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ABSTRACT

STOCHASTIC NEURAL OSCILLATORS

Aushra Abouzeid, PhD

University of Pittsburgh, 2011

We seek to understand collective neural phenomena such as synchronization, correlation

transfer and information propagation in the presence of additive broadband noise.

Our findings contribute to a growing scientific literature that has shown that uncoupled

type II neural oscillators synchronize more readily under the influence of noisy input currents

than do type I oscillators. We use stochastic phase reduction and regular perturbations to

show that the type II phase response curve (PRC) minimizes the Lyapunov exponent. We

also derived expressions for the correlation between output spike trains using the steady

state probability distribution of the phase difference between oscillators. Over short time

scales we find that, for a given level of input correlation, spike trains from type II membranes

show greater output correlation than from type I. However, we find the reverse is true for

oscillators observed over long time scales, in agreement with recent results.

Previous investigations of specific ion channels have generated insights into mechanisms

by which neuromodulators can switch the bifurcation structure of an oscillator. In a similar

vein, we undertake an exploratory and qualitative study of the influence of the A-type

potassium current on spike train synchrony, correlation transfer and information content in

a reduced 3-dimensional neuron model that exhibits both type I and type II oscillations, as

well as a bifurcation to bursting dynamics.

Using the local Lyapunov exponent in place of the PRC as a measure of sensitivity

to perturbation, we find that the region of bursting dynamics shows prolonged elevated

sensitivity during the inter-burst interval. In the oscillatory regime, a similar phenomenon
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occurs near the bifurcation to bursting, and we see that the magnitude of the PRC grows

markedly as this border is approached.

Furthermore, we find that the highly sensitive dynamics result in a combination of spike

time reliability and increased ISI variability that produces greater mutual information be-

tween a spike train and a broadband input signal. These findings suggest that there may be

an optimal balance of dynamical sensitivity and stability that maximizes the computationally

relevant statistical dependence between input signals and output spike trains.
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1.0 INTRODUCTION

To say that noise is ubiquitous throughout the central nervous system is to state a truism.

Thermodynamic noise impinges on the nervous system through sensory channels: photons

striking photo receptors with Poisson statistics, odorant molecules diffusing at irregular rates.

Electrical noise impinges on the capacitative neural membrane; stochastic ion channel kinet-

ics and quantal neurotransmitter release contribute to spike timing variability. Moreover,

in the course of signal transduction, sources of stochasticity are subject to amplification

and potentially chaotic recurrent network dynamics. It seems a wonder that multicellular

creatures can function at all.

While the difficulties presented to a nervous system by the uncertainty inherent in funda-

mental physical processes cannot be overstated, the idea that “noise” – construed generally

as broadband stochastic fluctuations – can play a constructive role in neural processing

is an appealingly counterintuitive trend in recent neuroscientific thought. The concept of

stochastic resonance, originally developed in the early 1980’s to explain long-term climatic

phenomena (see, for example, [7]), demonstrates that threshold perceptual tasks show bene-

fit from nonzero levels of noise [37, 60]. And the related phenomenon of coherence resonance,

whereby an optimal level of noise can enhance oscillatory coherence, could play a role in or-

ganizing neural dynamics [13]. More recently, it has been suggested that the nervous system

may use probability distributions over stochastic neural activity to perform Bayes optimal

computations [6].

In the signal processing framework, noise represents unwanted fluctuations that obscure

a communication. Somewhat ironically, it has been shown that if neurons in fact perform

optimal encoding as defined by Shannon’s theory of information [58], the resulting neural

signals will appear to be random [65]. In the absence of a principled understanding of how the
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brain actually represents and processes information, it seems wise to refrain from passing

judgement, as much as possible, on what constitutes useless noise and what meaningful

signal. Many interesting questions, perhaps surprisingly many, can be asked and answered

about the functional role of neural dynamics while remaining agnostic about the exact nature

of the neural code.

In the coming chapters, we will look specifically at the phenomenon of stochastic syn-

chrony, whereby correlations in noisy input currents produce correlations in the output of

otherwise uncoupled neurons. In saying “noisy” here, we mean both that the inputs exhibit

power in a broad range of frequencies and that the fluctuations are random rather than

deterministic. Moreover, we generally adopt the positive view that correlation transfer indi-

cates successful communication, and thus that statistical dependence represents the presence

of information. This view is even defensible using the technical definition of Shannon in-

formation, which can be interpreted as a measure of the statistical dependence between a

signal and the neural response. In Chapter 4 we will investigate information propagation in

a model system in this light.

However, our findings with respect to neural dynamics hold equally true if one takes a

negative view of synchrony, correlations and statistical dependence as the enemies of mean-

ingful computation, a view for which there is also ample support [4, 74, 8, 34, 12]. As Claude

Shannon said in his seminal paper, “These semantic aspects of communication are irrelevant

to the engineering problem,” as they are to the mathematical problems addressed here.

* * *

We will begin by reexamining theoretical results from the field of deterministic weakly

coupled neural oscillators in the new context of weak stochastic perturbation. In Chapter

2, we use phase reduction and constrained optimization to examine the role of bifurcation

structure on the synchronization properties of uncoupled oscillators receiving correlated noisy

input. Then in Chapter 3 we discuss the surprising effect that different time scales of obser-

vation can have on the results of the previous chapter. Finally in Chapter 4 we explore the

dynamics of a conductance-based model featuring the A-type potassium channel. Bifurca-

tion analysis and simulations suggest a novel role for transient K+ channels in information
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propagation and correlation transfer.

1.1 DETERMINISTIC PHASE RESETTING

Neural oscillators can be classified into two types according to the bifurcations that occur as

the dynamical system goes from a stable rest state to a stable limit cycle. Furthermore, the

oscillator’s bifurcation class has been shown to determine the shape of it’s phase resetting

curve, or PRC, which characterizes how small perturbations influence the oscillator’s subse-

quent timing or phase. Type I oscillators undergo the saddle-node-on-an-invariant-circle, or

SNIC, bifurcation. A number of authors [22, 31, 9] have shown that the PRC near a SNIC is

non-negative and approximately proportional to 1− cos t, indicating that perturbations can

only advance the oscillator’s phase. Type II cells undergo the Andronov-Hopf bifurcation,

which produces a PRC proportional to sin(t + α). Thus Type II PRCs have both negative

and positive regions; typically, inputs occurring early in the cycle can delay the phase while

later inputs advance it.

For very fast excitatory synaptic interactions, Type II oscillators have been shown to

synchronize more readily than Type I [28, 22, 27, 48]. Intuitively, one can see that a PRC

having both negative and positive lobes can allow inputs to both slow down the oscillator

which is ahead and speed up the oscillator which is behind. In contrast, a non-negative

PRC can only speed up the timing of both oscillators, so that synchronization becomes more

difficult.

1.2 STOCHASTIC WEAK COUPLING

In our appeal to the PRC as a tool for analyzing stochastic synchrony, we note that the

theory of weak coupling holds in the stochastic context provided that the amplitude of the

noise is sufficiently small. In particular, a number of groups [68, 26, 47, 72] have proved

that the phase reduction technique [36] can be applied to oscillators receiving additive noise.

3



Thus, we can reduce a noisily driven oscillator to a scalar differential equation describing the

evolution of the phase around a limit cycle. This equation depends only on the properties

of the noise and the shape of the PRC, greatly facilitating the task of analysis.

The phase reduction employed throughout Chapters 2 and 3 is briefly summarized as

follows. Let us begin with a neural oscillator receiving additive noise with equations of

motion given by

dX = F (X)dt+ σξ,

where X ∈ Rn and ξ is a white noise process. When σ = 0, we assume the noiseless system

has an asymptotically stable periodic solution X0(t) = X0(t+ τ) with period τ .

As in the deterministic case, we can reduce this high-dimensional system to a scalar

equation for the evolution of the phase θ around the limit cycle. Let φ : Rn → S1 map a

neighborhood of the limit cycle to the phase on a circle. That is, θ = φ(X), with θ ∈ [0, 1).

Then θ satisfies
dθ

dt
= 1 + σ∇Xφ(X) · ξ,

where we have normalized the unperturbed period to be 2π. Next we can close the equation

by assuming the noise amplitude σ is sufficiently small, so that the system trajectory can be

approximated by the noiseless limit cycle X0:

θ̇ ≈ 1 + σZ(θ) · ξ, (1.1)

where Z(θ) = ∇Xφ(X0(θ)) is the adjoint, or phase-dependent sensitivity of the trajectory

to perturbation along the limit cycle. In the case of a neural oscillator, we assume the

noisy perturbations arise as the result of stochastic synaptic input, which influences only the

voltage variable. Hence Z(θ) has only one nonzero component, which is proportional to the

phase resetting curve ∆(θ).

Thus far, we have used the conventional change of variables to obtain Eq.(3.1), which

therefore must be understood as a stochastic differential equation (SDE) in the Stratonovich

sense. In order to eliminate the correlation between θ and ξ we must use the Itô change of

variables, which will introduce an additional drift term:

θ̇ = 1 + σ∆(θ)ξ +
σ2

2
∆′(θ)∆(θ).
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Here ′ denotes differentiation with respect to θ. For a detailed discussion of phase reduction

in noisy oscillators see [67].
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2.0 OPTIMAL PHASE RESETTING FOR STOCHASTIC SYNCHRONY

2.1 INTRODUCTION

Synchronous oscillations are found in many brain areas and are responsible for macroscopic

electrical responses of the brain including field potentials and EEG signals. Within a single

brain area, synchronization of neuronal activity serves to amplify signals to upstream regions

[69], while synchronization across different areas may allow activity to be selectively routed.

Considerable theoretical interest has recently emerged in the generation of synchrony by

correlated “noisy” inputs to uncoupled oscillators [68, 26, 47, 64], a phenomenon we will refer

to as stochastic synchrony. In the brain, stochastic synchrony may account for observations

such as long-range synchronization [20, 19], that are difficult to explain by the presence of

synaptic connectivity alone. Moreover, noisy inputs have been shown to synchronize real

neurons in vitro [25].

Two recent papers have shown that Type II PRCs are better than Type I PRCs at

synchronizing uncoupled oscillators with correlated input [23, 41]. That is, for a given input

correlation of the noisy stimulus, the output correlation of the oscillators is higher with Type

II than with Type I PRCs. In these two papers, specific functions for PRCs were checked

(namely, sin(t) and 1−cos(t)), and the correlations and degree of synchrony were analytically

and numerically computed. However, it is not known whether there are other PRC shapes

that might produce even stronger stochastic synchronization.

One can readily quantify stochastic synchrony using the Lyapunov exponent, the rate

at which two oscillators receiving identical inputs converge to synchrony. In this chapter we

will explore how this quantity depends on the shape of the PRC. In particular, we find that

Type II PRCs lead to faster convergence than do Type I, and we use variational principles

6



to determinine the optimal shape of the PRC to maximize this convergence.

