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Sub-lethal preconditioning stimuli can confer neuronal tolerance by triggering the activation of 

endogenous survival pathways that limit or resist subsequent injury.  Recent evidence has 

demonstrated that neuroprotection is paradoxically dependent on the sub-lethal activation of cell 

death mediators.  As intracellular Zn2+ accumulation has been closely associated with neuronal 

cell death pathways, I tested the hypothesis that neuronal tolerance is also dependent on sub-

lethal Zn2+ signals.  I found that preconditioning triggered an immediate transient rise in 

neuronal free Zn2+, while lethal excitotoxicity led to a delayed accumulation of the metal.  The 

sub-lethal rise in Zn2+ was necessary and sufficient in attenuating subsequent Zn2+-dependent 

toxicity in preconditioned neurons.  Chelating Zn2+ during the preconditioning stimulus restored 

the lethal excitotoxic accumulation in neuronal Zn2+ and abolished neuronal tolerance.  These 

data suggested that preconditioning-induced Zn2+ could trigger mechanisms for preventing 

subsequent Zn2+-dependent cell death.  Indeed, preconditioning triggered protein kinase C 

(PKC)-dependent Zn2+-regulated gene expression in neurons.  Examination of the mechanism 

involved in modulating Zn2+-regulated gene expression revealed a surprisingly early role for 

PKC in directly modifying the intracellular source of Zn2+.  A conserved PKC phosphorylation 

site was identified at serine 32 of the metal binding protein metallothionein, which was important 

in modulating Zn2+ regulated gene expression and ultimately conferring neuronal tolerance.  In 

addition to modulating gene expression, Zn2+ signals may also be important in mediating the 
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acute cellular response to stress.  Here, I found a critical role for the transient Zn2+ rise in 

modulating changes in voltage-gated potassium channel activity and localization following 

ischemia.  Together, these data strongly suggest that a transient rise in neuronal free Zn2+ is an 

important early signal in conferring neuronal tolerance and in mediating acute cellular adaptive 

responses to stress.  Thus, Zn2+ is a previously unrecognized, highly regulated signaling 

component in the initiation of survival pathways in neurons.   
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1.0  GENERAL INTRODUCTION 

1.1 THESIS OVERVIEW 

Zinc has been referred to as the “calcium of the 21st century”, reflecting its diverse roles in 

normal cell physiology and, in turn, its deregulation as a contributor to cellular pathological 

changes (Frederickson et al., 2005).  Relatively abundant in the mammalian brain, Zn2+ plays a 

critical role as a structural component of numerous proteins and transcription factors, and has 

recently emerged as a neuromodulator and intracellular signaling factor (Frederickson and Bush, 

2001; Yamasaki et al., 2007).  The concentration of intracellular free, or “chelatable” Zn2+, is 

maintained in the picomolar range under normal conditions due to exquisite regulation by metal 

binding proteins, a family of Zn2+ efflux transporters, and compartmentalization into organelles 

(Frederickson, 1989; Sensi et al., 1997).  However, an accumulation of free Zn2+, likely mediated 

by liberation of the metal from intracellular stores (Aizenman et al., 2000b) along with 

translocation from presynaptic vesicles (Koh et al., 1996), plays an important role in ischemic 

neurodegeneration (Weiss et al., 2000).   

 

Neuronal tolerance to lethal ischemic cell death can be conferred by sub-lethal 

preconditioning stimuli, which activate endogenous survival pathways that limit or resist 

subsequent lethal injury (Kitagawa et al., 1990).  Interestingly, increasing evidence suggests that 
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preconditioning stimuli induce the sub-lethal activation of cell death factors that trigger survival 

pathways, which can prevent lethal injurious signaling (O'Duffy et al., 2007).  In light of this 

idea, I hypothesized that a sub-lethal rise in neuronal free Zn2+ would activate endogenous 

protective mechanisms to prevent subsequent Zn2+-dependent injury.  In this dissertation, I 

establish a novel role for Zn2+ as an important, early signal in the initiation of survival pathways 

critical to neuronal tolerance.  The results from these studies offer insights into endogenous 

mechanisms that protect neurons in the face of lethal cellular injury.     

1.2 THE SIGNIFICANCE OF STROKE 

Stroke is the second leading cause of death worldwide and the third leading cause of death in the 

United States, accounting for about 10% of all deaths (Rothwell, 2001). However, mortality data 

do not capture the true burden of stroke, as there are more than 3.5 million survivors of stroke in 

the US alone (Lo et al., 2003).  In fact, most strokes are not fatal, but instead result in severe 

limitations with activities of daily living as well as serious long-term disability, such as 

dementia, depression, epilepsy, falls, and fractures (Rothwell, 2001; Lo et al., 2003).  Strokes 

occur due to an occlusion or hemorrhage of blood vessels supplying the brain.  Ischemic strokes, 

caused by a loss of blood flow to an area of the brain due to an occluded vessel, occur more 

commonly than hemorrhagic strokes, which are due to vessel rupture (Lo et al., 2003).  

Regardless of etiology, strokes ultimately result in neuronal dysfunction and death, manifesting 

in a spectrum of neurological deficits that reflect the location of the compromised brain area.  

Although a large body of research has implicated several molecular cascades as possible 

neuroprotective therapeutic targets, the translation of experimental results into clinical practice 
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remains challenging and, thus far, largely unsuccessful.  Studies aimed at understanding 

endogenous molecular mechanisms of neuronal protection may provide novel therapeutic targets 

and intervention strategies for stroke.    

1.3 EXCITOTOXICITY MODELS ISCHEMIC NEURONAL DEATH 

The cellular and molecular mechanisms of stroke pathophysiology are centered around three 

fundamental overlapping pathways of neuronal cell death:  excitotoxicity, oxidative and 

nitrosative stress, and apoptosis (Lo et al., 2003).  Of these, excitotoxicity, a term first coined by 

Olney referring to neuronal injury elicited by glutamate and structurally-related excitatory amino 

acids (Olney, 1986), has received much attention over the past 25 years.  Excitotoxic neuronal 

cell death consists of two components: a reversible early component mediated by an influx of 

extracellular Na+ and Cl- causing marked neuronal swelling, and a delayed component mediated 

by the influx of Ca2+ (Choi, 1987) predominantly through ionotropic N-methyl-D-aspartate 

(NMDA) receptors (Simon et al., 1984; Goldberg et al., 1987).  This delayed rise in cellular Ca2+ 

can mediate neurotoxicity by impairing mitochondrial function, producing reactive oxygen 

species (ROS) and other free radicals, and activating destructive lipases and proteases (Choi, 

1988; Kristian and Siesjo, 1998).    

 

Although several voltage-gated and ligand-gated ion channels may contribute to the 

influx of Ca2+, the NMDA receptor is particularly important in mediating acute ischemic injury 

(Simon et al., 1984; Choi, 1988).  This is illustrated by the finding that:  i) in experimental 

models of stroke, extracellular glutamate levels rise in the microdialysate and blockade of 
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NMDA receptors can reduce infarct size (McDonald et al., 1987), ii) NMDA receptor 

antagonists are neuroprotective in temperature controlled animal models of focal ischemia (Yang 

et al., 1994), and iii) knockout mice deficient in NMDA receptor subunits showed decreased 

infarct size after focal cerebral ischemia (Morikawa et al., 1998).  As such, in the present studies, 

acute exposure of NMDA is used to model ischemia-mediated neuronal death in cultured 

neurons (Choi, 1990).  It is noteworthy, however, that NMDA receptor antagonists have failed in 

a large number of stroke clinical trials due to their severe toxic side effects and their inability to 

significantly reduce stroke morbidity (Muir, 2006).  Thus, complete understanding of the 

signaling pathways involved in the ischemic pathophysiology may uncover novel alternative 

therapeutic interventions.  Deregulation of other ions may be equally, if not more, important than 

Ca2+ in mediating neuronal death following ischemic injury.         

1.4 ROLE OF ZINC IN ISCHEMIC NEURONAL DEATH 

1.4.1 Physiological roles for Zn2+  

Zinc is the second most prevalent trace element in the body and is very abundant in the brain 

(overall content of ~150M) with highest concentrations in forebrain regions including the 

hippocampus, amygdala, and cortex (Choi and Koh, 1998; Weiss et al., 2000). Since its 

discovery in brain almost 55 years ago (Maske, 1955), Zn2+ has been shown to play critical roles 

in protein structure, enzymatic activity, and gene regulation (Choi and Koh, 1998; Frederickson 

et al., 2005).  Zn2+ can associate with over 300 enzymes, where it can interact strongly with 

electronegative sulfur, nitrogen, and oxygen moieties in multiple coordination geometries, 
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serving catalytic and structural roles in maintaining active peptide conformations (Choi and Koh, 

1998).  In addition to metalloenzymes, Zn2+ is most known for its ability to bind and stabilize 

proteins involved in gene regulation in domains called zinc fingers, zinc clusters, and zinc twists 

(Vallee et al., 1991).  Because of the critical role Zn2+ plays in protein structure and function, it is 

not surprising that chronic dietary Zn2+ deficiency manifests in multi-systemic dysfunction 

including growth failure, skin changes, delayed wound healing, immune system impairment, 

neurosensory disorders, and lack of sexual development (Prasad, 1995).         

 

Besides the structure and function of proteins, brain Zn2+ may also be important in 

modulation of neuronal activity (Frederickson et al., 2005).  Approximately 10% of neuronal 

Zn2+ is selectively stored in presynaptic vesicles of certain glutamatergic neuronal terminals by 

the neuronal specific zinc transporter 3 (ZnT3).  Because of this, much attention has been given 

to determining whether synaptic Zn2+ release is activity dependent (Paoletti et al., 2009).  The 

most convincing evidence for activity-dependent Zn2+ release was provided by Qian and Nobles, 

who used a membrane-impermeant form of the Zn2+-selective indicator FluoZin-3 to show 

extracellular Zn2+ in mossy-fiber synapses of wild-type, but not ZnT-3 knock-out mice following 

individual action potentials (Qian and Noebels, 2005, 2006). Zn2+ released from presynaptic 

neurons has several potential post-synaptic targets.  Zn2+ is a potent inhibitor of NMDA 

receptors (Vogt et al., 2000; Li et al., 2001a; Li et al., 2001b; Kim et al., 2002; Qian and 

Noebels, 2005) and GABA receptor subtypes (Westbrook and Mayer, 1987; Hosie et al., 2003).  

Zn2+ can potentiate glycine receptors at submicromolar concentrations and inhibit them at 

submillimolar concentrations (Bloomenthal et al., 1994; Laube et al., 1995).  In addition to 

modulating ionotropic pathways, synaptic Zn2+ has also been reported to transactivate receptor 
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tyrosine kinase b (TrkB; Huang et al., 2008b) and regulate metabotropic activity through the 

activation of a recently described “Zn2+ receptor” (Besser et al., 2009).  However, since the exact 

amplitude and time course of synaptic Zn2+ remain unclear (Kay, 2003), the functional 

importance of vesicular Zn2+ is yet to be fully established.   

 

Perhaps a more relevant role of physiologic Zn2+ is its emergence as an intracellular 

signal.  Yamasaki and colleagues recently found evidence for intracellular Zn2+ release in mast 

cells within minutes of extracellular stimulation of the high affinity immunoglobulin E receptor 1 

(FcR1), a phenomenon they called a “zinc wave” (Yamasaki et al., 2007).  Rapid Ca2+ influx 

and mitogen-activated protein/extracellular signal-regulated kinase (MEK) activity were required 

for the Zn2+ rise, although neither the Ca2+ ionophore ionomycin nor a MEK activator was 

sufficient in eliciting a Zn2+ wave (Yamasaki et al., 2007).  A likely role for such intracellular 

Zn2+ signals is the modulation of protein phosphorylation.  While increased cellular Zn2+ can 

activate many kinase pathways including p70 S6 kinase (Kim et al., 2000), extracellular signal-

regulated kinase (Park and Koh, 1999; Kim et al., 2006), and p38 (McLaughlin et al., 2001; 

Bossy-Wetzel et al., 2004), the reports indicate a target upstream in the signaling cascade rather 

than direct effect of Zn2+ on these kinases.  Furthermore, activation of Zn2+-dependent kinase 

cascades was examined in the context of large exogenous Zn2+ exposure or cellular toxicity.  On 

the other hand, physiologically relevant nanomolar concentrations of Zn2+ have been shown to 

inhibit protein tyrosine phosphatase (PTP) activity (Maret et al., 1999; Haase and Maret, 2003, 

2005).  Interestingly, inhibition assays in these studies were performed with a truncated form of 

the phosphatase containing only the catalytic domain, suggesting that the inhibitory action of 

Zn2+ is through direct interaction with this highly conserved domain of PTPs (Haase and Maret, 
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2003; Alonso et al., 2004).  Thus, a major physiological role for Zn2+ may be in the modulation 

of cell signaling cascades, especially those involving protein phosphorylation.   

1.4.2 Regulation of neuronal Zn2+     

Despite relatively high Zn2+ content in the brain, the extracellular Zn2+ concentration is normally 

below 500 nM and the intracellular “free” Zn2+ is generally less than 1 nM (Weiss et al., 2000).  

Intracellular free Zn2+ is tightly regulated though the opposing actions of the solute-linked carrier 

39 (SLC39) family (also known as Zrt- and Irt-like proteins or Zips; Eide, 2004) and the SLC30 

family (also known as ZnTs; Palmiter and Huang, 2004).  Zip and ZnT proteins appear to have 

opposing roles in Zn2+ homeostasis, as Zips increase cytoplasmic Zn2+, while ZnTs promote Zn2+ 

efflux from the cytoplasm into intracellular compartments or across the plasma membrane 

(Liuzzi and Cousins, 2004).  Mechanisms and energetics of transport by these proteins are not 

well characterized, but are believed to be mediated by facilitated diffusion, secondary active 

transport, or symporters (Liuzzi and Cousins, 2004). 

 

Of the 14 Zip family members (Eide, 2003), Zip1 mRNA has been found in almost all 

tissues (Dufner-Beattie et al., 2003) including in neuronal cell bodies and white matter tracts of 

rat brain (Belloni-Olivi et al., 2009).  Zip4 mRNA was also found in the brain but was restricted 

to choroid plexus and brain capillaries (Belloni-Olivi et al., 2009), and may suggest that the brain 

can respond to changes in dietary Zn2+.  Although the functions of brain Zips have not been 

carefully studied in the brain, Zip1 and Zip4 mediate Zn2+ uptake across the plasma membrane in 

prostate cells and in intestinal luminal cells, respectively (Gaither and Eide, 2001; Franklin et al., 

2003; Dufner-Beattie et al., 2004).   
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Opposing the actions of Zips are the nine members of the mammalian ZnT family 

(Palmiter and Huang, 2004).  ZnT1 is a ubiquitous member of the SLC30 family found on the 

plasma membrane of neurons (Tsuda et al., 1997) and glia (Sekler et al., 2002; Nolte et al., 

2004).  ZnT1 was discovered by Palmiter and Findley for its ability to confer Zn2+ resistance to 

highly Zn2+ sensitive baby hamster kidney (BHK) cells (Palmiter and Findley, 1995).  ZnT1 

overexpression in these cells increased radioactive 65Zn efflux across the plasma membrane and 

reduced the cytoplasmic concentration of Zn2+, supporting an export function for the protein 

(Palmiter and Findley, 1995).  Recent evidence suggests that in addition to exporting Zn2+, 

neuronal ZnT1 may confer resistance to Zn2+ toxicity by also regulating routes of Zn2+ entry, 

such as through voltage-gated Ca2+ channels (Ohana et al., 2006).  However, a direct interaction 

between ZnT1 and Ca2+ channels has yet to be demonstrated.  

 

Expression of ZnT1 has been shown in several brain regions, including cerebellum, 

cerebral cortex, and olfactory bulb, corresponding to areas containing synaptic Zn2+ and, thus, 

requiring significant Zn2+ homeostasis (Sekler et al., 2002).  The first physiologically relevant 

role for neuronal ZnT1 came from a report that showed increased ZnT1 expression in 

degenerating hippocampal neurons following Zn2+-dependent ischemic injury in the gerbil 

(Tsuda et al., 1997).  Similar to lethal injury, sub-lethal Zn2+ exposure has been reported to 

induce ZnT1 expression in astrocytes (Nolte et al., 2004).  Thus, the upregulation of ZnT1 may 

be an important adaptive response to cellular injury. The remaining ZnT family members are 

localized to intracellular membranes, where they play limited tissue-specific functions in Zn2+ 

sequestration (Liuzzi and Cousins, 2004).  Of these, the most extensively studied ZnT is 

neuronal ZnT3, which transports Zn2+ into synaptic vesicles of certain glutamatergic neurons 
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(Wenzel et al., 1997).  Immunohistochemical analysis of ZnT3 expression revealed a staining 

pattern identical to that produced by Timm staining for vesicular Zn2+ (Palmiter et al., 1996; 

Wenzel et al., 1997).  Timm staining, first described in 1958 as a “sulfide-silver procedure” 

(Timm, 1958) and optimized for visualizing Zn2+ (Danscher, 1984; Danscher et al., 1997), is the 

process of silver-amplifying sulfide-loaded tissue by autometallography, allowing for 

visualization of zinc-sulfide crystal lattices.  ZnT3 immunoreactivity is evident on membranes of 

Zn2+-rich Timm stained synaptic vesicles (Wenzel et al., 1997).  ZnT3 knock-out (ZnT3-KO) 

mice express no histochemically reactive (vesicular) Zn2+ (Cole et al., 1999).  Despite 

completely lacking vesicular Zn2+, ZnT3-KO mice do not have impaired spatial learning, 

memory, or sensorimotor functions (Cole et al., 2001), but may be more susceptible to kainate-

induced seizures (Lee et al., 2000; Lee et al., 2003).  Thus, while a significant role of vesicular 

Zn2+ has not yet been established, the ZnT3-KO mouse will be an invaluable tool in designing 

new experiments to uncover previously unexplored mechanisms in synaptic Zn2+ signaling.    

 

Metallothioneins also play a major role in regulating intracellular Zn2+ homeostasis by 

binding, releasing, and distributing Zn2+.  Metallothioneins are a family of non-enzymatic, 

cysteine-rich, metal-binding polypeptides (61-68 amino acids) found throughout mammalian 

tissues (Aschner, 1996; Haq et al., 2003; Penkowa, 2006).  MTs are well-known for their metal-

binding properties as they are structurally composed of two globular metal-binding domains ( 

and ) containing a total of 20 cysteine residues, allowing them to bind up to seven Zn2+ or Cd2+ 

ions or up to 12 Cu2+ ions (Haq et al., 2003).  These cysteine residues in MTs occur in unique 

Cys-X-Cys, Cys-X-Y-Cys, and Cys-Cys motifs, where X and Y represent non-cysteine amino 

acids (Kagi and Schaffer, 1988).  Interestingly, analysis of the association of Zn2+ with the 
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apoprotein thionein revealed three classes of binding affinities that vary by several orders of 

magnitude.  Four Zn2+ ions were bound tightly (log Kd = 11.8), making the thionein a strong 

chelating agent; one Zn2+ was relatively weakly bound (log Kd = 7.7), making metallothionein a 

Zn2+ donor; and the remaining two Zn2+ ions were with intermediately bound (log Kd ~ 10) 

(Krezel and Maret, 2007).  This suggests that MT molecules are not saturated with seven Zn2+ 

ions under normal physiological conditions and can actively participate in cellular Zn2+ buffering 

and distribution (Krezel and Maret, 2007).  Thus, MT is a dynamic protein with species 

containing varying amounts of Zn2+ due to the constant transfer of Zn2+ to thioneins and other 

metalloenzymes (Yang et al., 2001; Krezel and Maret, 2007).  Further, because of the unique 

Zn2+ coordination environment of MT, the redox environment of the cell may ultimately dictate 

cellular Zn2+ availability (discussed further in Section 1.4.6; Maret and Vallee, 1998).   

 

Three major MT isoforms are expressed in the adult mammalian central nervous system.  

The precise cellular localization of MT I, II, and III is still a matter of debate due to the lack of 

isoform-specific antibodies leading to conflicting results between in vivo and in vitro studies and 

between mRNA and protein expression assays (Hidalgo et al., 2001).  The general consensus, 

however, is that the MT I and MT II are the predominant astrocytic isoforms (where they are 

expressed over seven-fold higher than in neurons; Hidalgo et al., 1994; Kramer et al., 1996b; 

Kramer et al., 1996a; Suzuki et al., 2000), while MT III is predominantly expressed in neurons 

(Masters et al., 1994; Hidalgo et al., 2001).  Interestingly, MT III was first identified in pursuit of 

putative mechanisms underlying Alzheimer’s disease neuropathology.   Abundant MT III 

expression, which was then identified as growth inhibitory factor (GIF) due to its ability to 

inhibit neurotrophic factors and neurite outgrowth, was found in normal brain astrocytes, but not 
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in Alzheimer’s disease brains (Uchida et al., 1991).  However, since then, the association 

between MT III and Alzheimer’s disease has not fully developed (Erickson et al., 1994; Carrasco 

et al., 2006).  Instead, MTs are thought to play a major role in heavy metal detoxification and 

Zn2+ homeostasis, as previously discussed.  Interestingly, expression of MT I and II is highly 

inducible in response to a range of stimuli in addition to Zn2+ and Cd2+, including hormones, 

cytokines, oxidative agents, inflammation, and ischemia (Bremner et al., 1987; Sato and 

Bremner, 1993; Vasak and Hasler, 2000; Trendelenburg et al., 2002).  Because of this, MTs have 

been implicated in mediating a more general cellular response to injury (West et al., 2008).  

Exciting recent reports have shown that following brain injury, astrocytes are able to secrete MT 

into the extracellular space, which is internalized by neurons promoting cell survival (Ambjorn et 

al., 2008; Chung et al., 2008; West et al., 2008).  Thus, MTs play diverse roles in regulating 

cellular Zn2+ homeostasis, heavy metal detoxification, and intercellular response to injury.   

1.4.3 Zn2+-regulated gene expression    

A major role for physiologic Zn2+ is the regulation of the proteins that control the intracellular 

concentration of the metal.  The inducible metallothionein isoforms, MT I and MT II, are 

regulated in a coordinated manner through the activation of gene transcription (Penkowa, 2006). 

The promoter regions of MT I/II genes contain several cis-acting DNA elements, including 

metal, glucocorticoid, anti-oxidant, and interleukin-6/signal transducers and activator of 

transcription (STAT) responsive elements (MREs, GREs, AREs, and IL-6 RE) that can bind 

trans-acting transcription factors involved in the regulation of both constitutive and inducible 

MT expression (Haq et al., 2003; Penkowa, 2006).  Metal response element transcription factor 1 

(MTF-1) is the predominant gene regulatory protein mediating constitutive as well as metal- and 
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oxidative stress-induced MT I/II expression (Heuchel et al., 1994; Dalton et al., 1996).  MTF-1 is 

a 72.5 kDa, ubiquitous zinc-finger transcription factor in the Cys2His2 family that binds to DNA 

sequence motifs, known as metal response elements (MREs), at the consensus site TGCRCNC 

(Stuart et al., 1984).  MRE sequences are present in five, non-identical copies (MREa-MREe) in 

the 5’ flanking region of the MT I/II gene (Larochelle et al., 2001a).  MTF-1 mediated MRE 

activation sufficiently upregulates MT I/II in response to Zn2+ or Cd2+ (Stuart et al., 1984; Stuart 

et al., 1985), oxidative stress (Dalton et al., 1994), and hypoxia (Murphy et al., 1999).  Following 

Zn2+, acute hypoxia, or oxidative stress induced by H2O2 or tert-butylhydroquinone, MTF-1 

translocates from the cytoplasm to the nucleus and acquires tight DNA-binding ability (Dalton et 

al., 1996; Dalton et al., 1997; Andrews, 2000; Smirnova et al., 2000).  However, following 

exposure to other heavy metals, most notably Cd2+, the DNA-binding ability of MTF-1 is 

inhibited in cell-free DNA binding assays, despite induction of MTF-1-dependent MT gene 

transcription in vivo (Heuchel et al., 1994; Palmiter, 1994; Bittel et al., 1998; Murata et al., 1999; 

Zhang et al., 2001).  This paradox was solved by demonstrating that transcriptional activation 

following Cd2+ requires Zn2+-saturated metallothionein (Zhang et al., 2003).  Cd2+, which binds 

to metallothioneins with higher affinity than Zn2+, can displace Zn2+ from the metal-binding 

protein, making Zn2+ available for MTF-1 activation (Zhang et al., 2003).  Activation of gene 

transcription also requires the occupancy of the Zn2+ fingers with Zn2+ (Westin and Schaffner, 

1988) and the interaction among three distinct transcriptional activation domains in the C-

terminal region of MTF-1 (Radtke et al., 1995).  While most of the evidence characterizing Zn2+-

regulated gene expression has been performed studying MT gene activation, changes in ZnT1 

expression can also be induced by Zn2+ or Cd2+ (Andrews, 2000).  Constitutive and metal-

induced activation of the ZnT1 gene also required MTF-1 (Langmade et al., 2000).  On the other 
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hand, while the organization of the promoter regions of all MT genes is conserved, the MT III 

gene was found to contain a ‘silencing element’ in the 5’ flanking regions upstream from the first 

cluster of putative MREs (Watabe et al., 1997; Chapman et al., 1999), eliminating Zn2+-

regulation.  Closer inspection of this silencing element of the rat MT III promoter revealed that it 

contained a quadruplicate CTG sequence approxiametely 400 base-pairs upstream of the 

translation start site (Chapman et al., 1999).  CTG-repeat elements have been shown to act as 

repressors on a number of heterologous promoters independent of its orientation and proximity 

to the gene, and thus may account for the silencing effect on the promoter region of the MT III 

gene (Chapman et al., 1999).  Overall, these studies suggest that Zn2+ regulated, MTF-1/MRE-

mediated gene expression plays an important role in coordinating the expression of proteins 

involved in intracellular Zn2+ homeostasis.  In this dissertation, I show that Zn2+ regulated gene 

expression can be stimulated by sub-lethal ischemia in neurons and thus may be an important 

endogenous mechanism conferring tolerance to subsequent Zn2+-dependent injury.   

1.4.4 PKC modulation of Zn2+-regulated gene expression  

Zn2+ regulated gene expression has been shown to be dependent on a number of kinase cascades, 

especially protein kinase C (PKC; LaRochelle et al., 2001b; Adams et al., 2002; Saydam et al., 

2002).  PKC is a family of serine/threonine kinases, which consists of at least 10 isozymes 

(Newton, 2001).  These isozymes have been classified into three groups according to their 

structure and cofactor regulation.  Conventional PKCs (α, β1, β2, and γ) are directly activated by 

calcium or diacylglycerol (DAG); novel PKCs (δ, ε, σ, φ, and μ) are independent of calcium but 

responsive to DAG; and atypical PKCs are independent of calcium and DAG but require 

membrane phospholipids for activation (Newton, 2001).  Interestingly, PKC is also a Zn2+-
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metalloenzyme, containing four Zn2+ atoms bound to two cysteine-rich repeats in the regulatory 

domain of the N-terminus (Quest et al., 1992).  Nanomolar concentrations of Zn2+ activated 

PKC, and the cell-permeant Zn2+ chelator N,N,N’,N’-tetrakis (2-pyridalmethyl)ethylenediamine 

(TPEN) inhibited PKC activation (Csermely et al., 1988b, a).  Furthermore, oxidation of the 

Zn2+-binding cysteine residues led to release of PKC-bound Zn2+, which was sufficient in 

activating the enzyme (Knapp and Klann, 2000).  Oxidative release of PKC-bound Zn2+ has been 

shown to cause a substantial increase in intracellular free Zn2+ in cardiomyocytes (Korichneva, 

2005).  Thus, Zn2+ may play a critical regulatory role in PKC activity.  In turn, PKC may also 

play an important role in the regulation of intracellular Zn2+ concentration. Activators of PKC 

are sufficient stimulants of Zn2+-regulated gene expression (Imbra and Karin, 1987; Garrett et al., 

1992), while PKC inhibitors can interfere with metal-induced MRE activation (Yu et al., 1997a).  

Despite evidence suggesting that PKC activity can modulate of Zn2+-regulated gene expression, 

the mechanism of action of the kinase in this process is unclear (LaRochelle et al., 2001a; Adams 

et al., 2002; Saydam et al., 2002; Jiang et al., 2004).  It has been shown that MTF-1 is 

constitutively phosphorylated at serine and tyrosine residues and that metal exposure increases 

its level of phosphorylation by a mechanism involving PKC (LaRochelle et al., 2001a; Saydam 

et al., 2002).  Treatment with kinase inhibitors decreased MTF-1/MRE-mediated gene 

transcription (LaRochelle et al., 2001a), and inhibition of dephosphorylation resulted in elevated 

constitutive and induced MT expression (Chen et al., 2001).  However, studies have shown that 

although MTF-1 can be phosphorylated in unstimulated cells, metal exposure does not increase 

its phosphorylation state or its ability to bind DNA (Jiang et al., 2004).  Further, kinase inhibition 

does not affect metal-induced MTF-1 nuclear translocation, MTF-1 DNA binding, or the 

formation of a stable MTF-1-chromatin complex (Larochelle et al., 2001a; Jiang et al., 2004).  
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Thus, modulation of Zn2+-regulated gene expression by signaling kinases may be cell-type 

specific, and may not target MTF-1 directly (Jiang et al., 2004).  It is certainly possible that 

modulation of Zn2+-regulated gene expression by PKC may not be mediated by post-translational 

modification of MTF-1.  In this dissertation, I identify MT as a previously unrecognized target 

for PKC phosphorylation, and examine its effect on neuronal Zn2+-regulated gene expression.     

