
 

 i 
 

PROVIDING SERVICE-BASED PERSONALIZATION IN AN ADAPTIVE 
HYPERMEDIA SYSTEM 

 
 
 
 
 
 
 
 

by 

Michael V. Yudelson 

Eng. System Analyst, Ivanovo State Power University, 2001 

Candidate of Tech. Sci., Ivanovo State Power University, 2004 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

School of Information Sciences in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2010 

 

Michael Yudelson




 

 ii 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF INFORMATION SCIENCES 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Michael V. Yudelson 
 
 
 

It was defended on 

September 17, 2010 

and approved by 

Daqing He, Associate Professor, School of Information Sciences 

Heiko Spallek, Associate Professor, School of Dental Medicine 

Michael Spring, Associate Professor, School of Information Sciences 

Vladimir Zadorozhny, Associate Professor, School of Information Sciences 

 Dissertation Advisor: Peter Brusilovsky, Associate Professor, School of Information Sciences  

 

 



 

 iii 

Copyright © by Michael V. Yudelson 

2010 



 

 iv 

 

Adaptive hypermedia is one of the most popular approaches of personalized information access. 

When the field started to emerge, the expectation was that soon nearly all published hypermedia 

content could be adapted to the needs, preferences, and abilities of its users. However, after a 

decade and a half, the gap between the amount of total hypermedia content available and the 

amount of content available in a personalized way is still quite large. 

In this work we are proposing a novel way of speeding the development of new adaptive 

hypermedia systems. The gist of the approach is to extract the adaptation functionality out of the 

adaptive hypermedia system, encapsulate it into a standalone system, and offer adaptation as a 

service to the client applications. Such a standalone adaptation provider reduces the development 

of adaptation functionality to configuration and compliance and as a result creates new adaptive 

systems faster and helps serve larger user populations with adaptively accessible content. 

To empirically prove the viability of our approach, we developed PERSEUS – server of 

adaptation functionalities. First, we confirmed that the conceptual design of PERSEUS supports 

realization of a several of the widely used adaptive hypermedia techniques. Second, to 

demonstrate that the extracted adaptation does not create a significant computational bottleneck, 

we conducted a series of performance tests. The results show that PERSEUS is capable of 

providing a basis for implementing computationally challenging adaptation procedures and 

compares well with alternative, not-encapsulated adaptation solutions. As a result, even on 

modest hardware, large user populations can be served content adapted by PERSEUS. 

PROVIDING SERVICE-BASED PERSONALIZATION IN AN ADAPTIVE 

HYPERMEDIA SYSTEM 

Michael V. Yudelson 

University of Pittsburgh, 2010

 



 

 v 

TABLE OF CONTENTS 

1.0  INTRODUCTION................................................................................................. 1 

1.1  WAYS TO ENHANCE ADAPTIVE HYPERMEDIA SYSTEMS .............................. 3 
1.1.1  Content Authoring Support Tools ............................................................................... 3 
1.1.2  Development Support Tools ....................................................................................... 5 

1.2  PROBLEM STATEMENT, GOALS, AND HYPOTHESES ....................................... 6 
1.3  DISSERTATION OUTLINE .......................................................................................... 9 

2.0  BACKGROUND AND RELATED WORK ..................................................... 10 

2.1  ADAPTIVE HYPERMEDIA SYSTEMS ..................................................................... 10 
2.2  METHODS OF ADAPTIVE HYPERMEDIA ............................................................ 12 

2.2.1  Direct Navigation ...................................................................................................... 13 
2.2.2  Link Sorting .............................................................................................................. 14 
2.2.3  Link Hiding ............................................................................................................... 15 
2.2.4  Link Annotation ........................................................................................................ 16 
2.2.5  Link Generation ........................................................................................................ 17 

2.3  ADAPTATION REASONING ENGINES ................................................................... 19 
2.4  ARCHITECTURE OF THE AHS ................................................................................ 22 

2.4.1  Models ...................................................................................................................... 23 
2.4.2  Processes And Data Streams ..................................................................................... 24 
2.4.3  The Orchestration...................................................................................................... 28 



 

 vi 

2.5  DECOMPOSITION OF AHS AND COMPONENT REUSE .................................... 30 
2.5.1  User Modeling And Its Separation From The AHS .................................................. 31 
2.5.2  Separation Of The Content Model: Open-Corpus AHS ........................................... 33 
2.5.3  Adaptation In The AHS: The Emerging Split ........................................................... 36 
2.5.4  Summary ................................................................................................................... 41 

2.6  METHODS OF ASSESSING ADAPTIVE SYSTEMS .............................................. 44 
2.6.1  Evaluating Usability Of The AS/AHS ...................................................................... 44 
2.6.2  Evaluating The Value of Adaptation: Holistic Approach ......................................... 46 
2.6.3  Layered Evaluation of The Value of Adaptation ...................................................... 48 
2.6.4  Performance Evaluation ............................................................................................ 51 
2.6.5  Summary ................................................................................................................... 56 

3.0  ADAPTATION FUNCTIONALITY AS STANDALONE SERVICE ........... 58 

3.1  INTRODUCTION .......................................................................................................... 58 
3.2  PERSEUS ........................................................................................................................ 59 
3.3  PERSEUS IMPLEMENTATION ................................................................................. 63 
3.4  CONCEPTUAL EVALUATION OF PERSEUS ........................................................ 67 

3.4.1  Support Of Known Adaptation Techniques .............................................................. 67 
3.4.2  Composition Of The Adaptation Process.................................................................. 71 

3.5  ADAPTATION TECHNIQUES IMPLEMENTED IN PERSEUS ........................... 73 
3.5.1  Social Navigation Support Adaptation Service ........................................................ 74 
3.5.2  Topic-Based Navigation Support Adaptation Service .............................................. 77 
3.5.3  Concept-Based Navigation Support Personalization Service ................................... 79 
3.5.4  Link Generation (Recommendation) Personalization Service .................................. 84 

3.6  PRE-STUDY OF PERSEUS’S SOCIAL NAVIGATION ADAPTATION .............. 85 
3.6.1  Pilot-Test ................................................................................................................... 86 



 

 vii 

3.6.2  Experimental Setup And Data Collection ................................................................. 86 
3.6.3  Results ....................................................................................................................... 89 
3.6.4  Pre-study Limitations ................................................................................................ 92 
3.6.5  Pre-Study Summary .................................................................................................. 94 

4.0  RESEARCH DESIGN ........................................................................................ 95 

4.1  EXPERIMENT OVERVIEW ....................................................................................... 95 
4.2  EXPERIMENTAL SYSTEMS SETUP ...................................................................... 101 

4.2.1  Data Collection And Implementation ..................................................................... 101 
4.2.2  Data Model And Configuration .............................................................................. 105 

4.3  HARDWARE AND SOFTWARE .............................................................................. 116 
4.4  COMPREHENSIVE HYPOTHESES ........................................................................ 117 

4.4.1  Parallel Processing Capacity-planning/Soak Tests ................................................. 117 
4.4.2  Baseline Comparison Sequential Processing Benchmark Tests ............................. 118 
4.4.3  Size Of The Supported User Population ................................................................. 121 
4.4.4  Number Of Requests In The System ...................................................................... 122 

5.0  RESULTS .......................................................................................................... 123 

5.1  PARALLEL PROCESSING CAPACITY-PLANNING/SOAK TESTS ................. 123 
5.2  SEQUENTIAL PROCESSING BENCHMARK TESTS ......................................... 131 
5.3  SIZE OF THE SUPPORTED USER POPULATION .............................................. 133 
5.4  NUMBER OF REQUESTS IN THE SYSTEM ......................................................... 136 
5.5  SUMMARY .................................................................................................................. 143 

6.0  CONCLUSIONS ............................................................................................... 144 

6.1  CONTRIBUTIONS AND SIGNIFICANCE .............................................................. 144 
6.2  LIMITATIONS ............................................................................................................ 146 
6.3  DISCUSSION ............................................................................................................... 147 



 

 viii 

6.4  FUTURE WORK ......................................................................................................... 149 

BIBLIOGRAPHY ......................................................................................................... 151 

 



 

 ix 

LIST OF TABLES 

Table 1. Selected adaptation reasoning engines and adaptation engines in real systems ............. 21 

Table 2. Summary of the experiments ........................................................................................ 100 

Table 3. Summary of logged experimental data ......................................................................... 103 

Table 4. Structure of the 4 selected courses with respect to different adaptation techniques ..... 107 

Table 5. Concept metadata statistics for 3 domains and 4 AEHS .............................................. 109 

Table 6. User patterns of accessing the adaptation implementations ......................................... 111 

Table 7. Co-occurrence of user sessions ..................................................................................... 112 

Table 8. Differences in processing time of NavEx and PERSEUS concept-based adaptation ... 119 

Table 9. Maximal successfully tolerated loads for tested adaptation techniques. Shaded cells 

mark expected request complexities. .................................................................................. 129 

Table 10. Number of simultaneously working users that are effectively supported by tested 

adaptation technique and request complexity. Shaded cells mark expected request 

complexities. ....................................................................................................................... 134 

Table 11. Size of the supported user population (observing the number of concurrent sessions) 

for tested adaptation techniques. Shaded cells mark expected request complexities. ........ 135 

Table 12. Maximal successfully tolerated loads for tested adaptation techniques vs. maximal 

recoverable loads. Shaded cells mark expected request complexities. ............................... 142 

 



 

 x 

LIST OF FIGURES 

Figure 1. Outline of a typical adaptive hypermedia system (Brusilovsky, 1996)......................... 11 

Figure 2. Taxonomy of adaptive hypermedia technologies (Brusilovsky, 2001) ......................... 12 

Figure 3. Architecture of the adaptive hypermedia system .......................................................... 22 

Figure 4. Integration of adaptivity directly into user interface component .................................. 38 

Figure 5. Implementing adaptation via an intermediary ............................................................... 38 

Figure 6. Adaptation implemented as a standalone server ........................................................... 39 

Figure 7. Summary of developer roles, expertise levels, and number of relevant AHS 

professionals available .......................................................................................................... 42 

Figure 8. Adaptation decomposition (Paramythis & Weibelzahl, 2005) ...................................... 50 

Figure 9. Scenario of personalization service engine's operation ................................................. 61 

Figure 10. Examples of PERSEUS’s deployment in actual courses offered via Knowledge Tree 

portal. Left – Java course for the Universidad Autónoma de Madrid, right – HCI course for 

the University of Pittsburgh. ................................................................................................. 62 

Figure 11. Mockup of anticipated PERSEUS deployment on Ensemble Computing portal. Green 

bullet icons and tooltips are to be provided by PERSEUS. .................................................. 62 

Figure 12. Architecture of PERSEUS and the surrounding environment .................................... 63 

Figure 13. Data and control flows during PERSEUS adaptation service lifecycle ...................... 65 



 

 xi 

Figure 14. Brusilovsky’s taxonomy (Brusilovsky, 2001) of AH techniques showing their 

similarities as a basis for unification of the implementation (Bailey et al., 2007) © 2007 

Association for Computing Machinery, Inc. Reprinted by permission. ............................... 69 

Figure 15. Social navigation support adaptation service .............................................................. 75 

Figure 16. Control flow diagram of the social navigation support service. Capital S marks 

various stages of the processing, cs marks events on the client, ps – on PERSEUS, and us – 

on the user model side. Arrows denote transfer of control. .................................................. 76 

Figure 17. Topic-based navigation support adaptation service .................................................... 77 

Figure 18. Control flow diagram of the topic-based navigation support service. Capital T marks 

various stages of the processing, ct marks events on the client, pt – on PERSEUS, and ut – 

on the user model side. Arrows denote transfer of control. .................................................. 78 

Figure 19. Concept-based navigation support adaptation service ................................................ 81 

Figure 20. Control flow of the concept-based navigation support service. Capital C marks 

various stages of the processing, cc marks events on the client, pc – on PERSEUS, and uc – 

on the user model side. Arrows denote transfer of control. .................................................. 82 

Figure 21. Recommendation service............................................................................................. 85 

Figure 22. Pre-study test system setup .......................................................................................... 88 

Figure 23. Percentile plots for three request complexities (left column) and request success 

barcharts (right column) for 5 resources per request (top row), 20 resources per request 

(middle row), and 50 resources per request (bottom row) across all request delivery rates . 90 

Figure 24. Request time distribution: network communication, CUMULATE and PERSEUS .. 92 

Figure 25. General schema of the experiments ............................................................................. 96 



 

 xii 

Figure 26. Number of requests processed during one of experimental series: simplistic vs. 

realistic (assumption). ........................................................................................................... 98 

Figure 27. Summary of the parallel request processing experiments ......................................... 115 

Figure 28. Summary of the sequential requests processing experiments ................................... 115 

Figure 29. Percentile plots for PERSEUS’s social navigation support service capacity-

planning/soak tests. Loads meeting the cap criteria are marked by call-outs ..................... 125 

Figure 30. Percentile plots for PERSEUS’s concept-based navigation support service capacity-

planning/soak tests. Loads meeting the cap criteria are marked by call-outs ..................... 126 

Figure 31. Percentile plots for NavEx’s concept-based navigation support service capacity-

planning/soak tests. Loads meeting the cap criteria are marked by call-outs ..................... 127 

Figure 32. Percentile plots for PERSEUS’s topic-based navigation support service capacity-

planning/soak tests. Loads meeting the cap criteria are marked by call-outs ..................... 128 

Figure 33. Summary of the errors for all adaptation techniques across request sizes and loads 

(delays between requests). Shaded regions correspond to expected request complexities and 

load characteristics up to maximal successfully tolerated ones. Only errors for requests with 

below 90th perentile delay are considered. ......................................................................... 130 

Figure 34. Comparison of concept-based navigation support realization in PERSEUS and NavEx 

(request size 10) .................................................................................................................. 132 

Figure 35. Comparison of concept-based navigation support realization in PERSEUS and NavEx 

(request size 20) .................................................................................................................. 132 

Figure 36. Percent of requests in the system over the time of the experiment for PERSEUS’s 

social navigation support service capacity-planning/soak tests .......................................... 139 



 

 xiii 

Figure 37. Percent of requests in the system over the time of the experiment for PERSEUS’s 

concept-based navigation support service capacity-planning/soak tests ............................ 140 

Figure 38. Percent of requests in the system over the time of the experiment for NavEx’s 

concept-based navigation support service capacity-planning/soak tests ............................ 141 

Figure 39. Percent of requests in the system over the time of the experiment for PERSEUS’s 

topic-based navigation support service capacity-planning/soak tests ................................. 142 

 



 

 1 

1.0  INTRODUCTION 

Adaptive hypermedia (AH) is a field of research on the junction of hypertext/hypermedia and 

user adaptive systems. It evolved from static hypertext systems and local standalone adaptive 

systems into hypertext adaptive systems on the Web. From their inception in the 1990s up to this 

moment, adaptive hypermedia systems have come a long way and have become one of the major 

areas of human-computer interaction research. The growth of the field of adaptive hypermedia 

resulted in the creation of novel approaches to personalizing user information access (e.g. 

stretchtext, dimming fragments, adaptive link annotation, etc.) and development of state-of-the-

art adaptive hypermedia systems (AHS).  

The biggest impact of adaptation and personalization has been seen in education. When 

looking at the current state of research and development in the modern US IT field, Eric 

Benhamou and his co-authors (Benhamou et al., 2010) concluded that one of the highest returns-

on-investment would be “personalized and collaborative educational tools for tutoring and just-

in-time learning.” Howard Gardner in his article in Foreign Policy(Gardner, 2009) renders 

personalized education as “the next big thing.” Personalization (and adaptation as one of the 

frequent synonyms for it) starts to settle in the public perception as one of the state-of-the-art 

technologies, capable of advancing modern education significantly. 

Despite the initial enthusiasm, after nearly two decades of research we are still only 

wishing that adaptive hypermedia systems and adaptive educational hypermedia systems 



 

 2 

(AEHS) were capable of reaching their full potential and reaching large user audiences. In fact, 

this is one of the major pieces of criticism that AHS/AEHS as a field usually receives: The 

availability of adaptive systems is not as high as one may have wished. The explanation for the 

shortage of adaptive hypermedia systems is that for the first decade of AHS/AEHS research the 

focus was primarily on developing and evaluating novel adaptation methods. Only very recently 

has the interest started shifting to wider and more effective dissemination of adaptation support. 

There are two principal ways of achieving wider dissemination of adaptive systems and 

adaptively accessible content to larger groups of users. The first is to support authors creating 

content in the case of a particular system. The second is to support developers in creating new 

AHS by reusing principal modules and components across several systems. While the first 

approach empowers a large group of professionals who do not need to possess only domain 

expertise and minimal hypermedia authoring skills, it ties the newly authored content to a 

particular AHS that often addresses only one domain. The second approach is cross-domain and 

cross-system by design, but reusing system components brings up tougher design questions and, 

potentially, performance challenges. 

In this work we are taking the second approach, aiding the AHS developers. We are 

suggesting a novel solution aimed at providing adaptation for heterogeneous systems in a 

transparent manner. The essence of the proposed solution is to take advantage of the structural 

decomposition of the AHS – namely, take the adaptation functionality out of the AHS, package it 

into a standalone system, and provide adaptation on demand as a service. Utilization of such an 

adaptation functionality provider would let virtually any non-adaptive client system to become 

adaptive. Existence of such server of adaptation functionalities makes the task of creating new 

adaptive systems much easier than before by reducing development to compliance, and, as a 



 

 3 

result, allows dissemination of adaptive content to larger user populations. Availability of a set of 

adaptation techniques to an unconstrained number of client applications promotes reuse and 

increases the value of each technique being reused. 

In the rest of this chapter, we first will discuss several solutions that can enhance 

AHS/AEHS by increasing the amount of content accessed through adaptive interfaces and help 

reach a larger user population. Then we will discuss the solution of our choice and state the 

problem formally. This will include the goals and high-level hypotheses of the work. Finally, we 

will outline the content of the rest of the dissertation. 

1.1 WAYS TO ENHANCE ADAPTIVE HYPERMEDIA SYSTEMS 

There are several ways to help increase the volume of adaptively accessible content and the 

number of users it is available to. Below we mention the ones that we believe are the most potent 

and provide arguments for and against them. 

1.1.1 Content Authoring Support Tools 

The first way to enhance AHS is to build authoring tools aiding the process of content authoring 

for a particular system. There are more people capable of creating quality content (domain 

experts, instructors, etc.) than those capable of building quality AHS/AEHS. Empowering 

potential content authors would help significantly expand the volume of available material.  

Authoring tools could serve several purposes. First, they offer a user interface for 

creating new resources that could be accessed in an adaptive way. Second, authoring tools could 

be used for editing and extending system infrastructure. For example, knowledge engineering 



 

 4 

authoring tools address the single domain problem by aiding the development of the metadata 

structure for the content. Support for extending adaptation infrastructure to new domains could 

open opportunities for extensive content generation. 

The advantage of the content authoring tools solution is that every man-hour spent on the 

development of the tools necessary is reciprocated manyfold. Existing research on authoring 

tools for AHS, e.g. (Aleahmad et al., 2008; Ritter et al., 1998; Sosnovsky et al., 2007) 

demonstrates the high potential of assisted interactive content creation. 

The disadvantage is that authoring tools are tied to a particular AHS and are usually built 

for one domain. Despite the relative ease of creation, the new content would be limited to a 

particular system and one domain. To create new content across several systems and/or domains 

requires extensive knowledge expertise. In addition, the standards and processes of content 

quality self-control serve more as an inhibitor to the content creation process, rather than a 

quality assurance. Peer quality control (Cafolla, 2006; Denny et al., 2008; Gehringer et al., 2007; 

Hsiao & Brusilovsky, 2010; Masters et al., 2008) requires time, additional effort, and motivation 

and/or incentives.  

Another important limitation of the authoring tools is that, despite numerous attempts to 

aid content designers, satisfactory support for authoring adaptation by non-programming and 

non-adaptation-expert users is yet to be achieved. In educational AHS, for example, there are 

quite a number of tools for aiding teachers in creating course materials (Aleahmad et al., 2009; 

Brusilovsky et al., 2006; Brusilovsky et al., 2005; Murray, 1999; Turner et al., 2005) but there 

are none that would help build adaptive support for the authored content. 

Lastly, supporting AHS content designers would help generate more material for each of 

the systems that the authoring tools are provided for. However, authoring support would not 



 

 5 

improve existing adaptive solutions, nor create new ones. Content creators, who usually are 

hardly familiar with adaptive technologies, are only capable of point-and-click adaptation 

configuration. 

1.1.2 Development Support Tools 

A second way to enhance AHS is to support the developers. This support can often come in the 

form of frameworks and architectures where one or several modules critical to the operation of 

an AHS are implemented in a centralized way and shared among a number of systems. Many of 

the modern AHS frameworks and architectures employ structural decomposition.  

In the past, every new adaptive hypermedia system was built from scratch, which was 

time- and effort-consuming. To optimize the development of the new AHS, researchers 

decomposed the monolithic systems and reused fundamental components across several systems. 

First, decomposition attempts focused on the user models and user modeling functionality that 

became independent from the adaptive system before the age for hypertext and hypermedia (see 

Section 2.5.1 for more details). Later on, the introduction of the open corpus hypermedia systems 

made it possible to add new content at the run time, as opposed to closed corpus systems, where 

content is only added at the design time (see Section 2.5.2). 

The advantage of the framework approach is the ease of creating new systems. The AHS 

designer who has a set of pre-engineered system modules can reduce part of the coding job to 

integration and configuration. Here modules could be reused in a number of different AHS. 

Several successful framework AHS approaches are known today, for example AHA! (Bra & 

Calvi, 1998) and Personal Reader (Dolog et al., 2004). In addition, supporting AHS designers in 

creating new mash-up-style adaptive systems from building blocks implies greater flexibility and 

can be the basis for the new hybrid adaptation approaches. 



 

 6 

A disadvantage of the structural decomposition approach is that a great deal depends on 

how carefully module boundaries are outlined and communication protocols are defined. 

Carelessly designed modules would limit their usability and obstruct successful integration into 

numerous AHS’s, only favoring a few. In addition to data exchange formats and protocols, one 

must consider how general each component is: how many of the known methods and techniques 

it supports. 

Although the framework approach has been used for as long as the AHS field has existed, 

it has not been able to boost the development of new AHS by a significant margin. Arguably the 

major reason is that in almost all cases adaptation functionality is locked inside the AHS. Early 

attempts to reuse adaptation functionalities, for example APELS (Conlan & Wade, 2004) and 

Personal Reader (Dolog et al., 2004) favor reuse of adaptation within the boundaries of a single 

system or a framework, rather than open and transparent access to it. 

1.2 PROBLEM STATEMENT, GOALS, AND HYPOTHESES 

Despite the general attractiveness of the standalone adaptation provision idea, there are several 

questions we must answer. First, the design of this server should provide a good level of 

abstraction to support the majority (and possibly the entirety) of the known adaptation methods. 

Proof is necessary that a particular design of a standalone adaptation provider can successfully 

support a set of frequently used adaptation techniques and adaptation engines. These techniques 

and adaptation engines should form a representative subset. Namely, should be widely used in 

modern adaptive hypermedia systems and range in computational challenge. 



 

 7 

Second, outsourcing adaptation functionality to an external system might present a 

computational challenge. Being disjointed from the host system, the adaptation methods no 

longer have instant access to the internal data of the AHS (hyperspace structure, user model data) 

that has to be acquired independently. As many adaptation techniques traverse large chunks of 

the available hyperspace and often require sizable portions of the user model to produce 

adaptation decisions, the performance of the adaptation engine has to be carefully appraised. 

Third, given the highly probable growth of computational challenge, the standalone 

adaptation server should be compared to the non-encapsulated implementation of the adaptation 

in order to determine whether performance of the former degrades significantly as compared to 

the latter. 

To answer these questions we need to achieve the following goals: 

1. Propose the paradigm of the standalone adaptation provision – extracting the adaptation 

functionality and encapsulating it in a designed adaptation engine. 

2. Build a prototype system implementing the suggested idea and realize a representative set of 

the adaptation techniques 

3. Conceptually evaluate this server for the support of known adaptation techniques. 

4. Empirically prove that the prototype system is capable of supporting a representative set of 

widely used adaptation technologies and reasoning engines ranging in computational 

complexity. This requires obtaining performance estimates for each of the techniques tested. 

5. Determine the performance margins that an encapsulated adaptation implementation has over 

the suggested standalone implementation and whether it is at an advantage or at a 

disadvantage. 

The high-level hypotheses of the work are as follows: 



 

 8 

1. Providing adaptation functionality in an encapsulated manner is a conceptually viable idea. 

Namely, decomposing adaptation functionality is compatible with accepted de facto practices 

of separating expertise and labor when developing component-based systems on the field of 

adaptive hypermedia systems. 

2. A standalone adaptation server is fully capable of supporting at least a representative subset 

of the known adaptation methods and techniques that are widely used and range in 

computational challenge theypresent. 

3. Adaptation functionalities developed on the basis of a standalone adaptation server can be 

successfully deployed for a practical use on a small scale and exhibit acceptable performance 

characteristics on a large scale1

4. A standalone adaptation server as compared to an AHS with a more traditional adaptation 

should be comparable in terms of performance. The standalone server (a general-purpose 

system) is expected to lose to the traditional adaptation (a special-purpose system) with an 

acceptable margin. 

. 

                                                 
1 Practical small-scale use here is defined as ability to support a group of users the size of an academic class (e.g. up 

to 30 people) in a seamless and uninterrupted manner. Acceptable large-scale performance is defined as ability to 

offer uninterrupted support for hundreds to thousands of users. In both cases hardware and software of the machine 

where the standalone adaptation server is deployed should not exceed capabilities of a typical contemporary desktop 

machine. 



 

 9 

1.3 DISSERTATION OUTLINE 

The text of the dissertation will be organized as follows. Chapter 2.0 is devoted to the discussion 

of the related work. First, it covers adaptive hypermedia systems, methods of adaptive 

hypermedia, and adaptation reasoning engines. Then, we talk about the architecture of the AHS 

and discuss prior attempts at its structural decomposition. The chapter concludes with a 

discussion of methods for evaluating AHS. 

Chapter 3.0 starts by presenting the general idea of implementing adaptation in a 

standalone server as well as a concrete implementation of this idea – the PERSEUS system. 

Conceptual evaluation of PERSEUS is given next, followed by discussion of adaptation 

techniques realized in it. A pre-study of PERSEUS ends the chapter. 

Chapter 4.0 discusses the design of the main experiment and starts with a general 

overview. The chapter then talks about how the experiment was set up, how tested systems were 

configured, and what software and hardware were used. The chapter concludes with 

comprehensive, fine-grained experiment hypotheses. 

Chapter 5.0 presents the analysis of the collected experimental data covering the results 

of the experiments. And finally, Chapter 6.0 discusses contributions, limitations, and future 

directions of the work. 



 

 10 

2.0  BACKGROUND AND RELATED WORK 

This chapter covers background and related work. First, an overview of adaptive hypermedia 

systems is given. Then, methods of adaptive hypermedia and adaptation engines are discussed. 

Architectures of AHS are discussed next, followed by an analysis of approaches to the 

decomposition of AHS and AHS component reuse. Finally, an overview of methods of AHS 

evaluation is presented. 

2.1 ADAPTIVE HYPERMEDIA SYSTEMS 

The first AH systems started to appear in the late 1980s to early 1990s. The first AHS – 

Hypadapter (Böcker et al., 1990; Hohl et al., 1996) – was developed as early as 1990. The 

adaptive hypermedia field took shape quickly and by 1996 (Brusilovsky, 1996) was ready to 

offer a plethora of techniques. In this chapter we will define what an adaptive hypermedia system 

(AHS) is, discuss various adaptation techniques and reasoning engines developed, and finish 

with a discussion of the architecture of AHS. 

Adaptive hypermedia systems are a subset of user-adaptive systems in general. By 

definition, Adaptive Hypermedia Systems are “all hypertext and hypermedia systems which 

reflect some features of the user in the user model and apply this model to adapt various visible 

aspects of the system to the user” (Brusilovsky, 1996), p.88. 



 

 11 

 

Figure 1. Outline of a typical adaptive hypermedia system (Brusilovsky, 1996) 

A very basic sketch of an AHS is shown in Figure 1. As follows from the figure, an AHS 

should satisfy three basic criteria: It should be implemented using hypertext or hypermedia 

technologies; it should have a user mode; and it should be able to adapt its user interface based 

on the user model. 

The major distinctive feature of an AHS is the kind of adaptation the system provides. 

The generally recognized classification of adaptation methods has been suggested in 

(Brusilovsky, 1996) and later refined in (Brusilovsky, 2001). The refined classification is shown 

in Figure 2. The classification taxonomy has two major branches of adaptation techniques: 

adaptive presentation and adaptive navigation support. Adaptive presentation techniques work on 

an intra-document scale – they deal with fragments of the hypermedia/hypertext pages. Adaptive 

navigation support methods work on an inter-document scale – they mainly operate on links to 

the content pages; the pages themselves are viewed as whole unbreakable entities. There have 

been several attempts to introduce changes to the classical taxonomy introduced by 

Brusilovsky.For example, two of the most recent ones are reported in(Bailey et al., 2007) and 

(Knutov et al., 2009).However, they only suggest refinements and do not affect the core of the 

classification schema. 

The classification schema in Figure 2 organizes various techniques by what impact they 

have on the user interface of the adaptation system. In addition, adaptive systems might follow 



 

 12 

different paradigms of implementing reasoning that drives the process of adaptation. We will 

continue our discussion of the adaptive systems by providing a survey of adaptation methods 

first and then will talk about various approaches to the realization of adaptive reasoning. 

 

Figure 2. Taxonomy of adaptive hypermedia technologies (Brusilovsky, 2001) 

2.2 METHODS OF ADAPTIVE HYPERMEDIA 

In this section we will discuss the essence of various methods of adaptive hypermedia. Our 

discussion of the methods will be limited to the adaptive navigation support branch of the 

classification (Figure 2). The reason for this is the fact that methods of adaptive navigation 



 

 13 

support are the most popular and widely used adaptation methods. They constitute a tangible 

subset of the taxonomy. Besides, as Bailey et al. (2007) rightfully mention, most of the methods 

in the adaptive presentation branch of the taxonomy could be reduced to one of the methods in 

the adaptive navigation support branch. 

In the subsequent subsections we will cover the following methods: direct navigation, 

link sorting, link hiding, link generation, and link annotation. We will be talking about their pros 

and cons, as well as scopes of their applicability. 