First in Section 2.2 we derive the Lyapunov exponent for two such oscillators receiv-

ing common noise. Next we use the Fokker-Planck equation in Section 2.3 to obtain the

probability distribution of the phase of a noise-driven neural oscillator. The Euler-Lagrange

method for constrained optimization allows us in Section 2.4 to find the PRC that mini-

mizes the Lyapunov exponent. This leads to a 4th order system of nonlinear differential

equations, which we approximate to an arbitrary order of accuracy using regular perturba-

tions in Section 2.5. The resulting approximation shows that a Type II PRC achieves the

minimal Lyapunov exponent, hence producing more robust convergence to synchrony than

a Type I PRC. Several interesting cases that arise as a function of the constraint parameters

are discussed in Section 2.6. Finally in Section 2.7 we show that numerical solution of the

4th order system agrees with the perturbation-derived approximation.

2.2 LYAPUNOV EXPONENT

As a standard measure of susceptibility to synchrony, we will now derive the Lyapunov ex-

ponent for two identical uncoupled neural oscillators receiving common additive white noise.

The resulting analysis, however, applies equally well to an arbitrary number of identical

noninteracting oscillators.

This approach is made possible by the pioneering work of Oseledec [51], who showed that

Lyapunov theory applies in the stochastic setting. For a survey of the results, see [70, 3].

Let us define the phase difference φ := θ2 − θ1, where θ1 and θ2 each obey Eq.(1.2).

Linearizing around the synchronous state φ = 0, we obtain as in [68]:

dφ =
σ2

2
[(∆′∆)′(θ)φ] dt+ σ[∆′(θ)φ]dW,

where θ obeys Eq.(1.2) as well. Since the Lyapunov exponent is defined as λ := limt→∞ log(φ(t))/t,

let us make the change of variables y := log(φ). Once again we invoke Itô’s Lemma, and

after simplification we find that y satisfies the stochastic differential equation

dy =
σ2

2
[∆′′∆]dt+ σ∆′dW.
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Next we integrate, divide by t and take the limit as t→∞ to obtain an expression for λ.

λ = lim
t→∞

y(t)

t

= lim
t→∞

σ2

2t

∫ t

0

∆′′(θ(s))∆(θ(s))ds+
σ

t

∫ t

0

∆′(θ(s))dW (s)

Assuming the system is ergodic, we can replace the long time average on the right hand side

with the spatial or ensemble average. Due to the Itô change of variables, the last term drops

out leaving

λ =
σ2

2

∫ 1

0

∆′′(θ)∆(θ)P (θ)dθ, (2.1)

where P (θ) is the steady-state distribution of the phase.

Note that Teramae and Tanaka derive an expression for λ in [68] by making the approxi-

mation P (θ) = 1. Substituting this value into Eq.(2.1) and performing integration by parts,

they obtain

λ ≈ −σ
2

2

∫ 1

0

(∆′(θ))2dθ.

In this paper, however, we wish to retain the generality of P (θ) as discussed below.

2.3 STEADY-STATE PHASE DISTRIBUTION

In order to evaluate the Lyapunov exponent, we need to obtain the stationary density of the

phase when perturbed by noise. Series expansion of the stationary density was originally

developed by Khasminskii [35]; for discussion see also [70, 3]. In a recent paper, Teramae and

Tanaka [68] have treated the density as uniform, which is correct for weak noise. However our

subsequent perturbation analysis will require higher-order terms, so we will need to derive a

more accurate value for the steady-state phase distribution.

By applying the Fokker-Planck equation to Eq.(1.2), we obtain after simplification a

partial differential equation for the probability distribution P (θ, t):

∂P

∂t
= −∂P

∂θ
+
σ2

2

∂

∂θ

[
∆
∂(∆P )

∂θ

]
.
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Now we may set ∂P
∂t

= 0 to find the steady state, then integrate once with respect to θ to

obtain:

−J = −P +
σ2

2

[
∆
∂(∆P )

∂θ

]
, (2.2)

where −J is a constant of integration. We require that P (0) = P (1) and that the solution

be normalized, namely
∫ 1

0
P (θ) dθ = 1. Note that the equations are singular, since ∆(θ)

generally vanishes at several places, in particular at θ = 0, 1. In Section 2.9 below, we prove

the existence of the stationary density by directly solving the linear equations and taking

appropriate limits.

In the remainder of this section, we use regular perturbation theory to approximate the

stationary density for small noise, 0 < σ � 1. To approximate both J and P we substitute

J = 1 + σ2J1 + σ4J2 + · · ·

P (θ) = 1 + σ2P1(θ) + σ4P2(θ) + · · ·

into Eq.(2.2). Equating like powers of σ gives

−J1 = −P1(θ) +
1

2
∆(θ)∆′(θ).

Integrating both sides over [0, 1] leaves the constant on the left hand side unchanged. For

the right hand side, note that
∫ 1

0
P (θ)dθ = 1, and hence

∫ 1

0
P1(θ)dθ = 0. Furthermore,

∆∆′ = 1
2
d
dθ

(∆2) so that

J1 = −1

4
(∆(1)2 −∆(0)2)

= 0,

since ∆ is periodic. Thus we have P1(θ) = 1
2
∆(θ)∆′(θ).

Similarly,

−J2 = −P2(θ) +
1

2
∆(θ)2∆′(θ)2 +

1

4
∆(θ)3∆′′(θ).

Since
∫ 1

0
P2(θ)dθ = 0 as well, we can integrate both sides as above and use integration by

parts to obtain

J2 =
1

4

∫ 1

0

(∆(θ)∆′(θ))2dθ

P2(θ) =
1

2
∆(θ)2∆′(θ)2 +

1

4
∆(θ)3∆′′(θ) +

1

4

∫ 1

0

(∆(θ)∆′(θ))2dθ.
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In summary,

J = 1 +
σ4

4

∫ 1

0

(∆(θ)∆′(θ))2dθ

P (θ) = 1 +
σ2

2
∆(θ)∆′(θ) +

σ4

4

[
2∆(θ)2∆′(θ)2 + ∆(θ)3∆′′(θ) +

∫ 1

0

(∆(θ)∆′(θ))2dθ

]
.

For the perturbation expansions in the next section, it will suffice to write J = 1. We will

use Eq.(2.3) in Section 2.6 and for the numerical verifications in Section 2.7.

2.4 CONSTRAINED OPTIMIZATION

The Euler-Lagrange variational technique provides a method for determining the phase re-

setting curve ∆ that minimizes the Lyapunov exponent, subject to appropriate constraints.

To ensure smooth solutions and to eliminate uninformative, and biologically implausible,

higher harmonics of the optimal solution, we begin by imposing the general constraint∫ 1

0

a(∆(θ))2 + b(∆′(θ))2 + c(∆′′(θ))2dθ = 1, (2.3)

where a, b and c are free parameters. A standard normalization has a = 1, b = 0, c = 0.

However, non-zero values of b, c endow solutions with additional smoothness observed in

naturally occurring PRCs. Constraints on higher derivatives also impose a bound on the

amplitude of potentially optimal solutions. (See Fig.(2.3).) Otherwise, an arbitrarily large

PRC could produce an arbitrarily negative Lyapunov exponent. Below we will explore the

cases that arise from specific choices of the constraint parameters.

We proceed by placing Eq.(2.1), Eq.(2.2) and Eq.(2.3) together with the approximation

J = 1 into the Euler-Lagrange formula to obtain the functional

∫ 1

0
∆′′∆P + ν1

[
a∆2 + b(∆′)2 + c(∆′′)2 − 1

]
+ν2(θ)

[
1− P +

σ2

2
∆(∆P )′

]
dθ = 0, (2.4)

where ν1 is a free parameter, and ν2(θ) represents a continuum of free parameters.
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Define the operator

L(∆) := ∆′′∆P + ν1

[
a∆2 + b(∆′)2 + c(∆′′)2 − 1

]
+ ν2(θ)

[
1− P +

σ2

2
∆(∆P )′

]
.

The optimal ∆ we seek will satisfy the two equations

∂L
∂∆
− d

dθ

∂L
∂∆′

+
d2

dθ2

∂L

∂∆′′
= 0 (2.5)

∂L
∂P
− d

dθ

∂L
∂P ′

= 0. (2.6)

Note that we can write two more Euler-Lagrange equations, but ∂L
∂ν1

= 0 simply restates

Eq.(2.3), and ∂L
∂ν2

= 0 returns Eq.(2.2) governing P .

Assuming the parameter c is nonzero, we obtain from Eq.(2.5) and Eq.(2.6) a 4th order

system of ordinary differential equations:

P ′′∆ + 2(P ′∆′ + P∆′′ + a∆ν1 − b∆′′ν1 + c∆(4)ν1) +
1

2
∆(P ′ν2 − Pν ′2)σ2 = 0 (2.7)

∆∆′′ − ν2 −
1

2
∆(∆′ν2 + ∆ν ′2)σ2 = 0. (2.8)

If c = 0, we will have instead the 2nd order system which obtains by setting c = 0 in Eq.(2.7).

When we examine the effects of varying the constraint parameters in Section 2.6, we will see

that the main result remains the same in this case as well.
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2.5 PERTURBATION APPROXIMATION

Let us first consider the 4th order case where the parameter c is nonzero.

Assuming the noise amplitude σ is sufficiently small, we write the following expansions

P (θ) = P0(θ) + σ2P1(θ) + ...

∆(θ) = ∆0(θ) + σ2∆1(θ) + ... (2.9)

ν1 = ν1,0 + σ2ν1,1 + ...

ν2(θ) = ν2,0(θ) + σ2ν2,1(θ) + ...

Substituting these into Eq.(2.7) and Eq.(2.8) and equating like powers of σ gives to lowest

order: P0(θ) = 1, ν2,0(θ) = ∆0(θ)∆′′0(θ) and the fourth order homogeneous equation

aν1,0∆0 + (1− bν1,0)∆′′0 + cν1,0∆
(4)
0 = 0. (2.10)

For convenience let us define the differential operator

J = aν1,0 + (1− bν1,0)
∂2

∂θ2
+ cν1,0

∂4

∂θ4
.

Thus Eq.(2.10) becomes J (∆0) = 0, and the first order correction ∆1 obeys the inhomoge-

neous equation

J (∆1) = (∆′0)3 − bν1,1∆′′0 + ∆0(aν1,1 + 3∆′0∆′′0) + cν1,1∆
(4)
0 . (2.11)

Furthermore, substituting the expansions Eq.(2.9) into Eq.(2.3) gives the corresponding

constraints: ∫ 1

0

a∆2
0 + b(∆′0)2 + c(∆′′0)2 = 1 (2.12)∫ 1

0

a∆0∆1 + b∆′0∆′1 + c∆′′0∆′′1 = 0. (2.13)

Before solving Eq.(2.10), we must first determine the unknown parameter ν1,0. Since

we seek only periodic solutions, we can impose a condition on the characteristic equation of

Eq.(2.10):

aν1,0 + (1− bν1,0)y2 + cν1,0y
4 = 0. (2.14)
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Figure 2.1: In the case where the second derivative is left unconstrained, the optimal PRC deviates
from a pure cosine function as the noise amplitude σ increases. Parameters are a=1, b=1, c=0.

