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Understanding the intricate molecular motions that occur in solvents is a scientific challenge for 

many fields, including biology, chemistry, and physics. Solvents are ever-present in living 

organisms, and may play a vital role in the folding of proteins and nucleic acid chains. Currently, 

ultrafast spectroscopic techniques are able to map long range networks of hydrogen bonds within 

the universal solvent water, where hindered motions are important. Presented in this dissertation 

is a detailed study of several highly resolved frequency spectra, each of which makes a unique 

contribution to the understanding of molecular structure, intermolecular bonding dynamics, and 

the forces that stabilize hydrogen bonds in the gas phase. It is here, in an isolated environment, 

that solute-solvent interactions can be dissected, both experimentally and theoretically, void of 

perturbations from the bulk.  

Among the molecular systems investigated here, the photoacid β-naphthol was studied in 

the presence of water and ammonia, and the electric dipole moments of each complex were 

shown to contain intrinsic contributions from intermolecular charge transfer. This charge transfer 

is present in the ground electronic state, and increases upon excitation with ultraviolet light. Two 

rotamers of the donor-acceptor system meta-aminobenzoic acid have been identified by 

differences in their moments of inertia and dipole moments, and singly and doubly solvated 

complexes of this system were observed. The ground, S1, and S2 dipole moments of anomalous 
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dual fluorescence molecules, such as DMABN and phenylpyrrole, have also been determined, 

and their relevance to condensed phase solvatochromism is discussed. 

The work reported here makes use of two ultraviolet laser spectrometers; a pulsed 

supersonic jet spectrometer, and a high resolution continuous wave molecular beam 

spectrometer. A wide variety of ab initio calculations were performed in support of these 

experiments. 
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1.0  INTRODUCTION 

Many different materials are capable of undergoing light-induced property changes at the 

molecular level. Many of them, such as DNA damage caused by overexposure to sunlight, have a 

noticeable impact on our daily lives. While we as a society are aware of the broad consequences 

of light driven processes, a full academic understanding of many systems at their smallest 

cooperative level (often the molecular level) is an active area of sophisticated and revolutionary 

scientific research in many disciplines. Research connecting chemistry, physics, astronomy, and 

biology is currently focused on understanding the negative effect overexposure to sunlight has on 

our DNA,
1
 the influence of radiation on chemical reactions in Earth‟s atmosphere and in outer 

space,
2,3

 the potential use of photosynthetic systems (both naturally occurring and artificial) as 

controllable energy harnessing resources,
4
 and physiologically important protein motions.

5
 All of 

these processes share a common requirement for a precise input of energy, in the form of visible 

or ultraviolet electromagnetic radiation, to promote electrons within these molecular systems to a 

higher energy level (known as the “excited state”). In the following introduction, work within the 

group of Dr. David Pratt centered on aggressively pursuing answers to fundamental questions of 

molecular biology, physics, and materials science will be presented. 

This dissertation is focused on two topics; 1) the influence of internal dynamics and 

solvation on intermolecular charge transfer reactions, and 2) light-induced changes in the 

structures and electronic distributions within isolated molecules. As an experimental physical 
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chemistry group, we utilize high resolution laser techniques in the visible and ultraviolet (UV) 

portions of the electromagnetic spectrum to interrogate molecules in a cold, collisionless gas 

phase environment. Our high resolution apparatus is comprised of an argon ion gas laser 

operating continuously, a modified ring dye laser providing user control of the laser cavity, and 

an external frequency doubling cavity. These three instruments working together provide UV 

light of extremely narrow frequency bandwidth, allowing for eigenstate-resolved measurements 

of molecules and clusters entrained in a molecular beam. 

While there is much to learn about the fundamental quantum mechanics of isolated 

molecules, our experiment is also sensitive to solvation-dependent chromophore changes. As an 

example, we have studied the electronic properties of the organic photoacid β-naphthol 

(C10H7OH) in the presence of a single ammonia (NH3)
6
 or water (H2O)

7
 molecule. In these 

systems, our goal is to quantify the extent to which a single solvent molecule drives the acid-base 

reactions shown below. 
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By measuring the dipole moment of the β-naphthol-NH3 complex before and after its excitation 

by light, we have determined that the major stabilizing force in complex formation is charge 

transfer, which is detectable through its minor contribution to the measured dipole moment. This 

measurement is quantitative, leading to charge transfer values of Q = 0.09 electrons before, and 

Q = 0.14 electrons after photoexcitation. We have shown this to be a local phenomenon 

involving the hydroxyl group of β-naphthol and the nitrogen of NH3.
6,7

 In the β-naphthol-H2O 
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complex, we also detect a contribution to the dipole moment from charge transfer. However, the 

motion of H2O while attached to β-naphthol is extremely complicated, and we are still working 

on a theoretical interpretation of our experimental results. The H2O dynamics, which we are able 

to quantify, show the same intermolecular signatures as found in the spectra of biomolecules in 

bulk water.
8 

Recently, we have analyzed the photoexcitation of 1-phenylpyrrole (PP), a model charge 

transfer system in which two unsaturated rings communicate differently before and after the 

introduction of a UV photon.
9
 As seen below, the torsional angle between the phenyl and pyrrole 

rings changes from ϕ = 36° to 20° upon excitation, resolving a dispute in the literature 

concerning the excited state structure of PP.  

 

Scheme 1-2 

 

 

Also, the switch in partial charge (δ) localization following irradiation was measured and 

quantified. Molecular “switches” capable of charge reversal upon excitation are of increasing 

interest to materials chemists and engineers worldwide. Therefore, we have also investigated 

three benchmark aminobenzonitrile compounds in order to clarify the role of functional groups 

on laser-induced intramolecular charge transfer. 
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2.1 ABSTRACT 

Hydrogen bond pairs involving the chromophore indole have been extensively studied in the gas 

phase. Here, we report rotationally resolved electronic spectroscopy experiments on the indole-

NH3 hydrogen bond pair in the absence and presence of an electric field. The S1-S0 origin band 

of this complex recorded at high resolution reveals two overlapping spectra; a consequence of 

NH3 hindered internal rotation. The barrier to internal rotation is predicted by theory to be less 

than 20 cm
-1

 in the ground state, therefore requiring a non-rigid rotor Hamiltonian to interpret the 

spectra. Conducting the experiment in the presence of an applied electric field further perturbs 

the already congested spectrum, but allows for the permanent dipole moments of the complex to 

be measured. Efforts to interpret the unique perturbations that arise from both internal (molecular 

frame) and external (laboratory frame) sources are discussed. 

2.2 INTRODUCTION 

Indole, the chromophore of tryptophan, provides an excellent opportunity to probe the 

photophysics of larger biological systems in an isolated gas phase environment. Upon excitation 

with UV radiation, the electronic state ordering of indole is known to be highly sensitive to the 

surrounding environment. In the gas phase, the environment that surrounds indole can be 

carefully controlled, allowing for the systematic study of the solvent-dependent photophysics of 

this important biological chromophore. Numerous spectroscopic investigations of both polar and 

non-polar indole clusters afford a wealth of information on hydrogen bonding, van der Waals 

bonding, and solvation-controlled 
1
La-

1
Lb state coupling in indole and its derivatives.

1-10
 At 
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significantly higher resolution, molecular beam measurements of indole and some select indole 

complexes have determined the lowest excited (S1) state to be the 
1
Lb state.

11-17
 Recently, 

1
La-

1
Lb 

coupling in the bare molecule has been thoroughly explored using rotationally resolved data and 

a high level theoretical analysis.
18,19

 

In this report, the hydrogen bond complexes formed between indole and ammonia were 

investigated with both low and high resolution fluorescence excitation spectroscopy in the gas 

phase. At low resolution, the indole-(NH3)1 (InA) and indole-(NH3)2 (InA2) complexes were 

observed, along with intermolecular low frequency vibrations in the S1 state. The identities of the 

intermolecular vibrations were assigned with the aid of theory and isotopic labeling experiments 

involving indole-d and ND3. At high resolution, the InA complex was found to undergo 

tunneling between the equivalent minima of a potential energy surface with a low barrier to 

internal rotation. The assignment of rotational transitions accompanying electronic excitation has 

allowed for the structure of InA to be determined in both the ground (S0) state and the excited S1 

state, including the hydrogen bond distances between indole and NH3. Finally, the permanent 

electric dipole moments of InA indicate that ammonia induces a significant dipole on the indole 

host molecule, the magnitude of which is compared with analogous results on indole-(H2O).
16

 

2.3 METHODS 

Indole-h was purchased from Alfa Aesar and used without further purification. Indole-d was 

synthesized by dissolving indole-h in methanol-d (purchased from Sigma-Aldrich) and stirring 

for 24 hours. The methanol-d was evaporated under vacuum using a hot water bath and the 

crystallized indole-d was collected, further dried on a vacuum line for 48 hours, and then stored 



 8 

under Ar gas until used. Anhydrous ammonia (NH3) was purchased from Matheson Tri-Gas, 

while ammonia-d3 (ND3) was purchased from Sigma-Aldrich. 

The vibrationally resolved experiments were performed using a pulsed supersonic jet 

laser spectrometer.
20

 The solid sample of indole-h (-d) was heated to ~ 50 °C inside a metal 

nozzle to create sufficient vapor pressure within a constant backing gas pressure of 2.8 ktorr 

consisting of He and NH3 (ND3). Ammonia is conservatively estimated to comprise < 3% of the 

total backing gas pressure. The stagnant sample gas was expanded through a 1 mm orifice into a 

vacuum chamber (pumped down to 10
-5

 torr) using a General Valve Series 9 pulsed valve 

operating at 10 Hz. The supersonic jet was crossed at a right angle 2 cm below the expansion 

with a pulsed UV laser beam, also operating at 10 Hz. The pulsed UV laser was created using a 

potassium dihydrogen phosphate (KD*P) crystal to frequency double the visible output of a dye 

laser (Quanta-Ray PDL-1) containing R6G laser dye purchased from Exciton. The dye laser was 

pumped with the second harmonic of a Nd
+3

:YAG laser (Quanta-Ray DCR-1A). The total 

fluorescence excitation signal was collected by a photomultiplier tube (PMT) mounted 

perpendicular to both the supersonic jet and laser beam, processed by a boxcar integrator 

(Stanford Research Systems) and recorded digitally with Quick Data Acquisition software 

(Version 1.0.5). 

The rotationally resolved experiments were performed with a molecular beam laser 

spectrometer.
21

 In a quartz source, indole-h was heated to 110 °C and expanded through a 200 

μm pinhole continuously at a constant backing pressure of 600 torr into the first of two 

differentially pumped vacuum chambers operating at 10
-5

 torr. The backing gas was an Ar:NH3 

mixture containing a 3% partial pressure of NH3. The supersonic expansion was skimmed 2 cm 

downstream, and the resulting molecular beam was crossed at a right angle within the second 
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vacuum chamber (10
-7

 torr) by a continuous wave UV laser 13 cm downstream from the 1 mm 

diameter skimmer. The UV laser, with a bandwidth of < 1 MHz, was created using a Wavetrain 

external frequency doubling cavity (Spectra-Physics) containing a β-barium borate (BBO) crystal 

(Fujian Castech). The fundamental visible radiation was created using a modified scanning ring 

dye laser (Spectra-Physics 380D frequency stabilized RDL), an R6G laser dye jet, and the 514.5 

nm line of an argon ion pump laser (Spectra-Physics 171 ion laser, Spectra-Physics 270 power 

supply). The total fluorescence excitation signal was collected by spherical optics mounted 

above and below the point of beam intersection, and focused into a PMT (EMI 9813 QB) 

mounted perpendicular to both beams. The absorption spectrum of I2 was simultaneously 

recorded and used for absolute frequency calibration, while the frequency markers of a 

temperature-stabilized etalon (FSR = 299.7520 MHz in the visible) were recorded for relative 

frequency calibration. Stark optics, containing wire mesh grids above and below the point of 

beam intersection, were used to measure permanent electric dipole moments via the application 

of a static electric field.
22

 The high resolution spectra, I2 absorption spectra, and frequency 

markers were recorded using JBA95 acquisition software
23

 and analyzed using JB95 software.
24

 

Ground electronic state calculations were performed using GAUSSIAN 03
25

 at the Center 

for Simulation and Modeling at the University of Pittsburgh. In the ground state, InA was 

optimized at both the M05-2X and MP2 levels of theory. Various correlation-consistent Dunning 

basis sets
26

 were used for these optimizations, ranging from cc-pVDZ to aug-cc-pVQZ in the 

DFT optimizations, and up to aug-cc-pVTZ for the ab initio optimizations. The vibrational 

frequencies were calculated following each optimization, and no imaginary frequencies were 

found. Ground state M05-2X optimizations and frequency calculations were also performed on 

InA2 clusters using several Dunning basis sets. 
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The NH3 torsional potential energy surface of InA was explored by stepping the torsional 

angle α in 15° increments over the range 0 to 360°. These relaxed scans were performed with the 

following theory/basis set combinations: M05-2X/cc-pVDZ, M05-2X/6-31+G*, M05-2X/aug-

cc-pVDZ, and MP2/cc-pVDZ. The data points obtained from the relaxed scans were then fit to 

an expansion of torsional functions. We find that a smooth one-dimensional surface is produced 

by truncating the expansion of torsional functions after the first term, the three-fold barrier (V3) 

term. 

2.4 RESULTS 

2.4.1 Fluorescence excitation spectra 

The low resolution fluorescence excitation spectrum (FES) of InA is shown at the top of Fig. 2-1. 

The excitation spectrum was recorded at frequencies to the red of the indole-h electronic origin, 

and closely resembles the FES previously reported by Hager et al.
2
 The electronic origin of 

indole occurs at a frequency of 35231.4 cm
-1

; the InA origin is shifted to the red by 218.8 cm
-1

, 

and the InA2 origin is shifted further to the red by a total of 364.0 cm
-1

. A small amount of water 

was also present during the experiment, as the indole-(H2O)1 (InW) complex was also observed 

at 35099.6 cm
-1

, exhibiting a smaller red shift of 131.8 cm
-1

. The four transitions, labled “In”, 

“InA”, “InA2”, and “InW” in the top of Fig. 2-1 are the most intense transitions observed in this 

frequency region. Other weaker bands appear on the blue side of several of these transitions. 
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Figure 2-1. Low resolution fluorescence excitation spectrum (FES) of indole-h-NH3 (InA, top) 

and indole-d-NH3 (InA-d4, bottom). 
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The low resolution FES of indole-d in the presence of ND3 is shown at the bottom of Fig. 

2-1. The indole-d origin is shifted 6.6 cm
-1

 to the blue of the less intense indole-h. Clearly, some 

indole-h remains in the deuterated sample, as the indole-h electronic origin appears as a shoulder 

to the red of the more intense indole-d origin. Broadened transitions appear for InA-d4, InW-d3 

and InA2-d7, possibly due to hydrogen contamination which greatly increases the number of 

incompletely deuterated species present in the jet expansion. The perceived broadening at low 

resolution also could indicate a larger torsional splitting for the deuterated transitions as 

compared to those of the normal hydrogen species. The InA-d4, InW-d3, and InA2-d7 electronic 

origins are also all blue-shifted relative to the non-deuterated transition energies. 

Table 2-1 lists the experimentally observed vibrational frequencies and approximate 

isotope shifts of the origin bands and a few of the low frequency bands that were observed upon 

indole-d and ND3 deuteration, along with normal mode assignments. Varying isotopic shift ratios 

of νd/νh are observed, all of which are less than unity,
27

 confirming their assignment as 

intermolecular vibrations involving the NH3/ND3 hydrogen bonding partners of indole. 

The high resolution FES of the InA origin is shown in Fig. 2-2. The recorded spectrum 

spans almost 3.4 cm
-1

, and is rich with rotationally resolved transitions that accompany 

electronic excitation. As will be seen, the congestion in this spectrum is caused by the presence 

of two superimposed rovibronic bands, produced by a hindered internal rotation of the attached 

NH3.
28,29

 The existence of a three-fold internal rotor splits the electronic spectrum into two 

subtorsional bands, labeled the A and E subbands by symmetry (irreducible representations of the 

C3 point group), analogous to the distinct torsional levels observed in the rotational spectroscopy 

of molecules containing methyl rotors.
30-32

 Thus, our analysis of this spectrum proceeded in two 

distinct steps.  
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Table 2-1. Measured and assigned S1 origin bands and intermolecular vibrational modes of InA 

and InA2. 

 

Complex νh (cm
-1

) νd (cm
-1

) νd / νh Assignment 

InA 35012.6 35018.7  origin 

 +31.4 +28.4 0.90 νbʹ bend 

 +143.0 +133.5 0.93 νs stretch 

     

InA2 34867.4 34871.3  origin 

 +21.0 +17.5 0.83 ν1 coupled stretch 

 +39.2 +36.1 0.92 2ν1 

 

 

 

 

 

 

 

 
 

Figure 2-2. High resolution FES of the S1-S0 origin band of InA (black). The simulated spectrum 

(blue) reproduces the experimental trace at full rotational resolution, as shown in the bottom 

panel. 
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The first step in the analysis was to fit the individual rotational transitions of the A 

subband (shifted to the blue of the E subband by ~ 0.33 cm
-1

) using a rigid rotor Hamiltonian for 

each electronic state and a least squares fitting method. In all, 399 assignments were made, 

yielding an overall observed-minus-calculated (OMC) value of 3.4 MHz. The rotational 

constants and fitting parameters used in the A subband simulation are listed in Table 2-2. The 

rigid rotor Hamiltonian was sufficient to assign transitions with values of J < 25. For transitions 

involving higher J values, the OMC of the fit was improved by including Watson‟s distortion 

terms (A-reduction)
33

 to the Hamiltonians, and these parameters are also listed in Table 2-2. 

However, the rigid-rotor rotational constants were not altered by more than two standard 

deviations by this procedure, and therefore are used for analysis and interpretation throughout the 

remainder of this work. 

The second step in the analysis was to fit the individual rotational transitions of the E 

subband using a non-rigid rotor Hamiltonian. This Hamiltonian consists of three components: 

ammonia torsion  ̂ , overall rotation  ̂ , and torsion-rotation coupling  ̂  . In the case of the E 

subband, the first-order contributions from  ̂   are non-zero, and the appropriate total 

Hamiltonian in the high-barrier limit is:
30

 

 

Equation 2-1 

 ̂       ̂ 
       ̂ 

       ̂ 
     ̂     ̂  

 

Equation 2-2 

          
( ) ̂ 

 , etc. 
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Table 2-2. Experimentally determined rotational constants and fitting parameters of the indole-

(NH3)1 A band. 

 

 

State 

 

Parameter 

Rigid 

Asymmetric Rotor 

Distortable 

Asymmetric Rotor 

S0 A (MHz) 2095.75(10) 2095.90(10) 

 B (MHz) 947.30(10) 947.49(10) 

 C (MHz) 652.18(10) 652.20(10) 

 ΔI (uÅ
2
) +0.27(13) +0.36(13) 

 κ -0.59112(15) -0.59093(15) 

 ΔJ (kHz)  0.53(6) 

 ΔJK (kHz)  -3.2(3) 

 ΔK (kHz)  5.8(4) 

 δJ (kHz)  0.14(3) 

 δK (kHz)  4.6(4) 

    

S1 A (MHz) 2000.55(10) 2000.63(10) 

 B (MHz) 977.89(10) 978.06(10) 

 C (MHz) 656.78(10) 656.81(10) 

 ΔI (uÅ
2
) +0.04(12) +0.11(12) 

 κ -0.52208(15) -0.52189(15) 

 ΔJ (kHz)  0.049(6) 

 ΔJK (kHz)  -3.2(2) 

 ΔK (kHz)  5.0(3) 

 δJ (kHz)  0.14(3) 

 δK (kHz)  3.1(3) 

    

 Origin (cm
-1

) 35012.626(1) 35012.626(1) 

 Linewidth L/G (MHz) 25/25 ± 2 25/25 ± 2 

 Trot (K) 5 ± 1 5 ± 1 

 Transition Moment a/b/c (%) 0/100/0 ± 5 0/100/0 ± 5 

 Assigned Lines 399 399 

 OMC 3.4 2.3 
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Equation 2-3 

       
( )  , etc. 

 

An approximate simulation of the E subband using this Hamiltonian yields very large 

perturbation terms Da and Db in each electronic state. We estimate Da ≈ 3800 ± 300 cm
-1

 and Db 

≈ 900 ± 100 cm
-1

 in both electronic states, which translate into extremely low barrier heights of 

approximately 4-6 cm
-1

. Transitions within the E subband with quantum numbers J ≈ Ka and low 

J values appear the most perturbed, and therefore were the focus of the fitting process to this 

point. 

Without accurate values of Da and Db, other data were used to determine the perturbative 

contributions of internal rotation to the rotational energy levels. As noted above, the first-order 

contributions to the A subband rotational constants are zero. However, second-order 

contributions remain, which lead to the effective rigid-rotor rotational constants shown in Eq. 2-

2. Collectively, the A, B, and C constants in the rigid-rotor column of Table 2-2 result in positive 

inertial defect values of ΔIʺ = 0.27 and ΔIʹ = 0.04 uÅ
2
. A static InA structure in which no internal 

rotation of the NH3 molecule occurs would have an inertial defect value of ΔIstat ≈ -2.67 uÅ
2
 (see 

Section 2.4.2), quite different from the values observed experimentally. If vibrational 

contributions to ΔI are neglected, the difference between the experimental and theoretical ΔIs 

can be attributed to the second-order perturbation coefficents shown in Eq. 2-2.
34,35

 By requiring 

ΔIstat = ΔIexp, it is possible to solve for the second-order W
(2)

 coefficients, which are related to the 

barrier heights in each electronic state via Herschbach‟s equations.
31,36

 This analysis yields 

upper-limits to the barrier heights, with values of V3ʺ = 44 and V3ʹ = 48 cm
-1

, respectively (see 

Appendix A). 
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The rotational constants reported for InA are different from those found for bare indole.
11-

13,37
 While internal rotation clearly contributes, the overwhelming reason for this difference is the 

attachment of NH3 to the indole frame via a hydrogen bond. We can use the measured 

differences in rotational constants to determine the NH3 position and hydrogen bond structure 

using Kraitchman‟s equations.
38,39

 In this analysis, the A subband constants of InA were used as 

an estimate of the rigid body rotational constants. The substitution coordinates (rs) were 

calculated by treating NH3 as a point mass of 17 atomic mass units (u). Within the InA inertial 

frame (substitute, s), the NH3 coordinates are measured to be xʺs = 3.9869(6) and yʺs = -1.1465(3) 

Å in S0, and xʹs = 3.8937(6) and yʹs = -1.1665(4) Å in S1. The NH3 coordinates within the indole-

h inertial frame (parent, p) are listed in Table 2-3. 

The substitution coordinates of the indole amino hydrogen are known from previous 

rotationally resolved experiments performed on isotopically labeled compounds,
13,37

 and are also 

listed in Table 2-3. Through an extension of Kraitchman‟s equations,
39

 a transformation matrix 

and translation vector were written to express the known indole-h coordinates in the InA inertial 

frame. From there, the hydrogen bond length (rNH-H) can be estimated in each electronic state as 

the distance between the indole-h atom and the NH3 point mass. Also, the hydrogen bond angle 

with respect to the a inertial axis of InA (θr) can be calculated from this data. These hydrogen 

bond parameters are listed in the final column of Table 2-3, and will be directly compared to 

calculated properties from DFT and ab initio geometry optimizations in later discussion. 

High resolution Stark spectra of the InA electronic origin band were recorded in the 

presence of several applied electric fields ranging from 200 to 1700 V/cm; see Fig. 2-3. When an 

electric field is applied, the rotational energy levels of the InA complex are perturbed. As a 

result, rotational energy levels shift and split, as the 2J + 1 degeneracy in MJ levels is removed   
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Table 2-3. Substitution coordinates (rs) (Ref. 38) of the indole amino hydrogen atom and the InA 

ammonia molecule treated as a point mass in the indole-h inertial frame. 

 

State Parameter In-h In-NH3 Hydrogen bond
c 

S0 xʺp (Å) 1.8638(7)
a
 2.3927(7)  

 yʺp (Å) 2.0232(7)
a
 4.110(2)  

 rʺNH-N (Å)   2.153(1) 

 θʺr (deg)   32.041(7) 

     

S1 xʹp (Å) 1.861(6)
b
 2.1511(7)  

 yʹp (Å) 2.095(1)
b
 4.131(2)  

 rʹNH-N (Å)   2.036(3) 

 θʹr (deg)   35.99(7) 
a
From Ref. 37. 

b
From Ref. 13. 

c
InA inertial frame (Ref. 39).

 

 

 

 

 

 
 

Figure 2-3. High resolution Stark spectra of the InA S1-S0 origin band recorded at several 

applied electric fields. The permanent EDMs of InA in S0 and S1 were used to simulate (blue) 

and fit the experimental (black) spectra. 
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by the field.
22,30

 The electric field dependent rotational energy level shifts are related to the 

permanent electric dipole moments (EDMs) of InA via the Stark Hamiltonian, which was added 

as a perturbation to the asymmetric rigid rotor Hamiltonian in the analysis of the Stark 

spectra.
22,40

 

A simulation of the Stark spectrum recorded at an applied electric field of 423 V/cm was 

fit by least squares using 48 transitions observed in the experimental spectrum. This fit produced 

the following EDM projections onto the inertial axes of InA: μa = 4.69(3) and μb = 1.1(2) D in 

S0, and μa = 4.53(3) and μb = 1.1(4) D in S1. No contributions from μc were detected, as expected 

for symmetry reasons. The experimentally measured total EDMs are 4.8(1) D in S0 and 4.7(2) D 

in S1. The EDMs measured using the 423 V/cm Stark spectrum reproduce the remaining Stark 

spectra well, as shown in the various panels of Fig. 2-3. 

2.4.2 Theoretical structures and vibrational frequencies 

Ground state structures of InA and InA2 were optimized using DFT and ab initio methods. 

Tables 2-4 and 2-5 list the ground state rotational constants, hydrogen bond lengths, NH3 C3 

symmetry axis angles, and the four lowest frequency vibrations calculated for the two 

complexes. Beginning with the M05-2X data in Table 2-4, the double-ζ basis sets appear 

inadequate at predicting a reliable structure, as their rotational constants differ significantly from 

those predicted using larger basis sets. However, the hydrogen bond length rNH-N is basis-set 

independent beyond cc-pVDZ, indicating that the differences observed in the calculated 

rotational constants beyond this point pertain to the indole ring. In the aug-cc-pVDZ 

optimization, the largest θr angle made by the C3 symmetry axis of NH3 relative to the a inertial 

axis of the complex is calculated to be 36°. This “outlier” value of θr relative to the other basis  
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Table 2-4. Theoretical rotational constants, hydrogen bond lengths, ammonia C3 symmetry axis angles, and low frequency vibrations 

of InA. An asterisk (*) indicates that no vibrational frequencies were calculated. The vibrational frequencies are not scaled. 

 

 M05-2X MP2 

Parameter cc-pVDZ cc-pVTZ cc-pVQZ aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ cc-pVDZ cc-pVTZ aug-cc-pVDZ aug-cc-pVTZ 

A (MHz) 2045.9 2061.7 2088.5 2008.1 2083.4 2083.8 2068.6 2096.7 2020.5 2092.1 

B (MHz) 978.5 965.1 950.8 977.0 953.1 952.2 958.5 962.4 967.3 959.6 

C (MHz) 664.2 659.7 655.6 659.2 656.2 655.8 657.2 661.9 656.4 660.2 

ΔI (uÅ
2
) -2.66 -2.67 -2.67 -2.68 -2.67 -2.67 -2.66 -2.65 -2.69 -2.67 

rNH-N (Å) 1.99 2.07 2.08 2.07 2.07 2.08 1.94 1.97 1.98 1.99 

θr (deg) 34 33 31 36 32 32 33 32 35 32 

νbʹ (cm
-1

) 32.6 24.8 27.2 23.4 26.1 26.7 9.6 24.7 29.2 * 

νbʺ (cm
-1

) 33.9 25.2 28.6 41.1 30.1 28.8 38.3 34.6 31.3 * 

ντ (cm
-1

) 54.3 47.7 33.8 50.7 42.1 37.3 42.6 40.0 45.9 * 

νs (cm
-1

) 166.3 144.1 142.2 141.7 142.2 140.8 173.0 160.4 155.8 * 
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Table 2-5. Theoretical rotational constants and low frequency vibrations of InA2. An asterisk (*) indicates that no vibrational 

frequencies were calculated. The vibrational frequencies are not scaled. 

 

 M05-2X MP2 

Parameter cc-pVDZ cc-pVTZ cc-pVQZ aug-cc-pVDZ aug-cc-pVTZ aug-cc-pVQZ cc-pVDZ 

A (MHz) 1403.7 1394.9 1397.5 1368.1 1380.5 1381.3 1404.7 

B (MHz) 826.9 822.4 822.4 835.8 830.7 830.9 817.6 

C (MHz) 668.1 668.7 670.7 671.5 672.9 673.1 663.4 

ΔI (uÅ
2
) -214.8 -221.1 -222.7 -221.5 -223.5 -223.3 -216.1 

ν1 (cm
-1

) 29.6 31.2 31.2 29.8 29.3 * 26.8 

ν2 (cm
-1

) 37.2 36.9 35.6 34.5 34.8 * 39.6 

ν3 (cm
-1

) 51.2 48.0 46.2 46.1 46.3 * 51.8 

ν4 (cm
-1

) 100.4 109.2 104.4 78.9 95.7 * 120.9 
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sets used in Table 2-4 may explain the drastically different rotational constants predicted by the 

M05-2X/aug-cc-pVDZ combination. Taking the M05-2X/aug-cc-pVQZ optimization to be the 

most accurate of the DFT calculations, the theoretical hydrogen bond length is 2.07 Å in S0, and 

the NH3 symmetry axis makes an angle of 32° with the a-axis of InA. The MP2 data in Table 2-4 

are less complete; however, it again appears that a triple-ζ basis set is required to predict a 

reliable geometry. Comparatively, using the aug-cc-pVTZ basis set, identical θr angles are 

predicted by both DFT and ab initio methods; however, the MP2 optimization predicts a smaller 

hydrogen bond distance of rNH-N = 1.99 Å. 

