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Designing drugs for treating diseases is one of the main motivations for understanding how 

proteins are able to recognize their substrates.  Recent growth in computational power has 

encouraged the use of numerical tools like atomic detailed molecular dynamics for investigating 

proteins. 

Until recently, atomic detail molecular dynamics did not allow for the transfer of protons 

in the solute or solvent of the model during dynamics.  Modeling this transfer in the protein is 

important because there are seven titratable amino acids.  This means that they can exist in 

different protonation states or states of charge.  The most important titratable sites are usually 

deeply buried.  Several methods are available for doing proton dynamics for the titratable amino 

acids of the solute.  Unfortunately deeply buried sites challenge available methods because the 

models need to capture the hydrophobic effect of buried regions, the hydrophilic effect of solvent 

penetration and the subtlety of charged networks.  These effects sometimes assist, compete, or 

balance each other. 

One solution for the above challenges is to exploit the accuracy that comes with a full 

atomic detailed explicitly solvated model.  However such an approach runs into problems 

because protonation state changes at 300K require unreasonably long simulations due to solvent 

reorientation relaxation times.  As a result, currently available methods compromise the atomic 

detail description in some way, either by using continuum protonation states, by using continuum 

solvent, or by stepping back from the atomic detail description. 

Our method uses both discrete protonation states and atomic detail explicit solvent.  The 

water orientation problem is overcome by using elevated temperatures, and the information from 
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a wide range of temperatures, including those at 300K, are woven together with our Weighted 

Histogram algorithm.  This then gives us an accurate density of states, from which we can 

calculate a full range of thermodynamic results. 

We used our methods to calculate the Bond Dissociation Energy ( BDE ) of the H S−  

bond in the solvated single site Cysteine system.  90.3 1 /calc
CYSBDE kcals mole= ± .  We have found 

this number agrees to within 3% of the experimental BDE  of a very similar bond in 

thiomethane, 3H SCH− .  exp 88 1 /thio methaneBDE kcals mole− = ± .   This is very good agreement and is 

some validation of our methods. 
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PREFACE 

Our interest in proton dynamics and pKa  calculations began as a result of investigating the 

specificity of the EcoRI DNA−  system.  Specifically, we were probing the nature of the protein-

DNA interaction using Molecular Dynamics and Free Energy Perturbation calculations.  We 

were trying to calculate various interaction energy components, such as the contributions of 

specific base-pairs towards the overall protein-DNA interaction, and compare those results with 

experimental numbers.  This comparison with experimental results required a level of precision 

that demanded us to properly model the protonation state of our system.  As we studied available 

methods for solving our problem, we also became aware of the challenges that faced protonation 

state or pKa  calculations, and we saw how challenged the available methods were to solve these 

problems to the level of precision that we wanted.  We then understood that we were in a unique 

position to make a substantial contribution in this area because of the special talents of the 

individuals of our group:  Prof. J. Rosenberg and Prof. R. Swendsen brought together experience 

in Structural Biology, Molecular Dynamics, Monte Carlo Methods, Statistical Mechanics and 

Histogram Analysis.  My contribution towards the vision was naiveté:  I, blinded by the 

handsome vision of the project, failed to appreciate the length of time required to do all the work.  

I am still blinded. I am made aware only by my wife Hazel-Ann, who somehow more resistant to 

the project’s charms, has a much fuller appreciation of the sacrifice of time and work that I have 

made.  I am very happy with the end product and I realize that things, thank God, worked out for 

the best, naiveté and all. 
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1.0 INTRODUCTION 

1.1 OVERVIEW 

Proteins are made up of amino-acids and there are several amino-acid types that are titratable.  

That is, they can absorb or shed protons, thereby existing in different charged or protonation 

states. This work is inspired by the need to accurately describe the protonation states of systems 

such as protein-DNA complexes.  The purpose of studying these protein-DNA simulations is to 

elucidate molecular mechanisms of sequence specific protein-DNA interactions as well as 

address broader issues of enzyme-substrate recognition and the molecular basis of specificity. 

Protein-DNA complexes, and other such macromolecule complexes, have interfaces 

between macromolecules that often contain many titratable and/or charged groups.  These 

charged groups, which may have been near the surface before complex formation, often become 

deeply buried after complex formation.  The problem of assigning protonation states to titratable 

sites is very important for the proper electrostatics of Molecular Dynamics (MD) simulations.  

Assigning fixed protonation states is insufficient to model dynamic protonation state effects such 

as those that would be expected to correlate with configurational changes.  In terms of model 

detail, there is a range of methods available for modeling protonation state effects.  Consider the 

least detailed end of the spectrum.  Several continuum solvent methods have been developed for 

protonation state determination where the solvent is treated as a macroscopic dielectric, and 

some even allow for dynamical protonation effects.  These methods give reasonable results for 

titratable sites near the surface.  However for deeply buried sites, or sites involved in electrostatic 

networks, there is no consistent value or reasonable way of choosing a dielectric constant to get 

the calculated pKas  to agree with experiment for all titratable sites1,2.  The advantage of such 

methods is their computational efficiency.  These methods represent one end of the spectrum for 

modeling protonation state effects.   



  2

The other end of the spectrum would be a full Ab Initio quantum mechanical simulation 

that would allow the solvent water molecules to be titratable as well as the titratable sites of 

interest.  Current computational resources would limit such treatment to the smallest systems for 

relatively short simulations.  They therefore cannot be currently used to simultaneously calculate 

macro pKas  for any solvated proteins of interest, or any charge network regions of interest that 

are not highly localized. 

complex

simple

theory sufficiency

 
complex

simple

computational speed

 
 

 

 

complex

simple

product of 
(theory sufficiency) and (computational speed)

 
 

 

 
Figure 1: Computational Feasibility of Various Proton Dynamics Models  

The plots above summarize our dilemma, and are typical of computational biophysics problems 

(Quantitative rigor is absent from the plots above.  They serve only as an aid to qualitative 
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description). The x-axis of all three plots represents a range of protonation assignment 

approaches: from the simplest continuum, macroscopic, static protonation assignment methods, 

to the most rigorous Ab Initio dynamic protonation assignment methods.  The y-axis represents a 

range of systems, in which the foreground represents complex systems.  These will be larger 

systems or systems that contain buried titratable sites, buried networks that contain titratable sites 

or titration state fluctuations that are suspected of being correlated with configurational 

fluctuations.  Many systems of interest fall into this category, including protein-DNA systems 

that we examine (protein-DNA systems are of interest to us because they are models of 

specificity).  We place our MD/MC-WHAM approach closer to the right side extreme of the x-

axis.  The only feature that separates our method from the extreme right side is that we are using 

classical mechanical force field dynamics, as opposed to Ab Initio dynamics.  Our approach uses 

full atomic detail to describe both solute and solvent, and the titratable sites are modeled as 

discrete states.  A brief description of these two features now follows.  The full atomic detailed 

description is considered the most accurate description next to the Ab Initio description (see 

Figure 19: Feasibility of various modeling methods).  In summary, the full atomic detailed 

description is one where every atom in a solvated biomolecule is explicitly represented and 

assigned mass, charge, van der Waals parameters etc.  Further discussion on atomic detail is 

given in section 1.11.3, “Molecular Dynamics”.  Discrete protonation state modeling means that 

the transitions of a titratable site from one state to the next are not continuous but are discrete, 

which is a more accurate representation of nature (there is no such thing as half a proton).  We 

believe our method is one of the few options for achieving reasonable results for complex 

systems of interest, using currently available computational prowess, such as that available on in-

house computing clusters or at supercomputing centers. 

The problem with using atomic detailed explicit solvent classical mechanics force fields 

to model protonation is that at 300K the energy barriers that separate the protonation states are 

such that unreasonably long simulations would be required to properly sample all protonation 

states.  This is because in our simulations, the waters that surround a titratable/charged group 

orient in response to the electrostatics of the titratable/charged group and form a solvation shell.  

One possible solution would be to use a titratable water model.  However a typical solvated 

system for MD simulation has thousands of water molecules that are highly mobile. So every one 

of the waters in the system would have to be titratable not just the ones surrounding a titratable 
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site at one snapshot in time, thereby rendering such a system model computationally unfeasible.  

Besides, a titratable water model will still have solvation barriers that are still likely to 

necessitate unreasonably long simulation times.  Our approach to crossing the barrier separating 

protonation states within quick simulation times at 300K is to use a “simulated annealing 

ensemble” and Weighted Histograms (WHAM63,64) to calculate the density-of-states using many 

trajectories generated under many conditions.  Some of these trajectories are generated at high 

temperatures where the ionization transition rates are high and protonation state sampling is 

vigorous.  The high temperature and low temperature trajectories are woven together with 

WHAM63,64.  The high temperature information serves to get an approximation for the density-

of-states, and the low temperature information serves to fine tune the weighting factors to yield a 

density-of-states description that is accurate for calculating many thermodynamic parameters, 

including pKas , at 300K. 

1.2 MOLECULAR BIOPHYSICS 

1.2.1 Why study Molecular Biophysics?  Fun. 

All of science is driven by the curiosity of understanding how things work.  The Natural 

Sciences are specifically driven by the curiosity of the mechanics of how nature works.  The 

Molecular Biophysicist’s main target of investigation, small biological systems like proteins, 

offer manifold and rich opportunities to understand some of the most complex machinery in 

nature, and also understand some of the most important machines of nature.  In the realm of 

understanding the mechanics of nature, what could be more important than the mechanics 

relating to that which supports life?  Because biological systems like proteins are considered the 

most complex sub-cellular systems of nature, Biophysicists are therefore inspired to investigate 

these systems and learn: from either the designs of God, or the designs of the evolutionary forces 

of time, chance and selection, or the evolutionary forces of time, chance and selection set in 

place by God. 
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A widely accepted definition of Biophysics is the application of physics disciplines to 

Biological systems.  The phrase Biophysics was only first used about 50 years ago.  As a result, 

the Biophysics field is still the arena of vigorous culture clashes between the Biological Science 

and Physics cultures, and is attractive to those people that see these clashes as evidence of a field 

full of opportunity.  Biological Science culture traditionally emphasizes, and amasses detail3.  

The reason being that the living world is inherently complex, diverse and changes so much over 

time and environment. 

On the other hand, the physics culture tends to approach understanding natural 

phenomena by looking for Universal laws, finding what the phenomena have in common and to 

simplify.  Many physicists have been lured into a world they see filled with unruly details, crying 

out for them to subdue and bring order to the chaos.  The complexity of seemingly simple 

biological processes usually subdues any excessive confidence. 

1.2.2 Why study Molecular Biophysics?  Important. 

Understanding how proteins work is the key to understanding why they don’t work.  This field is 

therefore applicable to understanding diseases and designing drugs.  The secrets of specificity 

(how proteins are able to selectively bind to substrates) may reveal keys for drug design.  One 

indicator of the relationship between Biophysics and treating disease is the fact that more and 

more research hospitals have Structural and Computational Biophysics research departments.   

1.2.3 Why study Molecular Biophysics?  Profitable 

For several centuries, one can only make progress in science if it is treated as a career instead of 

a hobby.  Therefore the practicality and profitability have to be considered in choosing a field of 

science.  Not only is Molecular Biophysics fun and important, but career wise, it is practical as 

well.  Molecular Biophysics attracts significant funding from both private and government 

sources, medical and general-scientific institutions.  Over the past 20 years, Molecular 

Biophysics Programs have seen a multi-fold funding increase relative to the total NSF budget 

(see Figure 3 on the next page, page 6).  Figure 2 shows that the traditional source of interest in 

Molecular Biophysics was from investigators in the field of medical research (NIGMS, the 
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National Institute of General Medical Science, is a sub-institute of the National Institute of 

Health).   

 

 
Figure 2: NIGMS Funding Trends4,5 

 

Figure 3, showing an almost inverse trend compared to Figure 2, shows the maturity of the field 

over time so that it attracts the interest of investigators from the fundamental sciences. 

 

 
Figure 3: NSF Funding for Molecular Biophysics Programs6,7,* 
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* The NSF annual Award Count Information was calculated based on a search of the NSF award database using 

Molecular Biophysics Program and year as the search criteria.  This information is also presented in the NSF Budget 

Internet Information System, but that count, for unknown reasons, is larger by about a factor of two. 

 

This is the reason why more Molecular Biophysics research is overflowing from medical 

research institutions, and driving stakes into scientific research institutions.  The University of 

Pittsburgh is typical of many academic research institutions that have built graduate Molecular 

Biophysics Programs within the past fifteen years.  

Trends for Supercomputing resources dedicated to Molecular Biophysics are shown 

below in Figure 4.  Data can only be tracked back to 1996.  However, within the past 10 years, 

supercomputing prowess has improved significantly.  The plot shows that, through more scalable 

models, and through more scalable and faster algorithms, computational Molecular Biophysics 

investigators have been able to do better than keep pace with supercomputing performance, and 

are fully exploiting supercomputing resources (the plot shows the number of LARGE allocations 

vs. year.  Large allocations can only be efficiently used with highly parallelizable algorithms). 

 

 
Figure 4: Supercomputing Awards for Molecular Biophysics8 



  8

1.3 SURVEY OF BIOLOGICAL PHENOMENA OF INTEREST 

1.3.1 Protein Folding 

Amino acids are the building blocks of which proteins are made.  There are 20 unique amino 

acids.  Every protein has a unique sequence of these amino acids.  This unique sequence is 

known as the primary sequence and can be thought of as a chain of links, where each link is an 

amino acid.  This chain is generated one amino acid link at a time by ribosome acting with 

instructions from tRNA.  The protein may then spontaneously fold on it own, or may require 

help from other proteins called chaperones9.  For many proteins, its primary sequence determines 

its structure and function.  What’s so amazing about folding is that the protein starts the process 

with a vast number of possible conformations. It then follows free-energy reducing folding 

pathways to end up in its ‘native configuration’.  The folded protein, in its native configuration, 

is a stable three-dimensional structure.  It can be thought of as a balled-up chain, because the 

amino acids share important interactions in more than the one dimension of the link sequence.   

Despite the fact that the folding process is not yet completely understood, there are 

plausible models for folding and some consensus on the thermodynamics of the process.  One 

model for describing folding has the primary sequence first form local alpha-helix and beta-sheet 

structures due to hydrophobic interactions, then the local structures aggregate via longer range 

interactions.  Another model (not necessarily independent of the fore-mentioned model) has the 

primary sequence collapse into a molten globule form then more slowly follow a number of 

possible pathways to the native conformation.  There is some consensus that thermodynamics of 

the process resembles a funnel with bumpy surfaces.  As folding proceeds down the funnel, the 

protein lowers its free-energy and reduces its entropy by narrowing the number of configuration 

possibilities for the next folding step10,11,12,13,14,15,16. 

Through the decades investigators have invested a lot into understanding protein folding: 

Mutation, chaperone, catalyst and environment monitoring experiments; folding theories and 

computational models, have all been thrown at the protein folding challenge.  A lot of headway 

has been made into understanding how protein folding overcomes the apparently daunting 

barriers of entropy, but there are so many more secrets and the current folding theories and 
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models are still so inadequate, that protein folding is still considered as much of a holy grail as it 

was 20 years ago.   

1.3.2 Molecular Recognition and Protein Specificity 

Molecular recognition is the ability of one molecule to recognize and interact with another 

molecule.  Many factors bear on how a molecule is able to recognize its substrate.  Some of the 

more obvious factors are size, shape and charge of the substrate.  However the recognition ability 

can be very refined, allowing the biomolecule to perform complex tasks.  Therefore there are 

many other important factors that go into a biomolecules ability to recognize.  For example, 

subtle changes in environment could be essential for biomolecular recognition and function.  

Hemoglobin is a good example of a biomolecule with admirably refined molecular recognition 

and which can significantly change operation details by “sensing” environmental pH changes.  

Near the lungs, hemoglobin has a high affinity for the oxygen molecule, which it selectively 

binds to.  Via the blood stream, the hemoglobin carries the oxygen to the muscles.  Here, the 

environment is acidic.  This causes the release of the oxygen and the binding of a CO2 molecule.  

The hemoglobin then transports the CO2 back to the lungs for exhalation, and the cycle repeats.  

The function of hemoglobin has been the target of much study for a long time.  It is a testimony 

of the complex nature of its function that it is still a target of much study, considering the 

improvements in structural experiments, computational modeling and computational resources.  

However CO is poisonous because, in the lungs, hemoglobin has a greater affinity for CO than it 

does the oxygen. This is an example of hemoglobin’s recognition failing, with deadly effects.  

We will now visit a class of biomolecules that has extremely refined recognition ability, some of 

the best in the business.  These are proteins that are involved in protein-nucleic acid interactions. 

Understanding these interactions is of utmost biological importance, since these interactions are 

the key to biological regulations and DNA repair.  EcoRI is a restriction endonuclease that has a 

very high ability to recognize its cognate DNA substrate (a DNA fragment with a specific 

sequence, in this case GAATTC).  EcoRI can cleave its cognate DNA substrate more that 105 

times faster than it can cleave an alternatively sequenced DNA strand under standard 

conditions17.  This recognition ability of a protein is called specificity.   
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What drives the study to understand protein recognition and specificity is not simply to 

satisfy a hunger for understanding some of nature’s most complex mechanisms.  What also 

drives this study is the need to improve protein engineering and design.  Current pharmaceuticals 

rely on specific interactions with their intended targets.  If the artificial molecule is too 

promiscuous (the opposite of having a high degree of specificity), its efficacy will be reduced 

and there will be increased side effects.  Protein engineering and design that employs a better 

understanding of specificity, offers the potential to engineer therapeutics that possess better 

specificity for an intended target substrate, and better environmental sensitivity.   

1.3.3 Ion Channels and Ion Pumps 

Cells are bounded by a bilayer membrane.  Ion channels and ion pumps are molecular devices 

that are embedded into bilayer membranes and are gatekeepers responsible for the transfer of 

specific ions in and out of the cell.  They can sense external conditions and respond by adapting 

their permeability to specific ions.  Ion channels simply allow the passage of specified ions under 

specified conditions, whereas ion pumps actively pull specified ions across the bilayer 

membrane.  One example of such a device is the sodium-potassium pump.  This device binds 

sodium ions and ATP on the inside of the cell’s plasma membrane, expels the sodium ions from 

the cell, binds potassium ions on the extracellular side, pumps them into the cell, and then 

releases ADP.  This device therefore plays an important role in the complex energy relay system 

of energy transfer in living organisms. 

1.3.4 Water 

Why should the behavior of water be considered a biological phenomenon of interest?  

Biomolecules function in an aqueous environment and water plays an important role in the whole 

range of fascinating biomolecular phenomena.  In the words of Gerstein and Levitt (1998)18: 

When scientists publish models of biological molecules in journals, they usually draw 

their models in bright colors and place them against a plain, black background.  We now 

know that the background in which these molecules exist -water- is just as important as 

they are. 
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 In this section we will briefly survey the important roles played by water, and give the reader a 

glimpse of why water deserves to be considered a biomolecule of interest.  The growing 

recognition of water’s importance in the function of biomolecules is underscored by the 

following fact:  In the history of evolution of Molecular Dynamics force fields, new models for 

water outnumber new models for amino-acids two-to-one.   

1.3.4.1 Bulk water 

Interestingly enough, if the mixed biophysics demographic were crudely separated into those of 

physics and those of biology ancestry, the drive to elevate water to the status of biomolecule is 

the result of the admiration of water by those of physics ancestry.  Biologists seldom work with 

anything but an aqueous environment, so they often take for granted the peculiarities of water’s 

behavior.  However the condensed-matter physicist is well aware that water breaks all the rules 

of liquid-state theory. 

 Water is a unique liquid with profound characteristics even when it’s all by itself, in bulk 

form, not interacting with any biomolecules.  The key to most of water’s anomalies is the 

hydrogen bond network.  Hydrogen bonds are strong and directional, causing a tetrahedral motif 

to be repeated throughout all three dimensions of the water.  It is not a regular structure because 

it is constantly being rearranged on a sub-picosecond time scale.  The short-ranged order of the 

tetrahedral network of hydrogen bonds prevents the molecules from moving too close to each 

other.  However water molecules often move closer to each other than the tetrahedral structure 

would allow because the tetrahedral structure is continually being broken.  When water cools 

from 4 degrees to 0 degrees Celsius, the tetrahedral network gradually freezes into a regular 

structure.   This explains waters expansion on freezing. 

1.3.4.2 Solvation Shells and Hydrophobicity 

The behavior of pure bulk water is strange enough, far more for water’s interactions with 

biomolecules.  So we should also be suspicious of any simple model of how water interacts with 

solute.  Much of the discussion of water-biomolecule interaction is wrapped up in the discussion 

about the nature of hydrophobicity.  Hydrophobic interactions are very important in biophysics.  

They are considered to be the driving force for protein folding and lipid self-assembly into 

membranes.  There is a lot of literature about how water forms or does not form solvation shells 
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in hydrophobic or hydrophilic regions of a solute, and how these shells explain the 

thermodynamics of hydrophobicity during protein folding or lipid layer assembly.  However it is 

experimentally challenging to “see” solvation shell structure, so the lack of evidence, combined 

with water’s ability to form intriguing interactions, gives good reason to be skeptical about 

simple models of water-solute interaction.  That hydrophobic interactions can be long ranged19 

(up to dozens of nanometers in length or several hundred molecular diameters20) further 

challenges experimental and computational tools for investigating hydrophobic interactions.  

Single-molecule probe experimental techniques, such as the atomic force microscopy, promise to 

shed light on the nature of solvation shell21 structure and related thermodynamics. 

1.3.4.3 Trapped water, Proton Wires 

In x-ray protein crystal structure determination, it is common to consider bound water as part of 

the structure.  These are water molecules that have been adopted from the solvent to form part of 

the structure of the macromolecule.  In many cases the water is trapped inside very small cavities 

that are only nanometers wide.  Given water’s reputation for intriguing interactions, it is 

reasonable to expect water to behave at least as mysteriously under these conditions as it does in 

bulk solvent.  In some cases, trapped water forms one-dimensional chains of hydrogen bonded 

water molecules known as proton wires.  Proton wires can play an important role in the rapid 

translocation of protons in proton transport networks.  Proton wires are centrally involved in 

essential metabolic processes within plant and animal cells, such as photosynthesis and pumping 

ions from one side of a membrane to the next. 

1.3.5 Time and length scales of various phenomena of interest 

Knowing the approximate time and length scales of the various phenomena of interest is useful. 

It facilitates a quantitative description of the phenomena.  It helps in understanding the feasibility 

and the limitations of various experimental methods for exploring various phenomena.  It also 

helps to understand the feasibility and limitations, of various computational models running on a 

given computational resource, for exploring various biological phenomena.  The issue of 

computational feasibility will be discussed further in section 1.11.4.   
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The plot below (Figure 5) shows that interesting biological phenomena span orders of 

magnitude in length and time.  The discussions of sections 1.3 and 1.4 also tell us that many of 

the large-scale phenomena of interest are driven by small-scale behavior, so understanding the 

first is facilitated by understanding and accurately modeling the latter.  For example, protein 

folding and lipid membrane assembly (large-scale phenomena) is driven by forces that are the 

result of water-solute interaction behavior, in which the hydrogen-bonding networks play a 

central role.  In other words, accurate simulations of the larger-scale phenomena cannot happen 

without computer models that capture the behavior of the small-scale phenomena to a sufficient 

degree of accuracy.  Therein is the challenge of computational modeling of biomolecules: 

spanning several orders of magnitude of time and space to connect the most detailed steps of the 

model to simulating a phenomenon of interest. 

In order to help get a perspective of the time and length scales in which various 

phenomena occur, the following measurements are helpful.  The speed of sound in water is about 

15Å/ps.   The period of the smallest oscillations and the period of the largest oscillations of the 

nodes in typical systems, determined from NMR experiments, range from about 5 

femtoseconds(fs) to 50 fs, and the corresponding magnitudes of oscillation range from 0.1 Å 

(typical covalent bond length is about 1.2 Å and the typical covalent bond distortion amplitude is 

about 0.1 Å) to 5 Å.   These all give an idea of the speed at which different genres of information 

may travel across a solvated biological system. 

Protein assembly occurs on time scales that range from microseconds to seconds.  

Circular Dichroism Absorption Spectroscopy, Fluorescence Spectroscopy and Raman Excitation 

experiments have shed light on protein folding rates.22 

Most involved protein functions occur on the scale of nanoseconds.  This estimate is 

obtained from direct observation of vibrational relaxation of the collective modes in proteins 

using Far Infrared and Medium Infrared pump probes23. 

Many simpler biological functions, like those that involve proton transport in a network 

of titratable sites, happen on a sub picosecond scale (<200 fs).  These approximations are arrived 

at by femtosecond 2D IR spectroscopy of systems containing hydrogen bond networks24. 
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Figure 5: Time and Length scales of various biological phenomena of interest 
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1.4 SURVEY OF PROTON DYNAMICS IN BIOLOGICAL SYSTEMS 

Proton dynamics plays important roles in the function of a wide range of molecular devices.  In 

this chapter we emphasize this ubiquity by surveying the widespread involvement of proton 

dynamics in a range of biomolecular systems. 

1.4.1 Water, Proton Dynamics, and Solvated Systems 

It is appropriate for us to start our survey of proton dynamics in biological systems with water.  

As will be seen in the following sections, water is integral to the function of biological systems 

and, as mentioned in the previous sections, exhibits behavior that is complex and very different 

from that of a simple liquid. 

By definition, in vitrio biological systems are in a solvated environment.  This 

environment plays an integral part in the function of biological systems.  The main reason for 

this is that the solvent is an important facilitator and channel for proton movement.  The 

following sections will emphasize the importance of solvent and the solvent-solute interaction 

for proton dynamics and biological system function. 

1.4.1.1 Proton and H3
+O dynamics in water 

Water is a fascinating liquid with regards to its role in supporting life and the physical chemistry 

of its nature.  The structure of water has been the target of study of many works.  This section 

will summarize the structure of water and emphasize the proton dynamics aspect of water. 

Water is a polar molecule, and this property is one of the main reasons for its interesting 

characteristics.  In this molecule, two hydrogen atoms donate their electrons to the orbital of the 

oxygen.  The oxygen receives these donations from asymmetric positions, such that the hydrogen 

donors are on one side of the oxygen nucleus (subtending an angle of 108 degrees).  The water 

molecule therefore consists of three atoms, joined to each other by two chemical or covalent    

O-H bonds.  These inter-atomic chemical bonds that join the atoms of a water molecule, like 

any chemical bond, cannot be explained simply in terms of classical electrostatics.  They can be 

explained in terms of quantum mechanics principles that relate to atom wave function overlap or 

electron orbital overlap25. (Pauling 1960 “The Nature of the Chemical Bond”). 
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 However, the inter-molecular water interactions can be described in terms of much 

simpler classical electrostatics.  The most significant of these interactions is the hydrogen-bond.  

The term “hydrogen-bond” is very suggestive of a bond that is chemical or a covalent in nature, 

but it is not.  A real chemical bond, as just mentioned, cannot be described in terms of classical 

electrostatics, but a hydrogen-bond can, and such an explanation now follows.  Using a classical 

description of water’s oxygen, the oxygen atom has 6 of its 8 electrons in the outer orbital (so 

these 6 are available for chemical bonding or other interactions).  Two of the six outer orbital 

electrons are involved in the two chemical bonds with the hydrogen atoms (one electron in each 

chemical bond).  This leaves two lone pairs of electrons on the side of the oxygen that faces 

away from the chemically bonded hydrogen atoms.  Hydrogen bonding is simply the electrostatic 

attraction between those negatively charged electron pairs of the oxygen and the positively 

charged electron-stripped hydrogen nuclei of a neighboring water molecule.   The two free 

oxygen electron pairs are able to form two hydrogen bonds.  At any given instant, this interaction 

between neighboring water molecules takes place throughout the liquid, ordering the orientation 

of all the molecules and resulting in the unique structure of water.  However, these hydrogen 

bonds have a short life time, and are continually being broken and remade, which allows the 

molecules to switch hydrogen bonding partners on a time scale of under two hundred 

femtoseconds24.  It is this flexibility of each molecule within the structure that allows water to be 

a liquid. 
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Figure 6: 2D representation of Hydrogen Bonds in Bulk Water26 

Above is a 2D representation of five water molecules, and the hydrogen-bonds of the hydrogen-

bonding network are represented as dotted lines, and the chemical bonds are solid lines. 
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 The oxygen of the water can do more than covalently bond to two hydrogen atoms, and 

hydrogen bond two others.  Sometimes one of the hydrogen bonds becomes promoted to a 

covalent bond, allowing the water oxygen to have three covalent bonds, 2 3H O H H O+ ++ .   

This ability to covalently bind three hydrogen atoms, the temporary nature of this three covalent 

bond status, the hydrogen bonding network, and the temporary nature of the hydrogen bonds, all 

contribute to the ability of proton travel.  The protons use the hydrogen bonding structure of 

water as channels of travel.  The protons also use the temporary nature of the hydrogen bonds 

and the temporary nature of the three-covalent bond status for “virtual” travel.  That is, subtle 

shifts in the hydrogen bond network allow the 3H O+  ion to shift from one molecule to its 

neighbor.  This is very similar to how holes travel in semiconductors.  It is interesting to note that 

the conductivity of water ( 45 10−×  to 2 seimens/meter), in between that of an insulator and a 

conductor, is similar to that of semiconductors used to fabricate electronic devices 

( 0.15≈ seimens/meter)27.  The diagram below describes this virtual 3H O+ travel. 
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Figure 7: 2D representation of Proton travel in Bulk Water26 
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As before, the hydrogen bonds are represented as dotted lines, .  The 3H O+  ion is 

represented in red, and imminent covalent bond formation is represented by the wedged dotted 

line, .  Notice that we expanded on 3H O+  ion travel, but not on proton ( H + ) travel.  Where 

solvent (water) is concerned H + (proton) travel and 3H O+  travel are synonymous.  The effect is 

the same, which is that one electron charge is moved from one location of the solvent to the next.  

The difference between the H +  ion and the 3H O+  ion has more significance where the water 

interacts with the titratable site of the solute.  This solvent-solute proton interaction will be 

discussed in more detail in the next section.  For all the reasons described above, we can 

summarize the nature of proton dynamics in water as follows.  Subtle shifts in the hydrogen 

bonding structure within water allow for the disappearance of 3H O+  in one location and its 

simultaneous formation in a nearby location, which allows for very effective, efficient and rapid 

“virtual” travel of an electron-charge.  This ability to rapidly whisk protons to or from any 

location effectively makes water a good proton reservoir.  It’s a proton reservoir because in a 

solvated biomolecule system, proton transfer to or from the solvent does not make a significant 

change to the concentration of protons in the solvent.  It is a good proton reservoir because the 

transfer of protons to and from the solvent, due to the water, happens without any hysteresis. 

1.4.1.2 Proton Dynamics in Titratable Regions of a Solute 

We have just discussed how effective water is at being a proton reservoir.  If a titratable region is 

solvent exposed, it can exchange protons with the solvent.  Where proton dynamics is concerned, 

the main difference between solute and solvent is that the +1 electron charge travels through the 

solute in the form of a H +  proton, and it travels through the solvent in the form of 3H O+  ions.  

The transfer of +1 electron charge at the solvent-solute interface is initiated by the making or 

breaking of one of the bonds in 3H O+ , where this water molecule (or ion) is the one the titratable 

site interacts with.  The diagram below illustrates this transfer of proton from Cysteine to water. 
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Figure 8: Proton Dynamics at the solute-solvent interface26 

1.4.1.3 Hydrolysis of water, Peptide Bond hydrolysis, ATP hydrolysis 

Water hydrolysis is simply the dissociation of water into ions, 2H O H OH+ −→ + . 

Peptide bond hydrolysis is simply using the ions produced by water hydrolysis to help attack and 

break a peptide bond.  Many important mechanisms, such as ATP (Adenosine triphosphate) 

synthesis and function, involve water hydrolysis at the core of their operations. 

 ATP molecules are the fuel cells for many molecular machines and devices within cells. 

2 iH O ATP ADP P H Energy++ + + +  
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ATP releases its energy to the molecular machines, according to the right-sided progression of 

the equation above.  In the next section, we will see protons in action in a completely different 

way (together with membranes, channels and pumps), for the very purpose of synthesizing ATP. 

 

1.4.2 Bilayer Membranes and their insulating properties 

Cells are packaged with, bounded by, and interact with their surroundings through a ‘skin’ 

known as a ‘plasma membrane’ or a ‘bilayer membrane’.  These membranes are essential to the 

cell, serving not only the purpose of containing and protecting the cell’s contents, but also 

allowing the cells to ‘breathe’ by virtue of molecular devices like Ion Channels and Ion Pumps 

that are embedded into the cellular membranes.  These molecular devices are gatekeepers 

responsible for the transfer of specific ions, including protons, in and out of the cell. 

These devices depend on the insulating, proton impervious and ion impervious properties 

of the membrane bilayer.  After all, ion gatekeepers only make sense if the ions are unable to 

penetrate anywhere else.  Now we will take a look at how these membranes play an important 

role in the function of cells. 

1.4.2.1 Proton Gradients across Mitochondria Membranes 

Eukaryotes (simple animal cells) contain organelles called mitochondria.  Mitochondria are 

responsible for the final stages of food metabolization, the conversion of chemical energy into 

ATP (Adenosine triphosphate) molecules. 
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ATP molecules are the fuel cells for many molecular devices.  The formation of ATP is therefore 

very important, because living organisms need a lot of it all of the time.  Proton gradients and 

proton transfer across mitochondrion membranes play an important role in ATP generation in 

animals. 

 

 

 
Figure 9:  Proton Gradient across Inner Mitochondrion Membrane 
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inside the membrane.  This allows other membrane motors embedded in the membrane to 

harness the energy of the proton gradient to do useful work.  One such membrane machine that 

does this is ATP synthase.  ATP synthase harnesses energy from the proton movement down the 

proton gradient and reentering the cell.  This energy is used to synthesize ATP (see Figure 9).  

ATP molecules are the fuel cells for many molecular machines.  That is, ATP is the package that 

contains energy and by which energy is delivered to these devices, according to the reverse 

reaction shown in Figure 9, i.e. ATP ADP H phosphate Energy+→ + + + .   

1.4.2.2 Proton Gradients across Chloroplast Membranes of Prokaryotes 

Prokaryotes (simple plant cells) contain organelles called chloroplasts.  They use the energy from 

sunlight to maintain a proton gradient across their membrane.  ATP is not only the fuel cell for 

animal cells, but for plant cells as well.  In plant cells the ATP synthesis happens in a way very 

similar to that in the mitochondria of animal cells (discussed in the section above). 

1.4.2.3 Proton Gradients across Bacteria and Archaea Membranes 

Bacteria also maintain a proton gradient across their membranes, and are able to generate ATP in 

fashions very similar to mitochondria and chloroplasts (see previous 2 sections). 

Archaea are microorganisms that exist in extreme pH, salt concentration, and temperature 

environments.  The ATP production in archaea also depends on a proton gradient across its 

membranes, and ATP is synthesized in a way familiar to what was discussed above.  

1.4.2.4 Other devices that use Proton Gradients across membranes 

There are several other well-known machines, embedded in membranes, which utilize the energy 

of the membrane proton gradient.  We will briefly mention just two more such devices. 

Lactose permease allows a proton to enter the cell.  It uses the energy from this process to 

bring a sugar molecule into the cell. It does so by allowing the proton to enter such that the 

proton is attached to a sugar molecule and drags the sugar molecule along with it. 

Flagellar motors allow bacteria to swim.  They use the proton gradient to generate torque, 

which turns a helical spindle (flagella) that protrudes outside the bacteria, like a propeller. 
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1.4.3 Proton Dynamics in Enzyme Catalysis: Serine Protease 

Catalysts boost the rate of a chemical reaction.  Catalysts that are manufactured by cells are 

called enzymes.  Enzymes work by binding to some intermediate state of the substrate, somehow 

reducing the activation energy barrier of a specific reaction.  As with all catalysts, during the 

cycle of the reaction the enzymes remain chemically unchanged.  Enzymes are very specialized 

with respect to the reaction they catalyze.  Therefore there are many different enzymes and 

categories of enzymes.  Proton transport or relay often plays an important role in the function of 

enzymes.  I will use serine protease as an example to demonstrate the very important role of 

proton transport in a very important function. 

Serine Protease catalyzes the breaking of protein peptide bonds in a process known as 

hydrolysis.  Hydrolysis is the process of breaking a bond with assistance from the ions of 

dissociated of water.  Therefore Serine Protease has the effect of breaking long hydrocarbon 

chains into smaller pieces.  This enzyme is important for digestion, blood clotting and 

suppressing virus invasion.  The following series of snapshots28, 29, 30 demonstrate how serine 

protease works, and how proton dynamics and hydrolysis play an important part in the process. 
 

(a) 

 

(b) 
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(c) 

 

(d) 

 
 

(e) 

 

 

(f) 

 
 

(g) 

 

(h) 

 
Figure 10: Serine Protease catalysis28,29,30 (Voet & Voet, 1995) (T. Rose & E. Di Cera, Department of 

Biochemistry & Molecular Biophysics, Washington University School of Medicine)  

 

Serine protease has an active site that contains three titratable amino acids in an electrostatic 

network. The amino acids are Asp102, His57, and Ser195, and they work together to cleave 

polypeptide bonds.  The three amino acids are represented at the top of each diagram.  The 
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polypeptide substrate (just one link of it) is represented near the bottom of each diagram.  The 

red arrows show the impending relocation of an electron pair, and hence the impending creation 

or destruction of a chemical bond.  The subsequent diagram shows the result of the 

rearrangement, and also (again with the red arrows) indicates impending rearrangements for the 

next step. 

In Figure 10(c), the polypeptide bond cleavage has been completed, and in Figure 10(d), 

the C-terminal fragment (the polypeptide fragment that contained the old C-terminal and the 

Nitrogen from the Nitrogen end of the cleaved bond) is removed from the picture.  In Figure 

10(e), a water molecule comes into the picture. In Figure 10(f) to Figure 10(h), the water 

molecule is used to cap off the new C-terminal end and to return the active site to its original 

state. 

1.4.4 Proton Dynamics in Hemoglobin:  The Bohr Effect 

The Bohr Effect is the pH, configurational and other environmental dependence of hemoglobin’s 

affinity for oxygen.  Protons play an important role in the Bohr Effect, and in the next two 

sections we will use hemoglobin as an example for the discussion of the role of proton dynamics 

in allostery and, usually related, the role of proton dynamics in conformational change. 

For thirty years, investigators have been trying to properly model hemoglobin.  Part of 

the difficulty is because there is a great deal of controversy about precisely which groups are the 

pKa-shifted groups responsible for the pH dependence of hemoglobin’s oxygen affinity (the 

Bohr Effect).  The discussions that follow do not contribute to that debate, but simply serve to 

give an introduction to how hemoglobin works, and to emphasize that proton dynamics is an 

important part of the process. 

On a tangential note, we are hopeful that our proton dynamics modeling method, the 

heart of this dissertation, will in the near future, make a significant contribution toward modeling 

hemoglobin and the hemoglobin function debate. 

1.4.4.1 Proton Dynamics and Feedback Control (Allostery) 

Proteins, and macromolecules made up of globular proteins, are able to execute sophisticated and 

detailed functions as a result of complicated, long-range, interactions between residues.  The 
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function of Hemoglobin is a good example.  Hemoglobin is a tetramer (consists of four 

subunits), and each subunit is a globular protein with an active site that contains an iron molecule 

that binds an oxygen molecule.  The binding of the active sites is coordinated, even though they 

are on opposite sides of the macromolecule and are separated by about 2.5 nm.  The binding to 

oxygen at one active site predisposes the other active sites to also bind oxygen.  This is a 

feedback control that consists of interactions between active sites that span large distances 

(allostery), and is key to the sophisticated function of hemoglobin.  What follows is a summary 

of how hemoglobin works, with emphasis on the role that proton dynamics plays. 

