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 Thermal infrared (TIR) data from the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) instrument are used to identify the lithologic 
distribution of the Meteor Crater ejecta blanket and nearby (within ~3 km) region.  This 
has many applications to the analysis of data from the Thermal Emission Imaging System 
(THEMIS) instrument that is currently in orbit at Mars.  ASTER and THEMIS, whereas 
orbiting different planets, have similar spatial and spectral resolutions.  THEMIS 
represents the highest spatial resolution (100 m) to date of the Martian surface, thereby 
allowing small (~ 1km) impact craters to be studied in detail for the first time.  Meteor 
Crater serves as an analog for the many similar-sized impact sites on the surface of Mars.  
These sites are future research targets with THEMIS, and ASTER data of Meteor Crater 
provides ideal data and geologic landscape in preparation for future THEMIS 
investigations.  Fieldwork at Meteor Crater yielded sample collection of the primary 
lithologies and an opportunity to validate previously-collected high-resolution (3.2 m), 
airborne Thermal Imaging Multispectral Scanner (TIMS) data.  Laboratory thermal 
emission spectra were obtained for the samples collected.  Deconvolution of ASTER TIR 
emissivity data were performed with image end-members and sample end-members.  
Comparisons of the spaceborne data to high-resolution airborne TIMS data were used to 
assess the validity of the ASTER end-member analyses.  The ASTER image end-member 
analysis agreed well with the earlier TIMS end-member analysis where the effects of 
resolution degradation were accounted for.  Laboratory spectra and mineral spectral 
libraries provided poor fits of deconvolution of multispectral TIR data.  Lithologies with 
similar spectral signatures or with low areal abundances were difficult to identify. 
 Using the same methodology as that applied to the ASTER TIR data of Meteor 
Crater, THEMIS TIR data of a small (~ 1 km) impact crater in Syrtis Major were 
analyzed.  The crater’s rim and ejecta blanket was found to contain larger particle sizes 
than the surrounding (ejecta-free) plain, indicating a young (fresh) impact age and little or 
no accumulation of dust.  The composition of the rim, ejecta, and surrounding plain was 
determined to be basaltic.  It is hoped that the work performed here will complement 
future investigations of fresh impact sites with THEMIS data that may be used to solve 
geologic questions such as 1.) the composition of ejecta blocks that represent pre-impact, 
underlying stratigraphy in high-albedo, dust-covered regions of Mars, 2.) the approximate 
age of impact, and 3.) regolith/dust thickness, which appears to be a factor of #2. 
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1. Introduction 

 Where applicable, remote sensing using the thermal infrared (TIR) wavelength 

region (~3 µm to 50 µm) has been shown to provide compositional properties of 

planetary surfaces [Gillespie et al., 1984; Hook et al., 1994; Bandfield et al., 2000; 

Hamilton and Christensen, 2000].  This is due to silicates, carbonates, and other common 

rock-forming minerals having unique spectral characteristics in the TIR wavelength 

region [Salisbury and Walter, 1989].  Further, with the exception of fine (< ~60 µm) 

particles, TIR data are linearly additive [Ramsey and Christensen, 1998]. 

 Where surface volcanic processes have ceased, impact cratering is the dominant 

geologic process that modifies the surfaces of Mars, Mercury, and the Moon.  Impact 

craters can serve as probes into the subsurface by exposing underlying lithologies.  

Analyses of their characteristics can potentially infer the target (surface) properties and 

the climatic conditions since formation [Greeley and Iverson, 1985; Grant, 1990].  Over 

42,000 impact craters with diameters greater than 5 km have been catalogued for the 

surface of Mars [Barlow, 2000].  Recent publications estimate that there are 

approximately a quarter of a million impact sites on Mars that are ≈1 km in diameter 

[Morton, 2002]. 

 Dust covers the surfaces of the high-albedo regions of Mars [Christensen, 1982, 

1986].  The mineralogy of low-albedo (i.e. non-dusty) regions on Mars has been 

characterized in detail and used in the determination of the geologic history of the region 

[Bandfield et al., 2000; Christensen et al., 2000a, 2000b, 2001; Bandfield, 2002].  

However, the high-albedo, dusty regions have not been as extensively studied.  This is 

due to the fact that the TIR spectra of small particles (< 60 µm) such as dust are not 
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linearly additive and therefore not easily interpreted [Ramsey and Christensen, 1998].  

Recent studies have investigated the mineralogy of the martian dust [Ruff and 

Christensen, 2002; Bandfield et al., 2003], but this information is not indicative of 

regional geology due to the homogeneous nature of the dust.  There exist useful studies of 

dust and its TIR interpretations in accordance with Mars data sets [Johnson et al., 2002a].  

In that study, the interpretation of TIR data of dust-covered surfaces was investigated in 

preparation for analyzing TIR data of the high-albedo regions.   

 This study seeks to describe, find, and analyze localized areas in low-albedo 

regions where large accumulations of dust are not present.  Fresh impact craters should 

expose large particle sizes such as boulders, cobbles, and sand in their rims and pristine 

ejecta blankets.  Further, if recently formed, there should not be a large enough 

accumulation of dust to affect TIR spectra analysis [Wright and Ramsey, 2002, 2003].  

According to diagrams of crater size vs. frequency, small impact sites outnumber the 

larger variety on unmodified planetary surfaces and should be of younger age [Melosh, 

1989]. 

 TIR data from the Thermal Emission Imaging System (THEMIS) represent the 

highest spatial resolution (100 m) of the martian surface over the TIR wavelengths.  

Before its advent, it was impossible to determine the compositional and thermophysical 

properties of the rims and ejecta blankets of small (1-2 km diameter) impact craters on 

Mars.  The Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) provides multispectral TIR data of Meteor Crater, Arizona over similar spatial 

and spectral resolutions to those of the THEMIS instrument. 
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 This study represents the TIR analysis of ASTER data of Meteor Crater as a 

proxy for examining THEMIS TIR data of similar craters on Mars.  The objective of the 

work is to investigate the accuracy of deconvolving multispectral TIR data with image 

end-members and determine if martian impact sites can be studied in a similar way with 

THEMIS TIR data.  As discussed above, small (1-2 km diameter) impact craters are 

abundant on all geologic terrains on Mars [Carr, 1981].  A recently-formed impact site in 

Syrtis Major, Mars was chosen for TIR analysis with THEMIS data using the same 

methodology employed with the ASTER TIR data of Meteor Crater. 

 Section 2 describes the background information about the geology of Meteor 

Crater, TIR spectroscopy, TIR remote sensing, and the TIR instruments needed to 

understand the following sections.  Section 2 also introduces a small impact crater in 

Syrtis Major, which is examined with THEMIS TIR data.  The methodology of this study 

is described in section 3 and results are discussed in section 4.  The work is concluded in 

section 5. 

 

2. Background 

2.1 Geology of Meteor Crater, Arizona 

Meteor Crater is located in north-central Arizona near the Canyon Diablo in the 

southern part of the Colorado Plateau at approximately 35° 01’ N, 111° 01’W (Figure 1).  

The crater was created 49,000 years ago by the impact of a 30-50 m bolide into sediments 

of the Mesozoic and Paleozoic Eras [Nishiizumi et al., 1991].  The impact produced a 

simple, bowl-shaped crater that has an average diameter of 1186 m, with a rim crest to 

floor depth of 167 m, or 30-60 m above the surrounding plain.  The climate is semi-arid 
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with sparse vegetation and rock exposures are exceptionally good.  The lack of abundant 

vegetation and semi-arid climate make the area ideal for thermal infrared remote sensing 

(Figure 2). 

In the region surrounding the crater, the Colorado Plateau has a low relief (<5°) 

and the surface consists of relatively flat-lying beds of Permian and Triassic age.  The 

crater is located near the apex of one of several monoclinal folds in this region.  Beds are 

offset by wide-spaced NW-SE trending normal faults that have lengths of many 

kilometers but displacements of a few to 30 meters [Shoemaker, 1963].  Two mutually 

perpendicular sets of vertical joints trending NE-SW and NW-SE are responsible for the 

squarish appearance of the crater.  The NE-SW set combines with the local 5° dip to the 

NE to control the trend of the secondary stream directions in this area, as shown in Figure 

1. 

Meteor Crater features beds ranging in age from the Coconino Sandstone of the 

Permian Period to the Moenkopi Formation of the Triassic Period (Figure 3).  The 

basement consists of Pennsylvanian and Permian-aged Supai Formation.  The Supai 

Formation is a clay-rich, red, fine-grained, argillaceous sandstone interbedded with 

yellow subordinate siltstone.  The Supai Formation was not sampled by the impact that 

produced Meteor Crater and therefore is not contained within the crater’s ejecta blanket 

or rim.  The overlying Coconino Sandstone consists of fine-grained, saccharoidal, white, 

cross-bedded, eolian sandstone [McKee, 1934].  This lithology represents the remains of 

dune fields from over 265 million years ago.  The sandstone is well-sorted, containing 

>97% quartz [Horz et al., 2000].  The Coconino has a thickness of 210-240 m, but only 

the upper 80 m was sampled by impact. 
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The Coconino Sandstone is overlain by the Permian Toroweap Formation.  The 

Toroweap is a white to yellowish-brown, coarse-grained sandstone with interbeds of a 

reddish mudstone and dolomite [McKee, 1938].  Its stratigraphic thickness is 2.7 m.  The 

dolomitic interbeds of the Toroweap were the floor of a shallow sea that migrated in from 

the west.  The sandy portions represent a transgressing and regressing ancient shoreline 

over 255 million years ago.  Due to its small stratigraphic thickness and consequent 

limited areal abundance in the crater’s rim and ejecta, the Toroweap is grouped with the 

Coconino Sandstone for the purpose of this study.  Further, the two have similar spectral 

signatures over the thermal infrared wavelengths used in this study. 

 Conformably overlying the Toroweap is the Permian Kaibab Formation.  The 

Kaibab Formation is a fossiliferous dolomite and dolomitic limestone.  Three members 

are recognized [McKee, 1938].  The lower two members, known as the Gamma and Beta 

members, are composed of massive, dense dolomite.  The upper member is known as the 

Alpha member and consists of well-bedded limestone and dolomite with limited thin 

sandstone interbeds.  The Kaibab was deposited in a low-energy, shallow marine 

environment over 250 million years ago.  The entire lithology measures 79.5 to 81 meters 

in thickness.  The stratigraphic thickness of the Kaibab Formation in the vicinity of 

Meteor Crater is well-constrained by studies of cores drilled in and around the crater and 

the ejection of the entire lithology upon impact. 

 Unconformably overlying the Kaibab is a thin, patchy veneer of Moenkopi 

Formation of Triassic age.  To the west of the crater beyond Canyon Diablo, the 

Moenkopi has been completely eroded, leaving the Kaibab Alpha Member as the surface.  

The Moenkopi Formation has two members in the vicinity of Meteor Crater and increases 
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in thickness as it extends to the east.  The lower Wupatki Member is a fine-grained, pale, 

reddish-brown sandstone that measures 0.3 to 1.0 m in thickness.  The upper Moqui 

Member is a dark, reddish-brown, fissile siltstone that is 3 to 6 m thick [McKee, 1954].  

The impact resulted in an overturning of the beds as they were ejected.  Therefore, nine to 

fifteen meters of Moenkopi strata are exposed in the walls of Meteor Crater [Shoemaker 

& Kieffer, 1974].  Bedrock of Moenkopi contain ripple marks and were likely deposited 

on a coastal floodplain over 200 million years ago. 

 The surface exposures of each original and ejected lithology have been mapped in 

detail by Shoemaker [1960, 1963].  A geologic map from the work is shown as Figure 4.  

The physical characteristics of the crater are shown in a USGS contour map as Figure 5. 

 Scissor faults located in the corners of the crater have caused uplift to various 

degrees in each crater wall.  As a result, the exposures of each of the three primary 

lithologies within the inner-crater walls and rim are not uniform.  Coconino Sandstone is 

observed on the eastern, northern, and southern walls, but is not found on the western 

wall.  Where the crater walls meet the floor, there is talus formed from the erosion of 

lithologies in the wall above.  A slump in the northwest corner produced an elevated 

terrace on the crater floor. 

