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MOLECULAR DYNAMICS STUDIES OF LIQUID AND CHAIN SYSTEMS

Vernon Simmons, PhD

University of Pittsburgh, 2004

Molecular Dynamics simulations have been used for the past 20 - 30 years to study inter-

facial properties of liquids though the foundations for these studies were laid as far back as

1791 when the astronomer Joseph Dalambre used the time reversible algorithm, commonly

called the Verlet algorithm, for the integration of Newton’s equations. Some of the properties

obtained from Molecular Dynamics (MD) simulation are density profiles, system configura-

tions, as well as stress or pressure tensor profiles. Generally, the surface tension has been

calculated by integrating the stress tensor profile over the width of the interfacial region. In

an effort to circumvent the stress tensor calculation and the technical difficulties associated

with extensions to include many-body interactions, I studied the feasibility of implementing

an equality recently developed by C. Jarzynski to determine the equilibrium surface free

energy and, subsequently, the surface tension of an immiscible Lennard-Jones fluid from an

ensemble average of a set of non-equilibrium simulations. In addition to exploring suitable

systems on which to test what I will call the Jarzynski method, I established procedures for

this type of simulation study.
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I.0 INTRODUCTION

I.1 SURFACE PROPERTIES

A fundamental property of liquid surfaces is that they tend to contract to the smallest area

possible.(1) This tendency is due to the simplest properties of the molecules in liquids. In the

interior of a liquid, each molecule is surrounded, and thus attracted, by other molecules. On

average, over periods of time long compared to the molecular vibrations, the attraction on any

molecule is uniform in all directions. At the surface, the story is much different. Molecules

at the surface are subject to strong inward attractions perpendicular to the surface. This

inward attraction causes the surface to diminish because the surface molecules move inward

much faster than those from the bulk move outward to take their place.

When two non-mixing liquids come in contact with each other, an interface forms since

this is a minimum free energy configuration. The presence of interfaces plays a fundamental

role in a variety of fields for they are present in areas ranging from biology to metallurgy,

and occur daily in natural and industrial processes such as adhesion. In many of these fields,

a more detailed understanding of interfaces at the molecular level is becoming increasingly

important.(2) If these systems are in a state of complete thermodynamic equilibrium, the

interfaces arrange spontaneously in such a way that they correspond to free energy minima.

Once a minimum free energy state is reached, the bulk properties remain unchanged; there-

fore, the surface state of the system is completely determined by the minimum of surface

free energy.

The energy required to create a unit amount of interfacial area is defined as the surface

1



tension or interfacial tension. Systems in nature continually try to reach a minimum energy

configuration so if interfaces are present, the progress to and/or the final configuration of the

equilibruim state is controlled by the surface tensions or the balance of the surface tensions

of different interfaces of the system.(3)

The methods of measuring surface tension are classified into two categories: static and

dynamic. The static methods measure the surface tension of practically stationary surfaces

which have formed over an appreciable amount of time.(1) Static methods have been used for

some time and are very well documented so I will focus primarily on the dynamic methods.

Some important practical situations that require a better understanding of dynamic surface

tension are(4) 1) Contact angle, which is determined by the balance between surface

tension at a three-phase boundary, is important in large scale separation processes.

2) Wetting, adhesion, and detergency depend on the control of interfacial tension.

3) Emulsions and foams are stabilized/destabilized via surface-active agents.

I.2 INTERFACIAL CHARACTERISTICS

An important characteristic of an interface is that it breaks the symmetry of the bulk phases

so properties vary differently parallel and perpendicular to it. This provides leverage in

the study of forces, especially long-range forces, between molecules. A more thorough un-

derstanding of interfaces and interfacial properties can only come from a more extensive

and self-consistent theoretical framework which assists the interpretation of experimental

observations.(2) Another important point to keep in mind when examining the properties of

interfaces is that the classical thermodynamic arguments that apply to the bulk may be quite

different in the interfacial region. The formation of an interface breaks the homogeneity of a

system and thermodynamic properties defined for homogeneous systems may have surprising

characteristics. For instance, the heat capacity and compressibility, which are two quanti-

ties determined from thermodynamic fluctuations, can be negative in the interface; this is

quite different than in the bulk since by definition, this cannot occur in a system of uniform

density.(5) Two developments that have assisted in the study of interfacial properties are

2



rapid extension of experimental techniques and introduction of computers.(2; 6; 7; 8)

As previously stated, the two methods of measuring surface tension are static and dy-

namic. Molecular dynamics (MD) simulations fall into the second category and have an

important role in the investigation of condensed systems. This technique has provided the

methodology for detailed microscopic modeling on the atomic scale, and is a powerful and

widely used tool in chemistry, physics, and materials science. One significant feature of simu-

lation studies is the ability to examine features that are not readily accessible to experimental

methods.

In our simulations of simple, immiscible binary fluids, we focus on the thermophysical

properties of these systems, such as internal pressure and surface tension, as well as an order

parameter profile which describes the transition from one bulk fluid phase to the other. In the

simulations of surface tethered chain molecules of both hydrophobic and hydrophilic types,

we investigate the effects of chain chemistry, surface density, and chain-surface interaction

on the types of structure that we observe.

In chapter II, I will give a more detailed background of the origins of MD simulations.

I will also discuss some of its uses as well as relay some of the limitations that will arise.

In the four subsequent chapters, I will present examples of how MD can be used to study

specific molecular systems.

Chapter III provides a simulation study of the interfacial region of Lennard-Jones immis-

cible fluids. I will also discuss the mathematical construction of a microscopic or molecular

level stress tensor from inter-atomic potentials and its use in calculating surface tension.

Also in chapter III, I will introduce a void transfer mechanism to describe the interesting

surface tension versus temperature behavior. In chapter IV, I discuss why it is desirable

to bypass the stress tensor altogether in calculating interfacial tension. In this chapter, I

will also introduce an idea originally proposed by C. Jarzynski(9) that allows one to acquire

equilibrium free energy difference from a series of simulations of non-equilibrium processes.

Though the system modeled is a simple Lennard-Jones mixture, the method and procedure

outlined, if successful, should be applicable to more general and extensive system.

Chapter V consists of the results of a molecular dynamics study of a partial monolayer

of self assembled octodecanethiol molecules. MD simulations are employed to examine the

3



correlations between various statistical measures of surface induced chain ordering. I will

focus particularly on thesignificance of the strength of the alkane chain surface interaction,as

well as the role of temperature, on the type and degree ofdisorder observed. In chapter

VI, I present a molecular study of surface-tethered S(CH2CH2O)6CH3. Here I examine

the interplay between helix formation and thermal disorder. In this case, surface coverage

as well as chain-surface interaction strength indicate that a set of approximately 7
2

helical

structures oriented predominantly normal to the surface are formed at near full coverage. The

studies in chapter V and VI are necessary steps in the investigation of how self assembled

octodecanethiol and polyethylene oxide films will behave when a fluid layer is imposed.

Chapter VII concludes the dissertation: in it is reaffirmed the power of MD simulation in

investigating systems on a microscopic scale. I have included an appendix which contains

the Fortran 77 code used in Chapters III and IV. These should provide starting points for

those who may want to continue or refine parts of this work.
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II.0 MOLECULAR DYNAMICS SIMULATIONS

Though the N-body problem originated in the dynamics of the solar system, the general

problem turns out to be analytically intractable for three or more body interactions. Once

the atomic nature of matter was established, quantum mechanics dominated the study of

the microscopic world. The situation became even more complicated because even the con-

stituent particles seemed to behave in a manner not fully expected. Theory, in the form of

statistical mechanics, for systems in thermal equilibrium has been very successful in describ-

ing this behavior from a conceptual point of view. Statistical mechanics provides a formal

description of a system in equilibrium based on the partition function. Though this has been

known for over a century, there are few quantitative results unless severe approximations are

introduced. Simulation helps fill the gaps on the equilibrium side and in a sense provides

a means of applying statistical mechanics to model the dynamical evolution of the system.

Computers have long been used in scientific research, both in theory and experiment. In-

stead of attempting to obtain a description of the behavior of a physical system in closed

form, the computer is able to examine the behavior of the original system directly.

The question of how simulation relates to physical theory usually arises in any discus-

sion of the importance of MD or how it can be used in understanding problems occurring

in nature. Though simulation is based on theoretical foundations, it tries to avoid much

of the idealization and approximation normally associated with theory and replaces it with

an extensive calculation effort. Simulation also draws from experiment since the output of

any simulation should be treated with the same statistical methods as those used in ana-

lyzing experimental results. With computer simulation, the computer essentially becomes a

laboratory in which a numerical experiment is conducted. Figure 2.1 shows a possible con-
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Figure 2.1: Connection between simulation, theory, and experiment.

nection between simulation, theory, and experiment. As emphasized by the arrows in this

figure, these processes are in fact omnidirectional and are in no particular order of impor-

tance. Instead of simply fine tuning a Hamiltonian so that a few experimental observables

are accurately produced, consider MD simulations as a means to extract information from

a physical system that would be very difficult or impossible to obtain without it. While

MD is dependent on the computer, it does not incorporate the two greatest developments

in physics of the twentieth century - relativity and quantum mechanics. Special relativity

proscribes information transfer at speeds greater than that of light; MD simulation typically

assumes forces whose nature implies an infinite speed of propagation. Quantum mechanics

has at its base the uncertainty principle; MD requires complete information about position

and momentum at all times. In practice, the phenomena studied by MD simulation are

those where relativistic effects are not observed and quantum effects can be incorporated

or buried in the system potential if necessary. Strictly speaking, classical MD deals with a

world that has little concern for anything that is “nonclassical”. However, this fact has in

no way diminished the power and effectiveness of the method. I should mention that though

I will speak mostly about the classical use of MD, there are methods available that directly

incorporate quantum mechanics into molecular dynamics simulations. These include, but

are not limited to path integral methods(10; 11) which partially accounts for DeBroglie wave

length effects and the Langevin-dynamics approach(12) which can be used to study dynam-

ics systems composed of nanoparticles. The theoretical basis for MD embodies many of the
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important results produced by the great contributers of analytical mechanics, namely, Euler,

Hamilton, Lagrange, and Newton. Some of their works contain fundamental observations

about the apparent workings of nature while others lead to further theoretical developments.

The simplest form of MD, that of simple particles, involves little more than Newton’s second

law. Rigid molecules require the use of Euler equations, and molecules with internal degrees

of freedom may require the Lagrange method to incorporate geometric constraints into the

dynamical equations. Though normal equilibrium MD corresponds to the microcanonical

ensemble, constant N,V,and E, in certain cases properties at constant temperature (and

sometimes pressure) are required. There are ways of modifying the equations of motion to

produce such systems where the individual trajectories represent the solution of Newton’s

equations.(13)Molecular Dynamics Simulation are comprised of three main steps:

1) Select a set of potentials that behaves similarly to the system one wants to study.

These may include explicit intramolecular forces similar to those used in chapters 5 and 6.

2) Derive the equations of motion and integrate these as a function of time.

3) Determine the relevant statistically averaged properties and interpret them.

Liquids represent the state of matter studied most by MD methods since both perfect

crystalline solids and gases have well-developed theoretical foundations. For solids, theory

begins by assuming that the atomic constituents undergo small oscillations about fixed lattice

positions. For gases, independent atoms are assumed and interactions are introduced by weak

perturbations. In the case of liquids, however, the interactions are as important as in the

solid state, but there is no underlying ordered structure with which to begin. Though there

has been dramatic progress, many challenges still remain when simulating liquids. Multiple

phases introduce the issue of interfaces which often have a thickness comparable to the

typical simulated region size. Inhomogeneities such as density or temperature gradients can

be difficult to maintain in small systems, given the magnitude of fluctuations. There are

also problems involving time scales which may be many orders of magnitude larger than

those associated with the underlying molecular motion. This may introduce slow relaxation

modes, diffusion hindered by structure, and the formation of spatial organization of some

type.

Uses of MD can be broken down into the following categories: phase transitions, glassy
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materials, complex fluids, polymers, bio-molecules, and fluid dynamics. This is by no means

a complete list of the types of systems MD could help understand, but it shows the flexibility

of this type of simulation. Selecting a Hamiltonian should include determining whether the

interactions are short- or long-ranged, and whether the system is thermally and mechanically

isolated. If the system is isolated, normal dynamical laws are used or the equations of

motion are modified to produce a particular statistical mechanical ensemble. One must also

determine whether the constituent particles are structureless atoms or complex molecules.

If the particles are complex, one must then determine if the molecules are rigid or flexible.

The selected potential interactions could be between pairs of particles or have multi-particle

contributions. There are other things to consider, but this should give an idea of the types

of questions one must ask prior to simulating a system by MD.

The basic microscopic model for a substance capable of existing in any of the three most

familiar states of matter - solid, liquid, and gas - is based on spherical particles that interact

with one another. For liquid mixtures, the intermolecular potential as well as the interaction

between the molecular properties of the components leads to a more complex topology of the

thermodynamic phase space.(14) The simplest interactions between these atoms are between

pairs and are responsible for providing the two principle features of an atomic force. The

first is a resistance to compression so the interaction causes the atoms to repel one another

at close range. The second is a binding term so the interaction must cause the atoms to

attract each other over long range if separated by large distances. Potential functions having

these characteristics adopt a variety of forms; the best known being the Lennard-Jones (L-

J) potential (see Figure 2.2).(15) Two of the results we will present later use a simple L-J

model; while the other systems contain distinct potentials needed to accommodate more

system specific interactions. Though the L-J potential is quite simple, there are quite a few

benefits to selecting it. First, it is smoothly varying and provides a continuous force model.

Secondly, it is used extensively for the simulation of simple models and can be easily extended

to investigate chain systems. The Lennard-Jones(12,6) fluid has been studied extensively

both theoretically and using computer simulations. Though this model is generally known

to be inadequate to represent an inert gas with high accuracy, it does provide a good model

for testing liquid theories.(16) The L-J model selection also complies well with the principle
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Figure 2.2: Simple Lennard-Jones potential.

of corresponding states which depends on the assumptions(17):

1) The translational motion of the molecules is classical.

2) The total potential energy is given by the sum of interaction energies of pairs of

molecules.

3) The mutual pair potential energy of pairs of molecules has the form:

ε(r) = ε∗φ
( r

r∗

)
(II.1)

where r is the distance between centers of molecules, ε∗ and r∗ are energy and length

characteristics of the species involved, and φ is some universal or scale independent function

(that equals−1 when r = r∗). From Eq. (II.1) one can see a L-J function provides a suitable

potential choice.

Knowing the system’s potential interactions allows determination of the corresponding

forces, using the relationship F = -∇U(r) and the equations of motion which follow from

Newton’s second law.

m−→ai =
−→
Fi =

Na∑
j=1

−→
fij (II.2)
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where the sum is over all Na atoms excluding i itself, and m is the atomic mass. It is these

equations that are numerically integrated in classical Molecular Dynamics programs. Us-

ing Newton’s third law, namely
−→
fij = −−→fji we see that each pair need be calculated only

once. Since computer time may be expensive, one should consider where the majority of

the computer time will be needed. For systems with pairwise interactions, the amount of

simulation time is proportional to N2
a because one must compute 1

2
Na(Na − 1) interactions.

It is, therefore, a good idea to determine which atoms will contribute to the calculation of

the observable quantities and not spend valuable time computing forces and potentials that

provide little contribution. In the simulations discussed here, a nearest neighbor table has

been used to reduce computation time.(18; 19) Though introducing a nearest-neighbor table

will reduce the computation time, some consideration should also be given to the cut-off

distance. It has been shown that this distance will affect the computed quantities, and this

effect should be minimized.(6) The basic idea is to only consider those particles which are

within a pre-determined distance from one another. The potential function, and hence the

force, outside this region is zero. For a simulation, the simulated observables tend to be the

same thermodynamic quantities observed in the laboratory, namely, total energy, tempera-

ture, pressure, and kinetic energy. The equations of motion can only be solved numerically.

Because of the nature of the interatomicinteraction, atomic trajectories are unstable in the

sense that an infinitesimal perturbation will grow at an exponential rate. With this in mind,

there are sampling issues one has to contend with. Since integration of the equations of

motion is a fundamental part of any MD simulation, the type of integrator chosen is also

important. A comparatively low-order numerical integration method often suffices, and it’s

adequacy will emerge in the results and reproducibility of the simulation. A higher-order

integrator should be used when softer interactions are involved such as those often used

for modeling molecules with internal degrees of freedom. In addition to the higher-order

integrator, a shorter time-step may help accommodate the fast internal motion. The numer-

ical treatment of constraints introduces an additional concern; namely, that the constraints

themselves must be preserved to much higher accuracy than is provided by the integration

method. By numerically solving these equations of motion, one is able to gather impor-

tant characteristics of the model or molecular system.The seminal work by Gibbs(20) made
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great strides in developing a statistical mechanical approach to study systems composed

of molecules. A primary component of statistical mechanics is the ensemble, and obtain-

ing observable quantities does depend on the ensemble ascribed to the system. Given the

canonical ensemble where the temperature T, volume V, and particle number N are fixed,

the equilibrium average of some quantity G is expressed in terms of phase-space integrals

involving the potential energy U(rN):

〈
G

〉
=

∫
G(rN)[exp−βU(rN)]drN∫

[exp−βU(rN)]drN

(II.3)

where rN are the coordinates, β = 1
kBT

, and kB is the Boltzmann constant. This average cor-

responds to a series of measurements averaged over an ensemble of independent systems.The

ergodic hypothesis relates the ensemble average to measurements carried out for a single

equilibrium system over its time evolution. Both kinds of measurements should produce the

same result. A Molecular Dynamics simulation produces averages of the form

〈
G

〉
=

1

M

M∑
µ=1

Gµ(rN) (II.4)

over a series of M measurements made as the system evolves. Assuming the sampling is

sufficiently thorough and captures the typical behavior, the two kinds of averaging will be

identical. This notion of ergodicity and ergodic convergence for a Lennard-Jones type system

has been studied thoroughly by Mountain and Thirumalai.(21) They found that for the

homogeneous or one-component system, the structure of the energy and stress fluctuations

suggested that essentially the system was in a minimum free-energy state. This is due to

both the temperature range and time over which the following systems will be observed.

When an interface forms, this amounts to each particle spending an equal amount of time

in the interface as it does in the bulk.

Recall from basic statistical mechanics the concept of the equivalence of ensembles. An

important consequence of this is that the basic thermodynamic properties of a model system

may be calculated as averages in any convenient ensemble. Since MD simulation provides
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the instantaneous system configuration as well as the velocity distribution as output, some

common expressions of thermodynamic quantities are:

KE =
N∑

i=1

∑
α

p2
iα

2mi

(II.5)

where KE is the kinetic energy, mi is the molecular mass and α runs over the different spatial

components of the momentum of atom i. The potential energy may be divided into terms

depending on the coordinates of individual atoms, pairs, triplets, etc., but a calculation of

any quantity involving the sum over triplets of molecules may be very time-consuming on a

computer.

For liquids though, the pairwise approximation gives a good description because the

three-body effects can be incorporated approximately by defining an effective pair potential

term. The pair potentials appearing in MD are generally considered to be effective potentials

and the potential energy can be written

U ≈
∑

i

u1(ri) +
∑

i

∑
j>i

u2(rij) (II.6)

where u2 is the two-body potential and rij is the scalar distance between the centers of

atoms i and j, rij = |ri − rj|. A consequence of an approximation of this type is the first

term on the rhs of Eq. (II.6) sums over all particles while the second term is dependent only

on the interaction between pairs of particles. The second term also neglects simultaneous

multi-body interactions which, if included, would drastically increase the time required for

the simulation.(6) In 1924, J.E. Lennard-Jones introduced a useful model for a soft-sphere

pair potential which has since been studied extensively and found suitable to study liquid

systems.(22) The total energy is simply the sum of Eqs.(II.5) and (II.6).

E =< H >=< KE > + < U > (II.7)

Using the virial theorem, we can write the temperature and pressure relationships as:

2 < KE >=<
N∑

i=1

|pi|2
mi

>= 3NkBT (II.8)

− 1

3V
<

N∑
i=1

ri · ∇ri
U > +ρkBT = P (II.9)
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Since the positions and velocities of the system are updated incrementally, the simulation

also allows for calculation of the instantaneous temperature and pressure. Though the in-

stantaneous quantities mentioned previously can be readily calculated from simulation, care

must be used to distinguish these from true thermodynamic concepts such as pressure and

temperature which can only be described as ensemble averages.

