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MULTIPLE IMPUTATION AND QUANTILE REGRESSION METHODS

FOR BIOMARKER DATA SUBJECT TO DETECTION LIMITS

MinJae Lee, PhD

University of Pittsburgh, 2010

Biomarkers are increasingly used in biomedical studies to better understand the natural his-

tory and development of a disease, identify the patients at high-risk and guide the therapeutic

strategies for intervention. However, the measurement of these markers is often limited by

the sensitivity of the given assay, resulting in data that are censored either at the lower limit

or upper limit of detection. Ignoring censoring issue in any analysis may lead to the biased

results.

For a regression analysis where multiple censored biomarkers are included as predictors,

we develop multiple imputation methods based on Gibbs sampling approach. The simula-

tion study shows that our method significantly reduces the estimation bias as compared to

the other simple imputation methods when the correlation between markers is high or the

censoring proportion is high.

The likelihood based mean regression for repeatedly measured biomarkers often assume

a multivariate normal distribution that may not hold for biomarker data even after trans-

formations. We consider a robust alternative, median regression, for censored longitudinal

data. We develop an estimating equation approach that can incorporate the serial corre-

lations between repeated measurements. We conduct simulation studies to evaluate the

proposed estimators and compare median regression model with the mixed models under

various specifications of distributions and covariance structures.

Missing data is a common problem with longitudinal study. Under the assumptions that

the missing pattern is monotonic and the missingness may only depend on the observed data,
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we propose a weighted estimating equation approach for the censored quantile regression

models. The contribution of each individual to the estimating equation is weighted by the

inverse probability of dropout at the given occasion. The resultant regression estimators are

consistent when the dropout process is correctly specified. The performance of our estimating

procedure is evaluated via simulation study.

We illustrate all the proposed methods using the biomarker data of the Genetic and

Inflammatory Markers of Sepsis (GenIMS) study. Appropriate handling of censored data in

biomarker analysis is of public health importance because it will improve the understanding

of the biological mechanisms of the underlying disease and aid in the successful development

of future effective treatments.

Keywords: Left-censored data; Detection limits; Multiple imputation; Gibbs sampler; Me-

dian regression; Quantile regression; Longitudinal data; Drop-out.
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1.0 INTRODUCTION

Biomarkers are increasingly used in biomedical studies for diagnosis and prognosis of acute

and chronic diseases, gaining insight of treatment effectiveness and establishing the potential

disease pathways to guide the future treatment targets. The accuracy of biomarker measure-

ments is very important for making valid and reliable conclusions of the findings. However,

the biomarker data are subject to various sources of measurement errors. This includes

error associated with specimen collection, processing, and storage; laboratory error (both

within and between batches); and variability in the biomarker levels over time within an

individual. Left-censoring, which is due to the limits of detection (LOD), is also a common

source of error that may not be noticed in the analysis stage of biomarker data. LOD is the

lowest concentration of analyte in a sample that can be detected under the stated experi-

mental conditions. Reportable or quantifiable measurements are only those above LOD. For

example, left-censoring occurs in the assessment of viral RNA in patients infected with the

human immunodeficiency virus (HIV) (Hughes [29]) , antibody concentration in blood serum

(Moulton et al. [46]), and the interleukin-10 (IL10) and IL6 in community-acquired pneu-

monia (CAP) patients (Kellum et al. [35]). Despite the improvement in assay sensitivity,

left-censoring remains a critical issue in some studies because the ultra sensitive assays may

be too expensive to use in a large cohort study or the biomarker concentrations are much

lower than expected. Left-censoring problem results in many challenges in the statistical

analysis of biomarker data. Ignoring the censored observations or replacing them with an

arbitrary constant will introduce biased results in the analysis. It is imperative to develop

statistical methods to address this issue appropriately and efficiently.

We encountered the left-censoring data from an inception cohort study of sepsis: the

Genetic and Inflammatory Markers of Sepsis (GenIMS) study [35]. GenIMS study is a
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multicenter study of 2320 subjects from the emergency department (ED) with community-

acquired pneumonia (CAP), the most common cause of sepsis. It was coordinated by the

CRISMA Laboratory, Department of Critical Care Medicine at the University of Pittsburgh

between 2001 and 2003. Sepsis is the leading cause of death in critically ill patients in

the United States (Hotchkiss et al. [54]). Sepsis is defined as a systemic inflammatory

response syndrome that occurs during infection (Bone et al. [7]). The frequency of sepsis

is expected to increase given an aging population and increasing number of patients with

chronic treatment-resistant infections. Better understanding of the pathophysiology of sepsis

from the inflammatory, procoagulant and immunosuppressive aspects has contributed to the

emergence of several therapeutic plans (Russell [59]). The treatments can be very effective

if applied expeditiously, however rapid diagnosis of sepsis remains to be difficult. Many

people are pressing to identify the important biomarkers for risk prediction of sepsis and

the subsequent adverse outcomes. Meanwhile, gaining more insights of the roles of different

pathways through more sophisticated modeling may reveal novel targets and new mechanisms

of action that help to improve the current treatment. The main goals of GenIMS study

are to better understand the natural history and development of sepsis, and to identify

the biomarkers indicating the risk for severe sepsis, multiple organ failure, and death. A

set of inflammatory and coagulation markers were evaluated repeatedly during the course

of hospitalization. However, the assays used were not sensitive enough to measure low

concentrations of some biomarkers, resulting in heavy left-censoring data. Figure 1 presents

the censoring proportion of cytokines (TNF (tumor necrosis factor), IL6 (interleukin-6) and

IL10) over the first seven days. Since left-censoring introduces informative missing data that

are not ignorable, the traditional regression analyses are no longer valid.

The ad-hoc methods using either the LOD, or some other arbitrary value such as the

LOD/2, or the LOD/
√

2, usually lead to biased results towards null. The simple ”fill-in”

imputation approaches based on certain distributional assumptions of the data eliminate the

bias when the censoring is moderate (< 30%), but introduce the biased variance estimates.

The multiple imputation approaches can often provide valid statistical inference when the

censoring proportion is not high (< 50%) [32]. Although these simple methods have lim-

itations, they are easy to use in practice when censored biomarkers are either considered
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Figure 1: Daily Censoring Proportions of GenIMS Cytokines in the 1st week of Hospitaliza-

tion

as predictors or dependent variables, also they aid in the graphic display of the raw data.

More efficient statistical models have also been developed for handling the left-censoring

data. To accommodate single censored covariates, Lynn [43] presented the likelihood-based

approaches for linear and logistic models; Rigobon and Stoker [52] proposed a two-part re-

gression model for both parametric and semiparametric models, where an index model was

used to estimate the censored covariates. The same idea was adopted by D’Angelo and

Weissfeld [10] to handle the censored covariates in the Cox model.

Much of the work for left-censored data has focused on censored response variables.

The likelihood based approaches requires specification of the distribution of the response

variables. The regression parameters can be estimated by maximizing a likelihood function

contributed by both observed and censored observations. For example, the Normal distri-

bution is assumed in the Tobit linear regression model (Tobin [72]) and mixed models for

longitudinal censored data (Hughes [29]; Lyles et al. [42]; Jacqmin-Gadda et al. [31]; Wu

[75]; Thiebaut et al. [70]). However the biomarker data are often highly skewed, even af-

ter log transformation. In this case, the quantile regression (QR) is more attractive than
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the least squares regression or any likelihood based method. Without imposing a full dis-

tribution on the response variable, QR provides a robust alternative and also allows one

to look at covariate effects on various quantiles of a response variable. Most work on QR

was done for independent data in econometrics. Powell [50] first considered the least ab-

solute deviations (LAD) estimation which leads to the median regression estimator. LAD

estimation method was later extended to more general quantiles (Powell [51]). Little work

has been done for dependent observations until recently when Wang and Fygenson [73] pro-

posed an inference procedure for longitudinal studies with application to a HIV/AIDS study.

As multiple biomarkers were measured over time from different potential pathways in Gen-

IMS study, left-censoring data from multiple markers results in many new challenges in

statistical analysis. This dissertation will focus on the following three statistical issues:

1. Multiple Censored Predictors

In order to identify the important predictors of sepsis or mortality at 90 days, multiple

cytokine and coagulation markers along with clinical predictors are considered in the

logistic regression model. However, while several markers had various amounts of cen-

soring data, the existing methods are difficult to use due to computational intensity. We

will propose a multiple imputation (MI) approach for this problem that can account for

the correlations between markers. Our approach is based on the use of Tobit regression

and Gibbs sampling.

2. Longitudinal Censored Responses

Mixed models and GEE methods are two popular approaches for analyzing longitudinal

data. But only mixed models have been extended for the left-censoring responses as

mentioned earlier. Mixed models may lead to biased results when the covariance struc-

ture of responses is misspecified. GEE methods overcome this problem, but require data

to be missing completely at random. This is a stronger assumption than that required

for the mixed model. The QR model is close to the GEE approach in that the estimating

equations are formed to obtain the regression coefficient estimators and both are robust
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to misspecification of variance structure. Extending the approach of Wang and Fygenson

[73], we will develop the estimating procedures to modeling the censored marker data

while accounting for serial correlations between repeated measurements.

3. Missing Data due to Dropouts

The biomarker data of GenIMS study were collected during the course of hospitalization.

The missing data arose due to death or discharge early and administrative errors. The

dominant missing pattern is monotone missing associated with dropout. The dropouts

here refer to the cases that the patients had marker measurements up to a certain day

and then no more measurements were collected afterwards because they were discharged

early or died in the hospital. In GenIMS study, the subjects who had a lower level of

IL6 appeared more likely to drop out. The inverse probability weighed GEE approach

of Robins et al. [53] has been commonly used to handle the informative missing data for

mean regression models. Assuming monotone missing data patterns and MAR mecha-

nism, Lipsitz et al. [36] and Yi and He [77] adopted this approach to quantile regression

models for uncensored data. The basic idea of this approach is that an individual’s con-

tribution to the traditional estimating equations is weighted by the inverse probability

of dropout at the given occasion. We will apply the same weighting technique to the

censored quantile regression estimating equation.

The organization of this dissertation is as follows. First, we review the literature work

on missing data problem, existing methods for left-censored data and quantile regression

methods in Chapter 2. Then we propose statistical methods to address the above three

issues. In chapter 3, we present the multiple imputation methods based on gibbs sampling

for multiple censored predictors. In chapter 4, we develop the median regression model

to handle the left-censored longitudinal responses. In chapter 5, we propose the weighted

censored quantile regression to incorporate the missing data due to dropouts. In chapter 6,

we summarize the dissertation work and discuss some future work.
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2.0 LITERATURE REVIEW

Left-censoring data is a special form of missing data. Rubin and Little [39] developed a

terminology for different missing values processes. Three missing data mechanisms defined

by Little and Rubin are: MCAR (missing completely at random), MAR (missing at random),

and NMAR (not missing at random). There are several reasons why the data may be

missing; they may be missing because equipment malfunctioned, the weather was terrible,

or people got sick, or the data were not entered correctly. When we say that data are missing

completely at random, we mean that the probability that an observation (Xi) is missing is

unrelated to the value of Xi or to the value of any other variables. Often data are not

missing completely at random, but they may be classifiable as missing at random (MAR).

The data can be considered as missing at random if the data meet the requirement that

missingness does not depend on the value of Xi after controlling for another variable. If data

are not missing at random or completely at random then they are classed as Not Missing

at Random (NMAR). For example, if we are studying mental health and people who have

been diagnosed as depressed are less likely than others to report their mental status, the

data are not missing at random. Left-censoring data due to LOD are non-ignorable missing

data, i.e., NMAR. Usually the statistical inference for NMAR data is complicated and the

knowledge of missing mechanism is critical for valid estimation and inference. Left-censoring

is a fixed censoring that is different from random censoring as seen in the survival analysis.

The missing mechanism is clearly known and thus the modeling is less difficult than the

general NMAR setup. The statistical framework for handling missing data can be adopted

to left-censoring data with appropriate adjustment. In this chapter, we will first describe

some methods to handle NMAR data in missing data literature, then we will review the

existing methods for left-censoring data including naive approaches and efficient statistical
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approaches. We will also discuss briefly the statistical methods for handling missing data

due to dropouts.

2.1 STATISTICAL METHODS FOR MISSING DATA

Statistical inference from missing data has been a researched topic over the last two decades.

Since most statistical methods were derived for fully observed data, the impact of missing

values is an issue. Missing values can occur on response variables (outcomes) and on covari-

ates (predictors). The goal of a statistician still remains the same with or without missing

values and they are required to draw valid and efficient inferences about its population of

interest. Rubin and Little [59] developed a terminology for different missing values processes.

Three missing data mechanisms defined by Little and Rubin are: MCAR, MAR, and NMAR.

In this study, we focus on the methods for NMAR data.

2.1.1 Missing Covariates

Rubin [57] developed a framework of inference from missing data that remains in use today.

There are the approaches for the missing covariates in regression models (Little, JASA [38])

and Little [37] provided a review of methods that can handle missing covariates into six

classes. The first class is the complete-case (CC) analysis and the second is the available-

case (AC) methods. Available-case analysis approaches use the largest sets of available cases

for each of parameters (Little and Rubin [39]). The problem of this AC analysis is that the

estimated covariance matrix of the X’s is not necessarily positive definite, which leads to in-

ferior results compared to CC analysis for highly correlated data (Haitovsky [22]). The third

method discussed by Little includes Lest Squares (LS) on imputed data methods. In this

setting, the missing covariates are imputed and a regression of response variable on covariates

is performed on the filled in data by ordinary least squares or weighted least squares regres-

sion. The imputation methods were unconditional and conditional mean imputation. The

inference based on these methods lead to the biased and imprecise results. The fourth class is
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the class of maximum likelihood (ML) methods. In this method, a classical ML estimate for

a model for the joint distribution of Y and X would be the multivariate normal with mean µ

and covariance matrix Σ. Another method would be Expectation Maximization (EM) algo-

rithm. The EM algorithm (Dempster, Laird and Rubin [12]) is a general iterative algorithm

for ML estimation in data with missing values. The EM algorithm consists of Expectation

(E-step) and Maximization (M-step). The E-step provides the conditional expectation of

the complete data log-likelihood given the observed data and current estimated parameters

and then substitutes these expectations for the missing data. In the M-step, we can have

a maximum likelihood estimation of the parameters as if there were no missing data. The

M-step gives the parameter estimates to maximize the complete data log-likelihood from the

E-step. The fifth class in Little’s paper was the Bayesian methods. In Bayesian inference,

information about unknown parameters is expressed in the form of a posterior distribution.