 The uppermost layer on the crater floor consists of talus and Quaternary alluvium 

composed of clasts of the Permian and Triassic lithologies described above.  A minor 

amount of basaltic ash from the nearby San Francisco volcanic field is also apparent in 

the floor’s silt sediments.  Toward the center of the crater floor, lake beds from the late 

Pleistocene Epoch and playa beds from the Holocene Epoch indicate that the crater was a 

post-impact lake that has dried up as the climate turned semi-arid.  Drill cores near the 
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center of the crater reveal ~30 m of Pleistocene lake beds and alluvium underlying 1-2 m 

of Holocene playa beds and alluvium [Shoemaker and Kieffer, 1974].  Beneath the 

Pleistocene sediments are a mixed debris unit and a mixed breccia layer that contain 

shocked rocks and oxidized meteoritic material.  These units are thoroughly mixed and 

fused and grade upwards to finer grain sizes.  Shoemaker [1963] and Shoemaker and 

Kieffer [1974] interpret this to represent the fallout of high-temperature debris that was 

thrown in the air and then settled and cooled on the crater floor.  Figure 6 depicts the 

uplifted strata of the crater rim, impact breccia on the crater floor, and the post-impact 

lake. 

 Large boulders and cobbles of the three main lithologies have been deposited on 

the crater rim.  Each lithology dominates a radial sector of the crater rim due to the near-

horizontal scissor faults in the corners of the crater and the effects of erosion.  The near-

horizontal strata that were located at or near the point of impact have been uplifted and 

folded back with the uppermost layer of Moenkopi being folded back on itself.  

Shoemaker [1963] described the rim and near-rim debris as “peeled away” like the petals 

of a flower.  Erosion of the rim since crater formation has resulted in the “hinge line” of 

the fold not always being apparent on the rim. 

 The continuous ejecta blanket (CEB) consists of fragments of the three principal 

stratigraphic units, but inverted and preserved up to 2 crater radii (CR) from the rim.  The 

near-rim CEB is hummocky and consists of blocks ranging in size from 0.5 to 30 m.  

With the exception of the southern ejecta flap, the majority of the ejecta are blocks of the 

Kaibab Fm. with lobes of Coconino Ss. on the northern and northeastern ejecta blanket.  

To the south and southeast of the crater, the ejecta blanket is composed almost entirely of 
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Coconino Ss. that shows varying degrees of shock metamorphism [Shoemaker and 

Kieffer, 1974].  Ejecta lobes of Coconino and Kaibab can be described as unconsolidated.  

To the north and northeast, drainages along radial gullies have transported a portion of 

the original near-rim CEB to mantle the outer CEB [Grant and Schultz, 1993].  To the 

west of the crater, the CEB has been mantled by fines of Kaibab transported by 

southwesterly winds [Garvin et al., 1989].  Southwesterly winds are also responsible for 

the northeast-trending windstreak that is evident in aerial photos and remote imaging 

(Figure 2).  The source of the windstreak is the Coconino Ss. ejecta on the southern rim 

[Grant and Shultz, 1993; Ramsey, 2002a].  The windstreak’s composition and source are 

discussed thoroughly under the TIR interpretations of the TIMS and ASTER data of the 

crater (section 4). 

 

2.2 Thermal Infrared Spectroscopy 

 Thermal infrared (TIR) spectroscopy is based upon the principle that a crystalline 

lattice will selectively absorb certain wavelengths in a TIR spectrum that correspond to 

the vibrational frequencies of its constituent atoms and molecules [Kendall, 1966].  These 

are evident as spectral absorption bands.  The specific wavelengths and strengths are 

characteristic of the chemical composition and unique structure of the material under 

examination [Hall, 1947]].  All minerals display a unique spectral signature over the TIR 

wavelengths (~3 to 50 µm) due to the stretching and bending vibrations of atoms in the 

crystal lattices of minerals [Houghton and Smith, 1966].  These vibrational motions occur 

at specific, quantized frequencies, and where incident electromagnetic energy 

corresponds to one of these frequencies, the result is the excitation of a vibration and an 
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absorption feature in the TIR spectrum.  All silicates, carbonates, sulfates, oxides, 

phosphates, and hydroxides have TIR spectral features associated with the vibrational 

motions of their components due to the polymerization of different anion groups such as 

SiO4, CO3, SO4, and PO4 [Kendall, 1966; Salisbury and Walter, 1989].  A mineral’s bond 

strength, bond length, cation coordination, and anion composition all affect and influence 

the vibrational energy and therefore the number, relative strength, and wavelength 

positions of the spectral absorptions.  The ability to identify mineralogy and interpret 

composition lends itself to remote observation of compositional interpretation. 

 Silicates constitute approximately 95% of minerals exposed at the Earth’s surface 

[Berry et al., 1983].  As the polymerization of the SiO4 tetrahedra changes from isolated 

tetrahedral to chain, sheet, and framework silicates, the wavelength of the absorption 

feature changes.  As the bond strength and mineral structure is changed, so, too, is the 

spectral absorption feature.  See Figure 7 adapted from Christensen et al. [1992] for 

spectra of common framework, sheet, chain, and isolated tetrahedral silicates.  The 

thermal infrared properties of silicates are briefly described and shown here as an 

example.  All minerals groups have specific absorption features that vary as the specific 

composition of the mineral changes. 

 Spectroscopy and remote sensing are based upon the analysis of photons that have 

interacted with matter.  Whereas thermal infrared data provides compositional 

information, it has another unique property not evident in other wavelength regions.  All 

common rock-forming minerals have high absorption coefficients over the thermal 

infrared region that are a function of the mineral’s index of refraction [Moersch and 

Christensen, 1995].  Therefore, there is very little to no volume scattering and the 
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photons detected have generally only interacted with one particle.  This promotes the 

linear combination of TIR photons as multiple interactions are restricted.  However, 

where particle sizes are reduced, volume scattering dominates and TIR data no longer 

adds linearly [Moersch and Christensen, 1995; Ramsey and Christensen, 1998] (Figure 

8).  The position of the absorption feature does not change, but the depth of the 

absorption does where particle sizes are decreased [Lyon, 1965] (Figure 8). 

 As TIR energy is emitted from all materials, atmospheric absorptions can occur.  

These depend upon the composition, thickness, and temperature of the atmosphere.  On 

Earth, there is a clear (little to no atmospheric absorption) atmospheric window between 

the 8 – 12 µm region.  Hence, this is the TIR spectral region used by ASTER, the 

Thermal Infrared Multispectral Scanner (TIMS), LandSat Thematic Mapper (TM), and 

various other TIR instruments that have observed Earth.  However, stratospheric ozone 

(O3) has an absorption band from 9.3 µm to 10.2 µm that affects data collected by 

spaceborne TIR instruments more significantly than that from airborne instruments.  

Whereas tropospheric ozone (a component of smog) is abundant in urban areas, the 

troposphere on surrounding Meteor Crater should not contain large amounts of O3. 

 

2.2.1. Calculation of Emissivity 

 The separation of TIR radiant energy into temperature and emissivity is 

performed on all three (ASTER, TIMS, and THEMIS) TIR data sets used in this study 

and is described here for ASTER TIR data.  The same methodology applied to the TIMS 

and THEMIS data processing as well. 
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 Emissivity is defined as the ratio of the radiant energy of an object divided by the 

radiant energy of a blackbody at the same wavelength.  By definition, a blackbody is a 

perfect absorber and emitter and has an emissivity of 1.000 at all wavelengths. 

 According to the Planck equation, the emitted radiant energy (E) of a blackbody 

at a specific wavelength (λ) is a function of the object’s temperature (T) at that 

wavelength, or 

 
            E (λ, T) =      ____2πhc2___    (1) 

λ5(ehc/λkT – 1) 
 
 
where h is Planck’s constant, c is the speed of light, and k is Boltzmann’s constant.  The 

values of each constant are as follows: 

 π = 3.14159265356 

 h = 6.6260755 x 10-34 J s 

 c = 2.99792458 x 108 m/s 

 k = 1.380658 x 10-23 J/K 

 With multispectral TIR data, the temperature and emissivity of the pixel are not 

collected or calculated by the detector.  The sole purpose of the detector is to collect and 

record TIR radiant energy over a specific number of wavelengths.  In order to separate 

radiant energy into both temperature and emissivity, either the sole temperature or one of 

the emissivity values (one for each TIR band) must be assumed.  The normalized 

emittance technique is chosen for this assumption.  As described by Realmuto [1990], the 

maximum emissivity value is chosen, but the wavelength at which this emissivity occurs 

is not specified.  Salisbury and D’Aria [1992] examined over 60 samples of a variety of 

compositions and found an average maximum emissivity value of 0.983 ± 0.002.  Due to 
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this and results from another study [Ramsey and Fink, 1994], a maximum emissivity 

value of 0.985 is used for the ASTER TIR and TIMS data used in this study. 

 

2.2.2. Spectral Deconvolution Analysis 

 Deconvolution modeling is based upon the principle that a TIR spectrum is a 

linear combination of the individual constituent end-member spectra in proportion to the 

constituent’s areal abundance.  For example, the spectrum of a rock is a linear 

combination of the minerals composing that rock in proportion to the areal abundance of 

each mineral.  Similarly, the spectrum of a remotely sensed pixel in a TIR image is a 

combination of the end-member spectra exposed on the surface. 

 Whereas the linearity of TIR spectra was assumed decades earlier [Lyon, 1965], 

the first attempt to quantitatively describe the limits of accuracy and particle size limits of 

spectral deconvolution was carried out by Ramsey [1996; Ramsey and Christensen, 

1998].  In that study, the deconvolution of TIR spectra was found to be 94% accurate.  

Further, the limit below which the emissivity spectrum of a mineral ceases to add linearly 

was found to be ~60 µm.  This agrees qualitatively with earlier studies that estimated this 

value to be ~100 µm [Salisbury and Walter, 1989; Moersch and Christensen, 1995]. 

 The deconvolution algorithm used in this study is summarized below and 

described in detail by Ramsey and Christensen [1998].  Its application to the TIMS TIR 

data of Meteor Crater is described by Ramsey [2002a].  At a specific wavelength (λ), the 

emissivity of a mixed spectrum (εmix) of η end-members is equal to the areal percentage 

(ζ) of each end-member times the emissivity of that end-member ( ε(λ) ) with some 

residual error, δ(λ):  
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                  η 

  ε(λ)mix =      Σ   ζi ε(λ)i  + δ(λ)                                  (2) 
     i = 1 

 
 and all areal percentages must sum to 1 (or 100%), expressed as: 
 

   η 
     Σ  ζi   =   1.000       (3) 
              i = 1 
 
 and residual error is calculated as: 
 

δ(λ) = ε(λ)measured – ε(λ)modeled    (4) 

    
 The residual error term, δ(λ), describes the difference between the model and 

measured emissivities and is used for calculating the root-mean-square (RMS) error.  

RMS error is a qualitative measure of how well the chosen end-members and their 

combined modeled emissivities fit the measured emissivity [Ramsey and Christensen, 

1998].  The RMS error can be used to determine the better fit, with lower values 

indicating better fits.  The RMS error with m bands is defined as: 

            m 

  RMS = [ Σ δ(λ)i
2 / m ] ½      (5) 

              i = 1 

 
 
 
2.3. Instrument Descriptions 

2.3.1. The ASTER instrument 

 The Advanced Spaceborne Thermal Emission and Reflection Radiometer 

(ASTER) is a multispectral imager currently onboard the Terra satellite [Kahle et al., 

1991; Abrams, 2000].  Terra is part of NASA’s Earth Observing System (EOS) program 

and includes scientists from the United States, Japan, France, and Australia.  ASTER was 
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launched in December 1999 and was the first spaceborne multispectral (> 2 bands) TIR 

instrument.  ASTER obtains daytime images at approximately 10:30 AM local time at the 

equator crossing.   

 ASTER contains 14 bands within three separate instrument subsystems.  There 

are three bands in the visual to near infrared (VNIR) wavelengths from 0.52 µm to 0.86 

µm, six bands in the short wave infrared (SWIR) wavelengths from 1.60 µm to 2.430 µm, 

and five bands in the TIR from 8.125 µm to 11.65 µm.  Table 2 lists the ASTER 

instrument specifications as they appear in Abrams [2000].  Approximate filtered band 

centers for the five TIR bands are listed in Table 2 and TIR spectral response functions 

are shown as Figure 9.  The instrument has a swath width of 60 km over the three 

wavelength regions and spatial resolutions of 15, 30, and 90 for the VNIR, SWIR, and 

TIR, respectively.  The VNIR subsystem has both a nadir-looking telescope for the three 

bands listed on Table 2 and a backwards-looking telescope for the VNIR band at 0.8040 

µm.  This band is used in conjunction with Band 3 (0.76 µm – 0.86 µm, band center at 

0.8070) to produce digital elevation models (DEM’s).  A DEM produced for Meteor 

Crater is shown as Figure 10. 

 ASTER TIR is the primary data used in this study, so the TIR subsystem is 

described as such from Kahle et al. [1991].  The TIR subsystem uses a Newtonian 

catadioptric system with an aspheric primary mirror.  Unlike the telescopes used in the 

VNIR and SWIR subsystems, the telescope of the TIR subsystem is fixed with the 

pointing and scanning done by a mirror.  Each band uses 10 Mercury-Cadmium-

Tellurium (HgCdTe) detectors in a staggered array with optical bandpass filters (as listed 



 15

in Table 2).  A mechanical split Stirling cooler is used for maintaining the detector 

temperature at 80 K. 

