The 

value of k is usually determined empirically. The missing entry is estimated from a linear 

combination of the k eigen-genes weighted by the regression coefficients.  This process is 

iterated until the total change in the matrix A converges to a sufficiently small prefixed value. In 

previous literature, a range of 0.1~0.25 for p gives good and consistent results. We will use 

p=0.15 in this study. 

2.2.4 OLS 

Ordinary least squares imputation method introduced by (Nguyen et al., 2004) is based 

on local neighboring-based approach as KNN. While KNN is to impute a missing value by using 

a weighted average of K most similar genes, OLS is regressed over K most similar genes. 

Therefore, a missing value is imputed by the weighted average of predicted values of fitted 

regression of the gene with missing values onto each neighbor gene, where K most similar genes 

are selected by absolute Pearson correlation value and the weight is, 



 22 

! 

w =
r"x
2

1# r"x
2

+10
#6

$ 

% 
& & 

' 

( 
) ) 

2

, where is the correlation between the target gene (#) with MVs and 

the candidate gene (x).  We will use K=10 in this study. 

2.2.5 PLS 

Repeated ordinary least squares a neighboring-based approach proposed by (Nguyen et 

al., 2004) and Bo et al. (2004) are to regress missing value over each of the k most similar 

neighbor genes as mentioned 2.3.3 part. Succinctly, missing values (MVs) are estimated through 

the weighted average of the predicted values from the regression of the target gene with missing 

values onto each neighbor gene. K-closest genes are selected by neighbor genes with largest 

absolute Pearson correlation value from the candidate gene set . Nguyen et al introduced a 

novel method Partial Least Squares (PLS). In this paper, they concluded that PLS has the 

strength to have uniformly better performance in view of accuracy across the wide range of 

observed gene expression, whereas KNN imputation method presents worse performance over 

some specific ranges of expression values. 

The main difference of PLS (partial least squares) by Nguyen et al. (2004) from KNN is 

to use all the candidate gene expressions as well as the available values from the target gene to 

estimate missing values (MVs). More precisely, the procedure is like below, 

Step1: PLS constructs a sequence of gene components with the candidate gene expression 

matrix and the available values of the target gene.  
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Step2:  The target gene and candidate genes comprise missing values (MVs) and 

available values, respectively. Denote the expression values of the target gene as , 

where and are available values and missing entries to be imputed of target gene g.  And 

the expression values of candidate genes for the target gene g are denoted by , where 

is a 

! 

Gg " Sgmatrix of available values corresponding to and comprises of 

available values corresponding to the MVs of target gene g, .  Thus, PLS contains a training 

set ( , ) and the test set will be used to predict MVs ( ) of target gene g. 

Step3: Since the number of samples ( ) is much smaller than the number of available 

genes ( ) ( << ), dimension reduction is necessary. Thus, PLS imputation is a dimension 

reduction method,which extracts gene components sequentially to maximize the sample 

covariance between the target gene and the linear combination of the set of candidate genes. The 

more detailed procedure of dimension reduction is explained in the following steps, 

Step4: The k-th PLS step seeks a weight vector,

! 

wk (g) (Gg "1), such that

! 

wk (g) = argmax
w'w=1

cov
2
(Y"g

A
w,yg

A
) , subject to the orthogonality constraints 

! 

wk

'
(g)Swd (g) = 0 , 

! 

"
d
,  1# d # k where 

! 

S =Y"g
A '
Y"g
A

. Thus, a sequence of weight 

! 

w
1
(g),  ...,w

2
(g)  are obtained from this step for each gene g with missing values (MVs). 

And according to the previous literature by (Brock, et al., 2008), the number of components is 

confident between 2 to 25. We will use K=10 in this thesis. 
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Step5:  The PLS gene components of linear combinations with maximum covariance with 

target gene g,

! 

tk
A
(g) =Y"g

A
wk (g) are computed. Therefore, PLS imputation captures the most 

important mode of covariance exhibited between the target gene and candidate genes first and 

the next most important mode is captured to be orthogonal to the first PLS components.  

Step6: Using the constructed PLS gene components as predictors, a linear regression 

model based on the available values is fitted. , where is a matrix of the KG 

PLS gene components and is the least squares regression coefficient estimates.  

Step7: Next the test data is applied. That is, the expression values of candidate genes (

), corresponding to missing entries of target gene ( ) are used to construct the test PLS 

components, based on only the training information (Step4 and Step5). That is, the test 

components are substituted into the training PLS regression model to predict the MV, 

! 

y
"

g

M

= T
*
(g)#g

"

. 

2.2.6 LSA-impute 

LSA-impute introduced by (Bo, et al., 2004) is to estimate missing values based on least 

squares principle as utilizing correlations between both genes and arrays. They are called 

LSimpute_gene and LSimpute_array, respectively. The gene-based estimates are obtained by 

multiple OLS method using the K closest candidate genes, and the array-based estimates are 

attained by multiple-regression based on the arrays, where missing values in gene expression 

matrix are substituted by gene-based estimates initially. The K closest genes are selected by the 
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absolute Pearson correlation values. Thus, LSA imputation is the combined method of gene-

based and array-based imputation estimates. In the paper, there are two variants of estimate 

combination. The first (LSimpute_combined) is to use a fixed global weighting of the estimates 

between LSimpute_gene and LSimpute-array. The best global weight of two estimates is 

determined by initially re-estimating from the known values in the gene expression matrix and 

minimizing the sum of errors for re-estimated data. 

2.2.7 LLS-impute 

LLS-impute proposed by (Kim, et al., 2006) is based on local least squares principle to 

represent a target gene with missing values as a linear combination of K coherent genes that have 

the large absolute Pearson correlation values from candidate gene set. As in OLS and LSA-

impute, the LLS-impute is to estimate missing values by performing multiple regressing the 

candidate genes on target gene. However, the least squares estimates are determined by pseudo-

inverse of K closest genes, where if the K closest genes have some missing values and its 

percentage is relatively small, then K neighboring genes are deleted in determining estimates, 

otherwise MVs are initially estimated by row-average imputation method. 

2.2.8 BPCA 

This approach is based on Bayesian principal component analysis (BPCA) proposed by 

(Oba, et al., 2003) to consist of three elements, (1) Principal component regression, (2) Bayesian 

estimation, (3) an expectation-maximization (EM)-like repetitive algorithm. It proceeds 

iteratively by switching between updating the posterior distribution of the PCA parameters and 
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the posterior distribution of the missing values. The posterior distribution of model parameters is 

iteratively estimated until convergence is reached. This approach is a time consuming method 

because no parameters have to be fixed as the algorithm itself sets up the appropriate PCA 

dimension. Moreover, since BPCA considers the global correlation structure of the data, this 

algorithm may not be well suited for data, which has a dominant local correlation structure.   

2.3 DOWN-STREAM ANALYSES EVALUATED 

To evaluate biological impacts of missing value imputation in down-stream analyses, we 

consider three types of analyses commonly seen in microarray; differentially expressed (DE) 

gene detection, classification and gene clustering. The specific methods evaluated are described 

below.   

2.3.1 DE gene detection 

A two-sample microarray experimental design aims at identifying differentially 

expressed (DE) genes between two different groups such as normal versus disease. Various 

statistical tests have been employed to identify DE genes.  The two t-test statistics provides a 

simple statistical method for identifying DE genes. But t-test statistics is unstable when the 

sample size is small, which causes an increase in false discovery rate. Moreover, the other 

weakness has the problem of multiple testing. Thereby, we employ adjusted Benjamini-

Hochberg (BH) t-test statistics and LIMMA method to cope with the problem of multiple testing 

and SAM method is used to handle small variance by adding a small positive constant to the 

denominator. Thus, we will evaluate the impact of imputation method on down-stream analyses 
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using three popular methods, Benjamini-Hochberg adjusted p-value from t-test, SAM, and 

LIMMA to identify differentially expressed genes. FDR is controlled at 5% and the default 

parameters are used in the packages. 

2.3.1.1 T-test + Benjamini-Hochberg (BH) adjusted p-value 

Standard statistical method, t-statistics is applied here to compare treatment group versus 

normal group, or other conditions with two classes.   

 , where

! 

Sx1x2 =
(xi "# x1)
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+ (x j "# x 2)
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2
" 2

  (8) 

and  are defined as the average levels of expression for g-th gene in class 1 and 2.

represents the standard deviation of repeated expression measurements and  and are 

the numbers of measurements in class 1 and 2. Since microarray experiments simultaneously 

monitor expression levels of thousands of genes, there is multiple comparison issue. To resolve 

the issue, many approaches have been introduced for adjusting multiple testing so far. Especially 

(Benjamini and Hochberg, 1995) adjusted p value is a popular step-up procedure which controls 

the FDR (false discovery rate) defined as 
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' , where if there are no 

rejections in study, then it is defined by 0. Thus, if we control FDR at 0.05, then we can claim on 

average, no more than 5 % of the rejections are in error under some dependency structures with
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prk ,1)}. More precisely, the BH procedure is like below, 
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Otherwise continue. Continue in this fashion until a stop or until no hypotheses are 

rejected. 

Hence, adjusted p-values for Benjamini-Hochberg are shown below. It is a step-up 

method so we start from the opposite side. 
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= min( , )  

=min( , ) 

And then we compare the adjusted p-values to $.  All of the adjusted p-values that are 

less than $ correspond to rejections of null hypotheses using the given method. 

 

T-test adjusted by BH procedure has the merit of fast computation and can be performed 

in excel without the need of programming. It, however, is usually less powerful and the t-statistic 

may be problematic when the variance component in the denominator is close to zero. SAM has 

been proposed to cope with unstable variance by adding a positive constant in denominator. 

2.3.1.2 SAM (Significance Analysis of Microarray) 

Significance Analysis of Microarrays (SAM) by (Tusher, et al., 2001)computes a score to 

each gene on the basis of change in expression relative to the standard deviation of repeated 

measurements. SAM method adds a small positive constant to denominator of t-statistics as a 

fudge factor to avoid identifying falsely significant genes due to small variances. That is, if g-th 

gene has low expression values, variance in 

! 

tsam (g)can be high, due to small values of . 

However, to compare 

! 

tsam (g)across all genes, the distribution of 

! 

tsam (g)should be independent of 

the level of gene expression and of . Thus we choose a fudge factor,  to make the 

coefficient of variation of 

! 

tsam (g)approximately constant as a function of  by the similar 
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approach as Efron et al. In other words, constant is chosen to minimize the coefficient of 

variation. 
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 (9) 

SAM provides FDR (false discovery rate) to be calculated by Median (or 90
th

 percentile) 

of # of falsely called genes by dividing # of genes called significant.    

