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MICROSCOPE DATA

Mihaela Obreja, PhD

University of Pittsburgh, 2010

Two-photon laser-scanning microscopy can be used for in vivo neuro-imaging of small ani-

mals. Due to the very high resolution of the images, any brain motion can cause significant

artifacts; often the tissue may get displaced by 10 or more pixels from its rest position. To

scan an image of 512 lines it takes about 1s. During this time, at least 3 heart beats and

1 respiration happen moving the brain. Therefore some tissue locations are scanned several

times while others are missed. Consequently, although the images may appear reasonable,

they can lead to incorrect conclusions with respect to brain structure or function. As lines

are scanned almost instantaneously (≈ 1ms), our problem is reduced to relocating each line

in a three-dimensional stack of images to its “correct” location. In order to model the move-

ment process and quantify the effect of the physiological signal, we collected hybrid image

data: fixing y and z, the microscope was set to scan in the x direction for several thousands

of times. Classifying these lines using Normalized Cross-Correlation kernel function, we were

able to track the trajectory that the line follows due to brain motion. Based on it, we can

estimate the number of replicates that we may need to reconstruct a reliable image. Also,

we can study how it relates with the physiological values. To address the motion effects,

we describe a Semi-Hidden Markov Model to estimate the sequence of hidden states most

likely to have generated the observations. The model considers that at the scanning time

the brain is either in “near-to-rest”(S1) state, or in “far-from-rest”(S2) state. Our algorithm

assigns probabilities for each state based on concomitant physiological measurements. Us-

ing Viterbi’s approach we estimate the most likely path of states and we select the lines
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observed in S1. Because there is no gold standard we suggest comparing our result with a

stack of images collected after the animal is sacrificed. Conditioned on inherent experimental

and technological limitations, the results of this work offer a description of the brain move-

ment caused by physiology and a solution for reconstructing reliable images from in vivo

microscopy.
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1.0 INTRODUCTION

Beauty is in the eyes of the beholder... (Plato).

In recent years we have witnessed the continuous emergence of techniques for measuring

high throughput biological data. The abundance of details revealed by these methods has

clarified some questions, but it has also opened new areas of research. The attention of the

research community has gradually shifted from reductionism towards a more complex un-

derstanding of the various biological systems. Even though it has started with intuition and

experimental observation, modern biological research requires the development of computa-

tional and statistical tools. Such tools are needed in order to model increasingly complex

systems and analyze large quantities of data.

Developing such models relies on interdisciplinary collaboration. While the overarching

goal of research is to gain insight into biological systems, each discipline tends to focus on

its specific domain. For example, doctors and biologists would generally target applications

and experimental hypotheses, while statisticians emphasize data acquisition, developing of

computational modeling, analysis, and validation tools.

In this thesis I present several techniques which allow the accurate reconstruction of brain

tissue images collected through in vivo microscopy. While the microscopy process can pro-

duce very detailed images, the movement in living tissue introduces significant uncertainty.

In all living organisms, the biological components work together to promote development

and sustainability, and therefore, they play a pivotal role in all the processes that occur in

these organisms. Imaging the living brain produces noisy pictures, aspect which should be

carefully considered when drawing conclusions about the structure or functionality of the

tissue.

From an application point of view, our goal is to develop tools that can generate joint
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models with:

1) Quantifiable capabilities, i.e. we need to allow users to evaluate not only whether, for

example, the images are corrupted by motion artifacts, but also by how much;

2) Predictive capabilities, in predicting for example the optimal number of replicates neces-

sary for the reconstruction of a “good” image;

3) Subject -specific capabilities, i.e. the model needs to be adaptable to differences between

species used for experiments;

4) Computational efficiency, since working with large dimensional data is always constrained

by memory size computational complexity.

In this thesis I lay out our research from a statistical angle. However, the main directions

of research in all domains involved will ultimately converge. For example, experimental learn-

ing and applications generate hypotheses; hypotheses influence the type of data acquired,

and thus the development of data acquisition techniques, but also how much we model and

at what level of detail.

In the following sections I present a short introduction to the field of neuroscience. Next

I describe briefly various imaging techniques available, as well as some of the problems that

researchers face when analyzing images produced by these instruments. This information

will give a general sense about the scientific context of our project and will support our

motivations and research goals.

1.1 BACKGROUND

To study the structure of brain cells, scientists have had to overcome several obstacles. The

first one was the size of the features involved, which is beyond the limit of what can be seen

by naked eye. Therefore, the development of compound microscope in the late seventeen

century contributed significantly to the progress of cellular neuroscience.

Technical advances in microscopy during the early 1800s gave scientists their first oppor-

tunity to examine animal tissue at high magnifications. In 1839, German zoologist Theodore

Schwann proposed what is now known as cell theory, speculating that all living tissues are
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composed of microscopic units called cells ([2]).

In 1873, Camillo Golgi discovered that that a small percentage of neurons become entirely

darkly colored when the brain tissue is soaked in a silver chromate solution (now called the

Golgi stain). ). This process reveals the complete neuronal cell body, showing that neurons

have at least two distinguishable parts: a central region that contains the cell nucleus and

numerous thin tubes that radiate away from the central region. The swollen region containing

the cell nucleus is the soma or the cell body. The thin tubes that radiate away from the

soma are called neuritis and they are of two types: axons and dendrites ([2]) (see fig.1.1).

Figure 1.1: A schematic view of two adjacent neurons from http://www.elearningsource.info

The cell body usually gives rise to a single axon which is of uniform diameter throughout

its length. Axons can travel over great distances in the body (about 1m), so histologists have

recognized that they must act like “wires” carrying the output of the neurons. Dendrites on
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the other hand, rarely extend to more than 2 mm length. Many dendrites extend from the

cell body and generally taper to a fine point. Since dendrites come in contact with many

axons, early histologists have speculated that they must act as the antennae of the neuron

which receive incoming signals ([2]).

In 1888, Santiago Ramon Cajal learned about Golgi’s method. He extended Golgi’s credo

that “The gain in brain is mainly in the stain” by labeling many neuronal regions. Over

the next 25 years, he used the Golgi stain to work out the circuitry of many regions of the

brain. He argued forcefully that the neurites of different neurons are not continuous with

one another and must communicate by contact, not continuity. This idea that the nervous

system is made up of discrete individual cells was known as the neuron doctrine ([14]).

Due to technical and experimental limitations, obtaining scientific evidence was only

possible after the development of the electron microscope in 1950s. The increased power

of the electron microscope, described briefly below, made is possible to observe that the

neurites of different neurons are not continuous with one another. Thus, the starting point

in the explanation of the brain must be the study of an individual neuron.

Neurons have a soma diameter of about 5−50µm, while neurites are considerably smaller

at 0.5−4µm. As 100µm is near the limit of resolution for the unaided eye, the light microscope

was a necessary development before neuronal structure could be studied. . However, this

type of microscopy has inherent limitations imposed by the properties of optical lenses and

the wavelength of visible light. With the standard light microscope, the finest possible

resolution is about 0.1µm. The space between neurons measures only about 0.02µm(20nm),

making it difficult to check whether the neurites were continuous from one cell to the next.

This issue could not be resolved until 1950’s when the electron microscope was developed

and applied to biological specimens ([2]).

The electron microscope uses an electron beam instead of light in order to illuminate the

specimen and form magnified images. The limit of resolution for this microscope is about

0.1nm, bringing out interesting insights into the fine structures the neurons.

Today, state of the art microscopes use laser beams to illuminate the tissue and computers

to create digital images. Unlike the traditional methods of light and electron microscopy,

which require tissue fixation, these new techniques give neuroscientists their first chance to
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peer into brain tissue that is still alive. More details regarding this stage in the neuroscience

evolution are presented in the next section.

Bear, et al. (2007) do an overview on how brain research is conducted nowadays and

why its continuation is important to society. “History has shown that understanding how

the brain works is a big challenge. To reduce the complexity of the problem, neuroscientists

break it into smaller pieces for systematic experimental analysis. This is called the reduction-

ist approach. The size of the unit of study defines what is often called the level of analysis.

In ascending order these levels are molecular, cellular, systems, behavioral and cognitive.

The brain has been called the most complex piece of matter in the universe. Brain matter

consists of a fantastic variety of molecules, many of which are unique to the nervous sys-

tem. These different molecules play many different roles that are crucial for brain function:

messengers that allow neurons to communicate with one another, sentries that control what

materials can enter or leave neurons, conductors that orchestrate neuron growth, archivists

of past experiences. The study of the brain at this most elementary level is called molecular

neuroscience. The next level of analysis is cellular neuroscience which focuses on studying

how all these molecules work together to give the neuron its specific properties. Among

the questions asked at this level are: How many different types of neurons are there, and

how do they differ in function? How do neurons influence other neurons? How do neurons

become “wired” together during fetal development? How do neurons perform computations?

From the functionality angle, constellations of neurons form complex circuits that perform

a common function: vision, for example. Thus, we can speak of the “visual system” with

its own distinct circuitry within the brain. At this level of analysis neuroscientists study

how different circuits analyze sensory information, form perceptions with the external world,

make decisions, and execute movements. How do neural systems work together to produce

integrated behaviors? For example, are there different forms of memory accounted for by

different systems? Where in the brain do “mind-altering” drugs act, and what is the normal

contribution of these systems to the regulation of mood and behavior? What neural systems

account for gender specific behavior? Where in the brain do dreams come from? These

questions are studied in behavioral neuroscience. Perhaps the greatest challenge of neu-

roscience is understanding the neural mechanism responsible for the higher levels of human
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mental activity, such as self awareness, mental imagery, and language. Research at this level,

called cognitive neuroscience, studies how the activity in the brain creates the mind.”([2])

The miracle of life is not completely understood and the history of modern neuroscience

is still being written. Unexplained phenomena, many of them unnoticed until very recently,

capture researchers’ attention all over the world. We hope that our efforts will help bring

some explanations.

1.2 IN VIVO IMAGING

Imaging internal body tissue requires non-invasive methods as much as possible, in order to

reduce the external perturbations. Such perturbations can impact the understanding of the

relationships among all components within a cell and how they respond to different stimuli.

For a long time, image processing methods have been applied for improving the quality of

resultant images. Although there is a broad spectrum of applications for these techniques,

due to the nature of input data I will focus mainly on neuro-imaging methods.

Obtaining detailed and reliable information about brain organization is an important

technical challenge in neuroscience. Understanding the neural structure and its functions

require accurate methods to visualize live brain tissue in a non-destructive way. Therefore, a

variety of methods and instruments have been developed to provide insights into the neural

activity.

In the 1970’s, A. M. Cormack and G. N. Hounsfield introduced Computerized Axial

Tomography (CAT). Ten years later, the development of radioligands allowed Single Photon

Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) of

the brain. A big step forward in non-invasive methodology was made by P. Mansfield and P.

Lauterbur with the Magnetic Resonance Imaging, opening the way for a veritable explosion

of technical refinements and MR applications. These imaging techniques allow access to

deeper structures, but they offer significantly lower spatial resolution and longer acquisition

time compared to light microscopy ([28]). Based on a concept first described by M. G.

Mayer ([16]), two-photon microscopy is a newly developed imaging technique which enables
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the study of three dimensional biological specimens with submicrometer resolution ([31]).

Extended to multi-photon microscopy, this method was pioneered and developed into a

practical tool by W. Denk at Cornell University who revealed its superiority to confocal

microscopy. Multi-photon microscopy allows deeper penetration, efficient light detection

and reduced phototoxicity ([4]).

Two Photon Laser Scanning Microscopy (TPLSM) in vivo has become a turning point

for the progress of science, as it can be employed to generate three-dimensional microscopic

imaging in thick tissue. Among other properties, depth discrimination has permitted the

tracing of learning dependant dendritic spine morphology ([19], [20]). Hence, the experimen-

tal design becomes more interesting for researchers. Not only can the spatial distribution of

the microscopic features be measured, but also their developmental progress can be moni-

tored over time. Manipulation of brain activity, sensory experience, learning, alteration in

gene expression, and pharmacological manipulations are only some of the experiments that

take advantage of TPLSM. Also, the subject under the microscope can be used as its own

control, improving significantly the conclusions drawn by reducing sources of variation.

All high-resolution imaging techniques require mechanical stability of the subject or an

exposure time that is fast relative to the rate of movement. Since these techniques often

rely on collecting several replicated or spatially related images, it is extremely important

to control the causes that determine differences among replicates. Analyzing the recorded

images reveals the presence of motion artifacts ([10]) which can be data acquisition related

or subject related ([21]). Process-related distortions may reduce the image quality because of

signal drops and pixel noise, while physiological causes (e.g., respiration or heart beat) may

impact the quality as well. Sirovich and Kaplan ([30]) report seemingly disastrous signal-to-

noise ratios of 0.001 in intrinsic signal optical imaging data, with much of the noise coming

from physiological processes unrelated to the stimulus of interest.

In our research, we look for ways to improve the reliability of TPLSM using statistical

methods for reducing movement artifacts. While we focus on images of the neocortex /

visual cortex, our approach is applicable to a wide array of imaging problems.
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1.3 MOTIVATIONS AND GOALS

Eppur si muove (Galileo Galilei)

Past research has determined that during development, the optic nerves originat from

the eyes, cross at the optic chiasm and project to the Lateral Geniculate Nucleuous (LGN).

The output of the LGN connects with the primary visual cortex (see fig.1.2). However, the

way neurons change and communicate over time in the visual cortex is still under research.

Figure 1.2: A schematic representation of the visual system (from [33]).

To learn more about the growth of the neurons in the visual cortex, researchers have tried

to observe their structural changes over time. This requires a nondestructive way to image

on the in vivo tissue in the brain of a neonatal animal (e.g., ferret or mouse), at different

times during its development. The ferrets are of special interest as they are born blind, with
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the neurons of the visual cortex forming synaptic connections during the first months of life.

TPLSM offers a major advantage due to its dramatically reduced effects of light scattering,

high resolution, deep tissue penetration and minimal tissue damage.

The microscopic areas in the brain that are scanned are of the order of several hundreds

of micrometers or less. Each dendrite represents a possible series of connections with other

neurons, therefore monitoring the dynamics of dendritic structure gives valuable information

about the development of the nerve and neuroactivity.

The pattern generated from laser-excited fluorescence can be analyzed in order to con-

struct a three-dimensional, micro anatomical, structural image. It is common practice to

take multiple images within the same experimental condition and average them to increase

the signal-to-noise ratio. However, brain movement in the in vivo experiment can make the

simple averaging of this data impossible.

In this set-up, limiting the mechanical movement of the subject is critical. A small

movement from one pixel into the neighboring one can cause a significant change in the

value of the observed signal and it can blur the final image data ([9]). Thus, when correlated

against stimulus presentation, the movement artifacts can be misinterpreted and the final

experimental conclusions can be considerably affected.

One major source of noise consists of body dynamics, primarily those processes which

cause a movement rate higher than the scanning rate. This introduces distortions in the

image acquisition - the positions of the pixels get shifted, while some real data is never

scanned. A visual example is presented in Fig1.3 where the same scenario in the brain

has been scanned three consecutive times. By creating difference images between any two

replicates we can easily notice that the main feature in the image has moved from one scan

to the other.

Another way of representing these feature displacements is by constructing an RGB

system, which is based on the way the color is perceived by the human eye. To represent

any color, we specify the intensity of red light (R), green light (G) and blue light (B), the so

called primary colors. In the RGB color model, each pixel of an image is a mixture of these
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Figure 1.3: The difference images between any two replicates of scans in a group of three, for the same
z-slice of rodent brain (the difference between first and second (a), second and third (b), and third and
first (c)). The higher intensity values point out the large difference in pixel intensity for the same location,
i.e. the brain position changed during these recordings. Note: the features have been magnified for better
visualization.

primary colors. It is based on a Cartesian coordinate system in which the color space can

be shown in a cube, as in Fig1.4.

Figure 1.4: Color Cube system: over-imposing three color coded images creates a new image with pixel
intensities varying accordingly to the color cube. Its origin is black (no red, no green, no blue), the opposite
corner (on the diagonal) is white (same amount of red, green and blue), while all the other points are
combinations of certain amounts of red, green and blue ([17])

Thus, we can associate any color with a three dimensional quantity given by its RGB

components. This specifies a point inside a cube, the sides of which correspond to the range

of possible intensities for each of the primary colors.
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One use for the color in image display is to assign different pixel values in a grayscale

image. In our case, the intensities of the pixels from the first replicate had the values

translated to the red range, those from the second replicate were translated to the green

range, while those from the third one were translated to the blue range. According to

Glasbey, et al. (1995) ([15]), this is called pseudo color model, since it does not reflect the

actual color variation in the scene imaged. For us it represents the variation of the pixel

intensity from one image to the other. Sometimes this representation has advantages over

a standard grey scale display, since the human eye is better able to see color differences

and compare colors in different parts of display. Many image features and comparisons can

be more readily made in color than in grey levels, since the problem of sensitivity to the

surrounding area is much reduced ([15]).

An equal response in each of the three components produces a perception of grey or white.

Consequently, if there was no movement between the three replicates, when combining the

pseudo-intensities for each pixel position we should get an image on a grey scale range. The

colored version of fig1.5 shows variations of red, green or blue indicating movement artifacts.

Figure 1.5: The entire RGB version of fig1.3: the images collected at 3 consecutive times at the same
depth (z) have been color -coded in red (1st), green (2nd) and blue (3rd), and then over-imposed. If the pixel
position was not changed then the combined image would have only variations of grey. The presence of red,
green and blue colors indicates the displacement of the scanned feature from one scan to the other. Note:
The right side magnifies the main feature which seems to have been moved from one time to the other.
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Identifying the problem in the image space does not offer a way to solving it. This

research project is concerned with finding solutions for minimizing the motion artifacts and

reconstructing reliable images of the brain. The task may seem simple, as all we need is

to estimate the true positions of the pixels and then put them in the right place. However,

the imaging domain is rich in information and the movement is three dimensional. With so

many sources of variability, it becomes difficult for computer analysis.

Estimating position parameters in rigid body transformations involves solving equations

with about 7 unknowns: 3 for space translations and 4 for rotations ([34]). The input data

we use comes from images with 512x512 pixels which brings the amount of computations to

a very expensive level. At the same time, by the nature of these experiments, the moving

process is continuously affecting each scan, at different degrees, so there is no gold standard

image, free of artifacts that can be used as target in the usual registration methods. Conse-

quently this registration problem might not be considered as a rigid body set-up, but rather

as a dynamic system. Entities of interest which are measurable directly become, in fact,

latent variables in our model. These variables - such as feature location - need to be inferred

from directly measurable data.

It is the goal of this thesis to provide relatively inexpensive ways to describe the movement

in the brain by estimating the amount of shift that pixels may be translated under the

physiological pressure.

By learning as much as possible about the biological and physical phenomena, we were

able to identify several constraints that helped us base our approaches to solve this problem.

One example might be the empirical knowledge that the physiological process is almost

periodic, forcing the brain to move back and forth inside the skull.

Simple mathematical evaluations of the rates of physiological and scanning processes are

presented in more details in the Preliminary Analysis chapter, section 4.1. They prove that

the scanning process is fast enough so that scanning one line can be considered instantaneous.

Therefore we reduced the number of parameters by estimating positions of lines rather than

pixels. However, the scanning process is not fast enough while acquiring an entire image, as

there are at least 3 heart beats and 1 respiration happening during this time.

Constructing synthetic models help us build probabilistic arguments about various as-
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pects of the problem. The scanning process (presented in more detail in a subsequent section)

can be simplified to drawing scanned lines from scenes within the brain. If we define “suc-

cess” as the event of scanning pixels within lines at any of their possible locations in the

“real” scanned scene, counting the actual “successes” implies the use of a binomial distribu-

tion. As the probability of getting no “success” is positive, we need to be aware that there

are lines of pixels that are never scanned.

Consequently, the estimation problem gets more complicated by the fact that we are

given less input and asked to come with more output. That is, the amount of constraint on

each quantity to be computed is less. Another interesting challenge would be to determine

what we should use to fill in these gaps.

Experimental observations suggest that we need to collect multiple images of the same

slice in a time lapse manner to increase the incidence of “true”’ signal in the data. In our

case the same specimen is imaged under different stages of the neuronal development. Hence,

in order to keep the animal in a relatively normal biological state, the experimenters need

to optimize the number of scans, minimizing therefore the tissue damage caused by photo

bleaching.

The objective of TPLSM is to obtain information about the three dimensional shape of

a scene of interest, stacking the output as a list of 2D images. When movies are created

from these stacks (e.g., through animation in the z dimension), we can observe, as expected,

the movement of the brain occurring mostly due to heart beat and respiration. The general

goal of our research would be to adjust the movement in all three directions and thus to

reconstruct a movie where the physiological artifacts are no longer significant. However,

the vectorial decomposition of the signal on each spatial coordinate allows us to focus our

research locally, in a lower dimensional plane. Throughout this thesis I describe each method

we approached locally for fixed slices in the brain, in a two dimensional set-up, and then

extend them including the inter-slice dimension.

