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ABSTRACT

Buffer overflow attacks have been a computer security threat in software-based systems and

applications for decades. The existence of buffer overflow vulnerabilities makes the system

susceptible to Internet worms and denial of service (DDoS) attacks which can cause huge

social and financial impacts.

Due to its importance, buffer overflow problem has been intensively studied. Researchers

have proposed different techniques to defend against unknown buffer overflow attacks. They

have also investigated various solutions, including automatic signature generation, automatic

patch generation, etc., to automatically protect computer systems with known vulnerabili-

ties. The effectiveness and efficiency of the automatic signature generation approaches and

the automatic patch generation approaches are all based on the accurate understanding of

the vulnerabilities, the buffer overflow vulnerability diagnosis (BOVD). Currently, the results

of automatic signature generation and automatic patch generation are far from satisfaction

due to the insufficient research results from the automatic BOVD.

This thesis defines the automatic buffer overflow vulnerability diagnosis (BOVD) problem

and provides solutions towards automatic BOVD for commodity software. It targets on

commodity software when source code and symbol table are not available. The solutions

combine both of the dynamic analysis techniques and static analysis techniques to achieve

the goal.
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Based on the observation that buffer overflow attack happens when the size of the des-

tination buffer is smaller than the total number of writes after the data copy process if the

buffer overflow attack happens through a data copy procedure, the diagnosis results return

the information of the size of destination buffer, the total number of writes of a data copy

procedure and how the user inputs are related with them. They are achieved through bound

analysis, loop analysis and input analysis respectively. We demonstrate the effectiveness of

this thesis approach using real world vulnerable applications including the buffer overflow

vulnerabilities attacked by the record-setting Slammer and Blaster worms.

This thesis also does the complete case study for buffer overflow vulnerabilities which

may have independent interests to researchers. Our buffer overflow case study results can

help other researchers to design more effective defense systems and debugging tools against

buffer overflow attacks.

Keywords: software security, vulnerability diagnosis, vulnerability defense, buffer overflow,

loop analysis, bound checking.
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1.0 INTRODUCTION

Buffer overflow[73, 38] has become notorious since 1988, when Morris worm, one of the

first significant computer break-ins which took advantage of a buffer overflow vulnerability,

surfaced in software security community. The attacks caused by buffer overflow continue

to be the major computer security threats. As a traditional exploit, buffer overflow allows

attackers to inject malicious codes in the application at run-time. Those injected codes can

help attacker to gain the access privilege of the host machine maliciously.

Even though buffer overflow has been intensively studied and researchers have proposed

various mitigation techniques, it is still the most critical security threat these days. Accord-

ing to the statistics from CERT Coordination Center, the number of identified and cataloged

vulnerabilities has increased over 213% in the last two years (2004-2006) as shown in Fig-

ure 1. Based on Xu’s study [100], buffer overflow vulnerability is still the largest category of

cataloged vulnerabilities. The existence of buffer overflow vulnerabilities makes the system

susceptible to Internet worms and denial of service (DDoS) attacks which can cause huge

social and financial impacts.

Due to its importance, during the last two decades, researchers have proposed various

approaches[22, 30, 59, 81, 86, 62, 23, 58, 78, 43, 93, 92, 37, 36, 91, 11, 47, 20, 18, 21, 31, 48,

67, 68, 56, 42, 58, 78, 43, 100, 28, 15] to defend against buffer overflow attacks. However,

each of them has its own limitations and can’t be applied universally to prevent buffer

overflow attacks. At the same time, researchers have also proposed many attack detection

techniques[90, 72, 39, 76, 100, 88, 28, 102, 15, 22, 30, 59, 81, 86, 62, 23]. Using the above

attack detection tools to monitor a program, an alarm will be raised once a malicious attack

happens.

They have also investigated various solutions, including automatic signature generation,
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Figure 1: The Cataloged Vulnerabilities Data from CERT Coordination Center(CERT/CC)

from 1995 to 2007

automatic patch generation, etc., to automatically protect computer systems with known

vulnerabilities. Exploits of vulnerable programs, including zero-day attacks on previously

unknown vulnerabilities have caused havoc on the Internet and caused billions of dollars

in estimated damage. signature-based input filtering is an effective and widely deployed

mechanism to defend against such attacks. It matches program inputs against a set of

signatures. It has been widely deployed due to its fast response and less intrusion to a

system. Researchers have proposed many different approaches[60, 70, 40, 84, 61, 24, 26, 94,

35, 34]. However, none is satisfiable. Vulnerability-based signature approaches[24, 26, 94,

41, 34] which are believed to be the most effective signature techniques either generate the

signature manually or assume the vulnerability condition is given or can’t handle when the

vulnerability doesn’t happen through the unsafe usage of library functions. Automatic patch

generation [82] applies some simple fix heuristics. The automatic patches generated using

those heuristics are not effective. The effectiveness and efficiency of those approaches are all

based on the accurate understanding of the vulnerabilities, the buffer overflow vulnerability

diagnosis (BOVD). Currently, the results of automatic signature generation and automatic

patch generation are far from satisfaction due to the insufficient research results from the
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automatic BOVD. However, generating the patches and signatures by security engineers is an

error-prone activity requiring heavy investment in time and manpower which may delay the

protection time, e.g. patch generation time. They all motivate the research on automatic

and accurate vulnerability diagnosis.

1.1 PROBLEM DEFINITION

A buffer overflow occurs when a store instruction writes outside the allocated buffer bounds.

In the best case, a buffer overflow results in the program crashing due to an inappropriate

memory dereference. In the worst case, a buffer overflow can be exploited to hijack control

of a program.

When a new buffer overflow vulnerability is first exploited, a primary challenge is to di-

agnose the vulnerability. The expected buffer overflow vulnerability diagnosis results include

1) which buffer was overflowed, and 2) under what conditions the buffer will be overflowed.

The running example demonstrated in Figure 23 is a buffer overflow vulnerable program

motivated by several real world examples. We want to find out that the chunk->data is the

vulnerable buffer, an integer field of a user input can cause the buffer overflow, and buffer

overflow happens when the integer is greater than 36. Currently, this diagnosis process is

done manually by security engineers which is slow, expensive and error prone. Given the

results of automatic vulnerability diagnosis, we can then perform the accurate signature

generation and patch generation automatically and efficiently. How automatic vulnerability

diagnosis can benefit the whole software security research is demonstrated in Figure 2.

Figure 2: Automatic vulnerability diagnosis in software security research
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Automatic buffer overflow vulnerability diagnosis is important for enabling appropri-

ate security responses to defend against zero-day attacks, such as creating an input filter

(e.g., [24, 26, 94]) that filters out all subsequent exploits for the buffer overflow, and more

effective automatic patch generation [82]. Unfortunately, in such scenarios we do not have

access to the source code: defenses must be prepared from only the vulnerable program bi-

nary and a sample exploit. Such scenarios do not assume access to source code because many

threats develop quickly (e.g., internet worms) and there is no time for an end-user to contact

the vendor: defenses must be prepared immediately. Furthermore, when the application is

legacy application or modern software application which tends to be built on third-party

libraries or when the program segments are written in assembly code directly, the access to

source code is unlikely. Due to all these reasons, we target the vulnerable program on binary

programs.

In the automatic buffer overflow vulnerability diagnosis (BOVD) problem, we are given

a compiled buffer overflow vulnerable program P and a working exploit E. The goal is to

find out where the program is vulnerable, buffer overflow vulnerability point (BOVP) and

why the program is vulnerable, buffer overflow vulnerability condition (BOVC).

The buffer overflow attack occurs by overwriting some critical data, for example, return

address, function pointers, etc. We use the instruction that does the malicious write to

pinpoint the vulnerability location of the given vulnerable program, which is the BOVP.

Based on the observation that buffer overflow attack happens when the size of the des-

tination buffer is smaller than the total number of writes after the data copy process if the

buffer overflow attack happens through a data copy procedure, the BOVC contains the des-

tination buffer size information, the total number of writes information and how the user

inputs are related with them.

1.2 CHALLENGES.

Even though buffer overflow problem has been intensively studied and researchers have pro-

posed various mitigation tools during the last few decades, the buffer overflow vulnerability

4



diagnosis is still an open problem.

The Open Web Application Security Project (OWASP) has proposed Gray Box testing

technique[1] to prevent stack buffer overflows. It searches for calls to insecure library func-

tions like gets(), strcpy, strcat(), strncpy(), memccpy() etc. For gets(), strcpy()

and strcat() which don’t validate the length of source strings and blindly copy data into

fixed size buffers, it trace back the source of function arguments and ascertain string lengths

while reviewing code. For strncpy(), it traces back the size argument. If the size argument

is related with user input, this is insecure and a stack buffer overflow may happen. This

work is updated in Dec. 2006. However, there are several limitations on this Gray Box

testing approach. First it targets insecure library function calls only, what if it happens in a

code block that is programmer written? This Grey Box will fail to detect the possible buffer

overflow attacks. Second, it targets stack buffer overflows when the destination buffers are

on stack and have fixed sizes. What if the destination buffer is on heap? Especially what

if the destination buffer size is controllable by user? The Gray Box testing approach can’t

handle those situations. This work still leaves a lot of open problems to the software security

community, even though it is a very good trial to prevent buffer overflow attacks starting

from understanding how a buffer overflow attack can happen.

The big challenges to solve the limitations of this Gray Box testing technique[1] and

target the program on binary code level include but are not limited to the followings:

1.2.1 Handle programmer written data copy procedure.

Most of known buffer overflow happen when the size of the destination buffer is smaller than

the total number of writes through a data copy process.

There are many known buffer overflow vulnerabilities that happen through unsafe usages

of Standard C Library functions e.g. strcpy(). If a buffer overflow vulnerability happens

through unsafe usage of known library functions, we can conclude through function sum-

maries as we know the functionality of those functions in advance. If the data copying process

isn’t accomplished through those known library functions but a programmer implemented

data copy procedure, what should we do? First, how do we locate a programmer written
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data copy procedure? Along a long sequence of codes, how can we know which part of the

code is doing the data coping? Second, after we locate the programmer written data copy

procedure, how can we understand the procedure? Is it similar to strcpy() or is it similar

to strncpy()? What is its exact behavior? This problem is very difficult.

We answer the first question through loop detection. It is based on the observation that

most of known buffer overflow attacks happen in loop context. We studied some standard

library functions that are performing the data coping functionality including strcpy(),

strncpy(), memcpy(), memset() etc. They are all implemented by some loop structures.

The buffer overflow happens when the number of writes after the loop execution exceeds the

destination buffer size limit. We then locate a programmer implemented data copy procedure

through loop detection.

We answer the second question by coming up with a generalized data copy procedure and

perform loop analysis on the generalized data copy procedure. In program modeling com-

munity, the loop behavior is believed to be undetermined. How to understand a programmer

written data copy procedure is believed to be hard. This thesis answers this question by

formulating a general data copy procedure to simplify loop behavior. We perform a series of

analysis to understand it. Please refer to Section 3.3.1 for details.

This thesis work uses a lot of results of the compiler research community which includes

loop detection[66], loop induction variable[66] detection, loop invariant variable[66] detection.

The loop detection and loop induction variable detection are very complicated problems

that have been studied very well by researchers. We studied them in detail and did the

implementation.

Our loop detection can handle both of the reducible CFG (control flow graph) graphs and

the irreducible CFG graphs. The irreducible graph happens in practice. We met irreducible

graphs in our experiences. Black Hat[2] community did loop detection for their approach

requirements. They can only handle reducible CFG graphs[3]. IDAPro’s loop detection

algorithm[4] considers the irreducible CFG graph situation. However it can’t convert the

irreducible CFG to reducible CFG. The behavior of a loop structure in an irreducible CFG

is undetermined. Please refer Section 5.3.1 for details.
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1.2.2 Find vulnerable buffer bound in binary code level.

To understand the BOVC when only the binary program is available is challenging. At a

high level, the binary program itself does not indicate where and how large buffers are within

the program. For example, Figure 3 shows the memory layout for a single function which

has multiple local variables. Although we show the variable information in the diagram, in

binary program itself the entire region would be viewed as a contiguous set of bytes.

The existing research on local variable recovery for binary programs can’t guarantee the

results. The IDAPro disassembler is believed to be the most advanced tool for hostile code

analysis, vulnerability research and software reverse engineering. Its techniques can recover

83% of the local variables and 0% of the fields of heap-allocated objects. The Value-Set

Analysis (VSA)[19] claims that they can correctly identify 88% of the local variables and

89% of the fields of heap-allocated objects. The IDAPro is an industry product and the

VSA[19] is academic work. These two approaches are the best results so far. So, there is no

perfect solution on this problem.

However, in the BOVD problem, we don’t need to recover all of the local variables or

fields of heap-allocated objects. We only want to identify the size of the vulnerable buffer.

We solve this problem by studying runtime traces. This is based on the observation that the

runtime traces contain all of the memory operation history which includes the function call,

function return, memory allocation, memory deallocation, memory access etc. Please refer

to Section 3.3.2 for details.

1.2.3 Extract the relationship of user inputs with buffer overflow factors.

The problem of extracting the relationship of user inputs with the factors that can cause

buffer overflow is equivalent to the path explosion problem in software testing and software

security research. This problem has also been intensively explored by researchers[50, 34, 35,

26, 27, 51, 49]. Among them, the latest results are by Godefroid et al.[50], Brumley et al.[26]

and Bouncer[34].

Brumley et al.[26] propose using weakest precondition to generate vulnerability-based

signatures. In their work, they assume the vulnerability point and the vulnerability condition
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(e.g. the factors that can cause buffer overflow) are given. Their major contribution is on

the path explosion. This work enhances the forward symbolic execution methods[24]. The

forward symbolic execution method does not scale well to large and real programs as the

number of execution paths can be exponential to the number of exploring depth. However,

calculating the weakest precondition is very difficult for programs with loops or recursion

and when the formula generated is very complicated.

Bouncer[34] improves the Vigilante[35]. Vigilante[35] uses the symbolic execution[101, 27]

and path slicing[55] to extract the conditions to reach the vulnerability point on one execution

path. Bouncer[34] contributes on symbolic summaries for common library functions and

generation of alternative exploits guided by symbolic execution for the path explosion.

Godefroid et al.[50] proposes a fuzz testing technique. Compared to the blackbox fuzz

testing approach[41] which applies random mutations to well-formed inputs and test the

program on the resulting values, it performs white-box fuzz testing by applying a new search

algorithm. This new algorithm is designed to partially explore the state space of large

applications;maximize the number of new tests generated from each symbolic execution;apply

heuristics to maximize code coverage; resilient to divergences.

This is an independent research area. We leave this as a future research work to explore

the input analysis in depth. Our current implementation is a simple approach where only

the exploit executed path is examined. Please see Section 8.2 for the discussion of how to

improve the existing approach towards generating zero false negative and zero false positive

signatures.

1.3 APPROACH OVERVIEW.

In this thesis, we provide solutions towards automatic BOVD for commodity software when

source code and debugging information are not available. We combine both of the static

binary program analysis techniques and dynamic taint analysis techniques to achieve this

challenging goal.

Researchers[65, 85, 99, 80] have addressed intensively on finding the BOVP. We use the
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previously proposed dynamic-taint-analysis[72, 76, 39] to do the attack detection. Using the

dynamic taint analysis, a huge class of exploits can be detected for commodity software. We

then search back the collected runtime traces to find out the latest instruction that writes

the security critical data, which is the BOVP.

Based on the observation that buffer overflow attack happens when the size of the des-

tination buffer is smaller than the total number of writes after the data copying process if

the buffer overflow attack happens through a data copy procedure, the BOVC contains the

destination buffer size information, the total number of writes information and how the user

inputs are related with them. The above BOVC results assume the buffer overflow hap-

pens through a data copy procedure. This thesis can also identify the case when the buffer

overflow attack happens through an unchecked array index instead of a data copy procedure.

The BOVC is achieved through three steps analysis. The three steps analysis include

loop analysis, bound analysis and input analysis. The bound analysis answers the size of

the destination buffer information. The loop analysis answers the total number of writes

information of programmer implemented data copy procedure. For buffer overflow attack

happens through standard C library functions (library data copy procedures), we answer the

total number of writes information trough function summaries. The input analysis answers

how the user inputs are related with the size of the destination buffer and the total number

of writes.

Our loop analysis is based on the observation that most of the real world buffer overflow

attacks happen through loop context. We use loop detection to locate a programmer imple-

mented data copy procedure and we propose a generalized data copy procedure and apply

loop analysis on it to answer the total number of writes question.

Given the vulnerable buffer location and the overwritten security critical data (e.g. return

address), we can calculate the coarse-grained bound result of the vulnerable buffer easily.

However, this result can’t protect variables located in between. Using this coarse-grained

bound result, non-control-data attack[29] may happen in the future on the same vulnerability.