1.4.5 Zn2+ translocation in ischemic cell death 

As the intracellular concentration of Zn2+ is kept in the picomolar range through the actions of 

several regulatory processes mentioned in earlier sections, an increase of free intracellular Zn2+ 

in neurons can have deleterious consequences.  During the height of the debate regarding the 

exact roles for Ca2+, glutamate, and excitotoxicity in mediating neuronal death following 

ischemia, Zn2+ emerged as another cation important in ischemia pathophysiology.  Using TSQ 

(N-[6-methoxy-8-quinolyl]-P-toluenesulfonamide) and acid fuschin to simultaneously stain the 

presence of Zn2+ and degenerating neurons, respectively, Tonder and colleagues were first to 

suggest a translocation of Zn2+ from mossy fibers terminals to degenerating dentate hilar neurons 

2-24 hrs following 20 min of cerebral ischemia (Tonder et al., 1990).  This observation, coupled 

with reports suggesting that the amount of Zn2+ stored in synaptic vesicles (~300 M) was 

sufficient in killing neurons (Yokoyama et al., 1986; Frederickson et al., 1988), led to the Zn2+ 

translocation hypothesis.  This hypothesis proposes that the extracellular release of vesicular 

Zn2+ and its uptake by postsynaptic neurons is responsible for the toxic accumulation of neuronal 

Zn2+ following ischemia (Frederickson et al., 1989; Choi and Koh, 1998; Lee et al., 1999). More 

direct evidence came from Koh and colleagues who showed that intraventricular injection of the 

membrane-impermeant Zn2+ chelator, ethylenediaminetetraacetic acid (EDTA) saturated with 
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Ca2+ (CaEDTA), blocked the accumulation of neuronal Zn2+ and prevented neuronal death 

following transient global cerebral ischemia (Koh et al., 1996).  While Zn2+ was known to be 

toxic to neurons when applied exogenously (Choi et al., 1988; Weiss et al., 1993; Koh and Choi, 

1994), these reports were first to implicate endogenous accumulation of Zn2+ in ischemic 

neuronal death.   

  

Extracellular Zn2+ can lead to toxic intracellular Zn2+ accumulations by entering through 

voltage-sensitive Ca2+ channels (VSCC; Weiss et al., 1993), NMDA channels (Koh and Choi, 

1994), or Ca2+-permeable a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) / 

kainate channels (Ca2+-A/K; Yin and Weiss, 1995; Yin et al., 1998).  Of these, Ca2+-A/K 

channels exhibit the highest Zn2+ permeability (Sensi et al., 1999) and may be the primary route 

of Zn2+ entry following ischemia (Yin et al., 2002).  In hippocampal slices, ischemia-induced 

Zn2+ accumulation and subsequent neurodegeneration can be attenuated with a Ca2+-A/K channel 

inhibitor but not NMDA or VSCC channel antagonists (Yin et al., 2002). Hippocampal 

pyramidal neurons, which are especially sensitive to ischemic injury, express Ca2+-A/K channels 

on distal dendritic branches (Lerma et al., 1994; Yin et al., 1999; Ogoshi and Weiss, 2003).  

Unlike all other heterotetrameric AMPA receptors, Ca2+-A/K channels lack the GluR2 subunit 

(Dingledine et al., 1999; Kwak and Weiss, 2006).  GluR2 subunits contain an arginine (R) in its 

pore-forming domain due to RNA editing of a genomically encrypted glutamine (Q) codon 

(Sommer et al., 1991).  The arginine is functionally dominant because it dictates gating kinetics, 

channel conductance, channel assembly and importantly, Ca2+ permeability (Burnashev et al., 

1992; Geiger et al., 1995; Greger et al., 2003).  Edited GluR2(R) subunits form Ca2+-

impermeable channels, whereas unedited GluR2(Q) channels are Ca2+ permeable (Geiger et al., 
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1995; Jonas and Burnashev, 1995).  Generation of mice with unedited GluR2(Q) produced 

fulmitant seizures and death by three weeks of age (Brusa et al., 1995).  Interestingly, GluR2 

expression can be modulated by ischemic injury, as ischemia has been shown to induce GluR2 

down-regulation (Gorter et al., 1997; Opitz et al., 2000) and disrupt Q/R editing (Peng et al., 

2006).  This modulation of GluR2 subunits render AMPA channels Ca2+ permeable, allowing 

entry of toxic Ca2+ and Zn2+ during ischemia (Pellegrini-Giampietro et al., 1992; Gorter et al., 

1997; Opitz et al., 2000; Sensi and Jeng, 2004).  Thus, regulation of Ca2+-A/K channel 

composition may play a critical role in ischemic injury.  

  

Regulation of Ca2+-A/K channel composition following ischemic injury may involve 

Zn2+.  In an in vivo model of ischemia, application of CaEDTA 30 minutes prior to global 

ischemia attenuated the ischemic downregulation of GluR2, the delayed rise in neuronal Zn2+, 

and neuronal death (Calderone et al., 2004).  Ischemic downregulation of GluR2 may occur by 

Zn2+-dependent expression of the nine Zn2+-finger transcription factor restrictive element-1 

silencing transcription factor (REST-1), which suppresses neuronal-specific targets including 

GluR2 (Calderone et al., 2003; Calderone et al., 2004).  Application of CaEDTA 48-60 hours 

following global ischemia, presumably after GluR2-lacking A/K channels are already expressed, 

only attenuated the late rise in neuronal Zn2+ and cell death (Calderone et al., 2004).  These data 

suggest that Zn2+ entry through Ca2+-A/K channels contributes to the accumulation of the metal 

following ischemia.        
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1.4.6 Intracellular sources for ischemic Zn2+  

Several key observations have shown that Zn2+ translocation cannot fully account for the 

accumulation of free Zn2+ following ischemia.  Zn2+ accumulation in degenerating neurons 

following global ischemia is observed in areas that are not highly innervated by glutamate- and 

Zn2+-releasing fibers, such as thalamic neurons (Koh et al., 1996).  Thus, intracellular sources of 

Zn2+ must play a major role in lethal Zn2+ accumulation in these brain regions.  More 

importantly, if presynaptic Zn2+ was the only source of toxic Zn2+ that contributed to ischemic 

injury, then animals without presynapic Zn2+ would not be susceptible to Zn2+-dependent 

toxicity.  Mice lacking the zinc transporter ZnT3 show no histochemically reactive Zn2+ in 

presynaptic vesicles, but still undergo significant Zn2+ accumulation in degenerating CA1 and 

CA3 neurons following kainate-induced seizures (Lee et al., 2000).  These data suggest that 

lethal neuronal injury can induce intracellular Zn2+ accumulation and neurodegeneration in the 

absence of presynaptic vesicular Zn2+.  While CaEDTA nearly completely abolished the Zn2+ 

accumulation and neuronal cell death, suggesting an extracellular source of Zn2+, CaEDTA has 

been since shown to deplete intracellular Zn2+ compartments, including synaptic vesicles 

(Frederickson et al., 2002).  The membrane-impermeant Zn2+ chelator CaEDTA may chelate and 

trap extracellular Zn2+, giving rise to a steep Zn2+ gradient across the plasma membrane resulting 

in “pulling” of free Zn2+ from the neuronal cytoplasm.  Taken together, these reports suggest that 

accumulation of intracellular Zn2+ following neuronal injury may not be solely dependent on 

translocation of the metal from presynaptic neurons.   

 

As Zn2+ accumulation can occur in the absence of vesicular Zn2+, liberation of Zn2+ from 

intracellular stores may be a significant mechanism of cell injury, especially in brain regions 
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with little or no synaptic Zn2+. Vallee and colleagues suggest that Zn2+ binding and release in 

cells are dynamic processes that are dependent on the redox status of the cell (Jacob et al., 1998; 

Jiang et al., 1998).  Of the Zn2+ metalloproteins, only those with Zn2+/sulfur coordination 

environments are susceptible to oxidative mobilization of Zn2+ during excitotoxicity (Maret, 

1995).  These coordination environments allow for tight binding of Zn2+ and for the mobilization 

of redox-inert Zn2+ (Berg and Shi, 1996) by biological oxidants.  Of the thiol-Zn2+ 

metalloproteins in neurons, MT III is a likely source of injury-induced mobilized Zn2+.  Despite 

binding Zn2+ with high thermodynamic stability (Kd = 1.4 X 10-13 M for human MT, pH 7.0; 

Maret and Vallee, 1998), the redox potential for MT is very negative (-366 mV), causing even 

mild cellular oxidants to release Zn2+ from the metal-binding protein (Maret and Vallee, 1998).  

Consistent with this, exposure of neurons to oxidative stress promotes the release of Zn2+ from 

intracellular stores, an event critical to initiation of neuronal apoptosis (Aizenman et al., 2000b).  

Further, nitric oxide (NO) and subsequent peroxynitrite (ONOO-) formation, two powerful 

cellular oxidants contributing to ischemic “nitrosative stress” (Lo et al., 2003), also liberate 

neuronal Zn2+ from intracellular stores triggering neurodegeneration (Cuajungco and Lees, 1998; 

Bossy-Wetzel et al., 2004; Zhang et al., 2004).   NO has been shown to more readily release Zn2+ 

from MT III than other MT isoforms due to the unique presence of consensus motifs for catalytic 

nitrosylation and the preferential reactivity of S-nitrosothiols with MT III through 

transnitrosylation, allowing direct transfer of NO between sulfhydryl groups that result in 

sequential release of Zn2+ ions (Chen et al., 2002).  Thus, liberation of Zn2+ from intracellular 

stores, especially neuronal MT III, may be a significant source of the Zn2+ rise following 

ischemia.  In this dissertation, I provide evidence supporting a major role for metallothionein as 

the primary source and sink for free Zn2+ in neurons.         
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1.4.7 Zn2+-dependent signaling in ischemia 

Accumulation of neuronal Zn2+, likely mediated by a combination of Zn2+ translocation from 

presynaptic vesicles and Zn2+ liberation from intracellular stores, can trigger subsequent 

neurodegenerative signaling following ischemia.  Zn2+-induced cell death involves several serial 

and parallel signaling events, has features of both apoptosis and necrosis (Kim et al., 1999b), and 

is likely mediated by oxidative and nitrosative stress (Kim et al., 1999a; Noh et al., 1999; Kim et 

al., 2002; Sensi et al., 2002).  The diversity of cell death signaling attributed to Zn2+ may depend 

on the intensity of Zn2+ exposure, as brief exposure to high concentrations of Zn2+ lead to signs 

of necrotic, caspase-independent cell death, while longer exposures to lower Zn2+ concentrations 

trigger apoptotic, caspase-dependent cascades (Kim et al., 1999a; Kim et al., 1999b; Lobner et 

al., 2000).   

 

In addition to concentration-dependent signaling, accumulation of Zn2+ following 

ischemia may trigger divergent signaling mechanisms along multiple temporal profiles.  While a 

delayed rise in neuronal Zn2+ in degenerating neurons following ischemia has been well 

described (Koh et al., 1996; Park et al., 2000), recent reports suggest that an early Zn2+ rise 

following ischemia onset also contributes to ischemic injury (Stork and Li, 2006; Medvedeva et 

al., 2009).  In hippocampal neurons loaded with both Zn2+ and Ca2+ indicators, an accumulation 

of neuronal Zn2+ within the first minutes following ischemia was detected before, and shown to 

contribute to, Ca2+ deregulation (Medvedeva et al., 2009).  Interestingly, previously utilized Ca2+ 

probes actually bind Zn2+ with higher affinity, and what was previously attributed to Ca2+ 

deregulation may be in fact due to Zn2+ (Stork and Li, 2006).  Two important reports (Stork and 

Li, 2006; Medvedeva et al., 2009) used oxygen-glucose deprivation in hippocampal slices to 
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model ischemia, but neither examined the source of the early Zn2+ rise, leaving the possibility 

that areas of brain deficient in Ca2+-A/K channels or vesicular Zn2+ may not undergo an early 

ischemic Zn2+ rise.  Nevertheless, this early Zn2+ accumulation in ischemic neurons may trigger 

neurodegenerative signaling previously attributed to Ca2+.   

 

Mechanisms involved in Zn2+-dependent ischemic neuronal death are incompletely 

understood, and may resemble the complexity in Ca2+-mediated cell death pathways.  However, 

central to Zn2+-dependent neuronal cell death are roles for mitochondria and oxidative stress.  

Exogenously-applied Zn2+ can be taken up by mitochondria (Manev et al., 1997; Sensi et al., 

2000) leading to changes in mitochondrial potential (m), release of reactive oxygen species 

and pro-apoptotic proteins, and induction of mitochondrial swelling (Sensi et al., 1999; Jiang et 

al., 2001; Dineley et al., 2005).  These effects on mitochondria could also be produced following 

oxidant-induced liberation of intracellular Zn2+ (Sensi et al., 2003; Bossy-Wetzel et al., 2004).  

In vivo, Zn2+ chelation by CaEDTA prior to global ischemia attenuates the activity of large 

multi-conductance mitochondrial channels, prevents the cytosolic accumulation of mitochondrial 

proapoptotic proteins, and ultimately decreases the apoptotic cell death execution protein, 

caspase-3 (Calderone et al., 2004; Bonanni et al., 2006).  Mitochondria are widely implicated in 

oxidative- and nitrosative-stress mediated neuronal injury, as deficits in the electron transport 

chain are linked to ROS generation (Adam-Vizi, 2005, but see Brennan et al., 2009).  Zn2+ 

exposure leads to increased levels of superoxides and lipoperoxides (markers for oxidative 

injury) and the resultant neurotoxicity is attenuated by antioxidants (Kim et al., 1999a; Kim et 

al., 1999b).  However, under these conditions, the source of ROS is likely to be mediated by 

PKC dependent, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activation 
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(Noh et al., 1999; Noh and Koh, 2000; Brennan et al., 2009).  Aside from mitochondria and 

oxidative stress, other Zn2+-dependent cell death signaling events have also been described, 

including regulation of Zn2+-dependent transcription factors (Park and Koh, 1999), induction of 

p75 neurotrophin receptor-mediated pathways (Park et al., 2000), and activation of kinases (Noh 

et al., 1999; McLaughlin et al., 2001; Du et al., 2002; Bossy-Wetzel et al., 2004) and poly-ADP-

ribose polymerase (PARP-1) (Sheline et al., 2003).  Thus, Zn2+-dependent neurodegeneration 

may be mediated by several diverging and redundant cellular processes that only have begun to 

be elucidated.     

1.5 PRECONDITIONING OFFERS INSIGHT INTO STROKE 

NEUROPROTECTION 

Preconditioning refers to the activation of endogenous adaptive processes by sub-lethal stimuli 

that can increase cellular tolerance to subsequent, lethal injury (Obrenovitch, 2008).  Tolerance 

to lethal ischemic injury was first described by preconditioning cardiac myocytes with brief sub-

lethal ischemic episodes (Murry et al., 1986).  This phenomenon was subsequently shown to also 

be present in the brain (Kitagawa et al., 1990).  Preconditioning triggers an adaptive cellular 

response that is characterized by specific time frames of tolerance induced relative to 

preconditioning stimulus and subsequent lethal ischemia.  Acute tolerance is short-lasting (~1 hr) 

and is mediated by post-translational protein modifications.  In contrast, delayed tolerance can be 

detected 24 hr following preconditioning and can last for days, requiring gene expression and 

protein synthesis (Lo et al., 2003; Obrenovitch, 2008).   
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Activation of several transcription factors have been shown to mediate neuronal 

tolerance, including activating protein 1 (AP1), cyclic AMP responsive element-binding protein 

(CREB), nuclear-factor B (NF-B), and the redox regulated transcriptional activator SP1 

(Blondeau et al., 2001; Ryu et al., 2003; Meller et al., 2005).  However, the most evidence for a 

role in mediating neuronal tolerance has been found for the hypoxia-inducible factor (HIF) 

isoforms (Bergeron et al., 2000; Bernaudin et al., 2002b).  HIF is a heterodimer consisting of  

and  protein subunits.  Under normal conditions, the HIF1 isoform is targeted for degradation 

by an oxygen-sensitive prolyl hydroxylase, which allows for the interaction between HIF1and 

ubquitin ligase (Gidday, 2006).  Hypoxia inactivates the hydroxylase enzyme, stabilizing HIF1 

and allowing it to enter the nucleus, where it can dimerize with HIF1and promote transcription 

of genes that enhance tolerance (Bergeron et al., 2000).  Hypoxia can also activate HIF1 

transcription, further promoting the activation of HIF-sensitive genes (Semenza, 2001).  HIF 

target genes that may play a role in neuronal tolerance are those related to angiogenesis, such as 

vascular endothelial growth factor (VEGF), and blood and iron metabolism, such as 

erythropoietin (Sharp and Bernaudin, 2004).  In addition to these genes, studies using 

oligonucleotide-based DNA microarrays have described general families of genes that are 

particularly affected by preconditioning, including genes related to cell metabolism, immune 

response, ion channel activity, and blood coagulation (Stenzel-Poore et al., 2004).  Thus, despite 

the multitude of stimuli, transducers, and effectors involved in various models of tolerance, the 

overall implication of neuronal preconditioning is the development of a genetically 

reprogrammed, primed brain that can effectively limit cellular injury after ischemia. 
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Preconditioning may represent the most powerful mechanism described to date for 

limiting infarct size other than timely reperfusion.  Preconditioning-induced tolerance has been 

demonstrated clinically in retrospective case-controlled studies that showed that patients with 

transient ischemic attacks (TIAs) have decreased morbidity following stroke (Weih et al., 1999).  

Understanding the molecular mechanisms involved in the preconditioning-induced 

neuroprotection may help develop novel therapeutic strategies not only for limiting morbidity 

following stroke, but also following high-risk surgical procedures that involve the potential for 

hemodynamic compromise (Dirnagl et al., 2009).  In this dissertation, I present evidence 

suggesting that a transient Zn2+ rise may be a previously unexplored early signaling event critical 

for the development of delayed neuronal tolerance.   

1.6 NEURONAL TOLERANCE IS CONFERRED BY CELL DEATH MEDIATORS 

A variety of stress stimuli known to cause ischemic brain injury, when exposed at sub-lethal 

levels have been reported to trigger neuronal tolerance, including ischemia, hypoxia, metabolic 

inhibitors, excitotoxins, and inflammatory cytokines (Gidday, 2006).  Generally, a particular 

stress stimulus can either be too weak to elicit any response, sufficient to precondition neurons 

and confer tolerance, or too robust and therefore lethal (Dirnagl et al., 2003).  Similarly, the 

intensity or duration of conserved cellular mediators may be critical in determining cell fate.  

Indeed, recent evidence suggests that pro-survival mechanisms conferring neuroprotection in 

ischemic preconditioning may involve sub-lethal activation of cell death pathways.  For example, 

antioxidants and protease inhibitors, which limit cell death following lethal stimuli, can 

paradoxically increase vulnerability to subsequent lethal injury when administered during the 
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preconditioning period (McLaughlin et al., 2003).  Thus, the ultimate fate of neurons may not 

depend on which molecules are activated following a particular insult, but rather the extent and 

duration of their activity.  Below, I highlight several examples of such mediators that are 

particularly relevant to my dissertation work.   

1.6.1 Caspase-3 

Cysteine aspartic acid-specific proteases (caspases) are a family of proteolytic enzymes that 

cleave hundreds of targeted proteins during apoptosis including structural proteins, DNA repair 

enzymes, and cleavage-activated kinases (Taylor et al., 2008).  The family is divided into 

initiators (such as caspase-8), which can auto-activate and cause the proteolysis of other 

caspases, and effectors (such as caspases-3, -6 and -7), which are activated by other caspases and 

carry out substrate proteolysis and cell death (Taylor et al., 2008).  Activation of caspases 

eventually leads to, or is accompanied by, cellular changes of apoptosis, including membrane 

blebbing, DNA fragmentation, chromatin condensation, and formation of apoptotic bodies (Kerr 

et al., 1972).  Caspase activation has been shown to play an important role in ischemic 

neurodegeneration as genetic or pharmacological inhibition of caspases is neuroprotective in 

experimental stroke (Endres et al., 1998; Le et al., 2002).  Caspase-3 mRNA, protein, and 

cleavage products can be detected in animal models of stroke at varying time points following 

insult depending on the extent of ischemia and reperfusion injury (Asahi et al., 1997; Namura et 

al., 1998).  Caspase-3 inhibition prior to, or following, cerebral ischemia markedly reduced 

neuronal injury due to ischemia and reperfusion injury (Fink et al., 1998).  Thus, caspase-3 plays 

a significant role in ischemic neuronal death.       
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Surprisingly, caspase-3 has also been implicated in neuronal tolerance.  Our laboratory 

was first to show that preconditioning led to caspase cleavage in vivo and that caspase-3 activity 

was required for neuronal tolerance in vitro (McLaughlin et al., 2003).  Pro-caspase cleavage and 

caspase enzymatic activity reach maximum levels six hours following a preconditioning stimulus 

and are dependent on ROS generation and KATP channel opening (Garnier et al., 2003; 

McLaughlin et al., 2003).  Although widespread caspase-3 activation characterizes many cell 

death processes, the relatively modest preconditioning-induced caspase-3 activation is held in 

check by sequestration with caspase-binding proteins including the constitutively active heat 

shock protein 70 (HSP70) homologue HSC70 (McLaughlin et al., 2003) and the pro-survival 

inhibitor-of-apoptosis (IAP) family member cIAP (Tanaka et al., 2004).  The depletion of the 

free pool of HSC70 leads to increased synthesis of HSP70, which is observed 24 hours following 

preconditioning and is able to buffer lethal caspase-3 generation (McLaughlin et al., 2003).  

Importantly, inhibiting the activation of caspase-3 or the upregulation of HSP70 attenuates the 

neuroprotective effect of preconditioning (McLaughlin et al., 2003).   

 

Aside from upregulating survival proteins in preconditioned neurons, caspase-3 has also 

been shown to target poly(ADP-ribose) polymerase-1 (PARP-1; Szabo and Dawson, 1998; 

Garnier et al., 2003; Lee et al., 2008).  PARP-1, which accounts for >80% of nuclear PARP 

activity (Heller et al., 1995; D'Amours et al., 1999), facilitates DNA repair by mediating the 

enzymatic transfer of ADP-ribose groups from NAD+ to form branched ADP-ribose polymers on 

acceptor proteins in the vicinity of DNA strand breaks or kinks.  However, extensive PARP-1 

activation, which occurs in ischemia (Virag and Szabo, 2002), depletes NAD and ATP, leading 

to cellular energy failure and cell death (Ha and Snyder, 1999).  Caspase-3 can irreversibly 
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cleave the catalytic site of PARP-1 from its DNA binding domain, effectively inactivating the 

polymerase (Lazebnik et al., 1994; Le et al., 2002).  Accordingly, preconditioning stimulates 

caspase-dependent PARP-1 cleavage, attenuating PARP-1 activity, and protecting neurons from 

subsequent PARP-1 mediated cell death (Garnier et al., 2003).  Caspase inhibition during 

preconditioning blocked PARP-1 cleavage and severely diminished the neuronal tolerance 

(Garnier et al., 2003).  Thus, the killer protease caspase-3, when activated to sub-lethal levels, is 

a critical mediator of neuroprotection in preconditioned neurons.  Although the preconditioning-

induced caspase activation and some of its downstream targets have been characterized, little is 

known about proximal signaling events that contribute to sub-lethal caspase activation.  A recent 

report showed that preconditioning mouse cortical cultures with sub-lethal Zn2+ activated 

caspase-3-dependent PARP-1 cleavage and HSP70 upregulation (Lee et al., 2008).  Not 

surprisingly, caspase-3 and HSP70 induction were required for conferring tolerance to 

subsequent excitotoxic and Zn2+-dependent toxicity (Lee et al., 2008).  Most importantly, 

however, Lee and colleagues showed a sub-lethal accumulation of neuronal Zn2+ following 

preconditioning in vivo, which was necessary for ischemic tolerance (Lee et al., 2008).  Despite 

these findings, the mechanism underlying the rise in free Zn2+ in preconditioned neurons was not 

explained.  In this dissertation, I concentrate on upstream Zn2+-dependent signaling pathways 

involved in initaing tolerance by examining the source of the Zn2+ rise in preconditioned neurons 

and investigating preconditioning-induced Zn2+-regulated gene expression. 

1.6.2 Protein kinase C (PKC) 

As mentioned above, PKC is a family of serine/threonine kinases shown to play a role in Zn2+-

dependent cell death signaling (Noh et al., 1999; Newton, 2001).  Zn2+ overload toxicity triggers 
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a PKC-dependent activation of NADPH oxidase, which generates ROS, resulting in cell death 

(Noh and Koh, 2000).  On the other hand, PKC plays a central role in the signal transduction 

pathway following a preconditioning stimulus in multiple models of rapid and delayed, cardiac 

and neuronal tolerance (Bright and Mochly-Rosen, 2005).  The seemingly opposing actions of 

PKC may be mediated by different isoforms.  For example, in neurons PKC has been 

implicated in mediating oxidative stress, apoptosis, and inflammation following cerebral 

ischemic injury (Koponen et al., 2000; Brodie and Blumberg, 2003), while PKC has been 

identified as a critical isoform responsible for neuroprotection (Raval et al., 2003).  Although 

PKC signaling clearly mediates neuroprotection in preconditioned neurons, the mechanistic 

details of its activation and its molecular targets remain unclear.  Diverse signaling mechanisms 

involving extracellular adenosine, mitogen-activated protein kinases (MAPK), mitochondrial 

proteins, and ROS have all been hypothesized to play a role as PKC activators or targets in 

preconditioned neurons (Bright and Mochly-Rosen, 2005).  In this dissertation, I provide 

evidence suggesting that PKC plays a novel early role in the post-translational modification of 

metallothionein, facilitating intracellular Zn2+ release, and driving neuroprotection.   

1.6.3 Potassium channels 

The enhancement of voltage-gated K+ channel activity, producing K+ efflux, is a critical step in 

many apoptotic programs (Yu, 2003; Bortner and Cidlowski, 2007).  Apoptotic K+ current 

enhancement leads to a decrease in the concentration of this cation in the cytoplasm (Yu et al., 

1999), which may serve as a permissive apoptotic signal (Bortner and Cidlowski, 1999, 2007), as 

pro-apoptotic factors are activated most efficiently at reduced K+ concentrations (Hughes and 

Cidlowski, 1999).  In our laboratory, Kv2.1 was identified as the critical mediator of K+ efflux 
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during neuronal apoptosis (Pal et al., 2003).  Kv2.1 is the major component of delayed-rectifying 

K+ current in cortical neurons (Murakoshi and Trimmer, 1999), and exists in large, highly 

phosphorylated clusters on the somatic surface and proximal dendrites of cortical neurons 

(Scannevin et al., 1996).  Stimulation of a caspase-dependent neuronal apoptotic cascade by 

oxidative injury triggers the liberation of intracellular Zn2+, leading to p38 MAPK-dependent 

phosphorylation and insertion of new Kv2.1-encoded channels (McLaughlin et al., 2001; Pal et 

al., 2006; Redman et al., 2007).   

 

As lethal K+ efflux is a component of apoptotic cell death, a sub-lethal modulation of 

voltage-gated K channel activity may mediate tolerance.  Ischemia leads to profound changes in 

neuronal excitability, manifesting as an early phase of cellular hyperpolarization and depression 

of neural activity followed by a second phase of dramatic enhancement of excitability (Krnjevic, 

2008).  Changes in metabolic state or intracellular Ca2+ concentration following ischemia can 

modulate a variety of K+ channels, including KATP channels, Ca2+-activated BK channels, and 

delayed rectifier voltage-dependent K+ channels (Runden-Pran et al., 2002; Ballanyi, 2004; 

Misonou et al., 2005).  Recent evidence has shown that sub-lethal ischemic injury is associated 

with a protein-phosphatase 2B (PP2B or calcineurin)-dependent dephosphorylation of existing 

Kv2.1 channels, which is accompanied by a dispersal of somatodendritic Kv2.1 clusters and 

hyperpolarizing shifts in voltage-dependency (Misonou et al., 2005).  The latter has been 

proposed to limit neuronal excitability and thus prevent widespread excitotoxic cell death 

(Surmeier and Foehring, 2004).  Thus, the modulation of Kv2.1 following mild ischemia may be 

an important adaptive response to cellular injury.  In this dissertation, I provide evidence that 
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Kv2.1 modulation following sub-lethal ischemia requires neuronal free Zn2+ providing a novel 

target of Zn2+ in a neuroprotective pathway.   

1.7 THESIS GOALS 

The overall goal of this thesis was to establish the role of Zn2+ in endogenous neuroprotective 

signaling mechanisms involved in neuronal tolerance.  Accumulating evidence suggests the sub-

lethal activation of cell death mediators can paradoxically activate endogenous protective 

pathways in neurons.  Several downstream signaling events including caspase-3 activation, 

PARP-1 cleavage, and HSP70 upregulation have been identified.  However, upstream signaling 

events that initiate neuroprotective signaling cascades in preconditioned neurons remain unclear.  