More precisely, the SAM algorithm is stated as 

Step1: Order test statistics in equation 9 according to magnitude. 

Step2:  Based on null hypothesis that there is no difference between class 1 and class 2, 

Using permutation test, for each permutation, compute the ordered null (unaffected) scores. 

Step3:  Plot the ordered test statistic against the expected null scores. 

Step4: Call each gene significant if the absolute value of the test statistic for that gene 

minus the mean test statistic for that gene is greater than a stated threshold. 

Step5: Estimate the false discovery rate based on expected versus observed values. 
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2.3.1.3 LIMMA 

It is a tool for identifying differentially expressed genes involving comparisons between 

two groups proposed by (Smyth, 2004). The main idea is to fit a linear model to the expression 

data for each gene!!Empirical Bayes and other shrinkage methods are applied to borrow prior 

information across genes making the analyses stable even for experiments with small sample 

size. In the model, there are three main steps. The first step is to rearrange it in the structure of 

general linear models with arbitrary initial coefficients and contrasts of interest. The second step 

is to derive consistent and robust closed form estimators for hyper-parameters even for small 

sample size based on the marginal distributions of the observed statistics. The third step is to 

reformulate the posterior odds statistics in terms of moderated t-statistics in which posterior 

residual standard deviations are used in place of ordinary standard deviations. In the end, those 

steps make it possible to have more stable inference when even sample size is small as the 

approach proposed by Lonnstedt and Speed. This package then provides the B-H adjusted p 

value after multiple testing. 

2.3.2 Classification 

We performed classification with feature selection based on univariate t statistics using 

LDA, KNN (k=5), and SVM classifier with linear kernel function.  Univariate method considers 

one variable (a feature) at a time, whereas multivariate method considers subsets of variables 

(features) together such as PAM. We adopted the simple univariate feature selection by t 

statistics. Weperformed leave one out cross validation (LOOCV), selected the top N=5, 10, 

30,50, 100 gene features with the largest t-statistics and picked the one that generates the largest 
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Youden Index(smallest error rate). For PAM, gene selection is embedded and we pick the 

threshold that generates the best accuracy. 

2.3.2.1 LDA classifier 

In Linear Discriminant Analysis (LDA) proposed by (Fisher, 2000), each class is 

characterized by its vector of means or ‘centroid’. An unknown sample is evaluated by 

computing the scaled distance between its expression profile and each class centroid. The 

unknown is assigned to the class to which it is nearest. Thus, LDA can be thought of as a nearest 

centroid classifier. The procedure of LDA is described more precisely below. 

We would like to classify unknown samples into one of K classes. To build a classifier, 

we obtain training samples per class, k=1,2,…,K, with g genes on each microarray. For each 

training sample, we observe class membership, sample information X and expression profile Y. 

For simplicity, we will utilize only two classes (1 or 2) in this study. Note that each expression 

profile is a vector of length m. We assume that expression profiles from class K are distributed as 

N ( ), the multivariate normal distribution with mean vector and covariance matrix . 

Call L ( ; ) the corresponding probability density function. Finally, we agree upon prior 

probabilities that an unknown sample comes from class k, k=1 and 2.  Bayes’ theorem states 

that the probability that a sample comes from class k, given that sample’s expression profile, is 

proportional to the product of the class density and prior probability: 

! 

Pr(Y = k | X = x)"L(x;µ
k
,#) $%

k    (11) 

We call equation (11) the posterior probability that array x comes from sample k. LDA 

assigns the sample to the class with the largest posterior probability: 
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! 

y
"

= argmaxk L(x;µk,#) $% k{ }      (12) 

This can be shown to be the rule that minimizes misclassification error by Mardia et al. 

(1979). 

The innards of the right side of equation (12) are proportional to  

     (13) 

Since the covariance matrix % is the same for all classes, only the exponential component 

of equation (14) is relevant to classification. We can then rewrite equation (12) as  

! 

y
"

= argmaxk (x #µk )
T
$
#1(x #µk ) # 2log(% k ){ }   (14) 

Thus, a sample is assigned to the class to which it is nearest, as measured by the metric 

! 

x "µ
2
" 2log(# ) is the square of the Mahalanobis distance between x and &. We can 

further simplify the problem by assuming independence between genes. This allows us to 

simplify the LDA classification rule (14) to  

! 

y
"

= argmaxk
xi
* #µik

$ i

% 

& 
' 

( 

) 
* 

2

i=1

m

+ # 2log(, k )

- 

. 
/ 

0 / 

1 

2 
/ 

3 /     (15) 

2.3.2.2 KNN classifier 

KNN classifier in (Belur V. Dasarathy., 1991) is based on a distance/similarity function 

for pairs of observations, such as the Euclidean distance. K nearest neighbors of a training data is 

computed first. We fixed K=5 KNN classification by selecting from an exploratory examinations 
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of optimal parameter selection to perform some tests using 3 CD (complete data set), GOL, 

ALO, and LUO with k=1 to k=15. Then the similarities of one sample from testing data to the k 

nearest neighbors are aggregated according to the class of the neighbors, and the testing sample 

is assigned to the most similar class. A major drawback of the similarity measure used in KNN is 

that it uses all features equally in computing similarities. It can lead to poor similarity measures 

and classification errors, when only a small subset of the features is useful for classification. 

Therefore, in KNN, confident feature selection is suggested. 

2.3.2.3 SVM classifier 

SVM introduced in (Burges, 1998)provides a machine learning algorithm for 

classification Gene expression vectors can be thought of as points in an n-dimensional space. 

The SVM is then trained to discriminate between the data points for that pattern (positive points 

in the feature space) and other data points that do not show that pattern (negative points in the 

feature space). Specifically, SVM chooses the hyper-plane that provides maximum margin 

between the plane surface and the positive and negative points. The separating hyper-plane is 

optimal in the sense that it maximizes the distance from the closest data points, which are the 

support vectors. The mathematical background of SVM is like below, given a training set of 

instance-label pairs , where 

! 

x
i
" R

nand 

! 

y " 1,#1{ }
l
, thus, we consider the 

problem of separating the set of training vectors belonging to two separate classes. The support 

vector machines (SVM) require the solution of the following optimization problem: 

! 

w,b,"
min

1

2
w
T
w + C "

i

i=1

l

# , subject to , 

! 

"
i
# 0    (20) 
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Training vectors are projected into a higher dimensional space by the function .  Here there are 

many possible linear classifiers that can separate the given data, but the only one to maximize the margin 

exists. In other words, SVM finds a linear separating hyper-plane to maximize the distance between it and 

the nearest data point of each class.  

! 

C > 0is the penalty parameter of the error term. And then the various 

kernel functions such as linear, polynomial, radial basis function, sigmoid, and etc are applied with the 

equation (21). Each kernel function with the kernel parameters is explained in the following.  

         (21) 

1) Linear:  

! 

K(xi,x j ) = xi
T
x j  

2) Polynomial:  

! 

K(xi,x j ) = ("xi
T
x j + r)

d
, 

! 

" > 0. 

3) Radial basis function (RBF): 

! 

K(xi,x j ) = exp("# xi " x j

2

),

! 

" > 0 . 

4) Sigmoid: 

! 

K(xi,x j ) = tanh("xi
T
x j + r). 

2.3.2.4 PAM 

The (Tibshirani, et al., 2002) uses the statistics 

! 

dgk =
xgk " xg

wk (sg + s
0
)  to select 

genes, where makes

! 

wk " sg equal to the standard error of the numerator, 

and is a fudge factor intended to guard against very large statistics for very small standard 

errors as like SAM method; by default, PAM chooses the median of the for . Without 

! 

s
0
,   dgk is just a t-statistics comparing the mean of gene g in class k (1 or -1, e.g normal or 
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disease) with the overall mean of gene g. Hence, measures the difference between gene g in 

class k and gene g in all classes combined. A gene that discriminates one class from the rest will 

have a statistic of large absolute value. PAM then shrinks toward zero, eliminating the genes 

that do not provide sufficient discriminatory information. For a particular choice of shrinkage 

parameter ', the shrunken statistics is 

! 

d
~

gk = sign(dgk )(dgk "#)+ , where‘+’ means ‘positive part’   (22) 

 Thus, all less than ' in absolute value are shrunken to zero, and the rest are shrunken 

to somewhere between zero and their original values. The shrinkage of the remaining statistics 

toward zero is intended as a ‘de-noising’ step. We can then reformulate equation (23) with the 

shrunken statistics to produce corresponding shrunken centroids, 

! 

xgk

~

= dgk

~

" wk " (sg + s
0
) + xg , where shrinkage is of the class centroids 

toward the overall centroid.          (23) 

The genes for which all shrunken class statistics 

! 

d
~

g1,...,d
~

gK equal zero have shrunken 

centroid components that equal the corresponding components of the overall centroid. When 

distances from a new sample to the shrunken class centroids are computed in equation (15), the 

components for these inactivated genes are identical for each class. Distances are assessed as in 

equation (15), with the shrunken centroid replacing and replacing . Any 

prior information on class prior weights on each class in proportion to its sample prevalence can 

be induces in . One simple choice is 

! 

"
k

= n
k
/n , placing prior weights on each class in 
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proportion to its sample prevalence; another is =1/K, placing equal prior weights on each 

class. Briefly, a PAM classifier selects genes by soft thresholding based on the modified t-

statistics, , then shrunken statistics to update the class centroids. The classifier can be 

represented by the shrunken centroid components and pooled standard deviations of the active 

genes, since these are the only components needed in the distance function. Each centroid is now 

of length , with g-th component somewhere between that gene’s class and overall means. 

Nothing is known about the distribution of active genes across classes. The selected genes are 

interpreted as simultaneously distinguishing all classes from each other. 

2.3.3 Cluster analysis 

The objective of cluster analysis in microarray expression data is to group genes or 

experiments into clusters with similar patterns.  A cluster analysis is called unsupervised learning 

in the view of the classes are unknown a priori and need to be discovered from the data unlike 

supervised learning such as classification and discriminant analysis. In this study, we included 

KNN and SOM. Since the number of clusters K usually cannot be determined for a given data 

set, we run gene clustering using different choices of K. Due to the already demanding 

computation, we only tested KNN and SOM with K=5, 10, and 15.  