 Muscle activity produces CO2, which dissolves in the blood to form acid. 

 CO2 + H2O   H2CO3    HCO3
- + H+ 

  These acidic conditions trigger oxygen-laden hemoglobin to do a series of things.  First, protons 

and CO2 are bound (the binding site of the CO2 is a site different from the oxygen binding site).  

The binding of the protons and the CO2 triggers the other sites to release their oxygen molecules 

(the Bohr Effect).  One of the ways in which the active sites of hemoglobin are able to 

communicate subtle information over such large distances, is by conformational changes.  These 

conformational changes are the result of the cooperative effects of many weak interactions.  In 

the next section we will see the role of proton dynamics in the conformational changes in 

hemoglobin. 

1.4.4.2 Proton Dynamics and Conformational Change 

Hemoglobin is a good example for examining how a cascade of many subtle effects, including 

proton movement, can result in conformational changes.  In the case of hemoglobin, the effects 

of these conformational changes can be observed on the macroscopic level. Deoxygenated 

hemoglobin crystals have a needle like shape, and oxygenated hemoglobin crystals have a plate-

like shape31, 32.  Deoxygenated hemoglobin is blue in color, and oxygenated hemoglobin is red in 

color.  First we will look at the conformational changes that occur to a single subunit upon 

binding an oxygen molecule.  Then, we will look at the coordinated interactions between the 

subunits that are the keys to hemoglobin’s allostery. 

Each hemoglobin subunit consists of a Heme group that contains iron.  This Heme group, 

shown in red in Figure 1133 below, has a “domed shape” as a result of the pressure from the 

Histidine electron cloud (shown in blue). 
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Figure 11: Hemoglobin Subunit33 

(R. Frey URL: www.chemistry.wustl.edu/~edudev/LabTutorials/Hemoglobin/MetalComplexinBlood.html) 

 

Oxygen molecule (shown as the gray molecule on the right) binding causes the iron to be pulled 

planar relative to the rest of the heme group.  This action also pulls on the histidine, which results 

in changes at the interface with the other subunits.  We will now take a look at what happens at 

that interface. 

 
Figure 12: Heme Subunit Interaction33 

(R. Frey URL: www.chemistry.wustl.edu/~edudev/LabTutorials/Hemoglobin/MetalComplexinBlood.html) 

 

 

Figure 12 shows the interaction between two subunits.  The diagram on the left shows 

that the deprotonated form of hemoglobin is stabilized by a salt bridge.  That is, there are 

oppositely charged groups in close proximity that attract one another.  These charged groups 

belong to histidine amino acids, and are different from the histidine residues that wedge the 

heme group as shown in Figure 11.  Thus the heme groups are non-planar, and oxygen 
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binding is not favored.  On the right, there is no such salt bridge, and the oxygenated heme 

groups have a planar shape. 

Let’s start with the oxygenated form on the right, and summarize how acidic conditions, 

protons and CO2 cause the configurational shift to the left, and the consequent release of the 

oxygen molecule.  The oxygenated form on hemoglobin, depicted on the right of Figure 12, 

exists in a pH 9 environment.  In the presence of CO2 and a pH of around 7 (which is the case 

in the environment of active muscle), histidines absorb protons and are ionized according to 

the following reaction. 

 
 

These protonated histidines form the positive side of the salt bridge depicted on the left of Figure 

12.  The carbon dioxide is absorbed by the amino group of some of the amino acids on the 

interface. 

   
This forms the negative carboxyl group on the complementary side of the salt bridge.  This 

summarizes how 2CO  and protons cause ionization and subsequent salt-bridge formation at the 

sub-unit interface. 

1.4.5 Proton Wires 

In section 1.4.1 we talked about bulk water having such interesting behavior that it deserves the 

designation “biomolecule”.  In that section we also noted that the behavior of bound water is no 

less intriguing and important.  



  30

Decades ago, X-ray crystallographers had suspected early on that certain bound water 

molecules play an important part in the structure and therefore function of biomolecules.  This 

suspicion grew more and more convincing as the decades passed and X-ray hardware and 

software yielded better and better resolution.  One side effect of the improving resolution was the 

ability to “see” bound water more clearly.  Another indirect side effect of increasing resolution 

was the tacit acceptance of bound water as part of the structure of the biomolecule, placing the 

persistently consistent bound water molecules on the same footing as well resolved amino acids. 

1.5 ELECTROSTATICS & PROTONATION STATE OF PROTEINS 

1.5.1 Electrodynamics of Biological Systems 

This section, section 1.5, focuses on electrostatics of biomolecules.  One may ask “instead, why 

not concern ourselves with the electrodynamics of solvated biomolecules?”  Certainly, the 

electric field of a real biomolecule and a simulated one is dynamic.  However /dE dt  is not big 

enough to generate a significant B  field.  So for biomolecule simulation models, like MD 

models, time is discretized and numerical solutions for the electrostatic field are performed at 

each time step, and these numerical calculations ignore any B  field electrodynamic effects 

because the system in each snapshot is considered to be in a quasistatic state. 

1.5.2 What is Electrostatics in Biomolecules? 

The term electrostatics (as well as the broader term electrodynamics) refers to a classical 

Maxwellian treatment of electric and magnetic fields.  In other words, the electric and magnetic 

fields are considered to obey Maxwell’s equations.  However when the term electrostatics is used 

in the context of a snapshot of a biological system, the term only roughly approximates “all 

electric field characteristics that fall into the category of classical Maxwellian treatment”.  In 

discussions of biomolecules, electrostatics has a slightly narrower definition.  I will begin 

describing what is meant by electrostatics in biomolecules by describing what is not. 
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The force field that acts within a solvated biomolecule is considered to have three main 

components:  Covalent bond forces, van der Waals forces and Electrostatic forces.  The covalent 

bond forces are those that act on the biomolecule’s atoms as a result of their chemical bonding 

with neighboring atoms.  van der Waals forces are attractive at long distances but sharply 

repulsive at very short distances.  The long-range attractive van der Waals forces are known as 

van der Waals dispersion forces.  This force originates because the electron density surrounding 

an atom is dynamic.  So at almost any instant in time, the electron cloud surrounding the atom is 

asymmetric, causing the atom to appear as a dipole.  This will induce complementary dipoles in 

neighboring atoms because their electron density clouds are also dynamic.  And those atoms then 

go on to induce temporary dipoles in their neighbors, etc.  This is how van der Waals dispersion 

forces can affect an attractive force throughout neutral atoms in a system. This attractive force is 

responsible for the gas to liquid transition as gasses are cooled.  van der Waals repulsion occurs 

between two atoms that get too close, causing their electron clouds to overlap.  As one would 

imagine, the like charged electron clouds push off violently from each other.  This type of 

repulsion is significant at lower temperatures or densely packed molecules, hence the reason for 

the incompressibility of liquids and solids. 

Technically the van der Waals attractive dispersion force is a Maxwellian phenomenon, 

but as pertains to a snapshot of a biomolecule, it is not considered as electrostatics in the popular 

use of the word.  Electrostatics in biomolecules is considered to only encompass the electric field 

affected by atoms or small groups of atoms that are permanently charged (permanent monopoles) 

or are permanent dipoles.  Limiting the term electrostatics to refer to the effects of permanent 

monopoles and dipoles, and not temporary dipoles came about as a result of visualization from 

the reference point of the atom by those modeling biomolecules. 

From the reference point of an observer, all atoms, with permanent or temporary 

monopoles or dipoles, affect an electric field that is electrodynamic in nature.  But from the 

reference point of the atom, if the atom has permanent dipoles, its dipole parameters are “static” 

so its contribution to the electric field of the system is considered an “electrostatic” contribution.  

But if the dipoles of an atom are temporary, then from the reference of that atom, its dipole 

properties fluctuate over time, i.e. they are “dynamic”.  Hence those van der Waals dispersion 

effects don’t qualify for “electrostatics”, but the others do.  A quick note is in order here 

concerning Molecular Dynamic simulations.  Typical molecular dynamic models further enforce 
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this use of “electrostatics”, because the temporary dipole effects are not modeled as being fixed 

dipoles discretized over time.  That is, a temporary dipole is NOT modeled as having fixed 

dipole values in one snapshot of time and the dipole parameter changes from snapshot to 

snapshot. Instead, the van der Waals dispersion forces are accounted for by using a Lennard-

Jones type potential for short ranges and a continuum treatment for longer ranges. 

Here it’s also important to note that at the time of writing some well known MD 

simulation force field packages do have the functionality of representing temporary dipoles as 

fixed dipoles discretized over time.  However this option is in the process of going through the 

rigors of being tested and checked out by the scientific community.  Some of the things that need 

to be checked are how to alter the van der Waals parameters, how to attenuate the attractive 

Lennard-Jones terms, or whether they should be done away with altogether, since the temporary 

dipoles are now being explicitly modeled.  This option also uses significantly more 

computational resources per MD step.  This is an exciting development in MD force fields, 

however at the time of writing it is not an option that is accepted as standard protocol (nothing 

about our simulation methods prevents the use of this option).  What the most detailed MD force 

fields do is beside the point.  The purpose of the above discussion is to explain the history behind 

the use of  “electrostatics” in biological systems. 

1.5.3 The importance of Electrostatics in Biomolecules 

Electrostatics in biomolecules, defined as discussed above, plays a pivotal role in a wide range of 

biological processes, from protein folding to protein function.  Many effects in biological 

systems are fundamentally electrostatic in nature.  The effects of solvent exposure, pH or proton 

concentration, ion concentration, solvation shells, salt concentration, protonation state and proton 

dynamics, and to some extent hydrophobicity are all fundamentally electrostatic in nature 

(hydrophobicity is largely an entropic effect).  As a result, it is hard to find bio-molecular 

phenomena that are not fundamentally electrostatic in nature.  Electrostatics plays an important 

role in protein folding, specificity, enzyme catalysis and ion channels. 

One of the reasons why the electrostatics of permanent monopoles or dipoles of atoms, 

groups of atoms or molecules plays such an important role in biological systems is because the 

electrostatic effects are long range effects.  This long-range electrostatic effect exists for the 
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following reason:  Recall that biomolecules exist in a solvated environment.  The water molecule 

is dipolar in nature.  The electric field strength drops off as 21/ r  or 31/ r , where r  is the distance 

away from a monopole or dipole.  However there is the over-compensating effect that the 

number of poles within the distance r  increases cubically with r .  Hence the long-range nature 

of electrostatics in solvated systems. 

The function of the EcoRI DNA−  complex and hemoglobin are good examples of the 

importance of electrostatics.  In the presence of a 2Mg +  ion at a critical position relative to the 

EcoRI , the EcoRI  will bind its DNA substrate and dismantle the strands.  But if there is no 
2Mg +  ion in that position, the DNA substrate will simply be bound, and not divided.  It is 

believed that the 2Mg +  ion in that special position causes the deprotonation of several 

surrounding sites, and the consequent formation of an electrostatic network that facilitates the 

EcoR1 to perform the task of DNA separation.  For a discussion on the role of electrostatics in 

the function of hemoglobin, please see section 1.4.4. 

Having discussed the importance of the electrostatics of permanent monopoles and 

dipoles, we will now turn our attention to the importance of the titration process, a process that 

significantly alters the monopole or dipole character of a titratable site! 

1.5.4 The importance of the Protonation State 

Titration of a site is basically the process of protonation or deprotonation of that site.  This 

process will therefore transfer a proton to or from the site, thereby altering the permanent 

monopole or dipole characteristics of that site.  This can lead to some dramatic changes in 

function or configuration of the biomolecule.  Hemoglobin is a good example of protonation 

state changes triggering substantial function and configurational changes (see discussion on 

Hemoglobin, section 1.4.4). 
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1.6 FACTORS AFFECTING PROTONATION STATE OF PROTEINS 

The term protonation state may refer to a single titratable site, or to a whole biomolecule that 

contains many titratable sites.  Applied to one site, it is simply describes the protonation state of 

that site, and is analogous to a scalar, single valued, quantity.  Applied to a biomolecule of many 

titratable sites, it is best described as a vector, where each element of the vector describes the 

protonation state of one particular site.  Each vector element corresponds to one titratable site of 

the system, so the protonation state vector contains as many elements as there are titratable sites. 

We will see that many factors may go into the protonation state of a given titratable site.  

Therefore in all but the simplest cases, simply viewing the structure of the protein and assessing 

the environment at a site is not good enough to determine the protonation state at that site.  As a 

matter of fact even the most sophisticated models for protonation state calculations are 

challenged in many cases.  There is also another layer of complexity that challenges protonation 

state calculation methods, and that is that for many sites in real biomolecules, the protonation 

state of a titratable site is not a static thing.  So now I will discuss the many factors that go into 

determining a site’s protonation state. 

1.6.1 What is pH ? 

Pure water dissociates according to 2H O H OH+ −+  and does so such that its ion 

concentrations are 7[ ] 10H + −=  and 7[ ] 10OH − −=  moles/liter.  The pH  of an environment gives 

us a measure of the proton concentration in that environment and is the most obvious 

environmental parameter that affects the protonation state of a protein.  pH is defined as 

follows:  10
[ ]( / )log

1( / )
H moles litrepH

moles litre

+

= − .  The argument of the logarithm is a dimensionless 

ratio.  The numerator is the concentration of active H +  ions, the denominator is the 

concentration of active H +  in some standard state, set to 1( / )mole litre .  So the lower the pH , 

the higher the proton concentration.  The pH of pure water is therefore 7 and a solution of 

pH =7 is described as having neutral pH .  A solution with pH  less than 7 is called acidic.  A 
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solution of pH  above 7 is called basic. One way to increase the active proton concentration of 

an environment is by introducing acid.  Acids increase proton concentration by dissociation of 

their molecules.  For example, the carboxyl group COOH−  in acetic acid dissociates via 

COOH COO H− +− − + .  This is the reason why environments that have low 'pH s  are called 

acidic.  One way of decreasing proton concentration (or increasing pH ) is to introduce salts that 

gobble up protons.  For example, sodium hydroxide molecules, NaOH , readily eat up protons 

according to the equilibriums NaOH Na OH+ −+  and 2OH H H O− ++  

 The pH  range is typically from 0 to 14.  The pH  of drinking water is 6.5-8.0.  

Physiological pH , that is the pH  of the environment of most biomolecules, is about 7.4.  The 

pH  of human blood is 7.35-7.45.  The pH  of human stomach contents is 1.0-3.0. 

1.6.2 What is a pKa ? 

1
log 10

protonated deprotonated

e

G G
pKa pH

kT
−

= − • , where protonated deprotonatedG G−  is the free energy 

difference between the protonated state and the deprotonated state.  k  and T  are Boltzman’s 

constant and temperature respectively.  The protonated state can be stabilized 

( protonated deprotonatedG G−  dropped) by decreasing the pH, and the deprotonated state can be 

stabilized ( protonated deprotonatedG G−  increased) by increasing the pH .  The explanation of the 

meaning of pKa  will start by considering the special condition where  protonated deprotonatedG G= , 

that is making ( )protonated deprotonatedpKa pH G G= = . 

The most simplistic explanation of titration is that it is the process of gradually changing 

the pH  of an environment for the purpose of affecting a change in the protonation state of a 

titratable site.  So for a system consisting of a single protonated site, if the pH  starts from a low 

value and is gradually increased, at some point of the pH  range it will suddenly become 

deprotonated.  The pH  at which this happens ( protonated deprotonatedG G= ) is called the titration point, 

or the pKa .  Similarly, if a system consisting of a single site is deprotonated, the pH  can be 

gradually changed from high to low until the site changes its state to protonated.  The pH  at 



  36

which that happens will be the pKa  of that site.  pKa  is therefore a measure of how easy or 

difficult it is for a site to absorb or lose protons.  A site that has a low pKa  will stay 

deprotonated in most cases and for most of the pH  range.  It will only become protonated in 

conditions where the pH  less than its pKa .  Similarly a site that has a very high pKa  will stay 

protonated in most cases and for most of the pH  range.  It will only become deprotonated in 

conditions where the pH  is greater than its pKa . 

The above description of titration gives a good feel for what a pKa  is, but is simplistic.  

Real systems being titrated do not consist of a single titratable site.  A typical system will contain 

many titratable sites, which may be of the same type or may be of different types.  Their 

protonation state changes with time, even under constant pH  conditions.  So to describe the 

pKa  of a real site, we have to introduce the concept of averaging its protonation behavior over a 

sufficiently long period of time at a fixed pH .  For systems consisting of only one type of 

titratable site, at a given pH , the time average protonation behavior of one site is equal to the 

ensemble average protonation behavior of many sites in one snapshot of time.  The important 

question for a site, at any given pH, is therefore “for what proportion of the time is this site 

protonated vs. deprotonated?”  In other words “what is the protonation/deprotonation occupancy 

ratio?” 

Therefore if a titratable site is in conditions where the pH  is less than its pKa , its 

protonation/deprotonation occupancy ratio will be greater than one.  If the conditions are such 

that the pH  is greater than the pKa  of the site, then the site’s protonation/deprotonation 

occupancy ratio will be less than one.  If the pH  is equal to the pKa  of the site, then the 

protonation/deprotonation occupancy ratio is one.  This is how the titration point/ pKa  of a site 

is determined.  The pKa  of the site is the pH  of the conditions such that 50% of the time the 

site is protonated and 50% of the time the site is deprotonated.  This is equivalent to saying that 

for an ensemble of identical molecules, the pKa  of a particular site in the molecule is the pH  

of the conditions such that, in one snapshot of time, for 50% of the molecules the site is 

protonated, and for the other 50% of the molecules, the site is deprotonated.  Yet another way of 

saying the same thing is that the pKa  of a site is the pH  at which the protonated state and the 

deprotonated state have the same free-energy, since a protonation/deprotonation occupancy ratio 
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of 50/50 simply means that the free energies of the protonated state and the deprotonated state 

are the same ( protonated deprotonatedG G= ). 

The above definition of pKa  limits the measurement of a pKa  to the very specific 

condition where the protonation/deprotonation occupancy ratio is 50/50.  However 'pKa s  can 

also be described in terms of the relative free energies of the protonated state and deprotonated 

state, log( ) protonated deprotonatedG G
pKa pH e

kT
−

= − .  This definition is useful for pKa calculation 

methods where protonated deprotonatedG G−  calculations are possible.  Experimental pKa measurements 

are based on the narrower definition of pKa  where ( )protonated deprotonatedG G=  so the second term 

on the right is zero, so ( )protonated deprotonatedpKa pH G G= = . 

1.6.3 Titratable amino acids 

Proteins are assembled from a primary sequence of amino acids.  There are 20 different amino 

acids, and seven of them are titratable.  They are Arginine, Aspartic acid, Glutamic acid, 

Cysteine, Histidine, Lysine and Tyrosine.  What follows in Table 1 below is a brief description 

of them.  Note that the pKas shown below in Table 1 are for the sites on the side chains with 

Acetyl and N-Methyl groups capping the amino-acid backbone. 

 

Titratable amino acid  pKa  Deprotonated 

charge 

Protonated 

Charge 

Arginine 12.5 Neutral +1e 

Lysine 10.2 Neutral +1e 

Histidine 9.2 Neutral +1e 

Aspartic acid 3.9 -1e Neutral 

Glutamic acid 4.1 -1e Neutral 

Tyrosine 10.1 -1e Neutral 

Cysteine 8.3 -1e Neutral 

  
Table 1:  Titratable Amino Acids 
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1.6.4 Free energy components that contribute towards pKa values 

We know what the pKa  values are for all of the titratable amino acids; they have been 

determined experimentally, and their values are listed in Table 1 above.  Note that these pKa  

values only hold for one condition:  These are the pKa  values of the residues when they are 

isolated in solvent.  In other words, any one of the titratable residues would have the listed pKas 

only if it was the only residue of the biomolecule in solution.  It is “isolated” meaning that it does 

not interact with any other titratable sites, does not interact with any other biomolecule or any 

other residue of the biomolecule.   It is therefore completely solvent exposed and is subject to no 

hydrophobic effects.  From here on I will therefore describe the experimentally determined 

pKas  listed above as pKas  for isolated residues or “isolated pKas ”. 

However if any of the titratable residues was part of a folded protein or biomolecule, the 

pKa  it exhibits may be different from the isolated pKa .  Such a shift away from the isolated 

pKa  is as a result of its environment.  That is, the residue interacts with other titratable sites, 

other residues of the biomolecule, or other biomolecules. 

1.6.4.1 pKa components invariant with environmental changes 

Consider the isolated pKas  for all of the titratable amino acids given in Table 1.  All of these 

titratable amino acids have their isolated pKas  experimentally measured under identical 

conditions.  Yet the titratable amino acids have isolated pKas  that almost occupy the full pH  

range.  The reason for this is because even though the solvent exposure of the titratable groups is 

the same between the different amino acids, there are a few other factors responsible for why the 

isolated pKas  range from 12.5 to 3.9.  These factors have to do with the nature of the amino 

acid side chain that the titratable PROTON is connected to.  These factors I describe as 

“intrinsic” factors, and will be the subject of discussion in this section. 

Recall that a pKa  is related to the protonation-deprotonation free energy difference.  It is 

a measure of how hard it is to add or remove a proton from a titratable site.  Adding or removing 

a proton from a titratable site involves making or breaking the covalent bond that binds the 

proton.  A strong bond to the proton will contribute towards a higher pKa , and a weak bond to 
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the proton will contribute towards a lower pKa .  This effect can be seen if we compare the 

titratable amino acids that have isolated pKas  at the approximate extremes of the pKa  range, 

Aspartic acid ( pKa =3.9) and Lysine ( pKa =10.8).  In Aspartic acid, the titratable proton is 

connected to an oxygen atom, but in Lysine, the titratable proton is connected to a nitrogen atom.  

Oxygen and nitrogen have atomic numbers 8 and 7 respectively, which means that there are 6 

and 5 electrons in their outer orbitals respectively.  Oxygen is much more electronegative than 

nitrogen, because it only needs 2 electrons to complete its outer orbital (8 electrons required to 

complete the outer d orbital) as opposed to nitrogen which is three electrons short of filling the d 

electron orbital.  At neutral pH  ( pH =7), the strongly electronegative oxygen at the titration 

site of the protonated Aspartic acid (represented on the left of the diagram below) will easily 

strip the lone electron from the titratable Hydrogen in order to complete its complement of d 

shell electrons.  At a pH  of 7, the deprotonated state is more stable.  This relative stability of the 

deprotonated state (or instability of the protonated state) is the reason for the low pKa  of 

Aspartic acid. 

 

C

O O H

C

O O-

Note the one-way arrow.
Dissociation at pH = 7

+   H+

 
However the nitrogen in Lysine’s titratable site is not as electronegative, so at a pH  of 7, 

it cannot do as the oxygen in Aspartic acid’s titratable site.  Protonated Lysine, represented 

below on the left, cannot strip the electron away from the hydrogen leaving a proton.  Notice the 

direction of the dissociation arrow. 
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This means that for Lysine, at a pH  of 7, the free energy of the protonated state is lower than 

that of the deprotonated state, hence it’s high pKa . 

We have just discussed that the nature of the chemical bond between the titratable proton 

and its titration site is the major factor contributing to the isolated pKa  values.  Notice that the 

titratable sites in Aspartic acid and Glutamic acid are identical.  We would therefore expect that 

the isolated pKa  for Aspartic acid and for Glutamic acid to be very close, and indeed they are 

( pKas  of 3.9 and 4.1 respectively). 

There is another, much less influential factor that affects isolated pKa  values.  This 

factor is NOT invariant with environmental changes, but it does play a part in the isolated pKa  

value, so it will be briefly alluded to here, and spoken of in more detail in following sections.  

The charged protonation state of a residue affects an attractive polarization field with the 

surrounding water solvent.  This effect will contribute towards making the charged state more 

stable, regardless of whether that charged state is a deprotonated state (as is the case with Asp, 

Glu, Cys, or Tyr) or whether that charged state is a protonated state (as is the case with His, Lys, 

Arg).  Therefore this factor contributes slightly towards dropping the values of the isolated 

pKas  for Asp, Glu, Cys and Tyr.  This factor correspondingly contributes slightly towards 

raising the isolated pKa  values for His, Lys and Arg.  If these residues were in hydrophobic 

cores instead of being isolated and completely solvent exposed, this effect will have a completely 

reversed effect on the pKas .  This hydrophobic environment effect will be discussed more in 

sections 1.6.4.2 and 1.6.7. 

1.6.4.1.1 Aspartic and Glutamic Acid comparisons 

Aspartic acid and Glutamic acid have a very similar structure, differing only in that Glutamic 

acid’s side chain is one 2CH  group longer. 
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Figure 13: Asp and Glu Comparison26 

Note that in Figure 13 above, the Acetyl and N-Methyl blocking groups at the ends of the amino-

acid backbone fragment are not shown and that the indicated pKas are for the amino-acids with 

these blocking groups.  With regards to the Aspartic and Glutamic acid comparison, note that 

although the titratable regions are identical ( COOH COO H− +− − + ), their pKa values differ 

by a few tenths.  This shows that the composition of the rest of the side chain does also 

contribute slightly to the isolated pKa  value.  The specific reasons for the Asp and Glu pKa 

differences are complicated and include orientation of the side chain with respect to the 

backbone and the hydration effect changes due to the additional – CH2 – of Glu. 

We can therefore summarize the contributions towards the isolated pKa  values, or the 

relative stabilities of the protonation states in the isolated conditions.  In order of influence, they 

are the chemical composition of the immediate titration region, the charge/neutrality solvation 

effects of the protonation state, and the chemical composition of the rest of the side chain.  The 

first and last factors, the chemical composition of the immediate titration region and the chemical 

composition of the rest of the side chain, are the factors that are invariant with environmental 

change.  They involve chemical electron cloud interactions.  These factors are invariant because 

when the titratable amino acids are part of a biomolecule and interact with other parts of a 

biomolecule, these factors stay the same. 
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The second factor, the charge/neutrality solvation effects of the protonation state, is an 

environmental factor.  It tends to move the pKa  in one direction in solvent exposed 

environment, but tends to shift the pKa  in the opposite direction in a hydrophobic environment.  

We will discuss these and other environmental effects in the next section.  

1.6.4.2 pKa variation with environmental changes 

Titratable amino acids will only exhibit the pKa  values listed above if they are isolated.  

However when titratable amino acids are in real in-vitrio biomolecules, the titratable sites 

interact with other parts of the biomolecule, other titratable sites or parts of other biomolecules.  

These effects are what I describe as “environmental” effects that cause the pKa  values of a 

titratable site to shift away from its isolated pKa.  Note that these environmental effects can all 

be described as electrostatic in nature.  They do not involve any chemical electron cloud 

interactions as did the invariant factors. 

1.6.4.2.1 Solvent Exposed environments 

The charge or neutrality of a titratable site affects the pKa  in ways that depend on the 

environment.  If a site is solvent exposed, the charged version will effect polarizing of 

surrounding solvent, which helps to make that charged state more stable, regardless of whether 

that charged state is a deprotonated state (as is the case with Asp, Glu, Cys, or Tyr) or whether 

that charged state is a protonated state (as is the case with His, Lys, Arg).  Therefore this factor 

contributes slightly towards dropping the values of the pKas  for Asp, Glu, Cys and Tyr.  This 

factor correspondingly contributes slightly towards raising the pKa  values for His, Lys and Arg.  

It is important to note here that the pKa  shifts just described are not shifts from the isolated 

pKas , because the isolated pKa  value includes this effect.  Recall that this effect of a charged 

titratable site polarizing surrounding water is also present in the isolated pKa  conditions.   

1.6.4.2.2 Hydrophobic environment 

If these residues were in hydrophobic cores instead of being isolated and completely solvent 

exposed, there will be a completely reversed effect on the pKas , because a buried hydrophobic 

environment will help make the neutral state significantly more favorable, regardless of whether 
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that neutral state is a protonated state (as is the case with Asp, Glu, Cys, or Tyr) or whether that 

neutral state is a deprotonated state (as is the case with His, Lys, Arg).  Therefore this factor 

contributes significantly towards raising the values of the pKas  for Asp, Glu, Cys and Tyr.  This 

factor correspondingly contributes significantly towards dropping the pKa  values for His, Lys 

and Arg.  It is important to note here, in contrast to the solvent exposed case, that the pKa  shifts 

just described are shifts from the isolated pKas  and are often quite significant.  Recall that 

isolated pKa  conditions are completely solvent exposed conditions. 

1.6.4.2.3 Charged environment 

Finally we discuss the most obvious factor that affects the pKa  of a site.  That is, the 

electrostatic effects of nearby charges as would occur with charged ions or charged amino acids 

in the immediate surroundings.  In a negatively charged environment, the positive/neutral 

titratable sites will have their pKas  shifted up, while the negative/neutral titratable sites will 

have their pKas  shifted down.  In a positively charged environment, the positive/neutral 

titratable sites will have their pKas  shifted down, while the negative/neutral titratable sites will 

have their pKas  shifted upwards. 

1.6.5 Effects of pH on protonation state 

The pH  of an environment, a measure of the concentration of protons in the environment, is the 

environmental factor that has the most direct effect on the protonation state of a biomolecule.  

The titratable sites most affected by the environment’s pH  are those titratable sites that are on 

the surface of the biomolecule, because they are in direct contact with the solvent.  This is 

because the pH  of the environment specifically means the pH  of the solvent that surrounds the 

biomolecule.  A lower pH  will tend to protonate sites, and a higher pH  will tend to 

deprotonate sites. 

Protonation changes due to pH  changes will change the net charge of the biomolecule.  

If the pH  drops and sites pick up protons, the net charge will change in the positive direction.  

If the pH  increases and causes titratable sites to lose protons, the net charge will change for the 
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negative direction.  These isoelectric changes can be far reaching, going way beyond affecting 

the protonation states of surface titratable groups and affecting fundamental changes in the 

structure and performance of the biomolecule.  Hemoglobin is a very good and well-studied 

example of precisely this effect (see section 1.4.4).  In summary, under the conditions at the 

lungs, it binds oxygen and releases carbon dioxide.  The hemoglobin then travels to the muscles 

via the blood stream.   Under the more acidic conditions of the muscles, it releases the oxygen 

and binds the carbon dioxide, which in then transports back to the lungs, and the cycle continues. 

1.6.6 Solvent exposed titratable sites 

Solvent exposed titratable sites generally exhibit a pKa  close its isolated pKa .  However the 

pKa  of solvent exposed site will shift away from the isolated pKa  in the presence of other 

nearby charged groups, such as solvent ions.  One way in which ion presence can affect pKa  

shifts is if the ion concentration is different from the ion concentration of the isolated pKa  

measurement conditions.  Another way that ion presence can affect pKa  shifts is if an ion 

assumes a particular position with respect to a biomolecule, in such a way that it is an important 

part of the function and structure of the biomolecule.  The 2Mg +  ion of EcoRI  is a good 

example of this.  In the presence of a 2Mg +  ion at a critical position relative to the EcoRI , the 

EcoRI  will bind the DNA substrate and dismantle the strands.  But if there is no 2Mg +  ion in 

that position, the DNA substrate will simply be bound, and not divided.  It is believed that the 
2Mg +  ion in that special position causes the deprotonation of several surrounding sites, and the 

consequent formation of an electrostatic network that facilitates the EcoRI  in performing the 

task of DNA separation34. 

1.6.7 Deeply buried titratable sites 

Titratable sites that are deeply buried in a purely hydrophobic core will generally assume a 

neutral protonation state.  So acidic residues like Aspartic acid, which are usually deprotonated 

and negatively charged when solvent exposed, will have their 'pKa s  shifted upwards and 
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become neutral and protonated.  Similarly basic sites like Lysine, which are usually protonated 

and positively charged when solvent exposed, will have their 'pKa s  shifted downwards and 

become neutral and deprotonated. 

However “deeply buried” is not a quantitative term.  Neither is “purely hydrophobic 

core”.  The reality is that the ability of a hydrophobic environment to force neutrality on a 

usually charged titratable site depends on the distance of the titratable site from bulk solvent (i.e., 

a measure of how “deeply buried”).  It also depends on the composition of the hydrophobic core.  

The following section will discuss occurrences of sites that are both charged and buried 

1.6.8 Sites that are charged and buried 

The following sections will discuss the energetics of various scenarios that stabilize titratable 

sites that are both charged and buried. 

1.6.8.1 Salt bridge 

One way in which a buried titratable site can maintain its charge is if it interacts with another 

buried titratable site of complementary charge that is close enough.  This type of interaction is 

described as a salt-bridge, because it mimics the oppositely charged attraction of ions in a salt 

molecule.  Salt-bridge formation is an important part of hemoglobin function, and this is 

discussed in section 1.4.4. 

1.6.8.2 Electrostatic networks 

The salt-bridge, described above, can be considered the most basic form of charge network.  

Charge networks may involve more than half a dozen buried titratable sites.  Their stability is 

often the result of a delicate, subtle and complex electrostatic balance.  Such networks are often 

found in the active sites of biomolecules.  See Serine Protease discussion (section 1.4.3) for an 

example of a relatively simple electrostatic network. 
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1.6.8.3 Local configuration fluctuations 

 

Electrostatic networks may be dynamic in character because they may be correlated with 

configurational dynamics.  The protonation state of sites in electrostatic networks of mobile 

regions of a biomolecule is therefore expected to change with time and configuration.  This 

protonation state-configuration dynamics correlation may play a critical role in the function of 

the biomolecule, as it does in hemoglobin, section 1.4.4. 

1.7 EXPERIMENTAL TOOLS FOR INVESTIGATING PROTEINS 

1.7.1 Structural Methods 

The structures of many biomolecules have been determined by X-Ray crystallography.  The 

sample preparation starts with the biomolecule of interest dissolved in a solution of buffers.  If 

the conditions of pH  and salt concentration are right, crystals of the biomolecule begin to grow 

over a period of weeks.  These crystals are then flash-frozen, mounted on a rotating stage and an 

X-Ray beam is shot through the crystal.  A detector catches the x-rays that were scattered by the 

crystal, and analysis of this scattered radiation is used to construct the structure of the 

biomolecule.  The major bottleneck with the throughput of this technique is the process of 

growing crystals.  There is no definitive way of knowing beforehand the right conditions for 

crystallization.  X-Ray crystallography can capture the positions of the heavy atoms of the 

system (typically all atoms bigger than Hydrogen), including the oxygen atoms of bound water, 

provided they do not move too much.  Just like a long exposure picture taken on film, the heavy 

atoms that are very mobile, such as those of the bulk solvent, are not resolved.  But the heavy 

atoms of the biomolecule and the bound water are usually well resolved. 

Nuclear Magnetic Resonance (NMR) imaging is another tool for structure determination, 

but its usefulness is not limited to biology.  A sample of solution containing the biomolecule of 

interest is subjected to a strong modulating magnetic field.  This induces spin of the nuclei of the 

atoms of the sample.  This spin in turn induces a reaction field that interacts and modifies the 
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original magnetic field.  Sensors can measure these modifications, and that information is then 

used to determine the structure of the biomolecule.  NMR also yields limited dynamic 

information.  The NMR technique is usually used to solve smaller structures.  However 

development of NMR theory, methods and implementation are allowing NMR to be used to 

solve the structure of larger and larger biomolecules.  Unlike X-Ray crystallography, the protein 

does not have to be crystallized, so the preparation process for the sample is not as involved.  

This is a significant advantage because crystallization is somewhat of an art and not yet a 

science, and finding the crystallization conditions for a never before crystallized protein is no 

guarantee.  

Knowing the position of bound water is important because it allows insight into water 

penetration.  As we have seen, this is an important aspect of the structure because of its relation 

to proton dynamics.  Both X-Ray crystallography and NMR allow investigators to see bound 

water. 

 These structural methods discussed are invaluable because they provide the starting 

configuration for computational simulation.  Because the protein-folding problem is not 

completely solved, it cannot be simulated.  Therefore there is no computational way to start with 

a primary structure and derive a sufficiently accurate protein structure.  Computational 

simulation is therefore indebted to structural methods like X-ray crystallography and NMR 

imaging to provide the structure of the biomolecule, from which the simulation may start. 

1.7.2 Experimental, Thermodynamic and Other “Wet Lab” Methods 

There are several laboratory methods such as titration, reaction rate control methods and 

calorimetric methods that yield valuable information about the pKas and thermodynamics of a 

biomolecule.  It is these results that serve as a benchmark for our computational thermodynamic 

results. 
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1.8 COMPUTATIONAL BIOPHYSICS: THEORY OR EXPERIMENT? 

Traditionally, all computational investigations are considered to be theoretical.  What we do 

certainly qualifies as such.  We are building a model, and testing the computational results 

against experimental results.  We are therefore seeking to validate our “theory”, which in our 

case is our computational model. 

However there is also a lot of experimental flavor to this work.  Figure 20 and the 

subsequent discussion, gives a feel for how central numerical analysis via computer experiment 

of various models is to computational molecular biophysics.  Apart from simply validating our 

model, we can go further to use our computer model as a tool for investigation.  For example, we 

hope to apply our model to understand specificity between protein and DNA: to break down the 

protein and DNA binding into components.  This is something that can’t be done in laboratory 

experiments, but can be done in computer experiments. 

1.9 SURVEY OF COMPUTATIONAL RESOURCE EVOLUTION 

The growing prowess of computational resources has been an indispensable catalyst for applying 

atomic detailed molecular dynamics to the computational investigation of a broader and broader 

range of biological phenomena.  A tide of investigators are pressing hard for either increasing 

force field accuracy, increasing system size, or increasing simulation length.  The gate 

restraining them is computational power, even though that gate has yielded a lot of ground.  This 

is because the yielded territory has been so fruitful, and the promise of further territory so 

alluring, that the appetite has only been wetted instead of being satisfied. 

It is therefore fitting that I devote a few sections to computational resource evolution, 

pointing out correlations with the feasibility of more accurate models, larger systems and longer 

simulations.  As a true node-hour consumer, I have a duty to add to the din of demand for more 

and faster computational resources, so these sections also serve to fulfill that duty. 
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1.9.1 Hardware improvements 

In terms of computer hardware improvements over time, the most dramatic is processor clock 

speed.  The figure below shows the clock speed improvements for the Alpha processor over ten 

years.  The Alpha processor, for many years, was considered the highest performing 64-bit high-

end computing processor.  Many supercomputers running today have Alpha processors at their 

core.  This is the case with our workhorse, the PSC’s Lemieux, which is also the workhorse of 

dozens of other account holders.  Production of Alpha processors stopped in late 2004 because of 

insufficient volume of sale, due to the Alpha lineage not migrating to the high volume desktop 

market. 

 

 
Figure 14: Improvements in processor performance 
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The solid dots show Alpha processor speed through the years35,36.  The hollow dot on the 

far right refers to the AMD Opteron processors in Big Ben, PSC’s newest supercomputer.  The 

Opteron processor is a 64-bit processor that is available for desktop machines. The high volume 

desktop market served as a good foundation for the Opteron’s entry into the supercomputing 

world. 

Computational performance cannot be described in terms of processor speed alone.  

There are many other factors that affect microprocessor performance, like architecture, memory 

bandwidth and memory latency.  However the above plot comes close to conveying the 

microprocessor technology contribution to the quickly expanding the barriers of computational 

performance.  The processor speed increase is about 30% per year, and processor performance 

increase (considering architecture, memory etc, as well as processor speed) is about 40% per 

year36. 