Figure 3 compares the difference between coarse-grained bound analysis and fine-grained

bound analysis results.

Our fine-grained bound analysis is achieved through memory traces analysis. This is
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Figure 3: The comparison of coarse-grained and fine-grained bound analysis results.

based on the observation that our runtime traces contain all of the memory update informa-

tion. Because we can overwrite those variables that have not been written, we can guarantee

the fine-grained bound result for the given execution path. Also, because our bound analysis

is independent of the location of the vulnerable buffer, we can handle the buffer overflow

that happens anywhere including stack, heap, Data/BSS.

Our input analysis generates the dynamic slicing of the traces contains the malicious

variable(s) and performs symbolic execution on it to answer how the user inputs are related

with those malicious variable(s).

The direct application of our BOVD results is for the signature generation. We will

use the generated signatures for the real world vulnerable applications to demonstrate the

effectiveness of our approach in Chapter 5. In Chapter 8, we discuss the application of

our BOVD results on automatic patch generation, automatic exploit generation and how to

achieve zero false-positive and zero false-negative signature results by extending this thesis

work.
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1.4 PROBLEM SCOPE

Even though our approach is designed to do BOVD for commodity software when source code

and debugging information are not available, it can be generalized to do the vulnerability

diagnosis for most memory corruption attacks including buffer overflow, format string, inte-

ger overflow that triggers buffer overflow in the working exploit and double free. This thesis

work targeted on binary programs, while it can also be implemented at source code level

to do the software verification during the software testing stage. It would be an enhanced

version of the Grey Box Testing tool[1].

1.5 CONTRIBUTIONS

In summary, this thesis makes the following contributions:

• It combines both of the static binary program analysis techniques and dynamic taint

analysis techniques to achieve the BOVD. It extends the existing dynamic-taint-analysis

attack detection tool to do the BOVP detection and performs three steps analysis towards

understanding BOVC. The three steps analysis are loop analysis, bound analysis and

input analysis.

• It uses loop analysis to understand programmer written data copy procedures under

reasonable loop heuristic assumptions. This is based on the observation of all known

buffer overflow attacks that most of them take place in loop context.

• It achieves fine-grained bound analysis result of the vulnerable buffer using novel memory

trace analysis approach. This can be achieved based on the fact that the runtime traces

contain all of the memory operation history. This memory operation includes function

call, function return, variable push and pop, variable load and store, malloc, free etc.

• It performs buffer overflow vulnerability case study which may have independent inter-

ests to security engineers. There are six basic buffer overflow vulnerability cases that

are based on several assumptions. The six basic cases can cover all of the real world

vulnerable applications that this thesis work studied. Other cases by removing each of
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the assumptions are also discussed. This result can help other researchers to design more

effective buffer overflow response and debugging systems.

The organization of this thesis is as follows. In Chapter 2, the existing attempts on

vulnerability diagnosis and the limitations of each approach are given. As the direct applica-

tion of BOVD is for vulnerability-based signature generation, the research work on signature

generation is also summarized. I also summarized the buffer overflow defense systems that

researchers have developed, none of which can defend against the buffer overflow attacks

completely. In Chapter 3, it describes the proposed BOVD solution of this thesis work

which includes the dynamic analysis engine, the static analysis engine and the diagnosis en-

gine. Among them, the diagnosis engine is the major contribution of this thesis work. After

that, we discuss how the proposed BOVD approach can handle the vulnerability diagnosis

for format string vulnerability and double free vulnerability. In Chapter 4, we perform the

buffer overflow vulnerability case study. This result can help other researchers to design

more effective buffer overflow attack response systems and debugging tools. The implemen-

tation detail and experiments are displayed in Chapter 5 and Chapter 6. In Chapter 6,

we evaluate the proposed BOVD approach and test the buffer overflow vulnerability case

study results. We also perform intensive loop studies of WCET benchmark and some real

world applications to evaluate how our loop analysis can handle different loop structures.

The Chapter 7 and Chapter 8 are for the discussion and application of the proposed BOVD

approach. Chapter 9 concludes the thesis work.
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2.0 RELATED WORK

No previous work has addressed the vulnerability diagnosis problem thoroughly. All of the

existing attempts[65, 85, 99, 69, 72, 80, 95] can find the vulnerability point using different

approaches but none can figure out the vulnerability conditions. Bouncer[34] can only un-

derstand vulnerability conditions when the vulnerability happens through unsafe usages of

library functions. Each approach and its limitations will be discussed briefly in Section 2.1.

Signature generation is one of the traditional defense schemes for Internet security at-

tacks. The direct application of the BOVD is for automatic vulnerability-based signature

generation[24, 26] for buffer overflow attacks. In section 2.2, I will review the related work

on this research field.

Even though this thesis work is the first to investigate the vulnerability diagnosis problem,

researchers have invented various mitigation techniques to defend against intrusion attacks

on buffer overflow vulnerabilities. In Section 2.3, I summarize this research topic briefly

which has been very active during the last few decades.

2.1 EXISTING ATTEMPTS

The existing attempts[72, 65, 85, 99, 95, 80] on vulnerability diagnosis all do attack detection

using different methods, more or less vulnerability analysis. Among them, [72, 65, 85, 99, 95]

apply their attack detection and vulnerability analysis results for signature generation. They

all can find the vulnerability point (some can only handle special cases), but none can provide

any semantic information of the vulnerable program. COVERS[65], DIRA[85] and Packet

Vaccine[95] use input fields’ lengths in their signature results. MemSherlock[80] considers the
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destination buffer size variable as another factor that can cause buffer overflow vulnerability.

However, they all can’t handle any other buffer overflow vulnerability cases.

COVERS[65] assumes that some part of the exploit will overflow some pointer values.

They then do the forensic analysis of the victim memory region surrounding the corrupted

pointer value by string matching it with the exploit. They do further context identification to

figure out which fields of the input triggered the attack. They obtain the length constraints

by analyzing all of the existing benign inputs and using the longest length value as the length

constraints of that field. Their results can introduce false positives and they can’t handle

other buffer overflow cases. Another limitation of this approach is that it can’t handle any

encoding/decoding of the exploit during the program execution.

Xu et al. apply both static program analysis and hardware watch point to find out the

corrupting instruction[99]. After that, they do the value propagation to find the propagation

history of the corrupted data. Unfortunately, they don’t use this information as a diagnosis

result to do the signature generation. Their diagnostic result is the instruction that corrupts

the sensitive data and the stack trace when memory corrupts. They generate the signature

also by simply using the value that overwrites the sensitive data.

DIRA[85] proposes to extend the GCC compiler to instrument the source code. It checks

every control-sensitive data. The resulting programs can detect the buffer overflow attacks.

After the detection of the attack, it will trace back the memory logging data to the input to

identify which packets are responsible for the attack. The signature is simply the malicious

packets information including the regular expression of the packets and the length constraints

which can protect the attack using the same exploit. It is also limited by requiring source

code, modifying GCC compiler, protecting control-sensitive data only.

Newsome et al.[72] proposes using the dynamic taint analysis to do the attack detection.

They can find the vulnerability point easily by comparing with other approaches as they

collect all of the runtime traces. They generate the signature using the input value that is

used to overwrite the security critical data which is far from satisfaction. This thesis work

is an extension of their work.

Packet Vaccine[95] randomizes address-like strings in packet to do the attack detection.

For buffer overflow exploits, they generate alternative inputs by changing the size of the
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anomalously long fields. So, they consider the length of the input fields as the only factor

that can cause a buffer overflow. Also, the generated bound result is coarse-grained bound

result.

MemSherlock[80] requires source code and debugging information which may not be

available for commodity software. It does the taint analysis for the copied value and the

malloc size parameter, so there are buffer overflow cases as discussed in Chapter 4 that they

can’t handle.

The running example demonstrated in Figure 23 shows how the existing attempts will

fail to diagnose it correctly. It has a programmer implemented data copy procedure that

has an integer field controls the total number of writes instead of the source buffer size.

The destination buffer is on heap, however, it is an array element of a struct. Its size

isn’t determined by a malloc size variable. None of the above approaches can diagnose this

example correctly.

VSEF[69] performs diagnosis at execution level. It can successfully generate the vulner-

ability point but it can’t provide any semantic information for the vulnerable program.

Larochelle’s static analysis of source code to detect likely buffer overflow vulnerabilities[63]

relies on source code and the semantic annotations.

2.2 SIGNATURE GENERATION

There are two classes of signatures, content-based or exploit-based signatures[60, 70, 40, 84,

61] and vulnerability-based signatures[24, 26, 94]. Autograph[60], EarlyBird[84], Honeycomb[61]

and Polygraphs[70] search for invariants from the exploit traffic which are defined as exploit-

based signatures[26]. Since they are based on specific exploit instances either by pattern

matching or exploit syntax/semantics analysis. They may have both high false-positive

rates and high false-negative rates[71, 74].

Brumley et al. are the first to propose generating signatures based on the semantic

information of the vulnerable program using forward symbolic execution[24] and backward

weakest precondition[26]. However, they assume the vulnerability point and the vulnerability
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condition are given in both approaches. Their contributions are more on the program path

exploration (or the input analysis step in this thesis work). This thesis work concentrates

on how to find the vulnerability point and vulnerability condition. This thesis’s solution

can bridge the gap of Brumley’s work by providing the vulnerability point and vulnerability

condition for buffer overflow vulnerabilities.

Shield[94] is an attack defense system by content-based filtering. The signature for the

filtering is vulnerability-based signatures that are generated manually. This thesis’s results

can highly benefit the security engineers to find the vulnerability point and to understand

the vulnerability condition to generate the patches and signatures accurately and efficiently.

ShieldGen[41] is a black-box approach for generating signatures for unknown vulnerabil-

ities. Their coarse-grained bound results for their buffer overflow vulnerabilities may cause

future non-control data attacks[29] by overwriting a local variable. They also can’t handle

the case when multiple input fields are involved in the BOVC.

Bouncer[34] applies function summary and path slicing to understand the vulnerability

conditions when the vulnerability happens through unsafe usage of library functions. How-

ever, it can’t handle when the vulnerability happens through some programmer implemented

code blocks. Also, the bound result is obtained through static analysis of binary programs.

The static analysis can’t guarantee the local variable recovery.

2.3 BUFFER OVERFLOW DEFENSE SYSTEMS

Various mitigation techniques have been proposed to defend against the buffer overflow

attacks. In this subsection, I summarize them briefly. They are grouped by their implemen-

tation approaches.

Compiler Patches or Extensions: Cowan et al. proposed StackGuard[37] and PointGuard[36]

by inserting terminator or random canaries to protect the return address and function point-

ers, etc. Similar to StackGuard and PointGuard but using a more secure protection system,

StackShield[91] enhances the GCC compiler to protect overwriting of the return address
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and function pointers. ProPolice[47] is a more sophisticated GCC compiler extension for

protecting applications from stack-smashing attacks. It reorders the local variables that

the char buffers always are allocated at the bottom so they can’t overflow any other local

variables. It also protects the stack frame in a similar way to StackGuard. Return Ad-

dress Defender[31], RAD, also a GCC patch, protects return address by storing a copy of

the return address and compare the return address with the stored one each time when it

returns. StackGhost[48] provides similar approaches to both of the RAD and StackGuard to

protect the return address. A cryptographic method of the return address is also proposed

in StackGhost.

In order to protect stack smashing, researchers proposed to have non-executable stack[42].

But there are many workarounds of this solution. For example, buffer overflows on the

heap/BSS/Data targeting the function pointers or longjmp buffers are not protected.

Boundary check may be the only solution that can prevent buffer overflow attacks com-

pletely. Jones and Kelly is the first to propose the GCC compiler patch[58] for bound

checking at run-time. CRED[78] is then proposed to enhance the approach. Unfortunately,

it suffers from the performance loss. Also the approaches in this category requires the access

of source code and they can’t be used to help the existing legacy systems.

Linking Stage: One possible source of buffer overflow comes from some of the standard

string copy C libraries, like strcpy(), sprintf(), memset() etc., which don’t do the bound

checking. Libsafe[20] is proposed to patch the standard C libraries to do boundary check.

Since then, Libverify[21] and Libsafeplus[18] are proposed to enhance Libsafe by providing

return address verification etc. However, their bound checking only address the standard C

libraries, they will fail to protect the program if the programmer implements the memory

handling on his own.

Source Code Level: D. Wagner et al. proposed several methods of static analysis of

source code to detect buffer overflow vulnerabilities[93, 92]. They proposed doing integer

range analysis[93]. They also proposed modeling the program’s correct execution behavior

through source code analysis and use this model to do the run-time execution monitoring[92].
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CodeSonar[11], a commercial tool that does source-code level analysis that identifies com-

plex bugs at compile time. CCured[67, 68] and Cyclone[56] change the C program syntax

to enhance type and bounds checking. However, these approaches won’t be able to help for

legacy systems of commercial software when the source code isn’t available.

In summary, each of the above approaches has its own strengths and also has its own

limitations. None of them can defend against buffer overflows completely. Due to the

dichotomy between arrays and pointers, complete array bound checking is impossible in C.

For example, some compilers can provide the array indexing protection like in buffer[i],

but fail the protection for buffer + i.

Most of the above approaches are analyzed and studied in the comparison studies[97, 83].

These two comparison study are published in 2003. Since then, researchers have explored

other methods to defend against buffer overflow attacks including the following Program

Randomization, Program Integrity Analysis and Dynamic Taint Analysis.

Program Randomization: Some researchers also proposed to randomize some parts of

the operating system, e.g. the location of the stack, the location of the heap, the instruction

set etc., to make the attack more difficult[22, 30, 59, 81, 86, 62, 23]. However, they still can’t

defend the attack completely.

Program Integrity Approaches: In 2006, Castro et al. proposed to achieve secure

software system through enforcing Data-flow Integrity[28]. They do the static data depen-

dency analysis and instrument the program at runtime to check the data-flow integrity. The

same idea was presented by Zhou et al. in MICRO-37 2004 using hardware support[102].

Abadi et al. proposed to enforcing Control-flow Integrity[15] to defend against software

attacks. This work checks the validation of the control target at run-time. The valid desti-

nation targets of each control are determined by the Control Flow Graph (CFG) generated

through static analysis.

In 2008, Akritidis et al. proposed preventing memory error exploits by enforcing write

integrity[17]. They use points-to analysis at compile time to compute the set of objects that
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can be written by each instruction in the program.

Dynamic Taint Analysis: Dynamic taint analysis technique emerges to computer

security community in around 2004 to detect overwritten-based attacks. Using the dynamic

taint analysis[72, 76, 39, 88, 90], a huge class of exploits can be detected for commodity

software where source code and the patched libraries aren’t available.

Crandall et al. proposed Minos[39], a micro-architecture implementation of Dynamic

Taint Analysis. Suh et al. proposed similar Dynamic Information Flow Tracking [88] using

hardware support (each register has an one-bit tag). In the same year, RIFLE[90], another

hardware support computer architecture is proposed by Vachharajani et al. from Prince-

ton to enforce information-flow security. Concurrently and independently, Newsome et.al.

worked on the software implementation of this dynamic taint analysis in binary level[72].

Newsome’s work[72] achieved dynamic taint analysis that doesn’t need any hardware or OS

modifications. In 2006, Qin et al. improved the binary level software approach by using a

more efficient dynamic binary translator and by applying three optimization techniques[76].

Xu et al. also implemented fine-grained taint analysis in source code level[100].
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3.0 THIS THESIS APPROACH

In this section, we will discuss about this thesis’ approach towards automatic and accurate

buffer overflow vulnerability diagnosis in detail.

Figure 4: The System Architecture

The high level architecture is demonstrated in Figure 4. It consists of three major com-

ponents: the dynamic analysis engine, the static analysis engine and the diagnosis engine.

The dynamic analysis engine obtains the runtime information about the vulnerable program

by executing the vulnerable program on the given exploit. We refer to this runtime infor-

mation as dynamic model. The static analysis engine extracts the static information from

the vulnerable binary program. The static analysis results are referred to as static model.

The diagnosis engine correlates the dynamic model and the static model to infer the BOVP

and BOVC. The diagnosis engine is the major contribution of this thesis work. Figure 5

illustrates the inner structure of the diagnosis engine which will be discussed in detail in

Section 3.3.
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Figure 5: The Inner Structure of Diagnosis Engine

3.1 DYNAMIC ANALYSIS ENGINE

The dynamic analysis engine generates a dynamic model describing how the vulnerable

program processes an exploit. At a higher level, the dynamic model consists of a trace of

CPU and memory state updates as the vulnerable program executes on the exploit.