Markov Chain Monte Carlo (MCMC) has been applied as a method for exploring posterior

distributions in Bayesian inference. In MCMC, one constructs a Markov chain long enough

for the distribution of the elements to stabilize to a common, stationary distribution. By

repeatedly simulating steps of the chain, it simulates draws from the distribution of inter-

est. The last class considered by Little has the multiple imputation (MI) methods. Rubin

[58] introduced the idea of MI in which each missing value is replaced with M times using

simulated values prior to analysis. This will produce M possible complete datasets that are

the analyzed in the same manner as a complete dataset. For the inference, these results are

then combined by simple arithmetic to obtain overall estimates along with their standard

errors that reflect missing data uncertainty as well as the sample variation.

2.1.2 Missing Response Variables

If the probability of missingness is associated with the unobserved response values that

should have been obtained, the missing data mechanism is said to be not missing at random

(NMAR). This process is often referred to as non-ignorable missingness due to the fact

that the missing data mechanism must be considered to make a valid inference about the

distribution of the responses (Little and Rubin [40]; Fitzmaurice et al. [17]; Allison [1]). In a
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longitudinal study the term dropout refers to the situation where a response at a particular

time being missing, implies that all the subsequent follow-up responses are also missing

(Fitzmaurice et al. [17]; Little and Rubin [40]). In this scenario, the standard likelihoods

for analyzing longitudinal biomarker data do not include a mechanism for incorporating

different reasons for loss to follow-up or death. When the measurements are missing due to

dropout or death, the two types of loss to follow-up are different and should not be combined

(Dufouil et al. [13]). In the full data modeling setting every observation is equally weighted.

For modeling data with missing observations, weighting techniques have been used for semi-

parametric regression modeling (Robins et al. [53]). The weighting procedure has been

applied in analyzing many incompleted longitudinal data problems by Rotnitzky and Robins

[55], Lipsitz et al. [36], Lin, Demirtas [11], Dufouil et al. [13], Ibrahim et al. [30]. Weights are

computed by inverting the probabilities of response. In a longitudinal study some subjects

are more likely to complete the study than others. The pseudo-likelihood approach has been

used for estimating parameters in generalized linear mixed models (Wolfinger and O’connell

[74]) and also non-ignorable missing covariate in cox model was proposed by Herring and

Ibrahim [26].

2.2 EXISTING METHODS FOR LEFT-CENSORING DATA

Several approaches have been proposed in the statistics literature for the analysis of lon-

gitudinal left-censored data and all approaches differ in sophistication when handling the

truncated values.

2.2.1 Naive and Imputation Approaches

Naive approaches are to use only observed data or replace censored observations with a

single value i.e., Limit of Detection (LOD) (Keet et al. [34]), LOD/2 or LOD/
√

2 (O’Brien

et al.; Hornung and Reed [28]). If the distribution of the measurement data is known, then

an alternative strategy replaces values below the detection limit with expected values of the
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missing measurements, conditional on being less than the detection limit (Garland et al. [18];

Gleit [21]). Calculation of the conditional expected value requires the investigator to either

know or estimate parameters of the measurement distribution. The substitution schemes

are simple but because a single value represents all measurements below the detection limit,

parameter estimates and their variances are likely biased. this limitation led to a single-

impute ”fill-in” method (Helsel [25]; Moschandreas et al. [44, 45]). An investigator first

characterizes the form of the distribution and estimates its parameters and then assigns

randomly sampled values below the detection limit from the estimated distribution. Fill-in

values along with measured values above the detection limit are then used in analyses. The

fill-in method did not include complex modeling of regression factors. In addition, although

the fill-in approach assigned random values from an appropriate distribution, it did not

account for the variability of the imputation process, because the inserted values are not real

data. For the imputation of the values of the detection limit, single imputation and multiple

imputation (Lubin et al. [32]; De Roos et al. [4]) have been considered. Because different

methods are needed to handle censored dependent variables and censored covariates, there

are different approaches for these cases.

2.2.2 Likelihood Based Approaches

Especially, for the censored dependent variables, there are many likelihood based approaches

where the distribution is fully specified. A standard method for the analysis of censored data

is Tobit regression. Tobit regression based on normal assumption (Gilbert [20]; Persson &

Rootzen [49]; Tobin [72]). Tobit regression has been extended to multivariate regression

(Amemiya [2]). Recently a Box-Cox transformation has been used for the analysis of left-

censored cross sectional data (Han and Kronmal [23]). Linkage analysis of left-censored trait

data has been based on the variance component of the Tobit model (Epstein et al. [15]).

In this model, the traditional variance component model has been modified to accommo-

date the censored data by random effects. The mixed models for the longitudinal censored

data have been proposed. Hughes [29] modified the usual EM estimation procedure for the

mixed effects model to account for left-censoring. The method uses Monte Carlo procedure
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to provide a general solution can be used with left-censored data and since the expectation

step of the EM algorithm is intractable, the Gibbs sampler is used to implement a Monte

Carlo expectation step in the EM algorithm. Jacqmin-Gadda et al. [31] proposed an ap-

proach of direct maximization of the likelihood without the EM or the Monte Carlo methods

where maximization is based on the Marquardt algorithm. The Lyles et al. [42] approach

was based on a hierarchical formulation of the likelihood, and estimation was carried out

by direct maximization of the likelihood using built-in algorithms. Lyles et al. [42] ana-

lyzed left-censored longitudinal data with informative dropout HIV data by maximizing a

single likelihood function which has integrated the censoring and informative dropout pro-

cess. They estimated the parameters from this complicated likelihood function and compute

the standard errors using the observed information matrix directly. Thiebaut et al. [70]

considered joint modeling for bivariate longitudinal data. To accommodate single censored

covariates, Lynn [43] presented the likelihood-based approaches for linear and logistic mod-

els, two-step linear regression model with index model used to estimate censored/selected

covariates (Rigobon and Stoker [52]) and left-censored covariates in cox model (D’Angelo

and Weissfeld [10]) have been proposed. There are many issues in analyzing left-censored

longitudinal data using a full likelihood. Beyond the algebraic and numeric intractability, it

requires computation of a series of multiple integrals and becomes intractable for the case of

a high rate of censoring.

2.2.3 Quantile Regression Approaches

In addition to these likelihood based approaches, the quantile regression approaches have

been developed for left-censoring data. The quantile regression (QR) methods have been

well developed for independent and longitudinal data when there is no censoring issue. For

fixed censoring, i.e., the observations are censored at a fixed constant, and most work on

QR was done for independent data in econometrics. Powell [50] first considered the least

absolute deviations (LAD) estimation which lead to the median regression estimator. LAD

estimation method was later extended to more general quantiles [51]. The censored quantile

regression is very appealing for analyzing economic data due to its robustness to nonnor-
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mality or heteroscedasticity. However, the computation of censored QR estimators and

associated variance estimators is challenging because the objective function is not convex

and an unknown density function needs to be estimated.

No work has been done for dependent observations until recently Wang and Fygenson [73]

proposed an inference procedure for longitudinal studies with application to a HIV/AIDS

study. A simple quantile rank score test was developed to test for the treatment effect,

while the regression coefficient of treatment effect was not directly estimated. This approach

avoided the computation of the complex variance estimator. In the observational study like

GenIMS, the point estimates of all the covariate effects are of equal importance. The meth-

ods focusing on the estimating procedures are not fully developed yet.

2.3 ANALYSIS OF LONGITUDINAL DATA WITH DROPOUTS

2.3.1 Likelihood Based Approaches

We often encounter missing data due to dropouts in longitudinal studies. Generalized esti-

mating equations (GEEs) can be used for estimating the parameters of marginal models in

longitudinal studies and provide consistent estimates when the missingness is independent

of both the observed and missing data (MCAR). If missingness may be related to the ob-

served responses but conditionally independent of the missing data (MAR), GEE methods

are no longer valid. However, mixed models can handle data that are MAR. When there are

missing data that are not ignorable (NMAR), mixed models will result in biased estimates.

For general missing patterns, the selection model and mixture model are commonly used for

modeling non-ignorable missing longitudinal data. The selection model is based on the joint

distribution which is a product of the complete data model. The interest of the selection

model is in parameter which is under the hypothesized complete data. If the full data is

modeled as a mixture over dropout categories then it is called a pattern mixture model. In

the pattern mixture model, the parameter conditional on the missing data pattern is the
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primary interest. These models are under-identified and well suited for small percentages of

missing observations.

If data are missing due to dropout, joint modeling is a common strategy to handle infor-

mative dropout data (NMAR). Such models have been considered for longitudinal censored

data. Lyles [42] implemented a maximum likelihood procedure to estimate initial HIV RNA

levels and slopes within a population, compare these parameters across subgroups of HIV-

infected women and illustrate the importance of appropriate treatment of left-censoring and

informative dropouts. Thiebaut [70] propose a likelihood inference for a parametric joint

model including a bivariate linear mixed model for the two markers and a log normal sur-

vival model for the time to dropout. Gao and Thiebaut [66] considered the situation when

the longitudinal outcomes are also subject to non-ignorable missing in addition to truncation.

A shared random effect parameter model is presented where the missing data mechanism

depends on the random effects used to model the longitudinal outcomes.

The weighting techniques have been considered for semi-parametric regression modeling

(Robins et al. [53]) and has been applied in analyzing many incomplete longitudinal data

problems by Rotnitzky and Robins [55], Lipsitz et al. [36], Demirtas [11], Dufouil et al. [13],

Lin et al. [27] and Ibrahim et al. [30]. Weights are computed by inverting the probabilities

of being observed. In the longitudinal study, some subjects are more likely to complete the

study than others. The pseudo-likelihood approach has been used for estimating parameters

in generalized linear mixed models (Wolfinger and O’connell [74]).

2.3.2 Weighting Techniques for Quantile Regression Approaches

Like the GEE method, standard estimating functions of quantile regression models result in

consistent estimators when the data are missing completely at random. For missing data

due to dropouts and under MAR mechanisms, Lipsitz et al. [36] and Yi and He [77] adopted

the inverse probability weighted GEE approach to quantile regression models for uncensored

data. Lipsitz et al. [36] mainly focused on the application of quantile regression methods

using the independent working assumption of covariance structure to longitudinal responses

with dropout and discussed methods for estimating the parameters of marginal models, in
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which the median or any other quantile of an individual’s response at time t is modeled as a

function of a time trend and a set of covariates. Yi and He [77] considered median regression

models to analyze a longitudinal data set arising from a controlled trial of HIV disease and

they incorporated the covariance structure in the estimation procedures and established the

asymptotic properties for the resultant estimators. The basic idea of this weighting approach

is that an individual’s contribution to the traditional estimating equations is weighted by

the inverse probability of dropout at the given occasion, i.e., the conventional estimating

equations for the quantile regression parameters are weighted inversely proportionally to the

probability of dropout. This approach requires the process generating the missing data to

be estimable but makes no assumptions about the distribution of the responses other than

those imposed by the quantile regression model. This method yields consistent estimates of

the quantile regression parameters provided that the model for dropout has been correctly

specified. There are many ways to handle informative dropouts in the mixed models or GEE

approaches when data are not censored, but limited work was done for quantile regression

models [36, 76]. Lyles et al. [42] and Thiebaut et al. [70] studied the mixed models for

left-censoring data with informative dropouts. The corresponding method for QR is still

lacking.
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3.0 MULTIPLE IMPUTATION APPROACHES FOR THE CENSORED

COVARIATES

Increasingly used in biomedical studies for the diagnosis and prognosis of acute and chronic

diseases, biomarkers provide insight into the effectiveness of treatments and potential path-

ways that can be used to guide future treatment targets. The measurement of these markers

is often limited by the sensitivity of the given assay, resulting in data that are censored either

at the lower or upper limit of detection. For the Genetic and Inflammatory Markers of Sepsis

(GenIMS) study, many different biomarkers were measured to examine the effect of different

pathways on the development of sepsis. In this study, the left-censoring of several important

inflammatory markers has led to the need for statistical methods that can incorporate this

censoring into any analysis of the biomarker data. This paper focuses on the development of

multiple imputation (MI) methods for the inclusion of multiple left-censored biomarkers in

a logistic regression analysis. A multivariate normal distribution is assumed to account for

the correlations between biomarkers. The Gibbs sampler is used for estimation of the dis-

tributional parameters and imputation of the censored markers. The proposed methods are

evaluated and compared with some simple imputation methods through simulation. A data

set of inflammatory and coagulation markers from the GenIMS study is used for illustration.

3.1 INTRODUCTION

Biomarkers are now a key component of many biomedical studies, providing insight into

potential treatment targets and disease pathways. They also provide key information that

can be used to inform the diagnosis and prognosis of both acute and chronic diseases. While
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biomarkers provide useful information, they are also subject to many different limitations

due to numerous sources of measurement errors and difficulty in collecting the actual speci-

mens. In addition to the error associated with specimen collecting/processing and laboratory

error, left-censoring due to the limits of detection (LOD) is also a common source of error

that needs to be addressed at the analysis stage of biomarker data. Left-censoring can

be addressed through the use of assays that are more sensitive; however, this is often not

feasible due to the cost and time constraints of many studies. Well-known examples of

left-censoring occur in the assessment of viral RNA in patients infected with the human

immunodeficiency virus (HIV) [29], the antibody response to vaccine in blood serum [46],

and the biomarkers interleukin-10 (IL10) and interleukin-6 (IL6) that were collected in the

Genetic and Inflammatory Markers of Sepsis (GenIMS) study [35]. In the GenIMS study,

the motivating example for this work, a set of inflammatory and coagulation markers were

evaluated repeatedly during the course of hospitalization. These markers were measured

daily during the first week of hospitalization and less frequently after day 7. The assays

used to measure the concentration of the biomarkers in GenIMS were not sensitive enough

to detect levels of the molecule at the low end of normal, resulting in moderate to heavy

left-censoring of the biomarker data. Since left-censoring generates informative missing data

that are not ignorable, the traditional methods of statistical analysis are not optimal and

may be invalid. Thus statistical methods that can be applied to left-censored biomarker

data are needed.