The local practical problem that we plan to solve is: given r views of the same scene in

the brain, taken at relatively close but different times, we need to determine a single image

that is adjusted for the movement effects. This problem has two essential characteristics: it

is a parameter estimation of the line locations and a reasonable reconstructed image with
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the main attributes -smoothness and continuity- preserved.

The estimation problem is complex: we need to understand the relationship between

the physiological signal and the output image. Then, for each pixel, we need to find the

most reasonable location that can be predicted from modeling this association. Next, the

digitization of the image may require some adjustments as the estimated positions may be

located at a fractional number of pixels. The two main questions of interest would be when

and how is the movement happening. As the “how” part depends to considerable extent

on the “when” part, we will address it latter in this thesis by describing the computational

algorithms used. It seems that the key would be to determine those lines scanned when

the blood pressure in the brain is smallest, and thus the movement is minimal. We call

this the “near-to-rest” state of the brain. It is biologically impossible to have a completely

resting state while the animal under experiment is alive. While cardiac or respiratory events

happen, the pressure in the brain changes forcing the tissue to enter a “far-from-rest” state.

In this context, we could look at the observed images as divided into blocks of lines that

come from different states. Considering local dependencies within images, both block sizes

and classification rules can vary according to context. One way to address these connections

would be using a hidden Markov model (HMM) as a general framework for context dependent

classifiers. Since we are primarily interested in the “near-to-rest” state, we could estimate

the block of lines that have been scanned in that state and consider them as reference for

the final image.

1.4 PREVIOUS WORK

The process-related noise that corrupts TPLSM pictures is generally addressed through

technological advancements. Motion artifacts however, have not been studied in much detail.

Very few research teams implement post-hoc adjustments which take motion noise into

consideration, generally assuming that the brain under anesthesia is free of movement.

Relative motion between the microscope and brain was apparent during some experi-

ments described by Dombeck and his collaborators ([6]). While scanning the brain in awake
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adolescent and adult mice, they were interested in several forms of neural dynamics such as

persistent activity. Before collecting TPLSM images, the team applied head restraints to the

subject, employing in the same time an air-supported spherical treadmill to allow walking

and running. They adjusted the residual lateral shifts to reduce the image distortions for

post-processing the output. For quantifying in-focal-plane brain motion, the team corrected

the frames back to a reference image selected from the resting state. They used an offline

line-by-line algorithm based on an Hidden Markov Models ([27]), where the probability of

a given sequence of observations (offsets) is a sum of two components, summed over all the

time points in the sequence:

1. the fit of the line scanned at a given time point compared against the reference image at

the given offset;

2. the probability of the observation transitioning from the offset given at the previous time

point to the current offset.

The correction algorithm they developed remapped the recorded line by placing it at the

correspondent x and y shifted location in a reconstructed image.

Since we study scanned images in resting, anesthetized subjects, the brain motion that

we want to adjust is mostly caused by heart beat and respiration. The approach of Dombeck,

et al. ignores these causes, even though they still affected the image taken when the mouse

was not running.

Greenberg and Kerr ([18]) developed an automated correction of fast motion artifacts

based on the Lucas-Kanade framework, operating directly on the motion-distorted two pho-

ton imaging data of awake animals. Like Dombeck, et al., they did not consider external

signals such as heart beat or respiration either. However, when estimating the displace-

ment they used a template image obtained during subsequent anesthesia which they later

generated as an average of multiple scans of the same slice. Estimating the movement trajec-

tories as piecewise linear functions, they used a gradient descent approach which iteratively

estimates the displacement parameters.

Mizrahi, et al. ([24]) have scanned at high speed each region of interest for 4− 10 times

(pixel dwell time 0.64− 0.8µsec/pixel). Then an offline correction algorithm was applied to
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adjust for the movement artifacts:

1. The first stack was considered as a reference for a three dimensional alignment of the rest

of the stacks. These have been spatially shifted so that each component frame would

match with its correspondent reference. Maximal match was defined as the maximal

value of a two-dimensional cross correlation between two images.

2. Within each frame, the correction for the movement caused by the heartbeat was done

as follows. Each frame was divided into segments of 10−20 consecutive lines which were

compared with the appropriate segments in the first stack by a two-dimensional cross

correlation function. Then they were shifted to the location of the peak of the cross

correlation function.

3. Corresponding frames in consecutive stacks were averaged to get a single “average stack”.

4. Averaged images obtained at the previous step were filtered using a two-dimensional

low-pass filter (cutoff, 5 cycles/µm).

Although the above mentioned studies performed their motion correction in different

experimental set-ups, our algorithms confirmed some of their findings, such as existence of

lines in a slice which are never scanned 4.3.

1.5 DISSERTATION OUTLINE

The following chapters describe several approaches that we used in order to capture the

essence of this project. Given a computer image, the intent is to learn from it or to convert

it to a more accurate version.

The experimental instrumentation and some of the underlying physical principles are

presented in Chapter 2. Having a better understanding of the phenomenology clarifies the

meaning of pixel values in a microscopy image. It also drives the decision process when

analyzing the true signal versus noise. Although recorded at different rate and through a

different device, the physiological data plays an important role in making this decision.
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Chapter 3 reviews the pre-processing methods that are generally utilized for decreasing

the measurement related noise and it introduces a new filter for image thresholding. As most

of these methods represent transformations of the original image, the gain or loss associated

with their use justifies the superiority of our novel algorithm. Simplifying the original image

to an optimum degree, we use for analysis a highly correlated image with very few possible

values for pixel intensities. Consequently, most of the background noise is reduced while the

features gain a more consistent shape. Subsequently, the attention is focused on the position

of these features.

Chapter 4 explores a series of preliminary analyses which provide leading guidelines for

the rest of the thesis. The registration methods proposed in this chapter, together with the

basic characteristics of the scanning process re-emphasize the main artifacts that corrupt a

TPLSM image: some lines are scanned multiple times, while others are never scanned. In

the absence of a “gold” standard image to which the observed images can be registered, we

need a more sensitive way to capture the motion process.

Chapter 5 describes a modified experimental set-up which fixes the y and z coordinates

while scanning the brain tissue in the x direction for several thousands times. We start by

analyzing this data using simple methods, and in Chapter 6 we move to more complex

models which estimate the trajectory of the brain movement.

Chapter 7 offers a probabilistic perspective on images, justified by the results described

in the previous chapters. Using hidden Markov models we reconstruct images based on the

physiological values and several replicates for each image.

I conclude in Chapter 8 by discussing the methods and results in the context of our

initial research problem. This chapter emphasizes the novel contributions of our work while

pointing out potential directions for future research.
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2.0 DESCRIPTION OF THE INSTRUMENTS AND THE DATA

Study lends a kind of enchantment to all our surroundings (Honore de Balzac).

The correction of neuro-imaging data by accounting for physiological processes in live

animals has not been thoroughly studied in the past. In general, such correction needs to

be applied when the captured data includes both the experimental induced activity (like

growths of fluorescent neurons or homodynamic response) as well as brain movements that

are not related to the experiment, such as heart beat and respiration. Some studies (e.g.,

fMRI-based approaches) solve this problem by averaging over several replicas to extract a

signal which is small relative to the noise in the acquired data. These techniques introduce a

new source of noise, making the picture more blurred. However, it has not yet been decided

what the golden standard image should be in cases where the physiology is still affecting the

scanning process.

Somewhat more general techniques for image reconstruction are those based on an image

registration process. Their main purpose is to overlay two or more views of the same scene,

taken by different sensors and/or at different times so that the pixels of the same coordinates

in the images correspond to the same real data.

As we will clarify in more detail in the following sections, our scanning process is not

fast enough so the subject’s physiology moves the brain while the images are taken. Thus,

the information gained from different replicate images is usually of a complementary nature:

the data missing from one image may be captured in a different one. Given that useful data

is scattered across the entire set of replicates we need a method to properly integrate it in a

single image.

In the next section I briefly describe the imaging technique and the data we gather for

analysis.
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2.1 TWO-PHOTON LASER SCANNING MICROSCOPY

TPLSM is a unique method that allows a specimen to be imaged in three dimensions, moving

the focal plane to a depth of up to one millimeter without damaging the tissue.

It is based on the interaction of two distinct phenomena: fluorescent dyes and light

excitation. Fluorescence occurs when an electron in the outer shell of an atom absorbs most

of the energy of a photon and gets excited into a higher energy state. This new high energy

state is unstable. A short time later the electron returns to its stable state and emits a

photon of lower energy. In general, there is an inverse proportional relationship between the

wavelength and the energy of the photon. Hence, the wavelength of the emitted photon is

longer than the wavelength of the incident photon. The difference in energy is absorbed by

the tissue as heat.

Under sufficiently intense laser illumination, the simultaneous absorption of two infrared

photons offers enough energy to generate the previously described energetic excitation. This

event can occur if the sum of the energies of the two photons is greater than the energy gap

between the molecule’s ground and excited states. This process is nonlinear as the action of

one infrared photon is not as effective as half of the action of two. Since it depends on the

simultaneous absorption of these photons by a fluorescent molecule, the probability of this

event is a quadratic function of the excitation radiance.

Figure 2.1: The underlying process necessary for TPLSM: two photons with wave length of 860-890nm
combine their energy to excite the fluorophore. The resulting photon with wave length around 500nm is
captured by the microscope and translated into pixel value ([31].
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As applied in the laser-scanning microscope, two- photon fluorescence excitation illumi-

nates a volume of tissue at the focal point with high intensity light at twice the excitation

wavelength. The high intensity illumination is attained by focusing a beam from a high-

energy pulsed laser delivering bursts of 100 femtosecond to 1-2 picosecond pulses at high

frequencies (100 MHz). By using a laser with twice the required wavelength a fluorescence

event can only occur if two photons arrive at the same electron shell simultaneously [32].

This microscope is able to focus at various depths in the visual cortex, by moving the

objective. In our experiments, during the scanning process a laser beam creates fluorescent

emissions in the visual cortex which is then detected by a photomultiplier tube (PMT). This

phenomenon results in a voltage change recorded as pixel intensity value. The resulting

value, originating from an illuminated volume element, represents one pixel in the recorded

image. As the laser scans the z plane of interest, a whole image is obtained pixel-by-pixel

and line-by-line.

The beam is focused across the sample in the horizontal plane by using one or more

oscillating mirrors (see Fig2.2). At each position, the number of excited electrons is directly

proportional to the number of fluorescent molecules hit by the converging light. As a result,

the intensity of the fluorescent light (the brightness of the pixel in the resultant image) is

proportional to the density of the fluorescent molecules at the corresponding position in the

tissue.

Images are built up by scanning the laser illumination across the specimen, changing

the focal plane, and repeating the scanning as with the conventional confocal laser-scanning

microscope.

As So, et al. point out, depth discrimination is one of the most important properties of

two photon microscopes equipped with high numerical aperture objectives. For a spatially

uniform specimen, most of fluorescence signals (80%) are generated confined to a region

1 µm thick about the focal point. This precision results from the quadratic dependence

of the fluorescence probability on the spatial distribution of the excitation radiance ([?]).

Appreciable two-photon fluorescence occurs only at the microscope focal volume, where the

photon density is high; negligible fluorescence is excited outside of this volume [32]. A critical

20



Figure 2.2: Two Photon Laser Scanning Microscope optical system diagram: typically consists of a high-
peak-power pulsed laser, a high-throughput scanning microscope and high-sensitivity detection circuitry
(from [32]). The excitation light is reflected by a dichroic mirror to the microscope objective and is focused
in the specimen. Two-photon induced fluorescence is generated at the diffraction- limited volume. Images
are constructed using a galvanometer-driven x-y scanner and a piezo-objective z driver (PMT). The emission
signals are collected by the same objective and transmitted through the dichroic mirror.

component is its light source: a high-radiance light source of order of 1010 − 1012 W/cm2 is

required for efficient excitation. High repetition rate (100MHz), ultra fast (femtosecond or

picosecond pulse widths) lasers, such as Titanium-sapphire are the most widely used light

sources. The higher peak power and the lower duty cycle of these lasers minimize average

power deposition in the specimen while maximizing two-photon excitation efficiency.

In practice, TPLSM depends on the fluorophore which exists in the scanned tissue. In

our case the method for labeling neurons with fluorescent dyes is either by altering their

genetic structure or by injecting specific viruses. Combined, these methods have enabled

repeated imaging of neurons in intact brain.

The data we use come from two types of animals with different neuron-labeling tech-

niques. One technique requires transgenic mice with foreign genes inserted into their genome

in order to interact with the laser scanner ([12]). Alternatively, we use normal ferrets which

get a lentivirus injected in their brain to express Green Fluorescent Protein (GFP) ([5]).

This causes the neurons to fluoresce when subjected to extra energy from outside photons.

By varying the focal depth we are able scan an entire 3D structure into a stack of 2D

images. Each image in the stack corresponds to a slice taken at a constant depth within the
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visual cortex tissue.

TPLSM reduces overall bleaching and photo-damage, as the fluorescence depends on the

square of the incident light intensity. In turn, the light intensity decreases approximately as

the square of the distance from the focus. Because of the nonlinear relationship (≈fourth

power), the only dye molecules which get excited are the ones very near the focus of the

beams. The tissue above and below the plane of focus is merely subjected to infrared light

that is relatively harmless. When working in thick tissue, such as brain slices or developing

embryos, TPLM offers major advantages due to the dramatically reduced effects of light

scattering. Additionally, since both photons must arrive at the same place at the same time,

fewer fluorescent events are taking place away from the focal plane, sharply reducing the

dissipation of heat. Photo damage to the cells is very much reduced outside the focal plane,

which makes the method particularly useful for imaging of living tissues.

The experiments were performed on a Zeiss LSM 510 Metal NL0. A Coherent Mira

Titanium Sapphire laser pumped by a 10W Verdi diode laser was used to excite GFP at

865− 890nm. A closer view is shown in fig2.3, while a more detailed one is presented in D1.

Figure 2.3: Two Photon Laser Scanning Microscope used in Dr. Justin Crowley’s lab

2.1.1 Image Data

The natural way to display images is to use pixel values which specify the brightness of every

point in the image. The pixel values represent a measured physical property of the object
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being studied. If this property is the amount of emitted, reflected or transmitted light, then

the display will look like a monochrome photograph. A physical measurement of the amount

of light is its intensity. This is proportional to the energy in the light, and is the square of

the amplitude of the light waves.

The human eye is not simply an instrument which registers the amount of light it receives.

It is specifically trying to detect shapes in the scene, as it is very sensitive to the local

contrasts at immediate surroundings of an object. This is best illustrated by optical illusions,

one of each is shown in fig2.4. In this picture the horizontal rows seem to change their height

when actually they do not. The main lesson to be derived is that the eye is not to be trusted

for objective assessment of the absolute intensity of different parts of image display.

Figure 2.4: Optical Illusion: Because the black and white squares are shifted from one line to the other,
the horizontal rows seem to have variable width.

Based on the physical processes described above, image data consists of pixels and their

associated coordinates: intensity on a grey scale (an integer value between 0 and 4095),

spatial locations (in the y plane or “row” (1−512), in the x plane or “within row” (1−512),

and in the z plane or “slice” in the depth of visual cortex plane). The image is scanned

several times for each “slice”, adding a new variable for time. The dimensions of the pixels

depend on the zoom used. They are usually 0.31 µm, but in some experiments they may

reach 0.15 µm. This high resolution increases the precision of the scan and the amount of

detail present in the picture.
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Figure 2.5: A slice in the visual cortex of a mouse’s brain. The scanning is displayed as 262144 pixels
having intensities between 0 and 4095.

The image coordinate system is subject to change, varying with the position of the rodent

under the microscope. In the general set-up, the animal is facing the pedestal of the micro-

scope, immobilized on a small table at an angle of 45 degrees. The image coordinates with

respect to the position of the animal are approximately as follows: x direction is from the

left of the animal towards its right, y is from anterior to posterior and z is from dorsal to

ventral. A schematic visualization is presented in fig.2.6.

In the images we analyze, the features of interest are the dendrites and axons. They are

fine appendages of the neurons which appear during nerve development. The high resolution

capabilities of TPLSM allow fine details to be captured. By studying how these features

evolve while the animal subject is growing we can get valuable insight into the development

of the brain tissue.

24



Figure 2.6: Typically, the animal is mounted under the microscope at 45◦ with respect to the microscope.
As the laser beam advances from left to right in this 45◦ rotated direction (x), each line is created sequentially
from the anterior towards the posterior of the animal.

2.2 BRAIN MOREY: BRAIN MOTION REMOVAL SYSTEM

As illustrated by fig1.3, the brain is moving while the scans are taken (more details on this

movement will be described in the next sections). Due to this fact, we need to learn as

much as possible about the physiology and its contribution to the displacement of the brain.

Daniel E. Smith, formerly student in Dr. Crowley’s Lab, Department of Biological Sciences,

Carnegie Mellon University, developed a LabView program called Brain Morey which helps us

in this direction. Besides collecting the physiology values that activate during the experiment,

the system can be programmed in modes that help us compensate for respiratory artifacts.

Also, the recording can be triggered so that image data can be acquired at equally spaced

time points during a pulse cycle.

2.2.1 Physiological data

Before, during, and after the scanning process, the physiological and experimental data

is acquired through the Brain Morey program. The data is generally sampled in eight

channels, at a rate of 5kHz. The eight channels are EKG (Electrocardiogram), POX (Pulse-
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Oxygenation), RSP (Respiration), END(Pulse at end of experiment), LSM(Wait pulse),

STP(Scan stop pulse), SYN(Line sync). The EKG channel records the electrical signal from

the heart; the pulse-oximeter channel is a proxy measure for the blood flow, while respiration

is measured as the expansion of the chest. The other channels (END, LSM, STP, SYN)

connect with the scanning microscope monitoring the experimental steps. Fig2.7 displays

the values of these channels for 3 seconds during an experiment on a mouse.

2.3 FIASCO

Considering the nature and the size of our data, almost all analysis and image processing

have been done with a special software called FIASCO1, developed at the Department of

Statistics at Carnegie Mellon University. This system was developed as a flexible, adaptive

package for data processing and statistical analysis. Thus, the user has a lot of freedom

in determining the order and the processing steps. Also, various data collection types are

available to be used even if this might be computationally intensive ([8]) The scanned images

along with corresponding physiologies are stored in specific file formats which can be decoded

by FIASCO. Written in the C programming language, FIASCO offers primitives for a series

of mathematical operations and statistical methods on very large data sets.

2.4 SUMMARY

This research combines the above mentioned instruments with a new tool box that we create

at each level of the analysis. The goal is to set up a collection of programs accessible to

anybody who is interested in correcting images for movement caused by physiological events.

The difficulty of the proposed algorithms varies from simple to more complex, according to

the problem they are designed to solve.

1FIASCO stands for Functional Image Analysis Software Computational Olio ([22])
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Figure 2.7: Physiological and system- related data presented in eight channels starting with second 9
during a mouse experiment. END represents the pulse at End of experiment from microscope; LSM wait
pulses from microscope; STP scan Stop pulses from microscope; SYN line Syncs from the microscope; EKG
electrocardiogram; POX Pulse Oxygenation ratio; RSP strain gauge around the diaphragm-currently unused
shows the linkage effect of channel 6; TTL spikes when the microscope starts scanning a slice.
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3.0 FILTERING IMAGE DATA

The obvious is that which is never seen until someone expresses it simply. (Kahlil Gibran)

Most images are affected at some extent by noise, i.e. unexplained variation in data.

Image analysis is often simplified if this noise is filtered out. Thus, filters have been created

to operate on the image and accentuate the features of interest. Filters change a pixel’s

value taking into account the values of neighboring pixels. Depending on the operations

used, filters may introduce some artifacts in the data.

In the following sections we are going to present the general methods used for filtering

noisy images, corrupted by random noise. We intend to clarify the features scanned via

TPLSM by altering the initial image as little as possible. Therefore we develop a new

method to filter out some of the variations in pixel intensity.

3.1 GENERAL IMAGE FILTERS

As Glasbey stated in [15], linear filters are weighted linear combinations of the pixel values

in the image. If the weights are positive then the filtering effect is to smooth/blur the image,

while negative weights emphasize edges. Although the moving average filter is simple and

fast, it has two major drawbacks: it is not isotropic (i.e. circularly or spherically symmetric),

and smoothes further along diagonals than along rows and columns; weights have an abrupt

cut-off rather than decaying gradually to zero, which leaves discontinuities in the smoothed

image (see fig.3.1). These drawbacks are overcome by Gaussian filters, which are separable

and, at least to a lattice approximation, circularly symmetric.

As with all smoothing operations, there is a fundamental trade-off between variance and

28



bias: a filter which operates in a larger neighborhood will be more effective at reducing noise

but will also blur edges.

If an image has been contaminated by noise and blurring of known forms, then filters

can be constructed which optimally (in some sense) restore the original image.

Formally, we could state that the observed image f is a blurred version of an underlying

’true’ image g, with added noise. We envisage that g is a clear image, unaffected by noise

and with distinct boundaries between objects. We can use information about the nature of

the degradation to design a filter which will smooth f and enhance the edges, such that it

gets as close as possible to restoring g. Provided that we can consider g to be the realization

of a random process and subject to various technical conditions, the Wiener filter is the best

linear predictor (in the least square sense) of g from f ([15]). However, some non-linear filters

may out-perform it. In filtering to reduce noise levels, linear smoothing filters inevitable blur

edges, because both edges and noise are high-frequency components of images. Nonlinear

filters, median ones for example, are able to simultaneously reduce noise and preserve edges.

