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NUMERICAL ANALYSIS OF THE AERODYNAMIC NOISE PREDICTION

IN DIRECT NUMERICAL SIMULATION AND LARGE EDDY

SIMULATION

Alexander Lozovskiy, PhD

University of Pittsburgh, 2010

This thesis presents the rigorous numerical analysis of the aerodynamic noise generation via

Lighthill acoustic analogy, [36], which is a non-homogeneous wave equation describing the

sound waves. Over more than five decades, the Lighthill analogy was extensively used as one

of the major tools in engineering applications in acoustics. However, the first mathematical

research of the Finite Element approximation for it is introduced here. Specifically, we focus

on both Direct Numerical and Large Eddy Simulations. The more or less intuitive derivation

of the Lighthill analogy is reviewed in section 1.3.

First, the semidiscrete and fully discrete Finite Element methods in DNS are presented

and the effect of the computational error in the right-hand side of the wave equation is

pointed out. The convergence of this error to zero is studied in the semidiscrete case. The

computational results support obtained theoretical predictions.

Second, the numerical analysis, using the negative norms of the error, is presented in the

semidiscrete case. The negative norms help obtain better convergence rate and require less

regularity of the data than positive norms.

Third, the sound power is defined as a non-linear functional of acoustic variables and

three independent ways of computing it in the semidiscrete case in DNS are presented. All

of these methods are based on the Finite Element scheme presented earlier. The methods

are compared from the point of view of computational cost, accuracy and simplicity. Again,

the computational experiments are presented.
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Finally, the concept of Large Eddy Simulation is introduced for aeroacoustic research

via Lighthill analogy. Two subgrid scale models, these are van Cittert deconvolution and

Bardina, are presented for the filtered acoustic analogy. The semidiscrete Finite Elemet

Method is analyzed for both of them. We present the numerical experiments for this research

as well.
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1.0 INTRODUCTION

Aeroacoustics is a large scientific field which studies the generation, prediction and control

of noise generated by nonlinear interaction in turbulent flows. It is an area of great practical

importance, inherently nonlinear and one in which the correct physical models are still under

depate. This thesis has focused on the so called Lighthill acoustic analogy and has treated

• the rigorous numerical analysis of the continuous Galerkin-type Finite Element Method

(FEM), both semidiscrete and fully discrete, for solving the Lighthill analogy,

• the error analysis in negative Sobolev norms for the numerical solutions of the Lighthill

analogy,

• evaluating numerically the sound power of the noise and estimating the computational

error for it,

• large eddy modeling and simulation for the Lighthill analogy and the corresponding

numerical analysis.

Generally, the motivation for the noise research is dictated either by the need of noise reduc-

tion in technologies and providing quiet and healthy environment or by the need of using the

noise itself as a part of the technological instrument. Prediction of the noise is an important

problem in various engineering applications such as transport by trains and jet airplanes.

For high velocities the aerodynamic noise tends to dominate other sources of noise, [63]. The

engines of the next generation fighter jets are expected to produce more than 140 decibels of

noise while 150 already damage internal organs, [45]. Home technology, such as coffee makers

or climate systems can also generate level of aeroacoustic noise that, while not dangerous,

is annoying. Another important application lie in ocean acoustics and submarine detection.

Measuring characteristics of the sound emitted from a blood flow in a valve of a heart would
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help diagnose heart murmurs. Wind turbines and helicopter rotors also produce significant

amount of noise that designers are constantly seeking to reduce.

As we see, these problems require

• reliable and applicable description of the noise if the information about the turbulent

flow is provided,

• ways for controlling noise through control of the turbulent flow; in particular, ways for

reducing the noise and at the same time maintaining the non-acoustical properties of the

flow needed in certain applications.

The basic physical model for decribing the aerodynamic noise is very recent. It was proposed

by Lighthill [36] in 1951. Given the turbulent flow’s velocity u and density ρ, the Lighthill’s

model for the small acoustic pressure fluctuations p
′
is a wave equation with a nonlinear

source term

1

a20

∂2p
′

∂t2
−∆p

′
= ∇ · (∇ · (ρ0u⊗ u)−∇ · S− ρ0f), (1.1)

with deviatoric stress tensor S, the sound speed a0 =
√

∂p
∂ρ
|ρ=ρ0 , the external body force f and

the averaged density ρ0. A rigorous mathematical derivation of the Lighthill model is given

in Novotny and Layton [46]. The Lighthill model is the accepted approach to aeroacoustic

noise prediction. Since it is not commonly studied in the mathematical literature, we review

the model in section 1.3.

Definition 1. Mach number of a flow is defined as M = U/a0, where U is the characteristic

velocity of the flow.

For low Mach numbers the generated noise itself plays little role in changing the flow and

thus the Lighthill model desribes a one-way process. Noise is generated by the flow whose

motion is dependent solely on the known external forces. No feedback from the noise to

the turbulent flow is considered, [36]. For small Mach numbers compressibility of the flow

has negligible impact on the sound generation, see for example [63]. Therefore, noise can be

predicted by solving the incompressible Navier-Stokes equations (NSE) for u and inserting

the incompressible velocity and density ρ0 into the right-hand side (RHS) of (1.1) and then
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solving (1.1) for the acoustic pressure q. The Navier-Stokes equations may be written as


∂u
∂t

+ u · ∇u− ν∆u+ 1
ρ0
∇p = f ,

∇ · u = 0,

with the kinematic viscosity ν and the pressure p. In this incompressible case ∇ ·∇ · S = 0,

Lemma 4 of section 1.3, and noise is produced through the nonlinear term in (1.1) if ∇·f = 0.

More on computational practice with Lighthill analogy may be found in [13], [56] and [68].

Although the Lighthill analogy has been used as one of the main tools for

computing the noise in lots of applications, not much significant mathematical

support was provided for it. In this research the first rigorous analysis of a

numerical method for computing the noise via Lighthill analogy is introduced.

The whole acoustic domain of our model equation (1.1) is divided in two parts. These

are the turbulent region Ω1 with the flow where the generation of sound occurs and the far

field Ω2 where the acoustic waves propagate. We suppose that Ω1 is surrounded by Ω2 and

the whole domain is Ω = Ω1 ∪ Ω2, figure 1.

Ω1 Ω2

Figure 1: Turbulent flow region and surrounding acoustic region
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Let R(t, x) = ∇·(∇·(ρu⊗u)−ρf) inside Ω1 and 0 around it in Ω2. The Initial Boundary

Value Problem is the following:

1

a20

∂2q

∂t2
−∆q = R(t, x) +

1

a20
G(t, x) ∀(t, x) ∈ (0, T )× Ω, (1.2)

q(0, x) = q1(x),
∂q

∂t
(0, x) = q2(x) ∀x ∈ Ω,

∇q · n+
1

a0

∂q

∂t
= g(t, x) ∀(t, x) ∈ (0, T )× ∂Ω.

The functions G(t, x) and g(t, x) are arbitrary control functions that we add according to

the problem’s physics and goals. The case g ≡ 0 in (1.2) gives the non-reflecting boundary

conditions of the first order. The computation of the incompressible NSE in Ω1 is carried

out on some mesh of size h1 < 1, thus generating the numerical approximation Rh1 of the

term R.

1.1 LITERATURE SURVEY

Lighthill analogy was first formulated in [36] in 1951. The results were based mostly on

deep physical observations. It was shown that the noise generation is often dependent only

on the term ρ0∇ · ∇ · (u ⊗ u). The strength of the noise is that which would be produced

by a static distribution of acoustic quadrupoles. This follows from the solution of the wave

equation obtained as an integral via Greens function. Also, the intensity of the noise was

predicted to be proportional to the eighth power of the characteristic velocity of the flow,

assumed the speed of sound is a constant. However, the direct computation of the integral

in order to compute the fluctuation of pressure in (1.1) may be challenging, needless to say

it is almost always impossible to evaluate analytically. Thus some efficient computational

method is required for (1.1). Other acoustic analogies were presented in [38], [49], [28],

[43] and rely on the Lighthill approach. [25] investigates the generation of sound by high

Reynolds-number turbulent shear flows. According to this paper, Lighthill analogy explains

prominent properties of this phenomenon very well, but some subtle features are better

explained with other analogies.
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[66] gives a good overview of modern computational methods for aeroacoustics and prob-

lems associated with them. Authors specified that science has entered the second so-called

Golden Age of aeroacoustics, meaning the appearance of stricter noise regulations than they

were during 1950s-70s and larger variety of problems, and, at the same time, more efficient

and accurate methods for solving acoustic problems. [65] also gives a good critical review of

common techniques for the computation of the aerodynamic sound.

Most of the work on the Lighthill analogy and aeroacoustics in general is related to

computational and engineering aspects of the field. For example, [58] studies the prediction

of the jet noise via Lighthill analogy and compares the results with experimental data. [13]

and [56] present and validate the computational results for the fan noise predicted through

Lighthill model using FEM. [57] provides wide results of aeroacoustic computations in the

case of Direct Numerical Simulation (DNS), including acoustic spectrum. These results agree

with those from [51], the latter were obtained analytically. [29] proposed the Linearized Euler

Equations (LEE) for solving aeroacoustical problems. The presented numerical method uses

finite volume scheme and the LEE are integrated in pseudo-time plane using a Runge-Kutta

algorithm. The accuracy of the method is proven, as well as numerical examples for a few

aeroacoustical model problems. In [1], a method that couples Finite Difference NSE solver

in the turbulent region and the Discontinuous Galerkin (DG) LEE solver in the far field is

presented from the point of view of computational performance, obtaining good results. [48]

considers physical aspects of sound control in different technological areas.

RANS method is also used for the noise prediction, [9]. Large Eddy Simulation (LES) is

another promising, quickly growing field in the Computational Fluid Dynamics and has been

applied to the Computational Aeroacoustics (CAA) as well. The book [63] gives an excellent

general overview of the common aeroacoustic problems and computational methods for them.

Papers [67], [42] and [50] present the filtered Lighthill analogy with or without correcting

subgrid scale tensor. The methods of parametrization of the subgrid scale tensor were

addressed, for example, in [60], [8], [39]. The paper [59] is the one on which the LES chapter

of this thesis is based on. It analyzes a simple case of noise generated by decaying isotropic

turbulence and obtains numerical results that are compared with theoretical predictions.

The rigorous mathematical theory for the practical computational methods are to be the
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next research step. Complete mathematical theory would help understand which methods

are to be used most efficiently and accurately in certain applications. It is also important to

create a reliable mathematical basis for future CAA development.

1.2 THESIS CONTENTS

This thesis presents and studies both semidiscrete and the fully discrete Finite Element

Methods for the Lighthill analogy in chapters 3 and 4 respectively. The analysis is based on

Dupont [19] where the basic FEM scheme, both continuous and discrete in time, for the wave

equation with RHS known exactly was analyzed. Our analysis differs by the presence of the

computational error in the RHS of the wave equation in (1.2). We show in chapter 3 that

the FEM formulation of the problem (1.2) has a stable solution for bounded time periods.

The main convergence results are presented in Theorems 11 and 14. The right hand side

of the error estimate has one bounding term that involves the error in the turbulent flow

that generates the acoustic noise. The numerical experiments in chapter 5 support these

theoretical results. We expand the analysis of chapter 3 through negative norms of the error,

Theorem 18 of chapter 6.

The acoustic intensity or sound intensity is a nonlinear funtion of the acoustic variables,

[37],

I = q · v,

where v is the velocity of the fluid, and in the case of the far field it is a small velocity

fluctuation about the zero state. The flux integral of the intensity along a surface S gives a

sound power

A =

∫
S

I · ndS.

Is is often the fundamental quantity needed in a simulation. Chapter 7 studies three different

ways on calculating the sound power on a given surface S and estimating the numerical error

for it.

The first method uses the linearized continuity and momentum equations as a starting

6



point in order to obtain exact formula for computing velocity v in the far field. Formally,

the algorithm consists of three steps:

1. Compute qh using FEM on Ω.

2. Compute the velocity by the formula

vh(t, ·) = − 1

ρ0

∫ t

0

∇qh(τ, ·)dτ.

3. Compute the sound power Ah =
∫
S
qhvh · ndS.

This is the cheapest method computationally, but theoretically is the least accurate. We

prove an improvement in the rate of covergence when S ⊂ ∂Ω.

The second approach considered in 7.2 is to obtain an upper bound for sound power.

This bound is computed via the acoustic pressure qh only. The numerical error in the bound

is analyzed.

The last method is based on duality analysis. The convergence analysis techniques are

only presented for the case S ⊂ ∂Ω and time-averaged sound power. This method breaks

the problem in two computational subproblems, one is for finding qh and the other is for

finding vh2 on the other independent grid of mesh size h2 < 1 in Ω:

1. Compute qh using FEM on Ω.

2. Compute the velocity vh2 using FEM on Ω.

3. Compute the sound power Ah =
∫
S
qhvh2 · ndS.

Although duality method gives the highest possible rate of convergence for the term contain-

ing qh in the error, the scheme for vh2 still requires more study since the rate of convergence

it gives is 1 degree less than that for the term with qh. From this point of view, we can only

say that duality method is less preferable compared to the exact formula approach, since

they both give the same rate of convergence in case h = O(h2) and computationally the

duality method is much more expensive.

Chapter 7 also contains the numerical experiments of computing the sound power.

Finally, the numerical analysis of the Large Eddy Simulation applied to (1.2) will be

presented in later sections. The filtering procedure of the Lighthill analogy (1.1) bears the

necessity for presenting some subgrid scale model. Chapter 8 is an introduction to the LES

7



in general and its application to the aeroacoustics. Section 8.1 presents the analysis for

the zeroth order van Cittert deconvolution model. Section 8.2 studies the case of Bardina

subgrid scale model. The final Section 8.3 contains the numerical results for an academic

solution that uses the Bardina subgrid scale model.

1.3 DERIVATION OF THE LIGHTHILL ANALOGY

To understand Lighthill’s contribution, we consider first the derivation of the far-field acous-

tic equation. We start with the compressible NSE for density ρ, velocity u and pressure

p:

∂ρ

∂t
+∇ · (ρu) = 0, (1.3)

ρ
∂u

∂t
+ ρu · ∇u+∇p = ∇ · S+ ρf . (1.4)

In the far field the external forces f and the viscous stress tensor S are typically negligi-

ble. Additionally we have a relation p = P (ρ, s) where s denotes the entropy. The wave

equation is the result of linearization of the equations with respect to the rest state which is

characterized by constants u0 = 0, p0, ρ0, f = 0:

u = u0 + v, ρ = ρ0 + r, p = p0 + q. (1.5)

Next differentiate the linearized continuity equation with respect to time and take the diver-

gence of the linearized momentum equation. Subtraction of the results leads to the equation

∂2r

∂t2
−∆q = 0.

Using the relation between pressure and density gives the homogeneous wave equation in

the form
1

a20

∂2q

∂t2
−∆q = 0. (1.6)

The above wave equation only holds in the far field in which the sound propagates. Coupling

equations for the turbulent region and the fluctuations requires some efficient physical model.

Lighthill’s approach has erased the gap between the turbulent region and the far field in (1.1).
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The derivation of the Lighthill analogy is presented below. See, e.g., [36] for extensions,

alternate derivation and complementary work. Rewrite (1.4) in the divergence form assuming

(1.3):
∂(ρu)

∂t
+∇ · (ρu⊗ u) +∇p = ∇ · S+ ρf . (1.7)

Differentiate (1.3) with respect to time and apply divergence operator to (1.7) :

∂2ρ

∂t2
+
∂

∂t
∇ · (ρu) = 0,

∂

∂t
∇ · (ρu) +∇ · ∇ · (ρu⊗ u) + ∆p = ∇ · ∇ · S+∇ · ρf .

Subtraction of these two equations gives the following holding in Ω:

−∆p = ∇ · (∇ · (ρu⊗ u)−∇ · S− ρf)− ∂2ρ

∂t2
. (1.8)

Consider the far field where the perturbations of the pressure and density are defined with

respect to the rest state. Then (1.8) is mathematically equivalent to

1

a20

∂2q

∂t2
−∆p = ∇ · (∇ · (ρu⊗ u)−∇ · S− ρf) +

∂2

∂t2
(
q

a20
− ρ). (1.9)

We choose a0 to be the speed of sound in the medium at rest state. Equation (1.9) may

already be called Lighthill’s analogy. Now some considerations must be made. First, in the

far field the last term ∂2

∂t2
( q
a20

− ρ) = ∂2

∂t2
( q
a20

− r) is negligible because it is simply the LHS of

the classical wave equation in the quiescent state ( see [34] for details ). Moreover, in this

medium the first term on the RHS is also negligible because it consists of the nonlinear term

and two linear terms that make no significant influence on the sound propagation in the far

field. Therefore, in the far field equation (1.9) reduces to the wave equation (1.6) for the

acoustic pressure. Lighthill’s model extends equation (1.9) to the whole fluid including the

turbulent region. Suppose that perturbations of the pressure and density are defined on the

whole Ω and the last term on the RHS of (1.9) is negligible on Ω. These two suppositions

together give a picture of the whole aerodynamical system as a field of wave propagation

with the divergence term playing a role of a sound source.

Definition 2. T = ρu⊗ u− S is called the Lighthill tensor.
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The Lighthill tensor is not negligble in the turbulent region and is negligible in laminar

regions including the far field. The whole system is described by the following equation:

1

a20

∂2q

∂t2
−∆q = ∇ · (∇ · T− ρf). (1.10)

This model of sound generated by turbulence allows breaking this problem in two subprob-

lems. In the turbulent region we can use methods applicable for solving incompressible NSE

and this will provide us with tensor T. Knowing the RHS of the equation (1.10) we can solve

the non-homogeneous hyperbolic problem for the whole domain. In the far field we set the

RHS to zero.

In fact, for relatively small Mach numbers the compressibility of the flow has negligible

impact on the sound generation ( see, e.g., [63]). The fluctuations of the density r = ρ− ρ0

in the RHS of (1.1) are the terms of high order and may be neglected. Thus we consider the

coupled problem of (1.10) holding in Ω and

ρ
∂u

∂t
+ ρ∇ · (u⊗ u) +∇p = ∇ · S+ ρf ,

∇ · u = 0,

(1.11)

holding in Ω1. The boundary conditions for (1.11) depend on a certain application.

Lemma 3. If ρ ≡ ρ0 and ∇ · u = 0, then ∇ · ∇ · (ρu⊗ u) = ρ0∇u : ∇ut.

Proof. Since ρ is constant,

∇ · (ρu⊗ u) = ρ0∇ · (u⊗ u) = ρ0(uiuj),i = ρ0(ui,iuj + uiuj,i),

where ui denotes the i-th component of the vector u and repeating index means summation.

Due to the incompressibility condition, the last expression equals

ρ0(ui,iuj + uiuj,i) = ρ0uiuj,i = ρ0u · ∇u.

Finally,

∇ · (ρ0u · ∇u) = ρ0∇ · (u · ∇u) = ρ0(uiuj,i),j = ρ0(ui,juj,i + uiuj,i,j) = ρ0ui,juj,i.

The last term is precisely ρ0∇u : ∇ut.
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Lemma 4. If ∇ · u = 0, then ∇ · ∇ · S(u) = 0.

Proof. Let µ > 0 be the shear viscosity coefficient of the fluid. Since in incompressible flows

∇ · S(u) = µ∆u,

then

∇ · ∇ · S(u) = µ∇ ·∆u.

Consider

∇ ·∆u =
3∑

i=1

∂

∂xi
(∆ui) =

3∑
i=0

∂2

∂x2i
(∇ · u) = 0.

The last two lemmas allow us to rewrite the RHS of the Lighthill analogy in the form

ρ0 · (∇u : ∇ut −∇ · f).

1.4 THE EQUATION FOR THE FLUCTUATION OF VELOCITY

Since one of the methods for calculating the sound power uses some FEM scheme to compute

the velocity fluctuation v, defined by the first equality of (1.5), it is therefore important to

derive an equation for v. One way is to start from the first order system of two equations

governing the fluctuations of pressure ( or density )and velocity:

1

ρ0

∂q

∂t
+ a20∇ · v = 0,

∂v

∂t
+

1

ρ0
∇q = 1

ρ0
F,

where F is zero in the far field and

F = −ρ0∇ · (u⊗ u) + ρ0 · f +∇ · S

in the turbulent region of the flow. A similar system was presented in [46], (1.2), and may

be derived by simply linearizing the first two equations of (4) of [36].
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Here we give our own derivation of the equation, rigorous up to some neccessary physical

assumptions. Rewrite the exact mass and momentum conservation equations (1.3), (1.7) as

a20
∂ρ

∂t
+ a20∇ · (ρu) = 0,

∂(ρu)

∂t
+ a20∇ρ = a20∇ρ−∇p−∇ · (ρu⊗ u) +∇ · S+ ρf .

Take the gradient of the first equation and differentiate the second with respect to time t

and subtract to get

∂2(ρu)

∂t2
− a20∇(∇ · (ρu)) = a20∇

∂ρ

∂t
−∇∂p

∂t
− ∂

∂t
∇ · (ρu⊗ u) +

∂

∂t
∇ · S+

∂

∂t
ρf ,

or
∂2(ρu)

∂t2
− a20∇(∇ · (ρu)) = a20∇

∂r

∂t
−∇∂q

∂t
− ∂

∂t
∇ · (ρu⊗ u) +

∂

∂t
∇ · S+

∂

∂t
ρf .

Since it is assumed that Mach numberM is small, the entropy production term ∇ ∂
∂t
(a20r−q)

is negligible even in the turbulent region, so it is dropped. Next, expand the left-hand side

(LHS) of the last equation using (1.5). This gives

∂2(rv)

∂t2
− a20∇(∇ · (rv)) + ρ0

∂2v

∂t2
− ρ0a

2
0∇(∇ · v) = − ∂

∂t
∇ · (ρu⊗ u) +

∂

∂t
∇ · S+

∂

∂t
ρf .