Zn2+ has been shown to play a critical role in ischemic neuronal cell death, but has recently 

emerged as a potentially important intracellular messenger.  Thus, I hypothesized that a sub-

lethal increase in neuronal free Zn2+ is required for conferring neuronal tolerance in 

preconditioned cells.  My first goal was to characterize the increase in free Zn2+ in 

preconditioned neurons and to determine whether this Zn2+ rise contributed to attenuating 

subsequent Zn2+-dependent toxicity.  The results from these studies are presented in Chapter 2.  

PKC has been shown to be an important signaling agent in both Zn2+-regulated gene expression 

as well as in neuronal tolerance.  Accordingly, I examined the role of PKC in mediating Zn2+-

regulated gene expression in preconditioned neurons.  Results from these studies suggested a 

very early role for PKC in facilitating Zn2+ liberation from intracellular stores.  Based on these 

data, I examined whether PKC could directly modulate MT in promoting a Zn2+ rise in 
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preconditioned neurons.  These data are also presented in Chapter 2.  This chapter represents the 

contents of a manuscript that was recently published (Aras et al., 2009).   

 

Kv2.1 encoded K+ channels are modulated following sub-lethal ischemic injury and are 

thought to be important in limiting neuronal excitability following ischemia.  Because a toxic 

Zn2+ rise triggers Kv2.1 modulation in lethal neuronal injury, I hypothesized that a sub-lethal 

increase in free neuronal Zn2+ may mediate Kv2.1 modulation in neuroprotection.  The results 

from these experiments are presented in Chapter 3.  This chapter represents the contents of a 

recently submitted manuscript.  The findings of my thesis work suggest that sub-lethal 

accumulation of free Zn2+ plays important roles in diverse pathways involved in protecting 

neurons from lethal ischemic injury (Figure 1).  With this dissertation, I detail this novel 

neuroprotective role for Zn2+ and examine a previously unexplored mechanism of triggering 

Zn2+-regulated gene expression by PKC-dependent modulation of the metallothionein/Zn2+ 

interaction.  In addition, I have included a related published study in Appendix B describing the 

critical role of apoptosis signal-regulating kinase-1 (ASK-1) in the Kv2.1 mediated K+ current 

enhancement following oxidant-induced injury (Aras and Aizenman, 2005).  Appendix C 

contains a published paper in detailing the variety of methods used to assess neuronal viability in 

primary neuronal cultures (Aras et al., 2008).      
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Figure 1 - Model of zinc-induced neuronal tolerance 

 

Figure 1.  Schematic diagram representing a proposed model in which a sub-lethal Zn2+ rise 

following preconditioning leads to the activation of Zn2+-regulated gene expression and the 

modulation of Kv2.1 channel properties.  The accumulation of free Zn2+ is facilitated by PKC-

dependent phosphorylation of MT.  The transient Zn2+ rise in preconditioned neurons may 

upregulate endogenous Zn2+ buffers, preventing subsequent lethal Zn2+-dependent cell death.        
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2.0  PKC REGULATION OF NEURONAL ZINC SIGNALING MEDIATES 

SURVIVAL DURING PRECONDITIONING 

2.1 ABSTRACT 

Sub-lethal activation of cell death processes initiate pro-survival signaling cascades.  As 

intracellular Zn2+ liberation mediates many neuronal death pathways, we tested whether a sub-

lethal increase in free Zn2+ could also trigger neuroprotection.  Neuronal free Zn2+ transiently 

increased following preconditioning and, importantly, this Zn2+ rise was both necessary and 

sufficient for conferring excitotoxic tolerance.  Lethal exposure to NMDA led to a delayed 

increase in Zn2+ that contributed significantly to excitotoxicity in non-preconditioned neurons, 

but not in tolerant neurons, unless preconditioning-induced free Zn2+ was chelated.  Thus, 

preconditioning may trigger the expression of Zn2+-regulating processes, which, in turn, prevent 

subsequent Zn2+-mediated toxicity.  Indeed, preconditioning increased Zn2+-regulated gene 

expression in neurons.  Examination of the molecular signaling mechanism leading to this early 

Zn2+ signal revealed a critical role for protein kinase C (PKC) activity in the Zn2+ rise, suggesting 

that PKC may act directly on the intracellular source of neuronal Zn2+.  As such, we identified a 

conserved PKC phosphorylation site at serine-32 (S32) of metallothionein (MT) that was 

important in modulating Zn2+-regulated gene expression and conferring excitotoxic tolerance.  

Importantly, we observed increased serine phosphorylation in immunopurified MT1, but not in 
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mutant MT1(S32A), when incubated with catalytically active PKC.  These results indicate that 

neuronal Zn2+ serves as an important, highly regulated signaling component responsible for the 

initiation of a neuroprotective pathway. 

2.2 INTRODUCTION 

The mammalian brain contains relatively high concentrations of Zn2+ (~150M; Weiss et al., 

2000), reflecting its critical role not only as a structural component of numerous proteins and 

transcription factors but also as a neuromodulator and intracellular signaling messenger 

(Frederickson and Bush, 2001; Yamasaki et al., 2007).  Most cellular Zn2+ is tightly bound to 

metal-binding proteins, limiting the amount of chelatable, “free” Zn2+ in the cytoplasm under 

physiological conditions (Outten and O'Halloran, 2001; Krezel and Maret, 2006).  Nonetheless, 

the liberation of neuronal Zn2+ from intracellular stores, mediated by oxidative and nitrative 

stress, can readily trigger cell death signaling (Aizenman et al., 2000b; Bossy-Wetzel et al., 

2004; Zhang et al., 2004).  Neurotoxicity initiated by endogenous Zn2+ liberation is mediated by 

the generation of reactive oxygen species (ROS; McLaughlin et al., 2001; Bossy-Wetzel et al., 

2004; Dineley et al., 2008), the release of cytochrome c and apoptosis-inducing factor from 

mitochondria (Sensi et al., 2003), and phosphorylation of mitogen-activated protein kinases 

(MAPK; McLaughlin et al., 2001; Du et al., 2002; Bossy-Wetzel et al., 2004).   

 

A sub-lethal, preconditioning stimulus can activate endogenous pathways that limit or 

resist subsequent lethal injury in the brain (Kitagawa et al., 1990; for recent review, see Gidday, 

2006).  While the mechanisms conferring neuronal tolerance have yet to be fully defined, 
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increasing evidence suggests that preconditioning stimuli induce the sub-lethal activation of cell 

death factors that trigger endogenous survival pathways, which, in turn, prevent subsequent 

lethal signaling (Gidday, 2006).  For example, ischemic preconditioning leads to sub-lethal 

activation of caspase-3 both in vivo and in vitro (Garnier et al., 2003; McLaughlin et al., 2003; 

Tanaka et al., 2004; Lee et al., 2008).  Importantly, caspase activation is required for the 

establishment of tolerance to lethal stimuli (McLaughlin et al., 2003).  Analogous roles in the 

establishment of neuronal tolerance have also been described for other signaling molecules 

linked to cell death including poly (ADP-ribose) polymerase-1 (PARP-1), p38 mitogen-activated 

protein kinase (MAPK), and protein kinase C (PKC; Garnier et al., 2003; Nishimura et al., 2003; 

Raval et al., 2003; Lee et al., 2008). 

 

Here, we establish endogenous intracellular Zn2+ as a necessary and sufficient early 

signal in an in vitro model of excitotoxic tolerance (see also Lee et al., 2008).  A 

preconditioning-induced increase in neuronal Zn2+ was critical in rendering neurons resistant to 

lethal excitotoxic insults that would otherwise induce Zn2+-mediated toxicity.  Examination of a 

potential Zn2+-mediated neuroprotective pathway revealed that the major source of 

preconditioning-induced Zn2+ is metallothionein (MT) and that the Zn2+ signal emanating from 

the metal binding protein can be directly modulated by PKC phosphorylation.  The results 

presented here strongly suggest that neuronal free Zn2+ serves as an upstream signaling 

component responsible for the initiation of pro-survival pathways that ultimately confer 

excitotoxic tolerance. 
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2.3 MATERIALS AND METHODS 

Materials.  Reagents were obtained from Sigma (St. Louis, MO) unless otherwise noted. 

Tissue culture supplies were purchased from Invitrogen (Carlsbad, CA), except for heat-

inactivated and iron-supplemented bovine calf serum (Hyclone, Logan, UT). Renilla luciferase 

reporter gene (pRL-TK) and Dual-Glo luciferase assay system were purchased from Promega 

(Madison, WI).  The MRE-luciferase construct (pLuc-MCS/4MREa) was kindly provided by Dr. 

David Giedroc (Indiana University, Bloomington, IN; Chen et al., 2004).  Isoform-specific 

constitutively active PKC plasmids were kindly provided by Dr. Jae-Won Soh (Inha University, 

Incheon, South Korea; Soh et al., 1999).   

 

Rat primary cortical culture and transfection.  All experiments were performed in 

cortical cultures prepared from embryonic day 16 Sprague-Dawley rats (Charles River 

Laboratories, Wilmington, MA) as previously described (Hartnett et al., 1997).  Cultures were 

utilized at 18–22 days in vitro (DIV).  For transfection, neurons were treated for 5 hours with 

2L Lipofectamine 2000 (Invitrogen, Carlsbad, CA), 100L OptiMEM (GIBCO, Grand Island, 

NY), and 1.5g DNA per well in 500L 2% serum-containing media.       

 

Preconditioning and assessment of neuronal viability. An in vitro model of ischemic 

preconditioning was previously developed in our laboratory (Aizenman et al., 2000a; 

McLaughlin et al., 2003).  Briefly, cortical cultures were treated with 3mM potassium cyanide 

(KCN) in a glucose-free balanced salt solution (150mM NaCl, 2.8mM KCl, 1mM CaCl2, 10mM 

HEPES, pH 7.2) for 90min at 37oC.  Twenty-four hours later, neurons were exposed to 100M 
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N-methyl-D-aspartate (NMDA) and 10M glycine for 60 min prepared in phenol red-free MEM, 

supplemented with 25mM HEPES and 0.01% BSA.  Neuronal viability was determined 18-24 

hours following NMDA treatment with a lactate dehydrogenase (LDH) release assay (TOX-7 in 

vitro toxicology assay kit; Sigma) and/or by cell counting, with essentially similar results (Koh 

and Choi, 1987; Aras et al., 2008).   

 

Neuronal viability in transfected neurons was assessed using a luciferase reporter assay 

(Aras et al., 2008).  Twenty-four to forty-eight hours following transfection of a luciferase 

reporter plasmid (pUHC13-3) and any other plasmids of interest, neurons were treated with 

control and experimental conditions and assayed for luciferase-mediated luminescence using a 

SteadyLite luciferase assay system (PerkinElmer, Waltham, MA).  Following 10-minute 

incubation in the luciferase reagent, luminescence was measured using a 96-well microplate 

reader (Wallac 1420, PerkinElmer Life Sciences, Waltham, MA).  Cell viability is proportional 

to luciferase activity.     

 

Intraneuronal Zn2+ imaging.  To assess the relative magnitude of intracellular free Zn2+ 

in neurons, we utilized the Zn2+-sensitive fluorescent probe, FluoZin-3 AM (Molecular Probes, 

Eugene, OR).  FluoZin-3 AM is a cell-permeant, non-ratiometric fluorescent dye that responds 

robustly to physiological changes in cellular free Zn2+ and is highly selective for this metal 

(Devinney et al., 2005).  Following treatment with chemical ischemia or an excitotoxic stimulus, 

neurons were loaded with FluoZin-3 (30min; 5M prepared in buffered solution containing 

144mM NaCl, 3mM KCl, 10mM HEPES, 5.5mM glucose, 5mg/mL bovine serum albumin; pH 

7.3).  The culture-containing glass coverslips were then immediately transferred to a recording 
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chamber (Warner, Hamden, CT) mounted on an inverted epifluorescence microscope superfused 

with phenol red-free MEM, supplemented with 25mM HEPES and 0.01% BSA.  Images were 

acquired by exciting the fluorescent dye with 490 nm light every 10 seconds for 5 minutes using 

a computer controlled monochromator (Polychrome II, TILL photonics, Martinsried, Germany) 

and CCD camera (IMAGO, TILL photonics).  Following acquisition of baseline metal levels (for 

approximately 100s), any neuronal free Zn2+ was chelated by superfusing cells with the 

membrane-permeant Zn2+ chelator N,N,N’,N’-tetrakis (2-pyridalmethyl) ethylenediamine (TPEN, 

20μM).  The magnitude of the Zn2+ fluorescence for all neuronal cell bodies in a single field (n = 

5–20 neurons) was determined by subtracting the fluorescence signal after TPEN perfusion from 

the initial baseline signal (FTPEN).  With this method, larger FTPEN values correspond to higher 

amounts of pre-existing free intracellular Zn2+ in cells (Knoch et al., 2008).   

 

Luciferase reporter assay.  Cortical neurons were co-transfected with the metal 

response element (MRE)-firefly luciferase reporter (pLuc-MCS/4MREa) and Renilla luciferase 

reporter (pRL-TK) using Lipofectamine 2000 (Invitrogen, Carlsbad, CA) as previously described 

(Hara and Aizenman, 2004).  The MRE-luciferase construct contains four tandem repeats of the 

endogenous MREa sequence (GGCTTTTGCACTCGTCCCGGCT) from the human 

metallothionein-IIA (hMT-IIA) gene upstream of a basal promoter that drives transcription of 

firefly luciferase (Chen et al., 2004).  In transfected neurons, activation of MRE by Zn2+ drives 

the transcription of the firefly luciferase gene, increasing enzymatic luciferase activity.  Renilla 

luciferase, driven by the constitutively active herpes simplex virus thymidine kinase (HSV-TK) 

promoter, is a non-inducible reporter used to standardize transfection efficiency.  Neurons were 

treated 24 - 48 hours following transfection.  Following treatment, neurons were extensively 
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washed and placed in a humidified 37oC incubator for 5-24 hours until luciferase activity was 

measured.   

 

Generation of MT3 targeted short hairpin RNA (shRNA) expression plasmid.  RNA 

interference (RNAi) technology was used to knock-down endogenous MT3 in neurons.  A MT3-

shRNA targeting plasmid was constructed by inserting targeting oligonucleotides into the 

pSuppressorNeo plasmid (Imgenex; San Diego, CA).  Inserted clones express RNAs under the 

U6 promoter in transfected mammalian cells as fold-back stem-loop structures that are processed 

into siRNA (Dykxhoorn et al., 2003).  The synthetic oligonucleotides (sense, 

tcgagcctgctcggacaaatgcaattcaagattgcatttgtccgagcaggttttt; antisense, ctagaaaaacctgctcggacaaatgca 

atcttgaattgcatttgtccgagcaggc) were used for the preparation of the MT3-shRNA fragment.  A 

MT1-shRNA construct was prepared using a similar strategy (sense, 

tcgagaactgcaaatgcacctccttcaagaggaggtgcatttgcagttcttttt; antisense, ctagaaaaagaactgcaaatgcacctc 

ctcttgaaggaggtgcatttgcagttc). 

 

To confirm the specificity of the MT3-shRNA plasmid, we generated MT3 and MT1 

expression vectors, each coupled to a different fluorescent probe.  The MT3 and MT1 expression 

plasmids were constructed by first amplifying the MT3 and MT1 full-length cDNAs from rat 

brain and liver cDNAs, respectively.  Specific primers for MT3 (sense primer, 

agaagcttgccaccatggaccctgagacctgccc; antisense primer, gaggatcctggcagcagctgcatttct) and MT1 

(sense, agaagcttgccaccatggaccccaactgctcctg; antisense, gaggatccgcacagcacgtgcacttgtc) were used 

for the amplification.  Second, the MT3 and MT1 cDNAs obtained were inserted into the Hind 

III/BamH I sites of the pEGFP-N1 and the pDsRed2-N1 vectors, respectively, in frame.  The 
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final constructs encoded fusion proteins that fluoresced green for MT3 and red for MT1.  Third, 

Chinese hamster ovary (CHO) cells were used as an expression system to verify the specificity 

of the constructs in epifluorescence and immunoblotting experiments (Supplementary Figure 1).   

 

Site-directed mutagenesis.  Mutagenesis of the MT1-DsRed cDNA was performed with 

a QuikChange XL kit (Stratagene, La Jolla, CA) according to the manufacturer's directions. 

Primers containing the desired mutation, serine on residue 32 to alanine (S32A) or aspartic acid 

(S32D), were obtained from Integrated DNA Technologies (Coralville, IA).  The specific primers 

for MT1(S32A) used in the amplification were as follows:  sense primer, 

aaatgcacctcctgcaagaaggcctgctgctcctgctgccccgtg; antisense primer, cacggggcagcaggagcagcaggcctt 

gcaggaggtgcattt.  The specific primers for MT1(S32D) used in amplification were as follows:  

sense primer, aaatgcacctcctgcaagaaggactgctgctcctgctgccccgtg; antisense primer, 

cacggggcagcaggagcagcagtccttcttgcagcaggtgcattt.  Mutations in MT1-DsRed were confirmed by 

sequencing.  These constructs were used in neuronal transfection experiments where they were 

co-expressed with luciferase reporters.   

 

Cell-free kinase assay.  Wild-type MT1- and mutant MT1(S32A)-expressed protein 

from transfected CHO cells was immunoprecipitated by incubating cell lysates with an anti-

metallothionein rabbit polyclonal antibody (1g antibody per 1mL of cell lysate; Santa Cruz 

Biotechnology, Santa Cruz, CA) followed by a Protein A/G PLUS-Agarose immunoprecipitation 

reagent (Santa Cruz).  The immunoprecipitated substrate was incubated in 15l of kinase buffer 

(25mM Hepes, pH 8.0/2mM DTT/0.1mM vanadate), 15l of Mg/ATP (50mM MgCl2 and 50M 

ATP), and 20ng of activated PKC catalytic subunit (Calbiochem, San Diego, CA) at 30oC for 1 
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hour.  Reactions containing kinase buffer alone, kinase buffer plus Mg/ATP, and 100nM 

Ro318220 were used as controls.  The reaction was stopped with sample preparation buffer 

(62.5mM Tris-HCl, pH 6.8/25% glycerol/2% SDS/0.01% bromophenol blue/5% -

mecaptoethanol) and incubated at 95oC for 5 min before SDS/PAGE and immunoblotting.  

Immunoblotting was performed with a phospho-Serine (PKC substrate-specific) antibody (Cell 

Signaling Technology, Beverly, MA, cat #2261; 1:1000) and the metallothionein rabbit 

polyclonal antibody (1:1000).   

 

Data analysis.  Data are expressed as mean ± SEM.  Statistical analysis was performed 

using Student’s t test or ANOVA with post hoc comparisons, as indicated in figure legends.  An 

of p<0.05 was considered statistically significant. 
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2.4 RESULTS 

Inhibitors of energy metabolism, including KCN, can be coupled with glucose-free conditions to 

model ischemia (Aizenman et al., 2000a; Garnier et al., 2003; McLaughlin et al., 2003).  Sub-

lethal KCN exposure has been shown to induce excitotoxic tolerance in cortical neurons 

(McLaughlin et al., 2003).  This in vitro preconditioning paradigm, which is used in the present 

study, expresses the hallmark features of delayed neuronal tolerance including requisite protein 

synthesis, involvement of mitochondrial KATP channels, and production of ROS (McLaughlin et 

al. 2003).   

2.4.1 Preconditioning induces a transient increase in neuronal free Zn2+. 

The cell-permeant, non-ratiometric, Zn2+-sensitive fluorescent probe, FluoZin-3 was used to 

determine whether sub-lethal chemical ischemia increases neuronal free Zn2+.  Cortical neurons 

were treated with increasing concentrations of KCN in glucose-free conditions for 90 minutes 

and immediately loaded with FluoZin-3 (5M, 30 minutes).  Neuronal TPEN-sensitive Zn2+ 

fluorescence (FTPEN) increased in a dose-dependent manner immediately following sub-lethal 

chemical ischemia (Figure 2a).  Importantly, the concentration of KCN that has been shown to 

be a successful preconditioning stimulus (3mM; McLaughlin et al. 2003) resulted in a 

statistically significant increase in FTPEN when compared to vehicle-treated cells (Figure 2a).  

This increase in neuronal free Zn2+ following preconditioning was transient, as it diminished to 

intermediate levels 4 hours post-preconditioning (not shown) and returned to baseline levels 24 

hours following preconditioning (e.g., see Figure 3c).  However, the kinetic characteristics of the 
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preconditioning-induced Zn2+ rise are not representative of the “zinc wave” phenomenon as 

recently reported for mast cells (Yamasaki et al., 2007).   

2.4.2 Excitotoxicity increases free Zn2+ in non-preconditioned neurons. 

We investigated whether intracellular Zn2+ increased following NMDA exposure in non-

preconditioned neurons and evaluated the contribution of this metal to NMDA-mediated toxicity.  

FluoZin-3 fluorescence was measured at various time points following treatment of neurons with 

an excitotoxic insult (100M NMDA plus 10M glycine, 60 minutes).  NMDA treatment led to 

a delayed increase in FTPEN, reaching significant levels 6 hours following the excitotoxic insult 

(Figure 2b).    To determine whether this delayed increase in neuronal free Zn2+ is critical for 

excitotoxic cell death, neuronal free Zn2+ was chelated with 1M TPEN during and 24 hours 

following exposure to increasing concentrations of NMDA (plus 10M glycine) in non-

preconditioned neurons.  We found that co- and post-treatment with 1M TPEN significantly 

attenuated NMDA-induced toxicity (Figure 2c).  We confirmed that this concentration of TPEN 

is non-toxic to neurons (not shown), as higher concentrations of TPEN can lead to neuronal 

toxicity (Ahn et al., 1998).  We also confirmed that pre-treatment with TPEN alone for 24 hours 

prior to NMDA exposure does not subsequently affect NMDA-induced toxicity (Figure 4a), or 

the NMDA-induced increase in Zn2+ (Figure 3c).  As an additional method for chelating 

intracellular Zn2+, cortical neurons were transfected with the metal-binding protein, 

metallothionein-3 (MT3), and subsequently exposed to 30M NMDA (plus 10M glycine).  

Overexpression of MT3 serves as a sink for free Zn2+ in neurons (e.g., see Figure 7a), and like 

TPEN, would be expected to effectively chelate NMDA-induced free Zn2+.  We found that 
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transfected neurons overexpressing MT3 had significantly reduced toxicity following NMDA 

compared to vector-expressing neurons (Figure 2c, inset).  These results indicate that the delayed 

increase in neuronal Zn2+ following NMDA contributes substantially to excitotoxicity, 

confirming previous reports (Bossy-Wetzel et al., 2004).      
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Figure 2 - Preconditioning and excitotoxicity increase neuronal zinc 
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Figure 2.  (A) Inset, representative fluorescence traces of several vehicle and 3mM KCN-treated 

neurons in a single coverslip.  Each trace reflects the level of intracellular free Zn2+ in a single 

neuron.  Arrow depicts the beginning of superfusion with 20M TPEN to chelate Zn2+ and 

quench florescence.  Calibration:  10 arbitrary fluorescence units, 60 seconds.  Plot shows 

TPEN-sensitive Zn2+ fluorescence, expressed as FTPEN, which was determined by subtracting 

the fluorescence signal after TPEN superfusion from the baseline signal.  Data represent the 

mean (± s.e.m.) FTPEN measurements from 5-10 coverslips, each containing 5-10 neurons 

(**p<0.01 compared to 0mM KCN group; one-way ANOVA-Dunnett).  (B) Cortical neurons 

were exposed to 100M NMDA (with 10M glycine) for 60 minutes and allowed to recover for 

various times prior to FluoZin-3 loading.  Inset, examples of fluorescent images of cortical 

neurons loaded with 5M FluoZin either immediately (left panels) or 6 hours (right panels) 

following NMDA.  Images show FluoZin fluorescence from a representative field before (top 

panels) and after (bottom panels) 20M TPEN superfusion. Scale: 100m.  Plot shows FTPEN 

(mean ± s.e.m.) measurements from 5-10 coverslips, each containing 5-10 neurons (**p<0.01 

compared to 0 hr time point, one-way ANOVA-Dunnett).  (C) Neurons were treated with vehicle 

(squares) or 1M TPEN (triangles) during and 24-hours following exposure of non-

preconditioned neurons to increasing concentrations of NMDA (plus 10M glycine).  Neuronal 

viability was determined with LDH release, measured 24 hours following NMDA exposure.  

Data are expressed as mean (± s.e.m) relative toxicity from 4 independent experiments 

performed in triplicate (*p<0.05 compared to corresponding 0M TPEN group; paired two-tailed 

t-test).  Inset, neurons expressing either vector or MT3 (0.5g/well) along with a firefly 

luciferase reporter (pUHC13-3; 1.0g/well) were treated with 30M NMDA with 10M glycine 

(10min) twenty-four hours following transfection.  Twenty-four hours following treatment, 
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luciferase activity (viability; mean ± s.e.m) was measured from 4 independent experiments 

performed in quadruplicate (***p<0.001 Repeated measures ANOVA-Bonferroni Multiple 

Comparisons Test).     
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2.4.3 Preconditioning-induced Zn2+ elevation attenuates subsequent excitotoxicity-

induced Zn2+ rise. 

Previous work in our laboratory has shown that sub-lethal activation of cell death mediators 

initiates endogenous neuroprotective cascades that can buffer subsequent lethal levels of the 

same factor (McLaughlin et al. 2003).  Since preconditioning induces a sub-lethal increase in 

Zn2+, it is possible that preconditioned neurons may be tolerant to a subsequent NMDA-mediated 

elevation in Zn2+.  To test this, FTPEN was measured from preconditioned and non-

preconditioned neurons six hours following exposure to NMDA (Figure 3a).  Remarkably, the 

NMDA-induced delayed increase in neuronal Zn2+ was completely abolished in preconditioned 

neurons (Figure 3b, c).  To determine whether the preconditioning-induced free Zn2+ is required 

for the diminished NMDA-induced Zn2+, 1M TPEN was added during and 24 hours following 

preconditioning.  Following extensive washing to remove TPEN from the bathing medium, 

neurons were subsequently exposed to NMDA and assayed for the delayed increase in Zn2+ 

(Figure 3a).  We found that chelating preconditioning-induced free Zn2+ restores the excitotoxic 

delayed increase in neuronal Zn2+ (Figure 3c).  We verified that TPEN treatment without 

preconditioning had no effect on subsequent NMDA-induced Zn2+ elevation (Figure 3c).  These 

results suggest that the preconditioning-induced transient increase in neuronal Zn2+ triggers the 

expression of Zn2+-regulating processes, which, in turn, prevent or dampen subsequent increases 

in Zn2+ and Zn2+-mediated toxicity following NMDA.   
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Figure 3 - Excitotoxic zinc rise is attenuated by preconditioning-induced increase in neuronal zinc 
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Figure 3.  (A)  Diagram representing experimental protocol designed to measure the effect of the 

preconditioning-induced increase in Zn2+ on the NMDA-induced Zn2+ rise.  (B) Representative 

FluoZin fluorescence traces of a single coverslip containing non-preconditioned neurons exposed 

to vehicle, non-preconditioned neurons exposed to 100M NMDA (with 10M glycine, 60min), 

and 3mM KCN preconditioned neurons exposed to NMDA.  Each trace reflects the level of 

intracellular Zn2+ in a single neuron.  Arrow depicts the beginning of superfusion with 20M 

TPEN to quench Zn2+ fluorescence.  Calibration:  10 arbitrary fluorescence units, 60 seconds.  

(C) Preconditioned (3mM KCN, 90 minutes) and non-preconditioned neurons were exposed to 

100M NMDA (with 10M glycine) for 60 minutes.  FluoZin fluorescence was measured from 

neurons 6 hours following NMDA.  In TPEN-treated groups, 1M TPEN was present during and 

24 hours following preconditioning, but not during or after NMDA exposure.  FTPEN (mean ± 

s.e.m.) was measured from 5-10 coverslips in each group, each containing 5-10 neurons 

(*p<0.05, **p<0.01 compared to non-preconditioned, non-NMDA treated group; p<0.05; one-

way ANOVA-Tukey).   

 

 

 

 

 

 

 

 

 50 



2.4.4 Zn2+ is necessary and sufficient for excitotoxic tolerance. 

If chelating Zn2+ during preconditioning restores the NMDA-induced lethal increase in Zn2+, 

then Zn2+ chelation during preconditioning would also be expected to attenuate excitotoxic 

tolerance.  To test this, cortical neurons were treated with 1μM TPEN 30 minutes prior to, 

during, and 24 hours following preconditioning.  Neurons were subsequently exposed to NMDA 

and assayed for cell viability 18-20 hours following excitotoxic exposure.  In the absence of 

TPEN, preconditioning with chemical ischemia significantly reduced NMDA-induced toxicity 

(Figure 4a; McLaughlin et al. 2003).  In contrast, chelation of preconditioning-induced free Zn2+ 

restored the vulnerability of neurons to NMDA (Figure 4a).  TPEN treatment alone (without 

preconditioning) had no effect on subsequent NMDA-induced toxicity (Figure 4a).  Therefore, 

these data suggest that excitotoxic tolerance is critically dependent on the preconditioning-

induced transient increase in neuronal Zn2+. 