2.3.3.1 K-means 

K-means clustering by (Stuart Lloyd., 1957) is one of the common unsupervised 

algorithms to define k-centroids, one for each cluster. This is a method of clustering that 
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produces a partition of the data into a particular number of k groups set. From an initial partition, 

individuals are moved into other groups if they are closer to its mean vector that that of their 

current group (Euclidean distance measure is generally used here). After each move, the relevant 

cluster mean vectors are updated. The procedure continues until all individuals in a cluster are 

closer to their own cluster mean vector than to that of any other cluster. It seeks to minimize the 

variability within clusters and maximize variability between clusters. Finding the optimal 

number of groups will also be an issue in K-means clustering. As a preliminary test, we 

evaluated K values using gap statistics for Spellman-alpha, Spellman-elu, and Causton dataset. 

For all 3 datasets, gap-statistics does not present the difference too much for each cluster from 1 

to 20 clusters. Therefore, we will perform k-means for K=5, 10, and 15. Thereby, we will not 

discuss the optimal K value in details here. 

2.3.3.2 SOM 

As a machine-learning method, a self-organizing map (SOM) proposed and studied by 

(Kohonen, 2001) belongs to the category of neural networks. It provides a technique to visualize 

the high-dimensional input data (in our case, the gene expression data) on an output map of 

neurons (also called nodes). The map is frequently in a two-dimensional grid (usually of 

hexagonal or rectangular geometry) of neurons. In the high-dimensional input space, the 

structure of the data is represented by prototype vectors serving similar functions as the mean 

vectors in the k-means algorithm, each of which is related to a neuron in the output space. As an 

input for the algorithm, the dimension of the output map (e.g., a map of 6  5 neurons) needs to 

be specified. After initializing the prototype vectors, the algorithm iteratively performs the 

following steps.  
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Step1: Every input vector representing a gene expression profile is associated with the 

closest prototype vector, and thus is also associated with the corresponding neuron on the output 

space. 

Step2: Update the coordinates of a prototype vector based on a weighted sum of all the 

input vectors that are assigned to it. The weight is given by the neighborhood function (a kernel 

function in nature), which can be a Gaussian distribution function, applied in the output space. 

That is, in the updating step, a prototype vector is pulled more toward input vectors that are 

closer to the prototype vector itself and is less influenced by the input vectors located farther 

away. In the meantime, this adaption procedure of the prototype vectors is reflected on the output 

nodes- nodes associated with similar prototype vectors are pulled closer together on the output 

map. 

Step3: To put a simulated annealing kind of flavor, the initial variance of the Gaussian 

neighborhood function is chosen so that the neighborhood covers all the neurons, but then the 

variance is decreased during an iteration so as to achieve a smoother mapping. The algorithm 

terminates when convergence of the prototype vectors is achieved. From the cluster analysis 

point of view, SOM methods look similar to K-means clustering method. SOM clustering differs 

from K-means clustering in that a cluster has “two faces” in an SOM. It is represented by the 

prototype vector in the input space and the neuron on the output space. In this way, an SOM 

provides a direct means to visualize relations among different clusters. Moreover, a prototype 

vector is adjusted according to not only the data points that are associated with it but also data 

points that are assigned to other prototype vectors. 
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2.4 QUANTITATIVE EVALUATION: ROOT MEAN SQUARED ERRORS (RMSE) 

Variants of root mean squared errors (RMSE) are commonly used as a statistical quality 

to measure of how close the estimated values are to real values. Based on such RMSEs, the 

evaluation procedure of missing imputation methods are like following steps. 

Step1: Given a real gene expression matrix, the (real) MVs are removed to form a 

complete gene expression matrix without MVs. We call this gene expression matrix CD 

(complete data). It is denoted by CD=

! 

(ygs)G"S .  

Step2: Next, a proportion q, 0<q<1, of MVs are intentionally introduced by randomly 

removing values in CD, where q=0.01, 0.05, 0.1 and 0.2. Let us denote this gene expression 

matrix with MD (missing data). 

Step3: Imputation methods are applied to estimate MVs in MD. For missing entries, 

missing value, 

! 

(ygs)G"S in MD is substituted by imputed value ( ). We call this gene 

expression matrix ID (imputed data). 

Step4: Compare imputed values of ID to true values of CD to access the accuracy 

(performance) of each imputation method with respect to RMSE. 

Step5: Repeat from step 2 to step 4 for each missing percentage and imputation method. 

Step6: Take the average value for RMSE in step 5. It represents the performance of an 

imputation method when assuming a specific missing percentage. 

Below 6 diverse RMSEs have been introduced in the papers of studies to missing 

imputation methods. Thus, Table 2 shows four variants of RMSE, RAE, and LRMSE used in the 

previous literature to evaluate MV imputation performance. 
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Table 2.Variant of RMSE 

Literature Used measure Values used in equation 

(Bo, et al., 2004) RMSE Original expression values 

(Troyanskaya, et al., 2001) NRMSE1 Original expression values 

(Kim, et al., 2006; Oba, et al., 2003) NRMSE2 Original expression values 

(Ouyang, et al., 2004) NRMSE3 Original expression values 

(Nguyen et al., 2004) RAE Original expression values 

(Brock, et al., 2008) LRMSE Log transformed values 

 

(Bo, et al., 2004) used non-normalized score, RMSE (root mean squared error) between 

the true values and the estimated values in equation (1) 

RMSE =  

! 

1

#  of missingness
(ygs

"

{ygs missin g}
# $ ygs)

2

   (1) 

(Troyanskaya, et al., 2001) normalized the RMSE by dividing it by a normalizing 

constant, the average value over all observations in the true full dataset, to compare the 

performance of imputation methods using different datasets with equation (2).  

NRMSE1 = 

! 

1

#  of missingness 
(ygs

"

{ygs missing}
# $ ygs)

2

1

G % S
ygs

s

#
g

#    (2) 

(Kim, et al., 2006; Oba, et al., 2003) normalized the RMSE by dividing it by a different 

normalizing constant, the standard deviation of the values in the true full dataset over missing 

entries with equation (3) 

NRMSE2 =     (3) 
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(Ouyang, et al., 2004) normalize the RMSE by dividing it by another different 

normalizing constant, the root mean square of original values of the missing entries with 

equation (4) 

NRMSE3 =

! 

1

#  of missingness
(ygs

"

{ygsmissing}
# $ ygs)

2

1

#  of missingness
(ygs)

2

{ygsmissing}
#

   (4) 

The normalization of RMSE is a step to make it possible to carry out the comparison 

basically to have the level of difficulties of comparison to imputation method in variant datasets 

with different scale. For selecting the best MV imputation method in a given data sets, however, 

all the four RMSE variants converged an identical method by representing the same ranks for the 

performances of imputation methods in the preliminary results. Hereby, we will keep NRMSE 

by (Troyanskaya, et al., 2001) as a representative 3 NRMSEs, LRMSE by (Brock, et al., 2008), 

and RAE by (Nguyen et al., 2004) for further analyses.  

(Nguyen et al., 2004) used RAE measure to compare various imputation methods. Unlike 

NRMSEs, it has a slight modification in the equation to eliminate some minor drawbacks when 

equals zero and small values in equation (5) 

 RAE=

! 

1

#  of missingness

ygs

"

# ygs

$(ygs)
{ygsmissing}

% ,

! 

"(ygs) =
ygs if ygs > #

# if ygs < #

$ 
% 
& 

' & 
 (5) 

Intuitively RAE is a better measure as it penalizes less for genes with high expression 

level. For example, an MV imputation error of 100 for genes with expression level at 200 is 

huge, while the error of 100 becomes ignorable for genes with expression level of 2000.  
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More recently, (Brock, et al., 2008)suggested LRMSE in equation (6) when the 

expression intensities are all positive. It can be easily shown that LRMSE approximately equals 

to, 

LRMSE=

! 

1

#   of  missingness
(x
"

gs
{xgs  missing}

# $ xgs)
2

,where , 

! 

x
"

gs = log(y
"

gs)    (6) 

It is easy to show that LRMSE is an approximation of a square root of -norm version 

of RAE:  

.   

In this thesis, we will evaluate the accuracy of 8 imputation methods using RMSE, LRMSE, and 

RAE. 

2.5 BIOLOGICAL IMPACT EVALUATION: QUANTITATIVE MEASURES TO 

REFLECT BIOLOGICAL IMPACTS 

Even though RMSE is a good measure in that it evaluates the differences of imputed 

values to the original values, the quantity brings a concern of not considering the ultimate 

biological impacts of missing value imputation to down-stream analyses. Recently, (Jornsten, et 

al., 2005) examined how missing values and their imputation affect significance analysis of 

differentially expressed (DE) genes using  

FPR =

! 

false positive

true positive + false positive
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Similarly, (Scheel, et al., 2005) studied the influence of imputation on the detection of 

differentially expressed genes from cNDA microarray data using the percentage lost 

differentially expressed genes posterior MANOVA and SAM. Furthermore, (Tuikkala, et al., 

2006) showed even when there are marked differences in terms of NRMSE across the datasets, 

these differences become negligible when the methods are evaluated in terms of how well they 

can reproduce the original gene clusters. They focused on assessing the agreement with the 

original clustering results when they performed clustering with estimated values from imputation 

methods. In this study, we will investigate the impact of missing value imputation on DE gene 

detection, classification and gene clustering analysis. Below we propose three biological impact 

measure for each of the down-stream analysis: biomarker list concordance index (BLCI) for DE 

gene detection, Youden’s Index by (Youden, 1950)  for classification and adjusted Rand index 

(ARI) by (Hubert ., 1985)for gene clustering,. 

2.5.1 Biomarker list concordance index (BLCI) for DE gene detection 

Suppose a complete data set (CD) is given. For evaluation purpose, missing values are 

randomly generated and imputed by a given MV imputation method. The imputed data is 

denoted as ID. Applying a selected DE gene detection method (SAM, LIMMA or t-test+BH), 

one biomarker list is obtained from CD (denoted as GCD) and another biomarker list generated 

from ID (denoted as GID). We define the biomarker list concordance index (BLCI) between GCD  

and GID as 
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, where n(!) is the number of genes of a given gene set,  is the complement of GCD 

and  is the complement of GID. Note that BLCI is equivalent of viewing the biomarker list 

from complete data (i.e. GCD) as the gold standard and GID as the prediction result. The first term 

equals the sensitivity and the second term is the same as specificity. BLCI is equivalent to the 

famous Youden’s index, which is sensitivity+specificity-1 by definition. We should note that 

taking the biomarker list from complete data as gold standard is necessary since we do not know 

the true biomarker list of the data. A higher BLCI value indicates that the biomarker lists from 

complete data and imputed data are similar and missing value imputation brings in smaller 

impact in down-stream biomarker detection. The simulations to generate BLCI evaluations are as 

follows. 

Step1: Given a real gene expression matrix, the (real) MVs are removed to form a 

complete gene expression matrix without MVs. We call this gene expression matrix CD 

(complete data). It is denoted by CD=

! 