One common approach that has been applied to the analysis of left-censored data is the

use of ”fill-in” methods where the left-censored observation is replaced by the LOD, the

LOD/2, or the LOD/
√

2 depending on the assumed shape of the left tail of the distribu-

tion. This approach is straightforward to implement, but leads to results that are biased

towards the null hypothesis. The simple ”fill-in” imputation approaches based on certain

distributional assumptions of the data eliminate this bias when the censoring is moderate

(< 30%), but introduce bias into the associated variance estimates. Multiple imputation

(MI) approaches [58] are useful and provide valid statistical inference when the censoring

proportion is not high (< 50%) [32]. The ”fill-in” methods have some limitations but easy

to use in practice and apply to either the outcome or the predictor in an analysis.
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Most of methodological development for censored biomarkers has focused on the case

where the biomarker is considered as the outcome variable. One commonly applied model

for this setting is the Tobit linear regression model [72, 49]. This model has been extended to

include a variance component model for the analysis of clustered left-censored outcome data

[15]. Many other researchers have developed mixed models for longitudinal left-censored

data [29, 31, 42, 75, 70]. For non-normal left-censored outcome data, a method based on

the Box-Cox transformation has been proposed by Han and Kronmal [23]. Lyles et al. [41]

focused on the estimation of the correlation coefficient when the data are left-censored.

There have been fewer proposals for methods that accommodate censored predictors.

Lynn [43] developed likelihood-based methods that can be applied to linear and logistic

models with a single censored covariate. Austin and Hoch [5] compared several approaches for

censored covariates in a simulation study that was designed to evaluate the bias of estimates

for a censored covariate in a linear regression model. Rigobon and Stoker [52] proposed a

two-part regression model for both parametric and semi-parametric models, where an index

model was used to estimate the censored covariates. The same idea was adopted by D’Angelo

and Weissfeld [10] to handle censored covariates in the Cox model. The methods discussed

above can be very useful for modeling when only one covariate is censored, but are not

easily extended to the multiple covariate setting where the covariates may be correlated.

As a result, there are no methods that are available for the inclusion of multiple censored

covariates in a regression model.

The focus of this work is on the development and evaluation of potential methods for

the setting of multiple censored covariates in a regression model. We propose the use of

multiple imputations (MI) due to its simplicity and the fact that it has been shown to be

a competitor to maximum likelihood method [43]. A simple MI approach has been used by

De Roos et al. [4] to estimate the risk of non-Hodgkin’s lymphoma associated with the level

of organochlorine chemicals in plasma. However, they assumed a univariate distribution for

each censored predictor without accounting for the potential correlation between predictors.

The motivation for this work comes from the analysis of biomarker data collected in the

GenIMS study, where multiple biomarkers of interest are measured with many of these

biomarkers being left-censored. The analysis is similar to that of De Roos et al. [4] with the
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focus being the prediction of acute kidney injury (AKI) as a function of several, potentially

correlated biomarkers. Thus we propose the use of MI methods that account for the potential

correlation of the biomarkers by assuming a multivariate normal distribution. The method is

based on the use of a Tobit regression model combined with a Gibbs sampler to estimate the

distributional parameters and to impute the censored covariate information. In Section 3.2

we present the notation and the proposed methods. In section 3.3 we present the results of

the simulation study that was used to compare the proposed methods. Section 3.4 presents

the results from the motivating example using the GenIMS data to examine the role of

inflammatory and coagulation markers in predicting acute kidney injury.

3.2 NOTATION AND METHODS

Let Z∗ij be the concentration of the j-th biomarker for the i-th subject (i = 1, · · · , n; j =

1, · · · , K). Assume the biomarker vector Z∗i = (Z∗i1, Z
∗
i2, · · · , Z∗iK)T follows a K-dimensional

multivariate normal distribution MVNK(µi,Σ) with a mean vector, µi = (µi1, µi2, · · · , µiK)T

and a common covariance matrix, Σ. Then the j-th biomarker Z∗ij is normally distributed,

i.e., Z∗ij ∼ N(µij, σ
2
j ), where σ2

j is the j-th diagonal element of Σ. Suppose the means of

biomarkers are related to a set of covariates through a linear regression model, i.e., µij =

X iβj, where βj = (βj1, βj2, · · · , βjp)T is an unknown regression parameter vector and X i =

(xi1, · · · , xip) is covariate vector for the i-th subject. When there is a lower limit of detection

for the j-th biomarker, say dj, Z
∗
ij is a latent variable and we only observe

Zij =
{ Z∗ij if Z∗ij ≥ dj

censored if Z∗ij < dj
.

In the following, we first introduce the Gibbs sampling algorithm for a single censored marker

and then extend it to the case of multiple censored markers where the correlations between

them are accounted for in the MI procedure.
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3.2.1 Multiple Imputation For Single Censored Marker

Following the previous notation and suppressing the subscript j, we denote Zi as the

observed marker concentration for the i-th subject. The corresponding latent variable

Z∗i ∼ N(X iβ, σ
2) is subject to a detection limit d. Let C denote the set of censored obser-

vations and C ′ the uncensored set. Then a Tobit likelihood function for a parameter vector

θ = (β, σ2) is

L(θ) =
∏
i∈C

Φ
(
d;X iβ, σ

2
) ∏
i∈C′

φ
(
Zi;X iβ, σ

2
)
, (3.1)

where Φ and φ are the cumulative distribution function and probability density function

of a random variable from the N(X iβ, σ
2). Under the Bayesian framework, we can derive

the posterior distribution of the parameter θ by using the prior distribution of θ and the

above likelihood function (3.1). Usually informative prior distributions of conjugate form

are assumed for β and σ2. Specifically, we assume that the prior conditional distribution for

β|σ2 is MVNp(β0, σ
2B−10 ) and the prior distribution for σ2 is Inv-χ2(ν0, σ

2
0), an inverse chi-

square distribution. The hyperparameters β0 and B−10 are assumed to be a known constant

vector and matrix; ν0 and σ2
0 are known positive constants.

The Gibbs sampling methodology requires the generation of a Markov chain from the

posterior density. However, a Tobit likelihood function multiplied by the prior density is

not easy to simplify into tractable posterior densities. In other words, the analytical niceties

associated with the conjugate prior no longer hold for the likelihood function of censored

data. Chib [63] applied the data augmentation schemes presented by Tanner and Wong [68] to

handle the censoring problems within the Gibbs sampling framework. Let ZC = {Zi < d, i ∈

C} represent the censored observations and ZC′ = {Zi, i ∈ C ′} represent the uncensored

observations. Once the parameter space is augmented by the latent data corresponding to

the censored observations, the posterior density resulting from the complete data is much

easier to simulate. We partition the latent data Z∗ into Z∗
C and Z∗

C′ , corresponding to

the observed data ZC and ZC′ . Then Z∗
C′ = ZC′ , and Z∗

C needs to be simulated from
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the Bayesian predictive distribution. Given the latent data Z∗, the conditional posterior

distributions of (β, σ2) are simply expressed by

f [β|Z∗, σ2] = MVNp(βn, σ
2B−1n ), (3.2)

f [σ2|Z∗,β] = Inv-χ2(νn, σ
2
n), (3.3)

where βn = (B0 +XTX)
−1

(B0β0 + XTZ∗), B−1n = (B0 +XTX)
−1

, νn = ν0 + n and

νnσ
2
n = ν0σ

2
0 + {βT0B0β0 + Z∗TZ∗ − βTnBnβn}. Our goal is to impute the censored values

by taking independent draws from the distribution f(Z∗
C ,β, σ

2|Z), where Z = {ZC ,ZC′}.

This is carried out by applying the data augmentation in the Gibbs sampling as follows:

1. Initialize β and σ2 with the maximum-likelihood estimates of a Tobit model: (β(0), σ2(0))

2. Imputation Step (update imputed values)

Given β(r) and σ2(r) at the r-th iteration,

sample Z
∗(r+1)
i from TruncNormal(−∞,d](X iβ

(r), σ2(r)) for the censored observation of

subject i, where TruncNormal(a,b)(µ, σ
2) denotes the normal distribution density N(µ, σ2)

truncated on the interval (a, b). As shown in details by Gelfand et al. [19], the recov-

ery of the censored observations implies simulation from the corresponding truncated

distribution.

3. Posterior Step (update parameter estimates)

Sample σ2(r+1)
from f [σ2|ZC′ ,ZC

∗(r+1),β(r)],

Sample β(r+1) from f [β|ZC′ ,ZC
∗(r+1), σ2(r+1)

].

Given the complete sample data (ZC′ ,Z∗
C
(i+1)), simulate the posterior parameter esti-

mates, σ2(i+1)
and β(i+1). These new estimates are then used in the next imputation

step.

4. Repeat steps 2 and 3 until the algorithm converges.

The resulting Markov chain from this Gibbs sampler, ({β(0), σ2(0)}, {β(1), σ2(1),Z∗
C
(1)}, · · · )

converges in distribution to f(Z∗
C ,β, σ

2|Z). After discarding a burn-in of the first L itera-

tions, the next M realizations can be used to form the multiple imputed data sets.
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3.2.2 Multiple Imputation For Multiple Censored Markers

The Gibbs sampling algorithm for a single censored marker can be directly extended to

the multivariate case. Suppose prior information is incorporated in the prior densities

β|Σ ∼ N(β0,B
−1
0 ,Σ) and Σ ∼ Inv-Wishart(ν0, ν0Σ0), where N denotes a matrix normal

distribution with a mean matrix β0(p×K), a p× p row covariance matrix B−10 and a K ×K

column covariance matrix Σ. Let Inv-Wishart denote an inverse wishart distribution with

degrees of freedom ν0 > 0 and K ×K positive definite matrix ν0Σ0. Then a normal-wishart

informative conjugate prior distribution for (β,Σ) is

f(β,Σ) = N(β0,B
−1
0 ,Σ)× Inv-Wishart(ν0,Σ0). (3.4)

The Gibbs sampling algorithm can be applied to the three blocks β, Σ and Z∗
C with the

respective conditional densities f [β|Z∗,Σ], f [Σ|Z∗,β] and f [Z∗C |Z,β,Σ]. The conditional

distributions of (β, Σ) are expressed as

f [β|Z∗,Σ] = N(βn,B
−1
n ,Σ), (3.5)

f [Σ|Z∗,β] = Inv-Wishart(νn,Σn), (3.6)

where βn = (B0 + XTX)−1(B0β0 + XTZ∗), Bn
−1 = (B0 + XTX)−1, νn = ν0 + n and

νnΣn = ν0Σ0 + {βT0B0β0 + Z∗TZ∗ − βTnBnβn}. For a censored observation, we sample

a value from the conditional distribution f [Z∗C |Z,β,Σ]. This requires sampling from a

truncated multivariate normal distribution. As illustrated by Robert [9], we simulate each

component successively based on the conditional distribution rather than generating a ran-

dom vector from the truncated MVN distribution. Specifically, we impute the censored value

for marker j(j = 1, · · · , K) by generating a value from the truncated normal distribution:

TruncNormal(−∞,dj ](E[Z∗j |Z∗−j], Σj|−j),

where the conditional mean and variance of Z∗j given Z∗−j = (Z∗1 , · · · , Z∗j−1, Z∗j+1, · · · , Z∗K)

are

E[Zj|Z−j] = µj + ΣT
j,−jΣ

−1
−j,−j(Z−j − µ−j), (3.7)

Σj|−j = σ2
j −ΣT

j,−jΣ
−1
−j,−jΣj,−j, (3.8)
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with Σ−j,−j being a (K − 1) × (K − 1) matrix, derived from Σ by eliminating its j-th row

and its j-th column, and Σj,−j being a (K − 1) vector derived from the j-th column of Σ by

removing the j-th row.

We now take K = 2 as an example to illustrate our imputation method based on Gibbs

sampler. Assume for the i-th subject (i = 1, · · · , n),

Z∗i =

Z∗i1
Z∗i2

 ∼ BVN

µi =

X iβ1

X iβ2

 ,Σ =

 σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

 ,
then Z∗ij|Z∗ij′ ∼ N(X iβj|j′ , σ

2
j|j′) (j, j′ = 1, 2; j 6= j′), where

X iβj|j′ = X iβj + ρ
σ1
σ2

(Z∗ij′ −X iβj′), σ2
j|j′ = σ2

j (1− ρ2).

For a censored observation, we sample a value from distribution

f [Z∗ij|Zij < dj,X iβj|j′ , σ
2
j|j′ ] = TruncNormal(−∞,dj ](X iβj|j′ , σ

2
j|j′).

Now the Gibbs sampling algorithm can be described as follows:

1. Initialize θ = (β1,β2, σ
2
1, σ

2
2, ρ) with the maximum-likelihood estimates of a Tobit model:

θ0 = (β10,β20, σ
2
10, σ

2
20, ρ0).

2. Imputation Step

Given θ̂
r

at r-th iteration, generate the censored observations for subject i by successively

sampling from:

• Z∗(r+1)
i1 ∼ TruncNormal(−∞,d1](X iβ

(r)
1|2, σ

2(r)
1|2 )

• Z∗(r+1)
i2 ∼ TruncNormal(−∞,d2](X iβ

(r)
2|1, σ

2(r)
2|1 )

3. Posterior Step

Sample Σ(r+1) from f [Σ|ZC′ ,ZC
∗(r+1),µ(r)]

Sample µ(r+1) from f [β|ZC′ ,ZC
∗(r+1),Σ(r+1)]

4. Repeat steps 2 and 3 until the algorithm converges.

22



Once the imputed data sets are created, the multiple imputation inference described in

[40] can be performed. Suppose θ is the parameter of interest. We may fill in censored

data M times to generate M complete data sets and then apply the standard regression

procedure to each complete data set. Let θ̂m and Vm (m = 1, · · · ,M) be the estimate and

associated variance for θ. The resulting combined point estimate θ̂ = 1
M

∑M
m=1 θ̂m and the

corresponding variance V ar(θ̂) = 1+M
M

S2
M + 1

M

∑M
m=1 Vm, where S2

M is the sample variance

of estimates θ̂m.