Each structure listed in Table 2-4 has a similar inertial defect of ΔI ≈ -2.67 uÅ
2
. The 

inertial defect is a very sensitive measure of the out-of-plane distribution of mass within a 

molecule or complex. For example, the ΔI of indole is nearly zero in each electronic state; with 

values of -0.112 in S0 and +0.168 in S1.
12,37

 In the case of InA, all heavy atoms are contained in 

the ab inertial plane. The optimized structures indicate that two hydrogen atoms belonging to the 

ammonia molecule are out of the ab plane. These two hydrogen atoms are responsible for the 

non-zero inertial defects calculated in Table 2-4. In Table 2-5, ΔI ≈ -223 uÅ
2
 for InA2, a nearly 

100-fold increase in magnitude as compared to InA. In the double ammonia cluster, one NH3 

molecule sits above the indole molecule, and the hydrogen bonding network pulls the first NH3 

bound to the amino hydrogen up and out of the indole plane entirely. This (NH3)2 arrangement is 

similar in structure to that found in the (NH3)2 dimer, as measured in great detail using far-

infrared and microwave spectroscopy.
41-43

 Examples of the optimized structures of InA and InA2 

are shown in Fig. 2-4. 

Next, the S0 vibrational frequencies listed in Tables 2-4 and 2-5 were used to estimate the 

S1 vibrational frequencies responsible for several transitions observed in Fig. 2-1; see also Table  
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Figure 2-4. DFT structures (M05-2X/aug-cc-pVxZ) and assigned vibrational modes of InA (x = 

Q) and InA2 (x = T). 
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2-1. The two lowest frequency theoretical vibrations are both intermolecular hydrogen bond 

bends, labeled νbʹ and νbʺ. Although there were no symmetry restrictions imposed on the 

calculations, the structure of InA effectively belongs to the Cs point group. Therefore, we classify 

the in-plane bending mode as νbʹ (Aʹ irreducible representation) and the out-of-plane bending 

mode as νbʺ (Aʺ irreducible representation). The remaining two low frequency vibrations are also 

intermolecular in nature. We label the ammonia torsional mode ντ and the hydrogen bond 

stretching mode νs. 

Two of the InA intermolecular modes were detected in the low resolution FES (Fig. 2-1). 

At an absolute frequency of 35044.0 cm
-1

, we assign the intermolecular bending mode νbʹ to have 

a frequency shift relative to the InA origin of +31.4 cm
-1

 (cf. Fig. 2-4). We see no evidence for 

the excitation of the torsional mode ντ in S1. We can, however, assign the stretching mode νs to a 

relative frequency of +143.0 cm
-1

 (35155.6 cm
-1

). A single progression appears in the low 

resolution FES of the InA2 cluster. We assign the +21.0 cm
-1

 (34888.4 cm
-1

) mode as the coupled 

NH3-NH3 hydrogen bond stretching and second NH3 π-hydrogen bond stretching mode ν1 (cf. 

Fig. 2-4). Two quanta of the coupled stretching mode appear as the +39.2 transition (34906.6 cm
-

1
). Alternatively, the +39.2 transition could be a coupled rocking mode (either ν2 or ν3). 

However, we believe a Franck-Condon progression in ν1 is the most likely. The torsion of the π-

hydrogen bound NH3 molecule appears at a higher frequency, and is labeled ν4. 

2.4.3 Theoretical barrier heights to internal rotation 

As detected by measuring the high resolution FES of InA, the NH3 molecule undergoes hindered 

internal rotation about its C3 axis (i.e.; the hydrogen bond). Tunneling between the three 

equivalent minima along this coordinate results in the splitting observed at high resolution. In 
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order to investigate the potential energy surface (PES) governing this motion, we have calculated 

the relaxed geometries of InA by stepping the torsional angle α in 15° increments from 0 to 360° 

using either M05-2X or MP2 theory. The basis sets employed for these calculations are cc-pVDZ 

for both M05-2X and MP2, as well as 6-31+G* and aug-cc-pVDZ for M05-2X DFT. The four 

relaxed PES scans provided the relative energies of 25 points spaced evenly along the α 

coordinate. Each set of data points was fit to the torsional PES function 

 

Equation 2-4 

 ( )  
  

 
(       ), 

 

where V3 is the barrier height to NH3 internal rotation. The PESs are plotted in Fig. 2-5 with the 

following theoretical V3 barrier heights: MP2/cc-pVDZ = 10.5, M05-2X/cc-pVDZ = 12.2, M05-

2X/6-31+G* = 16.4, and M05-2X/aug-cc-pVDZ = 26.0 cm
-1

, respectively. The standard errors 

between each PES curve and the calculated relaxed scan energy points are small: 0.8, 0.4, 0.5, 

and 1.3 cm
-1

, respectively. The theoretical values are in good agreement with the upper-bound 

ground state V3ʺ experimental value of 44 cm
-1

. 

2.5 DISCUSSION 

2.5.1 Structure of InA in its S0 and S1 electronic states 

Indole, the chromophore of tryptophan, has two low-lying π-π* singlet excited electronic states 

known as the 
1
Lb and 

1
La states.

44
 The 

1
La-

1
Lb energy gap is ~ 2000 cm

-1
 in the gas phase, with  
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Figure 2-5. Predicted torsional potential energy surfaces for NH3 internal rotation about the 

hydrogen bond in the S0 state of InA. 
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the 
1
Lb state lying lower in energy.

18,19
 This energy gap is extremely sensitive to solvent polarity 

in the condensed phase, a finding that has motivated many studies of the gas phase photophysics 

of indole-solvent clusters.
45

 The high resolution FES of the indole-H2O (InW) electronic origin 

determined that S1 is indeed the 
1
Lb state,

14
 as was the case for bare indole. The electronic 

transition moment of InW lies almost entirely along the b inertial axis of the complex, identical 

to our findings here for InA. Therefore, we also assign the S1 state of InA as the 
1
Lb state. No 

evidence for solvent-induced 
1
La-

1
Lb state mixing was found in the electronic origin band of InA. 

Using the measured S0 and S1 A band rotational constants of InA, we have estimated the 

hydrogen bond parameters in each electronic state through the calculation of rs coordinates. The 

intermolecular hydrogen bond is linear, between the amino hydrogen on indole and the nitrogen 

of ammonia, along the C3 symmetry axis of NH3. In the ground state, the hydrogen bond distance 

is rʺNH-N = 2.15 Å, and makes an angle with respect to the a inertial axis of θr = 32°. Comparing 

these parameters to the theoretical parameters listed in Table 2-4, we see that DFT reproduces 

the experimental estimates quite well, while being computationally less expensive than the ab 

initio method. The ab initio calculations underestimate the hydrogen bond length by 0.1-0.2 Å in 

S0. Upon excitation to S1, we measure a decrease in the hydrogen bond length of ΔrNH-N = 0.11 Å 

to an excited state value of rʹNH-N = 2.04 Å. This hydrogen bond length reduction of ~ 0.1 Å was 

also observed in the InW complex.
14,46

 

It must be noted that the theoretically calculated rotational constants and hydrogen bond 

parameters are characteristic of fundamentally different structures than those parameters 

determined experimentally. Theory calculates the equilibrium structure and atomic coordinates 

(re), whereas the experimentally determined rotational constants are those of the vibrationally 

averaged atomic coordinates (r0) and structure. Additionally, the A subband rotational constants 
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contain a contribution from internal rotation, a topic that has already been addressed. Also, we 

report here substitution coordinates (rs) for the indole-h and indole-NH3 positions, which neglect 

differences in zero-point vibration between the parent and substitute isotopomers.
38

 While these 

differences between experiment and theory exist, the synergy between the two is still apparent; 

the experimentally derived and theoretically calculated geometries of InA are in overall excellent 

agreement. 

2.5.2 Internal rotation dynamics in InA 

The observation of a splitting in the electronic origin of InA confirms the existence of NH3 

tunneling through a barrier to internal rotation. An estimate of the origin frequency of the E 

subband was derived from the high resolution FES to be ~ 35012.3 cm
-1

. The E-A subband origin 

frequency difference is therefore small, only ~ 9900 MHz (0.33 cm
-1

), meaning that the change 

in barrier height upon electronic excitation must also be small. The E subband origin is red-

shifted from the A subband origin. Therefore, the barrier height in S1 must be slightly larger than 

that found in S0 (i.e.; Vʹ3 > Vʺ3), in accord with the finding that the intermolecular hydrogen bond 

is shorter in the S1 state than in the S0 state. 

Theory predicts that a low barrier to internal rotation exists in S0; the estimated V3 barrier 

heights range from 10-26 cm
-1

. A second estimate of this barrier comes from the measured 

inertial defects. While we have no measure of the “static” rotational constants, theory does show 

that a static InA structure would contain only two out-of-plane atoms; two of the hydrogen atoms 

on NH3. The inertial defect of this static structure would be ΔIstat ≈ -2.67 uÅ
2
, significantly 

different from the measured values for the A subband found in Table 2-2. This large difference 

between ΔIstat ≈ -2.67, ΔIʺ = +0.27, and ΔIʹ = +0.04 uÅ
2
 confirms that the barrier heights to 
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internal rotation are low in each electronic state. In the microwave spectrum of pyrrole-NH3, a 

similarly large and positive ΔI = +0.5 was reported. In that case, the barrier height to internal 

rotation was predicted to be extremely low, measuring only 1.2 cal/mol (0.24 cm
-1

).
47

  

2.5.3 Dipole moments of InA in its S0 and S1 electronic states. 

Finally, we discuss the charge distributions in the two electronic states of InA, as revealed by 

their measured permanent EDMs. Table 2-6 lists these values, along with the known values for 

indole and InW for comparison. In both S0 and S1, the total dipole moment of InA is the largest, 

larger even than the dipoles measured for InW. Initially, this was surprising, as the dipole 

moment of H2O (1.85 D) is larger than that of NH3 (1.42 D). The larger value of the EDM in 

ground state InA may be traced to the mutual orientations of the dipoles of the component parts, 

which in InA are nearly aligned. Upon excitation, the EDMs are observed to decrease in 

magnitude in bare indole and in both of the indole complexes, which is another surprising result. 

While the decrease in InW is quite large (-0.4 D), the decrease is smaller in indole (-0.10 D) and 

InA (-0.1 D). The larger decrease in InW is associated with solvent reorganization,
14,16

 which 

changes the orientation of the water dipole relative to indole. Additionally, the large amplitude 

dynamics of water that comprise the internal rotation creates a non-uniform time-varying electric 

field.
48

 These large solvent rearrangements do not occur in InA, as the hydrogen bond remains 

linear upon excitation and throughout NH3 internal rotation about its symmetry axis. 

The remaining differences between the EDMs of InA and InW arise from more subtle 

effects. Previously, it was shown using an electrostatic model
16

 that the InW dipole in each 

electronic state could be reproduced by a sum of three terms; the EDM of indole (       ), the 

EDM of water (    ), and the indole polarization EDM induced by the dipole and quadrupole   
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Table 2-6. Permanent EDMs of indole, indole-H2O, and indole-NH3 in the gas phase. 

 

State Parameter Indole
a
 In-H2O

b
 In-NH3 

S0 μʺa (D) 1.376(8) 4.20(6) 4.69(3) 

 μʺb (D) 1.40(1) 1.2(3) 1.1(2) 

 μʺ (D) 1.96(1) 4.4(3) 4.8(1) 

     

S1 μʺa (D) 1.556(8) 3.90(6) 4.53(3) 

 μʺb (D) 1.01(1) 0.9(3) 1.1(4) 

 μʺ (D) 1.86(1) 4.0(3) 4.7(2) 

 Δμ (D) -0.10(1) -0.4(4) -0.1(2) 
a
S0 EDMs from Ref. 37, S1 EDMs from Ref. 16. 

b
EDMs from Ref. 16. 

c
This work. 
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moments of water (    ). In addition, we anticipate a possible contribution from charge transfer 

(   ), as was observed in the case of β-naphthol-NH3,
48,49

 and write: 

 

Equation 2-5 

                                 

 

In the case of InW,       D, as mentioned above. However, in the case of InA, a charge 

transfer contribution may be required, as shown in Figure 2-6. We explain this fundamental 

difference between the H2O and NH3 indole complexes as follows; the internal motion of H2O 

significantly modulates the electric field felt by the host indole molecule, even more so than in 

the case of β-naphthol-H2O (2HNW).
48

 Therefore, the hydrogen bond found in the InA complex 

is significantly stronger and, importantly, unchanged in an electronic sense by internal rotation. 

Additionally, ammonia is a much stronger base than water. We therefore hypothesize that some 

CT exists in the InA complex, which additionally accounts for the larger red shift found in the 

electronic spectrum of indole in the presence of NH3. Further support for such a hypothesis is 

being explored using electrostatic
49

 and DFT decomposition
48

 techniques. 

2.6 SUMMARY 

Reported here are the rotationally resolved fluorescence excitation spectra of the S1-S0 electronic 

origin band of the single ammonia complex of indole, InA, and its deuterated analog. The first 

excited state of InA is a 
1
Lb state, identical to the corresponding states in bare indole and the InW  
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Figure 2-6. Illustration of the dipole decomposition of InA (black dipole). The dipoles of indole 

(red), NH3 (blue), and the induced dipole (orange) are shown above. The induced dipole 

measurements are preliminary, as ground and excited state calculations of the indole 

polarizability are still under investigation. 
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complex. The indole-NH3 hydrogen bond is measured to be 2.15 Å in the ground state, and 

decrease upon excitation by 0.1 Å. Also, we report the qualitative finding that the barrier height 

to NH3 internal rotation is larger in S1 than in S0, thus confirming the increase in hydrogen bond 

strength upon excitation with UV light. The permanent electric dipole moments of the complex 

were measured, and indicate the existence of a substantial induced dipole upon complex 

formation, and possibly the existence of charge transfer between the hydrogen bond donor and 

acceptor. A thorough theoretical investigation of the ground state structure and internal rotation 

potential energy surface corroborate the experimental findings, and indicate that, at a minimum, 

a triple-ζ basis set is required for the investigation of hydrogen bond geometries. 
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MEASUREMENT BY HIGH RESOLUTION SPECTROSCOPY IN THE GAS PHASE 
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3.1 ABSTRACT 

We report a quantitative measurement of the amount of charge that is transferred when the single 

ammonia complex of the photoacid β-naphthol (2HNA) is excited by light. The measurement 

was made by comparing the permanent electric dipole moments of cis-2HNA in its ground (S0) 

and excited (S1) states, determined by Stark-effect studies of its fully resolved S1 ← S0 electronic 

spectrum. While the increase in electron transfer from the donor (NH3) to the acceptor (2HN) 

upon excitation is small (~0.05e), it is sufficient to redshift the electronic spectrum of the 

complex by ~600 cm
-1

 (~0.1 eV). Thereby explored is the incipient motion of the acid-base 

complex along the excited state (electron-coupled) proton transfer coordinate. 

3.2 COMMUNICATION 

The electronic structure of isolated molecules is of paramount importance to their chemical 

behavior. Organic and inorganic molecules must communicate efficiently with a variety of other 

entities to creating a working biological system. The most important building blocks of life, 

including nucleic acids,
1
 the amino acids that form proteins,

2
 and light harvesting chromophores 

comprising photosynthetic systems
3
 cannot function without charge transfer (CT) processes. 

Complex systems such as membrane ion pumps, molecular wires, and bulk solvent systems all 

require organized charge motion along specific intra- and intermolecular coordinates.
4
 In the 

field of nonlinear optics, CT states in organometallic systems often have large 

hyperpolarizabilities, and therefore important second-order optical properties essential for 

various materials science applications.
5 
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Several experimental techniques have been used to directly observe CT in molecular 

systems.
6-20

 Importantly, very few of these methods are capable of measuring the actual amount 

of charge transferred between the component parts of the studied molecular system, particularly 

in electronically excited states. Here, we demonstrate that this desirable objective can be 

achieved by comparing the permanent electric dipole moments (EDMs) of a solvent-solute 

cluster and its component parts before and after they are excited by light to promote CT, 

 

Scheme 3-1 

        
  
→ (   )  (   )

 . 

 

Our “proof-of-principle” experiment was performed on a single conformer of the 1:1 acid-base 

complex of β-naphthol and ammonia (cis-2HNA) using rotationally resolved electronic Stark-

effect spectroscopy in a molecular beam.
21,22

 Previous experiments
10

 have shown that this 

reaction occurs with unit efficiency in large clusters of 2HNAn with n ≥ 4. In the single ammonia 

complex, we thus explore incipient motion along the excited state proton transfer coordinate. 

Figure 3-1 shows a portion of the fully resolved S1 ← S0 fluorescence excitation 

spectrum of cis-2HN at 30903.3 cm
-1

, both in the absence
23

 and presence
24

 of an applied electric 

field. The Stark-induced splittings of the different MJ states is evident. To determine the 

permanent EDMs of the isolated molecules in both electronic states, ten Stark spectra were taken 

at full rotational resolution with applied electric fields ranging from 85 to 2115 V/cm. The 

experimental spectra were fit by carrying out exact diagonalizations of truncated matrices using 

the appropriate Hamiltonian for each electronic state,
22

 and simulated using a Voigt line shape 

function.
25

 The dipole moment components and standard deviations shown in Table 3-1 are taken  
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Figure 3-1. Shown in (a) is the zero-field origin band of the S1 ← S0 electronic spectrum of cis-

2HN. At full rotational resolution, (b) shows a portion of the zero-field experimental spectrum 

(black trace) compared with the simulated spectrum (blue trace) using a convoluted line shape 

and a rotational temperature of 5 K. The most intense transition (|Jʹ Kʹa Kʹc› ← |Jʺ Kʺa Kʺc›) has 

the assigned quantum numbers |854› ← |963›. At applied electric fields of (c) 846 and (d) 1776 

V/cm, the simulated spectra using the dipole moment projections listed in Table 3-1 are in 

excellent agreement with the experiment. 
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Table 3-1. Experimental permanent EDMs of cis-2HN and cis-2HNA. The dipole moment angle 

with respect to the a inertial axis is defined as θa. 

 

 cis-2HN cis-2HN∙NH3 

S0   

μa (D) ±0.344(3)  2.56(2) 

μb (D)  0.951(8)  2.93(4) 

μc (D) 0.00(2) 0.00(2) 

μ (D) 1.01(1) 3.89(4) 

θa (deg) 70.1(4) 131.2(9) 

S1   

μa (D)  0.159(3)  3.76(2) 

μb (D)  1.160(8)  3.21(4) 

μc (D) 0.00(2) 0.00(1) 

μ (D) 1.17(1) 4.94(4) 

θa (deg) 97.8(4) 139.6(9) 
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from a least-squares fit of 254 transitions at a field of 1269 V/cm, with an observed-minus-

calculated (OMC) standard deviation of 3.0 MHz, small compared with the single rovibronic 

linewidth of ~33 MHz. Ab initio (MP2 and CIS levels of theory)
26

 values are listed in Appendix 

B. The calculations show that the EDM orientations in 2HN are dominated by the lone pairs of 

electrons on the oxygen atom. The change in magnitude of the cis-2HN EDM upon excitation to 

the S1 state is Δμ = 0.16(2) D, small compared with solvatochromic estimates of 0.5 D (Table 8-

1 of Ref. 8). 

The situation is changed dramatically by the attachment of a single ammonia molecule to 

cis-2HN. Figure 3-2 shows rotationally resolved electronic spectra of the S1 ← S0 origin band of 

cis-2HNA, which consists of two overlapping subbands (owing to an internal-rotation tunneling 

motion of the attached NH3) at 30317.7 and 30316.9 cm
-1

, respectively.
22

 In the Stark 

experiments on the complex, a total of seven spectra were taken of the two subbands at applied 

electric fields ranging from 211 to 2115 V/cm. These were fit in a similar manner; for both cis-

2HN and cis-2HNA, a rotational temperature of 5 K as well as all zero-field inertial parameters 

were held constant during the Stark fitting process. Figure 3-2 shows the high accuracy of these 

fits for both the A and E subbands over several applied fields. The EDM components and 

standard deviations for cis-2HNA listed in Table 3-1 were taken from a fit of 87 transitions 

within the A band at a field of 1269 V/cm, with an OMC of 5.1 MHz. Immediately apparent 

upon comparison of these data to those of cis-2HN are two facts; the magnitude of the EDM is 

much larger in the complex than in the isolated molecule (3.89 versus 1.01 D in the S0 state) and 

the EDM of the complex increases substantially when it is excited by light (4.94 D in S1 versus 

3.89 D in S0), a change of nearly 30%. There also are significant light-induced changes in the 

orientations of the EDMs in the two species. 
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Figure 3-2. Shown in (a) is the zero-field origin of the S1 ← S0 electronic spectrum of cis-

2HNA, containing the overlapping A and E subbands. At full rotational resolution, (b) contains 

the zero-field experimental spectrum (black trace) compared with the simulated spectrum (blue 

trace, A subband transitions in blue, E subband transitions in red) using a convoluted line shape, 

a rotational temperature of 5 K, and the addition of both simulated subbands. Spectra obtained at 

(c) 423 and (d) 1269 V/cm are shown along with the spectra simulated using the dipole 

projections from Table 3-1. 
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Insight into the origin of these differences is provided by a comparison of the present 

results on cis-2HNA with those of a similar system, indole-H2O.
27

 There it was found that the (S0 

and S1) EDMs of the complex also are different from those of the isolated molecule, and that the 

complex EDMs are not equal to the simple vector sum of the EDMs of the component parts; in 

this case, isolated indole and water molecules. Careful consideration of the possible reasons for 

these differences then showed that quantitative agreement between theory and experiment could 

be achieved by postulating the existence of an induced dipole moment, produced by attaching the 

water dipole (and quadrupole) to the polarizable indole molecule. (Parenthetically, it is important 

to note that the experiment places significant constraints on a calculation of this sort, since both 

the distance between the attached solvent molecule and its orientation relative to the solute are 

known for both electronic states from the rotationally resolved spectra.) 

In the case of cis-2HNA, it is clear upon inspection of Table 3-1 that the complex EDMs 

in the two electronic states also are not simply equal to the vector sum of the EDMs of the 

component parts [cis-2HN = 1.01 D in S0, 1.17 D in S1, and NH3 = 1.472 D
28

]. Further, as shown 

in Table 3-2, values of the induced EDMs (calculated from the ab initio molecular 

polarizabilities of cis-2HN and the dipole and quadrupole moments of NH3
28,29

) are not large 

enough to make up the substantial difference between a vector model calculation and 

experiment. We therefore postulate the existence of an additional contribution to the EDM of cis-

2HNA, CT between the “solvent” and “solute,” and write 

 

Equation 3-1 

 ⃗       ⃗      ⃗     ⃗     ⃗  . 
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Here,  ⃗      is the permanent EDM of the complex,  ⃗     is the permanent EDM of bare cis-

2HN,  ⃗    is the permanent EDM of ammonia,  ⃗    is the induced EDM (calculated from the 

molecular polarizability of cis-2HN and the dipole and quadrupole moments of NH3,
28,29

 

separated by RCM, the distance between the centers of mass of cis-2HN and NH3
22

), and  ⃗   is 

the contribution to from CT in both electronic states. (All vectors contributing to  ⃗      have 

been expressed in the principal axis system of the complex
30

 and are illustrated in Fig. 3-3.) 

Then, after completing the vector subtraction 

 

Equation 3-2 

 ⃗    ⃗       ⃗      ⃗     ⃗    

 

and taking the projection of the remaining EDM onto the hydrogen bond axis (assumed to be the 

internal rotation axis of NH3), the magnitude of CT was calculated using  ⃗     , where d is 

the heavy atom separation along the hydrogen bond in both electronic states.
22

 We find, from 

experiment, the magnitude of CT to be Q = 0.09e in S0 and Q* = 0.14e in S1. (The derived values 

of Q and Q* are very sensitive to the hydrogen bond axis orientation.) 

 Of course, the model used to describe the observed behavior is only approximate. It relies 

on the adequacy of a multipole expansion at close range and on ab initio polarizabilities. The 

multipole expansion is expected to diverge if the center of mass distance RCM is less than the 

spatial extent of the two interacting charge distributions.
31

 However, while they have nearly the 

same magnitudes, the EDMs of cis-2HN and trans-2HN are oriented in opposite directions. 

Thus, most of the relevant charge in cis-2HNA is localized on the two heavy atoms (O and N), 

whose separation is much less than RCM. Also, the cis-2HNA dipole-quadrupole term is  
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Table 3-2. Calculated dipole-dipole, polarizability-electric field, and charge-charge interaction 

energies of cis-2HNA. Below, cis-2HN is designated as 1, and NH3 is designated as 2. The 

angles θ1 and θ2 are the angles that μ1 and μ2 make with the line RCM (Ref. 32). 

 

 S0 S1 

μ1 (D) 1.01 1.17 

μ2 (D) 1.472
a
 1.472

a
 

μind (D) 0.40 (0.41)
b
 0.50 (0.50)

b
 

θ1 (deg) 9.22 19.36 

θ2 (deg) 47.98 10.74 

RCM (Å) 5.251
c
 5.157

c
 

Q (e) 0.09 (0.09)
b
 0.14 (0.14)

b
 

d (Å) 2.77
c
 2.62

c
 

Eμμ (cm
-1

) -62.2 -113.4 

Eαμ (cm
-1

) -20.3 (-20.8)
b
 -26.7 (-26.7)

b
 

ECT (cm
-1

) -339.6 -868.8 

Ecomplex,rel (cm
-1

) -422.1(-422.6)
b
 -1008.9 (-1008.9)

b
 

 
a
Reference 28. 

b
Including the quadrupole moment of ammonia (see Ref. 27). 

c
Reference 22. 
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Figure 3-3. The S0 and S1 dipole moments of cis-2HNA (black). This figure illustrates the 

components of Eq. 3-1, where μc2HN (red), μNH3
 (blue), μind (orange), and μCT (green) add to 

reproduce μc2HNA (black). 
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significantly less than the dipole-dipole one (cf. Table 3-2), suggesting convergence of the 

multipole expansion. And, while the ab initio polarizabilities are only estimates, especially with 

such a small basis set, they successfully account for the differences between the measured and 

predicted dipole moments of indole-H2O.
27

 Therefore, we believe that our model, although 

primitive, captures the essential physics of the interaction between cis-2HNA and the attached 

ammonia molecules. 

 We can test our experimentally determined values of Q and Q* in cis-2HNA by using 

them to calculate the electronic stabilization energy for the complex, relative to the bare 

molecule, from the relation 

 

Equation 3-3 

            
                 . 

 

Here, Eμμ is the interaction energy of the two dipoles separated by the distance RCM, Eαμ is the 

interaction energy of the polarizable cis-2HN with the electric field of NH3 (at the same distance 

RCM), and ECT is the interaction energy between two point charges, separated by the previously 

mentioned heavy atom distance d.
32

 The resulting values are listed in Table 3-2. Comparing the 

values of Ecomplex,rel for the two states leads to an estimate of the redshift of cis-2HN solvated by a 

single ammonia molecule. The results is   
complex,rel

       586 cm-1, in excellent agreement with 

the experimental value of -585 cm
-1

. This agreement corroborates our derived values of Q and 

Q*, and shows that CT is the dominant component of the stabilization energy, Ecomplex,rel (~85%). 

 It is noteworthy that the measured value of charge separation in the formation of the 

hydrogen bond in the ground state of cis-2HNA, Q ~0.1e, is consistent with previous estimates 
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of this quantity obtained for other systems through theoretical calculations using a Mulliken 

population analysis
14

 and by microwave spectroscopy.
17

 The hydrogen bond in the ground state 

of cis-2HNA is ~10% ionic, ~15% ionic in the excited state. 

 For over 50 years, 2HN and a variety of other photoacids
33

 have been the subject of 

extensive condensed phase experiments, including several solvatochromic investigations.
34

 This 

vast body of literature has provided a wealth of information on intermolecular interactions, and 

how they are influenced by the absorption of light.
7
 For example, use of the Förster cycle

35
 led to 

estimates of the 2HN excited state acidity constant pKa* ~2.8, compared with the ground state 

value of pKa ~9.5, and fueled much speculation about the role of the solvent in excited state 

proton transfer reactions. The present results show that a single solvent molecule is capable of 

increasing proton transfer in the excited state by ~50%, relative to the ground state. But a much 

larger factor is needed to explain the large change in pKa values of 2HN on absorption of light. 

Future experiments of this type will focus on the role of additional solvent molecules in 

producing this change, as well as CT processes in biological systems. 
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4.1 ABSTRACT 

Described here are the rotationally resolved S1-S0 electronic spectra of the acid-base complex β-

naphthol-H2O in the gas phase, both in the presence and absence of an applied electric field. The 

data show that the complex has a trans-linear       hydrogen bond configuration involving 

the     group of β-naphthol and the oxygen lone pairs of the attached water molecule in both 

electronic states. The measured permanent electric dipole moments of the complex are 4.00 and 

4.66 D in the S0 and S1 states, respectively. These reveal a small amount of photoinduced charge 

transfer between solute and solvent, as supported by density functional theory calculations and 

an energy decomposition analysis. The water molecule also was found to tunnel through a barrier 

to internal motion nearly equal in energy to kT at room temperature. The resulting large angular 

jumps in solvent orientation produce “flickering dipoles” that are recognized as being important 

to the dynamics of bulk water. 

4.2 INTRODUCTION 

Gas phase studies of monosolvated water clusters have a rich history, and have profited greatly 

from the advancement of jet-cooled experimental techniques. One-to-one hydrogen bonded 

systems between fluorescent organic molecules and water report information about the preferred 

binding sites of solvent, intermolecular motions, and the extent to which the solute molecule is 

perturbed by the attachment of a single solvent molecule. Direct gas phase studies of specific 

solvent stabilization also aid in the analysis of condensed phase solvatochromism, as well as in 

the advancement of ab initio, density functional, and bulk solvent force field theoretical methods. 
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 The simplest aromatic alcohol is phenol, which serves as the chromophore of the amino 

acid tyrosine. The phenol-H2O complex was first observed in a supersonic expansion by Abe, 

Mikami, and Ito in 1982,
1
 and subsequent jet-cooled studies combined with extensive theoretical 

analysis have provided a vast amount of information on the hydrogen bond (HB) orientation, 

stabilization energy, and internal dynamics within the 1:1 cluster.
2
 High resolution microwave

3
 

and electronic
4
 spectroscopy studies have determined the precise geometry of the phenol-H2O 

cluster, in both the ground (S0) and first excited (S1) electronic states, and quantified the internal 

dynamics of the attached water molecule. The high resolution work revealed a tunneling motion 

between the equivalent minima of a symmetric double-well potential governing the complex 

internal dynamics of water about the phenol-H2O HB. The barrier height to this motion was 

experimentally determined using a one-dimensional (1D) model to be 177 and 127 cm
-1

 in the S0 

and S1 states, respectively.
4
 

 The larger aromatic alcohol β-naphthol (2-hydroxynaphthalene, 2HN) is known to form 

HB arrangements with water in supersonic expansions that are similar to those of phenol.
5
 

Unlike phenol, there are two stable conformers of 2HN, owing to a trans or cis orientation of the 

hydroxyl group relative to the naphthalene ring.
6
 Each of these conformers can form a 1:1 

complex with water, trans- and cis-2HNW, as shown below: 

 

Scheme 4-1 
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Structures of these two 1:1 complexes have been studied theoretically
7
 as well as with 

infrared-ultraviolet double-resonance techniques.
8,9

 The permanent electric dipole moments 

(EDMs) of cis-2HN in both electronic states are known from experiment.
10

 Here, we report 

measurements of the EDMs of cis-2HNW from which information about the degree of charge 

redistribution on complex formation is derived by comparison with the results for the isolated 

molecule. Being rotationally resolved, the experiments also provide detailed structural 

information about cis-2HNW, including the HB distances in both electronic states. Since the 

spectrum reveals a tunneling motion of the water molecule analogous to that observed in phenol-

H2O, barrier heights for the combined torsion-inversion potential also have been derived from 

the high resolution data. These results reveal that the attached water molecule undergoes 

discontinuous angular jumps in its orientation with respect to the β-naphthol molecule to which it 

is attached. Similar “flickering dipoles” have been proposed to occur in liquid water as a 

consequence of the breaking and making of HBs. 