However, they can be computationally expensive to use. Also, they can generate spurious

features and distort existing features in the image ([15]).

In our case, the laser beam captures fluorescent pixels from neighboring slices in the

brain, contaminating the pixels in the actual scanned slice. We may include the physics of

the scanning process later, and develop suitable algorithms for deconvolution, to reverse the

blurring process. The shot noise, however, can be identified and its impact diminished. The

moving median filter is similar to the moving average, except that it produces the median

rather than the mean of the pixel values in a square window centered at the current pixel

coordinates.

In practice we would select the best window length such that the background noise is

considerably reduced, while the feature structure is minimally affected. As seen in Fig.3.1

and Fig.3.2, the median filter is preferred versus the average one, as the intensity of the pixels

does not change much than the original version and the features are clearer. However, some

of the methods we used for the analysis are quite sensitive to different sources of variation in

the data, so, when working with images where pixel values can be an integer number between
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Figure 3.1: 2D Moving average -filtered versions of an image: (a) original image, (b) moving average with
window-length= 3, (c) moving average with window-length= 5, (d) moving average with window-length= 9.
As we increase the window-length, the background noise is reduced, but the image becomes more blurred.
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Figure 3.2: 2D Moving median -filtered versions of an image: (a) original image, (b) moving median with
window-length= 3, (c) moving median with window-length= 5, (d) moving median with window-length= 9.
As we increase the window-length the background noise is reduced, but the edges of the features in the image
are visibly affected.
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0 and 4095, we have a lot of variability introduced by pixel intensities. Consequently, we

would like to adjust for this variation as much as possible.

3.2 CORRELATION-BASED FILTER

In our case, an improvement to the previous methods would consider the distribution of the

intensities of the pixels in the image. Therefore we developed an algorithm which creates

a new image with a smaller number of intensity values. The new intensities are assigned

based on thresholds which are selected to maximize the correlation function between the

new image and the initial image. More details and examples are presented in the following

subsections.

3.2.1 Bi-colored Image

Krishnan Padmanabhan, former student in Dr. Crowley’s lab, at Mellon Institute, has

noticed that for any image with M possible pixel intensities we can construct an equivalent

bicolor image, where each pixel can be 0 or 1 ([26]). The criteria to decide the value each

pixel gets in the created image is based on a threshold selected such that the correlation

between the new image and the original one is maximized. Essentially, the image created in

this way will assign a value of 0 for the background and a value of 1 for the features. There is

still some loss of information as the continuity principle may no longer hold, and some gaps

in the features can be created. However, the variability due to pixel intensity is significantly

decreased.

Considering an initial image x, let us denote with M the total number of grey levels and

with N , the total number of pixels in image x (in our case M is 4046 while N = 512 ∗ 512 =

262144).

For any t taking values between min(x)+1 and max(x)−1, the bicolor image will have a

pixel with value of 0 if the correspondent pixel has an intensity smaller than t in the original

image (x) and 1 otherwise.
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Figure 3.3: Correlation between original image and the transformed one (using only one threshold) as a
function of the threshold value.

As an example, if x is the slice imaged in Fig2.5, then for each 1 ≤ t ≤ 4094, we can

construct a bicolor image (y(t)) whose correlation coefficient with x will be a function of t.

Out of all these bicolor images, we want to select the one that preserves best the in-

formation from the original image. As plotted in Fig.3.3, the correlation function admits a

maxima of 0.617 at t = 978.

The thresholded image (fig3.4) constructed with the maximal t value seems to preserve

to a good extent the information captured in the original image.

The distribution of the pixel intensities is considerably simplified, but there is still some

loss of information as some original pixels may have come from a feature but they were

estimated as background in the newly created image. To minimize this loss we can consider

a larger range for the intensities in the new image. Consequently, the correlation between

the original image (with M grey levels) and the new one (with K << M grey levels) will

increase.
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Figure 3.4: The bicolor version of fig 2.5 constructed with the threshold that maximizes the correlation
function from fig 3.3. Each pixel can have an intensity value of 0 (background) or 1 (feature).

We extended Krishnan’s idea for at least two thresholds (K ≥ 2). The best number

of thresholds can be estimated such that it optimizes a decision function. The details with

some examples will be presented further in this section.

3.2.2 K-Colored Image

For the two thresholds case, we will define a new image with only three grey levels.

Let 0 < k1 < k2 < M be two thresholds that will be used to construct the new image

y(k1, k2). We want to find those thresholds such that the correlation between x and y(k1, k2)

is maximized. This estimation problem is well defined as the correlation function is bounded

[−1; 1].

For each 1 ≤ i ≤ N , y is given by

y(i) =


0 if x(i) ≤ k1

1 if k1 < x(i) ≤ k2

2 otherwise

The summaries of these images that are necessary to calculate the correlation function are:

34



• x =
∑M

j=0 jnj

N

• V ar(x) =
∑M

j=0 nj(j−x)2

N

• y = S1+2S2

N

• V ar(y) = S0(0−y)2+S1(1−y)2+S2(2−y)2

N

where nj is the number of pixels in x with intensity equal to j and Sk is the number of pixels

in y that have intensity grey level k, with k = 0, 1, 2.

Let denote

• Nk as the number of pixels of x whose grey level is larger than k,

• xk as the mean of the intensities of those pixels in x with grey level larger than k.

Then, the correlation function corr(x, y) is:

Nk1(xk1 − x) +Nk2(xk2 − x)√
(
∑M

j=0 nj(j − x)2)((N −Nk1)(0− y)2 + (Nk1 −Nk2)(1− y)2 +Nk2(2− y)2)
(3.1)

Generalizing for K thresholds, for each 1 ≤ i ≤ N , the new image y
k1,...,kK

is given by:

y(i) =



0 if x(i) ≤ k1

1 if k1 < x(i) ≤ k2

...

K − 1 if kK−1 < x(i) ≤ kK

K otherwise

(3.2)

with min(x) < k1 < . . . < kK < max(x).

Then the correlation function to be maximized becomes:

corr(k1, ..., kK |x) =

∑K
i=1 Nki

(xki
− x)√

(
∑M

j=0 nj(j − x)2)(
∑K

i=0(Nki
−Nki+1

)(i− y)2)
(3.3)

with some adjustments:

• y =
∑K

i=1Nki

N
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• N0 = N and NK+1 = 0

As the variance of x is constant with respect to k1 . . . kK and y =
∑K

j=1Nki

N
, the correlation

function in 3.3 is proportional to:

ρ(k1, ..., kK |x) =

∑K
i=1 P (X > ki)(xki

− x)√
(
∑K

i=0 (P (X > ki)− P (X > ki+1))(i−
∑K

j=1 P (X > kj))2)
,(3.4)

where X is the random variable represented by the value of a randomly selected pixel in

original image x.

Its cumulative distribution function is given by P (X ≤ ki) = 1− Nki

N
. We present more

details on calculations in Appendix B.

We would like to estimate the K thresholds as the solution that maximizes the above

correlation function 3.4. A grid search which calculates all the values of the correlation

function for any possible value of the thresholds requires a large number of steps (O(MK)).

Since the complexity of this exhaustive algorithm is exponential, calculating all possible

values for function 3.4 is practically impossible. Although for K = 1, 2, and3 we were able

to get the entire data set of the values of function 3.4, for K ≥ 4, this attempt was no longer

possible.

From a simplistic point of view, our problem is to determine a K-dimensional (k1, ..., kK)

solution that maximizes a function, subject only to the constraint that the thresholds main-

tain a strictly increasing order.

min(x) < k1 < k2 < ... < kK < max(x) (3.5)

One possible way to obtain an optimized solution without iterating through the entire

solution space is to use search algorithms based on various heuristics. Out of this category,

we used a genetic algorithm based on Emanuel Falkenauer’s idea. In 1997 he proposed

an evolution concept for optimally solving some complex problems, such as clustering or

partitioning, by making the characteristics of the groups of items equivalent to genes [11]
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Genetic algorithms are a family of computational models inspired by evolution. These

algorithms encode a potential solution to a specific problem on a simple chromosome-like

data structure and apply recombination operators to these solutions in order to obtain new

candidates. The recombination operators are generally designed such that they preserve

critical properties of the potential solutions.

An implementation of a genetic algorithm begins with a population of (typically ran-

dom) chromosomes. Each of these chromosomes represents a possible solution to the given

problem. At every step a new population is created based on the current one by apply-

ing 2 operators, one for recombination (crossover) and one for mutation. The algorithm

evaluates each chromosome (solution) and allocates reproductive opportunities such that

those chromosomes which represent a better solution to the target problem are given more

chances to “reproduce” than those which are poorer solutions. The “goodness” of a solution

is typically defined with respect to the current population. At the end of each step, the

“best” chromosomes survive in the population and then participate in the algorithm at the

next step. Iteratively, these points migrate in the search space towards better solutions and

the algorithm generally ends after a certain number of steps or when the best candidate

stops improving. Most users of genetic algorithms typically are concerned with problems

that are nonlinear. This often implies that it is not possible to treat each parameter as an

independent variable which can be solved in isolation from the other variables.

The genetic algorithm considers also that as long as the number of “good solutions” to

a problem is sparse with respect to the size of the search space. Therefore random search

or search by enumeration of a large search space is not practical for a problem solving. On

the other hand, any search other than the random search introduces some bias in terms of

“how” and “where” it looks for better solutions.

In our case, we represented the chromosome as a potential solution (k1, ..., kK) and we

used the correlation function 3.3 as a measure for the “goodness” of each chromosome. The

recombination function (crossover operator) simply selects two chromosomes and splits them

at a random position. The front-end of one solution is combined with the back-end of the

other and the result is kept in the population if it is a viable candidate. The mutation

operator selects a single chromosome and changes one of its components k such that the
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Figure 3.5: The correlation function between the original image (Fig.2.5) and any tri-colored image con-
structed with 2 thresholds that are displayed on x (k1) and on y (k2). Note: There are presented two views
from different angles at a magnified resolution around the maximization region. Due to high dimensionality,
2D versions of the image with all the values for the correlation function are presented in B1.

result remains a viable candidate. In general, genetic algorithms define viability as the

ability of each solution to satisfy the initial constraints. In our case, a solution is viable if

all its K components maintain a strictly increasing order.

At each step, we started with N − sol possible solutions (chromosomes) and applied the

crossover operator C − op times and the mutation operator M − op times. For all viable

candidates (up to N − sol + C − op + M − op) we computed the correlation function 3.4

and the top N solutions were maintained as an initial population for the next step. The

iterative process was continued until the best solution stopped improving for S(= 100) steps

in a row.

One big caveat of this algorithm is that it does not guarantee a global optimizer. As

our function has not a closed analytical form in (k1, ..., kK), it is difficult to get the Hessian

matrix. However, we think that the solution found by our algorithm is satisfactory if the

correlation function is large enough (i.e. 1 − corr(k̂1, ...k̂K) ≤ δ(x), where δ(x) is a small

number that depends on the original image) and the estimates are not on the boundary of

the solution space.

For K = 1 and K = 2, calculating all the possible values of 3.3 and plotting them against

the possible values for each threshold, the correlation function looks concave, hence it admits

a global maxima. For a visual check, see fig3.3 and fig3.5 (B1).

38



Using the genetic algorithm idea, we were able to find very fast a solution for any K. The

solutions for K = 1 and K = 2 were matched with those from the exhaustive search. Fig3.6

presents the resulting images, created using the thresholds estimated in this way. Table3.1

tabulates the results for 1 ≤ K ≤ 10.

As expected, increasing the number of thresholds will improve the new image: the cor-

relation gets larger and the information loss decreases. When plotted against the number

of thresholds used, the maximum correlation for 3.3 has a fast increase after which it slows

down. This fact will help us determine the best number of thresholds that will create a new

image with less pixel variation. For the image 2.5, the plot below (fig 3.7) suggests that

we can use a small number (less than 20) as a proximal value for K: let’s use K = 10, for

example.

The “optimal chosen” number of thresholds are used to get a filtered image (Fig 3.8) with

only 11 grey levels for its pixels. As one can observe, the main features from the initial image

appear very clearly, while some parts of other features, shaded originally, are emphasized

now.

3.2.3 Theoretical Characteristics

Although we are interested in reducing the number of pixel intensities preserving the main

characteristics of the image, further theoretical steps could be taken. We would like to

investigate whether the function 3.4 could be simplified.

The probabilistic form for the component variables changes the domain of definition

from N) to (0, 1). The cumulative distribution function of a random variable is distributed

Uniform(0, 1), therefore 3.4 is equivalent to:

∝
∑K

i=1 (1− ui)(xki
− x)√∑K

i=0 (ui+1 − ui)(i−
∑K

j=1 uj)
2

, (3.6)

where uj is varying as a U(0,1) variable, such that uj+1 ≥ uj for any 0 ≤ j ≤ K.
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Figure 3.6: Correlation based -filtered versions of an image: (a) original image, (b) bicolor image (K=1,
t=978, max-cor=0.617), (c) tricolor image (K=2, t1 = 896, t2 = 2462, max-cor=0.90187), (d) hexacolor
image (K=5, t1 = 418, t2 = 1129, t3 = 1840, t4 = 2550, t5 = 3261). As we increase the number of
thresholds, the loss of feature information is reduced and the correlation increases. Note: the grey scale is
modified, too.
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K Max-corr k1 k2 k3 k4 k5 k6 k7 k8 k9 k10

1 0.617 978

2 0.90187 896 2462

3 0.93283 643 1746 2850

4 0.95087 508 1374 2239 3107

5 0.96257 418 1129 1840 2550 3261

6 0.97073 354 959 1563 2169 2771 3375

7 0.97656 309 839 1371 1902 2430 2961 3495

8 0.98092 270 739 1209 1677 2146 2614 3084 3556

9 0.98426 242 664 1085 1509 1931 2353 2777 3198 3622

10 0.9868 218 604 988 1371 1755 2140 2525 2910 3292 3676

Table 3.1: The estimates that optimize the correlation function 3.3 for different number of thresholds.
These values are used to construct a new image (as defined by 3.2) whose correlation with original image is
high (first column).
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Figure 3.7: The trajectory of the maximum correlation between the original image and the K color
image, with K varying on the x axis. Note: around K=10 the increase in the max-correlation slows down
significantly.
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Figure 3.8: The correlation -filtered image constructed based on K=10 thresholds (see Table 3.1). The
resemblance with initial image (Fig2.5) is striking, while some other features, originally diluted in the back-
ground, appear clearer.

Taking advantage of the telescopic sums from the previous expression, we can write the

argument of the square root function at the denominator as:

3(
K∑
i=1

ui)
2 −

K∑
i=1

(2K + 2i− 1)ui +K2. (3.7)

We present in more details how we got to this form in Appendix B.

This function, 3.7, is quadratic in each ui, thus continuous. As the definition domain is

a convex set (simplex on (0; 1)K), the support of 3.7 is bounded away from 0. Its Hessian

is 6 ∗ 1x1T which is a positive definite matrix (see appendix Ai). Therefore this function

admits a global minimum.

The square root of a quadratic function is a hyperbola function. As the domain in our

case is defined for positive numbers only, the resulting function is half of a hyperbola.

Incorporating this information into the correlation function 3.6 and considering that the

numerator is a monotonically decreasing function in each ui we need further investigation

on the characteristics of this function.
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Image filter Parameters Number of grey levels Correlation with initial Image

2D-Mean window=3 3700 0.9244

window=5 3734 0.9046

window=9 3431 0.8553

2D-Median window=3 3700 0.922

window=5 2882 0.90846

window=9 3431 0.8658

Correlation based 3 thresholds 4 0.933

5 thresholds 6 0.9626

10 thresholds 11 0.9868

Table 3.2: Comparisons of different image filters.

3.3 CONCLUSIONS

A visual examination yields that our proposed filter is producing more satisfactory images

when compared with mean and median filters. Table 3.2 summarizes some statistics calcu-

lated based on theses resulted images.

Even though the thresholds estimated by our method give very good results, we inves-

tigated the correlation function in more detail. We produced a simplified version of the K

dimensional function and we plan to study further more its characteristics.
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4.0 PRELIMINARY ANALYSIS

A little knowledge that acts is worth infinitely more than much knowledge that is idle.
(Kahlil Gibran)

4.1 TIMING BETWEEN SCANS AND PHYSIOLOGY

While collecting images from the brain of neonatal mice, the circulatory and respiratory

processes happen at a rate of 5Hz and about 1.5Hz, respectively.

The pixels have very small sizes (0.3x0.3x1 micron3) allowing high resolution imaging.

Depending on the level of detail, the time to record a pixel is varying in a narrow range of

microseconds. The data we used was collected at 0.92 to 2.56µs. Therefore, one line of 512

pixels is scanned almost instantaneous (around 0.5-1 ms) with respect to the physiology rates.

An image of 512 lines, however, takes approximately 1 second, while recording an entire stack

may take several minutes. Due to various physiological fluctuations during the scanning of a

slice (heartbeat, breathing, etc), the features of interest can shift from one image to another.

Since measuring the size and position of the dendrites and axons is in fact the goal of these

experiments, random variations introduce an undesirable error. These sizable deformations

caused by brain movement keep the researchers from successfully aligning the images and

comparing them.

Since it is not possible to eliminate the factors that affect the image recording, we need

to be aware of the artifacts even if they are not always obvious to the naked eye. Based on

the observed flaws, we tried several methods to account for this displacement both globally

and locally.
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4.1.1 Matching physiological data with image data

As pixels are scanned sequentially over a period of up to several seconds, normal physiological

events impact pixel location. Changes in internal blood pressure during the cardiac and

respiratory cycles are the principal causes for the brain movement in the anesthetized rodent.

For the small animals that we use in our study, a normal heart rate is about 5 beats per second

while the respiration rate is close to two events per second (between one and two respirations).

These physiological characteristics are collected using the Brain Morey software, which can

trigger the imaging in synchronicity with the cardiac cycle to ensure that the variation

remains consistent. In order to have control over the respiration events, the experimental

rodent is anesthetized and fitted with an endotracheal tube for artificial respiration.

The pulse-oximeter provides us with a measured value of blood activity that we can use

later in the analysis. This device summarizes the physiological channels into a data series

which oscillates at the same rate as the EKG.

As Shumway, et al. stated, the regularity of these physiological measurements can be

best expressed in terms of periodic variations in the underlying phenomenon through Fourier

frequencies (typified by sines and cosines). From the regression point of view, we may imagine

a system responding to various driving frequencies by producing linear combinations of sine

and cosine functions. On these grounds, the time domain approach may be thought of as a

regression of the present on the past. The frequency domain offers an approach that may be

considered as regressing of the present on periodic sines and cosines ([29]).

The most frequently used tool to disentangle complex processes to simpler forms is the

Fourier transform. For a general function u(t) with t ∈ Z that satisfies the absolute summa-

bility condition:

∞∑
t=−∞

|u(t)| <∞ (4.1)

the Fourier transform would be a pair of the form:

u(t) =

∫ 1/2

−1/2

U(w)exp(2πiwt)dw (4.2)
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and

F(u) = U(w) =
∞∑

t=−∞

u(t)exp(−2πiwt) (4.3)

The representation in 4.2 is the spectral density of ut, while 4.3 corresponds to its inverse

or Fourier transform.

For a discrete number of times, when 0 ≤ t ≤ (N − 1), u(t) and U(w) can be seen as

n-dimensional vectors. In this context, using the regression point of view we can formulate

the following relationship:

u = WU, (4.4)

where N*W =


1 1 .. .. 1

1 ei2π/N .. .. ei2π(N−1)/N

.. .. .. ..

1 ei2π(N−1)/N .. .. ei2π(N−1)(N−1)/N

 .

Therefore, estimating U implies actually regressing u on W, which, based on Euler for-

mula is a collection of sines and cosines. Also, W is full rank with W−1 = (e−i2πkj/N), with

0 ≤ k ≤ N − 1, and 0 ≤ j ≤ N − 1. The properties of W make the Fourier transform to

have, among others, the following characteristics:

• Linearity

F(af(t)± bg(t)) = aF(ω)± bF(ω) (4.5)

• Time scaling

F(f(at)) =
1

|a|
F(

ω

a
) (4.6)

• Time shifting

F(f(t− t0)) = e−jωt0F(ω) (4.7)

• Frequency shifting

F(f(t)ejω0t) = F(ω − ω0) (4.8)
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As it can be observed in 2.7, our physiology data (POX) is fairly periodic but embedded in

noise, so we need to isolate the underlying signal. In order to do that we can take advantage

of the properties of this transform to construct linear filters. Therefore, we modify the

spectral characteristics of the time series in a predictable way.

A set of specified coefficients at, with t ∈ Z and
∑∞
−∞ |at|, is used to transform an input

series, xt into:

yt =
∞∑

r=−∞

arxt−r (4.9)

Under these conditions, yt in 4.9 exists as a limit in mean square.