2.2.1 Direct Navigation 

Direct navigation is one of the basic navigation support techniques, where at each point the user 

is presented with a limited set of adaptively selected “next best” options/links (usually one) 

(Brusilovsky & Pesin, 1998). Direct guidance does not necessarily entail adapting for a single 

step only. In the system KBS Hyperbook (Henze & Nejdl, 1999), a whole adaptive path is 

constructed, while the user is still given one “next hop” at a time. 

Direct navigation has been shown to work best for beginner users, unfamiliar with the 

hyperspace and thus incapable of making informed navigational decisions (Brusilovsky, 2003; 

Weber & Specht, 1997). Several studies reviewed in (Brusilovsky, 2003), show that novices 

have problems dealing with alternative navigation choices. However, for experienced users, who 

do not follow the system’s suggestions, direct guidance was found to have limiting utility. It is 

due to this problem that direct guidance, once popular in the early days of AH, has been largely 

replaced by other hypermedia techniques. Nonetheless, direct navigation still remains in demand, 

especially when curriculum sequencing is performed (e.g., in the area of Intelligent Tutoring 

Systems). 



 

 14 

2.2.2 Link Sorting 

Link sorting (sometimes called link ordering) gives more navigational options to the user. Here, 

link order is used to denote relevance of the linked documents. One of the first hypermedia 

systems to implement link sorting was Hypadapter (Hohl et al., 1996) back in 1990. One of the 

most well-known systems to employ link ordering is HYPERFLEX (Kaplan et al., 1993). 

HYPERFLEX used user-perceived link relevance to adapt link order. On every page, relevant 

links could be manually rearranged, which immediately causes user model update. Selection of a 

new search goal also influenced link order, as link rank was related to the goal as well. 

Link ordering could significantly reduce navigation time and the number of navigation 

steps and bring users to what they were looking for more quickly(Kaplan et al., 1993). Link 

sorting works best in situations when the number of available links is quite large. Links closer to 

the top of the list automatically receive higher user attention. Good examples of such cases are 

modern search engines. On the other side, the order of links could be unstable: It might change 

every time the user revisits a particular page. This has been demonstrated to create a problem for 

some categories of users working with menus and toolbars (Debevc et al., 1996; Kaptelinin, 

1993). As a result, link sorting is to be used carefully so that potential changes of the order do 

not hurt system usability. 

There exist several contexts in which frequent link order changes do not pose a problem. 

One is adaptation to the long-term user characteristics, e.g. to the learning style (Kelly & 

Tangney, 2005). Every user would see a different list, yet, since long-term characteristics do not 

change, it is stable throughout the whole period of working with the system. 

Another example of problem-free instability of the link order is the system where some or 

all pages have unstable sets of links. A good example of such a system is a class of systems 



 

 15 

called collaborative resource gathering systems, such as COMTELLA (Cheng & Vassileva, 

2005) and CoFIND (Dron et al., 2000). In collaborative resource gathering systems, users collect 

useful resources by posting links to thematic folders (links are sometimes removed from or 

moved between folders). The collection of links in each folder is hence unstable by definition. 

The same property is possessed by adaptive news systems that typically present links to fresh 

articles that are constantly added while links to older articles are constantly removed. 

2.2.3 Link Hiding 

The purpose of link hiding is to restrict the navigation space by hiding, disabling, or removing 

links to irrelevant pages. Reasons for rendering a page irrelevant could be many. For example, 

the page could be unrelated to the user’s current goal, or the information on the page could be 

too advanced for the user to comprehend yet. Hiding reduces the complexity of the whole 

hyperspace and protects users from cognitive overload. 

Educational systems have been the major area where link hiding has been intensively 

used and studied. Keeping too advanced or too simple material hidden and gradually shifting 

forward by masking well-mastered content and uncovering new resources as the user progresses 

is a popular educational approach that is easily implemented using adaptive link hiding. 

Early AHS used a simple technique of link hiding – removing the link and the anchor 

from the page completely. ISIS-Tutor (Brusilovsky & Pesin, 1998) showed very few links when 

the user had only started to work with the system. As the user’s knowledge grew, the number of 

visible links increased. The rationale of this approach was to focus user attention on the links to 

the content that the user was ready to comprehend. The links to the content that answers current 

goals and/or are important in a given context form a recommended zone (Brusilovsky & Pesin, 

1998), (Vygotsky, 1978). 



 

 16 

The approach used in ISIS-Tutor was later called link removal(Bra & Calvi, 1998).Three 

principal link features were defined for it: the anchor, the visual indication, and the functionality. 

According to these features, link hiding only removes the visual distinction of the link, but 

preserves functionality. This technique adaptively incapacitates the links by making them 

indistinguishable from the surrounding text (but still functional). Link disabling removes the 

functionality – the ability to follow the link and open the connected page. A number of studies of 

link hiding show that it works best when links are adaptively enabled. Disappearance of 

previously available links has been found to lead to user frustration.  

2.2.4 Link Annotation 

Link annotation is a group of methods that modify the way a link is presented to the user to 

convey additional information about the document behind that link so that the user can make an 

informed decision whether to traverse the link or not. ManuelExcel (La Passardiére & Dufresne, 

1992), for example, introduced link annotation in the form of icons. ISIS-TUTOR (Brusilovsky 

& Pesin, 1998) changed the color and the intensity of the anchors. Hypadapter (Hohl et al., 1996) 

altered the size of the anchor text. Different kinds of verbal annotations can be shown next to the 

anchor (Geldof, 1998) or in the status bar (Brusilovsky et al., 1998), or as a pop-up each time the 

mouse is over the link (Zellweger et al., 1998).  

Out of all these approaches, the most widely used one is icon annotation. There exist 

several approaches when it comes to the choice and design of the annotation cues as well as 

decision-making behind selecting the appropriate cue in each situation. In ELM-ART, the 

authors use the traffic light metaphor (Weber & Brusilovsky, 2001). Here the color of the bullet 

next to a link denotes user readiness to comprehend the linked material. In Syskill & 

Webert(Pazzani et al., 1996) annotations are based on peer users’ feedback. Here an aggregated 



 

 17 

user opinion is displayed in the form of an icon. In the system called NavEx (Yudelson & 

Brusilovsky, 2005) annotations are based on the model of user knowledge. Links in NavEx can 

be in normal font or bold face, and a progress bar icon is added to show amount of user work 

with the resource. In the social system Knowledge Sea II (Farzan & Brusilovsky, 2005), 

annotations visualize the density of users’ click stream through the linked resource. Click traffic 

is expressed in terms of link background color: the darker the color, the larger the amount of 

traffic. 

The major benefits of AHS implementing adaptive link annotation are an increased 

amount of student work (even with non-mandatory content), faster more optimal traversal of the 

hyperspace, more pronounced non-sequential navigation, and increased user satisfaction and 

trust in the system (Masthoff & Gatt, 2006). The effect has been found in several systems, 

including ELM-ART (Weber & Brusilovsky, 2001), QuizGuide (Brusilovsky & Sosnovsky, 

2005), NavEx (Yudelson & Brusilovsky, 2005), etc. In a comparative study of two non-adaptive 

systems, WebEx and QuizPACK, and two adaptive systems, NavEx and QuizGuide (both 

implementing link annotation) (Brusilovsky et al., 2009; Brusilovsky et al., 2006), the authors 

have shown that adaptive link annotation has given a significant boost to students’ motivation. 

The motivation increase resulted in manifold growth of the amount of work by users of adaptive 

systems. The growth could be traced in time spent working with the adaptive systems, number of 

page visits, number of user sessions, portion of hyperspace covered, etc. 

2.2.5 Link Generation 

Link generation, unlike the rest of the adaptive navigation support techniques that adapt 

presentation of pre-authored links, adds new links to the pages. Link generation is a fairly new 

navigation support technology. In the early days of the closed corpus systems, the number of 



 

 18 

hyperspace nodes was quite small and there was no need to introduce new links. Early examples 

of link generation appeared in 1996 (Brusilovsky et al., 1998; Weber & Brusilovsky, 2001; Yan 

et al., 1996). As the corpora of the AH grew bigger, link generation became more popular. 

There are three kinds of links generation: 1) discovering new, useful cross-document 

links and adding them to the permanent link set, 2) generating links for the similarity-based 

navigation between pages, and 3) recommending links dynamically based on the current context 

and the user (e.g. goal, knowledge level, interests, etc.). The first two kinds of link generation are 

typically non-adaptive. 

Examples of the cross-document and useful link discovery could be found in (Bollen & 

Heylighen, 1998; Lutkenhouse et al., 2005; Yan et al., 1996). The authors of (Yan et al., 1996), 

for example, dynamically add links based on the navigation offprint of the user. Users are first 

classified by their information needs. Based on the user class, frequently accessed resource links 

are presented. 

An example of adaptive similarity-based navigation is a system called ELM-ART 

(Brusilovsky et al., 1996). Here links are generated for similarity-based navigation. New links to 

the glossary items are added to the page if the user does not have a sufficient level of knowledge 

of the underlying concepts. In a similar system (Debevc et al., 1997) new links are added based 

on document similarity and frequency of document access mined from user logs. 

Adaptive hypermedia systems with dynamic link recommendation are often hard to 

distinguish from currently very popular Web recommender systems. An important distinction is 

that adaptive hypermedia systems usually provide guidance given current user position in the 

hyperspace and focus on the interface. Web recommender systems focus on the underlying 

recommendation technology and often disregard user location, focusing on presenting items that 



 

 19 

are of interest in general. Undeniably there exist systems that fit both classification criteria, for 

example Amazon.com2

2.3 ADAPTATION REASONING ENGINES 

, which recommends links to products that were purchased or inspected 

by other customers who viewed a particular product. 

A system called ELFI employs a number of item-based and feature-based collaborative 

filtering techniques to generate new links matching explicitly or implicitly established user 

interests (Schwab et al., 2000). Another example of link generation adapted to users’ knowledge 

is the system ALICE (Kavcic, 2004), an electronic Java programming textbook. There are no 

stable links between book chapters. Links are dynamically added in the end of each section and 

are separated into three groups: next possible units, required background units, and learned units. 

Evaluation of ALICE suggests that those users who follow links to the recommended units have 

better test scores. 

Adaptation methods that we have discussed in the previous section are only one part of the 

adaptation phenomena. They regulate the user interface part, a result of the adaptation. The 

implementation of the adaptation logic is defined by the so-called adaptation reasoning engines 

(Brusilovsky, 2001). The process of adaptation itself is often hard to cleanly separate from the 

process of user modeling (Brusilovsky, 1996). Arguably, one could say that low-level 

maintenance of the user modeling values is the realm of the user modeling, while high-level 

management of the user model data (e.g. propagation, aggregation, classification, etc.) and 

production of adaptation decisions areprerogatives of the adaptation reasoning engine. 
                                                 

2 http://www.amazon.com 



 

 20 

Reasoning engine implementation often depends on a specific type of user model 

representation that in its turn is closely connected with a problem domain. Adaptive hypermedia 

systems involve a wide range of reasoning engines, including but not limited to: 

- Social reasoning, which operates on individual and group summaries of user interaction, 

- Topic-based reasoning, which utilizes coarse-grained conceptualization of the problem 

domain, 

- Concept-based (in some contexts keyword-based) reasoning, which uses finer-grained 

problem domain structures, such as taxonomies, ontologies etc.; keyword-based is only 

slightly different in the method of producing first-class objects (concepts) and their semantic 

meaning. 

Table 1 presents a cross-table of three reasoning engines most widely used in AHS 

(columns) and adaptation techniques (rows), where cells contain references to exemplary AHS. 

Despite the intuitive connection between the choice of the engine and the 

computational/processing challenge, the relation is not always that straightforward.  

Reasoning engine columns in Table 1 are ordered left to right, from the least 

computationally complex (social) to the most computationally complex (concept-based). The 

complexity here comes from the amount of objects that need to be processed to produce an 

adaptation decision for each of the adapted resources. The memory and computation time factors 

are usually contingent on that. 

 

 

 



 

 21 

Table 1. Selected adaptation reasoning engines and adaptation engines in real systems 

  Reasoning engine (complexity) 

  Social 

(low) 

Topic-based 

(medium) 

Concept-based 

(high) 

A
da

pt
at

io
n 

te
ch

ni
qu

e 

Direct 

navigation 
  

SQL Tutor (Mitrovic, 2003), 

Andes (Gertner & VanLehn, 

2000), CTA (Anderson et al., 

1995) 

Link sorting, 

generation  

GroupLens (Sarwar et 

al., 2001) 
 

InterBook (Eklund & 

Brusilovsky, 1999) 

Link hiding   AHA! (Bra & Calvi, 1998)* 

Link 

annotation 

KnowledgeSea II 

(Farzan & 

Brusilovsky, 2005) 

QuizGuide 

(Sosnovsky & 

Brusilovsky, 

2005) 

NavEx (Yudelson & 

Brusilovsky, 2005), 

QuizGuide (Sosnovsky et al., 

2008), KBS-Hyperbook 

(Henze & Nejdl, 1999) 

* Although concept-based adaptation is generally considered of high computational 

complexity, in AHA! each document corresponds to one concept, which makes computational 

complexity comparable to social adaptation. 



 

 22 

2.4 ARCHITECTURE OF THE AHS 

There are several views on the architecture of the AHS proposed in the literature (Bra & Calvi, 

1998; Brusilovsky, 2004; Conlan et al., 2002; Paramythis & Weibelzahl, 2005). In this section 

we are going to present our own view on the architecture, which is an adaptation/variation on 

several of the mentioned predecessors. Although we are discussing the architecture of the AHS, 

many parts would be characteristic of virtually all user-adaptive systems. This architecture 

covers the majority of the AHS that differ from each other only by the kind of adaptation they 

provide. 

 

Figure 3. Architecture of the adaptive hypermedia system 

Our version is process- and data-centric (see Figure 3). As with any conceptual 

visualization, it sacrifices some details for the sake of others. The architecture of the AHS is 

composed of the four core sets of models, four core processes, and a set of content repositories. 

In the next few sections we will discuss them in greater detail. 



 

 23 

2.4.1 Models 

In Figure 3 models are shown as ovals. The interaction history modelis a collection of a set of 

all user actions that were collected during users’ work with the system. It includes basic actions 

such as traversing the hyperspace, scrolls, clicks, data submitted via Web forms, results returned 

by interactive pages, or even something as complex as saccades and fixations captured by eye-

tracking equipment, etc. Interaction history is the source of all the information about the users, 

both directly stated and/or inferred. 

The user model is a term defined differently, depending on the research area. Here we 

will define user model in a very general manner as information about the user, obtained by 

interpretation of, aggregation of, classification of, and inference based on raw data from the 

interaction history or information already stored in the user model. Often information stored in 

the user model is partitioned into static (never changed or changed infrequently) and dynamic 

(changed frequently), and comprises user demographic and socioeconomic information, 

preferences, beliefs, plans and goals, abilities, mastery of skills, possession of knowledge, 

emotional state, etc. In each of the mentioned categories there can exist alternative and/or 

competing models. 

The content model is the most versatile model in the AHS architecture. It consists of the 

following types of data: 

- Enumeration of the available pages/documents and static/dynamic link structure of the 

hyperspace, 

- Model(s) of the subject domain(s) addressed in the documents, potentially structured in the 

form of taxonomy(ies) or ontology(ies), consisting of topics, concepts, and skills (often 

united under the term metadata items) of various granularity levels, 



 

 24 

- Metadata index – the set of relations between pages/documents of the hyperspace and 

metadata items of the domain model(s); each relation can be assigned additional properties 

denoting its strength (with a larger value meaning greater importance of the metadata in 

describing the document) or type (the metadata item can be the main focus of the document, 

its prerequisite, etc.), 

- The contextual information about the structure of the hyperspace is arguably a part of the 

content model as well; this information includes access policies and access control, 

conditional configuration of the hyperspace enabling the adaptation mechanisms for the (part 

of the) hyperspace. 

The adaptation model’s primary purpose is storing the adaptation strategies. These 

strategies prescribe what data the adaptation should be based on, how this data should be 

processed (retrieved, joined, aggregated, etc.) and how the result of the processing should be 

represented so that the user interface process could incorporate them in the content delivery 

process. In addition, the adaptation model could include a sort of working memory, or cache, to 

store run-time and intermediary results of the multi-stage adaptation procedures. 

2.4.2 Processes and Data Streams 

Processes in the AHS architecture (shown as squares in Figure 3) as well as the data streams 

between the processes and the models are discussed in this section. 

The user interface process is the gateway between the user and the system. It is 

responsible for presenting the content of the hyperspace (extracted from the content model) and 

the augmentations introduced by the adaptation process. In addition, the user interface is the 

sensor that collects user interaction and communicates it to the data interpretation process. 

Naturally, the user interface is thought of as a purely interactive process; however, things such as 



 

 25 

currently active access policies and the adaptive affordances could be hard-coded for a particular 

context and hence are not interactively changeable. 

The data interpretation process is a data gateway to the AHS. This process handles raw 

bit stream, collected in a synchronous manner from the user interface, and enriches it with 

semantic meaning (Paramythis & Weibelzahl, 2005). The data to be interpreted includes requests 

for new pieces of content and traversals of the hyperspace, results of user interaction with 

content and/or adaptive augmentations, and manipulations with the interface (control). Once 

translated, the information is sent to the relevant model; for example hyperspace traversals are 

sent to the interaction history, interactions with adaptive augmentations can be sent to the 

adaptation model, and activations of interface features go to the content model. 

User modeling is a process whose main purpose is producing assumptions about the 

users and storing them in the user model. The assumptions about users are produced on the basis 

of interaction history, content model, and the previous state of the user model itself. 

For example, an overlay model of knowledge is a vector of values [0, 1] with respect to 

domain ontology from the content model. Initially all values are set to zero (no prior knowledge). 

As new user actions are added to the history model, the user modeling process looks up ontology 

concepts in the content model for the educational resource the user was interacting with. 

Depending on the result of the interaction, the knowledge of the corresponding concepts is 

updated. 

Another example is a user model of user preferences in an adaptive recommender system. 

Upon arrival of a new rating of some item, say a movie, the user modeling process retrieves the 

item’s features from the content model (e.g. actors, movie genre, director, etc). Depending on 



 

 26 

whether the rating is high or low, the preferences of the user are updated. If the system uses 

collaborative recommendation, the distances to other user models are recalculated as well. 

Adaptation is what makes AHS different from any other interactive system and what 

makes one AHS different from another (different AHS implement different types of adaptation 

techniques (Brusilovsky, 1996; Brusilovsky, 2001). Adaptation generally is a process of 

changing something in order to adjust it to new conditions or to make it suitable for a new use or 

purpose. In the case of AHS, the adaptation can be applied to the content and/or user interface 

providing access to that content. Historically, adaptation methods in AHS are divided into two 

major branches: adaptive navigation and adaptive presentation (Brusilovsky, 1996; Brusilovsky, 

2001). Methods of adaptive navigation are concerned with helping the user to select an optimal 

path through the served content, while methods of adaptive presentation relate to altering the 

content itself to better suit the user. 

Adaptive presentation works on the level of content items (pages, documents). Adaptive 

presentation methods include selecting appropriate format/modality of the content (text, audio, 

video), adjusting the structure of the text/multimedia (adding/removing fragments, [de]-

emphasizing certain parts, [re-]ordering sections), generating natural language content on the fly, 

etc. Methods of adaptive navigation support are manipulating whole content items, usually by 

providing the user with a personalized set of links to them. The abundance of the adaptive 

navigation support techniques can be categorized according to the following dimensions: 

- Number of options the user is given: only one link to a piece of content that the system thinks 

is best for the user, or a set of links the user can choose from. 



 

 27 

- Presence and nature of changes to the [link] structure of the hyperspace. Less relevant links 

can be removed or new links can be generated, links can be adaptively filtered and sorted, or 

link structure can be intact but the presentation of links is changed (link annotation). 

There are three parts to the adaptation process that are responsible for making a decision 

whether the adaptation should be applied in a given context (if adaptation is optional), selecting 

the adaptation method to be used (if several are available/applicable), and finally producing the 

augmentations to the user interface that will be visualized for the user. Let us discuss these three 

types of adaptation sub-processes in more detail. 

The adaptation appropriation sub-process is responsible for making a decision about 

whether the adaptation should be applied to the user’s view on the hyperspace at all. This 

decision is based on the current state of the user model and possibly the content model and the 

interaction history. For example, in an educational AHS, an adaptation appropriation sub-process 

can make a decision to invoke adaptation based on how many consecutive unsuccessful problem 

solutions have been put into the interaction history. If the threshold is exceeded, the flag would 

be set in the working memory of the adaptation model and the chain of sub-processes would 

continue; otherwise, no further action is taken. 

The adaptation selection sub-process deals with choosing the right adaptation method, 

based on the information in the user model, context model, and interaction history. For example, 

if adaptation appropriation raised the flag after a series of problem-solving errors, then the 

adaptation selection sub-process would use the context model to retrieve metadata of the failed 

problems and query the user model for level of acquired knowledge of those metadata concepts. 

Judging from this data, the selection sub-process would then decide whether remedial exercises 

should be recommended (exercise recommender adaptation should be chosen) or the user should 



 

 28 

be directed to relevant reading (reading recommender should be chosen). The choice is then 

stored/scheduled in the cache of the adaptation model. 

A set of adaptation sub-processes is there to carry out the actual adaptation techniques. 

When a certain adaptation technique is scheduled, the appropriate adaptation strategy is retrieved 

from the adaptation model. This strategy is then applied to the current context of the user model, 

content model, and interaction history. For example, if the adaptation selection sub-process has 

chosen the exercise recommender adaptation method, the strategy would be to retrieve the 

knowledge level of the concepts that belong to the metadata of the recently failed problems. The 

recommended problems are selected from those that have not been solved or were solved no less 

than a certain time ago; those thataddress the concepts of the recently failed problems; and 

problems for which the user’s knowledge level of these concepts is lower than a certain 

threshold. The identities of the recommended problems are temporarily added to the content 

model of the user. Their time to live can be fixed or be a subject of an additional cycle of 

adaptation loop.  

It is worth mentioning that adaptation is the only required sub-process. Appropriation and 

selection sub-processes are optional. Enabling of the adaptation per se, as well as the choice of a 

specific adaptation technique, can be hardcoded in one of the policies of the content model. 

2.4.3 The Orchestration 

As we can see in Figure 3, there are two types of arrows. Pale ones denote data transmission and 

dark ones indicate the transfer of control. Since there is transfer of control between only two 

processes – user interface and adaptation – most of the computations in the AHS are done in the 



 

 29 

asynchronous manner3. New information about the user/environment results in new data in the 

interaction history, which, in its turn, can trigger the user modeling process to start the user 

model update4

In 

. Accumulation of a sufficient amount of changes to the user model could launch 

the adaptation appropriation mechanism that forwards control to adaptation selection and 

adaptation itself that augments the content model as necessary. The user is presented with the 

result of this background processing after another loop of interaction with the AHS when the 

screen is updated, upon availability of new adaptive information (e.g., implemented via polling), 

or via a forced update from the adaptation process. 

Figure 3, the user interface is separated from most of the rest of the AHS architecture – 

adaptation infrastructure. The only part that “stays” with the interface is a fraction of the content 

model that describes the hyperspace structure, the content itself, and various policies regulating 

access and configuration of the hyperspace traversal. The only two channels for the user 

interface to communicate to the rest of the architecture – adaptation infrastructure – are through 

uploading new user interaction data to the data interpretation process, and through receiving 

information about availability of adaptive augmentations from the adaptation process. 

                                                 
3 There are adaptive systems that have more synchronization than we shown in Figure 3, for example adaptive 

systems using eye-tracking data sensors, or adaptive cognitive tutors, but most hypermedia systems are 

predominantly asynchronous. 

4 The user modeling process does not necessarily start a new round of user model update upon receiving every new 

piece of evidence, the so-called data push approach (Yudelson et al., 2007). There are user modeling 

implementations that start producing new assumptions about the user only when requested (data pull approach). 

Both methods have their scopes of applicability and could be combined into a hybrid pull-push solution. 



 

 30 

2.5 DECOMPOSITION OF AHS AND COMPONENT REUSE 

The architecture of AHS, presented in Section 2.4, discusses principal elements of an AHS. Early 

AHS were implemented as all in one. Namely, the system was monolithic and the developers had 

to develop all AHS components from the start. However, not all of the modern AHS are realized 

like that. In many cases developers separate one or several parts of the architecture into a 

standalone system, thus splitting or decomposing the AHS. The general motivation behind 

decomposing monolithic AHS is the ability to reuse successful implementations of one or several 

AHS components. In particular, this is true for those parts of the AHS architecture that require 

high levels of expertise and a lot of effort to build. Standalone architectural components offer 

convenient abstraction and free the developers of other AHS elements from the necessity to 

build/replicate the components again. 

The borders, along which the monolithic architecture of AHS is split, although seemingly 

artificial for those unfamiliar with AHS, are often rigidly defined by de facto specialization of 

expertise and labor when developing modularized AHS. This specialization is even more visible 

in component-based AHS, where system modules could be reused and/or pooled across several 

research and development teams. The boundaries of every potentially decomposable AHS 

component are thus defined by the field-specific notion of a finalized product one developer or a 

team could potentially outsource to be used by other teams of developers. 

This section discusses the evolution of the AHS architecture with respect to efforts and 

the rationale behind attempts to divide a monolithic AHS into separate standalone parts. First, we 

will talk about separation of user modeling. Next we will focus on the so-called open corpus 

AHS that marked (partial) separation of the content model. Then we will move to ways of 



 

 31 

separating the adaptation model and process. We will finish with the implications that the 

distributed nature of the AHS brings. 

2.5.1 User Modeling and Its Separation From the AHS 

The user model and user modeling process is a cornerstone of any adaptive system. User models 

were first mentioned in the literature in the early 1970s (Carbonell, 1970). By the late 1980s the 

field of user modeling had matured enough for a new class of general user modeling systems (or 

shells) to emerge. User modeling shells (UMS) were standalone systems providing user-

modeling services to client applications via a set of communication protocols. Thus, even before 

the first adaptive hypermedia systems were built, UMS had already become an independent 

component. 

2.5.1.1 Structure 

UMS, when split from the rest of the monolithic AHS, span several models and processes. All 

UMS include a user modeling process and the user model. Many of the user models also include 

the process of data interpretation as well as part of the interaction history that is utilized for 

producing assumptions about the user. In many UMS, especially those in the educational domain 

and recommender systems area, metadata of the hyperspace items that users interact with is 

queried very frequently. 

2.5.1.2 Rationale and Benefits 

The main reason for devising a decoupled UMS was that, out of all other components of the 

user-adaptive system, building the user model requires the highest amount of cognitive and man 



 

 32 

machine interaction expertise. Namely, one must be knowledgeable about how to represent the 

user’s preferences, goals, beliefs, knowledge, skills, etc.5

2.5.1.3 Examples 

 

Separation of UMS from the user-adapted system makes it possible to abstract from the 

problem of collecting and processing user-related data and building user models. When building 

a new AHS, one can avoid building a UMS component from scratch and choose an appropriate 

UMS that already exists. The problem of building the UMS is thus reduced to the problem of 

complying with data-exchange protocols of an existing one.  

The first ever UMS (then called a user modeling shell) built was GUMS (Finin, 1989; Finin & 

Drager, 1986). GUMS allowed creation of simple stereotypic hierarchies, each stereotype 

described by a set of Prolog rules. At runtime GUMS accepted new facts about users, verified the 

consistency of the currently held assumptions, and answered queries regarding system’s 

assumption of the users.  

Another noteworthy example from the era of UMS separation is BGP-MS (Kobsa, 1990; 

Kobsa & Pohl, 1995). BGP-MS is a general purpose UMS capable of delivering user modeling 

to any application that complies with a simple message exchange protocol. On the basis of the 

input from the served application, BGP-MS infers the user’s beliefs and goals. 

GUMS and BGP-MS have shaped the thinking of the user-adaptive systems community 

to such an extent that a dedicated stream of user modeling systems research was formed. As part 
                                                 

5 The rationale and benefits of separating UMS into a standalone system are only applicable to adaptive hypermedia 

systems. In contrast to the AHS, where the model of domain is viewed as partially independent from the modeling 

itself or even replaceable, there is another class of systems – intelligent tutors –where the domain model is the 

central entity, incorporated into the modeling itself.  



 

 33 

of that stream, a number of successful UMS have been created, including um(Kay, 1995), 

TAGUS(Paiva & Self, 1995), Doppelgänger (Orwant, 1995), CUMULATE(Brusilovsky et al., 

2005), LDAP-based UMS by Kobsa and Fink (Kobsa & Fink, 2006), and many others. 

2.5.2 Separation of the Content Model: Open-Corpus AHS 

Less then 10 years after UMS separation, researchers in the adaptive hypermedia field developed 

and successfully tested a rich corpus of adaptation techniques (Brusilovsky, 1996). With the 

maturity of AH in general, by the late 1990s came the understanding that one of the major 

shortcomings of AH was that adaptation is most often implemented on a limited corpus of 

resources from a single domain. Such systems were named closed-corpus hypermedia systems. 

Often adding a resource to the closed corpus hypermedia system (also called localizing the 

resource) is a high-cost operation. 

At this time various researchers started focusing on the problem of the openness of the 

AHS. In late 1990s – early 2000s a new class of hypermedia systems has been suggested – open 

corpus hypermedia (Henze & Nejdl, 1999; Henze & Nejdl, 2001), where the set of the served 

resources is not known at the systems’ design time. The main improvement in these systems as 

compared to closed corpus is the lower threshold for adding resources, which is done by using 

various techniques for reducing or amortizing the resource localization costs.  

2.5.2.1 Structure 

An open corpus AHS is a system that does not mandate the presence of a large portion of the 

content model or has mechanisms of extending the content model. The extendibility includes: 

- The possibility of adding new documents as well as inter-document links, 

- Connecting already existing hyperspace items with the new ones, 



 

 34 

- Appending new and/or alternative domain models, 

- Adding metadata indexes, connecting domain model items to the documents (both native to 

the system and added under the open corpus paradigm). 

By definition, open corpus pattern does not specify the amount of work necessary to 

localize new items in the hyperspace and/or presence and extent of tools automating this process. 

However, the general understanding is that localization should be a reasonably easy process, 

doable by a specialist with a fair amount of knowledge of the target domain and basics of the 

adaptive systems. 

2.5.2.2 Rationale and Benefits 

One of the major criticisms that AHS receive is a limited amount of content that adaptation can 

be provided for. The introduction of the open-corpus paradigm has broadened the perspectives 

for the AH, making significantly larger volumes of content potentially adaptable. Open corpus 

hypermedia opens the road to richer systems allowing adaptive hypermedia researchers to move 

the focus to adaptation and allowing them to at least partially abstract from content authoring 

that now could be acquired elsewhere. 