Specifically, by requiring that the roots of this polynomial satisfy y = 2πi, we determine

that

ν1,0 =
4π2

a+ 4bπ2 + 16cπ4
.

Now we are ready to impose periodic boundary conditions, and we find that the solution of

Eq.(2.10) is just ∆0(θ) = C0 sin(2πθ). The constant of integration C0 is determined from

the constraint Eq.(2.12) so that

C0 = ±
√

2√
a+ 4bπ2 + 16cπ4

.

While both values of C0 will give the same minimal value of the Lyapunov exponent, we

choose the negative value for biological plausibility. Hence to lowest order we find the

optimal phase resetting curve is Type II:

∆0(θ) = −
√

2 sin(2πθ)√
a+ 4bπ2 + 16cπ4

. (2.15)

The next order correction does not appreciably change this result. To obtain the σ2

term, we must solve Eq.(2.11) subject to Eq.(2.13). By the Fredholm Alternative, a solution
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to the inhomogeneous problem exists if and only if the right-hand side of Eq.(2.11), call it

r(θ), is orthogonal to the nullspace of J ∗. However, since J is self-adjoint we simply solve

for the value of ν1,1 such that ∫ 1

0

sin(2πθ)r(θ)dθ = 0,

namely, ν1,1 = 0.

Imposing periodic boundary conditions on the resulting equation yields the solution

∆1(θ) = C1 sin(2πθ) +

√
2π sin(2πθ) sin(4πθ)

(a− 144cπ4)
√
a+ 4bπ2 + 16cπ4

.

As before, we use the constraint Eq.(2.13) to obtain C1 = 0. Hence to order σ2 the optimal

phase resetting curve is given by

∆(θ) = −
√

2 sin(2πθ)√
a+ 4bπ2 + 16cπ4

+
σ2

2

√
2π sin(2πθ) sin(4πθ)

(a− 144cπ4)
√
a+ 4bπ2 + 16cπ4

. (2.16)

2.6 CONSTRAINT PARAMETERS

Let us next explore the influence of the constraint parameters a, b and c, which we will

allow to take on the values of 0 or 1. Of the seven nontrivial combinations, one has no

periodic solution at all and is thus inadmissible. Four parameter choices give rise to the

same optimum already found in Eq.(2.16), and two parameter combinations do not produce

a unique solution but instead yield a family of solutions ranging smoothly from Type I to

Type II. In this case, we explicitly find the minimizer of λ among the family of solutions.

All of the cases can be analyzed by examining Eq.(2.14), the characteristic equation of

L(∆) = 0. For example, the case a = c = 0 and b = 1 can have no periodic solution, since

the polynomial (1− ν1,0)y2 = 0 has no nontrivial roots.

The four parameter combinations that lead to Eq.(2.16) are those in which a = 1. In

these cases we have

ν1,0 + (1− bν1,0)y2 + cν1,0y
4 = 0.
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Figure 2.2: When the first derivative is unconstrained while the second derivative is constrained,
Euler-Lagrange optimization produces a family of candidates for the minimizer of the Lyapunov
exponent ranging smoothly from Type II to Type I as the parameter K ranges from 0 to 1. For
negative K (dashed), the curves do not represent biologically plausible PRCs. Parameters are
a = 0, b = 1, c = 1.

15



If c 6= 0, the polynomial is 4th degree having four distinct roots; if c = 0 the polynomial is

quadratic with two distinct roots. In each case we can set y = 2πi and solve uniquely for

ν1,0 as discussed above.

The case c = 0 (while a = 1) deserves further attention for another reason. In this regime,

the optimal PRC becomes sensitive to the noise amplitude σ as illustrated in Fig.(2.1). To

understand why the curve deforms, let us focus on the extrema of Eq.(2.16), which are given

by the zeros of the derivative:

∆′(θ) = − 2
√

2π√
a+ 4bπ2 + 16cπ4

[
cos(2πθ) +

σ2π

a− 144cπ4

(
cos(4πθ) sin(2πθ) +

1

2
cos(2πθ) sin(4πθ)

)]

In this form we clearly see that the unperturbed extrema (when σ = 0) occur at θ = 1/4 and

3/4, while deformation due to noise is on the order of σ2π/(a − 144cπ4). More specifically,

when c 6= 0 this quantity is O(σ210−4) so that the weak noise in our model (σ � 1) has

negligible effect. However when c = 0, this quantity is O(σ2), so that even relatively small

magnitude noise can have a noticible impact on the shape of the optimal PRC.

Another interesting situation arises in the two cases where a = 0, c = 1 and b is arbitrary.

Here the characteristic equation has a double root at y = 0:

(1− bν1,0)y2 + ν1,0y
4 = 0.

After accounting for the boundary conditions, we have a superposition of two independent

solutions

∆0(θ) = C3(1− cos(2πθ)) + C4 sin(2πθ).

The constraint Eq.(2.12) eliminates only one degree of freedom, leaving a family of solutions

as candidates for the optimum:

∆0(θ) = K
1− cos(2πθ)√
2π2(b+ 4π2)

−
√

1−K2
sin(2πθ)√

2π2(b+ 4π2)
, (2.17)

where the remaining degree of freedom K has been normalized to range between −1 and 1.

See Fig.(2.2).
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Figure 2.3: The magnitude of the optimal PRC depends on the whether or not the second
derivative is constrained. The numerical solution (open circles) and the analytic result (solid lines)
coincide. Parameters are a = 1, b = 1 and σ = 0.05.

Combining Eq.(2.1) for the Lyapunov exponent with Eq.(2.3) for the steady-state phase

distribution, we insert Eq.(2.17) to obtain the following expression:

λ = − 1

b+ 4π2
+
σ4

4

(4K4 + 10K2 + 1)

4π2(b+ 4π2)3
,

where we have set a = 0, c = 1. Note that we needed to carry out the expansion of λ to σ4

in order to discover the dependence on K.

Since the derivative of λ with respect to K has only one real root at K = 0, where a

minimum occurs, the Type II curve remains the optimal PRC even in this case.

2.7 NUMERICAL VERIFICATION

We would like to independently verify the accuracy of the optimal PRC Eq.(2.16) derived via

perturbation expansion by numerically solving the Euler-Lagrange equations, Eq.(2.7) and

Eq.(2.8) with periodic boundary conditions. Unfortunately, the resulting system is singular
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Figure 2.4: When the second derivative is unconstrained, the optimal PRC shape deforms with
increasing noise. The numerical solution (open circles) and the analytic result (solid lines) are in
good agreement. Parameters are a = 1, b = 1, c = 0.

and therefore very difficult to solve numerically. Instead we substitute the approximation

P (θ) = 1 + σ2

2
∆(θ)∆′(θ) into the Euler-Lagrange functional, Eq.(2.4), to obtain a new

functional ∫ 1

0
∆′′∆

(
1 +

σ2

2
∆(θ)∆′(θ)

)
+ ν1

[
a∆2 + b(∆′)2 + c(∆′′)2 − 1

]
dθ = 0,

which gives rise via Eq.(2.5) to the 4th order boundary value problem

∆(4) =
−2∆′′ − 2a∆ν1 + 2b∆′′ν1 −∆′3σ2 − 3∆∆′∆′′σ2

2cν1

.

When c = 0, we similarly obtain a 2nd order boundary value problem.

Using the numerical integration package XPPAUT, we are able to achieve excellent agree-

ment with our analytical approximation. Fig.(2.3) illustrates numerical and analytic solu-

tions in the case where c = 1 and where c = 0. Note that imposing a constraint on the

second derivative of ∆ results in an optimal PRC of much smaller magnitude.

In Fig.(2.4) we find good agreement between the analytic and numerical results even

for the regime in which a = 1, c = 0 and PRC shape is sensitive to noise amplitude. The

numerical simulation deforms with increasing σ just as the analytic approximation does.
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2.8 DISCUSSION

In this paper we have used perturbation theory and the calculus of variations to analyze

the rate at which neurons can synchronize when subjected to common inputs. We treat the

inputs as “noise,” that is, as if they are delta-correlated with no structure. Real neuronal

inputs do have correlational structure, however, so that the expression for the rate of syn-

chronization (the Lyapunov exponent) is more complex. Indeed, in previous work [23] we

have shown that the temporal characteristics of the noise can also have an effect on how

rapidly neurons synchronize. In that work, we asked the reverse question: given a particular

PRC, what correlation time for the noise minimizes the Lyapunov exponent?

Suppose that we use some signal that is not white noise but still has zero mean and is

stationary. Then the phase satisfies

dθ

dt
= 1 + ∆(θ)ξ(t)

where ξ(t) is the input. The Lyapunov exponent is

λ := lim
T→∞

1

T

∫ T

0

∆′(θ(t))ξ(t) dt.

By using an approximation of θ(t) as in [?] we may be able to obtain a functional for λ

depending on ξ(t) and ∆, and from this apply similar methods to estimate the optimal

shape of the PRC given the statistics of the inputs.

Optimization has been applied to other aspects of neural oscillators. Moehlis, et al. [45]

asked the following question. Consider the scalar oscillator model:

dθ

dt
= f(θ) + ∆(θ)I(t).

(Note that if f(θ) = 1, we have Eq.(??), the case considered in this paper.) Suppose the

neuron fired at t = 0 and we desire it to fire again at time T > 0. What is the minimum

stimulus, I(t) (which, say, minimizes
∫ T

0
I(t)2dt) to do this? Moehlis, et al. [45] write the

Euler-Lagrange equations for this optimization problem and then assume that I(t) is small

in order to use perturbation methods. A related issue is the “optimal stimulus” [56] for

producing a spike in a neuron, and for neural oscillators this has been answered in [21].
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2.9 AN EXISTENCE PROOF

On the interval [0, 1], the phase resetting curve ∆ is necessarily 0 at the endpoints and

possibly at interior points as well. As a result, we have a singular equation for the steady

state distribution of phases P , derived earlier as Eq.(2.2) and repeated here:

−J = −P +
σ2

2
∆(∆P )′. (2.18)

Existence of solutions for first order linear ordinary differential equations with isolated singu-

larities of the second kind are discussed in many classic references; see, for example, chapter

5 of [11]. For the reader unfamiliar with the general theory, we include the following direct

proof that Eq.(2.18) does indeed have a solution despite the singularities.