Increased throughput of MD simulations is as much or more, a function of inter-node 

communication, as it is a function of single node performance.  More effort is put into designing 

inter-node communication architecture than any other aspect in supercomputers.  Even in in-

house Beowulf type clusters, the inter-node communication hardware is usually more expensive 

than all the nodes combined.  As with processor performance, there is more that one metric to 

describe inter-node communication performance.  The two most important are latency and 

bandwidth.  I have chosen inter-node latency as the most demonstrative metric of evolving inter-

node communication performance. 
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Figure 15.  Latencies for an assortment of inter-node communication systems: Linear Plot 
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Figure 16.  Latencies for an assortment of  inter-node communication systems: Semi-log plot 

 

Latency is the time required for a zero byte (or very small) message to travel from one 

node to the next.  The computer network industry is built on the TCP communication protocol, 

and this is the protocol used by Ethernet switches, such as the Ethernet and the “Intel Gigabit 

Ethernet” switches shown in Figure 15 and Figure 16 above.  These systems were not designed 

for parallel computing. So the overhead to pass messages (latency) is too much, although the 

bandwidth is acceptable.  As a result, multi-node machines with these types of switches, (like 

Beowulf clusters with Ethernet switches), do not scale well past four nodes.  Intel Gigabit 

Ethernet switches are worth special mention.  Even though they use the TCP protocol, they are 

considerably faster (lower latency) than machines of that class.  Beowulf clusters with these 

types of switches will yield decent scaling up to six nodes. 

On the RHS of Figure 15 and Figure 16, three high performance inter-node 

communication systems for massively parallel processing are mentioned.  They are Myrinet, 

Quadrics and SeaStar interconnects.  There is one other recent high performing system that 

deserves mention, and that is the Infiniband systems sold by Mellinox Technologies37,38.  These 

systems use customized communication protocols, which allow them to have low latencies and 
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high bandwidth.  Unlike the TCP protocols, these protocols are executed by separate processors 

that are part of the interconnect system.  That way, the CPU does minimal communication work, 

freeing up the CPU for job related processing.   

The Myrinet systems (by Myricom) are very popular, highly portable, and can be 

purchased and built in a modular manner.   These are the systems of choice for investigators that 

want to build their own in-house highly scalable clusters.  These systems can connect hundreds 

of nodes.  The marketing for Quadrics and Infiniband interconnects was initially aimed at 

massively parallel computing centers, however both systems now compete with Myrinet for the 

smaller cluster market as well.  The cost of these systems (Infiniband, Myrinet and Quadrics) is 

about $1500.00 per node.  The SeaStar interconnect is a Cray development for use in their super-

computers. 
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1.9.2 Code improvements 
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Figure 17:  Code improvement as relates to single processor runs 
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1.9.3 Considering all improvements 
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Figure 18: MD throughput improvements 

What about interconnect hardware improvements and code parallelization improvements?  The 

plot above takes everything into consideration.  Figure 18 above compares the throughput 

performance of the Amber code through the years on various platforms.  This plot considers all 

improvements: processor speed, memory bandwidth, inter-node communication, algorithm and 

compiler improvements.  Even though the Figure 18 plot above compares code performance on 

different platforms, the comparison is appropriate because it captures the sum effect of all the 

hardware and software improvements over the years. 

The throughput measurements were calculated based on timings for the "jac" (Joint 

Amber/Charrm DHFR) benchmark.  This is the protein DHFR, solvated with TIP3 water, in a 
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periodic box.  There are 23,558 total atoms, and PME used with a direct space cutoff of 9 Å.  A 

system of 23k atoms is a relatively small system by today’s standards. 

The most obvious conclusion is that the throughput has improved by almost 2 orders of 

magnitude over the span of 7 years.  Another clear conclusion is that the Amber code scales 

better by about one order of magnitude.  Comparison of Figure 17 and Figure 18 show that 

parallel processing related hardware and software improvements account for the bulk of the 

throughput improvement.  Single processor performance improves by only a factor of 2, but the 

other factor of about 25 (the total throughput improvement factor is about 50) comes from 

parallel processing related hardware and software improvements. 

Amber6 benchmark was performed on an Origin 2000 R10000, 250MHz machine, 64procs.39, 40.  

Amber7 benchmark was performed on an SGI Altix, 1500MHz machine, 16procs.41. 

Amber8 benchmark was performed on an IBM Power4 P655+, 1500MHz, 256procs 42. 

Amber9 benchmark was performed on an IBM P655+, 1700MHz, 256procs43. 

1.10 MODELING BIOMOLECULE ENERGETICS 

1.10.1 Implicit solvent Poisson-Boltzmann type models 

In implicit solvent models, the water is modeled as a macroscopic entity to which is assigned a 

large dielectric constant.  The solute is typically modeled microscopically and is also is assigned 

a dielectric constant, much smaller that that of the solvent.  The energetics of the system is 

calculated by a Poisson-Boltzmann (PB) type calculation, which is derived from Gauss’s law.  

Gauss’s law and the PB treatment relate the divergence of the electric field to the charge density 

distribution.  Gauss’s Law is ε φ ρ−∇ ∇ =i , where ,  and φ ε ρ  are the electrostatic potential, the 

electrostatic permittivity and charge density respectively.  The full Poisson-Boltzmann equation 

is44,45 

/iq kT
i i

i
q n e φε φ ρ−∇ ∇ = + ∑i  
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In the PB treatment, the charge density of the solvent salt is described by a Boltzmann 

distribution (the second term on the right).  , ,  and i iq n k T  are the charge of the ith  ionic species, 

the concentration of the ith  ionic species, Boltzmann’s constant and absolute temperature 

respectively.  The exponential is often approximated by only considering the first term (linear 

term) in the Taylor series expansion, yielding the Linear Poisson-Boltzmann equation (LPB) 

 2(2 / )Ie kTε φ φ ρ−∇ ∇ + =i   

where e is the unit electric charge and the ionic strength is 2 21 ( / )
2 i i

i
I q e n= ∑ . 

The electric potential φ  for all locations of the system is solved by discretizing space into cubic 

grids and solving the LPB equation numerically using a finite difference approach.  This means 

that, in the computational implementation, ρ  and ε  are described as matrices representing the 

charge density and the electric permittivity at all locations of the system grid.  For the parts of 

the grid in the solute, the electric permittivity (dielectric constant) is assigned a smaller value 

relative to the dielectric constant assigned to regions of the grid that represent the solvent.  

Therefore the choice of values for the solute and solvent dielectric constants matters for the 

calculation. 

 The advantage of these PB type calculations is speed.  This method takes advantage of 

the macroscopic description of the water.  The only water related term that enters the calculation 

is the dielectric constant of water.  There are no other water parameters that enter the calculation, 

and there are no water configuration terms that enter the calculation, except for the size of the 

solvation box. 

The user must choose the dielectric values based on an empirical process: comparing 

calculated results to experimental results and fitting the dielectric values accordingly.  

Recommended dielectric solute constants range from 2 to 20 (with a solvent dielectric constant 

fixed at 80 for all cases).  The superficial reason for such a large range for the recommended 

dielectric constant is because there is no one uniform empirical fitting method for their 

derivation.  The underlying reason for such a large range is that modeling water as a macroscopic 

entity and assigning it a large dielectric constant (relative to the dielectric constant of the solute) 

is insufficient to capture the behavior of water and the biomolecule.  Recall how strange water is, 

especially in its interaction with solute (section 1.4.1). 
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1.10.2 Langevin Dipole models 

Langevin dipole models have been extensively used by the Arieh Warshel group46.  This is a 

microscopic or semi-microscopic approach, in which the system electrostatics is modeled as a 

combination of permanent dipoles, inducible dipoles and charges.  The most detailed of these 

models require no assignment of dielectric constants, and the less detailed models do require the 

assignment of dielectric constants, but the values to be used are consistent, or there is a well-

defined method for choosing which dielectric constant goes with which regions.  The system is 

described as a lattice, in which the dipoles are free to orient according to the Langevin response 

function47, 

 1ˆ (coth )L
o oE y

y
μ μ= −    with o oEy

kT
μ

= .   

ˆ, , ,  and L
o oE k Tμ μ  are the thermally averaged dipole, the dipoles permanent moment, the 

electric field unit vector, Boltzmann’s constant and absolute temperature.  

1.10.2.1 Atomic Detail description 

The atomic detail description uses a classical mechanical force field and has the following 

character.  Each atom is modeled as a mass with a point (monopole) charge and van der Waals 

parameters.  The covalent bonds are springs to which equilibrium lengths, equilibrium angles, 

linear stiffness coefficients and angular stiffness coefficients are assigned.  Systems are typically 

solvated with explicit water molecules, and each water molecule modeled in explicit 2H O  atomic 

detail.  Periodic Boundary conditions are almost always performed on such solvated systems to 

eliminate boundary condition complications.  The basic form of the force field is as follows: 
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The following sections will go into more detail about the parameters for each component of 

( )U R . 

1.10.2.2 Atom parameters 

For most current force fields, there are three atom parameters assigned to each atom.  These are 

the mass, the van der Waals parameters and the partial charge.  The mass and the van der Waals 

parameters are assigned to an atom according to its atom type.  The partial charge assigned is 

independent of the atom type.  The term “atom type” in the molecular dynamics force field 

context refers to more than simply the atomic element.  For example a Cα  carbon and a Cβ  

carbon may share the same element, carbon, but because their chemical bonding is different, they 

are different atom “types”.  Both carbon versions will have the same mass (12amu) but their 

partial charges (permanent monopole charges) are different and their van der Waals parameters 

are different.  The following sections will discuss the partial charges and the van der Waals 

parameters derivations.  Van der Waals parameters and the mass assigned to an atom depends on 

the atom “type”.  However the partial charge assigned to an atom is independent of the atom 

“type”. 

1.10.2.2.1 Partial Charges 

The partial charge of an atom is independent of the atom type. It is assigned to each atom, and is 

the permanent monopole assigned to that atom.  The term “partial charge” came about as 

follows.  In the very early molecular dynamic models, proteins were first modeled such that the 

amino acids were the elemental units, which were either neutral or had a charge magnitude of 
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one electron charge.  The trend toward atomic detail necessitated that the amino acids themselves 

be constituted of covalently connected atoms as the elemental units.  This allowed for charge 

distribution schemes within the amino acid to more realistically model the amino acid.  Whatever 

the charge distribution scheme, it was subject to the constraint that the sum of the charges within 

the amino acid had to be correct.  The charge distribution was implemented by assigning charges 

to the atomic positions of the atoms within the amino acid.  These charges could be positive or 

negative, and were usually fractions of an electron charge.  The sum of charges on all the atoms 

types in an amino-acid had to add up to the correct charge of the amino-acid, which is a whole 

number of electron charges, either 0, -1 or +1 electron charges.  Hence the term “partial charge” 

was used to reflect the fact that each atom within the amino acid bears part of the charge of the 

whole amino acid, which is a whole number of electron charges.  We will now discuss how those 

partial charges are determined. 

So far we have discussed two constraints on the charge distribution within the amino 

acid.  The first is that the sum of the charges of the charge distribution must be correct, that is 

equal to the charge the amino-acid supposed to have, which is either 0, -1 or +1 electron charges.  

The second is that the charge distribution consists of monopoles that are centered at the atom 

positions.  These partial charges, or monopoles centered on the atoms, are derived as follows.  

First Ab Initio measurements of the electron potential surrounding an amino acid are made.  

Then using an atomic detail model of the amino acid, partial charges are placed on the positions 

of the atom types in order to best fit the Ab Initio electron potential, with the constraint that the 

monopole sum is correct for the amino-acid. 

Discussed was the general overview for deriving the partial charges.  Actual partial 

charge derivation requires many more considerations, constraints and restraints.  Here is a quick 

summary of all of the factors that go into a partial charge distribution scheme for an amino-acid: 

The amino-acid’s atom configuration that was used in the Ab Initio calculation, the Ab Initio 

method used to generate the Ab Initio electric potential, the precision of the Ab Initio electric 

potential description (the number of grid points per unit volume for which electric potential 

measurements were made), the charge fitting algorithm used to fit the partial charges on the atom 

type centers and thereby reproduce the Ab Initio electric potential, additional constraints and 

restraints such as enforcing symmetry (e.g. the partial charges of the 2CH− −  group are usually 

fit so that both hydrogen atoms have the same charge) etc.  
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1.10.2.2.2 VDW parameters 

van der Waals parameters are assigned to atoms, come in pairs, depends on the type of  atom, 

and are derived by empirical fitting.  Enthalpy and separation experimental measurements are 

made of small molecules. Computational enthalpy and separation measurements are then made 

of the same small molecule, and the van der Waals parameters are fit to reproduce the 

experimental numbers.  The version of hybridization of the heavy atoms of the small molecule, 

which loosely translates into the atom “type” in a molecular dynamics model, is then assigned 

these van der Waals parameters.  

1.10.3 Electrostatic long range effects 

In early Molecular Dynamics models, or for small Molecular Dynamics models, the electrostatic 

potential at any point in the system, iE , is calculated according to a straightforward sum of all of 

the contributions from all of the monopole pairs in the system. 

1( )  where | |
4i j ij i j

j i ij

E q R r r
Rπε≠

= = −∑  

This sum is performed for every atom position ( ir ) in the system, in order to calculate the 

electrostatic force contribution on every atom for the purpose of calculating the new velocities 

and new positions of the atoms. 

This sum is performed for every time step of the simulation, and is the most time 

consuming part of the calculation.  The number of pair-wise sums goes as 2N , where N  is the 

number of atoms in the system, so the computation time goes as 2N  with the system size N .  

This effect is such that this method cannot be used for modest sized systems.  Early Molecular 

Dynamics models addressed this by using a “cut off” scheme.  That is, only the pair-wise 

monopole contributions that lay within some cut off distance (e.g. 8 Angstroms) of an atom were 

considered for the electric potential calculation at the position of that atom.  Such a cut off 

scheme solved the problem of calculation time growing exponentially with system size.  

However inaccuracies in the electrostatic calculations using such methods were not insignificant.  

This is because of the long-range electrostatic field effects in solvated systems. 
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The reasons for long-range electrostatic effect in solvated systems is similar to the 

reasons why 19th century calculations predicted that the night sky should be brilliant.  Long 

before the understanding that the universe is expanding and assuming a constant density of stars 

in the universe, scientists considered the light reaching a point in the universe from all the stars 

within a solid angle subtended to that point.  By integrating the contributions from infinitesimal 

shells over all distances from the point, scientists predicted that the night sky should be infinitely 

bright.  This is because the number of stars in each shell increases with r2, which compensates 

for the light intensity decay with distance (1/r2).  The idea of “dark matter”, which cancelled the 

effect of the light from the stars, was proposed as a possible explanation.  Current understanding 

of the expansion of the universe and the subsequent net red shift effect explains the night’s 

darkness. 

The problem with point charge contributions to a point from a periodic infinite array of 

solvated neutral cells is not quite so bad.  In an infinite array of neutral cells, the total sum of the 

positive charges equals the total sum of the magnitude of the negative charges.  If the charge 

distribution is overall neutral and the distances are large enough, the contributions from the 

positive charges will cancel the contributions from the negative charges (analogous to the “dark 

matter” counteracting the light of the stars).  This means that for periodic solvated systems, a 

very large cut-off scheme will work.  However in practice such a large cut-off (in the order of 

hundreds of angstroms) is not computationally feasible. 

In the 1920’s, crystallographer Paul P. Ewald48,49 needed to calculate the Coulomb 

energy in salt crystals armed only with manual adding machines.  He was able to calculate this 

by increasing the complexity of the sum so that the infinite sum could be converted into two 

finite sums.  Taking advantage of the fact that the Fourier Transform of a Gaussian is a Gaussian, 

he added Gaussian charge distributions in such a way that there was a convergent direct space 

sum and convergent reciprocal space sum. 

In more modern times, computational simulations of solvated systems used cut-off 

methods for electrostatic calculations.  It was realized that the errors due to implementing 

feasibly short cut-offs were not insignificant, and that no matter how fast the computer, the cut-

off could not be made large enough for the sum to be convergent.  Then Ewald’s method was 

rediscovered and adapted for solvated biological simulations50. 
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The following flow of the Ewald explanation follows that given by David Kofke, 

Department of Chemical Engineering, SUNY Buffalo51.  Consider a periodic system consisting 

of an original simulation volume L3 with N point charges and an infinite number of image 

volumes.  Each image volume is identified with the vector nR  where is an integer 1n > , and the 

original cell is identified with 0 0R =   The electrostatic energy is calculated only for positions 

within the original volume.  Consider some point charge qi at some position ir  in the original 

cell. 

0
( )

N
j

i
j n i j n

q
v r

r r R

∞

=

=
− +

∑∑   { 0,  n j i= ≠    is the potential at this 

position due to all the surrounding charges.  The condition { 0,  n j i= ≠  excludes the self-energy 

terms.  The total electrostatic energy of the system is therefore 

{
0

1 1 = ( )         0,  
2 2

N N N
i j

i i
i j n ii j n

q q
q v r n j i

r r R

∞

=

= ≠
− +

∑∑∑ ∑  

When 0n =  the 
N

j
∑ sums the contributions from the qj charges in the original simulation cell, 

and when 0n > , 
0n

∞

>
∑ sums the contributions from the qj charges in the array of infinite image 

cells. 

 This periodic system of infinite cells lends itself to Fourier Transform solutions.  

However the point charges ( )j jq r rδ −  do not.  If the point charges were smoothed such that the 

charge distributions were spherical Gaussians,  

 

 

 

  

 

 

then the sum for the electrostatic energy can converge.  That is jρ , the charge density near the 

jth charge is: 
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Where 1/ α  is proportional to the width of the Gaussian distribution.  The charge density for 

the whole system becomes 
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This can be expressed in terms of the inverse of its Fourier Transform 

1 ˆ( )
2

N
ik r

r i
k i

U e q v k
∞

⋅= ∑ ∑  

ˆ( )v k , the Fourier Transform of ( )v r  is obtained from the Poisson relation 2 ( ) 4 ( )v r rπρ∇ = − .  

Using the Fourier Transform property for derivatives, 
22 ˆˆ[ ( )] ( ) 4 ( )FT v r k v k kπρ∇ = − = −  

So 2

ˆ4 ( )ˆ( ) kv k
k

πρ
=  which makes 2

ˆ1 (4 ( ))
2

N
ik r

r i
k i

kU e q
k

πρ∞
⋅= ∑ ∑ .  The Fourier Transform of 

Gaussian ( )rρ  is 
2 / 41 1ˆ ( ) ( ) jik rik r k

jV V
jV

k dre r q e e αρ ρ − ⋅− ⋅ −= = ∑∫   

So that makes 
2 2 2( )/ 4 / 41 1

2 22 2
,

4 4 ( )i jik r rk k
q i j

k i j k
U e q q e e S k

k V k V
α απ π⋅ −− −= =∑ ∑ ∑  

where  ( ) iik r
i

i
S k q e ⋅= ∑  

 There are two corrections needed.  The first correction to be discussed is one we call the 

self-interaction correction.  Recall that 1 ( )
2

N

r i i
i

U q v r= ∑  where qi is a point charge at ir  and 

( )iv r  represents potential due to all the Gaussians of the system, including its own.  So the 

correction involves removing the interaction between the point charges and their own Gaussian 

charge distributions
2

3/ 2( ) ( / ) jr r
j jr q e α

ρ α π
− −

= .  The potential due to such a distribution 
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centered at jr  is  ( )( ) jG
j j

j

q
v r erf r r

r r
α= −

−
.  This is verified by substituting ( )G

jv r  into the 

Poisson equation ( )2
2 21

' ''
( ') ' ( ') 4 ( ')    where '  G G

j j jr rr
v r r v r r r r rπρ∂ ∂

∂ ∂∇ = = − = − . 

Since the potential where the point charge is located is in the center of the Gaussian 

(  and 0j jr r r r= − = ) the self-interaction energy for one point charge iq  is 

1/ 21 1(0) 2 ( / )
2 2

G
i i i iq v q q α π⎡ ⎤= ⎣ ⎦ .  So the total self-interaction energy is ( )

1
2 2

self i
i

U qα
π= ∑ .  Note 

that this term depends only on the value of the charges not their positions, so it need only be 

calculated once at the beginning of the simulation. 

 The next correction involves correction for the use of the Gaussian charge distribution 

instead of point charges.  We can do this by adding the correct potential and subtracting the 

Gaussian one. 
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So the correction energy is ( )1 1
2 2

i j
d i j ij ij

i j i j ij

q q
U q v r erfc r

r
α

≠ ≠
Δ = Δ =∑ ∑  

Notice that dUΔ  only considers interactions between charge distributions in the original cell.  

This is because dUΔ  is a short ranged function because from 'iq s  position, for large ijr , the 

point charge jq  and its inversely charged Gaussian look the same.  dUΔ  is therefore done in real 
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space.  All contributions from ij cut offr r −>  can be therefore be ignored and in practice 

cut offr L− << , the length of the cell. 

 In summary inttotal r d selfU U U U −= + Δ − .  Consider the first term, the one done in 

reciprocal space.  The number of ks required in the reciprocal sum (kmax) is proportional to 

inverse of the Gaussian thickness, i.e. maxk α∝ .  So the sum over 3D k  requires 3/ 2 3( )O Lα  

terms.  Also note that each term requires the evaluation of ( )S k , which has N terms.  So the rU  

term requires 3( ( ) )O N Lα  operations.  The scaling of the self-intU  term can be ignored since it 

need only be done once at the start of the simulation.  Now consider the number of operations 

needed for the direct sum dUΔ  term.  The energy contribution at all N positions of the charges is 

calculated, but each of these terms only considers interactions within a cut-off cut offr − .  This cut-

off distance is proportional to the Gaussian width, i.e. cut-off 1/r α∝ .  The number of 

interactions within a cut-off volume 3
cut-offr is 3 3

cut-off cut-off
Nr r
V

ρ = .  So the total number of 

operations required for the direct sum part is ( )( )32 /O N Lα .  Minimizing the total number of 

operations ( ) ( )( )3 32 /O N L N Lα α+  with respect to ( )3
Lα  gives ( )3

L Nα = .  

Therefore the Ewald method scales as 3/ 2( )O N .  The Particle Mesh Ewald method further 

improves performance by assigning the charge densities ( )rρ to a grid, and then calculating 

ˆ ( )kρ  by FFT.  This method scales as ( log )O N N 52 

1.10.4 van der Waals interactions 

The van der Waals potential at the position of an atom is also calculated by dividing the system 

into two regions, one within some cut off distance and the other outside the cut off region.  The 

cut off radius is usually about 8 Angstroms.  The van der Waals contribution within the cut off 

region is calculated according to the following pair-wise sum, 12 6( )
atoms

ij ij

i j ij ij

A B
R R<

−∑ .  ijR  is the 



  67

distance between atoms i  and j .  ijA  and ijB  are functions of the van der Waals parameters of 

atoms i  and j , i.e. iA , iB , jA  and jB . 

1.10.5 Bond parameters 

Every covalent linear bond in an atomic detail model is represented as a spring with two 

parameters, an equilibrium length and a spring-stiffness.  These parameters are derived from x-

ray and NMR data of small molecules. Every unique combination of 2 atom types yields a 

unique bond type.  So a C Cα β−  bonds and a C Nα −  bond are distinguished as different bond 

types having unique parameters. 

Angle bond and dihedral bond types are derived and defined in similar ways.  Every 

unique combination of 3 atom types yields a unique bond angle type.  Every unique combination 

of 4 atom types yields a unique dihedral bond type.  One would expect that the number of unique 

combinations of atom types would make for very large databases, especially for the angle and 

dihedral bonds.  These databases are large, but they are not so large because there is a lot of 

degeneracy among the different atom types, linear bond types, angle bond types and dihedral 

bond types.  The potential energy of the system due to bond distortion, ( )bondsU R , is given by:  

2

2

( ) ( )                linear bonds

        ( )                    angle bonds

        (1 cos[ ])     dihedral bonds
2

bonds r eq
bonds

eq
angles

n
n

dihedrals

U R K r r
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V n

θ θ θ
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= −

+ −

+ + −

∑

∑

∑

 

,  and ( )r eq eqK r r r−  are the linear bonds stiffness, linear bond equilibrium length and linear bond 

distortion respectively.  ,  and ( )eq eqKθ θ θ θ−  are the angle stiffness, equilibrium angle and bond 

angle distortion respectively.  (1 cos[ ])
2
nV nφ γ+ −  is the sinusoidal dihedral energy function, 

where nV  is the maximum of the nth  term of the dihedral function which has a periodicity of n , 

γ  is the phase and 180n οφ γ− −  is the distortion away from the potential minimum.  
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1.10.6 Quantum Chemistry models 

Quantum Chemistry models use Quantum Mechanics principles.  It is the most computationally 

demanding of all the models and its use is limited to treating small regions of the biomolecule.  

Because its theory goes down to the electronic arrangements of the molecules, it is versatile and 

has a wide range of applications, including modeling of breaking and making of chemical bonds.   

Quantum Chemistry methods are based on a solution of Schrodinger’s Equation. The 

time-independent Schrodinger Equation is Ĥ EΨ = Ψ .  ˆ ,  and H EΨ  are the Hamiltonian, the 

wave function, and the energy of the system respectively.  The exact solution exists only for the 

single hydrogen atom system.  Solutions for larger systems require approximations to the 

Schrodinger's Equation.  Several methods exist for doing Quantum Chemistry energy 

calculations, and I will talk about a few of the main methods and the related approximations used 

for small biological molecules. 

The Born-Oppenheimer approximation69 is almost a universal approximation for 

Quantum Chemical methods.  In this approximation, the mass of the nucleus is considered to be 

large relative to that of the electron, so that the motion of the electron and that of the nucleus is 

considered to be uncoupled.  This simplifies Schrodinger’s Equation by allowing the several 

terms to be dropped, and the wave function of the molecule can be written as a product, 

molecule electrons nucleiΨ = Ψ Ψ .  The Schrodinger Equation is solved for the electronic Hamiltonian 

only, and the other terms in the Hamiltonian are dealt with otherwise.  Each wave function of the 

system, iΨ  is described as a linear sum of basis functions, i in n
n

c φΨ = ∑ , where 'n sφ  are the 

predetermined basis functions and the 'inc s  are determined with an iterative scheme.  Most 

methods add additional layers of approximations.  The most popular methods are Hartree-Fock, 

Density Functional Theory and Molecular Orbital methods53. 

Because Quantum Chemistry is so computationally demanding, modeling of 

biomolecules is usually done by dividing the system into two regions.  The core region targets 

the area of interest, which would have a few dozen atoms at most.  The outer region is handled 

with Classical Mechanics and various schemes are used to couple the two regions.  For such a 

model the Hamiltonian takes the form /
ˆ ˆ ˆ ˆ

QM QM MM MMH H H H= + + .  Ĥ  is the Hamiltonian of the 
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whole system, ˆ
QMH  is the Hamiltonian that represents the Quantum Chemistry region, ˆ

MMH  

represents the Classical Mechanical region and /
ˆ

QM MMH  represents the influence of the Classical 

Mechanical region on the Quantum Chemistry region. 

1.11 COMPUTATIONAL TOOLS FOR DYNAMIC ANALYSIS 

All of the reasons for dynamical analysis of biomolecules can be placed into two main 

categories.  The first bin contains reasons relating to understanding the collective motion of the 

system.  This is the most transparent reason because the most obvious question about how a 

biomolecule performs a task is how its configurational changes or dynamics allow it to perform 

that task.  The second bin of reasons relate to more exhaustive analysis of the trajectories for 

thermodynamic calculations via density of state and ensemble approximations.  The first set of 

reasons, those relating to investigating collective motion, were historically the first reasons that 

attracted investigation of the dynamics of biomolecules.  We will start our survey of dynamical 

analysis tools with one of the earliest of such tools, Normal Mode Analysis. 

1.11.1 Normal Mode Analysis 

Normal mode analysis is one way of investigating collected or correlated dynamics within 

biomolecules.   For Normal Mode Analysis, the system is modeled such that the underlying 

character of the model is a harmonic Classical Mechanical force field acting on the atoms, as a 

result of the covalent bonds connecting the atoms modeled as springs.  Taking advantage of this 

harmonic description, Normal Mode Analysis is then performed, where the description of the 

system’s propagation is changed from a coupled representation to a decoupled representation, 

thereby making the normal modes, the collective motion, and the correlated movement of the 

system transparent.  If there is collective motion in the system, (which is usually slow and large) 

this analysis will allow that aspect of the dynamics to be easily revealed.   

A harmonic system of masses can be described as a force-matrix acting on a position 

vector to yield a vector that describes the time evolution of the system’s configuration.  The core 
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of Normal Mode Analysis is to diagonalize that matrix to obtain the frequencies and forms of the 

normal modes.  Once the frequencies and forms of the modes are known, magnitudes, time 

scales and correlations of atomic fluctuations can be calculated. 

If η  is the matrix describing displacement from equilibrium of every mass in the system, 

then for our harmonic system: 
21

2
T

i j

HH
q q

η η∂
≅
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The above eigenvalue problem is then solved to yield a set of harmonic oscillators. 

The biomolecule is therefore modeled as a bunch of masses connected by springs, with 

the masses also subject to an-harmonic potentials such as electrostatic and van der Waals 

potentials. In the model, the masses do not move far from their equilibrium position, thereby 

allowing a harmonic approximation, even though an-harmonic potentials like electrostatic or van 

der Waals potentials are present.  For closely packed systems at low temperatures and only 

moderate collective motion, the above model is sufficient. 

The harmonic approximation is insufficient to describe the dynamics of biomolecules 

when large collective motions take place.  The Principal Component method is an analogy to the 

normal mode method at room temperature (where the anharmonicity plays a negligible role).  It 

does not assume harmonicity, so it can be used to investigate biomolecules that engage in large-

scale collective motion. 

The advantage of normal mode and principal component type methods is that it is 

computationally quick to perform on relatively large systems in vacuo, and is good for analysis 

of large-scale collective motions.  However this computational speed advantage is attenuated 

when the system includes explicit solvent, and its usefulness does not include analysis of 

localized phenomena on the atomic detail scale.  Therefore phenomena like specificity, proton 

dynamics, hydrogen bond networks or ionizable site networks cannot be explored with these 

methods.  Based on these methods, only limited thermodynamic calculations can be made 

because the approximations made in handling the harmonicity or an-harmonicity of the target 

system often accrue to produce significant error. 
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1.11.2 What is Monte Carlo?  A short overview of MC 

The Monte Carlo simulation techniques were introduced by Metropolis et al in 1954 and were 

used extensively to investigate phase transitions in simple models.  These techniques established 

their value on simple lattice-type systems, where the constituent particles have very few 

parameters, and very few degrees of freedom.  Monte Carlo simulations were also found to be 

useful in situations where the investigators were interested in other properties besides phase 

transitions, and so started to be used to predict a range of behaviors in chemical and biological 

systems54, 55.  MC can be used to sample the system phase space and scaling arguments can be 

used to infer the time dependence of the dynamics of the system.  Earlier MC methods had a big 

problem tackling models that have many parameters and many degrees of freedom, such as 

models of biological systems, because the method was too computationally expensive.  However 

new techniques, algorithm improvements, hybrid MC-dynamics methods and computational 

power improvements have made Monte Carlo methods useful in complex systems, where the 

simulated particles have many parameters and many degrees of freedom.  Monte Carlo theory 

and algorithms have evolved to the point where they can do biomolecular simulations56.  

However, where biomolecular simulations are concerned, Monte Carlo is a distant second to 

Molecular Dynamics in popularity, despite MC’s advantage of crossing phase space energy 

barriers (which MD notoriously does not).  There are two reasons for this.  The first is that MD is 

more established.  The second reason, related to the first, is that the development of efficient 

hybrid MC methods continues, and the laborious task of code writing for these developments 

puts the cost having these advantages in perspective. 

In Molecular Dynamics, a classical mechanical force field expresses a force on the 

particles of the system.  The position of each particle is updated every Δt increment of time, 

according to a numerical solution of Newton’s second law of motion.  In Monte Carlo 

simulations, the system particles are subject to the same classical mechanical energy field, 

however its derivative is not needed since only the energies and not the forces are needed.  The 

new positions are determined probabilistically as follows.  Along any one degree of freedom, the 

particle has a few options for a new position.  The classical mechanical force field is then used to 

determine the energy penalty of each option, and each option is assigned a Boltzmann factor 
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appropriate for its respective energy penalty.  A random number generator then randomly selects 

one of the Boltzmann weighted options. 

1.11.3 Molecular Dynamics (MD) 

In MD Newton’s Second Law, /a F m= , is solved numerically one incremental time step ( )tΔ  

at a time, for every particle in the system.  The force field acts on the particles, causing the 

velocities and positions of the particles to be updated according to the approximated numerical 

solution.  Molecular Dynamics simulations can record the evolution of system configuration over 

simulated time (a trajectory). The force on the particles is the gradient of the system energy, 

F E= −∇ .  There are many algorithms for performing the numerical integration for the updated 

velocities and positions, but one of the most popular is the Verlet leapfrog algorithm57, 58, 59, 60.  

The system energetics ( )E  can be derived from a Macroscopic, Atomic Detailed or Quantum 

Chemistry description.  Because the system energetics has to be recalculated at every time step, 

the choice depends on the size of the system and the available computational power. 

MD started out as a tool for biomolecule crystallographers.  X-ray crystallography 

provided a leap into the understanding of the function of biomolecules because it allowed the 

structure to be determined.  Analysis of the structure gave insight into how the biomolecule 

executed its function.  Some dynamic analysis was possible, using the R factors61 of the electron 

density map.  R factors are one measure of the quality of x-ray protein models, and regions of the 

protein that are more mobile tend to have larger R factors.  Molecular Dynamics (MD) was born 

out of the attempt to take the analysis of a biomolecular system further than was possible with 

structural analysis.  In the early history of MD, it was simply used as an appendage of structural 

analysis, and was only used by those involved in structural analysis.  Now, MD has evolved to 

the extent that persons perform MD related research and have very little experience with 

processing crystallographic electron density maps.  

The first MD models were in vacuo models.  That is, there was no explicit modeling of 

the solvent.  The solvent, if represented, was represented as a continuum.  The covalent bonds 

were modeled as springs, whose lengths and stiffnesses were determined using the best NMR 

and X-Ray data at the time.  The atoms were modeled as masses equivalent to their amu weight, 
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had a monopole charge (called a “partial charge”) and also had VDW parameters.  However, 

only the heavy atoms were modeled, and hydrogen atoms were not.  They were incorporated into 

the heavy atom they were connected to.  So for example, the 3CH−  group will be modeled as a 

single “ball” or “united atom”.  This method of modeling such groups is called the “united atom” 

model.  Covalent bond angles and dihedrals were also represented. 

As computational resources allowed, water solvent then became explicitly modeled with 

“periodic boundary conditions” and Ewald long-range electrostatics, which was developed as a 

computationally feasible means of capturing the long-range electrostatic effects.  Current 

Molecular Dynamics software can allow one to generate nanoseconds/day of trajectory for 

atomic detail explicit solvent biomolecule models.  Typical models use a classical mechanical 

force field and have the following character.  Each atom is modeled as a mass with a point 

(monopole) charge and van der Waals parameters.  The covalent bonds are springs to which 

equilibrium lengths, equilibrium angles, linear stiffness coefficients and angular stiffness 

coefficients are assigned.  Systems are typically solvated with explicit water molecules, and each 

water molecule modeled in explicit 2H O  atomic detail.  Periodic Boundary conditions are almost 

always performed on such solvated systems to eliminate boundary condition complications.  

Pressure and temperature control algorithms are added, allowing for trajectory evolution in the 

NTP ensemble.  These trajectories can be used for thermodynamic calculations. 

One disadvantage of atomic detail molecular dynamics is that it samples a small region of 

the energy landscape.  As a result, one cannot perform extensive thermodynamic calculations on 

the trajectories.  Our method of integrating MD, MC and WHAM, does allow for extensive 

thermodynamic calculations.  This is because WHAM is used to weave together simulations 

generated under a wide range of conditions, yielding a good density-of-states description. 
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1.11.4 Feasibility of the various modeling methods 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 19: Feasibility of various modeling methods 

 

The plot above attempts to give a feel for the feasibility of various computational methods used 

in investigating a wide range of biomolecular phenomena of interest.  This is based on popular 
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usage using current computational resources such as in house computing clusters or medium 

sized allocations at supercomputing centers.  The hatched boxes in the plot represent the basic 

categories of methods.  The Quantum Mechanics methods, atomic detail molecular dynamics 

methods, and macroscopic implicit solvent methods are shown at the bottom left, center, and top 

right respectively.  The overlap between these basic categories is somewhat underestimated in 

the plot above because there are several hybrid methods.   

Pure Quantum Mechanical methods are typically carried out on systems of with only a 

few dozen atoms, and Quantum Mechanics simulations (simulations where the force field is 

derived from Ab Initio methods) are typically only a few picoseconds long at most.  In order to 

apply QM methods to larger systems, it is quite common to use hybrid QM – Classical 

Mechanics methods.  With such methods the system is divided into two zones.  The core zone 

contains the part of the system of interest and is limited to a few dozen atoms at most, and the 

QM type calculations are performed for this part of the system.  This outer zone is usually 

handled with atomic detail classical mechanical force fields.  This type of hybrid method can be 

applied to systems larger than those indicated in the plot above.  However the region of interest 

still has to be highly localized for its complete inclusion into the core zone.  These methods are 

therefore challenged when the region of interest is extended.  Such is the case with site 

interaction networks involving many titratable sites.  Such networks may span over lengths of 

dozens of Angstroms.  Another case of an extended region of interest is that of ligand-binding 

interfaces.  Again, such regions may extend over dozens of Angstroms.  Typical phenomena 

investigated by these methods are localized phenomena where bonds are being created or 

destroyed, bonds change hybridization, electron transfer or highly localized proton transport. 

The central part of the plot represents Atomic Detail Molecular Dynamics.  These 

methods can be used to investigate a broad spectrum of biological phenomena. They can be used 

on various sized systems that span several orders of magnitude of length, and they can 

investigate various phenomena that occur on time scales that span several orders of magnitude.  

As a result, these methods are the most useful, the most popular, and the most developed in terms 

of their computational performance evolution. 

Protein folding and lipid membrane assembly are generally tackled with much more 

simplified models.  The lengths and times of these phenomena are at the large end of the scale.  

Typically in these models there is a macroscopic description of both the solvent and the solute. 
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Hybrid atomic detail MD- macroscopic models also exist.  But that is not the only reason 

that atomic detail MD is encroaching into regions of larger time and space.  Because so much 

effort is put into improving MD algorithm performance, and also because computational 

resources are growing more powerful, atomic detail MD is tackling protein folding with 

increasing occurrence over the past ten years. 

1.11.5 Density of states theory applied to the biochemical ensemble 

Early statistical mechanics theories, including those relating to density-of-states, were developed 

in the context of analytical analysis of simple models in condensed matter physics, such as those 

discussed in section 1.11.6.  They can be applied to biological simulations with no loss of rigor 

however the complexity of biological Hamiltonians requires numerical solutions.  The density of 

states of a system, as the name suggests, is the property that describes how closely packed the 

energy levels are in that system.  It is very useful.  A good description of a system’s density-of-

states will allow for a full range of thermodynamic estimates via the calculation of ensemble 

averages.  For our constant pH simulation methods, we have had to make some extensions to 

the most commonly recognizable forms of the density of states related equations.  This is done at 

length in section 3.0. 