More specifically, the dynamic analysis engine runs the vulnerable program in an em-

ulated environment that is capable of dynamic taint analysis. When sending the exploit

input to the program, the dynamic analysis engine marks the input as tainted, and tracks

the tainted data propagation in the program. It starts to record the dynamic model starting

from when the exploit is initially read in. For each user-space instruction executed from the

process of that program, the dynamic analysis engine records the current program counter,

the current instruction, the values of its operands, the taint status of the operands, current

ESP value etc. It keeps recording until the tainted exploit input is misused, such as when it is

loaded into CPU’s instruction pointer register. Similarly, if the exploit is to attack a kernel

vulnerability, the dynamic analysis engine records the dynamic states for the instructions in

the kernel space.
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3.2 STATIC ANALYSIS ENGINE

The static analysis engine creates a static model from the vulnerable program (including any

libraries it is linked against). Unlike the dynamic analysis model, the static model contains

the information about the whole program, not just the execution path traversed and states

touched during the dynamic analysis process. Thus, the static model can provide information

that is unavailable in the dynamic model.

To construct a static model, the static analysis engine parses and disassembles the pro-

gram binary. The static analysis engine raises the binary program to intermediate repre-

sentation (IR) program and does preprocessing of the IR program. Specifically, it does the

constant propagation, deadcode elimination, static single assignment (SSA) generation. The

static analysis engine also generates the control flow graph (CFG) of the IR program that is

raised from the program binary.

3.3 DIAGNOSIS ENGINE

Figure 5 illustrates the inner structure of the diagnosis engine. It includes the BOVP detec-

tion and the BOVC analysis. The BOVC analysis is achieved through loop analysis, bound

analysis and input analysis. The loop analysis is skipped if the data copy procedure is known

standard C library functions or system functions.

Given the dynamic model, the BOVP is achieved by searching back the taint trace to

find out the latest instruction that overwrites the security critical data, which is the BOVP.

Please refer to Section 7.6 for how we handle the malicious array index cases when the BOVP

doesn’t belong to any data copy procedure.

In the remaining of this section, we will concentrate on the discussion of how we combine

the dynamic model, the static model, and the BOVP information to understand the BOVC.

Specifically, we will discuss about the three steps analysis: the loop analysis, the bound

analysis and the input analysis.
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3.3.1 Loop Analysis

For buffer overflow vulnerabilities that happen through unsafe usage of standard C library

functions, we obtain the total number of writes information through function summary.

We apply loop analysis to understand programmer implemented data copy procedure. Our

loop analysis step is based on the observation of all known buffer overflow attacks that

most of them take place in loop context. We apply loop detection to locate a programmer

implemented data copy procedure. We come up with a generalized data copy procedure

and apply loop analysis to infer the total number of writes of executing this programmer

implemented data copy procedure. In my previous work[44], the loop structure also helps

on the switch design to enable predictive multiplexed switching in multiprocessor networks.

iv1 = iv1init;

iv2 = iv2init;

while (iv1 < Loop_Bound){

writeAddress = startAddress + startOffset + iv2;

[writeAddress] = {some value};

iv2 += iv2upate;

iv1 += iv1upate;

}

Figure 6: A Data Copy Procedure

Figure 6 demonstrates the pseudo-code for generalized data copy procedure. The iv1

and iv2 are loop induction variables (iv)[66] that are updated by regular patterns during

each loop iteration. A buffer overflow occurs when the destination buffer is written beyond

its bound.

In this data copy procedure, the number of loop iterations is defined in Equation 3.1 and

the number of writes in each loop iteration to the destination buffer is iv2update. So the total

number of writes after the loop execution will be as in Equation 3.2. If the Equation 3.3

can be guaranteed, we can say this data copy procedure is safe. Otherwise, this data copy
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is vulnerable. In this example, if the user can control any variable in Equation 3.3, a buffer

overflow attack may occur.

numIteration =
Loop Bound − iv1init

iv1update

(3.1)

totalNumWrites = iv2update × numIteration (3.2)

sizeof(destination) > startOffset + iv2init + totalNumWrites (3.3)

We assume the loop body won’t change the Loop Bound value to make the above equa-

tions accurate. The same loop heuristic is also applied in Larochelle’s work[63]. We also

apply some other loop heuristics. Here, we list all of the loop heuristics we use:

• The loop body won’t update the Loop Bound value. This loop heuristic is necessary and

sufficient to make Equation 3.1, Equation 3.2 and Equation 3.3 accurate.

• If the loop exit condition is source[j] == c, we infer the Loop Bound is the string

length of the source buffer until the first encounter if c, we use strlen(source|c) to

represent this. Specifically, if c equals 0, we infer the Loop Bound is the source buffer

size, strlen(source).

• We assume the attacker may only control the Loop Bound and the vulnerable buffer size

variable to trigger the buffer overflow attack to simplify the problem. Even though if the

attacker can control any variable in Equation 3.3, a buffer overflow attack may occur.

The above loop heuristics work very well in practice. We make the third loop heuristic to

simplify our prototype implementation. In Section 4.2, we generate other buffer overflow

cases by removing this assumption.

After this step analysis, we can figure out the vulnerable buffer and the total number

of writes of the data copy procedure in symbolic forms. For known Standard C Library

functions and known system calls that do the data copy, we can obtain the number of writes

and the vulnerable buffer information directly through function summary as we know the

definitions of those functions in advance. This loop analysis helps us to analyze the data

copy procedures implemented by programmers.
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We first do the loop detection to find the loop that contains the BOVP. We then do

the loop induction variable (iv) detection. Especially we want to find the ivi that is used

to control the loop iterations and the ivw that composes write index. We also do the loop

variant variable detection which may be composed of a loop invariant variable[66] and an

iv variable. The vulnerable buffer writes are indexed by those variables. We then study the

loop exit condition to infer Loop Bound information. If the loop exit condition source[i]

== 0, we infer the Loop Bound is the source buffer size. If the loop exit condition is i <

a, we know the Loop Bound is the integer a. For loop exit condition is source[i] == 0,

we further look for the ivi that composes the read index to calculate the number of loop

iterations. The memory write instruction that is indexed through some loop variant variables

may indicate the vulnerable buffer.

Multiple Loop Exit Conditions. For the loop constructs that have multiple loop

exit conditions, we have multiple Loop Bounds. We use logical or to represent them. For

example, if we have loop exit conditions source[j] == 0 and i < a, the Loop Bound is a

|| sizeof(source). We then look for the iv1 that updates i and the iv2 that composes the

read index j. The estimated number of loop iterations is min(a−iv1init

iv1update
, sizeof(source)

iv2update
).

Some critical instruction address information are transferred to the bound analysis step.

Those instructions include the conditional jump instruction (loop exit condition), memory

write instructions and memory read instructions.

Please refer to Section 7.1 for how we handle other complicated loop situations.

3.3.2 Bound Analysis

In this step, we want to answer the sizeof(dest) information in Equation 3.3. To be more

specific, we want to find the location and size of the vulnerable buffer. The vulnerable buffer

size can be a fixed number, e.g. the vulnerable buffer is on stack, Data/BSS, or an array

member of a struct. It can also be a variable, e.g. the malloc size.

Our novel fine-grained bound analysis step is achieved by analyzing the memory traces.

Our dynamic model contains the runtime traces. Our runtime traces record the current

program counter, the current instruction, the values of its operands, the taint status of the
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Figure 7: Our bound analysis approach: memory traces analysis

operands, the current ESP value, the function information of the instruction. The ESP is

the stack pointer. They include all of the memory access and memory update information.

The Figure 7 demonstrates our bound analysis approach. We use a bit vector to represent

the memory space. We use one bit to represent one DWORD (4 bytes) in the real memory

space. In practice, this works pretty well.

At higher level, we want to use the bit vector states to represent the memory states. Once

we have memory states update, we update the bit vector states. We mark the bit to 1 when

the corresponding memory region stores data e.g. return address, old EBP , metadata, local

variable access etc. The EBP is the base pointer. We reset the bit to 0 when corresponding

memory is cleaned, e.g. function return, free function call etc. Specifically, our static

model can provide the memory operation functions information. Those memory operation

functions include malloc, calloc and free. With this information, we can identify the

memory operation function call in the runtime traces.

Each instruction contains the current ESP value. By parsing our traces for the first

round, we can estimate the stack range using the ESP values, the heap bound using the

malloc returns. Given the results after first round scan, we can distinguish a memory access

on stack, heap or Data/BSS. During the second round scan, we will update the bit vector to

represent the memory state updates. Specifically, we compare the ESP value of the current
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instruction with the previous instruction. If the ESP value is increased, it can be a POP

instruction or a function return. We reset the bits corresponding to the memory regions

between the two ESPs to 0. Otherwise, if the ESP is increased or isn’t changed, we mark the

bits corresponding to the memory accesses of that instruction to 1. The call instruction is

handled separately because the ESP value is increased but there is no memory access of the

call instruction.

We also handle the memory operation functions at the same time. Given the memory

operation functions information from the static model, we can distinguish the function calls

of malloc, calloc and free in our runtime traces. When we meet the malloc function call,

we mark the bits for the metadata location to 1. Those metadata address information are

also in our runtime traces. The calloc function is handled differently, because besides the

metadata, the data region are also accessed in the runtime traces. We reset the data region

specifically after the calloc return. We maintain a memory allocation history to record

malloc and calloc function calls. Each record contains the instruction address that makes

the function call, the size parameter information, metadata addresses information. When

we meet a free function call, the function parameter has the value of the starting address

of the memory region to free. We then search the memory allocation history for the latest

record that matches the free function call to determine the memory region for bit vector

resetting. We also maintain a memory deallocation history that contains each free function

call information. This can be used to diagnose the double free vulnerability.

With the above implementation, we still can’t handle when the vulnerable buffer had

been already written by another data copy procedure before the data copying process that

causes the buffer overflow attack. We meet this situation in real world application, atphttpd,

during our experimental study. To handle this case, we also maintain an instruction-id array

to help marking the bound of a memory object instead of each bit. If a write instruction is

not within a data copy procedure, we simply use the instruction address as the instruction

id. If a write instruction is within a library function, we use that library function’s name

concatenated with the call address as the instruction id. This is used to distinguish the

different calls of the same library function. If a write instruction is within a programmer

implemented data copy procedure, we use the function name concatenated with the loop id
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as the instruction id. This is used to diagnose the data copy implemented through sequential

loops. When we reset the the bit vector, we will also reset the instruction id array. When we

mark the bit vector, we will compare the current instruction id with the instruction id for

the previous bit first. If they have the same id, we will update the instruction-id array only

and we ignore the bit vector updates. The continuous memory region that is updated by

instructions with the same instruction-id are inferred as data array. The continuous memory

region that is updated by instructions with the same same function name concatenated with

different loop-id are inferred as data array.

We can now infer the bound information using our bit vector which marks the bound of

memory objects. Once we reach the first memory write instruction of the vulnerable data

copy procedure (this information is given from the loop analysis), we first check the location

of the vulnerable buffer. If it is on stack or Data/BSS, we simply search the next 1 on the

bit vector. The vulnerable buffer size is 4×searchSteps. If it is on heap, we first do the

same search for next 1 on the bit vector. We then compare the size results with the malloc

size parameter value (this can be obtained from the memory allocation history). If they

are equal, then the malloc size parameter determines the vulnerable buffer size. In this

case, we check the taint information of the malloc size variable. Otherwise, the vulnerable

buffer is an array member of a struct or object, we will return a fix number in this case.

For example, in Figure 7, the vulnerable buffer is on stack and the size of the vulnerable

buffer is 4 × 5 = 20 bytes. In our running example in Figure 23, the vulnerable buffer is on

heap but the vulnerable buffer size is not determined by the malloc size parameter, but a

fixed number 36. The variable access sequence matters in this approach. However, we can

overwrite those variables that haven’t been written.

In bound analysis step, we also check the taint information for Loop Bound. This

Loop Bound is the corresponding function parameter if the data copy procedure is some

standard C library function. If the BOVP belongs to a programmer written data copy pro-

cedure, the Loop Bound information (instruction address) is passed from the loop analysis

step. We also check the taint information of the malloc size parameter if the vulnerable

buffer size is determined by that variable.
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3.3.3 Input Analysis

Once we obtain the taint information of the vulnerable buffer size variable (if applicable)

and the Loop Bound, we calculate the dynamic slicing of the runtime traces that contain the

tainted variables and perform forward symbolic execution along the trace to figure out how

the user inputs are related with them. For example, if the vulnerable buffer size is determined

by a malloc size parameter and that variable is tainted, we will obtain the slicing contains

that variable. We then run symbolic execution to see how the input is related with it. If

Loop Bound is the source buffer size and the source buffer is tainted, we obtain the slicing

that contains the source buffer. We perform symbolic execution to see how the input is

related with the source buffer variable, or how the source buffer is constructed.

Only one execution path is examined in the above input analysis. It can’t generate the

condition to guarantee the program execution reach the vulnerability point. The signature

generated using the above approach will introduce low false negatives and low false positives.

The low false negatives can happen when a new exploit explores a new execution path and

how the inputs are related with the vulnerability condition is different on that path. The

low false positives happen when changing other input fields makes the vulnerability point

unreachable.

We can also return the static slicing of the program that contains those malicious variables

to help security engineers to do precise signature generation. This can greatly reduce the

workload for security engineers.

As discussed in Section 1.2, the input analysis is an independent research field. This thesis

only addresses this problem simply. This isn’t a major contribution of this thesis work. In

Section 8.2, we will discuss about how to enhance this thesis work towards generating zero

false-positive and zero false-negative signatures for buffer overflow vulnerabilities.
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3.4 HANDLING OTHER MEMORY CORRUPTION ATTACKS

3.4.1 Format String Vulnerability.

All of the format string vulnerabilities occur in Standard C printf family functions. Once

we figure out that the BOVP belongs to one of those functions, we check the taint status

of the format string. If the format string is tainted, this program is vulnerable for format

string vulnerability. If we can determine the number of args in the vararg, we can restrict

the number of directives appear in the format string. If the format string is not tainted, we

continue our normal BOVD process.

3.4.2 Double Free.

Double free vulnerability occurs by calling free function twice on the same memory address

without allocating the same memory region between the two free function calls. The bound

analysis step of our diagnosis engine maintains a memory allocation history and a memory

deallocation history. We diagnose the double free vulnerability by extending the current

BOVD implementation. When we meet a free function call, we check the current memory

deallocation history. If there is a record that frees the same memory region and we can’t find

a record on the memory allocation history that allocate this memory region between this

two free function calls, we can diagnose that there is a double free vulnerability. We return

the two free records as the diagnosis results. This result is much better than the current

systems which can only indicate which memory address has double free. Our double free

diagnosis results can return which two free function calls can cause double free.
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4.0 BUFFER OVERFLOW CASE STUDY

From Chapter 2, we can see the existing diagnosis attempts and vulnerability-based signature

generation approaches are far from satisfaction. Researchers use their own heuristics on how

a buffer overflow attack can happen when they design their defense and debugging systems.

There is no previous research on studying the reasons that can cause a buffer overflow or

the buffer overflow case study.

In this Chapter, we do buffer overflow vulnerability case study. We only consider the

buffer overflow vulnerabilities that can be controllable by the user inputs. Because only in

those cases, the attacker can attack the buffer overflow vulnerability by generating zero-day

buffer overflow attacks through Internet. We don’t consider those buffer overflow vulnerabil-

ities that are built-in the programs. For example, both of the sizeof(dest) and total number

of writes are fixed and the sizeof(dest) is less than the total number of writes. There are

six basic basic cases that are built on serials assumptions. We provide the diagnosis results,

signature suggestions and patch suggestions for each basic case. By removing each assump-

tion of the basic cases, we come up with the other buffer overflow vulnerability cases. We

prove that the case study results (basic cases and other cases) are complete. By the end of

this Chapter, we study some sample Standard C Library and System functions that have

caused buffer overflow vulnerabilities in real world applications. We will state under what

conditions those functions may cause buffer overflows.
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4.1 SIX BASIC CASES

The six basic cases cover all of the real world buffer overflow vulnerabilities we have studied.

The basic bases are based on the following assumptions:

• Assume the buffer overflow attack happens through a data copy procedure. This data

copy procedure is a code block that writes contents to a data array. It can be in any

format including the generalized data copy procedure (one or more loop exits), data copy

procedure implemented through nested loops, or sequential write statements.

• Assume the attacker can only control the sizeof(dest) or/and Loop Bound.

• Assume the Loop Bound includes the two major loop exit condition cases for a data

copy procedure. One is source[i] == c and the other is j < a. The Loop Bound is

strlen(source|c) and a respectively.

• Assume there is one Loop Bound or one loop exit condition of the data copy procedure.

So the generalized data copy procedure with multiple loop exits or data copy procedure

implemented through nested loops are excluded.

To simplify the analysis results, we assume the iv composes the read index is i = i + 1,

the iv for loop iteration variable is j = j + 1 and the write index contains an iv that has

form k = k + 1, to simplify the analysis results.