4.3 METHODS 

4.3.1 Experimental 

Rotationally resolved electronic spectra were recorded using a high resolution laser apparatus, 

consisting of a tunable continuous-wave ultraviolet (UV) laser which intersects a perpendicularly 

propagating cold molecular beam.
11

 A modified ring dye laser operating with DCM laser dye 

was pumped with an argon ion laser (514.5 nm), yielding continuous fundamental visible 
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radiation. The fundamental radiation was frequency doubled using a BBO doubling crystal cut at 

Brewster‟s angle for 655 nm light, producing ~ 500 μW of ultraviolet power (1 MHz bandwidth) 

and allowing for a scan range of 2 cm
-1

 in the UV. The recorded spectra were calibrated using 

the absorption spectrum of iodine, resulting in an absolute frequency calibration of ± 30 MHz. 

Relative frequency markers from a temperature stabilized etalon were recorded throughout the 

scan, with a spacing of 599.5040 MHz in the UV, resulting in a relative frequency calibration of 

± 0.0005 MHz. 

β-Naphthol was purchased from Aldrich, heated to 370 K in a quartz source, and seeded 

in a backing gas of argon and water at a total pressure of ~ 380 torr. Water was introduced into 

the backing gas prior to the source by passing dry argon over a room temperature water trap. The 

gas expansion consisting of 2HN, H2O, and Ar was skimmed 2 cm after leaving the source (240 

μm diameter), resulting in a molecular beam with a rotational temperature of 6 ± 2 K. The 

molecular beam was crossed with the focused UV laser beam 15 cm downstream from the initial 

expansion, producing a Doppler component to the overall spectral line width of 25 MHz.  Total 

fluorescence upon photon absorption was collected using spherical collection optics and focused 

perpendicular to both beams into a photomultiplier tube and photon counting system. Wire mesh 

plates separated by 1 cm were located above and below the beam intersection in order to 

introduce a homogeneous electric field for Stark measurements.
12

 The known ground state EDM 

of aniline (1.329 D)
13

 was used for Stark calibration. Data was collected using JBA95 acquisition 

software,
14

 and all spectra were analyzed with the JB95 fitting program.
15
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4.3.2 Theoretical 

At the University of Pittsburgh, theoretical calculations were performed using GAUSSIAN03 

(G03)
16

 to support the experimental data. Water was initially attached to a previously optimized 

(MP2/6-31G**) ground state structure of cis-2HN. Then, the M05-2X hybrid density 

functional
17

 was used to optimize the ground state geometry of cis-2HNW (aug-cc-pVDZ basis 

set
18

), while a configuration interaction singles (CIS)
19

 optimization was employed, beginning 

with the optimized ground state cluster structure, to estimate the first excited state cluster 

geometry with the same basis set. Two starting hydrogen bond orientations, one along the C2 

symmetry axis of H2O, and another using a single lone pair of the oxygen atom, resulted in the 

same optimized ground state geometry shown in Fig. 4-1. The internal motion of water relative 

to 2HN was explored at the Hartree-Fock (HF) level of theory with the 6-31+G* basis set
20

 using 

the quadratic synchronous transit (QST)
21

 method available in G03. 

At the University of Minnesota, full geometry optimizations were independently 

performed with G03 with the addition of the Minnesota density functional module 4.1.
16

 The 

density functional M06-2X
22

 was used together with the 6-31+G* basis set. For selected 

structures, further single point calculations on the M06-2X/6-31+G* structure were performed at 

the following levels; M06-2X/MG3,
23

 MP2/6-31+G*, MP2/MG3, and MP2/aug-cc-pVDZ. For 

the most stable of the clusters, a minimization at the M06-2X/MG3 level was also carried out to 

test the effect of a large basis set on the cluster geometry, which was determined to be negligible. 

Additionally, for the isolated ammonia molecule MP2/aug-cc-pVTZ and aug-cc-pVQZ 

calculations confirmed that the theoretical EDM is already converged at the smaller aug-cc-

pVDZ level. 
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Figure 4-1. Ground state structure of cis-2HNW (M05-2X/aug-cc-pVDZ, see Table 4-1 for 

rotational constants). The in-plane inertial axes of cis-2HNW are shown as solid lines. The 

corresponding inertial axes of cis-2HN are shown as dashed lines. 
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Also, energy decomposition was performed with the block-localized density functional 

theory (BLDFT) method using the Xiamen valence bond (XMVB) program
24

 and a modified 

version of GAMESS.
25

 We used a version of the B3LYP implementation that employs the 

VWN1 functional rather than the VWN5 functional in the standard B3LYP model.
26

 The effect 

of increasing basis set size was tested by using 6-31+G* and aug-cc-pVDZ basis sets. The 

geometries used for energy and dipole decomposition were those optimized with G03 at the 

M06-2X/6-31+G* level. 

4.4 RESULTS AND INTERPRETATION 

4.4.1 Rotationally resolved electronic spectrum 

Fluorescence from cis-2HNW was collected by selectively exciting its known electronic origin 

band at 30532 cm
-1

, identified by previous REMPI experiments.
27

 The high resolution electronic 

spectrum of the cis-2HNW origin band (red shifted by 371 cm
-1

 from the origin band of the bare 

molecule) is shown in Fig. 4-2. The spectrum is dense, covering ~ 2 cm
-1

; there are more than 

1000 transitions lying within this bandwidth. Partly, this congestion is caused by the presence of 

two overlapping subbands in the spectrum, produced by a tunneling motion of the attached water 

molecule. We analyze each of these subbands separately here. Later, we will compare the results 

of the two fits in order to extract information about the water motion. 
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Figure 4-2. The rotationally resolved spectrum of cis-2HNW. The A (σ = 0) subtorsional band is 

shown in red (relative intensity of 1), while the B (σ = 1) subtorsional band simulation is shown 

in blue (relative intensity of 3). At full rotational resolution, the fit of the combined simulation to 

experiment is excellent. 
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The spectrum shown in Fig. 4-2 has no central Q branch. Hence, it was simulated using 

b-type selection rules and a rigid-rotor Hamiltonian for each electronic state, 

 

Equation 4-1 

 ̂    ̂ 
    ̂ 

    ̂ 
 . 

 

Here,  ̂  (       ) are the projections of the rotational angular momentum on the inertial 

axes, and A, B, and C are the rotational constants (        ⁄ , etc.). Preliminary values of 

these constants were taken from similar molecular systems and then varied in a least-squares 

fashion using JB95
15

 to obtain a best fit (see Fig. 4-2 and Table 4-1). Equation 4-1 was adequate 

for transitions involving low J states (< 25). Higher J transition fits were improved by the 

addition of Watson‟s distortion terms (A-reduction),
28

 but these did not change the measured 

“rigid rotor” constants by more than one standard deviation. A rotational temperature of 6.0 ± 2.0 

K was derived from the fit; analysis of the observed Voigt profiles of single rovibronic 

transitions gave Gaussian and Lorentzian contributions of 25 and 5 MHz to the linewidths (τ f = 

35 ns). 

Several pieces of information may be derived from the data listed in Table 4-1. The first 

is the location of the water molecule in the complex, which can be determined from a 

comparison of its inertial constants with those of bare cis-2HN,
6
 using Kraitchman‟s equations.

29
 

From this analysis, the center of mass (COM) of water was determined to be 5.15 Å from the 

COM of cis-2HN in S0, and 5.11 Å in S1. Four possible point mass locations result; see Table 4-2 

and Fig. 4-2. From there, it is evident that the water COM lies in (or nearly in) the plane of cis- 
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Table 4-1. Inertial parameters of cis-2HNW. The theoretical constants were calculated using 

M05-2X/aug-cc-pVDZ in S0 and CIS/aug-cc-pVDZ in S1. 

 

 Measured constants Rigid-body Theoretical 

 σ = 0 (A) σ = 1 (B) constants
a
 constants 

S0     

A" (MHz) 1725.9(1) 1724.9(1) 1725.4 1725.3 

B" (MHz) 548.1(1) 548.1(1) 548.1 554.3 

C" (MHz) 416.6(1) 416.8(1) 416.7 420.4 

ΔI" (uÅ
2
) -1.781 -2.609 -2.19 -2.53 

S1     

A' (MHz) 1687.4(1) 1686.3(1) 1686.9 1685.3 

B' (MHz) 553.4(1) 553.4(1) 553.4 544.1 

C' (MHz) 417.3(1) 417.5(1) 417.4 412.1 

ΔI' (uÅ
2
) -1.741 -2.648 -2.18 -2.36 

     

Origin (cm
-1

) 30532.245(1) 30532.434(1) 30532.340(1)  

# lines 141 458   

OMC (MHz) 4.10 5.03   

     

ΔEAB = (EB' – EA') – (EB" – EA")  5673(30) MHz   
a
Determined by averaging the measured values of σ = 0 and σ = 1 (columns 2 and 3). 
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Figure 4-3. Possible locations of the water COM from a Kraitchman‟s analysis in the ground 

state of cis-2HNW. Water is shown in orange as a point mass. These locations were determined 

using inertial parameters of cis-2HN (Ref. 6) and cis-2HNW from this rotationally resolved 

work. 

 

 

 

Table 4-2. Absolute position of water treated as a point mass of 18 atomic mass units (u). The 

inertial frames of cis-2HN (dashed axes) and cis-2HNW (solid axes) are shown in Fig. 4-1. All 

values are in Angstroms (Å). 

 

 cis-2HN frame cis-2HNW frame 

S0   

|a"| 3.77(2) 4.24(2) 

|b"| 3.49(2) 1.70(2) 

|c"| 0.38(2) 0.14(2) 

r" 5.15(2) 4.58(2) 

S1   

|a'| 3.68(2) 4.18(2) 

|b'| 3.49(2) 1.72(2) 

|c'| 0.36(2) 0.13(2) 

r' 5.11(2) 4.52(2) 
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2HN in both electronic states. The location shown in Fig. 4-3(a) is most likely, since it allows for 

water to act as a HB acceptor, and the –OH group of cis-2HN to act as a HB donor. 

The second piece of information is the orientation of the water molecule in the complex. 

In a perfectly planar, vibrationless system, the measured inertial defect (ΔI = Ic – Ib - Ia) would be 

zero. In Table 4-1, the ΔI value of each origin band, in S0 and S1, is small, but not zero [     

 2.19 (S0) and      2.18 uÅ
2
 (S1)]. If the oxygen of water lies in the cis-2HN plane, and the 

two hydrogen atoms of water lie in a plane perpendicular to this, the inertial defect of the 

complex would be         2.32 uÅ
2
, nearly matching the inertial defect we observe. We 

therefore conclude that, as in phenol-H2O, the ab plane of water is nearly perpendicular to the ab 

plane of cis-2HN in the cis-2HNW complex. 

The third piece of information is the HB orientation. Two possible orientations were 

considered; a bifurcated HB with water, and a HB with only a single lone pair of electrons from 

water.  Geometry optimizations using M05-2X hybrid DFT and the 6-31+G* basis set were 

done, beginning with each of the two mentioned HB orientations. They both converged to the 

structure shown in Fig. 4-1, in which the         HB is of the trans-linear type, with a 

single lone pair of electrons on water accepting the 2HN hydrogen. This structure was further 

optimized using M05-2X with the aug-cc-pVDZ basis set, and these theoretical rotational 

constants are reported in Table 4-1. Agreement with experiment is excellent. 

4.4.2 Water dynamics 

In all of the above, we have used the “rigid-body” rotational constants listed in Table 4-1, and 

defined in the footnote thereto. But, as is apparent on re-examination of the data in this table, the 

inertial parameters obtained from the fit of the two subbands are not quite the same. The origin 
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of these differences is a coupling between the overall rotation of the complex and the internal 

motion of the attached water, expressed in the following “torsion” and “torsion-rotation” 

Hamiltonians of a planar molecule as 

 

Equation 4-2 

 ̂    ̂
  

  

 
(       ), 

 

Equation 4-3 

 ̂       
( )( ̂  ̂   ̂  ̂ )      

( )( ̂  ̂   ̂  ̂ )
 
. 

 

In what follows, we show that unique information about the water dynamics can be obtained 

from an analysis of these small perturbations. 

In Eq. 4-3, σ is the index that labels the “torsional” states of the attached water molecule; 

σ = 0, 1, 2, … etc. These are distinguishable by their nuclear spin statistical weights; the A 

subband (σ = 0) has a statistical weight of 1, and the B subband (σ = 1) has a statistical weight of 

3. For σ = 0 and σ = 1, the first-order term in  ̂   is zero, and the combination of  ̂  and the 

second-order term of  ̂   results in the effective Hamiltonian shown in Eq. 4-4. 

 

Equation 4-4 

 ̂           ̂ 
       ̂ 

       ̂ 
 . 

 

Here, the effective rotational constants are related to the “rigid-body” rotational constants of the 

complex (A, B, C) via Eq. 4-5, 
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Equation 4-5 

           
( ) ̂ 

 , etc., 

 

Here, F is the internal rotor constant, and    
( )

 is the second-order perturbation coefficient 

arising from the interaction of the angular momentum of the internal rotor ( ̂ ) with the angular 

momentum of the entire complex ( ̂ ).  The cross terms that result from ( ̂  ̂   ̂  ̂ )
 
 are 

considered small and neglected. 

The differences in the rotational constants of the A and B subbands are defined as ΔAeff, 

etc.  Using Table 4-1, we see that effA    = -1.0 ± 0.1 MHz, and effA   = -1.1 ± 0.1 MHz. Since 

the two  ΔAeff ʼs are the largest of the differences in the rotational constants of the A and B 

subbands, we conclude that the internal motion occurs about an axis that is parallel (or nearly 

parallel) to a in both states. The differences ΔBeff and ΔCeff are small (all ≤ 0.2 MHz, and equal 

within experimental error for both electronic states). Parenthetically, we note that the ΔCeff values 

are positive in both electronic states, opposite in sign to the ΔAeff and ΔBeff values.  Since Eq. 4-5 

is cyclic in Aeff, Beff, and Ceff, all of the differences in effective rotational constants between the 

subbands should have the same sign. The observation that they do not indicates the assumption 

of simple two-fold motion about a is not completely correct.
4
 We will return to this point later. 

In the high barrier limit, the unperturbed values of A should be the same for both 

subtorsional levels σ = 0 and σ = 1.  Thus, the  2

W  perturbation coefficients of the two levels 

(and the magnitudes of the barriers) in both electronic states may be determined from the 

observed difference in the experimental values ΔAeff if the values of F and a̂  are known.  For 
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the ground state, we chose to fix F" to the value for an isolated water molecule, rotating about its 

b-axis and making an angle α" = 18.5° (M05-2X/aug-cc-pVDZ) with the a-axis of the complex, 

F" = 437.0 GHz. The hydrogen bond has α" = 63.5°, and has a much larger projection onto b 

than a. Therefore, the choice of the C2 axis of water for the 1D torsional axis is more consistent 

with experiment. Then, using the method of Herschbach
30

 and available data tables,
31

 the  2

W  

perturbation coefficients were varied until the experimentally observed ΔAeff was reproduced, 

yielding the barrier height  
2V   = 203 cm

-1
 for the ground state. 

A slightly different procedure was followed for S1 since F and a̂  were not known for 

this state. By varying the angle α′ in the excited state, we can require that the calculated 

difference in the subtorsional band splitting ΔEAB match the experimentally observed value of 

5673 MHz (0.189 cm
-1

). The variable α' was stepped by 0.1° from 0° to 90°. At each of these 

900 points, a new value of the excited state Δ  2

W  was generated, along with new values of F' 

and a . This procedure enabled 900 independent interpolations of the effective barrier height in 

S1, s' ( FVs 2 ). From s', 
2V   was also calculated. From the 900 

2V   values, the torsional levels 

in both electronic states were calculated using the matrix elements of the torsional Hamiltonian 

(Eq. 4-2; cf. section 4.2 of Ref. 31) from which the ΔEAB value was determined. Fig. 4-4 depicts 

ΔEAB as a function of α′.  Immediately evident is the crossing of   ABE  with the experimental 

value of 0.189 cm
-1

. This occurs at α′ = 30.6°, when F′ = 436.8 GHz. Through the use of 

tabulated effective barrier heights, along with knowledge of the internal rotor constant, we 

calculate an S1 barrier height of 1802 V  cm
-1

. The results of these calculations for both states 

are summarized in Table 4-3. 
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Figure 4-4. Difference in A-B subband splittings between S1 and S0 as a function of the S1 

internal motion axis angle, αʹ. Shown as a solid line is the measured splitting from the 

rotationally resolved spectrum of 0.189 cm
-1

 (5673 MHz). The crossing occurs at αʹ = 30.6°, a 

change of +12.1° following excitation. 

 

 

 

Table 4-3. Second-order torsion-rotation perturbation coefficients Wνσ
(2)

, internal motion axis 

angles (α), effective barrier heights (s), barrier heights (V2), and internal rotor constants (F) of 

cis-2HNW in each electronic state. 

 

Parameter S0 S1 
 2

00W  0.080 0.122 

 2

01W  -0.080 -0.122 

α (°) 18.5
a
 30.6 

s 13.9 12.3 

V2 (cm
-1

) 203 180 

F (cm
-1

) 14.576 14.568 

 
a
From theory (M05-2X/aug-cc-pVDZ).  
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4.4.3 Permanent electric dipole moments 

Figure 4-5 shows portions of the high resolution spectrum of cis-2HNW recorded at different 

electric field strengths ranging from 0 to 1184 V/cm. Immediately apparent is the additional 

splitting and/or broadening of the individual rovibronic transitions that is produced by the 

applied electric field, owing to a lifting of the 2J + 1 spatial degeneracy of the total angular 

momentum J. These field-induced Stark effects were analyzed according to 

 

Equation 4-6 

 ̂        ⃗   ⃗⃗     ∑ (     )       , 

 

where Ez is the applied electric field strength, μg are the components of the permanent electric 

dipole moments of cis-2HNW in the S0 and S1 states, and the λZg are the necessary direction 

cosines. In our application of Eq. 4-6, each subband was fit to the same values of μg; these are 

listed in Table 4-4. The best-fit magnitudes of μ are 4.00 D in S0 and 4.66 D in S1; thus, |μ| 

increases by ~ 16% upon excitation of cis-2HNW by light. The angle between μ and the b-axis of 

cis-2HNW changes from 51 to 61°. 

4.5 DISCUSSION 

The advantage of using a 1D model to describe the motion of the water molecule relative to cis-

2HN is the ease with which barrier heights can be derived from experimental data. However, the 

true potential energy surface (PES) governing this motion is multi-dimensional, with a coupling  
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Figure 4-5. Stark spectra of cis-2HNW at full rotational resolution. Each simulation is a sum of 

A and B sub-band contributions. All simulations were done using the inertial parameters in Table 

4-1 and the dipole moments in Table 4-4. 

 

 

 

Table 4-4. Absolute permanent electric dipole moments of 2HN and 2HN acid-base complexes. 

The EDMs are shown as projections onto the inertial axes of each molecule or complex. 

Experimental uncertainty is shown in parenthesis, and is in the last digit. All values are in Debye 

(D). 

 

 trans-2HN
a,b 

cis-2HN
c 

cis-2HNA
c 

cis-2HNW
a 

S0     

|μa|  0.384(2) 0.344(3) 2.56(2) 3.11(5) 

|μb|  1.310(8) 0.951(8) 2.93(4) 2.51(5) 

μ 1.36(1) 1.011(9) 3.89(4) 4.00(5) 

S1     

|μa| 1.028(2) 0.159(3) 3.76(2) 4.09(5) 

|μb| 1.01(1) 1.160(8) 3.21(3) 2.23(5) 

μ 1.44(1) 1.17(1) 4.94(4) 4.66(6) 
a
This work. 

b
See supplementary material for previously unpublished data (Ref. 48). 

c
Ref. 10. 
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between torsion about the HB and a low frequency intermolecular wagging mode making the 

largest contributions. A combination of the two modes is required to successfully exchange the 

hydrogen atoms of water, as depicted in Fig. 4-6. The water PES also governs the motion of the 

water dipole with respect to cis-2HN, the time-averaged orientation of which influences the 

measured S0 and S1 permanent dipole moments of the complex.  With this in mind, we begin this 

section with a complete structural analysis from experiment, followed by a comparison of the 1D 

model with other multidimensional models, and close with a discussion of the contribution of 

water motion to the measured permanent electric dipole moments. In the final section, theoretical 

energy and dipole decompositions provide valuable insight into the nature of the HB in the 

ground electronic state. 

4.5.1 S0 and S1 structures of cis-2HNW 

Decreases in rotational constants upon excitation in aromatic systems are often due to increases 

in bond lengths between ring carbons, owing to the promotion of an electron into an anti-bonding 

π* orbital. Table 4-5 clearly shows this to be the case for naphthalene
32

 and cis-2HN,
6
 as all 

changes in rotational constants are negative. However, in both the NH3 and H2O complexes of 

cis-2HN, the ΔA values are smaller in magnitude than those of bare cis-2HN, indicative of HB 

contraction upon excitation. This contraction is enough to actually reverse the sign of ΔB in the 

monosolvated complexes. Table 4-2 quantifies the above observation. The absolute a position of 

water changes a small but significant -0.09 Å.  (The accuracy of each absolute coordinate is 

limited by the rotational constants to a standard deviation of ± 0.02 Å.) However, we see that 

Δb= 0.00 Å, indicating that the movement along b is less than 0.02 Å. The change in distance r 

between the COM of cis-2HN and H2O is -0.04 Å (5.15 Å in S0, 5.11 Å in S1). 
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Figure 4-6. Illustration of coupled torsion-inversion intermolecular motion in cis-2HNW which 

results in an exchange of H1 and H2. 

 

 

 

Table 4-5. Change in rotational constants following excitation to S1 in naphthalene ring systems. 

The values of cis-2HNW were derived using the structural constants listed in Table 4-1. 

 

 Naphthalene
a 

cis-2HN
b 

cis-2HNA
c 

cis-2HNW
 

ΔA (MHz) -77.5 -80.2 -43.9 -38.5 

ΔB (MHz) -18.8 -2.9 +8.8 +5.3 

ΔC (MHz) -15.9 -5.8 +2.7 +0.7 
a
Parent molecule, Ref. 32. 

b
Bare cis-2-naphthol, Ref. 6. 

c
Ammonia complex of cis-2HN, Ref. 36. 

 

  



 74 

It is more chemically relevant to discuss the light-induced change in HB distance 

between cis-2HN and H2O. By comparison with the previously reported position of the hydroxyl 

hydrogen (S0: 44.3Ha , 56.1Hb  Å; S1: 36.3Ha , 60.1Hb  Å),
6
 we estimate the 

2OHHO   distance to be 1.96 Å in S0 and 1.92 Å in S1. This reduction in HB length of 0.04 Å 

is similar to that predicted by high level ab initio calculations (0.07 Å in cis-2HNW).
7
 The 

increase in the O–H bond length in bare 2HN and the decrease in the heavy atom separation in 

the 
2OHHO   HB upon excitation is consistent with the observed behavior of other 

photoacids in condensed phase environments.
33

 

Table 4-2 also reveals a subtle yet important piece of information. The out-of-plane 

coordinate |c| of the water molecule is not zero in either electronic state. The experimental values 

are c = 0.38 Å in S0 and c = 0.36 Å in S1. Schütz et al.
27

 have calculated the transition state 

geometry for water motion in the 2HNW ground state using ab initio methods. Their calculation 

predicts a transition state in which the O atom of water lies ~ 0.4 Å above the 2HN plane, with 

the water hydrogens rotated at a torsional angle of ϕ = 95° (cf. Fig. 4 of Ref. 27). This optimized 

transition state is associated with a coupled internal water motion, involving rotation about the 

2OHHO   hydrogen bond and the lowest energy intermolecular wag mode (β1).
27

 Non-zero 

values of |c| also were observed in the indole-H2O complex.
34

 Thus, it appears that these motions 

also influence the structure of both complexes in the zero-point vibrational levels of their two 

electronic states. Comparatively, our QST pathway predicts a nearly planar transition state. 

The ab initio work of Schütz et al.
27

 theorized a ground state barrier height of 247 cm
-1

, 

218 cm
-1

 when corrected for zero-point vibrational energy (ZPE). This calculated value, which 

takes into account anharmonic coupling between torsional motion and the wag mode, is in good 

agreement with our experimental value of 203 cm
-1

. The derived barrier heights from the high 
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resolution spectrum of phenol-water,
4
 using the 1D analysis, are 1772 V  and 1272 V  cm

-1
. 

Jacoby and Schmitt
35

 have suggested that the decrease in V2 upon excitation observed in phenol-

H2O arises from the loss of the second 
2OHHC   HB. This hypothesis appears consistent 

with the data presented here on cis-2HNW ( 1802 V  cm
-1

), as well as a subtle photoinduced 

change in α (α″ = 18.5, α′ = 30.6°) that may result from a less favorable secondary interaction 

between H2O and the naphthalene ring. The optimization in Fig. 4-1 also suggests the existence 

of a second, weak HB between the second oxygen lone pair and the aromatic hydrogen attached 

to position 1 of the naphthalene ring. The two HB lengths in Fig. 4-1 are predicted by theory to 

be 1.89 Å and 2.74 Å, respectively 

Jacoby and Schmitt
35

 have developed a program (called HTORFIT) in which “best fit” 

values of F and Vn for 1:1 complexes are determined using all available vibrationally and 

rotationally resolved experimental data.  From a global fit of all experimental data, they find that 

 134.1752 V  cm
-1

 and  21.1092 V  cm
-1

 for phenol-H2O.  A significant reduction in F upon 

excitation was reported, from F" = 14.813(118) cm
-1

 to F' = 13.415(25) cm
-1

, attributed to the 

movement of a neutral hydrogen atom from phenol towards H2O upon excitation. To the best of 

our knowledge, no vibrationally resolved experiment has been able to identify transitions of 

purely torsional origin in the cis-2HNW spectrum (a single tentative assignment was made for 

trans-2HNW in Ref. 33), thus making a global analysis impossible in this case.  Using the V2 and 

F values from this work, we have predicted the energies for purely torsional transitions in cis-

2HNW, relative to the electronic origin; these are collected in Table 4-6.  

We find little change in F upon excitation for cis-2HNW (F" = 14.576 and F' = 14.568 

cm
-1

), consistent with the findings from the trans-1HN-NH3 (trans-1HNA) and trans-2HNA 

complexes studied using HTORFIT,
35

 as well as cis-1HNA and cis-2HNA studied by high 
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resolution spectroscopy.
36

 This shows that the axis of motion relative to water does not change 

when the photon is absorbed. A significant decrease in F was observed in phenol-NH3 and -H2O 

complexes, interpreted as due to the translocation of a neutral hydrogen radical from phenol to its 

HB partner upon excitation. This explains the measured decrease in the fluorescence lifetime of 

the phenol-H2O complex compared to the bare chromophore, something not observed in cis-

2HNW.  A charge transfer model seems more appropriate in this case. The loss of fractional 

electronic charge from a non-bonding orbital of the attached water would not greatly affect the 

measured F, unlike the translocation of neutral hydrogen and placement of a full electron into an 

unoccupied partner orbital. 

 

Table 4-6. Predicted energies of S1 torsional levels relative to the electronic origin (S1←S0) of 

cis-2HNW. Transitions are listed using |νʹ,σʹ› ← |νʺ,σʺ› notation. 

 

Transition Predicted Relative Energy 

0,00,2   + 130 cm
-1

 

1,01,2   + 175 cm
-1

 

0,00,4   + 279 cm
-1

 

1,01,4   + 407 cm
-1

 

 

4.5.2 Permanent electric dipole moments 

In the condensed phase, aromatic alcohols like β-naphthol exhibit a red shifted fluorescence due 

to the donation of a proton to the bulk. The electronic origin band of the S1-S0 transition of cis-

2HNW also is red shifted relative to the corresponding origin of the bare molecule by 371 cm
-1

.  

Through the measurement of permanent state-specific gas phase EDMs, we aim to understand 
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the motion of charge within a single HB along the acid-base reaction coordinate, void of bulk 

solvent influences. The total dipole moment of these complexes is a mix of electronic 

contributions from the monomer units, induced moments, and charge transfer, whose 

decomposition is theoretically challenging. 

We have previously introduced a simple static vector model to interpret the composition 

of complex dipole moments.
10,37

 The static vector model builds on the predictive success of 

vector addition models in covalently bound, disubstituted, benzene rings.
38

 In the cis-2HNA 

complex, it was necessary to include four terms in the model; acid (2HN), base (NH3), induced 

(ind), and charge transfer (CT) components, according to the following (vector) equation: 

 

Equation 4-7 

 ⃗       ⃗      ⃗     ⃗     ⃗  . 

 

Comparison of the measured (and calculated) values of these quantities led to the conclusion that 

a significant amount of charge is transferred from NH3 to 2HN in both electronic states, Q = 0.09 

e in S0 and Q* = 0.14 e in S1.  The increase in electron transfer upon excitation by light, while 

small (~ 0.05 e), is sufficient to quantitatively account for the redshift of the spectrum of the 

complex relative to the bare molecule, ~ 585 cm
-1

 in this case, thus validating the vector addition 

model. 

            A similar model should also apply to cis-2HNW. However, there is an interesting 

complication in this case. The axis about which the H2O is moving in cis-2HNW is not the 

hydrogen bond axis, as it is in cis-2HNA.  Thus, the relative dipole orientation changes during 
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the motion, necessitating a dynamic rather than static vector model. A 1D treatment of our 

experimental data, using the model of Harmony,
39 

 

Equation 4-8 

    (  
    

 )  ⁄ , 

 

suggests a tunneling time of τ″ = 37 psec in the ground state, and τ′ = 25 psec in the excited state. 