 

2.3.2. The TIMS instrument 

 The Thermal Infrared Multispectral Scanner (TIMS) was the sole TIR instrument 

used in the earlier analysis of TIR data of Meteor Crater [Ramsey, 2002a].  Due to this 

and the fact that this study continues Ramsey’s work, the TIMS is briefly described 

herein. 

 The TIMS instrument is a cross-track TIR imaging scanner with 6 bands between 

8 µm and 12 µm.  Table 3 lists the TIR channels of the TIMS instrument and their 

appropriate band center.  TIMS is airborne, so the spatial resolution is a function of the 

aircraft height.  The TIMS data used in this study has a spatial resolution of 3.2 m/ pixel.  

Because the TIMS data is of much higher spatial resolution than the spaceborne ASTER 

data over roughly the same region of TIR wavelengths, the TIMS is used as a basis of 

comparison for the ASTER TIR data. 

 

2.3.3 The THEMIS instrument 

 The Thermal Emission Imaging System (THEMIS) is a multispectral TIR 

instrument on the Mars Odyssey spacecraft and is noted in the title of this work.  

THEMIS has TIR and VNIR subsystems that began to return images in February 2002.  

For the TIR subsystem, THEMIS has 9 channels from 6.5 µm to 14.5 µm and a tenth 

channel with a band center at 15 µm that aids in the calculation of atmospheric 

temperature [Christensen et al., 1999a, 1999b].  Figure 11 displays the TIR spectral 
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response functions for THEMIS and Table 4 lists the band centers and band widths for 

the TIR and VNIR systems.  The defining characteristic of THEMIS is its TIR spatial 

resolution of approximately 100 m.  This is the highest spatial resolution of Mars in the 

TIR wavelengths.  The specific objectives of the THEMIS experiment are summarized 

here because this work represents a preliminary examination of THEMIS TIR data and 

future work may constrain these objectives.  The primary objectives and science goals of 

THEMIS are to determine the mineralogy and petrology of the surface of Mars utilizing 

the hyperspectral data of the Mars Global Surveyor (MGS) Thermal Emission 

Spectrometer (TES) in order to study small-scale geologic processes and potential future 

landing sites with the focus being potential sites of hydrothermal or sub-aqueous 

environments [Christensen et al., 1999a, 1999b].  Whereas the Thermal Emission 

Spectrometer (TES) is a hyperspectral TIR instrument with a spatial resolution of 3.15 

km, THEMIS will map Mars with just nine bands, but with a 900% increase in spatial 

resolution.  It has been demonstrated that nine TIR spectral bands in the spectral region of 

THEMIS is sufficient to identify mineral classes at abundances of ~10% [Feely and 

Christensen, 1999].  Carbonates, silicates, sulfates, phosphates, hydroxides, and oxides 

have strong absorptions in the 6.5 µm to 14.5 µm region. 

 THEMIS has five bands in the VNIR from 0.425 to 0.860 microns and a spatial 

resolution of 18 m.  This provides another high-resolution tool to complement the Mars 

Orbital Camera (MOC) on the MGS spacecraft to image ejecta blocks, crater walls, and 

crater gullies. 

 

2.4. Thermal Infrared Remote Sensing 
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2.4.1    Earth 

 Due to its unique characteristics as described above, TIR remote sensing has been 

used to address various geologic problems on Earth such as geologic mapping, sediment 

transport, source lithologies, and monitoring of active volcanoes [Hook et al., 1994; 

Ramsey et al., 1999; Bandfield et al., 2002; Ramsey and Fink, 1999, respectively].  

Remote sensing is useful if the region under investigation is too large, dangerous, or 

inaccessible enough to warrant fieldwork.  Further, remote sensing on Earth and 

subsequent ground-truthing is useful to apply to analogous surfaces of planets where 

fieldwork is not possible.  An example is this study of Meteor Crater. 

 

2.4.2  Terrestrial Analogs and Instrumental Proxies 

 Due to their similar spatial and spectral resolutions, it has been suggested that 

ASTER be a proxy for THEMIS [Ramsey, 2002b, 2002c] and previous studies have done 

so [Hellman and Ramsey, 2003].  Meteor Crater has been used in the past as a terrestrial 

analog for extraterrestrial impact craters [Garvin et al., 1988; Grant and Schultz, 1993].  

For example, Meteor Crater is used for interpreting the effects of erosion on Mars [Grant 

and Schultz, 1992, 1993] and Magellan radar data on Venus [Garvin et al., 1989]. 

 

2.4.3   Mars 

 Various thermal infrared instruments have flown aboard spacecraft that have 

visited Mars since 1969 and have contributed to our knowledge of the composition of 

Mars [ref. – the surface composition chapter of Mars].  Before this, ground-based 
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telescopic TIR measurements were analyzed [Van Tassel and Salisbury, 1964; Sinton, 

1967]. 

 The first TIR instruments to return data from Mars include the Infrared 

Spectrometer (IRS) and the Infrared Radiometer (IRR) on Mariners 6 and 7, the Infrared 

Interferometer Spectrometer (IRIS) and an IRR on Mariner 9, and the Viking Infrared 

Thermal Mapper (IRTM) on both Viking spacecraft [Hanel et al., 1972a, 1972b; Kieffer 

et al., 1977]. 

 The IRS and IRIS were hyperspectral TIR instruments, but had low spatial 

resolutions of approximately 150 km and >110 km, respectively.  For these instruments, 

studying the martian atmosphere, and not the surface composition, was the main 

objective [Hanel et al., 1972a; 1972b].  All three IRR instruments had two broadband 

thermal channels at 10 µm and 20 µm with a spatial resolution of about 50 km on 

Mariners 6 and 7 and 15-100 km on Mariner 9.  The data were useful for analysis of 

thermophysical properties of the martian surface, but not compositional information 

[Kieffer et al., 1973]. 

 The Viking IRTM was designed to map the thermophysical properties of the 

martian surface [Kieffer et al., 1972].  The IRTM had a higher spatial resolution (>30 km) 

than previous instruments and was multispectral, with five broadband channels centered 

at 7, 9, 11, 15, and 20 µm.  Absorption bands were observed in the 9 and 20 µm spectral 

regions over low albedo regions [Kieffer et al., 1977; Christensen, 1982, 1998] that are 

consistent with sand-sized basaltic surfaces [Bandfield, 2002].  Atmospheric subtraction 

and determination of surface composition was difficult due to the IRTM’s limited 

spectral resolution [Christensen, 1998]. 
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 The Termoskan instrument was a radiometer aboard the Soviet Union’s Phobos 

1988 mission and collected TIR data in one broadband channel from 8.5 to 12.0 µm over 

random areas of Mars.  Termoskan data have been analyzed in conjunction with martian 

impact craters [Betts and Murray, 1993], and hence is discussed in section 2.5. 

 More recently, the Thermal Emission Spectrometer (TES) on the Mars Global 

Surveyor (MGS) and the Thermal Emission Imaging System (THEMIS) aboard Mars 

Odyssey have imaged Mars with the highest spectral (TES) and spatial (THEMIS) 

resolutions to date in the TIR wavelengths.  The spatial and spectral resolutions of the 

U.S. TIR instruments discussed here are compared in Table 1. 

 TES is a hyperspectral spectrometer that has returned TIR data of the martian 

surface and atmosphere over 143 bands from 5.8 – 50 µm [Christensen et al., 1992, 

2001].  With its increased spatial and spectral resolution over previous martian TIR 

instruments, TES has been used to determine the distributions of minerals [Bandfield et 

al., 2000; Bandfield, 2002] and igneous lithologies [Christensen et al., 2000a; Rogers and 

Christensen, 2003] in the low-albedo regions and the extent of the global dust cover [Ruff 

and Christensen, 2002]. 

 For all compositional studies involving the TES instrument, only those of the low 

albedo regions have been determined [Bandfield et al., 2000; Christensen et al., 2000a, 

2000b; Bandfield, 2002; Rogers and Christensen, 2003].  Due to particles < 60 µm (such 

as dust) scattering TIR energy, the composition of the dust and underlying bedrock of the 

high albedo, dusty regions on Mars has not been determined using TES data.  It is hoped 

that this study will introduce techniques that can be performed with high resolution, 

multispectral TIR data (such as THEMIS) of fresh impact craters in the high albedo 
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regions.  The composition of the underlying lithologies may provide insight into the 

geologic history of the high albedo regions. 

 THEMIS has been mapping the martian surface since February of 2002 

[Christensen et al., 2002, 2003a, 2003b].  The instrument characteristics and scientific 

objectives of THEMIS are discussed in section 2.5.3. 

 

2.4.4. Use of image end-members 

 The use of image end-members in deconvolving multispectral TIR data is well 

described by Ramsey [2002a].  A summary of the benefits of using image end-members 

over vast spectral mineral libraries is discussed here.   

 The first reason is the limits of the deconvolution algorithm.  For an accurate 

deconvolution, there can only be as many end-members as the number of bands [Ramsey 

and Christensen, 1998].  For hyperspectral data such as TES, this limit of the number of 

end-members is not a significant factor.  However, multispectral data sets such as 

ASTER or THEMIS only contain 5 to 10 channels.  Hence, ASTER TIR data can be 

accurately deconvolved with only 5 or less end-members and THEMIS TIR with 9 or 

less. 

 For multispectral TIR data sets, deconvolving with laboratory mineral spectral 

libraries generally poses problems in interpretation.  Outcrops and ejecta blocks consist 

of specific lithologies, and these lithologies may share common minerals, but contain 

varying amounts of these as well as unshared minerals.  A second reason is the large size 

associated with mineral spectral libraries compared with the multispectral data and the 

knowledge of the remotely-sensed area.  Whereas at least 60 to 70 common rock-forming 
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minerals should be included in a mineral spectral library (e.g., [Bandfield, 2002]), the 

multispectral data set only has 5 to 10 bands at which TIR radiance is collected and 

filtered.  A geologic scene typically only contains ~5 distinct minerals [Gillepsie et al., 

1990], but an improper spectral library in incorrect proportions may “fit” the TIR spectra 

and appear to be correct if the RMS errors of multiple deconvolution models are not 

critically compared.  However, by definition, image end-members are contained within 

the data collected over the area. 

 The conditions, characteristics, spatial resolution, and spectral resolution of the 

laboratory spectrometer and the multispectral TIR remote sensing instrument seldom 

agree.  For example, laboratory TIR spectra generally have a spatial resolution of 1 cm 

whereas ASTER TIR and THEMIS TIR operate over 90-100 m spatial resolution. 

Further, separating the TIR radiance of the surface and atmosphere should not 

significantly affect the results of the image end-member analysis.  Nearby (at the scale of 

an ejecta blanket of a small impact crater) pixels at the same surface elevation in the same 

multispectral TIR scene should have approximately similar amounts of contribution from 

the atmosphere.  Whereas the spectra of the pixels are affected by atmospheric 

absorptions, the distribution of those pixels is not.  The distribution of end-members will 

closely reflect the distribution of end-members on the surface.  This is comparable to the 

ratio of emissivity spectra of nearby TES pixels to discern surface features without 

atmospheric separation [Ruff and Christensen, 2002]. 

 

2.5. Impact Craters on Mars 
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 Martian impact craters and their various properties have been studied in detail 

since the earliest days of Mars science [Leighton, 1967; Masursky, 1973; Carr, 1981].  

However, these studies have primarily focused on the larger impact structures such as 

central peak craters and multi-ring basins.  Simple impact craters are defined as those in 

which the pressure associated with impact are not high enough to produce the isostatic 

rebound needed for a central peak and rings to form [Melosh, 1989].  Generally, simple 

impact craters are bowl-shaped [Melosh, 1989].  Ejecta studies have focused on rampart 

and lobate ejecta blankets.  With Viking data, 42,283 impact craters with diameters larger 

than 5 km have been catalogued [Barlow, 2000] and the youngest of these have been 

noted.  Small, simple impact sites have not been studied in detail due to the low spatial 

resolution of orbital cameras [Carr, 1981].  For similar reasons, these structures have 

never been imaged or studied with TIR instruments before the advent of THEMIS. 

 Small, simple, bowl-shaped craters have only been studied in detail with the Mars 

Orbital Laser Altimeter (MOLA) instrument [Garvin et al., 1999, 2000, 2003].  The 

studies are geometric and are subject to whether or not the crater was directly sampled by 

the laser altimeter.  A depth (d) to diameter (D) ratio of d = 0.21D0.81 for martian simple 

(<7 km diameter) craters was the result of the ongoing study. 