Low Mach number allows to neglect compressibility and assume that the first two terms of

the last equation are of high order compared to others and may be dropped. The following

is the equation for the fluctuation of velocity v:

∂2v

∂t2
− a20∇(∇ · v) = 1

ρ0

∂

∂t
(−∇ · (ρu⊗ u) +∇ · S+ ρf). (1.12)

In the far field the RHS of (1.12) is reduced to zero. If ∂f
∂t

is negligible and the Reynolds

number is high, then the RHS is simplified to

− ∂

∂t
∇ · (u⊗ u).
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2.0 NOTATION AND PRELIMINARIES

In this paper we assume that both Ω and Ω1 are open bounded connected domains in Rn,

n = 2, 3, having smooth enough boundaries ∂Ω and ∂Ω1 respectively. (·, ·) and ∥ · ∥ without

a subscript denote the L2(Ω) or L2(Ω1) inner product and norm depending on which domain

is considered at the moment. The norms ∥ · ∥Lp(Ω) may be used for vector functions u with

two or three components in a Banach space H. If 1 6 p <∞, they should be understood as

∥u∥Lp(Ω) =

(
n∑

i=1

∥ui∥pLp(Ω)

) 1
p

,

where ui denotes i-th component of u and n is the number of components. The inner product

should be understood as

(u,v) =
n∑

i=1

(ui, vi).

L2(∂Ω) denotes the space of the real-valued square-integrable functions on the boundary

∂Ω of the domain Ω. The inner product in this space is denoted as < ·, · >:

< u, v >=

∫
∂Ω

u · vdS for u, v ∈ L2(∂Ω).

The norm induced by this inner product is denoted as | · |:

|v| =
√
< v, v > for v ∈ L2(∂Ω).

For any integer s > 0 let Hs(Ω) denote a Sobolev space W s,2(Ω) of real-valued functions on

a domain Ω. The inner product and norm in the space Hs(Ω) are defined by

(u, v)Hs(Ω) =
s∑

|α|=0

(∂αu, ∂αv), ∥u∥Hs(Ω) =
√
(u, u)Hs(Ω),
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where α is a multiindex and ∂αu denotes a weak partial derivative of the order |α| of the

function u. Next, if B denotes a Banach space with norm ∥ · ∥B and u : [0, T ] → B is

Lebesgue measurable, then we define

∥u∥Lp(0,T ;B) =

(∫ T

0

∥u∥pBdt
) 1

p

, ∥u∥L∞(0,T ;B) = esssup06t6T∥u(t, ·)∥B,

and the space

Lp(0, T ;B) = Lp(B) = {u : [0, T ] → B|∥u∥Lp(0,T ;B) <∞} for 1 6 p 6 ∞.

Theorem 5. Let v ∈ H1(Ω). Then v ∈ H
1
2 (∂Ω) and the following inequality holds

∥v∥L2(∂Ω) 6 Ctr∥v∥1,

where Ctr is a constant that depends only on the geometry of the domain Ω.

2.1 FINITE ELEMENT SPACE

Let us build non-degenerate, edge-to-edge, shape regular mesh by introducing the partition

Π = {T1, T2, ..., TM} of Ω into triangles. The characteristic size of the mesh h < 1 is defined

by

h = max16i6Mdiam(Ti).

Following [11], define

Mm(Ω) = {u ∈ L2(Ω) | u|T ∈ Pm−1 ∀T ∈ Π} and Mm
0 (Ω) =Mm(Ω) ∩ C0(Ω),

where Pm is the space of polynomials of degree no more than m and C0(Ω) is the space of

continuous on Ω functions. Therefore, by Mm
0 we mean the space of continuous piecewise

polynomials of degree no more than m− 1. The space Mm
00(Ω) consists of all functions from

Mm
0 (Ω) with zero trace on the boundary ∂Ω.
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From now on, C will denote a generic constant, not necessarilly the same in two places.

As in [19], we suppose there exist a positive constant C and integer k > 2 such that the

spaces Mm
0 (Ω) have the property that for 0 6 s 6 1 and 2 6 m 6 k, and V ∈ Hm(Ω)

infχ∈Mm
0 (Ω)∥V − χ∥Hs(Ω) 6 Chm−s∥V ∥Hm(Ω).

Following [19], we define the H1-projection û ∈Mm
0 (Ω) for u ∈ H1(Ω) by the formula:

a20(∇u,∇uh) + (u, uh) = a20(∇û,∇uh) + (û, uh) ∀uh ∈Mm
0 (Ω).

Below is the lemma that will be used in the proof of the main theorem about the error

estimate.

Lemma 6. (Dupont [19], Lemma 5) Let u, ∂u
∂t

∈ L∞(Hk(Ω)) and ∂2u
∂t2

∈ L2(Hk(Ω)) for some

positive integer k, m > k > 2. Then for some positive constant C independent of h the error

in the H1-projection û satisfies∥∥∥∥∂r(u− û)

∂tr

∥∥∥∥
Ls(L2(Ω))

+

∥∥∥∥∂r(u− û)

∂tr

∥∥∥∥
Ls(H− 1

2 (∂Ω))

6 Chk,

where s = ∞,∞, 2 for r = 0, 1, 2 respectively.

A mesh with above properties is called quasi-uniform, if there exist constants C1 and C2

independent of h, such that

C1 · diam(Ti) 6 diam(Tj) 6 C2 · diam(Ti)

for any distinct triangular elements Ti and Tj of the mesh.

If a mesh is quasi-uniform and functions vh from the space Mm
0 (Ω) built on this mesh

satisfy the following regularity condition for non-negative integers l1, l2 and real numbers

p, q > 1

vh ∈ W l1,p(Ω) ∩W l2,q(Ω),

then the following inverse estimate holds (see [12]):

∥vh∥W l1,p(Ω) 6 Chl2−l1+min(0,n
p
−n

q
)∥vh∥W l2,q(Ω)

for any vh ∈Mm
0 (Ω) and some positive constant C independent on h.

15



For a given FEM space Mm
0 (Ω), m > 2, consider the nodal basis consisting of functions

ϕj. An arbitrary function u ∈ Hm(Ω) has a unique continuous representation on Ω and

therefore we define a piecewise polynomial interpolant Ih(u) for this function. If Nj denote

the nodal points then

Ih(u) =
∑
j

u(Nj)ϕj.

In simulations of the incompressible NSE the FEM spaces for velocity Xh and pressure Qh

must satisfy the LBB-condition. It guarantees the stability of the approximate pressure. It

is as follows:

infqh∈Qh
supvh∈Xh

(qh,∇ · vh)
∥∇vh∥ · ∥qh∥

> βh > 0, (2.1)

where βh is bounded away from zero uniformly in h. More on the LBB-condition may be

found in [35].
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3.0 SEMIDISCRETE SCHEME

Definition 7. Define

Q(u,v) = ρ0∇u : ∇vt.

In fluid mechanics the term ρ0∇u : ∇ut is called Q. The Q > 0 is used for eduction of

persistent coherent vortices. It is interesting that, according to Lemmas 3 and 4 of section

1.3, this same quantity occurs in the RHS of (1.1) as the dominant sound source in its

generation by turbulent flows.

Consider the following initial boundary-value problem

∂2q

∂t2
− a20∆q = a20(Q(u,u)− ρ0∇ · f) +G(t, x) ∀(t, x) ∈ (0, T )× Ω1, (3.1)

∂2q

∂t2
− a20∆q = 0 ∀(t, x) ∈ (0, T )× Ω/Ω1,

q(0, x) = q1(x),
∂q

∂t
(0, x) = q2(x) ∀x ∈ Ω,

∇q · n+
1

a0

∂q

∂t
= g(t, x) ∀(t, x) ∈ (0, T )× ∂Ω,

where all functions on the RHS are known and n being the outward normal on the boundary

∂Ω. The case G ≡ 0 refers to the turbulent flow being the only source of the sound. The

question of proper boundary conditions depends on the physical problem. g(t, x) ≡ 0 gives

the case of the first-order non-reflecting boundary conditions. Although more accurate non-

reflecting boundary conditions are known, those in (3.1) with g(t, x) ≡ 0 are the first step

in applications where the interest lies in the sound waves that propagate in infinite space

without reflection. This allows a simulation to measure acoustic power of the waves generated

solely by the turbulent flow. The non-zero boundary control function g(t, x) may be used
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if we want to consider additional sources of sound on the boundary. Adding g(t, x) to the

right-hand side of the boundary condition has no effect on the error estimates.

In computations, Q(u,u) is given approximately due to two reasons. First, Q consists

of the solution of the incompressible NSE. Second, the solution of the incompressible NSE is

found via computations and thus contains error which follows from inaccuracy of the scheme

used. Let h1 denote the mesh size of this scheme. The modeling error due to incompressibity

is analyzed in [46]. The second one is of computational importance and is analyzed here.

The total error between the exact solution q of (3.1) and the approximate qh will consist of

the FEM error caused by computations and the perturbation of the RHS caused by replacing

Q(u,u)− ρ0∇ · f with Q(uh1 ,uh1)− ρ0∇ · f .

The variational formulation is as follows. Assume that

Q(u,u)− ρ0∇ · f + 1

a20
G ∈ L2(0, T ;L2(Ω1)), q(0, ·) ∈ H1(Ω),

∂q

∂t
(0, ·) ∈ L2(Ω), g ∈ L2(0, T ;L2(∂Ω)).

Find q ∈ L2(0, T ;H1(Ω)) such that ∂q
∂t

∈ L2(0, T ;H1(Ω)), ∂2q
∂t2

∈ L2(0, T ;L2(Ω)) and(
∂2q

∂t2
, v

)
+a20 (∇q,∇v) + a0

⟨
∂q

∂t
, v

⟩
=

= a20

(
Q(u,u)− ρ0∇ · f + 1

a20
G, v

)
Ω1

+ a20 < g, v >

(3.2)

∀v ∈ H1(Ω), 0 < t < T,

(q(0, ·), v) = (q1(·), v) ∀v ∈ H1(Ω), (3.3)

(
∂q

∂t
(0, ·), v

)
= (q2(·), v) ∀v ∈ H1(Ω). (3.4)

The condition that Q(u,u) ∈ L2(0, T ;L2(Ω1)) is satisfied if we impose the following regu-

larity condition for u:

u ∈ L4(0, T ;W 1,4(Ω1)).

This fact easily follows from Holder’s inequality.
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The finite element approximation will be based on finite-dimensional spaces Mm
0 (Ω) ⊂

H1(Ω) of continuous piecewise polynomials of degree no more than m − 1, chapter 2. It is

as follows. Assume that

Q(uh1 ,uh1)− ρ0∇ · f + 1

a20
G ∈ L2(0, T ;L2(Ω1)), g ∈ L2(0, T ;L2(∂Ω)).

Find such twice differentiable map qh : [0, T ] →Mm
0 (Ω) that

(
∂2qh
∂t2

, vh

)
+ a20 (∇qh,∇vh) + a0

⟨
∂qh
∂t

, vh

⟩
=

= a20

(
Q(uh1 ,uh1)− ρ0∇ · f + 1

a20
G, vh

)
Ω1

+ a20 < g, vh >

(3.5)

∀vh ∈Mm
0 (Ω), 0 < t < T,

qh(0, ·) approximates q1 well,

∂qh
∂t

(0, ·) approximates q2 well.

The regularity condition Q(uh1 ,uh1) ∈ L2(0, T ;L2(Ω1)) is handled by the following lemma.

Lemma 8. Suppose the exact velocity u satisfies condition

u ∈ L4(0, T ;H2(Ω1)) ∩ L4(0, T ;W 1,4(Ω1))

and the mesh used for computing uh1 in Ω1 is quasi-uniform. Finally, let ∥u−uh1∥L4(L2(Ω1))

converge to zero no slower than O(h
1+n

4
1 ), where n = 2 or 3 is the dimension of the physical

space. Then

uh1 ∈ L4(0, T ;W 1,4(Ω1)),

and thus Q(uh1 ,uh1) ∈ L2(0, T ;L2(Ω1)).
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Proof. Due to the triangle inequality, it is obvious that

∥uh1∥L4(W 1,4(Ω1)) 6 ∥u∥L4(W 1,4(Ω1)) + ∥u− Ih1u∥L4(W 1,4(Ω1)) + ∥uh1 − Ih1u∥L4(W 1,4(Ω1)).

Here Ih1 is a piecewise polynomial interpolant, chapter 2. The first term on the RHS is

bounded due to the assumption of the lemma. The second term may be bounded as shown

(see, for example, [12]):

∥u− Ih1u∥L4(W 1,4(Ω1)) 6 C∥∇u∥L4(L4(Ω1)).

To bound the third term, we need to use the inverse estimate in the following manner:

∥uh1 − Ih1u∥L4(W 1,4(Ω1)) 6 Ch
−1−n

4
1 ∥uh1 − Ih1u∥L4(L2(Ω1)).

The final step is to use the triangle inequality

∥uh1 − Ih1u∥L4(W 1,4(Ω1)) 6 Ch
−1−n

4
1

(
∥u− Ih1u∥L4(L2(Ω1)) + ∥u− uh1∥L4(L2(Ω1))

)
.

The first term on the RHS may be bounded by Ch1−
n
4 ∥∇∇u∥L4(L2(Ω1)). The assumption on

the speed of convergence of ∥u− uh1∥L4(L2(Ω1)) finishes the proof.

Theorem 9. The solution qh of (3.5) is stable and the following inequality holds:

∥∥∥∥∂qh∂t
∥∥∥∥+ a0∥∇qh∥ 6C

(∥∥∥∥Q(uh1 ,uh1)− ρ0∇ · f + 1

a20
G

∥∥∥∥
L2(L2(Ω1))

+ ∥g∥L2(L2(∂Ω))+

+

∥∥∥∥∂qh∂t (0, ·)
∥∥∥∥+ ∥∇qh(0, ·)∥

)

with positive constant C = C(t).
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Proof. Set vh = ∂qh
∂t

. Then

1

2

d

dt
(

∥∥∥∥∂qh∂t
∥∥∥∥2+a20 ∥∇qh∥2)+ a0

∣∣∣∣∂qh∂t
∣∣∣∣2 =

= a20

(
Q(uh1 ,uh1)− ρ0∇ · f + 1

a20
G,

∂qh
∂t

)
Ω1

+ a20

⟨
g,
∂qh
∂t

⟩
,

d

dt

(∥∥∥∥∂qh∂t
∥∥∥∥2 + a20∥∇qh∥2

)
6 a40

∥∥∥∥Q(uh1 ,uh1)− ρ0∇ · f + 1

a20
G

∥∥∥∥2 + ∥∥∥∥∂qh∂t
∥∥∥∥2 + a30

2
|g|2,

∥∥∥∥∂qh∂t
∥∥∥∥2+a20∥∇qh∥2 6 ∫ t

0

(
a40

∥∥∥∥Q(uh1 ,uh1)− ρ0∇ · f + 1

a20
G

∥∥∥∥2 +
+

∥∥∥∥∂qh∂t
∥∥∥∥2 + a30

2
|g|2
)
dτ +

∥∥∥∥∂qh∂t (0, ·)
∥∥∥∥2 + a20∥∇qh(0, ·)∥2.

Applying Gronwall’s lemma to the inequality above finishes the proof.

Remark 10. The function C(t) from the theorem may grow exponentially fast. This fact

may be related to the phenomena of resonance which is common for hyperbolic problems.

Consider the H1-projection q̂ ∈ L2(0, T ;Mm
0 (Ω)) of the solution of (3.2)-(3.4) given by

the formula

a20(∇q,∇vh) + (q, vh) = a20(∇q̂,∇vh) + (q̂, vh) ∀vh ∈Mm
0 (Ω). (3.6)

Theorem 11. Let the solution q of (3.2) satisfy the conditions: q, ∂q
∂t

∈ L∞(Hk(Ω)) and

∂2q
∂t2

∈ L2(Hk(Ω)) for some positive integer k, m > k > 2. If the initial conditions are taken

so that

∥(qh − q̂)(0, ·)∥H1(Ω) +

∥∥∥∥ ∂∂t(qh − q̂)(0, ·)
∥∥∥∥ 6 C1h

k

with some posititve constant C1 independent of h, then the solution of (3.5) satisfies:

∥q − qh∥L∞(L2(Ω))+

∥∥∥∥ ∂∂t(q − qh)

∥∥∥∥
L∞(L2(Ω))

6

6 C
(
hk + ∥Q(u,u)−Q(uh1 ,uh1)∥L2(L2(Ω1))

)
with some constant C > 0 independent of h.
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Proof. Denote ψ = q̂− qh, η = q− q̂. The proof of the theorem technically resembles that of

Theorem 2 in Dupont’s work [19] except there is additional error term Q−Qh1 on the RHS

of the error equation. The complete proof with all the details may be found in [40]. We will

go straight to the inequality∥∥∥∥∂ψ∂t
∥∥∥∥2 + ∥ψ∥2H1(Ω) +

∫ t

0

∣∣∣∣√a · ∂ψ∂t
∣∣∣∣2 6

C

[∫ t

0

(∥∥∥∥∂ψ∂t
∥∥∥∥2 + ∥ψ∥2H1(Ω)

)
dτ + ∥η∥2L2(L2(Ω)) +

∥∥∥∥∂2η∂t2
∥∥∥∥2
L2(L2(Ω))

+

∥∥∥∥∂η∂t
∥∥∥∥2
L∞(H− 1

2 (∂Ω))

+

∥∥∥∥∂2η∂t2
∥∥∥∥2
L2(H− 1

2 (∂Ω))

+

∥∥∥∥∂ψ∂t (0, ·)
∥∥∥∥2 + ∥ψ(0, ·)∥2H1(Ω) +

∫ t

0

∥Qh1 −Q∥2dτ

]

with some positive constant C. Apply Gronwall’s lemma to yield∥∥∥∥∂ψ∂t
∥∥∥∥2
L∞(L2(Ω))

+ ∥ψ∥2L∞(H1(Ω)) +

∥∥∥∥√a · ∂ψ∂t
∥∥∥∥2
L2(L2(∂Ω))

6

C

[∥∥∥∥∂2η∂t2
∥∥∥∥2
L2(L2(Ω))

+ ∥η∥2L2(L2(Ω)) +

∥∥∥∥∂η∂t
∥∥∥∥2
L∞(H− 1

2 (∂Ω))

+

∥∥∥∥∂2η∂t2
∥∥∥∥2
L2(H− 1

2 (∂Ω))

+

∥∥∥∥∂ψ∂t (0, ·)
∥∥∥∥2 +∥ψ(0, ·)∥2H1(Ω) +

∫ t

0

∥Qh1 −Q∥2dτ
]
,

where C = C(T ) grows exponentially fast. Next we can use Lemma 6, i.e. for some constant

C independent of h ∥∥∥∥∂rη∂tr
∥∥∥∥
Ls(L2(Ω))

+

∥∥∥∥∂rη∂tr
∥∥∥∥
Ls(H− 1

2 (∂Ω))

6 Chk,

where s = ∞,∞, 2 for r = 0, 1, 2 respectively. If qh(0, ·), ∂qh∂t
(0, ·) are taken so that ∥(qh −

q̂)(0, ·)∥H1(Ω) +
∥∥ ∂
∂t
(qh − q̂)(0, ·)

∥∥ 6 C1h
k, where C1 is independent of h, then there is a

constant C independent of h such that

∥q − qh∥L∞(L2(Ω)) +

∥∥∥∥ ∂∂t(q − qh)

∥∥∥∥
L∞(L2(Ω))

6 C
(
hk + ∥Qh1 −Q∥L2(L2(Ω1))

)
.

Now the estimate for Q(u,u) − Q(uh1 ,uh1) must be found. Here we deal with another

Finite Element scheme of the mesh size h1 used for computing velocity field uh1 of the

turbulent flow in the inner domain Ω1. Let Xh1 and Qh1 denote the Finite Element spaces

satisfying the LBB-condition (2.1).
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Theorem 12. Suppose the solution u of the incompressible NSE in Ω1 satisfies the following

regularity condition:

u ∈ L∞(0, T ;H2(Ω1)) ∩ L∞(0, T ;W 1,4(Ω1)) ∩ L2(0, T ;Wm,4(Ω1))

for some integer m > 2. In addition, assume that the mesh which is used for computing uh1,

is quasi-uniform. If the approximating space Mk
0 (Ω1) is used for computing velocity u with

k > m and the error ∥u − uh1∥L∞(L2(Ω1)) converges to zero no slower than O(h
1+n

4
1 ), where

n = 2 or 3 is the dimension of the physical space, then there exists such positive constant C

independent of h1 that

∥Q(u,u)−Q(uh1 ,uh1)∥L2(L2(Ω1)) 6

Ch
−n

4
1 · ( hm−1

1 ∥∂mu∥L2(L4(Ω1)) + ∥∇(u− uh1)∥L2(L2(Ω1))

)
.

Proof. It is easy to see that

Q(u,u)−Q(uh1 ,uh1) = ρ0 · (∇u : ∇ut −∇uh1 : ∇ut
h1
) =

= ρ0 · (∇u : ∇(u− uh1)
t) + ρ0 · (∇(u− uh1) : ∇ut

h1
).

Bound both terms separetely. For the L2-norm of the first one obtain

∥ρ0 · (∇u : ∇(u− uh1)
t)∥2 6 C

∫
Ω

|∇u|2|∇(u− uh1)|2

for some suitable positive constant C. By Holder’s inequality

C

∫
Ω1

|∇u|2|∇(u− uh1)|2 6 C∥∇u∥2L4(Ω1)
· ∥∇(u− uh1)∥2L4(Ω1)

.

Consider the continuous piecewise polynomial interpolant Ih1(u) for u. Obviously,

∇(u− uh1) = ∇(u− Ih1(u)) +∇(Ih1(u)− uh1).