Flickering dipoles produced on this timescale by the large angular jumps in water orientation 

should be of interest in THz measurements of bulk water dynamics.
40

 Since these times are less 

than those associated with overall molecular rotation, a time-averaged distribution of the water 

dipole orientation results. 

As noted, the barrier to water motion in cis-2HNW is near 200 cm
-1

 in both electronic 

states. Thus, at temperatures less than this, the water molecule tunnels through the barrier 

separating the two equivalent HB configurations, leading to a time-varying electric field 

produced by the reorienting water dipole. The flickering dipoles that result are analogous to 

those produced by HB switching in liquid water,
41

  although the PES governing the latter motion 

is very different. In what follows, the time-varying dipole field generated by the moving water 

molecule in cis-2HNW is analyzed in order to assess its contribution to the measured dipole of 

the complex in both electronic states. 

The theoretical pathway of water motion in the ground S0 electronic state of the complex 

has been calculated using the QST method available in G03. Nine structures along the optimized 

path resulting in an exchange of water hydrogen atoms were calculated at the HF level, using the 
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6-31+G* basis set. The energies of these structures were plotted versus an effective motion 

coordinate, and fit to an expansion of torsional potential functions according to the equation 

 

Equation 4-9 

 ( )  ∑
  

 
(       )    . 

 

A satisfactory fit (standard deviation < 1 cm
-1

) of the QST energies was found using the 

following coefficients; V2 = 239, V4 = -27, V6 = -9, V8 = 6, and V10 = 2 cm
-1

. The addition of 

higher order potential terms (V4, V6, etc.) widens the potential wells, rendering the calculated 

barrier easier to cross than a simple V2 potential. Torsional wavefunctions   , which provide 

information on the probability of the rotor being at a given point along the potential, were then 

constructed from the theoretical potential surface using a basis set of 50 free rotor 

wavefunctions. (The sum of the coefficients squared in this linear combination was normalized 

to one.)  Finally, the expectation value of the dipole moment of water in the 2HN plane, as 

governed by the potential surface for internal motion, was then calculated using Eq. 4-10:  

 

Equation 4-10 

〈    〉  ∫   ( ) ( ) ( )  
  

 
. 

 

In this way, we account for the fact that the motion of the water molecule is controlled by the 

potential, which in turn influences the time-averaged value of its dipole moment. 

Figure 4-7(a) shows the value of the projection of the water dipole moment on the 

naphthol plane, with   = 0 being defined as the equilibrium configuration.  This projection 
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varies by ~ 0.2 D over the course of its motion.  Figure 4-7(b) shows the expectation value of the 

in-plane water dipole at 22.5° intervals in  , weighted according to the relative probability of 

different possible water orientations dictated by the potential in Eq. 4-9. This curve reflects the 

shape of the potential governing the motion of the water molecule. Thus, contributions to the 

expectation value are largest in energetically favored orientations of the dipole, and smallest in 

unfavored orientations. Notice that the curve in Fig. 4-7(b) does not reach a smooth minimum 

under the barrier. Instead, there is an increase in the contribution to the dipole moment within the 

barrier, owing to inversion of the water lone pairs.
42

 The expectation value of the water dipole 

over the entire internal motion is 1.78 D, and completely contained in the ab plane of naphthol. 

[The sum of all “X” values in Fig. 4-7(b) also is 1.78 D.] This type of precession was not 

observed in cis-2HNA, as the dipole of NH3 coincides with the internal rotation axis. This makes 

the path of internal motion and its PES interesting for two reasons, as experimental data on the 

structures and EDMs of the complex are now available. 

Replacing the water dipole vector in Eq. 4-7 with the calculated 
OH2

  from Eq. 4-10 

should provide an estimate of the red shift of 2HN fluorescence in the presence of a single water 

molecule. However, the projection of CT


 onto the HB axis is small in the S1 state (Fig. 4-8), 

resulting in Q* < Q, which leads to a predicted blue shift of 46 cm
-1

 (see supplementary material 

in Appendix C), markedly different than the experimentally observed red shift of 371 cm
-1

. The 

orientation of CT


 in the excited state of cis-2HNW is instead angled more towards the 

naphthalene ring. In contrast, the orientation of CT


 in cis-2HNA is directed along the HB axis. 

This change in orientation may be due to the charge-donating molecular orbital of H2O having a 

better overlap (both energetically and spatially) with a more delocalized charge-accepting orbital  
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Figure 4-7. (a) Dipole moment function of water calculated using the quadratic synchronous 

transit (QST) method. Blue dots are the 2HN-plane dipole projections of water from point 

structures. The black trace is a fit of these blue points to an expansion of torsion functions, with 

the following coefficients; V4 = -0.239, V8 = 0.0340, and C = 1.855. (b) Dipole moment function 

scaled by the probability of water taking on a given orientation as calculated using the QST 

method and a basis set of free rotor wavefunctions. The black trace is a fit to the data points 

using the following coefficients: V2 = 0.157, V4 = 0.058, V8 = 0.00146, and C = -0.104. An image 

of the water dipole precession during internal motion is shown every 45°. 
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Figure 4-8. The S0 and S1 dipole moments of cis-2HNW. This figure illustrates the components 

of Eq. 4-7, where μc2HN (red), ‹μH2O› (blue), μind (green), and μCT (yellow) add to reproduce 

μc2HNW (black). 
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of 2HN. Although an experimental value of Q* for cis-2HNW is absent, we can still comment on 

the trends in the dipole moments of 2HN complexes. In the ground state, 
2HNA2HNW cc 


  (4.00 

D vs. 3.89 D, see Table 4-4). This difference arises from the difference in HB partner dipole 

moments, which leads to larger electrostatic and induced dipole terms (the quadrupole moment 

of H2O also is larger than that of NH3) for 2HNW than were found in 2HNA, accounting for the 

difference in magnitude of the ground state dipoles. 

Clear differences in the S1 EDMs of the complexes indicate that the more basic NH3 

induces more charge transfer upon electronic excitation than H2O. In the S1 state,  

HNA22HNW cc 


 . Our experimental evidence suggests that NH3 does a better job of stabilizing 

the excited state charge transfer reaction than H2O, leading to an increase in the photoacidic 

behavior of β-naphthol in the gas phase. 

4.5.3 Energy and dipole decomposition analysis 

Vector models are only an approximation of the true electronic behavior of acid-base complexes 

in the gas phase. They rely heavily on the convergence of the molecular multipole expansions at 

close distances, ab initio molecular polarizabilities, and on the treatment of CT as localized in 

the HB. For this reason, a high-level theoretical treatment of the acid-base interaction in the 

electronic ground state has been made via a block-localized wavefunction energy and dipole 

decomposition analysis (BLW-ED),
43

 which can be performed both using wave functional theory 

(WFT) and density functional theory (DFT).
44,45

 The BLW-ED method has been applied to a 

variety of systems,
43-45

 including Lewis acid-base complexes.
46

 The energy decomposition was 

performed with the BLDFT method using the XMVB program
24

 and a modified version of 
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GAMESS.
25,45

 These calculations, while not yet accounting for the flickering electric field 

arising from water internal motion, do vastly improve upon the other issues mentioned above. 

The dipole moment decomposition of cis-2HNA and cis-2HNW is discussed below. 

Table 4-7 shows the interaction energy components performed at the B3LYP level for 

cis-2HNA and cis-2HNW:  

 

Equation 4-11 

                           . 

 

Here, the total interaction energy ΔEint is decomposed into the four terms on the right-hand side 

of the equation, which are described as follows.
43-45

 ΔEr is the energy penalty due to the change 

in monomer geometries in the complex with respect to their isolated relaxed geometry. The 

remaining three energy terms are determined using the monomer geometries in the complex. 

First, we constructed a block-localized configuration for the molecular complex AB in which 

Kohn-Sham orbitals are strictly localized within each individual monomer fragment, and the 

block-localized determinantal wave function is written as  o

B

o

A

o

BLDFT
ˆ  A , where 

o

A  and 

o

B  are successive products of the optimized Kohn-Sham orbitals for the isolated monomers A 

and B, and Â  is an antisymmetrization operator. The static electrostatic interaction energy, 

ΔEstat, is the sum of the Coulomb and exchange repulsion energies, and is determined as the 

energy difference between the block-localized complex configuration and the sum of the 

monomers: 
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Table 4-7. Block-localized wavefunction energy decomposition. All values are in wavenumbers 

(cm
-1

). 

 

 B3LYP/6-31+G* B3LYP/aug-cc-pVDZ 

 cis-2HNA cis-2HNW cis-2HNA cis-2HNW 

ΔEr +410 +310 +410 +300 

ΔEstat -750 -980 +270 -190 

ΔEpol -1000 -600 -1290 -730 

ΔECT -1300 -620 -1760 -1010 

ΔEint -2640 -1890 -2370 -1630 
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Equation 4-12 

        ,      
 (  )-  *    , 

 ( )-      , 
 ( )-+. 

 

Here,  ABo

BLDFT ,  Ao , and  Bo  are the electron densities for the species specified in 

parentheses, and the superscript “o” indicates that the corresponding Kohn-Sham orbitals in the 

corresponding wave functions, 
o

BLDFT ,    o

A
ˆA  Ao , and    o

B
ˆB  Ao  are optimized for 

the isolated monomers. ΔEstat corresponds to the energy change produced by bringing two 

infinitely separated monomers into contact at the complex geometry, but keeping their electron 

densities unchanged. Thus, neither polarization nor CT is included in ΔEstat. 

Next, we allowed the charge densities of the monomer blocks in 
o

BLDFT  to be mutually 

polarized by the electric field of the other fragment. The change in interaction energy in this 

process is the polarization contribution: 

 

Equation 4-13 

       ,      (  )-   ,      
 (  )-, 

 

where  ABBLDFT  is obtained from the variationally optimized block-localized Kohn-Sham 

determinant  BABLDFT
ˆ  A . Finally, we expanded the molecular orbitals from the monomer 

block-localization into the complex space such that the Kohn-Sham orbitals are fully delocalized, 

and in the process, we introduced the basis-set superposition error (BSSE) correction, which is 

also due to the expansion of the basis space. The basis set expansion accounts for charge 



 87 

migration from a dominantly one-monomer region into the other, and the energy change in this 

process is the CT component in the total interaction energy: 

 

Equation 4-14 

      ,    (  )-   ,      (  )-, 

 

where the electron density  ABDFT  is computed using standard DFT with the fully delocalized 

determinant function    ABDFT
ˆAB  A . In Eq. 4-12 – 4-14, we have used the subscripts 

“BLDFT” and “DFT” to indicate that the electron density of the complex is either block-

localized or delocalized, respectively. 

The major contribution to the interaction energy is due to CT between the two fragments, 

followed by polarization energy, while electrostatic and geometry distortions provide smaller 

contributions.  In both cis-2HNA and cis-2HNW, ΔECT makes the largest contribution to ΔEint, 

revealing that CT is the greatest stabilizing force upon complex formation in the ground state S0. 

However, the more basic NH3 yields a ΔECT nearly twice as large as that of H2O, indicating that 

ammonia is a better HB acceptor with more significant covalent character than water. In both 

calculations using different basis sets, H2O results in a more negative ΔEstat, a reflection of the 

larger intrinsic dipole moment of water than ammonia (1.855 vs. 1.427 D). On the other hand, 

NH3 appears to be more polarizable, and induces almost double the polarization energy ΔEpol 

than H2O, using both basis sets. Overall, NH3 is able to form a more stable complex with cis-

2HN than H2O, owing to almost double the stabilization from polarization and CT than is 

observed in the cis-2HNW complex. The differences between NH3 and H2O polarization and CT 

can be also visually appreciated from Fig. 4-9, where it is apparent that the 2HNA system shows 
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larger changes in electron density than 2HNW. These differences are clearly of a localized nature 

in the ground electronic state. 

The ability to strictly block-localize and variationally optimize the Kohn-Sham orbitals in 

BLDFT calculations allows us to decompose the total dipole moment of the complex into 

specific components corresponding to the physical processes outlined in the energy 

decomposition analysis. The computational results are listed in Table 4-8. In the first two rows, 

the “o” subscript means that the dipole moments were computed at the geometries of the 

individually optimized fragments (geometries optimized at the M06-2X/6-31+G* level), while 

the following two rows report the change in the dipoles of the isolated fragments in the geometry 

that they assume in the complex. In Table 4-8, μstat is the dipole moment for the complex with 

the block-localized Kohn-Sham determinantal function computed using the orbitals of the 

isolated fragments at infinite separation. The charge density  ABBLDFT  yields Δμpol, which is 

the polarization contribution to the total dipole moment of the complex after the block-localized 

orbitals are allowed to relax in the presence of the other subgroups. Finally, ΔμCT is the change in 

dipole moment of the complex in going from the block-localized state into the fully delocalized 

complex configuration. Each total μcomplex reported in Table 4-8 compares favorably with the 

corresponding experimentally measured value in Table 4-4. 

Table 4-8 shows that the main contribution to the total dipole moment comes from μstat, 

which is about 60% of the total dipole moment of each complex and is already present before 

any relaxation of the block-localized orbitals takes place. Although charge reorganization does 

not take place in the  o

B

o

A

o

BLDFT
ˆ  A  determinant, exchange polarization due to the Pauli  
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Figure 4-9. B3LYP/aug-cc-pVDZ electron density difference contours of 2HNA (a)-(c) and 

2HNW (d)-(f). The polarization effect is shown in (a) and (d), the charge transfer in (b) and (e), 

while (c) and (f) show the combined effect. The same isodensity value (0.003) is used for all the 

plots, and the colors blue and red represent gains and losses in electron density, respectively. 
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Table 4-8. Block-localized wavefunction dipole decomposition. All values are in Debye (D). 

 

 B3LYP/6-31+G* B3LYP/aug-cc-pVDZ 

 cis-2HNA cis-2HNW cis-2HNA cis-2HNW 

μ2HN,o 1.11 1.11 1.00 1.00 

μsolvent,o 1.83 2.24 1.47 1.84 

Δμ2HN 0.02 0.01 0.04 0.01 

Δμsolvent 0.02 -0.01 0.02 -0.01 

μstat 2.92 3.00 2.51 2.61 

Δμpol 1.05 1.15 1.23 1.21 

ΔμCT 0.29 0.10 0.35 0.23 

μcomplex 4.26 4.25 4.09 4.05 
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principle is accounted for. It is interesting to note that μstat is roughly the sum of the dipole 

moments of the individual monomers in cis-2HNA, along with a slight variation due to 

geometric distortion to form the complex. However, a non-negligible exchange polarization 

effect of -0.23 D using the aug-cc-pVDZ basis is found in the cis-2HNW complex. Another 

substantial contribution arises from the polarization of the block-localized orbitals, while CT 

accounts only for a small amount of the total dipole moment. A remarkable finding is that while 

CT effects show greater energy contributions than polarization to complex formation, the 

internal charge reorganization mutually induced by the presence of the other interacting 

monomer has a greater impact on the computed molecular dipole. Generally, following the μstat 

and Δμpol terms, the cis-2HNW dipole is larger than that of cis-2HNA, consistent with the larger 

dipole moment of H2O. The CT component is larger in cis-2HNA, producing total theoretical 

dipole moments that are nearly identical for both complexes. The theoretical block-localized 

decomposition supports the hypothesis that CT is of greater importance in cis-2HNA than in cis-

2HNW, analogous to previous studies of phenol-NH3 and –H2O.
47

 

Table 4-8 reveals that ΔμCT is by far the smallest component of the total complex dipole 

in both cis-2HNA and cis-2HNW. In both complexes, the order of dipole moment magnitude is 

μstat > Δμpol > ΔμCT. The major contribution of μstat in both complexes, along with the major 

contribution of ΔECT mentioned above, paints a picture of localized CT. Simultaneously solving 

the classical equations for energy and dipole moment arising from two point charges Q separated 

by a distance d results in Q = 0.10 electrons over d = 0.70 Å for cis-2HNA, and Q = 0.07 

electrons over d = 0.64 Å for cis-2HNW (aug-cc-pVDZ results). 
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4.6 CONCLUSION 

High resolution electronic spectra of β-naphthol and 1:1 β-naphthol acid-base complexes have 

been thoroughly explored, in the presence and absence of an external electric field. We show that 

in bare 2HN, the EDM reorientation upon photoexcitation indicates a loss of electron density 

from oxygen, rendering the hydroxyl hydrogen more acidic in the excited S1 state [see the 

supplementary material
48

 in Appendix C and Ref. 10]. Matsumoto, Ebata, and Mikami
9
 have 

reported a red shift of νOH in S1 of β-naphthol-H2O which is greater than that observed in the 

ground S0 state, consistent with a weakening of the O-H bond in cis-2HN following excitation. 

The EDMs reported here when the basic water is hydrogen bonded to this acidic hydrogen are 

large, and the inclusion of charge transfer in the dipole decomposition is necessary. Experimental 

determinations of charge transfer can be quantified if the water internal motion is taken into 

account. DFT energy and dipole decomposition using a block-localized wavefunction approach 

support the hypothesis of localized charge transfer in these systems. We conclude that, as in cis-

2HNA, charge transfer is a local phenomenon involving the acid and the base, and that H2O is 

less efficient than NH3 at promoting the photoacidic behavior of 2HN. This is in part a 

consequence of the large amplitude motion of H2O, which was not observed in cis-2HNA. In the 

gas phase, as in liquid water, large angular jumps associated with water HB dynamics produce 

“flickering dipoles”, a non-uniform evolution of the water dipole in time. 

Unanswered questions about hydrogen bonded systems of 2HN still remain. Recently, 

theoretical work has elegantly explained the strange R2PI spectra of doubly-hydrated 2HN and 

phenol.
7,49

 High resolution spectra of the sharp features observed in these experiments would 

provide the structure in S0 and S1 of these three-bodied clusters, as well as their associated 

electronic properties. Since these structures are expected to involve π hydrogen bonds, the 
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energetics of which have recently have been quantified using the high resolution technique,
50

 

new information on weak and strong solvation effects could be measured. The movement of 

charge towards the ortho carbon in 2HN reported here is evidence that π hydrogen bonding at 

this site is stronger in S1, explaining the greater relative stability of the non-cyclic doubly-

hydrated structures already proposed.
7
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5.0  HIGH RESOLUTION ELECTRONIC SPECTROSCOPY STUDIES OF META-

AMINOBENZOIC ACID IN THE GAS PHASE REVEAL THE ORIGINS OF ITS 

SOLVATOCHROMIC BEHAVIOUR 
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5.1 ABSTRACT 

A theoretical and experimental investigation of meta-aminobenzoic acid (MABA) in the gas 

phase is presented, with the goal of understanding counter-intuitive observations on the 

solvatochromism of this “push-pull” molecule. The adiabatic excitation energies, transition 

moments, and excited state structures are examined using the complete active space self-

consistent field approach (CASSCF and CASPT2), which shows the first excited electronic state 

of MABA to be of greater charge transfer character than was found in the para isomer (PABA). 

The rotationally resolved electronic spectrum of MABA reveals the existence of two rotamers, 

owing to asymmetry in the carboxylic acid functional group. Stark measurements in a molecular 

beam show the change in permanent dipole moment upon excitation to be Δμ ≈ 3.5 D for both 

rotamers, more than three times larger than that found in PABA. The excited state measurements 

reported here, along with supporting data from theory, clearly demonstrate how the meta-

directing effects of asymmetric substitution in aniline derivatives can drive charge transfer 

pathways in the isolated molecule. 

5.2 INTRODUCTION 

Aminobenzoic acid (ABA) can exist in three isomeric forms, with an electron donating 

functional group (–NH2) located either ortho, meta, or para relative to an electron accepting 

group (–COOH). This family of “push-pull” compounds is the focus of several applications, 

including the design of innovative pharmaceuticals,
1,2

 the study of bioactive nanoparticles,
3
 and 

the development of novel electronic devices and polymeric materials.
4,5

 In a more general sense, 
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the properties of a wide variety of benzoic acid derivatives are influenced by the relative location 

and inductive capabilities of different functional groups. Hammett sigma constants (σH)
6
 have 

long provided a measure of the inductive properties of these groups. The σH constant is unique to 

specific functional group position, allowing for a direct comparison of meta effects on benzoic 

acid (-0.16 for –NH2) with para effects (-0.66) in the condensed phase. The more negative σH, 

the less acidic the carboxylic acid group of benzoic acid becomes. When these molecules are 

introduced into the gas phase, much can be learned about their structure and electron 

distributions, void of bulk solvent influences. 

In the gas phase, two rotamers of meta-ABA (MABA) have been identified using a hole 

burning multiphoton ionization technique.
7
 They differ by a 180° rotation of carboxylic acid 

about its bond with the aniline ring, leading to the stable cis and trans rotamers shown in Scheme 

5-1.  

 

Scheme 5-1 

 

 

Only a single rotamer of para-ABA (PABA) exists in the gas phase, and its structure and 

electronic distribution have been determined experimentally in both the ground (S0) and first 

excited (S1) electronic states.
8
 The different ABA isomers are postulated to have varying degrees 
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of charge transfer (CT) character in both electronic states in the condensed phase.
9-13

 Here, we 

aim to compare the "electron donor" strength of –NH2 with the "electron acceptor" strength of –

COOH as a function of their relative position. Our tool is high resolution S1-S0 electronic 

spectroscopy both in the absence and presence of an applied electric field. We thus explore the 

origins of these effects by determining how the structures and electronic distributions of both 

rotamers are modified by the absorption of light. 

To the best of our knowledge, the excited state properties of MABA have been studied 

theoretically at only the configuration interaction singles (CIS) level.
11

 Since high resolution 

spectroscopy can unambiguously assign the excitation energy and inertial parameters of each 

rotamer, we have employed the complete active space self-consistent field method (CASSCF), 

corrected for dynamic electron correlation (CASPT2), to better model the subtle differences in 

rotamer S1 ← S0 excitations. With this multi-configurational technique, we also aim to explore 

the perturbation of molecular orbitals that can arise from systematic changes in molecular 

symmetry.  

5.3 EXPERIMENTAL SECTION 

5.3.1 Theory 

All calculations were performed with GAUSSIAN 03
14

 at the University of Pittsburgh Center for 

Molecular and Materials Simulations (CMMS). An initial set of molecular orbitals was generated 

at the HF/3-21G level for each molecule, and an active space of six benzene-like π orbitals was 

chosen for CASSCF calculations. Beginning with the 3-21G basis set, more atomic orbitals, 
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polarization, and diffuse functions were added step-wise until the ABA geometries under 

investigation were fully optimized for S0 using a split-valence correlation-consistent basis set 

with additional polarization and diffuse functions (aug-cc-pVDZ). Then, the S1 geometries were 

optimized (CASSCF/aug-cc-pVDZ), beginning with the optimized S0 geometries. Corrections to 

the optimized geometries for dynamic electron correlation using MP2 was done to improve the 

reported theoretical excitation energies (CASPT2). 

In addition to the CAS calculations, HF, MP2, B3LYP and M05-2X theories were used to 

model the S0 structure and dipole moments. In S1, CIS structures and dipole moments were 

optimized beginning with the HF S0 geometry. Again, all calculations were performed with the 

aug-cc-pVDZ basis set. 

5.3.2 Experiment 

The vibrationally resolved experiment was performed using a pulsed supersonic jet laser 

spectrometer.
15

 MABA purchased from Aldrich was mixed with an excess of diatomaceous earth 

(Celite 545) from Fisher Scientific to minimize decomposition inside the high temperature 

source. The mixture was heated to ~ 180 °C and seeded in dry helium gas at a total pressure of 2 

ktorr. The sample gas was introduced into a vacuum chamber (10
-5

 torr) through the 1 mm 

diameter pinhole of a pulsed General Valve (series 9) nozzle operating at 10 Hz. The supersonic 

expansion was crossed at a right angle 2 cm downstream with the pulsed output of a frequency 

doubled dye laser (Quanta Ray PDL-1), also operating at a repetition rate of 10 Hz. The laser 

system consisted of the second harmonic output of a Nd
3+

:YAG laser (Quanta Ray DCR-1A), 

which pumped a dye laser using DCM laser dye purchased from Exciton. The output of the dye 

laser was frequency doubled using a potassium dihydrogen phosphate (KD*P) crystal and 
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directed through the jet spectrometer. The resulting fluorescence excitation signal was collected 

by a photomultiplier tube (PMT) mounted perpendicular to the jet expansion and laser beam, 

processed by a boxcar integrator (Stanford Research Systems), and recorded digitally with 

QUICK DATA ACQUISITION software (version 1.0.5). The laser power was measured 

throughout the experiment and also processed by the boxcar integrator, ensuring power 

normalization of the vibrationally resolved spectrum. 

The rotationally resolved experiments were performed with a continuous molecular beam 

laser spectrometer.
16

 MABA was heated to ~ 200 °C inside a quartz source and seeded in a 

backing gas of dry argon at a total pressure of 300 torr. The sample gas was expanded through a 

240 μm pinhole into a vacuum chamber (10
-6

 torr) and skimmed 2 cm downstream. Following 

the 1 mm diameter skimmer, the molecular beam entered a second vacuum chamber (10
-7

 torr), 

where it was crossed 13 cm after skimming with a perpendicularly propagating continuous wave 

laser beam. This high resolution system consists of a modified ring dye laser (Spectra Physics) 

containing DCM laser dye pumped by the 514 nm line of an argon ion laser. The fundamental 

output was frequency doubled with a Wavetrain frequency doubler (Spectra Physics) using a 

lithium borate (LBO) crystal cut at Brewster‟s angle for 655 nm light, resulting in a UV light 

beam of 1 MHz bandwidth with typical output power of ~ 500 μW. Total fluorescence was 

collected with spherical optics and focused into a PMT (EMI 9813 QB) located perpendicular to 

both beams. The fluorescence excitation signal was recorded along with the absorption spectrum 

of iodine for absolute frequency calibration. The frequency markers of a temperature stabilized 

etalon (FSR = 299.7520 MHz in the fundamental) were also recorded and used for relative 

frequency calibration. Stark optics were used in the electric field experiments, and were 

calibrated using the known dipole moments of aniline.
17
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5.4 RESULTS AND DISCUSSION 

5.4.1 Theoretical S0 structures and dipole moments 

Ground state structures of each rotamer were optimized using five levels of theory; HF, 

CASSCF, MP2, B3LYP and M05-2X. All optimizations reported here were performed with the 

aug-cc-pVDZ basis set. The theoretical rotational constants listed in Table 5-1 will act as the 

structural benchmark with which experimentally determined constants can be compared. The 

dipole moment projections onto the inertial axes predicted by theory are also summarized in 

Table 5-1. For cis-MABA, the total ground state dipole ranges from 2.3 to 2.6 D. The trans-

MABA rotamer has a larger total dipole in S0, ranging from 3.0 to 3.7 D. At the CASSCF level, 

cis-MABA is more stable in S0 than trans-MABA by 77 cm
-1

, 52 cm
-1

 using CASPT2. 

5.4.2 Theoretical S1 structures and dipole moments 

Excited state structures of each rotamer were optimized using two levels of theory, CIS and 

CASSCF, in order to explore adiabatic excitation properties. Rotational constants and dipole 

moments from these optimizations are also listed in Table 5-1. Trans-MABA also is predicted to 

have the larger permanent electric dipole in the S1 electronic state. At the CASSCF level, cis-

MABA is predicted to be more stable than trans-MABA in the excited state by 61 cm
-1

, 12 cm
-1

 

using CASPT2. 
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Table 5-1. Theoretical rotational constants (MHz), inertial defects (uÅ
2
), and dipole moments 

(Debye) of MABA. 

 

  S0 S1 

 HF CASSCF MP2 B3LYP M05-2X CIS CASSCF 

  

 cis-MABA 

A 2715.8 2694.3 2632.3 2663.9 2685.7 2715.4 2656.2 

B 951.9 944.9 935.6 939.9 949.6 943.2 926.3 

C 705.3 700.1 690.8 695.1 701.9 700.0 687.1 

ΔI -0.493 -0.556 -0.518 -0.392 -0.402 0.000 -0.331 

        

μa 1.81 1.48 1.94 2.25 2.13 5.00 2.49 

μb 1.26 1.46 0.87 0.88 0.96 0.26 1.34 

μc 1.04 1.10 0.99 0.86 0.91 0.00 0.84 

μ 2.44 2.35 2.34 2.57 2.51 5.01 2.95 

  

 trans-MABA 

A 2665.6 2643.4 2587.6 2616.7 2638.9 2674.6 2612.4 

B 962.2 955.5 945.6 949.9 959.4 952.0 935.2 

C 707.4 702.3 693.0 697.3 704.0 702.1 689.0 

ΔI -0.491 -0.547 -0.513 -0.395 -0.407 0.000 -0.345 

        

μa 2.66 2.36 2.63 2.99 2.89 5.74 3.32 

μb 1.75 1.56 1.62 1.84 1.83 3.02 1.83 

μc 1.04 1.10 1.00 0.87 0.92 0.00 0.84 

μ  3.35 3.04 3.25 3.62 3.54 6.48 3.88 
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5.4.3 Experimental rotational constants, transition moments, and dipole moments 

The vibrationally resolved fluorescence excitation spectrum (FES) of MABA is shown in Figure 

5-1. The spectrum features two MABA origin transitions, labeled “I” and “II”. They are 

separated by 26 cm
-1

, nearly identical to the separation previously measured by REMPI.
7
 Also, 

water present in the diatomaceous earth apparently allowed for the formation of 1:1 and 1:2 

water complexes, labeled “W1” (30357 and 30364 cm
-1

) and “W2” (30407 and 30410 cm
-1

), 

respectively. These bands have also been previously reported,
18

 and their frequencies are in good 

agreement with those reported there. However, it is interesting to note that the separations of the 

complex bands are significantly different from 26 cm
-1

. 

Rotationally resolved experiments were conducted on each bare MABA origin in Figure 

5-1. Initially, rotational constants estimated from ab initio geometry optimizations were used to 

simulate each spectrum, and then the inertial parameters were iteratively adjusted and fit to 

experiment in a least-squares fashion using the JB95 fitting program.
19

 The rotationally resolved 

spectra of Bands I and II are shown in Figures 5-2 and 5-3, respectively. The fit simulations are 

in excellent agreement with experiment, and the fitting parameters are listed in Table 5-2. 