 The only study of martian impact craters and their associated ejecta blankets 

performed with the aid of TIR remote sensing was done with the Phobos ‘88 Termoskan 

instrument [Betts and Murray, 1993].  One hundred and ten impact craters on the plains 

near Vallis Marineris with diameters between 4.2 km and 90.6 km were examined with 

one broadband TIR channel (8.5 – 12 µm) and a spatial resolution of 1.8 km.  The work 

described Ejecta blankets Distinct In the THermal infrared (EDITHs) as ejecta blankets 
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that have a higher or lower radiance than the surrounding terrain.  The reason is attributed 

to Hesperian units being more thermally distinct than the older Noachian or younger 

Amazonian units.  The degree of erosion and the local availability of eolian material is 

noted as a secondary cause of EDITHs.  This work will argue that the thermal inertia 

influenced by the particle size, preservation, and mantling of the ejecta blanket are the 

causes of EDITHs and not the relative geologic age (e.g., Noachian or Hesperian) of the 

surface. 

 Early analyses of THEMIS results have found the ejecta blankets of impact 

craters to have varying thermophysical properties that Christensen et al. [2002, 2003a, 

2003b] attributes to the age of the impact and not the geologic age of the surface.  This 

work will agree with and further their conclusion concerning the thermal infrared 

signature of crater ejecta. 

 

2.5.1. Geology of a small impact site in Syrtis Major Planum 

 The THEMIS instrument imaged a small impact crater in Syrtis Major on two 

occasions with the TIR subsystem.  The crater is located in southwest Syrtis Major in the 

southern highlands at approximately 4º S, 59º E (Figure 12).  THEMIS VNIR data of the 

crater have either not been collected or released, and orbital data from various 

instruments on the Mars Global Surveyor (MGS) could not be acquired or are not 

available.  This includes data from the Mars Orbital Camera (MOC), Mars Orbital Laser 

Altimeter (MOLA) and the Thermal Emission Spectrometer (TES).  TIR data from the 

TES, Viking IRTM, and all Mariner IRS and IRR instruments have spatial resolutions 

that are too low to accurately image the crater, which has a rim to rim diameter of 
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approximate 1.1 ± 0.1 km, based upon the THEMIS TIR spatial resolution of 100 m.  

Measurements of the diameter and other crater properties can be accurately constrained 

where THEMIS VNIR, MOC, or other high-resolution data are acquired of the area. 

 The Syrtis region is abundantly cratered and has an overall low albedo of 0.12 

[Ruff and Christensen, 2002].  Previous studies of thermal inertia have found the low 

albedo regions of Mars to be composed of course-grained particles (200–500 µm in 

diameter) [Palluconi and Kieffer, 1981].  Deconvolution of TES spectra have suggested 

calcium pyroxene and plagioclase to be the dominant minerals of the Syrtis region 

[Bandfield et al., 2000; Bandfield, 2002].  Other studies using the Phobos ISM data find 

low-calcium pyroxene in the Syrtis Major region [Mustard et al., 1993].  Each of these 

previous studies agree that Syrtis Major is composed of basalt and basaltic sediments. 

 The reasons for selection of this particular crater in Syrtis Major are fourfold.  

First, the crater is approximately the same size as Meteor Crater (from analysis and 

measurement of TIR images).  Second, there exists both daytime TIR and nighttime TIR 

data of the crater, and it is believed that this will be useful in showing differences in the 

thermal inertia of the ejecta blanket versus that of the surrounding plain.  The third reason 

the crater was chosen is that if the differences in particle sizes between the rim and ejecta 

versus the surrounding plain are apparent in this low-albedo region, this algorithm and 

methodology should apply to high-albedo regions.  Fourth, the particle size and 

composition of the Syrtis Major region is well-known from previous studies [Mustard et 

al., 1993; Bandfield et al., 2000; Bandfield, 2002] and this provides a means of 

comparison to the THEMIS TIR data used in this study. 
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 The THEMIS TIR daytime scene (I01297001) of the aforementioned crater was 

acquired on 31 March 2002.  Martian craters with diameters less than 5 km are unnamed 

[Barlow, 2000].  Viking topography data of southwest Syrtis Major and the location of 

the scene are shown in Figure 12.  For this scene, all ten bands were released to the public 

(Table 4).  The radiance data of band 3 (band center at 7.93 µm) of scene I01297001 of 

the crater and surrounding plain is shown as Figure 13.  The image is 320 pixels, or 

approximately 32 km, across.  The continuous ejecta blanket (CEB) and the ejecta rays 

appear to have a lower radiance than the surrounding plain in all TIR wavelengths. 

 The nighttime THEMIS TIR scene (I01852006) of the crater was acquired on 16 

May 2002 (Figure 15).  TIR bands 4, 9, and 10 were released to the public.  Of these, 

only bands 4 and 9 are useful for surface radiance.  Part of the CEB is not imaged in the 

nighttime scene.  For both nighttime radiance bands, the CEB of the crater has a higher 

radiance than the surrounding terrain.  This property of the CEB and its relation to 

particle size is discussed in detail in section 4. 

 Figure 14 displays Viking topography data and the coverage of nighttime 

THEMIS image.  In both TIR scenes, the extent of the CEB varies from 1.7 to 5.1 km 

around the crater rim.  Rays are apparent in the far-field ejecta blanket, indicating a 

young impact age [Melosh, 1989].  According to the Mars Crater Morphology 

Consortium [Barlow et al., 2000], this particular crater should be described as fresh, 

“dry”, and rayed.  “Dry” indicates that the crater ejecta were not fluidized and therefore 

not associated with “splosh” craters or near-surface volatiles [Barlow et al., 2000]. 

 
3. Methodology 

3.1 Acquisition and Processing of ASTER TIR Data 
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 ASTER data products are acquired from the Distributed Active Archive Center 

maintained by United States Geological Survey (USGS) Earth Observing System (EOS) 

Data Gateway.  The ASTER data of Meteor Crater were acquired at 18:22:22 UTC on 16 

September 2002.  Raw uncalibrated data are referred to as Level 1A and are in digital 

numbers (DN’s) that represent the radiance at sensor.  Raw data that have been 

radiometrically and geometrically corrected are referred to as Level 1B data, and are not 

atmospherically corrected (Figure 16). 

 The Level 1B scene was atmospherically corrected with the data representing 

radiance at surface in DN’s.  Designated as a Level 2 product, the data are converted to 

radiance at surface in the units of W/m2/sr/µm through accompanying band scale factors.  

These radiance data are separated into temperature and emissivity for the purposes of this 

study.  This calculation is discussed in section 2.2.1 and applies to all TIR data (ASTER, 

TIMS, and THEMIS). 

 Table 5 lists the ASTER granule ID’s of the Level 1A, Level 1B, and Level 2 

images used for this study.  Although both temperature and emissivity data are available 

through USGS EOS Data Gateway, only TIR radiance data are acquired and analyzed for 

the purposes of this study.  In this, ASTER TIR radiance data represents a proxy for 

THEMIS TIR radiance data. 

 

3.2 Selection of ASTER TIR Image End-Members 

 Spectral Mapping Wizard, a subprogram in the ENVI software program, was used 

to group each pixel in the ASTER TIR emissivity scene.  A 5-dimensional plot is created 

with each dimension representing a band of the emissivity image.  Each pixel, containing 
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5 dimensions of data, is placed in the 5-dimensional space and a cluster of data is the 

result (Figure 17).  Pixels that are the most spectrally distinct lie at the ends of the cluster 

and are selected as image end-members.  For the ASTER TIR scene of Meteor Crater, the 

spectra of the three most spectrally distinct pixels are displayed as Figure 18.  The 

ASTER TIR emissivity image will be deconvolved with the three selected image end-

members.  As described in section 2.3.4., these image end-members obviously have 

identical wavelengths as the original ASTER emissivity data.  Spectral responses or filter 

functions do not need to be applied. 

 The image end-members are labeled as IEM1, IEM2, and IEM3, and are 

represented as spectral data and not specific lithologic spectra.  The spectral 

characteristics of the image end-members reveal their compositional properties.  

Comparison with the ASTER sample end-member analysis and the high-resolution TIMS 

end-member analysis will yield conclusions about the composition of each ASTER image 

end-member.  This is discussed in section 4. 

 The image end-members of the TIMS and THEMIS scenes are chosen by 

identical means.  However, the number of bands and hence the number of dimensions of 

the scatter plot generated will depend upon the TIR data set. 

 

3.3 Sample Collection and Emission Spectra of Meteor Crater Lithologies 

 Field work was performed at Meteor Crater from 27 July 2002 to 30 July 2002.  

Samples of each lithology were collected and the location of each sample collection site 

was recorded with a Trimble differential Global Positioning System (GPS) Pathfinder Pro 
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XRS unit.  It should be noted that samples consisted primarily of the weathered tops of 

outcrops and local fresh surfaces. 

 The areal extent of local lobes in the ejecta blanket were recorded with the GPS 

unit.  Coconino ejecta lobes on the eastern near-field ejecta blanket and Kaibab ejecta 

lobes on the northern far-field ejecta blanket were the primary targets.  Additionally, the 

northeastern, far-field ejecta blanket was analyzed.  The earlier TIMS image end-member 

analysis [Ramsey, 2002a] showed this area to be abundant in Coconino Sandstone.  This 

is significant because the erosion of the ejecta at Meteor Crater was estimated to be either 

20-30 meters [Shoemaker, 1960; Roddy, 1978] or just 1-2 meters [Grant and Schultz, 

1993; Ramsey, 2002a].  The amount of Coconino Sandstone present affects any 

calculation of the amount of erosion that has taken place. 

A Nicolet Nexus 670 spectrometer with a deuterated triglycine sulfate detector at 

Arizona State University was used to acquire thermal emission spectra (as described by 

[Ruff et al., 1997; Johnson et al., 2002a, 2002b]) of the rock samples of the lithologies at 

Meteor Crater.  Rock samples were heated to 80° C in an oven and then placed in a 

nitrogen-purged glovebox during spectral acquisition.  Radiant energy was collected by a 

parabolic mirror and directed toward the interferometer.  One hundred and twenty scans 

of the radiance from ~5 to 50 µm were measured, averaged, and stored.  The temperature 

of the sample was not kept constant during data acquisition.  However, this 

anisothermality has been shown to be insignificant in collecting thermal emission spectra 

[Bandfield et al., 2002].  Two blackbodies (at 70° C and 100° C) were used for 

radiometric calibration of the spectrometer and for removal of the energy emitted by the 

instrument and surrounding room. 
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To convert to emissivity, a software program incorporated instrument 

temperature, the two blackbody spectra, and divided each sample’s radiance spectrum by 

the Planck blackbody radiance spectrum calculated for the maximum brightness 

temperature.  It was assumed that the spectrum has an emissivity equal to 1.000 at the 

maximum brightness temperature [Ruff et al., 1997].  

 There are slight differences in the laboratory emission spectra of the weathered 

tops of samples and spectra of the fresh bedrock.  It was decided to use the emission 

spectra of the weathered tops of each lithology as sample end-members because this is 

what is observed by the spaceborne TIR detector. 

Figure 19a displays the sample spectra of the Meteor Crater lithologies as 

obtained by the spectrometer.  Although TIR data was acquired from ~5 to 50 µm, only 

the region of wavelengths observed by the ASTER and TIMS instruments are shown.  

The absorption band of quartz / silica (SiO2) is evident in the Coconino Sandstone 

spectrum.  The Kaibab Formation spectrum is spectrally flat over the wavelengths used in 

this study.  The Moenkopi Formation, which has local silica and clay. 

With the same lithologic color scheme as Figure 19a, Figure 19b displays the 

laboratory spectra convolved with ASTER TIR spectral response functions to simulate 

how ASTER would observe each pure lithology with no other lithologies or contaminants 

present.  Whereas the lithologies are still distinct, they have lost some spectral character 

due to the filtering from 198-point spectra to 5-point spectra.  These filtered spectra are 

now considered the sample end-member spectral library. 

 

3.4 Linear Spectral Deconvolution 
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 The ASTER TIR image of Meteor Crater was deconvolved using the algorithm 

developed by Ramsey [1996; Ramsey and Christensen, 1998].  The algorithm (described 

in section 2.2.2 of this work) was input into an IDL subprogram of the ENVI software 

program.  Two separate trials were performed, using both three image end-members and 

three sample end-members on the other.  The deconvolution results, comparison of the 

two, and the RMS errors associated with each are discussed in section 4.  Figure 18 and 

Figure 19b show the image end-member spectra and sample end-member spectra, 

respectively.  Figures 20 and 21 display the image end-member analysis and sample end-

member analysis, respectively.  These are discussed in the next section. 