In our case, a correct choice of the coefficients will help smooth over the physiology

series (POX) by removing the high frequency noise. Setting ar = 0 for r ≥ trx, with trx

being a threshold value depending on the input, we keep the range of frequencies that should

correspond to the underlying phenomena (low pass filter).

An example of using this algorithm is presented in fig.4.1. The top panel shows the input

POX series during one experimental second, while the bottom panel shows the smoothed

output of the signal driven by the heart rate.

One of the advantages of using this POX series is the fact that it was designed to

capture both the heart signal and the respiration. Thus, we need to do some spectral

analysis to identify the dominant frequencies which describe the oxygenation of the blood at

an extremity.

Through the shape of its power spectrum, the POX series describes the respiration and

heartbeat rates (see fig.4.1). At the same time, being recorded at the leg or tail, the pulse-

oximeter may be considered a better factor in explaining the effect of the blood pressure in

the brain than the EKG.

In order to work with the image and physiological data sets together, we need to merge

them by matching the physiology value to the time when each pixel was recorded. Synch

pulses indicate the times of acquiring image data. After some initial exploratory analysis,

we determined that the system records roughly three physiological samples for every line

scanned in a picture (see fig.4.2).

47



Figure 4.1: The respiration (around 2Hz) and the heart beat (5Hz) were recovered from the POX time
series (1st panel) via the spectrum power and a notch filter around the suggested rate.

Figure 4.2: SYNC data collected at the same time with EKG and POX. After identifying the moment
when the SYNC series spikes high values (the same as the moment when a line started to be scanned), the
time to scan a line takes 3 to 6 samples of POX series.

48



The microscope records each pixel in the line sequentially, scanning a picture of 512 lines

in approximately one second. In this interval, the movement in the brain causes some pixels

to have an observed position shifted from the true one. Our observations suggest that each

individual pixel can move up to ten pixels in any of the three dimensions. This causes some

lines to be scanned multiple times, while some others are never scanned.

4.1.2 Estimating the true position of a pixel

To construct an image that is free of movement, we start with a set of “replicates”, images

taken at the same period in the animal development. They represent the same brain area,

and, in the absence of movement noise they should show the exact same features.

In some of the methods we used, we combine the information collected from these repli-

cates with the physiological values obtained at each collection time. The final goal is to

be able to describe the distribution of the pixel displacement based on the pulse-oximeter

(physiological) data, and consequently, to be able to recreate a stable image. In general

([10]), this will involve two steps:

1. determination (i.e., estimation) of the amount of motion and

2. correction of the data for that amount of motion

4.1.3 A synthetic example

In this section we illustrate theoretically the process of scanning a line.

Let us suppose that each line can be scanned only in three different positions pi, where

1 ≤ i ≤ 3, with probability of scanning the line in position pi being 1
3
. Under the assumption

that scanning is independent of movement, the number of positions X where each line could

be scanned is a random variable Bi(3, 1
3
). Then P (X = 0) = 8

27
.

When we extend the conditions above to an arbitrary number of positions n, X (the

variable counting in how many of these n possibilities the line was actually scanned) would

be Bi(n, 1
n
). Consequently, P (X = 0) = (n−1

n
)n.

It seems that increasing the number of positions will increase the probability of missing

the line. Taking the limit in the above equation, we get: limn−>∞(1 − 1
n
)n = 1

e
which is
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always a positive quantity.

In reality, as we saw in previous sections, the process is more complex, but this simple

example suggests that the scanning process can skip lines or can scan lines several times

with a positive probability.

4.1.4 Filling the gaps caused by missing lines

Due to tissue movement, it is quite possible for the microscope beam to advance different

distances between pixels. It takes approximately 500 microseconds to scan a single line (0.92

µs per pixel for 512 pixels per line plus the fly back time). This time only corresponds to

about .25% of a heartbeat period and .1% of a respiratory cycle. Given the relatively short

intervals, we can assume that a constant process is a good approximation for the subject’s

physiology for one scan line. For this reason, it makes sense to average the three physiological

sample values recorded for each line. In our subsequent analysis we use one physiological

value for each observed line in the picture. Depending on the experimental design, the time

to scan an image with 512 lines is approximately 1 second. During this interval there are

around 5 heart beats and 1.5 respiratory events.

On the horizontal direction (x axis), the scanning speed is fairly quick compared to

the normal physiological processes, so we will assume that there are not significant errors.

However, the time taken by the beam between lines on the vertical direction (y axis) is

significantly larger and this can result in lines being scanned twice or lines missing altogether.

Registration techniques can provide some solutions for filling the gaps caused by such

missing lines. Based on good estimations and suitable maps that minimize the bias, these

procedures will predict the positions and intensities for the missing pixels. One challenge

will be again to find the best model that will map this information.
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4.2 REGRESSION METHODS

We define an image as a 2D array I(x, y) of pixel intensities located at x and y distance with

respect to an origin which is fixed at the upper left corner. We intend to identify param-

eters included in a general mapping Ij(x, y) = g(I(f(x, y)) that describes the phenomena

of interest, where Ij, 1 ≤ j ≤ J , are replicates of the “true” image of the brain I at a

certain position on z axis. Even if in time there is a noticeable photo-damaging effect, two

consecutive “repetitions” are acquired fast enough to assume that g is the identity function

(or a white noise). As f function depends mainly on the physiology, we can consider it as a

continuous function of time.

In the absence of the targeted image (I with previous notations) and without any addi-

tional information beyond what is contained in the data itself, there is no “correct” regis-

tration method that will relocate the pixels in the “exact” positions in the brain. However,

we need some homogeneous transformations preserving the observed information. In the

case of interpolation, a combination of a rotation and a two-dimensional translation will be

required in order to estimate 3 parameters. If there is also a scaling problem the number

of parameters will increase, affecting the amount of computations. Also, as the previous

example has shown, the probability of missing lines is positive directing our search into this

conditional space of scanned pictures.

In a preferred scenario, we would like to estimate the effect of the physiology upon the

movement of pixel position on x, y, and z dimensions.

Considering the scanning rate fast enough to avoid displacement on the x direction, we

used regression-like methods to get an estimate for the line (the y dimension) in the observed

image. The underlying assumption here is that our high scanning speed eliminates errors on

the x axis except for a rigid shift, so the initial images contain mainly movement errors on

the y and z directions. Therefore, our first regression model 4.10 uses only the movement

between the lines of the images taken at same z position.

As we develop our approach from a 2D perspective (intending to extend then to 3D), let

us fix z for the rest of this section as the depth in the brain where the 3 replicates have been

taken. Let Ij(., y(t)) be the observed intensity of a pixel located at time t on the line y(t)
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in the jth replicated image. At the same time, the physiology Pj(t) impacts on y-dimension,

determining the true position of the line to be affected with β ∗ Pj(t).

We propose to model this aspect of the movement as:

Ij(., y(t)) = Ij(., y(t) + β ∗ Pj(t)) + ε(., t), (4.10)

where Ij(., y(t)+ β∗Pj(t)) is the intensity of the pixel located at the true y position.

We estimate β such that combining the information from different replicates would pro-

duce the same intensity for the pixel located on the true y position. In other words, the

estimate of the physiological effect minimizes the mean of the squared deviances of pixels

intensities measured at the same time in two consecutive “versions” of the zth slice:

SSQ =
1

5122
∗

512∑
x=1

512∑
t=1

(I1(x, y(t) + β ∗ P1(t))− I2(x, y(t) + β ∗ P2(t)))2 (4.11)

Next, Ij(x, y(t) + β ∗ Pj(t)) is approximated by a Taylor expansion around Ij(x, y(t)):

Ij(x, y(t) + β ∗ Pj(t)) = Ij(x, y(t)) + I1
j (x, y(t)) ∗ β ∗ Pj(t), (4.12)

with I1
j (., y(t)) =

Ij(.,y(t)+k)−Ij(.,y(t)−k)

2
, (see fig.4.3) where k = 1 . . . 4 and t = 1 . . . 512 .

The custom made software, FIASCO, enabled us to get an estimate of β by minimization

algorithms. We have used the Nelmin algorithm extensively, which is based on the Nelder-

Mead simplex algorithm ([25]). Using this estimate for β, we can obtain an estimate of the

true position of the lines and reconstruct a steady image. Even after applying this algorithm,

some of the lines will still overlap due to rounding error and oscillations in physiology data.

This leaves gaps in the resulting image, which we need to fill.

Repeating the algorithm for j = 1 and 3, and respectively j =2 and 3, we get two other

estimates of the steady image that we can combine with the first one and fill in the gaps
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Figure 4.3: The derivative of spatial mapping in y coordinate as defined in 4.12, for k=1. We notice that
the neighboring variations within pixels intensities are preserved.

wherever possible. However, some artifacts remain in the estimated steady image as it can

be seen in Fig.4.4 from results section 4.3.

We extended this regression idea by elaborating on the algorithm so that β is estimated

through an iterative algorithm. We start with an initial estimate for the true image as the

arithmetic mean of the observed images. Then following the OLS approach we iterate over

β to minimize the mean square error:

β̃(s+1) = argmin

3∑
j=1

512∑
x=1

512∑
t=1

(Ij(x, y(t))− I(s)(x, y(t))− β ∗ Pj(t) ∗ I(s)1(x, y(t)))2 (4.13)

Here β̃(s+1) is the estimate of the physiological effect when the estimation of the true image

at step s is I(s)(., y(.)).

The algorithm converges when the difference between two successive estimates becomes

very small. At convergence I(s)(., y(.)) will be the desired estimate.
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Figure 4.4: An estimate of the image adjusted for POX effect on y axis. It is reconstructed after estimating
β with model4.10 using the replicates scanned at 1st and 2nd time.

4.3 RESULTED IMAGES

Based on the first regression model 4.10 we estimated the y positions adjusted for the effect

of the concomitant POX value using the replicates taken at 1st and 2nd time. Moving the

lines at these positions we obtained an estimated image that presents y positions with no

tisue input. Hence the lines that are skipped during the scanning process are noticeable in

this resulted image (4.4).

We repeated the algorithm of getting an image estimate by adjusting the POX effect

on the replicates scanned at 2nd and 3rd time. The same process of “skipping”’ lines was

present. We calculated the rate at which the “gaps” appear, and, as expected they are quite

close from one estimate to the other (see 4.5). The lines outputted in this way have been

combined into a “better” image, in order to fill in tissue information captured at that depth.

The iterative model produced a very small estimate for 4.13 at first step, reducing the

chances to go further. Also the choice of initial “guess” for the free-of-movement image and

for filling the gaps in the next estimates might bias the results, by considering lines which

are never scanned actually.
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Figure 4.5: The two estimates of the image (adjusted for POX effect on y axis applying model4.10 twice
on pairs of replicates scanned at 1st, 2nd, and 3rd time) have been combined to get a “better” estimate.

55



4.4 CONCLUSIONS

In the previous section we approached the observed images from a classical statistic point

of view which assumes complete independence over time. Using a statistically simple, but

computationally intensive linear regression model, we showed that a pixel-wise treatment

of the data gives reasonable results. It also points out that the true signal is contained in

several scans of the same scene in the brain.

As we point out in section 4.1, the microscope does not record pixels fast enough so

that the lines of an entire image to be considered independent over time. The empiri-

cal observations described in the next chapter exhibit the repetitive behavior of the image

data. Therefore, we need to extend our research approach to describe and quantify this phe-

nomenon. The β estimate that we produce with previous model (4.10) is computed under

the general assumption that all lines in the image are affected linearly by the physiology.

However, we need a better understanding of the underlying process which determines the

movement of the brain.
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5.0 REPEATED SCANNED LINE- EXPERIMENTS

If coming events are said to cast their shadows before, past events cannot fall to leave their
impress behind them. (Helena P. Blavatsky)

Exploratory analyses exposed in the previous chapter 4 emphasize the need to have a

better description for the movement in the brain. In order to accomplish this goal, we have

performed a series of new experiments.

We have sampled several times through a middle line from a predetermined slice (Fig.2.5),

recording the corresponding physiologies. At a fixed (y, z) position in the brain, a single line

of pixels has been scanned in the x direction repeatedly. For a better comprehension of the

features that we captured, the upper part of Fig.5.1 shows a region of twenty one lines around

this location. The lower part of Fig.5.1 shows the image created from the lines acquired when

scanning through the mentioned location for the first 500 times.

If the scanning process was not affected by the movement of the cerebral tissue, the

features scanned in the first line would line up perfectly with all the other lines. However,

the observed lines vary in a nearly periodic way. We show later in this section that this

variation is strongly correlated with the physiological events. The change from one time to

the other is more or less visible based on the shape and dimension of the feature captured

in the extensively sampled line. In this example, the variation in pixel positions is visible

especially for the first feature, as it originates from an oblique axon body.

As we explained in more detail in the previous section, scanning a line is quite fast with

respect to the physiology rate. Thus, we can assume that we have a single measure for the

physiology during the scanning of a line.

We are interested to study the relationship between animal’s physiology quantified by the

POX series and the imaging process. A useful graphical representation of this relationship
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Figure 5.1: The middle line of upper panel was selected and sampled extensively for almost 37 seconds.
First 500 lines are represented in the lower image. We can notice that, in fact it was not scanned the same
line, as the feature position within the line varies in a nearly periodic way.

would be a scatter plot. Having one POX value per line and each scanned line representing

a “replicate” of the same outcome of interest, we summarized each line as described above,

with its average of the pixel intensities. When plotted versus the correspondent physiology

as in Fig.5.2, the mean intensity value for each line is nearly cycling accordingly with the

heart rate.

If there was no movement, except for some discoloration from the bleaching effect of the

laser beam on the tissue, then the mean intensity value of each scanned line would display

a clearly linear negative trend in time. However the brain is moving locally on “ellipses”

-like trajectories due to different velocities for each direction. We can conclude that the

physiology represented by the POX data is directly affecting the image quality.

In this thesis I present several approaches we considered to account for the effect of

physiology on the image data. Adapting the design of the experiment to run repeated line

-scans may give us a lot of useful insights for in vivo TPLSM.

In the following sections I describe directions we considered in order to model the way
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Figure 5.2: Mean intensity change for the first 512 lines with respect to first line, versus their correspondent
POX values. Note: the arrows indicate the line-scanning succession, pointing out the motion of the tissue
due to the physiology (POX).

these lines vary. Each step made us aware of the sources of variation and also of the limita-

tions due to the position where they have been captured at the scanning time.

5.1 MISSING DATA IMPUTATIONS

Before we start any analysis on this data, we need to run some additional steps that will

prepare the input variables. Matching the physiological measurements with the image data is

an important step, which sometimes requires extra work. For this experiment, for example,

the SYNC channel which monitors when the scanner started to produce image data, misses

to record indicators for times when pixels are acquired. Usually the SYNC series spikes

when the microscope begins to scan a line. Once its value is larger than 1000, it increases

for about 3 sample points after which it goes back to being just noise. In fig.5.3 we note

that there are random gaps which need to be treated separately.

For this experiment there appear to be scanned 10000 lines, but only 9770 have a cor-
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Figure 5.3: Drop outs of SYNC series.

respondent SYNC spike. Also, as the pixel time in this case was 2.56µs, to scan a line (of

512 pixels) it takes about 1.3ms. This time corresponds to about 6 sample points in these

series. Similarly, we estimate the duration to scan an entire line (of 512 pixels) and fly back

to be on average 2.46ms, with variance of 0.074ms. Converted in sample points this period

is equivalent to 11.37 sample points, and 0.34 sample points for the variance. Consider-

ing that the scanning process happens in a fairly regular fashion, we are able to estimate

the physiological value for a line. Therefore, in this case, we estimated 10000 POX values

corresponding to the physiology during the scanning process.

5.2 ANOVA MODELS

In order to get a better view of the data for each observed line (fig.5.1) we selected an area

of interest where the displacement is clearer. A median filter was applied to this portion to

reduce some of the shot noise in the background (see fig.5.4). The trajectory of the feature

captured in this region is highly correlated with the physiology (r = 0.81), supporting our
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previous findings. In the absence of movement, the intensities of the correspondent pixels in

each new recorded line should be very close with those already scanned. Accordingly to this

simple rationale, we would like to model the distribution of the movement and estimate the

“steady” locations.

Figure 5.4: A fragment of the line-experiment: fifty pixels around the first feature captured were applied
a 3 length median filter on x dimension in order to clarify the image.

Let us denote with λ(x) the “true” line from the (y, z) position in the brain, and with

Lt(x) the observed lines scanned during this experiment. Considering that a line is scanned

almost instantaneously when compared against the physiology rate, we assume that the

movement of the pixels within their line is negligible. Thus, for the simplicity of the notations,

we drop the dependence on x.

A simple model for the scanned data would be:

Lt(i, j) = λj + θi + γj + et(i, j) (5.1)

where et is some error associated with the scanning process, i corresponds to the time factor

(1 ≤ i ≤ 500), and j to the position within the line (1 ≤ i ≤ 512).

Assuming that the errors are white noise, we could fit this model to a 2Way ANOVA

model relating the observations with time and position factors. The fitted values of this

model are presented in fig.5.5.
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Figure 5.5: Fitted lines with 2Way ANOVA model- partial region around main feature.

As presented in fig.5.6, the residuals still vary in a regular fashion, pointing out that

there are some other aspects of this process that have not been captured by this model.

We included the interaction between these two factors, but the model did not seem to

improve; the residuals exhibited approximately the same variation in a regular fashion.

Also, we “fixed” a randomly selected line and shifted all the others to it using the Time

shifting property as described in 4.7. Even though we hoped to account for some of the

variation in this way, the model fit did not seem to get significantly improved. The residuals

displayed high values and variation in a regular fashion (as in fig. 5.6).

5.3 EXTENDED EXPERIMENTAL SET-UP

Performing repeated scanned line experiments seem to have a high potential in capturing

the motion of the brain caused by heart beat and respiration. This dynamic process happens

in all the spatial directions, affecting clearly the images.

A series of experiments have been done on neonatal mice or ferrets scanning a line several

hundreds of times for a slice, and then repeating the process for a different slice. This new

experiment allows the acquisition of several hundreds of “replicates” at each slice in a stack

of several tens of slices.
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Figure 5.6: Residuals from fitting the line data with 2Way ANOVA model- partial region around the main
feature.

Furthermore, orientation of the scanning has been changed using different angles while

repeating the previous experiment. In other words, a line has been acquired for several

hundreds of times at different z locations in the scanned volume of the cerebral tissue. Then

the direction of scanning has been rotated with an angle θ selected upfront, and the scanning

process has been repeated.

5.3.1 Example: Stack of repeated scanned lines (ferret)

Scanning a line repeatedly in the x direction gives us indications about the movement in x

and y directions. In order to expand our tracking algorithms to z direction, we extend the

experimental set-up such that it incorporates this dimension.

Hence, several experimental steps have been projected in advance.

1. Pre-specify the number of slices (z) that a volume of the cerebral tissue will be scanned

in.

2. Scan a regular stack of 2D images for the volume of interest.

3. Fix the y coordinate within each z and specify the number of times the microscope should

scan in x direction.

4. Repeat step 2.
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Figure 5.7: Repeated scanned line experiment: extended set-up on neonatal ferret. The process of scanning
the middle line of a slice for 600 times has been applied to several slices. Note: on the right side of each slice
we added indicators for POX and Respiration estimates concomitant with the lines.

Line data collected in this way is represented in fig.5.7 at it comes from the brain of

a ferret. Although the stack has 161 slices, a set of 25 middle ones is shown. The actual

scenes captured at these depths in the brain have been imaged before and after the line

experiments. The set of 25 corresponding to those z’s presented in fig.5.7 for the repeated

scanned lines, is figured in 5.8. The POX values recorded at the same time are attached at

the right side of each image. Briefly, we notice that the physiological rate for a ferret is lower

than for a mouse (about 3 heartbeats per second). Looking at the images taken before and

after the line data, the features moved significantly from one time to the other. See also D2

which is the RGB version constructed with the images taken 1st time repeated twice.

5.3.2 Example: Stack of repeated scanned lines (mouse)

Similar experiments, as described in the previous section 5.3.1 have been performed on mice,

too. Fig.5.9 presents a group of lines collected from 5 adjacent slices.

Even though the between lines variation is apparently not so obvious, we notice the large

artifacts due to respiration. When we selected lines from the stack scanned before and after

the line experiment, we observed that the regions that the lines were highly likely to belong
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Figure 5.8: 25 consecutive slices from a stack (z=1,. . . ,161) of images scanned in the brain of a ferret.
The images on the left side present the slices taken before the line experiment, while those on the right side
present the slices taken after. Visually we notice that the brain moved significantly in z direction as the
features had not been scanned on the same positions at one time versus the other. Note: on the right side
of each slice we added indicators for POX and Respiration estimates concomitant with the images.

Figure 5.9: Repeated scanned line experiment: extended set-up on mice. The process of scanning the
middle line of a slice for 600 times (300 shown) has been applied to 101 slices (only 5 shown). Note: on the
right side of each slice we added indicators for POX estimates concomitant with the lines.
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to, did not exhibit significant variation in y direction (see 6.20 below).

5.3.3 Example: Rotated scans

In order to explore the heterogeneity of the moving tissue under the microscope, the repeated

scans of the line have been taken at different angular direction within the (x, y) plane of a

pre-specified z slice.