MABA is confirmed to be nearly planar in both electronic states, as evidenced by the 

small, negative inertial defects (ΔI = Ic – Ia – Ib) reported in Table 5-2. Therefore, the differences 

in rotational constants between the two rotamers (within a single electronic state) are a 

consequence of changes in some in-plane atomic positions. Focusing on the ground state, the A 

constant of rotamer I is larger than that of II, meaning that some atomic positions in I are closer 

to the a-axis than they are in structure II. Conversely, the B constant of rotamer I is smaller than 

that of II, indicative of a structure with atoms located further from the b-axis. We hypothesize 
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Figure 5-1. Vibrationally resolved fluorescence excitation spectrum (FES) of MABA. The 

spectrum closely resembles the combined REMPI spectra of MABA (I and II), MABA-H2O 

(W1), and MABA-(H2O)2 (W2) previously reported.
6,17

 The transition marked with an asterisk (*) 

is the electronic origin of pyrimidine, a contaminant in the spectrometer. 
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Figure 5-2. Rotationally resolved FES of MABA I. The experimental spectrum is in black, and 

the fit simulation is in red. The top panel spans a frequency range of 2.61 cm
-1

, whereas the 

middle and bottom panels span only 0.32 cm
-1

. The Stark effect is shown in the bottom panel. 
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Figure 5-3. Rotationally resolved FES of MABA II. The experimental spectrum is shown in 

black, and the fit simulation is in blue. The top panel spans a frequency range of 2.88 cm
-1

, 

whereas the middle and bottom panels span only 0.32 cm
-1

. The Stark effect is shown in the 

bottom panel. 
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Table 5-2. Experimentally determined inertial parameters of MABA. Each rotational constant 

has a standard deviation of 0.1 MHz. S0 and S1 rotational constants were varied, along with the 

origin, to produce the final fits to experiment shown in Figures 5-2 and 5-3. 

 

 I II 

S0   

A (MHz) 2677.5 2629.4 

B (MHz) 947.2 957.5 

C (MHz) 700.4 702.6 

ΔI (uÅ
2
) -0.750(6) -0.76(2) 

κ -0.750 -0.735 

   

S1   

A (MHz) 2671.6 2631.5 

B (MHz) 936.3 944.9 

C (MHz) 693.7 695.6 

ΔI (uÅ
2
) -0.377(7) -0.39(2) 

κ -0.755 -0.742 

   

Origin (MHz) 913472913(30) 914258121(30) 

TM (a/b/c) 16/84/0 22/78/0 

fit lines 380 245 

OMC (MHz) 1.2 3.1 

fit lines / parameter 54.3 35.0 
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that the –COOH orientation in rotamer I must place more of the functional group mass in close 

proximity to the a-axis, and further from the b-axis than in rotamer II. 

Both I and II exhibit mixed a/b type selection rules, as evidenced by the presence of P, Q, 

and R branches in the high resolution spectra. As refinements to the inertial parameters were 

made, it became possible to fit each rotamer to a unique a/b hybrid band type, also listed in Table 

5-2. The rotamers have nearly identical hybrid band types (I, 16/84; II, 22/78), meaning that the 

symmetries of the molecular orbitals involved in the excitation are the same for each rotamer. 

The slight difference in band type is a result of each rotamer having differently oriented principal 

inertial axes. The final adjustment made to each simulation was the inclusion of a Voigt line 

profile through the combination of Doppler (Gaussian) and lifetime (Lorentzian) broadenings. 

For each rotamer, the Doppler component was fixed to 30 MHz, close to the limiting Doppler 

resolution of the molecular beam spectrometer. The Lorentzian contributions that then best fit the 

experiment were 65 and 50 MHz, respectively. Each component to the total line width has an 

uncertainly of ± 5 MHz, rendering the excited state fluorescence lifetimes of each rotamer 

effectively identical. The fluorescence lifetime of MABA determined from the averaged 

Lorentzian line width is ~ 3 ns. 

Rotationally resolved experiments in the presence of a static electric field were also 

performed on each rotamer. The spatial degeneracy of the total angular momentum of the 

molecule is lifted by the application of an electric field, resulting in splitting and frequency 

shifting of rotational energy levels in each electronic state. This is evident in the bottom panels 

of Figures 5-2 and 5-3, where the Stark spectra of I and II are shown at full resolution. Keeping 

all inertial parameters determined from the zero-field experiments constant, the electric dipole 
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moment in each electronic state was iteratively fit in a least-squares fashion.
20

 The projections of 

these values onto the inertial axes of each rotamer are listed in Table 5-3. 

In the ground state, the dipole moment of I is smaller in magnitude (μ = 2.2 D) than the 

dipole moment of II (μ = 3.2 D). We postulate that the larger dipole is a consequence of the 

larger spatial separation of the –NH2 group and the carbonyl functionality of the –COOH group. 

Following photoexcitation to S1, the dipole moment of each MABA rotamer increases by ~ 3.5 

D. The nearly identical increase in dipole moment is evidence for the same S1 state being 

reached, independent of rotamer configuration. In contrast (see Table 5-3), the dipole moment of 

the single para-aminobenzoic acid (PABA) rotamer increases by only Δμ = 1.1 D,
8
 significantly 

smaller than the Δμ values in MABA. 

Clearly, the gas phase electronic properties of the ABAs are highly correlated with the 

relative location of each functional group. The meta derivative, with its functional groups closer 

in space than the para derivative, has a larger change in dipole upon excitation to S1. This 

counter-intuitive observation, also seen in the same “push-pull” system almost 50 years ago,
21

 

will be explained in the following section. 

5.4.4 Conformational assignment 

As is apparent from our fits of the high resolution spectra, the species responsible for Bands I 

and II exhibit different rotational constants, making it possible to determine their structures. In 

both electronic states, the A constant of Band I is larger than it is in Band II; however, the B 

constant is smaller for Band I than for Band II. Comparing these results to theory (Table 5-1), we 

therefore assign Band I at 30470 cm
-1

 as the cis-MABA origin and Band II at 30496 cm
-1

 as the 

  



 112 

 

 

 

 

 

 

 

 

 

Table 5-3. Measured permanent electric dipole moments of ABAs. In all cases, μc was measured 

as equal to zero. Standard deviations are shown in parentheses. 

 

 MABA I MABA II PABA
a
 

S0    

μa (D) 2.1(1) 2.7(1) 3.12(8) 

μb (D) 0.7(2) 1.7(1) 1.2(2) 

μ (D) 2.2(1) 3.2(1) 3.3(2) 

S1    

μa (D) 5.7(1) 6.1(1) 4.21(8) 

μb (D) 0.0(2) 2.9(1) 1.3(2) 

μ (D) 5.7(1) 6.8(1) 4.4(1) 

Δμ (D)
b
 3.7 3.6 1.1 

a
Data from Ref. 8. 

b
Determined from a vector subtraction of the S1 and S0 dipoles.  
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trans-MABA origin. This is the opposite of the previously proposed assignment using relative 

CIS excitation energies.
7
 

Table 5-4 lists the theoretical excitation energies of the two rotamers of MABA along 

with other related properties of the S1-S0 transition. The excitation energies calculated using the 

mutli-configurational CASSCF approach compare more favorably with experiment than the CIS 

energies. A CASPT2 correction was done on the S0 and S1 CASSCF optimized structures, further 

improving the theoretical excitation energies relative to experiment. The average excitation 

energy of MABA is ~ 3.78 eV from experiment, whereas the average theoretical values are 4.61 

eV for CIS, and 4.44 eV for CASSCF (3.99 eV with CASPT2). In Table 5-4, the trans origin 

band of MABA is predicted to lie to the red of the corresponding band of cis-MABA. 

We predict a red shift of trans-MABA relative to cis-MABA of 243 cm
-1

 using CIS 

optimizations (with no a zero-point energy correction), very similar to the value of 240 cm
-1

 

previously reported.
6
 However, the higher level CASSCF S1 adiabatic excitation energies predict 

a much smaller red shift (16 cm
-1

, 40 cm
-1

 with CASPT2). A difference of 40 cm
-1

, equivalent to 

~ 0.005 eV, is too small to make a reliable origin assignment. Using structural constants to better 

differentiate between I and II, we conclude that trans-MABA is blue shifted relative to cis-

MABA by 26 cm
-1

.  

A comparison of theoretical permanent dipole moments to those determined 

experimentally will corroborate the above rotamer assignments. Band I has a smaller total dipole 

in S0 (2.2 D) than Band II (3.2 D), consistent with its assignment as cis-MABA. In S1, Band I 

again has a smaller total dipole moment, again consistent with the cis-MABA data in Table 5-1. 

Particularly clear is the difference in excited state μb between I and II. In Table 5-3, μb = 0.0(2) D 

for Band I in S1, considerably smaller than μb = 2.9(1) D for Band II. This striking difference in  
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Table 5-4. Theoretical properties of the MABA S1-S0 electronic excitation. E is the CASSCF 

adiabatic excitation energy, and EPT2 is the CASPT2 corrected energy. The percentage of 

reference, single, double, and triple excitation configurations is shown, followed by the natural 

orbital population of each MO in the active space. SLCs are the single excitations with the 

largest CI coefficients. 

 

 cis-MABA trans-MABA 

 CAS S0 CAS S1 CAS S0 CAS S1 

E (cm
-1

)
a
  35857  35841 (-16)

b 

EPT2 (cm
-1

)  32169  32129 (-40)
b 

Ref (%)
c
 88.7 0.0 88.7 0.0 

S (%)
c
 0.0 79.7 0.0 79.7 

D (%)
c
 9.7 15.3 9.7 15.2 

T (%)
c
 0.0 2.0 0.0 2.3 

π1 (a2u) 2.0 1.9 2.0 1.9 

π2 (e1g) 1.9 1.6 1.9 1.6 

π3 (e1g) 1.9 1.2 1.9 1.2 

π4 (e2u) 0.1 0.4 0.1 0.4 

π5 (e2u) 0.1 0.8 0.1 0.8 

π6 (b2g) 0.0 0.1 0.0 0.1 

SLCs (%)
d
  π3 → π5 (61) 

π2 → π4 (19) 

 π3 → π5 (61) 

π2 → π4 (19) 
a
The excitation energies predicted by CIS theory are 37334 and 37091 (-243) cm

-1
 for cis and 

trans-MABA, respectively. The corresponding electronic transition moments are 28/72/0 and 

35/65/0 (a/b/c, %). 
b
The excitation energy of trans-MABA relative to cis-MABA is shown in parentheses. 

c
Electronic configurations with coefficients less than 0.05 were not included. 

d
CASSCF(12,10) optimizations with an extended active space, including π orbitals localized on 

the two functional groups, were done on cis-MABA. The same SLCs were found as in the 

CASSCF(6,6) work, and the TM orientation shown in Figure 5-5 was confirmed. 
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S1 electronic distribution between I and II is supported by theory, and confirms the band 

assignments as cis and trans-MABA, respectively. Each rotamer is shown in its respective 

principal axis system in Figure 5-4, along with their measured dipole moments. 

5.4.5 Evaluation of theory 

In Table 5-5, the theoretical rotational constants and dipole moments are compared to experiment 

using the root mean square deviation formula in Equation 5-1. 

 

Equation 5-1 
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Here, ex

gx  are the experimental rotational constants or dipole moments, th

gx  are the theoretical 

rotational constants or dipole moments, and n is the total number of data points compared (3 for 

the rotational constants, and 2 for the dipole moments). The smaller δrms, the better that level of 

theory compares to experiment. 

The CASSCF approach predicts the S0 rotational constants better than either HF or MP2, 

for each rotamer. The M05-2X density functional predicts the most accurate ground state 

structure, with δrms < 6 MHz. In S1, the δrms reported for CIS rotational constants is comparable to 

the HF approach for S0. However, the CASSCF method predicts better S1 rotational constants 

than CIS, with a low δrms < 13 MHz. Even for this small system, the improved treatment of  
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Table 5-5. Root mean square deviations of theoretical rotational constants (A, B, C) and dipole moments (μa, μb) as compared to 

experiment.
a
 Band I is assigned as cis-MABA, and Band II is assigned as trans-MABA. 

 

  S0 S1 

 HF CASSCF MP2 B3LYP M05-2X CIS CASSCF 

cis-MABA        

δrms (MHz) 22.5 9.8 27.5 9.4 5.0 25.9 11.3 

δrms (D) 0.4 0.7 0.2 0.2 0.2 0.5 2.5 

trans-MABA        

δrms (MHz) 21.3 8.1 25.7 9.1 5.7 25.5 12.9 

δrms (D) < 0.0 0.3 0.1 < 0.0 0.2 0.3 2.1 
a
This comparison is only approximate, since the experimentally determined data are for the vibrationally averaged structure (r0), and 

the theoretical data are for an equilibrium structure (re). However, the δrms values clearly indicate that the correct rotamer assignments 

have been made. 
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Figure 5-4. Assigned structures and dipole moments of the MABA rotamers. 
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dispersion interactions provided by M05-2X, and the multi-configurational nature of the 

CASSCF approach, offer valuable theoretical advantages for structural studies 

The dipole moment root mean square deviations do not include a comparison of μc. In the 

rotationally resolved spectra of aniline
17,22

 and of aniline derivatives,
8,23,24

 it is well known that a 

fast motion along the –NH2 inversion coordinate occurs in both S0 and S1, rendering μc 

effectively zero for each vibrationally averaged structure. We believe the same fast inversion is 

responsible for the measured μc = 0.0(2) D reported here. Therefore, we do not include the 

predicted μc values in determining δrms. The S0 dipole moments are best predicted by the B3LYP 

and MP2 methods, although all of the δrms values are small compared to the respective total 

dipole moments. The HF theory predicts smaller deviations from experimental S0 dipole 

moments than the CIS theory does with respect to the S1 values. 

5.4.6 Connections with ABA solvatochromism 

The ABAs were among the first organic molecules to be studied using solvatochromic 

techniques.
21

 In such experiments, one measures shifts in the maximum absorption ( abs
~ ) and 

fluorescence ( fluor
~ ) energies as a function of solvent polarity, and interprets the slopes of these 

resulting plots in terms of differences in the ground and excited state dipole moments. Applying 

this method to the ABAs, Mataga found that the slope of the MABA plot was greater than the 

corresponding slope of the PABA plot.
21

 The simple yet counter-intuitive explanation of such an 

observation is that the Δμ upon excitation is greater for MABA than for PABA. If the “push-

pull” CT nature of the substituents in ABA did not depend on their relative positions, Δμ should 

increase as the –NH2 and –COOH groups are further apart. However, if the change in dipole 
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upon excitation is strongly dependent on relative substituent position, excited states of varying 

CT character could be responsible for the observed solvatochromic shifts. 

Mataga suggested that a failure of PABA to reach the lowest energy local solvent 

configuration within the excited state fluorescence lifetime of the molecule was responsible for 

these curious condensed phase observations.
27

 In the gas phase, the fluorescence lifetime of 

PABA is 5 ns (3 ns for MABA), long enough that solvent reorganization following excitation to 

a Franck-Condon S1 state should be achieved. Alternatively, the assumption that long range 

interactions between the solute dipole and the solvent reaction field dominate the solvent 

dependent abs
~  and fluor

~  spectral shifts may fail for the aminobenzoic acids. 

This breakdown is more pronounced in MABA than in PABA, as evidenced by recent 

solvatochromism studies of these compounds.
11-13

 Inclusion of hydrogen bonding (HB) solvents 

in the Lippert-Mataga solvatochromic shift analysis is not valid,
27

 as the molecular orbital 

overlap and electron exchange between solvent and solute can no longer be reasonably ignored. 

Therefore, the S1 dipole moment estimates of Stalin et al.
11-13

 include very local HB polarization 

and CT effects. As made clear by Mataga,
21

 however, the qualitative comparison of Δμ between 

aminobenzoic acids when only non-HB solvents are taken into account yields the ordering 

ΔμMABA  > ΔμPABA, the same ordering observed here in the gas phase. Also, Figure 6 of Ref. 21 

clearly shows a much larger inclination of Δν vs. F(D, n) for MABA than PABA, when HB 

solvents are included. 

Clear differences in the electronic structure of the ABA excited states are captured using 

the CASSCF approach. Shown in Figure 5-5 are the active space molecular orbitals (MOs) 

resulting from CASSCF S1 geometry optimizations of MABA and PABA. The MOs chosen are 

polarized versions of the three occupied and three unoccupied Hückel orbitals of benzene (a2u,  
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Figure 5-5. Molecular orbitals and excitation properties of MABA and PABA from the S1 

CASSCF optimized geometries of each isomer. The red and blue (opposite parity) MOs were 

created in AVOGADRO
25

 using an isosurface value of 0.02. Electron density difference maps 

(EDDMs) were calculated as (π5)
2
 – (π3)

2
 with G03 and rendered in JMOL

26
 using an isosurface 

value of 0.004. Areas of electron density gain upon excitation (black arrow) are shown in purple, 

and areas of electron density loss are shown in yellow. The electronic transition moment (TM) as 

estimated from the (π5   π3) direct product is displayed below each EDDM as a green double-

headed arrow.   
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e1g, e2u, and b2g symmetries in the D6h point group). Table 5-4 shows that, in S0, the three lowest 

energy MOs in the active space (π1 – π3) are (almost) entirely occupied. 

For PABA and aniline, the lowest energy excited state predicted by CIS calculations is 

the La state (a-type transition moment), contrary to experiment.
8
 The CASSCF method used here 

correctly predicts S1 to be the Lb origin for PABA, with the b-type transition moment (TM) 

shown in Figure 5-5. However, when the symmetry of the disubstituted benzene is broken by 

meta substitution, the Lb state takes on more CT character, and the orientation of the inertial axes 

along with distortions to the MOs by the polarizing functional groups results in the 

experimentally observed a/b hybrid TM for MABA. 

Our experimental results support the solvatochromism findings discussed above, but 

point to an alternative explanation of the condensed phase data. In MABA, S1 is also the Lb state, 

but one of greater CT character than the Lb state of PABA. The differences in nodal patterns can 

be understood visually through the electron density difference maps of MABA and PABA 

presented in Figure 5-5. In both rotamers of MABA, the carbonyl oxygen gains electron density 

(purple) upon excitation. This is coupled with a large gain in density at the –COOH bond with 

the aniline ring. In PABA, the –COOH carbonyl oxygen actually donates electron density 

(yellow) to the ring upon excitation. 

The underlying difference in the locally excited states reached by MABA and PABA is 

the meta orientation of each substituent, which promotes the coupled electron donor and electron 

acceptor behavior of –NH2 and –COOH, as illustrated in Scheme 5-2 below. The partial charges 

(shown in circles) derived from all possible resonance structures of aniline and benzoic acid 

mutually reinforce each other, promoting CT from –NH2 to –COOH in the meta isomer. This is 

not the case in PABA as the two effects cancel, therefore suppressing the “push-pull” nature of 
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that molecule. The dipole ordering in S1 of μMABA > μPABA is supported by the slopes of each 

solvatochromism plot when HB solvents are removed.  

When HB solvents are included, the increase in solvatochromic slope is greater for 

MABA than for PABA. The CT S1 of MABA should be further stabilized by HB, increasing 

charge separation beyond that observed in the gas phase. The HB effect on PABA is less 

pronounced, since S1 is comprised of a more local excitation (LE). Tuning from LE to CT within 

these Lb excited states when the substituents of aminobenzoic acid are moved from a para to a 

meta position appears to also be true in the condensed phase. 

 

Scheme 5-2 

 

 

5.5 CONCLUSIONS 

The average dipole moment of MABA in S0 is μ = 2.7 D, compared to μ = 3.3 D for PABA in the 

same electronic state. Clearly, there is (on average) more charge separation in S0 between the 

donor and acceptor groups in PABA than in MABA, meaning that para substitution induces a 

larger negative charge on benzoic acid than substitution in the meta position does. These S0 gas 
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phase observations agree with the condensed phase trend in acidity of amino substituted benzoic 

acids as measured by σH.  

However, upon excitation to S1, the molecular orbitals of PABA are changed by meta 

substitution. This excited state polarization results in a locally excited Lb state in PABA with 

suppressed CT character, which leads to MABA having the larger S1 permanent dipole of the 

two isomers. Consequently, MABA experiences an increase in permanent dipole upon excitation 

three times that observed in PABA. Within the MABA family, the trans rotamer has a nearly 

identical dipole orientation in S0 and S1, whereas the cis dipole orientation changes upon 

excitation (see Figure 5-4). This subtle difference between the rotamers can only be detected 

when information about the individual dipole moment projections onto the internal inertial axes 

is available. Thus, if it were possible to perform solvatochromic experiments on the separate 

isomers, trans-MABA would exhibit the larger shift. 

In the disubstituted benzene ring systems studied here, it is the excited state electronic 

properties that are the most different between para and meta isomers. Taking advantage of these 

distinguishing characteristics in S1 could aid in the development of gas phase molecular 

separation, orientation, and alignment techniques. 
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6.0  HIGH RESOLUTION ELECTRONIC SPECTROSCOPY OF THE DOORWAY 

STATES TO INTRAMOLECULAR CHARGE TRANSFER. GAS PHASE DIPOLE 

MOMENTS OF BENCHMARK AMINOBENZONITRILE DERIVATIVES. 
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6.1 ABSTRACT 

Reported here are several of the ground, first, and second excited state structures and dipole 

moments of three benchmark intramolecular charge transfer (ICT) systems, 4-(1H-pyrrol-1-

yl)benzonitrile (PBN), 4,4ʹ-dimethylaminobenzonitrile (DMABN), and 4-(1-

pyrrolidinyl)benzonitrile (PYRBN) as measured by rotationally resolved electronic spectroscopy 

in the gas phase.  The related molecules 1-phenylpyrrole (PP) and 4-aminobenzonitrile (ABN) 

also are discussed. We find that the S1 electronic state is of B symmetry for all five molecules in 

the gas phase. In PBN, a second excited state (S2) of A symmetry is found only 400 cm
-1

 above 

the lowest frequency electronic transition observed in the vibrationally resolved fluorescence 

excitation spectrum. The change in dipole moment upon excitation to the A state is measured to 

be Δμ ≈ 3.0 D, significantly smaller than the value predicted by theory, and also smaller that 

observed for the „anomalous‟ ICT band of PBN in solution. The B state (S1) dipole moment of 

DMABN is 8.7 D, slightly smaller than that attributed to „normal‟ LE fluorescence in solution. In 

contrast, the B state (S1) dipole moment of PYRBN is large, with a value of 10.5 D. We also find 

the unsaturated donor molecules (PP, PBN) to be twisted in their ground states and to become 

more planar upon excitation, even in the A state (S2), whereas the saturated donor molecules 

(DMABN, PYRBN), initially planar, potentially become more twisted in their excited states. It 

thus appears that whether or not a PICT or TICT model is appropriate to the ICT dynamics 

depends on the geometry of the ground state, at least when the properties of locally excited states 

are compared. 
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6.2 INTRODUCTION 

In the gas phase, charge transfer requires communication between multiple potential energy 

surfaces on many time scales, the dynamics of which are inherently imprinted onto a neutral 

molecule in several detectable ways; via structural perturbations, changes in the energy ordering 

and overlapping of electronic states, and substantial increases in permanent electric dipole 

moments. In the isolated environment of a molecular beam, these surfaces are undisturbed by 

specific hydrogen bonding, van der Waals interactions, and bulk solvent electric fields that 

plague condensed phase determinations of structure and electronic distribution. The precise 

geometries of the excited states responsible for solvent-dependent dual fluorescence in many 

chromophores are unknown, and therefore the theories describing the nature of this phenomenon 

remain open for debate. To experimentally measure the excited state structures of representative 

dual fluorescent chromophores, we have employed high resolution electronic spectroscopy in the 

gas phase, a technique also capable of measuring the dipole moments of isolated molecules. 

Studies of this type on molecules of this size can be directly compared to high level theoretical 

predictions to ensure accuracy before the introduction of computationally expensive solvent 

models. 

The specific donor-acceptor molecules under investigation here are 1-phenylpyrrole (PP), 

4-(1H-pyrrol-1-yl)benzonitrile (PBN), 4-aminobenzonitrile (ABN), 4,4ʹ-

dimethylaminobenzonitrile (DMABN), and 4-(1-pyrrolidinyl)benzonitrile (PYRBN); see 

Scheme 6-1. With the exception of ABN,
1
 each of these molecules exhibits dual emission upon 

electronic excitation in polar (sometimes even nonpolar) solvents, and their solvatochromic and 

thermochromic shifts in the condensed phase have been thoroughly explored by many authors.
2-9

 

The dual fluorescence of DMABN was initially attributed to emission from two excited 
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electronic singlet states, S1 and S2, one at shorter wavelength of B symmetry and another at 

longer wavelength of A symmetry (
1
Lb and 

1
La states, respectively).

2,10
 Grabowski and 

coworkers later hypothesized, based on polarization experiments, that these two electronic states 

differed by a geometric distortion between donor and acceptor, referring to them as either the 

locally excited (LE) state or the twisted intramolecular charge transfer (TICT) state.
3,11

 Evidence 

for the TICT state has been extensively reviewed by several authors,
12,13

 most recently by 

Grabowski et al.
14

 While not concerned directly with the molecular orbital symmetry of the 

excited states involved, the TICT model evokes the principle of minimum overlap to describe 

ICT states; a 90° twist of the donor relative to the acceptor occurs, which leads to electronic 

decoupling between donor and acceptor upon ICT, preventing the return of charge to the donor. 

 

Scheme 6-1 

 

 

Zachariasse and coworkers have shown that a decrease in the energy gap between S1 and 

S2 allows access to important vibronic couplings between the two states, leading to efficient dual 

fluorescence upon excitation to S1 in polar solvents.
15

 In this vibronic coupling scheme, a 

planarization of the nitrogen-containing donor upon excitation is an important coordinate for 
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ICT, which leads to the existence of a planar ICT excited state. This is known as the PICT 

model. Recent work in the condensed phase community has focused on the photophysical 

properties of structurally hindered model compounds.
14,16-20

 In these cases, analogs of many 

compounds, including PP, PBN, and DMABN, were synthesized with the twist degree of 

freedom removed, fixing the twist angle to either 0° or 90° by chemically linking the donor and 

acceptor moieties. 

Previously, all five molecules have been studied in the collision-free environments of 

supersonic jets and beams, sometimes with rotational resolution, and occasionally in the presence 

of an applied electric field.
21-37

 Additionally, the potential energy surfaces that govern charge 

transfer processes in many molecules of this type have been the subject of numerous theoretical 

investigations.
38-48

 In this report, we describe high resolution microwave and UV experiments on 

PBN, DMABN, and PYRBN which provide new insights into the behavior of different donor-

acceptor systems when they are excited by light.  The determined data include the electronic 

structures of their ground and excited states, their geometries, and their permanent electric dipole 

moments; these data show that the S1 state of each molecule is the 
1
Lb state. In the case of PBN, 

we identify the S2 state as 
1
La, which is found only 400 cm

-1
 above the 

1
Lb origin. Through a 

comparison of structural changes and charge reorganization that occur upon excitation, we report 

here clear differences in two classes of ICT compounds; those with unsaturated donors are less 

polar and become nearly planar in S1 and S2, while those with saturated donors are more polar 

and can become twisted even in S1. 
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6.3 METHODS 

High resolution electronic spectra of PBN, DMABN, and PYRBN were independently recorded 

in a cold molecular beam environment using an ultraviolet laser. The laser system, comprised of 

an Ar
+
-pumped ring dye laser and external frequency doubling cavity, has been described 

elsewhere.
49-52

 For PBN, rhodamine 590 (R6G) laser dye was used to create fundamental visible 

laser radiation, which was frequency doubled to the UV with a BBO crystal. The PBN 

experiments were recorded using an average laser power of 300 μW. For DMABN and PYRBN, 

mixtures of DCM and Kiton Red laser dyes were used to create the fundamental radiation. 

Again, a BBO crystal was used for frequency doubling, creating average output powers of 250 

μW and 60 μW in the UV for DMABN and PYRBN, respectively. All experiments required a 

laser scan speed of 2000 s/cm
-1

 over a range of 4 cm
-1

 to obtain an acceptable signal-to-noise 

ratio. For DMABN, it was also necessary to record an additional 0.5 cm
-1

 section of several Stark 

spectra at the slower scan speed of 8000 s/cm
-1

. Along with the fluorescence excitation spectrum 

(FES), the absorption spectrum of I2 and frequency markers from a temperature stabilized etalon 

were recorded for absolute and relative frequency calibration using JBA95 acquisition 

software.
53

 Both field-free and Stark spectra were analyzed manually using JB95 simulation 

software.
54

 

Each sample required different source conditions to successfully seed a stream of argon 

backing gas. PBN was heated to 145 °C in a quartz source, and then expanded at a total backing 

pressure of 320 torr through a 200 μm pinhole into a vacuum chamber (10
-5

 torr). This 

supersonic expansion was skimmed while entering a second vacuum chamber (10
-7

 torr), 

creating the molecular beam. The collisionless molecular beam was crossed at a right angle by 

the UV laser, and total fluorescence following excitation was recorded by a PMT and photon 
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counting system mounted perpendicular to both the laser and molecular beam. Spherical mirrors 

and wire mesh Stark plates mounted above and below the intersecting beams were used to collect 

fluorescence and, when desired, create a homogenous electric field. In the PYRBN experiments, 

the sample was heated to 175 °C and expanded in argon at a total backing pressure of 455 torr. 

Both PBN and PYRBN were purchased from Maybridge (Thermo Fisher Scientific) and used 

without further purification. DMABN, purchased from Aldrich, was heated to 200 °C, and 

expanded in argon at a total backing pressure of 380 torr.   

Microwave spectra of PBN were collected using the chirped-pulse Fourier transform 

microwave (CP-FTMW) spectrometer described previously.
55

 PBN was heated to 120 °C and 

expanded through a pulsed nozzle at 10 Hz along with 1 ktorr of He backing gas. The entire 

spectrum was recorded from 6.5 – 17 GHz in 450 MHz segments, each of which was measured 

by collecting a 10 μs FID and signal averaging for up to 5000 shots. The segments were then 

patched together, and 120 μa-type transitions were assigned and analyzed using JB95 software. 

The microwave Stark spectrum of DMABN was collected using a CP-FTMW 

spectrometer
56

 containing a Stark cage.
57

 DMABN was heated to 130 °C and expanded through 3 

pulsed nozzles at 7 Hz with 760 torr Ne backing gas. The spectrum was recorded from 6.5 – 18.5 

GHz at an applied electric field of 23.7 V/cm and signal averaged over 3.5   10
5
 nozzle pulses. 

Individual line assignments were made in the QSTARK program,
58,59

 and then simulated for 

visual comparison with experiment using JB95 software. 

Theoretical work in support of the experiments was performed using GAUSSIAN 03 

(Revision C.02) software
60

 at the University of Pittsburgh Center for Simulation and Modeling 

(SAM). Ground state geometries were optimized using the M05-2X hybrid density functional 

with the 6-31+G* basis set. Dipole moments were then calculated using MP2/aug-cc-pVTZ on 
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the previously optimized geometries. For comparison with calculations available in the literature, 

complete active space self-consistent field (CASSCF) point calculations of PYRBN with an 

active space of 12 electrons and 10 orbitals (all π and π*) were done using the D95V basis set.
61

 

Only the relevant results of the CASSCF calculations are presented here, and further details are 

available in Appendix D. 