Hence,

∥ρ0 · (∇u : ∇(u− uh1)
t)∥ 6

C∥∇u∥L4(Ω1)

(
∥∇(u− Ih1(u))∥L4(Ω1) + ∥∇(Ih1(u)− uh1)∥L4(Ω1)

)
.
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In the same manner,

∥ρ0 · (∇(u− uh1) : ∇ut
h1
)∥ 6

C∥∇uh1∥L4(Ω1)

(
∥∇(u− Ih1(u))∥L4(Ω1) + ∥∇(Ih1(u)− uh1)∥L4(Ω1)

)
.

To bound the term ∥∇uh1∥L4(Ω1) use the triangle inequality:

∥∇uh1∥L4(Ω1) 6 ∥∇(uh1 − Ih1(u))∥L4(Ω1) + ∥∇(u− Ih1(u))∥L4(Ω1) + ∥∇u∥L4(Ω1).

Using the inverse estimate, we obtain

∥∇uh1∥L4(Ω1) 6 Ch
−1−n

4
1 ∥uh1 − Ih1(u)∥+ ∥∇(u− Ih1(u))∥L4(Ω1) + ∥∇u∥L4(Ω1).

The last two terms are bounded uniformly in time due to the regularity assumption of the

theorem. For the first term on the RHS apply the triangle inequality as shown below:

Ch
−1−n

4
1 ∥uh1 − Ih1(u)∥ 6 Ch

−1−n
4

1 (∥u− Ih1(u)∥+ ∥uh1 − u∥) .

Both terms on the RHS are bounded uniformly in time, which follows from the assumption

on the regularity and the speed of convergence. We obtain

∥Q(u,u)−Q(uh1 ,uh1)∥ 6 C(∥∇(u− Ih1(u))∥L4(Ω1) + C1h
−n

4
1 ∥∇(Ih1(u)− uh1)∥),

where C = C(u) is a function of u independent of h1. Further,

∥∇(u− Ih1(u))∥L4(Ω1) 6 C1h
m−1
1 ∥∂mu∥L4(Ω1).

Next

∥∇(Ih1(u)− uh1)∥ 6 ∥∇(u− Ih1(u))∥+ ∥∇(u− uh1)∥,

∥∇(u− Ih1(u))∥ 6 Chm−1
1 ∥∂mu∥ 6 C1h

m−1
1 ∥∂mu∥L4(Ω1).

So finally

∥Q(u,u)−Q(uh1 ,uh1)∥ 6

C(h
m−1−n

4
1 ∥∂mu∥L4(Ω1) + h

−n
4

1 ∥∇(u− uh1)∥).
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Since we are interested in L2(L2)-norm of Q(u,u)−Q(uh1 ,uh1), we square and integrate the

last inequality: ∫ t

0

∥Q(u,u)−Q(uh1 ,uh1)∥2dτ 6

Ch
−n

2
1 ·

∫ t

0

(h2m−2
1 ∥∂mu∥2L4(Ω1)

+ ∥∇(u− uh1)∥2)dτ.

The statement of the theorem follows after extracting the square root of both sides of the

last inequality.

Remark 13. The term ∥∇(u − uh1)∥L2(L2(Ω1)) may be bounded by Chp1 with some positive

integer p, depending on which FEM space is used to solve the incompressible NSE in Ω1. For

example, for the space of MINI-element p = 1 and for Taylor-Hood element p = 2 ( see [35]

or [11] for details ).
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4.0 FULLY DISCRETE SCHEME

Next, we construct a stable, second order in time, fully discrete scheme for the initial

boundary-value problem (3.1). Denote R
′
= Q

′ − ρ0∇ · f , where Q′
= Q(uh1 ,uh1).

Below we will follow Dupont’s notations from [19]. Suppose the time step ∆t = T/N

for some fixed positive integer N . If some function f is defined for time levels i∆t with all

integers i, 0 6 i 6 N , then denote by fn the function f at the time level tn = n∆t. Other

notations are

fn+ 1
2
=

1

2
(fn+1 + fn), fn, 1

4
=

1

4
fn−1 +

1

2
fn +

1

4
fn+1,

∂tfn+ 1
2
=
fn+1 − fn

∆t
, ∂2t fn =

fn+1 − 2fn + fn−1

(∆t)2
, δtfn =

fn+1 − fn−1

2∆t

and for any norm ∥ · ∥X

∥f∥L̃∞(X) = max0<n<N∥fn∥X , ∥f∥L̂∞(X) = max06n<N∥fn+ 1
2
∥X .

We assume that the term Q(uh1 ,uh1) is given either continuously or discretely in time. In

the second case we additionaly impose that this term is defined for all the time levels tn used

for the wave equation. Consider the discrete scheme

(∂2t qh,n, vh) + a20(∇qh,n, 1
4
,∇vh) + a0 < δtqh,n, vh >=

= a20(R
′

n, 1
4
+

1

a20
Gn, 1

4
, vh)+a

2
0 < gn, 1

4
, vh >

(4.1)

∀vh ∈Mm
0 (Ω), for n = 1, ..., N − 1,

qh,0 and qh,1 are the initial data.
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Theorem 14. Let q be the solution of (3.2) and q, qt ∈ L∞(Hk(Ω)) and qtt ∈ L2(Hk(Ω)) for

some integer k, m > k > 2. Also let ∂4q
∂t4

∈ L2(L2(Ω)), ∂3q
∂t3

∈ L2(L2(∂Ω)). Finally, assume

that the initial data satisfies conditions

∥qh,0 − q̂0∥H1(Ω) + ∥qh,1 − q̂1∥H1(Ω) +

∥∥∥∥qh,1 − qh,0
∆t

− q̂1 − q̂0
∆t

∥∥∥∥ 6 Chk

with constant C independent of h. Then the solution qh of (4.1) satisfies

∥∂t(q − qh)∥L̂∞(L2(Ω)) + ∥q − qh∥L̂∞(L2(Ω)) 6 C

(
hk +

N−1∑
n=1

∆t∥Q′

n, 1
4
−Qn, 1

4
∥2 + (∆t)2

)
.

with constant C independent of h.

Proof. The major part of the proof is following Dupont’s work [19]. The exact solution q

satisfies

(∂2t qn, vh) + a20(∇qn, 1
4
,∇vh) + a0 < δtqn, vh >= a20(Rn, 1

4
+

1

a20
(Gn, 1

4
+ rn), vh)+

+a0 < r
′

n, vh > +a20 < gn, 1
4
, vh > .

Here rn and r
′
n are the approximation errors and

∥rn∥2 6 C(∆t)3
∫ tn+1

tn−1

∥∥∥∥∂4q∂t4
∥∥∥∥2 dτ and |r′n|2 6 C(∆t)3

∫ tn+1

tn−1

∣∣∣∣∂3q∂t3
∣∣∣∣2 dτ.

Then set η = q̂ − q, ψ = qh − q̂. We leave all the details in [41]. The main idea is to use

energy method and reduce the error equation to such an inequality that discrete Gronwall’s

lemma might be used. Notice that the error Q−Qh1 must be taken into account. Just as in

the semidiscrete case, this term will appear on the RHS of the error inequality. The result

will be

∥∂tψ∥L̂∞(L2(Ω)) + ∥ψ∥L̂∞(H1(Ω)) 6

6 C(∥η∥L2(L2(Ω)) +

∥∥∥∥∂2η∂t2
∥∥∥∥
L2(L2(Ω))

+

∥∥∥∥∂η∂t
∥∥∥∥
L∞(H− 1

2 (∂Ω))

+

∥∥∥∥∂2η∂t2
∥∥∥∥
L2(H− 1

2 (∂Ω))

+

+∥∂tψ 1
2
∥+ ∥ψ0∥H1(Ω) + ∥ψ1∥H1(Ω) +

N−1∑
n=1

∆t∥Q′

n, 1
4
−Qn, 1

4
∥2 + (∆t)2).
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Next use the triangle inequality

∥∂te∥L̂∞(L2(Ω)) + ∥e∥L̂∞(L2(Ω)) 6

6 ∥∂tψ∥L̂∞(L2(Ω)) + ∥ψ∥L̂∞(L2(Ω)) + ∥∂tη∥L̂∞(L2(Ω)) + ∥η∥L̂∞(L2(Ω)).

For the last two terms we have

∥∂tη∥L̂∞(L2(Ω)) 6 C

(∥∥∥∥∂η∂t
∥∥∥∥
L∞(L2(Ω))

+ (∆t)2
∥∥∥∥∂3η∂t3

∥∥∥∥
L∞(L2(Ω))

)
,

∥η∥L̂∞(L2(Ω)) 6 C

(
∥η∥L∞(L2(Ω)) + (∆t)2

∥∥∥∥∂2η∂t2
∥∥∥∥
L∞(L2(Ω))

)
.

Therefore, the final result will be

∥∂te∥L̂∞(L2(Ω)) + ∥e∥L̂∞(L2(Ω)) 6

6 C(∥η∥L∞(L2(Ω)) +

∥∥∥∥∂2η∂t2
∥∥∥∥
L2(L2(Ω))

+

∥∥∥∥∂η∂t
∥∥∥∥
L∞(H− 1

2 (∂Ω))

+

∥∥∥∥∂2η∂t2
∥∥∥∥
L2(H− 1

2 (∂Ω))

+

+

∥∥∥∥∂η∂t
∥∥∥∥
L∞(L2(Ω))

+ ∥∂tψ 1
2
∥+ ∥ψ0∥H1(Ω) + ∥ψ1∥H1(Ω) +

N−1∑
n=1

∆t∥Q′

n, 1
4
−Qn, 1

4
∥2 + (∆t)2).

Use Lemma 6 and obtain the theorem.

Remark 15. The term
√∑N−1

n=1 ∆t∥Q′

n, 1
4

−Qn, 1
4
∥2 is a discrete analogue of the term ∥Q−

Qh1∥L2(L2(Ω1)) from Theorem 11.
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5.0 NUMERICAL EXPERIMENTS

In this chapter we present the results of some numerical experiments in two-dimensional case.

Our main purpose is to check the rate of convergence for some exact smooth solution ( not

necessarily representing real physical phenomena ) and compare the theoretical predictions

with the experimental results. We focus on the case when the no-slip boundary condition is

imposed for the NSE in the inner domain Ω1. Physically this simulation may represent the

turbulent flow in the center of the medium, which decays in space fast enough to vanish in

the quiescent media. For example, this could be a large storm eddy that does not affect the

air far from its epicentre but generates a noise.

Let Ω1 and Ω be squares such that Ω1 = [0, 1]2 and Ω = [−0.25, 1.25]2, so Ω1 is embedded

into Ω symetrically, as shown on figure 2. The time-dependent incompressible flow is taking

Ω1

Ω/Ω1

Figure 2: One domain inside the other

place inside Ω1. The fluid’s viscosity µ = 0.0172 and density ρ = 1.2047 .The external forces
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f are given explicitly by:

f1(x, y, t) = −C · (µ/ρ) · sin(π · t) · ((x2 − 2x3 + x4) · (−12 + 24y)+

+ (2− 12x+ 12x2) · (2y − 6y2 + 4y3)) + C2 · (sin(π · t))2 · (x4 − 2x3 + x2)·

· (4x3 − 6x2 + 2x) · ((4y3 − 6y2 + 2y)2 − (y4 − 2y3 + y2) · (12y2 − 12y + 2))+

+ C · (x4 − 2x3 + x2) · (4y3 − 6y2 + 2y) · π · cos(π · t) + (∇p)1,

f2(x, y, t) = −C · (µ/ρ) · sin(π · t) · ((−2x+ 6x2 − 4x3) · (2− 12y + 12y2)+

+ (12− 24x) · (y2 − 2y3 + y4)) + C2 · (sin(π · t))2 · (y4 − 2y3 + y2)·

· (4y3 − 6y2 + 2y) · ((4x3 − 6x2 + 2x)2 − (x4 − 2x3 + x2) · (12x2 − 12x+ 2))−

− C · (4x3 − 6x2 + 2x) · (y4 − 2y3 + y2) · π · cos(π · t) + (∇p)2

with positive constant C and the fluid pressure p of our choice. Driven by this force f , the

fluid has the following velocity:

u1(x, y, t) = C · (x4 − 2x3 + x2) · (4y3 − 6y2 + 2y) · sin(π · t),

u2(x, y, t) = −C · (y4 − 2y3 + y2) · (4x3 − 6x2 + 2x) · sin(π · t).

The pressure in this case is constant: ∇p = 0. This incompressible flow gives a vortex with

periodically changing direction. The velocity vector field for that flow looks like the one

shown on figure 3. The no-slip boundary condition here is satisfied. The exact nonlinear

term Q is given by

Q(x, y, t) = 2 · C2 · (sin(π · t))2 · ((4x3 − 6x2 + 2x)2 · (4y3 − 6y2 + 2y)2−

− (12x2 − 12x+ 2) · (y4 − 2y3 + y2) · (x4 − 2x3 + x2) · (12y2 − 12y + 2)).

Consider the following hyperbolic problem:

∂2q

∂t2
− a20∆q = a20Q(u,u) +G, ∀(x, t) ∈ Ω× (0, T ) (5.1)

with

∇q · n+
1

a0

∂q

∂t
= g, ∀(x, t) ∈ ∂Ω× (0, T ).
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Figure 3: The flow for C = 10 and time level T = 0.5

We set a0 = 2. As an exact solution we choose q to be the following:

q(x, y, t) = cos(ωt+k(x+y)−k)+ cos(ωt−k(x+y)+k)+ q1(x, y, t), ∀(x, y, t) ∈ Ω× (0, T ),

where ω = 2, k = ω
a0

√
2
,

q1(x, y, t) =


e
4− 1

1
4−(x− 1

2 )2−(y− 1
2 )2 · (cos(ω1t+ k1(x+ y)− k1)+

+cos(ω1t− k1(x+ y) + k1)), if (x− 1
2
)2 + (y − 1

2
)2 < 1

4
,

0, otherwise

with ω1 = 4 and k1 = ω1

a0
√
2
. The plots of the acoustic pressure as a function of space are

given for t = 0 and t = 0.5 on figures 4 and 5 respectively.

For our tests we take a uniform triangular mesh in Ω1 of the size N × N with N > 4

even and h1 = 1/N . Let the finite element space for the velocity field consist of piecewise

linear functions, while for the pressure we use piecewise constants on the coarser mesh of size

2h1 (see figure 6). These spaces satisfy the LBB-condition, [24]. For the wave equation in Ω
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Figure 4: The graph of q at t = 0
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Figure 5: The graph of q at t = 0.5
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Figure 6: Four small triangles inside a big one

consider the trinagluar mesh of the same size h = h1 and the space of the piecewise linears.

Both grids for the NSE and the wave equation are the same in Ω1. The example is shown

on figure 7. For the simulation of the incompressible flow we choose Stabilized Extrapolated

Backward Euler Method in time with parameter δ = 0.005, [35]. This means that the values

of the velocity uh
n+1 and pressure phn+1 at the time step n+1 can be found from their values

at the previous step n via the relation:

(
uh
n+1 − uh

n

∆t1
,vh

)
+

(
µ

ρ
+ δ

)
(∇uh

n+1,∇vh) +
1

2
(uh

n · ∇uh
n+1,v

h)

− 1

2
(uh

n · ∇vh,uh
n+1)− (phn+1,∇ · vh) = (f(tn+1),v

h) + δ(∇uh
n,∇vh), ∀vh ∈ Xh

and

(∇ · uh
n+1, q

h) = 0, ∀qh ∈ Qh,

where Xh and Qh denote the finite-dimensional spaces described earlier for velocity and

pressure respectively.

The dimension of the space of piecewise linears built on the elements in Ω is equal to

d = (3
2
N+1)2. If functions ϕi denote the basis functions in that space, then the solution qh of

the wave equation (3.5) can be written as a linear combination qh =
∑

i aiϕi with coefficients
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Figure 7: The grid for the whole Ω when N = 4

ai. Let these coefficients organize a vector qh = (a1, a2, ..., ad)
t. This vector satisfies a linear

differential equation in the form

M q̈h + a0Lq̇h + a20Sqh = fRHS

with the mass matrix M and the stiff matrix S and matrix L related to the boundary term

in the LHS of (3.5). This equation may be rewritten as the first-order system of differential

equations: q̇h

ṙh

 =

 0 I

−a20M−1S −a0M−1L

qh

rh

+

 0

M−1fRHS


Initial conditions qh(0, ·) and rh(0, ·) are found from the H1-projections of the functions

q(0, ·) and ∂q
∂t
(0, ·) via the formula (3.6).

For time integration we use the Trapezoidal Method with the time step ∆t = 0.025,

while for the Backward Euler Method above we use ∆t1 = 0.0125 = ∆t/2. Every time step

for the wave equation is done after two time steps for the NSE. We perform 20 steps for the

wave equation until we reach the final time T = 0.5. This corresponds to the case, when

the vortex in Ω1 reaches its maximum velocity. Among the computed values of the error

∥q − qh∥L2(Ω) and ∥ ∂
∂t
(q − qh)∥L2(Ω) at each time step we choose the greatest ones for both
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and add them. The result is the total error on the LHS of the inequality in Theorem 11. At

the same time, we also compute the error ∥Q(u,u)−Q(uh,uh)∥L2(L2(Ω1)).

Since the estimate from Theorem 12 is not sharp due to regularity assumptions, the

actual rate of convergence for term Q may only be obtained experimentally. Suppose it is

of order α. Then according to Theorem 11 the error for the acoustic pressure satisfies an

inequality

∥q − qh∥L∞(L2(Ω)) +

∥∥∥∥ ∂∂t(q − qh)

∥∥∥∥
L∞(L2(Ω))

6 K1h
2 +K2h

α (5.2)

with some positive constants K1 and K2 independent of h. The actual rate of convergence

for the acoustic pressure in this case is γ = min(α, 2).

The rate of convergence may be estimated by evaluating the ratios of the error related

to the mesh of size 2h to the error related to the mesh of size h. Indeed, for the first and

the second grids we have error1 and error2 respectively:

error1 ∼ K · (2h)γ, error2 ∼ K · hγ.

Division gives
error1
error2

∼ 2γ.

As we refine the mesh by halving h, i.e. doubling N , the above fraction approaches constant

2γ. The tables below present the results of numerical simulations for different external force

vectors f .

Table 1: C = 10, p(x, y, t) = x(1− x)y(1− y)

N ∥Q−Qh∥L2(L2(Ω1)) ratio ∥q − qh∥L∞(L2(Ω)) + ∥ ∂
∂t
(q − qh)∥L∞(L2(Ω)) ratio

4 0.10927 0.9619

8 0.0932 1.1720 0.3635 2.6463

16 0.0557 1.6736 0.1060 3.4292

32 0.02567 2.1704 0.0271 3.9056

According to Theorem 11, the rate of convergence for the solution of the wave equation

in the absence of the error Q−Qh1 is expected to be quadratic, i.e. k = 2. This means that
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Table 2: C = 100, p(x, y, t) = const

N ∥Q−Qh∥L2(L2(Ω1)) ratio ∥q − qh∥L∞(L2(Ω)) + ∥ ∂
∂t
(q − qh)∥L∞(L2(Ω)) ratio

4 8.8487 4.9921

8 3.7567 2.3555 1.4432 3.4590

16 1.7709 2.1214 0.4119 3.5038

32 0.88578 1.9992 0.14264 2.8878

Table 3: C = 100, p(x, y, t) = x(1− x)y(1− y)

N ∥Q−Qh∥L2(L2(Ω1)) ratio ∥q − qh∥L∞(L2(Ω)) + ∥ ∂
∂t
(q − qh)∥L∞(L2(Ω)) ratio

4 9.1412 5.1537

8 4.0375 2.2641 1.6182 3.1849

16 1.8930 2.1329 0.4889 3.3097

32 0.9338 2.0273 0.1626 3.0075

Table 4: C = 100, p(x, y, t) = 4x(1− x)y(1− y)

N ∥Q−Qh∥L2(L2(Ω1)) ratio ∥q − qh∥L∞(L2(Ω)) + ∥ ∂
∂t
(q − qh)∥L∞(L2(Ω)) ratio

4 10.3300 5.9369

8 5.6410 1.8313 3.0508 1.9460

16 2.7856 2.0251 1.2187 2.5034

32 1.3353 2.0860 0.3774 3.2292
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the ratio in this case must be reaching 4 as we refine our mesh. The experimental rate of

convergence for the term Q appears to be linear. This fact follows from the third column of

all tables where the ratio is approaching 2. So that means that the total rate of decrease of

L∞(L2(Ω))-error for fluctuations of pressure must eventually reach 1 as we refine the mesh.

This tendency of the rate to decrease may be seen in cases when the L2(L2(Ω1))-error for the

term Q is large compared to the L∞(L2(Ω))-error for q and its time derivative. The example

is presented below in the 5-th table. We can see that for N = 32 the ratio is dropping.

Table 5: C = 300, p(x, y, t) = const

N ∥Q−Qh∥L2(L2(Ω1)) ratio ∥q − qh∥L∞(L2(Ω)) + ∥ ∂
∂t
(q − qh)∥L∞(L2(Ω)) ratio

4 125.90 49.614

8 42.593 2.9558 15.295 3.2437

16 19.714 2.1605 4.3770 3.4945

32 9.7621 2.0194 1.6236 2.6958
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6.0 NEGATIVE NORM ANALYSIS

Let R = Q− ρ0∇ · f be given. Consider the problem

 qtt − a20∆q = a20R +G, in (0, T )× Ω,

∇q · n+ 1
a0
qt = g, in (0, T )× ∂Ω,

(6.1)

with initial conditions for q(0, ·) and qt(0, ·). Here G and g are control functions. Introduce

operators T and T1 as shown below. Consider the elliptic problem

 −a20∆p+ p = f, in Ω,

∇p · n = 0, in ∂Ω.

Definition 16. T : L2(Ω) → H1(Ω) is a solution operator to this problem and is given by

the formula Tf = p, for f being a given data.