1.11.6 A short overview of Weighted Histograms 

Single histogram methods were first introduced in 1960.  They were developed to assist Monte 

Carlo methods in finding phase transitions of simple two-dimensional models.  Finding the phase 

transitions without histogram methods was difficult, because each Monte Carlo simulation would 

only sample a narrow region of the phase space of the system parameters.  Histograms allowed 

one to get information on a broader region of the phase space, and consequently get information 

for a broader region of the energy landscape.  This made locating phase transitions easier. 

In 1989, Swendsen and Ferrenberg62 introduced the multiple-histogram method for 

combining several Monte Carlo simulations.  The method was initially tested on the two-

dimensional Ising model.  Although this method was originally applied to locate phase 
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transitions, the power of this method to combine the information of many simulations led to far 

reaching applications that had nothing to do with phase transitions.  This method could take a 

very finite number of simulations, combine the information, and produce a continuum of 

thermodynamic results for a phase space range as large as that spanned by the simulations. 

More details about Weighted Histogram theory is given in section 3.0 however I will 

quickly summarize how these methods can yield a continuum of thermodynamic results from a 

finite number of simulations.  In Weighed Histogram Methods, the potential energies of 

simulation snapshots are binned.  Bins with high counts correspond to high probabilities or low 

free energies, and bins with low count correspond to low probabilities or high free energies.  

These counts therefore allow one to estimate the density of states, which in turn allows for a 

continuum of thermodynamic estimates. 

1.11.7 Biomolecules, MD and WHAM 

 

The Hamiltonian of an Atomic Detailed Molecular Dynamical biosystem is well defined, so 

there was nothing to stop the multiple-histogram technique from being used in Biomolecular 

Dynamical systems.  The multiple-histogram technique was reformulated to accommodate 

biomolecular Hamiltonians and this extension was called the Weighted Histogram Analysis 

Method, or WHAM.  It was applied for the first time on a complex biomolecular Hamiltonian to 

generate a Potential of Mean Force profile of the pseudorotation phase angle of a sugar ring63, 64. 

 Atomic Detail Molecular Dynamics and WHAM are a good combination.  The traditional 

problem with atomic-detail MD is that it samples only a small region of the energy landscape.  

This means that such simulations could yield very limited results, because the sampling was so 

narrow.  The sampling could be broadened by running simulations under different conditions.  

The problem then becomes “how to combine the information from all these simulations in a 

useful way?”  WHAM solves that problem.  
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1.12 SURVEY OF METHODS FOR MODELING PROTON DYNAMICS 

1.12.1 Overview: Looking at the Big Picture 

 

Ideal Gas Model: 

No interaction except collision and momentum exchange. 

Neglect duration of collision, and all other interaction. 

 

Good model for low-density inert gasses. 

 

 

 

 Real Gas Model: 

Includes inter-particle interaction  

such as Lennard-Jones interaction, 
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TIP3P Water Model: 

 

 

Intra and Inter-molecular interaction. 

Lennard-Jones interaction. 

Interactions more complex than Lennard-Jones, 

( )U U r≠ . 

 

Good for many properties of bulk water. 

 

 

 

 

 

Titratable amino acids 

 

Proton dynamics is a feature of the solute and solvent 

Real water molecules interact in all the above ways, 

including proton transfer (see section1.4.1.1). 

 

 
Figure 20: Limitations of Analytical and Numerical Statistical Mechanics 

 

In Figure 20, we attempt to put in perspective how our work fits into big picture of the evolution 

of analytical and numerical statistical mechanics methods.  Classical Statistical Mechanics theory 

developed from analytical methods applied to simple models, such as the “hard spheres” model.   
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The top model in our Figure 20 is the Ideal Gas model.  In this model, the particles are elastic 

hard spheres that have no interaction with each other except during the infinitesimally small 

collision times where momentum is exchanged.  This model ignores all other inter-particle 

interactions, and ignores the duration of the collision.  Theoretical predictions based on this 

model are good for predicting several behaviors of low-density inert gasses.  In low-density inert 

gasses the inter-molecular distances, on average, are relatively large and the dominant dynamics 

is well approximated by modeling the molecules as hard elastic spheres.  Therefore these simple 

models combined with analytical statistical mechanics can take one quite far, as far as 

calculating many thermodynamic properties of low-density inert gasses.  However numerical 

methods are needed to go as far as Critical Point predictions. 

The next types of models, the Real Gas type models, allow for additional interactions 

between the system particles, such as Lennard-Jones type interactions.  In these types of models, 

the inter-particle interaction is a function of the inter-particle distance.  This potential may take 

many forms, but special note needs to be made concerning the Lennard-Jones (or 6-12) potential.  

The Lennard-Jones potential does a very good job of modeling many inter-particle interactions.  

This potential interaction has allowed for the verification of analytically and numerically derived 

statistical mechanic results for a wide range of systems.  Many properties, not only of gasses, but 

also of liquids and solids, can be explained very well by this crude model65,66.  Analytical 

analysis of these types of models is very limited.  With analytical methods, if the ( )U r  

interaction potential is not too complicated, the first several virial coefficients can be calculated, 

and a few thermodynamic results can be calculated without severe approximations.  Numerical 

methods yield many more results. 

Now we come to the next class of models, such as the TIP3P water group.  I use TIP3P as 

representative of this class because it is the most extensively used (basically because it does a 

good job of modeling water and because of its computational feasibility).  I also use TIP3P in a 

much broader representation sense:  I’m using TIP3P as representative of a class that includes 

both solute (proteins, for instance) and solvent “atomic detail” models.  In terms of complication, 

the TIP3P is about in the middle of the class of atomic detail water models. The interaction 

between TIP3P molecules is NOT simply ( )U U r= , for several reasons. The most obvious 

being that TIP3P has dipole character, so the inter-molecular interaction also depends on 

orientation.  This dipole character results from a negative point charge on the oxygen, and 
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positive point charges on each of the two hydrogen atoms.  TIP3P has intra-molecular as well as 

inter-molecular interaction (the O H− bonds are not rigid, but are springs). 

At this point (the TIP3P class of models), the usefulness of analytical statistical 

mechanics is next to none.  One would not be able to find literature on analytically derived 

thermodynamic results for systems with TIP3P type models.  There is a “pseudo-analytical” class 

of techniques for analysis of systems with TIP3P level of molecular and atomic modeling.  I put 

Normal Mode Analysis, and Principal Component Analysis in this class.  They are cousin to 

analytical analysis because their approach to finding solutions to the system is analytical in 

nature.  However a computer is still necessary to solve the system of very large matrices that 

describe the dynamics of the system.  These methods introduce errors due to approximations 

because of assumptions made in handling the anharmonic character of the system.  These 

approximations can accrue to produce significant error.  See section 1.11.1 for more detail on 

these methods.  Therefore, almost all of the statistical mechanics analysis of TIP3P type systems 

is numerical, so computers are indispensable.  Computer simulations of TIP3P show that this 

model does a reasonably good job of reproducing hydrogen bonding and many other properties 

of bulk water (see Figure 27). 

There are several evolutionary directions for the next generation of models based on the 

simple atomic detail model.  Features such as modeling polarizability, electron lone pairs and 

titratable amino acids are already implemented into recent versions of Molecular Dynamics 

packages.  We think the most important evolutionary direction is that of modeling titratable 

amino acids and we believe our method is an efficient way of accurately doing that. 

However in real systems, proton dynamics is as much a feature of the solvent as it is of 

the solute.  One way to improve upon the accuracy of the last generation of water models is to 

have the water model interact in all the above ways, but also with one important addition.   Two 

water molecules of this model need to interact with each other by chemically changing each 

other as a result of proton transfer (which is what actually happens in real water).  In other 

words, the water model needs to be titratable.  In real water, at room temperature and pressure, 

two water molecules hydrogen-bonded to each other will transfer a proton about once every 20 

picoseconds.  Modeling proton dynamics in the solvent is hindered because of a lack of a 

computationally feasible titratable water model.   
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There are several proton dynamics schemes already available.  Some groups come at it 

from a Quantum Mechanics approach, most come at it from a Classical Mechanical approach.  

We believe our Classical Mechanical method has a clear edge because of its feasibility, accuracy 

and precision. 

One of the points that Figure 20 tries to emphasize is the very heavy dependence of 

statistical mechanical biological analysis on computer simulations.  As a result there is close 

correlation between the developments in biological system modeling the developments in 

computational resources.  Please see section 1.9, “SURVEY OF COMPUTATIONAL Resource 

Evolution” for a little history of this correlation.  

 

1.12.2 A reminder of the importance of proton dynamics 

In section 1.5 we discussed that electrostatics in biological systems is important, especially since 

the electrostatics in solvated biological systems has long-range effects.  Accurate modeling of 

electrostatics is therefore important.  Closely related to the issue of accurate electrostatic 

modeling is the modeling of proton dynamics, because protons carry one electron charge.  So the 

need for more accurate electrostatic modeling cannot be satisfied without addressing the issue of 

proton dynamics.  Now we will survey the pros, cons and limitations of some popular models 

that allow for proton dynamics. 

1.12.3 Basic principles for pKa calculation methods  

All pKa  calculation methods have in common the following basic principles. 

1 1
log 10 2.303a

e

pK pH G pH G
kT kT

= − Δ = − Δ  where GΔ is the free energy change 

upon protonation.  How the GΔ  is calculated depends on the specific method.  For many 

methods, a Monte Carlo process attempts to place a charge of one proton, +1e, on the titratable 

site.  Successful attempts are accrued towards a protonation occupancy total, and failed attempts 
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are accrued towards a deprotonation occupancy total.  Some level of Statistical Mechanics theory 

is then used to translate all of the Monte-Carlo outcomes into a GΔ . 

In order to calibrate these methods, the concept of a model pKa , modelpKa , is introduced.  

The modelpKa  is the pKa  of a single solvated titratable amino acid.  If the force field used to 

calculate GΔ  modeled nature exactly, then of course the pKa  calculated from GΔ  for the 

single solvated titratable amino acid residue would equal the experimental pKa  of that titratable 

residue.  However, because the force field does not model nature exactly, the modelpKa  acts as a 

force field correction number.  The modelpKa  is included into the calculation as follows.  Instead 

of only measuring a GΔ , the absolute free energy change upon protonation, what is actually 

measured is a GΔΔ , the free energy change for protonation of the titratable site in the protein 

relative to that of the single residue, or model.  So, two calculations are performed.  One is the 

modelGΔ  calculation for protonating the single solvated titratable residue.  The single solvated 

titratable amino acid is described as the model, and corresponds to the isolated system referred to 

in section 1.6.4.  Th other is the proteinGΔ  calculation for protonating the titratable site in the 

protein.  Said another way, this gives a pKa  shift, rather than an absolute pKa .  

e

1 ( )
log 10

pKa G
kT

Δ = ΔΔ , where protein model( )G G G GΔΔ = Δ Δ = Δ − Δ , and 

model model
1

log 10e

pKa pH G
kT

= − Δ  and modelproteinpKa pKa pKaΔ = − .  The pKa of the titratable 

site in the protein is then calculated as: exppKa pKa pKa= + Δ . 

Many of these methods allow for configuration changes.  The Monte Carlo proton 

dynamics is periodically interrupted to allow for a few steps of molecular dynamics.  The intent 

is to capture more accurate proton dynamics by allowing the system to explore a range of 

configurations. 

1.12.4 Proton Dynamics using Poisson-Boltzmann type models 

In the PB implicit solvent models, the water is modeled as a macroscopic with a large dielectric 

constant.  The solute is typically modeled in atomic detail including the titratable sites and is 
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assigned a smaller dielectric constant.  A Monte Carlo process attempts to add or remove a 

charge of one electron charge to or from all of the titration sites in turn.  The energetics of each 

protonation state of the system is calculated by a Poisson-Boltzmann type calculation.  It is the 

value of the solute dielectric constant relative to that of the solvent dielectric constant that 

matters for the calculation.  

The advantage of these Poisson-Boltzmann type calculations is speed.  It is possible, with 

this method, to perform hundreds of thousands of Monte-Carlo sweeps on each of the hundreds 

of titratable sites of a large protein, on a moderately powered workstation.  The model gives 

reasonable results for simple cases of sites that are solvent exposed and are not committed to 

involved site network interactions. 

The first problem that arises when conducting these calculations is the choice of a 

dielectric constant for the solvent and for the solute (the biomolecule).  A quick survey of the 

literature will reveal recommended dielectric solute constants in a range from 2 to 20 (with a 

solvent dielectric constant fixed at 80 for all cases) with no definitive rules for which value to 

use in which circumstances.  This represents an energy difference of a factor of 10.  There is a 

database of well-established experimental pKa measurements that were conducted on several 

proteins.  The wide range of dielectric values is a result of attempts to fit the calculated pKa  to 

the experimental pKa .  It is important to note here that the variation in the dielectric constant 

that comes from fitting the pKa  values of the different titratable sites in ONE protein, is as 

much, often more, than the variation of dielectric constant assigned to each protein such that it 

gives the best fit for all its titratable sites in each protein.   In other words, the intra protein 

dielectric constant variation is as much, often more, than the inter protein dielectric constant.  

Granted that there is a large range of empirically fit dielectric constant values, what about the 

rules that guide the user about what dielectric constant to use in what circumstance?  For starters, 

the fact that the intra dielectric constant variation is larger than the inter dielectric constant 

variation rules out any rules that recommend using one dielectric constant for one genre of 

proteins, and other dielectric values for a different class of proteins. 

There have been several attempts to divide the protein into regions based on solvent 

exposure.  Parts of the protein that are solvent exposed will be assigned a higher dielectric 

constant, and parts of the protein that are in the hydrophobic core are assigned another dielectric 

constant.  However it is difficult to describe water penetration effects with simple solvent 
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exposure parameters, because the bound water demonstrates a wide range of behavior depending 

on the titratable site networks that it interacts with.  

This leads to another issue of titratable site networks.  The titratable sites interact with 

each other.  Even if the complications of water penetration were removed from the picture, there 

would still be issues.  That is if we considered a subset of titratable sites in our database such that 

these sites formed networks with minimal influence from water penetration, we would find that 

we would need different rules for different types of networks.  In the simplest situation of a 

network consisting of only two sites, we would find that the appropriate dielectric for one 

member of the network pair might differ widely from the appropriate dielectric for the other 

member of the network pair.  In other words, even the intra network value for the dielectric 

constant shows wide variation.  Then of course there is the issue of quantifying water penetration 

or solvent exposure effects. 

In summary the problem is not only is there a wide range of dielectric values to fit the 

data, but also that there are no definitive rules for which dielectric values to use in which 

circumstances.  The literature contains a lot of analysis that justifies why a site would exhibit a 

certain dielectric constant, but there is no definitive compilation of these analysis into rules that 

would allow a user to make a-priori decisions of what dielectric value to use where.  The 

underlying problem is that the macroscopic dielectric is an insufficient model for describing the 

solute and the solvent.  The dielectric assignment model is based on modeling the solute and 

solvent as simple bulk dielectrics.  Of course this ignores hydrogen bonding networks and the 

proton transport mechanisms that play an important role in the water-solute interaction (see 

section 1.4.1). 

1.12.5 Proton Dynamics with Langevin Dipole models 

The system is modeled as a lattice containing a combination of permanent and inducible dipoles.  

For proton dynamics this model as an advantage over the Poisson-Boltzmann type models 

because the most detailed of these models do not require assignment of dielectric constants, and 

the less detailed models do require the assignment of dielectric constants, but the values to be 

used are more consistent and span a narrower range2. 
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These models may be microscopic, but lack atom detail.  By backing slightly away from 

full atomic detail, there are some important system behaviors that may be lost.  Full atomic detail 

of the microstates allows for different exit or entry points of protonation on the titratable site.  

These positions mean a great deal to the pKa  of a site if that site is involved in a close 

electrostatic network.  As mentioned, the different positions of proton exit or entry may make as 

much as 2 pH  units of difference to the pKas  of the involved sites.  It is difficult to capture this 

behavior without a full microscopic multiple sub-ionization state description. 

On a less important, convenience related note.  All approaches that are not fully atom 

detailed suffer from the fact that there is not a seamless transition from widely used atom 

detailed structures to the microscopic or the semi-macroscopic descriptions Langevin Dipole 

description.  There is some learning curve involved in converting to the new model and getting 

things set up, unless all configuration and protonation dynamics were performed in the Langevin 

Dipole language. 

1.12.6 Challenges to explicit atomic detail solvent models 

Full atomic detail models are the most widely used simulated models.  By virtue of their atomic 

detail, their trajectories are considered to capture information that would be neglected by less 

detailed models.  This neglected information could accrue over space (the dimensions of the 

model system) and time to produce significant error.  However, using atomic detailed water 

(solvent) and discrete protonation states is a problem.  For a solvent exposed titratable site, the 

water (atomic detailed water model has a dipolar character) orients to adapt to the field of the 

protonation state (minimize the electrostatic energy).  The solvation shell that forms tends to lock 

in that protonation state and unreasonably long simulations would be required to get ionization 

transitions (see section 4.3.3 page 146).  For conveniently short simulations, this makes the other 

ionization state inaccessible to a Monte Carlo selection process. 

One solution is to make the protonation state a continuum instead of discrete.  Then one 

can use a free energy perturbation scheme (FEP) to force the system from one titratable state to 

the next67, 68.  The problem with this is that FEP simulations have to be in equilibrium.  Crossing 

the solvation barrier is like crossing phases.  Equilibrium is a big problem with these methods, 

even when the protonation parameter increments are ever so tiny.  One method that could help is 
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to use FEP to cross the barrier both ways, thousands of times.  However such an approach has 

questionable computational feasibility. 

1.12.7 Summary of proton dynamics challenge 

The elusive ideal model for proton dynamics would have both explicit atomic detailed solvent, 

and discrete protonation states.  However the solvation shell for such models prevents 

protonation state transitions during simulations of reasonable length.  There are several 

workarounds.  One is to make the solvent a continuum.  Another is to make the protonation state 

a continuum.  The last section discussed the problems associated with those two approaches.   

Another solution is to slightly back off from the atomic detail, and use a Langevin dipole 

approach. 

Our method uses discrete protonation states and explicit solvent.  High temperature 

simulations are used to get good ionization state transition rates.  WHAM is used to combine the 

simulations generated over the wide range of temperatures. 

1.13 OUR SOLUTION: THE TRINITY OF MD, MC AND WHAM 

Our explicit solvent method uses discrete protonation states model and overcomes the barrier 

problems by using high temperature simulations and using Weighted Histograms (WHAM) to 

bring together information from a wide rang of simulations. 

1.13.1 Summary of our theory 

The model we use to describe our biomolecular systems is the same as the Amber8 explicit 

solvent atomic detail model.  This is a classical mechanical force field model.  The configuration 

of the system evolves according Newton’s Laws of motion.  The proton dynamics evolves 

according to a probabilistic Monte Carlo selection of discrete microstates.  Each titration site is 
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allowed to occupy many discrete microstates, and the microstates themselves are described with 

atomic detail. 

 WHAM allows us to weave together simulations generated under a wide range of 

conditions and hence gives us an accurate description of the density of states, which can then be 

used to give us a complete range of thermodynamic results. 

Atomic detail Molecular Dynamics, Monte Carlo selection of discrete microstates, and 

WHAM work together like a trinity with symbiotic unity.  The members of the trinity are 

symbiotic.  One member of the trinity depends on the other members for its functional 

completeness, and cannot be productive without the other two.  The product of this unity is a 

good description of the density-of-states.  Consider the following examples of this symbiosis. 

The regular atomic detail MD force field description is not truly atomically detailed.  It 

can only be truly atomically detailed if it incorporates a discrete protonation microstate model for 

its titratable sites.  But classical MD is not able to sample these atomic detail discrete protonation 

states, so Monte Carlo is needed for the selection of these discrete atomic detail protonation 

states.  Atomic detail MD typically samples only a small region of the energy landscape, which 

means that its trajectories can’t yield very good density-of-state descriptions, which means that 

the ensuing thermodynamic calculations are limited in accuracy and scope.  The problem of 

better sampling is alleviated somewhat by incorporating MC selection of the discrete 

microstates, but the real breakthrough in sampling with our method comes by way of a 

“simulated annealing ensemble”.  What we specifically mean by this is that we generate 

equilibrated trajectories under a wide range of conditions.  We are able to weave together the 

information from the many trajectories with WHAM. 

The MC selection process is central to proper sampling of the protonation states.  

However MC by itself is not enough to allow the system to access all of the protonation states.  It 

is the high temperature trajectories of the “simulated annealing” data set that works together with 

the MC selection process to properly allow the system to access all of the microstates.   

WHAM is used to weave together the information from all of the simulations that are 

generated under different conditions.  Doing this, it gives us a good description of the density-of-

states, hence allows for a wide range of thermodynamic results of good accuracy.   
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1.13.2 Advantages of the MD/MC algorithm 

1.13.2.1 Staying in equilibrium 

In the section “survey of modeling proton dynamics”, 1.12, we saw that some of the explicit 

solvent methods use a “continuum” of microstates.  Using this continuum pathway, the system is 

forced, by free energy perturbation methods, to go from one protonation state to the next.  The 

free-energy difference between the protonation states is calculated in this way, and a resulting 

pKa can be calculated.  There are several problems with this method.  There are large energy 

barriers to cross in going from one protonation state to the next. This is because of the solvation 

shell formed by the atomic detail water model, which forms in response to the electrostatics of 

the protonation state.  Crossing this barrier in going from one protonation state to the next means 

a rearrangement of the surrounding waters.  In other words, the system crosses phases.  This 

means that such a free energy perturbation pathway runs a high risk of not being in equilibrium 

at all points of the pathway.  Free energy perturbation is only accurate if the system is in 

equilibrium for the whole pathway.  Enforcing equilibrium for such a system means using both a 

very slow pathway, and also going back and forth between the protonation states many times (for 

good enough statistics).  Having to do this challenges this method in terms of computational 

feasibility. 

 In our method, our simulations are in equilibrium all of the time.  We use discrete 

microstates.  We achieve rigorous protonation state sampling with the combination of MC 

selection and a “simulated annealing ensemble” to high temperatures.  Our relative free energies 

are derived NOT from driving the system from one protonation state to the next.  Rather they are 

derived by weaving together all of the information from trajectories generated under a wide 

range of conditions, to get a good density-of-states description. 

1.13.2.2 Improved electrostatic modeling 

Much has been said in previous sections about the importance of good electrostatic modeling.  

Proton dynamics involves moving around protons of 1 electron charge.  So attempts to take full 

advantage of atomic detail for a detailed electrostatic description will be handicapped without 

incorporating proton dynamics. 
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A discrete microstates model is better for electrostatics.  In the discrete model, the sites 

can have only two ionization states.  The proton is either there or not there.  Using a continuum 

of ionization states cannot capture correlations between proton dynamics and the configurational 

dynamics.  In other words, ½ a proton on a site is not a substitute for a site being protonated 50% 

of the time, and deprotonated 50% of the time.  Because there is no such thing as ½ a proton, the 

discrete ionization state model is also much more intellectually satisfying. 

Not only does our model have discrete ionization states, but also the ionization state may 

have several discrete microstates!  These microstates distinguish them selves by the orientation 

of the proton relative to the titration site, and the exit or entry point of the proton to or from the 

titration site.  By exit and entry points, I mean the entry point of the proton upon protonation, or 

the exit point of the proton upon deprotonation.  This yields better electrostatics for the following 

reasons.  In titratable sites networks, even those as simple as two site networks, the titration sites 

in the hydrogen-bond network are usually closer than 6 Angstroms from each other.  So the 

location of the exit or entry point of protonation on a site could make a big difference to the 

energetics of the hydrogen bonds.  The exit or entry point location on one side of the titration site 

compared to the opposite side of the site could mean a difference of 2 Angstroms in the length of 

the consequently formed hydrogen-bonds (see Figure 21: Cysteine microstates).  This clearly 

would make a big difference in the energetics of the system.  Our implementation of discrete 

ionization states and discrete microstates therefore provides an electrostatic description of 

dynamic biological systems that takes full advantage of the atomic detail force field model. 

Most of the macroscopic methods use discrete ionization states.  However there are 

advantages to using atomic detail and explicit solvent as opposed to macroscopic descriptions of 

the system.  Macroscopic descriptions require the assignment of dielectric constants to the solute 

and the solvent.  These assignments are a challenge, because there is no well-defined way of 

assigning appropriate dielectric constants to the protein or to regions of the protein. 

1.13.2.3 More accurate trajectories 

In the previous section we discussed the improved electrostatic description that goes with the 

proper inclusion of proton dynamics.  This will in turn yield more accurate trajectories.  In the 

world of computer simulation, more accurate trajectories are usually only meaningful because 

they imply more accurate density of state descriptions and consequently more accurate 
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thermodynamic calculations.  However more accurate trajectories are useful in their own right.  

Recall that concerted motion is an important part of the function of many biomolecular systems.  

The inclusion of atomic detail proton dynamics, and any trajectory improvements that result, 

may well yield concerted motions in the simulations that shed light on the correlation between 

concerted motion and function. 

1.13.2.4 More accurate configurational sampling 

Atomic detail MD typically samples only a small region of the system’s energy landscape.  

Unlike standard MD protocol, our MD/MC algorithm will allow for dynamic protonation 

assignment during the course of the simulation.  This in turn will affect configuration-

protonation state correlation, hence broadening the sampling for more accurate thermodynamic 

calculations. 

1.13.3 Advantages of the Simulated Annealing Ensemble 

Our Simulated Annealing Ensemble consists of equilibrated system trajectories generated under 

a wide range of conditions.  Simulated Annealing in computational simulations is generally 

thought of as the process of heating up and cooling down ONE system for equilibration or other 

reasons.  This implies that systems undergoing such a process are not in equilibrium, but rather 

are having gradual state variable changes imposed on them.   For this reason we use the term 

“simulated annealing ensemble” as opposed to simply “simulated annealing”.  In our method we 

use an ensemble of systems that differ from one another only in that they are generated and 

EQUILIBRATED under a wide range of conditions.  Each simulation in the ensemble is 

completely EQUILIBRATED, and its state variables stay fixed during the course of its 

generation. 

The “simulated annealing ensemble” is necessary for the following reasons.  Because we 

use an explicit solvent, atomic detail, discrete microstate model, efficient sampling of the 

ionization states requires that the system be simulated at elevated temperatures ( >1000K).  At 

300K, the system in one ionization state will take an unreasonably long time to access the other 

ionization state.  It is more efficient to elevate the temperature to get frequent transitions for 

good statistics.  
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However a single high temperature trajectory is not good enough.  We hope to use the 

simulations to calculate thermodynamic quantities at room temperature and pressure.  The high 

temperature trajectories alone, fed into WHAM, will give a density of states description that may 

be sufficient for calculating thermodynamic quantities at >700K, but not for 300K, 1atm.  Lower 

temperature trajectories, such as those at 300K and 1atm, need to be combined in WHAM with 

the higher temperature trajectories to yield a density of states description appropriate for  “room 

condition” thermodynamic calculations. 

However a single high temperature trajectory, and a single low temperature trajectory are 

not good enough.  In order for WHAM to weave together the high and low temperature 

information in an efficient and meaningful way, there needs to be overlap of the “effective 

energy” histograms of the simulations.  So we need many trajectories generated under conditions 

that span the whole range, from the highest temperature trajectory all the way down to 300K 

1atm.  For good histogram overlap, this usually numbers about 200 simulations.  Hence our term, 

“simulated annealing ENSEMBLE” 

Although the deployment of the “simulated annealing ensemble” was one of necessity, 

there are many advantages to doing this.  Because the system is represented as an ensemble of 

trajectories generated under widely different conditions, the configurational sampling is 

excellent, and WHAM weaves together a very powerful description of density of states.  This 

power for calculating thermodynamic parameters is demonstrated in plots such as the one shown 

in Figure 32. 

All of our trajectories are equilibrated.  This was mentioned before, but it is worth 

repeating in the context of comparison with some explicit solvent methods.  Some other explicit 

solvent methods attempt to cross the water shell barrier by driving the protonation state of the 

system with Free Energy Perturbation.  The problem with such an approach is that the system is 

not equilibrated along the entire pathway because the system has to cross a phase due to water 

reorientation. 

1.13.4 Advantages of using WHAM with MD/MC trajectories 

Our WHAM theory is rigorous and powerful.  It allows for bringing a wide range of information 

to bear in the pursuit of accurate thermodynamic results.  In the previous section we have already 
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discussed how WHAM brings information, from trajectories generated under wide range of 

conditions, to bear on achieving a good density of states description.  Now we will see how 

WHAM brings information of different types to bear on achieving good thermodynamic results.  

For example, consider a typical pKa calculation, conducted using typical methods. 
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The potential energies of the various protonation states are measured.  The MC algorithm then 

chooses a protonation state based on those potential energies.  This process repeated many times 

yields occupancy statistics, from which pKas are derived.  So the pKas are a direct result of the 

occupancy statistics, and are an indirect result of the system energies.  However, using WHAM 

gives us the following advantage. 
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The calculated pKa numbers are derived directly from both types of information.  Both the 

system energies and the occupancy statistics go directly into the pKa calculation (See equations 

in section 3.8). 
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And of course, we can blend information from different simulations: 
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 This power of WHAM to use information from a wide range of trajectories and also 

different types of information is applied not only to pKa calculations, but THE FULL RANGE 

OF THERMODYNAMIC CALCULATIONS. 

1.13.5 Advantages of user friendliness 

Much work has gone into making the generation of the MD/ MC trajectories, the generation of 

these trajectories for a wide range of conditions required for the simulated annealing ensemble, 

and the WHAM analysis of these trajectories as seamless as possible.  Anyone familiar with 

using Unix type operating systems, Perl scripts and popular MD packages (such as AMBER’s 

sander, CHARM, or NAMD) will find our package easy to use.  Our algorithms have been tested 

on both 32-bit and 64-bit platforms and runs on Beowulf clusters and several different types of 

supercomputer architectures. 

The first step is the creation of special parameter files for the MD/MC algorithm.  These 

files have enough information in them to allow for the generation of the right force field 
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parameters for any protonation state of the system.  The process for the creation of these 

parameter files is easy and well defined.  The easiest way to do it is to simply use the AMBER8 

Xleap parameter database that we provide and follow a few easy well defined steps. 

The MC algorithm is fully integrated into the AMBER7 sander MD algorithm, so the 

transition from the MD sub cycle to the MC sub cycle is completely seamless to the user.  Perl 

scripts generate the hundreds of input files required for the simulated annealing ensemble.  Perl 

scripts are also able to automate the equilibration process of the trajectories within the simulated 

annealing ensemble.  There are also Perl scripts that generate the job files for submission to the 

queue of the computing resource used. 

There is an easy and well-defined protocol for how to input all of the trajectory 

information for WHAM to process.  The MD/MC and WHAM algorithms were designed to 

work together so that there are NO formatting issues.  WHAM completely understands the 

format of the MD/MC output. 

The convergence time required for WHAM may require the submission of a series of 

jobs, where each job is short enough to reduce queue waits.  There are Perl scripts that automate 

this process by chaining jobs together and arranging/creating relevant output and input 

information for exiting jobs and successive job respectively. 

One of the most exciting and important user friendly features of our method is the ease 

with which the user can experiment with different water models, different force field parameters, 

and new exciting features like polarization.  This is possible because a lot of the flexibility and 

features of the AMBER sander module and the AMBER Xleap module are retained.  There is an 

extensive number of water models (including cutting edge untested water models), force field 

parameter databases (including some cutting edge untested polarization parameters), and features 

that come with the AMBER package, and they are almost all available for use in our method. 
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2.0 INTEGRATING MD, MC AND WHAM 

The Hamiltonian of our system is described by 
2

( , )
2
pH U x
m

η= +∑ .  The Potential energy is a 

function of both “configuration” x  and protonation state η .   x  represents the configuration of 

the whole system except the titratable sites.  η primarily describes the protonation state of the 

system, and also the configuration of the titratable sites.  In our description, protonation states are 

characterized by both force field parameters (like charge) and configuration of the titratable site. 

One simulation cycle of our MD/MC code consists of an MD sub-cycle and an MC sub-

cycle.  The MD sub-cycle uses a fixed protonation state η  and allows the “configuration x ” to 

evolve, enforcing constant N, T, and P.  In the MC sub-cycle, the Monte Carlo sweeps act on the 

system with a fixed “configuration x ”.  Protons are allowed to jump on or off the titratable sites 

(allowing η  to be updated), thus enforcing constant pH.  Together one cycle simulates a true 

“Biochemical Ensemble”, constant N, P, T and pH. 
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 Equilibrated trajectories are generated at a wide range of temperatures and pH.   

 

 

 

  

 

 

 

 

 

 

 

 

 

 

The information from all snapshots of all trajectories is fed to our WHAM algorithm, which 

allows us to weave all of this information together to give us a good description of the densities 

of states, and hence allows us to calculate a wide range of thermodynamic parameters such as 

free-energies and pKas. 

Throughout this discussion of our MD/MC theory, we will use the example of a solvated 

system consisting of a single titratable Cysteine amino acid.  This helps make the discussion a 

little less abstract. 

2.1 RESERVOIRS THAT INFLUENCE OUR SYSTEM 

There are three “baths” or reservoirs for our system, a temperature bath, a pressure bath and a pH 

bath corresponding to three intensive parameters, H
1,  and ( log 10 )eT P pHμ
β

= − .  T, P and Hμ  

are the system temperature, pressure and proton chemical potential respectively.  The 

temperature reservoir interacts with the system by influencing the system’s particle velocities.  If 

( )MD fixedη

( )MCsweeps f xed xi

Constant N,T,P 

Constant pH 

Biochemical Ensemble, 
constant N, T, P and 
pH           

WHAM 
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the velocities or temperature of the system particles is lower than the target temperature (which 

is the temperature of the temperature reservoir), the system velocities will be scaled up in an 

attempt to get the system to the target temperature.  Similarly if the temperature of the system is 

higher than the target temperature (the temperature of the reservoir), the velocities of the system 

will be scaled down.    The second bath is the pressure bath.  This reservoir interacts with the 

system by influencing the system volume.  If the instantaneous pressure of the system is higher 

or lower than that of the target pressure (which is the pressure of the pressure reservoir) then the 

volume of the system is increased or decreased as it attempts to get the system pressure to match 

the target pressure.  The pH bath or reservoir interacts with the system by exchanging protons 

with the system.   

 

 

 

 

          system     reservoir 

    

If the energy of a protonated titration site is higher than the energy of its deprotonated state, then, 

if averaged over a sufficient period of time, the proton is removed from the titration site to the 

reservoir.  If this situation is the same for many of the titratable sites of the system, there will be 

a net flow of protons from the system to the reservoir. 

 

 

  

 

 

 

Similarly, the opposite proton flow occurs if the deprotonated sites cause the system to have 

higher energies relative to the protonated versions. 

The presence of the temperature, pressure and the pH reservoirs is affected though the 

temperature, pressure and pH state variables, which are selected at the beginning of a simulation 

and fixed during the course of the simulation.  A system that evolves under conditions of 
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constant temperature and pressure due to interaction with a temperature and a pressure bath is 

said to be in the NPT ensemble.  But our system is in a different ensemble, the , , , HN P T μ  

ensemble, which we describe as the “biochemical ensemble”.  At first glance the , , , HN P T μ  

ensemble seems to have one variable too many, but the conjugate partner of the proton potential 

Hμ  is L , the proton count of the proton reservoir.  N  is the atom count of all atoms of the 

system except the titratable protons, i.e.  titratable protonsN N∉ .  Rigorously, the total number of 

atoms in the system is  ( )titratable protonsN N L+ − , which is not constant, even though N is constant.  

Our ensemble is therefore a mixed ensemble that consists of an NPT ensemble and a PT Hμ   

ensemble. Hence we describe our biochemical ensemble system as an HNPTμ  ensemble, which 

is consistent with the system atom count of  ( )titratable protonsN N L+ − .  Our rules for calculating 

thermodynamic quantities in this HNPTμ  ensemble are slightly different than the ones for the 

NPT ensemble, so we go through those rules in the next chapter (chapter 3.0). 

2.2 POTENTIAL ENERGY FUNCTION & SYSTEM MICRO-STATES 

The titratable hydrogen atom is connected to Cysteine by a three-fold dihedral bond.  This means 

that if this hydrogen were forced to rotate about the sulphur-carbon bond, it would pass through 

three minima that are separated by 120 degrees.  The three minima are where the H-S-C-H 

dihedral bond is 180 degrees (the state one minima), 300 degrees (the state two minima) and 60 

degrees (the minima of state three).  The dihedral potential function is continuous.  This means 

that the dihedral can take on an infinite number of values, which means the titratable hydrogen 

can have an infinite number of positions.  What defines a protonated state, and what 

distinguishes one microstate from the next is not some specific position of the hydrogen or some 

single value of the dihedral, but rather a range of values of the dihedral.  State one is defined as 

such if the titratable hydrogen is positioned such that the H-S-C-H dihedral has a value in a range 

that is greater than 120 degrees and less than 240 degrees.  State two is defined as such if the 

dihedral has a value in a range that is greater than 240 degrees and less than 360 degrees.  State 
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three is defined as such if the dihedral has a value in a range that is greater than 0 degrees and 

less than 120 degrees. 

Consider for example the four microstates of Cysteine. 

 

 

 

 

 

 
Figure 21: Cysteine microstates 

State zero and state one are different ionization states.  They share the same configuration, but 

the atom parameters, partial charges and bond parameters are different.  The most significant 

difference is that the titration hydrogen of state zero is a ghost atom, having no partial charge and 

no van der Waals parameters.  If states zero and one were the only protonation states of Cysteine, 

it would suffice if η  carried no configuration information.  However η  must carry 

configurational information to distinguish between states one, two and three.  These three 

protonation states are all protonated, these three states all share the same partial charge, atom and 

bond parameters.  The only difference between them is that the titratable hydrogen is oriented 

differently relative to the rest of the Cysteine. 

 The potential energy of our MC/MD system, ( , )U x η , is a function of system 

configuration and protonation state of the system.  This is different from the usual molecular 

dynamics potential energy function, ( )U x , which is a function of configuration alone.  In our 

potential energy function, ( , )U x η , x almost means the configuration of the system, but not 

quite.  It means the configuration of all of the system except for the titration sites.  η  describes 

the protonation state of the system and the configuration of the titration state.  Together, x  and 

η  describe the configuration of the whole system and the protonation state of the whole system.  

The reason why η  describes both protonation state and also a little configuration information is 

because some of the microstates differ from each other only by configuration differences of the 

titratable group.   

 state 0(charge=-1ec) state1(charge=0ec) state2(charge=0ec)     state3(charge=0ec) 
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One of our MC/MD cycles consists of two sub-cycles.  One sub-cycle is the Molecular 

Dynamics sub-cycle the other is the Monte-Carlo sub-cycle.  During the molecular dynamics 

sub-cycle, the force-field parameters stay fixed and the atom positions are updated according to 

numerical integration of Newton’s laws of motion.  During this sub-cycle, the system is in 

contact with the temperature and pressure reservoirs for enforcing constant temperature and 

pressure conditions on the system.  Because the force field parameters are fixed during this sub-

cycle, the Cysteine cannot change ionization states during this sub-cycle.  So if the system is in 

the deprotonated state (state zero) at the start of the molecular dynamics sub-cycle, it will stay 

deprotonated for the duration of the molecular dynamics sub-cycle.  Similarly if the system is in 

one of the protonated states, it will stay protonated during the course of the molecular dynamics 

sub-cycle.  However, it is possible for the system to change from one protonated microstate to 

the next.  This is a rare occurrence for the following reasons.  The first reason is that during the 

molecular dynamics part, the titratable hydrogen usually rattles around near the bottom of the 

potential energy well of the dihedral.  Energy fluctuations of the system would have that 

hydrogen cross those barriers and go from one protonation state to the next.  For room 

temperature simulations, that would happen about once every three thousand MD steps.  