 

Next, to confirm the Zn2+-selectivity of the TPEN results above, we investigated whether 

Zn2+ exposure alone was sufficient to induce excitotoxic tolerance.  Cortical neurons were 

preconditioned with 30M Zn2+ in the presence of 300nM pyrithione, which selectively 

transports extracellular Zn2+ into cells.  Immediately following 18-24 hour incubation with Zn2+ 

and pyrithione, neurons were exposed to 30M NMDA plus 10M glycine for 30 minutes.  Cell 

viability was determined 24 hours following NMDA insult.  We found that 30M Zn2+ with 

300nM pyrithione afforded significant neuroprotection against NMDA toxicity (Figure 4b, c), to 

a similar degree as KCN preconditioning (e.g., see Figure 4a, inset).  In general, however, we 

found that exogenous Zn2+ administration was not an ideal preconditioning agent due to intrinsic 
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Zn2+ neurotoxicity (Choi and Koh, 1998).  Lower concentrations of Zn2+ (3, 10, and 20M), or 

30M Zn2+ without pyrithione, failed to induce tolerance, while higher concentrations of Zn2+ 

(100M) or pyrithione (1M, along with Zn2+) were themselves neurotoxic.  Further, although 

30 minute exposure of neurons to 30M NMDA led to significant toxicity (e.g., see Figure 4b, 

c), no tested combination of Zn2+ and pyrithione afforded significant neuroprotection from a 60 

minute exposure to 100M NMDA.   
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Figure 4 - Zinc is necessary and sufficient for excitotoxic tolerance 
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Figure 4.  (A) LDH release was measured following 100M NMDA (plus 10M glycine, 

60min) exposure in 3mM KCN preconditioned and non-preconditioned neurons treated in the 

presence or absence of 1M TPEN.  Main plot shows relative toxicity (mean ± s.d.) in a 

representative experiment (performed in quadruplicate; **p<0.01 compared to non-

preconditioned, vehicle treated group; one-way ANOVA-Dunnett), while inset shows pooled 

viability data normalized to its corresponding control (n=5 independent experiments in triplicate 

or quadruplicate; *p<0.05; Paired, two-tailed t-test).  (B)  Cortical neurons were preconditioned 

with 30M Zn2+ in the presence of 300nM pyrithione or 300nM pyrithione alone (non-

preconditioned) for 18-24 hours prior to exposure to 30M NMDA (plus 10M glycine) or 

vehicle (10M glycine alone).  Phase-contrast images were obtained 24 hours following NMDA 

exposure.  White arrows point to the presence of phase-bright, viable neurons in Zn2+-

precondioned cultures following NMDA exposure.  (C) Cortical neurons were preconditioned 

with 300nM pyrithione alone (non-preconditioned), 30M Zn2+ in the presence of 300nM 

pyrithione, or 30M Zn2+/300nM pyrithione in the presence of 1M Ro318220 for 18-24 hours 

prior to exposure to 30M NMDA (plus 10M glycine) or vehicle (10M glycine alone).  

Quantification of neuronal viability was determined by counting phase-bright live neurons in 10 

random, high-power (200X) fields.  Cell counts were performed 24-hours following NMDA 

exposure and expressed as percent viability (mean ± s.e.m.; n=4-9 independent experiments, 

each performed in triplicate; **p<0.01, ***p<0.001, significantly different from non-

preconditioned condition; ANOVA/Tukey).   
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2.4.5 PKC modulates the intraneuronal Zn2+ signal. 

Preconditioning triggers a transient increase in neuronal Zn2+ that is required for the attenuation 

of a subsequent, NMDA-induced lethal Zn2+ rise.  Thus, it is conceivable that the 

preconditioning-induced Zn2+ rise triggers a neuroprotective mechanism that involves the 

activation of Zn2+ regulatory elements that prevent subsequent Zn2+ toxicity.  An increase in 

intracellular free Zn2+ activates the metal response element transcription factor-1 (MTF-1), 

which translocates to the nucleus and activates a conserved metal response element (MRE), 

located on the promoter regions of Zn2+-regulated genes (Andrews, 2001).  Thus, a MRE-

luciferase reporter construct (Chen et al., 2004; Hara and Aizenman, 2004) was utilized not only 

to monitor the level of free Zn2+ in transfected neurons, but also to determine whether the Zn2+ 

rise was sufficient to trigger Zn2+-regulated gene expression.  While PKC has been previously 

implicated in Zn2+-regulated gene expression, all prior work had been performed in non-neuronal 

cell lines (LaRochelle et al., 2001b; Adams et al., 2002; Saydam et al., 2002; Jiang et al., 2004).   

Thus, we first confirmed that PKC plays a similar role in neurons.  Cortical neurons were co-

transfected with the MRE-firefly luciferase (pLuc-MCS/4MREa) and Renilla luciferase (pRL-

TK) reporters.  Twenty-four hours following transfection, neurons were treated with one of two 

PKC inhibitors, Ro318220 and Gö6976, during metal exposure (20M Cd2+ + 50 M 

NMDA/10M glycine, 10 minutes; Hara & Aizenman 2004).  In this treatment paradigm, Cd2+ 

permeates through the NMDA receptor (Ascher and Nowak, 1988), and strongly promotes MTF-

1/MRE activation indirectly by displacing Zn2+ from MT (Zhang et al., 2003).  We found that 

both PKC inhibitors blocked Zn2+-regulated gene expression in a concentration-dependent 

manner (Figure 5a).  Next, constitutively active forms of PKC were used to determine whether 
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PKC activity could enhance metal-induced MRE activation in neurons.  The constitutively active 

PKC constructs encode a truncated protein in which the catalytic domain of PKC is preserved 

and the regulatory N-terminal domain is deleted (Soh et al., 1999).  Forty-eight hours following 

transfection, neurons expressing a vector plasmid, constitutively active PKC1, or constitutively 

active PKC, along with the MRE-firefly and Renilla luciferase reporters were exposed to 

vehicle or Cd2+ and assayed for MRE activation.  We found enhanced basal and metal-induced 

MRE activation in neurons expressing constitutively active PKC isoforms compared to vector 

expressing neurons (Figure 5b).  Collectively, these data strongly implicate PKC activity in 

modulating the intracellular free Zn2+ signal and Zn2+-regulated gene expression in neurons.   

 

To determine whether PKC plays a role in preconditioning-induced Zn2+-regulated gene 

expression, neurons expressing the two luciferase reporter genes were exposed to KCN in the 

presence or absence of 1M Ro318220.  Ro318220 is a cell-permeable, competitive, and 

relatively selective inhibitor of PKC.  We first observed that preconditioning led to a significant 

activation of the MRE, similar to the positive control, 100M Zn2+ (Figure 5c, left).  PKC 

inhibition during preconditioning significantly attenuated Zn2+-regulated MRE activation (Figure 

5c, left) to a similar degree as during metal exposure (compare Figure 5c left to 5a).  To confirm 

the PKC selectivity of Ro318220, neurons expressing the MRE firefly and Renilla luciferase 

reporters were stimulated with KCN preconditioning in the presence of 1M H-89.  H-89 is a 

cell-permeable, selective, and potent inhibitor of PKA.  We found that, in contrast to Ro318220, 

H-89 had no effect on preconditioning-induced MRE activation (Figure 5c, left).  These data 

suggest that a signaling cascade involving PKC is necessary for Zn2+-dependent gene expression 

in preconditioned neurons.   
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PKC plays a central role in the signal transduction pathway in multiple models of 

neuronal tolerance (Raval et al., 2003; Bright and Mochly-Rosen, 2005; Dave et al., 2008).  To 

confirm that PKC plays a critical role in excitotoxic tolerance in our model, cortical neurons 

were exposed to 1M Ro318220 30 minutes prior to, during, and 24-hours following 

preconditioning. Cell viability was determined 24 hours following excitotoxic NMDA exposure.  

Indeed, PKC inhibition during preconditioning significantly blocked excitotoxic tolerance 

(Figure 5c, right).  Thus, PKC plays a major role in preconditioning-induced Zn2+-regulated gene 

expression and is required for excitotoxic tolerance.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 



 

Figure 5 - Critical role of PKC in zinc-regulated gene expression in neurons 
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Figure 5.  (A) MRE-firefly (fLuc; 1g/well) and Renilla luciferase (rLuc; 0.5g/well) -

expressing neurons were stimulated with 20M Cd2+ plus 50M NMDA and 10M glycine 

(10min) or vehicle in the presence or absence of increasing concentrations of the PKC inhibitors, 

Gö6976 and Ro318220.  Relative MRE-fLuc/rLuc values (mean ± s.e.m., n=4-7 independent 

experiments in quadruplicates) were normalized to the control response in the absence of any 

PKC inhibitor (100%).  (B) Neurons were transfected with MRE-firefly (0.375g/well) and 

Renilla luciferase (0.375g/well) expressing plasmids in conjunction with plasmids encoding 

vector alone, constitutively active PKC-1, or constitutively active PKC-0.75g/well).  Forty-

eight hours later, neurons were stimulated with 3M Cd2+ plus 50M NMDA and 10M glycine 

(10min) or vehicle.  Luciferase activity (MRE-fLuc/rLuc; mean ± s.e.m) was measured in 3-6 

independent experiments performed in quadruplicate (**p<0.01 compared to vector-expressing 

neurons stimulated by Cd2+).  (C)  Left (filled bars), neurons expressing the MRE-firefly 

(1g/well) and Renilla luciferase (0.5g/well) reporters were stimulated with 100M Zn2+ 

(10min), KCN preconditioning (3mM, 90 min), or KCN in the presence of either 1M Ro318220 

or 1M H-89, and subsequently assayed for luciferase activity 24 hours following treatment.  

Relative MRE-fLuc/rLuc values (mean ± s.e.m., n=4-11 independent experiments in triplicate) 

were normalized to the response in corresponding control neurons (*p<0.05, **p<0.01, 

***p<0.001 compared to 100%; one-sample two-tailed t-test; p<0.05 one-way ANOVA-

Tukey).  Right (open bars), neuronal viability was determined with LDH release following 

NMDA exposure in preconditioned neurons in the absence or presence or 1M Ro318220.  Data 

from 4 independent experiments performed in triplicate are expressed as viability (± s.e.m.) 

normalized to corresponding control condition (p<0.05; paired, two-tailed t-test).   
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2.4.6 Preconditioning-induced Zn2+ rise is downstream of PKC activity. 

Next, we examined the temporal relationship between Zn2+ liberation and PKC activation in 

preconditioned neurons.  Previous reports have shown that acute exposure of a high 

concentration of exogenous Zn2+ can activate neuronal PKC (Noh et al., 1999).  Zn2+-overload 

neurotoxicity involves a PKC-dependent activation of NADPH-oxidase, which contributes to 

intracellular ROS generation (Noh and Koh, 2000).  In other work, Knapp and Klann (2000) 

reported that mild oxidant-induced Zn2+ released directly from the Zn2+ finger motif of the 

cysteine-rich region of PKC is sufficient to trigger the activation of the kinase, suggesting that 

PKC activation and Zn2+ release occur almost simultaneously.  Thus, the precise temporal 

relationship between PKC and Zn2+ remains unclear and may be stimulus-dependent.  Here, 

KCN-induced Zn2+ accumulation was measured in neurons that were preconditioned in the 

presence of the PKC inhibitor Ro318220.  Again, to confirm the selectivity of Ro318220 for 

PKC, H-89 was also used in these experiments.  Surprisingly, co-treatment with Ro318220 

during preconditioning completely blocked the increase in neuronal Zn2+ (Figure 6), suggesting 

that PKC activity occurs upstream of the Zn2+ rise in preconditioned neurons.  To confirm this, 

we examined the requirement of PKC in the Zn2+-induced preconditioning model.  If 

intracellular Zn2+ is indeed downstream of PKC activity in the neuroprotective cascade, then 

PKC activity would not be required for Zn2+-induced preconditioning.  Neurons were 

preconditioned with 30M Zn2+/300nM pyrithione in the presence of Ro318220, and 

subsequently exposed to lethal NDMA.  We found that neuroprotection was maintained in the 

presence of PKC inhibition (Figure 4c).  Thus, in the Zn2+-induced preconditioning model, 

application of exogenous Zn2+ can bypass PKC and directly trigger the neuroprotective cascade, 

confirming the temporal relationship of PKC activity prior to Zn2+ signaling in preconditioning.         
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2.4.7 Intracellular Zn2+ is likely the primary source of the preconditioning-induced Zn2+ 

rise. 

In addition to liberation of neuronal Zn2+ from intracellular stores, synaptic release of vesicular 

Zn2+ and its translocation to postsynaptic neurons may contribute to neuronal injury following 

ischemia (Frederickson et al., 1989; Suh et al., 2000; but see Lee et al., 2000; Kay, 2003).  We 

approached this issue two ways:  1) by targeting the main route of extracellular Zn2+ entry during 

ischemia, namely Ca2+-permeable AMPA/kainate (Ca-A/K) channels (Sensi et al., 1999; Yin et 

al., 2002; Noh et al., 2005) with the competitive AMPA/kainate channel antagonist 6-cyano-7-

nitroquinoxaline-2,3-dione (CNQX); and 2) by chelating extracellular Zn2+ using a cell-

impermeant Zn2+ chelator, tricine (N-[Tris(hydroxymethyl)methyl]glycine; Paoletti et al., 2009).  

Intracellular Zn2+ was measured in neurons preconditioned in the presence CNQX (10M), or 

tricine (1mM).  We found that co-treatment with CNQX or tricine during preconditioning had 

little effect on the increase in neuronal Zn2+ (Figure 6), suggesting that the major source of 

preconditioning-induced Zn2+ is not extracellular.  It must be noted, however, that the use of a 

higher affinity extracellular Zn2+ chelator (1mM CaEDTA) substantially decreased both baseline 

and preconditioning-induced intracellular Zn2+ levels (data not shown).  As such, other sources 

of Zn2+ may be at play in this process, although CaEDTA has been reported to eliminate 

intracellular Zn2+ signals (Lee et al., 2000; Frederickson et al., 2002).   
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Figure 6 - Preconditioning-induced PKC activation is upstream of zinc release 

 

 

 

Figure 6.  Cortical neurons were preconditioned (3mM KCN, 90min) in the presence or absence 

of 3Ro318220, 1M H-89, 10M CNQX, or 1mM tricine immediately before FluoZin-3 

loading.  FTPEN (mean ± s.e.m.) was measured from 4-18 coverslips, each containing 10-20 

neurons (*p<0.05, **p<0.01 compared to non-preconditioned vehicle-treated neurons, one-way 

ANOVA-Tukey).   
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2.4.8 PKC alters the MT / Zn2+ interaction. 

Finally, we examined a possible site of action for PKC in Zn2+-regulated gene expression in 

cortical neurons.  Our results suggest that PKC acts upstream of preconditioning-induced Zn2+ 

release and may directly target an intracellular source of the liberated Zn2+ signal.  A likely 

source of such labile Zn2+ in neurons is MT3, which is the predominant MT isoform in neurons 

(Aschner, 1996; Aschner et al., 1997; Palmiter, 1998; Hidalgo et al., 2001).  When MT3 

expression is reduced using a MT3-specific targeting plasmid that generates RNAi (MT3-

shRNA; Supplementary Figure 1), MRE activation was enhanced, suggesting that under normal 

conditions, a fraction of MT3 is devoid of Zn2+ and can serve as a sink for intracellular free Zn2+ 

(Figure 7a).  Knock-down of MT1, which is not normally significantly expressed in neurons, had 

no effect on neuronal MRE activity (Figure 7a).  In contrast, neurons overexpressing MT3 or 

MT1 have excess Zn2+-binding capacity, resulting in reduced levels of free Zn2+ released to 

trigger MRE activation (Figure 7a).  Thus, MT3 may be a substantial source of labile Zn2+ in 

cortical neurons in vitro, and could potentially be one of the sites of PKC action during 

preconditioning.   

 

Scansite (http://scansite.mit.edu), a computer program that predicts protein 

phosphorylation sites (Obenauer et al., 2003) was used to search for potential PKC 

phosphorylation target motifs on MT.  All MT isoforms examined, regardless of species, 

contained a highly conserved, putative PKC phosphorylation site (serine 32 for MT1/2, serine 33 

for MT3).  In order to determine the role of this conserved site in Zn2+-regulated gene 

expression, site-directed mutagenesis was used to create mutant forms of MT, in which the 

amino acid of the putative PKC phosphorylation site, serine (S), was substituted for either a non-
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phosphorylatable alanine (A) or a phospho-mimicking charged aspartic acid (D) residue.  Since 

neurons predominantly express MT3, cells were transfected with the MT3-shRNA targeting 

vector to reduce background provided by this isoform.  In MT3-depleted neurons, 

overexpression of MT1 can restore the Zn2+-binding capacity of cells, thus permitting 

substitution of the endogenous protein (Figure 7a).  Using this approach, MRE activation was 

measured in MT3-depleted neurons expressing either wild-type MT1, a non-phosphorylatable 

mutant, MT1(S32A), or a phospho-mimicking mutant, MT1(S32D).  Forty-eight hours following 

transfection, Zn2+-regulated gene expression was stimulated with 100M Zn2+ for 10 minutes.  

Twenty-four hours following this treatment, Zn2+-induced MRE activation was significantly 

diminished in MT3-depleted, MT1(S32A)-expressing neurons, while significantly enhanced in 

MT3-depleted, MT1(S32D)-expressing neurons compared to MT3-depleted, wild-type MT1-

expressing neurons (Figure 7b).  These data suggest that neurons expressing a mutant MT, in 

which the putative PKC phosphorylation site is replaced with either a non-phosphorylatable 

residue or a phospho-mimicking charged residue, have altered efficiency in binding free Zn2+, 

resulting in modulation of Zn2+-regulated gene expression.   

 

In order to determine whether PKC could directly phosphorylate MT, we performed a 

cell-free assay in which recombinantly expressed, immunoprecipitated wild-type MT1 was used 

as a substrate for active PKC (Figure 7b, inset).  We found that wild-type MT1 exposed to active 

PKC produced increased phospho-serine immunoreactivity.  This increase in the phospho-

specific signal was abolished when the assay was performed in the presence of a PKC inhibitor 

(not shown).  Similar experiments were performed with the mutant MT1(S32A) protein yielding 
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no change in phospho-serine immunoreactivity.  Thus, active PKC can directly induce selective 

phosphorylation of MT1 at residue S32.   

 

During preconditioning, PKC may influence Zn2+-regulated gene expression by targeting 

MT at S32 and modulating the MT/Zn2+ interaction, ultimately leading to altered levels of 

neuroprotection.  To test this, MT3-depleted neurons expressing either wild-type MT1 or 

MT1(S32A) along with a luciferase reporter plasmid were preconditioned with KCN.  Twenty-

four hours following preconditioning, neurons were exposed to NMDA excitotoxicity and 

subsequently assayed for viability.  We found that KCN preconditioning was less efficient in 

conferring excitotoxic tolerance to MT3-depleted, MT1(S32A)-expressing neurons compared to 

MT3-depleted, wild-type MT1-expressing neurons (Figure 7c).  Collectively, these data strongly 

suggest that PKC can directly phosphorylate MT and influence the MT/Zn2+ interaction, 

resulting in modulation of neuronal free Zn2+ and Zn2+-regulated gene expression critical for 

preconditioning-induced tolerance. 
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Figure 7 - PKC alters the MT/zinc interaction 
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Figure 7.  (A) Neurons were transfected with MRE-firefly (0.5g/well) and Renilla luciferase 

(0.5g/well) expressing plasmids in conjunction with a plasmid encoding vector, MT3, MT1, the 

MT3-shRNA targeting vector, the MT1-shRNA targeting vector, or the MT3-shRNA targeting 

vector with MT1 (0.5g/well).  Forty-eight hours later, neurons were stimulated with 20M 

Cd2+ plus 50M NMDA/10M glycine or vehicle and assayed for luciferase expression.  

Relative MRE-fLuc/rLuc values (mean ± s.e.m., n=3-11 independent experiments in 

quadruplicate) were normalized to the response in corresponding vehicle-treated groups and then 

to the response in vector-expressing neurons (*p<0.05, **p<0.01, ***p<0.001 compared to 

100%; One-sample two-tailed t-test.; p<0.05 one-way ANOVA-Tukey).  (B)  Neurons were 

transfected with MRE-firefly (0.375g/well) and Renilla (0.375g/well) luciferase reporters in 

addition to the MT3-shRNA targeting vector (0.375g/well) and either a wild-type MT1, a 

mutant MT1(S32A) plasmid,  or a mutant MT1(S32D) plasmid (0.375g/well).  Forty-eight 

hours following transfection, neurons were stimulated by 100M Zn2+ and assayed for luciferase 

activity.  Luciferase activity (mean ± s.e.m.) was measured from 3-11 independent experiments 

performed in quadruplicate (p<0.05; repeated measures ANOVA-Bonferroni Multiple 

Comparisons Test). Inset, wild-type MT1 and mutant MT1(S32A) proteins were 

immunoprecipitated from CHO cell lysates with a metallothionein rabbit polyclonal antibody 

(1g antibody per 1mL of cell lysate) and reacted with 15l of kinase buffer (25mM Hepes, pH 

8.0/2mM DTT/0.1mM vanadate), 15l of Mg/ATP (50mM MgCl2 and 50M ATP), and 20ng of 

activated PKC catalytic subunit at 30oC for 1 hour.  Immunoblots were probed with the phospho-

Serine (PKC substrate-specific) antibody (1:1000).  Representative immunoblot of 4 independent 

experiments is shown. (C)  Neurons were transfected with a firefly luciferase reporter (pUHC13-

3; 0.5g/well) in conjunction with the MT3shRNA targeting vector (0.5g/well) and either wild-
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type MT1 or the mutant MT1(S32A) plasmid (0.5g/well).  Forty-eight hours following 

transfection, neurons were preconditioned with 3mM KCN and subsequently exposed to 100M 

NMDA/10M glycine (60min).  Luciferase activity (viability; mean ± s.e.m.) was measured 24 

hours following NMDA exposure from 6 independent experiments performed in triplicate 

(p<0.05 repeated measures ANOVA-Bonferroni Multiple Comparisons Test).   
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2.5 DISCUSSION 

Zn2+ has been implicated as a causative trigger in many forms of neuronal cell death (Choi and 

Koh, 1998; Weiss et al., 2000; Frederickson et al., 2005).  Here, we report a different, 

neuroprotective role for intracellular Zn2+.  A sub-lethal preconditioning stimulus elicited an 

immediate increase in neuronal free Zn2+, which attenuated a subsequent excitotoxicity-induced 

increase in this metal.  Chelating Zn2+ during preconditioning restored the excitotoxic increase in 

neuronal free Zn2+ and blocked excitotoxic tolerance.  We examined the molecular signaling 

mechanism involved in excitotoxic tolerance and found that PKC activity was required for the 

preconditioning-induced increase in free Zn2+, activation of Zn2+-regulated gene expression, and 

neuroprotection.  Finally, we identified a PKC phosphorylation site on MT that can modulate 

Zn2+-regulated gene expression and neuroprotection presumably by facilitating Zn2+-release from 

MT.  Taken together, these results implicate intracellular Zn2+ in a neuroprotective pathway 

critical for excitotoxic tolerance.  A very similar role for Zn2+-mediated neuroprotection was 

recently described (Lee et al., 2008). 

 

A preconditioning-induced, sub-lethal increase in neuronal free Zn2+ prevents a 

subsequent, NMDA-induced lethal increase in Zn2+, likely by triggering the expression of Zn2+-

regulating processes.  Evidence suggesting a role for endogenous Zn2+-regulated proteins in 

neuroprotection comes from studies that used transgenic mice to examine the role of MT in 

ischemic cell death.  MT overexpressing mice showed an average of 42% smaller infarct 

volumes and better motor performance compared to control mice following focal cerebral 

ischemia (van Lookeren Campagne et al., 1999).  In contrast, MT 1/2-knock out mice develop 

approximately three-fold larger infarcts than wild-type mice (Trendelenburg et al., 2002).  
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Endogenous proteins involved in Zn2+ homeostasis, including MT1/2 and Zn2+ transporters are 

transcriptionally regulated by the Zn2+/MTF-1/MRE pathway (Andrews, 2001).  Since delayed-

onset neuronal tolerance requires de novo protein synthesis (Gidday, 2006), a potential survival 

pathway in preconditioning may involve the transcriptional upregulation of Zn2+-regulated 

proteins. Indeed, we found that preconditioning sufficiently activates a neuronal Zn2+-specific 

MRE reporter construct containing the conserved response element located on the promoter 

regions of the Zn2+-regulated genes.  Together, these data provide strong evidence for Zn2+-

triggered processes mediating neuronal survival pathways critical for preconditioning-induced 

tolerance.   

 

While the preconditioning-induced upregulation of endogenous Zn2+-regulated proteins 

may ultimately confer neuroprotection, here we focus on neuronal MT3 as a source of free 

intracellular Zn2+, which can act as an upstream signaling agent to trigger a neuronal survival 

pathway.  First, using an extracellular chelator of Zn2+ and an inhibitor of Ca-A/K channels to 

block the primary entry route for synaptically-released Zn2+, we found the preconditioning-

induced Zn2+ rise was maintained, suggesting that the major source of preconditioning-induced 

Zn2+ is intracellular.  While the use of a higher affinity extracellular Zn2+ chelator (CaEDTA) 

substantially blocked the preconditioning-induced Zn2+ rise (data not shown), CaEDTA also 

abolished baseline intracellular free Zn2+, consistent with previous reports suggesting that 

CaEDTA eliminates intracellular Zn2+ signals (Lee et al., 2000; Frederickson et al., 2002).  Thus, 

while possible, extracellular sources of preconditioning-induced free Zn2+ and enhanced Zn2+ 

uptake during preconditioning are not likely.  Second, using a highly Zn2+-sensitive molecular 

assay, we found that altering the expression of MT can modulate the levels of labile Zn2+ 
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released during metal stimulation.  This suggests that MT is the major intracellular source of free 

Zn2+ in neurons. Third, and most importantly, when endogenous MT3 is replaced with mutant 

forms of MT1, in which the putative PKC phosphorylation site on MT, serine 32, is converted to 

a non-phosphorylatable residue (S32A), we observed decreased excitotoxic tolerance conferred 

by KCN preconditioning.  Thus, modulation of intracellular Zn2+ homeostasis, possibly by the 

altering the ability of MT to bind free Zn2+, has a profound impact on neuronal survival.  These 

data show that MT3 is the major source of labile Zn2+ in neurons, and that MT-bound Zn2+ is the 

likely the critical source of the preconditioning-induced Zn2+ rise.   

 

Several signal transduction pathways central to the neuroprotective response following 

preconditioning have also been implicated in Zn2+-mediated signaling including p38 MAPK, 

extracellular signal regulated protein kinase (ERK), Akt, and PKC (Noh et al., 1999; Kim et al., 

2000; McLaughlin et al., 2001; Du et al., 2002; Gidday, 2006).  Of these, PKC has been shown 

to be required for both short-lasting and delayed tolerance in several models of cardiac and 

neuronal preconditioning (Raval et al., 2003; Bright and Mochly-Rosen, 2005; Perez-Pinzon et 

al., 2005; Dave et al., 2008).  Here, we found that inhibition of PKC significantly reduced 

neuroprotection in our model.  The mechanisms involved in PKC-mediated neuroprotection 

remain unclear and have been suggested to involve MAPK signaling, regulation of mitochondrial 

ATP-dependent potassium channels (KATP), and synaptic mitochondrial proteins (Bright and 

Mochly-Rosen, 2005; Dave et al., 2008).  We found that PKC is required for the KCN-induced 

Zn2+ rise and can modulate Zn2+-regulated gene expression, providing an additional, somewhat 

surprising upstream role of PKC in promoting neuronal survival.  In the exogenous Zn2+-induced 

preconditioning model, PKC activity was not required for excitotoxic tolerance, indicating that 

 71 



Zn2+ is downstream of PKC in the neuroprotective cascade.  The precise mechanism underlying 

the activation of PKC in conferring neuronal tolerance is still unclear.  Several models of 

ischemic preconditioning have implicated a role for adenosine in triggering a PKC-dependent 

survival cascade (Bright and Mochly-Rosen, 2005).  Others have shown that reactive oxidative 

and nitrative species, which are required in delayed neuronal tolerance, can modulate the activity 

of phospholipases, leading to the activation of downstream kinases, such as PKC (Das and 

Maulik, 2003).  Alternatively, Knapp and Klann (2000) reported that mild-oxidant-induced Zn2+-

release from the cysteine-rich region of PKC can directly trigger the activation of the kinase.  

This hypothesis is supported by studies in cardiac preconditioning models, where a ROS-

dependent activation of PKC is critical in cardiac tolerance (Zhang et al., 2002; Novalija et al., 

2003).   