We use s to represent a fixed value for size, a to represent a fixed value for an integer,

us to represent a user controllable value for array size, ua to represent a user controllable

value for an integer. We use U(us) and U(ua) to represent how the user inputs are related

with the us and ua.

Loop Exit Condition is source[i] == c. Using one of our loop heuristics, the

Loop Bound is the string length of the source buffer until the first encounter of c when the

loop exit condition is source[i]== c. We use strlen(source|c) to represent this. There

are three buffer overflow vulnerability cases based on what values the user input can control:

the strlen(source|c), the vulnerable buffer size, or both.
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• Case I: The strlen(source|c) is related with user input. Source buffer is from user

input and the vulnerable buffer has a fixed value size. We found several real world buffer

overflow vulnerable applications belonging to this case, e.g. CSRSS(MS06-040). The

diagnosis results: vulnerable buffer location, vulnerable buffer size (s), the total number

of writes is strlen(source|c) (us) and how it is related with the user inputs (U(us)).

The signature suggestion: s > U(us). The patch suggestion: add s > us condition check

before the data copy procedure. The example vulnerable program is demonstrated in

Figure 24.

• Case II: Vulnerable buffer size is related with user input. In this case, the source

buffer is fixed. The vulnerable buffer is on heap and the vulnerable buffer size is de-

termined by the malloc size parameter. This variable is directly from user input or

related with user input (e.g. integer overflow happens from the input value to the mal-

loc size). The diagnosis results: heap buffer overflow, malloc size parameter (ua), the

strlen(source|c) (s), how the malloc size variable is related with the user inputs

(U(ua)). The signature suggestion: U(ua) > s. The patch suggestion: add ua > s

condition check before the data copy procedure. The example vulnerable program is

demonstrated in Figure 25.

• Case III: Both of the strlen(source|c) and vulnerable buffer size are related

with user inputs. The diagnosis results: heap buffer overflow, malloc size parameter

(ua), the strlen(source|c) (us), how the malloc size parameter and source buffer

are related with the user inputs (U(ua) and U(us)). The signature suggestion: U(ua)

> U(us). The patch suggestion: add ua > us condition check before the data copy

procedure. The example vulnerable program is demonstrated in Figure 26.

Loop Exit Condition is j < a. The Loop Bound is a when the loop exit condition

is j < a. There are three buffer overflow vulnerability cases based on what values the user

inputs can control, the Loop Bound a, the vulnerable buffer size, or both.

• Case IV: Integer bound a is related with user input. The vulnerable buffer has

a fixed size value. We find real world vulnerable program, MS07-017, belongs to this

case. The diagnosis results: vulnerable buffer location, vulnerable buffer size (a), integer
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bound (ua), how the integer bound ua is related with the user inputs (U(ua)). The

signature suggestion: a > U(ua). The patch suggestion: add a > ua condition check

before the data copy procedure. The example vulnerable program is demonstrated in

Figure 27 which is motivated by real world vulnerable application, ANI(MS07017).

• Case V: Vulnerable buffer size is related with user input. The vulnerable buffer

is on heap and its size is determined by a variable. The integer bound a is a constant.

We find real world vulnerable program, nullhttpd, belongs to this case. The diagnosis

results: heap buffer overflow, malloc size parameter (ua), integer bound (a), how the

malloc size variable is related with the user input (U(ua)). The signature suggestion:

U(ua) > a. The patch suggestion: add ua > a condition check before the data copy

procedure. The example vulnerable program is demonstrated in Figure 28 which is

motivated by real world vulnerable application, nullhttpd.

• Case VI: Both of the vulnerable buffer size variable and the integer bound

variable are related to the user inputs. We find real world vulnerable program,

PNG(MS05-025), belongs to this case. The diagnosis results: heap buffer overflow, malloc

size parameter (ua1), integer bound (ua2), how the malloc size parameter and integer

bound variable are related with the user inputs (U(ua1) and U(ua2)). The signature

suggestion: U(ua1) > U(ua2). The patch suggestion: add ua1 > ua2 condition check

before the data copy procedure. The example vulnerable program is demonstrated in

Figure 28 which is motivated by real world vulnerable application, PNG(MS05025).

4.2 OTHER CASES

There are many other buffer overflow vulnerability cases beyond the above six basic cases.

The following four categories of other cases are generated by removing each of the above

assumptions.

Multiple loop exit conditions. There are two situations when we have multiple loop

exits. One is when there are multiple loop exits on the generalized data copy procedure.

The other is when the data copy procedure is implemented through nested loops. Figure 8
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and Figure 9 illustrate these two situations.

iv1 = iv1init;

iv2 = iv2init;

iv3 = iv3init;

while(iv1 < Loop_Bound1 || iv3 < Loop_Bound2){

writeAddress = startAddress + startOffset + iv2;

[writeAddress] = {some value};

iv2 += iv2upate;

iv1 += iv1upate;

iv3 += iv3update;

}

Figure 8: A Data Copy Procedure with Multiple Loop Bounds (I)

For the generalized data copy procedure that have multiple loop exit conditions, we have

multiple Loop Bounds as illustrated in Figure 8. We use logical or to represent them. For

example, if we have loop exit conditions source[i] == 0 and j < a, the Loop Bound is a

|| sizeof(source). We then look for the iv1 that updates the read index i for source and

the iv3 that updates j. The estimated number of loop iterations is min( sizeof(source)
iv1update

, a−iv3init

iv3update
).

Besides the two Loop Bound variables, the vulnerable buffer size is the third variable that is

controllable by user inputs. Equation 4.1 and Equation 4.2 show how to calculate the total

number of loop iterations and the total number of writes generally.

numIteration = min(
Loop Bound1 − iv1init

iv1update

,
Loop Bound2 − iv3init

iv3update

) (4.1)

totalNumWrites = iv2update × numIteration (4.2)

For example, the vulnerable buffer is on stack with fixed size (s), the integer bound (ua)

and the source buffer size (us) are related with user inputs. The diagnosis results: vulnerable

buffer location, vulnerable buffer size (s), integer bound variable (ua), source buffer size (us),
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iv1 = iv1init;

iv2 = iv2init;

iv3 = iv3init;

while(iv1 < Loop_Bound1) {

while(iv3 < Loop_Bound2) {

writeAddress = startAddress + startOffset + iv2;

[writeAddress] = {some value};

iv2 += iv2upate;

iv3 += iv3update;

}

iv1 += iv1upate;

}

Figure 9: A Data Copy Procedure implemented through Nested loops

how integer bound (ua) and source buffer (us) are related with the user inputs (U(ua) and

U(us)).

The signature suggestion: s > min(U(ua), U(us)). The patch suggestion: add s >

min(ua, us) condition check before the data copy procedure. The example vulnerable

program is demonstrated in Figure 30.

For the data copy procedure that is implemented through nested loops, we have multiple

Loop Bounds as illustrated in Figure 9. The total number of loop iterations is the product

of the number of the outer loop iterations and the number of the inner loop iterations.

Equation 4.3 and Equation 4.4 show how to calculate the total number of loop iterations

and the total number of writes.

numIteration =
Loop Bound1 − iv1init

iv1update

×
Loop Bound2 − iv3init

iv3update

(4.3)

totalNumWrites = iv2update × numIteration (4.4)
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Similarly, a buffer overflow attack can happen when the attacker can control the Loop Bound1

or/and Loop Bound2 or/and the sizeof(dest).

The iv detection problem for nested loops has been studied very well by researchers[98].

We leave this as a future work to implement the iv detection for nested loops and then to

calculate the total number of writes by calling nested loops using Equation 4.4.

Other variables in Equation 3.3. In the basic case study, we assume the user input

can only control the Loop Bound and the vulnerable buffer size. However, it is possible

that the user input can control the other variables in Equation 3.3 including iv1init, iv2init,

startOffset, or even iv2update and iv1update. The example vulnerable program is demon-

strated in Figure 31.

Malicious Array Index. In the basic case study, we assume the buffer overflow attack

happens during a data coping process. It can also happen when the index of the vulnerable

buffer is controllable by the user input. Among the 377 vulnerabilities for which Microsoft

has issued security bulletins between 2003 and 2006, two applications are known using a field

from the user input as an array index without checking whether the array index is within the

array bound. ShieldGen[41] is a black-box approach for generating signatures for unknown

vulnerabilities. They are believed to be the scheme that can generate the highest quality

signatures and can cover the most situations comparing with any other existing approaches

(e.g. exploit based or execution based). However, ShieldGen[41] can’t handle the malicious

array index cases described above. They even can’t provide any information on this case.

This thesis work can provide more information on this famous notoriously hard problem.

In the BOVP detection step, we search back the trace for the latest instruction that does the

malicious write. If this instruction doesnt belong to any data copy procedure (programmer

written loops, known library or system functions), we will keep searching back until we find

one that is part of a data copy procedure as the BOVP or we find nothing. If we cant find any

BOVP, our diagnosis result will state that the vulnerability may belong to this unchecked

array index case. The example vulnerable program is demonstrated in Figure 32.

Other Loop Bound. In the basic cases, we assume the Loop Bound includes the two

major loop exit condition cases for a data copy procedure. One is source[i] == c and

the other is j < a. The Loop Bound is strlen(source|c) and a respectively. Is there any
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other Loop Bound for a data copy procedure? In paper[46], it presents a loop bound analysis

approach based on combination of standard program analysis techniques including program

slicing, abstract interpretation and invariant analysis. Here we use function φ() to represent

other Loop Bound cases. In Figure 33, we demonstrate the other Loop Bound case. We can

apply the technique described in paper[46] to analyze the bound results.

4.3 CASE STUDY IS COMPLETE

In this section, we prove that the above six basic cases and four categories of other cases can

cover all of the buffer overflow vulnerability cases.

Theorem. The six basic cases and the four category other cases cover all of the buffer

overflow vulnerability cases. The buffer overflow vulnerabilities are those that can be con-

trollable by the user inputs.

Proof by enumeration: The six basic cases are based on the following four assumptions:

• Assume the buffer overflow attack happens through a data copy procedure. This data

copy procedure is a code block that writes contents to a data array. It can be in any

format including the generalized data copy procedure (one or more loop exits), data copy

procedure implemented through nested loops, or sequential write statements.

• Assume the attacker can only control the sizeof(dest) or/and Loop Bound.

• Assume the Loop Bound includes the two major loop exit condition cases for a data

copy procedure. One is source[i] == c and the other is j < a. The Loop Bound is

strlen(source|c) and a respectively.

• Assume there is one Loop Bound or one loop exit condition of the data copy procedure.

So the generalized data copy procedure with multiple loop exits or data copy procedure

implemented through nested loops are excluded.

First we assume the buffer overflow attack happens through a data copy procedure which

can be in any format. If the buffer overflow happens through a data copy procedure, there

is a buffer overflow if and only if the sizeof(dest) is less than the total number of writes after
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the data copy process. So the attacker can attack the buffer overflow vulnerability through

controlling the sizeof(dest) or/and the total number of writes. We assume the attacker can

only control the Loop Bound to control the total number of writes. We also assume that

there is only one Loop Bound and the Loop Bound is either strlen(source|c) or a. We

can then construct the six basic cases as listed in Section 4.1.

By removing the first assumption ”Assume the buffer overflow attack happens through

a data copy procedure”, we get the first category of the other cases that buffer overflow

happens through malicous array index.

By removing the second assumption ”Assume the attacker can only control the sizeof(dest)

or/and Loop Bound”, we get the second category of the other cases that the buffer overflow

happens through controlling the other variables in Equation 3.3. From Equation 3.3, we can

see the total number of writes is determined by several variables including iv1init, iv2init,

startOffset, iv2update, iv1update and Loop Bound. So besides Loop Bound, the attacker can

also control iv1init, iv2init, startOffset, iv2update and iv1update to control the total number

of writes.

By removing the third assumption ”Assume the Loop Bound includes the two major

Loop Bounds”, we get third category of the other cases that buffer overflow happens through

other Loop Bound.

By removing the fourth assumption ”Assume there is one Loop Bound”, we get the fourth

category of the other cases that buffer overflow happens through a data copy procedure that

have multiple Loop bounds. This can be one of the two situations. One is that there are

multiple Loop Bounds in the generalized data copy procedure. The other is that the data

copy procedure is implemented through nested loops.

Now we cover the whole space of buffer overflow vulnerability cases that can be control-

lable by an attacker without any assumption. We conclude the buffer overflow case study

results, six basic cases and four categories of other cases, are complete.
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Table 1: The sample unsafe standard C libraries and system data copy functions study:

char* s1, s2, format; int n, socket, flags; File* stream;

Func. Dest. Loop Bound Unsafe

Name Buffer Condition

strcpy(s1, s2) s1 strlen(s2) sizeof(s1) < strlen(s2)

strncpy(s1, s2, n) s1 n sizeof(s1) < n

memcpy(s1, s2, n) s1 n sizeof(s1) < n

memset(s1, s2, n) s1 n sizeof(s1) < n

recv(socket, s1, n, flags) s1 n sizeof(s1) < n

4.4 STANDARD C LIBRARY FUNCTIONS AND SYSTEM FUNCTIONS

THAT CAN CAUSE BUFFER OVERFLOWS

There are many unsafe Standard C Library and system data copy functions that can cause

buffer overflow vulnerabilities. We studied those functions in advance and got the function

summaries. Once we meet a buffer overflow that is caused by any of those functions, we can

retrieve the vulnerable buffer and the total number of writes information directly.

In Table 1, we list sample standard C library and system data copy functions that can be

unsafe and that have been found causing buffer overflow vulnerabilities in our experiments

on real world vulnerable applications.

In Windows Vista, certain APIs are banned including strcpy, strncpy etc. However

memcpy is not on the banned APIs list which causes the stack buffer overflow in MS07-017[53].

From the table, we can see memcpy is actually as dangerous as strncpy. Our study can help

security engineers to decide which functions and under what conditions they are unsafe.

40



5.0 IMPLEMENTATION

In this Chapter, we discuss our implementation details. As the major contribution of this

thesis work is on the diagnosis engine, I will concentrate on the implementation details of

the diagnosis engine which is independently implemented by me. For the details on dynamic

analysis engine and static analysis engine, please refer to BitBlaze [5] project for details.

5.1 DYNAMIC ANALYSIS ENGINE

We have implemented the dynamic analysis engine, TEMU [5], on QEMU [13], a whole-

system emulator that uses dynamic translation techniques. At runtime, an instruction in

the guest system is translated into several micro operations, which are then executed in the

host system. This feature enables us to perform dynamic instrumentation on any instructions

in the guest system (including the instructions in the kernel space). To implement dynamic

taint analysis, we have extended these micro operations to propagate taint information. We

have also modified the virtual network device to taint the network input.

In addition, we instrument the beginning of each instruction. If it is from the examined

process, we disassemble it and record the runtime information, including the current program

pointer, the current instruction, and the states of its operands etc. If the operands are

tainted, we also record the taint information.

TEMU only provides hardware-level information about the guest system, such as CPU

and memory state. However, to determine if an instruction is from the examined process

or the kernel, we need software-level knowledge from the guest system. To achieve this, we

have developed a kernel module and load it into the guest system to obtain the necessary
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software-level information. This module is aware of the creation and deletion of processes.

When a new process is created, the kernel module obtains the value of current CR3 register.

As CR3 contains the physical address of the current process’s page table, it is different (and

unique) for each process. All this information is passed on to the dynamic analysis engine

through a predefined I/O port. Therefore, when instrumenting an instruction, we simply

check the current CR3 to determine if the examined process is running.

5.2 STATIC ANALYSIS ENGINE

The static analysis engine is implemented on top of our binary analysis framework, Vine[5],

which can disassemble an x86 binary, converts it into an intermediate representation (IR),

and perform serials of preprocessing on the raised IR program.

We translate the x86 program to the VinE modeling language [5]. This language simplifies

the analysis of complex x86 to that of a simple RISC-like language.

After we raise the x86 program to VinE modeling language, our static analysis engine will

perform serials of preprocessing of the raised program. Specifically, it will do constant prop-

agation, deadcode elimination, static single assignment (SSA) generation. It can generate

the control flow graph (CFG) of the raised IR program. It also provides the functionality of

program chopping and the forward symbolic program execution. It also provides the calling

information for the memory functions. Those memory functions include malloc, calloc and

free.