(ygs)G"S .  

Step2: Next, a proportion q, 0<q<1, of MVs are intentionally introduced by randomly 

removing values in CD, where q=0.01, 0.05, 0.1 and 0.2. Let us denote this gene expression 

matrix with MD (missing data). 

Step3: Imputation methods are applied to estimate MVs in MD. For missing entries, 

missing value, 

! 

(ygs)G"S in MD is substituted by imputed value ( ). We call this gene 

expression matrix ID (imputed data). 

Step4: Perform DE gene detection analysis on CD and ID to generate their corresponding 

biomarker lists: GCD and GID. Calculate BLCI(GCD, GID). 

Step 5: Repeat step2-4 for N times.  We use N=100 in this thesis.     
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2.5.2 Youden’s Index (YI) for Classification 

Similarly we utilize Youden’s index introduced by (Youden, 1950)as a quantitative 

measure to identify the impact of missing values in classification. Since we know the true class 

labels of the samples in this supervised learning scenario, we can directly evaluate the Youden’s 

index of the prediction result from each imputed data. Specifically, we perform 

Step1: Given a real gene expression matrix, the (real) MVs are removed to form a 

complete gene expression matrix without MVs. We call this gene expression matrix CD 

(complete data). It is denoted by CD=

! 

(ygs)G"S  

Step2: Next, a proportion q, 0<q<1, of MVs are intentionally introduced by randomly 

removing values in CD, where q=0.01, 0.05, 0.1 and 0.2. Let us denote this gene expression 

matrix with MD (missing data). 

Step3: Imputation methods are applied to estimate MVs in MD. For missing entries, 

missing value,

! 

(ygs)G"S in MD is substituted by imputed value .We call this gene expression 

matrix ID (imputed data). 

Step 4: Perform prediction analysis using the imputed data (ID) and assess the Youden’s 

index by YI=sensitivity+specificity-1. 

Step5: Repeat step2-4 for N times.  We use N=100 in this thesis. 

2.5.3 Adjusted Rand Index (ARI) for gene clustering analysis 

Adjust Rand index (ARI) by (Hubert, 2001) is commonly used to evaluate similarity of 

any two given clustering results. The original Rand index considers clustering relationship of any 
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pair of objects in the data and computes the proportions of concordant pairs (two objects 

clustered together in both clustering or not clustered together in both clustering) among all pairs. 

The adjusted Rand index (ARI) is a standardized version of Rand index that has expectation zero 

when the two clustering results are randomly generated. Similar to BLCI for DE gene detection, 

since we do not know the true gene clustering structure of the data, we pretend that the cluster 

result from complete data is the gold standard. The clustering result from each imputed data is 

then compared to the gold standard by ARI. A higher ARI value indicates that the two clustering 

results are similar and the missing value imputation brings smaller impact to down-stream 

clustering analysis. 

 

Step1: Given a real gene expression matrix, the (real) MVs are removed to form a 

complete gene expression matrix without MVs. We call this gene expression matrix CD 

(complete data). It is denoted by CD=

! 

(ygs)G"S  

Step2: Next, a proportion q, 0<q<1, of MVs are intentionally introduced by randomly 

removing values in CD, where q=0.01, 0.05, 0.1 and 0.2. Let us denote this gene expression 

matrix with MD (missing data). 

Step3: Imputation methods are applied to estimate MVs in MD. For missing entries, 

missing value,

! 

(ygs)G"S in MD is substituted by imputed value .We refer this to gene 

expression matrix ID (imputed data). 

Step 4: Given a gene clustering method (k-means, SOM or Mclust) and the number of 

clusters (K),we can obtain gene clustering from complete data (CCD) and from imputed data 

(CID). The ARI value is then computed, ARI(CCD, CID). Since we do not know the number of 
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clusters in each microarray data set, we perform evaluation for K=5, 10 and 15 and pick the K 

that has the highest ARI. 

Step 5: Repeat 100 times from Step 2 to Step3. 
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3.0  RESULTS 

3.1 COMPARISON OF CONSISTENCY MEASURES AMONG RMSE MEASURES 

AND AMONG DOWN-STREAM ANALYSIS METHODS 

To answer Aim 1A, Table 3A and 3B shows the median consistency measure for RMSE 

measures, 

! 

˜ r 
RMSE"RMSE , in the eight data sets for DE gene detection and classification and three 

data sets for gene clustering. It is easily seen that as the missing value percentage increases (from 

1% to 20%), the consistency measure for selecting MV imputation method between RMSE 

measure also significantly increases. In some data sets, the consistency measure of NRMSE vs 

LRMSE is the highest while, in some other data sets, RAE vs NRMSE has the highest 

consistency measure. At the largest missing percentage, NRMSE vs LRMSE also have the 

highest consistency measure in ALO, SIN, VAN, YU, and BEE. From the variable and often low 

to intermediate consistency measures, we conclude that the decisions made by NRMSE, LRMSE 

and RAE for evaluating MV imputation methods are often quite different. 

For Aim 1B, Table 4A, 4B and 4C are generated to compare consistency measures (

,

! 

˜ r 
YI "YI  and 

! 

˜ r 
ARI"ARI  ) of different down-stream analysis methods. Similar to Table 3A 

and 3B, the consistency measures are also significantly increased as the missing value 

percentages increase from 1% to 20%. In Table 4A for DE gene detection, the consistency 

measures between the three methods (SAM, LIMMA and t-test+BH) are very high (around 0.5- 

0.9 in 20% missing value percentage). For classification, in Table 4B, the consistency measures 

are relatively lower (around 0.1~0.45 in 20% missing value percentage), indicating less impact 
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of missing value imputation on these two down-stream analysis. Note that there are some NA 

values because if the largest Youden’s Indices for 8 imputation methods are exactly same, then 

we are unable to compute correlation values. For gene clustering in Table 4C, consistency 

measures for K-means (k=5) and SOM (k=5, 10, and 15) present a good consistency. Thus, in 

gene clustering, the selection of K value is more important prior to clustering analysis and 

estimation of MV. 

3.2 WHICH RMSE MEASURE BETTER CORRELATES WITH BIOLOGICAL 

IMPACT MEASURES? 

Table 5-A, 5-B and 5-C show the consistency measures between RMSE measures and 

down-stream analysis methods ( ,

! 

˜ r 
RMSE"YI  and 

! 

˜ r 
RMSE"ARI ) to answer Aim 2: “which 

RMSE measure is better correlated with biological impact measures?”. In Table 5A, the 

consistency measures for LRMSE with all three DE gene detection methods (SAM, LIMMA and 

t-test+BH) are clearly the highest, followed by NRMSE and RAE is the lowest. Again, the 

consistency measures are increased as missing value percentage increase. For the 20% missing 

value percentage, the consistency measure of LRMSE and BLCI from SAM, LIMMA, and t+BH 

are as high as 0.6- 0.9. In Table 5-B, the consistency measures even for 20% missing value 

percentage are much lower than 5A (around -0.2-0.5) while LRMSE still clearly outperforms 

RAE and followed by NRMSE. The low consistency measures suggest that classification is 

hardly affected missing value imputation. In Table 5-C, the consistency measure for 20% 

missing value are very well correlated with LRMSE in K-means (k=5) and SOM (k=5, 10, and 

15). Table 5A-5C provides an effective way to determine that LRMSE is a better quantitative 

measure than RAE and NRMSE to correlate with biological measures in ranking performance of 
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MV imputation methods. We further apply a complementary approach by linear regression 

model to better quantify the degree of consistency. The estimate (

! 

"*(BLCI ); the median slope 

estimate of 100 simulations) and statistical significance (

! 

(" L ;(BLCI )
," H ;(BLCI )

); the 95% confidence 

interval of the slope estimates in 100 simulations) of the slope term of the linear model indicate 

the ability to predict biological impacts by RMSE measures in different MV imputation methods. 

Since we have concluded that LRMSE is more consistent with the biological impacts, we only 

perform the linear models for LRMSE in Table 6A for DE gene detection, 6B for classification 

and 6C for gene clustering. In Table 6A, we can clearly see that the slope estimates are negative 

in almost all situations and the slope decreases when MV percentage increases. At 1% MV 

percentage, At 20% MV percentage, all data sets are negative with statistical significance (i.e. 

the 95% confidence intervals do not cover zero). Except VAN and BEE, the R
2
 values are as 

high as around 0.45-0.86 and corresponding coefficient of slope is also significant. For 

classification and clustering in Table 6B, the statistical significance and R
2
 are much weaker, 

indicating data imputation method does not affect much the performances of the classifiers. 

Especially, NA for some of consistency measures represents its evidence, which all Youden 

Indices corresponding to 8 imputation methods are exactly same, then correlation value is not 

able to be computed, that is, returns NA value. Thus, estimating MV does not improve much the 

classification accuracy and since consistency measures between RMSE vs Youden’s Index in 

classification does not present a good relationship and the ranking of MV methods by RMSE 

based measure does not guarantee the same order of raking by biological impact measure such as 

Youden’s Index, the choice of MV methods should be determined in context of classification 

accuracy for disease classifiers.   
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3.3 TABLES 

Table 3-A.Consistency measure among 3 RMSEs in DE.  
   GOL   ALO   LUO   SIN  

  NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

 NRMSE 1 0.833 0.190 1 0.690 0.690 1 0.214 0.619 1 0.286 0.429 

1% LRMSE  1 0.143  1 0.405  1 0.440  1 0.25 

 RAE   1   1   1   1 

 NRMSE 1 0.929 0.298 1 0.667 0.655 1 0.476 0.643 1 0.310 0.381 

5% LRMSE  1 0.190  1 0.405  1 0.464  1 0.10 

 RAE   1   1   1   1 

 NRMSE 1 0.833 0.405 1 0.702 0.667 1 0.571 0.762 1 0.119 0.262 

10% LRMSE  1 0.024  1 0.429  1 0.429  1 0.262 

 RAE   1   1   1   1 

 NRMSE 1 0.929 0.524 1 0.845 0.714 1 0.619 0.881 1 0.452 0.774 

20% LRMSE  1 0.476  1 0.738  1 0.429  1 0.643 

 RAE   1   1   1   1 

   LAP   VAN   YU   BEE  

  NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

 NRMSE 1 -0.083 0.714 1 0.167 0.190 1 0.762 0.833 1 0.690 0.690 

1% LRMSE  1 0.119  1 0.571  1 0.714  1 0.405 

 RAE   1   1   1   1 

 NRMSE 1 0.000 0.079 1 0.369 0.143 1 0.762 0.762 1 0.667 0.655 

5% LRMSE  1 0.190  1 0.548  1 0.595  1 0.405 

 RAE   1   1   1   1 

 NRMSE 1 0.095 0.738 1 0.310 0.333 1 0.833 0.762 1 0.702 0.667 

10% LRMSE  1 0.357  1 0.548  1 0.619  1 0.429 

 RAE   1   1   1   1 

 NRMSE 1 0.429 0.810 1 0.524 0.357 1 0.857 0.905 1 0.845 0.714 

20% LRMSE  1 0.595  1 0.619  1 0.690  1 0.738 

 RAE   1   1   1   1 

It represents the spearman rank correlation values among 3 different RMSE measures for DE datasets. 
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Table 3-B. Consistency measure among 3 RMSEs in gene clustering.  