 

Although PKC has been previously suggested to influence Zn2+-regulated gene 

expression in non-neuronal cell lines (LaRochelle et al., 2001b; Saydam et al., 2002), its 

mechanism of action remains unclear.  Much of the literature surrounding this issue focuses on 

MTF-1 as a target of PKC phosphorylation.  MTF-1 is a 72.5kDa, ubiquitous, Zn2+-finger 

transcription factor in the Cys2His2 family that, in the presence of Zn2+, can bind to MREs at the 

consensus site TGCRCNC (Stuart et al., 1984).  MTF-1 has been shown to be phosphorylated at 

multiple sites in unstimulated cells, and can undergo an increase in phosphorylation following 

metal exposure by a mechanism involving PKC (LaRochelle et al., 2001b; Adams et al., 2002; 

Saydam et al., 2002).  However, when immunopurified endogenous MTF-1 protein from mouse 

hepatoma (Hepa) cells was used rather than overexpressed MTF-1 protein, Jiang and colleagues 

found that while MTF-1 can be phosphorylated in unstimulated cells, metal exposure does not 
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alter the phosphorylation pattern of MTF-1 (Jiang et al., 2004).  Further, kinase inhibition does 

not affect metal-induced MTF-1 nuclear translocation, MTF-1 DNA binding, or the formation of 

a stable MTF-1-chromatin complex (Larochelle et al., 2001a; Jiang et al., 2004).  Therefore, it is 

certainly possible that modulation of Zn2+-regulated gene expression by signaling kinases may 

not be mediated by post-translational modification of MTF-1.  Instead, signaling kinases, 

including PKC, may directly target unknown factors that interact with, or regulate MTF-1 (Jiang 

et al. 2004).   

 

Based on a report showing a direct interaction of the PKC kinase domain with MT2A in a 

yeast two-hybrid screen (Rao et al., 2003), we turned our attention to MT as a potential target of 

PKC phosphorylation in neurons.  First, we found that PKC activity was necessary for the 

preconditioning-induced increase in neuronal Zn2+, suggesting that PKC may target an 

intracellular source of labile Zn2+.  Second, neurons expressing constitutively active forms of 

PKC had enhanced Zn2+-regulated gene expression, similar to MT3-depleted neurons, suggesting 

that PKC activity may alter the MT/Zn2+ interaction.  Third, MT3-depleted neurons expressing 

mutant forms of MT1, consisting of either a non-phosphorylatable or a phospho-mimicking point 

mutation at a putative PKC phosphorylation site (S32) had, respectively, either diminished or 

enhanced Zn2+-induced MRE activation, similar to neurons in which either PKC activity or MT3 

expression was modulated.  Fourth, a cell-free kinase assay revealed increased serine 

phosphorylation in immunopurified wild-type MT, but not in mutant MT(S32A), when incubated 

with catalytically active PKC.  Fifth, preconditioning of MT3-depleted neurons that expressed 

MT1(S32A) conferred less neuroprotection compared to MT3-depleted neurons expressing wild-

type MT1.  Collectively, these data provide evidence for a role of PKC phosphorylation in 
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modulating Zn2+-regulated gene expression by possibly altering the MT/Zn2+ interaction.  In 

conditions that promote an increase in neuronal Zn2+, such as preconditioning, PKC activity 

could facilitate the release of Zn2+ from the metal-binding protein, which, in turn, would promote 

MTF-1/MRE activation and upregulate Zn2+-regulating processes.  This is the first study, to our 

knowledge, that directly demonstrates MT phosphorylation by PKC.  Thus, modulation of Zn2+-

regulated gene expression by direct phosphorylation of MT by PKC may resolve the conflicting 

interpretations in the literature.   

 

In summary, our results provide evidence for a central role of intracellular Zn2+ in a 

neuroprotective signaling cascade.  Preconditioning induces a transient, sub-lethal intracellular 

Zn2+ rise that is critical for not only attenuating a subsequent, lethal elevation in excitotoxic Zn2+, 

but also for conferring neurons excitotoxic tolerance.  This preconditioning-induced increase in 

neuronal Zn2+ is sufficient for triggering Zn2+-regulated gene expression via a PKC-dependent 

pathway.     
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3.0  ZINC REGULATES KV2.1 VOLTAGE-DEPENDENT GATING AND 

LOCALIZATION FOLLOWING ISCHEMIA 

3.1 ABSTRACT 

The delayed rectifier K+ channel Kv2.1 exists in highly phosphorylated somatodendritic clusters.  

Ischemia induces rapid Kv2.1 dephosphorylation and a dispersal of these clusters, accompanied 

by a hyperpolarizing shift in their voltage-dependent activation kinetics.  Transient modulation 

of Kv2.1 activity and localization following ischemia is dependent on a rise in intracellular Ca2+ 

and the protein phosphatase calcineurin.  Here, we show that neuronal free Zn2+ also plays a 

critical role in the ischemic modulation of Kv2.1.  We found that sub-lethal ischemia in cultured 

rat cortical neurons led to characteristic hyperpolarizing shifts in K+ current voltage dependency 

and pronounced dephosphorylation of Kv2.1.  Zn2+ chelation, similar to calcineurin inhibition, 

attenuated ischemic induced changes in K+ channel activation kinetics.  Zn2+ chelation during 

ischemia also blocked Kv2.1 declustering.  Surprisingly, we found that the Zn2+ rise following 

ischemia occurred in spite of calcineurin inhibition.  Therefore, a calcineurin-independent rise in 

neuronal free Zn2+ is critical in altering Kv2.1 channel activity and localization following 

ischemia.  The identification of Zn2+ in mediating ischemic modulation of Kv2.1 may lead to a 

better understanding of cellular adaptive responses to injury.  
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3.2 INTRODUCTION 

Ischemia triggers accumulation of extracellular glutamate, rise in intracellular Ca2+, and 

occurrence of repetitive waves of depolarization, leading to profound changes in neuronal 

excitability (Lee et al., 1999; Dietz et al., 2009).  Delayed rectifier voltage-dependent potassium 

(Kv) channels are important in regulating neuronal excitability (Du et al., 2000).  Of these, Kv2.1 

is a major component of delayed-rectifier potassium currents (IK) in cortical neurons (Murakoshi 

and Trimmer, 1999; Du et al., 2000; Malin and Nerbonne, 2002; Pal et al., 2003) and exists in 

large, highly phosphorylated clusters on the surface of soma and proximal dendrites (Scannevin 

et al., 1996).  Mild ischemic injury is associated with dephosphorylation of Kv2.1, dispersal of 

somatodendritic Kv2.1 clusters, and hyperpolarizing shifts in voltage-dependency (Misonou et 

al., 2005).  The latter has been proposed as a mechanism to limit neuronal excitability and thus 

prevent or limit widespread excitotoxic cell death (Surmeier and Foehring, 2004).  Such changes 

in Kv2.1 following ischemia are transient, returning to baseline conditions within hours of 

stimulus cessation, and are mediated by a rise in intracellular Ca2+ and protein phosphatase 2B 

activity (PP2B or calcineurin; Misonou et al., 2005).   

 

In addition to a rise in neuronal Ca2+, ischemic injury also leads to an accumulation of 

free Zn2+ in neurons (Galasso and Dyck, 2007).  Recent evidence suggests that the Zn2+ rise 

following ischemia may actually precede the rise in intracellular Ca2+, serving as a very early 

signal in the ischemic cascade (Medvedeva et al., 2009).  This rise in neuronal Zn2+ following 

lethal ischemic insults has been associated with irreversible neuronal injury mediated by 

mitochondrial dysfunction (Medvedeva et al., 2009), nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase activation (Suh et al., 2008; Brennan et al., 2009), generation of 
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reactive oxygen species (Dineley et al., 2008), and activation of a p75NTR-mediated death 

executer (Park et al., 2000).  In contrast to lethal injury, preconditioning with sub-lethal ischemia 

can activate endogenous signaling pathways that confer neuronal tolerance to irreversible 

ischemic damage (Kitagawa et al., 1990; Gidday, 2006).  Recent evidence suggests that a 

transient, early rise in neuronal free Zn2+ may also be important in preconditioning-induced 

neuroprotection (Lee et al., 2008; Aras et al., 2009).    Preconditioning with chemical ischemia 

triggers a transient rise in neuronal free Zn2+, which is necessary and sufficient for excitotoxic 

tolerance (Aras et al., 2009).     

 

In the present study, we find a critical role for Zn2+ in the modulation of Kv2.1 following 

preconditioning.  We first confirmed that sub-lethal chemical ischemia leads to the transient 

modulation of Kv2.1 voltage dependency and phosphorylation state.  The altered K+ channel 

activation kinetics, which have been shown to be a cellular adaptive process mediating 

neuroprotection, are dependent on a rise in neuronal free Zn2+.  Moreover, the ischemia-induced 

dispersal of Kv2.1 clusters is also Zn2+-dependent.  We find that both altered kinetics and 

localization of Kv2.1 following chemical ischemia are dependent on calcineurin, but that the 

Zn2+ rise occurs independently of this phosphatase.  Thus, Zn2+ may represent a novel early 

signal in the modulation of Kv2.1 channel activity and localization following sub-lethal chemical 

ischemia.       
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3.3 MATERIALS AND METHODS 

Rat primary neuronal cultures and preconditioning.  All experiments were performed 

in primary cortical cultures prepared from embryonic day 16 Sprague-Dawley rats (Charles 

River Laboratories, Wilmington, MA) as previously described (Hartnett et al., 1997). Briefly, 

cortices were dissociated, and the resultant cell suspension was adjusted to 670,000 cells/well 

(six-well tissue culture plates containing five, 12-mm poly-L-ornithine-treated coverslips per 

well).  Cultures were maintained at  37oC, 5% CO2 in a growth medium composed of a volume-

to-volume mixture of 80% Dulbecco’s modified minimal essential medium, 10% Ham’s F12-

nutrients, 10% bovine calf serum (heat-inactivated, iron-supplemented) with 25mM HEPES, 

24U/mL penicillin, and 24g/mL streptomycin. Non-neuronal cell proliferation was inhibited 

after 2 weeks in culture with 1–2M cytosine arabinoside, after which the cultures were 

maintained in growth medium containing 2% serum and without F12-nutrients.  Cultures were 

utilized at 18–22 days in vitro.  An in vitro model of ischemic preconditioning was previously 

developed in our laboratory (McLaughlin et al., 2003; Aras et al., 2009).  Briefly, cortical 

cultures were treated with 3mM potassium cyanide (KCN) in a glucose-free balanced salt 

solution (150mM NaCl, 2.8mM KCl, 1mM CaCl2, 10mM HEPES, pH 7.2) for 90min at 37oC.  

Preconditioning with KCN attenuates subsequent excitotoxic cell death by ~50% (McLaughlin et 

al., 2003; Aras et al., 2009).     

 

Electrophysiology. All recordings were made using the whole-cell configuration of the 

patch-clamp technique as described previously (McLaughlin et al., 2001).  The extracellular 

solution contained (in mM):  115 NaCl, 2.5 KCl, 2.0 MgCl2, 10 HEPES, 10 D-glucose; pH was 

 78 



adjusted to 7.2 with concentrated KOH; 0.250 mM TTX was added to inhibit voltage gated 

sodium channels.  The intracellular (electrode) solution contained (in mM):  100 K-Gluconate, 

11 EGTA, 10 KCl, 1 MgCl2, 1 CaCl2 x 2H2O, 10 HEPES; pH was adjusted to 7.2 with 

concentrated KOH; 0.22 mM ATP was added and osmolarity was adjusted to 280 mOsm with 

sucrose.   All measurements were obtained under voltage clamp with an Axopatch 1C amplifier 

(Molecular Devices, Sunnyvale, CA) and pClamp software (Molecular Devices) using 2-3 

MOhm electrodes.  Partial compensation (80%) for series resistance was provided in all 

instances.  Currents were filtered at 2 kHz and digitized at 10 kHz (Digidata; Axon Instruments).  

K+ currents were evoked with a series of 200 msec voltage steps from a holding potential of –

50mV to +80mV in 10mV increments.  Before the start of the depolarization, a single pre-pulse 

to −10mV was given for 30 ms.  Peak conductance (G) was calculated from peak steady-state 

current amplitudes (I) using the equation G = I/(V-EK), where EK is the Nerst K+ equilibrium 

potential.  The conductance was plotted against the potential (V) and fitted to a single Boltzmann 

function G = Gmax/(1 + exp[-(V – V1/2)/k]), where Gmax is the maximum conductance, V1/2 is the 

potential at which the channel has half-maximal conductance, and k is the parameter that 

represents the slope of the activation curve.   

 

Immunofluorescence.  Kv2.1 labeling was performed essentially as described by 

Misonou and colleagues (2004).  Immediately following chemical ischemia, neurons were 

washed three times in ice-cold PBS and fixed with 4% paraformaldehyde for 15 minutes.  

Following three washes with PBS, neurons were permeabilized for 5 min in PBS containing 

0.3% Triton X-100.  Neurons were washed three times in PBS and then incubated in PBS 

containing 1% bovine serum albumin (BSA) for 5 min.  Following overnight incubation with 
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anti-Kv2.1 rabbit polyclonal (1:500; Alomone Labs, Jerusalem, Israel) and anti-microtubule-

associated protein-2 mouse monoclonal (MAP2; 1:500; Sigma-Aldrich, St. Louis, MO; #M9942) 

antibodies, neurons were incubated in FITC anti-mouse (1:1000; Sigma-Aldrich, St. Louis MO) 

and Cy5 anti-rabbit (1:1000; Jackson Immunoresearch, West Grove, PA) secondary antibodies at 

room temperature for 1 hr.  Coverslips containing neurons were then mounted onto glass slides 

and allowed to air-dry before imaging.  Imaging of neurons was performed on an Olympus 

Fluoview FV1000 confocal unit fitted to an Olympus BX61 microscope at 60X (PlanApo, NA 

1.4 oil) using Fluoview software (Olympus Fluoview, USA).  Laser and detector settings were 

retained for all images collected.  Multiple (5-10) optical sections (0.5m) were acquired to 

generate a collapsed image file.  Control and treatment groups were always run in parallel within 

the same immunocytochemical procedure.  Collapsed, raw images were transferred to NIH 

image processing software (ImageJ; http://rsbweb.nih.gov/ij/) for analysis.  Following 

background subtraction, neuronal somas were selected and a plot displaying a 3-dimensional 

graph of pixel intensity over a region of interest was used to display Kv2.1 localization (Figure 

10).  Clusters on the plots appeared as orange-red peaks in pixel intensity, which corresponded to 

>70% of maximal intensity (Figure 10).  A clustered cell was scored as such when its associated 

surface map revealed greater than ten orange-red peaks.  Using these plots, 75-100 cells from 3-4 

independent experiments were classified as either having clusters or not.  Although infrequent 

(<10% of total), neurons containing regions of both clustered and diffuse staining patterns were 

scored according to the predominant (>50% of cell surface) staining pattern.  

 

Immunoblotting.  Samples for biochemical analysis were prepared from neuronal 

cultures immediately following chemical ischemia.  Neurons were washed three times with PBS 
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and then incubated in lysis buffer [50mM Tris-HCl, pH 7.4, 150mM NaCl, 0.25% deoxycholic 

acid, 1% nonyl phenoxylpolyethoxylethanol (NP-40), 1mM EDTA] supplemented with protease 

inhibitor mixture (Roche Diagnostics, Indianapolis, IN), 1mM phenylmethylsulphonyl fluoride 

(PMSF), and 100M vanadate for 5min on ice.  Cell lystates were harvested and centrifuged at 

10,000 X g for 10min at 4oC.  Cell lysate samples were combined in a 1:1 ratio with sample prep 

buffer [62.5mM Tris-HCl, pH 6.8, 2% SDS, 25% glycerol, 0.01% Bromophenol Blue] and 

incubated for 5 min at 100°C to denature proteins before gel electrophoresis.  SDS/PAGE was 

carried out by standard procedures using the Mini Protean 3 System (Bio-Rad, Hercules, CA).  

Equal amounts of cell lysate (15 g) were separated on 7.5% SDS/PAGE gels and transferred 

onto a 0.2 m nitrocellulose membrane.  The membranes were blocked with 1% bovine serum 

albumin (BSA) in PBS with 0.05% Tween 20 before probing with either an anti-Kv2.1 mouse 

monoclonal (clone K89/34, NeuroMab, Davis, CA) or an anti-GAPDH mouse monoclonal 

(Novus Biologicals, Littleton, CO).  Blots were incubated with a goat anti-mouse secondary 

antibody conjugated to HRP and were visualized with a SuperSignal CL-HRP Substrate System 

(Pierce Biotechnology, Rockford, IL).   

 

Neuronal Zn2+ imaging. To assess the relative magnitude of intracellular free Zn2+ in 

neurons, we utilized the Zn2+-sensitive fluorescent probe FluoZin-3 AM (Molecular Probes, 

Eugene, OR).  FluoZin-3 AM is a cell-permeant, non-ratiometric fluorescent dye that responds 

robustly to physiological changes in cellular free Zn2+ (KD for Zn2+ 10-20nM) and is highly 

selective for this metal (Devinney et al., 2005).  The small-molecule probe fluoresces upon 

binding Zn2+ and is best suited for assessing the presence of free Zn2+ in cells rather than 

determining its precise intracellular concentration (Thompson et al., 2002; Kay, 2003).  

 81 



Following treatment with chemical ischemia, neurons were loaded with FluoZin-3 (30min; 5M 

prepared in buffered solution containing 144mM NaCl, 3mM KCl, 10mM HEPES, 5.5mM 

glucose, 5mg/mL bovine serum albumin; pH 7.3).  The culture-containing glass coverslips were 

then immediately transferred to a recording chamber (Warner, Hamden, CT) mounted on an 

inverted epifluorescence microscope superfused with phenol red-free minimal essential medium, 

supplemented with 25mM HEPES and 0.01% bovine serum albumin.  Images were acquired by 

exciting the fluorescent dye with 490 nm light every 10 seconds for 5 minutes using a computer 

controlled monochromator (Polychrome II, TILL photonics, Martinsried, Germany) and CCD 

camera (IMAGO, TILL photonics).  Following acquisition of baseline metal levels (for 

approximately 100s), any neuronal free Zn2+ was chelated by superfusing cells with the 

membrane-permeant Zn2+ chelator N,N,N’,N’-tetrakis (2-pyridalmethyl) ethylenediamine (TPEN, 

20μM).  The magnitude of the Zn2+ fluorescence for all neuronal cell bodies in a single field (n = 

5–20 neurons) was determined by subtracting the fluorescence signal after TPEN perfusion from 

the initial baseline signal (FTPEN), as described earlier (Knoch et al., 2008; Aras et al., 2009).  

With this method, larger FTPEN values correspond to higher amounts of pre-existing free 

intracellular Zn2+ in neurons (Knoch et al., 2008; Aras et al., 2009).   

 

Statistical analysis.   Data are expressed as mean ± SEM.  Statistical analysis was 

performed using an ANOVA with post hoc comparisons, as indicated in figure legends.  An of 

p<0.05 was considered statistically significant. 
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3.4 RESULTS 

3.4.1 Sub-lethal ischemia alters potassium channel activity and Kv2.1 phosphorylation 

Transient hyperpolarizing shifts in the voltage-dependence of activation of neuronal Ik 

dramatically limit neuronal excitability and are thus thought to be an adaptive cell response to 

ischemia (Surmeier and Foehring, 2004).  Sub-lethal chemical ischemia, using potassium 

cyanide (KCN) coupled with glucose-free conditions, reliably induces Zn2+-dependent 

excitotoxic tolerance in cortical neurons (Aras et al., 2009).  To first determine whether sub-

lethal ischemia could alter K+ channel activation in cortical neurons, whole-cell K+ currents were 

measured from control and KCN preconditioned (3mM, 90 min) neurons immediately following 

treatment.  We found that sub-lethal ischemia indeed led to a hyperpolarizing shift in the voltage-

dependency of K+ channel activation (Figure 8a), similar to those reported in hippocampal 

neurons (Misonou et al., 2005).  These hyperpolarizing shifts were transient and partially 

returned to baseline conditions 24 hours following the ischemic stimulus (Figure 8a).    

 

Hyperpolarizing shifts in the voltage-dependent activation of neuronal Ik are associated 

with a dephosphorylation of the Kv2.1 channel (Misonou et al., 2004; Misonou et al., 2005).  To 

determine whether sub-lethal ischemia could dephosphorylate Kv2.1, we performed immunoblot 

experiments on cortical neurons exposed to either KCN or control conditions (Figure 8b).  The 

major forms of Kv2.1 in control-treated rat brain cultured neurons were found to exhibit a higher 

range of molecular weight bands (~95-105 kDa; Figure 8b) than predicted from the deduced 

Kv2.1 primary sequence (95.3 kDa), reflecting its constitutively multi-phosphorylated state 

(Misonou et al., 2004).  KCN led to a dramatic reduction in the molecular weight of Kv2.1, 
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representing a dephosphorylation of the channel (Figure 8b; Misonou et al., 2004).  Changes in 

the phosphorylation state of Kv2.1 are reversible and are restored to control conditions hours 

after the stimulus (Misonou et al., 2004; Misonou et al., 2005).  Indeed, twenty-four hours 

following KCN exposure, we found that Kv2.1 partially returned to its multi-phosphorylated 

state (Figure 8b). Thus, reminiscent to the response following ischemia in hippocampal neurons 

(Misonou et al., 2005), sub-lethal ischemia led to a transient dephosphorylation of Kv2.1 in 

cortical neurons, accompanied by hyperpolarizing shifts in the voltage-dependence of neuronal 

Ik.     
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Figure 8 - Chemical ischemia alters K+ channel activation properties and phosphorylation state 
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Figure 8.  (A) Inset, representative Ik currents in cortical neurons evoked with a series of 200ms 

depolarizing steps from -50mV to +80mV recorded under whole-cell voltage clamp.  A single 

30ms pre-pulse depolarization to -10mV was given before each recording to minimize rapidly-

inactivating K+ current.  Whole-cell K+ currents were measured immediately following either 

control (black traces) or 3mM KCN (red traces) exposure, or 24 hours following 3mM KCN 

(green traces).  Calibration:  2nA, 50ms.  Main plot shows the conductance-voltage (G-V) 

relationship of peak potassium current recorded from neurons in each treatment group.  Data 

points represent the mean ± s.e.m from 6-18 neurons.  (B) Neurons were exposed to either 

vehicle or 3mM KCN.  In KCN treated groups, cell lysates were harvested immediately or 24 

hours following stimulus.  Lysates were separated and transferred to nitrocellulose membranes, 

which were probed with either an anti-Kv2.1 mouse monoclonal (1:1000) or an anti-GAPDH 

mouse monoclonal (1:1000) antibody.  Representative blot of 4 independent experiments is 

shown.   
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3.4.2 Modulation of K+ channel activity is Zn2+- and calcineurin-dependent  

The hyperpolarizing shifts in K+ channel activation have been shown to be dependent on a rise in 

intracellular Ca2+ and the activation of calcineurin (Misonou et al., 2005).  Recent evidence 

suggests that Zn2+ is both necessary and sufficient for mediating neuronal tolerance triggered by 

ischemic preconditioning (Lee et al., 2008; Aras et al., 2009).  Thus, the ischemia-induced 

modulation of K+ channel activation may also be Zn2+-dependent.  To test this, whole-cell K+ 

currents were measured from neurons preconditioned in the presence of the cell-permeant Zn2+-

chelator, TPEN (N,N,N’,N’-tetrakis (2-pyridalmethyl)ethylenediamine; 1M).  It is noteworthy 

that under these conditions the neuroprotective effects of preconditioning are severely attenuated 

(Aras et al., 2009).  We found that TPEN almost completely blocked the hyperpolarizing shift in 

the voltage-dependence of activation (Figure 9).  However, when neurons were treated with 

exogenous Zn2+ and pyrithione acutely (30 and 100 M ZnCl2 with 1 M pyrithione; 2-5 min), 

the voltage-dependence of activation of Kv2.1 channels was not shifted (not shown), suggesting 

that Zn2+ may be necessary but not sufficient for the ischemic-induced modification of neuronal 

Ik.  In order to verify the role of calcineurin in this process, whole-cell K+ currents were 

measured from preconditioned neurons treated in the presence of the calcineurin inhibitor, 

FK520 (5M; IC50 49nM).  We found that, like TPEN, FK520 attenuated the preconditioning-

induced hyperpolarizing shift in the voltage-dependence of K+ channel activation (Figure 9).  

Thus, both Zn2+ and calcineurin play a role in the modulation of the voltage-dependence of 

activation of neuronal Ik following chemical ischemia.   
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Figure 9 - Altered K+ channel activation properties are zinc- and calcineurin-dependent 

 

 

 

 

Figure 9.  Whole-cell K+ currents were measured immediately following control, 3mM KCN, or 

3mM KCN in the presence of 1M TPEN or 5M FK520.  Peak current for each neuron was 

converted to conductance and the conductance was plotted against each potential and fit to a 

Boltzmann distribution. Data points represent mean ± s.e.m. half-maximal activation voltage 

(mV) for K+ currents obtained from 8-18 neurons (**p<0.01 compared to control; One-way 

ANOVA-Dunnett).   
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3.4.3 Chemical ischemia induces Zn2+ and calcineurin-dependent Kv2.1 declustering   

Hyperpolarizing shifts in K+ channel activation and dephosphorylation of Kv2.1 are 

accompanied by a dispersal of surface Kv2.1 clusters to a more uniform localization (Misonou et 

al., 2005).  To determine whether the ischemic dispersal of Kv2.1 clusters is also dependent on a 

rise in free Zn2+, cortical neurons were exposed to KCN in the absence and presence of TPEN.  

Immediately following exposure, neurons were fixed and immunostained using antibodies 

specific for Kv2.1 and the neuronal marker, microtubule-associated protein-2 (MAP2).  Maps 

plotting the distribution of Kv2.1 within individual neuronal somata were used to determine 

whether a cell contained clusters (Figure 10a).  We found that sub-lethal ischemia led to a 

dispersal of somatic Kv2.1 clusters (Figure 10a, b).  Kv2.1 dispersal partially returned to a 

clustered localization 24 hours following ischemia (Figure 10b).  When neurons were exposed to 

KCN in the presence of TPEN, declustering of Kv2.1 was blocked (Figure 10a, b).  As controls, 

we verified that ischemia- and NMDA-mediated declustering was dependent on calcineurin by 

using FK520 (Figure 10a, b; Misonou et al., 2005; Mulholland et al., 2008).  Thus, in addition to 

calcineurin, ischemic declustering of Kv2.1 requires an increase in neuronal free Zn2+.     
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Figure 10 - Zinc is required for the calcineurin-dependent ischemic declustering of Kv2.1 in neurons 
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Figure 10.  (A) Neurons exposed to control or 3mM KCN were fixed and immunostained with 

anti-Kv2.1 (1:500 red) and anti-MAP2 (1:500 green) antibodies.  In KCN treated groups, 

neurons were fixed immediately or 24 hours following stimulus.  Representative neurons and 

their associated surface maps from each treatment group from 3-4 independent experiments are 

shown.  Background-subtracted neuronal surface maps show relative Kv2.1 staining intensity 

values plotted along the area of the cell body.  Scale bar: 10m.  (B) Neurons were exposed to 

control, 3mM KCN (90 min), KCN in the presence of 1M TPEN or 5M FK520 (90 min), 

100M NMDA with 10M glycine (10 min), or NMDA/glycine in the presence of 5M FK520 

(10min).  Neurons were fixed and immunostained as in A.  Fluorescent images were background 

subtracted and cell surface maps were created to plot Kv2.1 staining intensity over the neuronal 

soma.  Clusters on surface maps appeared as orange-red peaks in pixel intensity.  Using these 

plots, 75-100 cells from 3-4 independent experiments were classified as either clustered or not.  

Data points represent percentage of cells with clusters compared to total cell counts (mean ± 

s.e.m.) (*p<0.05; **p<0.01 compared to control; One-way ANOVA-Dunnett). 
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3.4.4 Zn2+ accumulation is not calcineurin-dependent 

Both a rise in neuronal free Zn2+ and activation of calcineurin are required for the modulation of 

Kv2.1 following sub-lethal ischemia (Figures 9, 10).  To determine the interdependence of these 

two signaling events, we measured the preconditioning-induced Zn2+ rise in the absence and 

presence of the calcineurin inhibitor.  Cortical neurons were loaded with the Zn2+-selective 

indicator, FluoZin-3 (5M, 30 min) and imaged using live-cell wide-field microscopy.  

Intracellular TPEN-sensitive Zn2+ fluorescence rose significantly in neurons exposed to sub-

lethal chemical ischemia (Figure 11), as previously reported (Aras et al., 2009).  This KCN-

induced increase in neuronal Zn2+ remained relatively unchanged in the presence of the 

calcineurin inhibitor, FK520 (5M; Figure 11).  These data suggest that the rise in neuronal Zn2+ 

occurs independently of, or is upstream of, calcineurin activity following preconditioning.   

 

 

 

 

 

 

 

 

 

 

 

 92 



 

Figure 11 - Chemical ischemia induces a calcineurin-independent zinc rise 

 

 

 

Figure 11.  Cortical neurons were exposed to control or 3mM KCN in the absence or presence of 

5M FK520.  Representative fluorescence traces of several neurons in a single coverslip from 

each treatment groups are shown above corresponding bar from bar graph.  Arrow depicts the 

beginning of superfusion with 20M TPEN to chelate Zn2+ and quench fluorescence.  