In this case, the experimental steps that have been projected in advance are as following:

• Pre-specify the coordinates where the imaged slice (z) will be scanned.

• Depending on the number of directions, determine the angle with respect to the standard

reference system that will give the rotated directions on which the scanner will collect

pixels sequentially.

• Repeat the previous two steps at different z locations.

An excerpt of this kind of data collected at one z position is presented in fig.5.10. The

actual acquisition directions were rotated with an angle θ = 22.5◦, but for simplicity we

included only four sets at 45◦ angle separation.

5.4 CONCLUSIONS

To our knowledge, this kind of experiments has not been performed so far by any other lab.

We believe that the information that is captured through these experiments is very important

for learning about the movement process. However, the results depend to a large extent on

the shape of the feature that has been included in the volume of interest. Therefore, some

of these experiments may observe lines which do not vary for the entire period during the

scanning through a slice. Under regular experimental conditions (i.e. the rodent’s physiology

is happening at the usual rates), we believe that this apparent lack of variation is caused by

the particular shape of target feature. In such cases, the region where the repeated scan of

a middle line has been done is similar over a relatively large number of lines.
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Figure 5.10: Repeated scanned line experiment: extended set-up. Fixing the y at the middle region of a
slice, the scanner collected lines (in x direction) for several hundred times at different angles. With respect
to the images taken before (pre) and after (post) the lines have been collected for 1500 times, the ones taken
at 0◦ correspond to the horizontal direction; the ones taken at 90◦ correspond to the vertical direction.
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When we noticed variation in the observed “replicates”, a simple model as ANOVA has

not been able to describe completely the factors that determine this variation. The following

chapter presents other methods that help us track the movement and relate L with the POX

values.
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6.0 TARGET TRACKING AND CLASSIFICATION PROBLEM

The search for truth is more precious than its possession. (Albert Einstein)

From a practical point of view, we want to track the brain movement, identifying the

true position of the features of interest during the scanning process. According to Liu ([23]),

target tracking is an example of dynamic modeling that uses a linear Gaussian state-space

model to describe the movement of the target object.

He describes a 2D tracking model as being characterized by:

• State Equation:

 vt,1

vt,2

 =

 vt−1,1

vt−1,2

+

 εt,1

εt,2

 ,

 st,1

st,2

 =

 st−1,1

st−1,2

+

 vt−1,1

vt−1,2

+
1

2

 εt,1

εt,2

 ,

where st = (st,1, st,2)T is the position of the object at time t and vt = (vt,1, vt,2)T is its

current velocity vector. The error εt = (εt,1, εt,2)T is distributed as N(0, σ2
vI).

This model describes the speed (vector) of the object as Gaussian random walk, where

the position of the object follows the change of its speed. We assume, however, that a

noisy version of the object’s true position (yt,1, yt,2)T is observable.

• Observation equation:

 yt,1

yt,2

 =

 st,1

st,2

+

 et,1

et,2

 ,

where the observation noise et = (et,1, et,2)T follows N(0, σ2
yI).
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By writing xt = (st,1, st,2, vt,1, vt,2)T and yt = (yt,1, yt,2)T we can rewrite the foregoing

system more briefly as

xt = Gxt−1 + εt, εt from N(0, σ2
vA);

yt = Hxt−1 + et, et from N(0, σ2
yI),

where

G=


1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

 , A =


1
4

0 1
2

0

0 1
4

0 1
2

1
2

0 1 0

0 1
2

0 1

 , H =


1 0

0 1

0 0

0 0



T

Mathematically, the tracking task is accomplished by an on − line estimation of the

object’s position, (st,1, st,2), based on all information available before time t. If the yt are

always observable at time t, this estimation task can be achieved rather efficiently via the

Kalman filter, because of the linear Gaussian structures being employed.

However, if we consider a cluttered environment, then at time t we observe a set of points,

zt = zt,1, . . . , zt,kt in a 2D detection region of area ∆. In this region, the number of false

signals follow a spatial Poisson process with rate λ. The set zt includes the true measurement

yt = (yt,1, yt,2)T with probability pd. Other z’s are treated as uniform within the detection

range. This model for tracking in clutter is no longer a linear Gaussian system. According

to ([23]), there has not been a universally effective algorithm for dealing with non-linear and

non-Gaussian systems. Depending on the features of individual problems, some methods

have been extended to apply the Kalman filter to such cases. Most of these methods are

based on local linear approximations of the non-linear system.

6.1 MIXTURE KALMAN FILTER

Avitzour ([1]) modeled the tracking problem as a state-space model with the state variable

xt = (xt,1, xt,2), where xt,1 is the location of the target on a straight line and xt,2 is the target
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velocity. Then, as described previously, xt evolve in the following way:

xt,1 = xt−1,1 + xt−1,2 +
1

2
wt,

xt,2 = xt−1,2 + wt,

where the noise terms wt are i.i.d., N(0,w2
0).

If for every t we could uniquely identify the object, our observation would have been the

object’s location xt,1 plus a small random noise. In other words, we would observe

zt = xt,1 + ut,

where ut are i.i.d. Gaussian noise with distribution N(0, u2
o).

When the detection is not precise, in a window with area ∆ we observe mt objects whose

positions will construct the observation vector yt. Among these mt recorded locations, at

most one corresponds to the true target we are interested in tracking (i.e. is equal to

zt). The occurrence of the confusing objects is assumed to follow a Poisson process with

rate λ. We further assume that there is only a probability pd < 1 for the observation

window to actually include the target’s location (zt) in yt. Therefore, the distribution of

mt is Bernoulli(pd) + Poisson(λ∆), and the false signals are uniformly distributed in the

detection region.

By introducing an indicator variable It,

It =

 0 if the target object is not in the detection aria

k if the kth object corresponds to the target

we can formulate this problem as a state-space model.

• When It = 0,

p(yt |xt, It = 0) = ∆−mt
(λ∆)mt

mt!
e−λ∆

=
λmt

mt!
e−λ∆
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• When It = k,

p(yt |xt, It = k) =
λmt−1

(mt − 1)!
e−λ∆ 1

u0

√
2π
exp

[
−(yt,k − xt)2

2u2
0

]

Since a priori P (It = 0) = 1− pd and P (It = k) = pd

mt
, we have:

ft(yt, It|xt) ∝

 (1− pd)λ, if It = 0;

pd(2πu
2
0)−1/2exp− (yt,k−xt)2

2u2
0

, otherwise.

As It is not observable, we need to sum out the It to obtain the observation distribution

ft(yt|xt).

Using q(xt|xt−1) to denote the state evolution relationship, we can obtain a sequence of

auxiliary distributions, π(x1, . . . , xt) iteratively:

πt(xt, xt−1) ∝ ft(yt|xt)q(xt|xt−1)πt−1(xt−1)

and, because of the Markovian structure among the xt,

πt(xt) ∝
∫
ft(yt|xt)q(xt|xt−1)πt−1(xt−1)dxt−1.

With this formulation, the current position of the target can be estimated as Eπt(xt).

Next, let us consider an important feature of this tracking model. If we know the values

of the target trajectory Λt, the tracking system becomes linear and Gaussian. Therefore, the

computation of the Bayes estimator, E(xt|y1, . . . , yt) can be achieved exactly by a standard

Kalman filter.

Let Λt = (I1, . . . , It) be the trajectory up to time t. Conditional on Λt we can integrate

out xt exactly. This feature enables the user to design a Sequential Importance Sampling

(SIS) system only on the reduced space of Λt ([3]). Furthermore, this model becomes a

mixture of Kalman filters.

72



Figure 6.1: The images taken before (t=0) and after (t = T + 1) the line experiment. The scenes captured
by these images look similar, despite the relatively long time lapse.

6.2 LINE DETECTION

It is natural that models based on predicting the present as a regression on the past, such

as those provided by the state-space models, would be attractive to statisticians who are

trained to view nature in terms of linear models. In fact, the difference equations used for

representing such models are simply the discrete equivalents of linear differential equations

that may, in some instances, provide the ideal physical model for a certain phenomenon.

An alternate version of the way nature behaves is based on a decomposition of an empirical

series into its regular components.([29])

As the Kalman filters make several distributional assumptions for the observations, we

intend to take a simpler approach. We want to determine the regularity of the positions

where the lines have been scanned during the experiments described in the previous chapter.

An overview of the data used for analysis in section 5.2 summarizes the following: we

have repeated scanned lines, collected at times t = 1, . . . , T, T = 10000, along with an image

(I0) recorded before (when t = 0) and another one (IT+1) assessed after (when t=T +1) (see

6.1). Even though taken at about 37 seconds apart, the scenes captured by these images

look similar.

However, there are small shifts as can be seen in fig 6.2.

Let us denote with L0
1, . . . , L

0
512 the lines that belong to I0 and with LT+1

1 , . . . , LT+1
512 the
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Figure 6.2: The difference image between the pre-image (t=0) and post-image (t = T + 1). The variation
of the pixel intensities exposes the relative small shifts between the two images.

lines that belong to IT+1.

Although the positions of the lines in I0 and IT+1 may not be the true ones from the

brain, we would like to learn how the lines scanned at times 1 ≤ t ≤ T moved with respect

to these ones. In other words, conditioning on the fact that line L0
j has been scanned at

t = 0 on y = j, we want to estimate the time (1 ≤ t ≤ T ) when the scanner captured the

“same” line.

The experiment was designed so that fixing z and y in the region of interest, the micro-

scope acquires continuously 512 pixels over the x direction then returns for several hundreds

of times. For fig 2.5, y was fixed at the middle of the image, therefore at y0 = 256. Empirical

observation of the movement process exposed the fact that a line may move up to 10 pixels.

Consequently, we selected apriori a band δ = 21 of lines from I0 around the middle one, and

we used them to define several classes of interest: C1, . . . , Cδ. Finally we will identify which

classes have actual components that have been observed during t = 1, . . . , T .

We developed an algorithm that searches among the lines L1, . . . , LT and classifies them
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within the considered classes. As a matching measure we started with the Euclidean norm:

Lt belongs to class Cd̂ iff d̂ = argmin1≤d≤δ
∥∥Lt − L0

y0−d
∥∥

2
(6.3)

However, this measure does not consider the possible drifts in the brain which may cause

some lines (at some 1 ≤ t ≤ T ) to be shifted with respect to t = 0 or t = T + 1. To

compensate for this event, we used the lagged correlation between two lines (we will call it

furthermore, cross-correlation function).

The cross-correlation function between two vectors x and y for lag d is defined as:

rx,y(d) =

∑
i (x(i)− x)(y(i− d)− y)√∑

i (x(i)− x)2
√∑

i (y(i− d)− y)2
(6.4)

We also prefer this function because of its properties:

• −1 ≤ rx,y(d) ≤ 1;

• rx,y(d) = raxx+bx,ayy+by(d), thus invariant to an affine transformation.

For long vectors (for us 1 ≤ i ≤ 512) calculating this function is quite expensive in

computer time and memory. Taking advantage of the useful applications of the Fourier

transform, introduced briefly in the previous section 4.1.1, we can reduce this complexity.

The algorithm that we developed is based on the generalization of the following Autocorre-

lation theorem.

Before formulating this result, we will start with a brief discussion of the relevant back-

ground.

The definition of the convolution between two functions is:

h(x) = f ∗ g ≡
∫ ∞
−∞

f(t)g(x− t)dt (6.5)

which actually multiplies f by the time reversed and shifted function g. It allows one function

to smear or broaden another (see fig.6.3). Therefore it can be useful when we are interested

to see how two functions are related to each other.
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Figure 6.3: Convolution between a delta-like function and a kernel function.

The Convolution Theorem turns a convolution into the inverse Fourier transform of the

product of two Fourier transforms:

f(t) ∗ g(t) = F
−1

(F (w)G(w)) (6.6)

where F is the Fourier transform, and F(w)= F(f(t)) and G(w)=F(g(t)). A proof of this

result is presented in Appendix C.1.

In this context we can state now the Autocorrelation theorem, also known as Wiener-

Khinchin theorem:

f(t) ∗ f(t) = F
−1

(F (w)F ∗(w)) = |F |2 (6.7)

with F ∗(w) being the complex conjugate of F (w). Appendix C.2 sketches the proof for this

result.

The generalization of 6.7 is the Cross-correlation theorem which states that the Fourier

transform of the cross-correlation of two functions is equal to the product of the individual

Fourier transforms, where one of them has been complex conjugated. As we are interested

the relationship between two lines (seen as functions of time), we compute the correlation

between Lai and Lt with

ρ(Lai , L
t) = F

−1
(F (Lai )F (Lt)∗) (6.8)
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Using this similarity measure to quantify the coherence between two lines, we can classify

Lt belongs to class Cd̂ iff d̂ = argmax1≤d≤δ[maxlagρ(Lt, L0
y0−d)] (6.9)

6.2.1 Class Estimation

Based on the classification rules presented in the previous section, we ran several sets of

analyses.

First we considered that t goes from 1 to 512. Therefore, we computed a 512x21 similarity

matrix (SEuclidk ) among the lines L1, . . . , L512 and the 21 lines from the images taken at time

k = 0 and k = T + 1, L0
245, . . . , L

0
265, as:

SEuclidt=k (i, j) =
∥∥Li − Lk244+j

∥∥
2
, (6.10)

where k = 0 or T + 1, 1 ≤ i ≤ 512, and 1 ≤ j ≤ 21.

When performing these measurements, the value of the pixel intensity for each line varies

from 0 to 4095. Also, as we are interested in finding the lines that match best, i.e. the feature

location is preserved despite the variation in pixel intensity. Therefore, we filtered the before

and after images as well as the lines taken at these first 512 times with the filter described in

section 3.2.2. After trying several K values (to determine how many thresholds we need to

estimate), the one that seems to optimize all these images was selected to be 5. We applied

the same steps for the filtered data and we calculated the similarity matrices in this case.

The images created with the values of these matrices are presented in fig 6.4.

We note that out of 21 possible classes, displayed as columns in the similarity matrices,

only a few have actually lines captured at these times. Using 6.3 from previous section, we

identify the classes as shown in fig.6.5.

We note that the classes identified with the filtered data do not differ too much from the

ones which use unfiltered data. After a few random checks, we are confident that the filtered

data gives us a better precision.

Next, we applied the cross-correlation algorithm on the lines collected for 1 ≤ t ≤ 2560.
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Figure 6.4: The similarity matrices computed with Euclidean distance: (a)lines observed for the first 512
times versus 21 lines from I0;(b) filtered version from (a); (c)lines observed for the first 512 times versus 21
lines from IT+1;(d) filtered version from (c).

The definition 6.4 that we generalized in 6.8 is sensitive to variation in pixel intensities.

For data coming from the repeated line experiment, the within line variance ranges from

327065 to 631555. Calculated on filtered data (as described above), the within-line variance

ranges from 0.5 to 1.1.

The following plot 6.6 shows that after filtering the lines, the amplitude of the variances

decreased significantly while the between-line variation was preserved.

Consequently, we used the subset of 2650 filtered lines as input for our classification

algorithm 6.9. We calculated the similarity matrices as:

Scross−cork (i, .) = F
−1

(F (LkiModδ)F (L[i/δ])∗), (6.11)

where k is 0 or T + 1, 1 ≤ i ≤ 2560x21, [i/21] is the integer part of the division, and

iMod21 is the remainder of this operation. Each line in these matrices is 512 positions long

corresponding to the possible lags.
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Figure 6.5: The classes estimated using the Euclidean norm. Note: the plots on the left represent the
classes estimated with initial data; the plots on the right represent the classes estimated with filtered data.

Fig.6.7 represents an excerpt of the similarity matrix when k=0 and 1 ≤ i ≤ 500x21

(1 ≤ t ≤ 500) .

For class detection we are interested in maximizing the cross-correlation series over the

lag variable. Then we apply the classification rule in order to choose the class where the

scanned line fits best. A more detailed look into the selection process is included in Fig.6.8.

The estimated classes are presented in fig6.9:

6.2.2 Movement Process

The estimated classes give us indications about the amplitude of the brain movement cap-

tured by the scanner during these times. If there was no movement, the lines scanned at

times 1 ≤ t ≤ 2560 should fit in the class Ck
11 corresponding to the line in the middle of the

image Ik, with k=0 or T +1. However, the results presented in the previous subsection show

that the brain has moved during the experiment.
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Figure 6.6: The within line variances for observed data (up) and for the filtered data (bottom).

We define the shift in the y axis as:

νk(t) = E[Ck(t)|Lt moves]− E[Ck(t)|Lt does not move] (6.12)

where k is 0 or T+1 and 1 ≤ t ≤ T and Ck(t) is the class where the line Lt fits in best.

We estimate these shifts using the classes estimated with the cross-correlation algorithm.

A graphical representation for the smoothed version of the amount of movement in y direction

is shown in fig.6.10

Using the definition of the cross-correlation series between two series u and v, the

lag where the maximum is attained corresponds to the shift in x direction necessary for

L1, . . . , LT to match the selected classes. If the brain was not moving, then the cross-

correlation series would be maximized at lag=0.

Using 6.8, we define the shift in the x axis as:

ηk(t) = E[argmaxlag(ρ(Lk
d̂
, Lt))|Lt moves]− E[argmaxlag(ρ(Lk

d̂
, Lt))|Lt does not move]

(6.13)
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Figure 6.7: The cross-correlation series for the group of 21 lines selected from I0 with lines acquired at
1 ≤ t ≤ 500 (see 5.1)

Figure 6.8: The maxima of the cross-correlation series corresponding to the groups of 21 lines selected at
t = 0 with 10 lines collected at t = 1 . . . 10 during the line experiment (see also fig 5.1)
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Figure 6.9: The classes estimated using the cross-correlation measure. Note: the upper plot is using the
classes defined from I0, while the lower plot is using the classes defined from IT+1

Figure 6.10: Estimated shift in y direction -smoothed version. Note: the upper pannel correspond to t=0,
while the bottom panel correspond to t = T + 1.
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Figure 6.11: The x-y movement for the lines scanned first 2560 times in the repeated-scanned line experi-
ments, with respect to I0(a) and with respect to IT+1(b)

where k is 0 or T+1 and 1 ≤ t ≤ T and corresponds to the class where the line Lt fits best.

As the second term in 6.13 is 0, the shift in x direction will be estimated directly from

the similarity matrices 6.11. We can describe the movement in (x,y) plane by estimating

the shifts in x and y directions. Fig. 6.11 represents the estimated trajectory that the brain

is following during the scanning of 1 ≤ t ≤ 2560. We notice that the movement is fairly

periodic with larger amplitude in the y direction. Also, the few estimates that seem to have

an “unusual” behavior are very likely to be related to the respiration.

A more detailed examination of the relationship between the shift of line at time t and the

estimated POX(t) value recorded simultaneously, shows a statistically significant association.

As the observed values for the POX series vary roughly from -700 to 700, the change in the

shift value for each additional POX unit would be very small. Therefore, we rescaled this

measure with the one-to-one transform:

n(p(t)) =
p(t)−mins≤2560p(s)

2
, (6.14)

which preserves its spectral characteristics. Calling the image set of POX through this

isomorphism as normalized POX, we used it in several regression models to estimate its
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Reference Image Outcome normalized POX Effect Std. Error p-value

I0 Image y-Shift 2.7795 0.0915 < 0.0001

I0 Image x-Shift -0.5558 0.0472 < 0.0001

IT+1 Image y-Shift 1.737 0.0711 < 0.0001

IT+1 Image x-Shift -0.8261 0.05 < 0.0001

Table 6.1: Estimates of the effect of the normalized POX values on the shifts in x and y directions.

impact on the shifts on y and x direction.

Formulating the models as:

outl(t) = βl0 + βl1n(p(t)) + εl(t), (6.15)

where 1 ≤ t ≤ 2560, outl(t) is the shift estimate at time t, and εl is white noise (from

N(0, σl)).

Table 6.1 presents the impacts of normalized POX signal on the y and x shifts (β̂l1),

estimated through the linear model set-up 6.15. These values tell us how many pixels the

line moved on average while scanning it for 2560 times.

Let us define a POX cycle as the period that the device needs to go from one minimal

value to the next one. During the acquisition of an image with 512 lines, about 5 heartbeats

happen corresponding to around 4-5 POX cycles. As we are interested in identifying moments

when the brain is in a minimal motion state, or “near-to-rest” , monitoring the movement

trajectory per POX cycle may give us useful indicators about the transition to a “far-from-

rest”’ state. Fig.6.12 represents the brain movement for the first 9 POX cycles, conditioned

on the pre-experimental image (I0). Fig.6.13 represents the brain trajectory for the same 9

POX cycles, as before, but conditioned on the post-experimental image (IT+1).
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Figure 6.12: The x-y movement in the repeatedly-scanned line data, for a group of 9 heart beats (when
compared with respect to I0).
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Figure 6.13: The x-y movement in the repeated-scanned line data for a group of 9 heart beats (when
compared with respect to IT+1).
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Figure 6.14: The fitted lines for 5.1(a) estimated with the classification model applied on I0 (b), and IT+1

(c) (first 500 times).