3.3 SIMULATION STUDY

We conducted various simulation studies to evaluate the performance of our MI approaches

based on the Gibbs sampling method and compare these with several other imputation

methods. We generated two marker measurements Z∗1 and Z∗2 from a bivariate normal

distribution with means µ1 = 1, µ2 = 2, and variances σ2
1 = σ2

2 = 1. The correlation ρ

between these two markers was set to 0 or 0.2 to represent small correlations and 0.5 or 0.8

for relatively high correlations. The association between these two markers and the binary

outcome of interest was described by a logistic regression model, logit(π = Pr[Y = 1]) =

b0+b1Z
∗
1+b2Z

∗
2, where b0 = −0.1, b1 = −0.2 and b2 = 0.3. To achieve a desirable proportion

of left-censored data, the detection limits dj (j=1,2) were selected to be F−1(c;µj, σj) (c =

0.2, 0.4), implying that on average 100c percent of the simulated data are left-censored. The

simulation was conducted for 500 data sets with a sample size of n = 200. For the Gibbs

sampling, 700 iterations were generated for each data set and after discarding a burn-in

of the first 200 realizations of the sequence, we took the imputed values from the 201st,

301st, 401st, 501st and 601st iteration to form the M=5 imputed data sets. The length of

the burn-in and monitoring was sufficient to achieve convergence as assessed by trace plots

and autocorrelation for each parameter. We estimated µj with a linear regression model

including the binary response variable Y as a predictor.
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Table 1: Simulation Results of Multiple Imputation for One Marker at a Time

b b0 = −0.1 b1 = −0.2 b2 = 0.3

Method OmniaNaiveb MIB1
c MIG1

d OmniaNaiveb MIB1
c MIG1

d OmniaNaiveb MIB1
c MIG1

d

20% censored, ρ =0
Bias -0.009 -0.096 -0.018 -0.020 -0.009 -0.034 -0.005 -0.005 0.006 0.056 0.009 0.010
SE 0.365 0.455 0.376 0.375 0.152 0.181 0.156 0.156 0.152 0.185 0.157 0.157
MSE 0.258 0.410 0.275 0.272 0.047 0.068 0.050 0.050 0.047 0.073 0.051 0.050
CP 0.966 0.964 0.968 0.960 0.962 0.950 0.956 0.950 0.960 0.950 0.956 0.960

40% censored, ρ =0
Bias -0.009 -0.204 -0.017 -0.025 -0.009 -0.070 -0.003 0.001 0.006 0.114 0.008 0.010
SE 0.365 0.615 0.401 0.395 0.152 0.225 0.166 0.164 0.152 0.235 0.169 0.167
MSE 0.258 0.782 0.306 0.303 0.047 0.109 0.056 0.055 0.047 0.126 0.057 0.056
CP 0.966 0.960 0.972 0.964 0.962 0.948 0.952 0.946 0.960 0.928 0.960 0.964

20% censored, ρ =0.2
Bias -0.006 -0.090 -0.012 -0.012 -0.007 -0.028 0.001 0.001 0.005 0.050 0.004 0.004
SE 0.344 0.428 0.355 0.354 0.154 0.184 0.159 0.158 0.155 0.188 0.156 0.159
MSE 0.230 0.366 0.246 0.245 0.049 0.070 0.051 0.051 0.049 0.074 0.052 0.052
CP 0.970 0.958 0.962 0.962 0.952 0.948 0.958 0.956 0.956 0.948 0.954 0.958

40% censored, ρ =0.2
Bias -0.006 -0.196 -0.007 -0.007 -0.007 -0.054 0.016 0.015 0.005 0.102 -0.005 -0.001
SE 0.344 0.579 0.380 0.375 0.154 0.228 0.169 0.167 0.155 0.237 0.171 0.168
MSE 0.230 0.697 0.279 0.277 0.049 0.111 0.057 0.057 0.049 0.125 0.058 0.057
CP 0.970 0.954 0.960 0.958 0.952 0.952 0.958 0.956 0.956 0.938 0.958 0.956

a Omni: Omniscient, b Naive: Censored observations replaced by LOD/2,
c MIB1: MI-Bootstrapping, d MIG1: MI-Gibbs sampling

For the case when the two markers are independent or weakly correlated, we applied our

Gibbs sampling based MI method for one marker at a time and compared the results to

the bootstrap based MI approach presented by Lubin et al. [32]. In the bootstrap based

procedure, a bootstrap sample was generated first from the observed data with replacement

and the Tobit likelihood function was used to obtain the estimates β̃ and σ̃2. Then the cen-

sored observation was imputed by a value generated from the inverse cumulative distribution

function

Φ−1{UNIF[0,Φ(d; β̃, σ̃2)]; β̃, σ̃2}, (3.9)

where UNIF[0, a] is a uniform distribution on [0, a]. For each of these data sets we compared

an omniscient estimate (Omni) obtained from the complete data, an naive estimate (Naive)

based on replacing censored observation by LOD/2, a MI estimate based on bootstrapping

24



(MIB1) and the MI estimate based on Gibbs sampling (MIG1). Note that the correlation

between markers was essentially ignored in MIB1 and MIG1 as they were applied for the

censored markers one at a time. Table 1 summarizes the results obtained from the simulation

study where each of the two markers is treated independently in the analysis. As expected,

the two MI approaches (MIB1 and MIG1) performed much better than the Naive method,

even when the data are not heavily censored (i.e., 20%). The naive substitution with LOD/2

yielded significantly biased estimates and larger SEs and MSEs. Compared to the Omni

method, which serves as the gold standard, both of the MI approaches consistently produced

approximately unbiased estimates. The SEs, MSEs and CPs were also comparable. For the

setting where we incorporate the correlation between two markers, we conducted a simulation

study similar to that outlined above. As shown in Table 2, the estimates from methods

MIB1 and MIG1 are considerably biased for the effects of censored markers, even though

the intercept estimates remained fine when the censoring and correlations are not high (20%

censoring, ρ = 0.5). In contrast, method MIG2, the MI method accounting for marker

correlations, still resulted in unbiased estimates for all of the coefficients when censored

markers are highly correlated. Even when the correlation is moderate (ρ = 0.5), method

MIG2 appeared to work better for data subject to heavier censoring.
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Table 2: Simulation Results of Multiple Imputation for Higher Correlated Markers

b b0 = −0.1 b1 = −0.2 b2 = 0.3

Method Omnia MIB1
b MIG1

c MIG2
d Omnia MIB1

b MIG1
c MIG2

d Omnia MIB1
b MIG1

c MIG2
d

20% censored, ρ =0.5
Bias -0.005 0.002 -0.001 -0.001 -0.005 0.015 0.015 0.002 0.003 -0.011 -0.009 0.004
SE 0.330 0.340 0.340 0.340 0.173 0.177 0.177 0.181 0.174 0.178 0.177 0.181
MSE 0.211 0.226 0.226 0.226 0.061 0.062 0.062 0.061 0.060 0.062 0.062 0.062
CP 0.966 0.968 0.962 0.962 0.962 0.970 0.968 0.962 0.952 0.954 0.948 0.954

40% censored, ρ =0.5
Bias -0.005 0.018 0.011 -0.010 -0.005 0.045 0.045 0.017 0.003 -0.033 -0.029 -0.005
SE 0.330 0.363 0.357 0.356 0.173 0.184 0.182 0.183 0.174 0.185 0.182 0.181
MSE 0.211 0.257 0.252 0.252 0.061 0.070 0.070 0.070 0.060 0.068 0.066 0.065
CP 0.966 0.968 0.964 0.960 0.962 0.956 0.952 0.952 0.952 0.950 0.944 0.952

20% censored, ρ =0.8
Bias -0.006 0.039 0.038 0.007 -0.005 0.053 0.053 0.027 0.004 -0.048 -0.047 -0.020
SE 0.361 0.366 0.365 0.364 0.248 0.247 0.247 0.246 0.248 0.246 0.246 0.245
MSE 0.254 0.256 0.257 0.255 0.123 0.113 0.114 0.112 0.122 0.113 0.113 0.111
CP 0.950 0.962 0.960 0.958 0.962 0.968 0.970 0.964 0.958 0.966 0.962 0.960

40% censored, ρ =0.8
Bias -0.006 0.078 0.071 0.046 -0.005 0.102 0.102 0.087 0.004 -0.091 -0.088 -0.071
SE 0.361 0.375 0.372 0.370 0.248 0.240 0.239 0.238 0.248 0.240 0.238 0.237
MSE 0.254 0.272 0.267 0.265 0.123 0.111 0.112 0.110 0.122 0.108 0.107 0.105
CP 0.950 0.958 0.962 0.958 0.962 0.952 0.950 0.955 0.958 0.958 0.956 0.958

a Omni: Omniscient, b MIB1: MI-Bootstrapping,
c MIG1: MI-Gibbs sampling for single censored marker,
d MIG2: MI-Gibbs sampling accounting for correlations between markers

3.4 APPLICATION

The Genetic and Inflammatory Markers of Sepsis (GenIMS) study was designed to identify

genetic markers and biomarkers related to the development of severe sepsis as a result of

community acquired pneumonia (CAP). The study enrolled 2,320 subjects with CAP from

emergency department at 28 US hospitals. In addition, several secondary outcomes such as

organ failure, acute kidney injury (AKI) and death were also examined. To assess the rela-

tionship between potential biomarkers and these outcomes, biomarkers in the inflammatory
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and coagulation pathways were measured daily during the first seven days of hospitalization

and weekly thereafter. For the example presented here, we focused on the prediction of

AKI using day 1 levels of cytokines and fibrinolysis markers. The analysis cohort included

1836 patients who were confirmed CAP cases admitted to the hospital and with available

biomarker data. The markers analyzed for this example include tumor necrosis factor (TNF)

which was censored at a lower limit of 4, interleukin-6 (IL6) which was censored at either 2 or

5 depending on the assay used, interleukin-10 (IL10) which was censored at 5, plasminogen

activator inhibitor (PAI-1) which was censored at 2 and D-dimer which was censored at the

lower limit of 110. The censoring proportions for these markers were 34.97%, 27.34%, 9.42%,

8.28% and 1.74%, respectively. We assumed a log-normal distribution for the biomarker

concentrations and analyzed the data using the natural log scale. To apply the multiple

imputation procedures, the means of each of the biomarkers were estimated. The biomarker

means were modeled in the log scale using linear regression models that included baseline

characteristics (age, gender and baseline creatinine as marker of kidney function) and the

outcome variable AKI.

To assess the magnitude of correlations among these five markers, we used the method

of Lyles et al. [41] to estimate the correlation coefficients between the two censored markers.

The estimated correlation matrix is given by



IL6 IL10 TNF PAI-1 D-dimer

1.00 0.47 0.40 0.17 0.25

1.00 0.34 0.21 0.05

1.00 0.18 0.30

1.00 −0.01

1.00


,

indicating that the correlations among the markers are small to moderate. The correlations

among cytokines (IL6, IL10 and TNF) are relatively stronger than those between the two

fibrinolysis markers (PAI-1 and D-dimer), so we only incorporated the cytokine correlations

in the Gibbs-sampling based MI method (MIG2) and compared the results to those obtained

from naive method, and two simple MI methods, MIB1 and MIG1. Table 3 provides the
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estimates, standard errors and p-values of each risk factor for the development of AKI. The

results from the four methods were similar for the adjusted baseline variables and markers

with small amounts of censored data which are PAI-1 and D-dimer. However, there were

noticeable differences across the four methods for the coefficient estimates and significance

of cytokine effects, when both of the correlations and levels of censoring were higher. In

particular, the effect of TNF became significant when the correlations between markers were

incorporated in the MI method. These results are consistent with the simulation study. In

all cases the MI methods outperformed the naive method when the censoring proportion

reaches 20%. With censoring proportions of 30% or higher, it becomes important to ac-

count for the correlations in the MI, even if the correlation is moderate (e.g, 0.4 or 0.5).

Table 3: Analysis Results for Prediction of AKI using Day 1 Cytokines and Fibrinolysis

Markers

Method Naive (LOD/2)a MIB1
b MIG1

c MIG2
d

Parameter Est. SE p Est. SE p Est. SE p Est. SE p

Intercept -7.917 1.055 .000 -7.942 1.064 .000 -7.626 1.045 .000 -8.020 1.068 .000
Age 0.041 0.007 .000 0.041 0.007 .000 0.041 0.007 .000 0.040 0.007 .000
Male -0.625 0.254 .014 -0.617 0.254 .008 -0.630 0.255 .007 -0.634 0.251 .006
Creatinine 2.418 0.819 .003 2.375 0.821 .002 2.473 0.826 .001 2.435 0.810 .001
logIL6 0.070 0.052 .177 0.070 0.053 .094 0.061 0.052 .125 0.012 0.048 .407
logIL10 0.027 0.077 .723 0.032 0.074 .336 0.036 0.075 .319 0.065 0.076 .204
logTNF 0.157 0.096 .104 0.178 0.101 .047 0.124 0.085 .077 0.282 0.099 .003
logPAI-1 0.211 0.075 .005 0.220 0.077 .002 0.219 0.076 .003 0.221 0.087 .006
logD-dimer 0.241 0.090 .008 0.240 0.092 .004 0.202 0.083 .014 0.251 0.094 .004

Censoring proportion: IL6(9.42%), IL10(34.97%), TNF(27.34%), PAI-1(8.28%), D-dimer(1.74%)
a Naive: Censored observations replaced by LOD/2, b MIB1: MI-Bootstrapping,
c MIG1: MI-Gibbs sampling for single censored marker,
d MIG2: MI-Gibbs sampling accounting for correlations between cytokines (IL6, IL10 and TNF)

3.5 DISCUSSION

Censoring issues due to lower or upper detection limits are not uncommon in biomarker

studies, but it is often not well-documented at the data collection and can be easily neglected

in the analysis stage. Motivated by the GenIMS study, we proposed MI procedures based

on the Gibbs sampling method for multiple censored markers. Markov Chain Monte Carlo
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(MCMC) methods such as the Gibbs sampler have been widely used for imputing data with

non-monotone missing patterns. We extended these MI methods to left-censored biomarker

data by incorporating the informative missing mechanism (which is known to be due to the

detection limit) in the MI procedure. Although various modeling approaches were developed

for analyzing censored marker data as response variables, the evaluation of diagnostic and

prognostic performance of markers usually requires marker measurement to be treated as

predictors/covariates. The MI approach provides a practical and flexible solution for further

complex analysis. Our MI methods performed well for low to moderate levels of censoring in

the data (20% ∼40%) and can easily accommodate right-censored or interval-censored data.