Symbolic Execution. The symbolic execution is used in our input analysis step. In

order to perform sound symbolic execution, we must correctly interpret the semantics and

effects of all assembly statements. The x86 instruction set is complex. Many instructions

have implicit side effects (e.g., add sets the eflags register on overflow), may have implicit

operands (e.g., the memory segment selector), may behave differently for different operands

(e.g., shifts by 0 do not set eflags), and there are even single instruction loops (e.g., rep

instructions). Thus, to reduce the complexity of the symbolic execution logic, for each

instruction that needs to be executed symbolically, we first translate it into a sequence
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of much simpler intermediate representation (IR) statements (VinE). Our IR resembles a

RISC-like assembly language. The translation from an x86 instruction to our IR is designed

to correctly model the semantics of the original x86 instruction, including making all the

implicit side effects explicit (e.g., setting the eflags register). We then perform symbolic

execution on the IR statements, instead of directly with the x86 instruction set.

5.3 DIAGNOSIS ENGINE

Besides detecting the BOVP by searching back the runtime traces to find out the latest

instruction that wrote the security critical data, our diagnosis engine performs three steps

analysis towards understanding the BOVC. These three steps analysis includes loop analysis,

bound analysis and input analysis.

The loop analysis includes loop detection, loop induction variable (iv) detection[66], loop

invariant and variant variable detection[16, 66], loop exit condition extraction, memory read

and memory write extraction. My loop detection can handle both of the reducible graph and

irreducible graph[89, 52]. My loop iv detection is based on the algorithm provided in[66]. My

loop invariant and loop variant variable detection is implemented based on its definition[66].

I return the code slicing of the loop body for each loop exit condition and each memory

write index if the write index is a loop variant variable. I also return the code slicing of

the memory read index if the loop exit condition is strlen(source|c). I then evaluate the

results for the loop exit condition and the memory write index on the sliced program.

Program slicing is a subset of the programs that contains the statements which can

affect the results of the interested variable(s)[96]. My slicing works on the IR program. I

apply data flow analysis to retrieve the code statements that are related with our interested

variables (e.g. loop exit condition, write index).

The bound analysis scans the runtime traces for two rounds. During the first round, it

estimates the stack range using the ESP values, the heap bound using the malloc returns.

The ESP is the stack pointer. Our runtime traces contain the current ESP in each instruction.

During the second round scan, we update the bit vector and instruction id array to represent
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the memory state updates to mark the memory object bounds. Those memory state updates

include the function call, function return, memory access, memory allocation and memory

deallocation. Our current memory function handling can only handle the calling conventions

we have met in our RedHat73 test bed. More calling conventions[6] can be extended for other

applications running on different platforms. For the windows applications we evaluated in

Section 6.2, we simply identify the vulnerable buffer location is on heap or on stack.

They calling conventions we can handle include passing arguments by register eax, by

pushing on stack either explicitly (e.g. push %eax) or implicitly (e.g. movl $0xa (%esp,

1)) and passing function return results using register eax. For example, for function malloc,

the function argument is the malloc size and the function return is the starting address of

the allocated memory. The meta data are accessed in the malloc function body; for function

free, the function argument is the starting address of the memory to be deallocated.

The input analysis returns the dynamic slicing of the runtime traces that contains the

malicious variables and then perform symbolic execution on the trace to see how the inputs

are related with the malicious variables.

5.3.1 Loop Detection

I did thorough study on the loop detection research area[89, 52, 33] and implemented the

loop detection algorithm in a comprehensive way given the Control Flow Graph(CFG) of

the vulnerable program. The implementation can handle both of the reducible graph and

irreducible graph cases[89, 52, 33]. This is much better than the BlackHat[3] community’s

approach and IDAPro’s[7] approach. The irreducible graph happens in practice when we

were testing our loop detection implementations.

A basic algorithm to detect loops is proposed in [16, 66], by applying dominator analysis.

Node d is the dominator of node n if every path from the entry node of CFG to n goes through

d. Briefly speaking, this algorithm works by calculating the dominators D(n) = d1, ..., di, ...

for each node n and testing if there is an edge from node n to node di. If there is such an

edge, then this edge is the back edge, node di is the loop head and node n is in the loop

body that returns to the loop head.
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This algorithm can only detect loops with single entries, reducible graph[89]. But in

practice, graphs contain loops with multiple entries, which are defined as irreducible graph,

happen. As Figure 10(a) shows, Loop 2 has two entries: Node 5 and 6. In this case, we apply

the node collapsing algorithm [52, 89] to determine if a CFG contains a loop with multiple

entries, and the node splitting algorithm [52, 89] to break such a loop. We then can make

an irreducible graph reducible.

Figure 10(c) shows the CFG after the node splitting algorithm is performed. The node

collapsing and node splitting procedures may be performed multiple times until the resulted

CFG contains no loops with multiple entries. In this example, after the first-time node

splitting procedure, we have already got a CFG containing no loops with multiple entries.

The final CFG is shown in Figure 10(d), in which Loop 2 has been broken to have a single

entry. Then we can perform the basic algorithm on this CFG to detect loops.

Figure 10: Examples of Transforming Irreducible Graph to Reducible Graph

Figure 11 illustrates the CFG of a real-world program, passlogd. Using the above

algorithms, we can identify two loops in this CFG. Now given the instruction 0x7801212f

that overwrites the returned address, we first locate that this instruction is in the block 135.
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Then with the information of identified loops, we can know that it is in Loop 1, which has

entry node 122.

Figure 11: The CFG of passlogd

5.3.2 Loop Induction Variable Detection

Our goal of loop analysis is to find out how the number of writes is determined by different

variables. Based on the observation that the loop memory accesses in a data copy procedure

are usually composed and the loop exit condition are usually controlled by loop induction

variables, I implemented loop induction variable detection.

Induction variables are discussed in detail in [66]. Basically they are variables that are
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updated through regular mathematics patterns during each loop iteration. The basic or

fundamental induction variables are those that are modified by some constant amount each

time, e.g. i = i + 4. The dependent induction variables are those that are linear equations

of the basic induction variable, e.g. j = a × i + b, where a and b are constants or loop

invariants.

The input of the induction variable detection is a loop body in Static Single Assignment(SSA)[66].

There are φ-statements, lhs = φ(a1, a2, ..., an) and single assignment statements, x = y when

both of the right hand side and left hand side are variables in our Vine IL. The existence of

these statements makes the induction variable detection extremely difficult. I modified the

algorithm given on the text book[66] to be able to handle this by creating a hashtable. The

key of the hashtable is a variable and the value is a list of variables that are the same through

the program propagation of that key variable. The algorithm finds the basic induction vari-

ables that are satisfied with pattern i = i ± a first, then recursively look for the dependent

inductive variables that match pattern k = m × a where a is a constant variable and m is

one of the new found inductive variables in the previous round. During the first iteration, m

is one of the basic induction variables. This iteration will continue until no new dependent

inductive variables can be found. The algorithm of the induction variable detection is given

in Table 2.

Using the implemented algorithm to handle the sample program block in x = x + 1; z =

y×5; y = x+6; q = z×2;, it will find x as the basic induction variable. During the following

iterations, it will find y as a dependent induction variable in the first round, z in the second

round, q in the third round. During the fourth iteration, the result is empty, so the program

stops.

5.3.3 Loop Invariant and Variant Variables Analysis

In some situation, some variable is not an induction variable but we still want to know if

it is a loop variant or loop invariant variable. If a computation produces the same value in

every loop iteration, it is a loop invariant variable, otherwise, it is a loop variant variable.

This concept is defined well in Chapter 13.2[66].
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The definition of loop invariant variable is defined as below: A definition t = xy in a loop

is loop invariant if x and y are constants, or all reaching definitions of x and y are outside

the loop, only one definition reaches x (or y), and that definition is loop-invariant.

Based on this definition, I designed and implemented the algorithm to find loop invari-

ants and loop variants variables as below. During the first iteration of the loop body, for

each statement, if the right hand side variable(s) are constants or no-reaching definitions

in the loop body, they are saved in a list, say loop invariant1. During the next round of

iteration, we check the right hand value(s) that either both are members of loop invariant1,

or at least one is a member of loop invariant1, the other is either a constant or no-reaching

definition in the loop body. The lvalue of this statement is a loop invariant, we save them in

loop invariant2. This process will continue. For iteration i, we check the right hand value(s)

of each statement that either both are members of loop invariant(i-1) or at least one is a

member of loop invariant(i-1) and the other is a constant or no-reaching definition in the

loop body or a member of
⋃i−2

j=1(loop invariant(j)). This process will continue until no more

loop invariants can be found. By merging all of the lists, we obtain the final result of loop

invariants of the left hand values (lvalues).

The remaining left hand values are loop variants, we save them in a list named loop variants.

The algorithm of calculating the loop variant variables is given in Table 3. Now given a vari-

able, either a left hand value (lvalue) or a right hand value (rvalue), if it exits in loop variants

list, we say it is a loop variant variable, otherwise, we say it is a loop invariant variable. As

the same as in loop induction variable detection algorithm, I build a hashtable to handle

the φ-statement and single assignment statement when both of the right hand side and left

hand side are variables. Using this loop invariant and loop variant variables analysis, we can

find those variables that are not induction variables but are updating itself during each loop

iteration. These information is useful in the loop memory access pattern analysis.
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Table 2: The induction variable detection algorithm

Algorithm: Induction Variable Detection

1: Input: Loop body in SSA (single static assignment) format

2: Output: The induction variables of the loop body

3: i = 0;

4: while ((a = nextStatment(LoopBody)) != null)

5: if (patten(a) = patten(x = x ± i))

6: if (i = constant)

7: loop ivi∪ = x

8: while (loop ivi != null)

9: i++;

10: Init(LoopBody);

11: while ((a = nextStatment(LoopBody)) != null)

12: if (patten(a) = patten(y = z ± i))

13: if (i = constant and z ∈ loop ivi−1)

14: loop ivi∪ = y

15: if (patten(a) = patten(y = z × j))

16: if (j = constand and z ∈ loop ivi−1)

17: loop ivi∪ = y

18: for (j = 0; j ¡= i; j++)

19: loop iv∪ = loop ivi

20: return loop iv
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Table 3: The loop variant and loop invariant variable detection algorithm

Algorithm: loop variant and loop invariant variable detection

1: Input: loop body in SSA (single static assignment) format

2: Output: loop variant variables of the loop body

3: i = 0;

4: while ((a = nextStatment(LoopBody)) != null)

5: if (patten(a) = patten(x = i op j))

6: if (i,j = constant or have no reaching def)

7: loop invari∪ = x

8: while (loop invari != null)

9: i++;

10: Init(LoopBody);

11: while ((a = nextStatment(LoopBody)) != null)

12: if (patten(a) = patten(x = i op j))

13: if (i,j ∈ loop invari−1)

14: loop invari∪ = x

15: if (i ∈ loop invari−1 and j ∈ constant ∪ noreachingdef ∪ loop invar0,1,i−2)

16: loop invari∪ = x

17: if (j ∈ loop invari−1 and i ∈ constant ∪ noreachingdef ∪ loop invar0,1,i−2)

18: loop invari∪ = x

19: for (j = 0; j ≤ i; j++)

20: loop invar lhs∪ = loop invari

21: while (v = nextVariable(LoopBody) != null)

22: if (v /∈ loop invar lhs)

23: loop var∪ = x

24: return loop var
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6.0 EXPERIMENTS

In this Chapter, we evaluate our approach through several aspects. First, we evaluate how

our generalized loop structures can handle the loops in the real programs. The gener-

alized loop structures include the Generalized-data-copy-procedure, the Generalized-data-

copy-procedure with multiple loop exists and the data copy procedure implemented through

nested loops. They are illustrated in Figure 6, Figure 8 and Figure 9 respectively. The real

programs we studied include the WCET (Worst Case Execution time) benchmark[14] and

several real world applications that have multiple known vulnerabilities. These several real

world applications include 3proxy, atphttpd, ghttpd, nullhttpd.

We also have performed a series of study on real world buffer overflow vulnerable ap-

plications to evaluate the effectiveness of our BOVD approach and to confirm our buffer

overflow vulnerability case study results. We use six representative examples to demonstrate

the effectiveness of our approach. Among the six examples, the PNG and RPC vulnerable

applications have data copy procedures implemented by programmers. Our loop heuristic

and loop analysis approach can handle them very well. We can correctly infer the result of

the total number of writes in Equation 3.3 for both of them. The cfingerd has a format

string vulnerability and the 3proxy has a double free vulnerability. We use them to demon-

strate the effectiveness of our approach to handle other memory corruption attacks. The

nullhttpd has a heap buffer overflow vulnerability that the user can control the vulnerable

buffer size and the SQL has a stack buffer overflow vulnerability. We use them to demonstrate

the effusiveness of our bound analysis approach. In Section 6.3, we list all of the applications

we have studied and classify them using our buffer overflow vulnerability case study results.
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6.1 LOOP STRUCTURE STUDY

We studied the loops of real programs to see how well they can be evaluated through our

generalized loop procedures. For those loops that have write statements that are indexed

through loop variant variables, we classify them as data copy loops. Otherwise, they are

non-data copy loops. For data copy loops, we evaluated them through the accuracy of the

calculated total number of loop iterations and the total number of writes. For non-data

copy loops, we evaluated them through the accuracy of the calculated total number of loop

iterations using the Equation 3.1, Equation 3.2, Equation 4.3, Equation 4.4, Equation 4.1

and Equation 4.2.

The real programs we studied include the WCET benchmark[46] and some real world

applications. The WCET benchmark programs are maintained by the Mlardalen WCET

research group. The benchmarks are collected from several different research groups and

tool vendors around the world. Each benchmark is provided as a C source file (file.c). In

Table 4, we list the description and number of lines of C code of each program of the WCET

benchmark.

The real world applications we studied include 3proxy, atphttpd, ghttpd and nullhttpd.

In Table 5, we list the brief descriptions, the programs and the number of lines of C code for

each program.

Table 6, Table 7 and Table 8 list all of the evaluation results. They all use the same

notation as described in Table 6. Among those notations, (a)(b)(c) are for non-data copy

loops and (d)(e)(f) are for data copy loops. The three categories of each group are used to

distinguish loop with one exit, loop with multiple loop exits (non-nested loop) and nested

loops. The (1)(2)(3)(4) are for the four situations that we can accurately estimate the

number of loop iterations; we can’t accurately estimate the number of loop iterations; we

can accurately estimate the total number of writes; we can’t accurately estimate the total

number of writes. For non-data copy loops, we evaluate them through the number of loop

iterations only, so only (1)(2) are evaluated.

We summarize the loop structure study results for real world applications on Figure 12

and for WCET benchmark on Figure 13. We list the results of both in Figure 14 to compare
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Table 4: The WCET benchmark programs (loop structure study source 1)

Program Description number of lines of C Code
adpcm Adaptive pulse code modulation algorithm 875

bs Binary Search in an array of 15 integer elements 113
bsort100 bubble sort benchmark program 127

cnt Counts non-negative numbers in a matrix 128
compress data compression program, adopted from SPEC95 506

cover Program for testing many paths 238
crc Cyclic redundancy check computation on 40 data bytes 125
duff Using Duff’s device to copy 43 bytes array 83
edn Finite Impulse Response (FIR) filter calculations 284

expint Series expansion computing an exponential integral 156
fac Recursive program to calculate factorials 25
fdct Fast Discrete Cosine Transform 238
fft1 Fast Fourier Transform using Cooly-Turkey algorithm 218

fibcall Iterative Fibonacci, used to calculate fib(30) 71
fir Finite impulse response filter (signal processing) 274

inssort Insertion sort on a reversed array of size 10 89
jcomplex Nested loop program 60
jfdctint Discrete-cosine transformation on 8*8 pixel block 374
lcdnum Read ten values, output half to LCD 62
ludcmp LU decomposition algorithm 149
matmult Matrix multiplication of two 20*20 matrices 162
minver Matrix inversion for 3x3 floating point matrix 197
ndes Embedded code with many complex bit operations 230
ns Search in a multi-dimensional array 531

nsichneu Simulates an extended Petri net 4246
prime Search in a multi-dimensional array 45

qsort-exam Linear equations by LU decomposition 118
qurt Root computation of quadratic equations 164
select Select the n:th largest number in floating point array 111
sqrt Square root function implemented by Taylor series 73
st This program computes for two arrays of numbers the 157

sum, the mean, the variance, and standard deviation,
the correlation coefficient between the two arrays

statement Automatic generated code 1273
ud Linear equations by LU decomposition 160
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Table 5: Some real world applications (loop structure study source 2)

Application Description Program number of lines of C Code
3proxy tiny free proxy common.c 608

server datatypes.c 798
dighosts.c 137
dnspr.c 196

total number of lines of C Code 1739
atphttpd simplistic, memory http handler.c 247

caching web server main.c 343
mime.c 73

sockhelp.c 343
total number of lines of C Code 1006

ghttpd a fast and efficient main.c 235
HTTP server that has protocol.c 329

CGI support util.c 241
total number of lines of C Code 805

nullhttpd a free, lightweight cgi.c 315
HTTP server that has config.c 165
CGI support, not a files.c 151
production server format.c 181

http.c 289
main.c 91
server.c 603
win32.c 231

total number of lines of C Code 2026
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Table 6: The loop analysis results for the real world applications: (1) can handle the number

of loop iterations; (2) can’t handle the number of loop iterations; (3) can handle the total

number of writes; (4) can’t handle the total number of writes; (a) Non-Data Copy Loop: one

loop exit; (b) Non-Data Copy Loop: multiple loop exits; (c) Non-Data Copy Loop: nested

loops; (d) Data Copy Loop: one loop exit; (e) Data Copy Loop: multiple loop exits; (f) Data

Copy Loop: nested loops.