6.3 MODEL FIT

The classification models defined in the previous section 6.2 describe the brain motion in

(x,y) plane. Fitting these models to the observed lines at 1 ≤ t ≤ 2560 helps us measure

the goodness of fit. The fitted values estimated with the second classification model are

presented in fig 6.14 (first 500 lines) or D3/D4(all).

Visually, the model displays the almost periodic variation for the positions of the features

between the lines as the observed ones.

When representing the residuals, fig.6.15 (first 500 times) or D5 (all), it seems that there

is still unexplained variation in the data. This fact is expected as we did not include the

z component in the spatial modeling of the line movement. A closer look over the values

used for classifying with the cross-correlation measure, shows that these values vary also in a

relatively broader range (see fig.6.16 and 6.17). Further analyses might use a Support Vector

Machine classifier to determine which lines might come from a different slice than I0 or IT+1.

However, we would not be able to know how further away might be the neighboring slice.

To have an idea about that we need to collect repeated lines from several adjacent slices, i.e.

fixed y, but variable z.

The means squared error for these models was 0.2419 and 0.296 respectively. To check

whether there is any event that might have triggered large residuals at some specific times, we

divided the 2560 times into 5 groups of 512 lines. We computed the MSE for each subgroup,
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Figure 6.15: The residuals estimated with the classification model applied on I0 (left), and IT+1 (right)
(for the first 500 times).

yielding values between 0.239 and 0.249, 0.274 and 0.317 respectively. The variance of these

estimates is 0.000022 and 0.00028, respectively. These statistics show that one model offers

a somehow better fit than the other, but the differences are very small.

Overall, we can conclude that for the period of time considered for this analysis the

motion process happened in a relatively regular cyclic fashion.

A closer look on these scatter-plots (fig. 6.12 and 6.13) points out the fact that for

smaller normalized POX values the movement is relatively small when compared with large

normalized POX values. Also, regressing the y shifts estimates versus the POX values yield

significant positive associations (see table 6.1). Therefore we can conclude that the POX

value could be an indicator of the state in which the brain is at that time. We will continue

to study this relationship in more detail in the next chapter and use it to reconstruct images.

6.4 APPLICATIONS ON EXTENDED LINE DATA

We mentioned in last chapter, 5.3 about several extensions we considered in the repeated line

scan experiments. For the data coming from z-stacks acquired from this kind of experiments,
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Figure 6.16: Maximum values from cross-correlating lines at times 1 ≤ t ≤ 2048 with lines from I0.
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Figure 6.17: Maximum values from cross-correlating lines at times 1 ≤ t ≤ 2048 with lines from IT+1.
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we tried to expand the analysis steps presented in this chapter to include the z dimension

as well.

6.4.1 Stack of repeated scanned lines (ferret)

In order to visualize the between variation among the lines of one slice, we computed a

distance matrix given by the Euclidean norm (see 6.18). We notice the periodic similarities

among some of the lines represented with darker shades.

Next, using the Euclidean norm, we fixed a line (t=60) from D6 (z=104) and we did a

search in the set of the lines scanned at the same z and at 10 adjacent slices (5 above and

5 bellow). The similarity matrix is presented in 6.19, where the vertical axis corresponds to

the depth (z) and the horizontal one to time (t).

6.4.2 Stack of repeated scanned lines (mouse)

Similar steps as those described in previous sections have been taken with the z-stack line-

data collected from a mouse. We selected a sample of lines which have clearer image/variation

data. For each slice, let us denote the times when these lines where scanned as t = 1, 2, ..., T .

Then the stack of pre- (x, y)- images was taken at t = 0.

The cross-correlation values used to determine how similar are the lines recorded at times

are presented in fig6.21.

The pre-slices that matched the lines in the considered sample (scanned at t = 1, 2, ..., T )

are represented in fig6.22. We notice that the lines scanned during the line- experiment were

not varying too much from one slice to the other. Consequently, most of them matched the

lines from 2nd and 6th slices of the pre z- stack.

6.5 CONCLUSIONS

Although with inherent experimental limitations, the analysis presented in this chapter gives

us numerical statistics which estimate the amplitude of the movement. First, we conditioned

89



Figure 6.18: A distance matrix calculated for the lines of the slice presented in D6. th line in the matrix
represents the Euclidean distances of the line scanned at time t with all the other lines(299) recorded from
the same slice z. Note: darker shades corresponding to smaller values point out periodic similarities among
lines at different times.

Figure 6.19: The similarity matrix corresponding to Euclidean norm of a “fixed” line (t=60) at z=104 with
the set of the lines taken at the same z and at 10 adjacent slices (89 ≤ z ≤ 109). The vertical axis corresponds
to the depth (z) and the horizontal one to time (t). Darker shades correspond to smaller distances.
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Figure 6.20: The segments of middle 21 lines of 8 slices adjacent of the z-stack taken before the line-data
was acquired (right side) are cross-correlated with the groups of lines scanned for 300 times in 5 adjacent
slices. Note: the depths of the slices taken before include the depths of the slices taken during the line-
experiment.

our analyses on the region in the brain where the repeated line experiment was executed at

two different times (before and after), relatively further apart from each other (a few tens of

seconds). As the physiological data was not recorded for those images, we do not know the

POX values for their middle lines. However, we expected that under normal physiological

conditions, the lines scanned before, (at t = 0) should be rescanned at certain times during

the repeated line scan experiment. We plan to apply these classification models to the rest

of the lines, up to T = 10000. We expect to recover the results stated at this section.

Because of the brain movement, we expect that the features which were scanned in I0

to appear moved in IT+1. To have an idea about the amplitude of the motion, we cross-

correlated the δ lines selected from the region of interest and defined in the previous analyses

as classes (Ck
l ). The shifts in x and y directions were on average small (1-3 pixels), but not

zero. This might explain also the relatively different trajectories estimated through the two

models.

As we are constrained by the lack of clear information about features at neighboring

depths in the cerebral tissue, we need to be aware that some lines scanned during the

repeated line experiment may come from different regions in the brain than those captured

in I0 or IT+1. The z spatial component has not been integrated in this algorithm. When

fitting the classification model to I0 or IT+1, the estimated lines look very close to the
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Figure 6.21: The cross-correlation values of the groups of lines from the extended line-experiment and
from the pre-stack slices, as described in fig6.20.
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Figure 6.22: The estimated slices (on y axis) from the pre z stack whose middle lines maximized the
cross-correlation values of the groups of lines (on x axis) described in fig 6.20.
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Shift direction correlation (t=0 vs t=T+1) test statistic (t2558) p-value

x-Shift 0.56 34.19 < 0.0001

y-Shift 0.75 56.83 < 0.0001

x-Shift (smoothed) 0.95 153.9 < 0.0001

y-Shift (smoothed) 0.97 201.8 < 0.0001

Table 6.2: Tests of the association between the estimated shifts with the two cross-correlation models
(conditioned on I0 versus IT+1).

observed ones, but there is still unexplained variation. Also, we compared the trajectories

identified when classifying with respect to I0 with the ones estimated with respect to IT+1.

The test statistic used was:

t = r

√
n− 2

1− r2
, (6.16)

which is a random variable from a t distribution with n-2 degrees of freedom.

As summarized in table 6.2, cross-correlating the two series yielded that the y-shifts

are highly correlated. Similar finding is true for x-shifts. The two cross-correlation series

were maximized at the same lag = 1, suggesting that the description of the process is quite

consistent from one model to the other.
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7.0 IMAGE RECONSTRUCTION METHODS

Yesterday is but today’s memory and tomorrow is today’s dream. (Kahlil Gibran)

7.1 HIDDEN MARKOV MODELS

Other methods that we have considered for estimating the ”good” image rely on combining

the replicates of the image taken at the same z position using the physiological values. The

Pulse-oximeter device displays the percent oxygenation of arterial hemoglobin. Thus, it

gives an indication about the cardiac and respiratory cycle, and it can be used as a cue

about potential tissue movement. As explained at the beginning of the Preliminary Analysis

section (4), after some spectral analysis of the POX wave we can recover the heart beat

and the respiration signals. The EKG is recorded simultaneously with POX data, so when

the two series are overlaid (fig.7.1) we notice that they are very well related. The POX is

minimal when the heart is relaxing, i.e. in the diastolic phase of its cycle.

Consequently, we could intuitively think that among lines scanned at the same (y,z)

position for multiple times (not necessary consecutively), the one whose correspondent POX

value is smaller, has a higher probability to be recorded at the true (y,z) coordinates in

the brain tissue. In order to apply this method, the three copies of the same z slice where

recorded in the triggered mode such that their physiologies start at equally spaced moments

during the cardiac cycle.

One way to describe the underlying process of scanning lines in a systematic fashion

from a dynamic environment is by using hidden Markov model framework. We can look

at the brain movement as following a continuous path determined mainly by the cardiac
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Figure 7.1: Physiology measured while scanning the brain. EKG is colored in black, while POX is colored
in red. Note: the minimal POX values correspond to diastole phase in the cardiac cycle.
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Figure 7.2: A scheme of the underlying process described by Hidden Markov Models: we observe data from
a dynamic system whose states are hidden to direct knowledge. Estimate HMM to fit well the observations
(forward) then infere about the latent states (inverse).

and respiratory cycles, and we would like to combine the steadiest states with the most

dynamic ones into one scoring system. Decisions made based on this system would be

probabilistic “labels” for the position of the line. Hidden Markov models (HMMs) are the

formal foundation for making probabilistic models of linear sequence “labeling” problems.

([27], [7]). They provide a conceptual toolkit for building complex models by simply drawing

an intuitive picture.

In our case the HMM invokes two states, one for each of the labels that we might

assign to one scanned line: “near-to-rest” (S1) and “far-from-rest” (S2). Each state has its

own emission probability determined by the physiological value. For each state, transition

probabilities of stationing or moving to a new state describe the linear order in which we

expect the states to occur.

It is useful to imagine an HMM generating a sequence of states. When we visit a state, we

emit a residue from the state’s emission probability distribution. Then, we choose which state

to visit next based on the state’s transition probability distribution. The model generates

two strings of information. One is the underlying state path (the labels), as we transition

from state to state. The other is the observed sequence, each observation being emitted from

one state. The state path is a Markov chain, meaning that the state we go to next depends

only on the state we are currently in. Since only the observations sequence was given, the

underlying state path is hidden so it becomes a hidden Markov chain.

An HMM is a full probabilistic model: the model parameters and the overall sequence

“scores” are all probabilities. Therefore, we can use the Bayesian probability theory to

97



manipulate these numbers in standard, powerful ways, including optimizing parameters and

interpreting the significance scores. Models of dynamic behaviors are often best expressed

in terms of a sequence of events or phenomena that occur over time. This approach defines

the set of valid states and describes the system dynamics in terms of stochastic transitions

among them.

We denote π(i) as the probability of being in the relevant state Si, and bj(k) as the

probability assumed in the model for the process which distorts Sj to produce Ok. The

probability P (O,Σ|HMM, θ) for an HMM with parameters θ to generate a state path Σ and

an observed sequence O is the product of all emission probabilities (bj(k)) and transition

probabilities (ai,j) that are used. The goal of our method is to estimate the hidden sequence

of states using estimates of θ (bj(k)’s and ai,j’s).

Bayes theorem states that:

P (x |y) ∝ P (y |x)P (x)

where the constant of proportionality does not depend on x.

Thus, the right-hand side of 7.1 is the key to defining such quantities as the maximum a

posteriori (MAP) estimate of x, given y.

7.1.1 Standard HMM limitations

The standard HMM framework restricts the distribution of the time spent in one state to be

geometric. Thus, if td is the duration of the system in state i, 1 ≤ i ≤M , its distribution is:

pi(td = d) = ad−1
ii (1− aii),

where aii is the “cycling”’ transition probability of state i and d is the number of time-steps.

In reality, based on prior knowledge we may want a different kind of distribution. Normal

physiology for in vivo experiments reveals that the transition from the “near-to-rest”’ state

to the “far-from-rest”’ one is more likely to occur about half way through the cardiac cycle.

The problem of modifying the standard Markov model to allow for arbitrary state-

durations can be address by using semi-Markov models ([13]). A semi-Markov model has

the following generative description:
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• when entering state i, the process remains in this state td time-steps;

• the distribution of td is given by pi(td);

• at time td + 1 the process enters another state according to a transition matrix A;

• the process repeats.

The state duration distributions can be modeled using parametric distributions or non-

parametrically by mixtures, kernel densities, etc.

Also in the standard HMM framework, the observed yt ’s are often modeled as Gaussians

or mixtures of Gaussians. For Gaussian, this implies a piecewise constant process with one

mean µi per state i with additive Gaussian noise. Mixtures allow switching between multiple

means per state, but still imply a constant regression process as a function of time. However,

there are many examples of real-world time-series where this piecewise - constant model is

inappropriate.

Rabiner [27] shows that the concept of hidden states, where the observation is a proba-

bilistic function of the state, can be used effectively. An observable Markov model outputs

a set of states at each instant time, where each state corresponds to a physical (observable)

event. In our case, we are given a sequence of observations from which we want to infer the

hidden state path. Potentially, there could be multiple state paths that generate the same

sequence. Our problem becomes finding the one with the highest probability. For most prob-

lems there are so many possible state sequences that it may be very computational costly to

consider all of them. The efficient Viterbi algorithm is guaranteed to find the most probably

state path given a sequence and an HMM, with less computational effort.

In our case, we start with a HMM frame work for 2D images. In order to increase the

signal-to-noise ratio, the image acquired at a pre-specified z depth inside the brain is collected

for three consecutive times. Therefore, at each y position the system produces noisy versions

of the “true” line located at those (y,z) coordinates.

We hypothesize that these lines are observed when the brain is oscillating in one of the

two hidden states: ‘near-to-rest” (S1) and “far-from-rest” (S2). Also, based on the results

of the analyses presented in the previous chapter, we estimate the output probabilities for

each state based on the physiological POX measure. Therefore, at every time t when a line

is recorded, POX(t) indicates the probability of being scanned in S1 or S2.
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Figure 7.3: Hidden Markov Model idea: Two hidden states S1 and S2 that produce observations Oi and
Oj with probability b1(i) and b2(j), respectively. The transition from one state to the other happens with
probability aij , while the probability of remaining in any state is aii.

Formally, there are 3x512 lines scanned during several seconds when the brain was moving

for several times. Coming from the same cerebral tissue and from neighboring spatial loca-

tions, these lines are not independent in this observed sample. However, they are collected

by the microscope under the triggered mode to ensure that the variation due to physiologi-

cal motion remains consistent across each replicate. This allows us to assume that the lines

scanned at the same y position in the three images are sufficiently separated in time that

they might be considered relatively independent.

7.1.2 Probabilities Estimation

A schematic representation of the scanning process described above is shown in 7.3.

For the semi- HMM probabilistic set-up we propose, we need to specify the following:

• S = the set of states = S1, S2

• O = the observations = O1, O2, . . . , OM

• π(i) = probability of being in state Si at time 0 (i.e., in initial states)

• A = transition probabilities = aij, where aij = P(entering state Sj at time t+ 1 | being

in state Si at time t)
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• B = output probabilities = bj(k), where bj(k) = P(producing Ok at time t | being in

state Sj at time t)

Based on the results stated in previous section 6.2.2, we can use the POX(t) value as

an indicator of the state where the line is scanned in at time t. We would like to include

this information in further analyses done within the HMM framework. First we integrate it

into an algorithm for estimating the necessary probabilistic set-up. Next, as presented in the

following section, we use it for predicting the number of replicates necessary for this model.

Let us define the state in which the line might have been scanned in as:

Lt is in

 S1 if Lt ∈ C10 or C11 or C12

S2 otherwise
(7.1)

Then we relate the times when the line was scanned in S1 with the physiological POX

value. Generally, during an experiment, the POX ranges on average from -600 to 600. This

range is preserved after estimating the POX value corresponding to the line scanned at time

t. As described in section 5.1, when estimating the POX value for each line, the higher

frequency noise from the observed POX measurements have been filtered out at some degree

by this moving average algorithm. In fig.7.4 it can be noticed how the POX values changed

in the matching process and after filtering more the higher frequency noise with the Fourier

transform.

The POX measure is a continuous scalar, but displayed in a discrete way to match the

line image data. We have categorized it even further dividing the overall range in Np equal

bins. Next, based on the classes estimated in the previous chapter (6.2.1) and the definition

7.1, we estimated the output probabilities bi, which, conditioned on each state should be a

probability mass function. Fig. 7.5 shows the estimated probabilities bi(k) of scanning a

line Ok in state Si. A better estimation is obtained when we use the smoothed POX version

(see 7.6). In this case we used Np = 52 (or Np = 40 for the smoothed version). However,

increasing or decreasing Np will make bi look smoother or more sparse, but it will not change

the overall shape.
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Figure 7.4: POX data during the repeated scanned line experiment: The first panel represents the observed
POX for about 300ms. This time corresponds to scanning 100 lines, whose estimated POX values are
represented in the second panel. The last one shows the smoothed version of the estimated values.

Figure 7.5: Estimated output probability mass function using the POX values corresponding to lines
collected in the repeated scanned line experiment for 1 ≤ t ≤ 2560. Not: for the left panels (a) we used the
classes estimated with respect to I0 (pre), for the right ones (b) we used the classes estimated with respect
to IT+1 (post)
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Figure 7.6: Estimated output probability mass function using the smoothed POX values corresponding to
lines collected in the repeated scanned line experiment for 1 ≤ t ≤ 2560.

Consequently, we were able to get the estimates of the posterior probabilities di, where:

di(k) = P (Si|O1, O2, ..., Ok) (7.2)

,

with the constraint:

∑
i≤2

di(k) = 1.

For a graphical representation, they are shown in fig. 7.7.

As explained in more details in next section, the rate of lines scanned in S1 within a

POX cycle (as defined in 6.2.2) is about 50%. Depending on the heart rate, about half of

the cardiac cycle is spent in state S1, and about half in state S2. Consequently, we consider

the transition matrix:

(aij)=

 0.5 0.5

0.5 0.5


In a general set-up, with more than 2 states we could define it as:

number of times going from state l to state k

number of times going from state l to any other state
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Figure 7.7: Estimated posterior probabilities using the smoothed POX values corresponding to lines
collected in the repeated scanned line experiment for 1 ≤ t ≤ 2560.

7.1.3 Viterbi Algorithm

In order to predict the state sequence S = S1, ..., ST based on the observed data we consider

the following likelihood function:

δt(i) = Pr[S1S2 . . . St = i, O1O2 . . . Ot |θ] (7.3)

Defined in this way, δt(i) computes the probability along a single state path at time t

which accounts for the first t observations and ends in state Si.

Viterbi algorithm finds the optimal state sequence which maximizes δt(i) , equivalent to

maximizing:

Pr[S1S2 . . . St = I|O1O2 . . . Ot, θ]. (7.4)

This optimization criterion is called the rule of Maximum A Posteriori (MAP). The

amount of computation in the Viterbi algorithm is at the order of M2T, while the memory

required is at the order of MT.
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Generally the algorithm involves an exhaustive search of all the MT possible state se-

quences, evaluating the likelihood that the observed lines come from those states. The steps

are:

1. Initialization: δ1(i) = π(i)bi(1)

φ1(i) = 0, for 1 ≤ i ≤ 2

2. Induction: δt(i) = (max[δt−1(j)aji]︸ ︷︷ ︸
1≤j≤2

)bi(k)

φt(i) = argmax[δt−1(j)aji]︸ ︷︷ ︸
1≤j≤2

, for 2 ≤ t ≤ T

3. Backtracking the path: Σ∗T = argmax[δT (j)]︸ ︷︷ ︸
1≤j≤2

= φt+1(Σ∗t+1), for t = T − 1, . . . , 1.

where Σ∗1 . . . Σ∗T is the estimated state sequence.

In our case, Viterbi algorithm maximizes an objective function G(S) which can be written

as a sum of “gain” functions depending on one state and its preceding one:

G(S) = g1(S1) + g2(S2, S1) + + gT (ST , ST−1) (7.5)

Suppose in the optimal state sequence Σ∗ the state at the lth position is Σ∗=k. Maxi-

mizing G(S1, , ST ) is equivalent to maximizing the following two functions separately:

Gl,k(S1, , Sl−1) = g1(S1) + g2(S2, S1) + + gl(k, Sl−1)

G∗l,k(Sl+1, , ST ) = gl+1(S1+1,k) + + gT (ST , ST−1),

which involve only the states before and after l .
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Using the estimated probabilities from the previous section 7.1.2, we compute the g

functions based on POX values.

To do that we used the smoothed values of the POX collected simultaneously with images

whose normalized version is plotted in fig.7.8.

We modified slightly the Viterbi algorithm reducing it to the search of the state path

Σ̂∗1, . . . , Σ̂
∗
512 that selects only S1. The lines estimated with high probability of being scanned

in this state path have been assembled in a new image, as described in section 7.2.

7.1.4 Prediction of the Number of Replicates

With the rodent being alive under the microscope, the observed images include lines scanned

when the brain was in S1 or in S2. Given the classification models from previous chapter ??

describing the brain movement caused by physiological events, we can predict the number

of lines that are scanned in S1 during a POX cycle.