The introduction of open corpus systems stimulated out-of-the-box thinking in the field 

of adaptive hypermedia. It became evident that it is easier to find/train a content author, capable 

of creating quality content, and teach him/her how to make this content localizable in an AHS, 

than for AHS designers to play the role of content authors themselves. In the case of already 

existing content, it is in most cases easier to localize good resources than to create them anew 

specifically for the AHS. 

The major obstacle in creating the localizable “open” content is a knowledge engineering 

task frequently used in the process of localization. Here a content author has to be able to 



 

 35 

properly connect the document to the rest of the hyperspace and the domain model metadata. 

Automation of these tasks is still a research problem, and existing prototypes leave much to be 

desired. 

2.5.2.3 Examples 

From the conception of the idea until now, open-corpus AHS have been predominantly created 

in the educational domain, hence giving the name to the AEHS (adaptive educational 

hypermedia systems). First, the idea of openness and resource sharing is more attractive for 

academia rather than industry. Second, at the time when open-corpus AHS emerged, a large 

community of instructors were already publishing educational content in the hypermedia format 

and provided naturally trained content authors for the AEHS. In addition to educational AHS, a 

number of collaborative resource discovery open-corpus AHS were built, for example, CoWeb 

(Dieberger & Guzdial, 2003) and FOHM (Millard et al., 2000). 

Soon after the first open corpus systems were deployed, researchers realized that this was 

a great opportunity for content reuse across existing hypermedia systems. There were several 

two-system content sharing/exchange attempts made: AHA! And InterBook (Ramp et al., 2005), 

MOT and WHURLE (Cristea et al., 2005), and MOT and AHA! (Cristea et al., 2005). 

Initial attempts to build open corpus AHS mostly dealt with by-hand localization in a pre-

constructed hyperspace (Henze & Nejdl, 1999; Hirashima et al., 1997), when the linking of the 

new documents had to be done manually. Later works attempted to (partially) automate 

hyperspace construction via the use of keyword extraction (Smith & Blandford, 2003). The 

negative side of these approaches was inaccuracy of keyword extraction that resulted in 

document misplacement in the hyperspace. Adding a semantic metadata layer to document 

indexing in the form of conceptual structures such as thesauri or ontologies (Carr et al., 2001; 



 

 36 

Dolog et al., 2003) complicated the process of indexing but resulted in creating more 

representative structures of the document spaces. 

2.5.3 Adaptation in the AHS: the Emerging Split 

Since the onset of the AHS in the early 1990s, the classical way of implementing adaptation was 

to fuse the adaptation process and the adaptation model with the rest of the system that was 

monolithic. In the beginning, the adaptation could hardly be separated from the user interface, 

and adaptation strategies were hardwired and predominantly part of the content or domain 

model. However, by the mid-1990s, as the AHS field took shape, the adaptation was 

conceptualized into a distinct part of the AHS architecture.  

2.5.3.1 Structure 

Out of all other components of the AHS, the adaptation (adaptation process and adaptation 

model) took the longest time to become differentiated in the architecture and potentially reusable 

across several AHS. Nevertheless, unlike the user modeling and the content, it is the most 

naturally distinguishable. Components of the adaptation model are the storage of one or more 

adaptation strategies and the three adaptation sub-processes (appropriation, selection, and 

adaptation itself) that are responsible for enabling, selecting, and applying them at a given 

moment in a given context.  

2.5.3.2 Rationale and Benefits 

The reasoning behind separating adaptation and adaptation model is that one should not lock a 

successful adaptation within a particular system, when it can be reused. Reusable adaptation 

strategies provide for the ubiquitous nature of adaptation that can be potentially reused by 



 

 37 

multiple systems. First, availability of reusable adaptation strategies could offer a greater 

selection of the adaptation strategies themselves: The AHS or even the user can change to the 

adaptation that is most appropriate or preferable in a given situation. Second, availability of 

reusable adaptation strategies provides fault tolerance. If several alternative implementations of 

the same adaptation strategy are available (e.g. from different providers), they can be substituted 

should one fail and stop functioning for some reason. Finally, presence of reusable adaptation 

reduces the question of development to the question of connecting to the “hooks” of an existing 

adaptation provider, and this is easier than developing the functionality from scratch.  

2.5.3.3 Examples 

There are several ways of implementing reusable and/or standalone adaptation components in the 

AHS, featuring different degrees of integration with the rest of the AHS infrastructure. 

The traditional approach is tight integration of the adaptation into the user interface part 

of the AHS infrastructure (Figure 4). In such an introvert solution, the adaptation is realized as 

part of the user interface, for example InterBook (Eklund & Brusilovsky, 1999), KBS Hyperbook 

(Henze & Nejdl, 1999), QuizGuide (Brusilovsky et al., 2004), NavEx (Yudelson & Brusilovsky, 

2005). It thus has direct access to native and/or localized foreign resources. The whole content 

model or part of it are usually integrated along with the adaptation. 

The advantage of such a solution is that minimal or no effort is necessary to provide 

adaptation to an already localized resource. A strong disadvantage is the high cost of localizing 

foreign content. One more drawback is that the implemented adaptation techniques are limited to 

working with one AHS only. 



 

 38 

 

Figure 4. Integration of adaptivity directly into user interface component 

The other (non-traditional) way to implement adaptation is to package it as an 

intermediary adaptation provider (Figure 5). First introduced as a way to manipulate Web 

content in general by Barrett and Maglio (Barrett & Maglio, 1998), intermediaries are an 

additional access point to the content or an alternative user interface. In addition they often carry 

part of the content model with them. Our own experience with intermediaries providing adaptive 

navigation support (Brusilovsky & Sosnovsky, 2005; Yudelson & Brusilovsky, 2005) has shown 

that it is quite successful with users. Availability of adaptive navigation support implemented as 

value-added services has doubled and sometimes tripled user persistence of working with 

available resources (as compared to users who did not have access to adaptive navigation shells) 

(Brusilovsky et al., 2009; Brusilovsky et al., 2006). 

 

Figure 5. Implementing adaptation via an intermediary 

If adaptation is realized as an intermediary added value shell, the user interface can be 

very simple and lightweight. Usually, an intermediary adaptation provider targets a pool of 



 

 39 

similar resources. For example, QuizGuide provided navigation support to parameterized quizzes 

(Brusilovsky & Sosnovsky, 2005) and NavEx covered annotated examples (Yudelson & 

Brusilovsky, 2005). Adding more similar resources to the pool is quite easy. The disadvantage of 

this approach is that for every new pool of resources, either the existing intermediary has to be 

substantially changed, or a completely new intermediary has to be devised. From our experience 

we can attest that the amount of effort necessary for configuring an intermediary to work with a 

new class of content is quite large (Brusilovsky et al., 2005). Another negative side of the 

intermediary adaptation provider approach is that an intermediary creates a disruption with the 

original AHS user interface – users have to go to yet another access point and familiarize 

themselves with it.  

 

Figure 6. Adaptation implemented as a standalone server 

The third, currently emerging, way of implementing adaptation is to outsource the 

adaptive functionality to an autonomous system (Figure 6). It is this approach that we are 

focusing on in this dissertation. Such a standalone or 3rd-party (Koidl et al., 2009) adaptive 

functionality server (AFS) abstracts adaptation provision in the same way UMS does: The 

adaptive support is provided upon request according to a predefined (set of) protocol(s). The idea 

of separating adaptive functionality into a widely reusable set of services has existed for some 



 

 40 

time. One of the first examples of AFS was the APELS system (Conlan & Wade, 2004). In 

APELS, however, various adaptive functionalities could be reused only by a limited number of 

federated adaptation consumers.  

Authors of the Personal-Reader framework (Dolog et al., 2004) came closer to creating 

truly reusable adaptive functionality. Personal-Reader is a sophisticated, well-developed 

architecture for adaptive access to educational resources in which the adaptive functionality 

server and the user modeling server are abstracted as standalone systems. However, Personal-

Reader is still more of an introvert framework with a threshold to pass in order to start using its 

benefits. 

Our own work on the architectural issues in AHS is codenamed ADAPT2 (read adapt 

square) – advanced distributed architecture for personalized teaching and training. First mention 

of ADAPT2 in the literature can be found in (Brusilovsky et al., 2008), however, the conceptual 

basis was laid in (Brusilovsky, 2004) when it was called Knowledge Tree. ADAPT2 features all 

major components of the modern AHS framework including an experimental version of the 

adaptation service provider (Yudelson & Brusilovsky, 2008). One of the major features of 

ADAPT2 in general and its adaptation server in particular is its extrovert nature. The adaptation 

server is not built to work with ADAPT2 or its components exclusively. It is designed to be 

abstract enough to fit arbitrarily into any AHS system that needs ubiquitous adaptation support. 

The shortcoming of ADAPT2’s adaptation server is that so far it offers a limited set of adaptation 

services and not all of them were evaluated in terms of performance. Overcoming these 

shortcomings is one of the foci of this work. 



 

 41 

2.5.4 Summary 

One of the key critiques the AHS field as a whole has received is, despite a significant volume of 

research, a limited representation in the hypermedia world today. This is one of the reasons why 

the focus of a solid part of the AHS community is shifting from developing and testing new 

adaptation approaches to making the already developed approaches applicable in a larger number 

of contexts, equipping a larger number of hyperspaces with adaptation support, and, as a result, 

reaching larger audiences. 

A promising way to do that is involving more people in the development of the AHS. 

This can be done through delineation of the “zones of responsibility” or “stakes” in the AHS 

architecture and charging classes of professionals with the responsibility over these “stakes.” 

While many AHS even today are designed and developed by small teams of one or two people, 

there are multiple roles that developers play. These roles require different levels of domain-

specific and adaptation-related proficiencies. Figure 7 provides a rough summary of the 

developer roles, levels of expertise, and amount of professionals available. 

In Figure 7 the domain-specific expertise covers the subject of the principal content AHS 

serves to its users. Developers of the AHS infrastructure require low to moderate levels of 

domain knowledge. User model developers do not require deep knowledge of the domain at all. 

Developers of adaptive functionality have to have a better understanding of the subject to 

provide better working adaptation. In contrast to AHS infrastructure designers, content 

developers have to be proficient in the subject of the principal content, since their primary goal is 

creation of the principal content. 

The distribution of adaptation-related expertise is the opposite. User model designers are 

to be proficient in the mechanisms underlying the adaptation. Proficiency requirements for 



 

 42 

adaptive functionality developers are less strict, since they are abstracted from the user modeling. 

Content developers do have to be aware of the basics of adaptation, but the level of proficiency 

does not have to be as high as for AHS developers. 

 

Figure 7. Summary of developer roles, expertise levels, and number of relevant AHS professionals available 

As we can see from Figure 7 the number of trained professionals for each of the AHS 

core components is inverse to the adaptation-related expertise necessary. The more adaptation-

related expertise that is required for an AHS component, the fewer professionals there are who 

can design this component well. The most adaptation-related expertise intensive component – the 

user model – has been thought of as an independent entity for nearly two decades now. As a 

result, both the machine interface between the user model and the rest of the system and the 

developers’ zone of responsibility have been clearly outlined.  

Content became separable a little less than a decade ago with the onset of open-corpus 

hypermedia. Just as in the case of the user model, for the open corpus, the responsibilities of the 

developers as well as the architectural delineation are agreed upon. It is the adaptation 

functionality that is “everyone’s and no one’s land” at the same time. Either user model 

designers have to be knowledgeable of the domain and devote additional effort to developing 

adaptive support, or those who are responsible for the user interface are charged with 

implementing adaptation techniques. Sometimes adaptation accompanies the content itself. In 



 

 43 

such cases “smart content” (Farzan & Brusilovsky, 2005; Farzan & Brusilovsky, 2008; 

Lundgren-Cayrol et al., 2001) takes part of the responsibilities of the user interface with 

embedded elements of the content model. While there are clear advantages to either of the 

mentioned architectural “mergers,” in this work we advocate the solution in which adaptation 

functionality is implemented as a standalone service provider, an engine offering various kinds 

of adaptation support. 

Despite the benefits of implementing a standalone adaptation server (discussed above in 

section 2.5.3.2), such server has to be able to offer a necessary level of abstraction and provide a 

general adaptation service that can be adopted across multiple contexts and systems. This would 

call for a thorough design of the adaptation process and the logistics of the communication. 

Additionally, performance issues have to be addressed. Since at this point all of the AHS 

components could be residing on separate systems integrated only via network protocols – the 

need for synchronization, the network and processing overhead could play an important part in 

the overall performance. Poor design of the adaptation functionality engine – the central point of 

the AHS – will immediately fail all its other parts as well.  

Taking into account the discussed features of the modern AHS, proper evaluation has to 

be performed to make sure that the implemented component-based system provides effective 

adaptive support and performs well when used by many users. The following section devotes 

special attention to the questions of AHS assessment. 



 

 44 

2.6 METHODS OF ASSESSING ADAPTIVE SYSTEMS 

Adaptive hypermedia systems (AHS) conceptually are a subset of adaptive systems (AS) in 

general. Thus, virtually all evaluation methods suggested for AS are applicable for AHS, because 

from the evaluator’s point of view AS and AHS are the same. The main focus while evaluating 

AHS/AS is to assess the impact of adaptation, since adaptation is the feature that makes AHS/AS 

different from the rest of the systems. 

Evaluation is generally considered to be an essential part of research and practical 

application of the adaptive technologies. It is important to know whether a particular adaptive 

technique works, the context where it is most potent, and the scale of the adaptation effect it 

produces. Lack of evaluation data and/or inability to generalize from it is one of the major 

barriers that stand in the way of adaptive methods becoming mainstream technology (Höök, 

1998).  

Over the last 20 years, in the field of adaptive hypermedia systems a large number of 

technologies have been proposed and successfully tested (Brusilovsky, 2001). Given the 

abundance of existing techniques and their implementations, the evaluation of the already 

suggested approaches is as important as coming up with novel ones (Brusilovsky et al., 2004). 

This section will discuss various approaches to assessing AS/AHS. We will start with 

usability evaluation. Then we will move to methods for assessing the value of adaptation. After 

that we will discuss performance evaluation. A short summary will conclude this section. 

2.6.1 Evaluating Usability of the AS/AHS 

Usability evaluation methods were not created for assessing adaptive (hypermedia) systems 

alone. Usability, as opposed to the adaptation, is not the focus of AS/AHS systems research; the 



 

 45 

adaptation can not only improve the system’s effectiveness but also degrade it. Thus usability-

related evaluation is useful to prevent collecting conflicting evidence about AS/AHS.  

The heuristic evaluation method is guided by a set of rules of thumb, general principles, 

that argue for or against certain design decisions (Nielsen & Molich, 1990). In heuristic 

evaluation, a small set of specialists inspect the system and look for problems and violations of 

the general principles. In the field of adaptive Web in general and adaptive hypermedia in 

particular, a set of universally recognized heuristics is still missing. This deficiency can only be 

remedied by conducting experiments and publishing results demonstrating, for example, the 

context of most successful applicability of a certain technique, or supremacy of one adaptation 

technique over the other in certain situations, etc. The most valuable feature of such experiments 

is the ability to replicate and reuse them in similar contexts.  

A good example could be (Sears & Shneiderman, 1994). This work discusses 

experiments with menus, where items are sorted according to frequency of their use. The authors 

have found that usage frequency sorting disorients users and instead the so-called split menus 

should be used to avoid confusion. 

Expert review is the evaluation method specifically useful during early stages of a 

system’s life cycle. For example, experts can help in picking user modeling dimensions and 

adaptation features. In (Magnini & Strapparava, 2001) the authors used expert opinion to help 

populate the initial recommendation data. Experts can also contribute towards designing an 

uncertainty-based user model (Brusilovsky & Millán, 2007). In terms of evaluation per se, 

experts are a good resource for assessing interface adaptations (Gena & Torre, 2004) as well as 

the inference mechanism underlying the adaptation (Ardissono et al., 2003). 



 

 46 

Cognitive walkthrough is a method of evaluation where experts take on the role of 

actual users in attempt to find potential problems (Polson et al., 1992). Traditionally, this method 

only focuses on general HCI aspects and does not delve deeper into the design of adaptation. 

Unfortunately, these predominantly analytical methods do not involve the user directly. 

Instead they assume that the evaluator and/or the expert assess the system from the point of 

characteristics of a “typical” user. Since the concept of “typical” is contrary to the very definition 

of the adaptive system, it has limited applicability in evaluation of AS/AHS (Paramythis et al., 

2001). 

2.6.2 Evaluating the Value of Adaptation: Holistic Approach 

Evaluation of the value of adaptation in the area of AH/AHS is tightly connected with the so-

called controlled experiments. This group of methods is one of the most effective, most 

frequently used, and most often discussed techniques in the area of AS/AHS (Chin, 2001). The 

idea of a controlled experiment is changing one element of the environment (the independent 

variable) and controlling the effect on the user measured behavior (the dependent variable). The 

aim of the experiment is to support hypotheses about causal relationships between experimental 

variables. Controlled experiments can be used to assess things like the accuracy of modeling, 

quality of produced adaptations and recommendations, etc (Jameson, 2003). Controlled 

experiments can be short-term or long-term. Short-term experiments are usually associated with 

a greater level of control over the factors that can potentially influence the measured outcomes. 

Long-term experiments offer less control over the factors, but in return offer a more established 

pattern of the collected data due to an extended duration. The following three methods belong to 

the class of controlled experiments. 



 

 47 

With and without is a popular technique of assessing the value of adaptation. Here an 

adaptive version of the system is compared to the one lacking such support (see e.g. (Boyle & 

Encarnacion, 1994; Brusilovsky & Eklund, 1998; Brusilovsky & Pesin, 1998; Kaplan et al., 

1993; Meyer, 1994; Weber & Specht, 1997). A frequent criticism of this method of evaluation is 

that a non-adaptive version of the system cannot be good for comparison, since often adaptation 

is “built into” the system. Without it the systems can become absurd and even useless. Besides, 

the “with and without” method often does not tell why the adaptive version is successful (if it is) 

(Höök, 1998; Höök, 2000). In some systems, especially those based on machine learning 

algorithms, the adaptation simply cannot be switched off (Krogsäter et al., 1994; Pohl, 1997). 

Attributing all the success to the presence of the adaptation is not always possible, either. For 

example, (Brusilovsky et al., 2009) describes two companion adaptation shells that combine the 

effect of adaptation with collocation of the content. Up until now the interaction of these two 

factors was not possible to pinpoint. Sometimes with and without studies can give contradictory 

results, for example see (Brusilovsky & Eklund, 1998). 

Single conditioning is a method where adaptation is rendered as an integral part of the 

system and no comparison is made to the non-adaptive version. In single conditioning all 

variables are dependent. This approach was pioneered in (Oppermann, 1994) and (Krogsäter et 

al., 1994) for evaluating of the system Flexel II. Correlation study is an example of single 

conditioning. A good example of correlation study is (Iglezakis, 2005), where the authors 

perform an empirical evaluation of an adaptive help system. The ACT-values of procedural 

knowledge were correlated with measures of user performance. Another example would be 

correlating task success (in terms of time, performance, or number of objectives met) and usage 

of the adaptively generated system suggestions (Brusilovsky et al., 2009). Single conditioning 



 

 48 

and correlation studies suffer from the same problem as the with and without method, namely, 

problems attributing observed user behavior to the overall “success” or “failure” of the system. 

Controlled experiments are not limited to objective measures of user performance, but 

also include subjective measures. These include user satisfaction with the system and perceived 

utility of the system as a whole or a subset of its features. For example, the authors of WebEx – 

an annotated code example server (Brusilovsky, 2001) – were not able to find an impact of 

system usage on users’ measured performance in class. However, perceived usefulness has been 

scored high in the exit surveys. 

All of the evaluation methods discussed in this section so far are holistic. They look at the 

AS/AHS as a monolithic entity. No special attention is given to the internal composition of the 

system. It has been shown, however, that there is a great benefit in going beyond such a “black 

box” approach. The next section is devoted to such approaches. 

2.6.3 Layered Evaluation of the Value of Adaptation 

The layered evaluation method is based on the idea that the evaluation does not treat the 

AS/AHS as a monolithic process. Instead, the process is broken into constituents. Each of these 

constituents, often called layers (Brusilovsky et al., 2001; Karagiannidis & Sampson, 2000) 

(hence the name of the method), has to be evaluated separately. A strong advantage of layered 

evaluation is that it successfully works with monolithic systems as well as systems that are 

composed from modules or even distributed systems. The first mention of breaking down the 

process of adaptation can be traced to (Totterdell & Boyle, 1990), where the authors proposed 

assessing the user modeling process separately from the process of adaptation (incorporating 

knowledge about the user into the adaptive interface).  



 

 49 

Layered evaluation is especially effective when assessing component-based systems like 

modern AS/AHS. However, layers are not only the modules that provide some sort of service 

(user modeling, adaptation, etc.), but also the components that do not actively participate in the 

process of adaptation (e.g. content model, adaptation strategies as part of adaptation model). 

Instead of the “black box” approach, in which the system is appraised as a whole, each 

component and/or process is appraised individually, potentially even using a different method. 

An example of decomposing the process of adaptation is shown in Figure 8. Here the authors 

break the process of adaptation into data collection, data interpretation, user modeling, and 

making adaptation decisions. Brusilovsky and colleagues (Brusilovsky et al., 2004; Brusilovsky 

et al., 2001), who are among the pioneers of layered evaluation, argue that assessment of the 

AHS covers a multitude of questions, including general user interface usability, accuracy of user 

model, effectiveness of the chosen adaptation technique, etc. Reducing system evaluation to a 

binary outcome: yes (successful) or no (unsuccessful) is rendered as incorrect.  

Due to synergy of the underlying factors, it could be the case that a great adaptation is 

buried by an ill-constructed user interface, or conversely, a well-done user interface might 

smooth the flaws of the adaptation and/or user modeling components. To take this phenomenon 

into account, the evaluation task should target specific layers of the system. 

While breaking the process of adaptation into stages and evaluating them separately 

allows one to answer questions impossible to approach in a monolithic setup, nevertheless there 

are a number of assessment questions that require some layers to be combined or the system to 

be considered as a whole. For example, evaluating the user modeling combined with the process 

of adaptation appropriation can address the question of user model accuracy expressed in terms 



 

 50 

of decisions about whether to apply adaptation or not in a particular situation or context 

(Paramythis et al., 2001). 

 

Figure 8. Adaptation decomposition (Paramythis & Weibelzahl, 2005) 

Since its formal introduction in 2001, layered evaluation has become an actively 

researched topic in the AS/AHS field. This has been seen in a number of publications that 

focused on the methodological and organizational issues of the layered evaluation (Masthoff, 

2003; Paramythis et al., 2001; Paramythis & Weibelzahl, 2005; Weibelzahl, 2005; Weibelzahl & 

Lauer, 2001; Weibelzahl & Weber, 2003). 

In our own work, the layered evaluation of the AHS systems plays one of the central 

roles. In (Yudelson & Brusilovsky, 2005) we discussed results of studying the effect of the 

adaptive value-added service NavEx – a shell system for accessing code examples. The adaptive 

link annotation was evaluated separately from content presentation and user modeling. The 



 

 51 

presence of the adaptive annotations was shown to increase user session length in terms of the 

time spent and the number of clicks, as well as to increase the number of sessions themselves. A 

comparative study of NavEx and QuizGuide (a value-added shell for accessing problems) 

showed that the found phenomena persist across several user groups, types of educational 

content, and types of user modeling (Brusilovsky et al., 2009; Brusilovsky et al., 2006). 

In (Yudelson et al., 2007; Zadorozhny et al., 2008) we devoted special attention to the 

user modeling layer of the AS/AHS. The user modeling process was further broken down and the 

object of study was the type of evidence propagation: push based (in which the user model is 

updated as soon as new user data arrives), and pull based (in which the user model is updated on 

demand, when the user data is requested). The study showed a decisive superiority of the push 

based method in the context of modern fast-paced AEHS. 

Despite greater flexibility of assessment and ability to measure things previously 

impossible to measure, layered evaluation has not become widespread. It is a primary focus of a 

small group of like-minded researchers who organized a series of workshops on empirical 

evaluation of adaptive systems. The bulk of the publications on layered evaluation come from 

co-organizers of these workshops.  

2.6.4 Performance Evaluation 

When the AHS field matured enough, it became evident that making sure whether adaptation 

works conceptually is not enough. Even AHS intended for small user populations (e.g. several 

dozen users) can be complex enough for performance to be a probable issue. In the light of the 

wider AHS dissemination problem that we are focusing on in this work, performance becomes 

one of the key questions. 



 

 52 

2.6.4.1 State of the Art in Performance Evaluation 

Although classical methods of evaluating AH/AHS (including the layered approaches), do not 

limit assessment to appraising the value of adaptation alone, it usually receives the bulk of the 

attention. It is important, however, to assess the architecture as well. One of the architectural 

features especially important in a component-based architecture is performance. The questions of 

acceptable performance and/or scalability of AS/AHS components are often mentioned in 

passing by the adaptive hypermedia community in general and the AS/AHS layered evaluation 

community in particular. However, as more and more modern AS/AHS become distributed, one 

of the major questions in their evaluation is whether such a system would be able to offer user 

experience (read performance) comparable to the standalone AS/AHS. The distributed nature of 

the system raises an immediate question of additional communication overhead. The 

communication itself has to be well thought through to exclude, for example, thrashing. 

There exist a number of types of performance tests. Each of them addresses a different 

question regarding the system’s operation. A subset of the ones relevant to our discussion is 

listed below (Maccaux, 2008). 

- Benchmark test. The main characteristic of the test is the consistently reproducible results. 

The goal is to establish a set of performance values – a benchmark – to serve as a baseline for 

future performance evaluations. 

- The capacity-planning test aims to determine how far a given system can scale under certain 

conditions. Reproducibility is not important in this case. Often random factors are included 

as part of capacity planning tests. A question this test attempts to answer could be: “How 

many concurrent users/connections/transactions can the system effectively support?”  



 

 53 

- The soak test is a long duration test, usually with a control condition. The purpose of this test 

is to check the overall robustness of the system and to find performance degradation, 

memory leaks, etc., over a long period of time. 

The problem of assessing performance of the AS/AHS has not received much attention in 

the literature. Below is an overview of the few publications that have addressed this issue. 

In (Carmichael et al., 2005) the authors evaluate a location-aware user modeling 

component behind the MyPlace system. MyPlaceis a system that supports ubiquitous social 

communication in a location-aware context. The user modeling component in MyPlaceis 

extended beyond modeling just users. It also represents devices, sensors, rooms, and buildings. 

MyPlaceis set up in an office building. User locations are traced via personal mobile Bluetooth-

enabled devices registered on the local Bluetooth network or via login/logoff events on the static 

workstations. When moving within/in/out the building the user location is updated with the 

system by the means of a special “tell” operator. The information about other users of the system 

is available via an “ask” operator. 

The authors performed a soak-test of the user modeling component of the MyPlacesystem 

by running it for approximately 4 months and collecting the log data. During this period, roughly 

2,500 user accounts were active and about 500 devices (mobile/terminal) were involved. The 

main questions behind the analysis of the user model performance were the scalability of “tell” 

and “ask” operators. The scalability was measured in terms of CPU time taken by the user model 

process versus the amount of data the user model has to deal with. For the “tell” operator, no 

load classes were defined. Two types of “ask” operator (simple and complex) were analyzed for 

low, medium, and heavy users. 



 

 54 

In (Kobsa & Fink, 2006) the authors were evaluating the performance of an LDAP-based 

UMS. The server was subjected to a number of simulated workloads. The test bed was 

configured to imitate user sessions representing various types of Web usage. Each type of Web 

usage had a click rate and a class of information of interest associated with it. The load was 

manipulated by varying the number of simulated users and their click rate. In addition, the 

authors varied the distribution factor of the UMS by installing its components either on one or on 

several machines. The authors performed a capacity planning test and obtained the request delay 

vs. request frequency curves in the case of the single machine hardware configuration. Request 

delays of single- and multiple-machine hardware configurations were compared with respect to 

several types of requests. In addition to overall “black-box” performance tests, the authors 

compared delay-frequency performance of the two inference components of the UMS for the 

single-machine configuration. 

As an extension to the previous work, (Wang & Kobsa, 2009) revisited the problem of 

LDAP-based UMS performance. They focused on the distributed LDAP server, where each node 

is a part of a cloud that is as a whole responsible for providing user modeling support. The 

authors focused their attention on one node of the cloud and tested its ability to instantiate critical 

numbers of user session objects. Here a ram-up style capacity planning test is used. Only the 

peak part is evaluated – the costly process of initializing sessions. The rest of the procedures that 

comprise the lifecycle of the user session object are not run. 

2.6.4.2 Our Approach to Performance Evaluation. 

In our own work, we have performed a comparative performance assessment of the two versions 

of user modeling server (Yudelson et al., 2007; Zadorozhny et al., 2008): One using a pull 

approach to computation (computation is done only when resulting data is needed) and the other 



 

 55 

using a push approach (all changes to the user model are made as soon as new data arrives). 

Three setups of the user modeling structure were used, each reflecting low, medium, or high 

amount of computation needed to aggregate new pieces of evidence about the user. Each of the 

setups of the UMS was then subjected to a series of simulated update streams constant in length 

and varying in the number of user model write requests. In the end, push and pull versions of the 

UMS were tested in the ability to respond to user model read requests. Results of the comparison 

gave clear advantage to the push version of the UMS. Although losing on user model writes, 

where push has to perform necessary computations and pull only stores the new information, the 

push version won with a significant margin on the read. Here push almost instantaneously forms 

a response to the query, since all the user model values are already computed, and push [PULL?] 

has to do lengthy computations. The results of the performed capacity-planning tests showed that 

a push-based UMS can effectively support up to several thousand users even on very modest 

hardware. 

The novelty of the performance evaluation method we introduced in (Yudelson et al., 

2007; Zadorozhny et al., 2008) is in the multiple stage design and integrating observed user 

behaviors into the evaluation process. The method consists of the following stages. First of all, 

before deploying the adaptation service, statistical data on user navigation behavior is collected 

to be used at a later time. At the second stage, the personalization service is deployed for a proof-

of-the-concept testing. At this point one has to make sure it works properly and delivers the 

navigation support it was built for. Here the service is functioning under relaxed conditions. At 

the third stage, the personalization service is subjected to extreme loads for capacity-planning 

performance tests. The outcomes of this stage are the characteristics of the highest load at which 

the personalization service in question can function properly. And finally, we use the results of 



 

 56 

the first stage (user navigation patterns), and the results of the third stage (highest load with 

proper functioning), to turn parameters of the load into the number of users that the service can 

effectively support without compromising performance. 