Application Non-Data Copy Loops Data Copy Loops
(a) (b) (c) (d) (e) (f)

(1) 2 1 0 3 1 0
3proxy (2) 6 3 0 0 0 0

(3) - - - 1 1 0
(4) - - - 2 0 0
(1) 6 0 0 3 0 0

atphttpd (2) 3 1 0 0 0 0
(3) - - - 2 0 0
(4) - - - 1 0 0
(1) 0 2 0 2 2 0

ghttpd (2) 1 5 0 0 1 0
(3) - - - 2 2 0
(4) - - - 0 1 0
(1) 17 0 0 4 1 0

nullhttpd (2) 12 2 0 1 0 0
(3) - - - 4 1 0
(4) - - - 1 0 0
(1) 25 3 0 12 4 0

total (2) 22 11 0 1 1 0
(3) - - - 9 4 0
(4) - - - 4 1 0
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Table 7: The loop analysis results for WCET benchmark (I).The same notation as in Table 6.

Application (a) (b) (c) (d) (e) (f) Application (a) (b) (c) (d) (e) (f)
(1) 9 0 0 9 0 0 (1) 0 0 0 0 0 0

adpcm (2) 1 1 0 0 0 0 bs (2) 1 0 0 0 0 0
(3) - - - 9 0 0 (3) - - - 0 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 0 0 0 1 0 1 (1) 0 0 1 0 0 0

bsort100 (2) 0 0 0 0 0 0 cnt (2) 0 0 0 0 0 0
(3) - - - 1 0 1 (3) - - - 0 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 0 0 0 3 2 0 (1) 2 0 0 0 0 0

compress (2) 2 0 0 0 0 0 cover (2) 0 0 0 0 0 0
(3) - - - 3 2 0 (3) - - - 0 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 2 0 0 1 0 0 (1) 0 0 0 1 0 0

crc (2) 0 0 0 0 0 0 duff (2) 0 0 0 0 0 0
(3) - - - 1 0 0 (3) - - - 1 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 3 0 0 2 0 3 (1) 2 0 2 0 0 0

edn (2) 0 0 0 0 0 0 expint (2) 0 0 0 0 0 0
(3) - - - 2 0 2 (3) - - - 0 0 0
(4) - - - 0 0 1 (4) - - - 0 0 0
(1) 1 0 0 0 0 0 (1) 3 0 0 0 0 0

fac (2) 0 0 0 0 0 0 fdct (2) 0 0 0 0 0 0
(3) - - - 0 0 0 (3) - - - 0 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 3 0 0 3 0 1 (1) 0 1 0 0 0 0

fft1 (2) 1 0 0 0 0 0 fibcall (2) 0 0 0 0 0 0
(3) - - - 2 0 0 (3) - - - 0 0 0
(4) - - - 1 0 1 (4) - - - 0 0 0
(1) 0 0 1 0 0 0 (1) 0 0 0 0 0 0

fir (2) 0 1 0 0 0 0 inssort (2) 0 0 1 0 0 0
(3) - - - 0 0 0 (3) - - - 0 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 0 0 0 0 0 0 (1) 1 0 0 2 0 0

jcomplex (2) 0 0 1 0 0 0 jfdctint (2) 0 0 0 0 0 0
(3) - - - 0 0 0 (3) - - - 1 0 0
(4) - - - 0 0 0 (4) - - - 1 0 0
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Table 8: The loop analysis results for WCET benchmark (II).The same notation as in

Table 6.

Application (a) (b) (c) (d) (e) (f) Application (a) (b) (c) (d) (e) (f)
(1) 1 0 0 0 0 0 (1) 5 0 0 3 0 0

lcdnum (2) 0 0 0 0 0 0 lms (2) 2 0 0 0 0 0
(3) - - - 0 0 0 (3) - - - 3 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 0 0 0 2 0 2 (1) 0 0 0 0 0 2

ludcmp (2) 0 0 0 0 0 0 matmult (2) 0 0 0 0 0 0
(3) - - - 2 0 2 (3) - - - 0 0 2
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 0 0 1 1 0 3 (1) 9 0 0 3 0 0

minver (2) 0 0 0 0 0 0 ndes (2) 0 0 0 0 0 0
(3) - - - 1 0 3 (3) - - - 2 0 0
(4) - - - 0 0 0 (4) - - - 1 0 0
(1) 0 0 1 0 0 0 (1) 1 0 0 0 0 0

ns (2) 0 0 0 0 0 0 nsichneu (2) 0 0 0 0 0 0
(3) - - - 0 0 0 (3) - - - 0 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 1 0 0 0 0 0 (1) 0 0 0 0 0 1

prime (2) 0 0 0 0 0 0 qsort-exam (2) 0 0 1 0 0 0
(3) - - - 0 0 0 (3) - - - 0 0 1
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 1 0 0 0 0 0 (1) 0 0 0 0 0 0

qurt (2) 0 0 0 0 0 0 select (2) 0 0 0 0 0 1
(3) - - - 0 0 0 (3) - - - 0 0 0
(4) - - - 0 0 0 (4) - - - 0 0 1
(1) 1 0 0 0 0 0 (1) 3 0 0 1 0 0

sqrt (2) 0 0 0 0 0 0 st (2) 0 0 0 0 0 0
(3) - - - 0 0 0 (3) - - - 1 0 0
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 0 0 0 0 0 0 (1) 0 0 2 0 0 2

statement (2) 1 0 0 0 0 0 ud (2) 0 0 0 0 0 0
(3) - - - 0 0 0 (3) - - - 0 0 2
(4) - - - 0 0 0 (4) - - - 0 0 0
(1) 49 1 8 32 2 16 0 0 0 0 0 0

total (2) 7 2 3 0 0 1 - 0 0 0 0 0 0
(3) - - - 29 2 14 0 0 0 0 0 0
(4) - - - 3 0 3 0 0 0 0 0 0
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the result differences. On Figure 12, we can see our generalized data copy procedure can

handle data copy loops with analysis accuracy around 80%. This is much better than when

they are applied for handling non-data copy loops. The same trend can be seen on Figure 13.

Overall, our generalized data copy procedures can handle data copy loops with very high

analysis accuracy. This result is very encouraging.

Figure 12: The loop structure study result for real world applications

Figure 13: The loop structure study result for WCET Benchmark

58



Figure 14: Compare the loop structure study results for WCET benchmark and real world

applications

6.2 REPRESENTATIVE EXAMPLES

PNG heap buffer Overflow (Bugtrap ID#1394) PNG (Portable Network Graphics)

is a file format for images utilized by many programs. Each PNG image contains a series

of required or optional chunks, e.g. PLTE, tRNS etc. Each chunk contains a length field.

If the length of the tRNS chunk and the length of the PLTE entries don’t match, a buffer

overflow may happen due to the lack of the length field validation check in the vulnerable

application.

In our approach, we first find the BOVP using our diagnosis engine. It is a write instruc-

tion inside of function processTRNS. We then do the loop analysis of that function. This is

a programmer written data copy procedure. There is one loop exit condition, iv < a. The

iv has init value 0 and pattern iv += 1.

Two of the total four memory writes are indexed by loop variant variables and these two

variables are the same. They are interesting to us. They write one byte each time. They are

actually two write instructions on the two branches inside of the loop body. Since they have

the same index, this won’t affect our analysis results. The loop variant variable equals iv +

b where the iv is the same iv in the loop exit condition and the b is a loop invariant. This
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loop invariant variable actually states the starting address of the vulnerable buffer. From

this loop analysis, we can infer the total number of writes after the loop execution is a using

Equation 3.3. We return the instruction addresses of the loop exit condition, the memory

write instructions that we extracted to the bound analysis step.

In the bound analysis step, we get the taint information for a and the value of b. The

variable a is tainted and the value of b shows that the vulnerable buffer is located on heap.

In the input analysis step, we obtained the dynamic slicing contains this a variable and

then performed the symbolic execution on the traces. With the data format information (we

assume it is given here), this variable a is actually the length field of tRNS chunk.

The above diagnosis results can help the security engineers understand the vulnerability

pretty well. They can realize that the length field of tRNS chunk needs to be validated

because that determines the total number of bytes written to the vulnerable buffer. The

PNG format specification[8] states that the tRNS chunk must not contain more alpha values

than there are palette entries. The real patch actually checks the number of alpha values

with the palette entries before the data copy procedure.

Windows DCOM RPC (MS03-026) The Windows DCOM RPC vulnerability is a

stack buffer overflow vulnerability in Microsoft’s DCOM RPC service. This is the other

example that have a data copy procedure implemented by programmer.

In our approach, we first find the BOVP. It is a write instruction inside of function

GetMachineName. We then do the loop analysis of that function. This is a programmer

written data copy procedure. The loop exit condition is source[i] = ’\’. The read index

is composed by an iv variable, which has init value 0 and pattern iv+=2. There is only one

memory write instruction in the loop body that is indexed by a loop variant variable. This

loop variant variable equals iv + b. The iv is the same iv variable for the read index i and

the b is a loop invariant variable which states the starting address of the vulnerable buffer.

From this loop analysis, we can infer the total number of writes of this data copy procedure

is strlen(source|\). We return the instruction addresses of the loop exit condition, the

memory write statement to the bound analysis step.

In the bound analysis step, we get the tainted information of source and the value of b.
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The source is tainted and the value b indicates that the vulnerable buffer is on stack. In this

example, there are no local variables allocated between the vulnerable buffer and the return

address, Old EBP. Our bound analysis approach can find the bound results efficiently and

accurately, which is 32 bytes.

In the input analysis step, we get the dynamic slicing of the traces that contains the

source variable and then perform the forward symbolic execution on the traces. With the

format information (we assume it is given), this string region corresponds to a Name field.

We can generate the signature directly for this example: strlen(Name) ≤ 32.

nullhttpd heap buffer overflow (Bugtrap ID#5774) The nullhttpd[9] is a small

multithreaded web server. It has a remote heap buffer overflow vulnerability. This is a very

good example belong to buffer overflow vulnerability Case V.

In our approach, we first find the BOVP. It is a write instruction belong to recv function

call. We know the functionality of this function in advance. We omit the loop analysis step.

In the bound analysis step, we get the tainted information of the third parameter, the

length field n, and the value of the second parameter, the starting address of the destination

buffer. The n is untainted which has constant value 1024. The starting address of the

vulnerable buffer states that it is located on heap. In our memory allocation history, we

successfully find the malloc record that does this memory allocation. The bound result is

the same as the malloc size, so we infer the parameter of the malloc determines the vulnerable

buffer size. Further investigation indicates that this parameter is tainted.

In the input analysis step, we get the dynamic slicing of the traces that contains the

malloc parameter variable and then perform the forward symbolic execution on the trace.

The malloc parameter equals a + 1024 where a is a length field.

We can generate the signature directly for this example: lengthField > 0.

Microsoft SQL Server (MS02-039) This SQL vulnerability is a stack buffer overflow

vulnerability in SQL server 2000 Resolution service (SSRS). The SQL Slammer worm attacks

this vulnerability.

In our approach, we first find the BOVP. It is a write instruction belong to sprintf
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function call. We know the functionality of this function in advance. We omit the loop

analysis step.

In the bound analysis step, we get the tainted information of the format string and the

value of the first parameter, the starting address of the vulnerable buffer. The format string

is untainted, so we can confirm that this is not a format string vulnerability. The starting

address of the vulnerable buffer states that the vulnerable buffer is located on stack. Our

bound analysis can accurately find the bound information for this vulnerable buffer which

is 132 bytes. The format string has length 40 bytes.

In the input analysis step, we get the dynamic slicing of the traces that contains the

vararg parameter for the sprintf function and then perform symbolic execution on the

trace. It is a name field.

We can generate the signature directly for this example: strlen(nameField) ≤ 92.

cfingerd format string vulnerability (Bugtrap ID#2576) cfingerd is a finger dae-

mon that contains a format string vulnerability in older versions. We test this vulnerability

on version 1.4.1.

In our approach, we first find the BOVP. It is a write instruction belong to SYSLOG

function call. We know the functionality of this function in advance. We omit the loop

analysis step.

In the bound analysis step, we get the tainted information of the format string. The for-

mat string is tainted. Further investigation indicates that there is no vararg in this function

call. We can then restrict the number of directives of the format string as 0.

3proxy double free vulnerability (Bugtrap ID#26180) 3proxy is a tiny proxy

server which is prone to a double-free memory-corruption vulnerability in older versions. We

test this vulnerability on 3proxy-0.5.3i. The double free vulnerability crashed the program.

We analyzed the traces collected before the program crash. In our free function call history,

two free function calls have the same parameter value, the starting address of the memory

region to free. And there isn’t a new malloc record between the two function calls corre-

sponding to this memory region. We confirm it is a double free vulnerability and we return
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the two free function call records as the diagnosis results.

We summarize our signature results for buffer overflow vulnerability applications in Ta-

ble 9.

Table 9: Signature results for buffer overflow vulnerable applications

Vulnerable Application Signature Result

Windows DCOM RPC strlen(nameField) ≤ 32

Microsoft SQL Server strlen(nameField) ≤ 92

nullhttpd lengthField > 0

PNG(MS05025) lengthField(tRNS) ≤ lengthF ield(PLTE)
3

In Table 10, we list our performance results. All the numbers are in seconds. The

BOVP detection is mainly consumed by the dynamic-taint analysis and the BOVC is mainly

consumed by the disassembling process. For windows applications, the traces are very huge

which take longer time for the BOVP detection.

Table 10: The performance evaluation

Vulnerable Application BOVP Detection (sec) BOVC Analysis (sec)

Windows DCOM RPC 100.83 56.78

Microsoft SQL Server 77.51 35.16

nullhttpd 1.33 20.05

PNG(MS05025) 637.82 27.37

cfingerd 44.14 24.79

3proxy 1.59 18.52
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Now, I use the Windows DCOM RPC vulnerability to demonstrate the diagnosing pro-

cess. The Windows DCOM RPC is attacked by the record-setting blaster worm.

Figure 15 lists partial of the runtime traces. We can see the return address is tainted. An

attack detection alarm is raised by the dynamic analysis engine. We search back the trace to

find the latest instruction that overwrote the return address. This instruction is the BOVP.

Using loop detection, we locate the loop that contains this BOVP. This loop is illustrated

in Figure 16. In Figure 17, we can see how our loop analysis retrieve the program slicing of

the loop exit condition and memory read and memory write indexes and conclude the total

number of writes information using Equation 3.2. The loop analysis result is illustrated in

Figure 18. The read instruction address and write instruction address are inputs to the

bound analysis step. Figure 19 illustrates this process. We check the taint status of the

read-in value which is tainted. We obtain the starting address of the vulnerable buffer and

calculate the bound result. The bound result is listed in Figure 20.

Figure 15: The BOVP detection for Windows DCOM RPC
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Figure 16: The Loop detection for Windows DCOM RPC

Figure 17: The Loop Analysis for Windows DCOM RPC
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Figure 18: The Loop Result for Windows DCOM RPC

Figure 19: The Bound Analysis for Windows DCOM RPC

Figure 20: The Bound Result for Windows DCOM RPC
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Table 11: The buffer overflow case study on real world applications

Vulnerable Application Vulnerability Function Data Copy Procedure Buffer Overflow Cases

CSRSS(MS05018) DoFontEnum wcscpy Case I

CSRSS(MS06040) CanonicalizePathname wcscpy Case I

atphttpd http send error sprintf Case I

ghttpd Log sprintf Case I

Windows DCOM RPC GetMachineName programmer written Case I

Microsoft SQL Server sub42cfbf57 sprintf Case I

ANI(MS07017) LoadAnilIcon memcpy Case IV

Samba call trans2open strncpy Case IV

nullhttpd ReadPOSTData recv Case V

PNG(MS05025) processTRNS programmer written Case VI

6.3 BUFFER OVERFLOW VULNERABILITY CASE STUDY

In Table 11, we list the real world buffer overflow vulnerable applications we studied. We

classify them based on our buffer overflow vulnerability case study results. The six basic

cases cover all of the real world buffer overflow vulnerable applications we studied. We found

real world buffer overflow vulnerabilities belonging to Case I, Case IV, Case V and Case VI.
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7.0 DISCUSSION

In this Chapter, we discuss our approach through various aspects. We discuss the complex

loop cases that will affect our analysis results. We analyze the advantages and the potential

limitations of our bound analysis approach. We discuss how our BOVD approach can’t be

affected by the memory aliasing and indirect jumps in binary program analysis. We do

some quantitative analysis of data copy procedure vs. buffer overflow. We perform the false

negative analysis and false positive analysis of the signature results using our current input

analysis approach. After that, we discuss about the situations that we can’t handle.