However, recall that the molecular-dynamics sub-cycle is only twenty steps long.  Seldom will 

there be a transition from one protonation state to the next within only twenty molecular 

dynamics steps, even at higher temperatures.  This is our justification for saying that during the 

molecular dynamics sub-cycle, the x  in ( , )U x η  is updated but η  is fixed. 

During the molecular dynamics part of the sub-cycle, the pH component of the effective 

energy, log10 pH L− i , is ignored because this component does not change from one step to the 

next.  This is because no ionization state changes take place during the molecular dynamics sub-

cycle, so including this term in the energy calculations is useless. 

During the Monte Carlo sub-cycle, the system is in contact with the pH reservoir, or a 

proton bath.  The effective energy, log10potE PV L pH+ − i , is calculated for each state.  Let’s 

call them 0, 1, 2, 3E E E E .  Boltzmann factors are then assigned to each state, 0, 1, 2, 3eE eE eE eE , 

where 00 EeE e−= , and they are normalized so that the sum equals one.  Each state is then 

assigned a range between 0 and 1, and the value of the range equals the value of the normalized 

Boltzmann factor. 
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A random number generator then generates a number between zero and one, thereby selecting a 

state. 

 The Monte Carlo algorithm has to generate the states before their effective energy can be 

measured.  The Cysteine system will enter the Monte Carlo sub-cycle in one of the four states.  

The other states are generated using a combination of parameter swapping and rotation of the 

titratable hydrogen dihedral bond (the C S− − −  bond).  How this is done is important in 

addressing the issues of equilibrium and detailed balance, so I will now give more detail about 

this process.  If the system enters the sub-cycle in state zero, the potential energy and other virial 

related routines are called to calculate the potential energy and the volume of the system.  These 

are the same routines that are called during the molecular dynamics sub-cycle.  The effective 

energy is then calculated as 0 1.0 log10potE E PV pH= + − i i .  The 1.0 factor is in the 

1.0 log10 pH− i i  term because the state is deprotonated, which means that one (1.0) proton is 

present in the proton bath, and absent from the Cysteine.  State one is then generated by 

changing the partial charges, atom parameters and bond parameters to those of protonated 

Cysteine.  However, no configurational changes are made.  Recall that the configuration, which 

is the atom positions, of state zero is the same as that of state 1 (see Figure 21: Cysteine 

microstates).  The potential energy and other virial routines are then called to calculate the 

potential energy and the volume of the system, and E1 is calculated.  Note that E1 is protonated, 

so the proton is present on the Cysteine and absent from the proton bath, so there is no pH term, 

so 1 potE E PV= + . 

 State two is then generated by rotating the titratable hydrogen’s dihedral 120 degrees.  

Recall that in state one, there are an infinite number of positions that the hydrogen atom can 

occupy, partly because the dihedral can have an infinite number of values between 120 degrees 

and 240 degrees (the hydrogen can also occupy an infinite number of positions by virtue of 
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degrees of freedom orthogonal to the dihedral coordinate, such as the H-S bond coordinate or the 

H-S-C angle coordinate).  During the molecular dynamics sub-cycle, most of the time, the 

hydrogen atom will be spent rattling around near the bottom of the potential well, but it is almost 

impossible that it will be exactly at the bottom of the well.  So by rotating 120 degrees to 

generate state two from state one, we ensure that the position of the titratable hydrogen relative 

to the dihedral potential minima is the same in state two as it was in state one.  Doing this 

preserves detailed balance and equilibrium.  The usual virial routines are again called to calculate 

the potential energy and the volume, and E2 is calculated.  In like fashion, state three is 

generated by another 120 degree rotation in the same direction, and E3 is calculated. 

2.3 OUR EFFECTIVE ENERGY COMPONENTS 

The dimensionless effective energy of our MC/MD models is 1 ( )pot HE PV L
kT

μ+ + .  k  and T  

are the Boltzmann’s constant and temperature respectively.  potE  is the potential energy of the 

system.  P and V are the pressure and volume of the system respectively.  L is the number of 

protons in the proton bath.  Hμ  is the proton chemical potential of the proton bath. 

The last term, HLμ  is the term that the constant pH functionality contributes to the 

effective energy.  L, the number of protons in the proton bath, increases as the number of 

deprotonated states increases.   Hμ , the chemical potential of the proton bath, is a measure of 

how energetically hard or easy it is to place or remove a proton to or from the proton bath.  Hμ  

and L  are conjugate variables.  The chemical potential Hμ  is related to the pH as follows. 

log10H pHβμ = − .   Log10 is simply the constant 2.303….  and pH is the pH of system.  The 

pH (and Hμ ) of the system is a state variable, on the same footing as temperature and pressure.  

The pH, like temperature and pressure, is selected and set at the beginning of each simulation 

and stays fixed throughout the simulation so that equilibration can be attained.  L is a 

configurational variable, like volume and potential energy.  It may change (like potE  and 

volume) during the course of the simulation regardless of if the system is in equilibration or not.  
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It will definitely change if the selected pH for the simulation is close to the pKa of any of the 

system’s titratable sites 

2.4 GHOST ATOMS 

2.4.1 Introduction to Ghost Atoms 

In the protonated states of Cysteine (states one, two and three), the force field parameters used 

are the same as those of the protonated form of Cysteine in the Amber8 force field.  However, 

for the deprotonated state, state 0, the force field parameters used differ slightly from those of the 

deprotonated form of Cysteine in the Amber8 force field.  The differences are related to the fact 

that our deprotonated system has a ghost-hydrogen, and the original Amber8 deprotonated 

Cysteine has no such thing.  Our ghost hydrogen has mass and does interact with the rest of the 

solute via the linear, angle and dihedral bonds.  However it has zero partial charge and its van der 

Waals parameters are zero.  We will now discuss the effects of the differences between our 

deprotonated model, which contains ghost atoms, and the deprotonated Amber8 model, which 

has no ghost atoms.  We will also discuss our justification for using ghost atoms.  First we will 

state the differences between the deprotonated Cysteine models. 

2.4.2 Summary Comparisons with our Ghost Atom Model 

Our deprotonated Cysteine parameters are the same as those of the Amber8 deprotonated 

Cysteine, with an additional ghost atom and additional parameters relating to that ghost atom.  

The ghost hydrogen has the same mass as a regular hydrogen atom, 1.008 atomic mass units.  

There is no partial charge on the ghost atom, so there is no electrostatic interaction.  The van der 

Waals parameters of the ghost hydrogen are zero, so there is no van der Waals interaction of the 

ghost hydrogen.  All of the bond parameters, that is, the linear bond parameters, angle bond 

parameters and dihedral bond parameters connecting the ghost hydrogen in the deprotonated 

state, are all the same as the corresponding bond parameters of the hydrogen of the protonated 
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version.  In the original Amber8 deprotonated Cysteine, these parameters do not exist because 

there is no ghost hydrogen attached to the sulphur.  What follows is a discussion of our reasons 

and justifications for setting up the deprotonated model in this way. 

2.4.3 Justifications For Using Ghost-Hydrogens 

In a real system, there is no ghost hydrogen and the departing proton will go to another position 

in the solute or in the solvent (possibly forming 3H O+ ).  Since there may be over ten-thousand 

water molecules in a typical model, we cannot model this kind of action for it would mean 

making every water molecule of the solvent titratable, resulting in a much less computationally 

feasible model. 

Implementing a scheme for creating and eliminating protons is an intuitive way of 

modeling ionization state transitions.  However recall that our MD/MC algorithm is a 

modification of the Amber (sander) code that is not designed to model breaking/making of bonds 

required to add or remove atoms to or from a system.  It is relatively easy to make modifications 

to the algorithm to make the proton go away, but hard to put it back.  So instead of making it go 

away, we change it into a ghost atom which is easy to put back.  

In our deprotonated model, the ghost proton has the proper mass and the usual bonding 

parameters, but there are no electrostatic or van der Waals interactions because the partial charge 

is zero and the van der Waals parameters are zero.  Considering that our ghost-hydrogen has 

mass, and the bond parameters related to the ghost hydrogen retain their values, what about the 

bond vibrational energy components for the ghost atom in our deprotonated model, which would 

not exist in the real system?  According to Equipartition theory, the bond vibrational energy 

contribution of the titratable hydrogen atom is on average 13
2

kT×  (3 degrees of freedom).  In a 

real system, the proton leaves the titratable site to go somewhere else, let’s say to form 3H O+  in 

the solvent.  So the 3/2 kT bond vibrational energy term simply leaves the titratable site of the 

Cysteine solute and goes somewhere else, in this case, the solvent.  But it does stay in the 

equilibrated system!  This is consistent with our method, where the 3/2 kT stays in the system.  

Where our model differs from the real system is that in our model the 3/2 kT stays in position at 
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the deprotonated titration site on the solute, instead of going to another position or going to the 

solvent.  This imprecision of our model for positioning the 3/2 kT will therefore have no effect 

on our final thermodynamic results. 

2.5 EQUILIBRATION AND IONIZATION STATE TRANSITIONS 

What about equilibration disturbances during ionization state changes?  It may seem intuitive 

that when the system changes ionization states, equilibration would be hard to determine.  For 

example, if during an MD sub-cycle, the system is equilibrated and is in the deprotonated state 

(state zero).  Then the MC chooses state one, a protonated state.  Then the next MD sub-cycle 

would see reorientation of the system, including the solvation shell around the titration site.  It 

seems like this process would render a determination of the equilibrium of the system very 

difficult.  However equilibrium can be determined for our systems for the following reasons. 

Equilibrium determination can only be defined in terms of the time scale of observation.  

A cup of room-temperature water on a table in a humid room is in equilibrium, and can be 

determined to be in equilibrium, assuming the time scale of observation is seconds or minutes.  

But if the time scale of observation is too short (less than 1510− seconds), it would not appear 

equilibrated.  This is because the short observations would only capture a fluctuation, or a few 

system fluctuations, such as water molecules bursting the surface to dissipate into the air.  But 

observation times on the order of seconds would reveal equilibrium between water molecules 

entering the air and molecules entering the liquid.  The time scale of observation has to be long 

enough to capture many fluctuation events, in order to accurately average.  In other words, the 

time scale of observation has to be several orders of magnitude longer than the time scale of the 

system fluctuation phenomena.  In our MD/MC systems, we examine the equilibrium of the 

system over a period of nanoseconds (106 MD steps), 50,000 MC sweeps and thousands of 

ionization state transitions.  Typical ways of determining equilibrium for an MD system will be 

to look at Potential energy, density, temperature and pressure over many picoseconds (> 100,000 

MD steps) and see if there are drifts in these values, which would indicate that the system is not 

yet equilibrated.  We use the same criteria for our MD/MC systems.  We accept a system as 

equilibrated if it is stable during observation lengths of the system for over 106 MD steps, 105 
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MC sweeps and several thousands of ionization transitions.  The latter (several thousands of 

transitions) dwarfs the others in importance.  This is because 105 MC sweeps may seem like a lot 

but not all MC sweeps cause ionization state changes.  Many MC sweeps leave the system 

unchanged.  It is the number of transitions that say how many ionization “fluctuations” have 

occurred.  As mentioned before, our observations must span many of these ionization 

“fluctuations” and they do, spanning several thousand of them. 
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3.0 WHAM THEORY, DEVELOPED AND EXTENDED 

3.1 INTRODUCTION 

WHAM is the adaptation of the Weighted Histogram formalism for biomolecular applications 

(S. Kumar, 1992, 1995)63,64
.  We needed to develop the method further to take into account some 

new ideas, and so we also undertook a revision of the notation to make the method easier to 

understand.  Many of these new ideas were inspired by our work of adapting WHAM for use 

with constant pH simulations. 

A related motivating factor for revision is the recognition that many of the difficulties 

encountered in learning “histogram” methods turned out to be difficulties with the underlying 

statistical mechanics.  It is often stated that biomolecular problems can, in principle, be 

addressed via the rigorous application of the principles of statistical mechanics, but the “how to” 

is usually unstated because of the perceived numerical difficulties.  Here, we emphasize that 

histogram methods facilitate a very general translation between statistical mechanics and 

numerically computed results; a clear understanding of these connections also facilitates a 

rational evaluation of the numerical difficulties. 

We therefore begin with a review of the relevant statistical mechanics in the NPT 

ensemble because it is the ensemble most suitable for biological structure-function correlations.  

Then towards the end, we will extend it to our NPTµH biochemical ensemble (see section 2.1).  

The focus here is on the concept of the density of states and its related formalism because this is 

the “translation” between rigorous statistical mechanics and numerical results obtained via 

histogram methods.  We show that the problem of calculating all the relevant thermodynamic 

parameters can be developed in the density of states formalism.  However a rigorous, direct 

calculation of the density of states is not possible for most biomolecular systems.  We then reach 

our central point, however; histogram methods allow one to estimate the density of states from 
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molecular dynamics or Monte Carlo simulations.  This approach facilitates understanding the 

assumptions that underlie the connections between a set of trajectories (histograms) and the 

thermodynamic results based on them; which, in turn, enables accurate estimates of the 

statistical errors inherent in the calculation and provide guidance on which further calculations 

are needed to reduce those errors. 

As mentioned above, one of the justifications for overhauling our notation and theoretical 

description was the adaptation of WHAM to constant pH simulations.  The first sections describe 

our theory as relates to the usual MD simulation ensemble, the NPT ensemble.  Then, in the last 

sections, our theory is reviewed and adapted for constant pH simulations in our mixed HNPTμ  

biochemical ensemble (please see section 2.1).  We do it this way so that the constant pH 

discussion will all be in one place, and not get lost amongst the general discussion. 

3.2 THE DENSITY OF STATES 

We begin with the molecular system in the NPT ensemble.  The Hamiltonian is 

 ( )
23

'

1 2

N
i

i i

p U x
m=

= +∑H  (3.1) 

where N  is the total number of atoms in the system and pi and mi  are the momentum and mass 

of the ith particle respectively.  We assume that the potential energy, ( )'U x , is a function of the 

atomic coordinates, x , only i.e. the Born-Oppenheimer approximation69.  The partition function 

for the NVT ensemble can be written as: 

 ( )' 2 2 3 3U x p m N N
NVTQ e d pd xβ ⎡ ⎤− +⎣ ⎦= ∫  (3.2) 

where β = 1/kBT, where kB is Boltzmann’s constant, β = 1/kBT, and the x-integrals are over the 

volume V.  To find the NPT ensemble (later we will deal with the HNPT μ  ensemble) we 

integrate the NVTQ  over V to get 
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 ( )( )' 2 2 3 3 ( )U x p m N N PV
NPTQ e d pd x e dVβ β⎡ ⎤− + −⎣ ⎦= ∫ ∫  (3.3) 

Now we introduce an energy variable U and insert the expression '1 ( ( ))U U x dUδ= −∫  into the 

integral over the coordinates. 

 ( )' 2 2 ' 3 3( ( ))U x PV p m N N
NPTQ e U U x d pd xdVdUβ δ

⎡ ⎤− + +⎣ ⎦= −∫  (3.4) 

Rearranging the variables of integration and introducing the density of states 

( ) ( )' ' 3, ( ( ))U x NU V e U U x d xβ δ−Ω = −∫  

we can write 

 
( )' 2

' 2

2 ' 3 3

2 3

( ( ))

( , )

U x PV p m N N
NPT

U PV p m N

Q e U U x d pd xdVdU

U V e d pdUdV

β

β

δ
⎡ ⎤− + +⎣ ⎦

⎡ ⎤− + +⎣ ⎦

= −

= Ω

∫
∫

 (3.5) 

We now introduce the spatial partition function, Z 

 ( )( , ) U PV
NPTZ U V e dUdVβ− += Ω∫  (3.6) 

which gives us the relationship 

 ( ) ( )2 22 3 2 3, U PV p m N p m N
NPTQ U V e d pdUdV Z e d pβ β− + +

= Ω =∫ ∫  (3.7) 

Expression (3.3) for Q is the conventional definition of the partition function for the NPT 

ensemble in terms of the Hamiltonian, while the next expression (3.5) introduces the density of 

states, Ω.  The Boltzmann term, ( )2 2U PV p me β− + + , remains, but it must now be weighted by the 

density of states, Ω , to account for the multiplicity of states with the same U  and V. 

The Boltzmann term, ( )2 2U PV p me β− + + , remains, but it must now be weighted by the density 

of states, Ω , to account for the multiplicity of states with the same U  and V. The Boltzmann 

term depends only on the values of the potential energy and volume, as well as the pressure and 

temperature; this is independent of the structural and molecular details of the specific system.  

Thus, all the system-specific thermodynamics is contained in the density of states, Ω. 

The unnormalized probability density ρ, that the system will be found in the 

neighborhood of the potential energy u, and the volume v, is given by: 
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 ( ) ( ) ( ), , u Pvu v u v e βρ − += Ω  (3.8) 

Thus the unnormalized probability density of a microstates characterized by potential energy, u, 

and volume, v, is proportional to a simple Boltzmann factor that relates the total potential energy 

(u + Pv) to kBT.  The constant of proportionality, Ω, measures the “number” of states, really the 

density of states characterized by u and v.  Note that Ω encapsulates all the system-specific 

information, and it is independent of P and T. 

Note that the unnormalized probability density in equation (3.8) is the integrand in the 

equation for Z, equation (3.6), and that (for any physically reasonable system) this probability 

becomes vanishingly small for very large potential energies relative to β.  This will become very 

important in the application of simulations below because it facilitates importance sampling, i.e. 

we do not need to know the entire density of states, only those regions that make a statistically 

significant contribution under the relevant temperature-pressure conditions.  This is what makes 

the problem computationally tractable. 

The unnormalized probability distribution is used for most of the discussion here because 

it is more convenient in the derivations that follow.  The “real” (normalized) probability density 

is given by: 

 ( ) ( ) ( ) ( )1 1, , , u Pvp u v u v u v e
Z Z

βρ − += = Ω  (3.9) 

3.3 PRINCIPLES OF STRUCTURE-FUNCTION CORRELATION 

In biological (and chemical) applications one often wants to know not only the overall 

thermodynamics, one also wants to know how those thermodynamics depend on critical aspects 

of the molecular structure.  Here, we show that the density of states can be readily generalized to 

address these questions in two related, but fundamentally different ways. 

First, there is a broad set of questions relating structural parameters to functional 

(thermodynamic) quantities.  Examples include:  In DNA-protein interactions, considerable 

attention has been given to the role of deformability70.  Is it easier to bend certain sequences of 

DNA than others?  Are certain sequences naturally bent?  Many proteins that interact sequence-
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specifically with DNA introduce unique distortions71.  How much energy do they cost?  How 

does this depend on base sequence?  In protein folding studies, particular attention has been 

given to buried surface area72 .  What is the change in heat capacity associated with the burial of 

a given area of polar or non-polar surface?  In general, how do relevant thermodynamic 

parameters depend on a critical hydrogen bond length or the value of a central torsion angle? 

Addressing these questions requires the introduction of generalized coordinates to 

quantify these structural parameters.  We therefore adopt the following notation for a set of 

generalized coordinates: 

 ( )i i xξ = Ξ  (3.10) 

Where iξ  is the ith generalized coordinate.  It is a function of the atomic coordinates, given by 

( )i xΞ ; where the principal restrictions on the Ξ ’s are that they are single-valued, integrable 

and, of course that they can be calculated from the atomic coordinates, x .  All of the examples 

cited above satisfy these criteria; in addition, they are continuous and differentiable, as is usually 

the case.  Of course, the generalized coordinates are multidimensional and we refer to the set of 

generalized coordinates by the generalized vector, ξ . 

In this discussion, we adopt the convention that the atomic coordinate vector will be 

written as x ; it is a 3N-dimensional vector where N is the number of atoms in the system.  

Generalized vectors will be written with underscores, as exemplified by ξ .  It is also obvious 

that we are using color to distinguish between different types of variable.  Here we use blue to 

denote configurational (atomic) variables, such as those that would apply to a single “snap-shot” 

of a molecular dynamics trajectory.  The density of states must now depend on the generalized 

coordinate vector, ξ , in addition to the potential energy and volume.  This is a central point. 

Other biophysical questions cannot be addressed simply by generalized coordinates; 

rather, they require the partitioning of the potential energy as follows: 

 ( )i ii iU U x u Uλ λ Λ= = =∑ ∑ i  (3.11) 

Here, we represent the potential energy as the sum of individual components, ( )iU x , 

each multiplied by a coupling constant, λ .  We refer to the set of coupling constants and 

potential energy values via the vectors, Λ  and U , respectively, and their sum by the dot product 
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as in the third expression of equation (3.11).  Note that there need be no connection between Λ  

and ξ , discussed above; generally they will be of different dimensions. 

Changing the Hamiltonian necessarily changes the state of the system; by introducing this 

generalization, the applicable statistical mechanical ensemble becomes the N,P,T, Λ  ensemble.  

Note that Λ  is an independent variable of state (actually a set of state variables), formally no 

different from pressure and temperature.  It is also now obvious that we are extending our color 

convention and the independent state variables are shown in red. 

Perturbation studies are one important class of problems that can be addressed with this 

form of a potential energy function; here, the chemical identity of a critical moiety is changed.  

An example would be a functional group in a ligand where one value of Λ  would correspond to 

one ligand and another value of Λ  would correspond to a chemically substituted variant.  Site 

directed mutational alterations of a protein or base-analog studies of DNA would be addressed 

similarly.  In all cases the goal of the effort would be to calculate changes in thermodynamic 

values such as the Gibbs free energy or the enthalpy associated with the chemical changes 

modeled by changes in the values of Λ .  Specific examples will be discussed below. 

Another class of questions can be answered by partitioning the Hamiltonian and 

investigating the contribution of individual terms.  One example would address the role of 

electrostatic forces by partitioning the Hamiltonian into electrostatic and non-electrostatic terms, 

each with its own coupling coefficient.  The contribution of electrostatic interactions to 

thermodynamic parameters could then be calculated.  Another example would address solvation 

by partitioning the Hamiltonian into solute-solute, solute-solvent and solvent-solvent terms.  

Similarly, inter-macromolecular interactions could be investigated by further partitioning of the 

Hamiltonian into A-A, A-B and B-B terms, where A and B are two macromolecules. 

Finally, generalizing the potential energy, as indicated above, facilitates the sampling of 

high-energy regions, such as energy barriers.  If the barrier is an accurately modeled transition 

state, then the methods described here can also be used to investigate kinetic phenomena.  High-

energy regions can be effectively sampled by introducing a Uj with a minimum in the region of 

interest; while the physically relevant states are those with the corresponding λj=0, accurate 

statistics must be gathered from simulations with non-zero values of λj.  This is discussed more 

fully in later sections. 
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With this treatment of the Hamiltonian, i.e. equations (3.10) and (3.11), the density of 

states can be written as: 

 ( ) ( ) ( ) [ ] 3, , Nu v x U x u V v d xdVi i j jξ δ ξ δ δ⎡ ⎤⎡ ⎤Ω = Ξ − − −∏ ∏ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫  (3.12) 

3.4 THERMODYNAMIC VARIABLES 

The partition function is therefore given by: 

 ( ) ( ) ( )

, ,
, , , , U V

U V

PU VZ P e β

ξ

ξβ − Λ +Λ Ω= ∑ i  (3.13) 

Here, we have written the integration of (3.6) as a summation to emphasize the 

connection with its numerical application; note that most of the variables, in principal, are 

continuous.   

The corresponding expression for the unnormalized probability density is: 

 ( ) ( ) ( ),, , , ,,| U VPP eU V U V βρ ξ ξβ − Λ += ΩΛ i

  (3.14) 

We are using the following notation:  Equation (3.14) describes the unnormalized 

probability density in the neighborhood of , ,U Vξ , given the macroscopic state specified by 

, ,Pβ Λ .   

The central point remains:  The unnormalized probability density is the product of a 

system-independent Boltzmann factor and the system-dependent density of states characterized 

by , ,U Vξ ; the density of states is independent of , ,Pβ Λ . 

A direct consequence of equations (3.10) and (3.11) is that there is a microscopic free 

energy associated with the unnormalized probability density: 

 ( ) ( )1, , ,, , | ln , , ,|g V U VP PUξ ρ ξβ β β−−=Λ Λ
 (3.15) 

Here, g  is the Gibbs free energy of the microstate characterized by , , | , ,U V Pξ β Λ .  

This can also be written as: 

 ( ) ( )1, , | , ,, ln ,g U V U V UP P Vξ β ξβ −= ΩΛ Λ + −i
 (3.16) 
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Thus, the free energy of the microstate is the sum of the total potential energy (including 

the pressure-volume term) and the term involving the density of states.  Note that all the system-

specific information is contained in the density of states; i.e. it expresses the dependence on the 

structural/molecular details of the system.  

In the density of states formalism, bulk thermodynamic parameters are obtained by 

simply integrating over the configurational (blue) variables.  Hence, the macroscopic Gibbs free 

energy is given by: 

 
( ) ( )1

, ,

ln , , |, , , ,
U V

G PUP V
ξ

ρβ β βξ−
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣

Λ − Λ
⎦

= ∑
 (3.17) 

This formulation of the partition function and Gibbs free energy readily lends themselves 

to differentiation with respect to the independent (red) state variables, including the temperature; 

this facilitates the application of well-known principles.  Thus, an expression for the enthalpy can 

be easily obtained: 
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i

i
 (3.18) 

The angle brackets in the last equation denote the ensemble average and reflect the well-

known result that the enthalpy is the ensemble average of the total potential energy.  Ensemble 

averages are very straightforward in the density of states formulation; here we show the 

ensemble average of an arbitrary quantity, ϑ , and the corresponding thermodynamic value, Θ : 

 

( )
( ) ( )

( ),

, ,

, ,

,

,, , , ,
, ,

, |

, , , ,|
V

U V

P

U

U V U

V

P

P

V

U
P ξ

β

ξ

βϑ ξ ρ ξ
ϑ

ρ ξ
β

βΛ

Λ

Θ Λ = =
Λ

∑

∑
 (3.19) 

The entropy is given by: 
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 (3.20) 

Likewise, the heat capacity is given by: 
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 (3.21) 

This is the expression, in the density of states formalism, of the well-known result that 

the heat capacity is the ensemble-average of the fluctuations of the enthalpy. 

3.5 POTENTIALS AND OTHER VARIABLES OF MEAN FORCE 

One of the main reasons for introducing the generalized coordinate vector, ξ , is that it is 

possible to calculate the Gibbs free energy as a function of ξ .  This is a well-known quantity 

called the potential of mean force; it can be readily expressed in the density of states formalism 

by: 

 
( ) ( )1

,
| ln, , ,, ,, |meanforce

U V
Pg VP Uξ ρ ξβ β β− ⎡

Λ − Λ
⎤

= ⎢ ⎥
⎣ ⎦
∑

 (3.22) 

All the relevant thermodynamic variables can be explored as a function of ξ  by similar 

means: 
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 (3.23) 

and 
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( ) ( ) ( ) ( ), 1| | |, , , , ,meanforce meanforce meanforceP gP PTs hξ ξ ξβ β βΛ Λ Λ⎡ ⎤= −⎣ ⎦  (3.24) 

and 
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 (3.25) 

The additional variables of mean force are expected to be of interest in many structure-

function correlations, including those alluded to here.  For example in the analysis of energy 

barriers, it is expected that different barriers will present fundamentally different 

thermodynamics, even for those where the heights have similar potentials of mean force.  Some 

may be dominated by the enthalpy of mean force while others could be entropically limited. 

3.6 REPRESENTATIVE PROBLEMS 

3.6.1 General Usefulness for Sampling Improvement 

Atomic Detail Molecular Dynamics has a drawback of typically sampling a narrow region of the 

energy landscape, because it tends to stay at the bottom of whatever energy well it started in.  So 

the simulations tend to have a lot of sampling in the area the simulation started and very little 

sampling everywhere else it is needed.  This means that the trajectory only has information for a 

limited yield of thermodynamic calculations.  Several techniques have been developed to 

increase the energy landscape sampling of atomic detail MD, such as hybrid MD-MC, replica 

swapping and adaptive integration.  Replica swapping works by performing an ensemble of 

simulations with different initial or simulation conditions, and pairs of simulations periodically 

swap momenta or simulation conditions73,74,75.  Adaptive integration alters the potential such that 

it becomes flat over the reaction coordinate so that barriers are overcome76. 
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However another way to broaden sampling 

is to use high temperatures and WHAM.  

This has a big advantage over the other 

sample broadening methods mentioned 

because no additional programming is 

required.  All that is required is to raise the 

thermostat (all simulation algorithms have 

this ability) and the use available WHAM 

algorithms.  However using replica swapping or adaptive sampling tends to be model specific, so 

there is usually a lot of code writing required to get these methods to work with a particular 

system.  With WHAM, the information from an ensemble of simulations, each with different 

initial conditions and simulation conditions (like temperature), can be brought together to yield a 

continuum of thermodynamic results for a range as broad as that represented by the ensemble.  It 

can also be used in addition to replica swapping or adaptive sampling. 

3.6.2 Accelerating Transition Rates with Thermodynamic Cycles 

In our work with proton dynamics we have found that at 300K and for simulations that are short 

enough to be tractable, solvation shells inhibit ionization state transitions at rates that are 

statistically sufficient.  This serves as an illustrative problem for a genre of problems involving 

barriers that can be crossed more easily at higher temperatures.  Consider the thermodynamic 

cycle in Figure 22 below showing a protonated amino-acid as SH , and the deprotonated amino-

acid as S − .  Suppose that we are really interested in the protonation free energy changes ( GΔ ) at 

300K,  

        @300K
G

SH S H
Δ

− +→ + .   

This calculation cannot be done directly because 300K simulations would have to be unfeasibly 

long to generate a statistically sufficient number of transitions.  However it can be efficiently 

done by taking the system to higher temperatures where transition rates are significantly higher, 

building a thermodynamic cycle as shown below and using WHAM to combine the information 

from all simulations to yield relative free energies.  This allows us to calculate GΔ  by using 

WHAM 
≈
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1 2 7....G G G GΔ = Δ + Δ + Δ .  This is a standard thermodynamic technique, transporting 

information from one part of the cycle to another by setting up the appropriate thermodynamic 

cycle.  The example below shows how we used WHAM for thermodynamic calculations by 

using high temperature and a thermodynamic cycle to accelerate the crossing of an ionization 

barrier.  As already suggested, the approach can be generalized for any situation where there is 

any type of barrier that can be crossed with high temperature. 
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Figure 22: Thermodynamic Cycle and WHAM 

3.6.3 Umbrella Sampling Type Calculations 

In section 3.5 we looked at calculating Potentials of Mean Force (PMF), which is the Gibbs Free 

Energy as a function of some generalized coordinate vector ξ .  However the system may not 

naturally sample the region of ξ  that we are interested in.  In this case we can include a ''j juλ  

term to the 
i

i iuλ∑  sum for the purpose of biasing the system so that it does sample the ξ  region 

of interest.  These types of calculation are known as Umbrella Sampling calculations.  As a 
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matter of fact, the first published application of WHAM for a biomolecule involved the 

generation of the PMF profile of the pseudorotation angle of the sugar ring in 

deoxyadenosine63,64. 

3.6.4 Ligand Binding Thermodynamic Cycles 

One of the main advantages of the density of states formalism is that it allows one to set up 

biophysical problems in terms of rigorous statistical mechanics.  This facilitates understanding 

the role of the specific approximations and numerical approaches used to calculate the numerical 

results.  Here we discuss a few specific examples to illustrate this. 

The application of the density of states formalism to the calculation of free energy and 

other variables is illustrated by the problem of base-analog substitutions in DNA binding e.g. 

with Eco RI endonuclease.  Binding calculations for alternative ligands in drug discovery are 

formally identical as are analyses of site-directed mutations in proteins.  One sets up the 

following thermodynamic cycle that transforms the DNA from the native to the analog-

containing form.  This must be done both in the complex and free DNA.  Formally, this is done 

by setting up the Hamiltonian with a coupling constant, λ1, such that one value (λ1=0) 

corresponds to the native state while another (λ1=1) generates the Hamiltonian for the analog-

containing forms. 

 

Figure 23: A representative thermodynamic cycle. 

  
                                                          
 
  
  

 ΔΔG  =  ΔG2 - ΔG1  =  ΔGB - ΔGA

P + D*                                 PD*
ΔG2

P + D                                   PD 

 ΔGA 

 ΔG1 

 ΔGB

λ1 = 1 

λ1 = 0 



  121

Here, ΔG1 and ΔG2 are the binding free energies for the native and analog-containing forms, 

respectively.  The functionally interesting change is the differential free energy, ΔΔG.  In 

principle, this could be calculated by subtracting ΔG1 from ΔG2.  For practical reasons, however, 

the calculation of these quantities is numerically intractable while the calculation of ΔGA and 

ΔGB is not.  The thermodynamic cycle guarantees that their difference yields the desired value.  

The calculation of these values can be obtained from: 

 ( ) ( )1 0, , , ,G G P G Pβ βΔ = Λ − Λ  (3.26) 

The preceding expression is used for either ΔGA or ΔGB, and is based on the 

Hamiltonians, as described.  Clearly, this analysis can be extended to any other thermodynamic 

parameter, for example: 

 ( ) ( )1 0, , , ,H H P H Pβ βΔ = Λ − Λ  (3.27) 

3.7 SINGLE HISTOGRAM METHODS 

In this section we will describe how to obtain probability densities from a single simulation using 

single histogram equations.  The next section will detail obtaining probability densities from 

multiple simulations.  Because our main interest is multiple histograms, this section is brief since 

it only serves as a bridge of understanding the next section. 

To this point in the discussion, the only assumption we have made is that it is possible 

to write probability as a product of the density of states and the Boltzmann factor. 

 ( ) ( ) ( ),, , , ,,| U VPP eU V U V βρ ξ ξβ − Λ += ΩΛ i

 (3.28) 

Consider a single simulation generated under , ,Pβ Λ  conditions.  Let n be the total 

number of snapshots in the simulation.  Let ( ), ,N U Vξ  be the number of snapshots, of this 

single simulation, that fall into the , ,U Vξ  bin.  Then the normalized probability  

( ), ,, ,|p V PU βξ Λ can be estimated according to the following straightforward calculation. 

 ( ), ,
), ,

, ,
(

|
N

p
U
n

V
U PV

ξ
βξ Λ =  (3.29) 
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Note that we have introduced a new color, green.  This color represents a new and 

significant phase of WHAM.  Previously we stayed in the realm of theory.  Now we enter the 

realm of numerical computation.  All probability expressions in this chapter up to the previous 

section were completely rigorous.  Now we make assumptions and estimates, and introduce 

statistical errors.  Using this probability estimate and equation (3.9), we can write 

( ) ( ) ( )1, , , ,, ,| U PVp U V U VP
Z

e βξβξ − Λ += ΩΛ ii     ( ) ( ), , 1 ,
( )

, U PVU V
U V

Z
N

e
n

βξ
ξ − Λ += Ω ii (3.30) 

So 

 ( ) ( )
( )

, ,
,

e
,

e Pst U V

N

n

U V
U V Z β

ξ
ξ

− Λ +
Ω = ii  (3.31) 

Since the relationship between Z and the free energy of the simulation that generated the 

histogram (g) is gZ e−= , we get   

 

  ( ) ( )
( )

,

e

,
, ,

est VP
g

U

U V
U V e

N

n β

ξ
ξ −

− Λ +
=Ω ii  (3.32) 

3.8 MULTIPLE HISTOGRAM METHODS 

We will now pick up where we left off, with the density of states expression for the single 

histogram (3.32).  Now consider an ensemble of R simulations, which generates R histograms.  

Now consider the nth simulation.  Using equation (3.32), the density of states, determined from 

the information from the nth simulation only is 

 ( ) ( )
( )

, ,
, ,

e n

n

n n

g

U Pn est

n

n
V

U V eN

n
U V β

ξ
ξ

−

− Λ +
Ω = i  (3.33) 

We can improve our estimate of the density of states if we consider information from all R 

simulations according to 

 ( ) ( )
1

, , , ,
R

n nest
n

pU V U Vξ ξ
=

Ω Ω= ∑ . (3.34) 
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That is, we sum over the 'n sΩ  and weight each term by some pn weighting factor.  The {pn} are 

chosen so that 
1

1
R

n
n

p
=

=∑  and that the error in the density of states (δΩ )2 is minimized with 

respect to pn .  These two conditions yield77 

 
( )

( )

1

, ,( )
n n n n

m m mn

g P
n

n R
g VP

U V

U
m

m

U V n ep
n e β

β

ξ
− Λ ⋅ +

− Λ ⋅ +

=

=

∑
 (3.35) 

Substituting (3.35) and (3.33) into (3.34) gives 

 ( )
( )

( )

1

1

, ,
, ,

e m m m m

R

e U Vst
k

R
g

m

P

k

m

N

n

U V
U V

β

ξ
ξ

− Λ +

=

=

Ω =
∑

∑ i
 (3.36)  

So 

 

( ) ( )
( ) ( )

( )

1

1

, ,
,, ,,

e
|

m m mm

est es

U V

U V

R

k
k

R
g

m
V

t
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m

P

P
U VN

U V
e

e
n

P

β

β

βρ β
ξ

ξ

− Λ +

−

+

Λ =

Λ

=

+

−
Λ = =Ω

∑

∑ i

i

i

 (3.37) 

As before, bulk parameters are obtained by simply integrating over the configurational (blue) 

variables, giving us a macroscopic Gibbs free energy. 

 

( ) ( )
, ,

|, , , ,mg
est m m

U V
mVe U P

ξ

ρ ξ β− = Λ∑
 (3.38) 

 
( ) ( )

,

1

,

, , , ,|,n ,le
V

st
U

est U PG P V
ξ

β β βξρ−Λ
⎡ ⎤
⎢ ⎥
⎢⎣

=
⎥

Λ
⎦

− ∑
 (3.39) 

For an ensemble average of some arbitrary quantity Θ , 

 

( ) ( )
( ),

, ,

,

|

,

,

|

|

, , , ,

,

, ,

,, ,

est

est
est

V

U V

P

U

PU V U V

U V P
ξ

ξ

β

ξρξ

ξ

β

βρΛ

Λ

Λ

Θ

=Θ
∑

∑
 (3.40) 

Direct Summation: 
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The final stage of the computational formalization involves direct summation.  
, ,  and U Vξ  are continuous quantities and ( , , )U Vξ  represents a bin of size 

, ,  and U U V Vξ ξ+ ∂ + ∂ + ∂ .  It is far more computationally efficient to do “direct 
summation”, where each snapshot is itself its own bin. 

 , , ,,, , ,k t k t k tUU V Vξξ →  (3.41) 

With direct summation, since each snapshot is its own bin, then ( )
1

, 1 ,
R

k
k

U VN ξ
=

⎡ ⎤
⎢ ⎥⎣ ⎦

→∑  in 

equation (3.37).  It also means that equation (3.41) causes the 
, ,U Vξ
∑ sum in equation (3.38) to 

become sums over k and t, that is 
, , kU V tξ

→∑ ∑∑ . Substituting ( )
1

, 1,
R

k
k

U VN ξ
=

⎡ ⎤
⎢ ⎥⎣ ⎦

=∑  and 

equation (3.37) into equation (3.38), direct summation gives us the following expression for mg , 

the relative free energy of the thm  simulation. 