Calibration:  50 arbitrary fluorescence units, 50 s. Bar graph represents mean (± s.e.m.) FTPEN 

measurements from 8-15 coverslips, each containing 10-25 neurons (**p<0.01 compared to 

control; One-way ANOVA-Dunnett).   
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3.5 DISCUSSION 

Previous reports have shown ischemic modulation of Kv2.1 critically depends on a rise in 

intracellular Ca2+ and on the protein serine/threonine phosphatase calcineurin (Misonou et al., 

2005).  In the present study, we found a novel role for Zn2+ in mediating the modulation of 

Kv2.1 channel activity following sub-lethal ischemic injury.  We first confirmed that sub-lethal 

chemical ischemia in cortical neurons leads to a hyperpolarizing shift in the voltage-dependent 

activation of neuronal Ik and associated reduction in molecular weight of total Kv2.1 protein, 

reflecting a dephosphorylation of the channel.  Changes in the voltage-dependency and 

phosphorylation state of Kv2.1 following sub-lethal ischemia in hippocampal neurons are 

transient, and recover shortly following stimulus cessation (Misonou et al., 2005).  In cortical 

neurons, we found that the ischemia-induced changes only partially recovered to baseline 

conditions 24 hours following KCN cessation.  The difference in recovery between the two 

studies may simply be due to the differences in cellular model system (hippocampal neurons 

versus mixed cortical culture) or stimulus duration (15 min versus 90 min chemical ischemia).  

Importantly, however, KCN induced sub-lethal ischemia led to characteristic changes in Kv2.1 

activity and phosphorylation previously described following ischemia (Misonou et al., 2005). 

 

A rise in neuronal Zn2+, likely mediated by a combination of Zn2+ translocation from 

presynaptic vesicles (Koh et al., 1996) and Zn2+ liberation from intracellular stores (Aizenman et 

al., 2000b), can trigger neurodegenerative signaling following ischemia (Frederickson et al., 

2005).  However, early rises in neuronal Zn2+ have also been reported to be required for 

neuroprotection following sub-lethal ischemia in both in vivo and in vitro models (Lee et al., 

2008; Aras et al., 2009).  Sub-lethal ischemic insults can precondition neurons by activating 
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endogenous protective mechanisms that render cells tolerant to subsequent lethal ischemic injury 

(Kitagawa et al., 1990; Gidday, 2006).  Neuronal Zn2+ accumulation following sub-lethal 

ischemia was necessary and sufficient for inducing tolerance in multiple preconditioning models 

(Lee et al., 2008; Aras et al., 2009).  Thus, in contrast to Zn2+ accumulation in the acute phase of 

lethal ischemia, an early Zn2+ rise following sub-lethal ischemia triggers cell survival cascades.  

One such adaptive survival cascade may involve the modulation of K+ channel kinetics: transient 

increases in overall K+ current can hyperpolarize neurons limiting neuronal excitability 

following ischemia.  The delayed rectifier Kv2.1 channel, similar to other K+ channels that are 

modulated in response to changes in the metabolic state (KATP channels) or [Ca]i (Ca2+-activated 

BK channels), can play an important role in limiting excitability following ischemia (Du et al., 

2000; Misonou et al., 2005).  In light of the critical role of Zn2+ in mediating neuroprotection, we 

hypothesized that the ischemic change in K+ channel activation kinetics may also be Zn2+ 

dependent.  While a role for Ca2+ and calcineurin in the modulation of Kv2.1 channel activation 

following ischemia has been described (Misonou et al., 2005), recent evidence has shown that a 

Zn2+ rise occurs immediately upon onset of ischemia and even precedes, and may contribute to, 

Ca2+ deregulation (Stork and Li, 2006; Medvedeva et al., 2009).  Indeed, we found that the cell-

permeable Zn2+ chelator, TPEN, significantly attenuated the hyperpolarizing shift in the voltage-

dependent activation of Ik to the same extent as calcineurin inhibition.  Further, we found that the 

Zn2+ rise was not altered by calcineurin inhibition, suggesting that the early Zn2+ rise may 

precede Ca2+-dependent calcineurin activation or perhaps occur concurrently.  Thus, Zn2+ plays a 

critical early role in the modulation of K+ channel kinetics following ischemia.   
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Kv2.1 channels are localized to large clusters found over the soma and proximal 

dendrites of cortical neurons (Trimmer, 1991).  The assembly of Kv2.1 into large surface clusters 

restricted to the cell body and proximal dendrites of neurons is likely mediated by a proximal 

restriction and clustering (PRC) domain located within the last 318 amino acids of the 

intracellular C terminus (Lim et al., 2000; Mohapatra and Trimmer, 2006).  The cellular 

components involved in cluster maintenance are currently an intense line of investigation.  For 

example, an actin cytoskeleton-based dynamic perimeter fence may regulate cluster size and 

localization (O'Connell et al., 2006).  Remarkably, although clusters themselves exhibit little 

lateral mobility, single Kv2.1 channels are mobile within and even between clusters (Tamkun et 

al., 2007), arguing against the presence of a sustained physical association between Kv2.1 and a 

scaffolding protein.  Tamkun and co-workers propose a model in which retention proteins 

interact with the Kv2.1 C terminus, perhaps in a phospho-dependent manner, to maintain 

individual channels from crossing the perimeter fence (O'Connell et al., 2006).  While the role of 

Zn2+ in individual Kv2.1 channel mobility is not clear, the liberation of neuronal Zn2+ from 

intracellular stores has been shown to be an important upstream signaling event in the phospho-

dependent surface delivery of new Kv2.1 channels in apoptosis (McLaughlin et al., 2001; Pal et 

al., 2003; Redman et al., 2007).  The results presented here suggest that neuronal Zn2+ may also 

regulate existing Kv2.1 cluster activity and localization following ischemia.  The functional 

significance of maintaining Kv2.1 channels in clusters also remains unclear.  A recent report by 

Misonou and colleagues suggest that Kv2.1 clusters are strategically situated at junctions 

between astrocytic and neuronal membranes to achieve rapid modulation following ischemia 

(Misonou et al., 2008).  The authors speculate that glutamate accumulation in the extracellular 

space following ischemia may activate ionotropic glutamate receptors, leading to elevated 
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[Ca2+]i, calcineurin activation, and modulation of Kv2.1 (Misonou et al., 2008).  Here, we 

provide evidence for an additional signaling event, the calcineurin-independent transient rise in 

neuronal Zn2+, in mediating the dispersal of channel clusters following ischemia.  Thus, a rise in 

Zn2+, along with Ca2+ may be necessary for modulation of Kv2.1 following ischemia.  

  

Finally, although both altered kinetics and localization of Kv2.1 following chemical 

ischemia were dependent on calcineurin, we observed that the Zn2+ rise occurred even in the 

presence of calcineurin inhibition.  Calcineurin is a protein serine/threonine phosphatase that is 

regulated by Ca2+- and calmodulin-binding (King and Huang, 1984).  In addition, calcineurin is a 

Fe2+- and Zn2+- metalloenzyme containing both metals in its catalytic domain, which are required 

for full phosphatase activity (Goldberg et al., 1995).  Along these lines, Zn2+ chelation by TPEN 

may prevent full calcineurin activation following ischemia, preventing Kv2.1 modulation.  It 

should be noted that, like many phosphatases, calcineurin activity can be inhibited with excess 

exogenous Zn2+ in in vitro assays (Takahashi et al., 2003; Huang et al., 2008a).  In light of this, 

direct modulation of calcineurin by Zn2+ is not likely.  Instead, Zn2+ may either be necessary for 

full calcineurin activation following ischemic injury or may mediate a parallel signaling pathway 

leading to Kv2.1 modulation.       

 

The data presented here strongly implicate a rise in free neuronal Zn2+ in the modulation 

of Kv2.1 channel activity and localization following ischemia.  This study represents an 

intersection of emerging evidence implicating Zn2+ in triggering neuroprotective mechanisms 

and Kv2.1 modulation in limiting neuronal excitability following ischemia.         
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4.0  GENERAL DISCUSSION 

The goal of this dissertation was to investigate the role of Zn2+ in endogenous signaling 

pathways that contribute to neuronal tolerance.  Until now, the intracellular accumulation of free 

Zn2+ has been largely identified as a characteristic of degenerating neurons. However, sub-lethal 

activation of cell death molecules can trigger important survival mechanisms that protect neurons 

from lethal injury mediated by those same factors.  Data presented here show that sub-lethal Zn2+ 

signals are necessary and sufficient for limiting subsequent Zn2+-dependent neuronal injury.  

Intracellular Zn2+ release, facilitated by PKC modulation of MT, activated Zn2+-regulated gene 

expression and conferred long term neuronal tolerance.  Additionally, Zn2+ was required for the 

modulation of Kv2.1 activity and localization following sub-lethal ischemic injury, suggesting 

that the metal plays a role in mediating acute cellular responses to stress. Together, these 

findings critically implicate Zn2+ signals in the adaptive neuroprotective response to cellular 

injury.  In this final chapter, I will discuss potential mechanisms of Zn2+-mediated 

neuroprotection and highlight important questions that remain in our understanding of neuronal 

tolerance.   
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4.1 A DUAL ROLE FOR NEURONAL MT III 

Metallothioneins contain 20 sulfur-donating cysteine residues that bind seven Zn2+ ions in Zn3S9 

and Zn4S11 configurations on its two metal-binding domains (Maret and Vallee, 1998).  In order 

for MTs to buffer cellular free Zn2+, these high-affinity ligands for Zn2+ must not be saturated 

with metal under normal conditions.  Indeed, biochemical analysis revealed that three of the 

Zn2+-binding sites on MT bind Zn2+ with low or intermediate affinity, suggesting that under 

normal conditions MT may not be saturated with all seven Zn2+ ions (Krezel and Maret, 2007).  

In addition, differential fluorescent labeling of the MT cysteine clusters from rat kidney, liver, 

and brain tissue extracts showed that tissues contain almost as much of the apo-protein thionein 

as metal-bound metallothionein (Yang et al., 2001).  Thus, the Zn2+ buffering capacity of MTs is 

very high under control conditions and is critically dependent on the amount of Zn2+-lacking 

thionein and unsaturated species of MT in cells.  To examine the Zn2+-buffering capacity of 

neurons, I measured the change in intracellular free Zn2+ following exposure to Cd2+ using a 

MRE-luciferase reporter.  Any free Zn2+ released from MT by Cd2+ (Zhang et al., 2003) that is 

not immediately buffered will trigger luciferase expression.  I found that MT III-overexpressing 

neurons have diminished MRE activation compared to vector-expressing neurons following Cd2+ 

exposure (Figure 7).  This result suggests that transfected neurons actually overexpress metal-

deficient forms of MT and thus have a surplus of available binding sites for buffering the rise in 

free Zn2+ caused by Cd2+ exposure.  Importantly, when the expression of endogenous neuronal 

MT III was reduced by an MT3shRNA construct, I found that intracellular free Zn2+ was 

elevated following the Cd2+ stimulus compared to vector-expressing neurons (Figure 7).  Thus, 

depletion of endogenous MT III impairs the Zn2+-buffering capacity of neurons and allows 

increased levels of free Zn2+ to activate MRE gene transcription.  This result is significant 
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because it suggests that under normal conditions, the Zn2+ binding capacity of neurons is high 

due to the presence of Zn2+-deficient MT III molecules.  Thus, because of the presence of Zn2+-

lacking species along with apo-thionein, MT III serves a significant role in buffering neuronal 

free Zn2+.    

 

On the other hand, MT III may also be a significant source of labile Zn2+ in neurons.  The 

unique coordination environment of MT, consisting of sulfur-containing cysteines that can 

undergo reversible redox reactions, allows the cellular availability of Zn2+ to be closely tied to 

the redox environment of the cell (Maret and Vallee, 1998).  In HT-29 cells, it was found that as 

the intracellular redox potential became more oxidizing, the buffering capacity of MT was 

lowered, leading to a pronounced elevation in free Zn2+ (Krezel and Maret, 2006; Krezel et al., 

2007).  Oxidant-induced liberation of Zn2+ from MT has been demonstrated in cell-free systems 

(Maret and Vallee, 1998) and in cortical neurons (Aizenman et al., 2000b; Zhang et al., 2004).  

In mouse hepatoma (Hepa) cells, exposure of oxidants H2O2 or tert-butylhydroquinone 

sufficiently activated MRE-binding by MTF-1 (Andrews, 2000).  Nitric oxide can also liberate 

Zn2+ from MT from neurons in vivo (Cuajungco and Lees, 1998) and in pulmonary artery 

endothelial cells, which effectively activates MTF-1 and transcription of MT (St Croix et al., 

2002; Spahl et al., 2003; Stitt et al., 2006).  Nitrosylation can occur by transnitrosation, a transfer 

of NO from N-nitrosothiols to the sulfur donor of Zn2+ ligands (Chen et al., 2002).  Other redox 

signals including superoxide/peroxide, selenium compounds, and NADPH have also been shown 

to release Zn2+ from MT (Fliss and Menard, 1992; Maret, 1994; Jacob et al., 1999; Chen and 

Maret, 2001; Stoyanovsky et al., 2005; Sagher et al., 2006).  Thus, because of its susceptibility to 

redox signaling, MT is a significant source of labile Zn2+.   
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While oxidative- and nitrosative-stress mediated liberation of neuronal Zn2+ has been 

previously described as a characteristic of cell death (Aizenman et al., 2000; Bossy-Wetzel et al., 

2004), a similar mechanism may account for the Zn2+ signal in preconditioned neurons.  Indeed, 

sub-lethal oxidative signaling has been shown to be required for tolerance in several models of 

preconditioning (Pain et al., 2000; Forbes et al., 2001), including KCN-induced excitotoxic 

tolerance used in this dissertation (McLaughlin et al., 2003).  In preconditioned neurons, sub-

lethal reative oxygen species generation can modify redox-sensitive protein kinases, 

phosphatases, or redox-sensitive transcription factors, such as nuclear factor-B and activator 

protein-1, modulating gene expression and conferring neuronal tolerance (Perez-Pinzon et al., 

2005).  Similarly, NO generation, triggered by the influx of Ca2+ through NMDA receptors, has 

been shown to play a central role in preconditioning signal transduction by activating 

downstream kinases that ultimately modulate gene transcription (Gonzalez-Zulueta et al., 2000).  

Thus, multiple redox signals known to trigger Zn2+ release from MT are activated in 

preconditioned neurons.  Evidence presented in this dissertation suggests that the predominant 

source of the preconditioning-induced Zn2+ rise is intracellular, as both tricine and the AMPA 

receptor blocker CNQX had little effect on KCN-induced increase in FluoZin-3 fluorescence 

(Figure 6).  Thus, it is likely that the preconditioning-induced Zn2+ signal is mediated by the 

redox modulation of the MT/Zn2+ interaction.   

 

While intracellular MTs represent a major source for labile Zn2+, it is also conceivable 

that other Zn2+ bound proteins are susceptible to oxidant-induced Zn2+ liberation.  Indeed, PKC, 

which contains a cysteine-rich Zn2+-finger motif in the regulatory C1 region, has been shown to 

release Zn2+ in the presence of thiol oxidants, leading to auto-activation of the enzyme (Knapp 
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and Klann, 2000).  Under these conditions, oxidant-induced Zn2+ release occurred prior to PKC 

activation.  In contrast, I found that inhibiting PKC activity attenuated KCN-induced Zn2+ 

accumulation (Figure 6), suggesting that PKC is activated prior to the Zn2+ rise in preconditioned 

neurons.  The PKC inhibitors used in the present studies compete with ATP at the PKC catalytic 

domain (Martiny-Baron et al., 1993) and thus, would not be expected to block potential Zn2+ 

release from the regulatory C1 region.  The results presented here support an indirect relationship 

between PKC and the preconditioning-induced Zn2+ rise.  PKC may interact with a source of 

labile Zn2+, promoting an increase in the intracellular concentration of the metal.  To this end, I 

found evidence for a novel role for PKC in modulating the MT/Zn2+ interaction to facilitate Zn2+ 

release from the metal-binding protein.  I identified a highly conserved, putative PKC 

phosphorylation site on MT at serine 32 (S32).  S32 is located in the linker region of MT 

between the two metal-binding domains containing the Zn2+/thiolate clusters.  Mutation of S32 to 

a non-phosphorylatable alanine (S32A) prevented the increase in PKC-dependent serine 

phosphorylation of MT, attenuated metal-stimulated activation of the MRE, and diminished the 

neuroprotective effect of preconditioning (Figure 7).  However, in fluorescence resonance energy 

transfer (FRET)-based cell-free biochemical studies, the mutation of S32 to a cysteine residue or 

a fluorophore did not alter the overall structure of the protein, or its ability to bind Cd2+ (Hong 

and Maret, 2003).  The effect of mutating S32 on the Zn2+-binding properties of cellular MT was 

not examined (Hong and Maret, 2003).  In the functional assays presented here, I found that 

modulation of S32 to a non-phosphorylatable alanine or a phospho-mimicking aspartic acid had 

a significant impact on neuronal free Zn2+ and Zn2+-regualated gene expression.  Thus, 

phosphorylation of MT on residue S32 by PKC may prevent efficient binding of Zn2+, allowing 

for enhanced Zn2+ regulated gene expression and neuroprotection.  Together, these data strongly 
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suggest that MT III plays a dual role in regulating neuronal free Zn2+ homeostasis.  Depending 

on the availability of unoccupied Zn2+ binding sites as well as the intracellular redox 

environment, MT III can serve as an important buffer for, and source of, neuronal free Zn2+.  

Another major implication of these studies is that signaling kinases can serve as regulating 

factors in neuronal Zn2+ homeostasis.  Thus, other protein kinases, besides PKC, or protein 

phosphatases may interact with MT, ultimately regulating neuronal free Zn2+ and cell viability.   

4.2 ZINC AND CALCIUM SIGNALS IN PRECONDITIONED NEURONS 

Preconditioning triggers a transient increase in neuronal free Zn2+, which is both necessary and 

sufficient to confer tolerance against subsequent Zn2+-mediated injury (Figures 2, 3; Lee et al., 

2008).  Like the Zn2+ rise described here, an accumulation of Ca2+ has also been shown to play 

an important role in the initiation of survival pathways in preconditioned neurons.  In models of 

cerebral tolerance, removing extracellular and cytoplasmic Ca2+ or preventing its influx through 

NMDA receptors by MK-801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo [a,d] cyclohepten-5,10-

imine maleate] severely attenuated neuroprotection (Kato et al., 1992; Kasischke et al., 1996; 

Grabb and Choi, 1999; Raval et al., 2003).  The neuroprotective signal transduction pathway has 

been shown to stimulate Ca2+-dependent enzymes, including PKC (Raval et al., 2003) and nitic 

oxide synthase (NOS; Nandagopal et al., 2001).  While PKC and NOS activation in 

preconditioned neurons required NMDA receptor-dependent Ca2+ influx, downstream targets for 

these enzymes may ultimately regulate intracellular [Zn2+].  Here, I show that PKC can directly 

interact with MT and may play a significant role in promoting Zn2+ release from the metal 

binding protein (Figure 7).  Furthermore, NO, produced by the activation of NOS, can readily 
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trigger the release of Zn2+ from MT (Cuajungco and Lees, 1998).  Thus, the influx of Ca2+ may 

actually contribute to the accumulation of free Zn2+ in preconditioned neurons, mediated by the 

activation of Ca2+-dependent enzymes. 

  

Another Ca2+-dependent enzyme that has been implicated in mediating neuroprotection 

following ischemic injury is protein phosphatase 2B (PP2B or calcineurin).  Rather than 

mediating delayed neuronal tolerance via activation of protein synthesis, calcineurin may play a 

central role in the acute cellular response to injury.  Following sub-lethal ischemic injury, an 

increase in [Ca2+]i, mediated by release from intracellular stores, led to the activation of 

calcineurin and the modulation of the delayed rectifier potassium channel Kv2.1 (Misonou et al., 

2005).  Specifically, sub-lethal ischemia led to calcineurin-dependent dephosphorylation of 

Kv2.1, which was accompanied by dispersal of surface clusters and a shift in the voltage-

dependent activation of neuronal potassium current (Misonou et al., 2005).  In turn, these altered 

Kv2.1 channel properties are thought to protect neurons against sustained hyperexcitability, 

limiting ischemic cell death (Surmeier and Foehring, 2004).  While stimulation of calcineurin 

activity may require Ca2+, I found that chelation of Zn2+ during sub-lethal ischemia partially 

blocked the hyperpolarizing shifts in the activation kinetics as well as prevented Kv2.1 

declustering (Figures 9, 10).  Ischemia-induced Zn2+ accumulation was not prevented by a 

calcineurin inhibitor (Figure 11), suggesting that the Zn2+ rise may be upstream of, or 

independent of, calcineurin activity.  Alternatively, Zn2+ chelation with TPEN may have 

sequestered the metal from the catalytic domain of calcineurin (Goldberg et al., 1995), 

preventing full enzymatic activity.  The exact role of Zn2+ in modulating calcineurin activity, 
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whether direct or indirect, remains unclear.  Regardless, these data provide another example of 

the convergence of Zn2+ and Ca2+ mediated signaling pathways in neuroprotection.   

 

 While it is clear that both Zn2+ and Ca2+ can accumulate in preconditioned neurons and 

trigger converging neuroprotective signaling cascades, the exact roles of the two cations in 

neuronal tolerance needs to be delineated.  Indeed, determination of the contribution of Zn2+ 

versus Ca2+ signaling has been an area of intense investigation in models of neuronal injury.  

Careful examination of indicators traditionally used to detect changes in cellular [Ca2+] revealed 

that they actually respond with higher affinity to Zn2+ (Stork and Li, 2006).  Live cell detection 

of free Zn2+ has only become feasible through recent developments of Zn2+ sensitive and 

selective fluorophores (Gee et al., 2002; Thompson et al., 2002).  By loading neurons with a low-

affinity ratiometric Ca2+-sensitive indicator (e.g., Fura-2FF) and a high-affinity Zn2+-sensitive 

indicator (e.g., FluoZin-3), Devinney and colleagues (2005) provided a novel method for 

simultaneous detection of both divalent cations in living cells.  Using this approach, Dineley and 

colleagues (2008) examined changes in free Zn2+ following extracellular glutamate stimulation 

in cortical neurons in culture.  They found that the glutamate-induced release of intracellular 

Zn2+ was dependent on an influx of extracellular Ca2+ and subsequent production of reactive 

oxygen species (Dineley et al., 2008).  On the other hand, in acute hippocampal slices loaded 

with both Zn2+ and Ca2+ indicators, oxygen-glucose deprivation (OGD) led to a progressive 

increase in neuronal Zn2+ (5-10 min following OGD onset), which preceded and may have 

contributed to Ca2+ deregulation (Medvedeva et al., 2009).  As brief exposure to OGD is a 

prototypical preconditioning stimulus (Grabb and Choi, 1999), a similar temporal profile 

between Zn2+ and Ca2+ accumulation may exist in KCN preconditioned neurons.  A Zn2+ rise 
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prior to Ca2+ deregulation was also observed in a model of spreading depression in hippocampal 

slices (Dietz et al., 2008).  This Zn2+ rise was largely attributed to extracellular Zn2+ entry 

through L-type Ca2+ channels (Dietz et al., 2008).  Thus, simultaneous detection of [Zn2+] and 

[Ca2+] using the dual dye approach provides great insight into how these two divalent cations 

respond to cellular changes.  Similar to injury paradigms, neuroprotective pathways also involve 

critical contributions from, and intersection of, Zn2+ and Ca2+ signals. 

4.3 ZINC-REGULATED GENE ACTIVATION IN NEURONAL TOLERANCE   

One of the hallmark characteristics of delayed neuronal tolerance is its dependence on de novo 

protein synthesis elicited by the preconditioning stimulus (Barone et al., 1998).  However, the 

genomic response to preconditioning may not simply involve an immediate activation of 

quiescent survival genes.  Instead, DNA oligonucleotide microarray analysis has shown that a 

large number of genes may be repressed following preconditioning (Stenzel-Poore et al., 2003).  

Nevertheless, protein synthesis inhibition by cyclohexamide prior to, or during preconditioning 

blocks neuronal tolerance in vivo and in vitro (Barone et al., 1998; McLaughlin et al., 2003), 

suggesting a major role for gene activation and protein synthesis in neuroprotection.  Changes in 

gene expression/repression may occur along several temporal profiles. Some genes are altered 

within minutes or hours (e.g., adenosine A2a receptor, vascular endothelial growth factor), 

whereas others are affected days following the preconditioning stimulus (e.g., calbindin, 

serine/threonine protein kinases; Bernaudin et al., 2002a; Tang et al., 2006).   Thus, the highly 

regulated modulation of gene expression in preconditioned neurons is an important cellular 

response that may ultimately confer neuronal tolerance.  
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In this dissertation, I found evidence suggesting that a preconditioning-induced Zn2+ rise 

triggers the activation of processes that can prevent subsequent toxic Zn2+ accumulations (Figure 

3).  Interestingly, Matsushita and colleagues (1996) reported that exogenous ZnCl2 pretreatment 

reduced neuronal death following in vivo global ischemia when Zn2+ was administered 24 and 48 

hours, but not one hour, prior to ischemia.  In light of the requirement of new protein synthesis in 

neuronal tolerance, and that proteins involved in buffering free Zn2+ are regulated at the level of 

transcription, it is likely that preconditioning triggers the upregulation of proteins involved in 

maintaining cellular Zn2+ homeostasis.  To this end, I found that KCN preconditioning 

sufficiently activates the MRE in transfected cortical neurons (Figure 5), suggesting that Zn2+ 

regulated gene expression can be stimulated in preconditioned cells.  Thus, the Zn2+-induced 

upregulation of Zn2+-regulated proteins, such as MT I/II and ZnT1, may play a role in neuronal 

tolerance.      

 

Indeed, upregulation of MT I and II have been shown in multiple models of 

preconditioning (Bernaudin et al., 2002a; Carmel et al., 2004; Dhodda et al., 2004; Tang et al., 

2006).  A two-fold induction of MT I/II mRNA can be detected as early as three hours following 

preconditioning, peaking at 12 hours with a 6-fold change in expression, and returning to 

baseline levels 24 hours following preconditioning (Carmel et al., 2004; Dhodda et al., 2004).  

The upregulation of MT I/II expression as a general mechanism mediating neuroprotection from 

lethal injury has received some attention.  The induction of MT by application of transition 

metals protects the heart against oxidative damage (Satoh et al., 1988) and cortical cells against 

irradiation damage (Cai et al., 2000).  Mice overexpressing MT I have reduced lesion volume 

and sensorimotor deficits following in vivo ischemia compared to wild-type mice (van Lookeren 
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Campagne et al., 1999). On the other hand, mice lacking MT I/II suffer worse outcomes 

compared to wild-type mice following a range of CNS injuries, including focal cryolesion 

(Penkowa et al., 1999), experimental autoimmune encephalomyelitis (an experimental model of 

multiple sclerosis; Penkowa and Hidalgo, 2001), motor neuron disease, (Puttaparthi et al., 2002), 

and stroke (Trendelenburg et al., 2002).  MT I/II double knockout mice had approximately three-

fold larger infarcts and significantly worse neurological outcome than wild-type mice following 

transient ischemia (Trendelenburg et al., 2002).  Along these lines, I found that neurons 

overexpressing MT III were more resistant to NMDA excitotoxicity compared to vector-

expressing neurons (Figure 2).  Thus, MT plays an important neuroprotective role in response to 

cellular injury.   

 

Despite the abundance of data describing the upregulation of MTs in limiting neuronal 

injury, the inducible isoforms MT I and II are predominantly expressed in astrocytes (Hidalgo et 

al., 1994; Kramer et al., 1996b; Kramer et al., 1996a; Suzuki et al., 2000).  Thus, if MT I/II 

buffer lethal neuronal free Zn2+ in models of neuronal tolerance, then brain astrocytes must 

respond to preconditioning by upregulating MT I/II and secreting it into the extracellular space.  

In fact, accumulating evidence has supported the injury-induced secretion of astrocytic MT 

(Chung et al., 2008), the presence of MT in the extracellular space (Chung and West, 2004), and 

a potential receptor that may mediate MT uptake in neurons (Ambjorn et al., 2008).  However, in 

response to brain injury, extracellular MT has been only shown to promote axonal regeneration 

and neurite outgrowth (Chung et al., 2008). It is conceivable that, in addition to its effects on 

neuronal proliferation, secreted MT could also chelate Zn2+ released into the extracellular space 

from injured neurons.  By chelating extracellular Zn2+, MT may be able to indirectly reduce 
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[Zn2+]i.  In addition, the internalization of astrocytic MT by neurons (Chung et al., 2008) may 

directly buffer lethal Zn2+ accumulations.  Thus, the recently described extracellular actions of 

MT I/II may provide exciting new potential neuroprotective mechanisms.   

  

A more likely target of preconditioning-induced Zn2+-regulated gene expression may be 

neuronal ZnT1.  ZnT1 expression has been found in neurons (Tsuda et al., 1997) and can be 

induced by Zn2+ in an MTF-1 dependent pathway (Andrews, 2000; Langmade et al., 2000).  