Suppose ∆(θ) 6= 0 in the open interval (a, b) ⊆ [0, 1], while ∆(a) = ∆(b) = 0. In this

way, we will be able to apply our proof to the entire domain [0, 1] in a piecewise fashion; for

example, if ∆(x) = sin(2πx), then a = 0 and b = 1/2, or a = 1/2 and b = 1. In the following

we will assume, without loss of generality, that ∆(θ) > 0 in (a, b).

Let us begin by rewriting the differential equation as an integral equation. Define Q(x) :=

∆(x)P (x). Then Eq.(2.18) becomes

Q′ − 2Q

σ2∆2
=
−2J

σ2∆
. (2.19)

We now introduce an integrating factor; let

z(x) := − 2

σ2

∫ x

c

ds

∆2(s)
, (2.20)

where c ∈ (a, b) is fixed. Observe that, as x approaches a from above we eventually have

x < c, and hence z(x) approaches +∞. Likewise, as x approaches b from below, z(x)

approaches −∞.

Eq.(2.19) now becomes

(ez(x)Q)′ = − 2J

σ2∆
ez(x).

Integrating both sides gives

Q(x) =
2J

σ2
e−z(x)

(
K −

∫ x

c

ez(t)

∆(t)
dt

)
, (2.21)
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where K is a constant of integration that will be determined below.

We see from Eq.(2.18) that P (a) = P (b) = J . Therefore a solution exists iff limx→a+ Q(x)/∆(x) =

limx→b− Q(x)/∆(x) = J . Let us first consider the right endpoint and assume for now that

the limit

lim
x→b−

∫ x

c

ez(t)

∆(t)
dt = L (2.22)

exists. Let us compute

lim
x→b−

Q(x)

∆(x)
=

2J

σ2
lim
x→b−

K −
∫ x
c
ez(t)

∆(t)
dt

∆(x)ez(x)
,

and note that when we set K = L, both numerator and denominator tend to 0 as x → b−.

Thus we can use L’Hôpital’s rule and definition Eq.(2.20) to obtain

lim
x→b−

Q(x)

∆(x)
=

2J

σ2
lim
x→b−

−ez(x)/∆(x)

∆(x)z′(x)ez(x) + ∆′(x)ez(x)

= J. (2.23)

Now let us return to the assumption we made and observe that the integral in Eq.(2.22)

is not improper after all. Rewriting the integrand of Eq.(2.22) such that both numerator

and denominator go to infinity, we can use L’Hôpital’s rule again to see that the integrand

goes to zero:

lim
t→b−

ez(t)

∆(t)
= lim

t→b−

1/∆(t)

e−z(t)

= lim
t→b−

−∆′(t)/∆(t)2

e−z(t)/∆(t)2

= 0.

The last equality follows since ∆′ is bounded and limx→b− e
z(t) = 0. Hence our assumption

was justified.

Now let us rewrite Eq.(2.21), incorporating our knowledge from Eq.(2.22), namely that

K = L:

Q(x) =
2J

σ2
e−z(x)

(∫ b

c

ez(t)

∆(t)
dt−

∫ x

c

ez(t)

∆(t)
dt

)
=

2J

σ2
e−z(x)

∫ b

x

ez(t)

∆(t)
dt.
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It remains to show that limx→a+ Q(x)/∆(x) = J . We will prepare to use L’Hôpital’s rule

once again by writing

lim
x→a+

Q(x)

∆(x)
=

2J

σ2
lim
x→a+

∫ b
x
ez(t)

∆(t)
dt

∆(x)ez(x)
. (2.24)

Since ez(t) tends to infinity as x approaches a from above, by L’Hôpital’s rule the denominator

of Eq.(2.24) also tends to infinity:

lim
x→a+

ez(x)

1/∆(x)
= − 2

σ2
lim
x→a+

ez(x)/∆(x)2

∆′(x)/∆(x)2

=∞.

The numerator of Eq.(2.24) tends to infinity as well since∫ b

x

ez(t)

∆(t)
dt >

∫ b

x

ez(t)

M
dt,

when M = max{∆(x) : x ∈ [0, 1]}, and the latter integral is clearly unbounded as x

approaches a. Therefore we can apply to Eq.(2.24) a similar calculation to that in Eq.(2.23)

and conclude that limx→a+ Q(x)/∆(x) = J as desired.
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3.0 TIME SCALES OF CORRELATION TRANSFER

An expanding body of work has demonstrated that over short time scales of less than one

period, type II oscillators are more susceptible to stochastic synchrony than type I. This has

been shown via simulations and in vitro [25, 24], by deriving the probability distribution of

the phase difference [41], by minimizing the Lyapunov exponent of the phase difference [1],

and most recently by calculating the spike count correlation over a range of time windows

[5]. The latter study further reports that this finding reverses over long timescales, namely

that type I oscillators transmit correlations more faithfully than type II when observed over

lengths of time much greater than one period.

In Section 3.1 we provide a brief introduction to the phase reduction technique in a

stochastic setting. Next in Section 3.2 we use regular perturbations to give a novel and

straightforward analysis of correlation transfer over long time scales. To facilitate our deriva-

tion, we use the total elapsed phase as a proxy for the spike count. Note that the total phase

(modulo the period) and the spike count differ by at most one, which is a negligible quantity

when many spikes have been observed over a long time window. The expression we derive

for the correlation coefficient of the total phase agrees both qualitatively and quantitatively

with the results found in [5].

In Section 3.3 we consider short time scales less than or equal to the period of the

oscillation. In this case, the total phase cannot be used to approximate the spike count.

We therefore derive the spike count correlation directly, using simple probabilistic reasoning

applied to the density of the phase difference. Our analytic results together with Monte

Carlo simulations corroborate earlier work showing type II oscillators transfer correlations

more readily than type I over short time windows.
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Figure 3.1: We use the parametrization ∆(θ) = − sin(θ + α) + sin(α) to vary the PRC

smoothly from type I (solid gray), where α = π
2

and ∆(θ) = 1 − cos(θ), to type II (solid

black), where α = 0 and ∆(θ) = − sin(θ). Note that intermediate values of α produce PRC

shapes (dashed) that more closely resemble those found empirically in vitro.

3.1 NOISY OSCILLATORS

Let us begin with a neural oscillator receiving additive noise with equations of motion given

by

dX = F (X)dt+ σξ,

where X ∈ Rn and ξ is a white noise process. When σ = 0, we assume the noiseless system

has an asymptotically stable periodic solution X0(t) = X0(t+ τ) with period τ .

As in the deterministic case, we can reduce this high-dimensional system to a scalar

equation for the evolution of the phase θ around the limit cycle. Let φ : Rn → S1 map a

neighborhood of the limit cycle to the phase on a circle. That is, θ = φ(X), with θ ∈ [0, 1).

Then θ satisfies
dθ

dt
= 1 + σ∇Xφ(X) · ξ,

where we have normalized the unperturbed period to be 2π. Next we can close the equation

by assuming the noise amplitude σ is sufficiently small, so that the system trajectory can be

approximated by the noiseless limit cycle X0:

θ̇ ≈ 1 + σZ(θ) · ξ, (3.1)

where Z(θ) = ∇Xφ(X0(θ)) is the adjoint, or phase-dependent sensitivity of the trajectory

to perturbation along the limit cycle. In the case of a neural oscillator, we assume the
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noisy perturbations arise as the result of stochastic synaptic input, which influences only the

voltage variable. Hence Z(θ) has only one nonzero component, which is proportional to the

phase resetting curve ∆(θ).

Thus far, we have used the conventional change of variables to obtain Eq.(3.1), which

therefore must be understood as a stochastic differential equation (SDE) in the Stratonovich

sense. In order to eliminate the correlation between θ and ξ we must use the Itô change of

variables, which will introduce an additional drift term:

θ̇ = 1 + σ∆(θ)ξ +
σ2

2
∆′(θ)∆(θ).

Here ′ denotes differentiation with respect to θ. For a detailed discussion of phase reduction

in noisy oscillators see [67].

3.2 CORRELATION TRANSFER OVER LONG TIME SCALES

We now consider the transfer of correlations over time scales much larger than the natural

period of the oscillators. Given the level of correlation between the noisy inputs, we wish

to know what level of correlation remains between the spike count of two oscillators after

some time. For analytic convenience, however, we will use the total phase that has elapsed

(modulo 2π) as a proxy for the spike count. Since these quantities differ by at most one, the

discrepancy will be negligible for the large spike counts that accrue over long time scales.

Our system will consist of two identical phase oscillators receiving weak, correlated, but

not identical, additive white noise. Keeping only terms up to order σ, we have

θ̇1 = 1 + σ∆(θ1)ξ1(t)

θ̇2 = 1 + σ∆(θ2)ξ2(t). (3.2)

The noise takes the form

ξ1 =
√
cin ξC +

√
1− cin ξA

ξ2 =
√
cin ξC +

√
1− cin ξB, (3.3)
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Figure 3.2: The steady state distribution P (φ) of phase differences φ is shown for type I

(solid gray) and type II (solid black) as well as for intermediate PRCs (dashed). Note that

the unperturbed period of the oscillators is 2π. (A) Input correlation cin = 0.4. (B) Input

correlation cin = 0.8.

where ξA, ξB and ξC are mutually independent, zero mean white noise processes, and cin ∈

[0, 1] is the correlation between ξ1 and ξ2, which we will refer to as the input correlation.

Next let us rewrite Eq.(3.2) in the form of integral equations:

θ1(t) = t+ θ1(0) + σ

∫ t

0

∆(θ1(s))ξ1(s)ds

θ2(t) = t+ θ2(0) + σ

∫ t

0

∆(θ2(s))ξ2(s)ds.

Let T be length of the window of time over which we will observe the system. Throughout

this discussion we will assume that our system has reached equilibrium, and that time has

been reparametrized so that our observation takes place on the interval t ∈ [0, T ]. In order to

quantify the total phase traversed during this time, we subtract the initial phases by defining

qi(T ) = θi(T ) − θi(0) for i = 1, 2. Thus the total phase traversed over a time window of

length T is given by:

qi(T ) = T + σ

∫ T

0

∆(θi(s))ξi(s)ds.
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with qi(0) = 0 for i = 1, 2. Finally, since we assume σ is small, let us simplify the integrands

by expanding the phase to lowest order:

θi(t) = t+ θi(0) +O(σ). (3.4)

Then we have ∆(θi(s)) = ∆(s+ θi(0)), and thus

qi(T ) = T + σ

∫ T

0

∆(s+ θi(0))ξi(s)ds (3.5)

When taking expectations of the quantities in Eq.(3.5), we must keep in mind that there

are four random variables over which averaging must take place. Namely, we must average

over the white noise signals ξ1(t) and ξ2(t) and the initial conditions θ1(0) and θ2(0).