2.6.5 Summary 

In the literature today, there is a limited number of publications that recognize the importance of 

considering the component-based/distributed nature of the modern AS/AHS for the evaluation. 

The two implications of the complex modular structure of the AS/AHS are that: a) in addition to 

the success of the adaptation as a whole, contribution of each layer to the overall process of 

adaptation has to be studied in detail, and b) due to the tendency of deploying decomposed 

AS/AHS, where certain modules are given relative independence and often reside on separate 

servers, special attention has to be given to the performance issues of such distributed 

infrastructures. 

So far almost all of the layered evaluation has focused on studying the process of 

adaptation itself and the role each of the AS/AHS infrastructure components plays in 

adaptation’s overall success. The question of performance has not been addressed in the layered 

evaluation literature.  

In the performance evaluation realm, the bulk of the work is devoted to studying the user 

modeling server (Carmichael et al., 2005; Kobsa & Fink, 2006; Wang & Kobsa, 2009; 

Zadorozhny et al., 2008). The performance issues of the multi-staged process of adaptation were 

addressed in one of our publications, see for example(Yudelson & Brusilovsky, 2008). And this 

publication only discusses a very basic adaptation technique. 

There is a shortage of work on evaluating modern multi-component adaptation 

infrastructures. Recent advancements in the field of adaptive hypermedia create an increasing 



 

 57 

gap between suggested and evaluated approaches to building complex AS/AHS infrastructures, 

especially when speaking of performance and scalability. Closing this gap is one of the foci of 

our work. 



 

 58 

3.0  ADAPTATION FUNCTIONALITY AS STANDALONE SERVICE 

This chapter discusses the implementation of the idea of full extraction of adaptation 

functionality. After a brief introduction it presents a general overview of the implemented 

prototype system – PERSEUS – and principles of its operation are given. Then, the discussion 

moves to the implementation details of PERSEUS and the description of its architecture and 

structure and purpose of its internal models. Conceptual evaluation of PERSEUS is given next. 

Here we evaluate whether adaptation extraction still allows implementation of the known 

methods of adaptation or at least a representative subset of them (those that are widely used in 

adaptive hypermedia today and range in computational challenge). After that, a detailed 

description of several adaptation techniques implemented in PERSEUS is presented. Special 

attention is given to the computational complexity of each of them. The chapter concludes with 

the results of PERSEUS’s pre-study, including pre-study limitations. 

3.1 INTRODUCTION 

In our prior work on providing adaptation via intermediaries such as NavEx (Yudelson & 

Brusilovsky, 2005) and QuizGuide (Brusilovsky & Sosnovsky, 2005) we saw that implementing 

adaptive support independently from the main “portal” user interface shows great potential and 

helps bring the high value of adaptive navigation much more quickly than in the cases when 



 

 59 

adaptive support has to be “built in”. Having intensively researched the intermediaries, we can 

say that this method provides a partial solution to the problem. Each shell is typically designed 

for one class of resources (NavEx for WebEx annotated examples, QuizGuide for QuizPACK 

quizzes), and adding navigation support to one more resource of the same class was quite easy. 

However, adding support for a new class of resources required a significantly larger 

amount of effort. For example, adding navigation support to SQLKnoT quizzes led to creating a 

specialized version of QuizGuide – SQLGuide (Sosnovsky et al., 2008). As a result the level of 

abstraction and reusability of the already implemented and tested adaptive navigation support 

tools was not high. This serves as an additional motivation for our idea that full extraction of 

adaptive methods would help to achieve greater reusability of the adaptation, and as a result 

would help speed up the process of providing adaptive value for the new content and reach a 

greater user population. 

3.2 PERSEUS 

PERSEUS is a standalone server of the adaptation functionality. It has been designed to 

empirically test the idea of separating adaptation functionality from the AHS and providing 

adaptation in a service-based fashion. Unlike built-in personalization or intermediary shell 

personalization solutions (see Section 2.5.3 for details), PERSEUS offers a full abstraction from 

the adaptation models and adaptation techniques it hosts. Client applications can obtain 

adaptation and personalization support from PERSEUS by communicating with it via a pre-

defined network protocol. PERSEUS offers a set of reusable adaptive navigation support 



 

 60 

strategies that can be deployed in several hyperspaces and across a virtually unlimited number of 

problem domains.  

The conceptual idea of how PERSEUS works is shown in Figure 9. A system responsible 

for user interface (e.g., a content management system or a portal) provides access to a pre-

constructed hyperspace. To render a personalized view on some node of the hyperspace, the 

portal consults with the personalization service engine. To do that, the portal sends the structure 

of the currently viewed portion of the hyperspace (consisting of a list of pre-authored resource 

links) and context information (e.g., user and group identities, device information, etc.). 

PERSEUS consults user modeling server(s) (and/or other data sources known to it) and performs 

the adaptation that was requested. The returned result is an updated structure of the hyperspace in 

the format that the portal can parse. The new structure of the node may have original links 

reordered or removed, new links inserted, or annotations added to links. Finally, the portal 

displays a new node view for the user. 

The general scenario of how PERSEUS works is that it takes a list of links plus context 

information and returns an annotated list of links. To utilize services offered by PERSEUS, a 

portal has to comply with the format of the request for adaptation and be able to parse the 

response. Requests for adaptation are accepted as simple HTTP POST requests. The main 

parameter of the request is the structure of the page with links to be personalized (or the URL 

pointing to the location of this structure). This structure of the page needing personalization is in 

RDF6 document / RSS 1.07

                                                 
6 Resource Description Framework http://www.w3.org/RDF/ 

7 RDF Site Summary http://web.resource.org/rss/1.0/spec 

 feed formatted. The use of RDF as a lingua franca for data 

interchange has become standard in modern AHS (2003; Denaux et al., 2005; Dolog et al., 



 

 61 

2004). The use of RDF/RSS 1.0, however, is not mandated. Any other format (such as plain text, 

comma or tab separated values, etc.) can be used. Since there is no central input parsing authority 

in PERSEUS, each adaptation service is free to enforce its own format as long as it conveys the 

necessary information – ordered link URLs accompanied by anchor text. PERSEUS’s response 

follows the same format as the request with an addition of link annotation. Again there is no 

strict convention. Currently, PERSEUS supplies annotations in the form of HTML span tags that 

contain an image and possibly JavaScript code snippet for displaying explanatory tooltips. 

 

Figure 9. Scenario of personalization service engine's operation 

PERSEUS was not built as merely a proof-of-concept for the standalone adaptation 

provision idea. At this moment it was already deployed in several courses at the University of 

Pittsburgh, Dublin City University, and Universidad Autónoma de Madrid (seeFigure 16 for 

examples). PERSEUS is also intended as a major adaptation and personalization provider for the 



 

 62 

Ensemble Computing Portal8 Figure 18. See  for the Ensemble portal screenshot with adaptive 

link annotation icons added as a mockup of the final result. 

 

Figure 10. Examples of PERSEUS’s deployment in actual courses offered via Knowledge Tree portal. Left – Java 

course for the Universidad Autónoma de Madrid, right – HCI course for the University of Pittsburgh. 

 

Figure 11. Mockup of anticipated PERSEUS deployment on Ensemble Computing portal. Green bullet icons and 

tooltips are to be provided by PERSEUS. 

                                                 
8 Ensemble, NSF NSDL Pathways project (http://nsdl.org/about/?pager=pathways&subpager=ENSEMBLE) 



 

 63 

3.3 PERSEUS IMPLEMENTATION 

PERSEUS’s architecture and the surrounding environment are shown in Figure 12. PERSEUS’s 

internal structure is comprised of adaptation strategies, visualization model, and data model. All 

three components form the adaptation model of AHS architecture presented earlier in Figure 3. 

 

Figure 12. Architecture of PERSEUS and the surrounding environment 

The data model plays a central role in structuring the process of acquiring data from the 

environment. PERSEUS works in close collaboration with one or several user modeling servers 

and content-managing applications (e.g., portals). Items of the data model – called data contexts 

– contain several types of information. These include addresses of the user modeling servers for 

acquiring the user data, access points to data stores (relational and/or semantic), URIs and URLs 

marking entry points to data stores, URI/URL patterns to filter/select resources of interest in the 

content model, etc.  

Adaptation strategies, also called personalization services (Dolog et al., 2004), are the 

scenarios used while producing the adaptation. They prescribe what kind of data should be 



 

 64 

obtained from the available sources and how it should be processed. The sources are specified in 

data contexts or could be the results of another adaptation strategy (chained adaptations). 

Relative independence of adaptation strategies allows them to be (re)used with multiple data 

contexts. 

One of the most effective classes of adaptation techniques in general is adaptive 

annotation (Brusilovsky, 2001). In PERSEUS, adaptation techniques that provide adaptive link 

annotation utilize the visualization model. The visualization model is comprised of special 

entities called visualizers. Visualizers contain rules prescribing how the continuous data 

produced by adaptation strategies (for example, various measures of interest, importance, 

knowledge, etc.) can be visualized for the user. Often these rules control how ranges of 

continuous values are mapped to discrete visual annotations. Visualizers, just like the data 

contexts, are relatively independent from adaptation strategies. This allows several different 

visualizers to be selectively used with one adaptation strategy and also the same visualizer to be 

used with different adaptation strategies. 

There are two basic types of annotations supported by visualizers: icons, and styles. Icons 

are displayed next to a link, for example a vertical progress bar icon can discretely visualize five 

levels of user progress, from 0% to 100% with 25% steps. A visualizer using these cues would 

have to bin continuous progress measure to these five levels and assign an appropriate icon. 

Styles are used to change the appearance of the adapted link. For example, instead of the five-

level progress bar icon mentioned above, an eleven-level background color intensity could be 

used for the same purpose. Alternatively, a boldfaced font style could be used to denote 

insufficient progress and so on. Visualizers can combine several messages to the users by 

encoding them in the visual cues, be they icons or link anchor decorations. 



 

 65 

 

Figure 13. Data and control flows during PERSEUS adaptation service lifecycle 

Each adaptation strategy is invoked in PERSEUS by an HTTP POST call. The call is 

made to the base URL of PERSEUS. Parameters help PERSEUS identify what adaptation 

functionality to launch, in what context, and include the following (see Figure 13). 

- The adaptation functionality identifier is mandatory. It determines the actual implementation 

of an adaptation procedure that is requested. 

- The data context identifier is mandatory. It determines what data sources the adaptation 

functionality has available for its operation. 

- The visualizer identifier is optional and prescribes a particular method of visualizing raw 

adaptation values. 

- The hyperspace pointer is mandatory in most of the currently implemented adaptation 

methods in PERSEUS. The hyperspace pointer is the specification of the link structure to be 

adapted. For each adaptation procedure the content, format, and the meaning of this 

parameter can be defined individually. In most cases, the hyperspace pointer identifies the 



 

 66 

portion of the hyperspace that requires adaptation. Using this identifier, the adaptation 

procedure should be able to reconstruct the link structure of the hyperspace subset.  

- User identity (login) is not always mandatory, but is required when personalization is 

performed. There exist methods of adaptation that do not distinguish individual users (e.g., 

group-based). In the case of PERSEUS, most of adaptation procedures, however, do 

discriminate between users. User identity is often used for acquiring user profile data or user 

model (Brusilovsky et al., 2004). Addresses for user data inquiry are specified in the data 

context. 

- Group identity is not mandatory; however, sometimes forms of adaptation are done on a 

group level. For example, social navigation can visualize individual progress alongside group 

progress. 

- Other parameters can be added on an individual adaptation procedure basis. 

PERSEUS maintains a record of all implemented and available adaptation techniques. 

Data contexts are matched to all adaptation techniques and can be reused across several of them. 

Individual items of data contexts, such as addresses of the external data sources, URIs/URLs of 

specific resources, etc., can also be present in multiple data contexts. Each visualizer is tailored 

for a specific type of output that an adaptation procedure produces. If the structure and the 

meaning of several outputs match, one or several visualizers could be used interchangeably for 

both. 



 

 67 

3.4 CONCEPTUAL EVALUATION OF PERSEUS 

The question of whether various adaptation techniques are effective in a human-computer 

interaction sense has already been studied thoroughly enough. The general conclusion is that 

each of them works well given the proper choice of the task, domain, target user population, and 

context. In our work on PERSEUS we will not re-evaluate the individual adaptation methods. 

Instead, we will focus on the idea of providing adaptation in a standalone fashion. Fortunately, 

conceptual evaluation of the idea itself can be done separately from empirical evaluation of the 

actual system prototype – PERSEUS. In this section we are abstracting from implementation and 

focusing on the conceptual design of PERSEUS, namely, whether the system is capable of 

setting the basis for implementing known adaptive navigation support techniques classified by 

Brusilovsky (Brusilovsky, 1996; Brusilovsky, 2001) and whether it is in agreement with the 

commonly accepted structure of the adaptation process. 

3.4.1 Support of Known Adaptation Techniques 

In the literature there are only a few publications that address the question of AHS’s flexibility in 

providing a range of adaptation techniques and/or capability to support a set of reasoning 

engines. Here we could mention two works: one by De Bra and colleagues (Bra et al., 2006) and 

the other by Bailey and colleagues (Bailey et al., 2007). In both publications, the authors discuss 

not only the architecture of their adaptive systems, but also how the architecture enables them to 

deliver a set of know adaptation techniques classified by Brusilovsky in (Brusilovsky, 1996) and 

(Brusilovsky, 2001). While the work of De Bra et al. (Bra et al., 2006) simply goes over 

adaptation methods confirming and explaining that a certain method is supported, in (Bailey et 

al., 2007) the authors focus their discussion on the process of transforming/manipulating the 



 

 68 

hypertext content to fulfill the goal of adaptation. The fundamental open hypermedia model 

(FOHM) that the authors present allows them to show procedural similarities between a number 

of pairs of adaptive navigation support and adaptive presentation techniques (see Figure 14 

below). These similarities can be exploited to unify the implementation of the techniques (e.g., 

adaptive link sorting is identical to sorting fragments with the only difference in the granularity 

of the manipulated entities) and thus make the underlying system more flexible and capable. As a 

result, such an adaptive system should implement a reduced set of methods to be able to support 

a large set of techniques. 

As stipulated in (Bailey et al., 2007), among the variety of adaptation techniques 

classified by Brusilovsky in (Brusilovsky, 1996) and (Brusilovsky, 2001), several operate on 

identical principles – for example, adaptive link sorting (from the adaptive navigation branch) 

and fragment sorting (from the adaptive presentation branch), adaptive link hiding (from the 

adaptive navigation branch) and removing sorting (from the adaptive presentation branch), etc. 

This is why we are going to assess PERSEUS’s potential in support various adaptation 

techniques on a smaller set of techniques. Yet, using the above-mentioned argument, the scope 

of PERSEUS’s applicability could be extended to other adaptation techniques easily. Below we 

will examine a set of techniques and align their implementation against PERSEUS’s conceptual 

scenario of operation discussed in Section 3.3 and in Figure 9. 



 

 69 

 

Figure 14. Brusilovsky’s taxonomy (Brusilovsky, 2001) of AH techniques showingtheir similarities as a basis for 

unification of the implementation (Bailey et al., 2007)© 2007 Association for Computing Machinery, Inc. Reprinted 

by permission. 

Adaptive link sorting (and sorting fragment by analogy) alters the order of the received 

list of links based on some criteria. A PERSEUS service implementing this technique would 

simply reorder the supplied list of link URLs and anchor labels and return it back to the 

requestor. 

Link hiding, disabling, and removing (and removing fragments by analogy). Removing 

a link is simply purging it from the input list. Link disabling would require keeping the link 

anchor text but changing the link URL to a blank (for example, a hash sign – #, or 



 

 70 

javascript:void(0);

As we can see, out of 16adaptation methods inthe classical taxonomy (see 

). Changing the style of the link’s anchor text decoration would 

effectively achieve link hiding. However, that would only make sense if links were surrounded 

by text; otherwise, if links are presented in the form of a list, the hiding is less effective. 

Direct navigation is a variation of adaptive link sorting and link removal, where only the 

top link from the input list (sorted by some relevance criteria) is returned), while others are 

removed. 

Link generation (and inserting fragments and stretchtext by analogy) is achieved by 

inserting previously a absent link into a received list at a position appropriate in a given context. 

All methods discussed above (except for link hiding) manipulate links; link 

annotationuses a separate output type reserved for this particular purpose. Annotations (including 

empty annotations) are a list of style changes and/or visual cues that correspond to each link in 

PERSEUS’s output. The number and the order of annotations correspond to the resulting list of 

links itself. Style annotations alter font type, weight or size, underlining, text color, foreground 

and background color, etc. Visual cues include textual additions, graphic icons, tooltip messages, 

etc. 

Map adaptation in PERSEUS could be viewed as a special case of intersecting link 

removal, link generation, and link annotation, where the presence or absence of links (removal 

and/or generation) and relative location of links (coordinates as a type of annotation) are 

combined. 

Figure 2), only 

3 methods that cannot be conceptually covered by PERSEUS are: adaptive multimedia 

presentation, natural language adaptation, and adaptation of modality. PERSEUS effectively 

supports he rest of the methods. 



 

 71 

3.4.2 Composition of the Adaptation Process 

Knutov and colleagues in (Knutov et al., 2009) focused on the decomposition of the generic 

process of adaptation in an adaptation engine. The basis for the adaptation decomposition is the 

classification criteria for the adaptation techniques presented in (Brusilovsky, 1996). These 

criteria, refined in (Knutov et al., 2009) are formulated in the form of questions listed below. 

- Where to adapt (application areas)? 

- When to adapt (context)? 

- What to adapt (underlying domain/hyperspace structure)? 

- Why to adapt (goals)? 

- To what to adapt (user features)? 

- How to adapt (adaptation methods)? 

These six questions capture the full spectrum of the issues that every AHS has to address. 

They offer degrees of freedom that an AHS designer can explore. Often, several of these 

dimensions are controlled and variability is offered only for one. For example, the decision of 

when to adapt could be limited to only one option – always to adapt – as opposed to a more 

flexible solution when necessity for adaptation is dynamically estimated. The choice of the 

adaptation method (how to adapt) could be fixed (if the system only offers one kind of adaptation 

support) or varied based on some criteria. With respect to these six adaptation questions, 

PERSEUS is positioned as follows. 

Where to adapt (application areas)? PERSEUS is intended as a general engine capable 

of providing adaptation in virtually any application area. In this work we are going to consider 

the area of educational AHS and forgo the discussion of applicability. 



 

 72 

When to adapt (context)? The decision of when to provide adaptation is orthogonal to 

PERSEUS’s conceptual design. One might imagine an adaptation service implemented in 

PERSEUS having a decision procedure intended specifically for adaptation appropriation. This 

procedure could either be encapsulated into a particular adaptation service or be available to 

several PERSEUS adaptation services. We are not going to discuss adaptation appropriation in 

this work. 

What to adapt (underlying hyperspace/domain structure)? PERSEUS assumes that 

the structure of the hyperspace being adapted is supplied along with the adaptation service 

invocation call. Domain structure, if necessary, is supposed to be linked via data model contexts. 

Why to adapt (goals)? The goal of adaptation in general and adaptation provided by 

PERSEUS is to personalize the view of the hyperspace to the characteristics of the individual 

users and prevent the situation of being lost in the hyperspace (Hammond, 1989). 

To what to adapt (user features)? PERSEUS was originally intended for use in the 

educational AHS and hence adapts to user knowledge. However, there is no limitation on what 

linked sources of user-related information each PERSEUS adaptation service can use. 

How to adapt (adaptation methods)? Client application makes a decision about which 

PERSEUS adaptation service to invoke; one could implement a meta-adaptation that would be 

able to first make a decision on what adaptation is most appropriate in a given context and then 

forward the request to it. 



 

 73 

3.5 ADAPTATION TECHNIQUES IMPLEMENTED IN PERSEUS 

As we can see, the conceptual design of PERSEUS sets the basis for realization of nearly all of 

the major adaptation methods. However, these techniques describe an interface outcome of the 

adaptation process. The essence of the adaptation lies in the decision support mechanism – the 

reasoning engine. Since the design of PERSEUS does not regulate the way internal processes of 

the adaptation should be coded, PERSEUS can support virtually any reasoning engine. 

In this section, we will show that PERSEUS is capable of providing a basis for realizing 

various adaptation engines by implementation. We are going discuss four adaptation services 

implemented in PERSEUS that represent different adaptive reasoning engines: social navigation 

support service represents a social reasoning engine and is of low computational challenge; 

topic-based navigation support represents a concept-based engine with coarse-grained concepts 

and poses a medium computational challenge; concept-based navigation support represents the 

concept-based engine and presents high computational challenge; and finally link-

recommendation service is a wrapper of an external recommender that represents a concept-

based engine and poses high computational challenge. 

The first three adaptation services (social, topic-, and concept-based) implement adaptive 

link annotation, while the last one (link-recommendation) implements links generation. Adaptive 

link annotation is one of the most frequently used adaptation techniques. It is based on the 

principle that link structure of the original hypermedia document remains the same, and the only 

changes are the way links are made to stand out using text decoration or text/graphic annotation 

markers placed next to them. The choice of the adaptation technique in our case does not 

influence the core complexity of the adaptation engines. Social and concept-based adaptation 

engines are one of the most popular adaptation engines today. With the rapid development of 



 

 74 

social media and social networks, social engine (used with several adaptation techniques, 

including hybrid solutions) is the most widespread. Concept-based adaptation is frequently used 

in education hypermedia and knowledge-based systems. In several instances keyword-based 

information retrieval engines and personalized search engines could be viewed as isomorphic to 

a concept-based approach. Topic-based engine in comparison to social and concept-based is less 

widespread, but is useful in our case as its computational complexity is in between those of 

social (low) and concept-based engines. 

In this section, for each PERSEUS’s adaptation service implementing one of the chosen 

adaptation engines we will state the intended scope of their use, outline interface outcomes, and 

identify the sources of computational complexity connecting it to the reasoning engine chosen. 

3.5.1 Social Navigation Support Adaptation Service 

Social navigation is the first adaptive navigation support technique implemented in PERSEUS. 

An instance of this technique requires a standard set of inputs: user and group identities and a 

pointer to the hyperspace fragment that needs personalization. The social navigation 

implemented in PERSEUS is built for content rather than index nodes of the target hyperspace. 

Content folders have terminal non-container nodes – resources. For each of these resources an 

individual and average group progress is retrieved from the user modeling server, here 

CUMULATE (Brusilovsky et al., 2005). Progress here is abstracted by CUMULATE. For 

example, in the case of a problem-solving exercise, progress is the level of student’s mastery of 

the underlying knowledge, and in the case of a document intended for reading progress is the 

normalized time spent reading (Claypool et al., 2001). 



 

 75 

 

Figure 15. Social navigation support adaptation service 

In terms of interface changes, the social navigation service adds a visual cue for every 

link that has user/group navigation offprint. To produce the cues, continuous values of 

user/group activity are binned. There are two major sets of cues. Set a. (see Figure 15) is 

comprised of person-on-the-background icons. This icon was first introduced in (Brusilovsky et 

al., 2004). Here the shade of the person shows the individual’s progress, while the shade of the 

background shows average group progress. In both cases, the darker the shade, the bigger the 

progress. Set b. conveys only one type of information in the form of colored bars; this 

information can represent either personal progress (and the social nature of the navigation 

support will be lost) or the average group progress.  

The computations done by this social personalization service are very simple. They are 

reduced to user model lookup, link matching, and cue selection. For each of the adapted links, 

the social navigation service has to lookup one-two values from the back-end user model: user’s 



 

 76 

individual progress and, optionally, average progress of the group. Progress is an indicator of 

user activity in terms of time, number of clicks, or success rate. The social navigation service, 

being the first to be implemented, was the most studied and underwent a formal evaluation (see 

Section 3.6 for details). 

Figure 26 presents a control flow diagram of the social navigation support service 

lifecycle. At stages S1 and S7 the client requests adaptation and receives the response. At stage 

S2 initialization takes place. Here inputs are parsed and the object structures necessary at the 

further stages are created. Stages S3, S4, and S5 are devoted to requesting the user’s individual 

and group progress from the user modeling server. At stage S6, the service parses user model 

response, makes an adaptation decision, and serializes the response for the client. The amount of 

data that has to be processed and the processing time depend on the size of the input (number of 

resources to adapt) in a linear fashion. 

 

Figure 16. Control flow diagram of the social navigation support service. Capital S marks various stages of the 

processing, cs marks events on the client, ps – on PERSEUS, and us – on the user model side. Arrows denote 

transfer of control. 



 

 77 

3.5.2 Topic-Based Navigation Support Adaptation Service 

The classical topic-based navigation support adaptation technique has been developed and 

evaluated in (Sosnovsky & Brusilovsky, 2005). The rationale behind it is that before following a 

link leading to a set of resources (united under a common topic), the user should know what 

awaits him/her there in the form of a short summary. Each of the topics represents a large chunk 

of the domain knowledge. The number of topics should be no more than a few dozen per 

domain, since topic-based navigation is not aimed at fine-grained domain models but rather at 

high-level conceptualization. 

 

Figure 17. Topic-based navigation support adaptation service 

PERSEUS’s implementation follows the classic example and is fairly similar to the social 

navigation service in terms of inputs. User and group identity and pointer to the hyperspace 



 

 78 

fragment are required. The major difference of the topic-based service, however, is that it is 

intended for the index nodes of the hyperspace (folders-of-folders). The folders inside the folder 

– topics – contain terminal resource nodes. The purpose of the services is to come up with a 

summary for these topic folders. 

Before querying the user model, the topic-based service builds a map of the folders’ 

content and retrieves the resource links from them. Then it requests user progress with respect to 

each resource and aggregates user progress within each folder. Next, progress that the user 

achieved with several types of resources (progress with some non-interactive resources, for 

example links to lecture slides, is not counted towards topic progress) is aggregated by the folder 

and visualized as a target with 0, 1, 2, or 3 darts (Figure 17). The greater the progress, the more 

darts there are. 

 

Figure 18. Control flow diagram of the topic-based navigation support service. Capital T marks various stages of 

the processing, ct marks events on the client, pt – on PERSEUS, and ut – on the user model side. Arrows denote 

transfer of control. 

Figure 18 shows a control flow diagram of the topic-based navigation support service 

lifecycle and is isomorphic to the control flow diagram of the social navigation support service 

(see Figure 16). At stages T1 and T7 the client requests adaptation and receives the response. 

Stage T2 is the initialization phase, where inputs are parsed and internal use object structures are 



 

 79 

created. Stages T3, T4, and T5 are devoted to querying the UMS for the user’s progress with the 

terminal resources in the sub-folders. At stage T6, the service parses user model response, makes 

an adaptation decision, and serializes the response for the client.  

Both social and topic-based services work with aggregated user progress. However, the 

social navigation service relies on aggregated (average) progress of peer users with a particular 

resource. The social layer of the user model conveniently produces this value. In the case of the 

topic-based navigation support service, the aggregation (weighted averaging) is done across 

individual user progress values with resources in a folder. The user model is traditionally 

agnostic of the folder-resource structure of the hyperspace and the aggregation has to be done by 

the service itself. Because of this, the topic-based service has to manipulate a larger array of data, 

not only the list of folders requiring adaptation, but the lists of resources in them. The size of the 

data exchange with the user model is hence larger. The amount of data that has to be processed 

and the processing time, unlike the social navigation service, does not depend on the size of the 

input in a linear fashion: It is rather super-linear. 

The topic-based navigation support service has been implemented and proof-of-the-

concept tested in a number of classes already. However, its performance characteristics have not 

been properly evaluated. 

3.5.3 Concept-Based Navigation Support Personalization Service 

The core idea of the concept-based navigation support is using estimated user knowledge of 

domain concepts not only to obtain aggregated per-resource progress, but also to exploit the 

relations between concepts and between resources via concepts, as well as distinguishing 

prerequisite and outcome concepts for each resource. The concept-based adaptation service 



 

 80 

implemented in PERSEUS is based on the legacy approach introduced in the system NavEx 

(Yudelson & Brusilovsky, 2005). 

In this approach, on top of the concept indexing that is standard in the majority of the 

knowledge-based systems, additional focus is given to the roles of the concepts. The distinction 

is made between outcomes – the concepts that are directly addressed by the resource – and 

prerequisites – concepts that serve a secondary support role. This distinction was not a novelty in 

NavEx, but often required by-hand expert work (Henze & Nejdl, 1999; Smith & Blandford, 

2003). In NavEx the split of the concepts into prerequisites and outcomes was done on the basis 

of the course structure. In the C language course that NavEx was built for, resources were 

grouped into ordered lectures. Resources that were in the very first lecture were set to have 

outcomes only. The concepts of the resources from each of the following lectures were split on 

the basis of whether they overlapped with the concepts of the resources from prior lectures or 

not. The overlapping concepts became prerequisites; the new, previously unseen concepts 

became outcomes. This procedure, although relying greatly on the quality of resource grouping 

into the ordered lecture folders, offered a fast and easy way to process concept metadata 

automatically. 

Existence of the two types of concepts – prerequisites and outcomes – created an 

opportunity to determine whether the user was ready to work with the resource or not. If all of 

the prerequisite metadata concepts were mastered well enough (e.g., by working with resources 

from prior lectures), the resource was rendered to be ready-to-be-learned, and not ready to learn 

otherwise. This feature of the resource hyperspace was exploited in NavEx in the form of zone-

based adaptation (Weber & Brusilovsky, 2001). Resources that were not ready to be learned 



 

 81 

were zone 3, resources ready to be learned but not fully learned were zone 2, and the rest were 

zone 1. 

 

Figure 19. Concept-based navigation support adaptation service 

The concept-based navigation support realized in PERSEUS implements an updated 

version of the adaptation featured in NavEx. Just as in NavEx, for every hyperspace where the 

concept-based service is intended to be used, a procedure of prerequisite-outcome separation has 



 

 82 

to be run beforehand. This procedure in PERSEUS is implemented as a companion service, and 

its results are then statically bound to the data context(s) of the main concept-based service. 

Since in most of the cases the structure of the hyperspace does not change often, the companion 

procedure should not be run frequently. 

With the prerequisite-outcome data available, the concept-based service can determine 

the readiness of the resources; if they are not ready to be learned, the service produces a red x-

shaped annotation icon (zone 3). Resources ready to be learned are annotated as per their 

progress with a vertical filled bar (zone 1 if wholly filled, and zone 2 if partially filled). The 

progress (and respectively the filling level of the bar) is computed as an average knowledge of 

the outcome metadata concepts (see Figure 19). 