6.4 RESULTS 

6.4.1 4-(1H-Pyrrol-1-yl)benzonitrile (PBN) 

Figure 6-1 shows the low resolution FES of PBN entrained in a supersonic jet previously 

observed by Belau et al.
33

 It exhibits weakly fluorescent S1-S0 transitions, similar to the jet 

cooled spectrum of PP.
30,33

 However, at energies only 400 cm
-1

 above the lowest frequency PBN 

band, a substantial increase in fluorescence is observed. This has been attributed to the influence 

of a second excited state (S2) with greater fluorescence quantum yield than S1.
33

 To determine 

whether or not this explanation is correct, high resolution spectra were recorded of bands marked 

1, 2, and 3 in Fig. 6-1, and these are shown in Figs. 6-2 through 6-4. 

Band 1 is the lowest frequency electronic transition observed in the low resolution 

spectrum. Its relatively low fluorescence intensity was confirmed in our experiments. At high 

resolution, band 1 is actually comprised of two weak subbands of equal intensity, as seen in Fig. 

6-2, labeled Band 1 red (lower frequency) and Band 1 blue (higher frequency) from this point 

forward.  (As will be discussed later, the existence of two subbands in this spectrum provides 

evidence for a tunneling motion between two equivalent minima along the twisting coordinate of  
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Figure 6-1. Vibrationally resolved fluorescence excitation spectrum (FES) of PBN. The red 

arrows labeled 1, 2, and 3 identify the bands studied using high resolution FES. Reprinted with 

permission from Chemical Physics Letters (Ref. 33). Copyright 2002 Elsevier. 
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Figure 6-2. Rotationally resolved FES of PBN Band 1. The experimental trace shown in black 

was fit to two simulations, shown below in red and blue. 
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Figure 6-3. Rotationally resolved FES of PBN Band 2. The experimental trace shown in black 

was fit to a single simulation, shown in blue. The bottom two panels show the effects of an 

applied electric field on the high resolution spectrum. The blue and green simulations of the 

Stark spectra appear identical, therefore illustrating the difficulty encountered when trying to 

independently determine the EDM in each electronic state. 
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Figure 6-4. Rotationally resolved FES of PBN Band 3. The two asterisks identify areas of 

unassigned intensity found in the experimental spectrum (black trace) that are not accounted for 

by the simulation (blue trace). The presence of a second electronic band is suspected, as more of 

these “missing peaks” appear throughout the spectrum of PBN Band 3. 
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Table 6-1. Experimental inertial parameters derived from the microwave and UV spectra of PBN. Columns with the headings “Band 

1”, etc. contain the excited electronic state parameters of each respective transition studied in Fig. 6-1. 

 

 S0 Band 1 red Band 1 blue Band 2 Band 3 

A (MHz) 3492.2(2) 3376.2(1) 3375.9(1) 3388.1(1) 3387.7(1) 

B (MHz) 382.6028(4) 384.4(1) 384.5(1) 384.5(1) 384.5(1) 

C (MHz) 349.9721(4) 346.8(1) 346.8(1) 346.9(1) 346.3(1) 

ΔI (uÅ
2
) -21.559 -7.04(8) -6.90(9) -6.70(1) -4.50(1) 

κ -0.979 -0.975 -0.975 -0.975 -0.974 

assigned lines 120 47 43 137 254 

OMC (MHz) 0.032 6.2 7.1 3.8 6.3 

origin (cm
-1

)  34422.559(1) 34423.352(1) 34824.753(1) 34866.829(1) 

TM (a/b/c; %)  0/84/16 0/84/16 100/0/0 100/0/0 

FWHM (L/G; MHz)  30/35 30/35 30/35 30/30 
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PBN.)  In contrast, the rotationally resolved FES of PBN at +400 (Band 2) and +422 cm
-1

 (Band 

3) consist of only single strong bands, as shown for Band 2 in Fig. 6-3. These data were analyzed 

using the following procedure. First, anticipating that the near-prolate symmetric top nature of 

PBN would limit the accuracy of the a-type electronic spectral analysis, ground state rotational 

constants of PBN were determined from a fit to Watson‟s A-reduced Hamiltonian
62

 of an 

independently measured microwave spectrum (see Appendix D). Next, excited state rotational 

constants of PBN were determined from fits to rigid-rotor Hamiltonians of the observed 

rotational structure in each of the spectra in Figs. 6-2 through 6-4 using the program JB95. In 

these fits, ground state constants were kept fixed to their microwave values, and excited state 

constants were varied in a least-squares fashion to minimize differences between observed and 

calculated frequencies. More than 40 resolved transitions were fit in the electronic spectra of 

Band 1, and more than 130 rotational transitions were fit in the electronic spectra of Bands 2 and 

3. The combined microwave and high resolution FES data for all observed PBN bands are 

summarized in Table 6-1. 

To aid in the determination of molecular structure from the measured inertial parameters, 

the S0 geometry of PBN was optimized using M05-2X density functional theory and the 6-

31+G* basis set. The rotational constants of the optimized structure (A = 3508.2, B = 383.3, and 

C = 351.7 MHz) are in good agreement with the microwave values listed in Table 6-1. Notably, 

this structure has a large negative inertial defect, ΔI = -21.559 uÅ
2
, which decreases substantially 

in magnitude when PBN is excited by light, to values of ~ -7 uÅ
2
 in Bands 1 and 2 and ~ -5 uÅ

2
 

in Band 3. Figure 6-5 shows a plot of ΔI vs. ϕ as calculated by DFT (see Appendix D for details). 

This plot reveals that ground state PBN is twisted about the bond connecting the two rings by an 

equilibrium angle of 32°, and that the corresponding twist angles in the excited state(s) are 14° in  
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Figure 6-5. Plot of ΔI vs. ϕ as calculated from the ground state torsional PES shown in Fig. D-4 

(blue data points). These data points were fit to a 2
nd

 order polynomial (black curve), and used to 

determine ϕ for all PBN electronic states. The S0 and S1 extrapolations are shown in the figure. 
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Band 1, 13° in Band 2, and 9° in Band 3. The theoretical barrier to ring planarity at ϕ = 0° is 

V″(0) = 469 cm
-1

, whereas the barrier to ring perpendicularity at ϕ = 90° is V″(90) = 1003 cm
-1

. 

We believe that the splitting found in Band 1 is a consequence of hindered internal rotation about 

the bond connecting the two unsaturated rings in the excited S1 state, resulting from a decrease in 

one or both of the barrier heights mentioned above. 

The second significant result on PBN is the detection of the origin of the S2 state. Recall 

that PBN exhibits increased fluorescence intensity at about 400 cm
-1

 above Band 1, in the 

vicinity of Bands 2 and 3. We find that the electronic transition moment (ETM) in (both 

subbands of) Band 1 lies close to the b inertial axis, since this band is a hybrid band with 84% b 

character and 16% c character; see Table 6-1. In contrast, Bands 2 and 3 are 100% a-type; the 

ETMs of these bands are parallel to the a inertial axis, the long axis of PBN.  The observation of 

this change in the ETM with increasing excitation energy confirms the proposal of Belau et al.
33

 

that a second electronic state is responsible for the increased fluorescence intensity at ~ 400 cm
-1

 

above the origin of the S1 state. We therefore assign Band 1 as an excitation to the 
1
Lb state, and 

Bands 2 and 3 as excitations to the 
1
La state. The 

1
La electronic state is often considered to be the 

state responsible for charge transfer in polar solvents. The existence of c-type transitions in Band 

1 is a result of the benzene ring lying out of the ab inertial plane by a vibrationally averaged 

angle τ of approximately 23° ± 3° (where      √  ⁄ ), similar to that observed previously in 

the case of PP.
37

 

Given the difference in the electronic nature of the 
1
La and 

1
Lb states, it was of interest to 

measure the difference in their permanent electric dipole moments (EDMs) using an external 

electric field. The experimental Stark spectra of both Bands 2 and 3 were recorded over a range 

of 42 to 507 V/cm and fit with several effectively identical simulations, as seen for the case of 
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Band 2 in Fig. 6-3. A high linear correlation was observed between the ETMs of the two 

electronic states, owing to the fact that only a-type rovibronic transitions were observed. An 

analysis of this correlation (see Appendix D) shows that by fixing the ground state value of the 

EDM to the theoretical value of 3.43 D, the best excited state values are μ′(
1
La) = 6.02(10) D for 

band 2, and μ′(
1
La) = 6.33(10) D for Band 3. Unfortunately, owing to the low fluorescence 

intensity, the excited state value for Band 1 could not be measured; the calculated value for the 

1
Lb state is 2.8 D.

44
 

6.4.2 4,4ʹ-Dimethylaminobenzonitrile (DMABN) 

Similar experiments were performed on DMABN. In this case a different strategy was used for 

their analysis because the rotationally resolved electronic spectra are extremely congested, owing 

to multiple overlapping torsional subbands that result from methyl group torsional motions.
36

 

Thus, CP-FTMW experiments were first performed to study the microwave spectrum of 

DMABN in the gas phase; the results of these measurements, which include a substitution 

structure by detection of all 
13

C and 
15

N isotopologues in natural abundance, are reported 

elsewhere.
63 

Next, the microwave spectrum of DMABN was recorded again in the presence of an 

electric field, generated using the parallel-plate configuration of a Stark cage; see Appendix D 

for a typical example and a listing of all line assignments. A fit of 78 rotational transitions by 

linear least squares yields a value of μʺ = 6.426(30) D for the ground state EDM of DMABN in 

the gas phase. Then, the rotationally resolved electronic spectrum of Band 5 in the S1-S0 

transition of DMABN
36

 was recorded at applied electric fields ranging from 42 to 846 V/cm. 

Figure 6-6 shows a typical example, the entire spectrum recorded over ~ 3.4 cm
-1

 at an applied 

electric field of 507 V/cm. As is apparent, the assignment of individual rotational transit ions was  
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Figure 6-6. Rotationally resolved FES of DMABN (Band 5) recorded at an applied electric field 

of 507 V/cm. The experimental trace is shown in black, and the combined simulation of both A 

(blue sticks) and G (red sticks) subbands is shown in blue. 
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nearly impossible in this spectrum, owing to the extreme congestion. However, a few moderately 

well resolved lines could be followed within the A subband of this spectrum (blue sticks in Fig. 

6), leading to the assignment of 29 transitions. While holding μʺ fixed to its ground state value of 

6.426 D, a least squares fit of these transitions to experiment produced a value of μʹ = 8.719(20) 

D for the electronically excited state, with an OMC = 12.4 MHz (well below the experimental 

line width of about 55 MHz). The same EDMs were then used to simulate the G subband (red 

sticks), and a convolution of the A and G subbands which includes line width contributions from 

Gaussian (30 MHz) and Lorentzian (35 MHz) broadening is shown for comparison with the 

experimental trace (black). As in the earlier experiments,
36

 the E subband that must also be 

present in these spectra was not included in the simulations. 

6.4.3 4-(1-Pyrrolidinyl)benzonitrile (PYRBN) 

The low resolution FES of PYRBN is fundamentally different from those observed for the 

phenylpyrroles.
26,27

 The lowest frequency band in PYRBN (the S1-S0 origin) is the most intense 

transition in the entire spectrum, and the strong low frequency vibrational progressions that 

appear in the corresponding spectra of the phenylpyrroles are absent. Clearly, the energy 

separation of the S1 and S2 states, and perhaps their identities as well, must be very different in 

PYRBN. 

High resolution FES of PYRBN were recorded to explore this issue. Figure 6-7 shows the 

entire recorded spectrum of the origin band at ~ 312 nm which spans approximately 3 cm
-1

. 

Exactly 200 rotational transitions in the resolved spectrum were assigned using pure b-type 

selection rules, and fit in a linear least squares fashion to the experiment. Table 6-2 reports the  
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Figure 6-7. Rotationally resolved FES of PYRBN. The experimental trace is shown in black, 

and the simulation is shown in blue. 
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Table 6-2. Experimental inertial parameters derived from the UV spectrum of PYRBN.
a
 

 

 S0 S1 

A (MHz) 3083.0(1) 3005.7(1) 

B (MHz) 366.1(1) 367.2(1) 

C (MHz) 331.8(1) 331.7(1) 

ΔI (uÅ
2
) -21.13(5) -20.82(5) 

κ -0.975 -0.973 

assigned lines 200 

OMC (MHz) 2.9 

origin (cm
-1

) 32017.232 

TM (a/b/c; %) 0/100/0 

FWHM (L/G; MHz) 20/30 
a
S0 inertial parameters calculated at the M05-2X/6-31+G* level are: A = 3097.6, B = 366.7, and 

C = 332.3 MHz; ΔI = -20.5 uÅ
2
; κ = -0.975. 
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rotational constants and electronic origin frequency, among other parameters, determined from 

this fit. As clearly indicated by the observed b-type selection rules, the gas phase S1 state of 

PYRBN is assigned as the 
1
Lb state. 

The ground state inertial defect (ΔIʺ) derived from the experimentally determined 

rotational constants of PYRBN is -21.1 uÅ
2
, qualitatively similar to the ΔI″ values of PP

37
 and 

PBN (-26.9 and -21.6 uÅ
2
, respectively).  However, the reason for this similarity is not the same 

as that found in PP and PBN. In PYRBN, the saturated pyrrolidine ring is puckered, resulting in 

heavy atom positions above and below the phenyl ring plane. This saturated ring nonplanarity 

results in a large negative ΔI″. In contrast, the similar ΔI″ values in PP and PBN are due to 

substantial twisting between the unsaturated rings in the phenylpyrroles. (Comparatively, the 

inertial defect of the equatorial conformer of pyrrolidine as determined from its rotational 

spectrum in a supersonic jet is -18.5 uÅ
2
.
64

) Also, no c-type transitions were found in the 

spectrum of PYRBN. Their presence in the S1-S0 spectra of PP and PBN are a clear indication of 

significant ring torsion in the vibrationally averaged structures of those systems, something not 

present in the spectra of PYRBN. The calculated twist angle of PYRBN predicted by hybrid DFT 

(M05-2X/6-31+G*) is 6° in the ground state, small compared to the phenylpyrroles, and the 

associated theoretical rotational constants are A = 3097.6, B = 366.7, and C = 332.3 MHz. 

Very little change in the B or C rotational constants is observed on excitation of PYRBN, 

whereas a small decrease in A (due to benzene ring expansion upon excitation) was measured. 

(This also accounts for the very symmetric nature of its high resolution spectrum, Fig. 6-7.) More 

telling is the nearly identical ΔI measured for each electronic state; ΔIʺ = -21.1 and ΔIʹ = -20.8 

uÅ
2
, respectively. Clearly, there is little or no change in twist angle for the pyrrolidine ring 

relative to the benzonitrile ring upon excitation to the S1(Lb) state in PYRBN, as this would 
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significantly increase (in magnitude) the measured inertial defect relative to S0. This is different 

from the geometric changes observed in both PBN and DMABN upon excitation,
36

 the reasons 

for which will be discussed later. 

Stark effects measurements also were made on PYRBN. Independent simulations and 

linear least squares fits of spectra taken in electric fields ranging from 85 to 423 V/cm yield the 

following measured EDMs; μ″ = 8.23(3) and μ′(Lb) = 10.52(3) D, entirely along the a inertial 

axis of PYRBN. 

6.5 DISCUSSION 

Through the use of high resolution microwave and electronic spectroscopy, the S0 and S1 

geometries of PP,
37

 PBN, ABN,
29

 DMABN,
36

 and PYRBN in the gas phase have all been 

determined. Importantly, the lowest lying electronic state is of 1
1
B symmetry (the 

1
Lb state) for 

all five molecules. However, while the S1-S0 electronic transitions to the 1
1
B state involve the 

same (by symmetry) molecular orbitals, the geometric consequences of such an excitation can be 

quite different, depending on the nature of either the donor or acceptor. In both PP and PBN, the 

donor group is pyrrole, which in solution at least, is not a very good electron donor (pKa = -

3.8).
65

 Both of the pyrrole derivatives exhibit a pretwist in S0, which is measured as ϕ″ = 36° for 

PP (see Appendix D) and ϕ″ = 32° for PBN. As evidenced by the abundance of low frequency 

Franck-Condon (FC) progressions in the vibrationally resolved FES of both pyrrole derivatives, 

the minimum energy geometries in S1 must be considerably different than those found in 

S0.
30,33,37

 We find here by measuring the inertial parameters of PP and PBN in both S0 and S1, 

that both molecules become more planar upon electronic excitation. In PP, ϕʹ = 20° when eight 
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quanta of the torsion mode are excited; the twist angle at the zero-point vibration level must be 

less than 20°, as exciting higher quanta of the torsion in S1 should lead to larger twist angles. In 

PBN band 1, ϕʹ = 14° is found for the tentatively assigned electronic 1
1
B origin. For both pyrrole 

derivatives, we have therefore measured remarkable changes in the ring twist angle upon 

excitation to the 1
1
B states of Δϕ = -16° and Δϕ = -18°, respectively. This energetic preference 

for a more planar structure must arise from improved conjugation between the ring π systems 

upon excitation, resulting also in an increase in the π-bond order of the bond connecting the two 

conjugated rings. 

While the addition of a cyano group to the electron accepting benzene ring does not 

appear to significantly alter the preferred 1
1
B geometry of the pyrrole derivatives, it does 

significantly lower the energy of the second excited state, which is of 2
1
A symmetry. At 

excitation energies only 400 cm
-1

 above the presumed PBN origin, the 2
1
A electronic surface 

perturbs the observed electronic transitions to such an extent that a 90° rotation of the ETM is 

observed in the rotationally resolved FES, from b-type to a-type. Clearly, the energy gap 

ΔE(S1,S2) is smaller for PBN than for PP in the gas phase, as no large increase in fluorescence 

intensity at higher excitation frequencies was observed for PP.
21

 The 2
1
A state is more planar 

than both the ground and first excited states of PBN, with a lower twist angle of merely ϕʹ = 9°, 

yielding a decrease in twist angle upon excitation to S2 of Δϕʹ = -23°. The planarity of 2
1
A 

measured in the gas phase corresponds well with the calculated structure of the quinoidal form of 

2
1
A, termed 2

1
A(Q).

41,44
 We hypothesize that the 2

1
A(Q) state identified here as the low-lying 

excited S2 state of PBN is responsible for the red emission observed in argon matrix 

experiments
66-68

 and acetonitrile clusters formed in a supersonic jet.
35
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When local π system conjugation within the donor moiety is lost, the pretwist between 

donor and acceptor is suppressed, as was found in the ground states of ABN, DMABN, and 

PYRBN. Instead, a large amount of electron density (i.e.; a lone pair) is localized on the nitrogen 

atom of the amino group in ABN and DMABN, giving rise to non-zero inversion angles 

(analogous to the sp
3
 hybridization invoked to rationalize the pyramidal structure of ammonia). 

However, the optimized S0 geometry of PYRBN (M05-2X/6-31+g*) has a locally planar NR2 

arrangement, with a small twist angle relative to the benzonitrile ring of ϕʺ = 6°. No pretwist is 

observed in ABN and DMABN; the ground state inversion angles of these two molecules are 

reported as 34° (Ref. 29) and 14.6° (Ref. 63), respectively. 

The charge density localized on the donor amino nitrogen in the ground state is 

transferred, at least in part, to the benzonitrile acceptor in all three cases upon excitation to the 

1
1
B state. However, this results in a measured change to the vibrationally averaged amino 

inversion angle upon excitation only for the case of DMABN. In ABN, the change in inversion 

angle is negligible, as indicated by the nearly identical inertial defects measured in each 

electronic state.
29

 In contrast, the dimethylamino group of DMABN rearranges into a planar 

geometry along the inversion coordinate, and the entire donor group twists to an angle of ϕʹ = 

25°, placing one methyl group above, and another methyl group below the benzonitrile plane. By 

allowing this twist, the dimethylamino group is able to stabilize a larger charge separation than in 

the case of ABN, which weakens the N-CH3 bonds in S1 relative to S0, and decreases the barrier 

to internal rotation of the individual methyl groups.
36

 A clear low frequency FC progression is 

observed in the vibrationally resolved FES of DMABN which is explained by the existence of 

unique geometries in S0 and S1. In PYRBN, no change in twist angle is observed in S1, as 

indicated by the nearly identical inertial defects measured for each electronic state. The absence 
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of low frequency activity in the vibrationally resolved FES of PYRBN is additional proof of little 

change in geometry upon excitation to 1
1
B.

26
 

The consequences of increased or decreased donor-acceptor conjugation are further 

explored by measuring the permanent EDMs of each compound. The center of negative charge 

in the ground state of PP lies within the pyrrole ring, as evidenced by the orientation and 

magnitude of its permanent dipole, μʺ = -1.56(1) D.
37

 Replacing the benzene ring in PP with the 

benzonitrile ring in PBN results in a change in both the magnitude and direction of its permanent 

EDM, μʺ = 3.34 D [a consequence of the larger dipole of benzonitrile itself (μʺ = 4.48 D)
32

], 

again demonstrating the electron withdrawing capabilities of pyrrole. Upon excitation to the 1
1
B 

state, the dipole of PP decreases in magnitude to μʹ = 0.94(1) D, but reverses its vector direction, 

as the center of negative charge now lies on the benzene ring acceptor. In contrast, the dipole of 

PBN increases in magnitude to μʹ = 6.02(10) D with no change in direction. Taking the signs into 

account we see that the differences in the EDMs of the two states of PP and PBN are about the 

same, 2.50 and 2.59 D. The largest measured value of the EDM of PBN is that for the 2
1
A state, 

μʹ = 6.33(10) D. Even with the increase in spatial overlap between the π systems of each ring in 

the pyrrole derivatives, charge is still moving from the donor to acceptor, which results in an 

increase in negative charge on the benzene or benzonitrile moieties, respectively. 

The largest effect of π system conjugation, the sharing of electrons over the entire 

molecule, is made clear upon inspection of the μa dipoles measured for ABN,
32

 DMABN, and 

PYRBN. The ground state EDMs of all three molecules with saturated donor groups are large: μʺ 

= 6.41 D for ABN,
32

 μʺ = 6.43 D for DMABN, and μʺ = 8.24 D for PYRBN, much larger than 

those for PP and PBN. Evidently, extended conjugation decreases their ground state dipoles, 

relative to their saturated-donor counterparts. Within the saturated-donor family, PYRBN has the 
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largest μʺ, consistent with the geometric finding that its inversion angle of 0° (and therefore the 

amount of electron density on the donor nitrogen) is less than in DMABN (14.6°) or ABN (34°). 

More electron density from the donor nitrogen is already present in the benzonitrile ring of 

PYRBN than in ABN or DMABN, which also necessitates a small but non-zero twist angle in 

the ground state of PYRBN. 

Upon excitation to S1(1
1
B), the excited state μa EDMs of these three molecules are quite 

different. In ABN, μʹ = 7.20 D, a small change upon excitation of Δμ = 0.79 D.
32

 While the 

ground state EDMs of ABN and DMABN are effectively equal, the excited state EDM of 

DMABN is μʹ = 8.72 D, significantly larger than that found in ABN. For DMABN, Δμ = 2.29 D 

for excitation to the 1
1
B excited state. For PYRBN, the largest excited state EDM is found, with 

a measured value of μʹ = 10.52 D. However, the change in dipole upon excitation is nearly 

identical to that of DMABN, at Δμ = 2.28 D. In the case of ABN, some projection of the total 

EDM remains on the c inertial axis in S1, partially explaining the small Δμ observed relative to 

DMABN and PYRBN. However, the fact that the NH2 donor does not reach planarity upon 

excitation shows that a smaller amount of charge is transferred to benzonitrile in ABN than in the 

other two cases. In both DMABN and PYRBN, a twist exists in S1. While more dramatic in 

DMABN, the change in dipole moment upon excitation is the same as in PYRBN, suggesting 

that electronically, the 1
1
B states of these two molecules are very similar. When little or no twist 

exists in the ground states of the saturated donor molecules, the twist angle either remains the 

same or increases in their excited states. Scheme 6-2 summarizes the dipole moments (in units of 

Debye) and twist angles of the S1(1
1
B, 

1
Lb) states of all five molecules considered in this work. 

The EDMs of both ABN and DMABN have been previously measured in solutions of 

cyclohexane, benzene, and 1,4-dioxane using time-resolved microwave conductivity (TRMC)  
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Scheme 6-2 

 

 

and fluorescence spectroscopy techniques.
69

 There, the ground state dipole moment of 6.6 D 

determined for both ABN and DMABN is in good agreement with the gas phase data. In the S1 

state, the EDMs were measured to be 8.3 D for ABN and 9.9 D for DMABN. These S1 EDMs 

are larger than the corresponding gas phase values by 1.1-1.2 D. The authors claim
69

 that each S1 

dipole measured by TRMC is an upper limit to the EDM of the isolated molecule, particularly in 

the case of DMABN, where the first excited state is hypothesized to be increasingly influenced 

by the onset of a higher excited state as solvent polarizability and polarity is increased. Using the 

same μʺ = 6.6 D determined in Ref. 69, the S1 EDM of DMABN was also determined by 

measuring the electric field-induced changes in absorption and emission spectra in a polymer 

film of PMMA.
70

 There, the excited state EDM of DMABN also was overestimated by more 

than 1 D, with a reported value of 9.8-10 D. 

The low lying electronic surfaces of these donor-acceptor molecules have been well-

studied by various theoretical methods. The highest level ab initio work available in the literature 
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for these compounds exists only for DMABN, where the resolution-of-the-identity coupled-

cluster singles-and-doubles method RI-CC2 was employed using a triple-ζ valence basis set 

TZVPP by Köhn and Hättig.
42

 Here, the relaxed geometries of three states were optimized: the 

ground 1
1
A state, the 1

1
B state, and the 2

1
A state. The ground state was predicted to have an 

amino inversion angle of 23° and a dipole moment of μʺ = 7.4 D, both in modest agreement with 

gas phase data of 14.6° (Ref. 63) and μʺ = 6.4 D. Predictions for the 1
1
B state also are in modest 

agreement with experiment, where the inversion angle is now 0° and a slight twist of the 

dimethylamino group was calculated to be ϕʹ = 19°. The predicted dipole moment of μʹ = 10.1 D 

is larger than the experimental value of μʹ = 8.7 D. Thus, the RI-CC2 calculations do a 

reasonable job of reproducing the experimentally determined quantities of DMABN in both S0 

and S1. Their prediction of a twisted (ϕʹ = 90°) 2
1
A state therefore seems very plausible. 

Several theoretical investigations using relaxed CASSCF excited state geometries and 

subsequent single-point CASPT2 calculations have been reported,
38,39

 and recently have focused 

on the importance of quinoidalization to ICT phenomenon.
41,44

 In DMABN, ICT is generally 

understood to arise from a twisted (ϕʹ = 90°) 2
1
A state. However, in the pyrrole derivatives PP 

and PBN, two ICT states were predicted, one planar and one twisted. The authors conclude that 

both PICT and TICT may be possible in the pyrrole derivatives, owing to the existence of an 

additional donor orbital within the π system of pyrrole. In the case of PBN, experiment clearly 

shows that a planar minimum exists on the 2
1
A surface, corresponding to the 2

1
A(Q) structure 

predicted in the above-mentioned work. However, we see no experimental evidence for a second 

minimum of the 2
1
A(AQ) variety, predicted to possess a larger dipole moment which would be 

further stabilized as an ICT state in solution. A comparison between theory and experiment is 

made in Table 6-3. 
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Although DFT methods offer a significant reduction in computational cost relative to ab 

initio theories, improving their predictive success for relaxed geometries in excited electronic 

states is still an active area of research.
71

 Very recently, the inability of standard DFT methods to 

accurately calculate the potential energy surfaces of excited states has been addressed by 

Wiggins et al.
46

 using a Coulomb-attenuated functional approximation (CAM-B3LYP). This 

promising method, performed only on DMABN up to this point, also should be tested on the 

potential energy surfaces of other charge transfer systems with experimental and theoretical data 

readily available in the literature, such as those reported here. 

6.6 SUMMARY 

The transformation of a reactant molecule into a product molecule in intramolecular charge 

transfer (ICT) processes can span several different potential energy surfaces (LE, ICT, etc.); and 

the connections between them also can involve conical intersections along different vibrational 

coordinates. But all of these surfaces support molecular eigenstates to which contributions are 

made from the different canonical structures. Thus, studies of the electronic spectra of doorway 

states to ICT at high resolution can provide information about these dynamics despite the fact 

that such spectra are “vertical”, and obey the Franck-Condon principle, since rotational motion is 

typically slow compared to the time scales of interconversion. 

The present study reveals new information about such processes in a family of 4-

aminobenzonitriles, absent the perturbations produced by neighboring solvent molecules. We 
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Table 6-3. Permanent electric dipole moments and twist angles of PP, PBN, ABN, DMABN, and PYRBN measured in the gas phase 

(first row). Standard deviation is shown in parentheses. Also listed are the available theoretical data for each electronic transition 

observed (Refs. 41 and 44), second row. 

 

 μʺ (D) μʹ (D) Δμ (D) ϕʺ (°) ϕʹ (°) Δϕ (°) 

PP
a 

1
1
B(LE) – 1

1
A 

-1.56(1) 

-1.9 

0.94(1) 

0.1 

+2.50(1) 

+2.0 

36 

36.8 

20 

19.4 

-16 

-17.4 

 

PBN band 1 

1
1
B(LE) – 1

1
A 

 

-- 

3.5 

 

-- 

2.8 

 

-- 

-0.7 

 

32 

36.5 

 

14 

36.3 

 

-18 

-0.3 

 

PBN band 2
b 

PBN band 3
b 

2
1
A(Q) – 1

1
A 

 

3.43 

3.43 

3.5 

 

6.02(10) 

6.33(10) 

10.6 

 

+2.6(1) 

+2.9(1) 

+7.1 

 

32 

32 

36.5 

 

13 

9 

0 

 

-19 

-23 

-36.5 

       

ABN
c
 

1
1
B(LE) – 1

1
A 

6.41(3) 

6.2 

7.20(3) 

6.0 

+0.79(4) 

-0.2 

0 

0 

0 

0 

0 

0 

 

DMABN
d 

1
1
B(LE) – 1

1
A 

 

6.43(3) 

6.5 

 

8.72(2) 

7.0 

 

+2.29(4) 

+0.5 

 

0 

0 

 

25 

0 

 

+25 

0 

1
1
B(AQ) – 1

1
A 6.5 14.8 +8.3 0 90 +90 

 

PYRBN 

1
1
B(LE) – 1

1
A

e 

 

8.23(3) 

7.4 

 

10.52(3) 

10.4 

 

+2.29(4) 

+3.0 

 

6 

0 

 

6 

0 

 

0 

0 
a
μ data from Ref. 37 

b
μʺ calculated using MP2/aug-cc-pVTZ//M05-2X/6-31+G* theory, and μʹ calculated from the appropriate experimentally derived 

dipole function (see Appendix D). 
c
Data from Ref. 32. 

d
ϕ data from Ref. 36. 

e
Data not available in the literature. Calculated here for both electronic states at the CASSCF(12,10)/D95V//M05-2X/6-31+G* level. 
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have measured the rotationally resolved electronic spectra of PBN, DMABN, and PYRBN in the 

presence of an electric field. These measurements, along with several supporting microwave 

spectroscopy experiments, provide the moments of inertia of each molecule in their ground and 

excited states, as well as their gas phase permanent electric dipole moments in both electronic 

states. Thereby probed are the differences in the equilibrium geometries of the two states, and the 

changes in charge distribution that are responsible for them. 