Assuming we begin observation after the system has reached equilibrium, we can take

one of the initial conditions, say θ1(0), to be distributed uniformly on the interval [0, 2π],

since the noise is small. However, at equilibrium the phases obey the steady state probability

distribution P (φ) derived in [41] and [46], which depends only on the phase difference φ(t) =

θ2(t)− θ1(t). Therefore, the average of Eq.(3.5) is computed as

E[qi(T )] = E

[
T + σ

∫ T

0

∆(s+ x)ξi(s)ds

]
=

1

2π

∫ 2π

0

∫ 2π

0

P (y − x)×[
T + σ

∫ T

0

∆(s+ x) 〈ξi(s)〉 ds
]
dxdy

= T +
σ

2π

∫ 2π

0

∫ 2π

0

P (y − x)×∫ T

0

∆(θi(s)) 〈ξi(s)〉 dsdxdy

= T, (3.6)

where 2π is the unperturbed period of the oscillators, P (φ) is the steady state probability

distribution of the phase difference, and x and y represent the initial conditions θ1(0) and

θ2(0), respectively. The last line follows because the white noises have zero mean.
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Our goal is to compute the correlation of the total phase traversed by the two oscillators,

henceforth referred to as the output correlation cout:

cout := Cor[q1, q2] =
Cov[q1, q2]√
Var[q1]Var[q2]

. (3.7)

First, let us derive the covariance as follows:

Cov[q1, q2](T ) = E[(q1(T )− E[q1(T )])(q2(T )− E[q2(T ))]]

= E[(q1(T )− T )(q2(T )− T )]

= E

[
σ2

∫ T

0

∆(s+ θ1(0))ξ1(s)ds

∫ T

0

∆(s′ + θ2(0))ξ2(s′)ds′
]

= σ2 1

2π

∫ 2π

0

∫ 2π

0

P (y − x)

∫ T

0

∫ T

0

∆(s+ x)∆(s′ + y) 〈ξ1(s)ξ2(s′)〉 dsds′dxdy

= σ2 cin
2π

∫ 2π

0

∫ 2π

0

P (y − x)

∫ T

0

∫ T

0

∆(s+ x)∆(s′ + y)δ(s− s′)dsds′dxdy

= σ2 cin
2π

∫ 2π

0

∫ 2π

0

P (y − x)

∫ T

0

∆(s+ x)∆(s+ y)dsdxdy.

Similarly, we find the variance to be

Var[q1](T ) = E[(q1(T )− E[q1(T )])2]

= σ2 1

2π

∫ 2π

0

∫ 2π

0

P (y − x)

∫ T

0

∆(s+ x)2dsdxdy.

Note that we therefore have Var[q1] = Var[q2], and hence the denominator of Eq.(3.7) can

be simplified:
√

Var[q1]Var[q2] = Var[q1]. This gives the output correlation as

cout =

cin

∫ 2π

0

∫ 2π

0
P (y − x)

∫ T
0

∆(s+ x)∆(s+ y)dsdxdy∫ 2π

0

∫ 2π

0
P (y − x)

∫ T
0

∆(s+ x)2dsdxdy
. (3.8)

Now let h(x) =
∫ 2π

0
∆(y)∆(y + x)dy be the autocorrelation of the PRC, and let φ(t) =

θ2(t)− θ1(t) represent the phase difference as before. Then we can rewrite Eq.(3.8) as

cout = cin

∫ 2π

0
P (φ)h(φ)dφ∫ 2π

0
P (φ)h(0)dφ

.
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Figure 3.3: Output correlation for large time windows is shown as a function of the PRC

shape parameter α. Note that when α = 0 the PRC is a pure sinusoid and therefore the

oscillator is type II; when α = π/2, the oscillator is type I (see Eq.(3.10)). Theoretical

curves (solid) are a good match for both the simulated total phase correlation (dots) and

the simulated spike count correlation (stars). Colors indicate the level of input correlation:

0.2 (blue), 0.4 (green), 0.6 (red), 0.8 (cyan), 0.99 (purple). In all cases, noise amplitude

σ = 0.05, and results are shown for the large time window T = 50× 2π.
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Figure 3.4: The perturbation expansion of cout for small input correlation (dashed) agrees

well with the full output correlation (solid). Note that, to lowest order in cin, the output

correlation goes to zero as the PRC shape parameter α goes to zero, that is, as the PRC

shape approaches the pure type II. Colors indicate the level of input correlation: 0.01 (light

gray), 0.05 (medium gray), 0.1 (black).

Note that the right hand side no longer depends on T after we switched the order of inte-

gration and canceled the resulting factors of T in both numerator and denominator. Next

we can do away with the denominator entirely, since h(0) does not depend on φ, and P (φ)

integrates to one on the interval [0, 2π]. This leaves simply

cout = cin

∫ 2π

0

P (φ)
h(φ)

h(0)
dφ. (3.9)

An explicit expression for the steady-state probability density of the phase difference

P (φ) was derived by Marella and Ermentrout in [41]. Specifically, we have

P (φ) =
N

G(φ)
,

where G(x) = 1 − cin (h(x)/h(0)), and N is a normalizing constant, N = 1/
∫ 2π

0
1/G(x)dx.

Let us further define the PRC to be

∆(θ;α) = − sin(θ + α)− sin(α), (3.10)
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where α is a parameter that allows us to vary the PRC shape smoothly between type I

(α = π/2) and type II (α = 0). See Fig.(3.1). Using this, the phase distribution over long

time scales becomes a function of input correlation and the PRC shape parameter:

P (φ; cin, α) =√
(cin − 1)(cos(2α)− 2)(2 + (cin − 1) cos(2α))

2π(2− cin + (cin − 1) cos(2α)− cin cos(φ))
. (3.11)

In the special cases where α = π/2 and α = 0, Eq.(3.10) and Eq.(3.11), together with

Eq.(3.8), yield

Type I

∆I(x) = 1− cos(x)

PI(φ; cin) =

√
3

2π

√
c2
in − 4cin + 3

(3− 2cin − cin cos(φ))
(3.12)

cout,I = 1− 1

3

√
3(cin − 3)(cin − 1)

Type II

∆II(x) = − sin(x)

PII(φ; cin) =
1

2π

√
1− c2

in

(1− cin cos(φ))
(3.13)

cout,II = 1−
√

1− c2
in

As in [5], we see in Fig.(3.3) that type I oscillators display greater output correlation

than type II oscillators for any fixed value of the input correlation c, a surprising finding

in light of earlier results that demonstrated the opposite relationship over short windows of

observation [25, 24, 41, 1].
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Our intuition for this finding can be honed by performing a further perturbation ex-

pansion, now assuming small input correlation. For sufficiently small cin, we can make the

approximation

1

G(x)
=

1

1− cin h(x)
h(0)

≈ 1 + cin
h(x)

h(0)
.

When we substitute this into Eq.(3.9) we find

cout = cin
Ñ

h(0)

∫ 2π

0

h(φ)dφ+O(c2
in), (3.14)

where Ñ = 1/
∫ 2π

0
(1 + cinh(x)/h(0)) dx is likewise approximated to lowest order in cin.

The form of Eq.(3.14) demonstrates that output correlation scales with the integral of

the PRC autocorrelation, and for the parametrized PRC in Eq.(3.10) this integral becomes

simply

∫ 2π

0

h(φ)dφ = 4π2 sin(α)2.

In particular, α = 0 for the type II PRC, and hence cout = 0 to lowest order. Clearly, we

have nonzero autocorrelation for nonzero α ≤ π
2
, and hence PRCs that deviate from pure

type II will produce higher output correlation over the long timescales considered here.

Expanding the remaining terms in Eq.(3.14), we find the approximated output correlation

takes the form

cout ≈
2cin sin(α)2

2 + cin − (1 + cin) cos(2α)
. (3.15)

In Fig.(3.4) we show that this approximation agrees with Eq.(3.8) for cin = 0.01 and 0.05

but begins to diverge when cin = 0.1. Note that these curves would all lie below the lowest

curve plotted in Fig.(3.3) if shown on the same scale.

We verify the preceding analysis by simulating two phase oscillators perturbed by additive

white noise as described in Eq.(3.2) and Eq.(3.3). To generate the correlated noise processes

of Eq.(3.3), we first used the MATLAB function randn() to create three independent random

vectors of normally distributed values with mean zero and standard deviation one. These

vectors correspond to the mutually independent white noise processes ξA, ξB and ξC in
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Eq.(3.3). Then for each correlation value cin ∈ {0.2, 0.4, 0.6, 0.8, 0.99}, we created correlated

processes ξ1 and ξ2 as written in Eq.(3.3) and repeated here:

ξ1 =
√
cin ξC +

√
1− cin ξA

ξ2 =
√
cin ξC +

√
1− cin ξB.

The oscillators described by Eq.(3.2) were then integrated using the Euler-Maruyama method

[?], specifically for i = 1, 2:

θi(t) = θi(t− 1) + dt+ σ∆(θi(t− 1))ξi(t− 1)
√
dt,

with timestep dt = 0.01 and noise amplitude σ = 0.05 in all simulations, unless stated

otherwise. Note that for convenience, simulations were performed with time rescaled so that

t = T/2π. Therefore the natural period of the oscillators is on the order of one simulation

time unit.

Each combination of input correlation cin and PRC shape parameter α was simulated

independently for a total duration of 105 time units, and the first 103 time units were

discarded to ensure that the steady state regime had been reached. We computed the

correlation coefficient of both the total phase and the spike count of the resulting oscillator

time series over sliding time windows of length T . Fig.(3.3) shows the result for T = 50 time

units, or 50 times the natural frequency of the oscillators. Both the total phase correlation

and the spike count correlation agree closely with each other and with the theoretical curves

as a function of the PRC shape parameter α.

3.3 SHORT TIME SCALES

Now we will calculate the spike count correlation directly for observation windows T that are

shorter than or equal to the natural period, which we assume to be 2π. First let us consider

the probability that a spike occurs in [0, T ]. We say that oscillator i spikes when its phase θi

reaches 2π, or in other words θi(T ) ≥ 2π. Assuming as usual that the noise amplitude σ is
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Figure 3.5: Joint spiking probability for two oscillators receiving partially correlated noise is

shown for observations windows T ≤ 2π, where 2π is the natural frequency of the oscillation.

The subscripts ij indicate the probability that the corresponding oscillator does (1) or does

not (0) spike.

small, we expand the phase to lowest order as in Eq.(3.4), that is θi(T ) = θi(0) + T +O(σ).

Therefore the probability that oscillator i spikes is simply

P[θi spikes] = P[θi + T ≥ 2π]

P[θi does not spike] = P[θi + T < 2π].