 

Figure 20. Control flow of the concept-based navigation support service. Capital C marks various stages of the 

processing, cc marks events on the client, pc – on PERSEUS, and uc – on the user model side. Arrows denote 

transfer of control. 

Figure 20 shows a control flow diagram of the concept-based navigation support service 

lifecycle. At stages C1 and C11 the client requests adaptation and receives the response. Stage 

C2 is the initialization phase, where inputs are parsed and internal use object structures are 



 

 83 

created. Stages C3, C4, and C5 and stages C7, C8, and C9 are devoted to querying the UMS for 

the user’s progress with the resources and for user mastery of the concepts. It does not matter 

which query comes first. At stage C10, the service parses user model responses, makes an 

adaptation decision, and serializes the response for the client.  

In terms of performance, the concept-based navigation support adaptation service is more 

computationally demanding than social or topic-based. There are several reasons for this. First, 

concepts – finer-grained metadata – increase the amount of data the service needs to query the 

user model for. In topic-based service there are several resources per each topic, while in 

concept-based service there are up to several dozen concepts per each resource. This results in a 

larger traffic between PERSEUS and the user modeling server and higher processing and 

aggregation costs in general. Additionally, the concept-based service still has to query for the 

user’s individual resource progress values. 

Second, the zone-based adaptation (in particular zone 3 – not-ready-to-be-learned 

resources) requires consideration of user concept progresses for all resources in the course. 

Namely, regardless of the links on the page currently being adapted, the concept-based service 

needs progress for concepts related to all resources in the hyperspace. Thus, in addition to 

computing the readiness for the resources in question, the service has to perform a linear “scan” 

of potentially the entire hyperspace (see Figure 19). 

In our case, the structure of the adapted hyperspace changes very seldom and one does 

not have to run the prerequisite-outcome miner companion service frequently: only when there 

are changes made. However, in a more dynamic hyperspace, prerequisite-outcome separation 

would have to be run more often, thus increasing the computational complexity. 



 

 84 

The concept-based navigation support service has been implemented and proof-of-the-

concept tested in a number of classes already. Its performance evaluation has not been done yet. 

3.5.4 Link Generation (Recommendation) Personalization Service 

The link generation (recommendation) service in PERSEUS is one of the most recent additions 

to the fleet of adaptation methods. In contrast to the three personalization services described 

above, its main purpose is not to annotate the existing resources, but to generate new resource 

links (although annotation is added to differentiate statically authored links from generated). The 

rationale behind resource recommendation in our case is the following. There exists a structure 

of the course hyperspace pre-authored by the teacher. In addition there exists a large pool of 

relevant resources that are not statically connected to the course. It would be cumbersome to 

statically bind the resources from the pool to the course hyperspace. As an alternative way, a 

special personalization service is set up to recommend relevant resources given the list of 

resources currently in the user’s view and/or given the state of the user model. 

The recommendation service is also different from the rest of the previously described 

services in that it does not implement all the functionality pertinent to adaptation. Instead, it 

relies on an external recommender and serves as a wrapper to it. Although the chosen wrapper 

design pattern adds an additional communication link (and potentially overhead), it allows the 

recommendation engine to be improved independently, without changes to the service. 

The recommendation service is intended for the content non-terminal nodes (content 

folders) of the hyperspace just like the social navigation and the concept-based services (see 

Figure 21). The functionality of producing the recommended resource links is outsourced to an 

external recommender engine for which the service becomes a wrapper. The concrete 



 

 85 

recommendation engine at this point does not matter; it could be knowledge-based, content-

based (Pazzani, 1999), as well as collaborative (Herlocker et al., 1999), for example. 

 

Figure 21. Recommendation service 

3.6 PRE-STUDY OF PERSEUS’S SOCIAL NAVIGATION ADAPTATION 

In this section we will discuss the first study of PERSEUS. In this study we empirically 

evaluated performance of the social navigation support service. We will start with the pilot study 



 

 86 

and then cover the setup of the main experiment and data collection procedure used. Next we 

will present study results. We will finish with the limitations of this study. 

3.6.1 Pilot-Test 

We began the empirical evaluation of PERSEUS’s social navigation support adaptation service 

with a proof-of-the-concept pilot test. As part of the pilot-test, the social navigation support 

adaptation service was deployed during the Fall 2007 semester at the School of Information 

Sciences, University of Pittsburgh, on a portal where materials were set up for an undergraduate 

database course. The class had 37 students. The course was very intensive and, as a result, the 

amount of student work exceeded our expectations. The load our adaptive tools had to cope with 

was quite high. Overall each student made over 50 accesses to the index pages serviced by 

PERSEUS’s social navigation. The maximum number of accesses per minute was 15, the median 

was 1, and the 95th percentile was 7. Every call to the personalization service contained about 20 

resources awaiting personalization. It required the personalization service engine to construct 

models of 103.5±0.86 RDF triples. Each such call took the personalization service engine 43.5 

ms, on average, to complete. This means that the personalization overhead was .42 ms per RDF 

triple or a little more than 2 ms per resource. The results of the pilot evaluation have shown that 

even though the active usage of adaptive tools created a very adaptation-intensive environment, 

this did not challenge our social navigation service engine enough.  

3.6.2 Experimental Setup and Data Collection 

The next and major step in evaluating PERSEUS’s social navigation service was to test it under 

heavy loads and determine the loads critical to its performance. To accomplish this, we used a 

technique previously employed by us and described in (Yudelson et al., 2007; Zadorozhny et al., 



 

 87 

2008). We set up two machines: one with the personalization service engine, and the other with a 

special “flooder” installed. The role of the “flooder” was to imitate the personalization service 

client, subject the personalization engine machine to various types of load, and record the 

observed parameters (Figure 22). 

To simplify the experiment, we decided to use discrete values for the load. The 

parameters of the load were the following.  

- Complexity of the request. The majority of our portal lecture folders had roughly 20 

resource links to personalize (this includes lecture folders of the pilot course described in 

Section 3.6.1 and several other courses that are deployed on the portal). In addition to that we 

used two more values for complexity: 5 resources, to represent a “lightweight” folder, and 50 

to signify a folder “overloaded” with resources. Thus we had 3 values: 5, 20, and 50 

resources per request (35, 125, and 305 RDF triples respectively).  

- Request delivery rate – delay between consecutive requests. From our experience with user 

modeling services (Yudelson et al., 2007; Zadorozhny et al., 2008) and initial experiments 

with a personalization service engine, we had already learned that a delay of 10 ms between 

requests is critical for our hardware/software configuration. In addition, delays between 

requests of 160 ms and more did not present any challenge. Hence, we varied the request 

delivery rate parameter between 10 ms and 160 ms. Rates between boundaries were doubles 

of the previous value, giving us 5 loads: 10, 20, 40, 80, and 160 ms. 

- Duration of the load. From prior experimentation we knew that the duration did not really 

matter, unless it was a peak load of 10 ms or 20 ms between requests. During these peak 

loads, the personalization server would stop responding to any requests at all after 30 



 

 88 

seconds. We decided to keep the load sessions fairly short – a little less than 4 seconds (3,840 

ms, divisible by all delivery rates).  

 

Figure 22. Pre-study test system setup 

To obtain more data we repeated the flooding sessions 5 times for each of the three 

request complexities and each of the five request delivery rates, giving us 3 x 5 = 15 different 

settings. During these sessions we observed the following parameters: 

- Mean response delay – the average amount of time it takes to complete a request. 

- Request success rate – denoting the fraction of requests that are completed successfully. For 

the least demanding load of 160 ms between requests, the amount of requests sent per each 

flooding session was 3,840/160=24. For the highest load of 10 ms between requests, it was 

3,840/10=384.  

The personalization service engine was run on a machine with Pentium 4 dual core 

2.8Mhz processor and 1Gb RAM. The user modeling server that the personalization service 

engine depended on was running on the same machine. To compensate for the high speed of the 

school’s wired network, we used a Wi-Fi network to communicate with the personalization 

engine. It also provided a realistic scenario for students who would be accessing adaptive content 

outside their fast university campus LAN. 



 

 89 

3.6.3 Results 

Figure 23 shows a summary of the evaluation results. Charts in the left column are the percentile 

plots. Each curve there corresponds to one of the five request delivery rates. Each point on a 

percentile plot indicates the maximum response delay (x-axis) for the given percentile of 

requests (y-axis).  

The right column of charts denotes request success. For each of the request delay rates, 

we show only the total number of requests sent, the number of requests responded to – both 

successfully completed and “gracefully failed” (had an empty response or an error message) – 

and the number of successfully completed requests. Each row within the charts corresponds to a 

different request complexity: The top was 5 resources (35 RDF triples) per request, the middle, 

20 (125 RDF triples), and the bottom was 50 (305 RDF triples). 

As we can see from Figure 23 (a-1, a-2) – low request complexity – for almost all loads, 

95 percent of the requests finished in about 25 ms. Only the peak load of 10 ms between requests 

slowed the personalization service engine considerably, with the 95th percentile being off the 

chart at 4,150 ms. This resulted in (3,840-3,488)/3,840 (9 percent) of the requests returning error 

messages. 

In the case of medium request complexity, (Figure 23 b-1, b-2) there were two peak loads 

of 10 and 20 ms between requests that resulted in deteriorated personalization service engine 

performance. The 95th percentiles for them were both off the chart at 12,530 and 6,300 ms for 10 

and 20 ms rates, respectively. While all other loads had 95 percent of their requests finishing in 

about 50 ms, around 38 percent ([3840-2388]/3840) of requests at 10 ms resulted in errors. On 

the other hand, despite large delays, all requests under the 20 ms load completed successfully. 



 

 90 

  

(a-1)    (a-2) 

  

(b-1)    (b-2) 

  

(c-1)    (c-3) 

Figure 23. Percentile plots for three request complexities (left column) and request success barcharts (right column) 

for 5 resources per request (top row), 20 resources per request (middle row), and 50 resources per request (bottom 

row) across all request delivery rates 

In the case of high request complexity (Figure 23 c-1, c-2) three loads of 10, 20 and 40 

ms between requests worsened the personalization service engine performance. The 95th 

percentiles for them were well off the chart at 24,230, 16,000 and 6,750 ms, for 10, 20, and 40 

ms rates, respectively. For all other loads, 95 percent of the requests finished in about 200 ms. 



 

 91 

Also, instead of going almost vertically until the 95th percentile (for low and medium request 

complexity), curves bent in the direction of delay increment. About 34 percent ( [3,840-

2,541]/3,840 ) of the requests at a 10 ms load resulted in errors. Only 4 percent ( [1,920 -

1,851]/1,920 ) of requests at 20 ms load returned errors. All other loads (even 40 ms load) did 

not result in errors. 

Let us move from a discussion of delays and percentiles to focusing on how many 

students could be effectively served by the personalization service engine. We based our 

estimation on user activity observed during the proof-of-the-concept testing of the social 

navigation service mentioned in Section 3.6.1. As previously stated, there were 37 students. 

Whenever they worked with the personalization services, they spent 95 percent of their time, 

collectively, making no more than 7 requests per minute. Since the typical request contained 

roughly 20 resources that needed personalization, we based the estimation on the results for the 

medium complexity requests obtained above. Loads of 10 and 20 ms between requests were 

clearly too high. A load of 40 ms between requests seemed to be quite plausible for a 

personalization service engine to handle. A rate of 40 ms between requests is 60,000 / 40 = 1,500 

per minute. In a class of 37 students, 95 percentof the time had a maximum 7 requests per 

minute, whenever they were working with the system. To reach the allowed request maximum of 

1,500, (37*1500 / 7) !"#$%%%"&'()*+'&",-.*"'/"0*"-1'2.*34"2+./3.*)5 

It is important to mention that PERSEUS was not tested alone. It was intensively 

querying the user modeling server CUMULATE. Hence, one of the important evaluation 

characteristics for us was what fraction of the total time needed for requests to complete do they 

“spend” in PERSEUS (not including waiting for CUMULATE’s response), in CUMULATE, and 

in the network (total time minus time spent on PERSEUS and CUMULATE). As it turned out, 



 

 92 

the split between the three was roughly equal, without significant advantage of one or the other 

across all request complexities and delivery rates (see Figure 24). 

 

Figure 24. Request time distribution: network communication, CUMULATE and PERSEUS 

3.6.4 Pre-study Limitations 

These results were quite promising. However, there are several questions this preliminary work 

did not answer. First, despite such a good performance, it is important to understand that during 

these tests (Yudelson & Brusilovsky, 2008) the system provided a computationally superficial 

adaptation – social navigation. This type of navigation support requires a mere matching of per-

resource user and group progress (obtained from the user model) to the actual resource links. 

Other types of adaptive navigation support that we worked with prior to PERSEUS and found 

very effective, such as topic-based navigation (Sosnovsky & Brusilovsky, 2005) and concept-

based navigation (Sosnovsky et al., 2008; Yudelson & Brusilovsky, 2005), are more 

computationally elaborate than social navigation. The complexity of the respective reasoning 

engines is higher than that of social navigation. To ensure PERSEUS is capable of effectively 

supporting adaptation methods and reasoning engines of various computational challenge 

properly, one has to perform additional evaluation. 



 

 93 

Second, the measured results are not aligned against human perception of acceptable 

delays. Although 95 percent of requests finishing 20, 50, and 200 milliseconds for low, medium, 

and high request complexities seem to ensure seamless adaptation, these delays were obtained 

for a low computational challenge social navigation support. If a more complex adaptation 

method is evaluated, we must align obtained performance estimates to the established acceptable 

response delays from the literature.  

Early work on human perception of the system response delay gives us a 2-second 

interval during which the natural flow of the interaction is rendered uninterrupted (Shneiderman, 

1984). Later work in this direction has refined the interval and produced several levels of delay 

tolerance. Up to 0.1 seconds, the user feels that the system response is instantaneous; up to 1.0 

seconds of system response delay, the user’s flow of thought stays uninterrupted; up to 10 

seconds’ delay keeps the user engaged with the system (Nielsen, 1993). While 0.1 seconds’ 

delay is the desired one, 1-2 second delay seems to be the one we should take as the largest 

tolerable.  

Third, the pre-study focused on PERSEUS’s implementation of social navigation support, 

without establishing a performance baseline for the tool adaptation that PERSEUS is going to 

compete with. We are going to choose the concept-based adaptation implemented in NavEx 

(Yudelson & Brusilovsky, 2005) as such a baseline. Concept-based adaptation has been known 

as one of the most precise and effective adaptation techniques. The encapsulated version of 

concept-based adaptation implemented in NavEx has been a model for the one implemented in 

PERSEUS. This makes the choice of both the technique and the implementations to be the 

perfect candidates for the baseline comparison. 



 

 94 

Last but not least, the analysis of the past user activity has been quite shallow. More 

detailed information on temporal characteristics of the user sessions (session length, click 

frequencies, etc.) needs to be obtained to get a more realistic picture. The duration of the 

experiment itself might need to be adjusted and likely would need to be increased. A duration of 

3840 milliseconds is a quite short period of time, putting the experiment into the peak-rest test 

category rather than the capacity planning test category (Maccaux, 2008). 

3.6.5 Pre-Study Summary 

The pre-study was an important first step in the evaluation of PERSEUS. PERSEUS’s social 

navigation support adaptation functionality was successfully tested in a real environment. It has 

shown that it is generally feasible to encapsulate an adaptation technique into a standalone server 

and offer it as a service. Performance-wise, the pre-study demonstrated that PERSEUS could 

cope with relatively high loads and serve thousands of users. 

To meet the goals of this dissertation, we need to extend our evaluation beyond just one 

adaptation technique and consider several of them. The conceptual possibility to implement a 

representative subset of known adaptation methods should be carefully examined that are widely 

used in modern adaptive hypermedia systems and range in posed computational challenge. To 

properly test PERSEUS’s performance, more computationally challenging adaptation procedures 

should be included in the evaluation. And finally, implementation of adaptation based on 

PERSEUS should be compared to traditional ways of realizing adaptation, e.g., an intermediary 

approach. 



 

 95 

4.0  RESEARCH DESIGN 

In this chapter we will discuss the main experiment of this work. This experiment is an extension 

of our previous work on performance evaluation of AHS components (Zadorozhny et al., 

2008)and (Yudelson & Brusilovsky, 2008). As before, we are going to subject tested systems to 

various loads and collect performance data. The target of the experiment is to empirically prove 

the feasibility of implementing adaptation in a standalone fashion and to outline its performance 

capacity. 

The chapter starts with a general overview of the experimental series comprising the 

experiment, including overall design and metrics used. Then, the setup of the experiments series 

is discussed, including implementation of the tested systems and relevant configuration data. 

Next, the actual hardware and the software used for the experiments are discussed. Finally, 

comprehensive hypotheses about the experiments’ outcomes are presented. 

4.1 EXPERIMENT OVERVIEW 

The main experiment consists of several smaller-scale experiments. In each of the smaller 

experiments we are using three separate computers hosting three major components (Figure 25): 

adaptation provider, user modeling server, and the so-called load generator. As in our prior work 

(Yudelson & Brusilovsky, 2008; Yudelson et al., 2007), the load generator (or the flooder) is 



 

 96 

responsible for simulating user activity by sending requests to the tested adaptation provider with 

some frequency(ies). All experiment components intensively log every stage of the requests 

originated from the load generator.  

 

Figure 25. General schema of the experiments 

The experiments are divided into two parts. The first consists of the capacity/soak 

performance tests of the 3 PERSEUS adaptation services (social, topic-based, and concept-

based) plus an encapsulated implementation of the concept-based adaptation in NavEx as a 

baseline. Here adaptation providers are subjected to a set of loads described by the following 

characteristics: 

- Request complexity – number of resources to provide adaptation for in each request. The 

more resources there are in each request, the higher the load. This value is varied across 

different experiments. 

- Request delivery rate – delay between consecutive requests. The smaller the delay between 

requests, the higher the load. This value is varied across different experiments. 

- Duration of the load – a period of time during which the load generator sends requests to 

the adaptation provider (PERSEUS or NavEx). Optimal duration is determined by analyzing 

invocation patterns of the PERSEUS adaptation services or their analogs implemented in an 



 

 97 

encapsulated manner. This value is held constant for each of the 3 types of adaptation 

provided (social, topic-based, and concept-based). 

The number of experiments for each implementation of the adaptation is thus a multiple 

of the number of request complexities and the number of request delivery rates used (duration 

remains unchanged). 

Observed log data is viewed from the following parameters. 

- Response delay – the amount of time it takes to complete each request. As an aggregate 

measure, we are interested in the 95th percentile of the response delay for each adaptation 

provider and load configuration.  

- Request success – denotes whether the request was completed successfully or not. This 

involves whether the request was responded to at all and whether the response was correct. 

As an aggregate measure, success rate (percent requests successful) is used. In addition to the 

request being answered and the response matching the expected value, a supplementary 

condition is added – whether the response delay is within the boundaries of human-perceived 

latency tolerance. 

- Size of the supported user population – this estimate is based on the summary of the 

previous three across all load configurations and is computed based on the highest load a 

tested adaptation provider can handle while demonstrating acceptable performance. 

- Number of requests in the system – this is a measure derived from timestamps of request 

start and finish. It shows the amount of requests still in processing. Number of requests in the 

system over time, in addition to the response delay and request success, shows how capable 

the adaptation provider is in completing requests under different loads. 



 

 98 

Number of requests in the system, although, a secondary measure of performance, 

requires additional attention. Our intuition is that the load is not constant during each 

experimental series and is likely to be distributed in the manner depicted in Figure 26. Here we 

see that in the initial ramp-up period system temporarily gets overwhelmed – number of requests 

in the processing grows with time and the request-processing rate is low. Then the system 

request processing rate grows and the number of requests in the system drops by the end of the 

experiment. 

 

Figure 26. Number of requests processed during one of experimental series: simplistic vs. realistic (assumption). 

Several heuristic features can be used to determine whether the behavior of the requests-

in-the-system curve corresponds to acceptable performance. The first of them is the time of the 

last request completed less the time of the last request sent. The smaller this value, the better 

performance is. Second, the size and the extent of the ramp-up bell-shaped curve (see Figure 26), 

especially its position with respect to the time the last request is sent, can tell a great deal about 

the performance of the adaptation provider in a particular situation. If the curve drops soon, or at 

least before the last request is sent, then the adaptation provider has successfully coped with the 

load and the saturation point corresponds to a stable performance. 

The results of the first part of the experiments are the performance characteristics for 4 

adaptation implementations (3 PERSEUS: social, topic-based, and concept-based, and NavEx 



 

 99 

concept-based) in the form of the highest handled load. In addition to determining the peak loads 

that adaptation providers can successfully cope with, we also need to compare PERSEUS’s 

concept-based adaptation service to the baseline encapsulated NavEx’s implementation. While 

the first part of the experiments is enough to draw that comparison, the second is aimed at 

explaining the differences in observed performance between the two. 

In the first part of the experiments, the load generator produces requests that are supposed 

to be handled by the adaptation providers in a parallel fashion. It is unlikely that in one of the 

experimental series at some point all of the requests would be pending reply. More likely is the 

case when earlier requests would be gradually answered, as the load generator sends new 

requests. Thus at some point of the experiment, some of the requests would already be 

completed, some would be still pending being sent, and some (more than one) would still be 

being processed. 

The second part of the experiments is devoted to the detailed comparative study of 

concept-based adaptation in PERSEUS and NavEx only. As opposed to the first part, requests 

are not intended for parallel processing; instead, the next request is sent only when a previous 

one is responded to. Sequential generation of requests is selected to avoid the influence of 

computational resource (CPU cycles, memory, network bandwidth) on different stages of the 

request lifecycle.  

In the second part of the experiments, we are performing a benchmark test. Here we are 

not interested in the external characteristics of the adaptation providers’ performance, namely, 

overall response delay, request success, and the derived values – number of requests in the 

system and supported user population size. Our goal is to study the phases of the internal request 

processing in PERSEUS or NavEx. Load intensity (delay between requests) is no longer 



 

 100 

applicable here. Request size is selected based on the results of the first part of the experiments. 

Duration of the load is transformed into the fixed total number of requests sent. We are not 

recording request success and only log durations of the principal stages of request processing. 

These stages include the following durations. 

- File input/output (FIO) – this value is the sum of durations of all file input/output operations 

performed during request processing. 

- Data input and initialization (DAT) is a sum of durations of operations that are dedicated to 

parsing request parameters and creating the internal object models to be used in producing 

the adaptation value (not counting file input/output operations). 

- Querying the user model (UMK, UMP), comprised of two request durations: One asks for the 

user’s conceptual knowledge of concepts, the other for the user’s progress with resources. 

- Uploading user model values (UPL) to the internal object module of adaptation.  

- Production of the adaptation decision (PRO), including the serialization of the result. 

Table 2. Summary of the experiments 

 PERSEUS NavEx 

Adaptation technique  

Social 

navigation 

support 

Topic-based 

navigation 

support 

Concept-based 

navigation 

support 

Concept-based 

navigation 

support 

Experiment series     

Capacity-planning/soak tests. 

Parallel request processing 
X X X X 

Benchmark tests. Sequential 

processing 
  X X 

 



 

 101 

Table 2 has a summary of the experiment series. In the next section we are going to 

discuss the setup of the experiments in more detail. Namely, we are going to cover load 

configurations, what is logged by each component, and the data pertaining to hyperspace and 

user model structure. Also, we will discuss special versions of PERSEUS and NavEx to be used 

in the experiments. 

4.2 EXPERIMENTAL SYSTEMS SETUP 

In this section we will discuss the setup of the experiment in concrete numbers. First, data 

collection procedures are discussed. Then an experimental version (altered from the production 

version) of each of the tested systems is discussed. 

4.2.1 Data Collection and Implementation 

The systems that we are going test – NavEx, CUMULATE, and PERSEUS – were not designed 

solely for the experiments. NavEx has been used in various classroom studies since 2004;see for 

example (Brusilovsky et al., 2004). CUMULATE in its current implementation was used as a 

primary user modeling server since 2005 (Brusilovsky et al., 2005). PERSEUS was deployed to 

be used in class as early as Fall 2007 (Yudelson & Brusilovsky, 2008). 

For the experiments, we changed the original programming code of the production 

systems. That was done in order to factor out some of the overhead processing not related to the 

adaptation process and as a result to make the performance testing less biased and the 

comparison of the PERSEUS and NavEx systems fairer. Some of the changes were implemented 

ubiquitously across all systems involved. Others were specific to particular realizations of 



 

 102 

adaptation techniques. In this section we provide a detailed account for all the changes made in 

the code. 

4.2.1.1 Data Collection (Logging) 

In PERSEUS, CUMULATE, and the previous version of the load generator (Yudelson et al., 

2007; Zadorozhny et al., 2008), logging was originally done in the database. Every transaction 

was saved as a row in a special table. During the normal mode of operation that does not seem to 

be problematic. However, during load testing the database communication overhead becomes a 

tangible factor influencing the performance of the system. This is why the logging mechanism 

was changed for simple tab-separated files. The structure of the logs remained unchanged: A row 

is a transaction and a tab-separated column is a field. NavEx had no logging implemented 

originally. Tab-separated file logging, identical to that of PERSEUS, was added. 

Logging procedures in PERSEUS’s concept-based adaptation service and NavEx were 

different in the first and second parts of the experiments. In the second part of the experiments, 

both systems, in addition to logging request data, were recording the time it takes to perform 

particular operations (file i/o, data initialization, making the adaptation decision, etc.). Table 3 is 

a summary of all data logged by all systems involved in the experiment.  

Besides logging, several other aspects of the systems’ code were changed for the 

experiments to make the comparison unbiased. Changes to each of the systems are discussed 

below 

 

 



 

 103 

Table 3. Summary of logged experimental data 

System 
Experi

-ments 
Logged data 

Load 

Generator 
all 

request ID*, start timestamp†, finish timestamp, request duration, 

response size, response status¶ (6 fields) 

PERSEUS 1 

request ID, start timestamp, finish timestamp, request duration; user 

model query for concept knowledge start, finish and duration; user 

model query for resource progress start, finish and duration; response 

status (11 fields) 

NavEx 1 same as above 

CUMULATE all 

request ID, request type (concept knowledge or resource 

progress)._start timestamp, finish timestamp, request duration, 

response status (6 fields) 

PERSEUS 2 

request ID and durations of… request, file input/output, data input 

and initialization, user model query for concept knowledge, user 

model query for resource progress, uploading user model values, 

production of the adaptation decision (8 fields) 

NavEx 2 same as above 

* request ID encodes load parameters (delay between requests and request size), name of the 

tested systems and adaptation technique, and a unique number of the request in the experiment. 

† start and finish timestamps correspond to the span of the request lifecycle in the target system. 

Load generator creates requests, while other systems register events of requests received/sent. 

¶ response status – OK, if success, error stack trace otherwise. 

 



 

 104 

4.2.1.2 PERSEUS 

PERSEUS is the system that was changed the most. The most significant change is related to 

adaptation model initialization. In the production version of PERSEUS, the snippet of the 

hyperspace needing adaptation is passed by a URL reference. Using this reference, PERSEUS 

retrieves the link structure of the hyperspace snippet via an additional HTTP request to the 

content manager (portal). NavEx, in contrast, has the hyperspace structure cached locally and 

does not make additional HTTP calls. To make the comparison of PERSEUS and NavEx more 

fair and to avoid the manifestation of a C10K problem (Kegel, 2010), the structure of hyperspace 

has been cached locally for PERSEUS and made accessible in the form of RDF files – the format 

identical to the one used by the production version of PERSEUS. 

In the case of the social navigation support and concept-based navigation support 

services, the cache files contain the link structures of the referred hyperspace snippets requiring 

adaptation. In the case of the topic-based navigation support service, where the hyperspace 

snippet is a set of folders containing resources, additional files with each representing structures 

of every folder are cached. Also, as mentioned above, database request logging was substituted 

with file-based logging to reduce computational overhead. 

4.2.1.3 NavEx 

NavEx has been altered in several ways. The original version, upon every invocation of NavEx, 

sent an acknowledgement to CUMULATE that the interface had been loaded; code related to this 

report has been purged. NavEx was a state-full system that kept user data in session variables as 

the user was working with the system. User data was cleared when a session timed out. In the 

experimental version, NavEx was made stateless to be more comparable with PERSEUS: No 



 

 105 

user information was kept in session variables between requests. As was mentioned above, file-

based logging was added to NavEx. Also, the order of operations was changed to mirror the 

implementation of concept-based adaptation in PERSEUS. The output HTML code was 

simplified for compactness. 

4.2.1.4 Load Generator 

The load generator is virtually identical to the one used in our previous work on performance 

evaluation and the pre-study (Yudelson & Brusilovsky, 2008; Yudelson et al., 2007; Zadorozhny 

et al., 2008), with the exception of the change from database logging to file-based logging. The 

only change in CUMULATE used for the experiments is file-based request logging. 

4.2.2 Data Model and Configuration 

There are many factors that influence the operation of the adaptive applications. In our 

experiments, we are going to control some of the factors and vary the others. In this section we 

present the concrete parameters of the data models used in the experiments and for the data 

analysis and the configuration settings for the applications. We will consider the following 

parameters and settings: 

- Size of the hyperspace (number of resources AKA nodes or links). 

- Complexities of the request to the tested adaptation providers in terms of number of 

resources to be adapted. 

- Number of metadata items per resource. 

- Duration of user session of working with adaptive tools. 

- Frequency of user access to adaptation. 



 

 106 

- Frequency polling of adaptation providers in terms of delays between consecutive requests in 

the capacity-planning/soak test experiment – parallel request processing. 

- Number of requests in the baseline comparison benchmark test – sequential request 

processing. 

For all of the above we will provide justification using our prior work on performance 

evaluation and data collected during various prior studies of AEHS. For some of the parameters, 

we will also indicate the working point – the value with the highest expectancy of occurrence. 

4.2.2.1 Size of the Hyperspace and Complexity of Request 

Out of many complete courses that are offered via Knowledge Tree, we selected 4 that were used 

the most and designed most thoroughly. Our estimation was broken down into two parts (see 

Table 4). It is worth mentioning that in the same course several adaptation services were offered. 

For example, Introduction to Programming had topic-based navigation support deployed on the 

folder level, while social navigation support was offered inside folders. 

The first part is related to within-folder navigation methods: social and concept-based. 

The size of the hyperspace here, with the exception of one course, is close to 200 resources. The 

size of the hyperspace does not mean the total number of resource links aggregated by the 

course, but the number of links serviceable by selected adaptation techniques. There are roughly 

20 folders per course and on average about 7-10 resources in each (27 being the maximum). 