Our simulation results showed that ignoring the correlations between censored markers may

lead to biased estimates in the logistic regression when the correlation is high or moderate and

the data are heavily censored. Our method requires the assumption of a multivariate normal

distribution, which may not be satisfied with marker data. Appropriate transformations

(e.g., Box-Cox transformation) need to be considered. When the amount of missing data is

not large, there is evidence [61] that inference made from the MCMC based imputed data

tend to be robust to departures from the normal distribution. Whether this is the case

for censored data and how the choices of prior distributions affect the results merit further

study.
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4.0 MEDIAN REGRESSION FOR LONGITUDINAL LEFT-CENSORED

RESPONSES

Biomarkers are often measured repeatedly in biomedical studies to help understand the devel-

opment of the disease, identify the patients at high-risk and guide the therapeutic strategies

for intervention. One common source of measurement error for biomarkers is left-censoring

because the assays used may not be sensitive enough to measure the low concentrations below

a detection limit. The likelihood-based approaches assuming multivariate normal distribu-

tion have been proposed to account for left-censoring problem; however the biomarker data

are often highly skewed even after certain transformations. We propose a median regression

model that requires minimal assumption on the distribution and leads to easier interpreta-

tion of the results in the original scale of the data. We developed the estimating procedures

incorporating correlations between serial measurements for left-censored longitudinal data.

We conducted simulation studies to evaluate the properties of the proposed estimators and

compare median regression model with mixed models under various specifications of distri-

butions and covariance structures. We demonstrated our method with a data set from the

Genetic and Inflammatory Markers of Sepsis (GenIMS) study.

4.1 INTRODUCTION

Biomarkers are often measured repeatedly in biomedical studies for gaining insight of treat-

ment effectiveness and establishing the potential disease pathways to guide the future treat-

ment targets. However, the biomarker data are subject to various sources of measurement

errors. Left-censoring due to the lower limit of detection (LOD) is a common source of
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error that may not be noticed in the analysis stage of biomarker data. In the Genetic and

Inflammatory Markers of Sepsis (GenIMS) study (Kellum et al. [3]), a set of inflammatory

and coagulation markers were evaluated repeatedly during the course of hospitalization for

patients with community acquired pneumonia. Unfortunately, the assays used were not sen-

sitive enough to measure low concentrations of some biomarkers, resulting in moderate to

heavy left-censoring data. Figure 1 presents the censoring proportion of cytokines, TNF

(tumor necrosis factor), IL6 (interleukin-6) and IL10, over the first week of hospitaliza-

tion. Since left-censoring introduces informative missing data that are not ignorable, the

traditional longitudinal analyses based on mixed model and generalized estimating equation

(GEE) approach are no longer valid.

The ad-hoc methods using an arbitrary constant such as LOD, LOD/2, or LOD/
√

2

usually lead to biased estimation results. The existing statistical methods for left-censored

data mainly focuses on the likelihood-based approach, where the distribution of censored

variable is fully specified. The contribution of censored observations to the likelihood func-

tion is indicated by the probability of being censored. For example, a normal distribution is

assumed in the Tobit linear regression model (Tobin [71]; Persson and Rootzen [49]) for inde-

pendent data. Mixed models based on the idea of Tobit model have been developed for the

left-censored longitudinal data with various computational algorithms presented by different

researchers (Hughes [29]; Lyles et al. [42]; Jacqmin-Gadda et al. [31]; Wu [75]; Thiebaut

et al. [70]). A Tobit variance-component method was demonstrated in linkage analysis of

family left-censored trait data (Epstein et al. [15]). However, the normality assumption of

mixed models may not be satisfied as the biomarker data are often highly skewed even after

certain transformation. Additionally, misspecification of covariance structure of response

variable in the mixed models may result in biased estimates. The GEE methods are usually

considered as a robust alternative to mixed models, but incorporation of left-censoring data

in GEE methods is not trivial without specifying the distribution of censored variable. In the

literature of econometrics, quantile regression has been popularly used due to its robustness

to non-normality or heteroscedasticity. The corresponding quantile regression methods for

data censored at a fixed constant were also well established (Powell [50, 51]). However the

computation of censored quantile regression estimators and associated variance estimators
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is challenging because the objective function is not convex and an unknown density function

need to be estimated. Little work has been done for longitudinal censored observations until

recently Wang and Fygenson [73] proposed an inference procedure for longitudinal studies

with application to a HIV/AIDS study. A simple quantile rank score test was developed

to test for the treatment effect, while the regression coefficient of treatment effect was not

directly estimated. This approach avoided the computation of the complex variance estima-

tor.

In observational studies such as the GenIMS study, the point estimates of all the covariate

effects are of equal importance. In this paper, we focus on the estimation procedure for

median regression with left-censored longitudinal data subject to fixed and known detection

limits. Although the estimating procedure outlined in Wang and Fygenson [73] for nuisance

parameters can be directly applied to all the regression parameters, it is based on the working

assumption of independence. We will incorporate the correlations between repeated measures

as done in Jung [33] for uncensored data. In Section 4.2, we present the notation and

methods. In Section 4.3, we provide simulation study to evaluate the proposed methods and

compare the median regression with mean regression based on mixed models under various

specifications of distributions and covariance structures. In Section 4.4, we demonstrate our

methods with GenIMS biomarker data.

4.2 NOTATION AND METHODS

4.2.1 Censored Median Regression

Longitudinal data are typically modeled with marginal model, random effect model and

transition model. Here we focus on the marginal modeling approach for median regression.

Let y∗it be the continuous response on the i-th subject at time t, we consider the linear

regression model

y∗it = xTitβ + eit, i = 1, · · · , n; t = 1, · · · ,mi (4.1)
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where β is an unknown p×1 vector of regression parameters, xit is a p×1 vector of covariates

for the i-th individual at time t, eit is the random error and T denotes the transpose of a

vector or matrix. The error vectors ei = (ei1, · · · , ei,mi
)T for i = 1, · · · , n are independent,

but the components of ei are correlated to each other to reflect the serial correlation of

repeated measures within an individual subject. Then a median regression model relating

the median of response variable, med(y∗it), to a set of covariates has the form

med(y∗it) = xTitβ, (4.2)

where the median of error term is assumed to be zero. There is no other distributional

assumption made on random errors. When there is a detection limit in the assay, we can

not observe y∗it if it has value below the detection limit, say d. In other words, y∗it is a latent

variable and we only observe yit, where yit = y∗it, if y∗it > d. Thus we consider the following

censored regression model,

yit = max(d,xTitβ + eit), (4.3)

which is a straightforward extension of Powell’s univariate censored regression model [51].

For univariate censored data, Powell first considered minimizing the objective function

Mn(β) =
1

n

n∑
i=1

|yi −max{d,xTi β}| (4.4)

based on a least absolute deviations (LAD) criterion. LAD estimation method was later

extended to more general 100τ -th quantiles (Powell [50, 51]) based on the objective function

Qn(βτ ) =
1

n

n∑
i=1

ρτ (yit −max{d,xTitβτ}), (0 < τ < 1) (4.5)

where ρτ (u) = u{τ − I(u ≤ 0)} and I(·) is an indicator function. For τ = 0.5, Qn(βτ )

and Mn(β) lead to the same estimators for censored median regression. Analogue to the

idea of GEE approach, we propose the objective function under the working independence

assumption for model (4.3) as

Mn(β) =
1

n

n∑
i=1

mi∑
t=1

|yit −max{d,xTitβ}|. (4.6)
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Wang and Fygenson [73] have used the same objective function to estimate the nuisance

regression parameters when they made inference for a subset of quantile regression param-

eters. They derived the asymptotic properties for the resultant estimators and showed that

under mild conditions, the estimators are strongly consistent and asymptotically normal even

though the objective function treated all observations as if they were independent. They

provided a close form for variance estimator under the assumption of exchangeable covari-

ance structure. It follows along their lines of proof, the estimators that minimize Mn(β)

have the same nice asymptotic properties.

Median regression for uncensored data is often performed via linear programming algo-

rithm because the objective function is not smooth. For censored data, the objective function

(4.6) is neither smooth nor convex, which implies that multiple local optima may exist. We

apply the BRCENS algorithm of Fitzenberger [16] for optimization since this algorithm was

shown to perform better than the standard linear programming algorithm. The variance

estimation involves the estimation of a unspecified distribution of error term, and depends

on the underlying true covariance structure, we circumvent this computational problem by

using the bootstrap method and evaluate the performance of bootstrap estimator in the

simulation study. To retain the correlation structure of the responses, we take each subject

as a sampling unit, and draw a random sample of size n with replacement from the original

data. To facilitate the estimation with bootstrap sample {ỹit, x̃it}, we minimize the following

modified convex objective function

1

n

n∑
i=1

mi∑
t=1

ρ(ỹit − x̃Titβ)I(x̃Titβ̂ > d)

as in Wang and Fygenson [73], where the loss function ρ(u) = u{0.5 − I(u ≤ 0)} and β̂ is

the minimum of function Mn(β) in (4.6).

4.2.2 Weighted Censored Median Regression

Under the working independence assumption, intra-subject correlation structure is not in-

corporated in the estimating function. To improve efficiency, we may construct a weighted
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estimating equation as done in Jung [33] for uncensored data, with weights calculated based

on the correlation structure. Let covariance matrix

V i = cov(0.5× 1mi
− I(yi ≤X iβ)), (4.7)

where yi = (Yi1, · · · , Yimi
)T , X i is an mi× p matrix of covariates and 1mi

is an mi-vector of

1’s. The median regression estimator for uncensored longitudinal data, β̂, can be obtained

as a solution to

Sn(β) =
1

n

n∑
i=1

XT
i ΓiV

−1
i [0.5× 1mi

− I(yi ≤X iβ)] = 0, (4.8)

where Γi is an mi × mi diagonal matrix with t-th diagonal element being the probability

density function of eit evaluated at zero. Equation (4.8) is optimal in terms of asymptotic

efficiency. When the random errors eit are identically independently distributed, the optimal

weighting matrix is simply V −1i because Γi is constant across the subjects.

Now, we apply the weighting technique to the left-censored longitudinal data by consid-

ering the estimating equation

Swn (βw) =
1

n

n∑
i=1

XT
i ΛiW

−1
i [0.5× 1mi

− I(yi ≤ max{d,X iβw})] = 0, (4.9)

where W i = cov(0.5 × 1mi
− I(yi ≤ max{d,X iβw})), and Λi is a diagonal matrix,

denoted by diag(λi1(0), λi2(0), · · · , λimi
(0)), and λit is the probability density function of

(yit −max{d,xTitβw}). The kernel density estimator (Silverman [65]) can be used for esti-

mation of λit.

In contrast to the unweighted approach under the working assumption of independence,

we need to solve the estimating equation here rather than minimizing an objective function.

We use the following iterative algorithm to obtain the solution to the equation (4.9).

Step 1: Initialize β̂
(0)

w = (β̂
(0)
w1 , · · · , β̂

(0)
wp )T with the estimate from the unweighted approach.

Step 2: Given a current estimate β̂
(k)

w , compute Ŵ
(k)

i and Λ̂
(k)

i and then substitute them into

equation (4.9).

Step 3: Obtain updated β̂
(k+1)
wj of j-th parameter (j = 1, · · · , p) by solving equation (4.9)

using the bisection method, fixing all other arguments. We recurrently update the parame-

ters.
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Repeat Steps 2 and 3 until the algorithm converges. We applied the classical bootstrap

method to compute the variance estimator. The arguments in Jung [33] and Wang and

Fygenson [73] can be extended to establish the asymptotic properties of the weighted es-

timators. In this paper, we will examine the performance of proposed estimators through

simulation study.

4.3 SIMULATION STUDY

We conduct simulation study to investigate the finite sample performance of two median

regression methods (unweighted and weighted) for censored longitudinal data. We exam-

ine the relative efficiency of these two methods and compare them with the naive method

where censored observations are replaced by the half of the detection limit. When normality

assumption is questionable in practice, median regression analysis provides an important

alternative to traditional mean regression analysis. We demonstrate the performance of me-

dian regression method for data from non-normal distributions and compare the results with

those using mixed models. We also assess whether median regression model is more robust

to misspecification of covariance structure as compared to the mixed model.

We generate the latent longitudinal data, y∗it, from the model

y∗it = β0 + β1xi + β2t+ eit − F−1e (0.5), (4.10)

for i = 1, · · · , n. The covariates include a time-invariant binary variable xi, generated from

a Bernoulli(0.3) distribution and a time factor t = 1, 2, 3 to index three follow-up times of

measurements. The parameters are selected as (β0, β1, β2) = (−1, 1.5, 0.5). Random error

vectors, e1, · · · , en, are assumed to be mutually independent with a multivariate distribution.

Fe(·) is the cumulative distribution function of eit and F−1e (0.5) corresponds to the median

of eit. To achieve a desirable censoring proportion (c = 0.2 and 0.4), we choose the detection

limits as (100×c)-th sample percentile of the simulated data. The variance estimation is

based on 1000 bootstrap samples. In particular, we consider the following configurations.
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(1) For evaluation of performance of median regression methods, two hundred simulations

are conducted with sample size n=200.

ei ∼ MVN(0, σ2R), where σ2 = 1 and correlation matrix R is exchangeable with corre-

lation coefficient ρ = 0, 0.3, 0.5, 0.6 and 0.8.

(2) For comparison between median regression and mean regression under various distribu-

tions, five hundred simulations with n=200 were conducted.

– case 1: Multivariate normal distribution, exchangeable correlation matrix

ei ∼ MVN(0, σ2R), where σ2 = 1 and R is exchangeable with ρ = 0.8.

– case 2: Multivariate normal distribution, unstructured correlation matrix

ei ∼ MVN(0, σ2R), where σ2 = 1 and

R =


1.00 0.37 0.55

1.00 0.77

1.00

 .

– case 3: Asymmetric distribution

ei = exp(ξi)− 1 and ξi ∼ MVN(0, σ2R), where σ2 = 1 and R is exchangeable with

ρ = 0.8.

– case 4: Heteroscedastic model where variance depends on covariates

ei = exp(ξi)− 1 and ξi ∼ MVN(0, 1/(1 + xi + t)R), where R is exchangeable with

ρ = 0.8. The conditional distribution of yi given xi and t is asymmetric about its

median and its variance varies with xi and t.