For two oscillators, there are four possibilities for the joint spike count:

P[θ1 does not spike, θ2 does not spike]

= P[θ1 + T < 2π, θ2 + T < 2π]

P[θ1 spikes, θ2 does not spike]

= P[θ1 + T ≥ 2π, θ2 + T < 2π]

P[θ1 does not spike, θ2 spikes]

= P[θ1 + T < 2π, θ2 + T ≥ 2π]

P[θ1 spikes, θ2 spikes]

= P[θ1 + T ≥ 2π, θ2 + T ≥ 2π].
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Figure 3.6: (A,B) Theoretical (solid) and simulated (dotted) output correlation curves are

shown as a function of the observation window T ≤ 2π. (A) Type I oscillators. (B) Type

II oscillators. (C,D) The initial slope (dashed) of the spike count correlation (solid) is the

linear approximation of Eq.(3.16) at T = 0, given in Eq.(3.18). (C) Type I oscillators. (D)

Type II oscillators. For all plots, noise amplitude σ = 0.05, and colors indicate the level of

input correlation: 0.2 (blue), 0.4 (green), 0.6 (red), 0.8 (cyan), 0.99 (purple).
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These probabilities can be obtained directly by integrating the density of the phase

difference, Eq.(3.11), over the appropriate domain. Note that this gives four discrete joint

probabilities for each observation window T ∈ [0, 2π]. For convenience, let us define the

following functions of T :

f00(T ) := P[θ1 ≤ 2π − T, θ2 ≤ 2π − T ]

=
1

2π

∫ 2π−T

0

∫ 2π−T

0

P (y − x)dxdy

f01(T ) := P[θ1 > 2π − T, θ2 ≤ 2π − T ]

=
1

2π

∫ 2π

2π−T

∫ 2π−T

0

P (y − x)dxdy

f10(T ) := P[θ1 ≤ 2π − T, θ2 > 2π − T ]

=
1

2π

∫ 2π−T

0

∫ 2π

2π−T
P (y − x)dxdy

f11(T ) := P[θ1 > 2π − T, θ2 > 2π − T ]

=
1

2π

∫ 2π

2π−T

∫ 2π

2π−T
P (y − x)dxdy.

Let X be the random variable such that X = 1 if θ1 spikes during the observation period

T , and X = 0 if θ1 does not spike. Similarly, let Y represent the presence or absence of a

spike in oscillator θ2. Then the covariance is given by Cov[X, Y ] = E[XY ] − E[X]E[Y ]. In

terms of the functions defined above we have

E[X] = 0 · (f00 + f01) + 1 · (f10 + f11)

= (f10 + f11) = E[X2]

E[Y ] = 0 · (f00 + f10) + 1 · (f01 + f11)

= (f01 + f11) = E[Y 2]

E[XY ] = 0 · 0 · f00 + 1 · 0 · f10 + 0 · 1 · f01 + 1 · 1 · f11

= f11.

A few simplifications are possible. In particular, the sum f10(T ) + f11(T ) is just the

marginal probability that θ1 spikes within time T . Since θ1 is uniformly distributed, this

probability is simply T
2π

. Furthermore, we also have f10 = f01 by the symmetry of the density
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P , and hence
√

Var[X]Var[Y ] = Var[X]. Therefore the spike count correlation over short

time windows is

cout(T ) =
E[XY ]− E[X]E[Y ]

Var[X]
(3.16)

=
f11 − (f10 + f11)2

(f10 + f11)(1− (f10 + f11))

=
f11 −

(
T
2π

)2

T
2π

(
1− T

2π

)
=

1

2πT − T 2

[
2π

∫ 2π

2π−T

∫ 2π

2π−T
P (y − x)dxdy − T 2

]
.

This expression becomes indefinite as T → 0 and T → 2π, but a straightforward

application of L’Hôpital’s rule proves that cout = 0 in these limits. Briefly, let us recall that

d

dT

{∫ 2π

F (T )

∫ 2π

F (T )

P [x, y] dx dy

}
= −F ′[T ]

(∫ 2π

F (T )

P (x, F (T ))dx+

∫ 2π

F (T )

P (F (T ), y)dy

)
.

Thus we have for the numerator of Eq.(3.16)

lim
T→0,2π

d

dT

{
2π

∫ 2π

2π−T

∫ 2π

2π−T
P (y − x)dxdy − T 2

}
= lim

T→0,2π

{
2π

∫ 2π

2π−T
P (2π − T − x)dx

+2π

∫ 2π

2π−T
P (−2π + T + y)dy − 2T

}
.

Clearly, as T → 0, the above integrals go to zero, and so the derivative of the numerator is

zero. Meanwhile the derivative of the denominator of Eq.(3.16) evaluates to 2π at T = 0. So

we have established that cout = 0 at T = 0. Similarly, as T → 2π we have for the derivative

of the numerator:

2π

∫ 2π

0

P (−x)dx+ 2π

∫ 2π

0

P (y)dy − 4π.

Since P (φ) is a an even function and, moreover, a probability distribution over phase dif-

ferences φ ∈ [0, 2π], the above integrals each evaluate to one. Thus the derivative of the
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numerator is again zero. Meanwhile the derivative of the denominator of Eq.(3.16) evaluates

to −2π at T = 2π. Therefore we have established that cout = 0 at T = 2π as well.

Fig.(3.6A,B) shows how the analytically derived output correlation of Eq.(3.16) compares

with numerical simulations for type I and type II oscillators, respectively, with σ = 0.05.

Correlations were computed for the simulated oscillator time series as described in the previ-

ous section, however now the length of the sliding windows of observation T range between

0 and 2π. Note that, although T is short with respect to the natural period of oscillation,

the simulated system remains at steady state once the initial transient has been discarded.

Therefore the steady state phase distribution P applies in this setting, and Fig.(3.6A,B)

shows good agreement between the analytic and numerical quantities.

We can make a further simplification by considering the linear part of Eq.(3.16) for T

close to zero:

cout = T

(
P (0)− 1

2π

)
+O(T 2)

Thus, the initial slope of the output correlation is proportional to the peak of the stationary

distribution of the phase difference, P (0). Substituting PI(0) and PII(0) from Eq.(3.12) and

Eq.(3.13), we obtain:

cout,I =
T

π

(
cin

3(1− cin) +
√

3(cin − 1)(cin − 3)

)
= T

c

6π
+O(c2

in)

cout,II =
T

2π

(
1 + cin√
1− c2

in

− 1

)
(3.17)

= T
cin
2π

+O(c2
in). (3.18)

From here, it is clear that the initial slope of cout is greater for type II than for type I

oscillators; in fact the type II output correlation rises three times faster than the type I, to

lowest order in cin. See Fig.(3.6C,D).
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Figure 3.7: Output correlation is shown as a function of intermediate-length observation

windows T . Colors indicate the level of input correlation: 0.2 (blue), 0.4 (green), 0.6 (red),

0.8 (cyan), 0.99 (purple). (A) Type II oscillators (solid) exhibit higher output correlations

over short time scales than do type I (dashed) over long time scales. (B) This result reverses

over short time scales. In all cases, noise amplitude σ = 0.2.
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3.4 DISCUSSION

We have demonstrated a novel approach to approximating the spike count correlation of

noisy neural oscillators over both long and short time scales. In the case of long windows of

observation T much greater than the natural period of oscillation, we used the total elapsed

phase (modulo the period) as a proxy for the spike count. The difference between these

quantities is at most one and hence is negligible when many spikes are observed over large

time windows T . In our perturbation expansion to lowest order in the noise amplitude, σ,

the correlation between oscillators depends only on the PRC and the stationary distribution

of the phase difference. A further approximation assuming small input correlation cin reveals

that output correlation scales with the autocorrelation of the PRC, which is a nonnegative

quantity that equals zero precisely when the PRC is a pure sinusoid, i.e., when the oscillator

displays type II dynamics. This observation sheds some light on the surprising finding,

first reported by Barreiro, et al. [5], whereby type I oscillators transfer correlations more

faithfully than do type II over long time scales, although the reverse holds true for the better

understood case of short time scales [25, 24, 41, 1].

Using straightforward probabilistic reasoning, we computed the spike count correlation

directly for short time scales. In the limit of small T and small cin, we obtain an expression

for the initial slope of the output correlation, also known as the correlation susceptibility

[15]. In [15], de la Rocha, et al. use a phenomenological model to explore the complex

relationship between susceptibility, firing rate and threshold nonlinearities. The present

analysis illustrates the contribution of bifurcation structure via phase resetting dynamics.

In particular, the susceptibility is proportional to the peak of the stationary phase difference

distribution, P (0), which in turn depends on the shape of the PRC.

Our analytic expressions in the limit of small noise agree well with spike count correlations

computed from simulated oscillators. However, for tractability we included only terms of

order one in the perturbation expansion of the phase given in Eq.(3.4). As a result, the

present analysis cannot account for the slow drift of the correlation due to noise, which is

visible for values of T near 2π in Fig.(3.6).

In Fig.(3.7), the drift is even more apparent. This figure illustrates what happens when
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we violate all of the assumptions under which the preceding analysis is guaranteed to hold

true. In particular, the noise amplitude for the simulations shown in Fig.(3.7) is 0.2, while

for all previous figures, σ = 0.05. As a result, we see significant drift away from the small

noise predictions, even for observation windows as small as T = 2π. Furthermore, the

preceding discussion covers cases where either T ∈ [0, 2π] or T � 2π. The intermediate

values of T illustrated in Fig.(3.7) suggest that type II cells show damped oscillations in

output correlation far longer than type I membranes. New analytic methods will be needed

to address these and other phenomena at intermediate time scales that may be relevant in

biological systems.
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4.0 TRANSIENT POTASSIUM, BURSTING AND INFORMATION

Individual neurons exhibit a truly staggering diversity of dynamical behaviors, from chat-

tering and bursting to regular oscillations, to aperiodic chaos. Underlying this diversity in

behavior is an equally staggering array of ion channels, whose gating properties and time

constants determine the dynamical repertoire [40, 66], and hence the information processing

capabilities, of every cell in the central nervous system. The presence of an ionic current may

alter the bifurcation structure of a cell [22], and may therefore provide an efficient mechanism

for modulators to rapidly change the character of ongoing activity [32].

In this chapter, we investigate the bifurcation structure induced by the A-type potassium

current (IA), which opposes excitation at hyperpolarized potentials and thus can strongly

modulate membrane excitability [29]. Many investigations of this class of transient potassium

channel focus on the excitable regime and on temporally localized effects such as spike time

adaptation [39], latency to first spike [57, 59] and the gating of synaptic inputs [57]. By

contrast, we aim to characterize the global bifurcation structure of the superthreshold regime

induced by IA and the implications for neural coding as measured by stochastic synchrony

and information propagation.

In Section 4.1, we derive a reduced three dimensional model neuron featuring IA from

empirically fitted kinetic equations reported previously in the literature [30, 42]. We then

describe the model’s bifurcation structure, including parameter regimes where the onset of

spiking occurs through either a Hopf or a saddle-node bifurcation. The system also undergoes

a transition from tonic spiking to bursting, which we analyze by decomposing the equations

into fast and slow subsystems.