The nature of simulations in general and MD specifically contains inaccuracies which may

be either systematic or influenced by the simulation process. These inaccuracies, or one could

even call them errors, could be due to the finite system size or selected boundary conditions,

potential cut-offs, and integration algorithm to name a few. There are more specific checks

for code reliability so I will assume here that code induced errors are minimized. Usually

periodic boundary conditions are chosen for MD simulation and this selection allows one to

provide properties for a macroscopic sized system using a finite sized system. I should note

here that the boundary conditions for the simulations in chapters V and VI are periodic

in two of three dimensions. As will be shown in the immiscible binary fluid simulations

of chapters III and IV, periodic boundary conditions causes the creation of two interfaces.

The box length must be longer than the width and height to prevent interference between

the liquid structural changes induced by the interfaces. A factor of two is stated often

as suitable. To remove the finite size effects, we can extrapolate results to large system

number and volume, holding the system density fixed. In order to decrease the amount

of computation time needed, potential cut-offs are used. The errors due to these cut-offs

are greatly reduced by choosing an optimum simulation time step size. I will include the

system and simulation properties such as time-step size, particle number, potential, and box

properties in each chapter for better continuity.

In the following chapters, I will try to differentiate “simulated results” from experi-

mentally “measured quantities”, but in most cases “measurements” are “theoretical cal-

culations”. Another point I should mention at this time concerns errors, and I will limit

discussion to two types. First, there are errors associated with the computer system used by

the simulation (systematic errors). Secondly, there are those associated with the molecular

model used for the simulation (statistical errors).

To test for systematic errors, we should compare the simulation output evaluated using
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different platforms. For the systems selected, the accuracy is not affected by the type of

computer used for the simulations.

The statistical errors associated with MD simulations in general are part of a larger

concern, namely establishing the validity of the simulation. In the following chapters, I refer

to the sample variances as the statistical errors. These are calculated using

σ2
N ≡ 1

N

N∑
i=1

(
xi − x̄

)2
(II.10)

where xi, x̄ and N are the simulated measurements, the average of these measurements and

the total number of simulation measurements, respectively. In some cases, the validation

of a simulation can be determined by comparing simulated behavior with that calculated

from an analytic theory of known accuracy. Additionally, the simulation results can be

compared to experimental data of simple fluids.(1; 2; 3; 4; 7) This comparison constitutes

strong circumstantial evidence. The following simulations were validated in this manner. In

chapters III and IV, the density profiles were compared with prior simulation data and found

to be consistent. In chapters V and VI, the simulation results were compared to established

simulation data as well as features observed by infrared and ellipsometric spectroscopy.
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III.0 A LOOK AT SURFACE TENSION USING MD SIMULATION

III.1 INTRODUCTION

In this chapter, we use MD simulation to provide a study of L-J immiscible fluids and

surface tension.1 The planar interface between two liquids having two degrees of affinity to

mix is studied. The surface tension is calculated from the normal, PN , and transverse, PT ,

components of the pressure tensor P for a wide range of temperatures. An unusual increase

in surface tension with increasing temperature at constant volume of the total system is

attributed to a pressure induced void transfer mechanism that is justified by thermodynamic

arguments. This effect is diminished on the addition of a modest attractive potential between

the two species, and there is a turnover point at higher temperatures beyond which the

surface tension decreases with increasing temperature. An order parameter is identified as

the gradient of the mole fraction distribution through the interfacial region. An additional

effect is the dramatic inversion of the kinetic and potential contributions to the PN profile

as the temperature is varied. It is found that a commonly used approximation for P, the

Irving-Kirkwood 1 or (IK1) method, results in a relatively modest unphysical variability in

PN that weakly violates the condition of local mechanical stability. However, this artifact

does not prevent the (IK1) method from producing an interfacial tension which is nearly

identical to that derived from the complete IK formulawith no additional approximations.

1This chapter is a variant of the paper published in Journal of Chemical Physics Vol 120, 2893 - 2900

(2004).
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III.2 THE PRESSURE OR STRESS TENSOR

The pressure field P in an inhomogeneous fluid is anisotropic and has the form of a tensor that

depends on spatial direction and position while remaining independent of the orientation of

the surface element with which it is associated.(23) It is also known that P can be represented

as the sum of an isotropic kinetic part, PK , and a virial or potential part, PU . The kinetic

part, PK , has the form

PK = kBT
∑

species

ρi(r)I (III.1)

in which ρi(r) is the local density of species i at position r and the summation is over all

species. The kinetic contribution to P has the form of a local ideal gas equation of state

associated with the momenta carried by the centers of mass of the particles. The direct

interaction or potential part of P arises from the intramolecular and intermolecular forces

and is associated with the distribution of potential energy in the space enveloping pairs or

higher order clusters of interacting molecules. The pressure tensor is defined through an

infinitesimal force dF acting through an infinitesimal surface element dA(r) located at the

position r.

dF(r) = −dA(r) ·P(r) (III.2)

With the stipulation in the Irving Kirkwood theory(24) that the pair-wise additive potential

part of the stress between any pair of molecules be concentrated along the straight line

connecting the centers, an assumption which is intuitively appealing but which has been

shown to be quite arbitrary, the normal, PN , and tangential,PT , components of P associated

with a planar interface then assume the (IK) form(25)

P IK
N (z) = ρ(z)kBT − 1

2A

〈∑

i6=j

| zij |
rij

U ′(rij)Θ
(z − zi

zij

)
Θ

(zj − z

zij

)〉
(III.3)

P IK
T (z) = ρ(z)kBT − 1

2A

〈∑

i6=j

x2
ij + y2

ij

rij

U ′(rij)

| zij | Θ
(z − zi

zij

)
Θ

(zj − z

zij

)〉
(III.4)

where ρ(z) is the system density at z averaged over the x and y coordinates. A summation

over species is implied for ρ(z), the coordinate z is orthogonal to the interface, the angular

brackets indicate a statistical average, and the sum over (i,j) pairs automatically includes
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multiple species. Θ(x) is the Heaviside step function which is unity for positive x (where x

is the argument in parenthesis) and vanishes for x less than or equal to zero, A is the area of

the interface and the sup prime designates differentiation with respect to the coordinates in

parenthesis. The product of the step functions ensures that the contribution to the pressure

tensor across an infinitesimally thin plane located at z from any pair of molecules requires

that they be located on opposite sides of the mathematical plane located at z.

There also exists in the literature a commonly used expression for P that takes the

so-called (IK1) form (24; 25; 26)

P IK1(z) = ρ(z)kBT I− 1

2A

〈∑

i6=j

rijrij

rij

U ′(rij)δ(zi − z)
〉

(III.5)

Note that the Dirac delta function rather than the Heaviside step function appears in the

statistical average. This implies that the IK1 pressure tensor profile consists of averages

taken over a succession of co-planar infinitesimal slabs. In the first term of equation (III.5),

ρ(z) again represents the system density, kB the Boltzmann constant, T the temperature,

and I is the identity matrix. The second term terms A, r, V, z are interfacial area, radial

distance, potential, and the z-component of the position respectively. Instead of a series

of half-spaces separated by mathematical planes, the system is divided into thin slabs of

a very small thickness. Within the past few years, the relation between Eq. (III.5) and

Eqs. (III.3) and (III.4) has been explored in considerable detail, both theoretically and by

MD simulations on various fluids in the proximity of hard walls.(25; 26; 27; 28; 29; 30; 31).

The conclusion is that Eq (III.5) represents a first-order Taylor series expansion of the more

rigorous IK form, Eqs. (III.3) and (III.4), in the relative spatial positions of molecules;

furthermore, it is known that this expansion tends to converge quite slowly.

The macroscopic stress or pressure tensor is generally expressed as a summation over the

entire system

Pαβ =
1

V

( ∑
i

miviαviβ −
∑

i

∑
j>i

rijα
∂Uij

∂riβ

)
(III.6)

where Pαβ represents the β component of the force acting on a unit area in the αplane and

(α, β) assumes values (x,y,z). In equation (III.6), m,v, and V are defined as mass, velocity,

and volume respectively. Uij and rij are the potential energy and distance between particles
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i and j. The pressure tensor is defined as an infinitesimal force acting through a surface

element located at an arbitrary position. Though various mathematical expressions for the

pressure tensor have appeared in the literature, it has been recognized that the differences

in form arise from different assumptions about the distribution of potential energy residing

in the space between interacting particles. However, correct formulations of P must always

yield identical results for the interfacial tension.(27; 28; 29; 30; 31; 32)

On the other hand, it has also been recognized that despite the severity of the approx-

imation generated by (IK1), the reduced surface tension γ∗, which can be expressed as the

integrated z-profile difference between PN and PT , the normal and transverse components

of the of the pressure tensor

2γ∗ =

∫ z

0
[PN(z)−PT (z)] dz (III.7)

is invariant with respect to the interchange of the (IK) and (IK1) expressions for P.(26; 29;

30; 31) The factor of two in Eq. (III.7) arises from the fact that, because of the periodic

boundary conditions, each cell contains a pair of co-planar interfaces. Insofar as our simu-

lation incorporates the periodic replication of a unit cell which contains a pair of co-planar

interfaces, an oriented binary fluid lamellar system is produced.

III.3 MODEL AND SIMULATION PROPERTIES

We consider an asymmetric two-component mixture of both partially miscible and fully

immiscible Lennard-Jones fluids. (6; 7) Simulations are performed in a parallelepiped of

volume Lx × Ly × Lz with Lx = Ly and Lz ≥ 2Lx. The volume contains two slabs of

immiscible liquids, one of N1 particles and the other of N2 particles (where the subscripts

1 and 2 denote the system components). Here, we take N1 = N2 = 1000 so that N =

N1 +N2 = 2000in this case. The system is subjected to periodic boundary conditions (pbc)

in the x,y, andz directions. Due to these conditions, two planar interfaces of area L2
x are
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created during equilibration. We consider the z direction perpendicular to the interfacial

regions. The particles interact via the following modified L-J potentials

U11 = 4ε
[(σ
r

)12

−
(σ
r

)6]
(III.8)

U22 = 2U11 (III.9)

U12 = 4ε
[(1.2σ

r

)12

− α
(σ
r

)6]
(III.10)

where ε and σ are the well depth and interaction range parameter, respectively (see Figure

3.1). Species 2, with a potential well depth set at twice that of species 1, is the less volatile

component, while the factor 1.2σ in U12 ensures sharp interfaces and tends to minimize finite

system size effects. The like-species interactions were chosen to mimic the argon-krypton

system, whereas the unlike-species interaction was adjusted to vary the degree of miscibility.

In this work, the variable α, which takes the values 0 and 0.5, controls the thickness of the

interface, or more precisely, the system miscibility via unlike particle attractive interaction.

The primary reason for this behavior is that the like particle interactions are stronger and

more favorable energetically. Therefore, a strongly repulsive interaction (α = 0) causes the

fluid to reflect immiscible characteristics, while an increase in α increases the tendency for

the two fluids to mix. Initially, particles were evenly distributed with an infinitely sharp

interface parallel to the z-direction as shown in Figure 3.2. A truncated potential with an

interaction range of 4σ was employed in these simulations. An assessment of potential trun-

cation artifacts is presented below. As will be discussed, a sharp interfacial profile tends to

amplify such artifacts. The microcanonical (NVE) ensemble was used to equilibrate the sys-

tem and make production runs. Since an MD simulation allows particles to move somewhat

freely, we will see that a pressure increase will force particles from the bulk to the interfacial

region. We could also view this particle movement as a void volume being transferred from

the interface into the bulk region. With this idea in mind, we see that this ensemble selection

will also allow us to treat the void volume, Vm ,as a third component. The initial velocities

of all particles were set to zero. The box dimensions are Lx = Ly = 8.38σ and Lz = 40.0σ.

Once the simulation is turned on, we used a velocity scaling factor to drive the system to

a desired temperature. Using the initial configuration discussed above, two interfaces form

having a surface normal oriented perpendicular to the long direction. Figure 3.3 displays
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Figure 3.1: L-J potential functions for like and unlike species with α=0. The repulsive

potential associated with the unlike interaction is reduced by a factor of 20.
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Figure 3.2: Initial particle distribution. The interface is initially parallel to the z-axis.
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that the periodic boundary conditions causes the formation of two interfaces. The criteria

for system equilibration were that the kinetic energy, and hence, temperature fluctuations

were stationary and small. We define m as the particle mass in atomic mass units (amu),

and for simplicity, the masses are set equal to unity. For all cases studied, the two fluids are

quite immiscible. The system bulk densities (0.713) are lower than the triple point density

for argon (0.85). Using reduced units, we are also able to represent the following reduced

thermodynamic quantities: T ∗ = kBT
ε

for temperature,γ∗ = γσ2

ε
for surface tension, and

ρ∗ = ρσ3 for density, with ρ = N
V

. The Beeman algorithm(6; 7) is used to integrate the

equations of motion with an integration time step of 4 t = .01, which corresponds to twenty

femtoseconds using the argon scale. Our equilibration runs were 6× 105 time-steps (twelve

nanoseconds) long while the collection runs were 1× 104 time-steps (0.2 nanoseconds) long.

During the simulation, the bulk phase densities increase slightly as the interfacial region

has a decreased density.In order to ensure conservation of linear momentum and to prevent

interfacial drift, the center of mass momentum in x, y, andz directions is checked and reset

to zero every 25 time-steps. Configuration files are updated every 1000 time steps while the

stress and density profiles are updated at the end of each run.

III.4 SIMULATION RESULTS

Simulations of a liquid in contact with its vapor done by Daiz-Herrera and others(14; 35)

indicated the presence of a brief plateau or possible nonmonotonic behavior in the (γ∗, T ∗)

and even in the (p∗, T ∗) planes for the strongly non-mixing case, α = 0, in the reduced tem-

perature range (1.8-25.0)where p∗ is the reduced hydrostatic pressure. As will be discussed

later, pronounced nonmonotonicity in the (γ∗, T ∗) plane has been reported for an MD sim-

ulation of a similar system in which the two unlike components have a modest (α = 0.5)

attractive interaction.(14) This motivated us to introduce two degrees of attraction between

unlike species, corresponding to α = 0 and 0.5, as shown in Figure 3.4, the (p∗, T ∗) and

(4p∗, T ∗) for α = 0.5,0 respectively. The pressure versus temperature plots for α = 0 and

0.5 literally overlapped so we have used the difference, 4p∗, to prevent redundancy where
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Figure 3.3: Final system configuration after equilibration is reached and prior to data col-

lection.
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Figure 3.4: Pressure, and ∆P vs. temperature where ∆P is the difference between the

pressures at α = 0 and α = 0.5 respectively. ∆P is multiplied by a factor of 10 here for

visualization.
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Figure 3.5: Surface tension vs. Temperature for α = 0 and α = 0.5.

4p∗ = p0

(
1+ | p∗α=0 − p∗α=0.5 |

)
(III.11)

As shown in Figure 3.4, both the p∗ and 4p∗ behavior are very close to linear. This implies

that the bulk thermodynamic properties of these binary fluid mixtures are remarkably in-

sensitive to the degree of attraction between unlike species, at least for the reduced density

ρ∗=0.713. On the other hand, as demonstrated in Figure 3.5, the interfacial tension, while

increasing monotonically and approximately linearly with increasing T ∗ for small (1.8−5.0)

values of reduced temperature, exhibits a systematic decrease on the order of 15% as α varies

from 0 to 0.5. Apparently the interfacial tension is much more sensitive to certain features

of the intermolecular potential than is the bulk pressure. Moreover, the (γ∗, T ∗) plot (Fig-

ure 3.5) exhibits a maximum. The decrease in γ∗ with increasing T ∗ is in accord with

physical intuition and experimental observations concerning the temperature dependence of

the surface tension of a pure fluid. This effect is clearly illustrated in Figure 3.6, in which the

simulated surface tension of the least volatile component in equilibrium with its own vapor

is plotted versus temperature. Note that γ∗ decreases markedly with increasing T ∗ in the

same region for which the interfacial tension of the immiscible binary fluid is increasing with
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Figure 3.6: Surface tension vs. Temperature for α = 0.5 for a simple L-J fluid in contact

with its vapor. Note that, in contrast to the case of an immiscible binary fluid, γ∗ decreases

markedly with increasing T ∗.
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Figure 3.7: Interfacial density profiles for α = 0 at T ∗ = 1.176 and 2.518. Note that the less

volatile region expands as the temperature increases at an expense of the interfacial region.
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Figure 3.8: Interfacial density profiles for α = 0.5 at T ∗ = 1.164 and 2.530. Note the similar

expansion of the less volatile region; hence, the variable α does not noticeably affect the

overall behavior of the less volatile region.
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increasing T ∗. This observation provides strong circumstantial evidence that the simulated

behavior of the binary fluid is physically realistic and does not arise from an artifact in the

simulation code or in its implementation.

In the case of an immiscible binary fluid, a surface tension maximum defines the con-

ditions under which the temperature and pressure effects on γ∗ are in balance. A further

increase in T ∗ causes the interfacial density profile to broaden, thereby causing a decrease in

γ∗.(36) In analogy with pressure, the density profiles across the interfacial region, as shown

in Figures 3.7 and 3.8 , are not very sensitive to the value of α. However, they do exhibit

systematic variations with temperature: the bulk density of the less volatile component ,

which has the higher density, decreases with increasing T ∗, whereas the bulk density of the

more volatile component is rather insensitive to T ∗. Furthermore, both the width and max-

imum depth near the center of an interfacial profile clearly diminish with increasing but low

temperature, and this shrinkage of the interfacial region coincides with an increase in surface

tension. These effects are clearly exhibited in the distributions displayed in Figures 3.7 and

3.8. Note that as temperature increases to the left of the maximum in the surface tension,

the profile minimum migrates away from the region occupied by the less volatile species.

This behavior is as though the volume associated with the less volatile component were

expanding at the expense of the interfacial volume, without, however, significantly affecting

the density of the more volatile species. In selecting an order parameter that quantifies this,

we should determine an operator: (1)which is a function of the dynamical variables in the

system Hamiltonian and (2)whose ensemble average is zero in the homogeneous bulk phase

and nonzero in the interfacial region. With these characteristics in mind, one can see from

Figures 3.9 and 3.10 that derivatives of concentrations and mole fractions

χ1(z) =
ρ1(z)

ρ(z)
(III.12)

χ2(z) = 1− χ1(z) (III.13)

provide suitable order parameters.(36; 37; 38) From these figures, we see there is only a

small effect due to changes in a, but these profiles broaden greatly as the temperature

increases. As seen in the surface tension behavior as a function of temperature, mixing does

occur above a particular region. This temperature enhanced species mixing should cause
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Figure 3.9: Mole fractions for α=0 at T ∗ = 1.176 and 8.920 respectively.

Figure 3.10: Total density derivative for α = 0 at T ∗ = 1.176 and 8.920 respectively.
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Figure 3.11: The kinetic and potential contributions to PIK1
N , the normal component of the

interfacial pressure tensor profile, in the IK1 approximation for α = 0.5 at T ∗ = 1.165..
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Figure 3.12: The kinetic and potential contributions to PIK1
N , the normal component of the

interfacial pressure tensor profile, in the IK1 approximation for α = 0.5 at T ∗ = 8.821.
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a broadening of the order parameter profile as seen in comparing Figures 3.9 and 3.10,

respectively. To simplify Figures 3.9 and 3.10, we have shown the qualitative behavior

of one interface. Finally, in Figures 3.11 and 3.12 we present the kinetic and potential

contributions to the PIK1
N profile, the IK1 approximation to PIK

N , for two values of the

reduced temperature. Note that the total normal component of the pressure tensor is not

strictly constant through the interfacial region; this is an unphysical artifact associated with

the IK1 approximation which has been recognized by others, and will be discussed briefly

in the following section. More importantly, note the dramatic inversion of the kinetic and

potential contributions to the normal component of the pressure tensor with respect to

temperature. At the low temperature, T ∗ ≈ 1.16 - 1.18, the kinetic contribution clearly

dominates in the bulk phases of both components, whereas in the interfacial region the

potential contribution is slightly larger. At the elevated temperature, however, the kinetic

portion is much less than the positive potential contribution in both the bulk phases and in

the interfacial region. Therefore, the total pressure is dominated by thermal motion at low

temperatures and is controlled by repulsive molecular interactions at high temperatures.