ZnT1 facilitates Zn2+ efflux (Palmiter and Findley, 1995, but also see Ohana et al., 2006), and 

may actually be more efficient than MTs in regulating intracellular accumulation of Zn2+ 

(Palmiter, 2004).  Using in situ hybridization, ZnT1 mRNA expression has been shown to be 

upregulated in gerbil CA1 pyramidal neurons 12 hours following transient forebrain ischemia 

(Tsuda et al., 1997).  However, not all changes in ZnT1 mRNA have been realized as 

proportional changes in protein levels (Tsuda et al., 1997; McMahon and Cousins, 1998), 

indicating possible post-translational regulation of ZnT1 protein expression.  It is also unclear 

whether blocking ZnT1-mediated Zn2+ efflux following ischemia exacerbates neuronal injury.  

Unlike MT, changes in ZnT1 mRNA and protein expression in preconditioned neurons have not 

been extensively investigated.  However, a conceptually similar investigation has been 

performed in astrocytes (Nolte et al., 2004).  In a pure astrocytic culture, sub-lethal exogenous 

Zn2+ exposure induced ZnT1 protein expression and conferred resistance to subsequent lethal 

Zn2+ toxicity (Nolte et al., 2004).  Further, in non-preconditioned astrocytes, heterologous 

expression of ZnT1 reduced toxic intracellular Zn2+ accumulations and induced Zn2+-tolerance 

(Nolte et al., 2004).  ZnT1 may play a similar role in neurons.  Data presented here show that 

preconditioning can activate Zn2+-regulated gene expression in neurons and implicate the 
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upregulation of proteins involved in limiting toxic Zn2+ accumulations in tolerant cells.  The 

upregulation of ZnT1 represents an attractive mechanism for mediating Zn2+-induced 

neuroprotection in preconditioned neurons.   

4.4 CONCLUDING REMARKS 

Currently, the most effective therapy for ischemic stroke is timely reperfusion.  Intravenous 

administration of human recombinant tissue plasminogen activator (tPA) within three hours of 

ischemic stroke onset can restore blood flow before major brain damage has occurred (Albers, 

2001; Wardlaw et al., 2003).  However, thrombolytic drugs must be used with caution, as lethal 

intracranial bleeding may result.  In light of the serious side effects and limited time window of 

efficacy, it is imperative that alternative therapeutic strategies for ischemic stroke be developed.  

Over a decade of experimental evidence has described a central role for a toxic accumulation of 

intracellular Zn2+ in ischemic neuronal death.  However, the results presented in this dissertation 

suggest that an increase in neuronal free Zn2+ may also trigger pathways that limit cell injury 

following injury and confer long-term tolerance.  I found that the source of the Zn2+ rise was 

largely intracellular, and may be critically influenced by the activity of signaling kinases.  Data 

presented here also suggest that sub-lethal Zn2+ signals may have diverse cellular effects, 

including the activation of gene transcription and the modulation of cellular excitability.  

Together, the identification of the source of the Zn2+ rise and potential downstream targets 

mediating neuroprotection may provide novel therapeutic targets for regulating intracellular Zn2+ 

signals, and ultimately cell survival.  These results provide a new, neuroprotective role for 

increases in free Zn2+ that could aid in the development of future therapies for ischemic stroke. 
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Supplementary Figure 1 – Verification of MT3shRNA construct 
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Supplementary Figure 1.  Verification of MT3shRNA construct.  Experiments performed by 

Hirokazu Hara, Ph.D.  (A) CHO cells were plated at a density of 5.6 X 104 cells/well on 

coverslips in 24-well plates.  Twenty-four hours later, CHO cells were transfected with either the 

parent pSuppressorNeo (vector; top row) or MT3-shRNA targeting plasmid (0.2 g/well; bottom 

row), together with both pEGFP-MT3 (0.04 g/well) and pDsRed-MT1 (0.04 g/well) for 4 

hours in serum-free medium (F12 nutrient medium with 10mM HEPES) with a total of 1.2 L of 

Lipofectamine (Invitrogen) and 0.28 g of DNA per well.  Forty-eight hours later, cells were 

fixed and visualized for EGFP (green) and DsRed (red) fluorescence.  Note the suppression of 

green fluorescence by MT3-shRNA.  (B) CHO cells were plated at density of 280,000 cells/well 

on 6-well plates.  Twenty-four hours later, cells were transfected with either MT1-shRNA or 

MT3-shRNA targeting vectors (1.36 g/well) together with either pEGFP-MT3 or a plasmid 

encoding EGFP only (0.04 g/well).  Cell lysate samples were harvested 24 hours post-

transfection in lysis buffer [1% Triton X-100, 0.1% SDS, 0.25% Na deoxycholate, 50mM 

HEPES, 150mM NaCl, protease inhibitor mixture (Roche Diagnostics, Indianapolis, IN), pH 7.5] 

after two washes with PBS. Cell lysate samples were combined in a 1:1 ratio with reducing 

sample prep buffer and incubated for 5 min at 100°C to denature proteins before gel 

electrophoresis.  SDS/PAGE was carried out by standard procedures using the Mini Protean 3 

System (Bio-Rad, Hercules, CA).  Equal amounts of cell lysate (10 g) were separated by 

reducing 15% SDS/PAGE gels.  Separated protein bands were transferred onto a 0.2 m 

nitrocellulose membrane.  The membranes were then blocked with 1% BSA in PBS with 0.05% 

Tween 20 at room temperature for 1 h and probed with a GFP monoclonal primary antibody 

(Sigma).  Blots were then incubated with goat secondary antibody conjugated to HRP (1h, room 
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temperature) and were visualized with a SuperSignal CL-HRP Substrate System (Pierce 

Biotechnology, Rockford, IL).  Note the decrease in MT3-eGFP signal induced by MT3-shRNA. 
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Appendix B 

OBLIGATORY ROLE OF ASK1 IN THE APOPTOTIC SURGE OF K+ CURRENTS 

 

Mandar A. Aras and Elias Aizenman 

Department of Neurobiology, University of Pittsburgh School of Medicine, 

 Pittsburgh, PA 15261. 

 

 

ABSTRACT 

 

Apoptosis signal-regulating kinase 1 (ASK1) is a critical component of mitogen-activated 

protein kinase signaling pathways leading to cell death in response to cytokines and cellular 

stress.  We use a dominant-negative (DN) form of ASK1 to show that this enzyme is necessary 

for the delayed surge in neuronal K+ channel activity, a required step in apoptosis.  Furthermore, 

expression of ASK1 DN also suppresses the apoptotic increase in Kv2.1 currents transiently 

expressed in Chinese hamster ovary cells.  Finally, over-expression of thioredoxin, an inhibitory 

binding partner of ASK1, is sufficient to halt the apoptotic current surge in neurons.  Thus, 

ASK1 is an obligatory component of the pro-apoptotic modulation of K+ channels.  
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INTRODUCTION 

 

Apoptosis signal-regulating kinase 1 (ASK1) is a ubiquitously expressed mammalian 

mitogen-activated protein (MAP) kinase kinase kinase (MAPKKK) that activates both the p38 

and c-JUN NH2-terminal kinase (JNK) by directly phosphorylating their respective MAPKKs 

(MKK3/6 for p38 and MKK4/7 for JNK; Matsukawa et al., 2004).  ASK1 has been shown to be 

an important signaling kinase in apoptotic cell death in response to various stimuli, including 

oxidative stress, tumor necrosis factor, endoplasmic reticulum stress, low-potassium, and 

amyloid β (Ichijo et al., 1997; Liu et al., 2000; Nishitoh et al., 2002; Tobiume et al., 2002; 

Yamagishi et al., 2003; Kadowaki et al., 2005).  Although ASK1 activation has been repeatedly 

linked to neuronal apoptosis (Nishitoh et al., 2002; Sarker et al., 2003; Yamagishi et al., 2003; 

Kadowaki et al., 2005), the specific downstream molecular cascades leading to cell death in 

these systems have yet to be fully characterized.     

 

Cellular potassium efflux is a common, required feature in many apoptotic programs 

(Hughes and Cidlowski, 1999; Yu, 2003).  In cortical neurons, the loss of intracellular potassium 

occurs through a delayed surge in voltage-dependent K+ currents (Yu et al., 1997b) that is 

mediated by Kv2.1-encoded ion channels (Pal et al., 2003).  This increase in K+ currents can be 

triggered by classical apoptogens, such as staurosporine, serum deprivation, and amyloid β (Yu 

et al., 1997b; Yu et al., 1998), as well as by oxidants like 2,2’-dithiodipyridine (DTDP; 

Aizenman et al., 2000b; McLaughlin et al., 2001) and peroxynitrite (Bossy-Wetzel et al., 2004; 

Pal et al., 2004).  We have previously observed that the apoptotic K+ current surge is protein 

synthesis independent and precedes caspase activation (McLaughlin et al., 2001).   Importantly, 
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activation of the MAPK p38 is required for this process as both chemical inhibitors of this 

enzyme (McLaughlin et al., 2001) and expression of p38 dominant negative (DN) vectors 

(Bossy-Wetzel et al., 2004; Pal et al., 2004) can completely abolish the increase in K+ currents.   

 

In addition to ASK1, p38 activation can be induced by other MAPKKK, including 

transforming growth factor-β-activated kinase 1 (TAK1), mixed-lineage protein kinase 3 

(MLK3) and mitogen-activated protein three kinase 1 (MTK1; Zarubin and Han, 2005).  

Furthermore, it has been reported that p38 can also be activated via a MAPKKK-independent 

mechanism (Ge et al., 2002).  We report here that ASK1 represents the principal, if not the only, 

upstream signaling MAP kinase linking oxidative injury to the apoptotic increase in Kv2.1-

mediated currents in neurons.  

 

MATERIALS AND METHODS 

 

Experiments were performed on cultures of embryonic rat cerebral cortex and on Chinese 

hamster ovary cells.  Cortical cultures were prepared from embryonic day 16 Sprague-Dawley 

rats and grown on 12 mm glass coverslips as previously described (Hartnett et al., 1997).  

Pregnant rats were sacrificed with the approval of the University of Pittsburgh School of 

Medicine and in accordance with National Institutes of Health protocols.  Enhanced green 

fluorescent protein (eGFP) (pCMVIE-eGFP; Clontech, Palo Alto, CA) was used as a marker for 

positively transfected neurons and was combined with the ASK1 DN or Trx cDNAs (gifts from 

H. Ichijo, Tokyo, Japan), or vector, at a 1:1 ratio. At DIV19-23, cortical cultures were transfected 

using Lipofectamine 2000 (Invitrogen, Carlsbad, CA; Pal et al., 2003).  Briefly, 1.5 g of cDNA 
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was diluted in 50 l Opti-Mem I medium and combined with 50 l of Opti-Mem I medium 

containing 2 l Lipofectamine 2000.  Complexes were allowed to form for 30 min before 

addition to the cultures.  Cortical cells were maintained for 48 hours at 37oC, 5% CO2 before 

electrophysiological recordings.  Chinese hamster ovary (CHO) cells were seeded at 2.8 x 105 

cells per well into six well plates 24 hours before transfection.  Cells were transfected with a 

Kv2.1eGFP-myc tagged cDNA plasmid (a gift from E. Levitan, Pittsburgh, PA) and ASK1 DN, 

or vector, at a 1:1 ratio in serum-free medium with 6 l of Lipofectamine reagent (Invitrogen), 

and a total of 1.4 g of DNA per well.  Electrophysiological recordings from eGFP-positive 

CHO cells were performed 24 hours after transfection.  All recordings were performed using the 

whole-cell configuration of the patch-clamp technique as described previously (McLaughlin et 

al., 2001).  The extracellular solution contained (in mM):  115 NaCl, 2.5 KCl, 2.0 MgCl2, 10 

HEPES, 10 D-glucose; pH was adjusted to 7.2 with concentrated KOH; 0.25 M TTX was 

added to inhibit voltage gated sodium channels.  The intracellular (electrode) solution contained 

(in mM):  100 K-gluconate, 11 EGTA, 10 KCl, 1 MgCl2, 1 CaCl2 x 2H2O, 10 HEPES; pH was 

adjusted to 7.2 with concentrated KOH; 0.22 mM ATP was added and osmolarity was adjusted 

to 280 mOsm with sucrose.   All measurements were obtained under voltage clamp with an 

Axopatch 1C amplifier (Axon Instruments, Foster City, CA) and pClamp software (Axon 

Instruments) using 2 MOhm electrodes.  Partial compensation (80%) for series resistance was 

performed in all instances.  Currents were filtered at 2 kHz and digitized at 10 kHz (Digidata; 

Axon Instruments).  Potassium currents were evoked with a series of 80 ms voltage steps from a 

holding potential of   –70mV to 35mV, in 15mV increments.  Steady-state amplitudes were 

measured relative to baseline and normalized to cell capacitance.   
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Neurons were treated with DTDP (100 μM) for 10 min at 37oC, 5% CO2, a condition that 

induces a well-characterized p38-dependent increase in K+ currents approximately 3 hours later, 

followed by caspase activation at 5-7 hours and subsequent cell death (McLaughlin et al., 2001; 

Pal et al., 2003).  Kv2.1-expressing CHO cells were co-treated with DTDP (25 M) and Boc-

aspartate-fmk (BAF, 10 M), a broad-spectrum cysteine protease inhibitor, for 5 min in 37oC, 

5% CO2.  Subsequently, CHO cells were maintained in BAF (10 M) for three hours.  We have 

previously reported that BAF prevents Kv2.1-expressing CHO cells from dying following DTDP 

exposure (Pal et al., 2003), and here we found the caspase inhibitor necessary to maintain cells 

sufficiently healthy for successful electrophysiological recordings.  All data are expressed as 

mean  s.e.m.  Current densities were analyzed using one-way ANOVA followed by a Bonferoni 

Multiple Comparisons Test.  P-values less than 0.05 were considered significant. 

 

RESULTS AND DISCUSSION 

 

We expressed an ASK1 DN vector in cortical neurons to investigate the role of this 

MAPKKK in the delayed apoptotic K+ current surge.  The ASK1 DN vector (ASK1 K709M) is 

rendered catalytically inactive by a lysine to arginine mutation and has been well characterized in 

prior studies (Ichijo et al., 1997; Jibiki et al., 2003; Machino et al., 2003; Yamagishi et al., 2003).  

Control and ASK1 DN-transfected cultures were treated with either vehicle or with 100 M 

DTDP for 10 min to induce apoptosis (Aizenman et al., 2000a; McLaughlin et al., 2001; Pal et 

al., 2003).  Electrophysiological recordings were performed from these neurons approximately 

three hours later, the time it normally takes to observe a pronounced K+ current surge 

(McLaughlin et al., 2001).  DTDP-treated control neurons had very pronounced K+ currents, 
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when compared to vehicle-treated cells (Figs. 1A and 1C), reflecting the dramatic increase in 

channel activity that accompanies the apoptotic process (Yu et al., 1997b; McLaughlin et al., 

2001).  In contrast, K+ currents in ASK1 DN-expressing neurons were essentially identical 

between the vehicle and DTDP treatment groups (Figs. 1B and 1C), suggesting that this 

MAPKKK was critical for the apoptotic K+ current surge.  As a positive control, 

electrophysiological recordings were also performed on DTDP-treated, untransfected neurons 

from the same coverslip where recordings from ASK1 DN-expressing cells had been obtained.  

In these untransfected cells, a clear K+ current enhancement was measured (Figure 1C), 

confirming that the DTDP treatment had been effective in triggering the apoptotic program in 

those cultures, and reinforcing the notion that ASK1 was a critical component of the current 

surge process. 
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Figure 1.  ASK1 is required for the apoptotic K+ current surge in cortical neurons. (A) Whole-

cell K+ currents were evoked by a series of voltage steps from –70 mV to +35 mV in 15 mV 

increments in two representative control neurons exposed to either vehicle (VEH, left) or 2,2’-

dithio-dipyridine (DTDP; right, 100 M for 10 min).  Note the substantial difference in current 

amplitudes between the two treatment groups.  Also note that the current evoked by the last 

voltage step (+35 mV) in the DTDP-treated neuron was beyond the ability of our amplifier to 

appropriately hold under voltage clamp.  Scale bars 5 nA, 20 ms.  (B) Similar recordings were 

performed from ASK1 dominant negative (DN)-expressing neurons exposed to either vehicle 

(left) or DTDP (middle).  Note the lack of an effect of DTDP on K+ current amplitudes under 

these circumstances.  As a positive control, recordings were also performed from a DTDP-

treated untransfected neuron from the same coverslip where the measurement from the ASK DN-

expressing cell had been performed (right).  The large K+ currents present in this type of cell 

confirmed that DTDP had triggered the apoptotic program in the culture dish.  (C) Mean ± s.e.m. 

current densities from vehicle and DTDP treated control (black bars) and ASK1 DN-expressing 

(green bars) neurons.  The blue bar represents the current densities obtained from DTDP-treated 

untransfected neurons in the same coverslip containing the ASK1 DN-expressing cells.  Currents 

were evoked with a voltage step to +5 mV from a holding potential of –70 mV and normalized to 

cell capacitance (*p<0.05; ANOVA, Bonferoni).  The voltage step to +5 mV was always under 

adequate voltage clamp.   
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Functional expression of Kv2.1 in Chinese hamster ovary (CHO) cells was used to firmly 

establish the role of ASK1 in mediating the apoptotic current surge via the channel known to be 

responsible for the increase in K+ currents in neurons (Pal et al., 2003).  CHO cells do not 

express native Kv channels (Yu et al., 1998), but can be rendered susceptible to DTDP-induced 

apoptosis following the expression of Kv2.1 (Pal et al., 2003).  Electrophysiological recordings 

were performed from control and ASK1 DN-expressing CHO cells 3 hours after a 5 min 

exposure to vehicle or 25 M DTDP.  K+ currents in control cells exposed to DTDP were 

substantially larger than vehicle-treated cells, without a noticeable change in the voltage-

dependence of channel activation, which was determined from current-voltage relationships 

(Figs. 2A and 2C).  In contrast, the K+ currents in ASK1 DN-expressing CHO cells were 

virtually indistinguishable between the vehicle and DTDP-treated groups (Figs. 2B and 2C).  

These data indicate that Kv2.1 is a downstream target of the apoptotic pathway triggered by 

ASK1 activation, even in cells that do not normally express the channel.  This strongly suggests 

that a fairly direct and ubiquitous pathway exists between the downstream signaling cascades 

activated by ASK1 and the mechanism responsible for the enhanced currents mediated by Kv2.1. 
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Figure 2.  Apoptotic increase in Kv2.1 currents in Chinese hamster ovary (CHO) cells requires 

ASK1.  (A) Current-voltage (I-V) relationships of K+ currents evoked by a series of voltage steps 

from –70 mV to +35 mV in 15 mV in 2 representative Kv2.1-expressing CHO cells exposed to 

either vehicle (circles) or DTDP (25 M, 5 min; black squares).  Note the increase in the current 

amplitude in the DTDP-treated cell, without a change in the voltage-dependence of activation. 

(B) Similar measurements were performed in ASK1 DN-expressing CHO cells exposed to either 

vehicle (circles) or DTDP (black squares).  Note the virtually indistinguishable I-V curves 

between the two representative cells. (C) Mean ± s.e.m. Kv2.1-mediated current densities from 

vehicle and DTDP treated control (black bars) and ASK1 DN-expressing (green bars) CHO cells. 

Currents were evoked with a voltage step to +5 mV from a holding potential of –70 mV and 

normalized to cell capacitance (*p<0.05; ANOVA, Bonferoni.) 

In non-stressed cells, ASK1 is bound at its N-terminal region to thioredoxin (Trx) via a 

protein-protein interaction, deeming the kinase inactive.  Trx is a redox-regulatory protein 

containing two sulfhydryl groups near its catalytic center.  Under cell stress, reactive oxygen 

species can oxidize these sulfhydryl groups, inducing the release of ASK1, which becomes 

activated following oligomerization and autophosphorylation (Saitoh et al., 1998; Liu and Min, 

2002).  We have previously observed that a free-radical spin trap can inhibit DTDP-mediated 

activation of p38 in neurons (McLaughlin et al., 2001), suggesting a role for reactive oxygen 

species in the activation of the MAPK.  DTDP is known to trigger neuronal apoptosis by first 

liberating zinc from intracellular binding proteins (Aizenman et al., 2000b).  Zinc, in turn can 

generate reactive oxygen species by modulating mitochondrial function (Sensi et al., 1999; Sensi 

et al., 2003) or activating 12-lipoxygenase (Zhang et al., 2004).  We thus hypothesized that over-

expression of Trx may prove sufficient to halt the DTDP-induced K+ current surge by providing 
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an excess of the inhibitory binding partner of ASK1.  As such, electrophysiological 

measurements were performed from vehicle and DTDP (100 M, 10 min)-treated neurons 

previously transfected with a plasmid containing Trx.  We observed virtually identical current-

voltage relationships and K+ current amplitudes (Figs. 3A and 3B) in both vehicle and DTDP-

treated neurons expressing Trx.  In contrast, recordings performed on DTDP-exposed cells not 

over-expressing Trx, but obtained from the same coverslip, revealed a pronounced K+ current 

surge, indicating that the exposure to the apoptogen had been effective across the culture.  These 

results indicate that over-expression of Trx, a suppressor of ASK1 activation, can halt the 

apoptotic increase in K+ currents in neurons.  It is possible, however, that over-expression of Trx 

may have other, non-specific effects, including a direct interaction with DTDP.  The fact that 

DTDP activates p38 in a ROS-dependent fashion (McLaughlin et al., 2001) despite the presence 

of many endogenous thiol groups does suggest, however, that Trx directly suppresses ASK1 

function.  

 

Consistent with reports involving oxidative injury (Song and Lee, 2003; Takeda et al., 

2003), we have found that ASK1 is a requisite upstream signaling kinase in a critical step of 

neuronal apoptosis; namely, an increase in voltage-dependent K+ currents.  In important recent 

studies, a link was established between Ca2+ signaling and p38 activation in neurons via the 

interaction of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and ASK1 (Sensi et al., 

1999; Sagasti et al., 2001; Takeda et al., 2003).  CaMKII is a well-known regulator of synaptic 

function (Colbran and Brown, 2004), and p38 has recently been implicated in certain forms of 

synaptic plasticity (Thomas and Huganir, 2004), including an NMDA (a Ca2+-permeable 

glutamate receptor) receptor-dependent form of long-term depression that is mediated by the 
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internalization of glutamate receptors specific for AMPA (Zhu et al., 2002.  It is thus appealing 

to speculate that, based on our present findings, calcium signaling may be linked in future studies 

to long-term changes in neuronal excitability via ASK1/p38-dependent alterations in voltage-

dependent K+ currents.  
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Figure 3.  Over-expression of thioredoxin (Trx) prevents the apoptotic current surge in neurons. 

(A) I-V relationships of K+ currents evoked by a series of voltage steps from –70 mV to +35 mV 

in 15 mV in representative Trx over-expressing neurons exposed to either vehicle (black 

triangles) or DTDP (100 M, 10 min; black squares).  Note the very similar I-V curves in these 

two cells.  An I-V relationship was also established from a DTDP-treated untransfected neuron 

from the same coverslip where the measurements from the ASK DN-expressing cell had been 

performed (black circles), demonstrating the current surge. (B) Mean ± s.e.m. current densities 

from vehicle and DTDP-treated ASK1 DN-expressing neurons (green bars).  The blue bar 

represents the current densities obtained from DTDP-treated untransfected neurons in the same 

coverslip containing the ASK1 DN-expressing cells.  Currents were evoked with a voltage step 

to +5 mV from a holding potential of –70 mV and normalized to cell capacitance (statistically 

different from the Trx+ groups, *p<0.05; ANOVA, Bonferoni).  
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Appendix C 

ASSESSMENT OF CELL VIABILITY IN PRIMARY NEURONAL CULTURES 

 

Mandar A. Aras, Karen A. Hartnett, Elias Aizenman 

Department of Neurobiology, University of Pittsburgh School of Medicine,  

Pittsburgh, PA 15261. 

 

ABSTRACT  

 

This unit contains five protocols for assaying cell viability in vitro using primary 

neuronal cultures, including a novel method for use with transfected neurons. Three of the assays 

are based on the principle that cell death cascades alter membrane permeability. The lactate 

dehydrogenase (LDH) release assay measures the amount of the cytoplasmic enzyme released 

into the bathing medium, while the trypan blue and propidium iodide assays measure the ability 

of cells to exclude dye from their cytoplasm. The 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay measures the mitochondrial activity of viable cells by 

quantifying the conversion of the tetrazolium salt to its formazan product. Finally, the fifth assay 

details the measurement of luciferase expression as an indication of neuronal viability within a 

relatively small population of transfected neurons.  
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TOPIC INTRODUCTION 

 

Research aimed at studying the cellular and molecular mechanisms of neuronal cell death 

and the development of novel neuroprotective strategies are critically important areas of modern 

neuroscience. Understanding the complexities of cell death processes has therapeutic 

implications for a variety of neurodegenerative pathologies, including stroke, trauma, epilepsy, 

Parkinson’s disease (PD), and Alzheimer’s disease (AD). As such, rapid, accurate and 

reproducible assays for measuring cell death in vitro are vital.  

 

Historically, neurobiologists have distinguished two broad categories of cell death: 

apoptosis and necrosis. In 1972, John Kerr and colleagues first coined the term apoptosis to 

describe a set of morphological features associated with cell death in pathological as well as in 

normal physiological states (Kerr et al., 1972). These characteristics, also described in the central 

nervous system (Pender et al., 1991), include chromatin condensation, nuclear DNA 

fragmentation, cell shrinkage, apoptotic body formation, and ultimate phagocytosis. On the other 

hand, necrosis follows severe pathological insults and involves cytoplasmic swelling, loss of 

membrane integrity, and cell lysis. Since the initial description distinguishing apoptosis from 

necrosis, many forms of cell death have been described combining features of both death 

programs (Bredesen et al., 2006; Unit 3.8). Importantly, as mechanisms involved in cell death 

become elucidated, additional cellular, biochemical and molecular characteristics (altered 

intracellular ion homeostasis, mitochondrial protein release, and caspase activation) are more 

appropriately used to describe this process (Pettmann and Henderson, 1998; Bredesen et al., 

2006). Neuronal cell culture models have been important tools for the elucidation of signaling 

 130 



cascades relevant to cell death following a variety of insults, and have also provided important 

platforms for the screening of novel neuroprotective interventions. As such, rapid, reliable, and 

inexpensive methods to monitor cell death in these models have allowed researchers to provide 

key insights into the cellular and molecular basis of several neurodegenerative diseases.    

 

Although there are many methods to measure cell viability, most assays are based on a 

few guiding principles (Table 7.18.1). These principles include, but are not limited to, cell 

morphology, membrane permeability, and mitochondrial activity. Selection of the most 

appropriate protocol is driven by the specific goals of the experiment and the relative advantages 

and disadvantages of the assay. In this unit, five protocols are described in detail; the first four 

are to be used in non-transfected neuronal cultures, while a fifth, novel assay is used in 

transfected primary neural cells.  

 

The lactate dehydrogenase (LDH) release assay (Basic Protocol 1) is based on the 

principle that cell death processes in vitro eventually lead to an increase in membrane 

permeability, allowing the release of cytoplasmic enzymes into the bathing medium. This assay 

is simple, quick, and non-destructive, but it is not specific to neuronal cell death if the cultures 

contain additional cell types such as astrocytes.  Alternatively, if the cells are lysed prior to 

assaying the medium, total cytoplasmic LDH can be measured as an indication of the number of 

viable cells remaining in the culture (Alternative Protocol 1).  The tetrazolium salt, 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), is used to measure mitochondrial 

activity in viable cells (Basic Protocol 2). The MTT assay utilizes spectrophotometry to provide 

rapid and reproducible results, but provides no morphological information. The trypan blue and 
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propidium iodide assays (Basic Protocols 3 and 4, respectively) are based on the same membrane 

permeability principle as the LDH assay. However, rather than measuring the release of 

cytoplasmic contents, the trypan blue and propidium iodide assays quantify the extent to which 

cells are unable to exclude these two dyes from their cytoplasm. Although these two assays 

provide morphological information, they can be time-consuming due to manual cell counting. 

However, propidium iodide is a fluorescent biomarker and can also be quantified using a plate 

reader. Cell counting has the added advantage that it can measure cell death of neurons in mixed 

cultures when accompanied by a neuronal marker.  Support Protocol 1 provides a procedure that 

can be used to extend the time window between staining and counting cells in the trypan blue 

and propidium iodide assays.  Finally, Basic Protocol 5 describes a novel method that can be 

used to assess cell viability among positively transfected neurons. By co-transfecting neurons 

with a firefly luciferase reporter, this assay measures viability in cells with a manipulated 

genome. Although this assay selects for a relatively small population of cells that is transfected, 

it has the advantage of being able to use molecular probes to provide important mechanistic 

information about cell signaling pathways involved in the cell death process.    

 

All assays described in this unit utilize primary rat cortical neurons obtained from 

embryonic day 16 Sprague-Dawley rats (Charles River laboratories, Wilmington, MA).  Cortices 

are dissociated and the resultant cell suspension is adjusted to a density of 670,000 cells/well 

(six-well tissue culture plates containing 5, 12mm poly-L-ornithine-treated coverslips per well).  