7.1 COMPLEX LOOP CASES

There are several complex loop cases that will affect our analysis results. They include:

1). There are conditional branch in the loop body. And the written index variable of the

vulnerable buffer or the loop iteration variable are updated differently in each conditional

branch. 2). The data copy procedure is implemented through sequential loops. 3). The loop

exits and the number of writes can’t be handled using our loop structures. The next few

Sections discuss each of them in detail.

7.1.1 Conditional Branch in loop.

When there is a conditional branch in the loop body, especially when vulnerable buffer write

index variable and loop iteration variable are updated differently in each conditional branch,

we can’t obtain the accurate analysis results of the total number of writes after the loop
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execution. We do some approximation to conservatively estimate the total number of writes.

When the write index variable is updated differently on each conditional branch, we use the

one that is updated (incremented or decremented) larger to estimate the number of writes

in each loop iteration, max(iv2update1, iv2update2). When the loop iteration variable is up-

dated differently on each conditional branch, we use the one that is updated (incremented or

decremented) smaller to estimate the number of loop iterations, min(iv1update1, iv1update2.

The final estimated total number of writes is greater than or equal to the real total number

of writes.

iv1 = iv1init;

iv2 = iv2init;

while (iv1 < Loop_Bound){

if (condition){

writeAddress = startAddress + startOffset + iv2;

[writeAddress] = {some value};

iv2 += iv2upate1;

iv1 += iv1upate1;

}else{

writeAddress = startAddress + startOffset + iv2;

[writeAddress] = {some value};

iv2 += iv2upate2;

iv1 += iv1upate2;

}

}

Figure 21: The data copy procedure that has the memory write index variable and loop

iteration variable updated differently in each conditional branch.
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7.1.2 Sequential Loops.

We met sequential loops when we were evaluating our loop analysis approach using some

Standard C Library functions including memset, memcpy, strncpy. This happens during the

compiler optimization process. The first loop writes four bytes at a time. The following

loops finish the remaining. If it happens in a programmer written data copy procedure,

we use memory traces information to handle this situation. In our loop analysis step, we

actually find all of the loops of the vulnerable function. We assign each memory write

instruction inside of loops with an instruction id composed by the function name and the

loop id. This loop id distinguishes the loop that contains this memory write instruction. In

the bound analysis process, when we mark the bit vector for each memory write, we compare

the instruction id with the one on the previous position. If they contain the same function

name, we ignore the bit vector update. At the same time, we update the instruction id

array for the corresponding memory write. With this information, we can know if a block

of memory writes are happened in loops within the same function. We then look for the

memory space before the first memory write of the vulnerable loop that contains the BOVP.

If that memory space is written by an instruction with an id that has the same function name

but different loop id, we will infer these two memory space belong to the same buffer. This

process will continue until we find the first memory write in the first loop of the vulnerable

function which is the starting address of the vulnerable buffer. The Loop Bound is still

obtained from the loop that contains the BOVP. In Figure 22, we demonstrate how the

sequential loops are handled in bound analysis step.

7.1.3 Loop exits and number of writes we can’t handle.

In Section 3.3.1, we come up with the Generalized data copy procedure as illustrated in

Figure 6 and we answer the total number of writes information using Equation 3.1 and

Equation 3.2. In Section 4.2, we discussed the two situations that have multiple loop exits.

One is in nested loops. The other is in non-nested loop. The two situations are illustrated

in Figure 8 and Figure 9. We solve them through Equation 4.3, Equation 4.4, Equation 4.1,

Equation 4.2 respectively.
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In Section 6.1, we evaluate the above solutions using loops in real programs. We can

handle most of the loops especially data-copy loops. However, there are loops that we can’t

provide the accurate number of loop iterations or we can answer the number of loop iterations

correctly but we can’t answer the total number of writes correctly. Here, I list the cases that

we can’t handle using our loop structures:

• Loop bound is a result of a function.

• The iteration variable is updated irregularly. For example, updated by the result of a

function.

• The existence of break statement is a big challenge.

• The write statement does not write continuously to an array, but write to a member of

a struct array.

7.2 BOUND ANALYSIS DISCUSSION.

Our bound analysis approach can guarantee coarse-grained bound analysis results on stack

and heap. It can provide fine-grained bound results for majority of the cases. However, there

are situations that it can’t provide the fine-grained bound results:

Figure 22: The Memory Map for Sequential Loops
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• Variable access sequence matters. Even though we believe we can overwrite those vari-

ables that haven’t been written, other exploitable path may have different variable access

sequence.

• There may be some security critical data on Data region that has been initialized by the

program. We can’t detect its bound and it can be overwritten by rewriting some other

global variables located before it.

However, our bound analysis approach has a very good side effect that it can be used to

diagnose double free vulnerabilities as discussed in Section 3.4. The double free vulnerability

diagnosis result is much more helpful than the results returned by most of the current

systems. The current systems can detect that there is a double free on which memory

address. We can return which two free calls can cause a double free.

Our current implementation can only handle the calling conventions of the malloc and

free functions on our testbed RedHat73. We will extend our implementation to handle

more calling conventions in future.

7.3 THE EFFECT OF MEMORY ALIASING AND INDIRECT JUMPS.

As there isn’t a perfect solution for memory aliasing analysis for x86 binary programs,

we can’t guarantee the detection of the iv when it is accessed and maintained through

memory load and store. However, as an iv is updated through each loop iteration, it is more

reasonable to store it in a register by compiler optimization. The real world programs, which

have programmer written data copy procedures and that had been discussed in Section 6.2,

use registers to store the iv variables.

We use program control flow graph (CFG) as an input to do the loop detection. Due to

the existence of indirect jumps, our CFG can’t represent the program flow precisely when

indirect jumps exist. In that case, we may not be able to find the loop that does the data

copy. However, we look for loops implemented by programmers that do the data copy which

rarely have case switch statements, virtual functions etc. to cause indirect jumps.

72



7.4 QUANTITATIVE ANALYSIS.

We do this analysis based on the data we collected from ShieldGen[41] since most of the

vulnerability information is not publicly available. Even in ShieldGen[41], they can’t find

enough information for 89 vulnerabilities.

Quantitative analysis of input triggered vulnerabilities. In Table 12, we list the

total number of vulnerabilities collected that have been issued on Microsoft security bulletins

between 2003 and 2006 and the number of vulnerabilities that can be exploited by inputs.

Our diagnosis approach is designed to diagnose the vulnerabilities triggered by inputs.

Table 12: The Quantitative analysis of input triggered vulnerabilities

Total Number of Vulnerabilities 377

Not Enough Information 89

With Enough Information to Classify 288

Vulnerabilities Triggered by Inputs 157

Denial of Service 55

Access Control 25

Scripting Problem 17

Miscellaneous Problem 34

Percentage of Vulnerabilities Triggered by Inputs 54.5%

Quantitative analysis of data copy procedure vs. buffer overflow

In ShieldGen[41], 25 vulnerabilities are selected to do the pencil-and-paper detail analysis.

Among the 25 vulnerabilities, two cases are applications using a field from the input as an

index into an array without checking whether the index falls within the bounds of the array.

These are the buffer overflow cases that the buffer overflow doesn’t happen through the data

copy process. This unchecked array index is one of the cases that ShieldGen[41] can’t handle

and this is the case our diagnosis results can’t provide precise results. Our diagnosis result can

state that the vulnerability may belong to this case, but we can’t provide bound information
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since we can’t locate the data copy procedure easily without any extra specification. In

Table 13, we display the data information.

Table 13: The Quantitative analysis of data copy procedure vs. buffer overflow

Sample Size 25

Through Unchecked Array Index 2

Through Data Copy Procedure 23

Percentage of Data Copy Procedure triggers buffer overflow 92%

Besides the unchecked array indices’s cases, there are some other situations that the

ShieldGen[41] can’t handle which includes 1) combined length of two separate strings in the

input exceeds a certain limit 2) the value of one integer field in the input is larger than the

value of another integer field 3) the application uses a collection of old buffers. All of them

are not a problem to us. Our PNG example belongs to case 2. For case 3, it is also not a

problem to us since we can find the buffer bound. In Table 14, we compare the precision

results of our approach with ShieldGen[41].

Table 14: Compare the coverage of our approach with ShieldGen’s

ShieldGen Approach Our Diagnosis Approach

Precise Filter 19 23

Imprecise Filter 6 2

Total 25 25

Precision Coverage 76% 92%

7.5 FALSE NEGATIVE AND FALSE POSITIVE ANALYSIS FOR

SIGNATURE GENERATION.

We will analyze the false negatives and false positives of the generated signature results using

our current input analysis approach.
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Our bound analysis approach can generate the fine-grained bound analysis results through

the memory access analysis of the runtime traces. Our results won’t lead to the false neg-

atives generated in ShieldGen[41] due to the coarse-grained bound results. However, in our

input analysis step, we only examine the execution path executed by the given exploit and

we only examine how the user inputs are related with the malicious variables. We can’t

generate the input condition to guarantee reaching the vulnerability point. If by changing

some input variables, the vulnerability point isn’t reachable but the input variables that are

related with the malicious variables (e.g. source buffer, destination buffer size or iteration

variable) are still satisfy the vulnerability condition, our signature results will lead to false

positives. Also, if there is another exploitable execution path and if the relationship of the

user inputs to the vulnerability condition is different, our signature results will lead to false

negatives.

Please see Section 8.2 for further discussion on how to enhance the current input analysis

approach to achieve generating signatures with zero false positives and zero false negatives.

7.6 SITUATIONS WE CAN’T HANDLE PRECISELY.

Our approach assumes the buffer overflow attack happens through some data copy procedure

(either programmer implemented, or some library or system functions). If it is a programmer

implemented data copy procedure, it is implemented through loop structures instead of fix

number of write statements.

In ShieldGen[41], two of the 377 vulnerabilities collected are known using some input field

as an index to access the array, our approach won’t be able to diagnose them precisely. So

far, in our BOVP analysis step, we search back the trace for the latest instruction that does

the malicious write. If this instruction isn’t belong to any data copy procedure (programmer

written loops, known library or system functions), we will keep searching back until we

find one that is part of a data copy procedure as the BOVP or find nothing. If we can’t

find the BOVP, our diagnosis result will state that the vulnerability may be belong to this

unchecked array index case. However, we can’t provide precise bound information since
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we can’t locate the data copy procedure easily without any extra specification. Also, if the

data copy procedure is implemented using fixed number of write statements, we can’t locate

it using current loop detection approach. We won’t be able to diagnose the total number of

writes information.

Our current input analysis approach returns the dynamic slicing of the run-time traces

and then performs the symbolic execution to figure out how the user inputs are related

with those malicious variables. So, only one execution path is examined. The signatures

generated through this approach can lead to low false negatives and low false positives.

Those low false positives happen when other input fields can change the execution path and

make the vulnerability point unreachable. However, we can also return the static slicing of

the program that contains the malicious variables which can greatly reduce the workload of

the security engineers to diagnose the vulnerability and to generate the accurate signatures

more efficiently. Please see Section 8.2 for detail discussion on how to enhance the current

input analysis approach to achieve generating signatures with zero false positives and zero

false negatives.
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8.0 APPLICATION

The results of the automatic buffer overflow vulnerability diagnosis can have many applica-

tions. First, it can help the security engineers to understand why the program is vulnerable.

With the diagnosis information, the security engineers can fix the buggy program and gener-

ate the accurate patches more efficiently. Second, the results of the loop analysis and bound

analysis can be applied for automatic patch generation. Third, the results of all the three

steps analysis can be applied for signature generation and exploit generation. In this sec-

tion, I discuss the application of the vulnerability diagnosis on patch generation, signature

generation and exploit generation.

8.1 PATCH GENERATION

Sidiroglou et al. propose automatic patch generation to defend against network worms[82].

They use ProPolice[47] to detect the buffer overflow vulnerability. They then apply some

heuristics to do the patch generation. Those heuristics include: 1) moving the offending

buffer to heap; 2) new version of malloc that allocates two additional pages. Their approach

can mitigate the vulnerability but can’t provide a satisfiable patch due to lack of semantic

information of the vulnerability.

With the loop analysis and bound analysis results, we can generate more effective patches

by restricting the number of writes of the data copy procedure less than the destination buffer

size. This can be achieved through binary rewriting.

There are plenty of binary rewriting tools[87, 64, 77, 12, 32, 54] available in academia.

ATOM[87] and EEL[64] are designed for RISC computer architecture. Etch[77] is primar-
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ily an optimization tool for rewriting Win32/Intel PE executable. LEEL[12] works on

inux/x86 binaries. However, it can’t handle the indirect control and arbitrary code/data

mixing. UQBT[32] is a static binary translation framework which is architecture indepen-

dent. Detours[54] is for run-time binary interception of Win32 functions.

Researchers have actually proposed defense against attacks through binary rewriting

approach[75]. However, their approach achieves the same level of protection as compiler-

based approach for stack buffer overflow defense by protecting return address.

In summary, we can generate more effective patches automatically using our diagnosis

results.

8.2 SIGNATURE GENERATION

Compared with software patches, signature-based defense can respond faster and is less

intrusive to a system since applying and removing a signature does not affect the normal

operation of a running system. As a result, signature-based defense becomes an important

initial response to zero-day attacks. A key requirement to signature-based defense against

zero-day attacks is to automatically generate signatures that have low false positives and

low false negatives given an exploit to the vulnerability. Signatures with high false negatives

can be evaded by polymorphic mutations of exploits. Signatures with high false positives

will block legitimate inputs. Due to the importance of it, researchers have addressed this

problem through many different approaches[60, 70, 40, 84, 61, 24, 26, 35, 34]. However, none

of them is satisfiable.

Here, we discuss how to achieve the zero-false positive and zero-false negative signature

generation by enhancing this thesis work.

Our bound analysis approach can generate the fine-grained bound analysis results through

the memory access analysis of the runtime traces. Our results won’t lead to the false nega-

tives that ShieldGen[41] generates due to ShieldGen generates coarse-grained bound results.

However, in our input analysis step, we only examine the execution path executed by the

given exploit. Using symbolic execution and path slicing[55] as proposed in both Vigilante[35]
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and Bouncer[34], we can generate the input condition to reach the vulnerability point on that

execution path. Combining the input condition to reach the vulnerability point, the vulner-

ability condition (how the user inputs are related with the buffer overflow condition) and the

fine-grained bound results, we can generate accurate signature results for the execution path

executed by the given exploit. This result is pretty good comparing with any of the existing

approaches. However, it can’t handle the situation when there is a different execution path

and on the other execution path, the input condition to reach the vulnerability point and

the vulnerability condition are different from the previous results. We can handle this by

generating signatures cumulatively. After generating the first signature, if we detected any

new exploit that is not blocked by the signature, we do the same vulnerability diagnosis. If

they reach the same vulnerability point, we know they are exploring a different execution

path. We combine the new signature results with the previous signature results as a new

signature. Using the above input analysis approach, we can achieve generating signatures

with zero-false positives and zero-false negatives.

8.3 EXPLOIT GENERATION

Automatic patch-based exploit generation (APEG) is first proposed in[25]. I contribute

on the statistic criteria for the binary differences of two given binary programs and I also

contribute on some of the experiments on that APEG work. I summarize this APEG work

briefly here. For details, please refer to paper[25]. Similarly by checking the safety of the

data copy procedures in the updated functions of the two binary programs, we can use the

BOVD results to help generating exploits for buffer overflow vulnerabilities. This is discussed

in Section 8.3.3 briefly.

Automatic exploit generation can be used by attackers. It is also useful for security

practitioners, e.g. prioritizing the bug fixes.

In paper[25], we show that given a program P and a patched version of the program P ′,

we can automatically generate an exploit for input validation vulnerabilities present in P

but fixed in P ′. We call this automatic patch-based exploit generation(APEG). We present

79



techniques which work on binary programs and libraries, thus are applicable to binary-only

patch distribution schemes.

8.3.1 Binary Diffs

To isolate what changes have occurred between P and P’, security practitioners have devel-

oped tools, such as bindiff[79] and EBDS[45], which first disassemble both P and P’, and

then identify which assembly instructions have changed.

When the difference between a given vulnerable binary program and the patched binary

program is small, we can generate the exploits efficiently. So we need a criterion to define

the distance between the given pair of binary programs. For those that have small distance,

we will apply our following approaches to generate exploits. Others, we simply disregard

them.