In Section 4.2, we construct a detailed picture of the effect of IA on basic statistical

characterizations of the spiking patterns produced in response to repeated presentations of a
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broadband signal with independent additive noise. We find that the bursting regime shows

greater intrinsic variability and a greater propensity for entrainment than the oscillatory

regime.

Next in Section 4.3, we examine the impact of the model’s bifurcation structure on

the Shannon information and on stochastic synchrony. Consistent with the findings of the

previous section, we show that bursting cells transmit more information than tonically firing

cells. Along the way, we illustrate methodological concerns regarding temporal correlations

and entropy estimation.

Finally, we explain the observed differences between dynamical regimes in Section 4.4 in

terms of the sensitivity of the dynamics to perturbation as revealed by the local Lyapunov

exponent and the phase resetting curve.

4.1 A NEURAL MODEL FEATURING THE A-TYPE K+ CHANNEL

For our exploration of the A-type potassium channel, we take the conductance based model

of McCormick and Huguenard [30, 42] as our starting point. The original model of the

guinea pig thalamocortical relay neuron includes detailed empirically derived kinetics for

eight different active channels and two leak conductances

4.1.1 Reduction to three dimensions

For our purposes, we include only the model IA as well as the basic spiking mechanism,

namely the fast Na+ current (INa), the delayed rectifier K+ current (IK) and the leak

current (IL):
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Figure 4.1: Selected ion channel kinetics. (A) The activation (solid) and inactivation (dashed)
curves for IA . (B) Time constants for INaactivation (dashed red) and inactivation (solid red), as
well as IA activation (dotted blue) and inactivation: τhA1

(dashed blue) and τhA2
(solid blue).

C
dV

dt
= −INa − IK − IA − IL + Iapp,

IL = gL,K(V − EK) + gL,Na(V − ENa),

INa = gNam
3h(V − ENa),

dm

dt
= am(1−m)− bmm,

dh

dt
= ah(1− h)− bhh,

IK = gKn
4(V − EK),

dn

dt
= an(1− n)− bnn,

IA = gA(0.6hA1m
4
A1 + 0.4hA2m

4
A2)(V − EK),

dmA1

dt
= (m∞A1 −mA1)/τmA

,
dmA2

dt
= (m∞A2 −mA2)/τmA

,

dhA1

dt
= (h∞ − hA1)/τhA1

,
dhA2

dt
= (h∞ − hA2)/τhA2

, (4.1)
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where

am(V ) = 0.091(V + 38)f(V,−38, 5), bm(V ) = 0.062(V + 38)f(V,−38,−5),

ah(V ) = 0.016 exp(−(V + 55)/15), bh(V ) = 2.07/(1 + exp(−(V − 17)/21)),

an(V ) = 0.01(V + 45)/f(V,−45, 5), bn(V ) = 0.17 exp(−(V + 50)/40),

(4.2)

m∞A1(V ) = f(V,−60, 8.5),

m∞A2(V ) = f(V,−36, 20),

τmA
(V ) = (1/(exp((V + 35.82)/19.69) + exp(−(V + 79.69)/12.7)) + .37), (4.3)

h∞(V ) = 1/(1 + exp((V + 78)/6)),

τ(V ) = 1/(exp((V + 46.05)/5) + exp(−(V + 238.4)/37.45)),

τhA1
(V ) =

 τ(V ) if V < −63

19 otherwise,
τhA2

(V ) =

 τ(V ) if V < −73

60 otherwise,
(4.4)

and where f is a Boltzman function f(x, y, z) = 1/(1 + exp(−(x − y))/z). We use the

following fixed maximal conductances and reversal potentials: gL,K = 0.007, gL,Na = 0.0022,

gNa = 30, gK = 13, EK = −130, and ENa = 45.

Suspecting that pharmacologically isolated IA in the thalamic relay neuron actually repre-

sents a mixture of two different populations of voltage-gated ion channel [30, 42], McCormick

and Huguenard constructed a hybrid channel with four gating variables and three time con-

stants. For the sake of simplicity and tractability, we include in our model only one of these

subpopulations. Since the more slowly inactivating channel should have a greater impact on

the dynamics, we will select the one designated above by A2.

As a further reduction, we note that sodium activation is sufficiently fast that we can

make the common simplifying assumption [31] that the gating variable m reaches its steady

state value instantaneously, and thus we replace m(t) with m∞(V ). Furthermore, the kinetics

of n typically resembles that of h [43], so we can omit a redundant dimension by substituting

the algebraic expression n(t) = dnK
(cnK

− h), where we determined that the constant values

cnK
= .3, dnK

= 1.16 give the best fit to the original dynamics.
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We can now write our three-dimensional neural model featuring IA in the following

compact form:

C
dV

dt
= −gNam∞(V )3h(V − ENa)− gAhAm∞A (V )4(V − EK)− IK − IL + Iapp,

dh

dt
= (h∞ − h)/τh,

dhA
dt

= (h∞A − hA)/τhA , (4.5)

with h∞ = ah/(ah+bh) and τh = 1/(ah+bh), and the same kinetics provided in Eq.(4.2-4.4).

Note that hA, h∞A and τhA in Eq.(4.5) and throughout the following discussion are identical

to hA2, h∞A2 and τhA2
in Eq.(4.1).

4.1.2 The bifurcation structure

Let us now turn to the bifurcation parameters: the maximal IA conductance, gA, and the

constant bias current, I, in units of µS and nA, respectively. When gA = 0, the resting

state of the resulting two-dimensional system loses stability at a saddle-node bifurcation.

For nonzero gA, we observe that the system evolves on two time scales. The time constant of

the inactivation of the Na+ current, τh, and that of the membrane potential are both much

smaller than the time constant for IA inactivation, τhA . (See Fig.(4.1B)). Therefore we can

decompose the model into fast and slow subsystems having the general form:

ẋ = F (x, y),

ẏ = εG(x, y),

where 0 < ε� 1 is a small parameter governing the time constant of the slow variable y. In

the singular limit when ε = 0, such a system is governed by the equilibria and limit cycles

of the fast subsystem, with the slow variable acting as a bifurcation parameter.
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Figure 4.2: Phase plane and bifurcation diagram. (A) The phase plane of the fast subsystem
showing three equilibria where the h-nullcline (green) intersects the z-shaped V -nullcline (red).
The stable fixed point (circle) is the neuron’s rest potential. The middle equilibrium is a saddle
point (triangle), which spawns stable and unstable manifolds (blue dashed and solid, respectively),
and the most depolarized equilibrium is unstable (square) for the parameters in the figure (gA = 5,
I = 3.2, hA = 0.03). (B) The bifurcation diagram of the fast subsystem showing two subcritical
Hopf bifurcations. Branches of stable equilibria are shown in solid black, unstable equilibria in
dashed blue. Maxima and minima of limit cycle solutions are shown as filled circles (stable orbits)
and open circles (unstable orbits).
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In our case, the fast subsystem x represents the two-dimensional system (V, h) and the

slow subsystem y represents hA, the inactivation gate of IA . To be explicit, the fast sub-

system is obtained by setting ε := 1/τhA = 0 in 4.5 so that the model is reduced to two

dimensions:

C
dV

dt
= −gNam∞(V )3h(V − ENa)− gAhAm∞A (V )4(V − EK)− IK − IL + Iapp,

dh

dt
= (h∞ − h)/τh. (4.6)

Now we may treat the slow variable hA as a bifurcation parameter in Eq.(4.6) to gain insight

into the dynamics of the full system of Eq.(4.5).

For gA = 5, we see in Fig.(4.2A) a snapshot of the fast subsystem phase plane with three

equilibria where the h-nullcline (green) intersects the z-shaped V -nullcline (red). The most

hyperpolarized equilibrium (circle) is a stable fixed point corresponding to the neuron’s

rest potential. The middle equilibrium is a saddle point (triangle), which spawns stable

and unstable manifolds (blue dashed and solid, respectively), and the most depolarized

equilibrium is unstable (square) for the parameters in the figure. Spike trajectories follow

the unstable manifold (solid blue) in the (V, hA)-plane.

A more complete picture of the system dynamics is given by the bifurcation diagram in

Fig.(4.2B). As hA decreases, the rest state (solid black) loses stability in a subcritical Hopf

bifurcation. For lower values of hA, the only accessible stable attractor is a high amplitude

limit cycle, represented in Fig.(4.2B) by its maximum and minimum values marked with

closed circles. Note that this stable orbit arose from a different subcritical Hopf bifurcation

on the depolarized branch of the curve of equilibria. It also bears mentioning that, while

negative values of hA have no biological meaning, it is necessary to continue the bifurcation

diagram into this region in order to see the full evolution of the Hopf bifurcation.

The FI-curves in Fig.(4.3), which plot the reciprocal of the inter-spike interval (ISI)

across a range of I, illustrate salient large-scale features of the full IA model. In Fig.(4.3A),

gA = 0 and the system displays the typical type I characteristic of arbitrarily low firing rates

approaching the saddle-node bifurcation to tonic spiking. By contrast, when gA = 5 we find

a prominent region of bursting behavior, indicated in the plot by multiple ISI reciprocals per

single value of I, which is followed by an onset of regular oscillations at a nonzero frequency.
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Figure 4.3: FI-curves plot the reciprocal of the ISI for the full model. (A) The type I regime
where gA = 0 shows arbitrarily low firing rates. (B) When gA = 5, a prominent region of bursting
behavior, indicated by multiple ISI reciprocals per each value of I, is followed by the onset of regular
oscillations at nonzero frequency for I > I∗ = 3.16.

Two bifurcations define the boundaries of the bursting regime for nonzero gA. As I

increases from zero, the system passes from quiescence to bursting. Then as I increases

further, another bifurcation marks the transition from bursting to tonic spiking; for gA = 5

this critical value is I∗ = 3.16. Below I = I∗, all of the periodic orbits of the fast subsystem

in Eq.(4.6) are unstable for the full system of Eq.(4.5). We can see this by considering the

averaged activity of the slow variable during an excursion of the fast subsystem around an

orbit.

Let Vspike(t, hA) be a periodic solution of the fast subsystem in Eq.(4.6) for a fixed value

of hA, and let T (hA) be the period of the oscillation. Define a slow time variable as τ = εt.

Then hA(τ) evolves according to the averaged equation

dhA
dτ

=
1

T (hA)

∫ T (hA)

0

dhA
dt

(Vspike(t, hA))dt.