Cultures are maintained at 37oC, 5% CO2 in 500 µl bathing medium/well composed of a volume-

to-volume mixture of 80% Dulbecco’s modified minimal essential media (MEM), 10% Ham’s 

F12 nutrients, 10% bovine calf serum (heat-inactivated, iron-supplemented; Hyclone, Logan, 

 132 



UT) with 25 mM HEPES, 24 U/mL penicillin, 24 μg/mL streptomycin, and 2 mM L-glutamine 

(Hartnett et al., 1997).   Cultures are inhibited on in vitro day 15 with cytosine arabinoside to 

inhibit non-neuronal cell proliferation.  Cultures are normally utilized at 21-25 days in vitro 

(DIV).  All incubations are performed in a humidified 37oC, 5% CO2 chamber, unless otherwise 

noted.   

 

STRATEGIC PLANNING  

 

To facilitate data interpretation, it is useful to divide a 24-well plate into a vehicle treated 

group, experimental treatments, as well as complete-kill wells (Figure 7.18.1). Cell viability is 

often presented in the literature as percent cell death, which can be calculated as follows: 

 

 % cell death =             (ei result  -  mean vehicle result)            X  100                                              

    (mean complete kill result  -  mean vehicle result) 

 

In the above formula, ei refers to the result of individual experimentally treated wells. 

Mean vehicle result can be obtained by averaging the results from each of the vehicle-treated 

wells. Similarly, mean complete-kill result is obtained by averaging the results from each of the 

wells treated with a substance that produces 100% neuronal cell death conditions. If the 

complete-kill insult is selective for neurons, then the data can be expressed as percent neuronal 

death. For example, 24 hour exposure of cortical cultures containing neurons and glia to 300 µM 

N-methyl-D-aspartate (NMDA) or 1 mM kainate will cause 100% neuronal death while sparing 

astrocytes (Koh and Choi, 1988; Sinor et al., 2000). 
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Figure 1.  Experimental setup. Typically, 24-well plates are divided into vehicle (VEH) treated 

wells, experimental treatments (e1-4), and complete-kill (CK; 100% cell death) treated wells. 
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BASIC PROTOCOL 1:  ASSAY OF CELL VIABILITY BY MEASUREMENT OF 

LACTATE DEHYDROGENASE (LDH) RELEASE 

 

The release of lactate dehydrogenase (LDH) into the bathing medium is an indication of 

compromised membrane integrity (Koh and Choi, 1987). The quantification of LDH release is a 

rapid, reliable, and reproducible method for detecting cell toxicity without disrupting or 

destroying the cell in culture, which can also be assessed morphologically. In this assay, a 

sample of the bathing medium is combined with the assay mixture containing cofactor, substrate, 

and dye solutions. The Tox-7 assay kit (Sigma Chemical Company, St. Louis) is based on the 

conversion of the tetrazolium dye to a soluble, colored compound by nicotinamide adenine 

dinucleotide (NADH). The change in color can be easily quantified using a microplate 

spectrophotometer, with greater LDH activity indicating greater cell damage (Figure 7.18.2).   

 

Materials 

LDH-Based In Vitro Toxicology Assay Kit (Sigma, product# TOX7-1KT) 

Minimal essential media (MEM, without phenol red; Gibco, Grand Island, NY) 

Cells in 24-well culture plate, 500 µl bathing medium/well 

96 well flat bottom, clear microtiter plate 

Microplate spectrophotometer (e.g., Wallac 1420 Victor2 multilabel counter; 

PerkinElmer, Waltham, MA) 

Repeater pipette 
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1. Transfer duplicate (or greater) samples of 40 µl from each culture well to a well of a clear 

96-well plate (Figure 7.18.3). 

a. Include 40 µl samples of MEM for blank wells, 40 µl samples from vehicle 

treated wells and 40 µl from complete-kill samples. 

2. Prepare LDH mixture by combining equal amounts of LDH cofactor, substrate, and dye 

solutions (all supplied in the Tox7 kit).  For example, to assay a single 24 well plate, mix 

500 µl cofactor solution with 500 µl each of the substrate and dye. 

3. Using a repeater pipette, add 20 µl of LDH mixture per blank, vehicle, sample, and 

complete-kill well. 

4. Protect the 96-well plate from light and incubate at room temperature for 10-20 minutes. 

5. Using the plate reader, measure the absorbance at 490 nm (0.1 second) followed by 

measurement of the background absorbance at 690 nm (0.1 second).  Subtract the 

absorbance measurements at 690 nm from the primary measurements at 490 nm. Finally, 

subtract blank measurements from all vehicle, sample, and complete-kill measurements. 

6. Background-subtracted absorbance measurements from control and treatment samples 

can be expressed as % cell death (see Strategic Planning) or as the ratio, LDHTREATMENT / 

LDHCONTROL.  Differences in % cell death or the LDH ratio, expressed as a mean ± 

S.E.M, can be compared among treatment groups for statistical significance.   
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ALTERNATIVE PROTOCOL 1:  ASSAY OF CELL VIABILITY BY MEASUREMENT 

OF TOTAL CYTOPLASMIC LDH 

 

 Rather than assaying cell toxicity via the efflux of LDH into the bathing medium 

(Basic Protocol 1), this assay quantifies the number of viable cells left in the tissue culture plate 

by measuring total cytoplasmic LDH. Cells are lysed prior to sampling, allowing cytoplasmic 

contents to be released into the bathing medium. Here, a greater cell number will provide greater 

LDH activity, increasing the amount of substrate converted to colored product. This method is 

obviously destructive to the cells, so that no morphological information can be obtained. 

 

Additional Materials (also see Basic Protocol 1) 

LDH Lysis Solution (Sigma, product #L2152)   

 

1. Add 50 µl of Lysis Solution to each well of the 24-well culture plate and incubate for 

45 min at 37oC. 

2. Prepare samples and measure LDH activity according to Basic Protocol 1, Steps 1-5. 
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Figure 2.  NMDA-mediated neuronal death characterized by trypan blue (TB) cell counts and 

LDH release. Cortical cultures (21-25 DIV) containing neurons resting on an astrocyte 

monolayer were exposed to increasing doses of NMDA for 10 min. Cell counts (EC50 74.56 ± 

6.15) and LDH release (EC50 98.14 ± 18.84) were assayed 18-20 hours following treatment 

(mean ± s.e.m.; n=3 cultures).         

 

 

 

 138 



BASIC PROTOCOL 2:  ASSAY OF CELL VIABILITY BY MEASUREMENT OF 

MITOCHONDRIAL ACTIVITY (MTT REDUCTION) 

 

The conversion of the yellow tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) to its purple formazan product is an indication of 

mitochondrial activity (Mosmann, 1983).  This assay provides a rapid and precise method of 

quantifying cell viability by measuring, via spectrophometry, the ability of living cells to reduce 

the MTT reagent. Following incubation of cells with the MTT reagent, lysis buffer is added to 

dissolve the insoluble purple formazan product to yield a colored solution, which is quantified 

using a microplate spectrophotometer. The relative absorbance directly correlates with cell 

number, that is, more purple color indicates more viable cells.   

 

Materials 

5 mg/mL 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT; Sigma, 

product #M2003-1G) in phosphate buffered saline (PBS; see recipe in Appendix 2A) 

Cells in 24-well plate, 500 µl bathing medium/well 

Lysis Buffer (see recipe in Reagents and Solutions) 

Microplate spectrophotometer (e.g., Wallac 1420 Victor2 multilabel counter; 

PerkinElmer, Waltham, MA) 
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1. Remove the entire volume of cell culture medium by gently aspirating each well. 

Immediately add 50 µl /well 5mg/ml MTT solution. Incubate at 37oC for 4 hours. 

2. Add 500 µl lysis buffer (equal volume to original bathing medium) and incubate 

overnight at 37oC or until the formazan precipitate is completely solubilized. 

3. Measure the absorbance of the wells at 570 nm and 630 nm (reference wavelength) with 

microplate spectrophotometer.  

4. Calculate ratio of A570/A630, which is directly related to the number of live cells in each 

well.  Differences in % cell death (see Strategic Planning), expressed as a mean ± S.E.M, 

can be compared among treatment groups for statistical significance.   
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Figure 3.  A typical 96-well setup for LDH Assay. Samples from vehicle (V) treated, complete 

kill (CK), and experimental (e1-4) wells are assayed in duplicate. Additionally, blank samples 

(B) containing MEM are used for background subtraction. Multiple 24-well plates or a greater 

number of replicate samples (e.g., triplicate, quadruplicate) can be assayed on a single 96-well 

plate.  
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BASIC PROTOCOL 3:  ASSAY OF CELL VIABILITY BY COLLOIDAL DYE 

(TRYPAN BLUE) EXCLUSION 

 

Healthy living cells contain plasma membranes that effectively exclude most large 

hydrophilic molecules. However, injured cells with compromised membrane integrity can allow 

hydrophilic molecules, such as trypan blue, into their cytoplasm. This assay is based on the 

simple principle that viable cells will exclude the trypan blue dye, whereas dead or dying 

neurons will not and thus, will appear blue. Live and/or dead cells are incubated with the dye and 

then counted in situ using bright field optics with a grid containing eye-piece. Dead cells may 

sometimes disintegrate or detach from the culture so most experimenters count live cells, which 

exclude the dye (Figure 7.18.4).  In mixed cortical cultures, a neural-specific marker (e.g., mouse 

anti-NeuN; Chemicon, Cat# MAB377) can be coupled with standard immunocytochemistry 

staining methods to facilitate the identification and counting of neurons.  As Figure 7.18.2 

indicates, cell counts using trypan blue correlate inversely with LDH release following an 

NMDA insult.   

 

Materials 

HEPES-buffered salt solution (HBS, see recipe in Reagents and Solutions) 

0.4% Trypan Blue solution (Sigma, product #T8154) 

Cells plated in 24-well culture plate, 500 µl bathing medium/well 
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1. Rinse each well with 2 ml HBS. Add 0.5 ml 0.2% Trypan Blue solution (prepared in 

HBS) to each well and incubate for 2 min at room temperature. 

2. Wash each well with 2 ml HBS to remove Trypan Blue solution.   

3. Count cells in 10 random fields per well using the grid-containing eye piece by a person 

blinded to the treatment arrangement. Express the number of dead or live cells per unit 

area. If cells cannot be counted immediately following staining, fix cells using 

paraformaldehyde (Support Protocol 1). 
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Figure 4.  NMDA-mediated neuronal death characterized by Trypan blue (TB) exclusion. Phase 

contrast images of cortical cultures (21-25 DIV) containing neurons resting on an astrocyte 

monolayer exposed to vehicle (top panel) or 50μM NMDA (bottom panel) for 10 min.  Cultures 

were fixed with phosphate-buffered 4% paraformaldehyde 24 hours following treatment.  Note 

the uptake of TB in NMDA treated cultures and the lack of TB staining in vehicle-treated 

cultures.         
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BASIC PROTOCOL 4:  ASSAY OF CELL VIABILITY USING PROPIDIUM IODIDE 

 

Propidium iodide is a cell-impermeant fluorescent biomarker that stains DNA. This assay 

is similar in principle to the trypan blue assay in that healthy viable cells will be able to exclude 

the dye from their cytoplasm, whereas dead and dying cells will not. In this assay, cells are 

incubated in propidium iodide, which will fluoresce upon binding nuclear chromatin. This 

increase in fluorescence can be measured using a multiwell plate reader or by simply counting 

fluorescent (non-viable) cells.  Importantly, propidium iodide is a potential mutagen, so special 

handling is required.  

Materials 

1 mg/ml propidium iodide (Molecular Probes, Eugene, OR; product #P3566) 

Cells in 24-well culture plates, 500 µl bathing medium/well 

Fluorescence multiwell plate reader (e.g., Wallac 1420 Victor2 multilabel counter; 

PerkinElmer, Waltham, MA) 

530 ± 25 nm excitation filter and a 645 ± 40 nm emission filter 

 

1. Add 0.1 mg/ml propidium iodide (prepared in dH2O) to culture medium for final 

concentration of 5 µg/ml. 

2. Incubate for 1 to 2 hours, 37o C. 

3. Either a) determine fluorescence of each well using a fluorometric multiwell plate 

reader equipped with a 530 ± 25 nm excitation filter and a 645 ± 40 nm emission 

filter or b) count stained cells using a fluorescence microscope. 
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a. Measure initial fluorescence of each well before applying treatments. Repeat 

steps 1-3 as needed following treatment to monitor time dependency of cell 

death. 

4. Express cell death as emission at 617 nm or percent cell death:  

% cell death = (# stained cells / # total cells)  100 

 

SUPPORT PROTOCOL 1:  PRESERVATION OF STAINED CELLS 

 

This protocol will extend the time that can be taken between staining and counting cells.  

The time window can be extended for 2-3 months, provided that the appropriate measures are 

taken (see below).  

Materials 

Stained cells (see Basic Protocols 3 & 4) 

Phosphate buffered saline (PBS; see recipe in Appendix 2A) 

Phosphate-buffered 4% Paraformaldehyde (FD NeuroTechnologies Inc., Baltimore, MD.)  

 

1. Remove stain solution and rinse each well with 2 ml PBS.  

2. Add 1 ml/well ice-cold 4% paraformaldehyde.  

3. Incubate for 5 min at 4oC and then at room temperature for an additional 10 min. 

4. Remove the fixative solution completely and rinse each well 3 x 5 min with 2 ml PBS. 

5. Store cells in the dark at 4oC until ready to count. Plates should be wrapped in parafilm 

and/or tin foil during storage to prevent evaporation of solutions.  These measures can 

extend the time window between staining and counting up to 2-3 months.     
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BASIC PROTOCOL 5:  ASSAY OF TRANSFECTED CELL VIABILITY BY FIREFLY 

LUCIFERASE ACTIVITY 

 

Mammalian firefly luciferase reporters, which generate enzymatic luciferase activity in 

transfected, surviving cells, can be used as an index of cell viability (Boeckman and Aizenman, 

1996). Because, in general, transfection efficiency is low in primary neuronal cultures, the 

luciferase assay system offers the advantages of being highly sensitive for detecting cell viability 

in a small population of transfected neurons. In spite of the low transfection efficiencies 

observed in neuronal cultures (<10%), multiple plasmids transfected together have a 90% chance 

of being expressed together by the same neurons; this being true of as many as five separate 

plasmids introduced at the same time (Santos and Aizenman, 2002). Twenty-four to forty-eight 

hours following transfection of the luciferase reporter plasmid and any other plasmids of interest, 

cultures are treated with control and experimental conditions and assayed for luciferase-mediated 

luminescence. Cell viability is proportional to luciferase luminescence. This should be initially 

confirmed with cell counts of neurons positively transfected with a green fluorescent protein 

(GFP)-expressing plasmid (Figure 7.18.5), as some experimental conditions may interfere with 

the gene expression assay.  As shown in Figure 7.18.5, luciferase activity in transfected cells 

correlates directly with GFP-positive cell counts and inversely with LDH release following an 

NMDA insult.      
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Materials 

Minimal essential media (MEM, without phenol red; Gibco, Grand Island, NY) 

SteadyLite Luciferase assay reagent (PerkinElmer, Waltham, MA; product #6016981)  

Firefly luciferase (e.g., pGL2, Promega; product #E1611) transfected cells in 24-well 

culture plate (see Appendix 1F for cationic-lipid based transfection protocols), 24-48 

hours post-transfection   

96-well white opaque plate (Corning Life Sciences, Corning, NY) 

Microplate luminometer (e.g., Wallac 1420 Victor2 multilabel counter; PerkinElmer, 

Waltham, MA) 

 

1. Bring MEM (without phenol red) and SteadyLite reagents (light sensitive) to room 

temperature 

2. Reconstitute 1 vial of lyophilized steadylite HTS substrate solution (Perkin Elmer) with 

10 ml of steadylite HTS substrate buffer solution (Perkin Elmer).  

Unused reagent can be stored at -70oC for 1 month.  

3. Remove the entire volume of cell culture medium by gently aspirating each well. 

Immediately add 100 µl /well MEM. 

4. Add 100 µl /well steadylite substrate using a repeater pipette, and incubate at room 

temperature in the dark for 5 minutes. 

5. Transfer the entire 200 µl sample volume to the well of a 96- well white opaque plate. 

6. Measure luminescence (counts per second) using microplate luminometer.  Differences in 

% cell death (see Strategic Planning), expressed as a mean ± S.E.M, can compared 

among treatment groups for statistical significance.    
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REAGENTS AND SOLUTIONS 

 

Use deionized, distilled water in all recipes and protocol steps. For common stock solutions, see 

APPENDIX 2A; for suppliers, see SUPPLIERS APPENDIX. 

HEPES-buffered salt solution, pH 7.4 

 135 mM NaCl 

 10 mM KCl 

 0.4 mM MgCl2  

 1 mM CaCl2 

 10 mM HEPES  

Adjust pH to 7.4 with 1 N NaOH and filter sterilize.  Store at 4oC for up to 6 months. 

Lysis Buffer 

 10 g sodium dodecyl sulfate (SDS) 

 25 ml N,N-dimethylformamide (DMF) 

 25 ml H2O  

 1 ml glacial acetic acid 

 1.25 ml 1 N HCl 

Dissolve 20% w/v SDS into combined water/DMF solution. Adjust pH to 4.7 with 

acetic acid or 1 N HCl (Hansen et al., 1989). Store at room temperature for up to 1 month.  
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Figure 5.  LDH release assay verifies cell toxicity in positively transfected neurons. A&B)  

Cortical cultures were co-transfected with firefly luciferase (pUHC13-3) and blank vector 

(pBKCMV) at a ratio of 1:5. Forty-eight hours following transfection, cells were exposed to 

vehicle, 200 µM NMDA, or 200 µM NMDA in the presence of the non-competitive NMDA 

receptor antagonist, MK-801 (10 µM) for 30 minutes. Luciferase activity and LDH release were 

measured 24 hours following treatment (mean ± s.e.m.of 4 samples; *p<0.001; ANOVA, 

Tukey). C&D) Cortical cultures were co-transfected with firefly luciferase (pUHC13-3) and 

eGFP (pCMVIE-eGFP) at a ratio of 1:1. Twenty-four hours following transfection, cells were 

exposed to vehicle, NMDA, or NMDA + MK-801 as above. Cell counts of eGFP-positive cells 

and LDH release were measured 24 hours following treatment (mean ± s.e.m. of 3 samples; 

*p<0.001; ANOVA, Tukey; **p<0.01; ANOVA, Tukey). E) Visualization of GFP-positive 

transfected neurons in situ using fluorescence microscopy. 

 

 

 

 

 

 

 

 

 

 

 

 151 



COMMENTARY 

 

Background Information 

LDH assay 

Lactate dehydrogenase (LDH) is a ubiquitous cytoplasmic enzyme responsible for 

reducing pyruvate to lactate with concurrent oxidation of nicotinamide adenine dinucleotide 

(NADH to NAD+). LDH has been shown to be released into the bathing medium of primary rat 

cortical neurons following toxic stimuli and has been correlated well to the number of lysed 

neurons killed by excitotoxicity (Koh and Choi, 1987). The advantages of the LDH release assay 

are that it is simple, rapid, and non-destructive. Since the extracellular medium is sampled, 

repeated measures can be assayed over time. Disadvantages include lack of specificity to 

neurons, LDH release dependency on cell size, and LDH degradation prior to release, or even 

possible uptake of LDH by healthy cells.  

 

MTT assay 

The tetrazolium salt, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

(MTT), is a hydrogen acceptor that is reduced to a colored formazan product. The MTT assay 

measures the redox activity of living cells by quantifying the formation of the dark blue 

formazan product at 570 nm. The reduction of the tetrazolium ring is thought to mainly occur in 

the mitochondria of cells through the actions of succinate dehydrogenase (Slater et al., 1963), but 

may also take place in other cellular and extracellular locations (Mosmann, 1983; Burdon et al., 

1993). The MTT assay provides a rapid and precise method for assaying cell viability without 

having to manually count cells. On the other hand, the assay’s disadvantages include the lack of 
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ability to distinguish reversible mitochondrial impairment and injury from cell death. 

Additionally, MTT has been shown to be inherently toxic in an adrenal pheochromocytoma 

(PC12) cell line (Hertel et al., 1996).     

 

Trypan Blue assay 

Trypan blue is an azo dye, which can be absorbed in the cytoplasm of dead or dying cells, 

staining them blue. Healthy cells, with intact cell membranes, will exclude the hydrophilic dye 

and will not change in color. This assay, although non-automated and time consuming, is the 

“gold standard” for assaying viability and is often combined with other viability assays.  

 

Propidium Iodide assay 

Propidium iodide (PI) is a DNA intercalating agent that can bind to double stranded 

nucleic acids of permeable, non-viable cells. The binding of PI to nuclear chromatin causes an 

enhancement and red shift in fluorescence (Trost and Lemasters, 1994). The PI assay is based on 

the same dye exclusion principle as the trypan blue assay, that is, injured cells will absorb dye 

and change color, whereas healthy cells will not. The advantage of using PI over trypan blue is 

that the colorimetric change can be automated due to its higher signal-to-noise ratio and therefore 

can enable rapid, repeated measures of viability over time (Trost and Lemasters, 1994). Both 

dyes, PI and trypan blue, can be used alone or in conjunction with counterstains that detect live 

cells (e.g., fluorescein diacetate). One disadvantage of using PI is that it is a potential mutagen, 

so special handling is required.  
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Luciferase assay 

Luciferase is a 62 KD monomeric enzyme produced by the North American firefly 

(Photinus pyralis) and catalyzes the oxidation of its substrate, D-luciferin, to produce 

oxyluciferin and light. This assay system quantifies firefly luciferase expression in mammalian 

cells transfected with a luciferase reporter gene. Luminescence, measured by a microplate 

luminometer, is directly correlated with cell viability (Boeckman and Aizenman, 1996). This 

assay is particularly valuable when used in conjunction with other genes of interest to test 

molecular components of cell death pathways (Pal et al., 2003). The advantages of the luciferase 

assay are its reproducibility and exquisite sensitivity for measuring neuronal cell viability in a 

relatively low number of cells. Disadvantages of the assay include inability to perform repeated 

measures, dependency on transfection efficiency, and assay interference with drugs or treatments 

in the bathing medium.  

 

Critical Parameters and Troubleshooting 

LDH assay 

Pipetting seems to be the largest source of error in this assay, causing variability among 

samples. To help resolve this issue, samples should be tested in at least triplicate. Additionally, 

since this assay depends on the amount of LDH released into the bathing medium, ensure that the 

bathing medium volume is consistent among wells. Low LDH values could result from expired 

assay solutions, whereas uncharacteristically high LDH values could result from bacterial 

contamination of the culture medium or the assay solutions. If the LDH signal is completely 

absent in samples, stain cells with trypan blue to verify cell injury.      
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MTT assay 

Ensure that the MTT stock solution is filtered (0.22 µm) to remove insoluble debris and 

stored in a light protective container at 4oC. Also, be sure to set up spectrophotometer to read 

absorbance at 570 nm. If lack of signal is a problem, stain cells with trypan blue to verify cell 

injury. Uncharacteristically large signals may be due to reducing activity of certain treatments, 

leading to cell injury-independent formazan product formation. Again, high variability in this 

assay could result from inconsistent bathing medium volume among wells.  

 

Trypan Blue assay 

Complete lack of staining could be due to presence of serum in media or insufficient 

incubation time with the dye. To resolve these issues, be sure to wash out serum with buffered 

medium prior to staining or increase trypan concentration and/or duration of incubation. If 

staining results in high background, decrease duration and/or concentration of trypan blue and be 

sure to thoroughly remove dye before fixing. If too few cells are stained blue, consider staining 

at an earlier time point, as the dead cells may be detached or degraded. Alternatively, if many 

healthy-looking cells appear blue, decrease incubation time and/or dye concentration. It is very 

important that the experimenter counting cells is blinded to the treatment conditions, as this 

assay depends on the unbiased counting of cells. We recommend counting cells from 10 random 

fields per well at 200X magnification using a 10 x 10 grid-containing eyepiece.  
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Propidium Iodide assay 

For this assay, ensure that the excitation and emission filters are appropriately set in the 

plate reader. Optimization of the dye concentration and incubation time may be required to 

achieve conclusive results. If fluorescence continues to be lower than expected, stain cells with 

trypan blue to verify cell death and/or extend incubation time to allow for complete dye 

absorption. Be sure to prevent dye bleaching by protecting dye stocks from light.  

 

Luciferase assay 

Ensure that the culture medium is free of phenol red or any other colored compounds, as 

these may absorb some of the emitted light. Also, be sure to work under dim light conditions and 

avoid direct sunlight and bright fluorescent light. Optimal room and instrument temperature is 

22oC. Low luminescence values may be due to inefficient transfection of reporter gene, 

interference of treatment with luciferase activity, inefficient mixing of culture medium and assay 

reagents, and/or use of old assay reagents. It is often useful to measure LDH release activity prior 

to performing the luciferase assay to verify assay results (Figure 7.18.5). Additionally, parallel 

experiments with enhanced green fluorescent protein (eGFP; pCMVIE-eGFP, Clontech, Palo 

Alto, CA) -expressing neurons and cell counts can be used to initially verify results (Figure 

7.18.5).       
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Anticipated Results 

LDH assay 

Depending on plating density, after subtracting the absorbance at 690 nm, the LDH 

release values of dead or dying cultures should be at least 5 times greater than those of vehicle-

treated cultures.  

 

MTT assay 

Healthy cultures yield absorbance values of 0.5 to 0.6 units at 570 nm, again, depending 

on plating density.  

   

Trypan Blue assay 

Healthy cells should exclude the dye, whereas the soma of dead cells should be stained 

blue (Figure 7.18.4). Optimization of signal to background may require adjusting the time and 

concentration of trypan blue dye exposure. This assay is often used in parallel to verify cell death 

and assay results in non-transfected neurons.     

 

Propidium Iodide assay 

In general, fluorescence values of dead cultures should be at least twice those of vehicle-

treated cultures.   

 

Luciferase assay 
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We have found that luminescence values of injured cells are less than half those of 

vehicle-treated cultures and correlate well to cell counts of GFP-positive transfected cells, as 

well as LDH assay results (Figure 7.18.5).  

 

Time Considerations 

LDH assay 

The LDH assay can be completed in a very short amount of time. Set up, sampling, and 

clean-up can be performed in 20 minutes. 

 

MTT assay 

Although overnight incubation in lysis buffer ensures the complete solubilization of the 

formazan product, shorter lysis buffer incubation times are possible with thorough mixing or 

vortexing the sample.  

 

Trypan Blue assay 

The counting of stained cells is a time consuming process. If cells cannot be counted 

immediately following staining, fix cells using paraformaldehyde (Support Protocol 1).  

 

Propidium Iodide assay 

By using a fluorometric plate reader, the time required to complete this assay is 

significantly reduced. Nevertheless, manual cell counts can also be performed.  If cells cannot be 

counted immediately following staining, fix cells using paraformaldehyde (Support Protocol 1).  
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Luciferase assay 

Twenty-four or forty-eight hours following transfection with the luciferase reporter gene, 

cells are exposed to various control and experimental conditions. Cells can be assayed for 

luciferase expression following experimental conditions based on time-course of treatment 

toxicity.   
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Table 1 – Methods for assessing neuronal cell viability a  

GUIDING 
PRINCIPLE 

ASSAY MEASURED 
QUANTITY 

FORMAT SAMPLE 
REFERENCES 

Morphology     
 Light,Electron 

Microscopy 
Cell morphology Microscopy Vincent and Maiese, 1999 

Membrane 
Permeability 

    

 Propidium iodide, 
Ethidium homodimer 

Staining of nucleic 
acids 

Fluorometry or 
Microscopy 

Garner et al., 1994 

 Trypan blue Cell morphology Microscopy Perry et al., 1997 
 51Cr Radiolabeled Cr Radioactivity Kingsbury et al., 1985 
 LDH LDH activity Colorimetry Koh and Choi, 1987 
Electrophysiology     
 Membrane potential, 

action potential 
generation, synaptic 
potentials 

Electrophysiological 
response profile of 
cells 

Electrophysiology Pal et al., 2003 

Ionic homeostasis     
 Fura-2, Indo-1, Fluo-

3 
Intracellular free 
calcium 

Fluorometry Mattson et al., 1993 

 Neutral red Lysosomal pH Fluorometry Verdaguer et al., 2002 
Metabolism     
 Luciferase 

expression, eGFP 
expression 

Protein synthesis Luminometry or 
Microscopy 

Pal et al., 2003 

 Glucose utilization, 
lactate production 

Substrate utilization Biochemistry Mills et al., 1995 

 Fluorescein diacetate, 
calcein-AM 

Esterase activity Fluorometry Bozyczko-Coyne et al., 
1993 

Mitochondrial 
function 

    

 MTT, XTT Succinate 
dehydrogenase 

Colorimetry Slater et al., 1963 

 Rhodamine 123 Mitochondrial 
membrane potential 

Fluorometry Mattson et al., 1993 

DNA damage     
 TUNEL Cleaved DNA Microscopy Perry et al., 1997 
 Gel electrophoresis Cleaved DNA Electrophoresis Ormerod et al., 1992 
 Hoechst staining Staining of DNA Microscopy Ormerod et al., 1992 
Signal 
Transduction 

    

 Caspase Assays Caspase activity Fluorometry or 
colorimetry 

McLaughlin et al., 2001 
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 Annexin V Extracellular 
Phosphatidylserine 

Flow cytometry Vincent and Maiese, 1999 

a Assays indicated in bold are detailed in this document.  
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