37



Table 4: Simulation Results of Censored Median Regression

β β0 = −1 β1 = 1.5 β2 = 0.5

Method Omnia CMRb wCMRc Naived Omnia CMRb wCMRc Naived Omnia CMRb wCMRc Naived

ρ =0.5 , 20% censored
Bias -0.012 -0.021 -0.020 0.268 0.010 -0.013 0.009 -0.077 0.003 0.006 0.005 -0.092
SE 0.132 0.127 0.127 0.217 0.147 0.147 0.147 0.157 0.053 0.054 0.053 0.079
empSE 0.122 0.133 0.133 0.061 0.144 0.145 0.145 0.131 0.047 0.050 0.049 0.040
MSE 0.034 0.037 0.037 0.125 0.034 0.045 0.045 0.050 0.005 0.006 0.006 0.017
CP 0.935 0.915 0.960 0.900 0.935 0.925 0.950 0.935 0.950 0.945 0.950 0.895

ρ =0.8 , 20% censored
Bias -0.007 -0.012 0.011 0.270 0.005 0.007 0.006 -0.080 0.002 0.004 -0.003 -0.092
SE 0.124 0.114 0.113 0.190 0.168 0.167 0.166 0.177 0.044 0.044 0.043 0.065
empSE 0.118 0.122 0.122 0.058 0.172 0.173 0.173 0.151 0.038 0.039 0.038 0.041
MSE 0.030 0.030 0.030 0.116 0.060 0.060 0.060 0.063 0.003 0.004 0.003 0.015
CP 0.930 0.890 0.930 0.760 0.900 0.885 0.940 0.920 0.960 0.962 0.945 0.750

ρ =0.5 , 40% censored
Bias -0.012 -0.051 -0.050 0.820 0.010 0.024 0.022 -0.255 0.003 0.014 0.013 -0.278
SE 0.132 0.280 0.278 0.068 0.147 0.178 0.177 0.133 0.053 0.092 0.092 0.053
empSE 0.122 0.256 0.253 0.046 0.144 0.168 0.168 0.133 0.047 0.081 0.080 0.036
MSE 0.034 0.156 0.153 0.680 0.034 0.064 0.063 0.102 0.005 0.017 0.016 0.082
CP 0.935 0.935 0.945 0.000 0.935 0.920 0.950 0.545 0.950 0.960 0.950 0.005

ρ =0.8 , 40% censored
Bias -0.007 -0.021 -0.020 0.817 0.005 0.012 0.011 -0.260 0.002 0.006 0.005 -0.276
SE 0.124 0.244 0.238 0.070 0.168 0.189 0.188 0.147 0.044 0.077 0.073 0.055
empSE 0.118 0.216 0.205 0.049 0.172 0.178 0.178 0.152 0.038 0.065 0.064 0.035
MSE 0.030 0.108 0.107 0.677 0.060 0.076 0.075 0.114 0.003 0.011 0.010 0.081
CP 0.930 0.935 0.940 0.000 0.900 0.900 0.940 0.590 0.960 0.965 0.950 0.005

a Omni: Omniscient, b CMR: Censored Median Regression, c wCMR: Weighted Censored
Median Regression, d Naive: Censored observations replaced by LOD/2

In Table 4, we display the results of median regression under various censoring proportions

and correlation coefficients. We compare four estimators, Omniscient estimator based on

the complete latent data without censoring, censored median regression (CMR) estimator,

weighted CMR (wCMR) estimator accounting for serial correlation, and naive estimator

where censored data are replaced by half of the detection limit. All the estimators ex-

cept for wCMR estimators were obtained under working assumption of independence. The

weighting matrix W−1
i was specified in the weighted estimating equations. We report the

biases along with the standard errors (SE) estimated from bootstrap method, empirical SE

(empSE) calculated as sample standard deviation of estimates, mean squared errors (MSE),

and empirical 95% coverage probability (CP). As expected, naive approach leads to poor

estimators with large bias and its performance becomes worse as the censoring proportion is

increased. In contrast, two censored median regression estimators perform well even when

40% of data are censored, as compared to the Omniscient estimators which serve as a gold
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standard. Bootstrap estimators of standard errors are in good agreement with the empirical

standard errors for all the cases. The empirical 95% confidence intervals also have reasonable

coverage rates. Comparing to CMR estimators, wCMR estimators are in general less biased

and more efficient as indicated by the smaller standard errors. The wCMR estimators are

also associated with better empirical coverage probability rates. The improvement resulted

from the weighted approach is more significant when the correlations between measurements

are higher and the censoring proportion is bigger (say, rho=0.8, c=0.4). These results are

consistent with those observed for the uncensored data. As demonstrated previously (He et

al., [24], Yi and He, [77]), the relative efficiency gain from the weighted methods may be mild

for finite sample size when the serial correlations is not high enough. For censored data, the

proportion of censoring also appears to be an important factor affecting the efficiency gain

of the weighted approach.

Table 5: Simulation Results Comparing Censored Median Regression with Tobit

Mixed Model

β β0 = −1 β1 = 1.5 β2 = 0.5

Method Omnia CMRb wCMRc TMd Omnia CMRb wCMRc TMd Omnia CMRb wCMRc TMd

Case 1: MVN, Exchangeable, 40% censored
Bias 0.009 -0.036 -0.020 0.018 0.002 0.021 0.016 -0.003 -0.003 0.009 0.002 -0.005
SE 0.120 0.321 0.310 0.101 0.116 0.171 0.165 0.058 0.044 0.100 0.097 0.030
empSE 0.114 0.300 0.293 0.097 0.109 0.158 0.152 0.056 0.042 0.095 0.092 0.029
MSE 0.028 0.204 0.194 0.020 0.026 0.056 0.053 0.006 0.004 0.020 0.017 0.002
CP 0.944 0.914 0.920 0.950 0.946 0.952 0.948 0.962 0.954 0.942 0.952 0.950

Case 2: MVN, Unstructured, 40% censored
Bias 0.008 -0.037 -0.031 0.119 0.002 0.025 0.024 -0.022 -0.003 0.009 0.003 -0.045
SE 0.122 0.322 0.303 0.110 0.116 0.172 0.166 0.074 0.053 0.104 0.100 0.042
empSE 0.117 0.319 0.316 0.111 0.110 0.169 0.167 0.076 0.050 0.103 0.103 0.041
MSE 0.029 0.214 0.205 0.039 0.026 0.060 0.058 0.012 0.005 0.022 0.020 0.005
CP 0.934 0.888 0.900 0.780 0.950 0.936 0.942 0.938 0.954 0.942 0.945 0.828

Case 3: Asymmetric distribution, 40% censored
Bias 0.012 -0.010 -0.009 -0.403 0.002 0.006 0.006 0.690 -0.002 0.002 0.001 0.131
SE 0.122 0.373 0.360 0.270 0.118 0.190 0.187 0.176 0.044 0.112 0.109 0.089
empSE 0.113 0.356 0.335 0.270 0.111 0.179 0.171 0.234 0.042 0.110 0.106 0.083
MSE 0.029 0.272 0.251 0.310 0.027 0.070 0.066 0.563 0.004 0.025 0.023 0.032
CP 0.952 0.954 0.940 0.740 0.950 0.956 0.954 0.012 0.950 0.945 0.945 0.752

Case 4: Heteroscedastic model, 40% censored
Bias 0.008 0.012 0.011 0.457 0.000 -0.001 -0.001 -0.017 -0.002 -0.004 -0.004 -0.170
SE 0.080 0.161 0.160 0.085 0.048 0.060 0.059 0.057 0.024 0.050 0.049 0.029
empSE 0.074 0.160 0.160 0.105 0.045 0.060 0.058 0.062 0.022 0.050 0.049 0.031
MSE 0.012 0.053 0.052 0.228 0.004 0.007 0.006 0.007 0.001 0.005 0.005 0.031
CP 0.946 0.940 0.943 0.020 0.948 0.952 0.954 0.914 0.956 0.940 0.944 0.004

a Omni: Omniscient, b CMR: Censored Median Regression,
c wCMR: Weighted Censored Median Regression, d TM: Tobit Mixed Model
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Table 5 shows the results of median regression models (CMR and wCMR) comparing to

those from the Tobit-Mixed (TM) model which is a direct extension of Tobit regression

to longitudinal data. We fit the mixed models using SAS procedure PROC NLMIXED

(SAS Institute Inc. 2000) as illustrated in Thiebaut and Jacqmin-Gadda [69]. We specify

the correlation structure in the Tobit-Mixed model as exchangeable by including only the

random intercept. When data are generated from multivariate normal distribution with

exchangeable correlation structure (case 1), mixed model results in better estimators with

smaller bias in general and much smaller variance. It is not surprising since the mixed

models are specified correctly in this case and should lead to more efficient estimators than

median regression models. On the other hand, when the underlying correlation matrix is

unstructured (case 2), CMR and wCMR estimators correspond to smaller bias and better

coverage rates comparing to TM estimators. For non-normally distributed data or even

heteroscedastic data (cases 3 and 4), median regression models still perform reasonably well

as expected, while mixed models fail to give comparable results.

4.4 APPLICATION

In this section, we illustrate the proposed methods with the cytokine data of GenIMS study.

GenIMS is a multi-center cohort study of 2320 subjects with Community-Acquired Pneu-

monia (CAP) presenting to the emergency departments of 28 US academic and community

hospitals between 2001 and 2003. One of the primary goals is to investigate the inflamma-

tion pathways of severe sepsis defined as CAP complicated by new-onset organ dysfunction.

Cytokines including tumor necrosis factor, IL6 (interleukin-6) and IL10 were measured for

patients admitted to the hospital daily during the first week and weekly thereafter. As men-

tioned previously, unexpected left-censoring data (Figure 1) were seen due to low sensitivity

of assays. Now we take IL6 as an example to demonstrate our median regression meth-

ods. IL6 concentrations were measured using an Immulite assay (Diagnostic Products, Los

Angeles, CA). The minimum detectable limit for IL6 was 5 pg/ml per the manufacturer’s

specifications and the overall proportions of left-censoring was 27.34%. We assume a log-
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normal distribution for IL6 and analyzed data in a natural log scale. Excluding those whose

diagnosis of CAP were ruled out after hospital admission, we include 1886 inpatients in the

analysis. Among these patients, 583 (31%) subjects developed severe sepsis.

Table 6: Longitudinal Analysis of GenIMS IL6 vs Severe Sepsis

Method Tobit Mixeda CMRb Weighted CMRc

Parameter Est. SE p-value Est. SE p-value Est. SE p-value

Intercept 3.766 0.182 0.000 3.060 0.156 0.000 3.084 0.160 0.000
Sepsis 0.423 0.091 0.000 0.341 0.134 0.011 0.322 0.143 0.024
Day -0.538 0.016 0.000 -0.329 0.017 0.000 -0.345 0.019 0.000
Sepsis∗Day 0.162 0.024 0.000 0.108 0.027 0.000 0.123 0.029 0.000
Age 0.001 0.003 0.843 0.007 0.002 0.002 0.008 0.002 0.002
White 0.058 0.099 0.557 -0.032 0.080 0.694 0.030 0.081 0.715
Male 0.257 0.080 0.001 0.260 0.069 0.000 0.267 0.068 0.000
Charlson>0 -0.296 0.091 0.001 -0.298 0.074 0.000 -0.335 0.074 0.000

a Tobit Mixed: Tobit Mixed Model, b CMR: Censored Median Regression
c Weighted CMR: Weighted Censored Median Regression

We examine the relationship between severe sepsis and IL6 trajectory during the first

week of hospitalization using Tobit-Mixed model, censored median regression (CMR) model

and weighted CMR model. The response variables is log transformed IL6 and the covariates

adjusted in the models are age, gender, race (whites vs. non-whites) and charlson comor-

bidity index (>0 vs. 0). Table 6 summarizes the estimate (Est.), standard error (SE), and

p-value for each variable of interest. The p-values were calculated based on the Wald test

using the bootstrap estimator of standard error. The results from all the models are com-

parable except for the effect of age. Both mean and median regression analysis suggest that

IL6 is higher in patients who developed severe sepsis compared to those who did not. The

effect of age is not significant in mean regression model, but highly significant in median

regression model. We observe very similar results from weighted and unweighted median

regression analysis. It is possible that the overall intra-subject correlation is not strong

enough to see the difference between these two methods. Figure 2 displays the estimated

trajectories of IL6 by severe sepsis group from the three methods (TM, CMR and wCMR)

for a white male at age 72 (median) with Charlson index > 0. There is a decreasing trend

in IL6 concentration over time and IL6 decreases faster in patients without severe sepsis.

The difference in mean and median trajectories indicates that the normality assumption may
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Figure 2: Mean and Median Regression Results for GenIMS Cytokine IL6

not be appropriate. Comparing to the median regression model, the mean regression model

demonstrates a bigger difference between patients who developed severe sepsis and those

who did not.

4.5 DISCUSSION

Since biomarker data are often highly skewed, median regression has been increasingly used

for analyzing longitudinal data in biomedical studies. As a more flexible and robust method,

median regression not only provides a valid approach for data that are not normally dis-

tributed, but also may provide additional insights on biological mechanisms that are not

revealed by mean regression models. We considered a censored median regression model to

accommodate the data censored at a fixed detection limit. We proposed the weighted esti-

mating equations to incorporate the serial correlations between the repeated measurements.

Simulation study showed that our estimators performed well under various distributional

assumptions. The improvement upon the unweighted estimator is much noticeable when the
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censoring is heavy or the marker measurements are highly correlated. Our estimating proce-

dure can be directly extended to the general quantile regression models. Other resampling

methods such as bootstrapping estimating equations (Parzen [47]; Wei and Ying [47]) and

Markov chain marginal bootstrap method (He and Hu [24]) are more efficient for variance

estimation in the quantile regression analysis. Application of these methods to the censored

data and weighted estimating equations merits further study.
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5.0 QUANTILE REGRESSION FOR LONGITUDINAL BIOMARKER

DATA SUBJECT TO LEFT CENSORING AND DROPOUTS

Quantile regression is increasingly used in longitudinal analysis of biomarker data due to its

robustness to non-normality and heteroscedasticity. However, in some biomedical studies,

the biomarker data can be censored by detection limits of the bioassay used or missing when

the subjects drop out from the study. Inappropriate handling of these two issues leads to

biased estimation results. We consider the censored quantile regression approach to account

for the censoring data and apply the inverse weighting technique to adjust for dropouts.