 

( )

( )

( ), , , ,

, ,1 1 1 1 ,

1

m m k t m k t m m k t m k tk k
m

r r r k t r k t

U P V U P Vn nR R
g

R
g U P Vk t k t k t

r
r

e ee
zn e

β β

β

− Λ + − Λ +
−

⎡ ⎤− Λ += = = =⎣ ⎦

=

= =∑∑ ∑∑
∑

i i

i

 (3.42) 

 

( ), ,

,
1

r r r k t r k t
R

g U P V
k t r

r
z n e β⎡ ⎤− Λ +⎣ ⎦

=

= ∑ i

 (3.43) 

Notice that in the expression for mge−  above, we introduce a factor ,k tz  in the denominator terms.  

Two lines above, we already described mg  as the relative free energy of the mth simulation.  ,k tz  

can be described as the relative weighting factor of the tht  snapshot of the thk  simulation.  In 

practice, for a system for which we have an ensemble of simulations, the two equations (for mge−  

and ,k tz ) are iterated to convergence.  The starting point could be arbitrary or anything 

convenient such as setting all mg ’s =1 (or { mg }=063, it does not matter, the converged results do 

not depend on the starting points for { mg }).   

 For a given set of simulations the relative free energy of the mth simulation mg  is 

completely determined by the set { ,k tz }.  However mg  is a function of ,  and m m mPβ Λ , i.e. 
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( , , )m mm m mg Pg β= Λ .  This means that the free energy value for the mth simulation relative to the 

other simulations is a function of the depends only on the state variables and not the set of { ,k tz } 

chosen.  In other words mg  is invariant with the simulations chosen to comprise the simulation 

set, provided the simulations are equilibrated, long enough and that there is sufficient counting-

statistics. 

When converged, the set of mg ’s and ,k tz ’s is a very convenient expression of the density 

of states.  The following derivations for useful thermodynamic parameters will demonstrate how 

convenient this description is. 

 
( )

( ), ,
1

1 1 ,

, , ln
k t k tk U VnR

est
k t k t

PeG
z

P
β

β β
+

=

Λ
−

=

−⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩

−
⎭

Λ ∑∑
i

 (3.44) 

is the calculated relative free energy of a trajectory (histogram) generated under , ,Pβ Λ  

conditions.  The ensemble average of an arbitrary quantity, ϑ , and the corresponding 

thermodynamic value, Θ  now becomes: 

( ) ( )
( ), ,

,
|

1 1

,
,

,

,
,

, ,
k t k tk

est

U VnR
G k

P
t

est es
P

t
k t k t

P
P

e
e

z

β
β β

β

ϑ
ϑβ

+

=

− Λ

=

Λ

Λ
Θ = =Λ ∑∑

i

 (3.45) 

Enthalpy, Entropy and Heat Capacity follow easily. 

( ) , , , , , ,| | |
, ,est est est esP P Pt

U V UP P P VH
β β β

β
Λ Λ Λ

= = +Λ Λ+Λi i
 (3.46) 

( )( )1
est est estS T H G= −

 (3.47) 

( ) ( ) ( ) ( )2 2
22

, ||
1 1

, ,, ,
, ,

B Bk T k T PP est estt Pes
UP PV UC VP

ββ
β

ΛΛ
Λ +Λ Λ= −+i i

 (3.48) 

Potentials, Enthalpies, Entropies etc. of mean force: 

We pointed out earlier the usefulness of potentials and other variables of mean force in 

biological systems.  What follows are these variables recast with using our direct summation and 

density of states description. 
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( )
( ),

k,t

k,t

1,   

0,   k t

N

N
ξ
ξ

ξ
δ

ξ

ξ

ξ
′

⎧ ′∈⎪= ⎨
′∉⎪⎩  (3.49) 

,
1

k t

ξ
ξδ ′ =  if the reaction co-ordinate for the k,t snapshot ,( )k tξ  meets the given criteria '( )N( )ξ∈ . 

( )
( ), ,

,1

1 1 ,

ln| , ,
k t k t

k
k t

U VnR

es
k t t

P

t
k

e
g P
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ξ β
ξδ

ξ β β
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′ +

= =
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⎪ ⎪

−
⎩

′
⎭

Λ ∑∑
i

 (3.50) 

( ) ( )
( ), ,

,,

1 1 ,

| , ,| , ,
k t k t
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est
k t k t

P
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e
e

z

β
β
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βξ ξδ

βϑ ξ
+′ Λ
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′
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Λ Θ
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i

 (3.51) 

( ) ( ) ( ) ( ), ,

,| ,

1 1 ,

, ,,| , ,
k t k t

k
k test

U VnR
k t k tg

est
k t k t

P
P P
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U V e

h e
z

β
β

ξ
ξ β ξδ

ξ β
− Λ

Λ
+

=

′
′

=

′
+

=
Λ
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ii

 (3.52) 

( ) ( ) ( ) ( )( )1| , , | , , | , ,est est estP P PTs h gξ ξ ξβ β β= ′−′Λ Λ′ Λ
 (3.53) 

3.9 MODIFICATIONS FOR CONSTANT pH  CALCULATIONS 

Recall that in section 2.1 we affect constant pH simulations by coupling our system to a proton 

bath with proton chemical potential Hμ .  The number of protons in the proton bath is L , so 

 and Lμ  are conjugate variables.  In this section, we will briefly repeat the main topics covered 

in the previous sections, paying attention to the modifications resulting from a NPT Hμ  (constant 

pH) ensemble.  We start with a review of the previous theory, but with appropriate modifications 

for constant pH simulations.  However, we will put more emphasis on the beginning (the 

fundamentals), and the ending (the direct summation) descriptions. 

Our Hamiltonian becomes 

 
( )

23

1

( ) ,
2

N
i

i i

p U x
m

η
=

= +∑H
 (3.54) 
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due to the fact that our potential energy is now a function of atom positions ( x ) and protonation 

state η  which describes the protonation state of all titratable sites of the system (see section 2.2).  

The partition function now becomes 

 

( )

( ) ( )

2

2

2

, 2 3 3

2 3

/ 2 3

, ,

H

H

U x p m N N
NPT

U PV p m L N

p m N

Q e d pd xd

U V L e d pdUdVdL

Z e d p

β η
μ

β μ

β

η
⎡ ⎤− +⎣ ⎦

− + + +

=

= Ω

=

∫
∫
∫

 (3.55) 

In the first expression for Q  above, the integral is over all momenta, positions, and also all 

protonation states (δη ).  The second expression introduces the density of states ( ), ,U V LΩ , and 

in doing so the integral is converted to one over all momenta, energies, volumes and proton 

counts ( 3Nd pdUdVdL ).  The third expression isolates the integral over all momenta by 

introducing the spatial partition function 

 ( ) ( ), ,
H

U PV L
NTPZ U V L e dUdVdLβ μ

μ
− + += Ω∫  (3.56) 

where Ω  is the density of states, which contains all of the system-specific information.  In 

principal the density of states for the system with energy u , volume v , and number of protons in 

the proton bath l , can be calculated from: 

 
( ) ( )( ) ( ) 3, , , ( ) Nu v l U x u V v L l d xdVdLδ μ δ δΩ = − − −∫  

The relation between the un-normalized probability density ( ), ,u v lρ , and the density of states 

( ), ,u v lΩ  is: 

( ) ( ) ( ), , , , u Pv lu v l u v l e β μρ − + += Ω  

Treating the Hamiltonian according to equations ( )i i xξ = Ξ   and 

 ( )i ii iU U x u Uλ λ Λ= = =∑ ∑ i  (3.11), we can write the density of states in a 

manner analogous to equation 

 

( ) ( ) ( ) [ ] 3, , Nu v x U x u V v d xdVi i j jξ δ ξ δ δ⎡ ⎤⎡ ⎤Ω = Ξ − − −∏ ∏ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫
 : 
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( ) ( ) ( ) [ ] 3, , [ ] Nu v x U x u V v L l d xdVdli i j jξ δ ξ δ δ δ⎡ ⎤⎡ ⎤Ω = Ξ − − − −∏ ∏ ⎢ ⎥⎣ ⎦ ⎣ ⎦∫
 

 

Writing the partition function as a summation instead of the integral form of equation 

 ( ) ( ), ,
H

U PV L
NTPZ U V L e dUdVdLβ μ

μ
− + += Ω∫   gives us 

( ) ( ) ( )

, , ,

,, ,, ,, U V L

U V

P

L

U VZ P eL β μ

ξ

ξβ μ − +Λ +Λ Ω= ∑ i

 

and the corresponding expression for the un-normalized probability density is: 

 
( ) ( ) ( ), , , , , ,, ,,| U V LPU V P L eL U V β μρ ξ ξβ μ Λ +− += ΩΛ i

 
By integrating probabilities over the configurational (blue) variables, we can get an expression 

fro the macroscopic Gibbs free energy:  

( ) ( )1

, , ,

ln , , , |, , , , , ,
U V L

G V PU LP
ξ

β μ β ρ μξ β−Λ = − Λ
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∑

 Calculated estimates for the density of states, analogous to equation (3.36) 

now looks like: 
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So now the estimates for the probability density and the Gibbs free energy looks like: 
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Now we apply direct summation , , ,,, , ,k t k t k tUU V Vξξ →  as described before in equation 

 , , ,,, , ,k t k t k tUU V Vξξ →   and we finally arrive at our most powerful expressions for 

the density of states: 
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 (3.57) 
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g U P V L
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z n e β μ⎡ ⎤− Λ + +⎣ ⎦

=

= ∑ i

 (3.58) 

Just as before, these above two equations containing mg  and ,k tz  are iterated to convergence, and 

the iteration can be started with all 1.mg =   Just as before we can calculate useful averages, such 

as those relating to the heat capacity calculation: 

( ) ( ) ( ) ( )2 2
1 1

, , ,, ,

22

|,
,

|
, , ,

B Bk T k T PP est estest P
U V L U V LPC P P

β μβ μ
β μ μ μ

ΛΛ
+ += −Λ Λ + +Λi i  

Applied to a free energy and other various calculations, we use the Dirac delta function 
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 to discriminately do summations and get  
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 So far we have shown the power of this formulation to potentially calculate the full range 

of thermodynamic variables.  We will see in the next section, that the form of this last equation is 

very useful for microstate free energies and consequently, pKa calculations. 

3.10 OVERVIEW OF pKa  RELATED CALCULATIONS 

We will now demonstrate a pKa calculation.  For simplicity sake, consider a system with one 

titratable site i , and this titratable site is Cysteine.  Recall that for Cysteine, there is one 
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deprotonated microstate, 0iη = , and there are three protonated microstates, 1, 2,3iη =  (see 

section 2.2).   

All microstates belong to one of two mutually exclusive charge/ionization states, 

protonated and deprotonated, ia  and ib , respectively. 

Therefore    or i i i ia bη η∈ ∈  

The free energy of each micro-state is: 
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The free energy of deprotonation is 

 

, , , , ,( | ,| ) ( 0 )i iG b gP Pηβ μ β μΛ Λ= =
 which is simply the free energy of the 0th microstate, ( 0)ig η = .  The free energy of protonation 

is the sum of the protonated free energy microstates. 

,( | ) , ),|, (, ,
i i

i i
a

PG a g P
η

ηβ μ β μ
∈

=Λ Λ∑  (3.60) 

So the pKa is 

  { }10log ( | ) ( |, , , , , ),i iPepKa G a G b
k

P
T

β μ β μ−
= Λ Λ−  (3.61) 
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4.0 COMPUTATIONAL METHODS FOR MD/MC AND WHAM 

4.1 OVERVIEW 

At this point, we have already built the theoretical foundation and the notation that allows us to 

give a concise overview of our MD/MD-WHAM methods for free energy calculations.  This we 

will now do.  The MD/MC algorithm is an extensive modification of the sander78 program of the 

AMBER78 suite.  To avoid unnecessary abstraction, we will apply this summary of our methods 

to the solvated single site Cysteine system. 

The Hamiltonian of our system of N atoms is described by 
3

1
( , )

2

N
i

ii

pH U x
m

η
=

= +∑ .  The 

potential energy is a function of both “configuration” x  and protonation state η .  x  represents 

the configuration of the whole system except the titratable sites.  η  primarily describes the 

protonation state of the system, but it also has a little configuration information, specifically the 

orientation of the titratable hydrogen.  In our description, protonation states are distinguished by 

both charge and orientation of the proton. 

Each titratable site is realistically modeled having several possible discrete microstates.  

So Cysteine model has a total of 4 protonation states: one deprotonated and 3 protonated.  The 

protonation states distinguish themselves by the orientation of the 3-fold dihedral that connects 

the proton. 

 

 

 

 

 

 Cystin
micros

state 0(charge=-1ec)  state1(charge=0ec) state2(charge=0ec) state3(charge=0ec) 
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The absent proton in state 0 is modeled by a “ghost-proton” (no partial charge, no van der Waals 

parameters). 

η  describes the full set of 'siη  (if the system has multiple titration sites), where 

0,1,2 or 3iη =  describes the protonation state of the thi  titratable site 

}{( ) 0,1il η =  represents the number of protons in the proton bath for a particular value of 

iη  for site i .  E.g. if the thi  titratable site is Cysteine, and 0iη =  (deprotonated), then ( ) 1il η = .  

If 3iη =  (protonated), then ( ) 0il η =  

( ) ( )ii
L lη η= ∑  is the total number of protons in the bath 

One simulation cycle of our MD/MC code consists of an MD sub-cycle and an MC sub-

cycle.  The MD sub-cycle uses a fixed protonation state η  and allows the configuration x  to 

evolve, enforcing constant N, T, and P.  In the MC sub-cycle, Monte Carlo sweeps act on the 

system to be updated), thus enforcing constant pH.  Together one cycle simulates a “Biochemical 

Ensemble”, constant N,P,T and pH. 

Many of these trajectories are generated at different temperatures and pH. 

 

 

 

 

 

 

 

 

 

 

 

 

All snapshots of all trajectories are then fed into our WHAM method for density-of-states, free 

energy, pKa and other thermodynamic calculations. 

( )MD fixedη

( )MCsweeps f xed xi

Constant N,T,P 

Constant pH 

Biochemical Ensemble, 
constant N, T, P and pH        

WHAM 
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( )HU PV Le β μ− • + +Λ  is the Boltzmann factor associated with a snapshot of , ,U V L  potential 

energy, volume and bath protons respectively.   an, d, HPβ μΛ  represent the simulation 

conditions of constant temperature, optional restraint or perturbation parameter, constant 

pressure and constant pH ( ln10 )H pHβμ = −  respectively.  If we know the density-of-states Ω , 

we can calculate any thermodynamic parameter.  At the core of our WHAM algorithm is code 

that estimates the density-of-states in the following form. 

 

 

mg  is the relative free energy of the thm  simulation 

,k tz  is the relative weight of the tht  snapshot of the thk  simulation. 

The mg ’s and ,k tz ’s are determined by iterating the 2 equations above until the mg ’s 

converge.  The set of mg ’s and ,k tz ’s for our trajectories is a convenient form of the density-of-

states.  From this we can determine enthalpy, entropy, heat capacity etc. at “ANY” , ,and pHPβ .   

Relative free energies of the ia  and ib  ionization states can be calculated as in equations 

of section 3.10 and a pKa can be calculated, 

{ }10log ( | , , , ) ( | , , , )i H i H
epKa G a P G b P

kT
β μ β μ−

= Λ − Λ  

4.1.1 1st step, Calculating calcBDE ’s for every type of titratable site 

Making and breaking the covalent bond of the titratable proton is a quantum effect, and cannot 

be simulated with the classical MD force field.  Also, AMBER78 was not designed to make or 

break chemical bonds, so there are no such parameters in the AMBER force field.  Therefore the 
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first step is to calibrate our method by calculating Bond Dissociation Energies ( calcBDE ) that are 

consistent with the AMBER force field for each type of titratable amino acid.  This allows us to 

do constant pH simulations with the classical MD force field by factoring in the net “before and 

after” protonation effects.  This is standard procedure for most constant pH simulation software.  

So for Cysteine for example,   
* exp( )calc

cys cys cysBDE pKa pKa= − −  

exp
cyspKa  is the known pKa for isolated Cysteine 

*
cyspKa  is the simulated pKa for which our MD/MC-WHAM algorithm calculates 

titration for the solvated model of a single Cysteine amino-acid, with the backbone capped with 

the Acetyl and N-Methyl groups. 

Similarly for every type of titratable amino acid, we build a solvated model of the 

isolated amino acid (with the Acetyl and N-Methyl blocking groups) and calculate *
TApKa , 

(where (TA ) is the titratable amino acid) and therefore obtain calc
TABDE .  This only has to be done 

once for every force field.  If the calcBDE  numbers for a force field are already published, then 

those numbers can be used and this step skipped. 

4.1.2 2nd step: using the 'calcBDE s  for pKa  calculations 

As we will see in the next chapter, calculating the 'calcBDE s  is not an insignificant amount of 

work, but fortunately, it only needs to be done once for a force field, or published values can be 

used.  The second step is to use these calcBDE correction numbers to calculate the pKas of 

titratable amino acids in proteins.  All that is required is the insertion of the calcBDE  values into 

the appropriate place in the input file for our MD/MC algorithm.  Then the MD/MC algorithm 

can be run on a model of the protein and the trajectories analyzed via WHAM to yield pKa or 

other thermodynamic results.  For example if we are simulating a protein with a Cysteine 

titratable site of interest and this site was the only site in the protein allowed to be titratable, the 

inclusion of the calc
cysBDE  term in the input for the MD/MC algorithm simply automates the 

modification of the effective energy of the system according to  
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( ) (log1 (0) )P p EU V lH BDβ −+ −   

where ,  and P pHβ are state variables, set as input at the start of the MD/MC simulations.  They 

represent temperature (1/kT), pressure and pH  respectively. 

,  and U V l  are the configurational variables of potential energy, volume and proton bath 

count respectively.  When the single site protein system is deprotonated, 1l =  and when it is 

protonated, 0l = .   

4.2 WHY START WITH THE calcBDE FOR CYSTEINE? 

As mentioned previously, calcBDE ’s for all of the titratable sites must first be worked out.  This 

dissertation reports on the calcBDE  for Cysteine only.   

 

4.2.1 Cysteine’s simplicity & well defined Force Field parameters 

Cysteine has one of the smallest and simplest side chains, so it is the smallest and simplest of the 

titratable amino acids. 

 

 
 
Figure 24: Cysteine 

(www.mcmp.purdue.edu:4443/~mcmp304/AATutorial/arg-

popup.shtml) 

 

Amino Acid mass, amu 

Cysteine 103.1 

Aspartate 114.1 

Glutamate 128.1 

Lysine 129.1 

Histidine 137.1 

Arginine 157.2 

Tyrosine 163.1 

Table 2: Mass of titratable amino acids 
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The AMBER8 ff03 force field parameters for the different ionization states of cysteine are well 

defined79.  Having “good” ionization state parameters minimizes errors due to the force field, 

allowing us to focus on any systematic errors our methods introduce. 

4.2.2 exp
thio methaneBDE −  allows for calc

cysBDE  comparison 

The bond dissociation energy for the hydrogen-sulphur (H-S) bond (the site from which the 

proton dissociates from the molecule) in the thio-methane 3H SCH−  molecule (
3

exp
H SCHBDE − ) is 

well defined80.  This allows us to compare the calculated dissociation of the H-S  bond in 

cysteine ( calc
cysBDE ) with the experimental dissociation energy of the H-S bond in 3H SCH− .  

This is a very suitable comparison because the H S−  bond in cysteine 2( )H SCH− − ⋅⋅⋅  and in 

thio-methane ( 3H SCH− ) have very similar chemical properties.  This is an important 

comparison because it is a strenuous test for validating our methods and the quality of the force 

field model used for Cysteine.  

4.2.3 Importance of  pKa(cys) calculations  

pKa  methods are most challenged when attempting to reproduce large pKa  shifts for ionizable 

groups in protein interiors.  These buried ionizable groups therefore form good benchmarks for 

testing pKa  methods.  The Asp-Cys buried network in Thioredoxin is such a network.  The 

pKa  shift of the Asp26 is among the highest observed, 5.3 pH units81!   Therefore the 'BDE s  

for Cysteine and Aspartic acids have the highest priority so that we can test our methods on the 

buried Asp-Cys network in Thioredoxin. 

The thiol group in Cysteine’s side chain makes it one of the most chemically reactive.  

For related reasons, cysteine has general biological importance.  Many folded proteins owe their 

shape to disulfide bonds between cysteine molecules.  Cysteine in the active site of cysteine 

protease assists binding the substrate and assists in the catalytic activity of the protease (see 

section 1.4.3 for discussion of a similar protease). 
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4.3 MD/MC ALGORITHM 

4.3.1 MD/MC algorithm based on sander7 code 

 This algorithm is an extensive modification of the AMBER7 sander code (however the force 

field parameters used in our systems are the AMBER8 ff03 set).  The modifications can be put 

into two groups.   

One group of modifications concerns those relating to the sander input of two (instead of 

one) parameter files.  So for the single cysteine system, these two parameter sets have all the 

information necessary for the four cysteine microstates.  For a system of several titratable sites, 

these two parameter files will have all the information necessary for the MD/MC algorithm to 

swap various atom and bond parameters to create any of 2N possible system ionization states 

(> 4N  protonation microstates, considering each site has 4 or more microstates).  One exception 

to this 2-parameter file method is Histidine, for which we have hard-coded some of the 

parameters into the MD/MC algorithm (because 2 parameter files is not enough to contain all 

three Histidines microstate information because no one microstate can be obtained simply by 

rotation of a dihedral). All microstates of the titratable sites are modeled after the corresponding 

AMBER8 ff03 amino acid versions.   

The other group of modifications more directly concerns the Monte Carlo microstate 

selection code, which is responsible for making the probabilistic decision of which microstate to 

choose for each titratable amino acid. 

One MD/MC cycle consists of an MD sub-cycle and a MC sub-cycle.  The MD sub-cycle 

code is essentially the same as the regular sander code.  During this part of the cycle, most of the 

usual MD features are available.  For our pKa calculations, the MD simulation conditions are 

constant N, T and P. 

The MC sub-cycle code allows addition or removal of protons from or to a proton bath 

with a pH (and 'calcBDE s ) that are specified in the MC input file.  This input file containing MC 

simulation parameters also specifies how many MD steps and how many MC sweeps are in the 

cycle.  During this part of the cycle, parameter swapping occurs in order to generate both 

ionization states.  However, to generate all of the microstates, protons on the titratable sites are 

allowed to rotate about their connecting dihedrals (see Figure 21: Cysteine microstates).  For this 
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reason, the configuration is not strictly fixed.  As per discussion in section 2.2, we therefore use 

the term “fixed configuration” to represent the whole system except for the protons on the 

titratable sites.  In order to preserve detailed balance, the other microstates are generated from 

any one microstate by rotating the proton’s dihedral by a fixed quantity (120° for cysteine), as 

opposed to rotating the proton’s dihedral to its minima position. 

4.3.2 Microstate modeling 

4.3.2.1 Amber8* ff microstate models 

*In our models, states with Ghost Atoms differ slightly from corresponding Amber8 models (see 

section 2.4.1). 

The table below is a summary description of the microstates of each titratable amino acid.  

1 e = one electron charge. 

Titratable 

Amino Acid 

Deprotonated 

charge 

Protonated

Charge 

number of  

deprotonated

states 

number of 

protonated

states 

Total number of

microstates 

CYS 

(Cysteine) 

-1 e 0 e 1 3 4 

ASP 

(Aspartic Acid) 

-1 e 0 e 1 4 5 

GLU 

(Glutamic Acid) 

-1 e 0 e 1 4 5 

LYS 

(Lysine) 

0 ec +1 e 3 1 4 

ARG 

(Arginine) 

0 ec +1 e 5 1 6 

         TYR 

(Tyrosine) 

0 ec +1 e 1 3 4 

HIS 

(Histidine) 

0 ec +1e 2 1 3 

Table 3: Titratable Amino Acid Microstates 
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More microstate detail for each titratable residue is given in the following sections. 

4.3.2.1.1 Cysteine 

4.3.2.1.1.1 Cysteine Atom Names 

N CB

H HA

CT

SG HG

HB2 HB3

C

O

 
 

4.3.2.1.1.2 Cysteine Atom Types 

N CT

H H1

CT

SH

H1 H1

N CT

H H1

CT

SH HS

H1 H1

state 0 state 1

C

O

C

O

HV  
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4.3.2.1.1.3 Cysteine Microstates 

N CT

H H1

CT

SH

HV

H1 H1

state 0

C

O

N CT

H H1

CT

SH

HS

H1 H1

state 1

C

O

N CT

H H1

CT

SHHS

H1 H1

state 2

C

O

N CT

H H1

CT

SH HS

H1 H1

state 3

C

O

CT

SH
HS

CT

SH
HS

dihedral
-1200<HS-SH-CT-CT<=1200 00< dihedral <=2400

SH

CT

HS

SHSH

CT

HV

SH

2400<dihedral<=3600
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4.3.2.1.1.4 Cysteine charges 
atom names atom type

(deprotonated)
atom type

(protonated)
charge

(deprotonated)
charge

(protonated)

N

H

CA

HA

CB

HB2

HB3

SG

HG

C

O

N

H

CT

H1

CT

H1

H1

SH

HV

C

O

N

H

CT

H1

CT

H1

H1

SH

HS

C

O

-0.416

0.272

-0.035

0.051

-0.241

0.112

0.112

-0.884

0.0

0.597

-0.568

-0.396

0.295

-0.035

0.141

-0.221

0.147

0.147

-0.285

0.189

0.643

-0.585  

4.3.2.1.2 Lysine 

4.3.2.1.2.1 Lysine Atom Names 

N CA

H HA

C

O

CB HB3HB2

CG HG3HG2

CD HD3HD2

CE HE3HE2

NZ HZ2HZ1

HZ3  
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4.3.2.1.2.2 Lysine Atom Types 

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

CT HPHP

N3 HH

HV

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

CT HPHP

N3 HH

H

state 0 state 1  

4.3.2.1.2.3 Lysine Microstates 

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

CT HPHP

N3 HH

H

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

CT HPHP

N3 HHV

H

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

CT HPHP

N3 HVH

H

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

CT HPHP

N3 HH

HV

state 0 state 1 state 2 state 3

CT

N3

HH

H

CT

N3

HHV

H

CT

N3

HVH

H

CT

N3

HH

HV

0<HV-H3-CT-CT<=120 120<dihedral<=240 240<dihedral<=360  
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4.3.2.1.2.4 Lysine Atom Charges 

atom names atom type
(protonated)

atom type
(deprotonated)

charge
(protonated)

charge
(deprotonated)

N

H

CA

HA

CB

HB2

HB3

NZ

HZ1

HZ2

N

H

CT

H1

CT

H1

H1

N3

HV

H

N

H

CT

H1

CT

H1

H1

N3

H

H

-0.4359

0.2513

-0.0388

0.1295

-0.1083

0.0452

0.0452

-0.2504

0.2946

0.2946

-0.4157

0.2719

-0.0721

CG

HG2

HG3

CT

H1

H1

CT

H1

H1

0.0333

0.112

0.112

CD

HD2

HD3

CT

HC

HC

CT

HC

HC

-0.0478

0.0707

0.0707

CE

HE2

HE3

CT

HP

HP

CT

HP

HP

-0.0700

0.1195

0.1195

HZ3

C

O

H H

C C

O O -0.5632

0.7351

-0.5679

0.5973

0.2946 0.3860

0.3860

0.0

-1.0358

-0.0336

-0.0336

0.3260

-0.0377

0.0115

0.0115

0.0994

-0.0485

0.0340

0.0340

0.0661

0.0104

0.0104
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4.3.2.1.3 Arginine 

4.3.2.1.3.1 Arginine Atom Names 

N

H

CA

HA

C

O

CB HB3HB2

CG HG3HG2

CD HD3HD2

NE HE

CZ
NH1 NH2

HH12

HH11

HH22

HH21

 

4.3.2.1.3.2 Arginine Atom Types 

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 H

CA
N2N2

state 0 state 1

HH

H H

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 H

CA
N2N2 HHV

H H
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4.3.2.1.3.3 Arginine Microstates 

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 H

CA
N2N2

state 0

state 1

N2

H

N2

H

HV

-90<HV-N2-CA-N2<=90 -90<dihedral<=90 90<dihedral<=-270

HH

H H

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 H

CA
N2N2 HHV

H H

state 2

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 H

CA
N2N2 HH

HV H

state 3

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 H

CA
N2N2 HVH

H H

state 4

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 H

CA
N2N2 HH

H HV

HV

state 5

N CT

H H1

C

O

CT HCHC

CT HCHC

CT HCHC

N2 HV

CA
N2N2 HH

H H

N2

H

N2

H

HV

HV

90<DIHEDRAL<=-270  
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4.3.2.1.3.4 Arginine Charges 

atom names atom type
(protonated)

atom type
(deprotonated)

charge
(protonated)

charge
(deprotonated)

N

H

CA

HA

CB

HB2

HB3

HH11

HH12

N

H

CT

H1

CT

HC

HC

N2

H

H

N

H

CT

H1

CT

HC

HC

N2

HV

H

-0.3009

0.2337

-0.1314

0.0533

0.0367

0.0280

0.0280

-0.6858

0.3911

0.3911

-0.3009

0.2337

-0.1314

CG

HG2

HG3

CT

HC

HC

CT

HC

HC

0.0125

0.0030

0.0030

CD

HD2

HD3

CT

H1

H1

CT

H1

H1

0.1263

0.0681

0.0681

NE

HE

CZ

N2

H

CA

N2

H

CA

-0.4649

0.3263

0.5655

HH21

HH22

N2 N2

H H

H H 0.3911

0.3911

0.2911

0.2911

-0.6858 -0.7858

0.2811

0.0

-0.7858

0.3263

0.4655

-0.4649

0.1263

0.0681

0.0681

0.0533

0.0367

0.0280

0.0280

0.0125

0.0030

0.0030

NH1

NH2

C C C

O O O

0.7303

-0.5783

0.7303

-0.5783  

4.3.3 Problem of transitions 

Vigorous transitions from one microstate, directly or indirectly, to all other microstates are 

important for proper configurational and ionization state sampling.  Numerically, it is also 
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important for good statistics.  The problem is that under the conditions of short simulation times 

(<100 picoseconds), room temperature and pressure, the single titratable site cysteine system 

does not sufficiently sample all microstates.  At 300K, if it is in one of the protonated 

microstates, it will sufficiently sample the other two protonated microstates for simulation 

lengths on the order of tens of picoseconds.  However, for the same simulation length, it will 

seldom go from protonated to deprotonated, or from deprotonated to protonated.  This is because 

there are ionization state dependent solvation effects that constrain ionization state transitions.  

However we can achieve sufficient ionization state transitions by performing simulations at high 

temperatures, then use WHAM to combine all the different-temperature simulations for the 

purpose of 300K thermodynamic calculations. 

As just mentioned, for conveniently short 300K simulations, the system cannot transition 

both ways to the other ionization state at any one pH.  However, if we shift the pH during the 

simulation, we can force transitions in both directions.  Even though our method does NOT use 

pH shifts to drive the system to and from ionization states, driving the system with pH shifts 

gives us a quick approximation of the amplitude of the driving factor that what would be needed.  

In the diagram and discussion below, we describe this driving factor in terms of a pH hysteresis 

amplitude. 
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Figure 25:  pH hysteresis at 300K 
 
Figure 25 above is a symbolic demonstration of the pH hysteresis effect.  In reality, our 300K 

simulations behave very much like this.  Suppose we start where the green dot is, with the 

system in the protonated state.  The arrow pointing to the right represents a series of short 

simulations (each about 100 MC sweeps, 2000 MD steps) of increasing pH.  The system stays 

deprotonated until the pH has increased about 100 pH units, at which point it turns deprotonated 

(the downwards arrow on the right).  The pH is then decreased, but the system stays 

deprotonated until the pH drops about 100 pH units.  The cycle is repeated. 

If we ran simulations infinitely long, there will be no hysteresis.  The hysteresis comes 

about because we have to run short simulations.  Even though the size of the hysteresis will 

decrease if we used longer simulations, the plot gives us a ballpark idea of the size of the factor 

needed to drive the system across the solvation shell for short simulations.  It is about 

100  units @300KpH .  The fact that it is so large simply means that we are a long way from 

getting sufficient transitions.  We do not see this as being reflective of the natural height of the 

barrier because our simulations are so short.  This makes it clear why the MC selection routine 

low pH  
pH

high pH 

100  unitspH

protonation 

300Kelvin 
1 

0 
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will very rarely to never cross the barrier for short simulations at 300K.  As the temperature of 

the short simulations is increased, the amplitude of the hysteresis drops.  At 800K and at one pH, 

it is possible to see transition cycles in the system on a simulated time scale of tens of 

picoseconds (i.e., no pH hysteresis amplitude for simulations of this length at this temperature).  

At 1320K, transitions occur about every 1000 femtoseconds (1000 MD steps), and at 2200K, 

transitions occur about every 20 femtoseconds. 

Taken at face value, the hysteresis plot seems to suggest that it would take 100 pH units 

at 300K to cross the solvation shell barrier.  This would then lead to the conclusion that our 

simulations require proton concentration changes of factors of 10100 which is clearly unphysical 

and raises suspicions about if our model even comes close to representing reality.  Recall that 

these simulations are extremely short and we are only observing one or two transitions.  

Therefore the width of the hysteresis curve would be expected to over estimate the barrier height, 

probably by a significant amount.  This overestimation of the barrier height is emphasized if we 

use the Eyring equation 

 / 1G RTBk Tk e
h τ

+−Δ= ≈  (4.1) 

to estimate the transition rate using a 100pH@300K barrier height.  k, kB, T, h, ΔG+, R and τ are 

transition rate, Boltzmann’s constant, temperature in Kelvin, Plank’s constant, free energy of 

activation, molar gas constant and transition period respectively.  Using a barrier height of 

100pH@300K, the transition period works out to be 956 10× seconds, which longer than the age 

of the universe.  A better estimation of the barrier height at 300K can be determined by taking 

the barrier at 2200K (1 to 2 kBT) and linearly extrapolating downwards to T=300K according to  

equation (4.1), which will increase the exponent by a factor of seven (2200K to 300K).  This 

gives a barrier height of about 15 kBTs, which then corresponds to a transition period of 

approximately 76 10−×  seconds (< half a microsecond).  This is a much more realistic estimate of 

the barrier height.  However, note that even with this more realistic barrier height estimate, the 

600 nanosecond transition period is still not tractable. 

 We therefore concluded that we could not expect to observe sufficient transitions at 

300K to get adequate sampling.  Indeed, we found that 2200K was required to observe a large 

number of transitions within 100 picoseconds. 
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4.3.4 Low 300K Inter-Ionization transition rates 

What is the nature of the solvation barrier that inhibits inter-ionization transitions for short 

simulations at 300K?  One may think that the VDW energy differences contribute, especially 

when going from deprotonated to protonated.  One may think this because the ghost proton in the 

deprotonated form has no VDW parameters, allowing the solvent will move in, then when the 

ghost proton tries to become protonated (VDW parameters turned on), there are steric clashes 

with the encroaching solvent which inhibit a transition to the protonated state.  However a close 

look at the energetic components shows that the low 300K transition rates are due to electrostatic 

solvent effects.  The VDW energy component is not a significant contributor. 

 Deprotonated cysteine has an overall charge of –1 electron charges (e), and the 

surrounding TIP3P waters (which have a dipole nature) orient themselves to minimize the 

potential of the electric field (the oxygen of the waters tend to point away from the negatively 

charged titration site, specifically the negative sulphur atom).  Protonated cysteine is neutral, and 

the surrounding waters tend to orient themselves so that the oxygen points towards the positive 

proton of the S-H group.  These solvation shell effects are so significant that the MC probability 

of selecting the other ionization state is too small for sufficient transitions for even the longest 

simulations.  As for microstate transitions within an ionization state, at 300K we do observe 

intra protonation state transitions on the scale of picoseconds (thousands of MC steps, hundreds 

of MC sweeps). 

4.3.5 Differing philosophies for accelerating ionization transitions 

Here we will discuss different attempts at increasing the ionization-state transition rates at 300K 

so that there we can achieve statistically sufficient transitions for short simulations. 

4.3.5.1 pH swapping, replica exchange scheme 

In Figure 25, we do succeed in accessing ionization states within short simulation lengths by 

driving the pH in one direction and then another.  What if we did use pH to drive the system 

instead of temperature, conducting many such Figure 25 simulations and used WHAM to 

connect them?  There are several reasons against this idea.  The main reason is the equilibrium 
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problem.  When extreme pH causes the system to change ionization state, and this cycle happens 

a few times, the system cannot be confirmed to be in equilibrium.  To verify equilibrium there 

would have to be many thousands of the kinds of cycles shown in Figure 25.  Confirming 

equilibrium under those kinds of conditions would be difficult. 

 We also experimented with a pH swapping, replica exchange scheme, which we will 

briefly discuss. 

 

           pH1  pH2   pH3       pH4         pH5       pH6  pH7  pH8    pH9     pH10   

 D   P     D         P           D           P   D   P      D      P 

 

 

 

 

 
Figure 26: pH Replica Swapping 

Each vertical track represents one of 10 different pHs.  The starting array of simulations is a 

random selection of deprotonated (D) and protonated (P) snapshots.  After some specified 

number of MD steps, there is a MC exchange attempt with its neighbor.  After many such cycles, 

the deprotonated trajectories would tend to the higher pHs, and the protonated trajectories would 

tend towards the lower pHs.  This scheme had some unacceptable artifacts.  If one counted 

occupancy statistics going down a particular ipH  track, the occupancy ratio would be invariant 

with the range chosen for 1 10pH pH− .  One solution is to include a MC choice that kills off 

trajectories, so that the deprotonated-protonated ratio of the array does not stay constant.  The 

problem with such a scheme is that one low energy trajectory quickly dominates the whole array. 

4.3.5.2 Trying different FF parameters to improve transition rates 

The ionization state dependent solvation effects discussed in section 4.3.3 Figure 25 are for 

Amber8 Cysteine and TIP3P water at 300K.  Are there amino acid or water force field 

parameters that reduce the size of the ionization barrier?  We did some manual and significant 

modification of the Cysteine atom charge distribution to see how that would affect the ionization 

barrier.  It did not make a significant enough impact on the size of the barrier.  Since the amino 
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acid models only vary subtly from one another, we concluded that different force field models of 

Cysteine would not help. 

 What about turning on polarization in the solute and the solvent?  Polarization should 

definitely help.  What about using different water models?  There is a long list of things to try.  

However we realized that heading down this road meant that we were pursuing a philosophy that 

we did not like.  We were forcing the model parameters to fit our method, instead of designing 

our method to work with the most commonly accepted model parameters. 

4.3.5.3 Titratable water 

In nature the water molecules are titratable, which facilitates the transfer of protons to or from a 

titratable site (the titratable behavior of water plays an important role in proton dynamics of 

biomolecules and this is discussed in section 1.4.1).  Because we are using an un-titratable water 

model (TIP3P), it is possible that the implementation of a titratable water model will reduce the 

solvation shell effects.  However modeling titratable water has the following disadvantages.  

Because water is highly mobile (in nature and in our simulations) and also because a titrated 

water molecule affects the hydrogen bonding interaction with its neighbors, it would not suffice 

to limit the titratable treatment to those water molecules that interact with the titration site.  

Therefore all of the water molecules of the model will have to be made titratable, which for a 

typical system may number over ten thousand.  This means that modeling titratable water will 

face computational feasibility challenges.  Besides even with titratable water there may still be 

solvation barriers that prevent short simulations from yielding ionization transition occurrences 

that are high enough for good sampling. 