III.5 DISCUSSION OF SIMULATION RESULTS

Our simulation results show that the (IK1) method is not consistent with the requirements

of local mechanical stability as shown in Figure 3.11 (although it is easy to demonstrate that

(IK1) is indeed consistent with global mechanical stability)(25) insofar as the component of

the total pressure tensor profile which is normal to the interface, PN(z), is not a constant.

Indeed, it can be readily shown that for a planar interface, PN(z) must be identical to

the bulk hydrostatic pressure p for any distance z from the interface.(25) The argument

is based on the observation that local mechanical equilibrium (the absence of net force)

requires that the divergence of P vanish at each point in space, and also that the symmetry

in P dictated by a planar interface requires that the z-derivative of Pzz be identically zero

everywhere. On the other hand, the global stability property of zero net force acting on

the entire system simply requires that the integral through the interfacial profile of this z-
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derivative vanish, which is obviously the case. The unphysical artifact associated with the

(IK1) approximation for P has previously been observed in MD simulations of the interfacial

regions of simple and polymeric fluids bounded by impenetrable, rigid walls(25; 29; 30; 31)

and even in simulations on lipid bilayers in an aqueous environment.(39; 40; 41) In the cases

involving walls, the variability of PN(z) is much more pronounced than is seen for the binary

fluid interface, which is consistent with physical intuition. It has also been recognized that

the origin of this anomaly lies in the implicit assumption in (IK1) that the two particle

density function ρ∗2(r1; r2) is translationally invariant with respect to the difference (r2− r1).
While this symmetry is trivially exact for homogenous fluids and is approximately correct

near critical points, it must break down for relatively sharp interfacial density profiles such

as are generated in this simulation or inhomogeneous systems. In spite of this deficiency, it

has been noted by others that the (IK1) approximation produces a surface tension identical

to that generated by use of the full (IK) method.(25; 29; 30; 31)The unexpected increase in

surface tension with increasing temperature deserves a few comments. While in the case of

a single component system, one has(4)

dγ

dT
= −Sσ (III.14)

where Sσ, the interfacial or surface entropy, should be a positive quantity since dγ
dT
< 0 for

that case . As a check, we performed MD simulations of a pure L−J fluid in equilibrium with

its vapor and observed that γ does indeed decrease with increasing T. One way of describing

the situation for a multi-component system is to recognize that thermodynamics provides a

simple relation between how the entropy of the entire system changes with interfacial area

and the temperature dependence of the surface tension.(4)

(∂S
∂A

)
T,V,ni

= −
( ∂γ
∂T

)
V,A,ni

(III.15)

The LHS term of Eq(III.15) multiplied by T is the heat reversibly extracted from a thermal

reservoir upon increasing the interfacial area by ∂A at constant T , V , and composition ni.

The point is that an increase in γ with increasing T implies that heat is actually transferred

into the reservoir as the interfacial area increases, inasmuch as the systems entropy is reduced.

Such an effect appears to be unphysical because it implies that for a microcanonical system
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increasing the interfacial area creates work. Another apparently unphysical implication is

that the surface entropy associated with an increase in interfacial area is a negative quantity.

A striking exception to this intuitive conclusion has been experimentally confirmed in the

cases of certain liquid metals (Cu, Zn, Cd) in equilibrium with their vapor phase. It has

been conjectured that the liquid surface of these metal is virtually crystalline.(42)At this

point it should be recalled that as our simulations were performed in the (NVE) ensemble,

an increase in the total energy E is accompanied by both a rise in the internal pressure p as

well as temperature. Indeed, as Figure 3.4 shows, p and T are highly correlated; therefore,

it appears that the key to understanding the temperature dependence of surface tension

in our simulations lies in understanding the dependence of γ on p. Consider the Gibbs

thermodynamicpotential dF that includes the effects of surface tension in thepresence of

multiple components:(39; 4)

dF = −SdT + V dp+ γdA+
∑

i

µidni (III.16)

Note that (A, p) cross differentiation applied to this expression yields

∂

∂p

(∂F
∂A

)
T,p,ni

=
∂

∂A

(∂F
∂p

)
T,A,ni

(III.17)

which states that the rate of change with p of the (F, A) coefficient is equal to the rate of

change with A of the (F, p) coefficient. This is a necessary and sufficient condition for Eq

(III.16) to be an exact differential form. From Eq (III.16) we are able to obtain the identities

γ =
(∂F
∂A

)
T,p,ni

(III.18)

V =
(∂F
∂A

)
T,A,ni

(III.19)

which we can then substitute Eq (III.18) back into Eq (III.17) to find; i.e.,

(∂γ
∂p

)
T,ni

=
(∂V
∂A

)
T,ni

(III.20)
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The basic thermodynamic reasoning of Eq(III.20)tells us that for a fluid in contact with a

gas or some other fluid which has absolutely no tendency to be adsorbed, but which exerts

a pressure p on the system, the following relation holds:(43)

(∂γ
∂p

)
T,ni

=
(∂Vm

∂A

)
T,ni

(III.21)

where A denotes the surface area and Vm is the molar volume. By surface area, we are

referring to the interfacial area, and the molar volume is the volume available for a molecule

to occupy either in the bulk or the interfacial region of that particular fluid. In other

words, the isothermal transfer of a molecule from bulk phase to the surface results in an

increase in surface tension since Vm, an incremental change in the molar volume, must be

a positive quantity because the volume available for the remaining particles in the bulk to

occupy increases. This is so because the transfer process creates a void in the bulk that

is then shared by the remaining molecules in the interior. Another way of casting this is

to assert that an incremental pressure increase must induce the transfer of an increment of

void volume Vm from surface to interior in order to create the incremental surface area dA

at the interface, which results in a surface tension increment dγ. In this instance the notion

of a void volume increment follows directly from the molar volume increment, and so there

is no thermodynamic ambiguity. In particular, it is not necessary to formally introduce the

concept of a surface volume into a thermodynamic description. Lewis and Randall(36), in the

discussion on p.460 which deals with the interface of a binary fluid, refrain from a physical

interpretation of Eq (III.21) which relates the pressure dependence of surface tension to the

interfacial area dependence of the system volume. In addition to a void transfer process,

this equation can also be interpreted either as a pressure-induced droplet expansion or as an

emulsification (droplet break-up) effect that is accompanied by an overall volume expansion.

Note that in our simulations the total volume is conserved, and so Vm assumes a role similar

to that of a separate stable material species. The fact that the increase of γ with increasing

T in our (NVE) simulations is accompanied by a decrease in both interfacial width and depth

with a sharp dip in total density in the center of the interfacial profile, as shown in Figures 3.7

and 3.8, lends further support to an interpretation of this effect in terms of a void transfer

mechanism. Direct confirmation of these ideas has proven to be rather frustrating according
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to the conclusions of Stecki and Toxvaerd.(38; 37; 44) Turkevich and Mann were able to

provide experimental data on the isothermal dependence of surface tension on pressure and

on the pressure dependence of interfacial density profiles for water-n-alkane systems which are

in accord with our simulation results.(33; 34) It should also be mentioned that our system

potential resembles that of Stecki and Toxvaerd(44; 43) who performed MD simulations

of a simple, immiscible, symmetric binary fluid. They also constructed a theory which

approximates the low temperature interfacial structure as a vacuum sheet or gap separating

a pair of homogenous interacting slabs, each slab consisting of a pure fluid component. For

pressures not too high, they find a strong tendency for the gap width to contract as pressure

increases, which is in accord with our simulation findings. At low temperature, they also find

a clear tendency for the surface tension to increase with increasing pressure. In contrast with

our results they note the presence of density oscillations which extend from the interface well

into the bulk: we attribute this discrepancy to the fact that the bulk density for our system,

ρ ≈0.713, is 12% lower than theirs, so in our case there is a reduced tendency for the fluid to

order near the interface. They also report on a relatively novel phenomenon that may apply

to fluid lamellar systems in general; namely, the existence of a soft or low frequency breathing

mode associated with oscillations in the interfacial width or gap thickness. Another recent

study by Diaz-Herrera et al.(14; 45) focuses on an MD (NVT-ensemble) simulation of binary

and ternary mixtures of partially miscible Lennard-Jones fluids. Their main result, which

is relevant to the present study, is that the interfacial tension of the binary fluid exhibits

nonmonotonic behavior as a function of temperature. At sufficiently low temperatures,

they observed an increase in the molar volume of a given species with increasing T that

coincides with an increase in P as well as an increase in γ. They also report a pronounced

turnover in γ(T ), where the surface tension is markedly reduced with increasing T beyond a

rather sharply defined temperature. The surface tension maximum is the consequence of a

balance between pressure induced interfacial contraction and temperature induced interfacial

broadening. Our simulation results are consistent with these observations. In contrast to the

Diaz-Herrera et al. study, there is considerable asymmetry between the like-like interactions

in our system, the like-unlike interactions in the two simulations do not match closely, and the

density of our system is somewhat lower than theirs. Nevertheless, from a rough comparison
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between the two it seems legitimate to infer that the sensitivity of the surface tension of even

simple binary fluids to thermodynamic conditions may be non-trivial.At this point it should

be noted that Lifschitz and Freed (L-F) (46; 47)have developed a variational-perturbational

lattice theory of compressible polymer blend interfaces that predicts that for a fixed reduced

temperature T
Tc

, where Tc is the critical temperature, the interfacial tension may increase

with increasing pressure. Their theory also predicts that, in this case, the width of the

interface should decrease with increasing pressure. The physical mechanism in the (L-F)

theory underlying these effects seems to be that vacancies or void regions (excess free volume

regions) are considered as a separate species, and that increasing the external pressure on

the blend causes this component to migrate from the interface into the interior, thereby

giving rise to a surface deficiency. Since this is a negative quantity, it may be of sufficient

magnitude to induce an increase in γ with increasing p. At any rate, the similarities between

our MD results for a monatomic binary fluid and the predictions of the (L-F) lattice theory

of compressible polymer blends suggest a simple explanation, common to both systems, in

terms of a void transfer process.In addition to the surface entropy Ss one can define a surface

energy Es and even a surface specific heat Cσ
V .(4)

Eσ = γ − T
( ∂γ
∂T

)
A,V,ni

(III.22)

Cσ
V =

(∂Eσ

∂T

)
V,A,ni

(III.23)

where Eσ can be regarded as the irreversible heat generated by an instantaneous decrease in

interfacial area (spontaneous deemulsification) at constant temperature, volume, and com-

position. The physical meaning of the surface specific heat is somewhat obscure; it can

be formally regarded as the response of the surface entropy or energy to thermal changes.

According to Figure 3.5, in the context of our simulation, the specific heat, CV , is a small

positive quantity and has a maximum at the turnover of the surface tension γ∗ vs. T ∗

plot.We anticipate that a very sharp interfacial profile implies significant corrections to the

simulated surface tension because of the smooth truncation of the Lennard-Jones potential

at a distance Rc.(48; 49; 50) An upper bound on this correction can be shown to have the

form

γtail =
3π

2R2
c

[
εAAρ

∗2
A + εBBρ

∗2
B − εABρ

∗
Aρ

∗
B

]
(III.24)
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where ρ∗ = ρσ3 and εii are the L − J parameters. The assumptions underlying Eq (III.24)

are that the various bulk radial distribution functions may be taken to be unity beyond

the cut-off, that the bulk fluid densities are relatively insensitive to the cut-off, and that

the interfacial density profiles for both species are infinitely sharp. Since Rc is set at 4σ in

our simulations, it is easy to see that the surface tension can be enhanced by as much as a

factor of two by these long-range interactions. In addition, the fact that the bulk densities

are observed to decrease with increasing pressure implies that the pressure dependence of

the interfacial tension is moderated by this correction. Table 3.1 contains maximal tail

corrections to the surface tension for various values of T ∗ and α.

As a final note, we include a crude estimate of the importance of thermally excited

capillary waves on the width w of the interfacial profile:(26; 51)

< w2 >=
kBT

2πγtail

ln
[ L
σ0

]
(III.25)

where < w2 >1/2 is the equilibrium average width, L2 = A, σ0 is a short-range cut-off that

defines a minimum wavelength, and γtail is the surface tension associated with step function

interfacial density profiles. Fisher and Gelfand(51) have concluded that caution should be

used with any quantitative predictions of a capillary wave model that is sensitive to how

the short-wavelength fluctuations are handled, but that those predictions following from

consideration of the long-wavelength modes alone are most probably widely applicable. Eq

(III.25), which predicts a logarithmic divergence in the interfacial width as the surface area

increases, is rather ad hoc in the sense that σ0 is not uniquely specified and γtail depends on

the value of Rc, so that by suitable choices of these parameters the entire interfacial width

can be ascribed to capillary wave excitations. By setting both cut-off lengths at 4σ we find

modest though non-negligible values for the capillary wave contribution to the interfacial

width in the range (0.47-0.92)σ. If both cut-off lengths are set at σ the capillary wave effect

becomes negligible.
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Table 3.1: Maximal Long-Range Tail Corrections to the Interfacial Tension as a function of

T ∗ and α. ρ∗A and ρ∗B are the density components of species A and B respectively.

α T ∗ ρ∗A ρ∗B γtail

1.176 0.671 0.900 0.6097

0.0 2.0053 0.692 0.808 0.5256

3.0574 0.704 0.80 0.5034

1.1646 0.675 0.888 0.5104

0.5 2.0068 0.688 0.813 0.4463

3.0333 0.704 0.775 0.4194
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IV.0 MD TEST OF THE JARZYNSKI RELATION APPLIED TO

INTERFACIAL TENSION

IV.1 INTRODUCTION

Molecular Dynamics simulation has been used for the past 20 - 30 years to study interfacial

properties of liquids though the foundation for these studies were laid as far back as 1791

when the astronomer Joseph Dalambre used the time reversible algorithm, commonly called

the Verlet algorithm, for the integration of Newton’s equations.(52) Some of the properties

obtained from Molecular Dynamics (MD) simulation are density profiles, system configura-

tions, as well as stress or pressure tensor profiles. Usually, the surface tension is calculated

by integrating the microscopic stress tensor profile over the interfacial region. J.G Irving

and J.H. Kirkwood derived a relationship, based on two-body interactions, between the

microscopic stress and the kinetic and potential energies of the system.(53) Subsequent sim-

plifications of the Irving-Kirkwood method of determining the stress tensor have been made

to decrease simulation times; however, the surface tension - microscopic stress tensor profile

connection has remained. As stated in the Pressure and Stress Tensor section of the previous

chapter, the IK1 formulation of the stress tensor consists of averages over co-planar infinites-

imal slabs, or bins, instead of planes. The stress tensor provides a microscopic description of

the pressure which helps determine the behavior of a system in the bulk as well as the inter-

face. An interface breaks the homogeneity of a system and the IK1 expression becomes less

accurate due to unphysical oscillations of the normal stress component.(25) It would be very
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beneficial to develop a method to determine free energy which circumvents the stress tensor

calculation and the technical difficulties associated with extensions to include many-body

interactions of more complex systems. In an effort to do this, I implemented an equality

recently developed by C. Jarzynski. This equality uses an ensemble average of a set of non-

equilibrium simulations to calculate equilibrium free energy differences of a system subjected

to a time-dependent perturbation of tis Hamiltonian. To apply the Jarzynski relationship

by simulation requires that the Hamiltonian of the system be changed as a function of time

by some external parameter. This external parameter will be discussed and identified later

in this chapter.

IV.2 THE FREE ENERGY-WORK CONNECTION

Calculating differences in equilibrium free energy has been of interest for some time, and

biological applications of these energy calculations are of particular importance. An example

of these applications are the desirability to estimate the free energy changes resulting from

the irreversible stretching of M-RNA.(54) Equilibrium free energy differences are generally

difficult quantities to obtain from computer simulations.(55) Recently, C. Jarzynski was able

to show that there is an exact relation between the nonequilibrium average of work and

the equilibrium free energy difference associated with a change in the Hamiltonian of the

system.(9) Development of efficient methods to numerically estimate free energy differences

still remains one of the outstanding problems of computational physics.(56; 57) Several

attempts to directly apply Jarzynski’s relation showed that the computational efficiency

depends on the method used to change the Hamiltonian.(7; 54; 58; 59)

Work is a fundamental concept of thermodynamics, and efforts to understand how and

why it affects bodies in nature have been undertaken for over a century. Consider the work,

dW, done on a body in an infinitesimal reversible change when connected to a thermostat.

The first law of thermodynamics states that if the system is allowed to interact with the
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thermostat, the resulting energy change can be written in the form

dW = dE − d̄Q (IV.1)

Here, dE is the change in the internal energy of the body and d̄Q is the change in the amount

of heat contained in the body. The second law defines a state quantity, the entropy, related

to d̄Q by the quantity T, the temperature, by the relationship

dS =
d̄Q

T
(IV.2)

If the system is not isolated, we can subsequently simplify Eq.(IV.1) since the temperature

is constant to get

dW = dE − TdS = d(E − TS). (IV.3)

Recall the relationship

F = E − TS (IV.4)

where F is another thermodynamic function of the body known as the Helmholtz free energy

(the energy available to perform work). From Eq.(IV.3, we see that the work done on a

body in a reversible isothermal process is simply the change in its free energy. We know that

the differential behavior is important in thermodynamics, so differentiating Eq.(IV.4) and

substituting the combined form of the 1st and 2nd laws of thermodynamics:

dE = TdS − PdV (IV.5)

where P is the pressure acting on the body and V is its volume, into Eq.(IV.4) we now get

the differential form of the free energy

dF = −SdT − PdV (IV.6)

From Eq.(IV.6) and Eq.(IV.4), we can easily express the energy in terms of the free energy.

E = F − T
(∂F
∂T

)
V

= − ∂

∂β
lnZ (IV.7)

where Z is the system partition function. Knowing any of the quantities E, F, or TS as a

function of the remaining two variables allows us to determine the remaining thermodynamic

quantities by using the basic Maxwell relationships.(5)
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The above discussion is mostly thermodynamic and macroscopic in nature, and in this

chapter, I will show how MD simulations can help apply these concepts to a finite size system.

The thermodynamic properties of a system may be determined from the system partition

function. Since we assume our system obeys classical statistical mechanics, we need only the

configurational contribution to the partition function. Zwanzig(60), arguably, spearheaded

the use of simulations to calculate this configurational contribution, and I will outline his

argument briefly here. Consider a system having N particles in a volume, V, and a total

potential UN . For a homogeneous and isotropic system, changing the shape of the container

does not affect the energy of the system.(61) Once an interface has formed, the system is no

longer isotropic or homogeneous so perturbations of the system Hamiltonian pertaining to

the interface, i.e. changing the interfacial surface area, will have an effect on the properties

that describe the system, especially the interface. For the analysis below, we are assuming

Maxwell-Boltzmann statistics. The configurational free energy is given by

exp(−βFN) = QN =

∫

V

· · ·
∫

V

exp(−βUN)dτ1 · · · dτN (IV.8)

where β = 1
kBT

, UN is a function of the configuration of the collection of molecules and
∫
dτi is an integral over the entire configuration space of the ith molecule. Assume that the

system’s potential energy can be separated into two parts:

UN = U0
N + U1

N (IV.9)

where U0
N is the potential energy of an unperturbed system and U1

N is the perturbation. The

partition function and free energy of the unperturbed system from Eq (IV.8) is

exp(−βF 0
N) = Q0

N =

∫
· · ·

∫
exp(−βU0

N)dτ1 · · · dτN (IV.10)

For completeness, the probability of any particular configuration of the unperturbed system

is

P 0
N = exp(−β(F 0

N − U0
N)) (IV.11)∫

· · ·
∫
P 0

Ndτ1 · · · dτN = 1 (IV.12)

44



Multiplying Eq. (IV.8) by Q0
N gives

exp(−β(FN − F 0
N)) ≡ exp(−βF 1

N) =
〈
exp(−βU1

N)
〉
0

(IV.13)

where F 1
N is the free energy contribution from the perturbation, and the average is performed

over the unperturbed ensemble so

〈
exp(−βU1

N)
〉
0

=

∫
· · ·

∫
P 0

N exp(−βU1
N)dτ1 · · · dτN (IV.14)

Eq. (IV.13) is known as Zwanzig’s perturbation identity and is the origin of many studies

estimating free energy.(60) This equation is also the starting point of the scheme followed by

C. Jarzynski(9) who used it to derive a relationship involving W, the nonequilibrium work,

and the free energy

∆F = − 1

β
ln

〈
exp(−βW )

〉
(IV.15)

The brackets indicate an average with respect to the various phase space trajectories taken

by the system going from an initial state to a final state, given that the system is initially

at equilibrium. Equation (IV.15) says that we can extract equilibrium information, namely

∆F , from the ensemble of nonequilibrium or finite time measurements. Accurate numerical

estimates of
〈
exp(−βU1

N)
〉
0

in Eq.(IV.14), is generally hard to realize because for any finite

number of iterations, the average tends to be dominated by regions where Uf
∼= U0 (Uf and

U0 correspond to total energies of final and initial configurations).