   SP.AFA   SP.ELU   CAU  

  NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

 NRMSE 1 -0.024 0.905 1 0.143 0.929 1 0.631 0.286 

1% LRMSE  1 0.095  1 0.155  1 -0.476 

 RAE   1   1   1 

 NRMSE 1 -0.071 0.881 1 0.524 0.952 1 0.667 0.286 

5% LRMSE  1 -0.036  1 0.524  1 -0.452 

 RAE   1   1   1 

 NRMSE 1 -0.119 0.774 1 0.143 0.952 1 0.357 0.286 

10% LRMSE  1 -0.071  1 0.119  1 -0.667 

 RAE   1   1   1 

 NRMSE 1 0.036 0.726 1 0.381 0.976 1 0.762 0.333 

20% LRMSE  1 -0.167  1 0.381  1 -0.071 

 RAE   1   1   1 

It represents the spearman rank correlation values among 3 different RMSE measures for clustering datasets. 

Table 4-A. Consistency measure among 3 DE methods.  

   GOL   ALO   LUO   SIN  

  SAM LIMMA t-BH SAM LIMMA t-BH SAM LIMMA t-BH SAM LIMMA t-BH 

 SAM 1 0.084 0.114 1 0.069 0.031 1 -0.048 0.096 1 -0.078 0.048 

1% LIMMA  1 0.560  1 0.380  1  0.383 1 0.238 

 t-BH   1   1   1   1 

 SAM 1 0.286 0.286 1 0.371 0.310 1 0.452 0.405 1 0.027 -0.090 

5% LIMMA  1 0.820  1 0.788  1 0.774  1 0.548 

 t-BH   1   1   1   1 

 SAM 1 0.464 0.554 1 0.524 0.531 1 0.571 0.571 1 0.083 0.179 

10% LIMMA  1 0.905  1 0.905  1 0.881  1 0.786 

 t-BH   1   1   1   1 

 SAM 1 0.702 0.714 1 0.571 0.571 1 0.762 0.762 1 0.476 0.476 

20% LIMMA  1 0.952  1 0.929  1 0.929  1 0.929 
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Table 4-A continued. 

 t-BH   1   1   1   1 

   LAP   VAN   YU   BEE  

              

 SAM 1 0.006 0.024 1 0.054 0.083 1 0.024 0.120 1 0.272 0.286 

1% LIMMA  1 0.383  1 0.366  1 0.641  1 0.714 

 t-BH   1   1   1   1 

 SAM 1 0.095 0.214 1 0.083 0.048 1 0.476 0.533 1 0.524 0.524 

5% LIMMA  1 0.758  1 0.653  1 0.844  1 0.929 

 t-BH   1   1   1   1 

 SAM 1 0.298 0.262 1 0.321 0.251 1 0.595 0.643 1 0.667 0.667 

10% LIMMA  1 0.833  1 0.738  1 0.905  1 0.929 

 t-BH   1   1   1   1 

 SAM 1 0.667 0.667 1 0.714 0.690 1 0.810 0.833 1 0.929 0.929 

20% LIMMA  1 0.952  1 0.913  1 0.976  1 0.976 

 t-BH   1   1   1   1 

It represents the spearman rank correlation values among 3 DE methods using 8 datasets. 
 

Table 4-B. Consistency measure among 4 classification methods.  

   GOL    ALO    LUO   

  LDA KNN SVM PAM LDA KNN SVM PAM LDA KNN SVM PAM 

1% LDA 1 0.181 -0.218 -0.370 1 -0.080 0.000 0.132 NA NA NA NA 

 KNN  1 -0.302 -0.003  1 0.040 0.000 NA 1 NA NA 

 SVM   1 -0.286   1 -0.108 NA NA NA NA 

 PAM    1    1 NA NA NA NA 

5% LDA 1 0.246 0.038 0.146 1 0.059 0.187 -0.052 1 0.655 NA NA 

 KNN  1 0.271 0.062  1 0.128 0.293  1 NA NA 

 SVM   1 0.143   1 0.058   1 NA 

 PAM    1    1    1 

10% LDA 1 0.351 0.029 0.176 1 0.057 0.226 0.170 1 0.571 NA NA 

 KNN  1 0.269 0.095  1 -0.013 0.218  1 NA NA 

 SVM   1 0.143   1 0.113   1 NA 
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Table 4-B continued. 

 PAM    1    1    1 

20% LDA 1 0.249 0.200 0.255 1 0.203 0.448 0.165 1 0.381 0.256 NA 

 KNN  1 0.187 0.255  1 0.150 0.382  1 0.488 NA 

 SVM   1 0.143   1 0.107   1 NA 

 PAM    1    1    1 

   SIN    LAP    VAN   

  LDA KNN SVM PAM LDA KNN SVM PAM LDA KNN SVM PAM 

1% LDA 1 0.075 0.616 -0.325 1 -0.014 -0.029 -0.041 1 0.103 0.168 0.046 

 KNN  1 0.361 0.143  1 -0.057 0.143  1 -0.018 0.000 

 SVM   1 0.285   1 0.143   1 0.000 

 PAM    1    1    1 

5% LDA 1 0.248 0.403 -0.071 1 0.085 0.114 0.173 1 0.051 0.262 0.172 

 KNN  1 0.160 0.262  1 0.166 0.293  1 0.100 0.048 

 SVM   1 -0.014   1 0.170   1 0.113 

 PAM    1    1    1 

10% LDA 1 0.348 0.344 0.132 1 0.000 0.177 0.037 1 0.090 0.218 0.486 

 KNN  1 0.212 0.320  1 0.216 0.351  1 0.140 0.123 

 SVM   1 0.163   1 0   1 0.192 

 PAM    1    1    1 

20% LDA 1 0.483 0.647 0.500 1 0.319 0.440 0.311 1 0.248 0.231 0.619 

 KNN  1 0.506 0.434  1 0.477 0.531  1 0.210 0.126 

 SVM   1 0.287   1 0.423   1 0.187 

 PAM    1    1    1 

   YU    BEE       

  LDA KNN SVM PAM LDA KNN SVM PAM     

1% LDA 1 0.000 -0.037 -0.072 1 0.271 -0.143 NA     

 KNN  1 0.000 0.105  1 0.218 NA     

 SVM   1 -0.143   1 0.000     

 PAM    1    1     

5% LDA 1 0.000 0.000 0.115 1 0.000 0.218 0.060     

 KNN  1 0.066 -0.103  1 -0.255 0.281     

 SVM   1 0.000   1 0.258     
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Table 4-B continued. 

 PAM    1    1 

10% LDA 1 0.000 0.010 0.158 1 0.000 0.293 0.333 

 KNN  1 -0.153 -0.014  1 0.000 0.390 

 SVM   1 -0.073   1 0.238 

 PAM    1    1 

20% LDA 1 0.345 0.230 0.132 1 0.138 0.119 0.293 

 KNN  1 0.364 0.029  1 0.218 0.293 

 SVM   1 -0.024   1 0.282 

 PAM    1    1 

It represents the spearman rank correlation values among 4 classification methods using 8 datasets. 
 

Table 4-C. Consistency measure between 2 clustering methods.  
SP.AFA   Kmeans   SOM   

   K=5 K=10 K=15 K=5 K=10 K=15 

1% Kmeans K=5 1.000 -0.071 0.060 0.238 0.167 0.333 

  K=10  1 0.107 0.060 0.012 0.000 

  K=15   1 0.024 0.036 0.048 

 SOM K=5    1 0.036 0.738 

  K=10     1 0.119 

  K=15      1 

5% Kmeans K=5 1.000 0.143 0.131 0.417 0.452 0.643 

  K=10  1 -0.024 0.036 0.095 0.190 

  K=15   1 0.071 0.071 0.071 

 SOM K=5    1 0.238 0.547 

  K=10     1 0.643 

  K=15      1 

10% Kmeans K=5 1.000 0.131 0.214 0.429 0.702 0.786 

  K=10  1 0.143 0.143 0.167 0.190 

  K=15   1 0.167 0.143 0.190 

 SOM K=5    1 0.286 0.405 

  K=10     1 0.810 
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Table 4-C continued. 

  K=15      1 

20% Kmeans K=5 1.000 0.369 0.393 0.381 0.738 0.786 

  K=10  1 0.262 0.190 0.357 0.345 

  K=15   1 0.036 0.381 0.429 

 SOM K=5    1 0.357 0.381 

  K=10     1 0.905 

  K=15      1 

SP.ELU   Kmeans   SOM   

   K=5 K=10 K=15 K=5 K=10 K=15 

1% Kmeans K=5 1.000 0.024 0.071 0.286 0.286 0.262 

  K=10  1 0.024 0.024 0.048 0.000 

  K=15   1 0.071 0.095 0.119 

 SOM K=5    1 0.833 0.857 

  K=10     1 0.095 

  K=15      1 

5% Kmeans K=5 1.000 0.060 0.024 0.321 0.333 0.405 

  K=10  1 0.083 0.119 0.107 0.083 

  K=15   1 0.107 0.143 0.190 

 SOM K=5    1 0.857 0.833 

  K=10     1 0.929 

  K=15      1 

10% Kmeans K=5 1.000 0.024 0.095 0.452 0.417 0.440 

  K=10  1 0.167 -0.048 -0.036 -0.024 

  K=15   1 0.155 0.143 0.155 

 SOM K=5    1 0.952 0.929 

  K=10     1 0.976 

  K=15      1 

20% Kmeans K=5 1.000 0.476 0.488 0.833 0.833 0.833 

  K=10  1 0.595 0.524 0.512 0.524 

  K=15   1 0.524 0.524 0.524 

 SOM K=5    1 0.976 0.976 

  K=10     1 0.976 
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Table 4-C continued. 