We find that excitation of PP and PBN by light changes their structures from twisted ones 

to more planar ones, whereas excitation of ABN and PYRBN by light has little effect on their 

structures. In contrast, DMABN twists upon excitation by light, and becomes more planar at the 

amino nitrogen. Despite these differences, the changes in electron distribution in all five 

molecules are about the same; Δµ = 2.0 – 2.5 D in PP, PBN, DMABN, and PYRBN. Only in 

ABN is Δµ smaller; Δµ appears to be larger in the 
1
La state of PBN. The excited state permanent 

electric dipole moments of molecules containing para cyano groups are substantially larger than 

those without them; these change by more than an order of magnitude on going from PP to 

PYRBN. Thus, whether or not the PICT or TICT model applies to charge transfer processes in 

these systems seems to depend on the extent to which the donating nitrogen atom (or group 

containing it) has a localized lone pair, and whether or not the ground state molecule is twisted. 

Further high resolution experiments should address the extent to which these findings are 

modified by the attachment of weakly bound solvent molecules. 



 158 

6.7 ACKNOWLEDGEMENTS 

A. Held, S. Humphrey, J. McCombie, J. Ribblett, W. Sinclair, and M. J. Walker assisted with 

early zero-field experiments on PYRBN; L. Alvarez-Valtierra, J.W. Young, and C.L. Clements 

assisted with later electric field experiments on various molecules. We thank them for their help, 

and also thank J.P. Simons and J.A. Thomas for insightful discussions about this work. Our 

current research is supported by the NSF (CHE-0911117) and by the Andrew Mellon Predoctoral 

Fellowship Program at the University of Pittsburgh (A.J.F.). 

6.8 REFERENCES 

1. K. A. Zachariasse, T. von der Haar, A. Hebecker, U. Leinhos, and W. Kuehnle, Pure Appl. 

Chem. 65, 1745 (1993). 

2. E. Lippert, W. Lueder, and H. Boos, in Advances in Molecular Spectroscopy, edited by A. 

Mangini (Pergamon Press, Oxford, 1962), Vol. 1, p. 443. 

3. K. Rotkiewicz, K. H. Grellmann, and Z. R. Grabowski, Chem. Phys. Lett. 19, 315 (1973). 

4. T. Hagan, D. Pilloud, and P. Suppan, Chem. Phys. Lett. 139, 499 (1987). 

5. C. Lerf and P. Suppan, J. Chem. Soc., Faraday Trans. 88, 963 (1992). 

6. R. Günther, D. Oelkrug, and W. Rettig, J. Phys. Chem. 97, 8512 (1993). 

7. C. Cornelissen-Gude and W. Rettig, J. Phys. Chem. A 102, 7754 (1998). 

8. S. Jiang and D. H. Levy, J. Phys. Chem. A 107, 6785 (2003). 

9. T. Yoshihara, V. A. Galievsky, S. I. Druzhinin, S. Saha, and K. A. Zachariasse, Photochem. 

Photobiol. Sci. 2, 342 (2003). 

10. J. R. Platt, J. Chem. Phys. 17, 484 (1949). 

11. A. Siemiarczuk, Z. R. Grabowski, A. Krowczynski, M. Asher, and M. Ottolenghi, Chem. 

Phys. Lett. 51, 315 (1977). 



 159 

12. W. Rettig, Angew. Chem. Int. Ed. Engl. 25, 971 (1986). 

13. E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, and J. A. Miehe, Adv. Chem. Phys. 

68, 1 (1987). 

14. Z. R. Grabowski, K. Rotkiewicz, and W. Rettig, Chem. Rev. 103, 3899 (2003). 

15. K. A. Zachariasse, M. Grobys, T. von der Haar, A. Hebecker, Y. V. Il'ichev, O. Morawski, I. 

Rueckert, and W. Kuehnle, J. Photochem. Photobiol., A 105, 373 (1997). 

16. K. A. Zachariasse, S. I. Druzhinin, W. Bosch, and R. Machinek, J. Am. Chem. Soc. 126, 1705 

(2004). 

17. T. Yoshihara, S. I. Druzhinin, and K. A. Zachariasse, J. Am. Chem. Soc. 126, 8535 (2004). 

18. S. I. Druzhinin, S. A. Kovalenko, T. Senyushkina, and K. A. Zachariasse, J. Phys. Chem. A 

111, 12878 (2007). 

19. S. I. Druzhinin, S. A. Kovalenko, T. A. Senyushkina, A. Demeter, R. Machinek, M. 

Noltemeyer, and K. A. Zachariasse, J. Phys. Chem. A 112, 8238 (2008). 

20. S. I. Druzhinin, S. Kovalenko, T. A. Senyushkina, A. Demeter, R. Machinek, M. 

Noltemeyer, and K. A. Zachariasse, J. Phys. Chem. A 113, 520 (2009). 

21. T. Kobayashi, M. Futakami, and O. Kajimoto, Chem. Phys. Lett. 130, 63 (1986). 

22. J. A. Warren, E. R. Bernstein, and J. I. Seeman, J. Chem. Phys. 88, 871 (1988). 

23. V. H. Grassian, J. A. Warren, E. R. Bernstein, and H. V. Secor, J. Chem. Phys. 90, 3994 

(1989). 

24. R. D. Gordon, J. Chem. Phys. 93, 6908 (1990). 

25. E. R. Bernstein, V. H. Grassian, and J. A. Warren, J. Chem. Phys. 93, 6910 (1990). 

26. B. D. Howells, M. T. Martinez, T. F. Palmer, J. P. Simons, and A. Walters, J. Chem. Soc., 

Faraday Trans. 86, 1949 (1990). 

27. M. J. Walker, Ph.D. Thesis, University of Nottingham, 1993. 

28. O. Kajimoto, H. Yokoyama, Y. Ooshima, and Y. Endo, Chem. Phys. Lett. 179, 455 (1991). 

29. G. Berden, J. van Rooy, W. L. Meerts, and K. A. Zachariasse, Chem. Phys. Lett. 278, 373 

(1997). 

30. K. Okuyama, Y. Numata, S. Odawara, and I. Suzuka, J. Chem. Phys. 109, 7185 (1998). 

31. F. P. Salgado, J. Herbich, A. G. M. Kunst, and R. P. H. Rettschnick, J. Phys. Chem. A 103, 

3184 (1999). 



 160 

32. D. R. Borst, T. M. Korter, and D. W. Pratt, Chem. Phys. Lett. 350, 485 (2001). 

33. L. Belau, Y. Haas, and W. Rettig, Chem. Phys. Lett. 364, 157 (2002). 

34. H. Saigusa, N. Miyakoshi, C. Mukai, T. Fukagawa, S. Kohtani, R. Nakagaki, and R. Gordon, 

J. Chem. Phys. 119, 5414 (2003). 

35. L. Belau, Y. Haas, and W. Rettig, J. Phys. Chem. A 108, 3916 (2004). 

36. A. E. Nikolaev, G. Myszkiewicz, G. Berden, W. L. Meerts, J. F. Pfanstiel, and D. W. Pratt, J. 

Chem. Phys. 122, 084309 (2005). 

37. J. A. Thomas, J. W. Young, A. J. Fleisher, L. Alvarez-Valtierra, and D. W. Pratt, J. Phys. 

Chem. Lett. 1, 2017 (2010). 

38. L. Serrano-Andres, M. Merchan, B. O. Roos, and R. Lindh, J. Am. Chem. Soc. 117, 3189 

(1995). 

39. B. Proppe, M. Merchan, and L. Serrano-Andres, J. Phys. Chem. A 104, 1608 (2000). 

40. A. B. J. Parusel, Phys. Chem. Chem. Phys. 2, 5545 (2000). 

41. S. Zilberg and Y. Haas, J. Phys. Chem. A 106, 1 (2002). 

42. A. Köhn and C. Hättig, J. Am. Chem. Soc. 126, 7399 (2004). 

43. I. Gómez, M. Reguero, M. Boggio-Pasqua, and M. A. Robb, J. Am. Chem. Soc. 127, 7119 

(2005). 

44. S. Cogan, S. Zilberg, and Y. Haas, J. Am. Chem. Soc. 128, 3335 (2006). 

45. C. Hattig, A. Hellweg, and A. Kohn, J. Am. Chem. Soc. 128, 15672 (2006). 

46. P. Wiggins, J. A. G. Williams, and D. J. Tozer, J. Chem. Phys. 131, 091101/1 (2009). 

47. I. F. Galván, M. E. Martín, and M. A. Aguilar, J. Chem. Theory Comput. 6, 2445 (2010). 

48. I. F. Galván, M. E. Martín, A. Muñoz-Losa, M. L. Sánchez, and M. A. Aguilar, J. Chem. 

Theory Comput. 7, 1850 (2011). 

49. W. A. Majewski, J. F. Pfanstiel, D. F. Plusquellic, and D. W. Pratt, in Laser Techniques in 

Chemistry, edited by A. B. Myers and T. Rizzo (Wiley, New York, 1995), p. 101. 

50. T. M. Korter, D. R. Borst, C. J. Butler, and D. W. Pratt, J. Am. Chem. Soc. 123, 96 (2001). 

51. D. M. Mitchell, P. J. Morgan, and D. W. Pratt, J. Phys. Chem. A 112, 12597 (2008). 

52. D. M. Miller, Ph.D. Thesis, University of Pittsburgh, 2010. 



 161 

53. D. F. Plusquellic, Ph.D. Thesis, University of Pittsburgh, 1992. 

54. D. F. Plusquellic, R. D. Suenram, B. Mate, J. O. Jensen, and A. C. Samuels, J. Chem. Phys. 

115, 3057 (2001). 

55. R. G. Bird and D. W. Pratt, J. Mol. Spectrosc. 266, 81 (2011). 

56. L. Alvarez-Valtierra, S. T. Shipman, J. L. Neill, B. H. Pate, and A. Lessari, in The Ohio State 

University International Symposium on Molecular Spectroscopy (Columbus, OH, 2008), 

WF12. 

57. T. Emilsson, H. S. Gutowsky, G. de Oliveira, and C. E. Dykstra, J. Chem. Phys. 112, 1287 

(2000). 

58. Z. Kisiel, J. Kosarzewski, B. A. Pietrewicz, and L. Pszczolkowski, Chem. Phys. Lett. 325, 

523 (2000). 

59. Z. Kisiel, E. Bialkowska-Jaworska, O. Desyatnyk, B. A. Pietrewicz, and L. Pszczolkowski, J. 

Mol. Spectrosc. 208, 113 (2001). 

60. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. 

Montgomery, J. A., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. 

Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. 

Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. 

Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. 

B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, 

A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. 

Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. 

Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. 

Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. 

Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, 

C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. 

W. Wong, C. Gonzalez, and J. A. Pople, GAUSSIAN 03, Revision C.02 (Gaussian, Inc., 

Wallingford, CT, 2004). 

61. T. H. Dunning, Jr. and P. J. Hay, in Modern Theoretical Chemistry, edited by H. F. Schaefer, 

III (Plenum, New York, 1977), Vol. 3, p. 1. 

62. J. K. G. Watson, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier 

Scientific Publishing Company, New York, 1977), Vol. 6, p. 1. 

63. R. G. Bird, J. L. Neill, V. J. Alstadt, J. W. Young, B. H. Pate, and D. W. Pratt, J. Phys. 

Chem. A, Articles ASAP, dx.doi.org/10.1021/jp111075r (2011). 

64. W. Caminati, A. Dell'Erba, G. Maccaferri, and P. G. Favero, J. Mol. Spectrosc. 191, 45 

(1998). 



 162 

65. CRC Handbook of Chemistry and Physics, 86th ed. (CRC Press, Taylor & Francis Group, 

Boca Raton, FL, 2005). 

66. D. Schweke and Y. Haas, J. Phys. Chem. A 107, 9554 (2003). 

67. D. Schweke, H. Baumgarten, Y. Haas, W. Rettig, and B. Dick, J. Phys. Chem. A 109, 576 

(2005). 

68. D. Schweke, Y. Haas, and B. Dick, J. Phys. Chem. A 109, 3830 (2005). 

69. W. Schuddeboom, S. A. Jonker, J. M. Warman, U. Leinhos, W. Kuehnle, and K. A. 

Zachariasse, J. Phys. Chem. 96, 10809 (1992). 

70. T. Yoshizawa, Y. Iwaki, N. Osaka, T. Nakabayashi, K. A. Zachariasse, and N. Ohta, J. Phys. 

Chem. B 108, 19132 (2004). 

71. R. Li, J. Zheng, and D. G. Truhlar, Phys. Chem. Chem. Phys. 12, 12697 (2010). 

 



 163 

7.0  EXCITED STATE PROTON TRANSFER IN SYN-2-(2ʹ-PYRIDYL)PYRROLE 

OCCURS ON THE NANOSECOND TIMESCALE IN THE GAS PHASE. 
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7.1 ABSTRACT 

Microwave and UV excitation spectra of 2-(2ʹ-pyridyl)pyrrole (2PP) have been recorded at high 

resolution in the gas phase. Analyses of these data show that the syn conformer of 2PP is a planar 

molecule in both the ground (S0) and first excited (S1) electronic states, and that the S1 state 

undergoes a relatively slow excited state proton transfer (ESPT) reaction when excited by light, 

as measured by the homogeneous line broadening that is observed in its UV spectrum.  

Apparently, excitation of the S1 state moves electronic charge from the pyrrole ring to the 

pyridine ring, but the simultaneous transfer of the proton is inhibited by an unfavorably oriented 

dipole under solvent-free conditions.  The rate of the ESPT reaction is enhanced by more than an 

order of magnitude with simultaneous excitation of a 144 cm
-1

 in-plane vibrational mode.    

7.2 COMMUNICATION 

We wish to report the observation of homogeneous line broadening in the high resolution 

fluorescence excitation spectrum of syn-2-(2ʹ-pyridyl)pyrrole (2PP) in the gas phase, which 

makes possible the measurement of the rate of an excited state hydrogen atom transfer reaction 

in the isolated molecule, free of the perturbations of external solvent molecules. 

Interest remains high in reactions of this type, loosely referred to as excited state proton 

transfer (ESPT) reactions,
1
 since the pioneering study of Herek, et al.

2
 on methyl salicylate (MS).  

Relevant recent experiments include studies of 2-(2ʹ-hydroxyphenyl)-5-phenyloxazole (HPPO),
3
 

the 7-azaindole (7AI) dimer,
4
 methanol complexes of 7-hydroxyquinoline (HYQ),

5
 and water 

complexes of 7AI.
6
 But in all of these cases except the first, the course of the ESPT reaction was 
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monitored by the appearance of a red-shifted emission of the product on short time scales, 

following picosecond (or less) pulsed excitation of the reactant, leading to ambiguities 

concerning the nature of the prepared state. Only in HPPO was homogeneous line broadening 

observed,
 
from which an ESPT rate was determined, but even in this case excitation was 

provided by a nsec pulsed Nd:YAG pumped dye laser having a large bandwidth.
3
 Thus, as will 

become apparent, all of the cited experiments utilized excitation sources whose frequency and/or 

coherence widths are much larger than the homogeneous widths of the individual rovibronic 

transitions in the S1-S0 electronic spectrum of 2PP.  

Our experiments were performed in the collision-free environments of a supersonic jet 

for the microwave experiments [using a chirped-pulse Fourier transform microwave (FTMW) 

spectrometer]
7
 and a molecular beam for the UV experiments (using a ~ 1 MHz (0.00003 cm

-1
) 

wide laser).
8
 Previous studies of 2PP

9
 have shown that the isolated molecule exhibits dual 

fluorescence, a strong “normal” fluorescence (F1) that is attributed to 2PP (see I),  and a much 

weaker red-shifted emission (F2) that is attributed to the tautomer of 2PP, 1,2-dihydro-2-(2H-

pyrrol-2-ylidene)-pyridine (2DP, II). The maximum of F1 in the jet is blue shifted with respect to 

the solution value, but the maximum of F2 appears at the same wavelength in both the gas phase 

and in solution. 

Scheme 7-1 
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Figure 7-1 shows the high resolution S1-S0 fluorescence excitation spectrum of the origin 

band of 2PP, recorded in a molecular beam by monitoring the total emission following excitation 

at ~ 318 nm with the narrow-band laser. Immediately apparent is the partially resolved rotational 

structure in the spectrum. This was analyzed using the following procedure. First, ground state 

rotational constants of 2PP were determined from a fit to Watson‟s A-reduced Hamiltonian
10

 of 

nine measured μa-type transitions in an independently measured microwave spectrum. (No μb- or 

μc-type transitions were observed in this spectrum.) Next, excited state rotational constants of 

2PP were determined from a fit to rigid-rotor Hamiltonians of the observed rotational structure in 

the UV spectrum in Fig. 7-1 using the program JB95.
11

 In this fit, ground state constants were 

kept fixed to their microwave values, and excited state constants were varied in a least-squares 

fashion to minimize differences between observed and calculated frequencies. Ultimately, 70 

individual rovibronic transitions were fit, with a standard deviation of 4.9 MHz at a rotational 

temperature of ~ 5 K. Finally, each of the individual features in the spectrum was fit using a 

Voigt lineshape profile, resulting in a Gaussian width of 18-20 MHz, a Lorentzian width of 210 

+/- 20 MHz, and an overall band character that is 90% a-type and 10% b-type, giving an 

electronic transition moment that makes an angle of θ = +/- 18 +/- 5° with respect to the a inertial 

axis of the 2PP frame. 

Tables 7-1 and 7-2 list the rotational constants that were derived from this analysis and 

compares them with selected theoretical values.
12

 First, we note the excellent agreement between 

experiment and theory for the ground electronic state of 2PP (Table 7-1); the calculated values of 

A, B, and C are nearly identical to the measured ones, especially when zero-point vibrational 

motions are taken into account. 2PP is a planar molecule in its ground electronic state. The  
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Figure 7-1. Rotationally resolved fluorescence excitation spectrum of the origin band in the S1-

S0 electronic transition of syn-2-(2ʹ-pyridyl)pyrrole (2PP) in the gas phase, at ~ 318 nm. The 

lower part of the figure shows an expanded scale view of a portion of the P-branch region. The 

black trace is the experimental spectrum, and the red trace is the simulated spectrum with and 

without a convoluted line shape function; the vertical lines represent the individual rovibronic 

transitions responsible for the spectrum. 
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Table 7-1. Inertial parameters of 2PP in its ground electronic state.
a
 

 

Parameter 2PP Microwave 2PP Theoretical
b 

2DP Theoretical
b
 

Aʺ (MHz) 3561.72(22) 3575.6 3513.2 

Bʺ (MHz) 710.4228(14) 711.8 724.2 

Cʺ (MHz) 592.5936(14) 593.9 600.6 

ΔIʺ (uÅ
2
) -0.444(12) -0.41 -0.28 

μaʺ (D)  -1.38 -5.37 

μbʺ (D)  0.11 0.37 

|μʺ| (D)  1.38 5.38 

OMC (kHz) 14   

assigned lines 9   
a
Standard deviations in the final digits are shown in parentheses. See Appendix E for transition 

assignments. 
b
Geometry optimization calculations, which include zero-point vibrational level contributions in 

S0, were done at the M05-2X/6-31+G* level of theory using anharmonic frequency corrections. 

Permanent electric dipoles were calculated using an MP2/aug-cc-pVDZ point calculation on the 

previously optimized vibrationally averaged geometry. 
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Table 7-2. Inertial parameters of 2PP in its excited electronic state.
a
 

 

Parameter 2PP Experimental 2PP Theoretical
b 

2DP Theoretical
b
 

Aʹ (MHz) 3427.5(10) 3481.1 3495.6 

Bʹ (MHz) 725.72(10) 724.9 726.7 

Cʹ (MHz) 599.22(10) 600.3 602.1 

ΔIʹ (uÅ
2
) -0.43(28) -0.42 -0.61 

μaʹ (D)  1.20 -0.94 

μbʹ (D)  -0.06 0.22 

|μʹ| (D)  1.21 0.97 

Origin (cm
-1

) 31404.1   

a/b/c type 90/10/0 99/1/0 86/14/0 

OMC (MHz) 4.9   

assigned lines 70   
a
Standard deviations in the final digits are shown in parentheses. 

b
Geometry optimization calculations, which include zero-point vibrational level contributions in 

S1, were done at the CIS/6-31+G* level of theory using anharmonic frequency corrections. 

Permanent electric dipoles were calculated using a CIS/aug-cc-pVDZ point calculation on the 

previously optimized vibrationally averaged geometry.  
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calculated permanent electric dipole moment (EDM) of 2PP also accords with experiment; µ 

makes its largest projection on the a-inertial axis  (μa = - 1.38 D), thereby explaining the absence 

of strong μb- and μc-type transitions in the microwave spectrum, and (according to theory) points 

towards the pyrrole ring. The predicted values of the rotational constants and EDM of the proton 

transferred structure, 2DP, in its ground electronic state are significantly different from those of 

2PP. 

Next, we consider the properties of the excited electronic state (Table 7-2).  Here, the 

agreement between the experimental and calculated rotational constants is less impressive, but it 

is adequate to conclude that the carrier of the spectrum is the non-proton transferred structure, 

2PP, rather than 2DP. This accords with expectations; the F2 emission makes only a small 

contribution to the total fluorescence intensity.
9
 2PP also is a planar molecule in its S1 state. The 

large decrease in A (-134 MHz), compared to the ground state, may be attributed to increases in 

bond lengths perpendicular to a, reflecting expansions of the pyridine and pyrrole rings upon 

excitation. The small increases in B and C (+15.3 and +6.6 MHz, respectively) indicate that the 

pyridine and pyrrole rings are moving closer together in the excited state. Theory predicts the C-

C bond linking the two rings to have a length of 146 pm in the S0 state and 139 pm in the S1 

state. The shorter length of this bond in the S1 state may reveal incipient motion along the ESPT 

reaction coordinate, as this bond is a double bond in 2DP. Though the F2 emission is relatively 

weak, the eigenstates excited in our experiments may contain small contributions from  the 

proton-transferred structure. 

According to theory, the S1-S0 transition is principally a π,π* (HOMO-LUMO) transition 

that moves electron density from the pyrrole ring to the pyridine ring, strengthening the bond 

between them. The calculated transition dipole moment (TDM) makes an angle of 5.8º with the a 
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inertial axis, in agreement with experiment. Owing to the motion of charge, theory predicts that 

direction of the permanent EDM is reversed in the S1 state of 2PP, but has about the same 

magnitude; whereas the magnitude of the EDM in the S1 state of 2DP is greatly enhanced, 

compared to the ground S0 state, but has the same sign. A similar reversal in sign of the EDM 

has been observed in the S1-S0 spectrum of the related molecule, 1-phenylpyrrole (1PhP).
13

 

Direct evidence for the ESPT reaction in 2PP is provided by the homogeneous line 

broadening observed in its high resolution UV spectrum, 210 MHz, which considerably exceeds 

the Doppler contribution to the linewidth of 18-20 MHz. The Lorentzian contribution gives a 

measured lifetime of 0.80 ± 0.05 nsec for the S1 state. Now, molecules of this type typically 

exhibit fluorescence lifetimes that are an order of magnitude longer than this. For example, the 

S1 (π,π*) state of 1PhP has a lifetime of 13 nsec.
13

 The calculated oscillator strength of the S1-S0 

transition of 2PP is 0.33,
14

 whereas that of 1PhP is substantially less.
13

 Thus, while it is possible 

that the observed line broadening is caused by an enhanced radiative decay of 2PP, we attribute 

the increased spectral width of the S1-S0 origin band of 2PP to an ESPT reaction in the S1 state. 

Proof of this conjecture is provided by the measurement of the high resolution spectrum 

of the + 144 cm
-1

 vibronic band in the S1-S0 spectrum of 2PP, shown in Fig. 7-2. This band 

exhibits significantly broader lines, compared to the origin band in Fig. 7-1. While it proved 

impossible to assign individual features in the spectrum shown in Fig. 7-2, its overall contour can 

be simulated with a Lorentzian contribution that is ten times larger than that of the origin band, 

giving an S1 lifetime that is ten times shorter, 0.08 nsec (80 psec). Previous gas phase studies of 

the low resolution fluorescence excitation spectrum of 2PP with selective detection of the F2 

emission
9 

revealed a large increase in the relative intensity of this band and other bands built on 

the 144 cm
-1

 vibration, compared to a spectrum that was detected by monitoring the total  
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Figure 7-2. Contour fit of the high resolution fluorescence excitation spectrum of the 0,0 + 144 

cm
-1

 vibronic band in the S1-S0 electronic transition of 2PP. The experimental spectrum is shown 

in black, and the simulation is shown in blue. 
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emission, suggesting that this vibration is a promoting mode for the ESPT reaction. Thus, the 

reduced lifetimes of both observed vibrational levels in the S1 state of 2PP may safely be 

attributed to an ESPT reaction. 

Previous studies of 2PP and related molecules in the condensed phase
15

 suggest time 

scales of the order of psec or less for the ESPT reaction. So, it was initially surprising to discover 

that the reaction rate is considerably slower that this for the isolated molecule in the gas phase. 

One possible explanation for this result is, of course, that since the previous experiments were 

performed with psec and fsec lasers, the molecules were in the statistical limit with respect to the 

ensuing dynamics. All vibrational modes could be accessed under these conditions, speeding up 

ESPT. Another possibility is that the process is “solvent-assisted” in the condensed phase. In 

cyclic water or alcohol complexes of molecules like 7AI, simulations
16 

have shown that very 

efficient and fast proton-transfer reactions can be expected. But a recent gas phase study of an 

isolated 7AI-H2O complex in the gas phase
17

 has revealed that ESPT does not occur within the 

lifetime of the S1 state, despite a favorable position of the attached water molecule. In this case, 

photoexcitation produces “instantaneous” charge transfer, but fast proton transfer does not occur. 

Rode and Sobolweski
13

 have recently examined the role of electron and proton transfer 

processes in hydrogen-bonded systems using ab initio methods. In the case of 2PP, they find that 

the S1 state of the syn conformer shows a small barrier (about 0.2 eV) for transfer of a hydrogen 

atom to the pyridine ring. A second highly polar charge transfer state of π,π* character drives the 

proton transfer, which leads to a conical intersection and ultrafast conversion. However, in the 

bare molecule, access to this state is blocked by the barrier; the S1 state of 2DP is a saddle point 

on the potential energy surface, and is unstable with respect to torsion around the central CC 

bond. There is no evidence for torsional activity in the high resolution spectra of 2PP. Instead, 
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we find (as did Kijak, et al.
9
) that an in-plane vibrational mode promotes the process, and that the 

polarization of the + 144 cm
-1

 band in the S1-S0 spectrum of 2PP is similar to that of the origin 

band, suggesting that vibronic coupling is not involved. (The important role of vibronic coupling 

in mediating access to conical intersections has been discussed elsewhere.
18

) Thus, from our 

perspective, the barrier that slows the ESPT process in the isolated molecule is more likely to 

have its origin in the orientation of its permanent electric dipole.
19 

If the dipole moments of the 

normal and tautomeric forms differ either in their magnitude or in their orientation (or both), a 

barrier might then exist along the ESPT coordinate in the isolated molecule that cannot be 

compensated for by solvent reorganization. Our calculations on the present system suggest that 

the excited state permanent EDMs of 2PP and 2DP have approximately the same magnitude but 

are oriented in opposite directions (see Table 7-2). The same is true for 7AI-H2O.
17

 Solvent 

molecules are not required in the salicylic acid/MS systems, since the dipoles of the two 

connecting states are more nearly aligned, and there is no barrier, even in the isolated molecule.
20

 

Therefore, it is perhaps not surprising that the ESPT reaction of 2PP in the gas phase is 

significantly slower than the corresponding reaction in solution.   
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APPENDIX A 

SUPPORTING INFORMATION FOR CHAPTER 2.0 

A.1 BARRIER HEIGHT ANALYSIS 

The effective inertial defect ΔIeff measured for the A subband of InA in Chapter 2.0 contains 

second-order contributions from the coupling of torsion and overall rotation. The ΔIeff of the A 

subband is related to the effective rotational constants via 

 

Equation A-1 

      
 

    
 
 

    
 
 

    
 

 

where k = 505379.005 uÅ
2
MHz. The ammonia molecule sits in the ab plane of the InA complex 

at angles of 32° in S0 and 36° in S1. Therefore, there is no projection of the internal rotation axis 

of NH3 onto the c inertial axis of the complex, and the effective rotational constants are related to 

the static rotational constants via  
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Equation A-2 

           
( )  

  

 

Equation A-3 

           
( )  

  

 

Equation A-4 

       

 

Above, F is the internal rotor constant in MHz, and can be calculated from the known moment of 

inertia of NH3 (Iα),
1
 the projection of the internal rotor axis onto the inertial axes of the system, 

and a reducing factor r. 

 

Equation A-5 

  
 

   
 

 

Equation A-6 

    [
  
   
  
 
  
   
  
 
  
   
  
] 

 

In InA, we calculated Fʺ = 188.0 GHz in S0 and Fʹ = 187.7 GHz in S1. Additionally, ρa and ρb are 

the projection of Iα onto either the a or b inertial axes of InA, and are calculated using the 

direction cosines λg and Eqs. A-7 and A-8. 
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Equation A-7 

   
    
  

 

 

Equation A-8 

   
    
  

 

 

 In defining the above equations, our goal is to estimate the static rotational constants A, 

B, and C in order to calculate values of W
(2)

 in each electronic state. In Table 2-4 of Chapter 2.0, 

the optimized static structures of InA consistently yield inertial defect values of ΔIstat = -2.67 

uÅ
2
. Therefore, the static rotational constants are related to ΔIstat via 

 

Equation A-9 

       
 

 
 
 

 
 
 

 
 

 

where A, B, and C are defined in Eqs. A-2 through A-4. If we rearrange Eqs. A-2 through A-4 

and substitute for the static rotational constants, it becomes possible to vary W
(2)

 to reproduce 

ΔIstat in each electronic state. 