If the work probability distribution is Gaussian (if the switching processes are very slow

and the trajectories are close to reversible) then the free energy of switching becomes(60):

∆F = W − βσ2

2
(IV.16)

where

σ2 ≡ W 2 −W
2
. (IV.17)

Hermans(62) showed that the dissipated work

Wdiss = (W −∆F ) (IV.18)
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is then related to the fluctuations in W by

Wdiss =
βσ2

2
(IV.19)

If the fluctuations in W from one measurement to the next are much larger than kBT , then
〈
exp(−βW )

〉
will be dominated by certain regions where the values of W are far below W .

Since such values of the work represent statistically very rare events, it would require an

unreasonably large number of measurements of W to accurately determine
〈
exp(−βW )

〉
.

One of the simplest and widely used methods of determining free energy differences be-

tween two states described by the classical Hamiltonians H0 and H1 is slow-growth thermo-

dynamic integration.(58) The method of thermodynamic integration pioneered by Kirkwood

is one way available to compute free energy, and it also allows the use of MD to directly

apply the Jarzynski relationship.(63) In a computer simulation, a coupling parameter, call

it λ, is varied such that the states λ=0 and 1 correspond to H0 and H1, respectively. This

correspondence could be made by following a linear path in λ, i.e. Hλ = H0 + λδH. The

derivative of the free energy with respect to λ is given by the canonical average in λ of the

corresponding derivative of the Hamiltonian,

∆F =

∫ 1

0

〈dH
dλ

〉
λ
dλ (IV.20)

Equation (IV.20) forms the basis of thermodynamic integration. In computer simulations,〈
dH
dλ

〉
λ

can be calculated for a few values of λ and combined by numerical integration for-

mulas. Alternatively, λ, the coupling parameter, can be increased in discrete steps from 0

to 1 in the course of a simulation. As λ is changed, the accumulated work performed on the

system is

W0→1 =
N−1∑
i=0

〈
Hλi+1

(xi)−Hλi
(xi)

〉
λi

(IV.21)

This expression is for a path of discrete coupling-parameter values

λ0 = 0, λ1, λ2 · · · , λN−1, λN = 1 (IV.22)
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The variable xi represent discrete trajectories in phase (or configuration) space with equa-

tions of motion according to the time-dependent Hamiltonian, Hλi
. The increment

〈
Hλi+1

(xi)−Hλi
(xi)

〉
λi

(IV.23)

is evaluated at the state xi. In the limit of an infinitely slow change of the coupling parameter,

the work is reversible and identical to the free energy change. Algorithms for varying λ

have been discussed in detail previously(9; 58; 59), and the general procedure begins with

the generation of an ensemble of equilibrium configurations (λ = 0). There are basically

three steps to follow once these have been generated. First, select a configuration from

the equilibrium ensemble. Next, increment the potential energy function by changing λi to

λi+1 . Finally, relax the system at the λi+1 value. This is repeated until the final coupling

parameter (λ = 1) is reached.

Equations (IV.20) and (IV.21) are both general equations so one has freedom in selecting

the coupling parameter. For the following simulations, the interfacial area plays the role

of the external Hamiltonian (λδH). My goal is to explore the free energy difference as a

function of interfacial area change of this system. We will relate this to the surface free energy

determined from the Irving-Kirkwood (IK1) stress tensor approach. Since we calculated the

surface tension earlier with confidence (see Chapter 3), the same type of system will be used

to attempt to validate the free energy-work relationship.

IV.3 MODEL AND SIMULATION PROPERTIES

The simulated system consists of fully immiscible Lennard-Jones fluids and are performed on

a parallelpiped of volume Lx × Ly × Lz with Lx = Ly and Lz ≥ 2Lx. The volume contains

two slabs of immiscible liquids, one of N1 particles and the other of N2 particles (where

the subscripts 1 and 2 denote the system components or species). As stated above, the

computational efficiency is affected by the rate at which the system’s coupling parameter is

switched. A large system (one having a large number of particles or many degrees of freedom)

requires more sampling of the tails of the probability distribution because the statistical
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sample used to evaluate IV.15 will be dominated by infrequent or rare events. In order to

ensure this sampling problem did not occur, I elected to use a smaller system than the one

used in Chapter 3. Another consideration is if the system or the interfacial area is too small,

the energy change associated with the area change is smaller than the energy fluctuations;

there will again be a sampling problem because the system will have to be observed for an

extremely long time. An intermediate system should therefore provide a good test of the

Jarzynski relationship for immiscible binary fluids. Here, we take N1 = N2 = 512 so that

N = N1 +N2 = 1024 in this case; however, I will show that this selection introduced another

size effect, namely interfacial interaction, for this type of system. The system is subjected

to periodic boundary conditions (pbc) in the x, y, and z directions. Due to these conditions,

two planar interfaces of area L2
x are created during equilibration. We consider the z direction

to be perpendicular to the interfacial regions in the following figures. The particles interact

via the modified L-J potentials

U11 = 4ε
[(σ
r

)12

−
(σ
r

)6]
(IV.24)

U22 = 2V11 (IV.25)

U12 = 4ε
[(1.2σ

r

)12]
(IV.26)

where ε and σ are the well depth and interaction range parameter, respectively (see Fig-

ure 4.1). The potential was truncated at 4σ as in Chapter 3. An assessment of the truncation

artifacts was provided in the previous chapter so I will not discuss them here, though recall

that a sharp interface will amplify these artifacts. The unlike-species interaction was chosen

to ensure the system did not mix (α = 0). The particles were initially distributed with

a sharp interface parallel to the z-direction (see Fig. 4.2). During the equilibration phase

of the simulation, the microcanonical (NVE) ensemble was used. Using the microcanonical

ensemble simply decreases the system’s equilibration time. We define m as the particle mass,

and for simplicity, the masses are set equal to unity. Though the microcanonical ensemble is

the simplest ensemble to simulate, there are problems replicating the setup experimentally.

The canonical ensemble is more suitable for experimental validation. Once equilibration

was achieved (see Figures 4.3 and 4.4), the canonical (NVT) ensemble was used for data

collection. A Nosé-Hoover chain method developed by Martyna et. al.(13) has been used to
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Figure 4.1: L-J potential functions for like and unlike species with α=0. The repulsive

potential associated with the unlike interaction is reduced by a factor of 20.
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Figure 4.2: Initial configuration of the N = 1024 system. This distribution has a sharp

interface parallel to the z-direction.
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Figure 4.3: Equilibrium configuration of N = 1024 system. The interfacial area is A0 in this

case.
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Figure 4.4: Final configuration of N = 1024 system. The interfacial area is 2A0 in this case.
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control the temperature of the system. This thermostat uses a Verlet-like algorithm and has

been shown to sample the canonical ensemble. This method has also been found to prevent

large periodic oscillations in more complex simulations and maintains ergodicity.(64) The

box dimensions initially were Lx = Ly = 6.704σ and Lz = 32.0σ so the system bulk densities

(0.713) are lower than the triple point density for argon (0.85). Using reduced units, we

are also able to introduce the following reduced thermodynamic quantities: T ∗ = kBT
ε

for

temperature,γ∗ = γσ2

ε
for surface tension, and ρ∗ = ρσ3 for density, with ρ = N

V
. A Verlet

like algorithm is used to integrate the equations of motion with an integration time step of

4t = .005, which corresponds to ten femtoseconds using the argon scale. The neighbor table

was used as a time saving device in these simulations.(18)

The process by which the interfacial area was changed is a sequence of homogeneous

dilations which consists of the following steps. Once the system had been equilibrated, a set

of initial configurations were selected. The equilibrium requirements are that the total energy

is stable, with small fluctuations compared to the average energy, and that the density profiles

are stationary in time. I allowed the system to evolve for a short time (about a picosecond)

so as to ensure stability before initiating the switching process. The simulation was then

stopped and the interfacial area was increased by 10%. In order to facilitate the relaxation

process and prevent particle overlap, the particle positions were shifted so as to conserve the

overall volume. This amounts to a slight displacement of atoms in the x and y directions

and a small volume-conserving compensating displacement in the z direction. Since no work

is done on a homogeneous liquid by changing its shape, a particle reconfiguration of this

type, i.e. a volume conserving virtual displacement, should have a modest effect on the total

energy of the system.(65) The system was then allowed to relax until the next switch was

made. The time span over which the system was allowed to relax between switches defines

the switching rate. After the last switch was made, the system was allowed to run for a

few picoseconds in order to ensure that a stationary state was achieved. More explicitly,

the switching process consisted of a sequence of 9 homogeneous dilatations, each followed

by relaxations consisting of t′ = 10, 100, or 500 time steps. Following the 10th dilatation,

the system was allowed to evolve for 2000 time steps in order to insure that a stationary

state was established. For each t′, we did 200 repetitions (200 transitions) from an arbitrary
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Table 4.1: Irving Kirkwood calculations of the free energy (FIK1i) and the isotropic or scalar

pressure (Pi) for the initial state or when interfacial area is A0. The statistical error of these

calculations is also shown.

Tref FIK1i Pi

1.5 .84±.11 1.77±.18

3.0 1.19±.20 7.40±.23

7.0 1.7±.30 20.2±.40

equilibrium configuration.

IV.4 SIMULATION RESULTS

The initial configurations or states were in thermodynamic equilibrium and the Irving-

Kirkwood method was used to calculate the surface tension. We can relate this quantity

to the free energy used to create an interfacial area A0, and I will refer to this value simply

as the free energy from here. These values are included in Table 4.1. The behavior of these

quantities relative to the system temperature is consistent with the study in the previous

chapter.

The free energy was evaluated again at the end of each sequence of switching transitions

and the results are shown in Table 4.2. This table also shows that the free energy does

not depend on the switching rate. Note that the free energy and scalar pressure do show a
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Figure 4.5: Work probability distribution. Switching rate in this case is in 100 step incre-

ments.
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temperature dependence; however, upon further inspection the free energy values are quite

different for initial and final interfacial areas (Compare Table 4.1 and Table 4.2). Note

that this binary fluid system has two degrees of freedon, V and T, and since these are held

fixed throughout the switching process, one might assume that the scalar pressure should

be invariant with respect to switching; provided that both initial and final states are true

equilibrium states. However, the existence of a pair of interfaces in each unit cell implies

that the thermodynamic reasoning appropriate for homogeneous, isotropic systems may not

be applicable in this case. For instance, the distance between the interfaces decreases as

the surface area increases, and any interactions between these will impart a surface area

dependence to the interfacial density profiles as well as the free energy calculations associated

with them provided the final state of the system is in equilibrium.

Consider for a moment that the system has not reached equilibrium due to the length

of time that the system was allowed to settle after the final interfacial switch. If this is the

case, by allowing the system to evolve for a few more picoseconds (few thousand time steps),

the system should come to thermodynamic equilibrium and the Irving-Kirkwood procedure

would result in free energies that are independent of surface area. Even after running the

system on the time scale of equilibration, I found the IK1 free energy, FIK1, calculation

gave results consistent with those of Table 4.2 so the final state of the system appears to be

in equilibrium. With the increase in the temperature, and therefore the internal pressure,

there should be a tendency for particles to migrate to the interface as the system relaxes(see

Figures 3.7 and 3.8). We monitored this in the previous chapter and reported this behavior.

This was not what I observed here and I will discuss the implications of these features in the

next section.

In order to examine the computational efficiency of the Jarzynski relationship, the free

energy difference should be independent of switching rate. The probability densities shown in

Figure 4.5 were constructed by the following binning process. After a number of realizations,

200 in this case, we calculated the difference in the total energy between the initial and final

configurations, which corresponds to the total (reversible plus irreversible) work done on or

by the system. We then divided the work axis into bins of equal width and simply counted

the number of times an energy difference (W) in a certain bin was realized. The work
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Table 4.2: Irving Kirkwood evaluations of the free energy (FIK1f ) and the isotropic or scalar

pressure (Pf ) at final state or when area is 2A0. The statistical error of these calculations

are included. Note that FIK1 is independent of switching rate as it should be.

Switching rate Tref FIK1f Pf

1.5 1.18±.02 2.78±.05

10 3.0 1.46±.02 8.78±.07

7.0 2.07±.07 21.9±.20

1.5 1.17±.02 2.86±.06

100 3.0 1.50±.02 8.87±.09

7.0 1.98±.06 22.1±.30

1.5 1.18±.02 2.85±.07

500 3.0 1.46±.07 8.77±.06

7.0 1.97±.09 22.2±.20
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probability distribution shows that the switching process is Gaussian at low temperature

and far from Gaussian at the highest temperature. The free energy differences shown in

Table 4.2 are in good agreement and nearly independent of the switching rate which is in

accord with the Jarzynski relationship.

Table 4.3 displays the relationship between irreversible work, equilibrium free enerby

difference, temperature, and switching rate. Note that
〈
W

〉
and ∆FJ are nearly identical

for a given switching rate for all three temperatures. This implies that even the fastest

homogeneous deformation is very close to being reversible, even though the work distribution

function does not possess a Gaussian form at the higher temperatures. The observation that

∆FJ never exceeds
〈
W

〉
implies that our statistical protocol is robust.

The Irving Kirkwood stress tensor method results in an apparent free energy difference

and is calculated using Equation (IV.27).

∆FIK1 ≡ FIK1(f) − FIK1(i) (IV.27)

where the subscripts f and i refer to the final and initial states, respectively. This equation

tacitly assumes that the stress profiles integrated through the interfacial region are the sole

causes for the free energy changes in the entire system. In particular, Equation(IV.27) does

not incorporate any free energy changes associated with the bulk or homogeneous regions

of the system. The free energy differences obtained from the Jarzynski relationship range

from .36 to .58 and those obtained from the IK method range from .22 to .34 as shown in

Table 4.4. Since we have assumed that the final state of the system had reached equilibrium,

this discrepancy indicates that the interfaces are interacting with one another. The idea of

“interacting interfaces” means that the interfaces’ proximity with its image causes molecular

propagations in the bulk region that are not accounted for in the free energy calculation

using the IK method.
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Table 4.3: Free energy difference using the Jarzynski method. The nearly identical values of

〈
W

〉
and ∆FJ indicate that the switching process is very close to reversible for all switching

rates.

Switching rate Tref

〈
W

〉 〈
exp(−βW )

〉
∆FJ

1.5 .38 .77 .38

10 3.0 .39 .86 .39

7.0 .59 .92 .58

1.5 .37 .77 .37

100 3.0 .37 .88 .36

7.0 .53 .92 .52

1.5 .36 .78 .36

500 3.0 .40 .87 .39

7.0 .58 .92 .57

59



Table 4.4: Comparison of IK1 and Jarzynski free energy differences. ∆FIK is independent

of switching rate and is included in this chart for comparison.

Switching rate Tref ∆FJ ∆FIK

1.5 .38 .34

10 3.0 .42 .27

7.0 .58 .31

1.5 .37 .33

100 3.0 .36 .30

7.0 .52 .22

1.5 .36 .33

500 3.0 .39 .26

7.0 .57 .22
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Figure 4.6: Density profile for the system when initial interfacial area A0 and 2A0 for Tref =

3.0. The two profiles are similar, but not identical. This implies that the equilibrium state

of the system depends on the interfacial area.
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IV.5 DISCUSSION

For the three temperatures selected, what is perhaps most striking about these simulations is

that except for the lowest temperature, the free energy differences obtained by the Jarzynski

method, ∆FJ , are quite a bit larger than the apparent free energy differences computed via

the Irving-Kirkwood stress tensor method, ∆FIK1. In order to pin down the reason(s) for

this discrepancy, we sought to clarify two concerns: ensure the system was equilibrated and

test for interfacial area effects on the free energy calculations. To check the first part, we

equilibrated our system in both initial and final states using identical protocols. We ob-

served that the density profiles, interfacial tensions, and other properties are nearly identical

to those obtained by the various step-wise switching procedures. Moreover, we reversed a

few of the switching processes to check for hysteresis effects, and found none. This strongly

suggests that the systems where N = 1024 are indeed equilibrated after the switching pro-

cess is completed. This implies that molecular propagations caused by a lack of interfacial

separation might account for the difference between the IK1 and Jarzynski computations.

This would be the case if, for example, the separation between interfaces were to affect the

bulk density of one or both components. In order to test this hypothesis, we doubled the

number of particles in our system, equilibrated at interfacial area A, computed the IK1 sur-

face tension, and then performed the same operation at area 2A0. The larger system has a

larger interface-interface spacing compared to a system half that size, which implies a smaller

surface area dependence of the density profile as well as interfacial tension. As indicated

in Figure 4.7 and Table (4.5), this is indeed what we observe: the area dependence of the

interfacial tension is in fact four times smaller for the large system as compared to the small

system. Also from Figure 4.6, we note that the bulk density of one of the components has

clearly been increased as a result of increasing the interfacial area. This step was only done

to test the aforementioned hypothesis, and recall that statistical limitations prevented the

use of the 2000 particle system to compare the Jarzynski and IK1 methods.

We conclude first that both the Jarzynski and IK1 approaches can be useful tools in

simulating immiscible liquid systems. The Jarzynski relation is quite effective at extracting

free energy differences associated with interfacial area changes in systems comprised of closely
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Table 4.5: Irving Kirkwood calculations for 2000 particle system. These quantities were

calculated after system was equilibrated having interfacial area A0 and 2A0. The statistical

error is also shown.

Int. Area Tref FIK1 P

A0 3.0 .83±.05 7.15±.10

2A0 3.0 .90±.03 8.25±.10

spaced, interacting interfaces such as a lipid bilayer. Due to the computational cost, the

Jarzynski relation is not a practical method to obtain the interfacial tension of isolated

interfaces, at least for immiscible binary fluids where the IK1 method is still the best option.

Secondly, we find that the homogeneous dilation, fast-switch protocol produces free energy

differences that are nearly identical to those obtained by slower switching. This implies that

computation costs can be greatly reduced by using a fast-switching Jarzynski method to

study a strongly interacting lamellar type system. In addition, by examining the interfacial

area dependent shifts of the density profiles, see Figure 4.6 and Figure 4.7, we conclude that

the discrepancy between ∆FIK1 and ∆FJ can be attributed to the interactions between the

interfaces which results in the compression of the more volatile of the two bulk phases. This

effect is taken into account by ∆FJ , whereas it is implicitly excluded in the computation of

∆FIK1. In other words, the change in free energy calculated by the IK1 method accounts only

for the interfacial region, whereas the Jarzynski method free energy difference incorporates

the bulk in addition to the interfacial properties. Presently it is not possible to separate

these contributions in the Jarzynski relationship, so due to the interfacial interaction and

the corresponding discrepancy between ∆FIK1 and ∆FJ , the free energies calculated by the
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Figure 4.7: Density profile for the initial interfacial area A0 and 2A0 for Tref = 3.0. This

profile is for a system of 2000 particles. The densities in this case are close to identical which

implies the area dependence on the equilibrium nature of the system is small.
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two methods can not be compared directly for this type of system.