 

3.5. Acquisition and Processing of TIMS TIR Data 

 TIMS TIR data of Meteor Crater were acquired at 1230 LT on 22 August 1994.  

The TIMS instrument was scanning on a NASA C-130 aircraft that had an elevation of 

1219 m above ground level.  This resulted in a spatial resolution of 3.2 m/pixel.  The 

image is 1420 pixels by 630 pixels and contains the entire crater, ~1 km west of the 

crater, and ~3 km east of the crater.  There is very little data north and south of the crater.  

The radiance data are in units of mW/m2/sr/µm.  Similar to the ASTER TIR data, ENVI 

is used to calculate emissivity for each pixel and produce a separate image file.  A 

maximum emissivity of 0.985 was used for the separation of emissivity and temperature, 

similar to the results of earlier studies [Salisbury and D’Aria, 1992; Ramsey and Fink, 

1994].  The TIMS data represent high spatial resolution TIR data that can be used to 

assess the validity and accuracy of the ASTER TIR data, and were validated using field 

observations. 
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3.5.1 Selection of TIMS TIR image end-members 

The TIMS TIR data used in this study are identical to those used by Ramsey 

[2002a] in an earlier TIMS TIR image end-member analysis.  In that study, image end-

members were selected based upon knowledge of the location and spectral character of 

specific outcrops and pixels, respectively.  In this study, the most spectrally distinct 

pixels are chosen to be image end-members by the image processing software algorithm.  

This is identical to the methodology to which the ASTER image end-members were 

chosen.  The TIMS image end-members are shown as Figure 23. 

 

3.6. Description of Regions of Investigation 

 Various sites were chosen in and around Meteor Crater are identified and 

compared on the low-resolution (90 m) ASTER and high-resolution (3.2 m) TIMS end-

member analyses.  Specifically, the areal abundances of end-members in certain areas 

will be compared to determine the change in accuracy where Meteor Crater is examined 

with a 790% decrease in spatial resolution.  The regions where the areal abundance of 

Coconino Sandstone is investigated is significant for detection of lithologies on Mars 

with THEMIS TIR data.  Meteor Crater provides a unique impact site where the area’s 

surface exposure of one lithology is solely due to meteorite impact.  The Coconino 

Sandstone would not be evident in the inner crater walls, floor talus, rim, and ejecta if 

impact had not occurred.  The lithology is not exposed anywhere else in this area of the 

Canyon Diablo region (Figure 1).  Whereas sandstones have not been detected on Mars 

[Bandfield et al., 2000; Bandfield, 2002], investigations of the areal extent of Coconino 
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ejecta at Meteor Crater serve as analogs for the examination of ejected lithologies on 

Mars.  This has implications for determining estimates of pre-impact stratigraphy 

(lithologies and their thicknesses) on Mars with THEMIS TIR data of fresh impact sites.  

These regions of investigation at Meteor Crater include: 

1) the extent of the northeastern windstreak 

2) the identification of one major and three minor zones in the windstreak  

3) the areal abundance of the strata and debris aprons of Coconino on the eastern 

inner-crater wall. 

4) areal amount of Coconino Sandstone 

5) areal amount of Moenkopi Formation 

6) The difference in areal abundances in using sample emission spectra as end-

members as opposed to image end-member spectra. 

 Items 1-4 involve specific investigations of the areal abundance of the Coconino 

Sandstone.  This is significant for the above reasons and because the composition, and 

therefore the thermal infrared spectra, of the Coconino Sandstone composing the 

windstreak is very distinct from that of the other two lithologies.  Further, as shown at 

Meteor Crater, the mineralogic and lithologic character of windstreaks on martian impact 

craters may be the only location that reveals information about ejected lithologies.  It is 

necessary to investigate this property of the ASTER data to determine its likelihood for 

THEMIS data.  For similar reasons as those given for investigating the windstreak, it is 

necessary to investigate this to determine what THEMIS TIR data will reveal about 

inner-crater strata on Mars. 
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 Item #5 involves testing the limits of deconvolving ASTER TIR data to identify 

lithologies with low areal abundances.  Because the distribution of Moenkopi Formation 

is accurately identified by analysis of TIMS data, this can be used to compare with 

ASTER data of the same region.  The total areal percentage of the Moenkopi Fm. end-

member in a selected region is compared for each end-member analysis. 

 Item #6 is discussed is section 4.3.1 and is a comparison of areal abundances of 

each end-member from the two ASTER end-member analyses.  The areal abundances of 

each end-member at three different scales are compared. 

 

3.7. Acquisition and Processing of THEMIS TIR Data 

 The THEMIS science team is required to release a portion of THEMIS data to the 

public quarterly each year.  The first such release occurred 1 October 2002 and will 

continue during the primary mission phase.  VNIR and TIR data are available on the 

THEMIS web site at http://themis.asu.edu.  TIR data exists in two forms.  There exists 

raw radiance data (Experimental Data Record – EDR) and calibrated radiance data 

(Reduced Data Record – RDR).  Calibrated data (RDR) describes raw radiance data 

(EDR) that have been calibrated to remove instrument errors and better represent the 

actual radiance at sensor.  The IR-RDR data are given in integer format, with scaling 

factors given to convert to floating point format.  Using the conversion will result in 

floating point numbers that represent radiance in units of W/cm2/sr/µm.  TIR data 

corresponding to daytime and nighttime are released.  Daytime (odd-numbered orbits of 

the Odyssey spacecraft) TIR data consists of 10 bands whereas nighttime (even-

numbered orbits of the Odyssey spacecraft) consists of 3 – Bands 4, 9, and 10. 
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 The THEMIS TIR data are not geometrically corrected and show obvious band to 

band misalignment.  This is due to the side-by-side alignment of the TIR detectors and 

the movement of the Odyssey spacecraft as radiance is detected.  A simple, crude 

geometric correction was applied by observing and recording the pixel location of a 

specific surface feature as it changed from band to band.  The geometric offset from band 

to band was calculated, and the corresponding number of samples and lines were deleted 

from the image edges.  This qualitative correction lessened the geometric distortion from 

band to band, but did not entirely eliminate it.  Because the spatial resolution of each 

pixel is 100 m, the geometric distortion was decreased to less than 100 m.  A precise 

geometric correction is recommended for eliminating all geometric distortion. 

 As discussed under Instrument Descriptions (section 2.5.3), the THEMIS 

instrument has ten bands in the TIR region, but this study will use seven wavelength 

regions.  Band 10, with a band center at 14.88 µm, is not useful for information about the 

surface [Christensen et al, 1999].  Carbon dioxide in the martian atmosphere absorbs TIR 

energy is this wavelength region [Ruff and Christensen, 2002].  Also, Bands 1 and 2, with 

identical spectral coverage and band centers at 6.78 µm, are ignored in this study.  These 

two bands were designed to be averaged together to increase accuracy and increase signal 

to noise ratio (SNR), but early studies have found that these two have not been calibrated 

correctly [ref!!!!!].  Ignoring the TIR data from bands 1, 2, and 10 leaves a 7-point TIR 

spectra for each pixel in the THEMIS scene.  These spectra will not be atmospherically 

corrected, but it is believed that this will not significantly affect the results of an image 

end-member analysis (section 2.3.4.). 



 35

 The radiance data were separated into temperature and emissivity using ENVI 

software.  A maximum emissivity value of 0.99 was chosen from a Mars Dust Cover 

Index [Ruff and Christensen, 2002].  The emissivity data of the daytime scene are used to 

select image end-members as described in section 3.8.  The daytime temperature, 

nighttime temperature, and daytime emissivity data of the crater are discussed in section 

4.4. 

 

3.8. Selection of THEMIS TIR image end-members 

The purpose of this work is to use ASTER TIR data as a proxy for THEMIS TIR.  

Therefore, THEMIS TIR image end-members are selected using the same methodology 

as the image end-members of the ASTER TIR scene of Meteor Crater are selected.  The 

radiance data are separated into emissivity and temperature data using the same process 

used for ASTER TIR and TIMS data.  Whereas the nighttime temperature data proved to 

be useful in the determination of thermophysical properties of the crater, the nighttime 

emissivity data did not due to the limited data released (two bands excluding Band 10).  

Selection of image end-members and subsequent deconvolution of the image end-

members would not provide for a useful analysis with this limited spectral resolution.  

The daytime emissivity scene consists of seven bands (Bands 3 – 9), and these data were 

used for selection and deconvolution of image end-members. 

The Spectral Mapping Wizard function in the ENVI image processing software 

program is used to select the pixels within the daytime emissivity data that are the most 

spectrally distinct.  This methodology is identical to that used for ASTER and TIMS data.  

The spectra of these pixels are selected to be the image end-members of the emissivity 
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scene and are displayed as Figure 24.  Refer to Figure 11 for the spectral response 

functions of THEMIS and Table 4 for a listing of the THEMIS TIR band centers.  

Possibilities of the composition of the image end-members are discussed in section 4.4.2.  

A precise determination of the mineralogies composing the image end-members is 

beyond the scope of this work because atmospheric subtraction was not performed.  

Rather, the distribution of each image end-member will be investigated and discussed.  

The temperature data (4.4.1.), daytime emissivity data (4.4.2.), and the image end-

member analysis (4.4.2) are discussed in section 4.4. 

 

4. Results 

4.1 ASTER TIR end-member analyses 

4.1.1 Image end-member analysis and RMS error 

 The ASTER TIR emissivity scene of Meteor Crater is deconvolved using the 

image end-member library consisting of the 3 spectra shown in Figure 18.  As noted in 

section 3.2, the spectra appear to correlate with the three lithologies found at Meteor 

Crater, but will be denoted as image end-member #1 (IEM1), IEM2, and IEM3 because 

these spectra were selected by the spectral distinctness and not by a priori knowledge of 

the image spectra or the lithologies at Meteor Crater. 

 The results of the image end-member analysis are shown as Figure 20a.  The 

color scheme is based as follows for the 8-bit pixels: the percentage of each end-member 

from 0% to 100% is scaled as a digital number (DN) from 0 – 255.  A DN of 255 

correlates to 100% and a DN of 0 is 0% of that end-member.  As per the deconvolution 

algorithm, two or more end-members cannot both be at or near 100%.  The sum of the 
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areal percentages of the 3 end-members is at or near 100% even if one or two of these 

have an areal abundance of 0%.  Ideally, the total would always be 100% for each pixel.  

However, due to the best fit of the spectra locally being a little less, the RMS error will 

increase. 

 For visual purposes, the data representing the areal percentages of each end-

member from Figure 20a are stretched 1%, therefore 0 – 255 DN’s represents areal 

percentages of 1% - 99% (Figure 20b).  It should be noted that this stretch does not alter 

the data (i.e., the areal percentages) of any pixel.  It simply affects the color scheme to 

better identify the areal distribution of each end-member. 

 The RMS error image is shown as Figure 25 with 0.000 (0.0%) correlating to 0 

DN and 0.005 (0.5%) and above correlating to 255 DN.  This image has been stretched 

1% for visual enhancement of the 0.000 - 0.005 range of RMS errors.  The majority of 

the pixels have a RMS error of 0.002 (0.2%) or less (as shown by the dark gray to black 

hue of the bulk of the pixels).  This signifies that there is a difference of 0.0% to 0.2% 

between the measured emissivity of those pixels and the model fit of the three image end-

members.  The greatest RMS errors occur in a specific area east of the crater, on the 

crater floor, and to the southwest of the crater.  The area high in RMS errors (as 

compared to the rest of the scene) that is east of the crater is the small (300 m diameter) 

farm that is abundant in green vegetation (Figure 2).  No combination of the image end-

members fit the TIR spectra of this region well.  Inside the crater, Quaternary alluvium 

and talus dominates the floor.  Whereas the spectra of Image End Member #2 (IEM#2) 

fits the spectra of the crater floor well, there is still local residual error.  This can be 
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attributed to the abundance of both desert vegetation and local deposits (from the crater’s 

Quaternary period as a post-impact lake) that resemble the IEM#2 spectral signature. 

 

4.1.2. Sample end-member analysis and RMS error 

 The same ASTER TIR emissivity scene of Meteor Crater deconvolved with 

image end-members is also deconvolved with the sample end-member library.  Recall 

that the three end-members are laboratory emission spectra that are convolved to the 

ASTER TIR spectral response functions (Figure 19b). 

 The results of the sample end-member analysis are shown as Figure 21a using the 

color scheme of the sample end-member spectral plots from Figure 19b: red is the 

Coconino Ss., green is the Kaibab Fm., and blue is the Moenkopi Fm.  The DN’s of each 

color from 0 – 255 are scaled to and represent the areal percentage of each lithology from 

0% to 100%.  The Moenkopi Fm., which is represented by blue, is noticeably absent from 

the sample end-member analysis.  Every pixel is the scene contains a value of 0.000 for 

the Moenkopi sample end-member as it was ejected from the deconvolution algorithm 

due to a poor spectral fit.  In this, the sample end-member analysis becomes a two-

component, rather than three-component, solution.  The best fit of each pixel is 

comprised of solely Coconino Ss. and the Kaibab Fm. 