The second part of the summary is related to the between-folder adaptation technique – 

topic-based navigation. In the two courses where topic-based navigation is deployed, the size of 

the hyperspace is 100 resources. Here the number of resources considered for adaptation is 

almost twice as small as for the concept-based and social navigation support. The number of 



 

 107 

folders ranges approximately from 10 to 20 and the number of resources per folder is roughly 

from 5 to 10 (15 being the maximum). 

Table 4. Structure of the 4 selected courses with respect to different adaptation techniques 

Course Total no. resources No. folders 
Resources in folders 

Maximum Mean±STD 

 Social and concept-based navigation support 

Intro to Programming (C) 203 24 20 8.46±5.36 

Database design 191 19 27 10.05±7.66 

Intro to Programming (Java) 185 25 20 7.40±4.60 

Interactive systems design 100 13 16 7.69±5.33 

 Topic-based navigation support 

Database design 100 11 15 9.09±4.18 

Intro to Programming (Java) 102 21 6 4.86±0.85 

 

Given the data, in the case of within-folder navigation support methods (social and 

concept-based), the expected size of the request is 10 resources. Since the standard deviation of 

the number of resources in a folder is quite high and the maximum number of resources in 

folders often reaches 20 or even goes beyond, we are changing it to 20 resources per request – a 

less likely, but highly probable case. Just as in our previous work, we are adding more values 

below and above the expected one(s) for a comprehensive picture and we fix the request 

complexity values at the following levels: 5, 10, 20, 30, and 40 resources per request. The size of 

the hyperspace here does not matter, since within-folder methods only deal with a portion of it. 



 

 108 

In the case of between-folder navigation support (topic-based), the situation is not 

uniform: Either we have more folders (20) of smaller size (5), or fewer folders (10) of larger size 

(10). Here, we are going to set our folder size to 10 resources per folder and the expected size of 

request to 10 folders. After adding values below and above the expected one, we get the 

following request sizes: 5, 10, 15, and 20 folder-resources per request (10 resources in the 

folder). This gives us hyperspace sizes of 50, 100, 150, and 200 resources, respectively. 

All of the above correspond to the parallel request processing experiments. For the 

sequential request processing experiments, limited to the concept-based navigation support 

technique, we are going to use the reduced set of request complexities. Namely, the two expected 

values: 10 and 20 resources. These two complexities would be enough to reliably establish the 

distribution of time between various operations pertinent to the procedure of concept-based 

adaptation. 

4.2.2.2 Number of Metadata Items per Resource 

Our prior work on AEHS covered mainly three domains: C programming language, Java 

programming language, and SQL. The four major tools that we were working on providing 

adaptation for were: WebEx (Brusilovsky, 2001) – annotated examples viewer (covered all three 

domains); QuizPACK (Brusilovsky & Sosnovsky, 2005) – problem solving support tool for C 

programming language; SQLKnoT (Brusilovsky et al., 2008) – SQL problem solving tool; and 

QuizJET (Hsiao et al., 2008) – a problem solving support tool for Java language. Altogether 

these tools serve 450 learning activities, and the respective domain ontologies combined have 

284 leaf concepts. Table 5 provides a summary of concept metadata statistics. 

Across all 4 domains the number of metadata concepts is from 10-20 concepts per 

resource. The median number of concepts across all 450 resources is 11. We will use this value 



 

 109 

as a constant for the concept-based navigation support technique. Metadata concepts possess an 

attribute that is important for concept-based adaptation: the ratio of outcome concepts to 

prerequisite concepts. In the examined dataset of 54 QuizPACK problems the ratio is 23 percent. 

Thus out of 11 concepts, 2 will be marked as outcomes. The total number of concepts will be 

100. There are 284 concepts in 3 domains, 100 is close to the mean. 

Table 5. Concept metadata statistics for 3 domains and 4 AEHS 

Domain 
No. 

concepts 

Application 

(content type) 

No. 

resources 

Mean concepts/ 

resources 

Median concepts/ 

resources 

C 54 
QuizPACK(problems) 171 9.48±3.09 10 

WebEx(examples) 66 14.53±5.86 14 

SQL 130 
SQL KnoT(problems) 46 11.22±2.48 11 

WebEx(examples) 64 10.63±4.01 10 

Java 100 QuizJET(problems) 103 19.46±13.84 13 

All 284 All 450 12.84±8.4 11 

 

4.2.2.3 Duration of User Sessions and Frequency of User Accesses to Adaptation 

We analyzed the access behavior of 586 active users9

Table 6

 from 54 courses offered via the Knowledge 

Tree portal (Brusilovsky et al., 2008).  and Table 7 provide a summary of user access 

characteristics pertinent to the 4 adaptation implementations in question. 

                                                 
9 The number of registered user accounts is 1467, but those users who have contributed at least one transaction are 

considered for this analysis. The activity of users registered in multiple courses is considered as one activity pattern. 

Activity of a user relevant to several adaptations is analyzed separately, grouped by adaptation implementation. 



 

 110 

Topic-based navigation access patterns are most relaxed. This is quite expected, since 

topic-based navigation provides an overview of overall course progress. User sessions on 

average are only about 3 minutes long and the time between invocations of the adaptation 

functionality is about 47 seconds. Social navigation support is used more intensively. Session 

length on average is a little over 4.5 minutes, with 11 seconds between user actions leading to the 

refresh of adaptation cues. Access patterns related to concept-based adaptation differ between 

NavEx and PERSEUS. NavEx sessions are a little over 4 minutes long on average, and a typical 

time between user actions is 14 seconds. Concept-based navigation offered by PERSEUS has 

been used more intensively. Here an average session lasts over 6 minutes and invocations come 

close to each other – only 8 seconds in between. Taking into account that NavEx was a narrow 

focus added-value shell intended for C code examples and has not been used as intensively 

recently, we will utilize access patterns obtained from concept-based navigation support offered 

by PERSEUS. 

Thus, for the experiments we will use the following durations of the simulated loads: 

- Social navigation support: 278.97 sec. 

- Topic-based navigation support: 182.56 sec. 

- Concept-based navigation support: 372.36 sec. 



 

 111 

Table 6. User patterns of accessing the adaptation implementations 

 

 

 

 

 

System 

(adaptation) 

Estimations base Estimates 

No. 

courses 

Active 

(reg-d) 

users 

Inter-

actions 

Sec. b/w 

inter-

actions  

Session 

length† 

(sec) 

Hrs. b/w 

sessions 

Max users 

supported* 

NavEx 

(concept-based) 
14 

108 

(222) 
5922 14.04 246.35 101.95 1404 

PERSEUS 

(social) 
23 

280 

(626) 
32001 10.77 278.97 47.25 1077 

PERSEUS 

(topic-based) 
10 

160 

(359) 
6981 46.62 181.56 12.16 4662 

PERSEUS 

(concept-based) 
7 

40 

(260) 
5293 7.68 372.36 23.42 768 

† When estimating session parameters, 20 minutes was set as the maximum time between 

consecutive requests. Namely, if 2 requests of the same login sessions were more than 20 

minutes apart, the login session was logically split at that point. 

* The estimate is based on the assumption that the system successfully copes with the maximum 

tested load of 10 ms b/w requests. All users are assumed to work concurrently 

 



 

 112 

Table 7. Co-occurrence of user sessions 

 Co-occurring session (non-zero) 

System (Adaptation) 
No. active 

(registered) users 
Min Mean Max 

95th 

percentile 

NavEx (Concept-based) 108 (222) 1 1.01 2 1 

PERSEUS (Social) 280 (626) 1 1.55 14 5 

PERSEUS (Topic-based) 160 (359) 1 1.26 8 3 

PERSEUS (Concept-based) 40 (260) 1 1.03 2 1 

 

To estimate the size of the user population, based on the most intensive successfully 

sustained load, we will use the following intervals between adaptation invocations: 

- Social navigation support: 10.77 sec between invocations. This corresponds to 1077 

concurrently working users effectively supported if the load of 10 milliseconds between 

requests is successfully sustained. Taking into account that the 95th percentile of the number 

of co-occurring sessions for this type of navigation support is 5, the number of effectively 

supported users could be up to 1077 * (1077/5) !"676 000. 

- Topic-based navigation support: 46.62 sec between invocations. This corresponds to 4662 

concurrently working users effectively supported if the load of 10 milliseconds between 

requests is successfully sustained. Taking into account that the 95th percentile session co-

occurrence is 3, the number of effectively supported users could be up to 4662 * (4662/3) !"

7 250 000. 

- Concept-based navigation support: 7.68 sec between invocations. This corresponds to 768 

concurrently working users effectively supported if the load of 10 milliseconds between 

requests is successfully sustained. Taking into account that the 95th percentile session co-



 

 113 

occurrence is 1, the number of effectively supported users could be up to 768 * (768/1) !"

590 000. 

4.2.2.4 Hyperspace Structure and User Model Data 

Hyperspace structure and user model data is one more important part of the experiment data 

model. The hyperspace and user model – resulting from the above decision on the hyperspace 

and request size – consists of 40 resources (for social and concept-based navigation support) or 

200 resources (for topic-based navigation support), 100 concepts, and 800 user accounts. Each 

resource was randomly linked to 11 unique concepts; 2 of them were marked as outcomes. 

User log data consisted of 10000 transactions (for social and concept-based navigation 

support) or 40000 transactions (for topic-based navigation support). Each transaction contained 

user id, resource id, and interaction outcome. User ids were chosen randomly from 1 to 800 

without repetitions. Interaction outcome was randomly chosen to be either 0 (incorrect) or 1 

(correct). Randomization of resource ids was more complicated. 

Resource ids were assumed to be in the order appropriate for studying, from the easiest 

(smallest id) to the hardest (largest id). For each of the generated user transactions, resources 

were chosen randomly from subsequences marked by the lower and upper boundaries. Initial 

values of lower and upper boundaries were 1 and 5, respectively. When the number of attempted 

resources/exercises was greater than or equal to 50 percent of the upper boundary, the value of 

the upper boundary was increased by 5. When the difference between the lower and upper 

boundaries exceeded 5, the lower boundary was incremented by 5. Separate boundary values 

were kept for different users along with a list of attempted exercises. Except for the total number 

of generated transactions and number of resources, procedures were identical. 



 

 114 

4.2.2.5 Delays between Requests in Parallel Processing Experiments 

Just as in our previous work, we are going to use an exponential scale for the load generator’s 

polling frequencies in parallel request processing experiments. From our prior experience we 

know that 10 ms between requests is quite a challenging load. We are going to use this value as 

the upper boundary. The lower load boundary would be 160 ms between requests. This gives us 

five different values: 10, 20, 40, 80, and 160. We cannot determine now what load, if 

successfully sustained, is the desirable working point for us. Our prior work used a different 

experiment length condition and only one computationally simpler adaptation technique – social 

navigation. Except for “the higher the sustained load, the better,” there are no prior expectations 

we could formulate. 

4.2.2.6 Duration of Sequential Processing Experiments 

The parallel request processing experiment only deals with concept-based navigation support 

implemented in PERSEUS and NavEx. Here the length of experiment does not matter. What we 

need is to detect the distribution of processing time across various stages of the services’ 

operation reliably. We are going to set the limit at 5000 sequential requests. This number would 

definitely allow us to collect the desired pattern data. 

4.2.2.7 Experiments’ Summary 

Figure 27 and Figure 28 provide a condensed view of the parallel and sequential request 

processing experiments. The parallel request processing experiment (Figure 27) consists of 25 

series for social navigation support technique, 25+25 series for concept-based navigation support 

techniques run against both PERSEUS and NavEx, and 20 series for topic-based navigation 



 

 115 

support technique. The sequential request processing experiment Figure 28 consists of 2+2 series 

for concept-based adaptation only run against PERSEUS and NavEx. Overall this gives us 

25+25+25+20+4=99 experimental series. 

 

Figure 27. Summary of the parallel request processing experiments 

 

Figure 28. Summary of the sequential requests processing experiments 



 

 116 

4.3 HARDWARE AND SOFTWARE 

In our earlier work on performance evaluation (Yudelson & Brusilovsky, 2008; Yudelson et al., 

2007; Zadorozhny et al., 2008) we used several physical machines connected by a wired/wireless 

network. While that is a more ecological approach, it loosens the control on the factors that are 

secondary to our research: hardware variability and inconsistency, network delays unrelated to 

the experiment, etc. In this study we are choosing a method that has become plausible very 

recently – using virtual computers connected by a virtual network. 

The host system accommodating virtual machines is a Mac Pro (model #MacPro1,1) with 

two Quad-Core Intel Xeon CPUs running at 2.26 GHz, 8GB (4x2GB) DDR3 1066 MHz RAM, 

and 600 GB SATA HDD, running Mac OS X 10.5.8. 

Guest systems were run using Sun Microsystems VirtualBox version 3.1.8.r61349. The 

three guest systems were all running 64 bit Ubuntu Linux 9.10 and each was configured to have 

1 dedicated CPU Core, 2GB RAM, 8GB HDD, and PCnet-FAST III network adapter. All 

applications (Load Generator, PERSEUS, NavEx, and CUMULATE) were implemented as Java 

Servlets and were run in Tomcat 6.0.20. PERSEUS, NavEx, and CUMULATE used MySQL 

version 5.1.37 database server via MySQL Java Connector version 5.1.12. Guest machines were 

connected by a dedicated internal network (intent) with static IP assignment and could not 

communicate to other machines on the network except to each other. 

The host machine was restarted prior to each of the 99 experimental series. Startup of the 

experimental guest machines and the virtual network was done via shell script. Configurable 

shell script managed the operation of the load generator. Every guest machine had a dedicated 

shell script for saving and archiving the experimental data and performing system cleaning after 

each of the experimental series. 



 

 117 

4.4 COMPREHENSIVE HYPOTHESES 

4.4.1 Parallel Processing Capacity-planning/Soak Tests 

As our capacity-planning test conditions have significantly changed from our previous test of 

PERSEUS (Yudelson & Brusilovsky, 2008) with regard to the duration of the experimental 

series, we should expect to see worse performance, i.e., a lower load intensity would be the 

highest tolerable. From the other hand, the use of virtualization would be able to counter-balance 

this to some extent. Nevertheless, at least for the social navigation support that we studied in the 

pre-study, the highest tolerable load should be lower across all request complexities. 

Hypothesis 1. Due to more demanding conditions, the highest tolerable load for the social 

navigation support would be at least one step of frequency metric lower (between-request 

delay higher) than the one reported in the pre-study. 

For example, the pre-study reports 40 ms between requests as the highest successfully 

coped-with load for request complexity of 20 resources; in the main experiment we expect to see 

80 ms between requests as the highest successfully tolerated load. 

Out of 3 tested adaptation techniques – PERSEUS social, PERSEUS topic-based, and 

PERSEUS and NavEx concept-based – the least computationally intensive we think is the social 

navigation support. The most computationally intensive is most likely topic-based navigation 

support, due to the fact that it operates on larger numbers of resources: 50 to 200 versus from 5 

to 40 in the case of social and concept-based. The computational complexity of concept-based 

navigation support implemented in NavEx or PERSEUS is expected to be in between. 

Hypothesis 2. We expect to see social navigation support (as the least computationally 

intensive technique) to be able to cope with higher loads. Concept-based navigation is 

expected to successfully tolerate lower loads. Topic-based navigation support is assumed to 



 

 118 

successfully withstand even lower loads. This partial order is likely to manifest itself at all 

request complexities. 

In the two prior hypotheses we are making comparative claims about performance at 

different request-generating frequencies (inter-request delays) and for different request 

complexities. By the design of our experiment, the lowest values of request complexities and 

request-generating frequencies (higher values of inter-request delay) are likely to be comparably 

easy to achieve for all adaptation techniques. Similarly, the highest values of these parameters 

would be comparably challenging. We envision that the relative differences mentioned in 

Hypothesis 1 and Hypothesis 2 are going to be more pronounced in the mid-ranges of load 

parameters. 

Hypothesis 3. We are likely to see less performance differentiation at the extreme values of 

request complexity (5 and 40 requests per request) and inter-request delay (10 ms and 160 

ms between requests) and more likely to see stratification in the mid-ranges of the factors. 

4.4.2 Baseline Comparison Sequential Processing Benchmark Tests 

In general, when comparing a general-purpose system like PERSEUS in our case and a 

specialized system like NavEx, the advantage is more likely to be with the specialized one. The 

main reason is that generality is often achieved by making compromises.  



 

 119 

Table 8. Differences in processing time of NavEx and PERSEUS concept-based adaptation 

 

Operation † Difference Description 

File Input/Output No NavEx and PERSEUS have a comparable number of file I/O 

operations. Detecting difference here is unlikely. * 

Data input and 

initialization (w/o 

File I/O) 

Yes PERSEUS relies on RDF as a major format for data input-

output. Necessity to parse RDF XML puts it into a 

disadvantaged position. At this type of activity PERSEUS is 

likely to lose to NavEx in terms of processing time. 

Querying user 

model 

Excluded Querying user model for resource progress and concept 

knowledge is related to user modeling server performance 

and network; hence, it is excluded from the comparisons. 

Uploading user 

model values 

No Here, both systems merge internal formats of acquired user 

model data with internal formats of adaptation models. We 

expect to see no difference in processing time. 

Production of the 

adaptation decision 

and the result 

Yes PERSEUS is expected to be trailing due to necessity to 

perform a time-consuming RDF XML serialization. NavEx 

has to just print out concise HTML code. 

†The enumeration and descriptions of the principal operations in NavEx and PERSEUS 

implementations of the concept-based navigation support are provided in Section 4.1 

*NavEx’s File I/O is different from PERSEUS in the part where the structure of the hyperspace 

is acquired. PERSEUS reconstructs it from local RDF files, NavEx from the database. Although 

database access is slower than reading a file, necessity to parse RDF is more likely to 

counterbalance that. 



 

 120 

We are comparing concept-based navigation support implemented almost identically in 

NavEx and PERSEUS. The difference is that NavEx is an adaptive intermediary intended to 

provide adaptation for a set collection of educational resources and PERSEUS is a general-

purpose adaptation provider targeted for a virtually unlimited number of domains and contexts of 

use. Table 8 presents a comparative summary of principal operations of the concept-based 

adaptation in NavEx and PERSEUS and the likelihood of detecting a difference between them in 

a baseline comparison benchmark test. 

As we can see from Table 8, PERSEUS is likely to be disadvantaged as compared to 

NavEx in 2 out of 4 principal computational elements of the concept-based adaptation (the 5th 

being excluded from the comparison). 

Hypothesis 4. Concept-based navigation support implemented in PERSEUS (a general 

purpose adaptation provider) is going to be more computationally demanding than the 

implementation in NavEx (specialized adaptation provider). This disadvantage is going to be 

detected in terms of increased processing time for 2 out of 4 processing stages of the 

adaptation during baseline comparison benchmark tests (second part of the experiment). In 

addition we are likely to see PERSEUS successfully tolerate lower loads during capacity-

planning-soak tests (first part of the experiments) in terms of request complexity and/or 

request frequency. 

Despite expected differences in computational time, we believe that the highest tolerated 

load will not be drastically lower for PERSEUS as compared to NavEx. 

Hypothesis 5. Differences between highest tolerated loads of PERSEUS and NavEx 

implementations of concept-based adaptive navigation support are not going to be larger 

than one level of the load-characterizing values – request complexity and inter-request delay. 



 

 121 

4.4.3 Size of the Supported User Population 

Our pre-study (Yudelson & Brusilovsky, 2008) concluded that a desktop-grade machine running 

PERSEUS’s social navigation support service could successfully provide social navigation 

support for up to 8000 actively working students. The pre-study was based on more relaxed load 

duration settings, and PERSEUS and CUMULATE are no longer co-located on one machine. 

This is why we expect to see a smaller effectively supported user population. 

Table 6 already has mentioned the maximum number of supported users for the top 

request frequencies (10 ms between requests). For social navigation support this number is 1077 

users, for topic-based navigation support it is 4662 users, and for concept-based navigation 

support it is 768 users. Since neither of the adaptation techniques is probably going to be able to 

tolerate the maximum request frequency, we expect smaller user populations to be supported. 

Since the size of the supported user population is tightly connected to the tolerated request 

frequency, these two measures are practically interchangeable. 

Hypothesis 6. Our expectations regarding the number of users effectively supported by each 

adaptation technique are the following. PERSEUS’s social navigation support: 270 users (40 

ms between requests, 1077/4 = 270). PERSEUS’s concept-based navigation support: 96 

users (80 ms between requests, 768/8=96). NavEx’s concept-based navigation support: 192 

users (40 ms between requests, 768/4=192). PERSEUS’s topic-based navigation support: 

292 users (160 ms between requests, 4662/16=293). All of the estimates are given for 

typical/“working point” request complexities: 10-20 resources for social and concept-based 

and 10 resource folders for topic-based navigation support. 



 

 122 

Given the lengths of typical user sessions and intensity of their work (see Section 4.2.2), 

the hardware settings for our machines (see Section 4.3), and the computational challenges that 

the adaptation methods pose, confirming these expectations would be a desirable result. 

4.4.4 Number of Requests in the System 

We expect that heuristic features of the requests-in-the-system curve – size and extent of the 

ramp-up bell-shaped portion and time between last request sent and last request completed – will 

mirror the results obtained during capacity-planning tests. In other words, “good” curves would 

correspond to successfully tolerated loads and “bad” curves would match  

Hypothesis 7. We expect the empirical characteristics of the requests-in-the-systems curve to 

confirm our conclusions about load tolerance for most of the load configurations and 

adaptation techniques tested. Namely, the maximum tolerated load would correspond to the 

maximum load with acceptable requests-in-the-systems curve characteristics. 



 

 123 

5.0  RESULTS 

This chapter presents the analysis of the collected experimental data. First, the result of the 

parallel processing capacity-planning experiments is covered. Sequential processing benchmark 

tests are discussed next. Sizes of the supported user populations for each of the tested systems 

and test loads are presented third. Fourth, the number of requests in the system metric is 

considered. Finally, a general discussion of the dissertation results, implications, and limitations 

is covered. 

5.1 PARALLEL PROCESSING CAPACITY-PLANNING/SOAK TESTS 

The results of the parallel processing tests are shown inFigure 29, Figure 30, Figure 31, and 

Figure 32. They correspond to performance characteristics of PERSEUS’s social navigation 

support, PERSEUS’s concept-based navigation support, NavEx’s concept-based navigation 

support, and PERSEUS’s topic-based navigation support, respectively. 

Each figure has 5 (4 in the case of Figure 32 for topic-based navigation support) graphs 

each corresponding to different request complexities (AKA request sizes). These graphs are 

percentile plots where the horizontal axis denotes time taken to complete requests and the 

vertical axis denotes percent of the requests complete. On each graph there are several curves, 

each corresponding to a different load condition (measured in milliseconds between requests). 



 

 124 

These graphs offer a limited view on the timeline of the request completion. The 

horizontal axis is capped at 2 seconds – the maximum response delay – according to (Nielsen, 

1993) – that would not interrupt the user’s flow of thought when working with a system. 

Although (Shneiderman, 1984) gives a smaller delay of only 1 second, 2 seconds seems like an 

acceptable compromise. 

The general rule for interpreting percentile graph is to look at the point of the 95th 

percentile and at the general shape of the curve in the graph. A percentile curve that corresponds 

to an acceptable performance is expected to be oriented approximately vertically. As soon as the 

time values abruptly grow, the performance degrades. To conclude that the system copes with 

the load successfully (sometimes the term scalable is used here), the curve is expected to be 

approximately vertical until the 95th percentile. 

In our case, we are adding a 2-second cap on the percentile values. We are not interested 

in the orientation of the curve that much. Our criterion is that the curve stays within the 2-second 

boundary as much as possible. For this reason we decided to lower the percentile criterion from 

95 to 90 percent. Thus, to conclude that a certain implementation of an adaptation technique 

successfully copes with a particular load, we require 90 percent of the requests to complete in 

less than 2 seconds, i.e., the 90th percentile point to be on the graph. Because we are most 

interested in whether 90th percentile point is within 2 second boundaries, we are only displaying 

percentiles starting with 80th in Figure 29, Figure 30, Figure 31, and Figure 32. 

 



 

 125 

 

Figure 29. Percentile plots for PERSEUS’s social navigation support service capacity-planning/soak tests. Loads 

meeting the cap criteria are marked by call-outs 

 



 

 126 

 

Figure 30. Percentile plots for PERSEUS’s concept-based navigation support service capacity-planning/soak tests. 

Loads meeting the cap criteria are marked by call-outs 

 



 

 127 

 

Figure 31. Percentile plots for NavEx’s concept-based navigation support service capacity-planning/soak tests. 

Loads meeting the cap criteria are marked by call-outs 

 



 

 128 

 

Figure 32. Percentile plots for PERSEUS’s topic-based navigation support service capacity-planning/soak tests. 

Loads meeting the cap criteria are marked by call-outs 

 

Table 9 provides a summary for in Figure 29 through Figure 32. Here for each of the 

tested adaptation technique implementations and across all request complexities, the highest load 

that is successfully tolerated is given. Shaded cells correspond to request complexities that are 

more probable to occur (judging from our experience). 

We can see that social navigation support, as expected, copes with performance 

challenges the best among other PERSEUS-based adaptation methods. It successfully tolerates 

loads of 40 and 80 ms between requests for 10 and 20 resources per request, respectively. 

PERSEUS’s concept-based navigation support is slightly less scalable. It successfully copes with 

a load of 80 ms between requests for both 10 and 20 resources per request, while for higher 

request complexities its performance is visibly worse. 



 

 129 

Table 9. Maximal successfully tolerated loads for tested adaptation techniques. Shaded cells mark expected request 

complexities. 

Adaptation technique  Maximal tolerated load, ms between requests 

 
Request 

complexity 
5 10 20 30 40 

PERSEUS’s social   20 40 80 80 80 

PERSEUS’s concept-based  40 80 80 160 160 

NavEx’s concept-based  20 40 80 80 80 

 
Request 

complexity 
5 (50)* 10 (100) 15 (150) 20 (200)  

PERSEUS’s topic-based  40 80 160 160  

* Here the first-order object is not a resource, but a folder. The total number of resources in 

folders is given in brackets. 

At first glance, PERSEUS’s topic-based navigation support is the least scalable. As 

request complexity grows, its maximal successfully tolerated load quickly decreases. However, 

we should bear in mind that, while the nominal request complexities are from 5 to 20 folders, the 

number of underlying resources is from 50 to 200 and for an expected request complexity of 10 

folders (100 resources), maximal successfully coped with load of 80 ms between requests is a 

high mark to score. Also, since topic-based navigation support is intended for index (folder) 

nodes of the hyperspace that are accessed less frequently, the numbers of supported users are 

actually the highest among all tested adaptation techniques. 

NavEx’s implementation of concept-based navigation support, as expected, wins by one 

step of the used load scale over PERSEUS’s implementation of the same technique and is 



 

 130 

identical to the characteristics of PERSEUS’s social navigation support technique. The reasons 

for this not very large advantage are discussed in Section 5.2. 

An important component of our evaluation is not only quick responses to requests for 

adaptation, but also the validity of the responses. Figure 33 provides a summary of the number of 

erroneous responses to adaptation requests. Four sub-graphs correspond to four different 

techniques tested. Each sub-graph visualizes the number of errors across load intensities (delays 

between requests) and request sizes. Shaded areas correspond to the most expected request sizes 

and the load intensities that were successfully tolerated (as summarized in Table 9). 

 

Figure 33. Summary of the errors for all adaptation techniques across request sizes and loads (delays between 

requests). Shaded regions correspond to expected request complexities and load characteristics up to maximal 

successfully tolerated ones. Only errors for requests with below 90th perentile delay are considered. 

As it can be seen in Figure 33, PERSEUS’s social navigation support and topic-based 

support and NavEx’s concept-based adaptation support are predominantly error-free until the 

90th percentile of the request delays – our cap. PERSEUS’s concept-based adaptation support 



 

 131 

has a fair amount of errors, especially for tougher loads and more complex requests. However, 

all of the targeted request complexities and successfully tolerated loads are error-free (until the 

90th percentile of the request delays). 

5.2 SEQUENTIAL PROCESSING BENCHMARK TESTS 

One of the goals of this work is to compare encapsulated adaptation to one of the traditional 

forms of providing adaptation. For that purpose we chose one of the most popular and at the 

same time one of the most computationally challenging adaptation techniques – concept-based 

navigation support. In this section we compare the concept-based adaptation in PERSEUS 

(encapsulated approach) to the concept-based adaptation in NavEx (intermediary approach).  

In the previous section, among other things, we saw that performance of PERSEUS’s 

implementation of concept-based adaptation is worse than NavEx’s implementation of the same 

technique. Figure 34 and Figure 35 show the results of sequential processing benchmark tests 

performed to determine where the difference is. These tests were done with precise logging 

features turned on both in PERSEUS and NavEx. The principal stages of data processing in 

concept-based adaptation procedures were: file input-output (FIO), data input and initialization 

(DAT), uploading user model values into adaptation model (UPL), and production of the 

adaptation decision and the result (PRO). 



 

 132 

 

Figure 34. Comparison of concept-based navigation support realization in PERSEUS and NavEx (request size 10) 

 

 

Figure 35. Comparison of concept-based navigation support realization in PERSEUS and NavEx (request size 20) 

We can see in Figure 34 and Figure 35 that in tests for both request complexities – 10 and 

20 resources per request, respectively – results are quite similar. As expected, file input-output 

and aggregating user model data into the adaptation model show practically no difference in the 

mean times. Differences are detected for the data input and adaptation decision and result 

production stages. Although error bars for these stages overlap in both graphs, the differences of 



 

 133 

means are quite large. For example, mean processing time for the data entry stage is 3.97±1.23 

(10 resources per request) and 4.38±1.41 (20 resources per request) in the case of NavEx and 

6.03±2.46 (10 resources per request) and 6.84±3.52 (20 resources per request) in the case of 

PERSEUS. The mean values in this case are approximately 50 percent higher. In general, 

standard errors for per-stage mean processing times are larger in the case of PERSEUS. 

5.3 SIZE OF THE SUPPORTED USER POPULATION 

In Table 6 the last column lists the maximal number of concurrently working users for each of 

the tested adaptation techniques. That estimate is based on the respective observed user access 

patterns and the assumption that each technique would successfully tolerate a load of 10 ms 

between requests. For the social navigation support, the maximum is 1077 users working 

simultaneously; for topic-based navigation support, 4662 users; and for concept-based navigation 

support (usage patterns merged across PERSEUS and NavEx) the estimate is 768 users. 

Since in all cases the highest successfully tolerated load is lower (milliseconds between 

request value is higher), the number of simultaneously working users supported is lower and is 

obtained by simple division by a factor of 2 (as our request frequencies double at each level of 

the load). Table 10 is a summary of the supported user population values across all techniques 

and request complexities. Shaded cells denote results corresponding to the expected values of the 

request complexities. 