  K=15      1 

CAU   Kmeans   SOM   

   K=5 K=10 K=15 K=5 K=10 K=15 

1% Kmeans K=5 1.000 0.060 0.000 0.143 0.113 0.238 

  K=10  1 0.036 0.096 0.012 0.000 

  K=15   1 -0.071 -0.107 -0.107 

 SOM K=5    1 0.476 0.524 

  K=10     1 0.583 

  K=15      1 

5% Kmeans K=5 1.000 -0.024 0.000 0.202 0.179 0.262 

  K=10  1 0.024 0.071 0.107 0.036 

  K=15   1 -0.024 0.000 -0.012 

 SOM K=5    1 0.810 0.75 

  K=10     1 0.738 

  K=15      1 

10% Kmeans K=5 1.000 0.048 0.048 0.429 0.333 0.345 

  K=10  1 0.000 0.048 0.048 0.048 

  K=15   1 0.048 -0.024 0.071 

 SOM K=5    1 0.786 0.726 

  K=10     1 0.571 

  K=15      1 

20% Kmeans K=5 1.000 0.321 0.452 0.619 0.476 0.393 

  K=10  1 0.310 0.357 0.333 0.333 

  K=15   1 0.452 0.452 0.345 

 SOM K=5    1 0.726 0.619 

  K=10     1 0.476 

  K=15      1 

It represents the spearman rank correlation values among2 different clustering methods with 3 different 

cluster numbers, k=5,10, and 15 using 3 datasets. 
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Table 5-A. Consistency measure between RMSEs and DE.  

   GOL   ALO   LUO   SIN  

  NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

 SAM 0.305 0.353 -0.030 0.179 0.119 0.143 0.000 0.155 0.036 -0.024 0.048 0.024 

1% LIMMA 0.313 0.440 0.024 0.453 0.578 0.389 0.095 0.353 0.204 0.060 0.381 -0.048 

 t-BH 0.296 0.371 -0.180 0.375 0.524 0.096 0.072 0.310 0.114 0.071 0.257 0.060 

 SAM 0.429 0.496 -0.071 0.381 0.464 0.262 0.036 0.262 0.000 -0.012 0.083 0.071 

5% LIMMA 0.460 0.631 -0.305 0.513 0.710 0.095 0.012 0.381 -0.167 0.048 0.619 -0.179 

 t-BH 0.452 0.595 -0.394 0.543 0.716 0.113 0.048 0.393 -0.143 0.071 0.597 -0.083 

 SAM 0.531 0.615 -0.060 0.548 0.643 0.333 0.024 0.405 -0.071 -0.048 0.167 0.060 

10% LIMMA 0.381 0.647 -0.333 0.429 0.719 -0.048 0.024 0.452 -0.202 -0.131 0.567 -0.179 

 t-BH 0.281 0.619 -0.500 0.429 0.690 -0.060 -0.048 0.405 -0.214 -0.095 0.667 -0.131 

 SAM 0.762 0.798 0.316 0.619 0.714 0.405 0.143 0.548 -0.048 0.048 0.524 0.202 

20% LIMMA 0.561 0.643 -0.071 0.262 0.405 -0.083 -0.012 0.548 -0.179 -0.191 0.619 0.024 

 t-BH 0.512 0.619 -0.131 0.262 0.383 -0.012 -0.048 0.500 -0.214 -0.119 0.667 0.048 

   LAP   VAN   YU   BEE  

  NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

 SAM 0.024 0.048 0.048 0.048 0.000 -0.048 0.048 0.143 0.048 -0.048 0.155 -0.310 

1% LIMMA -0.189 0.335 -0.156 0.023 0.224 0.096 0.497 0.683 0.429 -0.012 0.557 -0.500 

 t-BH -0.200 0.265 -0.181 -0.055 0.222 0.060 0.527 0.683 0.393 -0.018 0.444 -0.466 

 SAM -0.036 0.179 0.048 -0.095 0.071 0.036 0.381 0.619 0.214 -0.024 0.405 -0.357 

5% LIMMA -0.452 0.488 -0.333 -0.084 0.257 0.084 0.655 0.833 0.452 -0.071 0.619 -0.603 

 t-BH -0.449 0.476 -0.333 -0.048 0.321 0.167 0.548 0.810 0.381 -0.071 0.619 -0.595 

 SAM -0.167 0.321 -0.119 -0.190 0.143 0.000 0.524 0.690 0.250 -0.095 0.405 -0.405 

10% LIMMA -0.512 0.464 -0.417 -0.167 0.173 -0.274 0.714 0.810 0.429 -0.119 0.548 -0.619 

 t-BH -0.452 0.500 -0.328 -0.155 0.262 -0.143 0.655 0.806 0.333 -0.119 0.571 -0.607 

 SAM 0.048 0.667 0.167 0.238 0.512 0.190 0.667 0.833 0.476 0.036 0.619 -0.238 

20% LIMMA -0.262 0.429 -0.143 0.214 0.472 0.119 0.786 0.929 0.619 0.095 0.667 -0.190 

 t-BH -0.286 0.429 -0.143 0.190 0.476 0.119 0.786 0.929 0.595 0.095 0.667 -0.167 

It represents the spearman rank correlation values between 3 RMSE measures and BLCI after 3 DE methods using 8 

datasets. 

 

 

 

 



 60 

Table 5-B. Consistency measure between RMSEs and Classification.  

   GOL   ALO   LUO  

  NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

1% LDA 0.000 -0.065 -0.169 0.119 0.013 -0.014 NA NA NA 

 KNN 0.323 0.395 -0.074 -0.019 0.052 -0.052 -0.577 0.247 -0.247 

 SVM 0.083 0.577 0.394 -0.126 -0.169 -0.126 NA NA NA 

 PAM 0.412 0.412 -0.096 -0.169 -0.252 -0.218 NA NA NA 

5% LDA 0.051 0.051 0.103 0.176 0.145 0.082 0.167 -0.124 -0.332 

 KNN 0.000 0.126 0.000 -0.167 -0.124 -0.160 0.041 0.000 -0.458 

 SVM -0.247 0.000 -0.083 -0.192 -0.154 -0.096 NA NA NA 

 PAM 0.394 0.412 -0.169 -0.080 0.176 -0.327 NA NA NA 

10% LDA 0.038 0.109 -0.083 0.157 0.170 0.098 -0.041 0.148 -0.412 

 KNN 0.000 0.104 -0.083 -0.262 -0.254 -0.244 -0.211 0.028 -0.738 

 SVM 0.006 0.083 0.116 -0.149 -0.105 0.000 NA NA NA 

 PAM 0.169 0.252 -0.247 -0.083 0.196 -0.412 NA NA NA 

20% LDA 0.056 0.109 0.095 0.246 0.280 0.175 -0.247 0.118 -0.412 

 KNN 0.094 0.096 0.000 -0.230 -0.209 -0.221 -0.378 0.056 -0.577 

 SVM 0.100 0.109 0.056 -0.038 0.038 -0.171 -0.412 -0.247 -0.577 

 PAM 0.247 0.247 -0.100 -0.050 0.167 -0.183 NA NA NA 

   SIN   LAP   VAN  

  NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

1% LDA -0.083 -0.267 -0.104 0.039 0.036 0.073 -0.030 0.073 -0.037 

 KNN 0.000 0.041 -0.083 0.083 -0.208 0.083 0.043 0.025 0.048 

 SVM 0.096 0.109 -0.137 -0.149 -0.069 -0.167 0.030 0.066 -0.024 

 PAM 0.126 0.169 -0.027 -0.083 -0.250 -0.218 0.024 -0.083 -0.083 

5% LDA -0.103 0.000 -0.086 -0.096 -0.108 -0.144 -0.048 -0.067 -0.073 

 KNN 0.077 0.232 -0.154 -0.282 0.069 -0.297 0.018 -0.090 -0.108 

 SVM 0.000 0.083 -0.094 -0.254 0.188 -0.313 0.000 0.024 -0.031 

 PAM -0.028 0.287 -0.109 -0.126 0.041 -0.268 -0.096 -0.144 -0.145 

10% LDA 0.000 0.261 -0.052 -0.060 -0.012 -0.090 -0.078 -0.072 0.036 

 KNN 0.056 0.279 -0.218 -0.252 0.252 -0.252 -0.095 -0.108 -0.030 

 SVM 0.000 0.148 -0.083 -0.276 0.250 -0.313 -0.120 0.006 0.024 

 PAM -0.061 0.257 -0.200 -0.281 0.089 -0.252 -0.096 -0.048 -0.119 
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Table 5-B continued. 
20% LDA -0.006 0.503 0.102 -0.246 0.096 -0.227 0.036 0.060 0.024 

 KNN -0.066 0.486 0.037 -0.401 0.126 -0.295 0.000 0.107 0.012 

 SVM -0.132 0.390 0.048 -0.294 0.194 -0.210 0.018 0.084 0.048 

 PAM 0.062 0.479 0.106 -0.482 -0.014 -0.412 0.012 0.107 0.024 

   YU   BEE     

  NRMSE LRMSE RAE NRMSE LRMSE RAE    

1% LDA 0.013 0.000 0.098 -0.083 -0.083 -0.126    

 KNN -0.059 0.174 0.080 0.056 0.000 -0.218    

 SVM 0.247 0.394 0.309 0.028 -0.323 0.071    

 PAM 0.000 0.078 -0.078 0.225 -0.507 0.394    

5% LDA 0.027 0.050 -0.052 -0.126 -0.083 -0.247    

 KNN 0.239 0.218 0.163 -0.083 -0.013 0.028    

 SVM 0.157 0.275 0.091 -0.083 0.096 -0.126    

 PAM 0.013 0.145 -0.213 -0.056 -0.247 0.252    

10% LDA -0.047 0.062 -0.150 -0.056 0.083 -0.252    

 KNN 0.325 0.321 0.288 -0.083 -0.169 -0.083    

 SVM 0.114 0.185 0.025 -0.109 0.083 -0.378    

 PAM -0.145 0.135 -0.349 0.069 -0.109 0.000    

20% LDA 0.134 0.314 0.062 -0.083 -0.006 -0.126    

 KNN 0.457 0.481 0.426 -0.136 -0.247 -0.078    

 SVM -0.169 0.357 0.109 -0.247 -0.083 -0.169    

 PAM 0.224 0.132 -0.342 -0.378 -0.247 -0.412    

It represents the spearman rank correlation values between 3 RMSE measures and Youden’s Index after 4 

classification methods using 8 datasets. 
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Table 5-C. Consistency measure between RMSEs and Clustering.  
    SP.AFA   SP.ELU   CAU  