From the repeated scanned line experiment used for analysis in chapter ?? during a POX

cycle there are scanned about 67 lines, out of which approximately 40 have higher probability

to be collected in S1. Table 7.1 summarizes these counts and rates for 7 POX cycles that

would normally happen while scanning 512 lines.

Consequently, we need at least two replicates to be able to reconstruct images with lines

that have high probabilities to be scanned in S1. Increasing the number of replicates will

provide lines with higher probabilities than those coming from only 2 replicates.

7.2 RECONSTRUCTED IMAGES

Applying Viterbi algorithm to this data provided us with a sequence of lines most likely to

be scanned in S1 state. Assembling them allows us to recreate an image with no gaps. One

outcome of the HMM reconstruction method is presented in fig.7.9.

A good quality image should present the features smooth and continuous. Our resultant

image has still some discontinuities that need to be addressed. We estimated the length and
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Figure 7.8: Observed POX (upper) vs Smoothed POX (lower) data. Each color represents the physiology
associated with one of the three replicates collected for this experiment: black (full line) for 1st time, red (–)
for 2nd time, green (..) for 3rd time.

event lines per event (counts) lines in S1 (counts) lines in S1 (%)

POX cycle 1 71 36 0.51

POX cycle 2 65 32 0.49

POX cycle 3 65 41 0.63

POX cycle 4 65 48 0.74

POX cycle 5 63 38 0.60

POX cycle 6 69 43 0.62

POX cycle 7 71 44 0.62

average for all 7 cycles 67 40.2857 0.602 (0.007)

Table 7.1: Estimated rates of scanning lines in S1 during a POX cycle.

107



Figure 7.9: An estimate of the “true”’ image based on HMM: it includes the line that corresponds to the
estimated “near to rest” (S1) state. The lines coming from 1st replicate are color-coded in red, the ones
coming from 2nd replicate are color-coded in green, and those coming from 3rd replicate are color-coded in
blue. Note: there are small drifts at the junction regions.
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Figure 7.10: Estimated drifts for the reconstructed image 7.9 (bottom). Concomitant normalized POX
values are presented above.

direction of the shifts that the lines need to be translated with, such that the correlation of

the shifted lines to be maximized.

δ̂x(u, v) = argmaxlag(ρ(u, v)), (7.6)

where u and v are two adjacent lines at a junction point. Fig. 7.10 presents the estimated

drifts for the resultant image 7.9 and emphasizes the association between these shifts and

the POX values at those times.

The Shifting property of Fourier transform 4.7 aligned the lines estimated to be scanned in

S1 producing an improved reconstructed image (??), free of physiological movement artifacts.

7.2.1 Fatal experiment

At this point, we needed a validation procedure to compare the model fit. In the absence of a

true reference image, we compared the resulting images with the observed ones, using a least

square approach and a correlation method. This approach has not yielded any satisfactory
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Figure 7.11: An improved estimate of the “true” image based on HMM (7.9): the lines corresponding to
the estimated “near to rest” (S1) state are aligned to preserved the continuity of the feature. The panel in
the right indicates which replicate captured the line in this state with black for the 1st and white for the
last.
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Figure 7.12: The estimated image through the semi-HMM applied on data collected in triggered mode.
Note: the panel in the right side indicates the time when the lines have been scanned in S1

results.

However, a new set-up experiment (fatal for the specimen) would provide us with an

image free of physiological movement artifacts. We hope that we could use it to validate our

reconstruction algorithm.

The experimental steps have been designed as following:

1. Perform z-stacks of triggered images while the animal is alive (3 replicates).

2. Inject the specimen with high dose of lethal substance and image its tissue.

The semi-HMM framework has been applied on images collected during this kind of

experiments. A resultant estimate is shown in fig 7.12.

The estimated image (7.12) has been compared with a sample of images scanned while

the brain was not affected by the blood pressure any more. Due to natural changes occurring

in the spatial distribution of the fluorescent features, we considered several slices scanned at

a depth that included the z position when the animal was alive. The 2D cross-correlation

function of the estimated image with the sample of slices from the dead brain was maximized
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Figure 7.13: The slice taken when the animal was dead that maximizes the 2D cross-correlation function
with the HMM-estimated image of the live brain.

at the image shown in fig 7.13.

We notice that the features moved considerably from one image to the other, making

their comparison quite difficult. Future work on this direction might prove whether our

suggestion was helpful in validation the reconstruction procedure.

7.3 CONCLUSIONS

Using the results on the movement of the brain concluded in the previous chapter (??), we

proposed a data driven set-up using a semi-hidden Markov model framework. Given that the

observed lines come from three replicates of the same scene in the brain at different times, we

estimated the ones with high probability to be scanned in S1 state. Put altogether, these lines

create a rough estimate of the scene in the brain with the image artifacts due to physiological

movement being minimized. After identifying the discontinuities in the resultant estimate,

an improved image has been produced.
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8.0 DISCUSSION

It is a frequent misconception that scientific research results in simple clear answers to questions.
The truth is that almost every answer results in a whole battery of new questions. But the

research serves to increase our understanding so that we know how to frame the new questions
and try to tackle them. (William Greenough)

This dissertation presents a data-driven framework for reconstructing images from Two

Photon Laser Scanning Microscopy. We show that the data-driven approach allows us to

generate subject -specific, quantifiable, predictive models in spite of current measuring limi-

tations. We describe a classification model for tracking the movement of the brain and then

another probabilistic model for reconstructing images. Each model has specific strengths

for various aspects of the modeling and together they offer relatively simple and sufficiently

accurate estimations of biologically relevant measures.

We instantiate the framework by developing a collection of computational algorithms,

analysis and visualization tools. We adjust the acquisition technique to collect hybrid image

data, with lines scanned repeatedly for several hundreds of times. This approach enables us

to observe the variations in feature positions among the scanned lines. Next we incorporate

some of these results and experimental information into a Hidden Markov Model with two

states: “near-to-rest” and “far-from-rest”. As we are interested in the image regions where

the movement was minimal, the lines observed in this state are estimated using the Viterbi

algorithm.
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8.1 IMAGE FILTER -CONTRIBUTIONS

When working with high resolution imaging techniques, details matter at a high extent. Im-

age analysis methods are necessary to describe and extract biological phenomena of interest.

In our case, we analyze large sets of high bit depth neuronal images where fine neurites

must be identified and tracked over time. Therefore we pay increased attention to each pixel

value and we develop a novel thresholding algorithm to increase the signal to noise ratio.

We consider several values within the pixel intensities range that will act as thresholds for

a new image with fewer levels on the grey scale. Consequently, we define a “many- to- one”

transformation that applies to each pixel of the input image.

Choosing the correct threshold values is critical, as they will determine which pixels are

labeled as signal and which are noise. We estimate them by maximizing the correlation

between the original image and the transformed image.

The advantages of using this novel algorithm may be emphasized from several points of

view:

• Visually, the new image has less background noise, while some of the features have clearer

contours than in the original picture.

• The spatial variation of the pixels is preserved, due to the properties of the correlation

function. The filtered image is highly correlated with the initial one, even though the

pixel values are significantly reduced.

• From the analysis perspective, the number of parameters to estimate is significantly

decreased. Also, the within-feature variation of pixel intensities gets significantly low,

increasing the precision of other analysis methods. For example, classifying lines based

on between features variation has been improved not only in the matching results, but

also in computer time and memory.

• Although the function to maximize has not a closed analytical form, the simple un-

derlying idea makes it accessible to a vast research population. The use of the genetic

algorithms in a C environment has allowed us to estimate a multi-dimensional solution of

this optimization problem. However, after taking several theoretical steps into a deeper
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analysis of this function, we became aware of new characteristics that could be revealed

by future work.

8.2 BRAIN MOTION -CONTRIBUTIONS

Tracking the trajectory of a target is usually done using time-space models. In our case, we

take a classification approach conditioned on some inherent constraints. The fact that we are

not able to capture an image free of movement artifacts is an ongoing limitation for which

we need to adjust our analysis. Therefore, for the repeated scanned line experiment we track

the position of a line by looking it up within images taken before and after this experiment

(defined as classes). We start with an Euclidean distance classification rule which we develop

into a cross-correlation framework.

Specific contributions of this work include:

• Conditioned on the “before” and “after” images, we estimate the shifts in (x,y) plane

and we represent the trajectory of a line under the microscope. This method has also

lead to the creation of a brain motion database of unprecedented detail. Although it

was designed for multiple species, angles and directions, most of the results presented in

this thesis come from a single direction data acquisition. Future work would enrich this

database with more details and complexity.

• The classification model is quantifiable, estimating the amplitude of the movement during

the experiment. It also has predictive capabilities in computing the expected position

under “regular” physiological conditions.

• The number of lines scanned in each class can be used to compute how much time the

brain spends in that position. This statistic could be used to determine how many

replicates are necessary for the image reconstruction model.

• The trajectory obtained with respect to the “after” image is consistent with the one

estimated with the “before” image. This gives a measure of confidence in the accuracy

of our results.
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• Fitting these classification models (“before” and “after”) to the repeated scanned lines

points out the goodness of fit both visually but also computationally via the mean squared

error.

• A step further, the extensive use of a correlation based thresholding filter increased the

accuracy by decreasing the variation in pixel intensities. This novel algorithm requires

as sole input the usual image with M grey levels and outputs a highly correlated image

with K grey levels, K << M .

• The class matching was performed without the need of physiological measurements, but

statistical tests confirm the significant association that exists between these processes.

A careful analysis of this relationship gives indices regarding the “near-to-rest” state of

the brain.

8.3 IMAGE RECONSTRUCTION -CONTRIBUTIONS

The image reconstruction system we developed takes as input biological images (with several

replicates scanned in a triggered mode) and the concomitant physiological measurements,

estimating new images constructed from the regions where the brain movement was minimal.

The results of this work bring innovations to the field because:

• It includes the effect of subject’s physiology in estimating the periods when the brain

motion was minimal.

• It offers a probabilistic solution to main aspects related to movement artifacts:

1. some lines are scanned several times, therefore we need to decide which line was in

the “near-to-rest ” state;

2. some lines are never scanned, therefore we need to find lines that can fill these gaps,

considering the inherent correlations with the neighboring pixels.

• It estimates reliable in vivo images overcoming the current imaging technology limita-

tions. The advantages that TPLSM offers to science could be used with higher confidence

to draw conclusions about complex structures.
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We used a simplistic model that assumes the system oscillating only between two states.

The estimated classes represented in fig6.10 do not expand to more than 8 y-positions.

Therefore the scanning process can not enter in more than 3 states, as, from the classification

model, we considered at least 2 classes per state. The transition probabilities were considered

fixed, hence the results are biased by the assumptions we made. However we could extend

the model by placing some random error around these probabilities.

Ultimately, this work creates a modeling approach that has the potential to more simply

and efficiently explain the brain motion caused by heart beat and respiration, improving the

quality of in vivo images.

8.4 FUTURE WORK

There are limitations to our work, some caused by the current limited data availability,

and some due to our computational approach. From the repeated scanned line data, we

modeled the brain motion caused by subject’s physiology on (x,y) plane. However the

movement is three directional, therefore future experiments would consider this component

when designing the set-up. The models that we develop in this research could be then

extended to a 3D space. Also, a challenging project would be to extend these analyses to

fractional pixel manipulations.

There are further limitations in our computational modeling of the lines observed in

the “near-to-rest”’ state. We estimate the transition/output probabilities based on process

related factors, but the estimation could always be improved. Also, as the time to scan a

pixel can be at least 0.64 µs, scanning an image of 512x512 pixels will last at least 400 ms

which will correspond to at least 2 heart-beats. Even though this speed is too high to capture

the necessary amount of detail for the intended area, the scanner is still not fast enough to

take an image free of movement artifacts. Consequently, we do not have a golden standard

image to validate the estimates of chapter 7. Further improvements in the technological field

would be able to verify our models and might impact the improvement of TPLSM.

The collection of tools presented in this dissertation solves significant challenges in the
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process of reconstructing images from in vivo laser scanning microscopy. Being able to iden-

tify “real”’ features will allow advances in tracking the progress of brain development and in

modeling the neural dynamic over the longitudinal course. It will open also new perspectives

in the manipulation of brain activity, learning about sensory experience, alteration in gene

expression and pharmacological manipulations.
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APPENDIX A

BIOLOGICAL TERMS

Hystology: the microscopic study of the structure of tissues.

in vivo: inside the living body.

neuron: the information-processing cell of the nervous system, also called nerve cell.

Most neurons use action potentials to send signals over a distance. All neurons communicate

with one another using synaptic transmission.

optic chiasm: called after the Greek letter χ, this is the structure in which the right

and left optic nerves converge and partially cross to form the optic tracts.

photoreceptor: a specialized cell in the retina that transduces light energy into changes

in membrane potential.

retina: a thin layer of cells at the back of the eye that transduces light energy into

neural activity.

synapse: the region of contact where a neuron transfers information to another cell.
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APPENDIX B

CORRELATION- BASED THRESHOLDING IMAGES

B.1 K THRESHOLDS CORRELATION FUNCTION

By definition, the correlation function between two vectors of length N x and y is

corr(x, y) =

∑N
i=1 (xi − x)(yi − y)

N
√
var(x)var(y)

=

∑N
i=1 (xi − x)yi

N
√
var(x)var(y)

(B.1)

as y
∑N

i=1 (xi − x) is zero.

When y is defined as

y(i) =


0 if x(i) ≤ k1

1 if k1 < x(i) ≤ k2

2 otherwise

then B.1 becomes:∑k1
j=0 nj(j − x) ∗ 0 +

∑k2
j=k1+1 nj(j − x) ∗ 1 +

∑M
j=k2+1 nj(j − x) ∗ 2√

N ∗ var(x)(
∑k1

j=1 nj(0− y)2 +
∑k2

j=k1+1 nj(1− y)2 +
∑M

j=k2+1 nj(2− y)2)

which simplifies to:

Nk1(xk1 − x) +Nk2(xk2 − x)√
(
∑M

j=0 nj(j − x)2)((N −Nk1)(0− y)2 + (Nk1 −Nk2)(1− y)2 +Nk2(2− y)2)

which is 3.1.
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The same algorithm is applied when generalizing y to K thresholds.

Then, dividing the numerator and denominator in 3.1 by N we get the 3.4.

B.2 DENOMINATOR OF THE CORRELATION FUNCTION

The denominator in 3.6 has under the square root a sum that can be decomposed based on

the expansion of the square term.

K∑
i=0

(ui+1 − ui)(i−
K∑
j=1

uj)
2 =

K∑
i=0

[(ui+1 − ui)i2 − 2i(ui+1 − ui)SK + (ui+1 − ui)S2
K ] (B.2)

where SK =
∑K

j=1 uj does not depend on i.

Therefore, the sum in B.2 is decomposed into 3 telescopic sums, as following:

[
K∑
i=0

(ui+1 − ui)]S2
K = [u1 − u0 + u2 − u1 + ...+ uK+1 − uK ]S2

K (B.3)

= S2
K . (B.4)

− 2[
K∑
i=0

i(ui+1 − ui)]S2
K = −2[u2 − u1 + 2u3 − 2u2 + ...+KuK+1 −KuK ]S2

K (B.5)

= −2[K −
K∑
j=1

uj]SK (B.6)

= 2S2
K − 2KSK . (B.7)

K∑
i=0

(ui+1 − ui)i2 = u2 − u1 + 4u3 − 4u2 + ...+K2uK+1 −K2uK (B.8)

= K2 −
K∑
j=1

(2j − 1)uj. (B.9)

as uK+1 = P (X < M) = 1 and u0 = P (X < 0) = 0.
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Figure B1: The correlation function between the original image (Fig.2.5) and any tri-colored image con-
structed with 2 thresholds that are displayed on y (k1) and on x (k2). (a) is showing all the values, (b) the
grey scale is changed to enhance the concavity of the function. Note: the actual values are on the upper
right side of the image, while in the lower left there are only zeros.

Summing these components (B.4 + B.7 + B.9) we get

K2 −
K∑
j=1

(2K + 2j − 1)uj + 3(
K∑
j=1

uj)
2
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APPENDIX C

RESULTS ON FOURIER TRANSFORM

C.1 CONVOLUTION THEOREM

F(f(t) ∗ g(t)) =

∫ ∞
−∞

∫ ∞
−∞

f(x)g(t− x)dxexp(−iwt)dt (C.1)

=

∫ ∞
−∞

f(x)

∫ ∞
−∞

g(t− x)exp(−iwt)dtdx (C.2)

=

∫ ∞
−∞

f(x)G(w)exp(−iwx)dx (C.3)

=

∫ ∞
−∞

f(x)exp(−iwx)dxG(w) = F (w)G(w) (C.4)

C.2 AUTOCORRELATION THEOREM

F(f(x)f ∗(x− t)dx) =

∫ ∞
−∞

exp(−iwt)
∫ ∞
−∞

f(x)f ∗(t− x)dxdt (C.5)

=

∫ ∞
−∞

f(x)[

∫ ∞
−∞

exp(iwt)f(x− t)dt]∗dx (C.6)

=

∫ ∞
−∞

f(x)[

∫ ∞
−∞

exp(−iws)f(x+ s)ds]∗dx (C.7)

=

∫ ∞
−∞

f(x)[F (w)exp(iwx)]∗dx (C.8)

=

∫ ∞
−∞

f(x)exp(−iwx)dxF ∗(w) = F (w)F ∗(w) = |F (w)|2 (C.9)
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APPENDIX D

ADDITIONAL REPRESENTATIONS

Figure D1: An extended view on the TPLSM from Dr. Crowley’s lab.
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Figure D2: The RGB version of the z-stack collected from a ferret before and after the repeated scanned
line experiment. The color variation shows that the brain moved at a large amplitude.

Figure D3: The fitted values for the lines scanned at the first 2560 times, estimated with the classification
model applied on I0 (b), and IT+1 (c). The observed lines are shown in (a).
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Figure D4: The fitted lines for 5.1 estimated with the classification model applied on I0 (left), and IT+1

(right).

Figure D5: The residuals estimated with the classification model applied on I0 (left), and IT+1 (right).
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Figure D6: The lines scanned for 600 times during a repeated scanned line experiment on a neonatal ferret.
Note: on the right side are added indicators for estimated POX and respiration values during this time.

127



BIBLIOGRAPHY

[1] D. Avitzour. Stochastic simulation bayesian approach to multi-target tracking. IEE
Proceedings-Radar Sonar and Navigation, 142:41–44, 1995.

[2] M.F. Bear, B.W. Connors, and M.A. Paradiso. Neuroscience: exploring the brain.
Lippincott Williams and Wilkins, 2007.

[3] R. Chen and J. S. Liu. Mixture kalman filters. Journal of the Royal Statistical Society,
B(62), 2000.

[4] W. Denk, J. Strickler, and W. Webb. Two-photon laser scanning fluorescence mi-
croscopy. Science, 4951(248):73–6, 1990.

[5] T. Dittegen, A. Nimmerjahn, S. Komai, P. Licznerski, J. Waters, T.W. Margrie,
F. Helmchen, W. Denk, M. Brecht, and P. Osten. Lentivirus-based genetic manipu-
lations of cortical neurons and their optical and electrophysiological monitoring in vivo.
PNAS, 101(52):18206–18211, 2004.

[6] A.D. Dombeck, A.N. Khabbaz, F. Collman, T.L. Adelman, and D.W. Tank. Imaging
large-scale neural activity with cellular resolution in awake, mobile mice. Neuron, 56:43–
57, 2007.

[7] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Probabilistic models of proteins
and nucleic acids. In I.N.Bankman, editor, Biological sequence analysis. Cambridge
University Press, 1998.

[8] W.F. Eddy, M. Fitzgerald, C. Genovese, Mockus A., and D.C. Noll. Functional imag-
ing analysis software- computational olio. COMPSTAT Proceedings in Computational
Statistics, Physica-Verlag, Heidelberg, pages 39–49, 1996.

[9] W.F. Eddy, M. Fitzgerald, and D.C. Noll. Improved image registration using fourier
interpolation. Magnetic Resonance in Medicine, (36):923–931, 1996.

[10] W.F. Eddy and T. Young. Optimizing the resampling of registered images. In
I.N.Bankman, editor, Handbook of Medical Image Processing, pages 603–612. Academic
Press, 2000.

128



[11] E. Falkenauer. Genetic Algorithms and Grouping problems. John Wiley and Sons Ltd,
1997.

[12] G. Feng, R.H. Mellor, M. Bernstein, C. Keller-Peck, Q. T. Nguyen, M. Wallace, J.M.
Nerbonne, J.W. Lichtman, and J. R. Sanes. Imaging neuronal subsets in transgenic
mice expressing multiple spectral variants of gfp. Neuron, (28):41–51, 2000.

[13] J.D. Fergusson. Variable duration models for speech. Proc. Symposium o the Application
of Hidden Markov Models to Text and Speech, pages 143–179, 1980.

[14] S. Finger. Origins of neuroscience: a history of explorations into brain function. Oxford
University Press US, 2001.

[15] C.A. Glasbey and G.W. Horgan. Image analysis for the biological sciences. Wiley, 1995.

[16] M. Goeppert-Mayer. Uber elementarakte mit zwei quantensprungen. Annalen der
Physik, 401(3):273–95, 1931.