This operator is well-defined on the whole L2(Ω), which follows from the Lax-Milgram

theorem. Clearly, T is self-adjoint and positive definite.

For T1 consider another elliptic problem

 −a20∆p+ p = 0, in Ω,

∇p · n = g, in ∂Ω.

Definition 17. T1 : H
1
2 (∂Ω) → H1(Ω) is a solution operator to this problem and is given

by the formula T1g = p.
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The existence of this operator again follows from the Lax-Milgram theorem. The trace

operator is denoted γ : H1(Ω) → H
1
2 (∂Ω).

Rewrite the given hyperbolic problem (6.1) in the form qtt − a20∆q + q − q = a20R +G, in (0, T )× Ω,

∇q · n = − 1
a0
qt + g, in (0, T )× ∂Ω.

Now apply operator T to both sides of the wave equation and take into account the non-

homogeneous boundary condition.

Tqtt + q − Tq +
1

a0
T1(γqt − a0g) = T (a20R +G), in (0, T )× Ω. (6.2)

This is the main equation in the negative norm analysis to start from. Next define its

semi-discrete analogue with operators Th,T1,h and γh, see [62] for details.

Thqh,tt + qh − Thqh +
1

a0
T1,h(γhqh,t − a0g) = Th(a

2
0Rh1 +G), in (0, T )× Ω. (6.3)

The last term contains Rh1 which comes from the Direct Numerical Simulation (DNS) on

the different grid of size h1 in Ω1.

Introduce the inner product and the norm

(u, v)−1 = (Tu, v), ∥u∥−1 =
√

(u, u)−1,

and the semi-inner product and the semi-norm

(u, v)−1,h = (Thu, v), ∥u∥−1,h =
√

(u, u)−1,h,

defined on all functions u, v ∈ L2(Ω). The error equation comes from subtracting the exact

and discrete ones, i.e. if e = q − qh then

Thett + e− The+ (T − Th)qtt − (T − Th)q +
1

a0
(T1γ − T1,hγh)qt−

− (T1 − T1,h)g +
1

a0
T1,hγhet = (T − Th)(a

2
0R +G) + a20Th(Q−Qh1).

(6.4)
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Multiply by et and integrate in space:

(Thett, et) + (e, et) = − 1

a0
((T1γ − T1,hγh)qt, et) + ((T1 − T1,h)g, et) + (The, et)−

− 1

a0
(T1,hγhet, et) + ((T − Th)(a

2
0R +G+ q − qtt), et) + a20(Th(Q−Qh1), et).

(6.5)

We moved the term (T1,hγhet, et) to the RHS because the operator T1,hγh is not positive

definite and thus we cannot hide it in the LHS as a part of the global error. From this

point, we work with the Neumann boundary condition that has no time derivative, since the

mentioned term (T1,hγhet, et) is not of high order with respect to the others and it is not

possible to increase the accuracy in this case. Therefore, we are now considering the problem

 qtt − a20∆q = a20R +G, in (0, T )× Ω,

∇q · n = g, in (0, T )× ∂Ω,

(6.6)

and the equation (6.5) reduces to

(Thett, et) + (e, et) = (The, et) + ((T − Th)(a
2
0R +G+ q − qtt), et)+

+ a20(Th(Q−Qh1), et) + ((T1 − T1,h)g, et).
(6.7)

Theorem 18. Let the exact variational solution q of (6.6) satisfy conditions: q, qt ∈ L∞(Hk(Ω)),

qtt ∈ L2(Hk(Ω)) with integer k, m > k > 2 . Also let the initial data satisfy conditions

∥(qh − q̂)(0, ·)∥H1(Ω) +

∥∥∥∥ ∂∂t(qh − q̂)(0, ·)
∥∥∥∥ 6 C1h

k

with the constant C1 independent of h. Finally, let a20R + G ∈ L2(Hk(Ω1)) and g ∈

L2(H
1
2
+k(∂Ω)). Then ∥∥∥∥ ∂∂t(q − qh)

∥∥∥∥
L∞(H−1(Ω))

+ ∥q − qh∥L∞(L2(Ω)) 6

C(hk+1 +
1

h
∥Q−Qh1∥L2(H−2(Ω)) + h∥Q−Qh1∥L2(L2(Ω1))+

+

∥∥∥∥ ∂∂t(q − qh)(0, ·)
∥∥∥∥
−1

+ ∥(q − qh)(0, ·)∥)

with constant C independent of h.
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Proof. (6.7) is equivalent to

1

2

d

dt
{∥et∥2−1,h + ∥e∥2} = (The, et) + ((T − Th)(a

2
0R +G+ q − qtt), et)+

+a20(Th(Q−Qh1), et) + ((T1 − T1,h)g, et).

It is obvious that

(The, et) = (e, Thet).

Integration of (6.7) yields

∥et∥2−1,h + ∥e∥2 6
∫ t

0

(∥e∥2 + ∥Thet∥2)+

+2

∫ t

0

|((T − Th)(a
2
0R +G+ q − qtt), et)|+ 2a20

∫ t

0

|(Th(Q−Qh1), et)|+

+2

∫ t

0

|((T1 − T1,h)g, et)|+ ∥et∥2−1,h(0) + ∥e∥2(0).

The term ∥Thet∥2 = ∥et∥2−2,h 6 ∥et∥2−1,h.

Using Gronwall’s lemma, we obtain

∥et∥2−1,h + ∥e∥2 6

C(

∫ t

0

|((T − Th)(a
2
0R +G+q − qtt), et)|+

∫ t

0

|(Th(Q−Qh1), et)|+

+

∫ t

0

|((T1 − T1,h)g,et)|+ ∥et∥2−1,h(0) + ∥e∥2(0)).

Next,

|((T − Th)(a
2
0R +G+ q − qtt), et)| 6 ∥(T − Th)(a

2
0R +G+ q − qtt)∥ · ∥et∥ 6

6 1

4
h2s+2∥a20R +G+ q − qtt∥2Hs(Ω) + h2∥et∥2

with integer s > 0, and

a20|(Th(Q−Qh1), et)| 6 C

(
1

h2
∥Th(Q−Qh1)∥2 + h2∥et∥2

)
=

= C

(
1

h2
∥Q−Qh1∥2−2,h + h2∥et∥2

)
,

|((T1 − T1,h)g, et)| 6 ∥(T1 − T1,h)g∥ · ∥et∥ 6 1

4
h2s+2∥g∥2

H
1
2+s(∂Ω)

+ h2∥et∥2.
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Thus

∥et∥2L∞(H−1,h(Ω)) + ∥e∥2L∞(L2(Ω)) 6

C(h2k+2∥a20R +G+ q − qtt∥2L2(Hk(Ω)) +
1

h2
∥(Q−Qh1)∥2L2(H−2,h(Ω))+

+h2k+2∥g∥2
L2(H

1
2+k(∂Ω))

+ h2∥et∥2L2(L2(Ω)) + ∥et∥2−1,h(0) + ∥e∥2(0)),

or

∥et∥L∞(H−1,h(Ω)) + ∥e∥L∞(L2(Ω)) 6

C(hk+1∥a20R +G+ q − qtt∥L2(Hk(Ω)) +
1

h
∥(Q−Qh1)∥L2(H−2,h(Ω))+

+hk+1∥g∥
L2(H

1
2+k(∂Ω))

+ h∥et∥L2(L2(Ω)) + ∥et∥−1,h(0) + ∥e∥(0)).

According to V. Thomee’s results, [62],

∥et∥−1 6 C(∥et∥−1,h + h∥et∥)

and therefore

∥et∥L∞(H−1(Ω)) + ∥e∥L∞(L2(Ω)) 6

C(hk+1∥a20R +G+ q − qtt∥L2(Hk(Ω)) +
1

h
∥Q−Qh1∥L2(H−2,h(Ω))+

+hk+1∥g∥
L2(H

1
2+k(∂Ω))

+ h∥et∥L∞(L2(Ω)) + ∥et∥−1,h(0) + ∥e∥(0)).

For the initial data

∥et∥−1,h(0) 6 C(∥et∥−1(0) + h∥et∥(0)).

For the term Q−Qh1 we have

1

h
∥(Q−Qh1)∥−2,h 6 C

(
1

h
∥Q−Qh1∥−2 + h∥Q−Qh1∥

)
.

The final result is, due to Theorem 11,

∥et∥L∞(H−1(Ω)) + ∥e∥L∞(L2(Ω)) 6

C(hk+1 +
1

h
∥Q−Qh1∥L2(H−2(Ω)) + h∥Q−Qh1∥L2(L2(Ω1)) + ∥et∥−1(0) + ∥e∥(0)).
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Theorem 19. Suppose the exact solution u of the incompressible NSE satisfies condition

u ∈ L∞(H1(Ω1))

and also has a continuous representation on Ω1 for almost all 0 < t < T . Assume the mesh

on Ω1 used for the DNS of the incompressible NSE is quasi-uniform. Then the following

estimate holds:

∥Q−Qh1∥L2(H−2(Ω)) 6 C(u) · ∥∇(u− uh1)∥L2(L2(Ω1))

with constant C(u) independent of h1.

Proof. The norm ∥ · ∥−2 is equivalent to the norm

supv∈H2(Ω)

(·, v)
∥v∥2

.

Using this, we obtain

∥Q−Qh1∥−2 6 C · supv∈H2(Ω)

(Q−Qh1 , v)

∥v∥2
.

Since Q−Qh1 is zero outside the smaller domain Ω1, it is obvious that

∥Q−Qh1∥−2 6 C · supv∈H2(Ω1)

(Q−Qh1 , v)

∥v∥2
.

We know that

(Q−Qh1 , v) 6 ρ0|(∇u : ∇(u− uh1)
t, v)|+ ρ0|(∇(u− uh1) : ∇ut

h1
, v)|.

For both terms use Holder’s inequality. For example, for the first term we get

ρ0|(∇u : ∇(u− uh1)
t, v)| 6 C∥∇u∥Lr(Ω1)∥∇(u− uh1)∥Lp(Ω1)∥v∥L∞(Ω1),

where 1
r
+ 1

p
= 1. Choose p, r = 2 and use Sobolev embedding ∥v∥L∞(Ω1) 6 C∥v∥2. This

gives

∥Q−Qh1∥−2 6 C(∥∇u∥+ ∥∇uh1∥) · ∥∇(u− uh1)∥.

Next,

∥∇uh1∥ 6 ∥∇u∥+ ∥∇(u− Ih1u)∥+ ∥∇(uh1 − Ih1u)∥,

43



where Ih1 is the piecewise polynomial interpolant, chapter 2. The first two terms on the

RHS are bounded. For the last one we use the inverse estimate, [12],

∥∇(uh1 − Ih1u)∥ 6 Ch−1∥uh1 − Ih1u∥.

Using triangle inequality, we obtain

h−1∥uh1 − Ih1u∥ 6 h−1∥u− Ih1u∥+ h−1∥u− uh1∥.

These two terms are bounded for any continuous piecewise polynomial element satisfying

LBB-condition, [35], and converging to the exact solution. Thus we showed that

∥Q−Qh1∥−2 6 C · ∥∇(u− uh1)∥

with some positive constant C = C(u) depending on the solution u.

Remark 20. If h = O(h1), then in order to have convergence for the total error in Theorem

18, it is necessary that ∥∇(u−uh1)∥L2(L2(Ω1)) converge superlinearly. This means we have to

use high-order FEM scheme for the NSE. For example, Taylor-Hood element will be sufficient,

[35].
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7.0 ESTIMATING THE ERROR IN ACOUSTIC POWER

Let surface S be Lipschitz continuous and belong to the far field. Consider the semidiscrete

FEM scheme (3.5) for solving the problem (3.1). The acoustic power on S is given by

A(t) =

∫
S

q(t, ·)v(t, ·) · ndS.

Its approximate analogue is defined as

Ah(t) =

∫
S

qh(t, ·)vh2(t, ·) · ndS.

Decompose the error in power in two terms:

A(t)− Ah(t) =

∫
S

(q − qh)v · ndS +

∫
S

qh(v − vh2) · ndS. (7.1)

Denote the terms on the RHS as E1(t) and E2(t) respectively. For computing qh we use the

semidiscrete FEM scheme.

Estimating the error in intesity depends on how the velocity vh2 is computed.

7.1 METHOD 1: EXACT FORMULA

7.1.1 Statement of the algorithm

1. Compute qh in Ω, using (3.5) with homogeneous initial conditions.

2. Compute the sound power directly as

Ah(t) = − 1

ρ0

∫
S

qh(t, ·) ·
(∫ t

0

∇qh(τ, ·)dτ
)
dS.
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7.1.2 Analysis of the method

In order to find the exact formula for v, consider the compressible linearized NSE in the far

field: 
1
a20

∂q
∂t

+ ρ0∇ · v = 0,

ρ0
∂v
∂t

+∇q = 0.

The second equation gives

v(t, ·) = − 1

ρ0

∫ t

0

∇q(τ, ·)dτ + v(0, ·).

Set v(0, ·) = 0. This agrees with the homogeneous initial conditions for q. Thus define

vh2(t, ·) = − 1

ρ0

∫ t

0

∇qh(τ, ·)dτ + v(0, ·). (7.2)

The errors will be

E1(t) = − 1

ρ0

∫
S

(q − qh)(t, ·)
(∫ t

0

∇q(τ, ·) · ndτ
)
dS

and

E2(t) = − 1

ρ0

∫
S

qh(t, ·)
(∫ t

0

∇(q − qh)(τ, ·) · ndτ
)
dS.

Using Fubini’s theorem, write the first term in the form

E1(t) = − 1

ρ0

∫ t

0

∫
S

(q − qh)(t, ·)∇q(τ, ·) · ndSdτ.

Next obtain the bound:

|E1(t)| 6 C

∫ t

0

∣∣∣∣∫
S

(q − qh)(t, ·)∇q(τ, ·) · ndS
∣∣∣∣ dτ 6

6 C∥(q − qh)(t, ·)∥1 ·
∫ t

0

∥∇q(τ, ·) · n∥
H− 1

2 (S)
dτ 6

6 C∥q − qh∥L∞(0,T ;H1(Ω)) · ∥∇q · n∥L1(0,T ;H− 1
2 (S))

.

For the second term, again, using Fubini’s theorem, we obtain

E2(t) = − 1

ρ0

∫ t

0

∫
S

qh(t, ·)∇(q − qh)(τ, ·) · ndSdτ.
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Thus, in the same manner,

|E2(t)| 6 C∥qh(t, ·)∥H1(Ω) ·
∫ t

0

∥∇(q − qh)(τ, ·) · n∥H− 1
2 (S)

6

6 C∥qh∥L∞(0,T ;H1(Ω)) · ∥∇(q − qh) · n∥L1(0,T ;H− 1
2 (S))

.

For a regular enough function q, the rate of convergence in the term E1 is no slower than

that of ∥q− qh∥L∞(0,T ;H1(Ω)), which is O(hk−1+ ∥Q−Qh1∥L2(L2(Ω1))) for continuous piecewise

polynomials of degree no more thanm−1, m > k > 2. In the term E2 the rate of convergence

is defined by that of the term ∥∇(q − qh) · n∥L1(0,T ;H− 1
2 (S))

which is O(hk−
3
2 + h−

1
2∥Q −

Qh1∥L2(L2(Ω1))). Thus the rate of convergence for the total error may be estimated asO(hk−
3
2+

h−
1
2∥Q−Qh1∥L2(L2(Ω1))). The conditions ∥∇q·n∥L1(0,T ;H− 1

2 (S))
<∞ and ∥qh∥L∞(0,T ;H1(Ω)) <∞

will be guranteed by the regularity assumption q ∈ L∞(Hk(Ω)) for k > 2 and the stability

theorem for qh ( chapter 3 ) respectively.

The advantage of this approach is that the velocity and thus the sound power are com-

puted quickly once qh is known. The disadvantage is that we lose 3
2
power of h compared

to the L2-norm of error in the fluctuation of pressure q. This is the least accurate method

among those presented here.

In the particular case S ⊂ ∂Ω we can make an improvement. In the term E2(t), due to

the boundary condition,

∇(q − qh) · n = − 1

a0

(
∂q

∂t
− ∂qh

∂t

)
,

and so

∥∇(q − qh) · n∥L1(H− 1
2 (∂Ω))

6 C

∥∥∥∥∂q∂t − ∂qh
∂t

∥∥∥∥
L1(H

1
2 (Ω))

6

6 C(hk−
1
2 + h−

1
2∥Q−Qh1∥L2(L2(Ω1))).

Then the total rate of convergence will be of order O(hk−1 + h−
1
2∥Q−Qh1∥L2(L2(Ω1))), which

comes from the term E1(t). In the case S ⊂ ∂Ω there is a loss of only one power of h

compared to the L2-error in q.
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7.2 METHOD 2: BOUNDING THE SOUND POWER

7.2.1 Statement of the algorithm

1. Compute qh in Ω, using (3.5) with homogeneous initial conditions.

2. Complete the curve S to an arbitrary closed curve S̃ so that the new domain Ω̃, bounded

by that curve ∂Ω̃ = S̃, did not coincide with Ω1.

3. Find the norms of the trace operator γ1 : H
1(Ω̃) → H

1
2 (S̃) and the normal trace operator

γ2 : Hdiv(Ω̃) → H− 1
2 (S̃). Denote these norms as C1(Ω̃) and C2(Ω̃) respectively.

4. Compute

SQh(t) =

√
2

ρ20
∥∇qh∥2L1(0,t;L2(Ω̃))

+
1

a40ρ
2
0

∥∥∥∥∂qh∂t
∥∥∥∥2
L2(Ω̃)

.

5. Compute the bound for the sound power by the formula

Ph(t) = C1(Ω̃)C2(Ω̃)∥qh(t, ·)∥H1(Ω̃) · SQh(t).

7.2.2 Analysis of the method

Instead of finding the sound power exactly, we consider the question of finding a good upper

bound. This may be used in applications where one needs to know whether the loudness

surpasses a certain level. If Q is given exactly as a function of space and time, then using

this method only has meaning if S is not a part of ∂Ω since otherwise it has absolutely no

advantage compared to the first approach. We have

∫
S

qv · ndS 6 ∥q∥
H

1
2 (S)

· ∥v · n∥
H− 1

2 (S)
6 C1(Ω̃) · C2(Ω̃)∥q∥H1(Ω̃) · ∥v∥Hdiv(Ω̃).

Here Ω̃ is some domain of our choice that has S as a part of its boundary and that does

not coincide with the turbulent region. Constant C1 is the norm of the trace operator from

H1(Ω̃) to H
1
2 (∂Ω̃) and C2 is a norm of the normal trace operator from Hdiv(Ω̃) to H

− 1
2 (∂Ω̃).

In fact, C1 is constant Ctr from the trace theorem 5, chapter 2. Next,

∥v∥Hdiv(Ω̃) =
√
∥v∥2

L2(Ω̃)
+ ∥∇ · v∥2

L2(Ω̃)
.
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Ω1

Ω2

Ω̃ S

Figure 8: Domain Ω̃

From the continuity equation of the linearized compressible NSE we have

∇ · v = − 1

a20ρ0

∂q

∂t

and also

∥v(t, ·)∥L2(Ω̃) − ∥v(0, ·)∥L2(Ω̃) 6 ∥v(t, ·)− v(0, ·)∥L2(Ω̃) =

∥∥∥∥∫ t

0

∂v

∂t
dτ

∥∥∥∥
L2(Ω̃)

=

=
1

ρ0

∥∥∥∥∫ t

0

∇qdτ
∥∥∥∥
L2(Ω̃)

6 1

ρ0

∫ t

0

∥∇q∥L2(Ω̃)dτ.

Thus at time t

∥v∥L2(Ω̃) 6
1

ρ0
∥∇q∥L1(0,t;L2(Ω̃)) + ∥v(0, ·)∥L2(Ω̃).

As in method 1, set v(0, ·) = 0. That is why we obtain

∥v∥Hdiv(Ω̃) 6
√

2

ρ20
∥∇q∥2

L1(0,t;L2(Ω̃))
+

1

a40ρ
2
0

∥∥∥∥∂q∂t
∥∥∥∥2
L2(Ω̃)

+ 2∥v(0, ·)∥2
L2(Ω̃)

.

For simplicity, denote

SQ =

√
2

ρ20
∥∇q∥2

L1(0,t;L2(Ω̃))
+

1

a40ρ
2
0

∥∥∥∥∂q∂t
∥∥∥∥2
L2(Ω̃)

+ 2∥v(0, ·)∥2
L2(Ω̃)
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and

SQh =

√
2

ρ20
∥∇qh∥2L1(0,t;L2(Ω̃))

+
1

a40ρ
2
0

∥∥∥∥∂qh∂t
∥∥∥∥2
L2(Ω̃)

+ 2∥v(0, ·)∥2
L2(Ω̃)

.

Our bound will be

P = C1(Ω̃)C2(Ω̃)∥q∥H1(Ω̃) · SQ. (7.3)

Introduce

Ph = C1(Ω̃)C2(Ω̃)∥qh∥H1(Ω̃) · SQh. (7.4)

The purpose now is to get the rate of convergence for the error P − Ph. If we require that

v(0, ·) ∈ L2(Ω),

then both SQ and SQh will be bounded due to earlier regularity assumptions and stability

theorem from chapter 3. Obviously,

P − Ph = C1(Ω̃) · C2(Ω̃) · (∥q∥H1(Ω̃) − ∥qh∥H1(Ω̃)) · SQ+

+C1(Ω̃) · C2(Ω̃) · ∥qh∥H1(Ω̃) · (SQ− SQh).

The first term of the error may be bounded by

C1(Ω̃) · C2(Ω̃) · ∥q − qh∥H1(Ω̃) · SQ,

and thus converges as O(hk−1 + ∥Q−Qh1∥L2(L2(Ω1))). The second term of the error may be

bounded by

C1(Ω̃) · C2(Ω̃) · ∥qh∥H1(Ω̃) ·
|SQ2 − SQ2

h|
SQ+ SQh

.