In particular, we develop a weighted estimating equation for censored quantile regression,

where an individual’s contribution is weighted by the inverse probability of dropout at the

given occasion. We conduct simulation studies to evaluate the properties of the proposed

estimators and demonstrate our method with a real data set from Genetic and Inflammatory

Marker of Sepsis (GenIMS) study.

5.1 INTRODUCTION

With the advance of biotechnology, more and more biomedical studies are attempting to find

out the informative biomarkers to better understand the natural history and development

of a complex disease, identify the patients at high-risk and guide the therapeutic strategies

for intervention. The biomarker data are often measured over a period of time to determine

if the temporal changes differ between the patients who develop disease and those who do

not. The Genetic and Inflammatory Markers of Sepsis (GenIMS) study (Kellum et al. [70])

is such a cohort study of 2320 patients with community-acquired pneumonia (CAP). CAP is
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the leading cause of sepsis. Multiple biomarkers on different pathways were measured daily

in the first week and weekly thereafter for the CAP patients admitted to the hospitals. The

investigators hope to improve the understanding of the biological mechanisms of sepsis, and

identify the biomarkers indicating the risk for subsequent outcomes such as severe sepsis,

multiple organ failure, and death. Unfortunately, the assays used were not sensitive enough.

There are moderate to heavy censoring in pro-inflammatory markers interleukin (IL6) and

tumor necrosis factor (TNF), and anti-inflammatory marker IL10. The censoring percent-

age can be as high as 50%-70% on later days of hospitalization. Furthermore, biomarker

measurements are missing at certain days due to administrative errors, death or discharge

early. The dominant missing pattern is monotone missing because clinically too ill and too

well individuals were dead or discharged prior to one week. Current methods to deal with

both censoring and missing data due to dropout are mainly likelihood based approaches.

The common strategy is to apply a joint analysis of longitudinal data and dropout process.

Mixed models have been extended to accommodate the censoring data due to detection limit

(Hughes [29]; Lyles et al. [42]; Jacqmin-Gadda et al. [31]; Wu [75]). To account for the

informative dropout, Lyles et al. [42] assumed a joint multivariate normal distribution for

the random effects of the mixed models and time (in natural log scale) to dropout. The

impact of the dropout process on the biomarker trajectory was explained by the association

between time to dropout and the individual random effects. Thiebaut et al. [70] considered

a similar joint model including a bivariate linear mixed model for the two markers and a log

normal survival model for time to dropout. Gao and Thiebaut [66] took the joint modeling

approach for longitudinal and binary outcomes. Under the framework of the shared random

effect model, they used mixed model for the longitudinal outcomes and a binary survival

model for the incidence of dropping out.

Generalized estimating equation (GEE) approach is another popular method for lon-

gitudinal analysis of continuous or categorical data. Comparing to mixed models which

assume normality for the outcome variable, GEE method only requires correct specification

of the mean structure and is robust to misspecification of the covariance structure. However,

development of appropriate methods using GEE approach for censored data is challenging

because GEE approach is not likelihood based method. In the field of econometrics, quantile
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regression has been used due to its robustness to non-normality or heteroscedasticity. The

recent improvements in computational methods for quantile regression make it an appeal-

ing approach for biomedical studies. Quantile Regression imposes minimal assumption on

the quantiles of the response variable, and allows one to relate various quantile levels (e.g.,

median, 25th, 75th percentiles) to the covariates differently. As an important alternative

to the mean regression models, quantile regression models may provide a global assessment

of covariate effects. Quantile regression methods for data censored at a fixed constant were

well established for independent data (Powell [50, 51]) and extended to the longitudinal data

(Wang and Fygenson [73]). If the biomarker measurements are missing due to dropout, stan-

dard estimating functions of quantile regression models leads to biased estimates when the

missing mechanism is related to the observed responses, namely missing at random (MAR).

Under the assumption of monotone missing and MAR, Lipsitz et al. [36] and Yi and He [77]

adopted the inverse probability weighted GEE approach for quantile regression models. The

basic idea of this approach is that an individual’s contribution to the estimating equations

is weighted by the inverse probability of dropout at the given occasion. In this study, we

will apply such a weighting technique for censored quantile regression model to address both

censoring and dropout issues in the biomarker analysis of GenIMS study. We introduce the

notation and methods in section 5.2. The simulation results are presented in section 5.3,

followed by a numerical example given in section 5.4.

5.2 NOTATION AND METHODS

5.2.1 Censored Quantile Regression

Let y∗it be the biomarker measurement on the i-th subject at time t. We can consider the

following linear regression model

y∗it = xTitβ + eit, i = 1, · · · , n; t = 1, · · · ,mi, (5.1)

where xit is a p×1 vector of covariates, β is an unknown p×1 vector of regression parameters,

eit is the random error and T denotes the transpose of a vector or matrix. The random errors
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are correlated within the subject to reflect the serial correlations of repeated measurements

within each individual. If the τ -th quantile of error term is assumed to be zero, a quantile

regression model relating the τ -th quantile of response variable, qτ (y
∗
it), to a set of covariates

has the form

qτ (y
∗
it) = xTitβτ , 0 < τ < 1, (5.2)

where βτ is a vector of quantile specific regression parameters. When there exists a lower

detection limit, say c, for biomarker measurements, we can not observe y∗it if it has a value

below c. In other words, y∗it is a latent variable and we only observe yit = y∗it, if y∗it > c. The

quantile regression model for censored longitudinal data can be defined as

yit = max(c,xTitβτ + eit), (5.3)

which is a straightforward extension of Powell’s [50] censored regression model (CQR) for

the univariate case. To obtain the parameter estimator of CQR, Powell [51] proposed to

minimize an objective function

Qn(β, τ) =
1

n

n∑
i=1

ρτ (yi −max{c,X iβτ}), (5.4)

where the loss function ρτ (u) = u{τ − I(u ≤ 0)} and I(·) is an indicator function. The

function ρτ reflects the contribution of residuals; The absolute values of residuals are weighted

by τ if the original residual is positive, and weighted by 1−τ if it is negative. When τ = 0.5,

Qn(β, τ) is equivalent to the objective function for median regression based on the least

absolute deviations criterion. For longitudinal censored data, we can mimic the idea of GEE

approach to define the objective function as

Qn(β, τ) =
1

n

n∑
i=1

m∑
t=1

ρτ (yit −max{c,xTitβτ}). (5.5)

under the working independence assumption. The resulting estimates are equivalent to the

solution of estimating equation

Sn(β, τ) =
1

n

n∑
i=1

m∑
t=1

xit[τ − I(yit ≤ max{c,xTitβτ})] = 0 (5.6)
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Wang and Fygenson [73] have used the same objective function to estimate the nuisance

regression parameters when they made inference for a subset of quantile regression param-

eters. They derived the asymptotic properties for the resultant estimators and showed that

under mild conditions, the estimators are strongly consistent and asymptotically normal

even though the objective function treated all observations as if they were independent. For

standard quantile regression, the objective function is not smooth, linear programming algo-

rithm or iterative bisection methods have been used for parameter estimation. For censored

quantile regression, the objective function is neither smooth nor convex, which implies that

multiple local optima may exist. The BRECNS algorithm of Fitzenberger [16] has been

shown to perform better than the standard linear programming algorithm.

When there are dropouts and the missingness depends on the previous responses(i.e.

MAR), the estimators based on equation (5.5) or (5.6) is no longer consistent because the

estimating equation is not consistently unbiased as found out by Lipsitz et al. [36] for

the uncensored data. The weighting technique of Robins et al. [53] has been used widely

for semiparametric regression modeling of incomplete longitudinal data. An individual’s

contribution to the traditional estimating equations is weighted by the inverse probability

of being observed. This approach was taken by Lipsitz et al. [36] for quantile regression for

longitudinal data with dropouts under the MAR mechanism. However, since the weighted

estimating equations for quantile regression models are not continuous, the asymptotic results

presented by Robins et al. [53] for mean regression models are not directly applicable. Yi and

He [77] recently established the asymptotic properties of the median regression estimators.

In the next section, we will show how to apply this weighting technique to the censored

quantile regression model.

5.2.2 Censored Quantile Regression accounting for dropouts

LetDi be a random variable indicating when the i-th subject was dropped out from the study.

Suppose the measurements for the first time point are observed for all the individuals, Di

can take values between 2 and m+ 1, with m+ 1 corresponding to a complete measurement

sequence. Then the dropout probability at the di occasion for the i-th subject is πidi =
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Pr{Di = di} (di = 2, · · · ,m + 1). Now we consider the weighted estimating equations for

censored quantile regression model as

Sdn(β, τ) =
1

n

n∑
i=1

1

πidi

di∑
t=1

xit[τ − I(yit ≤ max{c,xTitβτ})]

=
1

n

n∑
i=1

m+1∑
di=2

I(Di = di)

πidi

di−1∑
t=1

xit[τ − I(yit ≤ max{c,xTitβτ})] = 0. (5.7)

The basic idea of weighted estimating equations is to weight each individual’s contribution

by the inverse probability of dropout at the given occasion. Let x?it = 1
πidi
xit and y?it = 1

πidi
yit,

equation (5.7) can be written in the same form as the unweighted estimating equation (5.6)

as follows.

Sdn(β, τ) =
1

n

n∑
i=1

di∑
t=1

1

πidi
xit[τ − I(π−1idi yit ≤ max{c, π−1idix

T
itβτ})]

=
1

n

n∑
i=1

di∑
t=1

x?it[τ − I(y?it ≤ max{c,x?Tit βτ})] = 0, (5.8)

Thus, the corresponding objective function is in the form of

Qd
n(β, τ) =

n∑
i=1

di∑
t=1

ρτ (y
?
it −max{c,x?it

Tβ}). (5.9)

Now the BRECNS algorithm of Fitzenberger [16] can be straightly applied to minimize this

objective function. If πidi is correctly specified, i.e., the dropout process is correctly modeled,

the weighted estimating equations in (5.7) are unbiased for 0 at the true value of βτ even if

the dropout depends on the previous responses. Because following the derivation of equation

(8) in Lipsitz et el (1997), we can easily show that

E

[
I(Di = di)

πidi

di−1∑
t=1

xit[τ − I(yit ≤ max{c,xTitβτ})]

]

= EXi

(
Eyi|Xi

[
di−1∑
t=1

xit[τ − I(yit ≤ max{c,xTitβτ})] EDi|yi,Xi

(
I(Di = di)

πidi

) ])

= EXi

(
Eyi|Xi

[
di−1∑
t=1

xit[τ − I(yit ≤ max{c,xTitβτ})]

])
= EXi

(0) = 0. (5.10)
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Since the variance estimation for quantile regression estimators involves the estimation of a

unspecified distribution of error term, and depends on the underlying true covariance struc-

ture, we circumvent this computational problem by using the bootstrap method and evaluate

the performance of bootstrap estimator in the simulation study. To retain the correlation

structure of the responses, we take each subject as the sampling unit, and draw a random

sample of size n with replacement from the original data. To facilitate the estimation with

bootstrap sample {ỹ?it, x̃?it}, we minimize the following modified convex objective function

1

n

n∑
i=1

mi∑
t=1

ρ(ỹ?it − x̃?Tit β)I(x̃?Tit β̂ > c), (5.11)

as in Wang and Fygenson [73], where the loss function ρ(u) = u{τ − I(u ≤ 0)} and β̂ is

the estimator obtained from equation (5.8). Heuristically, it follows from the arguments

in Wang and Fygenson [73] and Yi and He [77] that the estimator of β is consistent and

asymptotically normal if the dropout probability πidi is either known or can be consistently

estimated. If the missing data due to dropout arise from the MAR mechanism, estimation

of dropout probability is straightforward. Let Rit represent the missing status of response

variable yit(i = 1, · · · , n; t = 1, · · · ,m) and Rit = 1 if yit is observed and 0 otherwise. Then

Rij = 0 implies that Rij′ = 0 for all j′ > j. As described in Liptisz et al. [36] and Yi and He

[77] for standard quantile regression with dropout data, we can write dropout probability

πidi at occasion di as

πidi = pr(Di = di) = pr(Di = di|yoi ,X i) (5.12)

= pr(Ri2, · · · , Ri,di−1 = 1, Ri,di = 0|yi1, · · · , yi,di−1,X i) (5.13)

where yoi is the observed response history prior to dropout, and X i = {Xi1, · · · , Xim} is a

set of covariates observed in the complete study period. If we define ηit = pr(Rit = 1|Ri1 =

· · · = Ri,t−1 = 1, yi1, · · · , yi,t−1,X i), we can write the dropout probability

πidi = {
di−1∏
t=2

pr(Rit = 1|Ri1 = · · · = Ri,t−1 = 1, yi1, · · · , yi,t−1,X i,α)} ×

{1− pr(Ridi = 1|Ri1 = · · · = Ri,di−1 = 1, yi1, · · · , yi,di−1,X i,α)}I{di≤m}

=

(
di−1∏
t=2

ηit

)
(1− ηidi)I{di≤m}, (5.14)
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where I{·} is an indicator function. Now appropriate regression models such as logistic

regression model can be used to model ηit, and then we can obtain the estimate of πidi based

on the equation above. We will illustrate the estimation procedure in details in section 5.4

using GenIMS data set as an example.

5.3 SIMULATION STUDY

We simulated longitudinal response variable from the model

y∗it = β0 + β1xi + β2t+ eit − F−1e (τ), i = 1, · · · , n; t = 1, · · · ,m, (5.15)

where covariates include the indicator variable xi, simulated from Bernoulli(0.5) and t is the

follow-up time. Error term ei ∼ MVN(0, σ2R), where σ2 = 1 and R is an m×m correlation

matrix with exchangeable structure (correlation coefficient ρ = 0.3). Fe(·) is the CDF of

eit and F−1e (τ) is the τ -th quantile of eit. We set β = (β0, β1, β2)
T = (−2, 2, 3)T , m = 4

and overall censoring percentage was 20% or 30%. We conducted two hundred simulations

with sample size equal to 200. One thousand bootstrap samples were generated for variance

estimation. For the dropout process we employed logistic regression model

logit(ηit) = α0 + α1yi,t−1 + α2xi, (5.16)

where the parameter vector α=(α0, α1, α2)
T = (2.5,−0.3, 0)T .