 

       
 

    
 

 

         
( )   

 
 

         
( )  
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The W
(2)

 values determined in this way are related to the barrier height
2,3

 via Herschbach‟s 

equations
4
 and available data tables.

5
 For the ground state of InA, we calculated V3ʺ = 44 cm

-1
. In 

the excited state, we calculated a slightly larger barrier height of V3ʹ = 48 cm
-1

. This change in 

barrier height upon excitation predicts an E-A band tunneling splitting of -9930 MHz, in 

excellent agreement with the experimental estimate of ~9900 MHz. 

 We have checked this procedure by completing the same A subband analysis for NH3 

internal rotors previously analysis using high resolution electronic spectroscopy.
6-8

 Table A-1 

lists the V3 barrier heights calculated from the A subband inertial defect as compared to the more 

accurate V3 values calculated from a direct rotational fit of the E subbands, which provide the 

first-order perturbation coefficients W
(1)

. Clearly, the ΔI analysis consistently overestimates the 

V3 barrier heights. We therefore conclude that the V3 barriers to hindered internal rotation of NH3 

in the InA complex are less than V3ʺ = 44 and V3ʹ = 48 cm
-1

, respectively. 

 

Table A-1. Predicted V3 barrier heights (cm
-1

) using A subband ΔIeff values (uÅ
2
) from select 

NH3 complexes. All predicted V3 values overestimate the barrier height as compared to V3 

calculated from the first-order perturbation coefficients W
(1)

 determined by fitting the respective 

E subbands. 

 

State Parameter c2HNA
a
 t2HNA

b
 t1HNA

c
 tHQA

d
 InA

e
 

S0 ΔIeff from A band -0.936 -1.262 -1.215 -0.980 +0.27 

 V3 from ΔIeff 71.3 84.1 81.5 74.4 44 

 V3 from E band 41.1 34.2 39.9 35.5 -- 

       

S1 ΔIeff from A band -1.286 -1.443 -1.117 -1.381 +0.04 

 V3 from ΔIeff 83.4 91.5 77.9 88.8 48 

 V3 from E band 53.8 58.2 46.5 58.8 -- 
a
cis-β-naphthol-NH3 (Ref. 6). 

b
trans-β-naphthol-NH3 (Ref. 6). 

c
trans-α-naphthol-NH3 (Ref. 7). 

a
trans-hydroquinone-NH3 (Ref. 8). 

e
This work. 
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 Finally, we have calculated the theoretical inertial defect values for the complexes listed 

in Table A-1 by requiring the reproduction of each V3 barrier height calculated from each E 

subband fit (labeled ΔItheor). The following equation, which removes both static and measured 

inertial defect contributions from the theoretical values, leaves a barrier-dependent inertial defect 

term ΔIcor. 

Equation A-10 

                           

 

This ΔI correction factor appears linearly related to the measured V3 barrier heights over the 

range of 30-65 cm
-1

, as shown in Fig. A-1. This interesting observation requires more attention in 

order to understand and interpret the physical meaning and predictive capabilities of such a linear 

relationship. 

 

Figure A-1. Plot of V3 vs. ΔIcor for the four complexes listed in Table A-1. A best-fit trendline 

equation is shown in the top left corner. An asterisk (*) indicates an excited S1 state. 
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APPENDIX B 

SUPPORTING INFORMATION FOR CHAPTER 3.0 

 

Table B-1. Theoretical permanent EDMs of cis-2HN and cis-2HNA. The dipole moment angle 

with respect to the a inertial axis is defined as θa. S0 calculations were done using the MP2 level 

of theory and the indicated basis set, while S1 calculations were done using the CIS level of 

theory. Components of the molecular polarizability tensor for cis-2HN are also included. 

 

 cis-2HN cis-2HN · NH3 

 6-31G** Error (%) 6-31G** Error (%) 6-31++G** Error (%) 

S0       

μa (D) 0.32 7.0 -3.14 22.6 -2.70 5.5 

μb (D) -1.11 16.7 -3.20 9.2 -3.08 5.1 

μc (D) 0.00  -0.04  0.04  

μ (D) 1.15 13.9 4.49 15.4 4.10 5.4 

θa (deg) 73.8  134.4  131.2  

αa (Å
3) 23.46      

αb (Å
3) 16.60      

S1       

μa (D) 0.26 263.5 -3.51 6.6 -3.33 11.4 

μb (D) -1.38 19.0 -3.13 2.5 -2.91 9.3 

μc (D) 0.00  0.00  -0.01  

μ (D) 1.41 20.5 4.70 4.9 4.42 10.5 

θa (deg) 79.4  138.3  138.9  

αa (Å
3) 30.41      

αb (Å
3) 17.79      
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APPENDIX C 

SUPPORTING INFORMATION FOR CHAPTER 4.0 

 

Table C-1. Calculated electrostatic interaction energies of cis-2HNW. Below, cis-2HN is 

designated as 1 and H2O is designated as 2. The angles θ1 and θ2 are the angles μ1 and μ2 make 

with the line RCM. 

 

 S0 S1 

μ1 (D) 1.011 1.17 

μ2 (D) 1.78 1.78 

μind (D) 0.57 0.73 

θ1 (°) 46.0 33.1 

θ2 (°) 24.4 12.9 

RCM (Å) 5.14
a
 5.08

a
 

Q (e) 0.08 0.06 

d (Å) 2.90
b
 2.88

b
 

Eμμ (cm
-1

) -64.7 -120.5 

Eαμ (cm
-1

) -35.2 -49.0 

ECT (cm
-1

) -252.1 -136.7 

Ecomplex,rel (cm
-1

) -352.0 -306.2 
a
Calculated assuming the COM of water is in the ab plane of 2HN. 

b
HF and CIS calculated heavy atom distances using the 6-31+G* basis set. 
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Figure C-1. Stark effect in the electronic spectrum of trans-2HN at full rotational resolution. 

The blue trace is simulated using the dipole moments listed in Table 4-4. The most intense 

transition in the zero field spectrum is assigned the quantum numbers |854› ← |963›. 

 

 

 

Figure C-2. Experimental ground and excited state dipole moments of trans and cis-2HN (scale: 

1.0 D = 4.0 Å). The center images are the weighted electron density differences upon S1 ← S0 

excitation calculated at the CIS/6-31G** level. Purple indicates electron density gain upon 

excitation, whereas yellow indicates electron density loss. 
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APPENDIX D 

SUPPORTING INFORMATION FOR CHAPTER 6.0 

D.1 THEORETICAL DETAILS 

In order to include PYRBN in the comparison between experiment and theory reported in Table 

6-3, the PYRBN ground state geometry was optimized using M05-2X density functional theory
1
 

and the 6-31+G* basis set (keyword Int=Ultrafine).
2
 Then, two point calculations were 

performed at the complete active space self-consistent field (CASSCF) level; one for the ground 

S0 state and another for the excited S1 state. An active space including 12 electrons and 10 

molecular orbitals (6 π and 4 π*) was chosen for these calculations, using the D95V basis set
3
 for 

each electronic state (keywords SCF=Tight and Density=Current).
2
 

The Cartesian coordinates (X, Y, Z in standard orientation) of the optimized structure are 

shown in Table D-1. Since both the vibrationally and rotationally resolved spectra of PYRBN 

show little evidence of significant geometric change upon excitation, the “vertical” excitation 

investigated here by theory should be sufficient for the purposes of Table 6-3. Attempts to 

optimize the PYRBN geometry using CASSCF with a sufficiently large active space are 

currently underway. 
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Table D- 1. Cartesian coordinates of the PYRBN optimized geometry (Å). 

Atomic 

number X Y Z 

6 1.9189 1.2024 -0.0976 

6 2.6298 0.0000 0.0002 

6 1.9188 -1.2024 0.0977 

6 0.5359 -1.2084 0.0985 

6 -0.1919 0.0000 -0.0003 

1 2.4604 2.1363 -0.1779 

1 2.4603 -2.1363 0.1782 

1 0.0137 -2.1504 0.1901 

6 -2.3605 1.2146 0.0273 

6 -2.3605 -1.2145 -0.0273 

6 -3.7680 0.6925 0.3274 

1 -2.3215 1.7341 -0.9382 

1 -2.0028 1.9001 0.7991 

6 -3.7681 -0.6925 -0.3268 

1 -2.3210 -1.7334 0.9385 

1 -2.0033 -1.9005 -0.7990 

1 -3.9009 0.5952 1.4075 

1 -4.5463 1.3512 -0.0569 

1 -4.5463 -1.3512 0.0579 

1 -3.9016 -0.5953 -1.4069 

7 -1.5534 0.0000 -0.0006 

6 4.0633 0.0000 0.0004 

7 5.2211 0.0000 -0.0001 

6 0.5359 1.2084 -0.0988 

1 0.0138 2.1504 -0.1907 

 

 

Figure D-1 illustrates the molecular orbitals involved in the S1-S0 electronic excitation of 

PYRBN. As was found in the high resolution experiments, the S1 state of PYRBN is the 
1
Lb 

state, with a b-type electronic transition moment (ETM). 
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Figure D-1. CASSCF(12,10)/D95V molecular orbitals principally involved in the lowest energy 

π-π* excitation of PYRBN. Orbital populations were taken from the final density matrix. The 

vertical excitation energy is 4.54 eV, or approximately 36600 cm
-1

, without corrections for 

dynamic electron correlation or zero-point energy. 

 

D.2 MICROWAVE SPECTRA AND ASSIGNMENTS 

The CP-FTMW spectrum of PBN recorded from 6.5 – 17 GHz at the University of Pittsburgh is 

shown in Fig. D-2. A portion of the Stark CP-FTMW spectrum of DMABN recorded at the 

University of Virginia is shown in Fig. D-3, and individual rotational transition assignments are 

listed in Table D-2. 
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Figure D-2. CP-FTMW spectrum of PBN recorded from 6.5 – 17 GHz. 

 

 

Figure D-3. A portion of the Stark CP-FTMW spectrum of DMABN recorded at an applied 

electric field of 23.7 V/cm. 

 

  



 190 

Table D-2. List of assigned rotational transitions in the Stark CP-FTMW spectrum of DMABN 

using QSTARK.
4,5

 The F and MF quantum numbers are in units of 1/2, and the frequencies are in 

MHz. The standard deviation of the fit is 0.057 MHz. 

 

J Ka Kc ← J Ka Kc   F MF ← F MF   Obs Obs - Calc Calc 

7 4 3 ← 6 4 2 

 

14 4 ← 12 4 20.1 7551.6224 -0.05099 7551.6734 

7 4 3 ← 6 4 2 
 

14 2 ← 12 2 20.1 7553.4582 -0.03716 7553.4954 

7 4 4 ← 6 4 3 

 

14 0 ← 12 0 20.1 7555.294 -0.01094 7555.3049 

7 4 4 ← 6 4 3 
 

14 2 ← 12 2 20.1 7557.106 -0.03416 7557.1402 

7 3 4 ← 6 3 3 

 

14 4 ← 12 4 20.1 7558.1074 -0.04732 7558.1547 

7 4 4 ← 6 4 3 
 

14 4 ← 12 4 20.1 7558.9657 0.00264 7558.9631 

7 3 5 ← 6 3 4 

 

14 0 ← 12 0 20.1 7559.3233 -0.06304 7559.3863 

7 3 4 ← 6 3 3 
 

14 2 ← 12 2 20.1 7559.6571 -0.0759 7559.733 

7 3 5 ← 6 3 4 

 

14 2 ← 12 2 20.1 7561.6121 0.03884 7561.5733 

7 3 4 ← 6 3 3 
 

14 0 ← 12 0 20.1 7561.8982 -0.02064 7561.9188 

8 4 4 ← 7 4 3 

 

16 4 ← 14 4 20.1 8634.305 -0.03924 8634.3442 

8 5 4 ← 7 5 3 
 

16 2 ← 14 2 20.1 8634.8534 -0.03368 8634.8871 

8 4 4 ← 7 4 3 

 

16 2 ← 14 2 20.1 8635.4971 -0.06189 8635.559 

8 4 5 ← 7 4 4 
 

16 4 ← 14 4 20.1 8639.1449 -0.05968 8639.2046 

8 3 6 ← 7 3 5 

 

16 0 ← 14 0 20.1 8642.2205 -0.01844 8642.2389 

9 5 4 ← 8 5 3 
 

18 2 ← 16 2 20.1 9713.1252 -0.04361 9713.1688 

9 5 5 ← 8 5 4 

 

18 0 ← 16 0 20.1 9714.1981 -0.03303 9714.2311 

9 5 5 ← 8 5 4 
 

18 2 ← 16 2 20.1 9715.271 -0.024 9715.295 

9 4 5 ← 8 4 4 

 

18 2 ← 16 2 20.1 9718.3228 0.08273 9718.2401 

9 4 6 ← 8 4 5 
 

18 0 ← 16 0 20.1 9718.9903 -0.01458 9719.0049 

9 3 7 ← 8 3 6 

 

18 0 ← 16 0 20.1 9725.9998 0.10231 9725.8975 

9 3 6 ← 8 3 5 
 

18 0 ← 16 0 20.1 9735.0836 -0.04161 9735.1252 

10 5 6 ← 9 5 5 

 

20 0 ← 18 0 20.1 10795.6171 -0.07844 10795.6955 

10 4 6 ← 9 4 5 
 

20 6 ← 18 6 20.1 10800.5285 0.01 10800.5185 

10 4 6 ← 9 4 5 

 

20 4 ← 18 4 20.1 10801.1961 0.05656 10801.1395 

10 4 7 ← 9 4 6 
 

20 4 ← 18 4 20.1 10803.6757 0.07546 10803.6002 

10 4 7 ← 9 4 6 

 

20 6 ← 18 6 20.1 10804.2955 0.07323 10804.2223 

10 3 7 ← 9 3 6 
 

20 4 ← 18 4 20.1 10825.2764 0.10099 10825.1754 

10 3 7 ← 9 3 6 

 

20 0 ← 18 0 20.1 10825.8724 -0.11145 10825.9839 

11 6 6 ← 10 6 5 
 

22 0 ← 20 0 20.1 11873.1022 -0.08578 11873.188 

11 5 6 ← 10 5 5 

 

22 4 ← 20 4 20.1 11876.6546 -0.01737 11876.672 

11 5 6 ← 10 5 5 
 

22 2 ← 20 2 20.1 11877.2745 0.02262 11877.2519 

11 5 7 ← 10 5 6 

 

22 2 ← 20 2 20.1 11878.4428 0.03082 11878.412 

11 5 7 ← 10 5 6 
 

22 4 ← 20 4 20.1 11878.9911 -0.00108 11878.9922 

11 5 7 ← 10 5 6 

 

22 6 ← 20 6 20.1 11879.611 0.03851 11879.5725 

11 5 7 ← 10 5 6 
 

22 8 ← 20 8 20.1 11880.1832 0.03031 11880.1529 
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11 4 7 ← 10 4 6 

 

22 4 ← 20 4 20.1 11885.8337 -0.00598 11885.8397 

11 4 7 ← 10 4 6 

 

22 0 ← 20 0 20.1 11887.0974 0.00885 11887.0885 

11 3 9 ← 10 3 8 

 

22 6 ← 20 6 20.1 11895.6327 -0.13743 11895.7701 

12 6 6 ← 11 6 5 

 

24 4 ← 22 4 20.1 12953.5913 -0.00634 12953.5976 

12 5 7 ← 11 5 6 

 

24 2 ← 22 2 20.1 12960.2194 -0.03687 12960.2563 

12 5 8 ← 11 5 7 

 

24 2 ← 22 2 20.1 12961.1254 -0.02335 12961.1488 

12 5 8 ← 11 5 7 

 

24 4 ← 22 4 20.1 12961.6261 0.0309 12961.5952 

12 5 8 ← 11 5 7 

 

24 6 ← 22 6 20.1 12962.0314 -0.0103 12962.0417 

12 5 8 ← 11 5 7 

 

24 8 ← 22 8 20.1 12962.5082 0.01992 12962.4883 

12 3 9 ← 11 3 8 

 

24 12 ← 22 12 20.1 13018.5366 0.12188 13018.4147 

12 3 9 ← 11 3 8 

 

24 10 ← 22 10 20.1 13018.775 0.07004 13018.705 

12 3 9 ← 11 3 8 

 

24 8 ← 22 8 20.1 13019.0372 0.08889 13018.9483 

12 3 9 ← 11 3 8 

 

24 6 ← 22 6 20.1 13019.2518 0.1104 13019.1414 

12 3 9 ← 11 3 8 

 

24 4 ← 22 4 20.1 13019.371 0.08955 13019.2815 

13 7 7 ← 12 7 6 

 

26 0 ← 24 0 20.1 14032.1732 0.0044 14032.1688 

13 6 8 ← 12 6 7 

 

26 0 ← 24 0 20.1 14036.6554 -0.04226 14036.6977 

13 6 8 ← 12 6 7 

 

26 2 ← 24 2 20.1 14037.0846 -0.03405 14037.1186 

13 6 8 ← 12 6 7 

 

26 4 ← 24 4 20.1 14037.5376 -0.00179 14037.5394 

13 6 8 ← 12 6 7 

 

26 6 ← 24 6 20.1 14037.9667 0.00653 14037.9602 

13 6 8 ← 12 6 7 

 

26 8 ← 24 8 20.1 14038.372 -0.00899 14038.381 

13 5 9 ← 12 5 8 

 

26 2 ← 24 2 20.1 14044.6663 -0.06212 14044.7284 

13 5 9 ← 12 5 8 

 

26 6 ← 24 6 20.1 14045.4054 -0.02505 14045.4304 

13 5 9 ← 12 5 8 

 

26 8 ← 24 8 20.1 14045.763 -0.01845 14045.7814 

13 5 9 ← 12 5 8 

 

26 10 ← 24 10 20.1 14046.073 -0.0595 14046.1325 

7 4 3 ← 6 4 2 

 

14 4 ← 12 4 20.1 7551.6786 0.00521 7551.6734 

8 2 7 ← 7 2 6 

 

16 0 ← 14 0 20.1 8606.0762 0.00752 8606.0687 

8 2 7 ← 7 2 6 

 

16 4 ← 14 4 20.1 8606.1716 0.00666 8606.1649 

8 2 7 ← 7 2 6 

 

16 8 ← 14 8 20.1 8606.5292 0.07669 8606.4525 

8 2 7 ← 7 2 6 

 

16 10 ← 14 10 20.1 8606.7677 0.1007 8606.667 

8 2 7 ← 7 2 6 

 

16 12 ← 14 12 20.1 8606.9822 0.05442 8606.9278 

8 2 7 ← 7 2 6 

 

16 14 ← 14 14 20.1 8607.1491 -0.08497 8607.2341 

8 2 6 ← 7 2 5 

 

16 0 ← 14 0 20.1 8734.87 -0.05868 8734.9287 

8 2 6 ← 7 2 5 

 

16 6 ← 14 6 20.1 8734.7269 0.00666 8734.7202 

8 2 6 ← 7 2 5 

 

16 8 ← 14 8 20.1 8734.6077 0.04886 8734.5588 

8 2 6 ← 7 2 5 

 

16 10 ← 14 10 20.1 8734.2739 -0.07832 8734.3522 

8 2 6 ← 7 2 5 

 

16 14 ← 14 14 20.1 8733.7732 -0.03294 8733.8061 

10 5 6 ← 9 5 5 

 

20 2 ← 18 2 20.1 10796.4039 -0.06697 10796.4709 

10 5 6 ← 9 5 5 

 

20 0 ← 18 0 20.1 10795.6171 -0.07844 10795.6955 

10 5 5 ← 9 5 4 

 

20 2 ← 18 2 20.1 10794.878 -0.04633 10794.9243 

10 6 5 ← 9 6 4 

 

20 0 ← 18 0 20.1 10792.16 -0.05146 10792.2115 

11 3 8 ← 10 3 7 

 

22 4 ← 20 4 20.1 11920.2093 0.00086 11920.2084 

11 3 8 ← 10 3 7   22 0 ← 20 0 20.1 11920.4044 -0.10121 11920.5056 
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D.3 TWIST ANGLE ANALYSIS 

A relaxed potential energy surface (PES) scan of the PBN ring torsional angle (ϕ) was performed 

using M05-2X DFT (keyword Int=Ultrafine)
2
 and 6-31+G* basis set, over the angle range ϕ = 0° 

to ϕ = 90° in 3° increments. The energies of these 31 structures, along with the energy of the 

overall minimum energy geometry, were extrapolated over 360°, plotted vs. the torsional angle ϕ, 

and fit to an expansion of torsional potential functions shown in Eq. D-1. 

 

Equation D-1 

    









n

n Cn
V

V  cos1
2

 

 

Also included in Eq. D-1 is a constant, Cτ. The following terms were derived from the PES scan; 

V2 = 535, V4+ = -410, V4- = -410, V8 = -81, and Cτ = 1088 cm
-1

. Phase shifts of ± 35.3° were 

applied to the V4 terms, identified above as V4+ and V4-, respectively. The theoretical barrier to 

ring planarity at ϕ = 0° is V″(0) = 469 cm
-1

, whereas the barrier to ring perpendicularity at ϕ = 

90° is V″(90) = 1003 cm
-1

. The standard deviation between the PES function and the energies of 

all 125 calculated structures is 28 cm
-1

. The PES is illustrated in Fig. D-4. 

A plot of the inertial defect (ΔI = Ic – Ia – Ib) in units of uÅ
2
 vs. ring torsional angle ϕ for 

all 32 geometries (ϕ = 0 to 90°) is shown in Fig. 6-5 of the main text. The data points were fit to 

a 2
nd

 order polynomial in order to determine the ϕ angle that best fit the experimentally 

determined ΔI in S0. The best fit value of ϕʺ = 32° occurs for a structure with ΔIcalc = -21.5 uÅ
2
. 
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Figure D-4. The ground state PES for ring torsion in PBN is shown in black. Data points 

rendered blue were calculated at the M05-2X/6-31+G* level from ϕ = 0° to ϕ = 90°, and then 

extrapolated over the entire 360° shown above. 

 

The excited state torsion, or twist, angles ϕʹ were also estimated from the ground state plot of ΔI 

vs. ϕ for Bands 1, 2, and 3. The measured inertial defects of PBN Bands 1, 2, and 3 are -6.97 

(average of red and blue bands), -6.70, and -4.50 uÅ
2
, respectively (cf. Table 6-1). The resulting 

ring torsional angles are 14° for Band 1, 13° for Band 2, and 9° for Band 3. To justify the use of 

a ground state ΔI vs. ϕ plot like that in Fig. 6-5 to determine excited state parameters, we assume 

that the light-induced changes in the individual ring geometries are negligible compared to the 

extreme changes in ring twist angles indicated by the drastic changes in ΔI. For comparison, ϕʹ = 

20° was determined in the same fashion for PP using Eq. D-1 and Figs. D-5 and D-6. This value 

compares favorably with ϕʹ = 19.8° previously determined from a FC analysis of the 

vibrationally resolved FES
6
 and ϕʹ = 20.9° calculated at the SA-CASSCF level.

7
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Figure D-5. The ground state PES for ring torsion in PP is shown in black. Data points rendered 

blue were calculated at the M05-2X/6-31+G* level from ϕ = 0° to ϕ = 90°, and then extrapolated 

over the entire 360° shown above. The following Eq. D-1 parameters were fit to the blue data 

points: V2 = 67, V4+ = -210, V4- = -210, V8 = -38, and Cτ = 698 cm
-1

. For PP, the V4 shift is 

39.65°. 

 

 

Figure D-6. Plot of ΔI vs. ϕ as calculated from the ground state torsional PES shown in Fig. D-5 

(blue data points). These data points were fit to a 2
nd

 order polynomial (black curve), and used to 

determine ϕ for all PP electronic states. The S0 and S1 extrapolations are shown in the figure. 
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While the inertial defect plots in Figs. 6-5 and D-6 are good representations of the ground 

and excited states, the potential energy surfaces in Figs. D-4 and D-5 clearly are not. In PBN, the 

minimum excited state twist angle for Band 1 is 14°, much smaller than the value of 32° found in 

S0. Therefore, we believe that the splitting found in band 1 is a consequence of hindered internal 

rotation about the bond connecting the two unsaturated rings in the excited (S1) state. The 

corresponding splitting in the S0 state is likely to be much smaller, since the effective barrier 

height in the ground S0 state is likely to be much larger, owing to the larger separation of the two 

minima.
8
 We note that at +400 cm

-1
, the molecule must exist above this barrier, while still 

remaining well below the larger barrier to perpendicularity. 

D.4 DIPOLE CORRELATION ANALYSIS 

During the Stark spectral fitting process in PBN Band 2, μ″ was fixed at different values ranging 

from 2.5 to 4.1 D, necessitating a matching range of μʹ = 5.0 to 6.8 D to reproduce the 

experimental splitting in the Stark spectra. The high linear correlation observed between μ in S0 

and S2 is plotted in Fig. D-7. A best fit to the trendline μʹ = 1.0765μʺ + 2.325 (units of Debye, D) 

with R
2
 = 0.9978 was obtained, where a double-prime (ʺ) denotes a ground state parameter (S0), 

and a prime (ʹ) denotes an excited state parameter (Sx, x = 1 or 2). For Band 3, μʺ was set at 

values ranging from 2.4 to 4.4 D, requiring S2 dipole moments that range from μʹ = 5.2 to 7.5 D 

to maintain a fit of the experimental spectrum. The best fit trendline for Band 3 is μ′ = 1.1827μ″ 

+ 2.2725 with an R
2
 = 0.9988, and is also shown in Fig. D-7. 
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Figure D-7. Linear dipole function for PBN, showing the high correlation between the measured 

μʺ and μʹ values determined for PBN band 2 (blue diamonds) and PBN band 3 (red squares). 

 

To determine reliable values of μʹ, the structure of PBN was optimized with the ring 

torsion angle frozen at 32° (A = 3508.8, B = 383.4, C = 351.1 MHz; ΔI = -22.1 uÅ
2
 from theory), 

and the dipole moment of this “experimentally derived” structure was determined via an 

MP2/aug-cc-pVTZ single point calculation to be μʺ = 3.43 D. Inserting the value of μ″ = 3.43 D 

into the experimentally determined linear dipole functions shown in Fig. D-7 leads to μ′(La) = 

6.02(10) D for Band 2, and μ′(La) = 6.33(10) D for Band 3 in PBN. This approach of carrying 

out a single point calculation using MP2/aug-cc-pVXZ (X = D, T, or Q) on a geometry 

optimized using hybrid density functional theory has been shown to reliably reproduce accurate 

S0 permanent EDMs at minimal computational cost in previous work
9
 and for the family of ICT 

molecules listed in Table D-3. 
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Table D-3. Calculated rotational constants (A, B, C) in MHz are compared to the experimentally 

determined values below. Following the M05-2X/6-31+G* optimization, the dipole moment was 

calculated using MP2 theory (keywords SCF=Tight and Density=Current)
2
 and either a double-ζ 

(D), triple-ζ (T), or quadruple-ζ (Q) basis set of the form aug-cc-pVXZ where X = D, T, or Q. 

The percent error in calculated parameters is shown in the column “%”. The molecules 

investigated are abbreviated as follows: AN = aniline,
10

 BN = benzonitrile,
11

 ABN = 4-

aminobenzonitrile,
11

 DMABN = 4,4ʹ-dimethylaminobenzonitrile, PYR-eq = pyrrolidine 

(equatorial conformer),
12

 PYRBN = 4-(1-pyrrolidinyl)benzonitrile, P = pyrrole,
13

 PP = 1-

phenylpyrrole,
14

 and PBN = 4-(1H-pyrrol-1-yl)benzonitrile. 

 

 

 

  

Exp M052X % MP2 % Exp M052X % MP2 % Exp M052X % MP2 %

A 5618.1 5642.0 0.4 5656.7 5676.0 0.3 5579.3 5596.7 0.3

B 2594.2 2600.9 0.3 1547.4 1549.3 0.1 990.3 992.1 0.2

C 1777.2 1783.0 0.3 1214.8 1217.1 0.2 841.4 843.1 0.2

μa 1.13 1.17 3.2 1.14 1.0 4.48 4.76 6.3 4.48 0.1 6.41 6.72 4.8 6.31 1.5

Exp M052X % MP2 % Exp M052X % MP2 % Exp M052X % MP2 %

A 3469.3 3469.0 0.0 6864.7 6911.0 0.7 3083.0 3097.6 0.5

B 578.6 581.0 0.4 6792.0 6822.8 0.5 366.1 366.7 0.2

C 499.6 501.0 0.3 3902.3 3923.5 0.5 331.8 332.3 0.2

Q Q

T T 8.08 2.1

μa 6.426 7.85 22.2 7.49 16.5 0.05 ### 0.08 ### 8.23 8.46 2.8 8.06 2.1

Exp M052X % MP2 % Exp M052X % MP2 % Exp M052X % MP2 %

A 9130.6 9188.2 0.6 3508.3 3525.7 0.5 3492.2 3508.2 0.5

B 9001.3 9042.4 0.5 703.5 703.9 0.1 382.6 383.3 0.2

C 4532.1 4557.4 0.6 604.8 608.8 0.7 350.0 351.6 0.5

Q -1.86 7.1 Q Q

T -1.87 7.4 T T

μa -1.74 -1.99 14.6 -1.90 9.3 -1.56 -1.75 12.1 -1.78 13.9 3.71 ### 3.43 ###

P PP PBN

AN BN ABN

DMABN PYR-eq PYRBN
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Table D-3 shows an excellent overall correlation between theory and experiment when 

determining rotational constants and EDMs in this fashion. While the EDM of BN is in excellent 

agreement, the calculation slightly overestimates the total EDM of pyrrole (P). Therefore, the 

value of 3.43 D calculated for PBN may be a slight underestimate of the experimental ground 

state value. This would, in turn, yield a slight underestimate of the excited S2 state value reported 

in this work. This effect is small, with a percentage error of no more than 15% (~ 0.5 D in S0). 
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APPENDIX E 

SUPPORTING INFORMATION FOR CHAPTER 7.0 

Table E-1. Observed frequencies and residuals for the rotational transitions of syn-2-(2ʹ-

pyridyl)pyrrole. 

 

      
     

         
      

   Obs. / MHz Obs.-calc. / MHz 

5 1 5 4 1 4 6205.55 -0.007 

5 0 5 4 0 4 6444.55 0.029 

5 2 5 4 2 4 6793.28 0.000 

6 1 6 5 1 5 7437.84 -0.006 

6 0 6 5 0 5 7696.41 0.015 

6 2 6 5 2 5 8141.02 -0.014 

7 0 7 6 0 6 8930.80 0.008 

8 0 8 7 0 7 10147.90 0.002 

9 0 9 8 0 8 11349.50 -0.016 
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