Next,

|SQ2 − SQ2
h| =

=
2

ρ20

(
∥∇q∥2

L1(0,t;L2(Ω̃))
− ∥∇qh∥2L1(0,t;L2(Ω̃))

)
+

1

a40ρ
2
0

(∥∥∥∥∂q∂t
∥∥∥∥2
L2(Ω̃)

−
∥∥∥∥∂qh∂t

∥∥∥∥2
L2(Ω̃)

)
.

The first and the second terms in this expression converge asO(hk−1+∥Q−Qh1∥L2(L2(Ω1))) and

O(hk+∥Q−Qh1∥L2(L2(Ω1))) respectively. Therefore, we conclude that the rate of convergence

for the total error P − Ph is of order O(hk−1 + ∥Q−Qh1∥L2(L2(Ω1))). The advantage of this

approach is obvious: it gives more accurate approximation. A big disadvantage is that we

compute the upper bound for the sound power instead of itself. This approach also suffers

from the necessity for the user to know constants C1(Ω̃) and C2(Ω̃) whose behavior depends

on the geometry of the domain Ω̃ chosen.
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7.3 METHOD 3: DUALITY

7.3.1 Statement of the algorithm

1. Compute qh in Ω, using (3.5).

2. Compute vh2 in Ω, using (7.11), which a FEM approximation for the variational problem

(7.10).

3. Compute the sound power directly as

Ah(t) =

∫
S

qh(t, ·)vh2(t, ·)dS.

7.3.2 Analysis of the method

The error in the sound power cannot converge to zero faster than the error q − qh in the

solution of the wave equation, i.e. the greatest rate of convergence may be of order O(hk).

The way we may reach this rate is by using the duality approach. It also allows to reduce

the regularity of the exact solution needed for reaching the desired rate of convergence. This

advantage may be crucial if one works with turbulent irregular effects. In this case we work

with time-averaged sound power

Ā =
1

T

∫ T

0

∫
S

qv · ndSdτ

and the error

T (Ā− Āh) =

∫ T

0

∫
S

(q − qh)v · ndSdτ +
∫ T

0

∫
S

qh(v − vh2) · ndSdτ. (7.5)

Also assume that S ⊂ ∂Ω. Denote these error terms as Ē1 and Ē2 respectively.

Let us demonstrate duality approach by estimating the error term Ē1 first. First, write

the variational formulation for the wave equation, using integration both in space and time.

If v denotes a test function, then∫ T

0

(
∂2q

∂t2
, v

)
+ a20

∫ T

0

(∇q,∇v) + a0

∫ T

0

⟨
∂q

∂t
, v

⟩
=

=a20

∫ T

0

(R +
1

a20
G, v)Ω1 + a20

∫ T

0

< g, v > .
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Integration by parts in time gives(
∂q

∂t
(T ), v(T )

)
−
(
∂q

∂t
(0), v(0)

)
−
(
∂v

∂t
(T ), q(T )

)
+

(
∂v

∂t
(0), q(0)

)
+

∫ T

0

(
∂2v

∂t2
, q

)
+

+a20

∫ T

0

(∇q,∇v) + a0 < q(T ), v(T ) > −a0 < q(0), v(0) > −a0
∫ T

0

⟨
q,
∂v

∂t

⟩
=

= a20

∫ T

0

(R +
1

a20
G, v)Ω1 + a20

∫ T

0

< g, v > .

The initial data is given:

q(0, ·) = q1(·),
∂q

∂t
(0, ·) = q2(·)

and thus(
∂q

∂t
(T ), v(T )

)
−
(
∂v

∂t
(T ), q(T )

)
+

∫ T

0

(
∂2v

∂t2
, q

)
+ a20

∫ T

0

(∇q,∇v)− a0

∫ T

0

⟨
q,
∂v

∂t

⟩
+

+a0 < q(T ), v(T ) >= a20

∫ T

0

(R +
1

a20
G, v)Ω1 + (q2, v(0))−

(
∂v

∂t
(0), q1

)
+

+a0 < q1, v(0) > +a20 < g, v > .

Consider function ψ by the formula

ψ(t,x) =

 v · n, if x ∈ S,

0, if x ∈ ∂Ω/S.

The weak formulation for the dual problem with unknown function q̃ will be(
∂v

∂t
(T ), q̃(T )

)
−
(
∂q̃

∂t
(T ), v(T )

)
+

∫ T

0

(
∂2q̃

∂t2
, v

)
+ a20

∫ T

0

(∇q̃,∇v)−

−a0
∫ T

0

⟨
v,
∂q̃

∂t

⟩
+ a0 < q̃(T ), v(T ) >= a20

∫ T

0

⟨ψ, v⟩ .

In order to get rid of the terms at final time T , we may reduce this formulation to the

following point-wise problem:

q̃tt − a20∆q̃ = 0, on Ω× (0, T ),

q̃(T, ·) = 0, on Ω,

q̃t(T, ·) = 0, on Ω,

∇q̃ · n− 1
a0
q̃t = ψ, on ∂Ω× (0, T ).

(7.6)
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and so ∫ T

0

(
∂2q̃

∂t2
, v

)
+ a20

∫ T

0

(∇q̃,∇v)− a0

∫ T

0

⟨
v,
∂q̃

∂t

⟩
= a20

∫ T

0

⟨ψ, v⟩ .

Next we present the stability lemma which will be needed for the error analysis.

Lemma 21. Let v ∈ L2(0, T ;H1(Ω)). Then the variational solution of the dual problem is

stable in the following sense:∥∥∥∥∂q̃∂t
∥∥∥∥
L∞(L2(Ω))

+ a0∥∇q̃∥L∞(L2(Ω)) 6 a
3
2
0 ∥v · n∥L2(L2(S)).

Proof. The change of time variable τ = T − t will give us the problem∫ T

0

(
∂2q̃

∂τ 2
, v

)
+ a20

∫ T

0

(∇q̃,∇v) + a0

∫ T

0

⟨
v,
∂q̃

∂τ

⟩
= a20

∫ T

0

⟨ψ, v⟩ .

Set v = ∂q̃
∂τ
.

1

2

(∥∥∥∥∂q̃∂τ
∥∥∥∥2
τ=T

−
∥∥∥∥∂q̃∂τ

∥∥∥∥2
τ=0

)
+

1

2
a20(∥∇q̃∥2τ=T − ∥∇q̃∥2τ=0) + a0

∫ T

0

∣∣∣∣∂q̃∂τ
∣∣∣∣2 =

= a20

∫ T

0

⟨
ψ,
∂q̃

∂τ

⟩
.

Since we have homogeneous conditions at time t = T , or τ = 0, we can simplify the equation:∥∥∥∥∂q̃∂τ
∥∥∥∥2
τ=T

+ a20∥∇q̃∥2τ=T + 2a0

∫ T

0

∣∣∣∣∂q̃∂τ
∣∣∣∣2 = 2a20

∫ T

0

⟨
ψ,
∂q̃

∂τ

⟩
.

Bound the RHS using Young’s inequality as shown below⟨
ψ,
∂q̃

∂τ

⟩
6 a0

4
|ψ|2 + 1

a0

∣∣∣∣∂q̃∂τ
∣∣∣∣2 .

This results in cancelling the boundary term with the time derivative:∥∥∥∥∂q̃∂τ
∥∥∥∥2
τ=T

+ a20∥∇q̃∥2τ=T 6 a30
2

∫ T

0

|ψ|2 = a30
2
∥v · n∥2L2(0,T ;L2(S)).

Extracting the square root out of both sides and using the fact that |a|+ |b| 6
√
2 ·

√
a2 + b2,

we obtain the formulation of the theorem.

Remark 22. The analogous stability result may be obtained for the FEM solution q̃h of the

dual problem, if we use the same space Mm
0 (Ω) of piecewise polynomials as for the original

problem.
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Proceeding with the error analysis, set test function v = q− qh in the variational formu-

lation of the dual problem:

a20

∫ T

0

⟨ψ, q − qh⟩ =
∫ T

0

(
∂2q̃

∂t2
, q − qh

)
+ a20

∫ T

0

(∇q̃,∇(q − qh))− a0

∫ T

0

⟨
q − qh,

∂q̃

∂t

⟩
.

The LHS is exactly a20Ē1. Let us integrate by parts again:

a20

∫ T

0

⟨ψ, q − qh⟩ =

=

∫ T

0

(
∂2(q − qh)

∂t2
, q̃

)
+

(
q̃(0),

∂(q − qh)

∂t
(0)

)
+ a20

∫ T

0

(∇q̃,∇(q − qh))−

−
(
∂q̃

∂t
(0), (q − qh)(0)

)
+ a0 ⟨(q − qh)(0), q̃(0)⟩+ a0

∫ T

0

⟨
∂(q − qh)

∂t
, q̃

⟩
.

Let vh be some arbitrary test function from the approximating spaceMm
0 (Ω). Then Galerkin

orthogonality gives

a20

∫ T

0

⟨ψ, q − qh⟩ =
∫ T

0

(
∂2(q − qh)

∂t2
, q̃ − vh

)
+

(
q̃(0),

∂(q − qh)

∂t
(0)

)
−

−
(
∂q̃

∂t
(0), (q − qh)(0)

)
+ a20

∫ T

0

(∇(q̃ − vh),∇(q − qh)) + a0 ⟨(q − qh)(0), q̃(0)⟩+

+a0

∫ T

0

⟨
∂(q − qh)

∂t
, q̃ − vh

⟩
+ a20

∫ T

0

(Q−Qh1 , vh)Ω1 .

The next step will be the integration by parts of the second derivative term once:

a20

∫ T

0

⟨ψ, q − qh⟩ =
(
∂(q − qh)

∂t
(T ), q̃(T )− vh(T )

)
−
(
∂(q − qh)

∂t
(0), q̃(0)− vh(0)

)
−

−
∫ T

0

(
∂(q − qh)

∂t
,
∂(q̃ − vh)

∂t

)
+

(
q̃(0),

∂(q − qh)

∂t
(0)

)
−
(
∂q̃

∂t
(0), (q − qh)(0)

)
+

+a20

∫ T

0

(∇(q̃ − vh),∇(q − qh)) + a0 ⟨(q − qh)(0), q̃(0)⟩+ a0

∫ T

0

⟨
∂(q − qh)

∂t
, q̃ − vh

⟩
+

+a20

∫ T

0

(Q−Qh1 , vh)Ω1 .

Let vh = q̃h be the FEM solution for q̃. We assume that at time t = T q̃h and ∂q̃h
∂t

are chosen

to be the H1-projections of the corresponding functions, just as in case of qh and ∂qh
∂t

being
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H1-projections of exact functions at time t = 0. This implies that the first term in the RHS

is zero since q̃(T ) = 0 and H1-projection of zero function is also zero. Finally, we have

a20

∫ T

0

⟨ψ, q − qh⟩ =
(
∂(q − qh)

∂t
(0), q̃h(0)

)
−
∫ T

0

(
∂(q − qh)

∂t
,
∂(q̃ − q̃h)

∂t

)
− (7.7)

−
(
∂q̃

∂t
(0), (q − qh)(0)

)
+ a20

∫ T

0

(∇(q̃ − q̃h),∇(q − qh)) + a0 ⟨(q − qh)(0), q̃(0)⟩+

+a0

∫ T

0

⟨
∂(q − qh)

∂t
, q̃ − q̃h

⟩
+ a20

∫ T

0

(Q−Qh1 , q̃h)Ω1 .

Now we must bound optimally each term on the RHS.

Definition 23. Let r ∈ R and r > 0. Then ]r[ denotes the smallest possible integer s ∈ N

with a property s > r.

Theorem 24. Assume the initial data satisfies

q(0, ·) ∈ Hk(Ω),
∂q

∂t
(0, ·) ∈ Hk(Ω),

where integer k satisfies 2 6 k 6 m. Also let qh(0, ·), ∂qh
∂t

(0, ·) be H1-projections of the initial

data. If the exact solution q and the solution q̃ of the dual problem (7.6) satisfy regularity

conditions

q, q̃ ∈ L∞(0, T ;H] k2 [+1(Ω)),

∂q

∂t
,
∂q̃

∂t
∈ L∞(0, T ;H] k2 [+1(Ω)),

∂2q

∂t2
,
∂2q̃

∂t2
∈ L2(0, T ;H] k2 [+1(Ω)),

then

Ē1 6 C(hk + h]
k
2 [−

1
2∥Q−Qh1∥L2(L2(Ω1)) + ∥Q−Qh1∥L1(H−1(Ω1)))

with some positive constant C independent of h.
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Proof. Using stability lemma, for the first term of (7.7) we obtain

∣∣∣∣(∂(q − qh)

∂t
(0), q̃h(0)

)∣∣∣∣ 6 ∥∥∥∥∂(q − qh)

∂t
(0)

∥∥∥∥
H−1(Ω)

· ∥q̃h(0)∥H1(Ω) 6 Chk+1.

Next, in the same manner,

∣∣∣∣(∂q̃∂t (0), (q − qh)(0)

)∣∣∣∣ 6 ∥∥∥∥∂q̃∂t (0)
∥∥∥∥ · ∥(q − qh)(0)∥ 6 Chk,

a0 |⟨(q − qh)(0), q̃(0)⟩| 6 C∥(q − qh)(0)∥H− 1
2 (∂Ω)

· ∥q̃(0)∥H1(Ω) 6 Chk.

For the integral terms, using Theorem (11), we obtain:

∣∣∣∣∫ T

0

(
∂(q − qh)

∂t
,
∂(q̃ − q̃h)

∂t

)∣∣∣∣ 6 C

∥∥∥∥∂(q − qh)

∂t

∥∥∥∥
L∞(L2(Ω))

·
∥∥∥∥∂(q̃ − q̃h)

∂t

∥∥∥∥
L∞(L2(Ω))

6

6 C(h2]
k
2 [+2 + h]

k
2 [+1∥Q−Qh1∥L2(L2(Ω1))),

a20

∣∣∣∣∫ T

0

(∇(q̃ − q̃h),∇(q − qh))

∣∣∣∣ 6 C∥∇(q̃ − q̃h)∥L∞(L2(Ω)) · ∥∇(q − qh)∥L∞(L2(Ω)) 6

6 C(h2]
k
2 [ + h]

k
2 [∥Q−Qh1∥L2(L2(Ω1))),

a0

∣∣∣∣∫ T

0

⟨
∂(q − qh)

∂t
, q̃ − q̃h

⟩∣∣∣∣ 6 C

∫ T

0

∥∥∥∥∂(q − qh)

∂t

∥∥∥∥
H− 1

2 (∂Ω)

· ∥q̃ − q̃h∥L∞(H1(Ω)) 6

6 Ch]
k
2 [
∥∥∥∥∂(q − qh)

∂t

∥∥∥∥
L1(H− 1

2 (∂Ω))

6 C(h2]
k
2 [+

1
2 + h]

k
2 [−

1
2∥Q−Qh1∥L2(L2(Ω1))),

and finally

∣∣∣∣a20 ∫ T

0

(Q−Qh1 , q̃h)Ω1

∣∣∣∣ 6 C∥Q−Qh1∥L1(H−1(Ω1)) · ∥q̃h∥L∞(H1(Ω)).

Therefore, the total rate of convergence for Ē1 is given by

Ē1 6 C(hk + h]
k
2 [−

1
2∥Q−Qh1∥L2(L2(Ω1)) + ∥Q−Qh1∥L1(H−1(Ω1))). (7.8)
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To obtain the bound for Ē2 it is necessary to formulate and solve a variational problem

for v. The equation for v will be as (1.12):

∂2v

∂t2
− a20∇(∇ · v) =

 0, in the far field Ω/Ω1,

∂
∂t
(−∇ · (u⊗ u) + f + ν∆u)− 1

a20ρ0

∂
∂t
G1, in Ω1,

(7.9)

with initial conditions

v(0, x) = v1(x),
∂v

∂t
(0, x) = v2(x).

Here G1 is such control function that ∇ ·G1 = G. The boundary conditions are

∂v

∂t
· n+ a0∇ · v = − 1

ρ0
g, on ∂Ω× (0, T ).

The variational formulation for this problem will be as follows. Assume

∂

∂t
(−∇ · (u⊗ u) + f + ν∆u− 1

a20ρ0
G1) ∈ L2(0, T ;L2(Ω1)),v(0, ·) ∈ Hdiv(Ω),

∂v

∂t
(0, ·) ∈ L2(Ω), g ∈ L2(0, T ;L2(∂Ω)).

Find v ∈ L2(0, T ;Hdiv(Ω)) such that ∂v
∂t

∈ L2(0, T ;Hdiv(Ω)) and
∂2v
∂t2

∈

L2(0, T ;L2(Ω)) and which satisfies(
∂2v

∂t2
,w

)
+ a20(∇ · v,∇ ·w) + a0

⟨
∂v

∂t
· n,w · n

⟩
= (7.10)

=
1

ρ0

(
∂

∂t
F,w

)
− a0
ρ0

< g,w · n >

for ∀w ∈ Hdiv(Ω), 0 < t < T,

(v(0, ·),w) = (v1(·),w) ∀w ∈ Hdiv(Ω),(
∂v

∂t
(0, ·),w

)
= (v2(·),w) ∀w ∈ Hdiv(Ω).

Construct a space Mm2
0 (Ω) of vector continuous piecewise polynomials of degree no more

than m2 − 1, where m2 > 2 is an integer. The mesh has a characteristic size h2 < 1. The

FEM semidiscrete formulation is as follows. Assume

∂

∂t
(f − 1

a20ρ0
G1) ∈ L2(0, T ;L2(Ω1)), g ∈ L2(0, T ;L2(∂Ω)).
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Find a twice differentiable map vh2 : [0, T ] →Mm2
0 (Ω) such that

(
∂2vh2

∂t2
,wh2

)
+ a20(∇ · vh2 ,∇ ·wh2) + a0

⟨
∂vh2

∂t
· n,wh2 · n

⟩
= (7.11)

=
1

ρ0

(
∂

∂t
Fh1 ,wh2

)
− a0
ρ0

< g,wh2 · n >

for ∀wh2 ∈Mm2
0 (Ω), 0 < t < T,

(vh2(0, ·),wh2) = (v1(·),wh2) ∀wh2 ∈Mm2
0 (Ω),(

∂vh2

∂t
(0, ·),wh2

)
= (v2(·),wh2) ∀wh2 ∈Mm2

0 (Ω).

Definition 25. Let vector function u ∈ Hdiv(Ω). Then its Hdiv-projection û is defined by

the formula

a20(∇ · û,∇ ·wh2) + (û,wh2) = a20(∇ · u,∇ ·wh2) + (u,wh2), ∀ wh2 ∈Mm2
0 (Ω).

Assume u ∈ H l(Ω), with m2 > l > 2. Then

∥u− û∥1 6 Chl−1
2 · ∥u∥l. (7.12)

Theorem 26. Let the solution v of (7.10) satisfy conditions: v, ∂v
∂t

∈ L∞(H l(Ω)) and

∂2v
∂t2

∈ L2(H l(Ω)) for some positive integer l, m2 > l > 2. Let the inital conditions be the

Hdiv-projections of the corresponding initial functions:

vh2(0, ·) = v̂(0, ·), ∂vh2

∂t
(0, ·) = ∂v̂

∂t
(0, ·).

Then the solution of (7.11) satisfies:

∥v − vh2∥L∞(Hdiv(Ω)) +

∥∥∥∥ ∂∂t(v − vh2)

∥∥∥∥
L∞(L2(Ω))

6 C

(
hl−1
2 +

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

)

with some constant C > 0 independent of h2.
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Proof. The equation for the error has the form(
∂2e

∂t2
,wh2

)
+ a20(∇ · e,∇ ·wh2) + a0

⟨
∂e

∂t
· n,wh2 · n

⟩
=

1

ρ0

(
∂

∂t
(F− Fh1),wh2

)
Ω1

.

Decompose the error e = v − vh2 = e1 + e2, where e1 = v − v̂ and e2 = v̂ − vh2 . Notice

that e2 ∈Mm2
0 (Ω). It is obvious that(

∂2e2
∂t2

,wh2

)
+ a20(∇ · e2,∇ ·wh2) + a0

⟨
∂e2
∂t

· n,wh2 · n
⟩

= −a20(∇ · e1,∇ ·wh2)−

−
(
∂2e1
∂t2

,wh2

)
+

1

ρ0

(
∂

∂t
(F− Fh1),wh2

)
Ω1

− a0

⟨
∂e1
∂t

· n,wh2 · n
⟩
.

Using the definition of the Hdiv-projection, we obtain(
∂2e2
∂t2

,wh2

)
+ a20(∇ · e2,∇ ·wh2) + a0

⟨
∂e2
∂t

· n,wh2 · n
⟩

=

(
e1 −

∂2e1
∂t2

,wh2

)
+

+
1

ρ0

(
∂

∂t
(F− Fh1),wh2

)
Ω1

− a0

⟨
∂e1
∂t

· n,wh2 · n
⟩
.

Next we use energy method by setting wh2 =
∂e2
∂t

.

1

2

d

dt

∥∥∥∥∂e2∂t
∥∥∥∥2 + a20

1

2

d

dt
∥∇ · e2∥2 + a0

∣∣∣∣∂e2∂t · n
∣∣∣∣2 = 1

ρ0

(
∂

∂t
(F− Fh1),

∂e2
∂t

)
Ω1

+

+

(
e1 −

∂2e1
∂t2

,
∂e2
∂t

)
− a0

⟨
∂e1
∂t

· n, ∂e2
∂t

· n
⟩
.

Using the fact that (a, b) 6 1
2ϵ
∥a∥2+ ϵ

2
∥b∥2 for any inner product (·, ·) and any ϵ > 0, we can

get

d

dt

(∥∥∥∥∂e2∂t
∥∥∥∥2 + a20 ∥∇ · e2∥2

)
6 1

ρ0

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥2
Ω1

+
1

ρ0

∥∥∥∥∂e2∂t
∥∥∥∥2 +

2∥e1∥2 + 2

∥∥∥∥∂2e1∂t2

∥∥∥∥2 + ∥∥∥∥∂e2∂t
∥∥∥∥2 + a0

2

∣∣∣∣∂e1∂t · n
∣∣∣∣2 .