65



V.0 MOLECULAR DYNAMICS OF ALKANETHIOL CHAINS

V.1 INTRODUCTION

We present the results of a molecular dynamics 1 study of a partialmonolayer of self assembled

octadecanethiol molecules. Thecorrelations between various statistical measures of surface

inducedchain ordering are examined. These include the density profile,chain morphology,

tilt angle distributions, and gauchedefect distributions. Particular attention is focussed on

thesignificance of the strength of the alkane chain surface interaction,as well as the role of

temperature, on the type and degree ofdisorder which we observe. The following simulations

are in accord with experimental evidence which indicates that the quality, in thesense of re-

producibility in the laboratory, of dense filmsincreases as the coupling of the chain molecules

with the surfacedecreases. We believe that our findings have general implicationsfor the

establishment of experimental protocols for selfassembled surface films of organic molecules

with varying degrees ofprescribed disorder.Our simulations support that experimental obser-

vation and show that there is a range in the strength of the interaction between the methyl

and methylenegroups and the surface where the character of the structure of the partially

filled films changes from islands of nearly upright chainscoexisting with empty regions of

the surface (the weak coupling case) toless structured regions of partially ordered chains co-

existing withhighly disordered chains that completely cover the surface (thestrong coupling

1This chapter is a variant of the paper published in Journal of Physical Chemistry B Vol 105, 9503 - 9508

(2001). A preliminary study was published as a NIST Internal Report (NIST IR 6481).
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case). The simulations also show that as the systemtemperature is increased above ambient,

the structure in the intermediate couplingcase (defined below) becomes less ordered. This

alsois consistent with experimental results.(66; 67; 68)

In this simulation, we consider three types of order. The first is the collectivearrangement

of the molecules as indicated by the the density profile of the chains relative to the tether-

ing surface. The second featurethat measures order is the distribution of tilt angles of the

chains.The final measure of order is the fraction of gauche defects foundalong the chains. We

shall see that the defect fraction, a quantitythat is measurable in an average sense(69; 70),

correlates closely withthe density profile and tilt angle distribution. These quantitativemea-

sures of order are complemented by images of the chains. Theimages provide a qualitative,

but informative picture of how the chainsare arrayed.

V.2 MODEL AND SIMULATION PROPERTIES

A united atom representation of a 19-site chain molecule (octadecanethiol) is used inthese

simulations. Other long chain molecules such asoctadecyltriclorosilane could be considered

with appropriatechanges in the head group interactions. Figure 5.1 provides anillustration

of the geometrical arrangement of a chain. The intermolecular and intramolecular interac-

tionpotentials are those of model I of Hautman and Klein(71) with the addition of harmonic

stretch interactions between adjacentintramolecular sites. The details of the model are in-

cluded here.The coefficients for the potential parameters are listed in Tables V.1-V.4. This

model has beenshown to result in dense-packed films (number density of 4.65 moleculesper

nm2) that are consistent with the structure observed experimentally.(71) The coefficients

in these potentials of course depend on the sitesinvolved. The extra indices needed to in-

dicate the site dependencehave been supressed to simplify the notation.The intramolecular

interaction consists ofstretch, bend, torsion, and Lennard-Jones terms. Explicitly,

Uintramolecular = U2 + U3 + U4 + UL−J (V.1)
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Figure 5.1: Single chain molecule containing 19 sites in an all trans configuration. The

molecule makes an angle of ψ = 30◦ with the z-axis which is normal to the tethering surface.

The large filled circle indicates the thiol group which is referred to as site number 1. The

small shaded circles represent sites 2 through 18. The small filled circle indicates the terminal

methyl united atom.
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Table 5.1: Stretch parameters. CH3 and CH2 sites are equivalent for the stretch interaction.

Parameter S-C C-C

ks, 107K/nm2 4.529 4.529

d0, Å 1.82 1.54

Table 5.2: Bend parameters.

Parameter C-C-C S-C-C

kθ, 103K/rad2 62.5 62.5

θ0, deg 109.5 114.4
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Table 5.3: The coefficients, Cl, in the torsional potential. Note that there is no site depen-

dence for these coefficients.

l al, K

0 1116

1 1462

2 -1578

3 -368

4 3156

5 -3788
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Table 5.4: The surface interaction parameters.

Site C12, 107KÅ12 C3, KÅ
3 z0, Å

CH3 3.41 20800 0.860

CH2 2.80 17100 0.860

S 4.089 180600 0.269

The bond stretch term is

U2 =
kS

2

N−1∑
i=1

(| ri+1 − ri | −d0)
2 (V.2)

where d0 is the equilibrium bond length. The sum runs over the N-1 bonds and ri is the po-

sitionof the ith site in the chain. The stretch parameters kS andd0 are listed in Table 5.1.The

bend term is

U3 =
kθ

2

N−2∑
i=1

(cos θi+1 − cos θ0)
2 (V.3)

where θi+1 is the angle with its vertex at site i+ 1 formed by bonds connectingsites i, i + 1

and sites i + 1, i + 2, andθ0 is the equilibrium angle at site i + 1. The bend parametersare

listed in Table 5.2. The torsion term involves adjacent quadruples of sites with the form(72)

U4 =
N−3∑
i=1

5∑

l=0

al cosl(φ) (V.4)

whereφ is the dihedral angle between the two planes formed by thefour adjacent sites. The

vertices of the dihedral angles are indicatedas bold lines in Fig. 5.1. There is no site de-

pendencefor these coefficients with values (in units of K) shown in Table 5.3. The final

intramolecular interaction termis a Lennard-Jones interaction between sites separated by

three ormore sites.

UL−J =
∑
sites

4ε
[(σ
r

)12

−
(σ
r

)6]
(V.5)
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The intermolecular interaction is the same Lennard-Jones interactionused in UL−J and acts

between sites on different molecules.The Lennard-Jones potential parameters are listed in

Table 5.5. There is also a surface interaction of the form.

Usurface =
C12

(z − z0)12
− αC3

(z − z0)3
(V.6)

The interaction of the chain sites with the surface depends only onthe distance of the site

above the surface. The factor α multiplying the coefficient C3 is used to vary the attraction

of the surface for the methyl and methylene groups. For the thiol group,α is always unity.

The parameters for the surface potentialare listed in Table 5.4.The values of C3 in Table 5.4

for the CH3 and CH2 sites are forthe strong coupling case mentioned in the introduction,

that is forα = 1. The weak coupling case has α values for the methyl and methylene sitesof

1
10

. We also consider scaling factorsof 1
2

(intermediate coupling) and of 3
4

and 7
8

to examine

the change from weak and intermediate coupling to strongcoupling to the surface. Our

simulations involve 225 chains tethered to a smooth surface by thesurface potential. The

chains are located in an L × L square planar region subject to periodic boundary conditions

in the planar directions. The z-axis is normal to the smooth surface that islocated in the

z = 0 plane. The size of the square, L, is 9.48 nmso that the average density is 2.50

molecules/nm2, about 1
2
the close packed density. The simulations were started by placing

the chains in a vertical orientation(ψ = 0) at random positions with no overlaps. The thiol

siteswere placed at the stable position of 0.24 nm above the z = 0 surface.Then the system was

allowed to evolve, subject to a Nosé-Hooverthermostat(13) that maintains the temperature

of thesystem at 297 K (ambient conditions). The equations of motion were integrated using

theBeeman algorithm with a time step of 1 fs.(73; 74) The system was allowed to evolve until

“stabilized”.Here stability means that the various order parameters described below were

unchanged over sequential, 100 ps duration runs. We do not imply that thermal equilibrium

was obtained in each case discussed. In fact, different initial configurations lead to significant

differences in themeasures of order when α = 1.In addition to the simulations at 297 K, a

second set of simulationswere performed to investigate the temperature variation of the

amountof order in the system for intermediate coupling, α = 1
2
.The details of this set of

simulations are described in a separate section that follows.
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Table 5.5: Lennard-Jones parameters.

Sites σ, Å ε,K

SI-SI 4.25 200

CH3 − CH3 3.905 88.1

CH2 − CH2 3.905 59.1

CH3 − CH2 3.905 72.3

CH3-S 3.723 105.4

CH2-S 3.723 86.5
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V.3 SIMULATION RESULTS

As stated before, three measures of order are considered in this long chain study. The first is

the density profile. During the simulation, the number of sites located at a distancebetween z

and z+dz above the surface is monitored. The resolution inz, dz, is 0.00316 nm. The second

measure of order is the distibution oftilt angles of the chains. As indicated in Fig. V.1,

the tilt angle,ψ, is taken to be the angle between the normal to the surface and thevector

connecting the head group to the methyl group. The cosines ofthe tilt angles are binned

with a resolution of 0.01. Finally, themean number of gauche defects, fG, for each of the

bonds is determined. A gauche defect is said to be present at a bond between twosites in

a chain if the torsion angle about the bond is greater inmagnitude than 66◦, the position

of the maximum in the torsion potential.(72)The variation of the density profile, n(z), of

the chains with the change inthe strength of the surface attraction is indicated in Fig.5.2.

Thedistance of the sites above the surface is z. Figs. V.2a through V.2d are for values of

the coupling parameter α of 1
10

, 1
2
, 7

8
, and 1 respectively.

There are several features of these profiles to be noted. When thesurface coupling is

weak, α = 1
10

, the profile is quite structured. There are 19 distinct peaks in Fig. V.2a

suggesting thatthe chains are in nearly identical configurations. This structure becomesless

pronounced as the coupling increases. The peaks for largervalues of z, the distance above the

surface, become blurred into lesspronounced features. Also, the maximum extension of the

chainsdecreases. For α =1
2

(and also for 3
4

which is not shown as the profile is essentially that

for 1
2
), the main effect is theblurring. The profile remains above n(z) = 1

2
for z<2 nm.As

α increases from 3
4

to 7
8
, the profilestructure decreases significantly and n(z)> 1

2
occurs only

forz<1.6 nm. The further increase of α to 1, the strong couplingcase, produces an almost

linear decrease in density for z>1.2 nm.The maximum height of a chain remains at about

2.2 nm as the otherstructural features become fainter.

Next we examine the distribution of tilt angles, ψ. The distributions of cosψ are shown

in Fig. 5.3 for α’sof 1
10

(solid line), 1
2
(short dashed line), 7

8
(long dashed line) and 1 (long-short

dashed line). The distributions for 1
2

and 3
4

are not very different,so the distribution for α

= 3
4

is not shown.The chains in the weak coupling case are tilted about 20◦to the normal
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Figure 5.2: Density profiles for α=(a) 1
10

, (b)1
2
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8
, and (d) 1. The profile for α = 3

4
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Figure 5.3: Tilt angle distribution for α = 1
10

(solid line), 1
2
(dashed line), 7

8
(long dashed line),

and 1 (long short dashed line). Again, the distribution for α = 3
4

is very similar to the α = 1
2
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with a narrow distribution of angles. As the couplingincreases to α =1
2
, the average tilt

increases to about 35◦ with a broader distribution about the maximum in P [cosψ]. Further

increases in the coupling to the surface lead to a significant fraction of the chains with tilt

angles greater than 50◦.As is the case for the density profiles, the major change in thetilt

angle distributions occurs when α > 3
4
.

The average fractions of gauche defects, fG, for each site on the chains are shown in

Fig. 5.4. The term site refers to the bondbetween two united atoms. For example, the

defects on site 2.5 areassociated with the bond between united atoms 2 and 3 as shown in

Fig. 5.1.

The weak coupling case has few defects although the fraction increasesfor the last two

bonds. As the coupling increases in strength,the fraction of defects increases, particularly

close to thesurface and close to the free end of the chain. As in the othertwo order mea-

sures, the difference between α =1
2

andα =3
4

is small. When α increases from 3
4

to 7
8
, the

major increase in defects is in the bottom half of the chain. The further increase of α

to 1results in an overall increase in defects over the entire lengthof the chain.The format

of the snapshots displayed in Figs. V.9 through V.12 is describedin the simulation results

section. Snapshots are not a substitute for thequantitative order measures. We monitored

the order measuresdescribed in the results section during the sequence of runs described

below.The snapshots and our description of the state of the system areconsistent with the

order measures. The snapshots are used only toillustrate the trends in the order of the sys-

tem.The surface coupling was reduced by setting α = 1
2

and the system then evolved from

the configuration shown in Fig. V.9for 180 ps. At 100 ps the system was disordered, but

at 180 ps,the system had developed a cavity as a portion of the surface was uncovered.This

cavity evolved into a well defined object surrounded by nearlyupright chains over the next

170 ps. The configuration at the endof this part of the simulation is shown in Fig. V.10. It is

evidentfrom Fig. V.10 that the formation of the cavity precedes the development of spatial

orderin the form of ordered rows of molecules. The development ofordered rows required

and additional 200 ps. This evolution processgave us confidence that it was not necessary to

achieve a fullystabilized system in order to infer the trends in the order of thesystem as the

temperature was increased. As noted previously, a cavity is associated with ordered rows
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Figure 5.4: The average number of gauche defects for each chain site. The filled circles are
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2
, open diamonds for 3
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8
. The filled triangles are for the strong coupling case, α=1.
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Figure 5.5: A snapshot of the chains with α = 1
10

. This view shows that most of the chains

are in nearly an upright position with local spatial order as well as indicated by the rows of

chains. Periodic Boundary conditions mean the island of chains and the cavity are on the

order of the box size.
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Figure 5.6: A snapshot of the chains when α = 1
2

which shows that the disordered chains

are located mostly along the interface between the island and the cavity. Here the chain tilt

is more evident than the case in Figure 5.5.
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Figure 5.7: A snapshot view of the chains with α = 7
8

which shows that the chains have

nearly filled the cavity.
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Figure 5.8: A snapshot view of the chains with α = 1 which shows the ordered regions are

smaller than the simulation cell
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Figure 5.9: A snapshot view of the chains with α = 1, just before the surface coupling was

changed.
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Figure 5.10: A chain snapshot when α = 1
2

after 350 ps. Here, a well defined cavity has

formed, but the spacial ordering of the chains is not well developed.
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Figure 5.11: A snapshot view of the chains for T = 329 K after 220 ps. The chains have

now formed well defined rows.
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Figure 5.12: A snapshot view of the chains for T = 360 K after 220 ps. The size of the cavity

has decreased, the edge of the cavity is less sharp, and the spatial extent of the ordered rows

is reduced from Figure (5.11).
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of chains in thestabilized system. The presence or absence of a cavity is anindicator of how

the system will evolve.The temperature of the system shown in Fig. V.10was then increased

to 329 K and run for300 ps. The cavity remained well defined and the spatial orderingof

the chains increased with the formation of well defined rowsof chains. This is shown in

Fig. V.11. For this slightly higherdensity system (2.87 molecules/nm2), the cavity appears

to beembedded in the chains rather than coexisting with an island.Next, the temperature

was increased to 360 K and run for 220 ps. The cavity decreasedslightly in size as the “edge”

of the cavity became more irregular. Then thetemperature was increased to 391 K and run

for 320 ps. Thesize of the cavity decreased during this interval, as is shown inFig. V.12. Also,

the spatial extent of well defined rows has decreased.Finally the temperature was increased

to 422 K. During the next 100 ps, the cavitybecame smaller and considerable disorder was

evident. After another85 ps, the cavity disappeared as the surface was completely covered

by the chains, quite similar in appearance to Fig. V.9.While there are some moderately long

simulations in this set, no attempt was made to demonstratestability of the states as was

done in the previous set of simulations.

V.4 DISCUSSION

The types of order that develop in tethered chain molecules when thecoverage is on the order

of 1
2

of the close packed coveragehave been examined in terms of the strength of the attraction

between the tethering surface and the methyl and methylene groups of the chains.In the weak

coupling case, α = 1
10

, the chains formordered islands of nearly upright chains coexisting

with regions ofthe surface that contain no chains (a cavity). The distribution oftilt angles is

narrowly peaked about 20◦ and the densityprofile is highly structured. The snapshot of this

case suggests thatthe island consists of ordered rows of nearly upright chainsarranged in an

approximately hexagonal arrangement. Consistent withthis view is relatively low fraction

of gauche defects overmost of the chain sites. The fraction increases to about 1
10

near the

methyl end group.On the other hand, for the strong coupling case, α = 1, thechains form

small islands or ordered regions coexisting with disorderedchains that completely cover the
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tethering surface. The distributionof tilt angles is broad and there are a significant fraction

of gauche defects over all sites in the chains. The density profile is correspondingly less

structured and decreases in magnitude as the height above the surface exceeds 1.2 nm.The

case of intermediate coupling, 1
2
≤ α ≤ 3

4
, moderatesthe order of the weak coupling case

by increasing the mean tilt angleto about 35◦. The island of chains remains in coexistence

withthe cavity.In the narrow range of coupling, 3
4
< α ≤ 7

8
, the arrangementof the chains

changes. The rows of ordered chains are not as extensive and the cavity begins to fill in with

chains that arestrongly tilted.It is not possible to say if this change in ordering is a phase

transitionon the basis of the results obtained here. The temperature variationstudy does

indicate that for intermediate coupling, the orderedcoexistence of upright chains and a cavity

is the stable arrangement,for temperatures from ambient to 360 K. At higher temperatures,

thesystem reverts to a disordered arrangement with no cavity and noclear ordering of rows

of chains.

Our simulation of sub-monolayer alkanethiol films are consistentwith experimental find-

ings. In particular, we find thatthe degree of order in the films correlates with the strength

of the surface interaction and that increasing temperature promotes chain disorder. In addi-

tion,we find that several detailed statistical measures of surface filmorder that are not directly

experimentally observable correlatenicely with more readily accessible averaged properties.

These include density profiles, domain morphology, tilt angle distributions,and gauche defect

distributions.

These results help one understand the experimental finding that weaksurface coupling

promotes reproducibility of laboratory films.(75) With weak coupling, the tendency of thechains

to form ordered islands leaves room for the addition ofchains with minimal rearrangement of

already presentmolecules. With strong coupling, it becomes necessary to move oneor more

already attached molecules so that the thiol group of anadded molecule can reach the equi-

librium point 0.24 nm above thesurface. Clearly, the growth of well ordered films will be

easierwhen the surface coupling is weak. Insofar as our simulations employ generic interac-

tion potentials, we believe that our findings have general implications for theestablishment

of experimental protocols for self assembled surface films of organic molecules with varying

degrees of prescribed disorder.
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VI.0 AN MD SIMULATION OF POLYETHYLENE OXIDE

VI.1 INTRODUCTION

In this chapter, a Molecular Dynamics study of surface-tethered S(CH2CH2O)6CH3 is pre-

sented. In this study, we analyze helix formation and thermal disorder and present the

results of a simulation of surface-tethered 1-thiahexa(ethylene oxide)chains terminated by

methyl groups, i.e., S(EO)6CH3, where EO = −CH2CH2O−. We find that spontaneous

helix formation and details of helix morphology depend on charge partitioning ascribed to

oxygen and the metheylene groups. The effects of varying surface coverage as well as chain-

surface interaction strength indicate that a set of approximately 7
2

helical structures oriented

predominantly normal to the surface at near full coverage. This occurred even though ther-

mal disorder clearly precludes a description based on the concept of a perfect crystalline

monolayer. Thermal fluctuations in chain morphology in the vicinity of the terminal methyl

groups lead to the exposure of oxygen to the external environment. We also find that the

persistence of compact helix-containing domains at partial surface coverage results in the

formation of well-defined cavities or void regions that expose the bare surface, even in the

presence of srong chain-surface attractive interactions.We qualitatively explore and quantify

structural features of self-assembled monolayers of surface tethered polyethylene oxide (PEO)

chains. The detailed morphology of composite, surface-grafted, PEO-containing monolayers

is currently believed to play an important role in conferring resistance of the surface to non-

specific protein adsorption.(76; 77; 78; 79; 80; 81; 82; 83; 84; 85; 86; 87) While these systems

have been the subject of a number of intensive experimental and theoretical investigations,
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there remain unresolved issues that may be at least partially addressed by the judicious use

of MD. For example, the dependence of chain ordering on atomic and surface interaction

potentials can be studied in the presence of statistical and thermal fluctuations. Microscopic

structural features, not readily accessible to experimental probes, can then be examined

under a variety of physical conditions. In particular, we investigate the helical structures

formed from a monolayer of S(EO)6CH3.There exists infrared spectroscopic evidence that

this monolayer consists of 7
2

helices oriented normal to the (gold) tethering surface(82; 87),

and so we attempt to construct a “minimal model” interaction potential, based on a model

for amorphous polyethylene oxide, which results in a good approximation to this particu-

lar morphology. Our simulation indicates that we are reasonably successful if the nearest

neighbor O-O separation distance is chosen as the principal criterion of a 7
2
-like helical or-

der. The model employed in the simulation is described in the following section. The next

section also contains a description of the simulations and introduces various measures used

to characterize structure of the monolayers.