Table 7 shows the comparison between CQR and CQR adjusting for dropout (D-CQR)

using true πidi and estimated π̂idi . To estimate π̂idi , we used logistic regression model by

replacing the censored observations of yi,t−1 with half of detection limits. We present the

results from median regression when 20% of data are left-censored and 75th percentile re-

gression when censoring is increased to 30%. In general, D-CQR approach provides much

better estimates than CQR for different quantile levels as indicated by much less bias in the

estimates. The bootstrap estimators of SE are in good agreement with empirical estimators,

and empirical 95% coverage rates are reasonable. The D-CQR estimates are very close to

omniscient estimates when the dropout probability is known. If the estimates of dropout
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probability are used, we still obtained reasonable results, although the bias is getting bigger,

especially in the estimate of intercept. It is consistent with the literature that good estimates

of dropout process is critical when the inverse weighting approach is applied. We also found

that when 30% of data are censored, along with the missing data due to dropout, median

regression is no longer stable.

Table 7: Simulation Results of Censored Quantile Regression accounting

for Dropout

β β0 = −2 β1 = 2 β2 = 3

Method OmniaD-CQRb CQRc Omnia D-CQRb CQRc Omnia D-CQRb CQRc

πidi , τ =0.5 , 20% censored
Bias -0.004 -0.008 0.037 0.002 0.001 -0.014 0.001 0.004 -0.022
SE 0.123 0.216 0.202 0.114 0.157 0.149 0.037 0.068 0.063
empSE 0.119 0.200 0.187 0.117 0.154 0.140 0.036 0.065 0.062
MSE 0.030 0.088 0.078 0.027 0.049 0.042 0.003 0.009 0.008
CP 0.940 0.945 0.925 0.910 0.935 0.975 0.945 0.950 0.930

πidi , τ =0.75 , 30% censored
Bias 0.000 0.001 0.037 -0.004 -0.002 -0.012 -0.000 0.001 -0.022
SE 0.134 0.227 0.212 0.120 0.161 0.153 0.040 0.071 0.067
empSE 0.132 0.213 0.198 0.118 0.161 0.147 0.039 0.065 0.061
MSE 0.036 0.098 0.087 0.029 0.052 0.046 0.003 0.009 0.009
CP 0.950 0.965 0.965 0.955 0.945 0.955 0.970 0.960 0.955

π̂idi
, τ =0.5 , 20% censored

Bias -0.004 -0.022 0.037 0.002 0.009 -0.014 0.001 0.008 -0.022
SE 0.123 0.223 0.202 0.114 0.160 0.149 0.037 0.070 0.063
empSE 0.119 0.197 0.187 0.117 0.156 0.140 0.036 0.064 0.062
MSE 0.030 0.090 0.078 0.027 0.051 0.042 0.003 0.009 0.008
CP 0.940 0.960 0.925 0.910 0.950 0.975 0.945 0.940 0.930

π̂idi
, τ =0.75 , 30% censored

Bias 0.000 -0.026 0.037 -0.004 0.005 -0.012 -0.000 0.008 -0.022
SE 0.134 0.232 0.212 0.120 0.163 0.153 0.040 0.073 0.067
empSE 0.132 0.214 0.198 0.118 0.156 0.147 0.039 0.067 0.061
MSE 0.036 0.101 0.087 0.029 0.052 0.046 0.003 0.010 0.009
CP 0.950 0.960 0.965 0.955 0.945 0.955 0.970 0.940 0.955

a Omni: Omniscient, b D-CQR: CQR adjusting for dropout,
c CQR: Censored QR
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5.4 APPLICATION

The Genetic and Inflammatory Markers of Sepsis (GenIMS) study is a multi-center incep-

tion cohort study of 2320 subjects with community-acquired pneumonia presenting at the

emergency departments between November 2001 and November 2003. One primary goal

of the study is to identify important inflammatory markers that indicate the risk of severe

sepsis and subsequent adverse outcomes. The markers of inflammatory and coagulation

pathways were measured daily during the first week of hospitalization and weekly thereafter.

We illustrate the proposed method with the pro-inflammatory cytokine, interleukin-6 (IL6),

which is known to be elevated for patients with infection. Among the 1895 patients who

were confirmed CAP cases admitted to hospitals, biomarker IL6 data were collected from

1188 patients. The objective of our analysis is to investigate whether IL6 changed over

time in the first week of hospitalization and how IL6 trajectory was associated with the

development of severe sepsis. Since our method assumes monotone missing pattern due to

dropout, we exclude those patients who had intermittent missing data and end up with 1182

patients in the analysis cohort. The percentage of dropout was increased over time, half of

the patients dropped out by day 5 and only 19% of patients had measurements up to day 7.

The main reason for dropouts was discharged alive. The mortality rate is only 2.4% in the

first week. It appeared that patients who had lower level of IL6 concentration (or in other

words healthier), were more likely to drop out at later occasions. As we mentioned earlier,

the low sensitivity assays used in GenIMS study introduced moderate to heavy censoring in

the biomarker measurements. Cytokine IL6 was censored at either 2 or 5 depending on the

assay used. The censoring proportion for IL6 was 26.2% overall and increased from 13.3% on

day 1 to 37.3% on day 7. Figure 3 presents distribution of IL6 is still asymmetric after log

transformation. We fitted the quantile regression model for natural log transformed IL6 with

adjusted covariates such as age, gender, race and charlson comorbidity index. As described

in section 5.2, the dropout probability can be calculated through the probability of being

observed at each occasion. We applied logistic regression models to estimate the probability

of being observed at the t-th occasion for the i-th subject, ηit. The initial models include

covariates (age, gender, charlson comorbidity index) that are significantly associated with
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Figure 3: Histogram of IL6 and ln(IL6)

IL6; and the observed IL6 values up to occasion t−1. We chose the final models by stepwise

selection method with cut point of p-value at 0.2. Table 8 summaries the models we used

to estimate probability of being observed for each time point. It appears that older patients

with higher IL6 level are less likely to have missing data. In Table 9, we present median

regression and 75th percentile regression for IL6 using our method (D-CQR), and the stan-

dard CQR without accounting for dropouts. In median regression, both methods yielded

similar significance and direction of covariate effects except for the main effect associated

with severe sepsis (SS). Although the interaction between day and SS is significant in both

analyses, sepsis did not show significant in the analysis using our method, but still signifi-

cant in the CQR analyses. On the other hand, we can find the change in significance from

the 75th percentile regression, especially in age and charlson comorbidity. Figure 4 presents

the estimated median and 75th percentile for white males with median age 72 and charl-

son index>0. Two groups SS vs. NoSS are indicated by different colors and also the lines

with triangles and circles represent D-CQR and CQR method, respectively. D-CQR method

overestimates the quantile and underestimates the decreasing trend over time, especially for

median of IL6 in NoSS group.
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Table 8: Estimation Results for Missing Data Model

Pr(observed)a Parameter Estimate SE P-value

ηi2 Intercept 1.86 0.52 0.0002
Age 0.01 0.01 0.1311
Male 0.52 0.26 0.0449

ηi3 Intercept -0.34 0.45 0.4518
yi2 0.43 0.09 < 0.00001
Age 0.02 0.01 0.0091
Charlson>0 0.46 0.22 0.0343

ηi4 Intercept -1.27 0.33 0.0001
yi2 0.38 0.06 <0.00001
Age 0.02 0.00 0.00001

ηi5 Intercept -1.83 0.32 <0.00001
yi3 0.36 0.06 <0.00001
Age 0.02 0.00 <0.00001

ηi6 Intercept -1.85 0.40 <0.00001
yi1 -0.12 0.05 0.0080
yi3 0.27 0.12 0.0244
yi4 0.20 0.12 0.1036
Age 0.02 0.00 0.0003
Male 0.21 0.17 0.1999

ηi7 Intercept -2.41 0.41 <0.00001
yi1 -0.08 0.04 0.0820
yi4 0.48 0.08 <0.00001
Age 0.02 0.00 0.0009
Male 0.21 0.15 0.1570

a Pr(observed): Probability of being observed
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Figure 4: Quantile Regression for IL6 vs. Severe Sepsis (SS)

Table 9: Quantile Regression for IL6 vs. Severe Sepsis

Method CQRa D-CQRb

Parameter Est SE p-value Est SE p-value

Median Regression
Intercept 3.45 0.21 <0.0001 3.99 0.39 <0.0001
SS 0.30 0.15 0.0530 -0.14 0.29 0.6273
Day -0.44 0.02 <0.0001 -0.93 0.09 <0.0001
Day*SS 0.16 0.04 <0.0001 0.48 0.10 <0.0001
Age 0.00 0.00 0.1104 0.01 0.00 0.0828
White 0.11 0.09 0.2360 0.27 0.15 0.0694
Male 0.35 0.09 <0.0001 0.52 0.12 <0.0001
Charlson>0 -0.31 0.10 0.0011 -0.58 0.13 <0.0001

75th percentile regression
Intercept 4.50 0.27 <0.0001 4.40 0.32 <0.0001
SS 0.72 0.18 <0.0001 0.93 0.36 0.0092
Day -0.35 0.02 <0.0001 -0.48 0.03 <0.0001
Day*SS 0.01 0.04 0.7585 -0.02 0.06 0.7240
Age 0.00 0.00 0.8770 0.01 0.00 0.0655
White 0.10 0.13 0.4731 0.06 0.12 0.5829
Male 0.25 0.10 0.0109 0.30 0.10 0.0040
Charlson>0 -0.09 0.11 0.3884 -0.25 0.13 0.0478

a CQR: Censored QR,
b D-CQR: CQR adjusting for dropout
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5.5 DISCUSSION

Since biomarker data collected in biomedical studies are often highly skewed even after

transformations, quantile regression models are increasingly used to complement the mean

regression models. By selecting a set of quantile levels of interest, one can obtain a global

assessment of treatment or covariate effect on the biomarker profiles. However, left censoring

due to lower detection limit and missing data due to dropout hamper the use of standard

quantile regression models. The estimation procedure for marginal quantile regression model

is based on estimating equation approach. Thus, like the mean regression model based on

generalized estimating equation method, quantile estimating equations are biased when the

longitudinal responses are not missing at random. We applied inverse probability weighting

technique to incorporate the dropouts in censored quantile regression. This method leads

to consistent estimates of the quantile regression parameters provided that the model for

dropouts is correctly specified. As shown in the simulation study, the proposed estimators

have nice finite sample properties. The presented Bootstrap method provided reasonable

variance estimator.

Although our estimators are not fully efficient since we used the working assumption

of independence, our method is easy to implement with standard software packages that fit

quantile regression. As noted in various contexts, incorporating correlations in the estimating

equation may not appreciably improve the efficiency unless the repeated measurements are

highly correlated. Censored quantile regression has been extended to data censored at both

lower and upper thresholds, so our method can be directly extended to doubly censored

biomarker data. Since we considered a MAR scenario for dropout process, the dropout

probability may depend on the previous responses that can also be left censored. We replaced

the censored observations by the half of the detection limit in the logistic regression model.

The simulation results showed that such a naive method performed reasonably well if the

censoring percentage was not high. In practice, it is common to have non-monotone pattern

of missing data. Whether the results of Robins et al. [53] for this case is applicable for

quantile regression merits further study.
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6.0 CONCLUSION AND DISCUSSION

Motivated by the GenIMS study, we proposed several analysis methods to handle the left-

censoring data in the biomarker measurements due to the sensitivity of given assay. we

considered MI procedures based on Gibbs sampling method for multiple censored covari-

ates. We extended such MI method to the left-censored marker data by accounting for the

informative missing mechanism in the MI procedure. MI approach provides a practical and

flexible solution for further complex analysis. Our MI methods performed well for low to

moderate censoring data and can easily accommodate right-censored or interval-censored

data. The simulation presented that if we ignore the correlations between censored markers

then it may lead to biased estimates in the model when the correlation is high alone or mod-

erate combined with high proportion of censoring. Since our method requires assumption of

multivariate normal distribution, which may not be satisfied with marker data, appropriate

transformation need to be considered. When the amount of missingness is not large, there

is evidence [61] that inference made from MCMC based imputed data tend to be robust to

departures from normal distribution. Whether this is the case for censored data and how

the choices of prior distributions affect the results merit further study.

We considered a flexible and robust quantile regression for left-censoring longitudinal

data and extend the censored QR approach to the approach accounting for the missingness

due to dropouts. We first considered a censored median regression (CMR) model to ac-

commodate the data censored at a fixed detection limit. We proposed an improved CMR

estimator by incorporating the serial correlations in the estimating equation as done in Jung

[33] for uncensored data. From the simulation study we found that our estimators performed

well under various distributional assumptions. The improvement upon the estimator from

the approach ignoring the intra subject correlation was much noticeable when censoring was
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heavy or the correlation was strong. Our estimating procedure is easy to fit with standard

software and can be extended to general censored quantile regression models. In addition

to the left-censoring problem, we also encountered missing data due to dropouts in Gen-

IMS study. We applied inverse weighting technique accounting for the dropouts in censored

quantile regression and our proposed estimators have nice asymptotic and finite sample prop-

erties. Bootstrap methods provided reasonable variance estimator and also our method is

easy to implement with standard software package that fit QR. Usually people think the

efficiency gain is minimal unless correlation is very high, but as we have seen from our simu-

lation study, correlation matters if censoring is moderate or heavy. We need to have a better

handling of censored response variable when using them to estimate the dropout probabil-

ity. Since our approach only handles monotone missing pattern due to MAR dropouts, it

is worth considering NMAR mechanism for dropout process. If we consider random effect

model for QR, then we can apply a random effect model approach for both longitudinal

process and dropout process. In this dissertation, the modeling with multiple longitudinal

markers was not considered. Multiple biomarkers are often measured in biomedical studies

to explore the mechanism of the disease development and progression. In GenIMS study,

multiple markers were measured over time from the same or different potential pathways to

better understand the biological mechanisms of sepsis. Because biomarkers from the same,

or different, pathways are intrinsically correlated and likely to play roles interactively in the

development of an adverse outcome, jointly modeling these biomarkers can greatly increase

the efficiency and power of the analysis and provide more insight into their relationship with

the treatment and clinical outcomes. The correlations between markers and the serial cor-

relations within each individual maker should be taken into account in the joint analysis of

multiple longitudinal markers. In the future, we will examine how the proposed censored

quantile regression can be extended to simultaneously modeling the multiple markers in the

same pathway or across the pathways.
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