Add
d

dt
∥e2∥2 6

(∥∥∥∥∂e2∂t
∥∥∥∥2 + ∥e2∥2

)
to the previous inequality:

d

dt

(∥∥∥∥∂e2∂t
∥∥∥∥2 + ∥e2∥2 + a20 ∥∇ · e2∥2

)
6 1

ρ0

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥2
Ω1

+

(
2 +

1

ρ0

)∥∥∥∥∂e2∂t
∥∥∥∥2+
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+∥e2∥2 + 2∥e1∥2 + 2

∥∥∥∥∂2e1∂t2

∥∥∥∥2 + a0
2

∣∣∣∣∂e1∂t · n
∣∣∣∣2 .

Integrate assuming that initial data is approximated via Hdiv-projection.∥∥∥∥∂e2∂t
∥∥∥∥2 + ∥e2∥2 + a20 ∥∇ · e2∥2 6

(
2 +

1

ρ0

)∫ t

0

(∥∥∥∥∂e2∂t
∥∥∥∥2 + ∥e2∥2

)
dτ+

+
1

ρ0

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥2
L2(L2(Ω1))

+ 2∥e1∥2L2(L2(Ω))+

+2

∥∥∥∥∂2e1∂t2

∥∥∥∥2
L2(L2(Ω))

+
a0
2
C2

tr

∥∥∥∥∂e1∂t
∥∥∥∥2
L2(H1(Ω))

,

where Ctr denotes the constant from the trace theorem. Applying Gronwall’s lemma and

extracting the square root of both sides yield∥∥∥∥∂e2∂t
∥∥∥∥
L∞(L2(Ω))

+ ∥e2∥L∞(Hdiv(Ω)) 6

C

(∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

+ ∥e1∥L2(L2(Ω)) +

∥∥∥∥∂2e1∂t2

∥∥∥∥
L2(L2(Ω))

+

∥∥∥∥∂e1∂t
∥∥∥∥
L2(H1(Ω))

)
with some constant C = C(T ) growing exponentially fast. This implies, due to the triangle

inequality, that ∥∥∥∥∂e∂t
∥∥∥∥
L∞(L2(Ω))

+ ∥e∥L∞(Hdiv(Ω)) 6

C

(∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

+ ∥e1∥L∞(Hdiv(Ω)) +

∥∥∥∥∂2e1∂t2

∥∥∥∥
L2(L2(Ω))

+

∥∥∥∥∂e1∂t
∥∥∥∥
L∞(H1(Ω))

)
.

Using (7.12), we obtain the statement of the theorem.

In order to estimate Ē2 it is necessary to formulate a corresponding dual problem. Simi-

larly to the case with Ē1, the pointwise dual problem with unknown function ṽ has the form



ṽtt − a20∇(∇ · ṽ) = 0, on (0, T )× Ω,

ṽ(T, ·) = 0, on Ω,

ṽt(T, ·) = 0, on Ω,

∇ · ṽ − 1
a0
ṽt · n = ξ, on (0, T )× ∂Ω,

(7.13)
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where

ξ(t,x) =

 qh, if x ∈ S,

0, if x ∈ ∂Ω/S.

The equation in the weak form will be∫ T

0

(
∂2ṽ

∂t2
,w

)
+ a20

∫ T

0

(∇ · ṽ,∇ ·w)− a0

∫ T

0

⟨
w · n, ∂ṽ

∂t
· n
⟩

= a20

∫ T

0

⟨ξ,w · n⟩ .

Next we present a stability lemma similar to Lemma 21. Its proof resembls that of Lemma

21.

Lemma 27. The variational solution of the dual problem is stable and the following inequal-

ity holds: ∥∥∥∥∂ṽ∂t
∥∥∥∥
L∞(0,T ;L2(Ω))

+ a0∥∇ · ṽ∥L∞(0,T ;L2(Ω)) 6 a
3
2
0 ∥qh∥L2(0,T ;L2(S)).

Remark 28. The same stability result holds for the approximate solution ṽh2.

We will follow the same ideas as those used for obtaining the estimate for the error Ē1.

Integrating the second derivative term by parts twice and then setting w = v − vh2 lead to

a20

∫ T

0

⟨ξ, (v − vh2) · n⟩ =

=

∫ T

0

(
∂2(v − vh2)

∂t2
, ṽ

)
+ a20

∫ T

0

(∇ · ṽ,∇ · (v − vh2)) + a0

∫ T

0

⟨
ṽ · n, ∂(v − vh2)

∂t
· n
⟩
+

+

(
ṽ(0),

∂(v − vh2)

∂t
(0)

)
−
(
(v − vh2)(0),

∂ṽ

∂t
(0)

)
+ a0 < ṽ(0) · n, (v − vh2)(0) · n > .

Next use Galerkin orthogonality with a test function wh2 :

a20

∫ T

0

⟨ξ, (v − vh2) · n⟩ =

=

∫ T

0

(
∂2(v − vh2)

∂t2
, ṽ −wh2

)
+ a20

∫ T

0

(∇ · (ṽ −wh2),∇ · (v − vh2))+

+a0

∫ T

0

⟨
(ṽ −wh2) · n,

∂(v − vh2)

∂t
· n
⟩
+

1

ρ0

∫ T

0

(
∂

∂t
(Fh1 − F),wh2

)
Ω1

−

−
(
(v − vh2)(0),

∂ṽ

∂t
(0)

)
+ a0 < ṽ(0) · n, (v − vh2)(0) · n > +

(
ṽ(0),

∂(v − vh2)

∂t
(0)

)
.
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Let wh2 = ṽh2 be the FEM solution for ṽ in the space Mm2
0 (Ω). We assume that at time

t = T the solution ṽh2 is an Hdiv-projection of the exact solution ṽ, i.e. it is zero. The same

goes for
∂ṽh2

∂t
(T, ·) since it is an Hdiv-projection of ∂ṽ

∂t
(T, ·) = 0. Then finally

a20

∫ T

0

⟨ξ, (v − vh2) · n⟩ =
(
∂(v − vh2)

∂t
(0), ṽh2(0)

)
−
(
(v − vh2)(0),

∂ṽ

∂t
(0)

)
+

+a0 ⟨ṽ(0) · n, (v − vh2)(0) · n⟩ −
∫ T

0

(
∂(v − vh2)

∂t
,
∂(ṽ − ṽh2)

∂t

)
+

+a20

∫ T

0

(∇ · (ṽ − ṽh2),∇ · (v − vh2)) + a0

∫ T

0

⟨
(ṽ − ṽh2) · n,

∂(v − vh2)

∂t
· n
⟩
+

+
1

ρ0
((F− Fh1)(0), ṽh2(0))Ω1

+
1

ρ0

∫ T

0

(
F− Fh1 ,

∂ṽh2

∂t

)
Ω1

.

Now we have to estimate each term separately.

Theorem 29. Assume the initial data satisfies

v(0, ·) ∈ H l(Ω),
∂v

∂t
(0, ·) ∈ H l(Ω),

where integer l satisfies 2 6 l 6 m2. Also let vh2(0, ·),
∂vh2

∂t
(0, ·) be Hdiv-projections of the

initial data. If the exact solution v and the solution ṽ of the dual problem (7.13) satisfy

regularity conditions

v, ṽ ∈ L∞(0, T ;H] l2 [+1(Ω)),

∂v

∂t
,
∂ṽ

∂t
∈ L∞(0, T ;H] l2 [+1(Ω)),

∂2v

∂t2
,
∂2ṽ

∂t2
∈ L2(0, T ;H] l2 [+1(Ω)),

then

Ē2 6 C(hl−1
2 + h

] l2 [−1

2

∥∥∥∥ ∂∂t(Fh1 − F)

∥∥∥∥
L2(L2(Ω1))

+ ∥F− Fh1∥L1(L2(Ω1)) +

+∥(Fh1 − F)(0, ·)∥)

with some positive constant C independent of h2.
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Proof. For each term we have estimates∣∣∣∣(∂(v − vh2)

∂t
(0), ṽh2(0)

)∣∣∣∣ 6 ∥∥∥∥∂(v − vh2)

∂t
(0)

∥∥∥∥ · ∥ṽh2(0)∥ 6 Chl2,∣∣∣∣((v − vh2)(0),
∂ṽ

∂t
(0)

)∣∣∣∣ 6 ∥(v − vh2)(0)∥ ·
∥∥∥∥∂ṽ∂t (0)

∥∥∥∥ 6 Chl2,

a0 |⟨ṽ(0) · n, (v − vh2)(0) · n⟩| 6 C∥∇ · ṽ(0)∥ · ∥(v − vh2)(0)∥1 6 Chl−1
2 ,∣∣∣∣∫ T

0

(
∂(v − vh2)

∂t
,
∂(ṽ − ṽh2)

∂t

)∣∣∣∣ 6
6 C

∥∥∥∥∂(v − vh2)

∂t

∥∥∥∥
L∞(L2(Ω))

·
∥∥∥∥∂(ṽ − ṽh2)

∂t

∥∥∥∥
L∞(L2(Ω))

6

6 C

(
h
2] l2 [
2 + h

] l2 [
2

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

)
,

a20

∣∣∣∣∫ T

0

(∇ · (ṽ − ṽh2),∇ · (v − vh2))

∣∣∣∣ 6 C∥ṽ − ṽh2∥L∞(Hdiv(Ω)) · ∥v − vh2∥L∞(Hdiv(Ω)) 6

6 C

(
h
2] l2 [
2 + h

] l2 [
2

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

)
,

a0

∣∣∣∣∫ T

0

⟨
(ṽ − ṽh2) · n,

∂(v − vh2)

∂t
· n
⟩∣∣∣∣ 6

6 C ∥ṽ − ṽh2∥L∞(Hdiv(Ω)) ·
∥∥∥∥∂(v − vh2)

∂t

∥∥∥∥
L∞(H1(Ω))

6

6 C

(
h
2] l2 [−1

2 + h
] l2 [−1

2

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

)
,∣∣∣∣ 1ρ0 ((F− Fh1)(0), ṽh2(0))Ω1

∣∣∣∣ 6 C∥(F− Fh1)(0)∥ · ∥ṽh2(0)∥.

Finally, ∣∣∣∣∣ 1ρ0
∫ T

0

(
F− Fh1 ,

∂ṽh2

∂t

)
Ω1

∣∣∣∣∣ 6 C∥F− Fh1∥L1(L2(Ω1)) ·
∥∥∥∥∂ṽh2

∂t

∥∥∥∥
L∞(L2(Ω))

.

The estimate for Ē2 will be

Ē2 6 C(hl−1
2 + h

] l2 [−1

2

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

+ ∥F− Fh1∥L1(L2(Ω1)) +

+∥(F− Fh1)(0)∥).
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Combining both estimates for E1 and E2, we obtain

|Ā− Āh| 6

6 C(hk + h]
k
2 [−

1
2∥Q−Qh1∥L2(L2(Ω1)) + ∥Q−Qh1∥L1(H−1(Ω1))+

+hl−1
2 + h

] l2 [−1

2

∥∥∥∥ ∂∂t(F− Fh1)

∥∥∥∥
L2(L2(Ω1))

+ ∥Fh1 − F∥L1(L2(Ω1)) + ∥(Fh1 − F)(0)∥).

We see that in term E1 the rate of convergence is dictated by hk whereas for the exact

formula approach the convergence is of order hk−1.

7.4 NUMERICAL EXPERIMENTS

In this section the results of computing the sound power in a two-dimensional simulation will

be presented. More specifically, we will compute the line integrals of the the sound intesity

multiplied by a fixed unit vector over certain straight line segments of the computational

domain. We will test both the exact formula method, section 7.1, and the duality method

requiring an additional scheme for the fluctuation of the velocity v, section 7.3. Our main

purpose is to obtain plots for the computed acoustic powers. The specific conditions of the

experiment are presented below.

The domains Ω1 and Ω are the circles of radiuses 0.33 and 1 respectively, and Ω1 is

embedded in Ω symetrically. A decaying flow, i.e. the one with no external forces, is taking

place in Ω1 and satisfies the no-slip boundary condition on ∂Ω1. Both the NSE and the wave

equation are non-dimensionalized and presented in Ω1 in the form

∂u

∂t
+ u · ∇u+∇p− 1

Re
∆u = 0,

∇ · u = 0,

M2∂
2q

∂t2
−∆q = ∇u : ∇ut,

and the last one is given with the boundary condition on ∂Ω

M
∂q

∂t
+∇q · n = 0.
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Here Reynolds number Re = 16 and Mach number M = 0.075. If r denotes the radius-

vector of the point in space and r denotes its magnitude, then we present the following

initial condition for the velocity:

u0 = 36.73 · (0.33− r) ·

0 −1

1 0

 · r.

This gives a rotational flow similar to the one presented on picture 3.

For all of the tests we construct a uniform mesh in Ω1 with h1 ≈ 0.0207. The Finite

Element used is Taylor-Hood element, i.e. the piecewise quadratics for the velocity and

piecewise linears for the pressure. This scheme satisfies the LBB-condition, [35], and is

second order accurate.

As a time-stepping scheme, we use the Stabilized Extrapolated Backward Euler Method,

same as in chapter 5, with parameter δ = 0.0075. The simulation is carried out from t = 0

to t = 0.6 with a constant time step ∆t = 0.0025. The examples of the computed velocity

and pressure fields are shown below on figures 9 and 10:

For both methods of sections 7.1 and 7.3 we use the second order in time scheme presented

in chapter 4 in order to compute the field of acoustic pressure q in Ω. The time step ∆t

is the same as for the NSE. For space discretization, piecewise quadratics are used on the

uniform mesh of size h ≈ 0.028. The initial conditions are set to be zero for both q(0, ·) and

qt(0, ·), i.e. qh,0 = 0 and qh,1 = 0. Three pictures of the pressure fluctuations are presented

below for time levels t = 0.2, 0.4, 0.6.

For the evaluation of the time integral from (7.2), the Trapezoidal Method is used. For

the duality argument, the scheme (7.11) is implemented with a second order time-stepping

algorithm.

The initial conditions of (7.11) must be chosen carefully for they cannot be arbitrary

once the initial conditions for qh are given. The conditions for the fluctuation of velocity are

to be found from

M2∂q

∂t
+∇ · v = 0,

∂v

∂t
+∇q = F,
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Vec Value

0

0.00470287

0.00940573

0.0141086

0.0188115

0.0235143

0.0282172

0.0329201

0.0376229

0.0423258

0.0470287

0.0517315

0.0564344

0.0611373

0.0658401

0.070543

0.0752459

0.0799487

0.0846516

0.0893545

Figure 9: The velocity field in Ω1 at time t = 0.3
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IsoValue

0.490939

0.491479

0.492019

0.49256

0.4931

0.49364

0.49418

0.49472

0.495261

0.495801

0.496341

0.496881

0.497422

0.497962

0.498502

0.499042

0.499582

0.500123

0.500663

0.501203

Figure 10: The pressure field in Ω1 at time t = 0.3
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IsoValue

-0.0480096

-0.0439598

-0.0412599

-0.03856

-0.0358601

-0.0331602

-0.0304603

-0.0277604

-0.0250605

-0.0223606

-0.0196607

-0.0169608

-0.0142609

-0.011561

-0.00886114

-0.00616124

-0.00346135

-0.000761455

0.00193844

0.00868817

Figure 11: The acoustic pressure field in Ω at time t = 0.2
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IsoValue

-0.0019952

-0.00179074

-0.00165443

-0.00151812

-0.00138182

-0.00124551

-0.0011092

-0.000972894

-0.000836587

-0.00070028

-0.000563973

-0.000427665

-0.000291358

-0.000155051

-1.87438e-005

0.000117563

0.000253871

0.000390178

0.000526485

0.000867253

Figure 12: The acoustic pressure field in Ω at time t = 0.4
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IsoValue

-0.000286422

-0.000194965

-0.000133993

-7.30213e-005

-1.20496e-005

4.8922e-005

0.000109894

0.000170865

0.000231837

0.000292808

0.00035378

0.000414752

0.000475723

0.000536695

0.000597667

0.000658638

0.00071961

0.000780582

0.000841553

0.000993982

Figure 13: The acoustic pressure field in Ω at time t = 0.6
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where F is zero in the far field Ω/Ω1 and

F = −∇ · (u⊗ u) +
1

Re
∆u ≡ −u · ∇u+

1

Re
∆u

in Ω1. vh,0 is set to 0. However, since qh,0 = 0, we have ∂v
∂t
(0, ·) = F(0, ·). The following

second-order approximating scheme is used for this condition:

vh,1 − vh,0

∆t
≡ vh,1

∆t
=

Fh1,0 + Fh1,1

2
,

i.e.

vh,1 = 0.5 ·∆t · (−uh1,0 · ∇uh1,0 +
1

Re
∆uh1,0 − uh1,1 · ∇uh1,1 +

1

Re
∆uh1,1). (7.14)

The sound power is computed for all time levels along two straight line segments, these are

with end points (0.34,−0.37), (0.34, 0.37) and (0.66,−0.37),(0.66, 0.37). The normal vector

n = (1, 0)t for both cases. The first line is almost tangent to the boundary ∂Ω1 but is still

in the far field. For the evaluation of the line integrals, we use the Midpoint Method, with

100 subintervals of length 0.0074 each. Additionally, the sound intensity is computed for all

time levels at the point (0.999, 1) in the same direction (1, 0)t.

The graphs of the sound power and intensity are shown on pictures 14, 15 and 17 from

t = 0 to 0.3. The blue and red curves present the cases of section 7.1 and 7.3 respectively.

The results show that graphs obtained by two methods are hardly different from each other.

We also present a zoomed version of the graphs for the case of the line segment at x = 0.66,

16. Note that the experiment was run both with and without the viscous term in the RHS

of (7.9) and (7.14), and the differences in the graphs appeared to be too small for a human

eye to see in the scales of the presented pictures. This proves that for this combination

of Reynolds and Mach numbers the viscous term plays no significant role in affecting the

acoustic intensity in the far field.

As we see on the graphs, the distance between zero and the elevation of the graph is the

time required for the acoustic waves to travel from the turbulent region to the specified line

or point in the far field. The following decay to zero is due to decay of the sound source in

Ω1.
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Figure 14: The sound power as a function of time along the line (0.34,−0.37)− (0.34, 0.37)
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Figure 15: The sound power as a function of time along the line (0.66,−0.37)− (0.66, 0.37)
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Figure 16: The sound power as a function of time along the line (0.66,−0.37)− (0.66, 0.37)
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Figure 17: The intensity as a function of time at (0.999, 0)
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The methods from 7.1 and 7.3 work well for a coarser mesh also. The picture 18 shows

the results of the experiment for h1 ≈ 0.052 and h ≈ 0.0785. The black and the blue graphs

belong to the sound power computed via the method of 7.1 on the fine ( the old one ) and

coarse mesh ( the new one ) respectively. The green and the red graphs are computed via

the method of 7.3 on the same meshes. We see that the graphs of each pair are very close

to each other.

Although this thesis has not covered a theory of fully discrete methods for computing

a sound power, it should be evident that time steps must be taken small since the recent

pictures show steep behavior of the graphs of the sound power. Indeed, the picture 19 below

shows that for the fine mesh and for ∆t = 0.01 oscillations start to occur. Moreover, the

highest position of the graph happens at t ≈ 0.09, whereas on 16 it is at t ≈ 0.05.

Finally, we present a graph of the time averaged intensity on the boundary from t = 0

to 0.4, using the argument of section 7.3. The graph is shown on the picture 20. It is

obvious that, as time continues increasing, the time averaged intensity drops to zero for this

experiment.
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Figure 18: The sound power on the fine and coarse mesh along (0.66,−0.37)− (0.66, 0.37)
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Figure 19: The sound power along (0.66,−0.37)− (0.66, 0.37) for ∆t = 0.01
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Figure 20: The time-averaged intensity as a function of time at (0.999, 0)
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8.0 LARGE EDDY SIMULATION IN AEROACOUSTICS

Several computational strategies in noise generation have been developed during the last

decades, among which the Large Eddy Simulation technique is recognized as being the most

promising for unsteady simulation of turbulent flows in complex realistic systems. Since

the full computation of all active scales which are present in a turbulent flow is far beyond

the capability of available supercomputers due to the required memory and computational

effort, LES introduced a scale-separation operator: scales smaller than the arbitrarily fixed

cutoff length scale are removed from the computation, allowing for the use of much coarser

computational grids and therefore tractable simulations for engineering purposes. Since gov-

erning equations of fluid mechanics are nonlinear ones and that turbulence is an intrisically

nonlinear multiscale phenomenon, the effect of missing small scales on the large simulated

scales must be taken into account. This is usually done adding a new term, referred to as a

subgrid model, in the governing equations. The reader is referred to specialized books for a

detailed introduction to LES [54, 55, 22].

While closing the Navier-Stokes equations for aerodynamics and combustion has received

a large attention since the 1960s, definition of subgrid models for other physical mechanisms

driven by turbulent fluctuations is still an almost open problem. This is true of noise gener-

ation by small scales in a turbulent flow, which has been addressed in very few papers only

[59, 60]. In these works, a scale-similarity strategy is used to obtain a model for small-scale

contribution, which can be interpreted as a low-order deconvolution method. This approach

has been extensively and successfully used to close momentum equations for aerodynamic

computations, and related mathematical analysis has been performed considering incom-

pressible momentum equations [10, 32]. On the other hand, mathematical analysis of scale-

similarity modeling for other physical mechanisms described by new governing equations,
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such as the Lighthill equation for turbulent noise production and acoustic wave propagation,

has not been addressed up to now. The goal of the present paper is to provide the reader

with such an analysis.