VI.2 MODEL AND SIMULATION PROPERTIES

A united atom representation of a 20-site S(EO)6CH3 molecule is employed in the following

simulation (see Figure 6.1). From a dynamical point of view this united atom simplification

is justified because the first vibrational level for C-H stretch lies far in energy above that

associated with the temperature(290K) of these simulations. From a structural point of view,

the asphericity of the methylene and methyl groups at short range and the modest degree of

C-H charge separation are not expected to play major roles in overall chain morphology. The

intra- and intermolecular parameters in this study are identical, unless otherwise noted, to

those used by Lin et.al.(88) in their MD simulation of amorphous, polydisperse polyethylene

oxide, except that S in our model is generally treated as distinct from O. The total potential

energy of the system,U, consists of the sum of a bonded term, a non-bonded term, and a

surface interaction:

U = Ub + Unb + Usur (VI.1)
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Ub =
∑ 1

2
Kr(4ri)

2 +
1

2
Kθ(4θi)

2 +
1

2
U2

(
1− cos 2φi

)
+

1

2
U3

(
1 + cos 3φi

)
(VI.2)

Here r = (r − rD), where D stands for the SC, CC, and CO equilibrium bond separations,

and (4θ) = (θ − θE), where E is the SCC, CCO, and COC equilibrium bend angles. φ

is a torsion angle; ie., the dihedral angle between the two planes formed by four adjacent

sites associated with the quadruples SCCO, CCOC, and OCCO. The parameters for stretch,

bend, and torsion are given in Table 6.1. For bonded interactions CH2 is assumed to be

identical to CH3.

Table 6.2: Lennard-Jones Parametera

and Charge Partitioningb.

Sites ε,Kcal/mol σ, Å

S-S 0.3971 4.582

CH2 − CH2 0.1201 3.425

CH3 − CH3 0.1501 4.038

O-O 0.0950 2.851

q(0)=-0.326|e|
q(CH2)=0.163|e|
a Unlike site interaction parameters for

ε are determined from the geomet-

ric mean of like site parameters(εij =

(εiεj)
1
2 ).Unlike site interaction pa-

rameters for σ are determined from

the arithmetic mean mean of like site

parameters (σij = 1
2
(σi + σj)).

b q has units of the elementary charge.
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Figure 6.1: Single surface-tethered S(EO)6CH3 molecule consisting of 20 sites in an all

trans configuration, with the S − CH3 vector oriented normal to the surface. The large

filled circle represents the thiol head group, the small filled circles represent the 12 atom

methylene units, the 6 oxygen atoms appear as large empty circles, and the united atom

terminal methyl group is represented by a small filled circle.
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Table 6.1: Stretch, Bend, and Torsion Parameters

Stretch S-C C-C O-C

Kr, Kcal/mol/Å2 590 590 672

ro, Å 1.538 1.538 1.423

Bend S-C-C C-C-O C-O-C

Kθ,Kcal/mol/rad2 125 125 112

θo 114.0 109.0 111.9

Torsion S-C-C-O C-C-O-C O-C-C-O

U2,Kcal/mol -0.503 0 -0.503

U3,Kcal/mol 2.878 2.878 2.878
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Table 6.3: Parameters for the Surface Interactions

Sites A,Kcal/mol*Å12 Ba,Kcal/mol*Å3 zo, Å

S 67 660 358.6 0.269

CH2 55 600 3.396 0.860

CH3 62 350 4.130 0.860

O 63 150 4.167 0.860

a The weak surface interaction case is obtained by

dividing B by 10 for CH2, CH3, andO.

The first non-bonded contribution to the potential energy is a Lennard-Jones interaction

which acts between sites on the same molecule which are separated by three or more sites, as

well as between a given site and those sites associated with all other molecules in the system.

In this case CH2 is distinct from CH3. The second term is a direct electrostatic interaction

between all pairs of partially charged sites in the system. This charge partitioning is assumed

to occur only between the oxygen and methylene units (18 charged sites per molecule). We

employ the same charge assignment as proposed for amorphous polyethylene oxide, which was

determined from experimental data on the dipole moment and equilibrium configuration of

the dimethyl ether molecule. The Lennard-Jones parameters and partial charge assignments

are given in Table 6.2. The non-bonded contribution to U, Unb, takes the form

Unb = ULJ + Uq (VI.3)

ULJ =
∑
sites

[(σ
r

)12

− (σ
r

)6]
(VI.4)

Uq =
∑
sites

qiqj
| ri − rj | (VI.5)

All non-bonded interactions are assumed to terminate at a distance of 1.2 nm; long range

dispersion interactions and electrostatic effects are not included in our model.Finally, the

surface interaction term takes the form(71)

Usur =
A

(z − z0)12
− B

(z − z0)3
(VI.6)
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The strong repulsion at short distances ensures an impenetrable surface, whereas the attrac-

tive portion serves to firmly tether S while influencing the overall structure of the chains.

The surface interaction parameters are given in Table 6.3. Note that the B parameter for

S is larger by a factor of ≈ 100 compared to B for the other groups. In summary, our in-

teraction potential is based on a model for amorphous polyethylene oxide, supplemented by

a chain-surface interaction and strong S-surface tethering.Our simulations cell contains 225

S(EO)6CH3 molecules tethered via a strong short range S-surface interaction. The over-

all chain-surface potential is translation-invariant with respect to directions parallel to the

surface, so that lateral motion is inhibited only by the presence of nearby molecules. The

chains are located in an L × L square planar region subject to periodic boundary conditions

in the lateral direction. The z-axis is chosen normal to the surface which is located in the

z = 0 plane. The cell dimension, L, is adjusted so that the surface area available per chain

varies by steps from that corresponding to a close-packed density of 0.214 nm2 to twice

this value.The simulations were initiated by placing the chains in a vertical orientation with

respect to the tethering surface in a perfect square-planar array. The starting configuration

of each chain was taken as the all-trans form as depicted in Figure 6.1. The thiol sites were

set at 0.24 nm above the z = 0 plane, and the system was then allowed to evolve, subject to

a Nosé- Hoover thermostat(13) that maintained the temperature at 290K (NVT-ensemble).

The equations of motion were integrated using the Beeman algorithm(73; 74) with a time

step of 1 fs to guarantee adequate resolution of the C-C and C-O stretching motions. The

system was allowed to evolve until certain statistical measures of order, such as the density

and orientation profiles, were invariant with respect to any further increases in simulation

time, which was typically in the range of 100-200 ps. The attraction of the surface for the

oxygen , methyl, and methylene groups was chosen as either weak or strong, where, in Ta-

ble 6.3, where B(strong) is listed; note that B(strong) = 10 B(weak). Since the two sets of

simulations yielded nearly identical results for the various averages studied, the figures refer,

with one exception, to the weak field case.
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VI.3 SIMULATION RESULTS

Three types of order are considered. The first is a collective atomic-level density profile of

thechains relative to the tethering surface. The second measure of order is the distribution

of S−CH3 tilt angles relative to the surface normal. The third measure of order consists of

the distribution of various O-O intramolecular separation distances. This function provides a

succinct statistical descriptionof helix morphology at several length scales which is compared

with ideal helical order. These quantitative measures of order are then supplemented by

instantaneous projected images of the collection of chains that provide a qualitative but

informative picture of the behavior of the entire surface array.

The number density profiles consist of plots of the number of sites located at a distance z

+ dz above the surface vs. z with a dz resolution of .00316 nm. The orientation distributions

are plots of the cosines of the tilt angle of the S − CH3 with the unit vector relative to

the surface normal. The cosines of these tilt angles are binned with a resolution of 0.01.

The orientation distribution can be interpreted as the fractional density of chains having

a prescribed projection onto the z-axis. The third measure of order, the intramolecular

separation, is intended to quantify the notion of helicity. This consists of calculating the

average nearest neighbor (NN), 2nd NN, etc., set of O-O Euclidean distances (not z-projected

distances) for each chain, with a dz resolution of .00316 nm, and then averaging over all

molecules in the system. This has the effect of measuring average helix order relative to each

individual molecular frame as opposed to a surface or lab-fixed frame.

At full coverage the chain orientation, shown in Figure 6.3, is decidedly normal to the

surface with a modest though non-negligible dispersion of roughly 7◦. At 3
4

full coverage a

secondary component is evident, located at about 75◦ from upright, while the maximum has

shifted away from upright by about 20◦. Note the factor of ≈ 3 reduction in the maximum

orientation amplitude relative to the full coverage case. At 2
3

full coverage the orientation

distribution has become bimodal, with the maximum now shifted by ≈30◦ from the normal.

Also, at 2
3

full coverage the maximum amplitude has shrunk considerably relative to the

previous case, the overall distribution has broadened, and the secondary component has

become more prominent.
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Figure 6.2: Density profiles for four degrees of surface coverage:(a) full coverage at 0.214nm2

projected surface area per molecule, (b)3
4

full coverage, (c)2
3

full coverage, and (d)1
2

full

coverage. The chain-surface interaction is weak and since the strong surface interaction

causes similar behavior, it is not displayed.
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Figure 6.3: The weak surface-interaction S−CH3 tilt angle distributions. They are presented

as the cosine of the angle that this vector makes with the surface normal vector and are shown

for full surface coverage(solid line), 3
4

full coverage (dashed line), 2
3

full coverage (long dashed

line), and 1
2

full coverage (long-short dashed line). Results for the strong surface interaction

are very similar and are not displayed.
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Figure 6.4: Distributions of intramolecular O-O separation distances for weak chain-surface

interaction are shown for four degrees of surface coverage: (a)full coverage, (b)3
4

full coverage,

(c)2
3

full coverage , and (d)1
2

full coverage. Similar results for the strong surface interaction

are not displayed.
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The distributions of NN, 2nd NN, etc., intramolecular O-O separation distances are shown

in Figure (6.4). At full coverage the NN O-O maximum is located at 0.277 nm. We also find

a small though distinct trans-like satellite peak at 0.365 nm, a second NN O-O maximum at

0.528 nm, and a third located at around 0.79nm. An ideal 7
2

helix morphology gives 0.297 nm

and 0.577 nm for the NN and 2nd NN O-O separations,(89; 90) which implies that the

simulation result is consistent with this structure at short distances, but that discrepancies

arise for larger O-O separations. Incidentally, the ratio of NN to 2nd NN peak locations

differs by only 2% for simulation vs.7
2

helix. At lower surface coverage, the satellite peak

is less distinct whereas the NN O-O peak becomes slightly sharper. Both the z-projected

density profiles and the O-O separation distance distributions vary slightly from full to 1
2

full coverage, whereas the tilt angle distributions are much more sensitive to the degree of

surface packing. This seems to be consistent with a picture of somewhat flexible but intact

helical structures that tend to topple over at reduced coverage.

A series of snapshot views looking down on the surface-tethered array along the z-axis

is presented in Figure 6.6 through Figure 6.10. The size of the connected balls forming the

chains has been scaled down from what would be inferred from more realistic molecular

models so as to provide contrast for the projected structure. The small dark blue spheres

that represent the terminal methyl groups do not form a well-ordered hexagonal pattern; this

is clearly inconsistent with the notion of a perfect lamellar crystal. Also, the prominence

of some of the large yellow spheres representing oxygen indicates that these groups may be

exposed to the external environment. A key feature revealed by this series of snapshots is

the appearance, at close to 1
2

full surface coverage, of well-defined cavities that expose the

bare surface, an effect that persists even in the presence of strong chain-surface interactions.

Insofar as the three measures of ordering considered here show no dramatic changes as the

surface interaction is switched from weak to strong, we arrive at the picture of relatively

robust domains of predominately upright helical molecules( at high surface coverage ) with

a considerable amount of thermal disorder.
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Figure 6.5: The distribution of intramolecular O-O separation distances in the absence of

any electrostatic interactions is shown for the full surface coverage case
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Figure 6.6: The projected snapshot view of all 225 chains as viewed from a vertical position

located above the terminal methyl groups; this picture was taken at full surface coverage.

The small dark blue spheres represent the terminal methyl groups, large yellow spheres are

oxygen, small grey spheres are methylenes, and the small red spheres are sulfur. Even though

the chains are predominately in an upright position and the lateral pattern is roughly hexag-

onal, there exists a considerable departure from the notion of perfect crystalline ordering

which is due to thermal fluctuations.
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Figure 6.7: Snapshot view of the chains at 3
4

full surface coverage. There is a superficial re-

semblance to the full coverage picture; however, a closer inspection reveals that a substantial

fraction of the chains are tilted away from an upright position. This effect is clearly seen in

the associated orientation distribution.
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Figure 6.8: Snapshot view of the chains at 2
3

full surface coverage. There is a close re-

semblance to both the full coverage and the 3
4

full coverage cases; however, the associated

orientation distribution now has a distinctly bimodal character.
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Figure 6.9: Snapshot view of the chains at 1
2

full surface coverage with a weak chain-surface

interaction. There is a qualitative difference between this picture and those associated with

higher coverage, insofar as well-defined cavities or regions completely devoid of chains are

now apparent. The associated orientation distribution still resembles that for the 2
3

full

coverage case. Cavities are not observed at 3
5

full surface coverage, even after equilibration

times of 200 ps, which suggests that they may begin to appear over a rather narrow range

of surface densities.
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Figure 6.10: Snapshot view of the chains at 0.54 full coverage with a strong chain-surface

interaction; note the appearance of a small though well-defined cavity. As in the weak surface

interaction case, for the strong surface interaction case, cavities are not observed at 3
5

full

coverage, although large cavities are apparent at 1
2

full coverage.
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VI.4 SIMULATION RESULTS

We have investigated the types of order that spontaneously develop in surface-tethered PEO

chain molecules as the coverage is varied from close-packed to 1
2

of the close-packed density,

and the strength of the interaction between the tethering surface and the methylene, oxygen,

and terminal methyl groups of the chains is switched from strong to weak. In contrast to

a previous MD study of surface-tethered octadecanethiol molecules we find no tendency for

S(EO)6CH3 to collapse onto the surface as a disordered film at reduced surface coverage and

strong chain-surface attraction. (91; 92) Instead, the PEO chains remain oriented predom-

inately normal to the surface with a structure that resembles a 7
2

helix, thereby producing

well-defined cavity regions which expose the bare surface along with oxygen atoms associated

with domain wall chains.In addition, this study indicates that high resolution density profiles

are poor indicators of average chain morphology, insofar as profile thermal broadening, asso-

ciated mostly with backbone vibrational motion and bending, tends to obliterate structural

features that are not located close to the tethering surface. Direct evidence for this backbone

rocking is provided by the orientation distribution profiles of the S − CH3 vector. In order

to help clarify the situation a helix order parameter distribution is introduced which focusses

on the density of various intramolecular O-O separations. This function provides a compact

measure of helix morphology and order which varies from local separations, corresponding

to nearest neighbor (NN) O-O distances, to long-range separations, which corresponds to

first-last O-O distances. Whereas the nearest neighbor peak at 0.277 nm accords reasonably

well with the ideal 7
2

helix value of 0.297 nm, we observe significant discrepancies at larger

O-O separations. In particular, we find a satellite peak at a separation of 0.365 nm which

is attributed to a distinct locally extended trans-like chain morphology and which accounts

for 7% of the total (NN) population. We conclude that surface-tethered S(EO)6CH3, as

modeled in our simulation, does resemble a 7
2

helix for short-range correlations, but that

thermal fluctuations significantly disrupt long-range helical order.Another principal finding

of this study is the importance of intermolecular interactions, and in particular, partial

charge-based electrostatic interactions, in spontaneous helix formation and morphology. In

fact, we have performed Brownian dynamics simulations on a single tethered S(EO)6CH3
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chain which, under room temperature conditions, produces a disordered structure with an

O-O distribution which is not in accord with what we observe in our MD simulation of 225

interacting molecules. The significance of partial charge assignments is suggested by the fact

that, in the complete absence of charge separation, the O-O distance distribution shows a

very prominent (NN) trans-like peak located at 0.352 nm. While an explicit representation

of the methylene hydrogen atoms might be expected to have consequences for detailed helix

morphology, we do not believe that this can serve as a major factor in helix formation in

PEO chains. Furthermore, we found that helix morphology depends to some degree on the

details of charge partitioning; in fact, excessive charge separation between oxygen and the

methylenes resulted in collapse of the helix morphology into a set of compact though disor-

dered spiral-like structures.The presence of considerable disorder in the central and terminal

portions of the chains, as measured in a laboratory-fixed reference frame, is apparent from

both the density profiles and S−CH3 orientation distributions. Even at close packed density

the combination of backbone reorientation and bond bending leads to considerable exposure

to the external environment of O in the terminal methoxy group. At first this pronounced

disorder might seem incompatible with the infrared transition dipole-dipole coupling theory

of Kobayashi and Sakashita(93) (K-S), as these authors base their analysis on a perfect lamel-

lar crystal structure. However, a single unit transition dipole is assumed by K-S to consist of

7 (PEO) chemical units (a unit cell), which is larger than an entire chain in our simulation.

In addition, the lateral disorder associated with an imperfect hexagonal lattice, even when

combined with orientation disorder in the transition dipoles, may have only a minor influence

on the value of the so-called geometric factor, which consists of an orientationally weighted

lattice sum and which plays a central role in the IR frequency shift predicted by K-S.

108



VII.0 CONCLUSION

In this dissertation, I have shown that Molecular Dynamics (MD) can provide very important

insights into statistical and thermophysical properties of systems that may not be readily

observable by experimental means. Since the presence of interfaces plays a fundamental

role in fields ranging from biology to metallurgy, understanding these interfacial properties

at the microscopic level will assist in fields as diverse as drug design and the control of

surface defects in semiconductors. I have shown how MD can assist in providing a detailed

understanding of interfaces at the molecular level. Chapter I provided an introduction to

surfaces and surface properties. Chapter II gave a brief introduction to molecular dynamics

simulations. I also discussed some of the limitations of this method and how their impact

may be reduced.

In chapter III, I reported MD simulation results of two simple liquids having little affinity

to mix. Since the interface breaks the symmetry of a bulk system, I had to introduce the

notions of an anisotropic stress tensor and non-uniform density profiles. The simulations

were used to calculate thermodynamic and interfacial properties and to infer a description

of the behavior of these system quantities. Using the normal and transverse components of

the pressure tensor we evaluated the surface tension and noticed an unusual increase with

increasing temperature. Using basic thermodynamic arguments, I introduced a pressure

induced void transfer mechanism to explain this behavior. I also provided a brief physical

interpretation of the surface tension maximum. I hope to conduct further simulation studies

with more complex fluids to see if they behave in a similar manner.

The next chapter provided a study to determine if a series of non-equilibrium simulations

would allow one to predict the surface tension behavior of two immiscible liquids. I used the
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development introduced by C. Jarzynski which states that one can determine equilibrium

quantities from an ensemble of non-equilibrium thermodynamic “measurements” if done

under the appropriate conditions of statistical averaging. Since this is a more general method

than the stress tensor approach, I simulated its compliance with the interface of two simple

immiscible fluids. I found that both the Jarzynski and IK1 approaches can be useful tools in

simulating immiscible liquid systems. The Jarzynski relation is quite effective at extracting

free energy differences associated with interfacial area changes in systems comprised of closely

spaced, interacting interfaces such as a lipid bilayer. Due to the computational cost, the

Jarzynski relation is not a practical method to obtain the interfacial tension of isolated

interfaces, at least for immiscible binary fluids where the IK1 method is still the best option.

Secondly, we find that the homogeneous dilation, fast-switch protocol produces free energy

differences that are nearly identical to those obtained by slower switching. This implies

that computation costs can be greatly reduced by using a fast-switching Jarzynski method

to study a strongly interacting lamellar type system. We concluded that the discrepancy

between ∆FIK1 and ∆FJ can be attributed to the interactions between the interfaces which

results in the compression of the more volatile of the two bulk phases. This effect is taken

into account by ∆FJ , whereas it is implicitly excluded in the computation of ∆FIK1. In

other words, the change in free energy calculated by the IK1 method accounts only for

the interfacial region, whereas the Jarzynski method free energy difference incorporates the

bulk in addition to the interfacial properties. Presently it is not possible to separate these

contributions in the Jarzynski relationship, so due to the interfacial interaction and the

corresponding discrepancy between ∆FIK1 and ∆FJ , the free energies calculated by the two

methods can not be compared directly for this type of system.

An MD study of long tethered alkane chains was presented in chapter V. We found a

distinct difference in the types of order that developed when the coverage was on the order

of 1
2

of the close packed coverage, depending on the strength of the interaction between

the surface and the methyl and methylene groups of the chain. In the weak coupling case,

α = 1
10

, the chains formed ordered islands where the chains were nearly upright and that

coexisted with regions of the surface that contained no chains. This area could be viewed

as a cavity. The distribution of tilt angles was narrowly peaked about 20◦ from vertical and
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the density profile was highly structured. We found that the strong coupling case was quite

different. For the strong coupling case, α = 1, the chains formed small islands or ordered

regions that coexisted with disordered chains that completely covered the tethering surface.