Using EBDS[45], we can obtain the number of blocks and the match rate for each func-

tion of the experimented two binary programs. Given these information, we can apply the

Kullback-Leibler Divergence (K-L Divergence)[10] to define the distance of the given two

binaries. A similar entropy based approach is used to evaluate the communication pre-

dictability in parallel applications[57].

We will explain the K-L Divergence concept briefly and how it can be applied to our

problem in the following.

How to Apply K-L Divergence to Solve Our Problem

K-L Divergence is a measure of the difference between two distributions P and Q in

information theory[10]. The formula below defines the K-L distance of Q from P and i

represents each item enumeration in the distribution.

DKL(P ||Q) =
∑

i

P (i)log
P (i)

Q(i)
= −

∑

i

P (i)log
Q(i)

P (i)
(8.1)

Applying K-L Divergence to solve our problem is straight-forward. The i is for each

function in the binaries. For each function, we have the match rate of it from EBDS[45],

which is exactly the Q(i)
P (i)

. The match rate represents the degree of the similarity of that

function in the two binaries. It is between 0 and 1. The higher the value is, the less changes
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Table 15: Binary Distance Example I

Function Name Number of Blocks Match Rate

f1 10 0.8

f2 60 0.9

f3 15 1

f4 5 1

f5 10 1

the function has been done. For functions that are the same in the two binaries, the match

rate will be 1. The P (i) can be calculated using the number of blocks information. The

equation to calculate P (i) is given below where the Block(i) represents the number of blocks

in function i and j is an enumeration of all the functions in the binary programs:

P (i) =
Block(i)∑
j Block(j)

(8.2)

Combining equations (8.1, 8.2) and the match rate information, we can get our equation

to evaluate the distance of given two binaries:

Dbinary pair(B1||B2) = −
∑

i

Block(i)∑
j Block(j)

log(MatchRate(i)) (8.3)

Experiments

We are going to show you some examples to apply equation 8.3 to calculate the distance

of two binaries.

By applying equation 8.3, we can calculate the distance between these two binaries as

Dbinary pair(B1||B2) = −(
10

10 + 60 + 15 + 5 + 10
log(0.8)+

60

10 + 60 + 15 + 5 + 10
log(0.9)) = 0.0372

(8.4)

By applying equation 8.3, we can calculate the distance between these two binaries as

Dbinary pair(B1||B2) = −(
10

10 + 60 + 15 + 5 + 10
log(0.3)+

60

10 + 60 + 15 + 5 + 10
log(0.2)) = 0.4717

(8.5)
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Table 16: Binary Distance Example II

Function Name Number of Blocks Match Rate

f1 10 0.3

f2 60 0.2

f3 15 1

f4 5 1

f5 10 1

From the above simple examples we can conclude that the larger the distance is, the

more different the two binaries are. when the given two binaries are the same, the distance

will be zero.

In Section 8.3.2 and Section 8.3.3, we will describe two approaches towards automatic

patch generation. The Approach I, APEG presented in paper[25], is designed especially for

input validation vulnerabilities. The Approach II is for buffer overflow vulnerabilities using

our vulnerability diagnosis results.

8.3.2 Approach I

In this approach, we focus on input validation vulnerabilities where user input is not suffi-

ciently sanitized in P , but is sanitized via new checks in P ′. Many common vulnerabilities

are input validation vulnerabilities which are fixed by adding input sanitization logic.

This APEG approach towards automatic patch-based exploit generation is based on the

observation that the new sanitization checks added to P ′ often 1) identify the vulnerability

point where the vulnerability occurs, and 2) indicate the conditions under which we can

exploit P .

Thus, the steps to this approach are:

1. Identify the new sanitization checks added in P ′. The remaining steps are performed for

each new check individually.
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2. Generate a candidate exploit x which fails the new check in P ′ by:

a. Calculating the weakest precondition to fail the new check in P ′. The result is the

constraint formula F . We present three approaches for generating the constraint

formula target this problem: dynamic approach, static approach and combination of

dynamic and static approach.

b. Use a solver to find x such that F(x) = true. x is the candidate exploit.

3. Verify a candidate exploit is a real exploit by running φ(P (x)).

4. If desired, we can generate polymorphic variants. Let x be a known exploit. Let F ′(X) =

F(X) ∧ (X <> x). Then x′ such that F ′(x′) = true is a polymorphic variant exploit

candidate. This process can be repeated to enumerate polymorphic variants.

In paper[25], we demonstrate that automatic patch-based exploit generation is practical

for real-life patched vulnerabilities.

8.3.3 Approach II

The APEG proposed in Section 8.3.2 is targeted on input validation vulnerabilities. The

results are also limited by incorrect loop unrolling and indeterminacy of recursive function

call during the step of calculating the weakest precondition. Also, when the constraint

formula is too complicated, the constraint solver may take forever to get the solution. For

example, MS05018 addresses a stack buffer overflow vulnerability. The patched version of

the program updated the wcscpy to wcsncpy. It can’t be handled using Approach I as it is

not an input validation vulnerability.

However, using this thesis vulnerability diagnosis results, we can do the APEG for some

cases that can’t be handled by approach I. The steps to Approach II are similar to Approach I.

However, it changes identifying the new sanitization checks using the weakest precondition

to identifying each data copy procedure in the updated functions using the vulnerability

diagnosis approach. The steps to this approach are:

1. Identify each data copy procedure in P that appears in the updated functions between

P and P ′. The data copy procedure includes known standard C library functions or
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system functions that perform data coping functionality and results by applying the

loop analysis step. The remaining steps are performed for each data copy procedure.

2. Generate some random inputs. The remaining steps are performed for each random

input.

a. Collect the runtime traces by running the input.

b. Check the data copy procedure. If it appears in the run time traces, perform the

bound analysis to see the bound results of the destination buffer and to see if some

input variables can control the data copy procedure or the destination buffer size.

c. If some input variables can control the data copy procedure or the destination buffer

size, perform input analysis step to see how the inputs are related with those vari-

ables.

d. Generate exploits based on the bound analysis results and input analysis results.

Because we know the bound results of the destination buffer and how the user inputs

control the data copying procedure, we can generate exploits that can cause hi-jack

control attacks more easily than Approach I.

e. Verify a candidate exploit is a real exploit by running φ(P (x)).
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9.0 CONCLUSIONS

A buffer overflow occurs when a store instruction writes outside the allocated buffer bounds.

In the best case, a buffer overflow results in the program crashing due to an inappropriate

memory dereference. In the worst case, a buffer overflow can be exploited to hijack control

of a program. The existence of buffer overflow vulnerabilities makes the system susceptible

to Internet worms and denial of service (DDoS) attacks which can cause huge social and

financial impacts.

Due to its importance, buffer overflow problem has been intensively studied since its

emergence. However, automatic BOVD is still an open problem. It is a big gap of software

security research. Currently, the vulnerability diagnosis is done manually by security engi-

neers. It is an error-prone activity requiring heavy investment in time and manpower which

often delays the protection time, e.g. patch generation time.

This thesis defines the automatic BOVD problem and provides solutions towards auto-

matic BOVD for commodity software. It targets on commodity software when source code

and symbol table are not available because the binary code is ubiquitous and the binary

code is high fidelity important to the security problem even though it is much more difficult

to analyze binary code.

The automatic BOVD problem is: given a buffer overflow vulnerable program P and

a working exploit E, we want to automatically and accurately find out where the program

is vulnerable, buffer overflow vulnerability point (BOVP) and figure out why the program

is vulnerable, buffer overflow vulnerability condition (BOVC). Since buffer overflow attack

occurs by overwriting the security critical data, for example, return address, function pointer

etc. We use the instruction that does the malicious write to pinpoint the vulnerability

location of the given vulnerable program. The BOVC contains the destination buffer size
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information, the total number of writes information and how the user inputs are related with

them. The above BOVC results assume the buffer overflow happens through a data copy

procedure. This thesis can also identify the case when the buffer overflow attack happens

through an unchecked array index instead of a data copy procedure.

The solutions combine both of the dynamic analysis techniques and static analysis tech-

niques to achieve the goal. It extends the existing dynamic-taint-analysis attack detection

tool to do the BOVP detection and performs three steps analysis towards understanding

BOVC. The BOVP is achieved by searching back the trace for the latest instruction that

overwrites the security critical data after the attack detection.

Based on the observation that buffer overflow attack happens when the size of the des-

tination buffer is smaller than the total number of writes after the data copying process if

the buffer overflow attack happens through a data copy procedure, the three steps analysis

towards understanding the BOVC include loop analysis, bound analysis and input analysis.

The bound analysis answers the size of the destination buffer information. The loop anal-

ysis answers the total number of writes information of programmer implemented data copy

procedure. For buffer overflow attack happens through standard C library functions (library

data copy procedures), we answer the total number of writes information trough function

summaries. The input analysis answers how the user inputs are related with the size of the

destination buffer and the total number of writes.

Our loop analysis is based on the observation that most of the real world buffer overflow

attacks happen through loop context. We use loop detection to locate a programmer imple-

mented data copy procedure and we propose a generalized data copy procedure and apply

loop analysis on it to answer the total number of writes question.

Our bound analysis is achieved through memory traces analysis. This is based on the

observation that our runtime traces contain all of the memory update information. Because

we can overwrite those variables that have not been written, we can guarantee the fine-

grained bound result for the given execution path. Also, because our bound analysis is

independent of the location of the vulnerable buffer, we can handle the buffer overflow that

happens anywhere including stack, heap, Data/BSS.

Our input analysis generates the dynamic slicing of the traces contains the malicious
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variable(s) and performs symbolic execution on it to answer how the user inputs are related

with those malicious variable(s).

The automatic BOVD has many applications including automatic patch generation, au-

tomatic signature generation, automatic exploit generation, and the assistance for the se-

curity engineers to understand the vulnerability condition easier and faster. This thesis

also discusses how to generate signatures with zero-false positives and zero-false negatives

by combining with other research work. Real world vulnerable applications including the

buffer overflow vulnerabilities targeted by the record-setting Slammer and Blaster worms are

studied. The automatic diagnosis results on those programs demonstrate the effective of this

thesis work’s approach.

Furthermore, this thesis also does the buffer overflow vulnerability case study. This case

study result can have independent interests to researchers. This is because of the lack of

previous research on this problem. Researchers use their own heuristic when they design

attack response systems or debugging tools. This makes the current research solutions far

from satisfaction. Our buffer overflow case study results can help the other researchers to

design more effective response systems and debugging tools against buffer overflow attacks.

In summary, this thesis makes the following contributions to software security research:

• It combines both of the static binary program analysis techniques and dynamic taint

analysis techniques to provide solutions towards automatic BOVD. It extends the existing

dynamic-taint-analysis attack detection tool to do the BOVP detection and performs

three steps analysis towards understanding BOVC. The three steps are loop analysis,

bound analysis and input analysis.

• It uses loop analysis to understand programmer written data copy procedures under

reasonable loop heuristic assumptions. This is based on the observation of all known

buffer overflow attacks that most of them take place in loop context.

• It achieves fine-grained bound analysis result of the vulnerable buffer using novel memory

trace analysis approach. This can be achieved based on the fact that the runtime traces

contain all of the memory operation history. This memory operation includes function

call, function return, variable push and pop, variable load and store, malloc, free etc.
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• It performs buffer overflow vulnerability case study which may have independent interests

to security engineers. There are six basic buffer overflow vulnerability cases that cover

all of the real world vulnerable applications I studied. Other theoretically possible cases

are also discussed. This result can help other researchers to design more effective defense

systems.
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APPENDIX

RUNNING EXAMPLES
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struct Data{char data[36]; int tag;}

void process(int count, char* source){

struct Data *chunk;

int i, tmp;

tmp = sizeof(struct Data);

chunk = (struct Data *)malloc(tmp);

chunk -> tag = 1;

for (i=0; i<count; i++)

chunk -> data[i++] = *source++;

}

void main() {

char name[65], pass[65], buffer[1024];

int count, socket;

...

n = read(socket, name, 64);

n = read(socket, pass, 64);

n = read(socket, &count, 4);

...

sprintf(buffer, "\%s \%s", name, pass);

process(count, buffer);

}

Figure 23: The running example of buffer overflow vulnerable program.
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struct Data{char data[36]; int tag;}

void process(char* source){

struct Data *chunk;

int i, tmp;

tmp = sizeof(struct Data);

chunk = (struct Data *)malloc(tmp);

chunk -> tag = 1;

strcpy(chunk->data, source);

}

void main() {

char name[65], pass[65], buffer[1024];

int socket;

...

n = read(socket, name, 64);

n = read(socket, pass, 64);

...

sprintf(buffer, "\%s \%s", name, pass);

process(buffer);

}

Figure 24: Buffer Overflow Cases: Case I

91



void process(int size, char* source){

char *chunk;

chunk = (char *)malloc(size);

strcpy(chunk, source);

}

void main() {

char name[65], pass[65], buffer[128];

int size, socket;

...

n = read(socket, name, 64);

n = read(socket, pass, 64);

n = read(socket, &size, 4);

...

snprintf(buffer, 127, "\%s \%s", name, pass);

process(size, buffer);

}

Figure 25: Buffer Overflow Cases: Case II

92



void process(int size, char* source){

char *chunk;

chunk = (char *)malloc(size);

strcpy(chunk, source);

}

void main() {

char name[65], pass[65], buffer[1024];

int count, socket;

...

n = read(socket, name, 64);

n = read(socket, pass, 64);

n = read(socket, &count, 4);

...

sprintf(buffer, "\%s \%s", name, pass);

process(count, buffer);

}

Figure 26: Buffer Overflow Cases: Case III
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struct ANIChunk{

char tag[4];

DWORD size;

char data[size];

}

struct ANIHeader{

char data[36];

}

int LoadAniIcon(struct MappedFile* file, ...){

struct ANIChunk chunk;

struct ANIHeader header;

...

while(1){

// read the chunk data from file.

ReadTag(file, &chunk);

switch(chunk.tag){

case ’seq’:

...

case ’anih’:

memcpy(&header, chunk.data, chunk.size);

}

}

}

Figure 27: Buffer Overflow Cases: Case IV, motivated by ANI(MS07017)
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int read_header(int sid){

char line[2048];

...

sgets(line, sizeof(line)-1, conn[sid].socket);

...

conn[sid].dat->in_ContenctLength = atoi((char *)&line+16);

...

conn[sid].PostData = calloc(conn[sid].dat->in_ContenctLength + 1024, sizeof(char));

...

rc = recv(conn[sid].socket, conn[sid].PostData, 1024, 0);

...

}

Figure 28: Buffer Overflow Cases: Case V, motivated by nullhttpd
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struct PLTEChunk{

DWORD PLTEentry;

char PLTEdata[PLTEentry];

}

struct TRNSChunk{

DWORD TRNSsize;

char TRNSdata[TRNSsize];

}

void processTRNS(struct MappedFile* file, ...){

struct PLTEChunk pChunk;

struct TRNSChunk tChunk;

...

// read the PLTE chunk data from file.

ReadPLTEData(file, &pChunk);

...

// read the TRNS chunk data from file.

ReadTRNSData(file, &tChunk);

for (i = 0; i < tChunk.TRNSsize; i++){

updatePLTEentry(pChunk.PLTEdata[i], tChunk.TRNSdata[i]);

}

}

Figure 29: Buffer Overflow Cases: Case VI, motivated by PNG(MS05025)
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void process(int size, char* source){

char chunk[36];

for (int i = 0; i < size && source[i] != ’0’; i++){

chunk[i] = *source++;

}

}

void main() {

char name[65], pass[65], buffer[1024];

int count, socket;

...

n = read(socket, name, 64);

n = read(socket, pass, 64);

n = read(socket, &count, 4);

...

sprintf(buffer, "\%s \%s", name, pass);

process(count, buffer);

}

Figure 30: Buffer Overflow Cases: Other Cases (Multiple Loop Exit Conditions)
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void process(int offset, char* source){

char chunk[36];

for(int i = 0; i < 36; i++){

chunk[offset + i] = source[i];

}

}

void main() {

char name[65], pass[65], buffer[1024];

int offset, socket;

...

n = read(socket, name, 64);

n = read(socket, pass, 64);

n = read(socket, &offset, 4);

...

sprintf(buffer, "\%s \%s", name, pass);

process(offset, buffer);

}

Figure 31: Buffer Overflow Cases: Other Cases (startOffset variable in Equation 3.3 can be

controlled by user input)
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void process(int index){

char chunk[36];

chunk[index] = ’H’;

}

void main() {

int index, socket;

...

n = read(socket, &index, 4);

...

process(index);

}

Figure 32: Buffer Overflow Cases: Other Cases (Malicious Array Index)

Figure 33: Buffer Overflow Cases: Other Cases (Other Loop Bound)
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