In this paper we will present the numerical analysis of the semidiscrete FEM for com-

puting the noise generated by a turbulent flow in a field with no walls using the filtered

Lighthill model. The starting point is the Lighthill analogy. While filtering the Lighthill

analogy, we neglect the so called unresolved scales that satisfy the condition l < δ, where δ

is the cut-off length scale, typically corresponding to the allowed computational mesh size.

For this purpose we will use the differential filter, [23], given by the condition

 ϕ− δ2∆ϕ = ϕ, on Ω1,

ϕ = ϕ, on ∂Ω1,

(8.1)

where ϕ means ’the filtered ϕ’, and Ω1 is the domain where both ϕ and ϕ are defined. Assume

that, as the flow approaches the boundary, its velocity, as well the external force are decaying

to zero so that in a neighborhood of the boundary ∂Ω1 of a size δ the flow is already reduced

to the rest state. In this case the condition u = 0 on ∂Ω1 ( and the filtered velocity of higher

orders ) is physically justified. Moreover, two filters such as defined by

 ϕ− δ2∆ϕ = ϕ, on Ω1,

ϕ = 0, on ∂Ω1,

and  ϕ− δ2∆ϕ = ϕ, on Ω,

ϕ = 0, on ∂Ω,

are equivalent for this class of functions ϕ, i.e. decaying as reaching the boundary ∂Ω1 and

being equal to zero on Ω/Ω1. This equivalence allows us to filter the Lighthill analogy whose

RHS is defined on the whole Ω, including both the turbulent region Ω1 and the far field.

While filtering over Ω, we are implicitly assuming that u is defined on the whole Ω and
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is zero in the far field. In this part of the thesis, we use notation p
′
for the real acoustic

pressure, since the letter q will be used as a filtered acoustic pressure. The filtering leads to

1

a20

∂2q

∂t2
−∆q = F1,

with q = p′ , F = f and

F1 =

 ρ0∇ · ∇ · (u⊗ u)− ρ0∇ · F on Ω1,

0 on Ω/Ω1.

The question of proper boundary conditions for the fluctuation of pressure q is a non-trivial

one and, in addition, depends on an application. We specifically choose the non-reflecting

boundary conditions of the first-order with a boundary control function g in the form

∇q · n+
1

a0

∂q

∂t
= 0 on ∂Ω.

Introducing the subrid scale tensor R = u⊗ u− u⊗ u, we can write the previous equation

as
1

a20

∂2q

∂t2
−∆q = ρ0∇ · ∇ · (u⊗ u) + ρ0∇ · ∇ · R− ρ0∇ · F. (8.2)

Note R is a symmetric tensor. More on the filtered Lighthill analogy may be found at

[59]. The term u ⊗ u is called the resolved Lighthill tensor. It is important to notice that

the variable u satisfies the exact filtered NSE. LES of the incompressible NSE requires that

some subgrid scale model be introduced and used during the computations. The new function

v ≈ u satisfies that model, and the more accurate the model is, the closer v to the original

u is. This variable v will be used in the first term of the RHS of (8.2) instead of u, and

since that point it is assumed that some model for the filetered NSE is already implemented.

Note that here the notation v is not related to the fluctuation of velocity used in chapter 7.

Next, since the incompressibility condition ∇·v = 0 follows from the original NSE, using

the idea of Lemma 3 from section 1.3, we further simplify the RHS of (8.2) so that we have

1

a20

∂2q

∂t2
−∆q = ρ0∇v : ∇vt + ρ0∇ · ∇ · R− ρ0∇ · F (8.3)

in Ω1.
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Since the subgrid scale tensor R contains the term u⊗ u, some model for R, containing

only the filtered variables, is required. We will present and numerically analyze two models.

For simplicity, we will preserve the same letter q in the wave equation, although we should

always keep in mind that it is not exactly p′ due to the inaccuracy of the used models. The

models are the zeroth order van Cittert deconvolution model and the Bardina subgrid scale

model and are given by the equations, respectively,

R = v ⊗ v − v ⊗ v (8.4)

and

R = v ⊗ v − v ⊗ v. (8.5)

Interestingly, for the filtered NSE and the filtered Lighthill analogy different subgrid scale

models may be used. Although Bardina model is not stable in the LES of the incompressible

NSE, it recovers fairly accurate results in terms of acoustic intensity, [59]. Using the definition

of the differential filter (8.1), we can conclude that

R− δ2∆R = ∆(v ⊗ v)

for (8.4). Denoting w = v, for (8.5) we get

 R− δ2∆R = δ2∆(w ⊗w) + v ⊗ v −w ⊗w,

w − δ2∆w = v.

Coupling these results with (8.3) for each model respectively, we obtain the closed problem

that can be studied numerically.
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8.1 THE ZEROTH ORDER VAN CITTERT MODEL

In Ω1 for any 0 < t < T we have


1
a20

∂q2

∂t2
−∆q = ρ0∇v : ∇vt + ρ0∇ · ∇ · R− ρ0∇ · F,

R− δ2∆R = δ2∆(v ⊗ v).

The boundary conditions are the following:

R = 0 ∀(t, x) ∈ (0, T )× ∂Ω1,

∇q · n+
1

a0

∂q

∂t
= g ∀(t, x) ∈ (0, T )× ∂Ω.

The system above is decoupled with respect to variables R and q. This means that first we

can solve the second equation for each time level t and then solve the first equation with R

known. The grids for the first and the second equation have characteristic sizes h < 1 and

h2 < 1 respectively ( we do not use index 1, since it is already used by the grid for solving

the NSE; moreover, it has no relation to the mesh for computing v in chapter 7). In order to

write the variational formulation, it is necessary to make regularity assumptions first. The

RHS of the first equation has the double divergence of R, so in order for the RHS to be of

L2(0, T ;L2(Ω1)), we can require that R ∈ L2(0, T ;H2(Ω1) ∩ H1
0 (Ω1)). This regularity of R

follows from the assumption that ∆(vivj) ∈ L2(0, T ;L2(Ω1)) for any pair i, j = 1, n. This

may be guaranteed by the condition vivj ∈ L2(0, T ;H2(Ω1)∩H1
0 (Ω1)) for any pair i, j = 1, n.

The last condition is satisfied if the following assumption is true about v:

v ∈ L4(0, T ;W 2,4(Ω1) ∩H1
0 (Ω1)). (8.6)

This is the weakest assumption that can be required. Stronger assumptions for practical

purposes could be

v ∈ L4(0, T ;L∞(Ω1) ∩H1
0 (Ω1)),∇v ∈ L4(0, T ;L4(Ω1)),∇∇v ∈ L4(0, T ;L2(Ω1)).
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The condition (8.6) is already sufficient for the term ρ0∇v : ∇vt to be in L2(L2(Ω1)). Refer

to chapter 3 for details. The variational formulation for the first equation is given by a

formula (
∂2q

∂t2
, v

)
+a20 (∇q,∇v) + a0

⟨
∂q

∂t
, v

⟩
=

= a20ρ0
(
∇ · ∇ · R+∇v : ∇vt −∇ · F, v

)
Ω1

+ a20 < g, v > .

(8.7)

with v being a scalar test function on the whole domain Ω.

The variational formulation for the second equation is as follows. Let v ∈ L4(0, T ;W 1,4(Ω1)∩

H1
0 (Ω1)). For all pairs i, j = 1, n find Rij ∈ L2(0, T ;H1

0 (Ω1)) such that

(Rij, v̂) + δ2(∇Rij,∇v̂) = −δ2(∇(vivj),∇v̂) ∀v̂ ∈ H1
0 (Ω1), 0 < t < T. (8.8)

We can easily obtain the stability result by setting v̂ = Rij. Then

∥Rij∥2 + δ2∥∇Rij∥2 = −δ2(∇(vivj),∇Rij) 6 δ2∥∇(vivj)∥ · ∥∇Rij∥.

There follows

∥Rij∥1 6 max(1, δ2)∥∇(vivj)∥.

Using the product differentiation rule and Holder’s inequality we obtain

∥∇(vivj)∥ 6 ∥vi∇vj∥+ ∥vj∇vi∥ 6 C∥v∥L4(Ω1) · ∥∇v∥L4(Ω1) 6 C∥v∥2W 1,4(Ω1)
.

So the stability result is, after integration in time,

∥Rij∥L2(0,T ;H1
0 (Ω1)) 6 C1(δ)∥v∥2L4(0,T ;W 1,4(Ω1))

,

where

limδ→0+C1(δ) = C0 > 0 and limδ→+∞C1(δ) = +∞.

The Finite Element formulation will be as follows. For all i, j = 1, n find such map Rij,h2 :

[0, T ] →Mm2
00 (Ω1) that

(Rij,h2 , v̂h2) + δ2(∇Rij,h2 ,∇v̂h2) = −δ2(∇(vi,h1vj,h1),∇v̂h2) (8.9)

∀v̂h2 ∈Mm2
00 (Ω1), 0 < t < T.
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Theorem 30. Let Rij ∈ L2(0, T ;Hm2(Ω1) ∩H1
0 (Ω1)). Then

∥Rij −Rij,h2∥L2(0,T ;H1
0 (Ω1)) 6 C(δ)(hm2−1

2 + ∥∇(vivj − vi,h1vj,h1)∥L2(0,T ;L2(Ω1)))

with some positive constant C(δ) = C1 · (1 +
√
2 · max(δ−2, δ2)), where C1 > 0 and is

independent of both δ and h2.

Proof. Denoting eij = Rij −Rij,h2 , subtract (8.8) and (8.9) to get the error equation

(eij, v̂h2) + δ2(∇eij,∇v̂h2) = −δ2(∇(vivj − vi,h1vj,h1),∇v̂h2).

Decompose the error as eij = ηij + ψij, where ηij = Rij − R̂ij and ψij = R̂ij − Rij,h2 and

R̂ij ∈Mm2
00 (Ω1). Then we get

(ψij, v̂h2) + δ2(∇ψij,∇v̂h2) = −(ηij, v̂h2)− δ2(∇ηij,∇v̂h2)− δ2(∇(vivj − vi,h1vj,h1),∇v̂h2).

Since ψij ∈Mm2
00 (Ω1) we can set v̂h2 = ψij. This gives

∥ψij∥2 + δ2∥∇ψij∥2 6 ∥ηij∥ · ∥ψij∥+ δ2∥∇ηij∥ · ∥∇ψij∥+ δ2∥∇(vivj − vi,h1vj,h1)∥ · ∥∇ψij∥.

Thus

∥ψij∥1 6
√
2 ·max

(
δ−2, δ2

)
(∥ηij∥1 + ∥∇(vivj − vi,h1vj,h1)∥) ,

so

∥eij∥1 6
(
1 +

√
2 ·max

(
δ−2, δ2

))
(infR̂∈Mm2

00 (Ω1)
∥Rij − R̂∥1 + ∥∇(vivj − vi,h1vj,h1)∥).

Finally,

∥eij∥1 6 C(δ)(hm2−1
2 + ∥∇(vivj − vi,h1vj,h1)∥).

Here C(δ) is such that

limδ→0+C(δ) = +∞ and limδ→+∞C(δ) = +∞.
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Lemma 31. Let the velocity v ∈ L4(0, T ;W 1,4(Ω1) ∩H2(Ω1) ∩H1
0 (Ω1)). Also let the mesh

for Mm1
00 (Ω1), m1 > 2, used for computing vh1, be quasi-uniform and ∥v − vh1∥L4(0,T ;H1

0 (Ω1))

converge no slower than O(h
n
4
1 ). Then for any pair i, j = 1, n

∥∇(vivj − vi,h1vj,h1)∥L2(0,T ;L2(Ω1)) 6 C∥v − vh1∥L4(0,T ;W 1,4(Ω1)).

Proof. Regroup terms in the subtraction in the way shown:

∇(vivj − vi,h1vj,h1) = ∇(vi(vj − vj,h1)) +∇(vj,h1(vi − vi,h1)) =

= ∇vi · (vj − vj,h1) + vi · ∇(vj − vj,h1) +∇vj,h1 · (vi − vi,h1)) + vj,h1 · ∇(vi − vi,h1).

For all four terms the idea is to use Holder’s inequality. For example, for the first one

∥∇vi · (vj − vj,h1)∥ 6 C∥∇v∥L4(Ω1) · ∥v − vh1∥L4(Ω1).

For all four we obtain, using the triangle inequality for a norm,

∥∇(vivj − vi,h1vj,h1)∥ 6 C(∥v∥W 1,4(Ω1) + ∥vh1∥W 1,4(Ω1)) · ∥v − vh1∥W 1,4(Ω1).

What is left to show is boundness of ∥vh1∥L4(0,T ;W 1,4(Ω1)). The way to show it is using the

inverse inequality. Write

vh1 = vh1 + v − v + Ih1(v)− Ih1(v).

Then

∥vh1∥L4(0,T ;W 1,4(Ω1)) 6 ∥v∥L4(0,T ;W 1,4(Ω1)) + ∥v − Ih1(v)∥L4(0,T ;W 1,4(Ω1))+

+∥vh1 − Ih1(v)∥L4(0,T ;W 1,4(Ω1)).

The first two terms on the RHS are bounded. For the last one use the inverse estimate

∥vh1 − Ih1(v)∥W 1,4(Ω1) 6 h
−n

4
1 ∥vh1 − Ih1(v)∥1.

Decompose the last error as

∥vh1 − Ih1(v)∥1 6 ∥vh1 − v∥1 + ∥v − Ih1(v)∥1

The statement of the lemma follows immediately from convergence of these two terms.
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Remark 32. Let us require in the lemma that v ∈ L4(0, T ;W 1,∞(Ω1) ∩H l1(Ω1) ∩H1
0 (Ω1))

with 2 6 l1 6 m1 and convergence of ∥v − vh1∥L4(0,T ;H1
0 (Ω1)) be no slower than O(h

n
2
1 ). Also

let l1 > 3 if n = 3. Then we may obtain in the same manner as before that

∥∇(vivj − vi,h1vj,h1)∥L2(0,T ;L2(Ω1)) 6 C∥v − vh1∥L4(0,T ;H1
0 (Ω1))

for any pair i, j = 1, n.

Using the main convergence theorem 11, chapter 3, we can obtain

Theorem 33. Let the solution q satisfy the conditions: q, ∂q
∂t

∈ L∞(Hk(Ω)) and ∂2q
∂t2

∈

L2(Hk(Ω)) for some positive integer k. Assume the approximating space of continuous piece-

wise polynomials Mm
0 (Ω) is used and m > k > 2. If the initial conditions are taken so that

∥(qh − q̂)(0, ·)∥H1(Ω) +

∥∥∥∥ ∂∂t(qh − q̂)(0, ·)
∥∥∥∥ 6 C1h

k

with some posititve constant C1 independent of h, where q̂ means H1-projection of q, then

the solution qh satisfies:

∥q − qh∥L∞(L2(Ω)) +

∥∥∥∥ ∂∂t(q − qh)

∥∥∥∥
L∞(L2(Ω))

6

6 C
(
hk + ∥∇ · ∇ · ( R− Rh2)∥L2(L2(Ω1)) + ∥∇v : ∇vt −∇vh1 : ∇vt

h1
∥L2(L2(Ω1))

)
with some constant C > 0 independent of h.

Lemma 34. Let v ∈ L4(0, T ;W 1,4(Ω1)∩H1
0 (Ω1)) and Rij ∈ L2(0, T ;Hm2(Ω1)∩H1

0 (Ω1)) for

any pair i, j = 1, n. Then, if the mesh for Mm2
00 (Ω1) is quasi-uniform,

∥∇ · ∇ · (R− Rh2)∥L2(L2(Ω1)) 6 C(δ)(hm2−2
2 + h−1

2 ∥∇(vivj − vi,h1vj,h1)∥L2(L2(Ω1))).

Here C(δ) is the same as in Theorem 30, up to some constant positive factor independent of

both δ and h2.
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Proof. Obviously, ∥∇ · ∇ · (R− Rh2)∥ 6 C
∑n

i,j=1 ∥Rij −Rij,h2∥2. Further, for each pair i, j

∥Rij −Rij,h2∥2 6 ∥Rij − Ih2(Rij)∥2 + ∥Rij,h2 − Ih2(Rij)∥2,

where Ih2 is a piecewise polynomial interpolant into space Mm2
00 (Ω1). Then

∥Rij − Ih2(Rij)∥2 6 Chm2−2
2 ∥Rij∥m2 .

The inverse estimate for the second term gives

∥Rij,h2 − Ih2(Rij)∥2 6 h−1
2 ∥Rij,h2 − Ih2(Rij)∥1,

then

∥Rij,h2 − Ih2(Rij)∥1 6 ∥Rij − Ih2(Rij)∥1 + ∥Rij −Rij,h2∥1.

For the first term in the RHS,

∥Rij − Ih2(Rij)∥1 6 Chm2−1
2 ∥Rij∥m2 .

Using Theorem 30 in order to deal with the second term, we obtain

∥Rij −Rij,h2∥2 6 C(δ)(hm2−2
2 + h−1

2 ∥∇(vivj − vi,h1vj,h1)∥).
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8.2 BARDINA MODEL

In Ω1 for any 0 < t < T we have
1
a20

∂q2

∂t2
−∆q = ρ0∇ · ∇ · R+ ρ0∇v : ∇vt − ρ0∇ · F,

R− δ2∆R = δ2∆(w ⊗w) + v ⊗ v −w ⊗w,

w − δ2∆w = v.

The boundary conditions are:

w = 0 ∀(t, x) ∈ (0, T )× ∂Ω1,

R = 0 ∀(t, x) ∈ (0, T )× ∂Ω1,

∇q · n+
1

a0

∂q

∂t
= g ∀(t, x) ∈ (0, T )× ∂Ω.

As in the previous section, we need to make the regularity assumptions first. We are already

assuming that v ∈ L4(0, T ;W 1,4(Ω1) ∩ H1
0 (Ω1)). First, we can solve the third equation for

each time level t on the mesh of size h2 < 1, then solve the second equation with w known

on the mesh of size h3 < 1 and finally solve the first equation for q on the mesh of size h < 1.

The RHS of the first equation has the double divergence of R, so in order for the RHS to be

of L2(0, T ;L2(Ω1)), we can require that R ∈ L2(0, T ;H2(Ω1) ∩ H1
0 (Ω1)). This regularity of

R follows from the assumption that w ∈ L4(0, T ;W 2,4(Ω1) ∩H1
0 (Ω1)).

The variational formulation for the third equation starts with condition v ∈ L4(0, T ;H−1(Ω1)).

For all i = 1, n find wi ∈ L4(0, T ;H1
0 (Ω1)) such that

(wi, v̂) + δ2(∇wi,∇v̂) = (vi, v̂) ∀v̂ ∈ H1
0 (Ω1), 0 < t < T. (8.10)

We can easily obtain the stability result by setting v̂ = wi. Then

∥wi∥2 + δ2∥∇wi∥2 = (vi, wi) 6 ∥vi∥−1 · ∥wi∥1.

There follows

∥wi∥1 6 max

(
1,

1

δ2

)
∥vi∥−1.
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So the stability result is

∥w∥L4(0,T ;H1
0 (Ω1)) 6 C1(δ)∥v∥L4(0,T ;H−1(Ω1)),

where

limδ→0+C1(δ) = +∞ and limδ→+∞C1(δ) = C0 > 0.

The Finite Element formulation will be as follows. For all i = 1, n find such map wi,h2 :

[0, T ] →Mm2
00 (Ω1) that

(wi,h2 , v̂h2) + δ2(∇wi,h2 ,∇v̂h2) = (vi,h1 , v̂h2) ∀v̂h2 ∈Mm2
00 (Ω1), 0 < t < T. (8.11)

Theorem 35. Assume v ∈ L4(0, T ;H−1(Ω1)) and w ∈ L4(0, T ;Hm2(Ω1) ∩H1
0 (Ω1)). Then

∥w −wh2∥L4(0,T ;H1
0 (Ω1)) 6 C(δ)(hm2−1

2 + ∥v − vh1∥L4(0,T ;H−1(Ω1)))

with the same constant C(δ) as in Theorem 30, up to some constant positive factor indepen-

dent of both δ and h2.

Proof. The technical details resemble those from the proof of Theorem 30 so we omit them

here and get straight to inequality

∥wi − wi,h2∥1 6 C(δ)(infŵ∈Mm2
00 (Ω1)

∥wi − ŵ∥1 + ∥vi − vi,h1∥−1),

and so

∥wi − wi,h2∥1 6 C(δ)(hm2−1
2 + ∥vi − vi,h1∥−1).

Here C(δ) is such that

limδ→0+C(δ) = +∞ and limδ→+∞C(δ) = +∞.

Lemma 36. If n = 2, then

∥v − vh1∥L4(0,T ;H−1(Ω1)) 6 C(p)∥v − vh1∥L4(0,T ;Lp(Ω1)) ∀p, 1 < p <∞.

If n = 3, then

∥v − vh1∥L4(0,T ;H−1(Ω1)) 6 C∥v − vh1∥L4(0,T ;L
6
5 (Ω1))

.
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Proof. By definition,

∥v − vh1∥−1 = supv̂∈H1(Ω1)

(v − vh1 : v̂)

∥v̂∥1
.

The Holder’s inequality and then the Sobolev embedding for n = 2 give

(v − vh1 : v̂) 6 ∥v − vh1∥Lp(Ω1) · ∥v̂∥Lq(Ω1) 6 C∥v − vh1∥Lp(Ω1) · ∥v̂∥1,

where 1
p
+ 1

q
= 1 and 1 < q < ∞ strictly. Constant C depends on q, and we can write this

dependence in terms of p as C = C(p). Then it’s obvous that

∥v − vh1∥−1 6 C(p)∥v − vh1∥Lp(Ω1)

for any 1 < p <∞. If n = 3, then the Sobolev embedding gives

∥v̂∥Lq(Ω1) 6 C(p)∥v̂∥1

only for q 6 6. Set q = 6 and obtain the result of the lemma.