The distribution of tilt angles was broad and there seemed to be a significant fraction of

gauche defects over all sites in the chains. The density profile was also correspondingly less

structured and decreased in magnitude as the height above the surface exceeded 1.2 nm.

For the intermediate coupling case, 1
2
≤ α ≤ 3

4
, the island of chains remained in coexis-

tence with the cavity. In the narrow range of coupling, 3
4
< α ≤ 7

8
, the chain arrangement

changed, and the ordering was not as extensive. In this case, the cavity began to fill with

those chains which were strongly tilted. Our simulations of sub-monolayer alkanethiol films

are consistentwith experimental findings and should help understand why weak coupling

results in well-ordered patterns similar to those found in the laboratory. Since the simu-

lations we conducted employed generic interaction potentials, we believe that our findings

have general implications for the establishment of experimental protocols for self assembled

surface films of organic molecules with varying degrees of prescribeddisorder.In chapter VI,

we used MD to investigate the types of order that spontaneously develop in surface-tethered

PEO chain molecules as the coverage is varied from close-packed to 1
2

of the close-packed

density, and the strength of the interaction between the tethering surface and the methy-

lene, oxygen, and terminal methyl groups of the chains is switched from strong to weak. At

the lowest surface coverage we found that the PEO chains remain oriented predominately

normal to the surface with a structure that resembles a 7
2

helix, thereby producing well-

defined cavity regions which expose the bare surface along with oxygen atoms associated

with domain wall chains. In addition, our MD study indicated that high resolution density

profiles are poor indicators of average chain morphology, insofar as profile thermal broad-

ening, associated mostly with backbone librational motion and bending, tends to obliterate

structural features that are not located close to the tethering surface. Another principal

finding of this study was the importance of intermolecular interactions, and in particular,

partial charge-based electrostatic interactions, in spontaneous helix formation and morphol-

ogy. We also found that the significance of partial charge assignments is suggested by the

fact that the O-O distance distribution shows a very prominent (NN) trans-like peak located
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at 0.352 nm when charge separation is not present. Using the density profiles and S −CH3

orientation distributions, we were able to discern considerable disorder in the center and

ends of the surface-tethered molecules. One conclusion of the polyethylene oxide study was

that the lateral disorder associated with an imperfect hexagonal lattice, even when combined

with orientation disorder in the transition dipoles, may have only a minor influence on the

experimentally observed IR frequency shift associated with the 7
2

helix morphology.

The overall results clearly show the importance of MD simulations in helping to refine

some of the models of partial monolayers and interfaces. I have also shown how simulation

combined with traditional methods may be used to develop new models, and in effect,

developed novel means of describing interfaces and interfacial properties. My purpose for

engaging in these studies was to show the importance of MD simulation studies and how

they can be used to augment and refine the theoretical predictions of models of liquid-liquid

interfaces and surface-tethered arrays of molecules.
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APPENDIX A

SIMULATION CODE FOR CHAPTER III

program md3a0
c Revised 11-15-00 for surface tension, liquid-liquid interface
c u(z), pchk added 10-23-00. alpha part added, along with correction
c to the integration algorithm 7nov02. incremental output has been
c added ~oct02. this program was parallelized to which reduced the
c computational time by a factor of 4 on jan03.

parameter (np=2000)
dimension x(np),y(np),z(np),u(np),v(np),w(np),p(np)
dimension ax(np),ay(np),az(np),axm(np),aym(np),azm(np),ap(np)
dimension lr(400000)
dimension ve(500,3),vf(500,3),die(500,3),dif(500,3)
dimension g(500),icount(500),nxstart(np)
double precision rhoz(0:400),sxx(0:400),syy(0:400),szz(0:400),

x pn(0:400),pt(0:400),ue(0:400)
c
c common blocks
c

common /cord/ x,y,z,u,v,w
common /cacc/ ax,ay,az,axm,aym,azm
common /ctab/ lr,icount,nxstart
common /cvef/ ve,vf,die,dif
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm1,rp1
common /cprf/ rhoz,sxx,syy,szz,pn,pt,ue
include ’mpif.h’
include ’parallel.h’
real*4 ts,te,tsset,teset,termt
real*8 ws,we,wsset,weset,wallt

call par_begin
cpu_accelt = 0.
wall_accelt = 0.
commt = 0.
cpuct = 0.
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cputable = 0.
walltable = 0.
ictable = 0
call seconds(ts,ws)

c
c open files
c

open(2,file=’md32’)
if (master) open(3,file=’md3out’)
open(8,file=’md38’)

c
c read in startup information
c

read(2,1) j0,jmax,npart,jrest
1 format(4i10)
2 format(6f10.5)

read(2,2) dt,ene,xmax,ymax,zmax,rm1
c

close(2)
c rm1 is the range of the interaction
c rp1 is the square of the corresponding distance
c for use in construction of the neiqhbor table.
c
c list what has been provided

if (master) write(3,1) j0,jmax,npart,jrest
if (master) write(3,2) dt,ene,xmax,ymax,zmax,rm1

c
c rework the range parameters

rp1=(rm1+0.3)**2
rm1=rm1**2

c
c specify half-box size

xmax2=0.5*xmax
ymax2=0.5*ymax
zmax2=0.5*zmax

c
c generate pi

pi=4.*atan(1.)
dt6=dt*dt/6.
dtv=dt/6.

c read in restart information
call restart(etot,ek,jt,npart,1)

c
c set up potential and force

epsi=1.
sig =1.

palpha =0.
call pot(epsi,sig,palpha)

c
c scale to desired energy

scale=1.+(ene-etot)/ek
if(scale.lt.0.001) scale = 0.001
scale=sqrt(scale)
if (master) write(6,19) ene,etot,ek,scale

19 format(1x,4e13.4)
do 22 j=1,np

u(j)=u(j)*scale
v(j)=v(j)*scale
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w(j)=w(j)*scale
22 continue
c
c set initial values

ek1=0.
ek2=0.
et1=0.
et2=0.

do 9 j=1,500
icount(j)=0
g(j)=0.

9 continue
do 10 k=0,400
rhoz(k)=0.d0
sxx(k)=0.d0
syy(k)=0.d0
szz(k)=0.d0
pn(k)=0.d0
pt(k)=0.d0
ue(k)=0.d0

10 continue
c set up neighbor table

isum = 0
call table(isum)

100 continue
call driver(ek,etot,dtv,dt6,dt)

jt=jt+1
ek1=ek1+ek
ek2=ek2+ek*ek
et1=et1+etot
et2=et2+etot*etot

101 format(i8,2e15.5)
if(mod(jt,6).eq.0) call table(isum)
if(mod(jt,jrest).eq.0) call restart(etot,ek,jt,npart,2)
if(mod(jt,10).eq.0) call pchk
if(jt.lt.jmax) go to 100

c
c prepare output

qq=1./(1.*jt)
ek1=ek1*qq
ek2=ek2*qq-ek1*ek1
et1=et1*qq
et2=et2*qq-et1*et1

if (master) write(3,31) ek1,et1
if (master) write(3,31) ek2,et2

31 format(2e15.6)
c
c process pair function results

do 300 j=1,500
r=0.01*j
vol=4.*pi*(r*r+.01*r+.01*.01/3.)*.01
vol=vol/2.

g(j)=icount(j)/(1.*isum*npart*vol)
300 continue

if (master) write(3,33)(j,g(j),j=75,500)
33 format(i5,e15.4)

do 350 j=0,400
pn(j)=pn(j)/(xmax*ymax*jt)
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pt(j)=pt(j)/(2.*xmax*ymax*jt)
rhoz(j)=rhoz(j)/(xmax*ymax*0.1*jt)
sxx(j)=sxx(j)/(xmax*ymax*0.1*jt)
syy(j)=syy(j)/(xmax*ymax*0.1*jt)
szz(j)=szz(j)/(xmax*ymax*0.1*jt)
ue(j)=ue(j)/(xmax*ymax*0.1*jt)

350 continue
if (master) then

write(12,37)(0.1*j,rhoz(j),sxx(j),syy(j),szz(j),j=0,400)
37 format(5e15.5)

write(13,38)(0.1*j,rhoz(j),pn(j),pt(j),j=0,400)
38 format(4e15.5)

write(14,39)(0.1*j,rhoz(j),ue(j),j=0,400)
39 format(3e15.5)

endif
c
c save final configuration

call restart(etot,ek,jt,npart,2)
close(2)
if (master) close(3)
close(8)
call par_end
call seconds(te,we)
te = te - ts
we = we - ws
if (master) then

print *,
. ’ cpu time wall time’

print *,’time in accel ’,cpu_accelt,wall_accelt
print *,’communicate time ’,cpuct,commt
print *,’total time ’,te,we

endif

if (master) stop ’md3 finished’
end
subroutine driver(ek,etot,dtv,dt6,dt)
parameter (np=2000)
dimension x(np),y(np),z(np),u(np),v(np),w(np),p(np)
dimension ax(np),ay(np),az(np),axm(np),aym(np),azm(np),ap(np)
dimension axp(np),ayp(np),azp(np),nq(np),ymx(4)
double precision rhoz(0:400),sxx(0:400),syy(0:400),szz(0:400),

x pn(0:400),pt(0:400),ue(0:400)
c common blocks
c

common /cord/ x,y,z,u,v,w
common /cacc/ ax,ay,az,axm,aym,azm
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm3,rp1
common /cprf/ rhoz,sxx,syy,szz,pn,pt,ue

c
c Use the Beeman algorithm

include ’mpif.h’
include ’parallel.h’

do 100 j=1,np
zmx=1.
x(j)=x(j)+(dt*u(j)+dt6*(4.*ax(j)-axm(j)))*zmx
y(j)=y(j)+(dt*v(j)+dt6*(4.*ay(j)-aym(j)))*zmx
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z(j)=z(j)+(dt*w(j)+dt6*(4.*az(j)-azm(j)))*zmx
c
c invoke periodic boundary conditions

if(x(j).gt.xmax) x(j)=x(j)-xmax
if(x(j).lt.0.0) x(j)=x(j)+xmax
if(y(j).gt.ymax) y(j)=y(j)-ymax
if(y(j).lt.0.0) y(j)=y(j)+ymax
if(z(j).gt.zmax) z(j)=z(j)-zmax
if(z(j).lt.0.0) z(j)=z(j)+zmax

100 continue
call accel(axp,ayp,azp,etot)
ek=0.
do 200 j=1,np

u(j)=u(j)+dtv*(2.*axp(j)+5.*ax(j)-axm(j))
v(j)=v(j)+dtv*(2.*ayp(j)+5.*ay(j)-aym(j))
w(j)=w(j)+dtv*(2.*azp(j)+5.*az(j)-azm(j))
ek=ek+u(j)*u(j)+v(j)*v(j)+w(j)*w(j)

c
c shift forces

axm(j)=ax(j)
aym(j)=ay(j)
azm(j)=az(j)
ax(j)=axp(j)
ay(j)=ayp(j)
az(j)=azp(j)

c density and stress profiles
ij=10*z(j)
rhoz(ij)=rhoz(ij)+1.d0
sxx(ij)=sxx(ij)+u(j)*u(j)
syy(ij)=syy(ij)+v(j)*v(j)
szz(ij)=szz(ij)+w(j)*w(j)

200 continue
ek=ek/(2.*np)
etot=etot+ek
return
end

subroutine accel(ax,ay,az,etot)
parameter (np=2000)
dimension lr(400000),icount(500),nxstart(np)
dimension x(np),y(np),z(np),u(np),v(np),w(np),p(np)
dimension ax(np),ay(np),az(np),ap(np),work(np)
dimension ve(500,3),vf(500,3),die(500,3),dif(500,3)
double precision rhoz(0:400),sxx(0:400),syy(0:400),szz(0:400),

x pn(0:400),pt(0:400),ue(0:400)
double precision rhozc(0:400),sxxc(0:400),syyc(0:400),

x szzc(0:400),pnc(0:400),ptc(0:400),uec(0:400)
c
c common blocks
c

common /cord/ x,y,z,u,v,w
common /cvef/ ve,vf,die,dif
common /ctab/ lr,icount,nxstart
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm1,rp1
common /cprf/ rhozc,sxxc,syyc,szzc,pnc,ptc,uec
include ’mpif.h’
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include ’parallel.h’
real*4 accels,accele,dstime,detime
real*8 ws,we,wstime,wetime

if (master.and.test) print *,this_process,’ Entering accel’
call seconds(accels,ws)
ep=0.
etot=0.
do 20 j=1,np

ax(j)=0.
ay(j)=0.
az(j)=0.

20 continue
do j=0,400

rhoz(j)=0.
sxx(j)=0.
syy(j)=0.
szz(j)=0.
pn(j)=0.
pt(j)=0.
ue(j)=0.

enddo
nx=1
do 50 j=this_process+1,np-1,numprocs

ij=10*z(j)
nx=nxstart(j)

30 k=lr(nx)
nx=nx+1
if(k.eq.0) go to 50
ik=10*z(k)

xx=x(j)-x(k)
yy=y(j)-y(k)
zz=z(j)-z(k)
if(xx.gt.xmax2) xx=xx-xmax
if(xx.lt.-xmax2) xx=xx+xmax
if(yy.gt.ymax2) yy=yy-ymax
if(yy.lt.-ymax2) yy=yy+ymax
if(zz.gt.zmax2) zz=zz-zmax
if(zz.lt.-zmax2) zz=zz+zmax
rr=xx*xx+yy*yy+zz*zz
if(rr.gt.rm1) go to 45

if(j.le.1000) then
if(k.le.1000) then

npot=2
else

npot=3
end if

else
if(k.gt.1000) then

npot=1
else

npot=3
end if

end if
rr=sqrt(rr)

r=100.*rr
if(r.lt.30) go to 60
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l=int(r)
alpha=r-l
phi=ve(l,npot)+alpha*die(l,npot)
f=vf(l,npot)+alpha*dif(l,npot)

qk=f/rr
qj=qk*xx
ax(j)=ax(j)+qj
ax(k)=ax(k)-qj

sxx(ij)=sxx(ij)+0.5*qj*xx
sxx(ik)=sxx(ik)+0.5*qj*xx

qj=qk*yy
ay(j)=ay(j)+qj
ay(k)=ay(k)-qj

syy(ij)=syy(ij)+0.5*qj*yy
syy(ik)=syy(ik)+0.5*qj*yy

qj=qk*zz
az(j)=az(j)+qj
az(k)=az(k)-qj

szz(ij)=szz(ij)+0.5*qj*zz
szz(ik)=szz(ik)+0.5*qj*zz

ep=ep+phi
ue(ij)=ue(ij)+0.5*phi
ue(ik)=ue(ik)+0.5*phi

c Pressure tensor components:
if(z(j).gt.z(k)) then

qmax=z(j)
qmin=z(k)

else
qmax=z(k)
qmin=z(j)

end if
il=10*qmin
ih=10*qmax
za=abs(zz)

qn=qk*za
qt=qk*(xx*xx+yy*yy)

do 100 kk=il,ih
zq=0.1*(kk+1)

if(zq.lt.qmin .or. zq.gt.qmax) go to 45
pn(kk)=pn(kk)+qn
pt(kk)=pt(kk)+qt/za

100 continue
45 go to 30
50 continue

call seconds(dstime,wstime)
call gsum(ep,1,work)
call gsum(ax,np,work)
call gsum(ay,np,work)
call gsum(az,np,work)
call gdsum(sxx(0),401,work)
call gdsum(syy(0),401,work)
call gdsum(szz(0),401,work)
call gdsum(pn(0),401,work)
call gdsum(pt(0),401,work)
call gdsum(ue(0),401,work)
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call seconds(detime,wetime)
cpuct = cpuct + detime - dstime
commt = commt + wetime - wstime

do j=0,400
sxxc(j)=sxxc(j)+sxx(j)
syyc(j)=syyc(j)+syy(j)
szzc(j)=szzc(j)+szz(j)
pnc(j)=pnc(j)+pn(j)
ptc(j)=ptc(j)+pt(j)
uec(j)=uec(j)+ue(j)

enddo
etot=ep/(1.*np)
call seconds(accele,we)

cpu_accelt = cpu_accelt + accele - accels
wall_accelt = wall_accelt + we - ws
if (master.and.test) print *,this_process,’ Leaving accel’

return
60 if (master) write(3,1) r,j,k
1 format(’ r =’,e10.4,2i5)

stop ’Range trouble’
end

subroutine restart(etot,ek,jt,npart,ix)
parameter (np=2000)
dimension x(np),y(np),z(np),u(np),v(np),w(np),p(np)
dimension ax(np),ay(np),az(np),axm(np),aym(np),azm(np),ap(np)

c common blocks
c

common /cord/ x,y,z,u,v,w
common /cacc/ ax,ay,az,axm,aym,azm
include ’mpif.h’
include ’parallel.h’

5 format(2i10,2e14.6)
6 format(6f13.6,I6)
7 format(6f13.6,I6)

jn=8
if(ix.eq.2) go to 100
read(jn,5) jt,npart,etot,ek
read(jn,6)(x(j),y(j),z(j),u(j),v(j),w(j),p(j),j=1,np)
read(jn,7)(ax(j),ay(j),az(j),axm(j),aym(j),azm(j),ap(j),j=1,np)
return

100 rewind(jn)
if (master) then

write(jn,5) jt,npart,etot,ek
write(jn,6)(x(j),y(j),z(j),u(j),v(j),w(j),j,j=1,np)
write(jn,7)(ax(j),ay(j),az(j),axm(j),aym(j),azm(j),j,j=1,np)

endif
return
end

subroutine pot(epsi,ri,palpha)
dimension ve(500,3),vf(500,3),die(500,3),dif(500,3)
common /cvef/ ve,vf,die,dif
do 45 j=1,500

r=0.01*j
ve(j,1)= 4.*epsi*( (ri/r)**12 - (ri/r)**6 )
vf(j,1)=24.*epsi*(2.*(ri/r)**12 - (ri/r)**6 )/r
ve(j,2)=2.0*ve(j,1)
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vf(j,2)=2.0*vf(j,1)
ve(j,3)= 4.*epsi*( (1.2*ri/r)**12 - palpha*(ri/r)**6 )
vf(j,3)=24.*epsi*(2.*(1.2*ri/r)**12 - palpha*(ri/r)**6 )/r

45 continue
do 92 k=1,3
do 90 j=1,499

die(j,k)=ve(j+1,k)-ve(j,k)
dif(j,k)=vf(j+1,k)-vf(j,k)

90 continue
92 continue

return
end
subroutine table(isum)
parameter (np=2000)
dimension x(np),y(np),z(np),u(np),v(np),w(np),p(np)
dimension lr(400000),icount(500),nxstart(np)

c common blocks
c

common /cord/ x,y,z,u,v,w
common /ctab/ lr,icount,nxstart
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm1,rp1

xmax3=xmax2*ymax2
nflag=0
isum=isum+1
nx=1

do 50 j=1,np-1
nxstart(j)=nx

do 48 k=j+1,np
xx=abs(x(j)-x(k))
yy=abs(y(j)-y(k))
zz=abs(z(j)-z(k))
if(xx.gt.xmax2) xx=xx-xmax
if(yy.gt.ymax2) yy=yy-ymax
if(zz.gt.zmax2) zz=zz-zmax
rr=xx*xx+yy*yy+zz*zz
if(rr.gt.rp1) go to 45
lr(nx)=k
nx=nx+1

if(nx.gt.400000) then
1 format(’Trouble, nx =’,i6,2i5)

end if
45 if(rr.gt.xmax3) go to 48

r=sqrt(rr)
ix=100*r+.5
if(ix.gt.500) go to 48
icount(ix)=icount(ix)+1

48 continue
lr(nx)=nflag
nx=nx+1

50 continue
return
end
subroutine pchk
parameter (np=2000)
dimension x(np),y(np),z(np),u(np),v(np),w(np),p(np)
common /cord/ x,y,z,u,v,w

px=0.
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py=0.
pz=0.

do 10 j=1,np
px=px+u(j)
py=py+v(j)
pz=pz+w(j)

10 continue
px=px/(1.*np)
py=py/(1.*np)
pz=pz/(1.*np)

do 20 j=1,np
u(j)=u(j)-px
v(j)=v(j)-py
w(j)=w(j)-pz

20 continue
return
end
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APPENDIX B