   NRMSE LRMSE RAE NRMSE LRMSE RAE NRMSE LRMSE RAE 

1% Kmeans K=5 -0.024 0.333 0.333 -0.036 0.286 -0.048 0.048 0.274 -0.167 

  K=10 -0.060 -0.012 -0.012 0.036 -0.060 0.071 0.071 0.071 -0.024 

  K=15 0.071 0.107 0.107 -0.036 0.024 0.012 -0.083 0.036 -0.024 

 SOM K=5 -0.119 0.798 0.000 -0.048 0.833 0.000 0.5 0.690 -0.167 

  K=10 -0.214 0.095 -0.226 0.024 0.893 0.071 0.488 0.722 -0.143 

  K=15 -0.095 0.119 -0.024 0.024 0.905 0.095 0.488 0.583 -0.298 

5% Kmeans K=5 0.000 0.690 0.048 0.226 0.405 0.226 0.190 0.238 -0.083 

  K=10 0.024 0.226 0.024 0.119 0.167 0.139 0.071 0.095 -0.036 

  K=15 0.024 -0.024 -0.012 0.048 0.083 0.095 -0.071 0.024 -0.048 

 SOM K=5 0.071 0.619 0.119 0.300 0.833 0.357 0.690 0.857 -0.298 

  K=10 -0.262 0.619 -0.381 0.440 0.881 0.524 0.643 0.881 -0.321 

  K=15 -0.143 0.643 -0.167 0.429 0.929 0.5 0.631 0.738 -0.333 

10% Kmeans K=5 0.024 0.810 0.012 0.048 0.452 0.024 0.107 0.429 -0.333 

  K=10 0.024 0.190 0.071 0.143 -0.048 0.167 0.048 0.036 0.036 

  K=15 -0.012 0.143 -0.083 0.119 0.167 0.143 0.048 0.000 -0.095 

 SOM K=5 0.143 0.429 0.214 0.000 0.929 -0.024 0.310 0.905 -0.619 

  K=10 -0.214 0.833 -0.274 0.095 0.929 0.095 0.310 0.833 -0.548 

  K=15 -0.143 0.810 -0.190 0.143 0.976 0.143 0.214 0.571 -0.488 

20% Kmeans K=5 0.083 0.690 0.095 0.286 0.857 0.333 0.548 0.607 0.143 

  K=10 -0.012 0.333 0.071 0.440 0.548 0.440 0.333 0.357 0.226 

  K=15 0.000 0.262 0.024 0.524 0.595 0.619 0.464 0.310 0.226 

 SOM K=5 0.119 0.464 0.226 0.286 0.976 0.333 0.810 0.881 0.000 

  K=10 -0.036 0.905 -0.214 0.286 0.976 0.357 0.583 0.702 0.000 

  K=15 -0.048 0.905 -0.155 0.286 0.976 0.333 0.560 0.476 0.095 

It represents the spearman rank correlation values between 3 RMSE measures and ARI after 2 clustering 

methods for different cluster number, k=5,10,and 15 using 3 datasets. 
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Table 6-A. Linear Model between LRMSE and DE.  
  GOL ALO LUO SIN 

  (1(CI);R2 (1(CI);R2 (1(CI);R2 (1(CI);R2 

1% SAM -0.039(-0.408,0.365);0.072 -0.002(-0.234,0.176);0.063 -0.016(-1.176,1.021);0.073 -0.036(-1.354,1.242);0.071 

 LIMMA -0.031(-0.119,0.056);0.234 -0.072(-0.192,0.007);0.619 -0.045*(-0.106,-0.001);0.540 -0.037(-0.190,0.068);0.199 

 t-BH -0.032(-0.120,0.042);0.162 -0.099(-0.315,0.045);0.529 -0.0439(-0.107,0.007);0.413 -0.035(-0.137,0.058);0.131 

5% SAM -0.010(-0.420,0.300);0.086 -0.106(-0.321,0.063);0.195 -0.105(-0.865,0.333);0.099 -0.131(-1.372,1.063);0.110 

 LIMMA -0.129(-0.324,0.025);0.355 -0.410*(-0.627,-0.232);0.737 -0.208*(-0.323,-0.108);0.714 -0.166(-0.359,0.041);0.431 

 t-BH -0.151(-0.314,0.042);0.308 -0.509*(-1.031,-0.267);0.732 -0.210*(-0.332,-0.107);0.632 -0.157(-0.362,0.045);0.384 

10% SAM -0.193(-0.594,0.134);0.146 -0.229*(-0.597,-0.054);0.661 -0.301(-1.011,0.012);0.341 -0.168(-1.017,0.842);0.094 

 LIMMA -0.253*(-0.477,-0.078);0.348 -0.780*(-1.168,-0.491);0.768 -0.353*(-0.519,-0.212);0.721 -0.245(-0.430,-0.028);0.440 

 t-BH -0.272*(-0.541,-0.106);0.310 -0.976*(-1.466,-0.558);0.720 -0.356*(-0.499,-0.221);0.661 -0.263(-0.474,-0.055);0.512 

20% SAM -0.213*(-0.337,-0.075);0.399 -0.353*(-0.695,-0.155);0.636 -0.399*(-0.701,-0.197);0.676 -0.231(-0.524,0.048);0.328 

 LIMMA -0.256*(-0.358,-0.097);0.368 -1.111*(-1.601,-0.653);0.454 -0.502*(-0.700,-0.340);0.685 -0.314(-0.445,-0.177);0.669 

 t-BH -0.243*(-0.352,-0.121);0.279 -1.22*(-1.74,-0.69);0.390 -0.520*(-0.696,-0.334);0.636 -0.324(-0.450,-0.189);0.686 

  LAP VAN YU BEE 

  (1(CI);R2 (1(CI);R2 (1(CI);R2 (1(CI);R2 

1% SAM -0.015(-0.625,0.693);0.061 -0.067(-3.488,2.554);0.110 -0.031(-0.138,0.168);0.090 -0.037(-1.519,1.282);0.090 

 LIMMA -0.062(-0.333,0.147);0.176 -0.218(-1.847,0.937);0.120 -0.028(-0.062,0.004);0.482 -0.043*(-0.091,-0.001);0.310 

 t-BH -0.019(-0.226,0.131);0.185 -0.231(-1.772,0.993);0.108 -0.028(-0.062,0.012);0.494 -0.449(-0.111,0.002);0.244 

5% SAM -0.072(-1.336,1.517);0.087 -0.083(-2.839,2.708);0.096 -0.089(-0.248,0.064);0.350 -0.188(-1.048,0.734);0.167 

 LIMMA -0.191(-0.564,0.038);0.259 -0.539(-2.116,0.948);0.088 -0.088*(-0.143,-0.016);0.695 -0.165*(-0.262,-0.089);0.290 

 t-BH -0.219(-0.548,0.058);0.333 -0.748(-2.284,1.137);0.162 -0.092*(-0.144,-0.037);0.667 -0.176*(-0.290,-0.086);0.270 

10% SAM -0.175(-0.710,0.283);0.131 -0.349(-2.386,1.877);0.091 -0.147*(-0.237,-0.048);0.530 -0.274*(-0.897,0.317);0.125 

 LIMMA -0.401*(-0.788,-0.046);0.301 -0.44(-2.3,1.18);0.050 -0.121*(-0.209,-0.052);0.733 -0.271*(-0.382,-0.155);0.212 

 t-BH -0.422*(-0.786,-0.057);0.343 -0.797(-2.407,1.003);0.080 -0.124*(-0.213,-0.069);0.691 -0.280*(-0.425,-0.169);0.223 

20% SAM -0.383*(-0.738,-0.209);0.764 -1.34(-2.09,-0.72);0.759 -0.182*(-0.270,-0.000);0.740 -0.268*(-0.429,-0.115);0.285 

 LIMMA -0.610*(-0.874,-0.339);0.560 -1.599(-2.427,-0.594);0.705 -0.177*(-0.230,-0.000);0.873 -0.259*(-0.334,-0.185);0.440 

 t-BH -0.606*(-0.840,-0.377);0.572 -1.681(-2.473,-0.748);0.748 -0.178*(-0.232,-0.000);0.867 -0.263*(-0.361,-0.191);0.445 

It represents the estimate of slope, its 95% confidence interval, and R-squared value in simple linear 

regression between LRSME and BCLI after 3 DE methods.* indicates the statistical significance for the 

slope from 95 % confidence interval. 
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Table 6-B. Linear model between LRMSE and Classification.  
  GOL ALO LUO SIN 