The variational formulation for the second equation will be as follows. Let v ∈ L4(0, T ;L4(Ω1))

and w ∈ L4(0, T ;W 1,4(Ω1) ∩ H1
0 (Ω1)). For all i, j = 1, n find Rij ∈ L2(0, T ;H1

0 (Ω1)) such

that

(Rij, v̂) + δ2(∇Rij,∇v̂) = −δ2(∇(wiwj),∇v̂) + (vivj − wiwj, v̂) (8.12)

∀v̂ ∈ H1
0 (Ω1), 0 < t < T.

The stability result follows from setting v̂ = Rij.

∥Rij∥2 + δ2∥∇Rij∥2 = −δ2(∇(wiwj),∇Rij) + (vivj − wiwj, Rij) 6

6 δ2∥∇(wiwj)∥ · ∥∇Rij∥+ ∥vivj − wiwj∥−1 · ∥Rij∥1.

There follows

∥Rij∥1 6 max

(
δ2,

1

δ2

)
(∥∇(wiwj)∥+ ∥vivj − wiwj∥−1) .

Holder’s inequality and integration in time help obtain

∥Rij∥L2(0,T ;H1
0 (Ω1)) 6 C(δ)

(
∥w∥2L4(0,T ;W 1,4(Ω1))

+ ∥vivj − wiwj∥L2(0,T ;H−1(Ω1))

)
,
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where

limδ→0+C1(δ) = +∞ and limδ→+∞C1(δ) = +∞.

The Finite Element formulation will be as follows. For all i, j = 1, n find such map Rij,h3 :

[0, T ] →Mm3
00 (Ω1) that

(Rij,h3 , v̂h3) + δ2(∇Rij,h3 ,∇v̂h3) = −δ2(∇(wi,h2wj,h2),∇v̂h3)+

+ (vi,h1vj,h1 − wi,h2wj,h2 , v̂h3)
(8.13)

∀v̂h3 ∈Mm3
00 (Ω1), 0 < t < T.

Theorem 37. Assume v ∈ L4(0, T ;L4(Ω1)), w ∈ L4(0, T ;W 1,4(Ω1) ∩ H1
0 (Ω1)) and Rij ∈

L2(0, T ;Hm3(Ω1) ∩H1
0 (Ω1)). Then

∥Rij −Rij,h3∥L2(0,T ;H1
0 (Ω1)) 6 C(δ)(hm3−1

3 + ∥vivj − vi,h1vj,h1∥L2(0,T ;H−1(Ω1))+

+∥wiwj − wi,h2wj,h2∥L2(0,T ;H1
0 (Ω1)))

with the same positive constant C(δ) as in Theorem 30, up to some constant positive factor

independent of both δ and h3.

Proof. Similarly to the proof of Theorem 30, obtain

∥Rij −Rij,h3∥1 6 C(δ)(infR̂∈Mm3
00 (Ω1)

∥Rij − R̂∥1 + ∥vivj − vi,h1vj,h1∥−1+

+∥wiwj − wi,h2wj,h2∥1),

or

∥Rij −Rij,h3∥1 6 C(δ)(hm3−1
3 + ∥vivj − vi,h1vj,h1∥−1 + ∥wiwj − wi,h2wj,h2∥1).

Here C(δ) is such that

limδ→0+C(δ) = +∞ and limδ→+∞C(δ) = +∞.

Similar to Lemma 31, we can obtain
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Lemma 38. Let w ∈ L4(0, T ;W 1,4(Ω1)∩H2(Ω1)∩H1
0 (Ω1)). Also let the mesh for Mm2

00 (Ω1),

m2 > 2, used for computing wh2 be quasi-uniform. If for a fixed p > 1 the error ∥v −

vh1∥L4(0,T ;Lp(Ω1)) converges no slower than O(h
1
2
2 ) for n = 2 or ∥v−vh1∥L4(0,T ;L

6
5 (Ω1))

converges

no slower than O(h
3
4
2 ) for n = 3, then for any pair i, j = 1, n

∥wiwj − wi,h2wj,h2∥L2(0,T ;H1
0 (Ω1)) 6 C∥w −wh2∥L4(0,T ;W 1,4(Ω1))

Proof. Since the trace of wiwj − wi,h2wj,h2 on ∂Ω1 is zero, the norms ∥ · ∥1 and ∥∇ · ∥ are

equivalent. Thus the proof of the lemma may be done for the error ∥∇(wiwj − wi,h2wj,h2)∥

instead of ∥wiwj − wi,h2wj,h2∥1.

The idea of the proof resembles that of Lemma 31. It is necessary to require that the

rate of convergence of ∥w − wh2∥L4(0,T ;H1
0 (Ω1)) be no lower than h

n
4
2 . Next use Theorem 35

that gives the estimate for ∥w −wh2∥L4(0,T ;H1
0 (Ω1)) in terms of ∥v − vh1∥L4(0,T ;H−1(Ω1)). This

last error may be bounded, due to Lemma 36, by ∥v − vh1∥L4(0,T ;Lp(Ω1)) with some p > 1

in a two-dimensional case and by ∥v − vh1∥L4(0,T ;L
6
5 (Ω1))

in a three-dimensional case. The

statement of Lemma 38 then follows immediately.

Remark 39. Let us require in the lemma that w ∈ L4(0, T ;W 1,∞(Ω1) ∩H l2(Ω1) ∩H1
0 (Ω1))

with 2 6 l2 6 m2. Let ∥v − vh1∥L4(0,T ;Lp(Ω1)) converge no slower than O(h2) for some fixed

p > 1 in a two-dimensional case and let ∥v−vh1∥L4(0,T ;L
6
5 (Ω1))

converge no slower than O(h
3
2
2 )

in a three-dimensional case. Finally, let l1 > 3 if n = 3. Then we may obtain in the same

manner as before that

∥wiwj − wi,h2wj,h2∥L2(0,T ;H1
0 (Ω1)) 6 C∥w −wh2∥L4(0,T ;H1

0 (Ω1))

for any pair i, j = 1, n.

Lemma 40. Let v ∈ L4(0, T ;H2(Ω1) ∩ H1
0 (Ω1)) and the mesh used for computing vh1 be

quasi-uniform. In addition, let v ∈ L4(0, T ;L
2p
2−p (Ω1)) with some 1 < p < 2 for n = 2, and

v ∈ L4(0, T ;L3(Ω1)) for n = 3. Then for any pair i, j = 1, n

∥vivj − vi,h1vj,h1∥L2(0,T ;H−1(Ω1)) 6 C∥v − vh1∥L4(0,T ;L2(Ω1))

with positive constant C = C(p) in a two-dimensional case.
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Proof. Use triangle inequality

∥vivj − vi,h1vj,h1∥−1 6 ∥vi(vj − vj,h1)∥−1 + ∥vj,h1(vi − vj,h1)∥−1.

For each term the idea is to use Holder’s inequality. The example will be shown for the first

term. By definition,

∥vi(vj − vj,h1)∥−1 = supv̂∈H1(Ω1)

(vi(vj − vj,h1), v̂)

∥v̂∥1
.

Then

(vi(vj − vj,h1), v̂) 6 ∥vi∥Lpr1 (Ω1) · ∥vj − vj,h1∥Lpr2 (Ω1) · ∥v̂∥Lq(Ω1). (8.14)

Here 1
p
+ 1

q
= 1 and 1

r1
+ 1

r2
= 1. We want q to be as large as possible. For n = 2 we require

that 1 < q <∞. Set pr2 = 2 and use the Sobolev embedding for the term v̂ to obtain

(vi(vj − vj,h1), v̂) 6 C∥v∥
L

2p
2−p (Ω1)

· ∥v − vh1∥ · ∥v̂∥1.

In the end, the result will be

∥vivj − vi,h1vj,h1∥−1 6 C

(
∥v∥

L
2p
2−p (Ω1)

+ ∥vh1∥
L

2p
2−p (Ω1)

)
· ∥v − vh1∥.

The way to show boundness of ∥vh1∥
L

2p
2−p (Ω1)

is similar to that in case of ∥vh1∥W 1,4(Ω1) from

Lemma 31. Applying the inverse inequality consequently requires that ∥v−vh1∥L4(0,T ;L2(Ω1))

converge no slower than O

(
h

2(p−1)
p

1

)
, where p is fixed and 1 < p < 2, and that is automatil-

cally guaranteed since the space Mm1
00 (Ω1) with m1 > 2 is used for computing the velocity

field vh1 .

If n = 3, then proceeding with (8.14) we can only require that q = 6 in order to use the

Sobolev embedding. Then p = 6
5
and after setting r2 =

5
3
we end up with

∥vivj − vi,h1vj,h1∥−1 6 C
(
∥v∥L3(Ω1) + ∥vh1∥L3(Ω1)

)
· ∥v − vh1∥.

Again, the boundness of ∥vh1∥L4(0,T ;L3(Ω1)) requires that ∥v − vh1∥L4(0,T ;L2(Ω1)) converge no

slower than O
(
h

1
2
1

)
, and that is satisfied. The lemma is proven.
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We present the following lemma without a proof, due to its resemblence to the proof of

Lemma 34.

Lemma 41. Let v ∈ L4(0, T ;L4(Ω1)), w ∈ L4(0, T ;W 1,4(Ω1)∩H1
0 (Ω1)) and Rij ∈ L2(0, T ;Hm3(Ω1)∩

H1
0 (Ω1)) for any pair i, j = 1, n. Then

∥∇ · ∇ · (R− Rh3)∥L2(L2(Ω1)) 6

6 C(δ)(hm3−2
3 + h−1

3 ∥vivj − vi,h1vj,h1∥L2(H−1(Ω1)) + h−1
3 ∥wiwj − wi,h2wj,h2∥L2(H1(Ω1)))

with the same positive constant C(δ) as in Theorem 30, up to some constant positive factor

independent of both δ and h3.

8.3 NUMERICAL EXPERIMENT FOR TWO MODELS

The purpose of this section is to provide plots of a simulation using the filtered Lighthill

analogy with both zeroth order van Cittert deconvolution model and Bardina subgrid scale

model. The conditions of the experiment are the following.

The domains used are the same as in section 7.4. It is assumed there are no external

forces acting on the flow in Ω1. The filtered non-dimensionalized NSE have a form

∂v

∂t
+ v · ∇v +∇p− 1

Re
∆v −∇ · (2νTD(v)) = 0, (8.15)

∇ · v = 0,

where the Reynolds number is taken as Re = 16.2, D(v) = 1
2
(∇v + ∇vt) and νT is the

turbulent viscosity coefficient. The mesh in Ω1 is the same as it was in 7.3, i.e. it is uniform

and h1 ≈ 0.028. Thus set the filter cutoff width δ = 0.028. Let νT be a constant. Practically,

this trivial model is not used in real applications, [35], since it reduces turbulent flows to a

laminar one, but we are using it in this section due to simplicity for the purpose of acoustic

simulation. Following [35], choose νT = δ2 = 0.000784. The non-dimensionalized filtered

wave equation is

M2∂
2q

∂t2
−∆q = ∇v : ∇vt +∇ · ∇ · R
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and is given with the boundary condition on ∂Ω

M
∂q

∂t
+∇q · n = 0.

The Mach number M = 0.075. As in 7.4, the initial condition for the filtered velocity is

v0 = 36.73 · (0.33− r) ·

0 −1

1 0

 · r.

The Finite Element used for the filtered NSE is Taylor-Hood element. For time integration

from t = 0 to t = 0.6 the same Stabilized Extrapolated Backward Euler is used as in 7.4,

with the time step ∆t = 0.005.

After each time step, the Poisson problem (8.9) is solved for van Cittert model or two

Poisson problems (8.11) and (8.13) are solved consequently with obtained vh1 as an input

data. The pictures with plots of components of tensor Rh3 are presented below for both

models. For the Bardina model, the plot of the twice filtered velocity wh2 is presented.

For the wave equation we use the same second order in time scheme in Ω presented in

chapter 4, starting with homogeneous initial conditions. Also, piecewise quadratics are used

on the uniform mesh of size h ≈ 0.028. Pictures of the filtered pressure fluctuation are

presented for the final time level t = 0.6, for both models.

Additionally, pictures 30-32 show the subgrid scale tensor for van Cittert model with the

same collection of values of isolines as for Bardina model from pictures 25-27. The empty

spaces are those not included in the interval of values for the case of Bardina model.
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IsoValue

-8.78734e-006

-8.01692e-006

-7.24651e-006

-6.47609e-006

-5.70567e-006

-4.93525e-006

-4.16483e-006

-3.39442e-006

-2.624e-006

-1.85358e-006

-1.08316e-006

-3.12745e-007

4.57673e-007

1.22809e-006

1.99851e-006

2.76893e-006

3.53935e-006

4.30976e-006

5.08018e-006

5.8506e-006

Figure 21: The subgrid scale tensor component R11 in Ω1 at time t = 0.6, van Cittert
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IsoValue

-5.74435e-006

-5.1397e-006

-4.53506e-006

-3.93042e-006

-3.32577e-006

-2.72113e-006

-2.11649e-006

-1.51184e-006

-9.07198e-007

-3.02554e-007

3.0209e-007

9.06734e-007

1.51138e-006

2.11602e-006

2.72067e-006

3.32531e-006

3.92995e-006

4.5346e-006

5.13924e-006

5.74388e-006

Figure 22: The subgrid scale tensor component R12 = R21 in Ω1 at time t = 0.6, van Cittert
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IsoValue

-8.79172e-006

-8.02006e-006

-7.2484e-006

-6.47674e-006

-5.70507e-006

-4.93341e-006

-4.16175e-006

-3.39009e-006

-2.61843e-006

-1.84676e-006

-1.0751e-006

-3.03439e-007

4.68223e-007

1.23989e-006

2.01155e-006

2.78321e-006

3.55487e-006

4.32653e-006

5.0982e-006

5.86986e-006

Figure 23: The subgrid scale tensor component R22 in Ω1 at time t = 0.6, van Cittert
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Vec Value

0

0.000360917

0.000721834

0.00108275

0.00144367

0.00180459

0.0021655

0.00252642

0.00288734

0.00324825

0.00360917

0.00397009

0.004331

0.00469192

0.00505284

0.00541376

0.00577467

0.00613559

0.00649651

0.00685742

Figure 24: The twice filtered velocity w in Ω1 at time t = 0.6
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IsoValue

1.56397e-007

4.69192e-007

7.81987e-007

1.09478e-006

1.40758e-006

1.72037e-006

2.03317e-006

2.34596e-006

2.65876e-006

2.97155e-006

3.28435e-006

3.59714e-006

3.90994e-006

4.22273e-006

4.53553e-006

4.84832e-006

5.16112e-006

5.47391e-006

5.78671e-006

6.0995e-006

Figure 25: The subgrid scale tensor component R11 in Ω1 at time t = 0.6, Bardina
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IsoValue

-1.56529e-006

-1.40042e-006

-1.23554e-006

-1.07067e-006

-9.05789e-007

-7.40914e-007

-5.76038e-007

-4.11162e-007

-2.46287e-007

-8.1411e-008

8.34647e-008

2.4834e-007

4.13216e-007

5.78092e-007

7.42967e-007

9.07843e-007

1.07272e-006

1.23759e-006

1.40247e-006

1.56735e-006

Figure 26: The subgrid scale tensor component R12 = R21 in Ω1 at time t = 0.6, Bardina

103



IsoValue

1.56494e-007

4.69483e-007

7.82471e-007

1.09546e-006

1.40845e-006

1.72144e-006

2.03442e-006

2.34741e-006

2.6604e-006

2.97339e-006

3.28638e-006

3.59937e-006

3.91235e-006

4.22534e-006

4.53833e-006

4.85132e-006

5.16431e-006

5.4773e-006

5.79028e-006

6.10327e-006

Figure 27: The subgrid scale tensor component R22 in Ω1 at time t = 0.6, Bardina
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IsoValue

-0.0292973

-0.0290662

-0.0289121

-0.028758

-0.028604

-0.0284499

-0.0282958

-0.0281417

-0.0279876

-0.0278336

-0.0276795

-0.0275254

-0.0273713

-0.0272173

-0.0270632

-0.0269091

-0.026755

-0.0266009

-0.0264469

-0.0260617

Figure 28: The filtered acoustic pressure field in Ω at time t = 0.6, van Cittert
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IsoValue

-0.0274672

-0.0272897

-0.0271713

-0.0270529

-0.0269346

-0.0268162

-0.0266978

-0.0265795

-0.0264611

-0.0263427

-0.0262244

-0.026106

-0.0259877

-0.0258693

-0.0257509

-0.0256326

-0.0255142

-0.0253958

-0.0252775

-0.0249816

Figure 29: The filtered acoustic pressure field in Ω at time t = 0.6, Bardina
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IsoValue

1.56397e-007

4.69192e-007

7.81987e-007

1.09478e-006

1.40758e-006

1.72037e-006

2.03317e-006

2.34596e-006

2.65876e-006

2.97155e-006

3.28435e-006

3.59714e-006

3.90994e-006

4.22273e-006

4.53553e-006

4.84832e-006

5.16112e-006

5.47391e-006

5.78671e-006

6.0995e-006

Figure 30: The subgrid scale tensor component R11 in Ω1 at time t = 0.6, van Cittert
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IsoValue

-1.56529e-006

-1.40042e-006

-1.23555e-006

-1.07068e-006

-9.0581e-007

-7.4094e-007

-5.7607e-007

-4.112e-007

-2.4633e-007

-8.146e-008

8.341e-008

2.4828e-007

4.1315e-007

5.7802e-007

7.4289e-007

9.0776e-007

1.07263e-006

1.2375e-006

1.40237e-006

1.56724e-006

Figure 31: The subgrid scale tensor component R12 in Ω1 at time t = 0.6, van Cittert
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IsoValue

1.56494e-007

4.69483e-007

7.82472e-007

1.09546e-006

1.40845e-006

1.72144e-006

2.03443e-006

2.34742e-006

2.66041e-006

2.9734e-006

3.28638e-006

3.59937e-006

3.91236e-006

4.22535e-006

4.53834e-006

4.85133e-006

5.16432e-006

5.47731e-006

5.7903e-006

6.10329e-006

Figure 32: The subgrid scale tensor component R22 in Ω1 at time t = 0.6, van Cittert
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9.0 CONCLUSION AND FUTURE PROSPECTS

The main results of this thesis may be summarized as follows.

• The semidiscrete scheme for the Lighthill analogy was introduced and analyzed in case

of the Direct Numeical Simulation. The stability and convergence were proven for the

case of regular enough source term.

• Analogous result was shown for the fully discrete scheme.

• The numerical results agreed with the mentioned theoretical predictions.

• Analysis of the negative Sobolev norm of the solution error was performed for the semidis-

crete scheme.

• The semidiscrete scheme for computing the fluctuation of velocity was presented and

analyzed.

• Two methods for computation of the sound power were introduced and fully analyzed

for the semidiscrete case. Both methods were supported by numerical expertiments.

• A method for bounding the sound power using only the fluctuation of pressure was given

and analyzed.

• The Large Eddy Simulation for the Lighthill analogy was presented as two models, these

are the zeroth order van Cittert deconvolution model and Bardina model. Both were

analyzed and checked numerically.

The presented work gave the rigorous numerical analysis of noise generation in the most

trivial case, that is turbulence driven by given forces in infinite space with no walls. Future

work is to be directed toward solving more practical problems. These include the noise

generated by jet planes, single wind turbines and complex wind farms and blood flows.

In general, the boundary conditions for the fluctuations of pressure p
′
, equation (1.1), are

110



different for these problems and involve such phenomena as absorbtion and reflection. More

on the engineering aspects of the wind turbine noise may be found at [64].

The obvious consequent problem is the noise control. Assuming the driving forces and

the boundary conditions involve control functions, we need to present criterions for desired

broadband noise levels. This problem requires results of the general control theory for the

wave equation.

Also, the Large Eddy Simulation offers other subgrid scale models for the noise research.

These could be higher order van Cittert deconvolution models or Lius subgrid scale model,

[39], given by the equation

R = 0.45 · (ṽ ⊗ v − ṽ ⊗ ṽ),

where ∼ denotes a filter at scale 2δ. According to [59], Lius model recovers a little better

results than Bardina model.

9.1 THE RESEARCH OF THE NOISE GENERATION IN THE

NON-INERTIAL FRAMES

The research of the non-inertial effects in the noise generation, caused by motion of the frame

of reference, represents a particular interest in the aerodynamic noise research. This research

was aslo pioneered by Lighthill, [36]. This may be used, for example, in the research of the

noise generated by wind turbines, where we may consider the rotating blades as a moving

frame of reference. If the frame of reference is moving with non-zero acceleration, then the

NSE in that frame have a form

∂u

∂t
+ u · ∇u− ν∆u+

1

ρ0
∇p+ 2[ζ,u] + [ζ, [ζ, r]] + [ϵ, r] = g − a,

where ζ is the angular velocity of the reference frame, ϵ is the angular acceleration and r is the

radius-vector from the origin of the frame. a is the acceleration of the origin of the frame of

reference and g is the gravity acceleration. The last three terms on the LHS are the Coriolis

force, the centrifugal force and the Euler force respectively. The non-dimensionalization of
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this equation gives, beside the Reynolds number Re and the Froude number Fr, the Rossby

number Ro, given by the formula

Ro =
U

2ζL
,

where U is the characteristic velocity and L is the characteristic length of the flow domain.

The general purpose is to answer the following question: if the velocity of the flow is being

computed in the non-inertial frame, for what range of Ro can we neglect the fictitious forces

when evaulating the sound power arising from the solution of the Lighthill analogy? In other

words, if the sound powers for two cases, one containing the inertial forces and the other

not, are not significantly different, then the velocity field may be sought from the equation

∂u

∂t
+ u · ∇u− ν∆u+

1

ρ0
∇p = g,

which is a great simplification of the previous model.
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