The sample end-member analysis is stretched 1% in Figure 21b for identification 

of the two end-members.  The windstreak to the northeast is obviously composed of 

Coconino Ss. (red) and the remaining pixels in the scene contain either Kaibab Fm. or a 

combination of Coconino and Kaibab. 
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 The RMS error image of the sample end-member deconvolution is shown as 

Figure 26.  The range of DN’s (0-255) represents RMS errors from 0.020 to 0.025 (2.0% 

to 2.5%).  These RMS errors are an order of magnitude higher that the RMS errors 

associated with the image end-member analysis and represent a poorer fit to the ASTER 

data than that of the fit of the image end-members.  The best fit (as evidenced by the 

darkest pixels in Figure 26) is the rim of the crater.  This is significant because large 

particle sizes (boulders, pebbles) are abundant at the rim, and this is what was chosen to 

be sample end-member for the purpose of this study. 

 

4.2 TIMS TIR image end-member analysis and RMS error 

 As discussed in section 3, the high-resolution TIMS TIR image end-member 

analysis is used to validate the ASTER TIR end-member analyses.  The reasons are 

threefold.  Field mapping using a Global Positioning System (GPS) unit provided 

ground-truth of the image end-member analysis created by Ramsey [2002a].  It was 

decided that the TIMS image end-member analysis was very accurate where the extent of 

ejecta lobes and inner-crater strata debris aprons were compared with the boundaries of 

end-members on the image end-member analysis image (Figure 26).  At 3.2 m/pixel, the 

spatial resolution represents an increase of 791% over the 90 m spatial resolution of 

ASTER.  Further, the spectral resolution of the TIMS instrument is slightly better than 

that of ASTER.  As described in section 2, the TIMS has six TIR bands, including the 

acquisition of TIR radiance data over the ozone absorption band that ASTER cannot. 

 The emissivity image created using the TIMS data was deconvolved using the 

three TIMS image end-member spectra (as seen as spectral plot in Figure 23).  As 
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discussed in section 3.5.1., image end-members were chosen based on the selection of the 

most spectrally distinct pixels by a software algorithm.  Spectral plots of the TIMS image 

end-members are shown as Figure 23.  Figure 28 is the TIMS image end-member 

deconvolution and Figure 29 is the RMS error image. 

 The TIMS image end-member deconvolution is nearly identical to the earlier one 

by Ramsey [2002a].  This demonstrates that image end-members were correctly chosen in 

that earlier study.  For the purposes of this study, it was necessary to select image end-

members with the same methodology as those selected for the lower-resolution ASTER 

and THEMIS data sets. 

 The RMS error values (Figure 29) range from 0.000 to 0.010.  The regions that 

exhibit the highest RMS errors on the TIMS image end-member analysis are portions of 

the windstreak, the crater floor, and the farm 3 km east of the crater.  The windstreak is 

clearly composed of the Coconino image end-member, but slight differences in the 

spectra of these pixels and the spectra of the image end-member promote a higher RMS 

error.  These slight differences are most likely due to the effects of shock metamorphism, 

the variability of the local vegetation, and/or the patchiness from erosion on those 

portions of the windstreak.  The crater floor exhibits a high RMS error as it is covered by 

sparse vegetation, lake sediments, Quarternary alluvium, and basaltic dust from the 

nearby San Francisco volcanic field.  As these materials have spectra that is most similar 

to that of the Kaibab Formation, this end-member is chosen to represent a majority of the 

areal abundance of the crater floor.  However, slight differences in these pixels’ spectra 

promotes a higher RMS error.  The farm has abundance green vegetation which cannot 
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be modeled correctly by any of the three end-members.  Due to this, high RMS errors are 

apparent for the pixels representing the farm. 

 

4.3 Discussion 

4.3.1. Comparison of ASTER end-member analyses 

 The ASTER end-member analyses were deconvolved with two different 3-end-

member sets.  Hence, the results of each vary from one another.  Here, certain aspects of 

the differences between the two are discussed and potential reasons are given.  The end-

member deconvolution are compared on three scales:  

1) the entire image that was deconvolved, or 90 pixels (8.1 km) on each side (as seen 

 in Figures 20 and 21) 

2) just the CEB, or 36 pixels (3.24 km) on each side (Figure 22) 

3) one pixel, or 90 m on each side (Table 7) 

 Table 6 lists the end-members and their areal abundances for a 8.1 km x 8.1 km 

region around the crater and a 3.24 km x 3.24 km region around the crater.  The areal 

abundances of the image end-members, which were chosen by spectral distinctness, 

compare well to the areal abundances of the sample end-members, which are spectra of 

rock samples.  One exception would be the areal abundance of the sample end-member 

Moenkopi Formation, which has a value of 0.000 for every pixel in the sample end-

member analysis.  Clearly, image end-member #3 (IEM#3) is evident in the image end-

member analysis and most likely consists of local Moenkopi Formation plus some 

contaminants of the other two lithologies.  During field work, it was evident that the 

Moenkopi Formation was not abundant on the scale of an ASTER TIR pixel size – 90 m 
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on each side or 8100 m2 (0.0081 km2).  Additionally, over the spectral resolution of 

ASTER, the spectral signature of the Moenkopi Formation is similar to a combination of 

approximately 75% Kaibab Formation and approximately 25% Coconino Sandstone. 

 The data for the other two lithologies clearly show that lithological mixing occurs 

in the image end-members.  This clearly affects the results of the image end-member 

deconvolution, but is well within the 10% -15% accuracy predicted by Ramsey [2002a] 

where TIR data is deconvolved with 90-100 m pixels as lithologic end-members.  As the 

areal abundance of the Moenkopi Formation in any ASTER pixel is below 15%, 

deconvolution with image end-members or sample end-members do not accurately 

represent the areal abundance of such lithologies.  

 

4.3.2. Investigation of remotely-sensed properties 

 The investigation of the regions listed in section 3.6 are discussed here.  The 

results of the TIMS image end-member analysis, ASTER TIR image end-member 

deconvolution, and the ASTER TIR sample end-member deconvolution are cropped to 

the same areal coverage of the crater and near-rim ejecta.  The areal abundances for each 

end-member over the scenes are listed on Table 7. 

1) The extent of northeast-trending windstreak: 

 The extent of the northeast-trending windstreak was measured on the TIMS and 

ASTER end-member analyses and subsequently compared.  The windstreak is 

determined to cease where the areal abundance of the Coconino Sandstone (being either 

the sample end-member or IEM#1) is lower than 15%.  This limit was chosen based on 

the results of previous studies that investigated the accuracy of deconvolving TIR spectra 
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[Ramsey and Christensen, 1998; Feely and Christensen, 1999] and estimated its accuracy 

with multispectral TIR data to be 10% – 15%.  A previous TIR study of Meteor Crater 

predicted the confidence level of THEMIS image end-member analyses to by 10% to 

15% [Ramsey, 2002a]. 

 The extent of the windstreak in the TIMS end-member analysis was measured to 

be 2.4 km.  For the ASTER image end-member analysis, the extent of the windstreak was 

measured as 2.7 km whereas the windstreak of the ASTER sample end-member analysis 

is 3.1 km.  These measurements show the differences between the areal percentages of 

end-members and the errors associated with resolution degradation.  As the spatial 

resolution is decreased, there is a loss of spectral distinctness between image end-

members.  As a result, the areal abundance of a certain image end-member will appear 

larger.  In a previous study, the volume of Coconino Sandstone was estimated from the 

areal extent of the lithology as calculated from TIMS TIR data [Ramsey, 2002a].  

Generally, this is not possible by remote sensing alone.  If the calculation had been 

performed using the areal extent measured with ASTER rather than TIMS, the volume 

calculated would be increased.  This is due to the areal extent of the windstreak measured 

with ASTER being higher than that on the end-member analysis using TIMS. 

2.) The identification of one major and three minor zones in the windstreak: 

 It is clear from field work and high-resolution TIMS analysis that the Coconino 

Sandstone ejecta lies in four distinct zones.  The southern CEB and northeast-trending 

windstreak has been discussed in detail and represents one zone.  The other three zones 

are the Coconino ejecta lobes to the north of the crater (and west of the Visitor Center), 

northeast of the crater (and east of the Visitor Center), and east-northeast of the crater 
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(and described in Figure 27).  Each of the four zones extends to the northeast due to 

southwesterly winds since crater formation and accounts for the northeast-trending 

windstreak. 

 All four zones are identified in both the TIMS and ASTER image end-member 

analyses, but their extent differs.  This is due to the loss of spectral character as the 

spatial resolution is decreased.  Because the spatial resolution is smaller, ASTER image 

end-members incorporate slight contaminations of other lithologies.  This influences the 

results of an image end-member deconvolution. 

3.) Eastern inner-crater strata and debris aprons: 

 Table 7 compares the areal abundance of the Coconino Sandstone end-member 

for each analysis.  It should be noted that the spectral character of the Coconino end-

member is different for each analysis (note the spectral plots of Figures 18, 19b, and 23).  

Further, the original emissivity data that is deconvolved varies for each analysis.  

However, Table 7 provides a quantitative comparison of the areal abundances for this 

end-member and demonstrates the effects of decreasing the spatial resolution of TIR data 

and their associated deconvolution. 

 The extent of Coconino Sandstone in the eastern inner-crate strata and debris 

aprons are not resolvable on the ASTER end-member analyses.  This is an effect of 

resolution degradation and represents the loss of fine details in the TIR data as the spatial 

resolution is decreased from 3.2 m to 90 m. 

4.) Areal abundance of the Coconino end-member: 

 Table 7 compares the areal abundances of the Coconino image end-member for 

the TIMS and ASTER end-member analyses.  The Coconino image end-member 
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comprises 9.11 % of the TIMS scene and 14.19 % of the ASTER image end-member 

analysis.  Clearly, the Coconino image end-member on the ASTER scene has 

incorporated a percentage of one or two of the other lithologies.  This results in slight 

errors in the model results, and the areal abundances of  90-100 m image end-members 

will reflect this incorporation of other lithologies. 

5.) Areal abundance of the Moenkopi end-member: 

 Table 7 shows the areal abundance of the Moenkopi end-member for the TIMS 

and ASTER end-member analysis.  The Moenkopi Formation, with a low areal 

abundance and no large-scale (>8000 m2) outcrops, comprises 11.29 % of the TIMS 

image end-member analysis and 5.23 % of the ASTER image end-member analysis.  

These areal abundances also show the effects of resolution degradation associated with 

the selection of image end-members and the subsequent deconvolution with them.  The 

distribution of lithologies with low areal abundances and no significant, large-scale 

outcrops will not be resolvable. 

 

4.4. THEMIS TIR data 

4.4.1. Temperature data 

 The daytime temperature is shown in Figure 30 with the scale of 0-255 DN values 

correlating to temperatures of 260 K to 274 K.  The nighttime temperature is shown in 

Figure 30 with the DN values (0-255) ranging from 177 K to 190 K.  The daytime and 

nighttime TIR scenes do not cover the exact same area.  However, all of the CEB is 

contained on the daytime scene and the majority of the CEB is contained on the nighttime 

scene.  This provides for a thermophysical comparison between the CEB and the 
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surrounding terrain.  There is a significant correlation between the coldest temperatures 

in the daytime scene and the hottest temperatures of the nighttime scene both being 

contained in the CEB of the crater.  This indicates that the pristine ejecta of the crater has 

a higher thermal inertia than the surrounding terrain and, thus, is composed of larger 

particle sizes than the surrounding plain.  This agrees with earlier predictions that the 

rims and ejecta blankets of fresh impact craters will be composed of particle sizes that are 

larger than dust [Wright and Ramsey, 2002, 2003].  Because the low-albedo Syrtis Major 

region is composed of sand-sized particles [Palluconi and Kieffer, 1981; Christensen, 

1983; Mustard et al., 1993; Bandfield, 2002], it is obvious that the ejecta blanket of this 

particular crater is composed of particles that are larger than sand. 

 As evidenced at Meteor Crater, the rims and ejecta blankets of fresh impact 

craters are composed of larger-than-dust particle sizes such as boulders, cobbles, pebbles, 

and sand [Shoemaker, 1960; Grant and Schultz, 1993] that are ejected and emplaced 

during impact [Wright and Ramsey, 2002, 2003].  These particle sizes are above the 

threshold size where TIR data are linearly additive [Moersch and Christensen, 1995; 

Ramsey and Christensen, 1998].  Therefore, the composition of the pristine ejecta can be 

determined via TIR spectroscopy. 