4.3.5.4 Use simulated annealing ensemble to accelerate transitions 

We decided to design our method so that it works with the most widely accepted amino acid 

parameters (Amber ff03) and the most recommended water model for the ff03 parameters, the 

TIP3P water model.  We use high temperature simulations to accelerate the ionization-state 

transitions and, combined with lower temperature simulations, we use WHAM to join these 

simulations that vary over a wide range of temperatures for thermodynamic calculations at 300K. 
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4.4 SIMULATED ANNEALING ENSEMBLE 

4.4.1 Simulated Annealing Ensemble P-T path 

Circumventing the ionization barrier for the single site models (like our solvated Cysteine 

model) requires that we first elevate the temperature, and then the high temperature trajectories 

are joined with lower temperature trajectories via histogram overlaps.  Every simulation in the 

entire range is unquestionably in equilibrium.  However, we also want to make sure that the 

Pressure-Temperature ENSEMBLE PATH is also in equilibrium, and does not cross phases.  The 

Pressure-Temperature ENSEMBLE PATH describes the relation between the trajectories in the 

ensemble.  It is NOT the P-T path of some single simulation, as in the common sense use of 

“simulated annealing”, because each and every simulation of the ensemble is always 

equilibrated, with a pressure, temperature and pH that do NOT change. 

4.4.2 Critical point of TIP3P water 

 

 

Figure 27: TIP3P Phase Diagram for high T-P82, 83 (Kazuyoshi UEDA et al, 2004) 
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Figure 27 above shows the Critical Point region for TIP3P water.  The plot shows constant 

density lines, with values in units of g.cm-3.  The experimental critical point of water is shown as 

the dark circle (647K, 22MPa, density 0.32 g.cm-3).  The density lines converge around the 

experimental critical point.  This means that in this region, small changes in temperature or 

pressure cause big changes in density.  Since this region is near the experimental critical point, 

one can conclude that TIP3P does a good job at reproducing the critical point of water.  So the 

critical point of TIP3P water is near 647K, 22MPa, density 0.32 g.cm-3. 

 The calculations pertaining to Figure 27 are based on simulations carried out with the 

CHARMM25 program84.  It is reasonable to assume that using our AMBER ff03 TIP3P 

parameters and our simulation protocols, we would calculate a region for the critical point 

similar to that obtained in Figure 27.  This is because TIP3P parameters and the simulation 

protocols used in the Figure 27 simulations are not so different from our TIP3P parameters and 

simulation protocols that we would expect significant changes in the position of the region of the 

critical point. 
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4.4.3 Our P-T Path: Avoiding Phase Transition 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 28: Our P-T Ensemble Path 
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In above, we have superimposed the P-T plot of our Simulated Annealing Ensemble 

against the TIP3P phase diagram.  This shows that our Simulated Annealing Ensemble Path is far 

away from the critical point, therefore avoiding any anomalies that result from crossing phases.  

4.4.4 Our P-T path step size 

The step sizes for our P-T simulated annealing ensemble path are shown in Figure 28 above.  

This begs an obvious question, “How do we choose the step size?  Why not only a handful of 

simulations in the P-T phase space range shown in Figure 28?”  Our step size must be such that 

we have sufficient histogram overlap between the effective energies of the simulations.  Ideally, 

in order to maximize computational efficiency, our step size should be as large as would allow 

sufficient histogram overlap for some target level of precision of our calculations.  Precision 

targets are spoken about at length in section 5.2.2. 

4.5 WHAM ALGORITHM 

In our MD/MC-WHAM method, the WHAM algorithm is put to use after the MD/MC 

trajectories are generated.  The WHAM algorithm is able to combine all of the information from 

all to the trajectories for yielding a good density-of-states description.  

4.5.1 Histogram overlaps 

4.5.1.1 Importance of histogram overlaps 

For WHAM to be able to combine the information from two (or more) simulations, the two 

simulations must be close enough to each other in the energy landscape such that there is “good” 

overlap of the histograms of the effective energies of the two simulations85.  The Boltzmann 

Factor for our systems has the form effectiveEe−  where the effective energy of our systems 
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is 1 ( ) ln10effective potE E PV pH L
kT

= + − i i .  We aimed at having the histograms of the Effective 

Energy of the simulations of the P-T ensemble path to overlap such that the distance between the 

histogram peaks was no more than one standard deviation.  The result is the P-T phase space step 

size as shown above in Figure 28.  The following two sections will detail exactly how we came 

to the step size results that we did. 

4.5.1.2 Heat capacity calculation for approximate histogram spacing 

Figure 28 shows that the highest temperature system of our ensemble is a system at 2200K and 

1700atm.  We used the WHAM feature that evaluates the heat capacity equation shown in 

section 3.9 to calculate the heat capacity of this system.  This gives us an approximation of the 

width of the effective energy histogram, and also how far the temperature can be dropped to 

incur a histogram shift of half the histogram width.  Hence we can calculate what the next lower 

temperature should be for the ensemble (of course, manual inspection of the histograms was used 

to verify the heat capacity predictions). We can repeat this calculation to get the next lower 

temperature, and so on.  However, we can only do this as far down as 1320K, 1700atm.  From 

2200K down to 1320K, the pressure stays constant, so the “heat capacity at constant pressure” is 

useful for determining histogram overlaps.  However, from 1320K downwards, the pressure also 

drops, so we can no longer use the constant-pressure heat capacity as a guide.  In this range we 

simply had to measure the mean of the histograms, the r.m.s.d. of the histograms, and most 

importantly, count the number of snapshots in the overlap regions to make sure there was 

sufficient overlap. 

4.5.1.3 Histogram Standard Deviation calculation overlap count 

One useful feature of the WHAM code is to simply calculate the effective energy mean and 

r.m.s.d. for all of the trajectories of a dataset, and to write out the information in a convenient 

format.  This allows the user to get quick approximations for where further simulations are 

needed for sufficient overlap. 

Another useful feature of our code is the option to write out the calculated effective 

energy of every snapshot in the dataset, in a format convenient for plotting software like 
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SigmaPlot.  The histogram function of the software can then be used to create histograms and to 

calculate the overlap count of the histograms. 

4.5.1.4 Calculation convergence and histogram overlap correlation 

It is intuitive to think that better histogram overlap will allow WHAM to give a better density-of-

states description, which in turn will yield better result precision.  However there is another 

practical advantage that is felt long before the stage of result precision analysis.  Better histogram 

overlap causes more rapid convergence of the WHAM iterative scheme.  The additional 

computer time used to generate more trajectories for the improvement of histogram overlap is 

more than made up for because less computer time is spent in WHAM to converge the free 

energies ( 'mg s ).  Up to a point.  Our focus in this work is to hit calculated pKa  precision 

targets, so we tended to err on the side of excessive overlap. 

4.5.2 pKa calculation using high temperature bridge 

There are two basic requirements for WHAM to work for pKa calculations: 

a) WHAM needs trajectory snapshots that sample the appropriate regions of the 

effective energy landscape for which we are conducting pKa calculations.  For example, 

if all we had were the 1280K high temperature data shown in Figure 31, we would be 

able to calculate, with reasonable accuracy, the pKa of the system for temperatures and 

pressures in the ranges of 1280-+20K, and 1650+-25atm.  With only the 1280K data, we 

would NOT be able to calculate pKas at 300K&1atm with any accuracy. 

b) WHAM needs histogram overlaps in order to effectively incorporate data from a 

range of temperatures and pressures.  For example, suppose we wanted to calculate the 

pKa of the system at 1160K&1500atm, and we had the data for 1320K and 1160K shown 

in Figure 31.  Including the 1320K data is useful because it helps improve the density of 

states description, hence they can contribute towards improving the accuracy of the 

result.  However, if WHAM only had the 1320K and 1160K data, it will not effectively 

(or properly) incorporate the 1320K data, because there is no histogram overlap between 

the 1320K data and the 1160K data (see Figure 31).  WHAM needs the snapshots for the 
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trajectories at 1320K, 1280K, 1240K, 1200K and 1160K.  In other words, there must be 

“links” or histogram overlaps for WHAM to properly incorporate data from a wide range 

of conditions. 

For a straightforward application of WHAM, there is one more important, and intuitive 

requirement for WHAM.  The trajectories must have a statistically sufficient number of 

transitions.  Consider the high temperature simulations of Figure 31 page 165.  With this data, a 

straight forward application of WHAM is good for calculating pKas of the system for any 

temperature and pressure along our TP path (of Figure 28 page 155) in the approximate ranges of 

1320K - 1160K and 1700atm-1450atm.  However, if we need the pKa calculation for 

300K&1atm, notice that the lower temperature data DO NOT have any transitions, so a 

straightforward application of WHAM will not work.  Next I will detail how we use our 

WHAM algorithm to accurately perform pKa calculations such as those at 300K&1atm. 

Consider the 1160K set of data, and the 1120K set of data shown in Figure 31 page 166.  

The 1160K data is part of the “high temperature bridge”.  It is a long simulation with lots of 

transitions and good sampling of all protonation microstates, as are all the five high temperature 

“bridge” simulations shown in Figure 31.  Suppose we wanted to calculate the pKa for the 

system at 1120K&1450atm.  We could simply use the 1160K&1500atm data for the 

1120K&1450atm pKa calculation.  However, suppose we wanted to incorporate 1120K 

trajectory data to improve the result, because the 1120K data better samples in the region.  The 

problem is that the 1120K system will have less of a transition rate than the higher temperature 

1160K trajectories.  We will therefore need longer 1120K simulations to give us statistically 

sufficient sampling.  So we gain much by including the 1120K simulations because it better 

samples the region for which we want to calculate pKas, but we lose some because there are 

fewer transitions.  There is an alternative.  With careful treatment, we can add a pair of short 

1120K simulations to the 1160K dataset and get improved results for our 1120K, 1450atm pKa 

calculation as follows.  The pair of short 1120K simulations consists of one short simulation in 

which the system is 100% deprotonated (1120Kd), and one short simulation in which the system 

is 100% protonated (1120Kp).  Each member of this short pair of 1120K simulations has the 

same number of snapshots.  Each member of this short simulation pair has a histogram that 

overlaps with the 1160K data histogram.  Both short simulations have the same pH.   
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If we add such short 1120K simulation data to the 1160K data for WHAM, we will get 

results that are heavily dependent on the pH of the short simulation pair.  The reason for this is 

obvious.  WHAM sees an equal number of 1120K protonated and deprotonated snapshots that 

were generated under the same conditions, and assumes there are a healthy number of transitions 

(not so).  It therefore gives a pKa result close to the pH of the 1120K pair, because by definition, 

the pKa is the pH of the system for which there is a 50/50 ratio of protonation and deprotonation 

occupancy.  Seeing that we “get out a pKa that is close to the pH that we put in”, is there a way 

to appropriately choose the pH of the short 1120K simulations?  Yes there is.  It can be done as 

follows: 

(1) Even though our pKa result is dependent on the pH of the short 1120Kd and 1120Kp 

simulations, and that we approximately “get out a pKa that is close to the pH that we 

put in”, the result is not completely dependent on the pH of the short 1120K 

simulation pair because of the histogram overlap.  The high temperature 1160K data 

acts as an anchor, pulling the result in the right direction, allowing for an iterative 

solution. 

(2) For a given protonation state, the Potential Energy + PV term of a snapshot is 

independent of the pH conditions of the simulation.  So if we generated a simulation 

with no transitions, such as the 1120Kd or 1120Kp simulations, and we repeated the 

no-ionization state transition simulations with the same starting point and conditions 

except that the pH was different, we would get the same trajectory and the same 

Ep+PV terms for the snapshots.  This means that for an iterative solution, we don’t 

have to regenerate 1120Kd and 1120Kp simulations with different pHs every time we 

want to see how a different short pair pH effects our results.  All we need is one 

1120K-simulation pair of any pH. 

 

For our 1120K, 1450atm pKa calculation, for the reasons outlined above, we are able to 

implement an iterative solution as follows: 

(a) Feed our WHAM algorithm the 1160K data, and the data for the pair of 

1120K simulations.  The 1120K simulation pair can have any pH. 

(b) WHAM will give a pKa result that is heavily influenced by the pH of the 

1120K pair data, but will be pulled in the right direction. 
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(c) Our WHAM algorithm will take this calculated pKa and use it as the “new 

and improved” pH of the 1120K simulation pair, and redo the calculation. 

(d) The process is repeated until the calculated pKa converges, yielding an 

accurate value for the pKa@1120K, 1450atm. 

 

We generalize this approach to the whole data set of Figure 31 as follows: 

(a) Feed our WHAM algorithm all of the “high temperature bridging” data, and all of 

the short lower temperature simulation pair data.  Each member of a short 

simulation pair must have the same number of snapshots and the same pH as its 

differently ionized partner.  Their histograms should overlap with those of 

neighboring simulations.  The more reasonable the initial pH’s chosen, the fewer 

iterations are needed for pKa convergence.  In practice, the algorithm is smart 

enough to assign the same pH to each member of a low temperature pair, 

overriding the pHs in the file headers.  In practice, the initial pH’s assigned CAN 

be far from reasonable yet convergence will still occur only slightly less rapidly 

than if the initial pHs were closer to the converged values. 

(b) In the first iteration, our WHAM algorithm will calculate initial pKas for all of the 

simulation conditions represented by the short simulations. 

(c) Our WHAM algorithm will use this set of pKas to reassign the “improved” pHs 

for all of the short simulations, and repeat the calculation. 

(d) After several hundred of these “pKa iterations”, the pKas will converge, yielding 

an accurate set of pKa values that correspond to all the simulation conditions of 

the short simulations, including the pKa@300K, 1atm for our Cysteine system.  

Such results are shown in Figure 32 page 169. 

The iterative scheme of our WHAM algorithm can be summarized in the following 

diagrams. 
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Original WHAM iteration scheme   Our WHAM iteration scheme 

         

   'mg s      'pH s    'mg s  

   

initial 'mg s      initial 'mg s  

     initial low temp. pHs    

, 'k tz s            , 'k tz s  

Figure 29: WHAM pH Iterative Scheme 

Details of the calculation of each element of the iteration are given by the equations in section 

3.9.  

 The theory of our method can be summarized as follows:  pH and occupancy ratio can be 

considered to be conjugate variables.  In typical usage, the state variable pH is fixed and the 

configuration variable of occupancy ratio is observed.  In our method we reverse engineer things.  

For the low temperature simulations, we set occupancy ratio = 1, and we ask WHAM let the pH 

float until it converges to the correct value that would make the (occupancy ratio = 1) condition 

true, which then means that the pKa = converged pH. 

In short, for the low temperature simulations, we modify the conjugate pair 

 (pH, occupancy ratio) (4.2) 

so that it becomes 

 (pKa=pH, occupancy ratio=1) (4.3) 

new low temp. 
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5.0 BIOPHYSICAL RESULTS FOR CYSTEINE 

5.1 HIGH TEMP. TITRATION CURVE 

Our computational high temperature titration curve for Cysteine matches analytical expectations.  

Consider the following analytic analysis for the titration of a titratable site. 
1

(ln10)0
0

F pHocc e
occ

βΔ −=  where 
1

0

occ
occ

 is the protonated-deprotonated occupancy 

ratio, 1/ kTβ = where T is the temperature of the simulation, pH is the pH of the simulation 

and 0FΔ is the pE PV〈 + 〉  difference between the protonated and deprotonated states (where PE , 

P and V  are the potential energy, pressure and volume respectively).  For all Cysteine 

simulations of constant temperature and pressure, 0FeβΔ  is constant, so 1 0ln( / )occ occ , the log of 

the occupancy ratio, should be proportional to the pH of the simulation, with a gradient = 

ln10−  = -2.303. 

Using the occupancy data generated by our code at five simulations run at different pH, 

we plot the log of the occupancy ratio vs. the pH. 
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Log(occupancy ratio) vs pH
for Cysteine at 1320K, 1700atm
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Figure 30: Titration curve for Cysteine at 1320K 

 

This result, to a large extent, is an important validation check of our code and our methods.  The 

reader may note that calculated pKa of Cysteine is –7.75, (intersection of the x-axis, were 

protonated occupancy = deprotonated occupancy) which is significantly different from 

Cysteine’s known pKa of +8.3.  This is not a bad sign.  Instead this emphasizes the importance 

of the calculating Bond Dissociation Energy numbers.  The necessity for calculating these Bond 

Dissociation Energies is discussed in section 4.1.1. 

The reader may also note that the pKa  calculation was done at a simulated temperature 

of 1320K, far higher than the temperatures we are interested in.  This emphasizes the importance 

of our WHAM63,64 methods for combining the information from different temperatures for our 

single titration Cysteine system.  See Figure 31. 

5.2 CALCULATED BDE FOR CYS 

The high temperature simulations (represented in the top portion of Figure 31) are important for 

allowing our system to rapidly sample many configuration and protonation states, which 

improves the “density of states” description.  We simulated about 73 10×  MC sweeps for the 

higher temperatures.  We simulated approximately 1000 MC sweeps for each of the 44 lower 
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temperature states of the Cysteine system.  Proper equilibration of the 44 lower temperature 

systems at their respective temperatures pressures and ionization states requires about 30,000 

service units.  Then the high temperature 73 10×  MC sweeps of the MD/MC simulation requires 

about 40,000 Lemieux service units.  One MC sweep is made every 20 MD steps (20 fs). 
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Figure 31: Simulated annealing ensemble, 1320K-300K 
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Table 4: P-T path, 1320K-300K 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

System# Temp,K Press,atm 
 1 1320 1700 
 2 1280 1650 
 3 1240 1600 
 4 1200 1550 
 5 1160 1500 
 6 1120 1450 
 7 1080 1400 
 8 1040 1350 
 9 1000 1300 
10  966 1250 
11  933 1200 
12  900 1150 
13  866 1100 
14  833 1050 
15  800 1000 
16  780   950 
17  765   900 
18  750   900 
19  735   900 
20  720   850 
21  705   850 
22  690   800 
23  675   800 
24  660   750 
25  645   750 
26  630   700 
27  615   700 
28  600   700 
29  585   650 
30  570   600 
31  555   600 
32  540   550 
33  525   550 
34  510   500 
35  495   450 
36  480  450 
37  465  400 
38  450  400 
39  435  350 
40  420  300 
41  405  300 
40  390  250 
43  375  200 
44  360  200 
45  345  150 
46  330  100 
47  320  100 
48  310  100 
49  300      1 
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The table above (Table 4) shows the temperature and pressure specifics of the 49 Cysteine 

systems.  Trajectories are generated for these 49 systems using our MD/MC algorithm, and the 

energies of their snapshots are plotted in Figure 31.  A proton count of 0 represents the 

deprotonated state, and a proton count of 1 represents the three protonated states.  The left hand 

plot of Figure 31 shows that at higher temperatures the system readily samples the ionization 

states, represented by the colored high temperature lines near the top of the plot that go from one 

ionization state and back.  In the lower temperature region, there are no such transitions.  One TP 

link is therefore represented as a pair of equal length simulations, one completely protonated and 

one completely deprotonated (see section 4.5.2 for more detail on why we do this).  For each 

simulation, the pressure corresponding to the temperature is shown in Table 4 page 167, but is 

not shown in Figure 31.  As temperatures drop, the simulations must run longer for ionization 

state transitions to occur.  We would therefore expect to see a gradual reduction in the number of 

transitions as the temperature drops.  The reason why there appears to show a sudden cut off in 

transitions below 1120K is because the lower temperature simulations are not allowed to 

transition.  Recall that in section 4.5.2 we have found that it is more efficient to generate high 

temperature “bridging” trajectories, and use WHAM63,64 to combine them with short pairs of low 

temperature simulations that have no transitions.  This way is much more computationally 

efficient than running low temperature simulations for many hundreds of nanoseconds to get 

statistically sufficient transitions (at temperatures near 300K, in section 4.3.3 we used the Eyring 

equation to estimate the transition period to be six hundred nanoseconds).  The high temperature 

simulations altogether contain about 2500 transitions and represent a total of about 20 

nanoseconds of MD/MC simulation.  The lower temperature simulations are relatively short 20 

picosecond simulations. 

 The right hand plot in Figure 31 shows the histograms for the five high temperature 

simulations plus three low temperature simulations (the x-axis) in terms of histogram frequency 

(y-axis).  Here the histogram overlaps can be seen more clearly.  The five HT simulations have 

larger histograms because these simulations are longer. 

At the core of our WHAM algorithm is code that determines the relative free energy of 

the m th simulation, mg , and the relative weight of the t th snapshot of the k th simulation, ktz .  

This is done by iterating the following equations: 
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The set of mg ’s and ,k tz ’s for our trajectories is a convenient form of the density-of-states.  From 

this we can determine enthalpy, entropy, heat capacity etc at ANY temperature, pressure and pH 

i.e. ( , , , ),estH P pHβ Λ   ( , , , ),estG P pHβ Λ  etc.     

There are statistical limitations that restrain our ability to accurately calculate these 

thermodynamic quantities at ANY set of state variables.   For accurate results, we must have 

WHAM histogram energy overlap.  In other words, we cannot, with any accuracy, calculate the 

pKa for Cysteine at 300K using only data generated at 1320K.  There must be energy overlap. 

This is why the Figure 31 plot shows the energies of runs at different temperatures overlapping 

each other.  Good statistics (lots of data in the “bridging” region) and histogram energy overlaps 

is the key to using WHAM capabilities effectively. 

A glance at Figure 31 shows that we are making a lot of  “relays” to go from 1320K to 

300K.  One of the strengths of WHAM is the ability to determine if we have sufficient statistics 

for our results, which is especially important for our calculations, which involve so many 

overlapping relays. 

Figure 32: Calculated pKa* for Cysteine for a range of temperatures 
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In the plot above, WHAM is used to calculate *
CYSpKa  using the information from the 

simulations shown in Figure 31.  Note that the pressure is reduced as the temperature is reduced.  

The pKa range is so low because we have not yet taken the calculated Bond Dissociation Energy 

number ( calc
cysBDE ) into account (this part of the exercise is used to determine that number).  

Figure 32 above shows that the calcBDE  for Cysteine ( * exp( )cys cyspKa pKa− − ) is about 

( 60 8.3) 68.3− − − =  pH units @ 300K.  This is very encouraging, considering the calc
cysBDE  and 

the exp
thio methaneBDE −  comparison (discussed in section 5.2.1).   Figure 30 shows two plots, the 

purpose of which is to simply to show the reproducibility of the result.  These two plots also 

reveal relatively large precision errors, which brings us to next section in which we pursue much 

higher precision.    With good histogram overlap and good statistics we aim to calculate 
calcBDE ’s to within 0.05 pH units.  Our justification for pursuing this precision and our pursuit 

of this precision will be discussed in the next section, 5.2.1.  The reader is reminded that the 

above work, i.e. calculating calcBDE  numbers for every type of titratable amino acid, only needs 

to be done once for a force field. 

5.2.1 Accuracy and Precision 

Our method, integration of Molecular Dynamics, Monte Carlo protonation state selection and 

Weighted Histograms, promises full atomic detail down to the solute proton dynamics level with 

computational feasibility.  However, even detailed models and rigorous methods have errors.  So 

for all such calculations, the errors need to be identified and quantified.  These errors come from 

two sources. 

1) Systematic errors due to errors or approximations in the force field. 

2) Statistical errors due to counting statistics. 

5.2.1.1 Systematic Errors due to Force Field or Methods:  Accuracy 

Accuracy errors come about as a result of systematic errors that are introduced by the force field 

or our methods.  The results in this dissertation were based on the AMBER ff03 force field. 

Although the details of the code are tied to the Amber ff, the basic algorithm is not.  It can be 
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used with any force field.  We used the Amber ff03 models because our lab has a lot of 

experience with Amber.  This force field belongs to a genre of force fields that are state of the 

art.  Force fields like these are used to model a wide range of biomolecular systems, which is a 

testament to the accuracy and the capability of a state of the art classical mechanical model.  In 

terms of minimizing accuracy errors by choosing one from the best genre of force fields, we 

simply cannot do better than this class of modeling.  Developing our own force field is an 

intractable amount of work, and using a quantum chemistry model on proteins is an intractable 

amount of computation.  One of the ways we can quantify accuracy errors is to compare 

calculated and experimental Bond Dissociation Energies, and this is shown and discussed in the 

following sections. 

5.2.1.2 Statistical Errors due to Counting Statistics: Precision 

Precision errors come in as a result of statistical errors and the central assumption of statistical 

errors is counting statistics. In section 3.7 of the WHAM theory, we see that WHAM makes 

transparent the connection between histogram count errors and thermodynamic result errors for a 

single histogram.  However we are using many histograms in our pKa calculations and it is very 

hard to analytically calculate the error propagation when there is convolution of the counts of 

many histograms.  However it is not hard to do it numerically, which is what follows in the next 

sections.  What needs emphasis here is that WHAM and the related numerical analysis, tells us 

(a) where to most efficiently add simulation to yield the greatest increase in precision and (b) the 

computational cost to achieve a predetermined level of precision.  This allows us to put a price 

tag on a given level of precision 

5.2.2 Precision Pursuit:  0.05pH unit BDEcalc target precision 

The applicability of these precision discussions is in no way limited to the single site Cysteine 

system, nor to pKa calculations.  However the discussion about precision is made much less 

abstract if we use an example, such as the Cysteine single site pKa calculation.  The following 

sections will explain why precise numbers are so important, and why our targeted precision is 

0.05 pH units. 
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Routine experimental measurements of pKas in biological laboratories are performed 

with a precision of about 0.05 pH units.  However, if we calculate pKas to a precision of 0.2 pH 

units that is more than good enough to see correlations between experimental and calculated 

pKas, and therefore this precision will be more than able to validate our method against 

experimental pKas.  Recall from section 4.1.1 and 4.1.2 that the BDEcalc numbers will go into the 

pKa calculation, especially if there is interaction with other titratable sites, which is often the 

case.  As a result, the errors in the BDEcalc numbers may have an additive effect on the pKa error.  

So whatever our target pKa precision is, the BDEcalc precision should be approximately one order 

of magnitude better.  Hence our precision of 0.05 pH units for the BDEcalc numbers. 

5.2.3 Precision Pursuit: Quantity of data & precision correlation  

Our target precision for the calc
cysBDE  is 0.05 pH units.  But the calc

cysBDE  is determined by 

calculating *
cyspKa  for the single site Cysteine system since * exp( )calc

cys cys cysBDE pKa pKa= − − .  So 

our targeting of 0.05 pH unit calc
cysBDE  precision implies we are targeting 0.05 pH unit precision 

for *
cyspKa .  Having noted that calc

cysBDE  and *
cyspKa  precision are synonymous, using *

cyspKa  

precision language in the following sections should not cause any confusion.     

Here we will look at some specific calculations and show the correlation between the 

quantity of data and the calculated pKa precision.  Recall that the calculated pKa  for single site 

Cysteine system, *
cyspKa , involves a data set that consists of a high temperature part, and a low 

temperature part.  The high temperature part consists of long trajectories with many ionization 

state transitions, and the low temperature part consists of short trajectories that are locked into 

their ionization states (see Figure 31: Simulated annealing ensemble, 1320K-300K).  We can 

represent the whole dataset with the following box diagram. 
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In the following sections, we will discuss how the pKa precision is affected by both the high 

temperature and low temperature data volume. 

For this analysis, we use a new type of dataset, one that extends to much higher 

temperatures (2200K as opposed the 1320K as in Figure 31) and is much “lighter” (has 

simulations an order of magnitude shorter).  The reason we changed our simulation ensemble 

design was because the old design (Figure 31) gave us a poor precision return for our 

computational investment.  Figure 32 shows that the two datasets yield pKa@300K results that 

differ by over one pH unit, and the total simulation length of the dataset is about 22 nanoseconds.  

The increased temperature gives us more transitions, significantly reducing statistical errors due 

to too few ionization state transitions.  Instead of several high-temperature (HT) simulations at 

different temperatures, all of the HT simulations have only one temperature, 2200K.  For the 

following error sensitivity analysis, we consider only 4 low temperature (LT) links. 

Low temperature data 
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Figure 33 

We generated 64 of the above dataset units.  Then we proceeded to find out the most efficient 

way to add simulation volume for the purpose of increasing precision.  Do we need longer HT 

simulations or LT simulations to most efficiently improve precision? 

5.2.3.1 High Temperature Snapshot Volume & precision correlation 

In this section we discuss how we keep the low temperature data volume fixed (though different 

LT datasets are used) and see how the pKa  precision is affected as the high temperature data 

volume increases. 

           

 …..   ……    

         

 
 

                        8 independent pKa calculations  pKa S.D. of the mean = 0.0435 

 

×  8  pKa S.D. of the mean = 0.0382 

 

 

×  8  pKa S.D. of the mean = 0.0320 

 

 

×  8  pKa S.D. of the mean = 0.0211 

 

HT part, 2200K 
100,000 MD steps 
  20,000 MC sweeps             
     1000 ionization state transitions 

LT part, 4 links, 2150K, 2100K, 
2050K, 2000K. 

Each 2000 MD steps 
           100 MC sweeps 
               0 transitions 

pKa S.D. of the mean of the 4th 
link, (2000K 1700atm), calculated 
from the eight numbers.  
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In the scheme above, we increase the HT data volume by factors of 2, 4, and 8.  We do see a 

corresponding precision improvement for the @ 2000pKa K . Then we do a similar set of 

calculations, except we increase the LT data volume. 

5.2.3.2 Low temperature snapshot volume & precision correlation 

 

    ×  8    pKa S.D. of the mean = 0.0435 

 

 

   ×   8    pKa S.D. of the mean = 0.0504 

 

 

   ×   8    pKa S.D. of the mean = 0.0457 

 

      

×   8    pKa S.D. of the mean = 0.0476 

 

The S.D. of the mean does not improve with the LT volume increase!  We may therefore 

conclude that for the 4th link pKa calculation (2000K), the number of transitions is dominating 

the counting statistics, so precision is most efficiently improved by adding HT simulations.  We 

need to continue this type of analysis all the way down to 300K (about 240 links).  We see that 

for only 4 links (2000K) the HT volume matters the most.  But as we move further away from 

the HT bridge, we may see that the LT volume also matters. 

5.2.4 pKa  Error propagation down through the Histogram links 

We would expect that the further away from the HT bridge, the larger the error in the pKa as we 

move down the links.  We measured the S.D. of the mean for the results three “complete” 

datasets, that is, we went all the way down to 300K for three separate data sets. 
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Figure 34: Temperature vs. pKa for 2200K-300K dataset 

 

The temperature vs. pKa plot above plots the average calculated pKas.  That is, the pKa of each 

link is averaged from the three numbers, where each number for each link is calculated from 

each of the three datasets.  The pKa @ 300K, 1atm, averaged over three numbers, is –57.05 pH 

units with a S.D. of the mean of 0.6 pH units.  This result is consistent with our preliminary 

result shown in Figure 32 page 169.  The precision of this result is much better than that of the 

preliminary result (0.6 compared to ~2 pH units), despite the simulations of the new protocol 

being an order of magnitude less than those of the preliminary calculation.  This S.D. of the 

mean improvement may be because of the larger number of High Temperature ionization state 

transitions (recall the new protocol has a highest temperature of 2200K, as opposed to 1320K), 

or better histogram link overlap of the new protocol.  A note of caution about the 57.05 

pKa@300K mean and the 0.6 pKa S.D. of the mean calculations: we have only calculated this 
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based on three numbers.  The full set of 8 calculations needs to be completed for us to have more 

confidence in these mean and S.D. of the mean calculations.  A note of optimism: the 57.05 
* @300CYSpKa K mean, when figured into the calc

cysBDE , puts us within 2% of the 3H SCH−  

expBDE (88.6 1 / )kcal mole± . 

 We expect the precision to deteriorate as we go down the links from the High 

Temperature bridge.  We have plotted both the “S.D. of the mean vs. the Link number” and the 

“S.D. of the mean vs. the Temperature” in the plots below.  This gives us an idea of the precision 

deterioration trend. 
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Figure 35: pKa S.D. of the mean vs. number of links 
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Figure 36: pKa S.D. of the mean vs. temperature 

 

We believe that the plots are not smooth because we are only looking at three datasets, so the 

S.D. of the mean at each link is only based on three numbers.  Therefore one of the future steps 

is to continue this analysis for the full eight datasets, which we reasonably expect will result in 

smoother plots.  We also need to continue the sensitivity analysis as laid out on in the previous 

section in order to assess the most efficient way of hitting our precision target at 300K. 

5.2.5 pKa Precision @ 300K Summary, Conclusion, and Future work 

The purpose of the previous sections were to pin down where additional simulations were 

necessary to improve the precision of the @300pKa K .  In the last section, we saw based on the 

precision plots of Figure 35 and Figure 36, the S.D. of the mean for the pKa is in the range 0.6-

0.8.  We need to complete this calculation for the full 8 datasets.  Then we need to increase the 

high temperature volume and the low temperature volume in turn to  
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see how the @300pKa K  precision is influenced.  Hopefully, 

this will give us a data volume distribution protocol that, for 

eight of such datasets, will give us our target precision 0.05 pH 

units. 

       

    
 

Figure 37:  Smallest dataset 

Now, let’s consider the worst-case scenario.  To hit our target precision (0.05 pH units) we need 

precision improvement by an order of magnitude.  Suppose that, based on our 64 HT and LT 

datasets, we cannot find a data volume distribution protocol that reduces the S.D. of the mean by 

the required order of magnitude for 8 datasets.  The worst-case scenario is that we can generate 

256 times the number of datasets we used in Figure 34 (instead of only 64).  Such a number of 

independent datasets will cause the pKa S.D. of the mean to drop by a factor of 256 16= , 

which will take the S.D. of the mean from its present 0.8 to the target 0.05. 

In Figure 34 we use 3 of these “skinny” datasets, so 256 times as many is 256 3 768× =  

of these datasets.  Doing 768 such dataset generations and WHAM calculations is not so 

difficult.  Recall each dataset of our new protocol is very lightweight, and can be generated in 

parallel.  Each HT unit takes 1 processor-hour to generate, so generation of 768 of them would 

require 768 processor-hours.  The thin LT unit pairs take about 30 seconds to generate, or 1/15 

processor-hours.  Doing all 244 links (from 2150K-300K) for 768 datasets will require 12493 

processor-hours. The WHAM convergence for each of the datasets takes about 8 hours on 8 

processors (64sus) and can be done simultaneously so 768 such convergences will take about 

49,152 processor-hours.  The initial equilibration of the 244LT +1HT simulations requires about 

9764 processor-hours.  This gives us a grand total of 96753 processor-hours.  As mentioned 

before, this is the worse case scenario and we hope to find a data volume distribution scheme that 

allows us to hit our precision target with only a few dozen or so datasets. 

One of the things that will be done in the near future is to quantize how sensitive the 

results are to choices of input parameters.  We have already done some preliminary investigation 

into this and some of it is alluded to throughout the dissertation, but here I will summarize them.   

8×  
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The types of input parameter sensitivity tests first conducted were alluded to in section 

4.3.5.2 page 151.  We were rapidly driving the system from one ionization-state to the other by 

changing the pH.  What we found was a large pH hysteresis in going from one state to the next 

(see Figure 25 on page 148).  In an attempt to reduce the amplitude of the hysteresis, we 

experimented with changing some to the partial charges on the atoms of Cysteine.  What we 

mentioned in section 4.3.5.2 was that the hysteresis amplitude did not change significantly 

enough for our purposes, but we did not mention that the hysteresis amplitude window did shift, 

in some cases by several pH units (several kcals/mole).  At higher temperatures these shifts were 

seen more clearly and we were able to better quantize them.  Consider the high temperature 

titration curve shown in Figure 30 page 164.  This shows Cysteine titrating at a pH of –7.75 at a 

temperature of 1320K.  We then dumped an additional charge of +0.5e (see “Cysteine charges” 

on page 141) on the nitrogen of the Cysteine backbone (as far away from the titration region) and 

the titration curve shifted 0.5 pH units in the negative direction, which is the expected direction.  

At 1320K, that represents a shift of about 3 kcals/mole.  Therefore one of the near future 

calculations will be to continue the calculation all the way down to 300K and see the magnitude 

of the shift at 300K. 

Another type of input parameter sensitivity test was alluded to in section 6.3.1.2 page 

184.  There we looked at how the titration curve was affected by different ratios of MD/MC 

steps.  What we found was that the quality (uncertainty) improved with lower MD/MC ratios, but 

the titration curve itself did not shift in either direction. 

5.3 calc
cysBDE  SUMMARY OF RESULTS 

Some of the following calc
cysBDE  summarized results are extrapolated according the discussions of 

the previous section 5.2.5. 
exp 88.6 1 /thio methaneBDE kcal mole− = ± 80 

* exp( ) ( 57.05 8.3) units@300

90.3 /

calc
cys cys cysBDE pKa pKa pH K

kcals mole

= − − = − − −

=
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So exp  and calc
thio methane cysBDE BDE−  agree to within 3% of each other.  Since Thio-methane and 

Cysteine are not identical, the experimental Bond Dissociation Energies for removing the proton 

from the sulphur may differ by about 5%, as determined from doing a survey that compares the 

Bond Dissociation Energies within pairs of very similar molecules.  So the experimental error 

plus the uncertainty due to Thio methane Cysteine− ≠  is about 5.5 kcals/mole (6%), and our 
calc
cysBDE  is within that range.  This very nice result may be fortuitous.  The only way to know is 

to calculate BDEs for other titratable amino-acids and compare with experimental numbers.  We 

did not set out to measure calc
cysBDE .  We set out to measure pKa shifts, so this is a very 

encouraging result.  

 The following table details the computational cost for various calc
cysBDE  precisions. 

Desired 
calc
cysBDE  

precision 

pH 

units@300K 

# of small 

(Figure 

37) 

datasets 

required 

Processor-

hours to 

Equilibrate 

of 245 

systems 

Processor-

hours to 

generate 

HT 

datasets 

Processor-

hours to 

generate 

LT 

datasets 

Processor-

hours for 

WHAM 

convergence 

Total 

processor-

hours 

0.05 768 9764 768 12493 49152 96753 

0.10 192 9764 192 3124 12288 23368 

0.20 48 9764 48 781 3072 13665 

0.50 8 9764 8 125 492 10389 

1.00 2 9764 2 32 123 2598 
Table 5: Precision Cost Table 
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6.0 MC/MD ALGORITHM PERFORMANCE RESULTS 

6.1 SINGLE NODE PERFORMANCE OF MC/MD ALGORITHM 

Our MD/MC algorithm is an extensive modification of the Amber7-sander algorithm, and calls 

the same energy routines.  The single node performance of our MD/MC code is as follows: 

1) One MC micro step is worth four MD steps. 

2) Execution time goes as 20 4N+ , where N  is the number of titratable sites. 

So, for single titratable site simulations such as those mentioned in this paper, if one MC sweep 

occurs every 20 MD steps, our MD/MC algorithm is 20% slower than sander7.  For a protein 

with 20 sites selected for titration, our MD/MC algorithm will run 500% slower than sander7. 

6.2 POTENTIAL SINGLE NODE IMPROVEMENTS 

Using an execution protocol of 1 MC sweep per 20 MD steps, a single site system is 20% slower 

and a 20-site system is 500% slower than the original sander7 code.  The reason for this is that 

one MC sweep costs the same amount of time as 4 MD steps.  The high cost of the MC sweep is 

because Cysteine has four microstates, and the same sander force/energy routines are called four 

times to calculate the energy of the whole system with the four different microstates.  

Theoretically, there is a much more efficient way to do it.  If the energy of the system was 

broken up into components, such that some components of the system energy were invariant 

with microstate changes of the titratable site, and the other components of the energy were 

affected by microstate changes of the titratable site, then calculating the system energy for the 

four different microstates would only require four-fold recalculation of the components that 

change their energy.  This would make a MC sweep cost only about 110% of an MD step. 
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However, it would require a big commitment to overhaul the core energy routines of 

sander.  These routines are very dependable, very trusted, and have evolved across the span of 

time, Fortran versions and authors.  It may make more sense to build our own energy routines 

from the ground up.  Either way would require a serious commitment of time. 