[17] R.C. Gonzalez and R.E. Woods. Digital image processing. Pearson Education, 2002.

[18] D.S. Greenberg and J.N. Kerr. Automated correction of fast motion artifacts for two-
photon imaging of awake animals. J. Neuroscience, (176):1–15, 2009.

[19] A.J. Holmaat, J.T. Trachtenberg, L. Wilbrecht, G.M. Shepherd, X. Zhang, G.W. Knott,
and K. Svoboda. Transient and persistent dendritic spines in the neocortex in vivo.
Neuron, (45):279–291, 2005.

[20] A.J. Holmaat, L. Wilbrecht, G.W. Knott, E. Welker, and K. Svoboda. Experience-
dependant and cell-type-specific spine growth in the neocortex. Nature, (441):979–983,
2006.

[21] A.I. Holodny. Functional Neuroimaging: a clinical approach. Informa Healthcare, 2008.

[22] N.A. Lazar, W.F. Eddy, C.R. Genovese, and J.S. Welling. Statistical issues in fmri for
brain imaging. International Statistical Review, (69):105–127, 2001.

[23] J. Liu. Monte Carlo strategies in scientific computing. Springer, 2001.

[24] A. Mizrahi, J.C. Crowley, E. Shtoyerman, and L.C. Katz. High-resolution in vivo imag-
ing of hippocampal dendrites and spines. J. Neuroscience, 13(24):3147–3151, 2004.

[25] J.A. Nelder and R. Mead. A simplex method for function minimizations. Computer
Journal, (7):308–313, 1965.

[26] K. Padmanabhan, W. F. Eddy, and J.C. Crowley. A novel algorithm for optimal image
thresholding of biological data. J.Neurosci Methods, ([Epub ahead of print]), 2010.

[27] L.R. Rabiner. A tutorial on hidden markov-models and selected applications in speech
recognition. Proc.IEEE, (77):257–286, 1989.

129



[28] M. Rudin and R. Weissleder. Molecular imaging in drug discovery and development.
Nat.Rev.Drug.Discov., 2(2):123–131, 2003.

[29] R. Shumway and D. Stoffer. Time Series analysis and its applications with R examples.
Springer, 2006.

[30] L. Sirovich and E. Kaplan. Methods for in vivo optical imaging of the central nervous
system. In Frosting R.D., editor, In Vivo Optical Imaging of Brain Function, pages
43–76. CRC Press LLC, 2001.

[31] P.T. So, C.Y. Dong, B.R. Masters, and Berland K.M. Two-photon excitation fluores-
cence microscopy. Annu.Rev.Biomed.Eng., 2:399–429, 2000.

[32] P.T.C. So. Two-photon fluorescence light microscopy. In www.els.net, editor, Enciclo-
pedia of life sciences. Macmillan Publishers Ltd, Nature Publishing Group, 2002.

[33] R.C. Truex and M.B. Carpenter. Human neuroanatomy. Williams and Wilkins, 1969.

[34] J.S. Welling, W.F. Eddy, and T.K. Young. Rotation of 3d volumes by fourier-
interpolated shears. Graphical Models, 68:356–370, 2006.

130


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	3.1. 1The estimates that optimize the correlation function 3.3 for different number of thresholds. These values are used to construct a new image (as defined by 3.2) whose correlation with original image is high (first column).
	3.2. 1Comparisons of different image filters.
	6.1. 1Estimates of the effect of the normalized POX values on the shifts in x and y directions.
	6.2. 1Tests of the association between the estimated shifts with the two cross-correlation models (conditioned on I0 versus IT+1).
	7.1. 1Estimated rates of scanning lines in S1 during a POX cycle.

	LIST OF FIGURES
	1.1. 1A schematic view of two adjacent neurons from http://www.elearningsource.info
	1.2. 1A schematic representation of the visual system (from Truex1969).
	1.3. 1The difference images between any two replicates of scans in a group of three, for the same z-slice of rodent brain (the difference between first and second (a), second and third (b), and third and first (c)). The higher intensity values point out the large difference in pixel intensity for the same location, i.e. the brain position changed during these recordings. Note: the features have been magnified for better visualization.
	1.4. 1Color Cube system: over-imposing three color coded images creates a new image with pixel intensities varying accordingly to the color cube. Its origin is black (no red, no green, no blue), the opposite corner (on the diagonal) is white (same amount of red, green and blue), while all the other points are combinations of certain amounts of red, green and blue (Gonzalez2002)
	1.5. 1The entire RGB version of fig1.3: the images collected at 3 consecutive times at the same depth (z) have been color -coded in red (1st), green (2nd) and blue (3rd), and then over-imposed. If the pixel position was not changed then the combined image would have only variations of grey. The presence of red, green and blue colors indicates the displacement of the scanned feature from one scan to the other. Note: The right side magnifies the main feature which seems to have been moved from one time to the other.
	2.1. 1The underlying process necessary for TPLSM: two photons with wave length of 860-890nm combine their energy to excite the fluorophore. The resulting photon with wave length around 500nm is captured by the microscope and translated into pixel value (So2000.
	2.2. 1Two Photon Laser Scanning Microscope optical system diagram: typically consists of a high-peak-power pulsed laser, a high-throughput scanning microscope and high-sensitivity detection circuitry (from So2002). The excitation light is reflected by a dichroic mirror to the microscope objective and is focused in the specimen. Two-photon induced fluorescence is generated at the diffraction- limited volume. Images are constructed using a galvanometer-driven x-y scanner and a piezo-objective z driver (PMT). The emission signals are collected by the same objective and transmitted through the dichroic mirror.
	2.3. 1Two Photon Laser Scanning Microscope used in Dr. Justin Crowley's lab
	2.4. 1Optical Illusion: Because the black and white squares are shifted from one line to the other, the horizontal rows seem to have variable width.
	2.5. 1A slice in the visual cortex of a mouse's brain. The scanning is displayed as 262144 pixels having intensities between 0 and 4095.
	2.6. 1Typically, the animal is mounted under the microscope at 45 with respect to the microscope. As the laser beam advances from left to right in this 45 rotated direction (x), each line is created sequentially from the anterior towards the posterior of the animal.
	2.7. 1Physiological and system- related data presented in eight channels starting with second 9 during a mouse experiment. END represents the pulse at End of experiment from microscope; LSM wait pulses from microscope; STP scan Stop pulses from microscope; SYN line Syncs from the microscope; EKG electrocardiogram; POX Pulse Oxygenation ratio; RSP strain gauge around the diaphragm-currently unused shows the linkage effect of channel 6; TTL spikes when the microscope starts scanning a slice.
	3.1. 12D Moving average -filtered versions of an image: (a) original image, (b) moving average with window-length=3, (c) moving average with window-length=5, (d) moving average with window-length=9. As we increase the window-length, the background noise is reduced, but the image becomes more blurred.
	3.2. 12D Moving median -filtered versions of an image: (a) original image, (b) moving median with window-length=3, (c) moving median with window-length=5, (d) moving median with window-length=9. As we increase the window-length the background noise is reduced, but the edges of the features in the image are visibly affected.
	3.3. 1Correlation between original image and the transformed one (using only one threshold) as a function of the threshold value.
	3.4. 1The bicolor version of fig 2.5 constructed with the threshold that maximizes the correlation function from fig 3.3. Each pixel can have an intensity value of 0 (background) or 1 (feature).
	3.5. 1The correlation function between the original image (Fig.2.5) and any tri-colored image constructed with 2 thresholds that are displayed on x (k1) and on y (k2). Note: There are presented two views from different angles at a magnified resolution around the maximization region. Due to high dimensionality, 2D versions of the image with all the values for the correlation function are presented in B1.
	3.6. 1Correlation based -filtered versions of an image: (a) original image, (b) bicolor image (K=1, t=978, max-cor=0.617), (c) tricolor image (K=2, t1=896, t2=2462, max-cor=0.90187), (d) hexacolor image (K=5, t1=418, t2=1129, t3=1840, t4=2550, t5=3261). As we increase the number of thresholds, the loss of feature information is reduced and the correlation increases. Note: the grey scale is modified, too.
	3.7. 1 The trajectory of the maximum correlation between the original image and the K color image, with K varying on the x axis. Note: around K=10 the increase in the max-correlation slows down significantly.
	3.8. 1The correlation -filtered image constructed based on K=10 thresholds (see Table 3.1). The resemblance with initial image (Fig2.5) is striking, while some other features, originally diluted in the background, appear clearer.
	4.1. 1The respiration (around 2Hz) and the heart beat (5Hz) were recovered from the POX time series (1st panel) via the spectrum power and a notch filter around the suggested rate.
	4.2. 1SYNC data collected at the same time with EKG and POX. After identifying the moment when the SYNC series spikes high values (the same as the moment when a line started to be scanned), the time to scan a line takes 3 to 6 samples of POX series.
	4.3. 1The derivative of spatial mapping in y coordinate as defined in 4.12, for k=1. We notice that the neighboring variations within pixels intensities are preserved.
	4.4. 1An estimate of the image adjusted for POX effect on y axis. It is reconstructed after estimating  with model4.10 using the replicates scanned at 1st and 2nd time.
	4.5. 1The two estimates of the image (adjusted for POX effect on y axis applying model4.10 twice on pairs of replicates scanned at 1st, 2nd, and 3rd time) have been combined to get a ``better" estimate. 
	5.1. 1The middle line of upper panel was selected and sampled extensively for almost 37 seconds. First 500 lines are represented in the lower image. We can notice that, in fact it was not scanned the same line, as the feature position within the line varies in a nearly periodic way.
	5.2. 1Mean intensity change for the first 512 lines with respect to first line, versus their correspondent POX values. Note: the arrows indicate the line-scanning succession, pointing out the motion of the tissue due to the physiology (POX).
	5.3. 1Drop outs of SYNC series.
	5.4. 1A fragment of the line-experiment: fifty pixels around the first feature captured were applied a 3 length median filter on x dimension in order to clarify the image.
	5.5. 1Fitted lines with 2Way ANOVA model- partial region around main feature.
	5.6. 1Residuals from fitting the line data with 2Way ANOVA model- partial region around the main feature.
	5.7. 1Repeated scanned line experiment: extended set-up on neonatal ferret. The process of scanning the middle line of a slice for 600 times has been applied to several slices. Note: on the right side of each slice we added indicators for POX and Respiration estimates concomitant with the lines.
	5.8. 125 consecutive slices from a stack (z=1,…,161) of images scanned in the brain of a ferret. The images on the left side present the slices taken before the line experiment, while those on the right side present the slices taken after. Visually we notice that the brain moved significantly in z direction as the features had not been scanned on the same positions at one time versus the other. Note: on the right side of each slice we added indicators for POX and Respiration estimates concomitant with the images.
	5.9. 1Repeated scanned line experiment: extended set-up on mice. The process of scanning the middle line of a slice for 600 times (300 shown) has been applied to 101 slices (only 5 shown). Note: on the right side of each slice we added indicators for POX estimates concomitant with the lines.
	5.10. 1Repeated scanned line experiment: extended set-up. Fixing the y at the middle region of a slice, the scanner collected lines (in x direction) for several hundred times at different angles. With respect to the images taken before (pre) and after (post) the lines have been collected for 1500 times, the ones taken at 0 correspond to the horizontal direction; the ones taken at 90 correspond to the vertical direction.
	6.1. 1The images taken before (t=0) and after (t=T+1) the line experiment. The scenes captured by these images look similar, despite the relatively long time lapse. 
	6.2. 1The difference image between the pre-image (t=0) and post-image (t=T+1). The variation of the pixel intensities exposes the relative small shifts between the two images.
	6.3. 1Convolution between a delta-like function and a kernel function.
	6.4. 1The similarity matrices computed with Euclidean distance: (a)lines observed for the first 512 times versus 21 lines from I0;(b) filtered version from (a); (c)lines observed for the first 512 times versus 21 lines from IT+1;(d) filtered version from (c).
	6.5. 1The classes estimated using the Euclidean norm. Note: the plots on the left represent the classes estimated with initial data; the plots on the right represent the classes estimated with filtered data.
	6.6. 1The within line variances for observed data (up) and for the filtered data (bottom).
	6.7. 1The cross-correlation series for the group of 21 lines selected from I0 with lines acquired at 1t500 (see 5.1)
	6.8. 1The maxima of the cross-correlation series corresponding to the groups of 21 lines selected at t=0 with 10 lines collected at t=1 …10 during the line experiment (see also fig 5.1)
	6.9. 1The classes estimated using the cross-correlation measure. Note: the upper plot is using the classes defined from I0, while the lower plot is using the classes defined from IT+1 
	6.10. 1Estimated shift in y direction -smoothed version. Note: the upper pannel correspond to t=0, while the bottom panel correspond to t=T+1.
	6.11. 1The x-y movement for the lines scanned first 2560 times in the repeated-scanned line experiments, with respect to I0(a) and with respect to IT+1(b)
	6.12. 1The x-y movement in the repeatedly-scanned line data, for a group of 9 heart beats (when compared with respect to I0).
	6.13. 1The x-y movement in the repeated-scanned line data for a group of 9 heart beats (when compared with respect to IT+1).
	6.14. 1The fitted lines for 5.1(a) estimated with the classification model applied on I0 (b), and IT+1 (c) (first 500 times).
	6.15. 1The residuals estimated with the classification model applied on I0 (left), and IT+1 (right) (for the first 500 times).
	6.16. 1Maximum values from cross-correlating lines at times 1t2048 with lines from I0.
	6.17. 1Maximum values from cross-correlating lines at times 1t2048 with lines from IT+1.
	6.18. 1A distance matrix calculated for the lines of the slice presented in D6. th line in the matrix represents the Euclidean distances of the line scanned at time t with all the other lines(299) recorded from the same slice z. Note: darker shades corresponding to smaller values point out periodic similarities among lines at different times.
	6.19. 1The similarity matrix corresponding to Euclidean norm of a ``fixed" line (t=60) at z=104 with the set of the lines taken at the same z and at 10 adjacent slices (89z109). The vertical axis corresponds to the depth (z) and the horizontal one to time (t). Darker shades correspond to smaller distances.
	6.20. 1The segments of middle 21 lines of 8 slices adjacent of the z-stack taken before the line-data was acquired (right side) are cross-correlated with the groups of lines scanned for 300 times in 5 adjacent slices. Note: the depths of the slices taken before include the depths of the slices taken during the line-experiment.
	6.21. 1The cross-correlation values of the groups of lines from the extended line-experiment and from the pre-stack slices, as described in fig6.20.
	6.22. 1The estimated slices (on y axis) from the pre z stack whose middle lines maximized the cross-correlation values of the groups of lines (on x axis) described in fig 6.20.
	7.1. 1 Physiology measured while scanning the brain. EKG is colored in black, while POX is colored in red. Note: the minimal POX values correspond to diastole phase in the cardiac cycle.
	7.2. 1A scheme of the underlying process described by Hidden Markov Models: we observe data from a dynamic system whose states are hidden to direct knowledge. Estimate HMM to fit well the observations (forward) then infere about the latent states (inverse). 
	7.3. 1Hidden Markov Model idea: Two hidden states S1 and S2 that produce observations Oi and Oj with probability b1(i) and b2(j), respectively. The transition from one state to the other happens with probability aij, while the probability of remaining in any state is aii.
	7.4. 1POX data during the repeated scanned line experiment: The first panel represents the observed POX for about 300ms. This time corresponds to scanning 100 lines, whose estimated POX values are represented in the second panel. The last one shows the smoothed version of the estimated values.
	7.5. 1Estimated output probability mass function using the POX values corresponding to lines collected in the repeated scanned line experiment for 1t 2560. Not: for the left panels (a) we used the classes estimated with respect to I0 (pre), for the right ones (b) we used the classes estimated with respect to IT+1 (post)
	7.6. 1Estimated output probability mass function using the smoothed POX values corresponding to lines collected in the repeated scanned line experiment for 1t 2560.
	7.7. 1Estimated posterior probabilities using the smoothed POX values corresponding to lines collected in the repeated scanned line experiment for 1t 2560.
	7.8. 1Observed POX (upper) vs Smoothed POX (lower) data. Each color represents the physiology associated with one of the three replicates collected for this experiment: black (full line) for 1st time, red (–) for 2nd time, green (..) for 3rd time.
	7.9. 1An estimate of the ``true"' image based on HMM: it includes the line that corresponds to the estimated ``near to rest" (S1) state. The lines coming from 1st replicate are color-coded in red, the ones coming from 2nd replicate are color-coded in green, and those coming from 3rd replicate are color-coded in blue. Note: there are small drifts at the junction regions.
	7.10. 1Estimated drifts for the reconstructed image 7.9 (bottom). Concomitant normalized POX values are presented above.
	7.11. 1An improved estimate of the ``true" image based on HMM (7.9): the lines corresponding to the estimated ``near to rest" (S1) state are aligned to preserved the continuity of the feature. The panel in the right indicates which replicate captured the line in this state with black for the 1st and white for the last.
	7.12. 1The estimated image through the semi-HMM applied on data collected in triggered mode. Note: the panel in the right side indicates the time when the lines have been scanned in S1
	7.13. 1The slice taken when the animal was dead that maximizes the 2D cross-correlation function with the HMM-estimated image of the live brain.
	B1. 1The correlation function between the original image (Fig.2.5) and any tri-colored image constructed with 2 thresholds that are displayed on y (k1) and on x (k2). (a) is showing all the values, (b) the grey scale is changed to enhance the concavity of the function. Note: the actual values are on the upper right side of the image, while in the lower left there are only zeros.
	D1. 1An extended view on the TPLSM from Dr. Crowley's lab.
	D2. 1The RGB version of the z-stack collected from a ferret before and after the repeated scanned line experiment. The color variation shows that the brain moved at a large amplitude.
	D3. 1The fitted values for the lines scanned at the first 2560 times, estimated with the classification model applied on I0 (b), and IT+1 (c). The observed lines are shown in (a).
	D4. 1The fitted lines for 5.1 estimated with the classification model applied on I0 (left), and IT+1 (right).
	D5. 1The residuals estimated with the classification model applied on I0 (left), and IT+1 (right).
	D6. 1The lines scanned for 600 times during a repeated scanned line experiment on a neonatal ferret. Note: on the right side are added indicators for estimated POX and respiration values during this time.

	1.0 INTRODUCTION
	1.1 Background
	1.2 In Vivo Imaging
	1.3 Motivations and goals
	1.4 Previous work
	1.5 Dissertation outline

	2.0 DESCRIPTION OF THE INSTRUMENTS AND THE DATA 
	2.1 Two-Photon Laser Scanning Microscopy
	2.1.1 Image Data

	2.2 Brain Morey: Brain Motion Removal System
	2.2.1 Physiological data

	2.3 FIASCO
	2.4 Summary

	3.0 FILTERING IMAGE DATA
	3.1 General Image Filters
	3.2 Correlation-based filter
	3.2.1 Bi-colored Image
	3.2.2 K-Colored Image
	3.2.3 Theoretical Characteristics

	3.3 Conclusions

	4.0 PRELIMINARY ANALYSIS
	4.1 Timing between scans and physiology
	4.1.1 Matching physiological data with image data
	4.1.2 Estimating the true position of a pixel
	4.1.3 A synthetic example
	4.1.4 Filling the gaps caused by missing lines

	4.2 Regression Methods
	4.3 Resulted images
	4.4 Conclusions

	5.0 REPEATED SCANNED LINE- EXPERIMENTS
	5.1 Missing Data Imputations
	5.2 ANOVA Models
	5.3 Extended Experimental Set-up
	5.3.1 Example: Stack of repeated scanned lines (ferret)
	5.3.2 Example: Stack of repeated scanned lines (mouse)
	5.3.3 Example: Rotated scans

	5.4 Conclusions

	6.0 TARGET TRACKING AND CLASSIFICATION PROBLEM
	6.1 Mixture Kalman filter
	6.2 Line Detection
	6.2.1 Class Estimation
	6.2.2 Movement Process

	6.3 Model fit
	6.4 Applications on extended line data
	6.4.1 Stack of repeated scanned lines (ferret)
	6.4.2 Stack of repeated scanned lines (mouse)

	6.5 Conclusions

	7.0 IMAGE RECONSTRUCTION METHODS
	7.1 Hidden Markov Models
	7.1.1 Standard HMM limitations
	7.1.2 Probabilities Estimation
	7.1.3 Viterbi Algorithm
	7.1.4 Prediction of the Number of Replicates

	7.2 Reconstructed Images
	7.2.1 Fatal experiment

	7.3 Conclusions

	8.0 DISCUSSION
	8.1 Image Filter -contributions
	8.2 Brain motion -contributions
	8.3 Image reconstruction -contributions
	8.4 Future work

	APPENDIX A. BIOLOGICAL TERMS
	APPENDIX B. CORRELATION- BASED THRESHOLDING IMAGES
	 B.1 K thresholds correlation function
	 B.2 Denominator of the correlation function

	APPENDIX C. RESULTS ON FOURIER TRANSFORM
	 C.1 Convolution theorem
	 C.2 Autocorrelation theorem

	APPENDIX D. ADDITIONAL REPRESENTATIONS
	BIBLIOGRAPHY