  !1(CI);R
2 !1(CI);R

2 !1(CI);R
2 !1(CI);R

2 

1% LDA -0.000(-0.201,0.242);0.410 -0.000(-0.031,0.261);0.190 -0.000(-0.000,-0.000);0.457 -0.000(-0.118,0.230);0.516 

 KNN -0.000(-0.398,0.219);0.481 -0.000(-0.154,0.268);0.454 -0.000(-0.000,-0.000);0.455 -0.000(-0.359,0.189);0.541 

 SVM -0.000(-0.054,-0.000);0.503 -0.038(-0.509,0.277);0.140 -0.000(-0.000,-0.000);0.457 -0.000(-0.316,0.091);0.512 

 PAM -0.000(-0.133,-0.000);0.542 -0.000(-0.138,0.269);0.293 -0.000(-0.000,-0.000);0.457 -0.000(-0.276,0.295);0.456 

5% LDA -0.000(-0.562,0.405);0.265 -0.048(-0.459,0.496);0.185 -0.000(-0.000,-0.000);0.471 -0.000(-0.429,0.368);0.312 

 KNN -0.000(-0.377,0.334);0.265 -0.088(-0.310,0.137);0.243 -0.000(-0.000,0.066);0.476 -0.084(-0.653,0.342);0.158 

 SVM -0.000(-0.315,0.219);0.500 -0.084(-0.523,0.352);0.199 -0.000(-0.000,-0.000);0.484 -0.000(-0.543,0.437);0.216 

 PAM -0.000(-0.248,0.123);0.512 -0.016(-0.157,0.127);0.085 -0.000(-0.000,-0.000);0.484 -0.045(-0.563,0.294);0.247 

10% LDA -0.022(-0.399,0.508);0.109 -0.074(-0.672,0.346);0.173 -0.000(-0.596,0.128);0.496 -0.102(-0.557,0.311);0.118 

 KNN -0.018(-0.538,0.430);0.153 -0.041(-0.266,0.140);0.101 -0.000(-0.000,-0.000);0.509 -0.212(-0.762,0.240);0.137 

 SVM -0.000(-0.317,0.264);0.166 -0.090(-0.677,0.375);0.242 -0.000(-0.000,-0.000);0.512 -0.082(-0.653,0.448);0.131 

 PAM -0.000(-0.234,0.133);0.442 -0.033(-0.222,0.181);0.115 -0.000(-0.000,-0.000);0.512 -0.126(-0.504,0.206);0.154 

20% LDA -0.025(-0.419,0.242);0.138 -0.191(-0.814,0.417);0.183 -0.000(-0.475,0.212);0.240 -0.190(-0.563,0.140);0.321 

 KNN -0.004(-0.226,0.228);0.081 -0.105(-0.480,0.165);0.159 -0.000(-0.000,-0.078);0.320 -0.176(-0.465,0.138);0.315 

 SVM -0.000(-0.231,0.268);0.138 -0.085(-0.591,0.336);0.099 -0.000(-0.000,0.046);0.321 -0.21(-0.57,0.21);0.270 

 PAM -0.001(-0.134,0.188);0.208 -0.067(-0.297,0.122);0.077 -0.000(-0.000,-0.000);0.324 -0.116(-0.375,0.115);0.346 

  LAP VAN YU BEE 

  !1(CI);R
2 !1(CI);R

2 !1(CI);R
2 !1(CI);R

2 

1% LDA 0.092(-1.336,1.517);0.144 -0.037(-1.425,1.527);0.084 -0.000(-0.358,0.317);0.194 -0.000(-0.124,0.091);0.230 

 KNN -0.000(-0.000,0.392);0.524 -0.090(-1.484,1.234);0.085 0.011(-0.314,0.368);0.226 -0.000(-0.813,0.731);0.465 

 SVM -0.000(-0.000,1.35);0.289 -0.043(-1.798,1.754);0.119 -0.000(-0.165,0.144);0.466 -0.000(-0.002,0.055);0.474 

 PAM -0.000(-0.866,1.08);0.283 -0.000(-0.493,0.679);0.124 -0.000(-0.303,0.277);0.217 -0.000(-0.000,-0.000);0.481 

5% LDA 0.216(-2.632,2.320);0.138 0.077(-1.814,2.033);0.087 -0.027(-0.482,0.387);0.098 -0.000(-0.112,0.093);0.193 

 KNN -0.000(-1.29,0.868);0.266 0.181(-2.273,2.140);0.126 0.010(-0.285,0.325);0.156 -0.000(-0.560,0.513);0.352 

 SVM -0.277(-1.859,1.526);0.109 0.014(-3.294,2.419);0.095 -0.027(-0.404,0.190);0.188 -0.000(-0.092,0.094);0.469 

 PAM -0.008(-1.666,1.694);0.160 0.163(-0.603,1.164);0.081 -0.017(-0.292,0.301);0.081 -0.000(-0.003,0.053);0.488 

10% LDA 0.066(-1.933,2.00);0.120 0.154(-2.577,2.579);0.073 -0.000(-0.773,0.456);0.105 -0.007(-0.473,0.095);0.152 

 KNN -0.307(-1.967,0.751);0.223 0.132(-2.276,2.449);0.065 -0.049(-0.438,0.382);0.100 -0.000(-0.739,0.734);0.196 

 SVM -0.429(-2.533,1.519);0.120 0.061(-2.893,3.411);0.083 -0.107(-0.555,0.253);0.201 -0.000(-0.091,0.092);0.424 

 PAM -0.320(-3.732,1.319);0.109 0.021(-1.187,1.636);0.068 -0.005(-0.423,0.304);0.044 -0.000(-0.038,0.039);0.484 

20% LDA -0.137(-1.404,1.324);0.106 -0.112(-1.681,0.920);0.183 -0.071(-0.543,0.177);0.160 -0.000(-0.309,0.070);0.078 
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Table 6-B continued. 
 KNN -0.167(-0.916,0.449);0.121 -0.100(-0.919,0.768);0.108 -0.132(-0.519,0.168);0.209 0.014(-0.278,0.325);0.118 

 SVM -0.464(-1.251,0.560);0.176 -0.237(-1.535,0.734);0.114 -0.091(-0.472,0.206);0.166 -0.000(-0.022,0.186);0.129 

 PAM -0.012(-1.149,1.090);0.065 -0.140(-0.792,0.715);0.236 0.000(-0.196,0.213);0.039 -0.000(-0.167,0.070);0.393 

It represents the estimate of slope, its 95% confidence interval, and R-squared value in simple linear 

regression between LRSME and Youden’s Index after 4 classification methods.* indicates the statistical 

significance for the slope from 95 % confidence interval. 
 

Table 6-C. Linear model between LRMSE and clustering interval. 
   SP.AFA SP.ELU CAU 

   !1(CI);R
2 !1(CI);R

2 !1(CI);R
2 

1% Kmeans K=5 -0.106(-1.420,1.359);0.210 -0.192(-0.950,0.500);0.078 -0.029(-0.524,0.320);0.081 

  K=10 -0.013(-0.900,0.708);0.091 0.023(-0.525,0.720);0.145 -0.426(-2.821,2.631);0.081 

  K=15 -0.020(-0.496,0.428);0.057 -0.047(-0.445,0.365);0.071 0.297(-2.160,2.351);0.092 

 SOM K=5 -0.644*(-1.386,-0.190);0.712 -0.174*(-0.211,-0.135);0.960 -0.022(-0.052,0.001);0.575 

  K=10 -0.076(-0.257,0.061);0.145 -0.107*(-0.147,-0.084);0.873 -0.024*(-0.049,-0.001);0.675 

  K=15 -0.211*(-0.313,-0.144);0.916 -0.122*(-0.150,-0.086);0.982 -0.028*(-2.916,0.002);0.673 

5% Kmeans K=5 -0.572(-2.346,3.745);0.637 -0.001(-2.313,1.551);0.079 -0.073(-0.745,0.246);0.100 

  K=10 -0.339(-2.467,1.842);0.145 -0.012(-2.112,0.953);0.108 -0.080(-2.512,2.005);0.080 

  K=15 -0.307(-1.461,0.811);0.140 -0.087(-1.388,0.551);0.075 0.028(-0.975,1.014);0.101 

 SOM K=5 -2.007(-2.961,0.291);0.471 -0.613*(-0.830,-0.000);0.863 -0.074(-0.116,-0.025);0.833 

  K=10 -0.728*(-1.063,-0.374);0.768 -0.695*(-0.949,-0.000);0.926 -0.087(-0.814,0.003);0.817 

  K=15 -1.080*(-1.341,-0.848);0.916 -0.615*(-0.720,-0.000);0.945 -0.097(-2.959,1.297);0.863 

10% Kmeans K=5 -1.031(-4.639,3.067);0.548 -0.000(-0.095,-0.000);0.170 -0.121(-0.667,0.284);0.156 

  K=10 -0.819(-3.682,1.705);0.096 0.000(-0.001,0.074);0.194 -0.323(-2.766,2.082);0.068 

  K=15 -0.346(-1.683,0.916);0.102 0.000(-0.001,0.032);0.079 0.052(-0.867,0.829);0.081 

 SOM K=5 -1.613*(-3.509,-0.027);0.289 -0.000(-0.139,-0.000);0.966 -0.104*(-0.165,-0.067);0.870 

  K=10 -1.163*(-1.479,-0.792);0.783 -0.000(-0.031,-0.000);0.955 -0.115(-1.051,0.219);0.668 

  K=15 -2.022*(-2.481,-1.698);0.766 -0.000(-0.035,-0.000);0.969 -0.121(-3.337,2.840);0.405 

20% Kmeans K=5 -0.737(-2.980,0.356);0.091 -0.000(-0.003,-0.000);0.396 -0.000(-0.228,-0.000);0.995 

  K=10 -0.422(-1.780,0.848);0.116 -0.000(-0.000,0.002);0.118 -0.000(-1.748,-0.000);0.602 

  K=15 -0.168(-1.107,0.235);0.113 0.000(-0.000,0.001);0.090 -0.000(-0.624,-0.000);0.716 

 SOM K=5 -0.490(-1.704,0.594);0.190 -0.000(-0.011,-0.000);0.732 -0.000(-0.188,-0.000);0.999 

  K=10 -0.597*(-1.200,-1.106);0.675 -0.000(-0.006,-0.000);0.814 -0.000(-0.269,-0.000);0.976 

  K=15 -0.721*(-1.599,-0.078);0.370 -0.000(-0.011,-0.000);0.731 -0.000(-0.239,0.402);0.640 
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4.0  CONCLUSION AND DISCUSSION 

4.1 CONCLUSION 

Based on results, in 3 different down-stream analyses, LRMSE is much well correlated 

with biological impact measures. Especially, the consistency measure is much higher in DE 

method, indicating Youden’s Index is well-predicted by LRMSE, whereas the impact of MV 

imputation in classification is even less than DE analysis and the impact of MV treatments in 

gene clustering depends on a given k value. Thus, in classification and gene clustering analysis, 

LRMSE is less correlated with biological impact measure when compared to DE method. Thus, 

superior performance in terms of RMSE based measure does not always guarantee a superior 

performance in terms of Youden’s Index and Adjusted Rand Index. Therefore, the effect on 

significance analysis, disease classification, and gene clustering such as false discovery rate, the 

classification accuracy, and clustering consistency need to be taken into account when 

comparing of ranking of various imputation methods and developing novel imputation methods 

with RMSE based measure. For now, we emphasize when we select a best imputation method or 

order ranking of imputation methods, the quality of MV estimates by various imputation 

methods should be investigated in view of true biological impact as well as RMSE-based 

measure as many previous studies for MV method have failured to notice this point so far.  

Additionally, when we estimated MV based on unlogged data prior to log transformation, since 

the unlogged data set often has a few of large values suspected as outliers, some methods such as 

LLS-impute, LSA-impute, OLS-impute, PLS-impute, and SVD-Impute sensitively responded to 

ID(Imputed Data) with some of negative and positive large estimated values, whereas Knn.e-
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Impute and  KNN.c-Impute, where the imputed values are adjusted by the overall mean and std 

deviation of the gene and robust imputation method, BPCA are relatively less unstable.(not 

shown). Thus, if there are some large values on raw dataset, then imputing values could produce 

outliers as well. This evidence is a result to confirm that log transformation should be performed 

prior to down-stream analyses.  

4.2 FUTURE RESEARCH 

To test the relationship between biological impact measure and RMSE-based measure 

more sophisticatedly, for the consistency measures, some formal hypothesis testing of the 

hypothesis in 3 major Aims can be done using an ANOVA model based on the simulation 

results. For the slope estimate, as an alternative to reporting the median and corresponding 95% 

confidence interval of the simulations, we can fit a model simultaneously to all 100 simulations 

by using a random effect for the simulation. The model would then include a fixed-effect 

indicating population mean estimate for the intercept and slope, + random deviations about these 

due to the simulation random effect, where standard software gives 95% CIs for the fixed effects 

indicating slope. 
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