 

4.4.2. Emissivity data and image end-member analysis 

 The daytime emissivity is used for the image end-member analysis as described in 

section 3.8 and a grayscale image of Band 3 (7.93 µm) is shown as Figure 13.  Figure 31 

shows a grayscale emissivity scene of Band 6.  Similar to the other six bands, the impact 

crater and its ejecta blanket is not apparent on the image.  This indicates the emissivities 



 47

of the pixels representing the crater rim, ejecta blanket, and the surrounding area are 

nearly identical.  This is in contrast to the temperatures and relative thermal inertias of 

pixels, which clearly show differences in the rayed ejecta blanket, the crater rim, and 

local eolian transported material around the rim. 

 Spectral plots of two image end-members are shown as Figure 24 and are denoted 

as Image End-member A and Image End-member B.  The image was deconvolved with 

the two image end-members and the results are shown as Figure 32a and 32b.  Clearly, 

Image End-member A is the dominant member of the scene and accounts for 89.3% of 

the areal abundance as opposed to 7.0% for Image End-member B.  An analysis of a 110 

pixels by 110 pixels clip (~11 km by 11 km) of the crater, CEB, and local surrounding 

plain reveals that Image End-member A accounts for 94.4% of the areal abundance as 

opposed to 1.8% for Image End-member B.  Figures 33a and 33b show the localized 

areas on the crater rim where Image End-member B has high (>90%) areal abundances.  

Due to the spectral similarity of the two end-members, this is most likely due to 

shallowing of spectral features due to particle size variations or slight topographic 

thermal variations.  Another aspect is the approximate geometric correction performed 

for this analysis.  Even slight geometric offsets may result in errors in the selection of 

image end-members and therefore the image end-member analysis.  Due to the 

dominance of Image End-member A, it is possible that the spectrum of this image end-

member represents the lithology of the entire scene, including the crater rim and ejecta. 

 Both THEMIS image end-members appear to be basaltic in nature.  The location 

of absorption features agrees with those of Mars Surface Type 1 (ST1) [Bandfield et al., 

2000].  The particle size of the surface sediments is beyond the scope of this work.  



 48

Mustard et al. [1993] and Bandfield [2002] agree that this region of Syrtis Major is 

composed of sand-sized, basaltic sediments. 

 RMS errors for the THEMIS image end-member deconvolution range from 0.001 

to 0.030 with the average RMS error of the scene being 0.017.  Where the sum of the 

areal abundances of the two end-members do not sum to 100%, the RMS error is 

increased.  RMS error images are displayed as Figures 34 and 35.  As shown with the 

overall low mean RMS error (1.7%), the majority of the pixels exhibit RMS errors of less 

than 2.0%.  Figure 35 displays all RMS errors greater than 2.0%.  Portions of the crater’s 

ejecta blanket and most of the crater floor have the highest RMS errors.  This is shown in 

Figure 36.  In these areas, shadows or incorrect geometric corrections likely result in the 

“poor fit” of the spectra to the two image end-members. 

 

5. Conclusions 

 Analyses of ASTER TIR data of Meteor Crater provide excellent analogs to 

develop and test a methodology to examine a large quantity of similar TIR data from the 

THEMIS instrument.  Meteor Crater is a unique terrestrial site in which the results of 

analyses performed with spaceborne data sets can be validated with field observations, 

and this provides insight into studying similar-sized martian impact craters with remote 

sensing alone.  Topics of investigation may include crater deterioration, ejecta 

distribution, and/or ejecta composition. 

 Through fieldwork at Meteor Crater, Arizona, analysis of both airborne and 

spaceborne TIR data of Meteor Crater, and analysis of THEMIS TIR data of a small 

impact site on Mars, this work has resulted in several significant findings. 
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 The rims and ejecta blankets of fresh impact craters have a higher thermal inertia 

than that consistent with particles that are greater than dust-sized.  Due to this, the rims 

and ejecta blankets of fresh impact craters in the high-albedo, dusty regions are excellent 

targets for thermal infrared spectroscopy.  The TIR spectra of the pixels representing a 

young crater’s rim and ejecta blanket may provide insight into the composition of 

underlying lithologies or bedrock underlying the dust.     

 Deconvolving THEMIS TIR data with selected image end-members can be used 

to constrain quantitative measures of the surface distribution of ejecta for fresh impact 

craters on Mars.  Specifically, in conjunction with other data sets and previous works on 

the structure and erosional states of impact craters, the areal abundance of an image end-

member in an ejecta blanket, windstreak, or inner-crater strata can provide estimates of 

local stratigraphy and weathering rates. 

 The use of image end-members with multispectral thermal infrared data such as 

ASTER or THEMIS is useful, but the image end-members should be chosen with caution 

or with statistical analysis.  Image pixels that are the most spectrally distinct should 

contain the least mixing of lithologies and serve as image end-members. 

 If chosen correctly, image end-members provided better model fits than 

laboratory emission spectra where spaceborne TIR data are deconvolved.  Image end-

member percentages between the spaceborne ASTER data and hi-resolution airborne 

TIMS data varied by < 10% on average.  It is obvious that local lithologic mixing occurs 

as a result of the instrument’s 100 meter spatial resolution.  There are at least two 

complicating factors.  Separation of lithologies with similar spectral signatures over the 

TIR channels used for an image end-member deconvolution are difficult.  Lithologies 
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need to have a distinct spectral signature over the multispectral TIR bands for a precise 

selection of image end-members and a subsequent accurate deconvolution to occur.  

Detection of lithologies with low areal abundances are also difficult.  If a lithology does 

not have a large areal abundance over any one pixel, a statistical analysis over the scene’s 

pixels may not yield an image end-member than contains the lithology.  Conversely, the 

selection of a pixel than contains the lithology plus other, separate lithologies to be an 

image end-member will affect the results of the image end-member deconvolution.  The 

distribution of ejecta will actually yield the distribution of the limited lithology where it 

exists with the other lithology or lithologies found in the image end-member.  This 

should be noted by the scientist performing the image end-member analysis. 
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Figure 1 Location of Meteor Crater 
 
The figure (modified from [Shoemaker and Kieffer, 1974]) displays the regional geology 
of the Canyon Diablo region consisting of surface exposures of the Permian Kaibab (Pk) 
Formation and the Triassic Moenkopi (Trm) Formation.  The latitude line on the map is 
35° N and the longitude line is 111° W.  For scale, Meteor Crater is 1.2 km in diameter.  
The crater’s precise location is 35° 01’N, 111° 01’W. 
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Figure 2 ASTER VNIR image of Meteor Crater 
 
 ASTER bands 3, 2, and 1 are represented by the colors red, green, and blue, 
respectively.  As chlorophyll-containing vegetation reflects NIR energy and this is 
detected by ASTER band 3, vegetation shows up as red.  It is evident from the image that 
the only abundant green vegetation is located on a farm ~2.5 km east of the crater.     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

N
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Lithologic Picture Formation Name Age Symbol
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Figure 3 Stratigraphic Column 
 
 Only the three primary lithologies are shown.  See text for lithologic descriptions 
and stratigraphic thicknesses. 
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Figure 4 Geologic map modified from Shoemaker [1960, 1963;  
  Shoemaker and Kieffer, 1974]. 
 
 Shoemaker mapped surface exposures of the original and ejected components of 
each lithology. 
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Figure 5 USGS Contour map of Meteor Crater  
 
 The contour map has a contour interval of 20 m.  Paved roads are denoted with 
double straight lines and unpaved roads with double dashed lines.  The half-filled squares 
and crossed shovels represent the locations of drill holes and mines, respectively. 
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Figure 6 Schematic diagram of Meteor Crater 
 
 The schematic diagram depicts the uplifted strata, impact breccia, and post-impact 
lake. 
 
 
 
 
              
 
 



 57

 
 
 
Figure 7   Thermal infrared spectra of common rock-forming minerals   
   (modified from Christensen et al. [1992]) 
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Figure 8    TIR laboratory spectra of various particle sizes of quartz   
   (adapted from [Ramsey and Christensen, 1998]) 
 
 It is obvious that the depth of absorption features (restralhen bands) decreases as 
the particle size of quartz decreases, but the position of the restralhen band does not.  In 
spectral regions that are not restrahlen bands, the depth increases as the particle size is 
decreased. 
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Figure 9     TIR spectral response functions for the Advanced Spaceborne   
  Thermal Emission and Reflection Radiometer (ASTER) instrument. 
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Figure 10 Digital Elevation Model (DEM) of Meteor Crater 
 
The DEM, with view to the NE, was produced using a nadir-pointing (Band 3N) and a 
backwards-pointing (Band 3B) VNIR band on the ASTER instrument. 
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Figure 11 TIR Spectral response functions for the Thermal Emission Imaging  
  System (THEMIS) instrument on the 2001 Mars Odyssey spacecraft. 
 

 
 
Figure 12       Location of impact crater under investigation with daytime TIR strip 
 
 The black arrow points to THEMIS daytime TIR strip I01297001 and the yellow 
circle shows the approximate position of the crater.  The IR strip is 32 km across and the 
crater is located at 4° S, 59° E in southwest Syrtis Major. 
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Figure 13 Daytime THEMIS scene I01297001 
 
 The TIR radiance of Band 3 (7.93 µm) is shown.  The scene is 32 km across and 
the crater is located at approximately 4° S, 59° E in southwest Syrtis Major.  The rim to 
rim diameter of the crater is approximately 1.1 km.  The crater ejecta appears to have a 
lower radiance than the surrounding plain during the day. 
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Figure 14      Location of impact crater under investigation with nighttime TIR strip 
 
 The black arrow points to the nighttime THEMIS TIR strip used in this study.  
For scale, the strip is 32 km across.  The yellow circle indicates the approximate position 
of the crater at 4° S, 59° E in southwest Syrtis Major. 
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Figure 15 Nighttime THEMIS scene I01852006 
 
 The TIR radiance of Band 9 (12.57 µm) is shown.  For reference, the scene is 
32 km across.  The crater ejecta appears to have a higher radiance at night than the 
surrounding terrain. 
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Figure 16 ASTER Coverage    
 
 The small rectangle highlighted in cyan represents the coverage of the ASTER 
data scene used in this study.  The rectangle is 72 km across and 60 km wide.  Table 5 
lists the Granule ID’s of all data levels for the scene. 
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Figures 17a and 17b          Cluster of 5-dimensional data 
 
 The above figures illustrate the 5-dimensional cluster of data that is used to plot 
the 5 bands of ASTER TIR emissivity data.  The most spectrally distinct pixels are 
chosen to be image end-members. 
 
 

 
 
Figure 18 ASTER TIR Image End-Member Spectra 
 
 Three image end-members are selected from the Spectral Mapping Wizard 
algorithm in ENVI. 
 

−−− Image End Member #1 
−−− Image End Member #2 
−−− Image End Member #3 
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Figure 19a Laboratory Spectra of Meteor Crater lithologies 
 
 Emissivity plots for hand samples of three lithologies are displayed.  Thermal 
emission spectra represent the tops of weathered samples. 
 
 
 

      
 
Figure 19b Convolved Sample End-Member Spectra 
 
The 198-point data displayed in Figure 19a is convolved using ASTER TIR spectral 
response functions.  The color scheme is the same as that for Figure 19a. 
 
    

–––– Coconino Sandstone 
–––– Kaibab Formation 
–––– Moenkopi Formation 

–––– Coconino Sandstone 
–––– Kaibab Formation 
–––– Moenkopi Formation
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Figures 20a and 20b  Image End-Member Analysis (0% stretch) 
 
 The above figures represent the deconvolution of an ASTER emissivity scene of 
Meteor Crater with three image end-members.  The color scheme is identical to that of 
Figure 18, which displays spectral plots of the image end-members.  The colors in Figure 
20a (on the left, designated by “A”) represent the areal abundance of each image end-
member.  For Figure 20b, the areal abundances have been stretched 1% to better show the 
distribution of the three image end-members (see text for more details).  Each scene is 90 
pixels by 90 pixels, or 8.1 km on each side.  North is up. 
 
 
 
 
 
 
 
 
 
 
 
 
 

A B 
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Figures 21a and 21b  Sample End-Member Analysis 
 
 The deconvolution of an ASTER emissivity scene with three sample end-
members is shown.  The color scheme is identical to that of Figures 19a and 19b, which 
displays the spectral plots of the sample end-members.  Figure 21a represents the true 
areal abundances.  The data comprising the sample end-member analysis is stretched 1% 
in Figure 21b to visually show the calculated areal percentages of each sample end-
member.  The Moenkopi sample end-member has an areal abundance of 0.000 for all 
pixels in the sample end-member analysis. 
 