As per Table 10, the social navigation support technique in PERSEUS is capable of 

supporting 135 to 270 users working concurrently, depending on the request complexity. 

PERSEUS’s concept-based navigation support technique can effectively support 96 users, while 



 

 134 

the NavEx version of the same techniques can support 96 to 192 users. The topic-based 

navigation support technique in PERSEUS can effectively support up to 583 users working at the 

same time. 

Table 10. Number of simultaneously working users that are effectively supported by tested adaptation technique 

and request complexity. Shaded cells mark expected request complexities. 

Adaptation technique  Size of supporter user population, users 

 
Request 

complexity 
5 10 20 30 40 

PERSEUS’s social   540 270 135 135 135 

PERSEUS’s concept-based  192 96 96 48 48 

NavEx’s concept-based  384 192 96 96 96 

 
Request 

complexity 
5 (50)* 10 (100) 15 (150) 20 (200)  

PERSEUS’s topic-based  1166 583 291 291  

* Here the first-order object is not a resource, but a folder. The total number of resources in 

folders is given in brackets. 

Although the sizes of effectively supported user populations reported in Table 10 seem 

quite small, we should bear in mind that these are only for the users that work with adaptive 

systems simultaneously. If we factor in the data of user session co-occurrence (reported in Table 

7), the total number of supported users is much larger. We are basing our estimates of the total 

number of effectively supported users for each technique on the 95th percentile of the session co-

occurrence data taken from our logs. While obtaining these estimates, only non-zero values were 

considered for the computation of the 95th percentile. Hence, the estimates are inflated and are 

more conservative. 



 

 135 

For social navigation support the 95th percentile of session co-occurrence is 5, for topic-

based navigation support – 3, and for concept-based navigation support (both PERSEUS and 

NavEx) – 1. To go from the number of concurrently working users to the number of total users 

supported, we multiplied the former by a factor. The numerator of the factor is the number of 

concurrently working users, and the denominator is the 95th percentile of concurrent sessions. 

For example, the number of users simultaneously working with a social navigation support and 

issuing 10-resource requests is 270. This transfers into 270*270/5 = 14580 

Table 11. Size of the supported user population (observing the number of concurrent sessions) for tested adaptation 

techniques. Shaded cells mark expected request complexities. 

Adaptation technique  Size of supporter user population, users 

 
Resource 

complexity 
5 10 20 30 40 

PERSEUS’s social   58104 14580 3645 3645 3645 

PERSEUS’s concept-based  36864 9216 9216 2304 2304 

NavEx’s concept-based  147456 36864 9216 9126 9126 

 
Resource 

complexity 
5 (50)* 10 (100) 15 (150) 20 (200)  

PERSEUS’s topic-based  453185 113296 28227 28227  

* Here the first-order object is not a resource, but a folder. The total number of resources in 

folders is given in brackets. 

As a result, the social navigation support technique in PERSEUS is capable of supporting 

a total of 3645 to 14580, depending on the request complexity. PERSEUS’s concept-based 

navigation support technique can effectively support 9216 users, while the NavEx version of the 



 

 136 

same techniques can support 9216 to 36864 users. The topic-based navigation support technique 

in PERSEUS can effectively support 113296 users in total. 

5.4 NUMBER OF REQUESTS IN THE SYSTEM 

Number of requests in the system (RIS) is a measure that shows at any given moment how many 

requests are pending reply. It is our candidate of proxy for the instantaneous measure of the load. 

Figure 37, Figure 38, Figure 39, and Figure 40 present percent RIS plots for the four tested 

adaptation technique implementations. The horizontal axis corresponds to time. A vertical red 

line marks the moment when the last request is sent. The vertical axis is the percentage of the 

total requests set that currently are pending reply. 

When analyzing percent RIS curves, we are going to use two heuristic criteria. First is the 

time from the moment the last request is sent (which is constant across all experimental series for 

a particular adaptation technique) to the moment the last request is completed (not necessarily 

the request that was sent last). The smaller this time, the better the adaptation technique copes 

with the load. Second is the shape of the curve. As the experiment starts, the RIS number starts 

to grow. If this RIS number (or in our case percent RIS) stabilizes or drops to a small value (e.g., 

less than 5 percent), the performance of the adaptation technique is said to be acceptable. If 

percent RIS starts to decline abruptly at the time the last request is sent (whether it was declining 

before or not), the performance is rendered as not acceptable. We will call the load 

corresponding to an acceptable performance a recoverable load; the one that created an initial 

boost that an adaptation technique safely recovered from. 



 

 137 

In Figure 36 there are 5 percent RIS curve sub-graphs for PERSEUS’s social navigation 

support adaptation technique, one for each request complexity of 5, 10, 20, 30, and 40 resources 

per request. In the case of the first two complexities, all of the loads are recoverable. The system 

successfully copes even with high frequencies of 10 milliseconds between requests. In the case 

of 20 and 30 resources per request, only loads up to 20 milliseconds between requests are 

recoverable. Notice that in the graph for 30 resources per request the percent RIS curve 

corresponding to 10 milliseconds between requests starts to visibly decline only when no more 

new requests are sent. In the case of 40 resources per request, 40 milliseconds is the highest 

recoverable load. Although the percent RIS curve for 20 milliseconds between requests starts its 

decline before the last request is sent, it does not decrease to a value of 5 percent or less until 

after the last request is sent. 



 

 138 
 

 

 

 

 

 

Figure 36. Percent of requests in the system over the time of the experiment for PERSEUS’s social navigation 

support service capacity-planning/soak tests 



 

 139 
 

 

 

 

 

 

Figure 37. Percent of requests in the system over the time of the experiment for PERSEUS’s concept-based 

navigation support service capacity-planning/soak tests 



 

 140 
 

 

 

 

 

 

Figure 38. Percent of requests in the system over the time of the experiment for NavEx’s concept-based navigation 

support service capacity-planning/soak tests 



 

 141 

 

A summary of the maximal recoverable loads is given in Table 12. This is a version of 

Table 9 where highest tolerated loads are given. In Table 12, the highest successfully tolerated 

load is given alongside the highest recoverable.  

 

 

 

 

Figure 39. Percent of requests in the system over the time of the experiment for PERSEUS’s topic-based navigation 

support service capacity-planning/soak tests 



 

 142 

In many of the cases, the highest recoverable loads confirm the highest tolerable loads. 

However, in some cases, recoverable loads are higher. This means that, even if the load is not 

well tolerated and the 90th percentile of request delay does not meet our criteria, the adaptation 

technique is able to recover from the initial performance challenge successfully. 

Table 12. Maximal successfully tolerated loads for tested adaptation techniques vs. maximal recoverable loads. 

Shaded cells mark expected request complexities. 

Adaptation technique  
Maximal tolerated load : maximal recoverable 

load, ms between requests 

 
Resource 

complexity 
5 10 20 30 40 

PERSEUS’s social   20 : 10 40 : 10 80 : 20 80 : 20 80 : 40 

PERSEUS’s concept-based  40 : 20 80 : 40 80 : 80 160 : 80 160 : 80 

NavEx’s concept-based  20 : 20 40 : 40 80 : 80 80 : 80 80 : 80 

 
Resource 

complexity 
5 (50)* 10 (100) 15 (150) 20 (200)  

PERSEUS’s topic-based  40 : 10 80 : 40 160 : 80 160 : 80  

* Here the first-order object is not a resource, but a folder. The total number of resources in 

folders is given in brackets. 

Judging from the maximal recoverable loads, we can see that the most scalable technique 

is PERSEUS’s social navigation support. All recoverable loads are higher than tolerated loads. 

Next is NavEx’s concept-based navigation support, where all recoverable loads confirm the 

tolerated load values. PERSEUS’s concept-based navigation support comes after that. It is less 

scalable in terms of tolerable loads, but recoverable loads follow the pattern of NavEx’s 



 

 143 

implementation of the technique. PERSEUS’s topic-based navigation support is hard to compare 

to the rest, since it deals with a radically higher number of resources. 

5.5 SUMMARY 

From the results reported above, we could conclude that PERSEUS has met the experiment goals 

we set and supported practically all of our prior assumptions. We empirically proved that it is 

capable of supporting a representative set of adaptation technologies and reasoning engines that 

are widely used in contemporary AHS and range in computational complexity. The obtained 

performance estimates demonstrated that adaptation functionalities developed on the basis of a 

standalone adaptation server could be successfully deployed for a practical use and exhibit 

acceptable performance characteristics. 

The size of the effectively supported user population, in fact, was in some cases larger 

than we expected. This is another testament to the viability of PERSEUS’s design and the quality 

of its implementation. 

The advantage that a traditional intermediary approach to adaptation (special-purpose 

system) has over PERSEUS’s encapsulated approach (general purpose system) is visible yet 

acceptable. The reasons for this advantage descend from the choice of the data exchange format 

used by PERSEUS (RDF XML). This format is a de facto interoperability and information-

sharing standard for the field of AHS today. Adhering to this widely accepted standard is the 

major reason for PERSEUS’s relative loss in terms of scalability. Changing the data exchange 

format to a more scalability-friendly one would harm PERSEUS’s value as a general-purpose 

provider of adaptation functionality. 



 

 144 

6.0  CONCLUSIONS 

In this section we offer closing remarks about the results of the experiments in particular and this 

dissertation work in general. We start from contributions and significance of this work. Then, we 

outline limitations. Finally, future work is discussed. 

6.1 CONTRIBUTIONS AND SIGNIFICANCE 

In this work we are suggesting a solution that would help achieve a wider dissemination of 

adaptive hypermedia technologies to a larger user population and help offer adaptive access to a 

larger volume of content. We target AHS designers and aim at making the development of new 

systems faster. We propose to extract the adaptation functionality and encapsulate it in a 

standalone system – a server of adaptation functionalities that offers adaptation as a service 

transparently to non-adaptive client applications. 

We designed and built a server of adaptation functionalities called PERSEUS that 

implemented the idea of the encapsulated adaptation. With PERSEUS, adaptation can be 

provided like a service to a client content management hypermedia system. The compliance and 

configuration overhead is relatively smaller compared to traditional approaches to implementing 

adaptation – built-in adaptation and intermediary solutions. 



 

 145 

Conceptual evaluation of PERSEUS’s design showed that it can serve as a basis for 

implementing virtually all known adaptation techniques (Brusilovsky, 2001). PERSEUS has 

been deployed as a primary adaptation provider for a number of undergraduate and graduate 

courses since 2008 at the University of Pittsburgh (USA), Dublin City University (Ireland), and 

Universidad Autónoma de Madrid (Spain). 

We performed an extensive evaluation of PERSEUS covering several widely used 

adaptation engines of various computational complexities (social, topic-based, and concept-

based) and addressing one of the most widely used adaptation methods – adaptive link 

annotation. A total of nearly one hundred experiments were conducted. 

The setup of the experiments was based on the analysis of system usage logs collected for 

a period of 4 to 5 years. Obtained results confirmed our hypotheses about PERSEUS’s ability to 

answer performance challenges and successfully support a few to several hundred users working 

simultaneously and from thousands to tens of thousands of users in total; all of that was achieved 

on a rather modest hardware. 

The results we report are grounded in nearly a decade of research on building AHS and 

offering adaptively accessible educational content online. The work reported in this dissertation 

is the first work to evaluate the idea of extracted adaptation both conceptually and from the 

viewpoint of performance. This is also the first large-scale performance evaluation of AHS in 

general and component-based AHS in particular. It is the first effort to compare a novel 

architectural approach to offering adaptation to the traditional solutions. 



 

 146 

6.2 LIMITATIONS 

There are several properties to the performed experiments that can potentially limit our ability to 

generalize the conditions set up for the evaluation performed. These limitations are listed below. 

First, we only tested a small set of adaptation techniques, namely those that would help 

us visualize changes in performance that originate in computational complexity. One might 

easily come up with techniques that are computationally less demanding or more demanding, or 

even techniques that in terms of performance lie between the ones we chose. Concrete 

implementations of conceptually the same techniques can also vary. Thus, the performance 

estimates that we obtained only correspond to points on a continuous curve of adaptation 

techniques’ computational complexities. 

Second, all three tested techniques – social, topic-based, and concept-based – assume that 

adaptation decision is made (and fresh user data is requested) at every call to PERSEUS. This, of 

course, should not always be true. For example, an earlier version of the CUMULATE user-

modeling server (Brusilovsky et al., 2005) could be set to honor the freshness of assumptions 

about the user parameter, where the user model is only updated if at least a certain amount of 

time has passed since the last update. An adaptation procedure aware of this feature could 

significantly limit the amount of network traffic by limiting the number of queries to the user 

model. One could also imagine an adaptation procedure that uses local cache in order to prevent 

frequent polling of user model data or any other relevant data that needs to be queried. 

Third, the number of experimental factors involved in the experiments was quite large. 

This is why we chose to control some of them (e.g., size of the metadata vocabulary, number of 

metadata concepts per resource, etc.) and limit the range of and discretize the values of the others 

(e.g., number of resources to adapt per request, delay between requests, etc.). Several of these 



 

 147 

decisions were made after looking back at our own experience with deploying educational tools 

in class for several years (e.g., the range of number of resources per request approximated the 

values occurring in the actual courses that we administered with or without adaptation support 

from PERSEUS). Others were dictated by the outcomes of our prior work on AHS performance 

evaluation (Yudelson & Brusilovsky, 2008; Yudelson et al., 2007; Zadorozhny et al., 2008). 

Both the controlled and discretized values for the experiment factors do limit our ability 

to reason about performance of the subject techniques. For example, the value of the size of 

supported user population for each technique would change if the number of metadata items per 

educational resource would change (either as a constant value or as a distribution of values). 

Nevertheless, this does not prevent us from making principal claims about performance 

characteristics of PERSEUS and adaptation techniques implemented on its basis. This work is 

the first one that addresses the question of adaptation functionality performance across several 

adaptation techniques. The subjectivism of the experiments setup is fully justified by the fact that 

there was literally no related work on the subject except for our own. 

Fourth, the hardware we used for performance evaluation is quite modest (single 

dedicated 2.26 GHz CPU core and 2 GB of RAM). Additionally, it was run via virtualization 

software. If a more powerful machine is available (more RAM, faster than virtual non-shared 

HDD), performance characteristics are very likely to improve visibly. 

6.3 DISCUSSION 

In this work we are primarily focusing on using a standalone adaptation engine (such as 

PERSEUS) in an educational context. We are assuming that PERSEUS is a client of an 



 

 148 

educational portal and provides adaptation and personalization for links to educational resources. 

However, the conceptual design of PERSEUS allows it to be used in any context, where 

personalization is needed. In Figure 14, where a typical personalization scenario of PERSEUS’s 

operation is shown, client portal (or content-management system) could be serving content from 

virtually any domain, and the back-end user model could work not only with knowledge models, 

but also preferences, interests, etc. 

Examples of alternative domains, where PERSEUS functionality could be consumed, 

might include healthcare. A health-related portal, where resources are articles intended for 

patients with various conditions, could benefit from a link sorting and annotation hybrid service 

that would help people access relevant information. PERSEUS would need to be able to access 

targeted patient conditions, either from patient data (external data store) or from a query string. 

Both types of information here can be treated as substitutes for the student model in the case of 

educational domain. Of course, additional precautions should be made to adhere to HIPAA10

Another field, where PERSEUS could potentially find its use is on-demand adaptation 

and personalization in an industrial context. Google Site Search

 

standards on patient data privacy. 

11 and Amazon’s A9 search 

engine12 are well-known examples of outsourcing offering custom search functionality on a 

large-scale basis.However, a closer analog of PERSEUS would be the internal Amazon’s product 

recommendation API or Google’s internal similarity algorithms (that they recently made 

available to a limited population of beta testers under the name of Google Prediction API13

                                                 
10 HIPAA – Health Insurance Portability and Accountability Act, http://www.hhs.gov/ocr/privacy/ 

11 http://www.google.com/sitesearch/ 

12 http://a9.com 

). 

13 http://code.google.com/apis/predict/ 



 

 149 

PERSEUS, in contrast to the solutions mentioned above, is not self-sufficient. It heavily 

relies on external data about users that it utilizes for purposes of adaptation. For PERSEUS to 

conceptually approach the utility of an industry-level personalization solution it should be 

accompanied by a user modeling server supporting a range of user profiling and user modeling 

services. Additionally/alternatively, support of a set of standardized or custom user data 

repositories could be sufficient. Also, to be usable on an industrial scale both PERSEUS and the 

external user data/model storage (user model server or otherwise) should be highly available, for 

example deployed on a cluster of machines. 

6.4 FUTURE WORK 

The work on deploying PERSEUS – a standalone adaptation functionality server – is not limited 

to providing adaptation to relatively small groups of students accessing several hundred 

interactive resources in the context of a university class. It is currently making a big step from 

the lab shelf intoreal life. We are participating in an Ensemble14

This project is building a distributed portal providing access to a broad range of existing 

educational resources for computing. It is targeted at encouraging contribution, use, reuse, 

review, and evaluation of educational materials at multiple levels of granularity and seeks to 

support the full range of computing education communities including computer science, 

computer engineering, software engineering, information science, information systems, and 

information technology, as well as other areas. PERSEUS is currently a primary adaptation 

 - NSF NSDL Pathways project 

working to establish a national, distributed digital library for computing education. 

                                                 
14 Ensemble Project http://nsdl.org/about/?pager=pathways&subpager=ENSEMBLE 



 

 150 

provider for Ensemble’s portal15

                                                 
15 Ensemble Computing portal http://www.computingportal.org/ 

 responsible for offering social navigation support to the 

multiple communities of course designers, content authors, and educators. 

In addition to the PERSEUS adaptation techniques that are discussed in this work, we are 

developing a number of hybrid approaches that combine link annotation and link 

recommendation techniques. In several of these approaches PERSEUS serves as a wrapper to an 

external recommendation engine and aggregates its output with the results of the concept-based 

navigation support method. 



 

 151 

BIBLIOGRAPHY 

Aleahmad, T., Aleven, V., and Kraut, R. (2008). Open Community Authoring of Targeted 
Worked Example Problems.  In B. P. Woolf, E. Aïmeur, R. Nkambou, and S. P. Lajoie 
(Eds.), 9th International Conference On Intelligent Tutoring Systems (ITS 2008), (pp. 
216-227). 

Aleahmad, T., Aleven, V., and Kraut, R. (2009). Creating a Corpus of Targeted Learning 
Resources with a Web-Based Open Authoring Tool. IEEE Transactions on Learning 
Technologies, 2(1), 3-9. 

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cognitive Tutors: 
Lessons Learned. Journal of the Learning Sciences,, 4(2), 167-207. 

Ardissono, L., Gena, C., Torasso, P., Bellifemine, F., Chiarotto, A., Difino, A., and Negro, B. 
(2003). Personalized Recommendation of TV Programs.  In A. Cappelli and F. Turini 
(Eds.), Advances in Artificial Intelligence (AI*IA 2003), 8th Congress of the Italian 
Association for Artificial Intelligence, (pp. 474-486). 

Bailey, C., Hall, W., Millard, D. E., and Weal, M. J. (2007). Adaptive hypermedia through 
contextualized open hypermedia structures. ACM Transactions on Information Systems, 
25(4),© 2007 ACM, Inc. http://doi.acm.org/10.1145/1281485.1281487 

Barrett, R. and Maglio, P. P. (1998). Intermediaries: New Places for Producing and Manipulating 
Web Content. Computer Networks, 30(1-7), 509-518. 

Benhamou, E., Eisenberg, J., and Katz, R. H. (2010). Assessing the changing U.S. IT R\&D 
ecosystem. Communications of the ACM, 53(2), 76-83. 

Bollen, J. and Heylighen, F. (1998). A system to restructure hypertext networks into valid user 
models. The New Review of Hypermedia and Multimedia, 4, 189-214. 

Boyle, C. D. B. and Encarnacion, A. O. (1994). Metadoc: An Adaptive Hypertext Reading 
System. User Modeling and User-Adapted Interaction, 4(1), 1-19. 

Bra, P. D. and Calvi, L. (1998). AHA! An open Adaptive Hypermedia Architecture. The New 
Review of Hypermedia and Multimedia, 4, 115-140. 



 

 152 

Bra, P. D., Smits, D., and Stash, N. (2006). The design of AHA!.  In U. K. Wiil, P. J. Nürnberg, 
and J. Rubart (Eds.), 17th ACM Conference on Hypertext and Hypermedia (Hypertext 
2006), (pp. 171-195). 

Brusilovsky, P. (1996). Methods and Techniques of Adaptive Hypermedia. User Modeling and 
User-Adapted Interaction, 6(2-3), 87-129. 

Brusilovsky, P. (2001). Adaptive Hypermedia. User Modeling and User-Adapted Interaction, 
11(1-2), 87-110. 

Brusilovsky, P. (2003). Adaptive navigation support in educational hypermedia: The role of 
student knowledge level and the case for meta-adaptation. British Journal of Educational 
Technology, 34(4), 487-497. 

Brusilovsky, P. (2004). KnowledgeTree: a distributed architecture for adaptive e-learning.  In S. 
I. Feldman, M. Uretsky, M. Najork, and C. E. Wills (Eds.), 13th international conference 
on World Wide Web (WWW2004) Alternate Track Papers And Posters, (pp. 104-113). 

Brusilovsky, P. (2001). WebEx: Learning from Examples in a Programming Course.  In W. A. 
Lawrence-Fowler and J. Hasebrook (Eds.), World Conference on the WWW and Internet 
(WebNet 2001), (pp. 124-129). 

Brusilovsky, P., Chavan, G., and Farzan, R. (2004). Social Adaptive Navigation Support for 
Open Corpus Electronic Textbooks.  In P. D. Bra and W. Nejdl (Eds.), 3rd International 
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2004), (pp. 
24-33). 

Brusilovsky, P. and Eklund, J. (1998). A Study of User Model Based Link Annotation in 
Educational Hypermedia. Journal of Universal Computer Science, 4(4), 429-448. 

Brusilovsky, P., Eklund, J., and Schwarz, E. W. (1998). Web-Based Education for All: A Tool 
for Development Adaptive Courseware. Computer Networks, 30(1-7), 291-300. 

Brusilovsky, P., Karagiannidis, C., and Sampson, D. (2004). Layered evaluation of adaptive 
learning systems. International Journal of Continuing Engineering Education and 
Lifelong Learning, 14(4/5), 402-421. 

Brusilovsky, P., Karagiannidis, C., and Sampson, D. (2001). The benefits of layered evaluation 
of adaptive applications and services.  In S. Weibelzahl, D. Chin, and G. Weber (Eds.), 
1st Workshop on Empirical Evaluation of Adaptive Systems, (pp. 1-8). 

Brusilovsky, P., Knapp, J., and Gamper, J. (2006). Supporting teachers as content authors in 
intelligent educational systems. International Journal of Knowledge and Learning, 2(3/4), 
191-215. 

Brusilovsky, P. and Millán, E. (2007). The Adaptive Web, Methods and Strategies of Web 
Personalization.  In P. Brusilovsky, A. Kobsa, and W. Nejdl (Eds.), The Adaptive Web, 
Methods and Strategies of Web Personalization (3-53). Springer. 



 

 153 

Brusilovsky, P. and Pesin, L. (1998). Adaptive navigation support in educational hypermedia: 
An evaluation of the ISIS-Tutor. Journal of Computing and Information Technology, 
6(1), 27-38. 

Brusilovsky, P., Schwarz, E. W., and Weber, G. (1996). A tool for developing adaptive 
electronic textbooks on WWW.  In World Conference of the Web Society (WebNet'96). 

Brusilovsky, P., Sosnovsky, S., and Shcherbinina, O. (2004). QuizGuide: Increasing the 
Educational Value of Individualized Self-Assessment Quizzes with Adaptive Navigation 
Support.  In J. Nall and R. Robson (Eds.), World Conference on E-Learning in Corporate, 
Government, Healthcare, and Higher Education (ELEARN 2004), (pp. 1806-1813). 

Brusilovsky, P., Sosnovsky, S., and Yudelson, M. (2009). Addictive links: the motivational value 
of adaptive link annotation. New Review of Hypermedia and Multimedia, 15(1), 97-118. 

Brusilovsky, P. and Sosnovsky, S. A. (2005). Engaging students to work with self-assessment 
questions: a study of two approaches.  In J. C. Cunha, W. M. Fleischman, V. K. Proulx, 
and J. Lourenco (Eds.), 10th Annual SIGCSE Conference on Innovation and Technology 
in Computer Science Education (ITiCSE 2005), (pp. 251-255). 

Brusilovsky, P. and Sosnovsky, S. A. (2005). Individualized exercises for self-assessment of 
programming knowledge: An evaluation of QuizPACK. ACM Journal of Educational 
Resources in Computing, 5(2), . 

Brusilovsky, P., Sosnovsky, S. A., Lee, D. H., Yudelson, M., Zadorozhny, V., and Zhou, X. 
(2008). An open integrated exploratorium for database courses.  In J. Amillo, C. Laxer, 
E. M. Ruiz, and A. Young (Eds.), 13th Annual SIGCSE Conference on Innovation and 
Technology in Computer Science Education (ITiCSE 2008), (pp. 22-26). 

Brusilovsky, P., Sosnovsky, S. A., and Shcherbinina, O. (2005). User Modeling in a Distributed 
E-Learning Architecture.  In L. Ardissono, P. Brna, and A. Mitrovic (Eds.), 10th 
International Conference on User Modeling (UM 2005), (pp. 387-391). 

Brusilovsky, P., Sosnovsky, S. A., and Yudelson, M. (2006). Addictive Links: The Motivational 
Value of Adaptive Link Annotation in Educational Hypermedia.  In V. P. Wade, H. 
Ashman, and B. Smyth (Eds.), 4th International Conference on Adaptive Hypermedia 
and Adaptive Web-Based Systems (AH 2006), (pp. 51-60). 

Brusilovsky, P., Sosnovsky, S. A., Yudelson, M., and Chavan, G. (2005). Interactive Authoring 
Support for Adaptive Educational Systems.  In C.-K. Looi, G. I. McCalla, B. Bredeweg, 
and J. Breuker (Eds.), 12th International Conference on Artificial Intelligence in 
Education (AIED 2005), (pp. 96-103). 

Brusilovsky, P., Yudelson, M., and Sosnovsky, S. (2004). An Adaptive E-Learning Service for 
Accessing Interactive Examples.  In J. Nall and R. Robson (Eds.), World Conference on 
E-Learning in Corporate, Government, Healthcare, and Higher Education (ELEARN 
2004), (pp. 2556-2561). 



 

 154 

Böcker, H.-D., Hohl, H., and Schwab, T. (1990). Hypadapter - Ein adaptives Hypertextsystem 
zur Präsentation von Lerninhalten.  In P. A. Gloor and N. A. Streitz (Eds.), Hypertext und 
Hypermedia, (pp. 230-234). 

Cafolla, R. (2006). Project MERLOT: Bringing Peer Review to Web-Based Educational 
Resources. Journal of Technology and Teacher Education, 14(2), 313-323. 

Carbonell, J. R. (1970). AI in CAI: An Artificial-Intelligence Approach to Computer-Assisted 
Instruction. IEEE Transactions on Man-Machine Systems, 11(4), 190-202. 

Carmichael, D. J., Kay, J., and Kummerfeld, B. (2005). Consistent Modelling of Users, Devices 
and Sensors in a Ubiquitous Computing Environment. User Modeling and User-Adapted 
Interaction, 15(3-4), 197-234. 

Carr, L., Hall, W., Bechhofer, S., and Goble, C. A. (2001). Conceptual linking: ontology-based 
open hypermedia.  In 10th international Conference on World Wide Web (WWW 2001), 
(pp. 334-342). 

Cheng, R. and Vassileva, J. (2005). Adaptive Reward Mechanism for Sustainable Online 
Learning Community.  In C.-K. Looi, G. I. McCalla, B. Bredeweg, and J. Breuker (Eds.), 
12th International Conference on Artificial Intelligence in Education (AIED 2005), (pp. 
152-159). 

Chin, D. N. (2001). Empirical Evaluation of User Models and User-Adapted Systems. User 
Modeling and User-Adapted Interaction, 11(1-2), 181-194. 

Claypool, M., Le, P., Waseda, M., and Brown, D. (2001). Implicit interest indicators.  In C. 
Sidner and J. Moore (Eds.), 6th International Conference on Intelligent User Interfaces 
(IUI 2001), (pp. 33-40). 

Conlan, O., Hockemeyer, C., Wade, V. P., Albert, D., and Gargan, M. (2002). An Architecture 
for integrating Adaptive Hypermedia Services with Open Learning Environments.  In P. 
Barker and S. Rebelsky (Eds.), World Conference on Educational Multimedia, 
Hypermedia and Telecommunications (ED-MEDIA 2002), (pp. 344-350). 

Conlan, O. and Wade, V. P. (2004). Evaluation of APeLS - An Adaptive eLearning Service 
Based on the Multi-model, Metadata-Driven Approach.  In P. D. Bra and W. Nejdl 
(Eds.), 3rd International Conference on Adaptive Hypermedia and Adaptive Web-Based 
Systems (AH 2004), (pp. 291-295). 

Cristea, A., Smits, D., and De Bra, P. (2005). Writing MOT, Reading AHA! - converting 
between an authoring and a delivery system for adaptive educational hypermedia.  In A. 
Cristea, R. Carro, and F. Garzotto (Eds.), 3rd Workshop of Authoring of Adaptive and 
Adaptable Educational Hypermedia (A3EH), (pp. 36-45). 

Cristea, A. I., Ashman, H., Stewart, C. D., and Cristea, P. (2005). Evaluation of adaptive 
hypermedia systems' conversion.  In S. Reich and M. Tzagarakis (Eds.), Hypertext, (pp. 
129-131). 



 

 155 

Debevc, M., Meyer, B., Donlagic, D., and Svecko, R. (1996). Design and Evaluation of an 
Adaptive Icon Toolbar. User Modeling and User-Adapted Interaction, 6(1), 1-21. 

Debevc, M., Meyer, B., and Svecko, R. (1997). An Adaptive Short List for Documents on the 
World Wide Web.  In 1997 International Conference on Intelligent User Interfaces 
(IUI'97), (pp. 209-211). 

Denaux, R., Dimitrova, V., and Aroyo, L. (2005). Integrating Open User Modeling and Learning 
Content Management for the Semantic Web.  In L. Ardissono, P. Brna, and A. Mitrovic 
(Eds.), 10th International Conference on User Modeling (UM 2005), (pp. 9-18). 