We have already committed a lot of time to writing tens of thousands of lines of code to 

get the MD/MC algorithm working.  The best use of our resources at this time is to focus on 

“proof of concept”.  Our MD/MC code as it stands, 500% slower for a large 20-titratable site 

system, and scaleable to 64 processors, is more than good enough for “proof of concept”.  If or 

when our methods prove to be very useful to us or the community, and its use starts to become 

limited by compute power, then we or someone else could address the MC cost problem. 

6.3 PARALLEL PERFORMANCE OF MC/MD ALGORITHM 

Because our MDMC algorithm calls the same energy routines as the Amber7-sander algorithm 

on which it is based, it scales just like the Amber7-sander algorithm, which is 64 processors for 

large systems (>90,000atoms), and 16 processors for smaller systems (< 20,000atoms).   

 

6.3.1 MD/MC trajectory generation improvements 

Consider the data set represented in Figure 34 (data for the calcBDE  for Cysteine).  There are 244 

pairs of low temperature simulations, and one high temperature (2200K) simulation.  The 

MD/MC algorithm has to generate all of the trajectories for several dozen or hundred such 

datasets, depending on the precision desired.  Efficient generation of these trajectories is 

important for the feasibility of our approach, so what follows is a summary of the most important 

features of our code and execution methods that allow dozens of these datasets to be generated 

on a scale of hours. 

One of the features of MD/MC algorithm is that one can control the number of sweeps in 

the MC sub-cycle, and the number of steps in the MD sub-cycle.  One MC sweep costs about as 
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much as four MD steps.  Reducing the number of useless MC sweeps or reducing the number of 

unnecessary force routine calls during the Monte Carlo sub-cycle is therefore one way of 

increasing execution efficiency. 

6.3.1.1 One Monte Carlo sweep per sub-cycle 

The choice of MD/MC input parameters for control of the number of MC sweeps per MC sub-

cycle and MD steps per MD sub-cycle have to be chosen such that the trajectory is generated as 

efficiently as possible without significantly compromising the accuracy of the trajectory.  We 

have found that executing more than one MC sweep per MC sub-cycle is a waste.  The reason 

for this is that the effective energy differences between the protonization states are relatively 

large in the vast majority of instances.  This means that the probability of the Monte Carlo 

algorithm choosing the lowest energy state is almost always very close to one, and the 

probability of the Monte Carlo algorithm choosing any other microstate is almost always very 

close to zero.  This means that for the first step of the Monte Carlo sub-cycle, the microstate with 

the lowest energy is almost always chosen.  For the second step of the Monte Carlo sub-cycle, 

the microstate energies stay the same because the system does not change configuration from the 

first MC step to the second.  Therefore, in the second step of the Monte Carlo sub-cycle, the 

same microstate that was the lowest energy microstate in step one will again be the lowest 

energy microstate in the second step.  So the same microstate will very likely be chosen again, 

and this will continue for all of the steps of the Monte Carlo sub-cycle.  These additional steps do 

not add any information value to trajectory.  For this reason we only use one Monte Carlo sweep 

per Monte Carlo sub-cycle. 

6.3.1.2 Monte Carlo sweep: Molecular Dynamics step ratio, 1:20 

During the Molecular Dynamics sub-cycle, the configuration changes.  We just discussed how 

far apart the microstate energies usually are.  However the effective energy relationship between 

the microstates changes dramatically with configuration changes.  In other words a given 

configuration would have a certain effective microstate energy array, in which the microstates 

would have a certain order in terms of their effective energy values.  However, within just a few 

femtosecond Molecular Dynamics steps the order of the microstates in terms of their effective 

energy values, can change completely.  If computational efficiency was no issue, one Monte 
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Carlo sweep for every Molecular Dynamics step would give the maximum trajectory accuracy.  

However recall that we want to be able to execute trajectory generation as efficiently as possible 

without significantly impacting the trajectory accuracy.  Only one molecular dynamics step 

between Monte Carlo sweeps is not efficient execution because we would have a situation very 

similar to what we previously discussed.  Only one femtosecond of molecular dynamics 

evolution does not cause significant configuration change, therefore the relative effective energy 

microstate array (or the order of the micro-states with respect to their relative effective energies) 

does not change very much.  This means that one Monte Carlo sweep after only one molecular 

dynamics step is too frequent.  The question then becomes how to decide on how many 

molecular dynamics steps between Monte Carlo sweeps in order to effect significant enough 

configuration change.  To decide this, we looked at the quality of the titration curves for different 

MC:MD ratio protocols such as the one shown below. 

  

Log(occupancy ratio) vs pH
for Cysteine at 1320K, 1700atm
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The above is a titration curve in the form of the natural log of the occupancy ratio versus pH .  

The gradient of this curve should be equal to –2.303.  This theoretical gradient is represented by 

the pink line.  (see section 6.2.6.2 for an explanation of the theoretical –2.303 gradient).  There 

are several reasons for the data to deviate from the ideal.  If the simulations were too short, there 

would be insufficient sampling of the system, which would be reflected as titration curve errors.  

Another reason for titration curve errors is if there is insufficient statistical sampling.  This would 

happen if the simulations are long enough, but not enough Monte Carlo sweeps were performed 

during the course of the simulation.  That is, if the number of molecular dynamics steps between 

Monte Carlo sweeps is too many.  We have generated three sets of simulations for three such 
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plots, each plot representing a different MD/MC ratio.  All the simulations are the same length.  

They are all 2 nanoseconds long, or 2 million molecular dynamics steps long, each step being 

one femtosecond long.  Their being of equal length eliminates the differences in the titration 

curve errors being due to unequal molecular dynamics sampling of the energy landscape.  These 

plots therefore allow comparison of how well each MD/MC ratio protocol does. 

 For 1:5 MC/MD, the Monte Carlo routine is called relatively often, only every five 

molecular dynamics steps.  The simulation set generated by this protocol therefore consists of 2 

million MD steps and 400,000 Monte Carlo sweeps.  When plotted, the RMS pH deviation of the 

data for this protocol is 0.2 pH units.   

For 1:20 MC/MD, the Monte Carlo routine is called every 20 molecular dynamics steps.  

This simulations generated by this protocol therefore consists of 100,000 Monte Carlo sweeps.  

When plotted, the RMS pH deviation for this data is only slightly worse, 0.23 pH units.  This 

slight loss is statistical accuracy is well worth the 50% increase in execution speed! 

For a 1:40 MC/MD protocol, the RMS pH deviation is 0.3 pH units.  The execution speed 

improvement is only about 10% relative to the 1:20 protocol. 

For the reasons just discussed we use the 1:20 MC/MD ratio as our standard execution 

protocol.  Notice that all of the titration curve data discussed is for high temperature simulations.  

At lower temperatures, velocities would be lower, so that there would be less configurational 

changes per molecular dynamics steps.  It is therefore expected that we would be able to get 

away with even more molecular dynamics steps between Monte Carlo sweeps at lower 

temperatures.  The 1:20 ratio therefore serves as an upper limit for the MC/MD protocol ratio for 

simulations that range in temperature from 1320K and below.  For simplicity sake, we use the 

same 1:20 MC/MD simulation protocol across all simulations (with one exception), even though 

the simulations may vary in temperature in order to simplify simulation protocols.  The one 

exception is the highest 2200K bridging simulation (section Figure 33) for which we use a 1:5 

MD/MC protocol because of the very high temperature. 

6.3.1.3 Local Disk write 

The trajectories for our datasets can be generated in an “embarrassingly parallel” fashion on 

hundreds of processors.  The queues on most supercomputers favor jobs that are large (many 

processors) and short (less than three hours long).  Through-put can therefore be greatly 
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improved if the submitted jobs request hundreds of processors and are shorter than three hours 

long.  The trajectories for one data set are relatively short (1 processor-hour. for each 100 

picosecond 2200K HT simulation). However dozens or hundreds of such datasets will be needed, 

depending on the target precision.  Optimizing the execution speed is therefore important, and 

two ways of significantly increasing execution speed is to reduce the volume of output and to 

have all of the job output written to the processors local disks, since writing to the local disk is 

fastest. 

 There are two important output types of our jobs.  One is the configuration information of 

the system, (that is the position of every atom in the system in Cartesian coordinates) which is 

updated with every molecular dynamics step and every Monte Carlo sweep.  The second is the 

trajectory information, specifically the state variables (temperature, pressure and pH) and the 

configurational variables (protonation state, volume and potential energy).  The output of the 

configuration information can be reduced to the point where it is an insignificant cost of 

computing time.  This is because the only purpose of saving the configuration of the trajectory is 

for the purpose of restarting the trajectory, either in case of a system failure, or in case a longer 

trajectory is needed.  As a result, the configuration information is made to be written about every 

half hour of computing time.  This means that output of the configuration information represents 

no significant cost with respect to compute time.  The trajectory information (the state variable 

and configuration variable information) on the other hand does represent somewhat of a 

significant cost with regards compute time.  This is the information that is feed into our WHAM 

algorithm.  There is therefore no circumventing the frequent output of this information at regular 

intervals.  The trajectory information is made to be written for every Monte Carlo sweep (or 

every 20 molecular dynamics steps).  This translates to approximately 2 kilobytes per second.  

We have found significant improvement in execution speed is achieved by taking advantage of 

fast output capabilities of the compute architecture. 

 Most supercomputing architectures consist of several disk storage areas for storing data. 

In approximate order from fastest to slowest, and least permanent to most permanent, are the 

local disks of the processors, the scratch or working disk, the home disk and the archive disk.  

The local disks of the processors provide the fastest input/output capability.  However, they are 

extremely temporary, and information on these disks last only as long as the submitted job.  It is 

therefore necessary to copy the data in the local disk off to a more secure disk before the job 
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ends.  The job script code must be written to do this, but this is a small price to pay for the 

improvement in input/output speed, and overall speed improvement.  Doing things this way, 

writing to the local disk, gives us almost a 50% speedup relative to writing to the scratch 

(working) directory. 
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7.0 WHAM ALGORITHM PERFORMANCE RESULTS 

Our WHAM algorithm is also parallelized and scales with the size of the data set. 

7.1 WHAM ALGORITHM PERFORMANCE EVOLUTION 

To use our method to investigate any biomolecule, many trajectories must be generated at a wide 

range of temperatures and pH’s, and each trajectory must be long (in the order of hundreds of 

picoseconds or nanoseconds).  This is necessary in order to get proper sampling of the energy 

landscape, good histogram overlap and good statistics.  This in turn yields good precision for our 

pKa or BDEcalc results and faster convergence of all calculated values. 

After the MD/MC algorithm has generated these trajectories, our WHAM algorithm then 

has the task of analyzing all of the data to produce thermodynamic results.  A typical dataset 

consists of trajectories totaling 100 nanoseconds.  At a MD time step of 1 femtosecond and one 

Monte Carlo sweep every 20 MD steps, a 60 nanosecond dataset consists of 3 million snapshots; 

each with temperature, pressure, pH, potential energy, volume and protonation state information.  

To handle and iterate this volume of data to convergence, we have found it important to devote 

considerable resources towards structuring, parallelizing, refining and optimizing our WHAM 

algorithm to give us results in reasonable times.  From our first WHAM code to the present 

version, there have been 24 major revisions of the code.  Our final product is about 40 times 

faster than our early versions and can take the above data set mentioned, perform approximately 

100 iterations and produce converged pKa numbers in approximately 10 minutes on twelve 

processors (1/6 hours x 12 processors = 2 service units).  Below I will outline a few of the most 

important code improvements responsible for its computational efficiency. 
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7.1.1 Parallelization structure related improvements 

Below are the three main sums that must be performed for each pKa iteration calculation (see 

section 3.9 and 3.10). 
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7.1.1.1 Earlier versions 

Previous versions of our WHAM code performed parallelization of the 
1 1

knR

k t= =
∑∑ sum by 

splitting up the 
1

R

k =
∑ sum among the processors.  That is, for a data set of R simulations, each 

processor was responsible for a different subset of the R sums.  The number of simulations 

assigned to each processor was approximately 
_ _

R
number of processors

, where 

_ _number of processors  is the number or processors assigned to the task.  If N  is the 
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1k =  

2k =         0pe  or processor 0 

           - 

           - 

           -          1pe  

           - 

           - 

           - 

- 

- 

-          Npe  

 k R=   

The sum 
1 1

knR

k t= =
∑∑ is therefore broken up and executed as follows. 

0 1

1

( ) ( )

1 1 1 1 ( ) 1 ( ) 1

......
k k k k

N

n kend pe n n nkend peR R

k t k t k kstart pe t k kstart pe t= = = = = = = =

= + +∑∑ ∑ ∑ ∑ ∑ ∑ ∑  

                

                       0pe                             1pe                                    Npe  

There were several limitations to this structure of parallelization. 

1) R was the limit of the number of processors assigned to the job.  If the data set 

consisted of 20 simulations, then 20 would be the maximum number of 

processors that could be effectively engaged in the calculation. 

2)  Even more restrictive were the pKa type calculations where only a subset 'R  

of the R  simulations ( ' )R R<  required pKa calculations performed.  In 

typical calculations, we would need to iterate pKa values for 10 simulations, 

i.e. ' 10R =  and 
' 10

' 1

R

k

=

=
∑ .  In this case we will only be able to use a maximum 

of 10 processors. 
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3) This structure was also prone to load imbalance.  If mk  was a long simulation 

with 
m

long
kn  snapshots, and nk  was a short simulation with 

n

short
kn  snapshots, 

with mk  and nk  assigned to different processors then there would be an 

imbalance as follows.  
1

long
km

n

t=
∑   

1

short
knn

t=
∑  

  

      ape                   bpe  

 

 

 

 

Processor b would hang, waiting for processor a.   

7.1.1.2 Current version 

The current version performs parallelization of the 
1 1

knR

k t= =
∑∑ sum by splitting up the 

1

kn

t=
∑ snapshot sum among the number of processors.  So for a data set of R  simulations, each 

processor is responsible for summing a subset of the snapshots for every simulation.  The 

number of snapshots of the thk  simulation assigned to each processor is approximately 

_ _
kn

number of processors
.  If _ _ 1N number of processors= − , then  

Computational time 

of 
m

long
a kpe n∝  Computational time 

of 
n

short
b kpe n∝  
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.thk sim    

          1t =   2t =                                                                                                  kt n=  

 

                     0pe                             1pe                                                          Npe  

This means that the 
1 1

knR

k t= =
∑∑  sum is broken up and executed as follows. 
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The advantages of this structure are as follows 

3) There is no realistic limit on the number of processors that can be 

engaged in the sums and iterations, since kn  (number of snapshots in 

the thk simulation) is typically in the range of 10,000 to 500,000. 

4) For pKa type calculations, no restrictions on parallelization apply as 

did for the previous versions 

5) The load balancing is perfect.  For two simulations m and n that vary 

widely in lengths, then 
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7.1.2 Communication reduction improvements 

The less information that has to be broadcast between processors, the faster the speed of the 

algorithm.  The largest array handled by the WHAM code is the ,k tz  array.  A typical data set 

would have 80R =  simulations ( 1,80k = ) and each simulation may have in the order of 

50,000kn = snapshots ( 1,50000t = ).  The ,k tz  information is spread out among the processors as 

follows.  Consider R  simulations of various lengths and the simulations are ordered from 

longest to shortest (how the simulations are ordered is not important here). 

   

1
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1,1 1,2 1,n

2,1 2,2 2,n

R,1 R,2 R,n

z   z     z

z   z     z

                        
z   z     z
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          0pe             1pe  

The ,k tz  information is spread out among the processors as such that each processor 

knows only a subset of the ,k tz elements as shown above.  Note that because the simulation 

lengths vary widely, the processor boundaries of the z  matrix are neither straight nor smooth.  

Limiting the knowledge of each processor in this way helps a great deal with memory 

management. 

When 
1 1 ,

knR

k t k t

numerator
z= =

∑∑  type sums are performed, communication load was 

improved as follows.   
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7.1.2.1 Early versions 

Earlier versions conducted the second 
1 ,

kn

t k t

num
z=

∑  sum by summing over all 't s of the thk  

simulation.  This required each processor to know all elements of the z  matrix, which required a 

broadcast of millions of elements to all processors. 

7.1.2.2 Current version 

The current version conducts the sum where 
1 1 ,

knR

k t k t

num
z= =

=∑∑  

0( ) ( ) ( )R

1 1 1 ( ) k=1 ( ) 1 ( ), , , ,

      ......
a b k
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tend pe tend pe tend pe nR R R

k t k t tstart pe t tstart pe k t tstart pek t k t k t k t
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z z k z= = = = = = =

+ +∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑
 

 

                                                   ape                           bpe  

 

 

 

 

 

Each processor sums only the terms containing the ,k tz  elements it is aware of.  After these 

initial sums are performed, then the processors need to communicate only the 1N +  subtotals 

between each other ( 1N +  is the total number of processors).  

Communication of 

1N +  numbers between 

all processors
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7.1.3 Execution methodology improvements 

Figure 7 represents a typical set of data that WHAM may process for a BDEcalc calculation.  I 

will present the main features of this data set using a simplified 

representation as shown. 

The top box represents the high temperature simulations 

shown at the top of Figure 7.  Recall that for these high 

temperature simulations the trajectory will bounce between the 

protonated and deprotonated ionization states.  The low 

temperature simulations occur in pairs and are represented as the 

legs.  For each temperature and pressure there is a protonated and 

deprotonated simulation.  These simulations stay in their 

ionization state so that there are no transitions.  The pHs of these 

low temperature simulations are of no consequence because they 

are going to be “recalculated” (see section 5.3.5).   Our WHAM 

algorithm iterates the z’s, the g_m’s and the low temperature 

pH’s until there is convergence. 

    

 

 

     

 

 

 

 

 

The high temperature part of this data set consists of about 60 trajectories, totaling about 60 

nanoseconds of molecular dynamics steps and 3 million Monte Carlo sweeps (one Monte Carlo 

sweep for every 20 molecular dynamics steps).  The trajectories of the high temperature data set 
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differ in temperature, pressure, and pH.  The high-temperature temperature range is from 1320K 

to 1160K.  The low temperature data set consists of 193 links, or 193 pairs of “locked” 

(protonated/deprotonated) simulations that range from 1160K to 300K,1 atm. 

7.1.3.1 Earliest methods 

In the earliest WHAM iteration methods, the calculation was carried out for one link at a time. 

 

 

 

 

 

 

 

 

That is, the cycle was repeated until the pH for the one link pair converged. 

 Then a second calculation was performed for the second link pair.  This time, the first 

link pair has a fixed pH that was previously calculated, and is treated in the same way as the 

other original high temperature simulations. 

 

 

 

 

 

 

 

 

This process continues until one does all link pairs all the way down to 300K, 1 atm.  The 

disadvantage of this method is as follows.  Notice that in Figure 7, the effective energy 

histograms at each temperature are separated by approximately one standard deviation.  This 

means that for the pKa/pH calculation at a given temperature, the information that influences that 

calculation comes from the trajectories at that temperature, but also the trajectories at the next 
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two highest temperatures and trajectories at the next two lowest temperatures.  However, notice 

that in the way we have done things above, the lower temperature trajectories are excluded from 

the pKa calculation for any link.  This leads us to a later version of execution methodology. 

7.1.3.2 Later execution method 

The next evolution in execution methodology was to allow all the low temperature region pH’s 

to float.  The advantage with this method was that all of the data went into every pH calculation.  

The drawback with this method was that the convergence was very slow, not because of the 

volume of data for WHAM to process (parallelization took care of that problem), but mostly 

because a large number of iterations were required for convergence.  The number of iterations 

required for convergence goes up exponentially with the number of links or attempted pH 

calculations. 
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7.1.3.3 The Moving Window prototype method 

       

  

             

      

 

 

 

 

 

 

 

 

In this method, only the pHs for 10 or 20 links are calculated at a time, those that lie within the 

“window”.  Only the data that lies within the window goes into the calculations, and only the 
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pH’s for the low temperature links that lie in the window are calculated.  The calculation relating 

to one window is relatively quick, about 1/2 hour.  For the data set we are considering, about 30 

windows would be necessary to go all the way down to 300K, 1 atm.  At time of writing this 

method was still in the prototype phase, so it is not clear if this method accelerates the 

convergence times. 

7.2 COMPUTER RESOURCES AND PROVEN PLATFORMS 

Our WHAM code (and our MD/MC code) runs on a range of platforms. Lemieux at the PSC and 

the IA-64 Linux cluster at NCSA were the main production resources, in that order. Our local 

resource was an AMD-mpich Beowulf cluster, which was used for a lot of the code development 

and debugging.   Proving our algorithm on machines with such different architectures and 

compilers helps the debugging process and gives us a high degree of confidence in its portability. 

 

7.2.1 Lemieux at the PSC: Basic architecture 

Processors:  

64 bit processors, Compaq Alpha E45 processors, running at ~ 1GHz. Total of 3000 processors 

Nodes:   

Quad processors per node. 4 GB of memory per node.  Total of 750 nodes. 

Inter-node communication:   

Quadrics interconnect, ~ 1.5 sμ  latency. 

Operating system: 

Tru64 Unix, 64 bit enabled operating system 

Compiler: 

HP f90 compiler.  Compiler options, level 5 optimization.  Link mpi libraries (-lmpi).  All other 

options remain at default settings (f90  -lmpi  –O5 …) 
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7.2.2 NCSA Itanium/mpich cluster 

Processors: 

64-bit processors. Intel Itanium 2 processors, running at 1.3GHz – 1.5GHz.  Total of 1774 

processors. 

Nodes: 

Dual processors per node. 4GB – 12GB of memory per node.  Total of 887 nodes 

Inter-node communication:  

Myrinet interconnect, latency ~  2-3 sμ  

Operating system: 

Linux RedHat 

Compiler: 

Intel f90 compiler.  Compiler options, link mpi (use mpif90) libraries and use level 5 

optimization (mpif90  -O5  ) 

7.2.3 Beowulf cluster 

Processors: 

32-bit processors. AMD Athlon processors, running at 1.3GHz – 1.5GHz.  Total of 8 processors. 

Nodes: 

Single processors per node. 0.5GB – 1GB of memory per node.  Total of 8 nodes 

Inter-node communication:  

Myrinet interconnect, latency ~  2-3 sμ  

Operating system: 

Linux RedHat 

Compiler: 

Intel f90 compiler.  Compiler options, link mpi (use mpif90) libraries and use level 5 

optimization (mpif90  -O5  ) 
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7.3 CONVERGENCE CRITERIA FOR THE FREE ENERGIES 

Consider a full dataset, such as one of those discussed in the previous chapter.  That is, a dataset 

containing a 2200K high temperature bridge and 244 low temperature links going all the way 

down to 300K.  Convergence of this dataset requires tens of thousands of WHAM iterations 

running on eight processors for about twelve hours.  The following sub-sections explore different 

convergence acceleration schemes. 

7.3.1 Ferrenberg’s accelerated convergence 

In his PhD thesis, Ferrenberg85 outlined a method for accelerating the convergence of the free 

energies.  In what follows is our implementation of his scheme, closely following the same 

outline. 

Recall that we must determine the set of free energy parameters { mg } self-consistently.  

This is accomplished by iterating the density-of-states expressions of section 3.9, which gives the 

result 
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Then, if { *
mg } are the desired fixed points of the iteration 
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This is a linear set of equations that can be solved for { *
mg } which are then used as an improved 

solution, and the whole procedure can be repeated until convergence is achieved. 

7.3.2 Why Ferrenberg’s accelerated convergence is not feasible 

The matrix form of the above linear set of equations is 

B AG=  or 

*1 1 1
11 1 1 1

1 1,1 1,
1

1 1 1
1

,1 , *
1

i i i
i i

n Ri i i
n n R

i i i
i iR R R
R n R R Ri i i

n n R R

gg g gg g
g g g

g g gg g
g g g g

+ + +
+

+ + +
+

⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂ ∂
− ∂ − ∂ − ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎜ ⎟⎜ ⎟ ⎜ ⎟=
⎜ ⎟⎜ ⎟ ⎜ ⎟

∂ ∂ ∂ ⎜ ⎟⎜ ⎟ ⎜ ⎟− ∂ − ∂ − ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠

∑

∑

…

 

Ferrenberg compared convergence times for the free energies of 4 simulations, ( 4R = ).  For 

4 simulations, matrix A  takes the form of a 4 4×  matrix and Ferrenberg found that when using 

straight iteration, the amount of computer time needed for convergence went up linearly with the 

number of decimal places desired for the free energies.  But the accelerated algorithm converged 

much more rapidly.  For free energies within 510−  of their exact values, accelerated convergence 

got there one order of magnitude faster than straight convergence. 

 However our datasets contain in the order of 245 simulations ( 245R = ).  We 

implemented the above accelerated convergence scheme, solving of the above matrix system 

with a parallel BLAS lower-upper (LU) decomposition routine.  The problem is that the number 

of elements of the A  matrix goes as 2R .  Even implementing optimizations, such as a parallel 

LU routine and carrying over relevant 
1 1

knR

k t= =
∑∑ sums that were already calculated from the mge−  

and ,k tz  routines, for 15R >  the gain in the reduced number of iterations was offset by the 



  204

significantly longer times for each iteration.  We concluded that this accelerated convergence 

scheme was not suitable for us, unless we found a parallel LU decomposition routine that scaled 

much better and performed an order of magnitude faster than the one we tried.  It is fully 

developed and embedded in the code for experimentation by others.  But we commented them 

out, and implemented another accelerated convergence scheme.     

7.3.3 Projected pKa accelerated convergence 

Recall that the original WHAM iterative cycle is    mg  

 

        ,k tz  

But in our pH  iteration scheme, the iterative cycle becomes 

   mg  

 

 

  ,k tz   pH  

 

 

so that the set of { mg } and { pH } are  on the same footing in the sense that the convergence of 

the 'mg s  is synonymous with the convergence of the 'pH s .  Since the calculated { pH } and 

the { pH } precision is what we are really after (not the { mg }) it makes sense to place the check 

for convergence on the { pH } instead.  Another advantage to checking the convergence of the 

{ pH } is that the 1i i
m mpH pH+ −  differences are much larger than the 1i i

m mg g+ − differences, so 

numerical evaluation of the convergence criteria is much easier.  A pH  precision of four 

decimal places requires mg  precision of six to eight decimal places. 

 The accelerated pH convergence scheme we use is as follows.  For some pH of the 

i th− iteration, i
mpH , the pH of the ( 1)i th+ −  iteration is determined by looking backwards at 

the previous 10 steps,  
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and then projecting forward to infinity for 1i
mpH + . 
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Figure 38: pH accelerated convergence 

The whole process is repeated for all { mpH } until convergence.  Our pH convergence criterion 

is four decimal places.  This scheme accelerates convergence by reducing the number of required 

iterations by a factor of about five.         

⊗
⊗

1iΔ =

10iΔ =

iΔ = ∞
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7.4 POTENTIAL IMPROVEMENTS 

For a full dataset of links from 2200K to 300K, (245 links), convergence to four decimal places 

of the pH  values occurs slowly, even implementing the schemes outlined above.  About 40,000 

iterations are required.  If a suitable number of processors are allocated such that one iteration is 

performed every second, then there will be convergence in about 11 hours.  There is clearly a 

need for faster convergence. 

More sophisticated convergence schemes should help.  One idea would be to make the 

survey window variable instead of fixed.  Instead of looking back 10 steps, then projecting 

forward to infinity, one could vary to number of steps looked backwards to.  A window of 10 

steps is good at the start of the iterations, but as convergence approached, the window could be 

reduced to 5 or 2 for more aggressive predictions.  
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8.0 FUTURE WORK, PROSPECTS AND FURTHER DISCUSSION 

8.1 FINE TUNING OR VALIDATING FORCE FIELD PARAMETERS 

This dissertation has only addressed the calcBDE  for Cysteine.  One of the most immediate 

calculations that need to be performed is the calcBDE  numbers for all of the titratable amino-

acids. 

Recall that the calcBDE  for Cysteine is within 6% of the thio-methane H-S bond 

dissociation energy, and that we can calculate this calc
cysBDE  to a precision of 0.05 pH units.  If the 

calcBDE ’s of the other titratable amino acids agree this well with their respective dissociation 

energies, this method will assume major significance in the field of force field development: our 

method will be an eligible tool for fine tuning force field parameters for the following reason.  

The dissociation energy is already built into the Amber force field in a very indirect way.  The 

partial charges, van der Waals parameters, bond parameters and all of the ff parameters are all 

calibrated to fit an array of empirical data, so these dissociation energies are very indirectly in 

the Amber force field.  There are many parameters that are empirically tweaked so that they 

collectively fit a wide database array.  There is therefore some concern about compensating 

errors.  However our methods, with precision at least as good as the precision of the 

experimental numbers, offer a direct comparison between experimental Bond Dissociation 

Energies and the calculated Bond Dissociation Energies.  Our method may therefore serve the 

useful role of fine-tuning, validating or developing force field parameters. 
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8.2 MULTI-SITE FUNCTIONALITY 

We will now discuss the application of our methods to multiple titratable site systems.  In 

summary our methods allow for pKa calculation of multiple site systems that scales like 2N ×  

instead of 2N .  It becomes easier to understand our approach to multiple site systems if one were 

to first spend a little time becoming familiar with some new notation and concepts.  Previously, 

we talked about the proton chemical potential, μ  ( log10 )kT pH= − ×  as being a state variable, 

and being a single valued scalar.  It is easier to understand the application of our MD/MC-

WHAM methods to multiple sites if we consider two things.  The first is that we remind 

ourselves of the discussion in section 4.5.2 pertaining to (4.2) (conjugate variables pH and 

occupancy ratio) and (4.3) (pKa=pH, occupancy ratio=1).  That is we don’t treat the conjugate 

pair { μ , occupancy ratio} in the usual way where the state variable μ  is fixed and the 

configurational variable “occupancy ratio” is a function of μ , i.e. occupancy ratio( )μ .  Instead, 

we fix occupancy ratio=1 and we allow WHAM to find the correct μ  such that 

occupancy rati( )o 1pKa μ= = .  The second thing to consider is that μ  as an array of several 

values, 1 2( , ,.... )Nμ μ μ μ= , where N  is the number of titratable sites in the system.  We will 

discuss this concept and any related notation in the next sections. 

8.3 PROTON CHEMICAL POTENTIAL AS A VECTOR 

Reader please be aware that in our discussions, we will abbreviate “proton chemical potential” to 

simply “chemical potential”. 

We are accustomed to describing the pH of a system with a scalar, single valued chemical 

potential, 1( log10 )pHμ
β

= × .  Effective energy of a system is 1/ ( )kT U PV Lμ+ + , where the 

state variables are temperature T  or ( 1/ )kTβ = , pressure P  and chemical potential μ .   The 

configurational variables are the potential energy U , the system volume V  and the number of 
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protons in the proton bath 1 2( ) ( ) ... ( )NL l l lη η η= + + .  The effective energy can therefore be 

rewritten as 1 21/ ( ( ) ( ) ... ( ))NkT U PV l l lμ η μ η μ μ+ + + + . 

Now we introduce the concept of micro-chemical potentials, which involves assigning a 

micro chemical potential to each titratable site.   

1 1 2 2Effective energy 1/ ( ( ) ( ) ... ( ))N NkT U PV l l lμ η μ η μ η= + + + +   

The chemical potential of site i , iμ  can be written as iμ δμ+ , so that 

1 1 2 2Effective energy 1/ ( ( ) ( ) ( ) ( ) ...( ) ( ))N NkT U PV l l lμ δμ η μ δμ η μ δμ η= + + + + + + +  

which is equal to 1 1 2 21/ ( ( ) ( ) ( ) ( ) ...( ) ( ))N NkT U PV L l l lμ δμ η δμ η δμ η+ + + + +  

The state variables of a system then become ( 1/ ),  and kT Pβ μ=  where 

1 2( , , ,...., )Nμ μ δμ δμ δμ= .  At this point, the concept of micro-chemical potentials may seem 

completely abstract.  The purpose of this section is simply to explain the notation, and its 

usefulness will be revealed in the next section.   

8.4 IMPLEMENTATION OF MULTIPLE SITE FUNCTIONALITY 

Let us review our single site method (performed in section 5.2) in light of our new understanding 

and new notation for chemical potential (discussed in sections 8.3 above). 

Let us briefly consider a system of N titratable sites.  The chemical potential for this 

system can be described as μ , where 1 2, , ,..., Nδμ δμμ μ δμ= .  Returning to our single titratable 

site system, we have 1,μ μ δμ= .  This simply means that the chemical potential of site one (the 

only site) is 1μ δμ+ .  For pKa  calculations of this single site system, 1 0δμ = .  In other words, 

,0μ μ=  or 1 0μ μ= + .  The green and the red components of the chemical potential signify 

different components of the chemical potential, one that is calculated and one that is a traditional 

fixed variable of state.  Since the fixed red component of ,0μ μ=  is zero, 1μ μ=  is totally free 

to float in our pH iteration scheme, and it is a calculated value.  The calculation of 1μ μ=  

@300K and 1atm is exactly what we did in section 5.2.  I represent that calculation with the 

following diagram. 
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Now consider a three titratable site system, 1 2 3, , ,μμ δμ δμ δμ=  (which means 

1 21 2 3 3,  ,  δμ δμ δμμ μ μμ μμ + + += == ) and suppose we want to calculate the 'pKa s  for site 

number one.  Note that we use pKas, plural, for site one. This is because in a multi-site system, 

each site may have several pKas, such as an acidic pKa and a basic pKa, if that site is involved in 

a network with other sites.  For calculation of the pKas of site number one, we set up the 

calculation where 2 3,,0,δμμ μ δμ= .  Similarly, to calculate the pKas for sites two and three, we 

would set up the calculation as 1 3,0, ,μμ μ δ δμ=  and 1 2,, ,0δμ δμμμ =  respectively.  The 

diagram below represents the manner in which such calculations would be performed, with 

special emphasis on the acidic micro pKa calculation for site one. 

 

 

 

0,μ
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         Acidic micro-pKa of site # 1 
Figure 39: Acidic micro-pKa of site number 1 

Consider the data that goes into the calculation above (the Acidic micro-pKa for site number 1).  

This data set consists of trajectories generated over a range of temperatures, a range of pressures, 

and a range of micro-pHs, where the range of 2δμ  is 2 2[0, ]bδμ  and the range of 3δμ  is 

3 3[0, ]bδμ .  The values of 2 3an d b b  do not matter very much.  The important thing is that they 

 0,0,0,μ   

  2 3,,0,b bμ   

2 3,0, ,b bμ − −   1 3,0,, b bμ − −   1 2,, ,0b bμ

  1 3, ,, 0b bμ     1 2,, ,0b bμ   
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are large enough to force states two and three into protonation.  Micro-chemical potentials 

1 1 2 2 3 3and,   b b bδμ δμ δμ= = =  can be thought of as devices for forcing a protonation state on a 

site without affecting the pH or protonation state of another site.  In reality, only about three 

values of  in the range [0, ]i ibδμ  should be enough for sufficient sampling and to get the job 

done. 

In similar fashion, the basic micro-pKa for site one would be set up as described below. 

 

 

 

 

 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

             

 Basic micro-pKa of site # 1 
Figure 40: Basic micro-pKa of site# 1 
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The simulations that go into this calculation would have the usual range of temperatures and 

pressures, and the site two and three micro pHs would range such as 2 2 3 3and [0, ] [0, ]b bδμ δμ− − .  

Again, the important thing is that 2 3an db b  are large enough to force sites two and three into 

deprotonation.  We follow these examples to calculate the micro-pKas for the other titratable 

sites. 

 Consider again the acidic and basic micro pKa calculation for site one.  One 

simplification that would have a minimal effect on results, is if 2 3= b b .  Then the chemical 

potential 1 a could be simplified to , ,  δμμ δμμ  where aδμ is the micro pH of all other sites.  

Assuming we use as many as four values in the range [0, ]a bδμ , the computational time taken 

by our method stays constant, regardless of the number of titratable sites, N.  Hence we 

have bypassed the need to explore every single interaction possibility, which causes other 

multiple site pKa methods to scale as 2 or 4N N .  In situations requiring calculations for all of the 

micro pKas of a system, our method will scale linearly with N. 

 How do we escape the need to explore all 4N  possible protonation states?  In the 

discussion that follows we will see that the key is the high temperature.  Consider the dataset 

shown in Figure 40, where energy is plotted against ionization state.  The plots near the top 

represent the high temperature simulations, where there are ionization state transitions.  The plot 

at the bottom represents a pair of 300K simulations.  If our calculations were based on the 300K 

low temperature simulations alone, we would have to explore all 4N  possible protonation state 

possibilities.  In not doing so, we run a risk of leaving out important information (low energy 

states) for our density of states description. 

 But in our method, the 300K information is only a small part of the density of states 

information.  The bulk of the information comes from the high temperature simulations, which 

gives an approximate description of the density of states, and the low temperature simulations 

fine-tune it.  Because high temperature allows the system to easily cross barriers, the high 

temperature simulations do an excellent job at vigorous sampling, and hence do an excellent job 

at discriminating between the important and the unimportant protonation states, giving a good 

approximation of the density of states.  The low temperature simulations then serve the limited 

purpose of fine-tuning the weighting factors. 
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 Therefore the risk of leaving out important information is minimized, and any errors 

introduced by the 300K simulations because it misses important information is minimized.  So 

the high temperature bridge trick, which was a necessary nuisance in the single site system to 

overcome the solvation shell barrier, now saves us from the 4N  problem in multiple site systems! 
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9.0 SUMMARY AND CONCLUSION 

We have presented here a method of doing proton dynamics for explicitly solvated proteins and 

conducting a full range of thermodynamic calculations for them.  The main advantage of our 

method is that it models the system with atomic detail solvent and solute, and uses discrete 

protonation states.  Preliminary results show that our method promises thermodynamic results of 

very good precision.  Another promising advantage of our method is its feasibility for multi-site 

systems, with computer time growing as the number of titratable sites N , as opposed to growing 

with the total number of possible protonation microstates ( 2N  or 4N ). 

The method uses Molecular Dynamics, Monte Carlo for discrete protonation state 

selection, and Weighted Histogram Analysis for blending a wide range of trajectories.  The 

method still has to be filled out.  Specifically, we need to run more calculations so that we can 

verify the predictions in the cpu cost-precision table for the calcBDE  for Cysteine (Table 5 page 

181).  Then, choosing some computationally feasible precision, we will simply use the protocol 

that was used to get that precision for Cysteine’s calcBDE  to calculate the other calcBDE 's.  We 

also need to demonstrate how our method scales with the number of titration sites.  Despite these 

things that still need to be done, the vast majority of the code writing is done, and its 

performance so far gives us elevated confidence that the method will work and do what it 

promises to do.  Our calc
cysBDE  for the H S−  bond in Cysteine is within 3% of the experimental 

3H SCH−  bond dissociation energy ( exp
thio methaneBDE − ).  Where calc

cysBDE precision is concerned, we 

can achieve a precision of 0.05 pH units with a less than 97,000 processor-hours.   

As a result, one of the exciting promises the method makes is that it can do direct, 

accurate and precise measurements that can be compared to experimental dissociation energies 

( expBDE ’s), and consequently be used as a method to fine-tune force field parameters.  However 
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more of these 'calcBDE s  need to be calculated, compared with appropriate dissociation energies 

and analyzed to see exactly the value of our method for validating force field parameters. 

Of course, the main promise it makes is the ability to yield a full range of accurate and 

precise thermodynamic calculations. 
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