 
 
 
 
 
 
 
 

A B 
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Figures 22a and 22b  Comparison of ASTER end-member analyses 
 
Figures 22a and 22b are close-ups of the approximate extent of the continuous ejecta 
blanket (CEB).  Figure 22a is an image end-member analysis (see text and Figures 
18 and 20 for end-member plots and analyses, respectively, for more details).  
Figure 22b is the same region of the CEB, but is a sample end-member analysis (see 
text and Figures 19 and 21 for end-member plots and analysis, respectively). 
 
 
 
 
 
 

A B 
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Figure 23 Spectral plots of TIMS image end-members 
 
 The emissivity data from the six bands of the TIMS instrument were plotted 
against each other in six dimensions.  The image end-members were chosen by an 
algorithm in an image software program designed to choose the most spectrally-distinct 
pixels.  The image end-member spectra corresponds to Coconino Sandstone (in red), 
Kaibab Formation (in green), the Moenkopi Formation (in blue) and to the spectra 
provided by an earlier study of Meteor Crater using TIMS data [Ramsey, 2002a]. 
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Figure 24 THEMIS TIR image end-member spectra 
 
 An image processing software algorithm is used to select the most spectrally 
distinct pixels to be image end-members for the THEMIS emissivity scene.  This is 
identical to the methodology used to select image end-members for the ASTER and 
TIMS image end-member analyses. 
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Figure 25 RMS error image of ASTER TIR image end-member analysis 
  
 The area in the RMS error image is identical to that covered by the ASTER image 
end-member analysis shown in Figure 20.  The scene is composed of 90 pixels by 90 
pixels, or 8.1 km on each side.  Data has been stretched so that a DN value of 0 is equal 
to 0.0% and a DN value of 255 is equal to 0.5%, or 0.005.  North is to the top of the 
image. 
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Figure 26 RMS error image of ASTER TIR sample end-member analysis 
 
 The data has been stretched so that a RMS error of 2.0% or less has been set to a 
DN of 0 whereas a RMS error of 2.5% or more has been set to a DN of 255.  The image 
covers an area that is 90 by 90 ASTER pixels, or 8.1 km on each side.  The circle of the 
low RMS errors (shown as the darkest pixels) represent the crater rim and have RMS 
errors of less than 0.020. 
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Figure 27 Field work validates TIMS image end-member deconvolution 
 
 On the eastern, near-field CEB, the boundaries of ejecta lobes of Coconino 
Sandstone on top of Kaibab Formation were recorded with a GPS unit (shown on left 
image as a yellow line on top of a Digital Orthogonal Quarter Quadrangle (DOQQ)).  
From the TIMS image end-member analysis on the right, it is clear that the lobes (shown 
as red Coconino with green Kaibab) are nearly identical to that recorded in the field. 
 
 
 
 
 
 

 
 
Figure 28   TIMS image end-member analysis 
 
 The TIMS emissivity scene is deconvolved with three image end-members shown 
in Figure 23 to produce the above analysis.  The color scheme is the same as that for 
Figure 23, with each color representing the areal distribution of the end-member.  Image 
is stretched 1% for visualization purposes.  The rectangular box northeast of the crater 
rim is the approximate area covered in Figure 27. 
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Figure 29 RMS error image of TIMS image end-member analysis 
 
 The RMS error from the deconvolution performed to create Figure 28 is displayed 
here.  A DN of 255 (white) represents 0.010 and high RMS errors or “poor fits”.  A DN 
of 0 (black) represents a RMS error of 0.000, little to no RMS error, and “good fits”.  
 
 
 
 
 
 
 
 
 



 77

      
 
Figure 30a and 30b     Temperature scenes of an impact crater in Syrtis Major 
 
 The figures show the difference in thermal inertia between the crater ejecta and 
the surrounding plain.  The two scenes do not cover the exact same area, but the crater is 
evident in both.  The pixels representing the crater ejecta are 14 K cooler than the 
surrounding regions during the daytime scene (Figure 30a) and 13 K hotter on the 
nighttime scene (Figure 30b).   
 
 
 
 
 

A B 
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Figure 31 Emissivity scene of the crater in Syrtis Major 
 
 The scene covers the same area as the daytime radiance and temperature scenes 
(Figures 13 and 30a, respectively).  The emissivity of Band 6 is shown.  The data is 
stretched so that DN values of 0 to 255 represent emissivities of 0.880 to 0.950.  The 
approximate area covered by the crater and CEB is boxed in red. 
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Figure 32a and 32b  THEMIS image end-member analysis 
 
 The emissivity data of the THEMIS daytime scene I01297001 was deconvolved 
using the image end-members displayed in Figure 24.  The color scheme is the same as 
that for Figure 24, with green representing areal distribution of the green image end-
member and red representing the distribution of the red image end-member.  For Figure 
32a, the areal abundance data is not stretched.  DN values of 0-255 represent areal 
abundances of 0% - 100%.  The data is stretched 1% for Figure 32b to better display the 
areal abundance of the red image end-member. See text (section 4.4) for comments on the 
lithologies and their areal abundances.  North is at 10:00. 
 
 
 

A B 



 80

     
 
Figure 33a and 33b          Extent and close-up of CEB of Figure 32a 
 
 The red box in Figure 33a shows the extent of Figure 33b.  Figure 33a represents 
the THEMIS image end-member analysis from Figure 32a.  Figure 33b shows the areal 
distribution of the red image end-member (from Figure 24) on the northwestern and 
southeastern rim of the crater.  North is at 10:00.  Due to the spectral similarity of the two 
THEMIS image end-members, this may be due to particle size variations and associated 
absorption band depth between this portion of the rim and the rest of the scene. 
 
 

A B 
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Figure 34 RMS error image of THEMIS image end-member deconvolution 
 
 DN values of 0-255 represent RMS errors of 0.0% to 3.0%.  The scene is 32 km 
across. 
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Figure 35 RMS error image of THEMIS image end-member deconvolution 
 
 The RMS error image shown as Figure 34 is stretched to enhance the highest 
RMS errors.  DN values of 0-255 represent RMS errors of 2.0% to 3.0%.  The red box 
outlines the near-rim CEB and the coverage for Figure 36.  Clearly, the crater interior and 
rim have the highest RMS errors along with other topographic boundaries in the scene 
such as ridges and eroded crater rims.   
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Figure 36 Close-up of RMS errors associated with CEB 
 
 The red box in Figure 35 shows the extent of Figure 36.  The data range is 
identical to that of Figure 35, with DN values of 0-255 representing RMS errors of 2.0% 
to 3.0%. 
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Table 1. Thermal Infrared Instruments on Mars-orbiting Spacecraft 
 
Instrument  Spacecraft           Spectral Resolution                       Spatial Res. (km) 
IRS Mariner 6 & 7 hyperspectral from 2 – 14 µm  ~150 
IRR Mariner 6 & 7 2 bands at 10 µm & 20 µm    ~50 
IRR Mariner 9 2 bands at 10 µm & 20 µm 15 - 100 
IRIS Mariner 9 hyperspectral from 5 – 50 µm  >110 
IRTM Viking I and II 5 bands: 7, 9, 11, 15, 20 µm   >30 
TES Global Surveyor hyperspec. (143 bands); 5.8 – 50 µm   3.15 
THEMIS Mars Odyssey 9 bands from 6.6 – 14.5 µm    0.1 

 
Acronyms for instrument names are explained in the text.  Spatial resolutions represent 
the typical or most common resolution. 
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Table 2.  ASTER instrument specifications [Abrams, 2000]. 
 

Wavelength region Band Bandwidth (in µm) Band Center (in µm) 
VNIR 1 0.52 – 0.60 0.556 

 2 0.63 – 0.69 0.661 
 3N 0.76 – 0.86 0.807 
 3B 0.75 – 0.85 0.804 

SWIR 4 1.600 – 1.700 1.656 
 5 2.145 – 2.185 2.167 
 6 2.185 – 2.225 2.209 
 7 2.235 – 2.285 2.262 
 8 2.295 – 2.365 2.336 
 9 2.360 – 2.430 2.400 

TIR 10 8.125 – 8.475 8.291 
 11 8.475 – 8.825 8.634 
 12 8.925 – 9.275 9.075 
 13 10.25 – 10.95 10.657 
 14 10.95 – 11.65 11.318 
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Table 3.  TIMS instrument TIR band centers 
  
TIR Band     Band Center 

Band 1 8.45688 µm 
Band 2 8.79522 µm 
Band 3 9.22776 µm 
Band 4 9.91665 µm 
Band 5 10.79620 µm 
Band 6 11.75280 µm 

 
 
 
 
 
Table 4.  THEMIS TIR and VNIR band centers 
 
 
 Thermal Infrared:   Visible: 
 
Band # Band Center Band Width Band # Band Center 

1 6.78 µm 1.01 1 0.425 µm 
2 6.78 µm 1.01 2 0.540 µm 
3 7.93 µm 1.09 3 0.654 µm 
4 8.56 µm 1.16 4 0.749 µm 
5 9.35 µm 1.20 5 0.860 µm 
6 10.21 µm 1.10   
7 11.04 µm 1.19   
8 11.79 µm 1.07   
9 12.57 µm 0.81   
10 14.88 µm 0.87   
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Table 5. ASTER scenes of Meteor Crater, AZ 
 
Date acquired: 16 September 2002 at 18:22:22 UTC 
 
 
 
Level 1A 
 

 
Data Granule ID : AST_L1A.003:2008443602 
 
Local Granule ID: 
AST_L1A#003_09162002182222_10092002092816.hdf
 

 
 
Level 1B 
 
 

 
Data Granule ID: AST_L1B.003:2008495500  
 
Local Granule ID : 
AST_L1B#003_09162002182222_10102002103750.hdf 
 

 
Level 2 TIR Surface Radiance  
 

 
Scene ID: AST_09_003091620021822220000000.hdf 
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Table 6.  Comparison of ASTER end-member analyses over various scales  
  (Scale, in number of pixels being compared, is shown above each table) 
 
 
________________________________________________________________________ 
Scale: 90 x 90 pixels (8.1 km on each side) 
 
Image End-Member Analysis:        Sample End-Member Analysis: 
 
Image end-member:            Areal abundances:          Sample end-member: 

IEM#1: 5.86 % 15.87 % Coconino Sandstone 
IEM#2: 90.94 % 84.13 % Kaibab Formation 
IEM#3:  3.20 %   0.00 % Moenkopi Formation 

 
 
 
 
________________________________________________________________________
Scale: 36 x 36 pixels (3.24 km on each side) 
 
Image End-Member Analysis:        Sample End-Member Analysis: 
 
Image end-member:            Areal abundances:          Sample end-member: 

IEM#1: 13.29 % 18.85 % Coconino Sandstone 
IEM#2:  81.35 % 81.15 % Kaibab Formation 
IEM#3: 5.36 %   0.00 % Moenkopi Formation 
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Table 6 (continued) 
 
 
________________________________________________________________________
Scale: Pixel (51, 55) – IEM#1 
 
Image End-Member Analysis:        Sample End-Member Analysis: 
 
Image end-member:            Areal abundances:          Sample end-member: 

IEM#1: 100.05 % 49.10 % Coconino Sandstone 
IEM#2: 0     % 53.95 % Kaibab Formation 
IEM#3:  0     %   0.00 % Moenkopi Formation 

 
 
 
________________________________________________________________________
Scale: Pixel (40, 59) – IEM#2 
 
Image End-Member Analysis:        Sample End-Member Analysis: 
 
Image end-member:            Areal abundances:          Sample end-member: 

IEM#1: 0     % 11.64 % Coconino Sandstone 
IEM#2: 100.48 % 91.31 % Kaibab Formation 
IEM#3: 0     %   0.00 % Moenkopi Formation 

 
 
 
________________________________________________________________________
Scale: Pixel (46, 58) – IEM#3 
 
Image End-Member Analysis:        Sample End-Member Analysis: 
 
Image end-member:            Areal abundances:          Sample end-member: 

IEM#1: 0     % 25.04 % Coconino Sandstone 
IEM#2: 0     % 77.07 % Kaibab Formation 
IEM#3: 100.28 %   0.00 % Moenkopi Formation 
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Table 7. Comparison of end-member percentages for the deconvolution using TIMS (3.2 
m spatial resolution) and ASTER (90 m) data.   
 
 
       TIMS:  ASTER IEMA:      ASTER SEMA: 
Coconino/ IEM#1   9.11 % 14.19 % 19.47 % 
Kaibab/ IEM#2 79.57 % 80.70 % 83.43 % 
Moenkopi/ IEM#3 11.29 %   5.23 %   0.00 % 
 
 
NOTE: Each data set covered the same region – the floor, rim, and CEB of Meteor Crater 
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