Denny, P., Luxton-Reilly, A., and Hamer, J. (2008). Student use of the PeerWise system.  In J. 
Amillo, C. Laxer, E. M. Ruiz, and A. Young (Eds.), 13th Annual SIGCSE Conference on 
Innovation and Technology in Computer Science Education (ITiCSE 2008), (pp. 73-77). 

Dieberger, A. and Guzdial, M. (2003). CoWeb - experiences with collaborative Web spaces.  In 
C. Lueg and D. Fisher (Eds.), From Usenet to CoWeb (155-166). New York, NY, USA: 
Springer-Verlag. 

Dolog, P., Henze, N., and Nejdl, W. (2003). Logic-based open hypermedia for the semantic web.  
In 1st International Workshop on Hypermedia and the Semantic Web at Hypertext 2003. 

Dolog, P., Henze, N., Nejdl, W., and Sintek, M. (2004). The Personal Reader: Personalizing and 
Enriching Learning Resources Using Semantic Web Technologies..  In P. D. Bra and W. 
Nejdl (Eds.), 3rd International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems (AH 2004), (pp. 85-94). 

Dron, J., Mitchell, R., Siviter, P., and Boyne, C. (2000). CoFIND - An experiment in N-
dimensional collaborative filtering. Journal of Network and Computer Applications, 
23(2), 131-142. 

Eklund, J. and Brusilovsky, P. (1999). InterBook: An Adaptive Tutoring System. UniServe 
Science News, 12, 8-13. 

Farzan, R. and Brusilovsky, P. (2005). Social Navigation Support Through Annotation-Based 
Group Modeling.  In L. Ardissono, P. Brna, and A. Mitrovic (Eds.), User Modeling, (pp. 
463-472). 

Farzan, R. and Brusilovsky, P. (2008). AnnotatEd: A social navigation and annotation service for 
web-based educational resources. New Review of Hypermedia and Multimedia, 14(1), 3 - 
32. 

Finin, T. W. (1989). GUMS: A General User Modeling Shell.  In A. Kobsa and W. Wahlster 
(Eds.), User Models in Dialog Systems (411-430). New York, USA: Springer-Verlag. 

Finin, T. W. and Drager, D. (1986). GUMS1: A General User Modeling System.  In Proceedings 
of the Workshop on Strategic Computing Natural Language, (pp. 224 - 230). 



 

 156 

Gardner, H. (2009, May/June). The Next Big Thing: Personalized Education. Foreign Policy, . 

Gehringer, E., Conger, S. G., and Wagle, P. (2007). Reusable Learning Objects Through Peer 
Review: The Expertiza Approach. Journal of Online Education, 3(5), . 

Geldof, S. (1998). Con-textual navigation support. The New Review of Hypermedia and 
Multimedia, 4, 47-66. 

Gena, C. and Torre, I. (2004). The importance of adaptivity to provide onboard services: A 
preliminary evaluation of an adaptive tourist information service onboard vehicles. 
Applied Artificial Intelligence, 18(6), 549-580. 

Gertner, A. S. and VanLehn, K. (2000). Andes: A Coached Problem Solving Environment for 
Physics.  In G. Gauthier, C. Frasson, and K. VanLehn (Eds.), 5th International 
Conference on Intelligent Tutoring Systems (ITS 2000), (pp. 133-142). 

Hammond, N. (1989). Hypermedia and Learning: Who Guides Whom? (Invited Paper).  In H. A. 
Maurer (Ed.), 2nd International Conference on Computer Assisted Learning (ICCAL 
'89), (pp. 167-181). 

Henze, N. and Nejdl, W. (1999). Adaptivity in the KBS Hyperbook System.  In P. Brusilovsky, 
P. De Bra, and A. Kobsa (Eds.), 2nd Workshop on Adaptive Systems and User Modeling 
on the World Wide Web, (pp. 67-74). 

Henze, N. and Nejdl, W. (2001). Adaptation in Open Corpus Hypermedia. International Journal 
of Artificial Intelligence in Education, 12(4), 325-350. 

Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. (1999). An Algorithmic Framework 
for Performing Collaborative Filtering.  In 22nd Annual International ACM Conference 
on Research and Development in Information Retrieval (SIGIR '99), (pp. 230-237). 

Hirashima, T., Hachiya, K., Kashihara, A., and Toyoda, J. (1997). Information Filtering Using 
User's Context on Browsing in Hypertext. User Modeling and User-Adapted Interaction, 
7(4), 239-256. 

Hohl, H., Böcker, H.-D., and Gunzenhäuser, R. (1996). Hypadapter: An Adaptive Hypertext 
System for Exploratory Learning and Programming. User Modeling and User-Adapted 
Interaction, 6(2-3), 131-156. 

Hsiao, I.-H., Brusilovsky, P., and Sosnovsky, S. (2008). Web-based Parameterized Questions for 
Object-Oriented Programming.  In C. J. Bonk, M. M. Lee, and T. Reynolds (Eds.), World 
Conference on E-Learning in Corporate, Government, Healthcare, and Higher Education 
(ELEARN 2008), (pp. 3728-3735). 

Hsiao, S. and Brusilovsky, P. (2010). The Role of Community Feedback in the Student Example 
Authoring Process: an Evaluation of AnnotEx. British Journal of Educational 
Technology, in press, . 



 

 157 

Höök, K. (1998). Evaluating the utility and usability of an adaptive hypermedia system. 
Knowledge-Based Systems, 10(5), 311-319. 

Höök, K. (2000). Steps to take before intelligent user interfaces become real. Interacting with 
Computers, 12(4), 409-426. 

Iglezakis, D. (2005). Is the ACT-value a Valid Estimate for Knowledge? An Empirical 
Evaluation of the Inference Mechanism of an Adaptive Help System.  In S. Weibelzahl, 
A. Paramythis, and J. Masthoff (Eds.), 4th Workshop on the Evaluation of Adaptive 
Systems, in conjunction with 10th International Conference on User Modeling (UM'05), 
(pp. 19-26). 

Jameson, A. (2003). The human-computer interaction handbook: fundamentals, evolving 
technologies and emerging applications.  In J. A. Jacko and A. Sears (Eds.),  (305-330). 
Hillsdale, NJ, USA: L. Erlbaum Associates Inc. 

Kaplan, C. A., Fenwick, J., and Chen, J. (1993). Adaptive Hypertext Navigation Based On User 
Goals and Context. User Modeling and User-Adapted Interaction, 3(3), 193-220. 

Kaptelinin, V. (1993). Item recognition in menu selection: the effect of practice.  In S. Ashlund, 
K. Mullet, A. Henderson, E. Hollnagel, and T. N. White (Eds.), IFIP TC13 International 
Conference on Human-Computer Interaction (INTERACT'93) joint with ACM 
Conference on Human Aspects in Computing Systems (CHI'93), (pp. 183-184). 

Karagiannidis, C. and Sampson, D. G. (2000). Layered Evaluation of Adaptive Applications and 
Services.  In P. Brusilovsky, O. Stock, and C. Strapparava (Eds.), International 
Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2000), (pp. 
343-346). 

Kavcic, A. (2004). Fuzzy user modeling for adaptation in educational hypermedia. IEEE 
Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 
34(4), 439 - 449. 

Kay, J. (1995). The um Toolkit for Coopertive User Modeling. User Modeling and User-Adapted 
Interaction, 4(3), 149-196. 

Kegel, D. (2010). The C10K Problem. Retrieved from http://www.kegel.com/c10k.html. 

Kelly, D. and Tangney, B. (2005). Matching and Mismatching Learning Characteristics with 
Multiple Intelligence Based Content.  In C.-K. Looi, G. I. McCalla, B. Bredeweg, and J. 
Breuker (Eds.), 12th International Conference on Artificial Intelligence in Education 
(AIED 2005), (pp. 354-361). 

Knutov, E., Bra, P. D., and Pechenizkiy, M. (2009). AH 12 years later: a comprehensive survey 
of adaptive hypermedia methods and techniques. New Review of Hypermedia and 
Multimedia, 15(1), 5 - 38. 



 

 158 

Kobsa, A. (1990). Modeling the user's conceptual knowledge in BGP-MS, a user modeling shell 
system. Computational Intelligence, 6(4), 193-208. 

Kobsa, A. and Fink, J. (2006). An LDAP-based User Modeling Server and its Evaluation. User 
Modeling and User-Adapted Interaction, 16(2), 129-169. 

Kobsa, A. and Pohl, W. (1995). The User Modeling Shell System BGP-MS. User Modeling and 
User-Adapted Interaction, 4(2), 59-106. 

Koidl, K., Conlan, O., and Wade, V. (2009). Non-Invasive Adaptation Service for Web-based 
Content Management Systems.  In P. De Bra and M. Pechenizkiy (Eds.), International 
Workshop on Dynamic and Adaptive Hypertext. 

Krogsäter, M., Oppermann, R., and Thomas, C. (1994). A User Interface: Integrating 
Adaptability and Adaptivity.  In R. Oppermann (Ed.), Adaptive User Support: Ergonomic 
Design of Manually and Automatically Adaptable Software (97-125). Hillsdale, N.J: 
Lawrence Erlbaum Associates. 

Lundgren-Cayrol, K., Paquette, G., Miara, A., Bergéron, F., and Rivard, J. (2001). Explor@ 
Advisory Agent: Tracing the Student's Trail.  In W. A. Lawrence-Fowler and J. 
Hasebrook (Eds.), World Conference on the WWW and Internet (WebNet 2001), (pp. 
802-808). 

Lutkenhouse, T., Nelson, M. L., and Bollen, J. (2005). Distributed, real-time computation of 
community preferences.  In S. Reich and M. Tzagarakis (Eds.), 16th ACM Conference on 
Hypertext and Hypermedia (Hypertext 2005), (pp. 88-97). 

Maccaux, M. (2008). Approaches to Performance Testing. Retrieved from http://weblogic.sys-
con.com/node/185298. 

Magnini, B. and Strapparava, C. (2001). Improving User Modelling with Content-Based 
Techniques.  In M. Bauer, P. J. Gmytrasiewicz, and J. Vassileva (Eds.), 8th International 
Conference on User Modeling (UM 2001), (pp. 74-83). 

Masters, J., Madhyastha, T., and Shakouri, A. (2008). ExplaNet: A Collaborative Learning Tool 
and Hybrid Recommender System for Student-Authored Explanations. Journal of 
Interactive Learning Research, 19(1), 51-74. 

Masthoff, J. (2003). The evaluation of adaptive systems.  In N. V. Patel (Ed.), Adaptive 
evolutionary information systems (329-347). Hershey, PA, USA: IGI Publishing. 

Masthoff, J. and Gatt, A. (2006). In pursuit of satisfaction and the prevention of embarrassment: 
affective state in group recommender systems. User Modeling and User-Adapted 
Interaction, 16(3-4), 281-319. 

Meyer, B. (1994). Adaptive performance support: User acceptance of a self-adapting system.  In 
B. Goodman, A. Kobsa, and D. Litman (Eds.), 4th International Conference on User 
Modeling (UM 1994), (pp. 65-70). 



 

 159 

Millard, D. E., Moreau, L., Davis, H. C., and Reich, S. (2000). FOHM: a fundamental open 
hypertext model for investigating interoperability between hypertext domains.  In 11th 
ACM Conference on Hypertext and Hypermedia (Hypertext 2000), (pp. 93-102). 

Mitrovic, A. (2003). An Intelligent SQL Tutor on the Web. Iinternational Journal of Artificial 
Intelligence in Education, 13(2-4), 173-197. 

Murray, T. (1999). Authoring Intelligent Tutoring Systems: Analysis of the state of the art. 
International Journal of Artificial Intelligence in Education, 10(1), 98-129. 

Nielsen, J. (1993). Usability Engineering. San Francisco, California, USA: Morgan Kaufmann 
Publishers. 

Nielsen, J. and Molich, R. (1990). Heuristic evaluation of user interfaces.  In J. C. Chew and J. 
Whiteside (Eds.), SIGCHI conference on Human factors in computing systems (CHI'90), 
(pp. 249-256). 

Oppermann, R. (1994). Adaptively supported adaptability. International Journal of Human 
Computer Studies, 40(3), 455-472. 

Orwant, J. (1995). Heterogeneous Learning in the Doppelgänger User Modeling System. User 
Modeling and User-Adapted Interaction, 4(2), 107-130. 

Paiva, A. and Self, J. A. (1995). TAGUS - A User and Leamer Modeling Workbench. User 
Modeling and User-Adapted Interaction, 4(3), 197-226. 

Paramythis, A., Totter, A., and Stephanidis, C. (2001). A modular approach to the evaluation of 
Adaptive User Interfaces.  In S. Weibelzahl, D. Chin, and G. Weber (Eds.), 1st Workshop 
on Empirical Evaluation of Adaptive Systems, (pp. 9-24). 

Paramythis, A. and Weibelzahl, S. (2005). A Decomposition Model for the Layered Evaluation 
of Interactive Adaptive Systems.  In L. Ardissono, P. Brna, and A. Mitrovic (Eds.), 10th 
International Conference on User Modeling (UM 2005), (pp. 438-442). 

Pazzani, M. J. (1999). A Framework for Collaborative, Content-Based and Demographic 
Filtering. Artificial Intelligenve Review, 13(5-6), 393-408. 

Pazzani, M. J., Muramatsu, J., and Billsus, D. (1996). Syskill and Webert: Identifying Interesting 
Web Sites.  In 13th National Conference on Artificial Intelligence and 8th Conference on 
Innovative Applications of Artificial Intelligence (AAAI'96), (pp. 54-61). 

Pohl, W. (1997). LaboUr - Machine Learning for User Modeling.  In M. J. Smith, G. Salvendy, 
and R. J. Koubek (Eds.), Design of Computing Systems: Social and Ergonomic 
Considerations, 7th International Conference on Human-Computer Interaction, (HCI 
International '97), (pp. 27-30). 



 

 160 

Polson, P. G., Lewis, C., Rieman, J., and Wharton, C. (1992). Cognitive Walkthroughs: A 
Method for Theory-Based Evaluation of User Interfaces. International Journal of Man-
Machine Studies, 36(5), 741-773. 

Ramp, E., Bra, P. D., and Brusilovsky, P. (2005). High-level translation of adaptive hypermedia 
applications.  In S. Reich and M. Tzagarakis (Eds.), 16th ACM Conference on Hypertext 
and Hypermedia (Hypertext 2005), (pp. 126-128). 

Ritter, S., Anderson, J., Cytrynowicz, M., and Medvedeva, O. (1998). Authoring Content in the 
PAT Algebra Tutor. Journal of Interactive Media in Education, 98(9), . 

Sarwar, B. M., Karypis, G., Konstan, J. A., and Riedl, J. (2001). Item-based collaborative 
filtering recommendation algorithms.  In WWW, (pp. 285-295). 

Schwab, I., Pohl, W., and Koychev, I. (2000). Learning to recommend from positive evidence.  
In 2000 International Conference on Intelligent User Interfaces (IUI'2000), (pp. 241-247). 

Sears, A. and Shneiderman, B. (1994). Split Menus: Effectively Using Selection Frequency to 
Organize Menus. ACM Transactions on Computer-Human Interaction, 1(1), 27-51. 

Shneiderman, B. (1984). Response Time and Display Rate in Human Performance with 
Computers. ACM Computing Surveys, 16(3), 265-285. 

Smith, A. S. G. and Blandford, A. (2003). MLTutor: An Application of Machine Learning 
Algorithms for an Adaptive Web-based Information System. International Journal of 
Artificial Intelligence in Education, 13(2-4), 235-261. 

Sosnovsky, S. and Brusilovsky, P. (2005). Layered Evaluation of Topic-Based Adaptation to 
Student Knowledge.  In S. Weibelzahl, A. Paramythis, and J. Masthoff (Eds.), 4th 
Workshop on the Evaluation of Adaptive Systems, in conjunction with 10th International 
Conference on User Modeling (UM'05), (pp. 47-56). 

Sosnovsky, S., Yudelson, M., and Brusilovsky, P. (2007). Community-oriented course authoring 
to support topic-based student modeling.  In N. Capuano, D. Dicheva, A. Harrer, and R. 
Mizoguchi (Eds.), 5th International Workshop on Ontologies and Semantic Web for E-
Learning (SWEL'2007), (pp. 91-100). 

Sosnovsky, S. A., Brusilovsky, P., Lee, D. H., Zadorozhny, V., and Zhou, X. (2008). Re-
assessing the Value of Adaptive Navigation Support in E-Learning Context.  In W. Nejdl, 
J. Kay, P. Pu, and E. Herder (Eds.), 5th International Conference on Adaptive 
Hypermedia and Adaptive Web-Based Systems (AH 2008), (pp. 193-203). 

Totterdell, P. and Boyle, E. (1990). The Evaluation of Adaptive Systems.  In D. Browne, P. 
Totterdell, and M. Norman (Eds.), Adaptive User Interfaces (161-194). London, UK: 
Academic Press Ltd. 

Turner, T. E., Macasek, M. A., Nuzzo-Jones, G., Heffernan, N. T., and Koedinger, K. R. (2005). 
The Assistment Builder: A Rapid Development Tool for ITS.  In C.-K. Looi, G. I. 



 

 161 

McCalla, B. Bredeweg, and J. Breuker (Eds.), 12th International Conference on Artificial 
Intelligence in Education (AIED 2005), (pp. 929-931). 

Vygotsky, L. S. (1978). Mind and society: The development of higher mental processes. 
Cambridge, MA: Harvard University Press. 

Wang, Y. and Kobsa, A. (2009). Performance Evaluation of a Dynamic Privacy-Enhancing 
Framework for Personalized Websites.  In G.-J. Houben, G. I. McCalla, F. Pianesi, and 
M. Zancanaro (Eds.), 17th International Conference on User Modeling, Adaptation, and 
Personalization (UMAP 2009), (pp. 78-89). 

Weber, G. and Brusilovsky, P. (2001). ELM-ART: An adaptive versatile system for Web-based 
instruction. International Journal of Artificial Intelligence in Education, 12(4), 351-384. 

Weber, G. and Specht, M. (1997). User modeling and adaptive navigation support in WWW-
based tutoring systems.  In A. Jameson, C. Paris, and C. Tasso (Eds.), 6th International 
Conference on User Modeling (UM 1997), (pp. 289-300). 

Weibelzahl, S. (2005). Problems and pitfalls in the evaluation of adaptive sytems.  In S. Y. Chen 
and G. D. Magoulas (Eds.), Adaptable and Adaptive Hypermedia Systems (285-299). 
Hershey, PA, USA: IRM Press. 

Weibelzahl, S. and Lauer, C. U. (2001). Framework for the Evaluation of Adaptive CBR-
Systems.  In I. Vollrath, S. Schmitt, and U. Reimer (Eds.), Experience Management as 
Reuse of Knowledge. 9th German Workshop on Case Based Reasoning (GWCBR2001), 
(pp. 254-263). 

Weibelzahl, S. and Weber, G. (2003). Evaluating the Inference Mechanism of Adaptive Learning 
Systems.  In P. Brusilovsky, A. T. Corbett, and F. de Rosis (Eds.), 9th International 
Conference on User Modeling (UM 2003), (pp. 154-162). 

Yan, T. W., Jacobsen, M., Garcia-Molina, H., and Dayal, U. (1996). From User Access Patterns 
to Dynamic Hypertext Linking. Computer Networks, 28(7-11), 1007-1014. 

Yudelson, M. and Brusilovsky, P. (2005). NavEx: Providing Navigation Support for Adaptive 
Browsing of Annotated Code Examples.  In C.-K. Looi, G. I. McCalla, B. Bredeweg, and 
J. Breuker (Eds.), 12th International Conference on Artificial Intelligence in Education 
(AIED 2005), (pp. 710-717). 

Yudelson, M. and Brusilovsky, P. (2008). Adaptive Link Annotation in Distributed Hypermedia 
Systems: The Evaluation of a Service-Based Approach.  In W. Nejdl, J. Kay, P. Pu, and 
E. Herder (Eds.), 5th International Conference on Adaptive Hypermedia and Adaptive 
Web-Based Systems (AH 2008), (pp. 245-254). 

Yudelson, M., Brusilovsky, P., and Zadorozhny, V. (2007). A User Modeling Server for 
Contemporary Adaptive Hypermedia: An Evaluation of the Push Approach to Evidence 
Propagation.  In C. Conati, K. F. McCoy, and G. Paliouras (Eds.), 11th International 
Conference on User Modeling (UM 2007), (pp. 27-36). 



 

 162 

Zadorozhny, V., Yudelson, M., and Brusilovsky, P. (2008). A framework for performance 
evaluation of user modeling servers for Web applications. Web Intelligence and Agent 
Systems, 6(2), 175-191. 

Zellweger, P., Chang, B.-W., and Mackinlay, J. D. (1998). Fluid Links for Informed and 
Incremental Link Transitions.  In 9th ACM Conference on Hypertext and Hypermedia 
(Hypertext '98), (pp. 50-57). 

de La Passardiére, B. and Dufresne, A. (1992). Adaptive Navigational Tools for Educational 
Hupermedia.  In I. Tomek (Ed.), 4th International Conference on Computer Assisted 
Learning (ICCAL'92), (pp. 555-567). 

 


	TITLE
	Abstract
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Selected adaptation reasoning engines and adaptation engines in real systems
	Table 2. Summary of the experiments
	Table 3. Summary of logged experimental data
	Table 4. Structure of the 4 selected courses with respect to different adaptation techniques
	Table 5. Concept metadata statistics for 3 domains and 4 AEHS
	Table 6. User patterns of accessing the adaptation implementations
	Table 7. Co-occurrence of user sessions
	Table 8. Differences in processing time of NavEx and PERSEUS concept-based adaptation
	Table 9. Maximal successfully tolerated loads for tested adaptation techniques. Shaded cells mark expected request complexities.
	Table 10. Number of simultaneously working users that are effectively supported by tested adaptation technique and request complexity. Shaded cells mark expected request complexities.
	Table 11. Size of the supported user population (observing the number of concurrent sessions) for tested adaptation techniques. Shaded cells mark expected request complexities.
	Table 12. Maximal successfully tolerated loads for tested adaptation techniques vs. maximal recoverable loads. Shaded cells mark expected request complexities.

	LIST OF FIGURES
	Figure 1. Outline of a typical adaptive hypermedia system (Brusilovsky, 1996)
	Figure 2. Taxonomy of adaptive hypermedia technologies (Brusilovsky, 2001)
	Figure 3. Architecture of the adaptive hypermedia system
	Figure 4. Integration of adaptivity directly into user interface component
	Figure 5. Implementing adaptation via an intermediary
	Figure 6. Adaptation implemented as a standalone server
	Figure 7. Summary of developer roles, expertise levels, and number of relevant AHS professionals available
	Figure 8. Adaptation decomposition (Paramythis & Weibelzahl, 2005)
	Figure 9. Scenario of personalization service engine's operation
	Figure 10. Examples of PERSEUS’s deployment in actual courses offered via Knowledge Tree portal. Left – Java course for the Universidad Autónoma de Madrid, right – HCI course for the University of Pittsburgh.
	Figure 11. Mockup of anticipated PERSEUS deployment on Ensemble Computing portal. Green bullet icons and tooltips are to be provided by PERSEUS.
	Figure 12. Architecture of PERSEUS and the surrounding environment
	Figure 13. Data and control flows during PERSEUS adaptation service lifecycle
	Figure 14. Brusilovsky’s taxonomy (Brusilovsky, 2001) of AH techniques showingtheir similarities as a basis for unification of the implementation (Bailey et al., 2007)© 2007 Association for Computing Machinery, Inc. Reprinted by permission.
	Figure 15. Social navigation support adaptation service
	Figure 16. Control flow diagram of the social navigation support service. Capital S marks various stages of the processing, cs marks events on the client, ps – on PERSEUS, and us – on the user model side. Arrows denote transfer of control.
	Figure 17. Topic-based navigation support adaptation service
	Figure 18. Control flow diagram of the topic-based navigation support service. Capital T marks various stages of the processing, ct marks events on the client, pt – on PERSEUS, and ut – on the user model side. Arrows denote transfer of control.
	Figure 19. Concept-based navigation support adaptation service
	Figure 20. Control flow of the concept-based navigation support service. Capital C marks various stages of the processing, cc marks events on the client, pc – on PERSEUS, and uc – on the user model side. Arrows denote transfer of control.
	Figure 21. Recommendation service
	Figure 22. Pre-study test system setup
	Figure 23. Percentile plots for three request complexities (left column) and request success barcharts (right column) for 5 resources per request (top row), 20 resources per request (middle row), and 50 resources per request (bottom row) across all request delivery rates
	Figure 24. Request time distribution: network communication, CUMULATE and PERSEUS
	Figure 25. General schema of the experiments
	Figure 26. Number of requests processed during one of experimental series: simplistic vs. realistic (assumption).
	Figure 27. Summary of the parallel request processing experiments
	Figure 28. Summary of the sequential requests processing experiments
	Figure 29. Percentile plots for PERSEUS’s social navigation support service capacity-planning/soak tests. Loads meeting the cap criteria are marked by call-outs
	Figure 30. Percentile plots for PERSEUS’s concept-based navigation support service capacity-planning/soak tests. Loads meeting the cap criteria are marked by call-outs
	Figure 31. Percentile plots for NavEx’s concept-based navigation support service capacity-planning/soak tests. Loads meeting the cap criteria are marked by call-outs
	Figure 32. Percentile plots for PERSEUS’s topic-based navigation support service capacity-planning/soak tests. Loads meeting the cap criteria are marked by call-outs
	Figure 33. Summary of the errors for all adaptation techniques across request sizes and loads (delays between requests). Shaded regions correspond to expected request complexities and load characteristics up to maximal successfully tolerated ones. Only errors for requests with below 90th perentile delay are considered.
	Figure 34. Comparison of concept-based navigation support realization in PERSEUS and NavEx (request size 10)
	Figure 35. Comparison of concept-based navigation support realization in PERSEUS and NavEx (request size 20)

	1.0  INTRODUCTION
	1.1 WAYS TO ENHANCE ADAPTIVE HYPERMEDIA SYSTEMS
	1.1.1 Content Authoring Support Tools
	1.1.2 Development Support Tools

	1.2 PROBLEM STATEMENT, GOALS, AND HYPOTHESES
	1.3 DISSERTATION OUTLINE

	2.0  BACKGROUND AND RELATED WORK
	2.1 ADAPTIVE HYPERMEDIA SYSTEMS
	2.2 METHODS OF ADAPTIVE HYPERMEDIA
	2.2.1 Direct Navigation
	2.2.2 Link Sorting
	2.2.3 Link Hiding
	2.2.4 Link Annotation
	2.2.5 Link Generation

	2.3 ADAPTATION REASONING ENGINES
	2.4 ARCHITECTURE OF THE AHS
	2.4.1 Models
	2.4.2 Processes and Data Streams
	2.4.3 The Orchestration

	2.5 DECOMPOSITION OF AHS AND COMPONENT REUSE
	2.5.1 User Modeling and Its Separation From the AHS
	2.5.1.1 Structure
	2.5.1.2 Rationale and Benefits
	2.5.1.3 Examples

	2.5.2 Separation of the Content Model: Open-Corpus AHS
	2.5.2.1 Structure
	2.5.2.2 Rationale and Benefits
	2.5.2.3 Examples

	2.5.3 Adaptation in the AHS: the Emerging Split
	2.5.3.1 Structure
	2.5.3.2 Rationale and Benefits
	2.5.3.3 Examples

	2.5.4 Summary

	2.6 METHODS OF ASSESSING ADAPTIVE SYSTEMS
	2.6.1 Evaluating Usability of the AS/AHS
	2.6.2 Evaluating the Value of Adaptation: Holistic Approach
	2.6.3 Layered Evaluation of the Value of Adaptation
	2.6.4 Performance Evaluation
	2.6.4.1 State of the Art in Performance Evaluation
	2.6.4.2 Our Approach to Performance Evaluation.
	2.6.5 Summary



	3.0  ADAPTATION FUNCTIONALITY AS STANDALONE SERVICE
	3.1 INTRODUCTION
	3.2 PERSEUS
	3.3 PERSEUS IMPLEMENTATION
	3.4 CONCEPTUAL EVALUATION OF PERSEUS
	3.4.1 Support of Known Adaptation Techniques
	3.4.2 Composition of the Adaptation Process

	3.5 ADAPTATION TECHNIQUES IMPLEMENTED IN PERSEUS
	3.5.1 Social Navigation Support Adaptation Service
	3.5.2 Topic-Based Navigation Support Adaptation Service
	3.5.3 Concept-Based Navigation Support Personalization Service
	3.5.4 Link Generation (Recommendation) Personalization Service

	3.6 PRE-STUDY OF PERSEUS’S SOCIAL NAVIGATION ADAPTATION
	3.6.1 Pilot-Test
	3.6.2 Experimental Setup and Data Collection
	3.6.3 Results
	3.6.4 Pre-study Limitations
	3.6.5 Pre-Study Summary


	4.0  RESEARCH DESIGN
	4.1 EXPERIMENT OVERVIEW
	4.2 EXPERIMENTAL SYSTEMS SETUP
	4.2.1 Data Collection and Implementation
	4.2.1.1 Data Collection (Logging)
	4.2.1.2 PERSEUS
	4.2.1.3 NavEx
	4.2.1.4 Load Generator

	4.2.2 Data Model and Configuration
	4.2.2.1 Size of the Hyperspace and Complexity of Request
	4.2.2.2 Number of Metadata Items per Resource
	4.2.2.3 Duration of User Sessions and Frequency of User Accesses to Adaptation
	4.2.2.4 Hyperspace Structure and User Model Data
	4.2.2.5 Delays between Requests in Parallel Processing Experiments
	4.2.2.6 Duration of Sequential Processing Experiments
	4.2.2.7 Experiments’ Summary


	4.3 HARDWARE AND SOFTWARE
	4.4 COMPREHENSIVE HYPOTHESES
	4.4.1 Parallel Processing Capacity-planning/Soak Tests
	4.4.2 Baseline Comparison Sequential Processing Benchmark Tests
	4.4.3 Size of the Supported User Population
	4.4.4 Number of Requests in the System


	5.0  RESULTS
	5.1 PARALLEL PROCESSING CAPACITY-PLANNING/SOAK TESTS
	5.2 SEQUENTIAL PROCESSING BENCHMARK TESTS
	5.3 SIZE OF THE SUPPORTED USER POPULATION
	5.4 NUMBER OF REQUESTS IN THE SYSTEM
	5.5 SUMMARY

	6.0  CONCLUSIONS
	6.1 CONTRIBUTIONS AND SIGNIFICANCE
	6.2 LIMITATIONS
	6.3 DISCUSSION
	6.4 FUTURE WORK

	BIBLIOGRAPHY