SIMULATION CODE FOR CHAPTER IV

program newvt1
c Revised 11-15-00 for surface tension, liquid liquid interface
c u(z), pchk added 10-23-00. thermostat added on 10sep02. last
c updated in sep03. interfacial area change added on 29oct03.
c system separation added 21NOV03. this program works well,
c and should be suitable for L-J canonical studies! 25NOV03
c

parameter (np=1024,nts=3)
dimension x(np),y(np),z(np),u(np),v(np),w(np),nn(np)
dimension ax(np),ay(np),az(np),xm(np),ym(np),zm(np),mm(np)
dimension n(np),m(np)
dimension lr(400000),ut(np),vt(np),wt(np)
dimension ve(500,3),vf(500,3),die(500,3),dif(500,3)
dimension g(500),icount(500)
dimension tr(nts),trv(nts),trf(nts),qmr(nts)
double precision rhoz(0:320),sxx(0:320),syy(0:320),szz(0:320),

x pn(0:320),pt(0:320),ue(0:320),rhoz1(0:320),rhoz2(0:320)
double precision ek1,ek2,et1,et2

c
c common blocks
c

common /cord/ x,y,z,u,v,w,ut,vt,wt,nn,mm
common /cacc/ ax,ay,az,xm,ym,zm,n,m
common /ctab/ lr,icount,isum
common /cvef/ ve,vf,die,dif
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm1,rp1
common /cprf/ rhoz,sxx,syy,szz,pn,pt,ue,rhoz1,rhoz2
common /ctcf/ dt,dt2,d2t,zmx

c
c Common block for thermostat variables
c

common /ctos/ tr,trv,trf,qmr,ttr
c
c open files
c

open(2,file=’md32’)
open(3,file=’md3out’)
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open(8,file=’md38’)
c
c read in startup information
c

read(2,1) j0,jmax,npart,jrest
1 format(4i10)
2 format(6f10.5)
3 format(2f10.2)

read(2,2) dt,ene,xmax,ymax,zmax,rm1
c
c Thermostat variables
c

read(2,3) qmr(1),ttr
do 10 j=2,nts

qmr(j)=qmr(1)/(1.*np)
10 continue

c
close(2)

c
c rm1 is the range of the interaction
c rp1 is the square of the corresponding distance
c for use in construction of the neiqhbor table.
c
c list what has been provided
c

write(3,1) j0,jmax,npart,jrest
write(3,2) dt,ene,xmax,ymax,zmax,rm1

c
c rework the range parameters

rp1=(rm1+0.3)**2
rm1=rm1**2

c
c specify half-box size

xmax2=0.5*xmax
ymax2=0.5*ymax
zmax2=0.5*zmax

c
c generate pi

pi=4.*atan(1.)
dt2=dt*dt
d2t=dt/2.

c
c read in restart information
c

call restart(etot,ek,jt,npart,1,mm,m)
c
c set up potential and force
c

epsi=1.
sig =1.

palpha =0.
call pot(epsi,sig,palpha)

c
zmx = 1.

c
c set initial values
c
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ek1=0.
ek2=0.
et1=0.
et2=0.

c
c Set thermostat variables
c

do 12 j=1,nts
tr(j)=0.
trv(j)=0.
trf(j)=0.

12 continue
do 8 j=1,np

ut(j)=0.
vt(j)=0.
wt(j)=0.

8 continue
do 9 j=1,500

icount(j)=0
g(j)=0.

9 continue
do 1000 k=0,320

rhoz(k)=0.d0
rhoz1(k)=0.d0
rhoz2(k)=0.d0

sxx(k)=0.d0
syy(k)=0.d0
szz(k)=0.d0
pn(k)=0.d0
pt(k)=0.d0
ue(k)=0.d0

1000 continue
c set up neighbor table

isum = 0
call table(isum)

c
c Determine the Kinetic energy
c

do 11 i=1,np
ek=ek+u(i)*u(i)+v(i)*v(i)+w(i)*w(i)

11 continue
ek=ek/(1.*np)
trf(1)=(ek-3.*ttr)*np

100 continue
call driver(isum,icount,jt,ek,etot,mm,m)

jt=jt+1
ek1=ek1+ek
ek2=ek2+ek*ek
et1=et1+etot
et2=et2+etot*etot

write(6,101) jt,ek,etot
101 format(i8,2e17.8)

if(mod(jt,6).eq.0) call table(isum)
if(mod(jt,jrest).eq.0) call restart(etot,ek,jt,npart,2,mm,m)
if(mod(jt,25).eq.0) call pchk
if(jt.lt.jmax) go to 100

c
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c prepare output
c

qq=1./(1.*jt)
ek1=ek1*qq
ek2=ek2*qq-ek1*ek1
et1=et1*qq
et2=et2*qq-et1*et1
write(3,31) ek1,et1
write(3,31) ek2,et2

c write(6,19) jt,ene,etot,ek
c write(6,*) ek
19 format(4e15.6)
31 format(2e15.6)

c
c process pair function results
c

do 300 j=1,500
r=0.01*j
vol=4.*pi*(r*r+.01*r+.01*.01/3.)*.01
vol=vol/2.
g(j)=icount(j)/(1.*isum*npart*vol)

300 continue
write(3,33)(j,g(j),j=75,500)

33 format(i5,e15.4)
c

do 350 j=0,320
pn(j)=pn(j)/(xmax*ymax*jt)
pt(j)=pt(j)/(2.*xmax*ymax*jt)
rhoz(j)=rhoz(j)/(xmax*ymax*0.1*jt)

rhoz1(j)=rhoz1(j)/(xmax*ymax*0.1*jt)
rhoz2(j)=rhoz2(j)/(xmax*ymax*0.1*jt)

sxx(j)=sxx(j)/(xmax*ymax*0.1*jt)
syy(j)=syy(j)/(xmax*ymax*0.1*jt)
szz(j)=szz(j)/(xmax*ymax*0.1*jt)
ue(j)=ue(j)/(xmax*ymax*0.1*jt)

350 continue
write(12,37)(0.1*j,rhoz(j),sxx(j),syy(j),szz(j),j=0,320)

37 format(5e15.5)
write(13,38)(0.1*j,rhoz(j),pn(j),pt(j),j=0,320)

38 format(4e15.5)
write(14,39)(0.1*j,ue(j),j=0,320)

39 format(2e15.5)
write(15,40)(0.1*j,rhoz(j),rhoz1(j),rhoz2(j),j=0,320)

40 format(4e15.5)
c
c save final configuration
c

call restart(etot,ek,jt,npart,2,mm,m)
close(2)
close(3)
close(8)
end

subroutine driver(isum,icount,jt,ek,etot,mm,m)
parameter (np=1024,nts=3)
dimension x(np),y(np),z(np),u(np),v(np),w(np),nn(np)
dimension ax(np),ay(np),az(np),xm(np),ym(np),zm(np),mm(np)
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dimension axp(np),ayp(np),azp(np),nq(np),ymx(4)
dimension n(np),m(np)
dimension ut(np),vt(np),wt(np)
dimension trt(nts),tr(nts),trv(nts),trf(nts),qmr(nts)
double precision rhoz(0:320),sxx(0:320),syy(0:320),szz(0:320),

x pn(0:320),pt(0:320),ue(0:320),rhoz1(0:320),rhoz2(0:320)
double precision ek1,ek2,et1,et2

c common blocks
c

common /cord/ x,y,z,u,v,w,ut,vt,wt,nn
common /cacc/ ax,ay,az,xm,ym,zm,n
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm3,rp1
common /cprf/ rhoz,sxx,syy,szz,pn,pt,ue,rhoz1,rhoz2
common /ctos/ tr,trv,trf,qmr,ttr
common /ctcf/ dt,dt2,d2t,zmx

c
c Use the Velocity Verlet Algorithm
c

ek=0.

do 99 j=1,np
c
c UPDATE THE POSITIONS & DETERMINE VELOCITIES
c

x(j)=x(j)+dt*u(j)+0.5*dt2*(ax(j)*zmx)
y(j)=y(j)+dt*v(j)+0.5*dt2*(ay(j)*zmx)
z(j)=z(j)+dt*w(j)+0.5*dt2*(az(j)*zmx)

c
c invoke periodic boundary conditions
c

if(x(j).gt.xmax) x(j)=x(j)-xmax
if(x(j).lt.0.0) x(j)=x(j)+xmax
if(y(j).gt.ymax) y(j)=y(j)-ymax
if(y(j).lt.0.0) y(j)=y(j)+ymax
if(z(j).gt.zmax) z(j)=z(j)-zmax
if(z(j).lt.0.0) z(j)=z(j)+zmax

u(j)=u(j)+0.5*dt*(ax(j)*zmx)
v(j)=v(j)+0.5*dt*(ay(j)*zmx)
w(j)=w(j)+0.5*dt*(az(j)*zmx)
ek=ek+u(j)*u(j)+v(j)*v(j)+w(j)*w(j)

99 continue
c
c DETERMINE THE THERMOSTAT QUANTITIES
c

trf(1)=(ek-3.*ttr*np)-trv(1)*trv(2)/qmr(2)
trf(2)=trv(1)**2/qmr(1)-ttr-trv(2)*trv(3)/qmr(3)
trf(nts)=trv(2)**2/qmr(2)-ttr
do 101 j=1,nts

tr(j)=tr(j)+trv(j)*dt+0.5*dt2*trf(j)
trv(j)=trv(j)+0.5*dt*trf(j)

101 continue
c
c DETERMINE NEW ACCELERATION
c

call accel(axp,ayp,azp,etot)

127



ek=0.
c
c UPDATE THE VELOCITIES
c

do 200 j=1,np
c

u(j)=u(j)+0.5*dt*axp(j)*zmx
v(j)=v(j)+0.5*dt*ayp(j)*zmx
w(j)=w(j)+0.5*dt*azp(j)*zmx
ek=ek+u(j)*u(j)+v(j)*v(j)+w(j)*w(j)

c
c SET TEMPORARY VELOCITY
c

ut(j) = u(j)
vt(j) = v(j)
wt(j) = w(j)

200 continue
c
c THERMOSTAT SECTION II
c

trf(1)=(ek-3.*ttr*np)-trv(1)*trv(2)/qmr(2)
trf(2)=trv(1)**2/qmr(1)-ttr-trv(2)*trv(3)/qmr(3)
trf(nts)=trv(2)**2/qmr(2)-ttr

do 1011 j=1,nts
tr(j)=tr(j)+trv(j)*dt+0.5*dt2*trf(j)
trv(j)=trv(j)+0.5*dt*trf(j)
trt(j)=trv(j)

1011 continue

c
c ITERATIVE LOOP & NEW ALPHA
c

do 220 L=1,6
ek=0.

do 230 j=1,np
u(j)= ut(j) - 0.5*dt*trv(1)*u(j)/qmr(1)
v(j)= vt(j) - 0.5*dt*trv(1)*v(j)/qmr(1)
w(j)= wt(j) - 0.5*dt*trv(1)*w(j)/qmr(1)
ek=ek+(u(j)*u(j)+v(j)*v(j)+w(j)*w(j))*zmx

230 continue
trf(1)=(ek-3.*ttr*np)-trv(1)*trv(2)/qmr(2)
trf(2)=trv(1)**2/qmr(1)-ttr-trv(2)*trv(3)/qmr(3)
trf(nts)=trv(2)**2/qmr(2)-ttr

do 1012 j=1,nts
trv(j)=trt(j)+0.5*dt*trf(j)

1012 continue
220 continue

ek=0.
c
c SHIFT ACCELERATIONS, INCREMEMT KINETIC ENERGY
c

do 204 j=1,np
xm(j)=ax(j)-trv(1)*u(j)/qmr(1)
ym(j)=ay(j)-trv(1)*v(j)/qmr(1)
zm(j)=az(j)-trv(1)*w(j)/qmr(1)
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ax(j)=axp(j)-trv(1)*u(j)/qmr(1)
ay(j)=ayp(j)-trv(1)*v(j)/qmr(1)
az(j)=azp(j)-trv(1)*w(j)/qmr(1)
ek=ek+u(j)*u(j)+v(j)*v(j)+w(j)*w(j)

c
c density and stress profiles
c

ij=10*z(j)
if(mm(j).eq.1) then

rhoz1(ij)=rhoz1(ij)+1.d0
rhoz2(ij)=0.

else
rhoz1(ij)=0.
rhoz2(ij)=rhoz2(ij)+1.d0

endif
rhoz(ij)=rhoz1(ij)+rhoz2(ij)+1.d0
sxx(ij)=sxx(ij)+u(j)*u(j)
syy(ij)=syy(ij)+v(j)*v(j)
szz(ij)=szz(ij)+w(j)*w(j)

204 continue
ek=ek/(2.*np)
etot=etot+ek
return
end

subroutine accel(ax,ay,az,etot)
parameter (np=1024)
dimension lr(400000),icount(500)

dimension x(np),y(np),z(np),u(np),v(np),w(np),nn(np),mm(np)
dimension ax(np),ay(np),az(np),ap(np)
dimension n(np),m(np)
dimension ve(500,3),vf(500,3),die(500,3),dif(500,3)
double precision rhoz(0:320),sxx(0:320),syy(0:320),szz(0:320),

x pn(0:320),pt(0:320),ue(0:320),rhoz1(0:320),rhoz2(0:320)
double precision ek1,ek2,et1,et2

c
c common blocks
c

common /cord/ x,y,z,u,v,w,nn,mm
common /cvef/ ve,vf,die,dif,n,m
common /ctab/ lr,icount
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm1,rp1
common /cprf/ rhoz,sxx,syy,szz,pn,pt,ue,rhoz1,rhoz2
common /ctcf/ dt,dt2,d2t,zmx

ep=0.
etot=0.
do 20 j=1,np

ax(j)=0.
ay(j)=0.
az(j)=0.

20 continue
nx=1
do 50 j=1,np-1

ij=10*z(j)
30 k=lr(nx)

nx=nx+1
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if(k.eq.0) go to 50
ik=10*z(k)

xx=x(j)-x(k)
yy=y(j)-y(k)
zz=z(j)-z(k)
if(xx.gt.xmax2) xx=xx-xmax
if(xx.lt.-xmax2) xx=xx+xmax
if(yy.gt.ymax2) yy=yy-ymax
if(yy.lt.-ymax2) yy=yy+ymax
if(zz.gt.zmax2) zz=zz-zmax
if(zz.lt.-zmax2) zz=zz+zmax
rr=xx*xx+yy*yy+zz*zz
if(rr.gt.rm1) go to 45

if(j.le.512) then
if(k.le.512) then

npot=2
else

npot=3
end if

else
if(k.gt.512) then

npot=1
else

npot=3
end if

end if
rr=sqrt(rr)

r=100.*rr
if(r.lt.30) go to 60
l=int(r)
alpha=r-l
phi=ve(l,npot)+alpha*die(l,npot)
f=vf(l,npot)+alpha*dif(l,npot)

qk=f/rr
qj=qk*xx
ax(j)=ax(j)+qj
ax(k)=ax(k)-qj

sxx(ij)=sxx(ij)+0.5*qj*xx
sxx(ik)=sxx(ik)+0.5*qj*xx

qj=qk*yy
ay(j)=ay(j)+qj
ay(k)=ay(k)-qj

syy(ij)=syy(ij)+0.5*qj*yy
syy(ik)=syy(ik)+0.5*qj*yy

qj=qk*zz
az(j)=az(j)+qj
az(k)=az(k)-qj

szz(ij)=szz(ij)+0.5*qj*zz
szz(ik)=szz(ik)+0.5*qj*zz

ep=ep+phi
ue(ij)=ue(ij)+0.5*phi
ue(ik)=ue(ik)+0.5*phi

c Pressure tensor components:
if(z(j).gt.z(k)) then

qmax=z(j)
qmin=z(k)
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else
qmax=z(k)
qmin=z(j)

end if
il=10*qmin
ih=10*qmax
za=abs(zz)

qn=qk*za
qt=qk*(xx*xx+yy*yy)

do 100 kk=il,ih
zq=0.1*(kk+1)
if(zq.lt.qmin .or. zq.gt.qmax) go to 45

pn(kk)=pn(kk)+qn
pt(kk)=pt(kk)+qt/za

100 continue
45 go to 30
50 continue

etot=ep/(1.*np)
return

60 write(3,1) r,j,k
1 format(’ r =’,e10.4,2i5)

stop ’Range trouble’
end

subroutine restart(etot,ek,jt,npart,ix,mm,m)
parameter (np=1024)
dimension x(np),y(np),z(np),u(np),v(np),w(np),nn(np)
dimension ax(np),ay(np),az(np),xm(np),ym(np),zm(np),mm(np)
dimension n(np),m(np)

c
c common blocks
c

common /cord/ x,y,z,u,v,w,nn
common /cacc/ ax,ay,az,xm,ym,zm

5 format(2i10,2e14.6)
6 format(6f13.6,i6,i3)
7 format(6f13.6,I6,I3)

jn=8
if(ix.eq.2) go to 100

read(jn,5) jt,npart,etot,ek
read(jn,6)(x(j),y(j),z(j),u(j),v(j),w(j),nn(j),mm(j),j=1,np)
read(jn,7)(ax(j),ay(j),az(j),xm(j),ym(j),zm(j),n(j),m(j),j=1,np)

return
100 rewind(jn)

write(jn,5) jt,npart,etot,ek
write(jn,6)(x(j),y(j),z(j),u(j),v(j),w(j),j,mm(j),j=1,np)
write(jn,7)(ax(j),ay(j),az(j),xm(j),ym(j),zm(j),j,m(j),j=1,np)

return
end

subroutine pot(epsi,ri,palpha)
dimension ve(500,3),vf(500,3),die(500,3),dif(500,3)
common /cvef/ ve,vf,die,dif
do 45 j=1,500

r=0.01*j
ve(j,1)= 4.*epsi*( (ri/r)**12 - (ri/r)**6 )
vf(j,1)=24.*epsi*(2.*(ri/r)**12 - (ri/r)**6 )/r
ve(j,2)=2.0*ve(j,1)
vf(j,2)=2.0*vf(j,1)
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ve(j,3)= 4.*epsi*( (1.2*ri/r)**12 - palpha*(ri/r)**6 )
vf(j,3)=24.*epsi*(2.*(1.2*ri/r)**12 - palpha*(ri/r)**6 )/r

45 continue
do 92 k=1,3

do 90 j=1,499
die(j,k)=ve(j+1,k)-ve(j,k)
dif(j,k)=vf(j+1,k)-vf(j,k)

90 continue
92 continue

return
end
subroutine table(isum)
parameter (np=1024)
dimension x(np),y(np),z(np),u(np),v(np),w(np),nn(np)
dimension lr(400000),icount(500)

c
c common blocks
c

common /cord/ x,y,z,u,v,w
common /ctab/ lr,icount
common /cpar/ xmax,xmax2,ymax,ymax2,zmax,zmax2,rm1,rp1,dt

xmax3=xmax2*ymax2
nflag=0
isum=isum+1
nx=1

do 50 j=1,np-1
do 48 k=j+1,np

xx=abs(x(j)-x(k))
yy=abs(y(j)-y(k))
zz=abs(z(j)-z(k))
if(xx.gt.xmax2) xx=xx-xmax
if(yy.gt.ymax2) yy=yy-ymax
if(zz.gt.zmax2) zz=zz-zmax
rr=xx*xx+yy*yy+zz*zz
if(rr.gt.rp1) go to 45
lr(nx)=k
nx=nx+1
if(nx.gt.400000) then

1 format(’Trouble, nx =’,i6,2i5)
end if

45 if(rr.gt.xmax3) go to 48
r=sqrt(rr)
ix=100*r+.5
if(ix.gt.500) go to 48
icount(ix)=icount(ix)+1

48 continue
lr(nx)=nflag
nx=nx+1

50 continue
return
end
subroutine pchk
parameter (np=1024)
dimension x(np),y(np),z(np),u(np),v(np),w(np)
common /cord/ x,y,z,u,v,w

px=0.
py=0.
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pz=0.
do 10 j=1,np

px=px+u(j)
py=py+v(j)
pz=pz+w(j)

10 continue
px=px/(1.*np)
py=py/(1.*np)
pz=pz/(1.*np)
do 20 j=1,np

u(j)=u(j)-px
v(j)=v(j)-py
w(j)=w(j)-pz

20 continue
return
end
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