=
1

T (hA)

∫ T (hA)

0

h∞A (Vspike(t, hA))− hA)

τhA(Vspike(t, hA)
dt. (4.7)

For sufficiently small ε > 0, trajectories of the full system will remain close to the stable

attractors of the fast subsystem, while the slow variable increases or decreases according to
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Eq.(4.7). In particular, the full system will have a periodic solution near an orbit of the

fast subsystem if dhA
dτ

(h∗A) = 0 for some h∗A evaluated on the orbit. This solution of the full

system will be stable (unstable) if dhA
dτ

is decreasing (increasing) at h∗A. Similarly, the full

system will have a rest state if dhA
dτ

(h∗A) = 0 for some h∗A evaluated at a rest state of the fast

subsystem, with stability determined analogously.

Fig.(4.4) shows the bifurcation diagram for the fast subsystem, with numerically gener-

ated values of the averaged equation, Eq.(4.7), superimposed in red. Trajectories of the full

system are shown in blue. For all panels, gA = 5 is held constant while the bias current

takes on the values I = 1, 2, 3, 5 from left to right and top to bottom. The top left panel

shows a quiescent configuration. Although the fast subsystem exhibits tonic spiking for a

subset of hA values, the upper red curve, which represents Eq.(4.7) evaluated on the spiking

trajectories of Eq.(4.6), is strictly positive. Therefore, if the full system should begin with

initial conditions near the periodic orbit, hA will increase until the periodic orbits disappear

at a homoclinic bifurcation. Subsequently the full system would approach the lower branch

of equilibria. Meanwhile, the lower red curve in Fig.(4.4A), which represents Eq.(4.7) eval-

uated at the rest states of Eq.(4.6), intersects zero indicating a stable fixed point of the full

system. The rest state of the full system loses stability with increasing I when Eq.(4.7)

evaluated at the rest states of the fast system no longer crosses zero. For gA = 5, this occurs

near I = 1.5.

The top right panel of Fig.(4.4) shows a trajectory of the full system at I = 2 after the

onset of bursting. Note that the upper red curve is strictly positive in this panel. Therefore

hA increases during the bursting phase of the full system until it reaches a critical value

of hA = hhomA , where the periodic trajectories the fast subsystem disappear at a homoclinic

bifurcation and the burst terminates. In this panel, the lower red curve, representing Eq.(4.7)

evaluated at the stable rest states of Eq.(4.6), is strictly negative, hence the quiescent phase

of the full system is transient as hA builds up gradually while the burst trajectory passes

near the lower branch of equilibria of the fast subsystem. At the subcritical Hopf bifurcation,

this branch becomes unstable and spiking resumes.

In the lower right panel of Fig.(4.4), we see that the averaged equation evaluated on the

spiking trajectories (upper red curve) reaches zero at a value of h∗A < hhomA , which endows
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Figure 4.4: The bifurcation to bursting is explained by a slow-fast decomposition. The averaged
derivative of the slow variable is shown in red superimposed on the bifurcation diagram of the slow
subsystem. Trajectories of the full system appear in blue. (A) For I = 1, the lower red curve
representing dhA/dτ evaluated along the rest states of the fast subsystem crosses zero, indicating
a stable rest state for the full system. (B) For I = 2, dhA/dτ > 0 on the periodic orbits of the fast
subsystem (upper red curve) and dhA/dτ < 0 on the rest states (lower red curve). Thus the full
system shows bursting behavior, oscillating between spiking and quiescence. (C) For I = 3, the
dynamics are similar to (B), with more spikes per burst. (D) For I = 5, dhA/dτ evaluated on the
fast subsystem’s periodic orbits (upper red curve) reaches zero, so the full subsystem has a stable
periodic orbit.

51



g A

Bias current (pA)

g A

 

 

0 1 2 3 4

5

4

3

2

1

0 10

20

30

40

50 

Fr
eq

ue
nc

y 
(H

z)

A B

Bias current (pA) Freq (Hz)

Figure 4.5: Grid of discretized parameter values, with firing rate represented by the color gradient.
(A) The parameter space is spanned by (I, gA) ∈ [0, 5] × [0, 5]. The bursting regime is contained
within the superimposed bifurcation boundaries shown in black. (B) The same parameter space as
shown in (A) with the rows shifted so that each increment of gA is matched with the values of I
that keep firing rates approximately constant in the columns.

the full system with a stable periodic orbit near that of the fast subsystem with hA = h∗A.

Fig.(4.5A) depicts the boundaries of the three dynamical regimes, quiescent, bursting

and spiking, drawn as a discretized two-parameter bifurcation diagram that spans values of

(I, gA) ∈ [0, 5] × [0, 5] in increments of 0.2. The color of each square indicates the firing

frequency of the model (in Hz), which we have defined as the reciprocal of the median inter-

spike interval (ISI). In order to facilitate comparison of spike train statistics while keeping

the firing rate constant, Fig.(4.5B) illustrates the same parameter grid as in A, with the rows

shifted so that each increment of gA is matched with the values of I that keep firing rates

approximately constant in the columns. Since the f-I relationship is nonlinear, however, the

shift was adjusted to minimize the firing rate variability in the center of the parameter grid

along the bifurcation boundary between the bursting and tonic regimes. See Fig.(4.6) for

further discussion.
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Figure 4.6: Firing rates of simulated cells with the indicated parameter values together with a
broadband stimulus and independent additive white noise. (A) The black curve shows the grand
mean (± one standard deviation) across all trials and all conditions for each column. A parameter
grid is superimposed for reference. (B) Firing rates remain stable across all noise intensities (σ =
0.05, 0.4) and signal amplitudes (η = 0.4, 2).
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Figure 4.7: Sample voltage traces from indicated points in parameter space. Left-hand traces
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signal strength η = 2.
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4.2 SPIKE TRAIN STATISTICS

In the spirit of white-noise analysis [10], we now examine the statistical characteristics of

the spiking patterns that arise in response to a repeated broadband signal in the presence

of independent additive noise. The following analyses will show that the bursting region

of parameter space exhibits elevated ISI variability and a marked lack of oscillatory power.

Overall, we find that increased signal amplitude attenuates oscillatory power across all dy-

namical regimes while enhancing spike time reliability.

4.2.1 Firing rate

In addition to the constant bias current I, the model received repeated presentations of a

frozen noise stimulus, Istim, consisting of a 50 s duration pseudorandom Gaussian white noise

sequence convolved with an alpha function with a time constant of 3 ms. The convolution

serves to lowpass filter the signal in a manner resembling the envelope of fast synaptic

transmission. Moreover, during in vitro current clamp experiments, it is common practice

to lowpass filter noisy stimuli in order to slow the onset of excitotoxicity during recording.

The system was further perturbed by small amplitude white noise Inoise, generated inde-

pendently for each stimulus presentation. The noise can be interpreted variously as stochas-

ticity intrinsic to the spike generating mechanism of an isolated neuron, or as background

activity due to diffuse network interactions. More generally, Inoise may be taken to represent

any broadband, small amplitude sources of variability beyond the control of an experimenter.

In summary, the system voltage together with the bias, stimulus and noise currents is

given by

C
dV

dt
= −Iionic + I + Isignal + Inoise,

Inoise = σξ(t),

Isignal = ηS(t). (4.8)

where ξ(t) is a white noise process with zero mean and unit variance, and S(t) is a single

realization of a zero mean white noise process.
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Each parameter combination in the grid shown in Fig.(4.5) received 50 repetitions of the

50 s duration stimulus current Istim at three amplitude levels η ∈ {0.4, 1, 2}, each paired

with two noise levels σ ∈ {0.05, 0.4}. For the sake of visual clarity, the intermediate level

of stimulus amplitude, η = 1, will not be shown in the figures that follow. However the

simulation trials will be used to calculate stochastic synchrony in Section 4.3.5.

Note that the firing rates remain largely unaffected by the presence of the stimulus and

noise currents, indicating that the broadband inputs serve to rearrange the timing of spikes

without disturbing the overall dynamics. See Fig.(4.6B), where the stimulus amplitude η

varies by column while the noise amplitude σ varies down the rows. Fig(4.6A) shows the

grand mean (± one standard deviation) across all trials and all conditions for each column

in Fig.(4.6B), superimposed on a parameter grid for reference. Note that the variance in

firing rate is largest at low frequencies where statistical power is low due to the scarcity of

spikes. For this reason we omit from subsequent analyses those parameter combinations to

the left of the bifurcation from quiescence to bursting, where noise may induce sporadic, low

frequency activity.

4.2.2 Variability and Correlation

The bursting regime that arises with nonzero gA creates a region of parameter space where

the dynamics contribute a deterministic source of spike timing variability in addition to the

variability induced by the stimulus and noise currents. Fig(4.7) shows example spike trains,

with and without noisy stimulation, for a range of parameters. Spike trains in the left column

reflect only a constant bias current I, while those in the right column show responses to the

maximum noise and stimulus amplitudes used in this study.

The traces labeled 1-3 demonstrate spike patterns where gA = 5 is held fixed and I varies

from a value (1) near the bifurcation from quiescence to bursting (I = 1.8 nA), to a value (2)

inside the bursting regime but close to the border between bursting and tonic spiking (I = 3

nA), and then to a value (3) just beyond the bursting-to-tonic bifurcation (I = 3.2). Observe

that, in the left column, trace 3 shows tonic spiking in the absence of noise, but the same

trace in the right column shows irregular bursting in response to broadband stimulation.
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Figure 4.8: ISI CV. (A) Blue circles indicate the mean value inside the bursting region and red
circles indicate the mean over the tonic regime. The left-hand plots correspond to the low-noise
condition in the top two panels of (B), and the right-hand plots correspond to the high-noise
condition in the bottom two panels of (B). Note that error bars represent the standard deviation
of the CV across the respective subsets of parameter space and, as such, they indicate the diversity
of dynamical behaviors. In this and similar figures, the error bars do not reflect variability across
noisy samples, nor do they indicate insufficient statistical power.
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Throughout the parameter space, we see evidence that the addition of perturbative currents

serves to blur the boundary between the bursting and tonic regimes.

The traces labeled 3-5 in Fig(4.7) illustrate firing patterns at a fixed frequency (31.4±0.9

Hz) as gA decreases from gA = 5 nS in trace 3 to gA = 0 in trace 5. As gA varies in this

column of the parameter/frequency grid, the system’s dynamics move farther away from the

bifurcation to bursting, and for gA = 0 we have classical type I oscillatory dynamics.

Finally, the last pair of traces represents a corner of parameter space where the highest

firing rates occur (50 Hz). As shown in the last row of the right column of Fig(4.7), the

spiking trajectory occasionally enters depolarization block for extended periods when the

combined stimulus and noise currents kick the system into the basin of attraction of the

high voltage stable fixed point illustrated in Fig(4.2B). This region of the system’s phase

space is both difficult to enter and difficult to leave, by virtue of the unstable limit cycles

emerging from the subcritical Hopf bifurcation that surround the stable equilibrium. Only

fortuitously timed high amplitude noise suffices to kick the system out of depolarization

block and back into the basin of attraction of the spiking manifold. This dynamic produces

the greatest spike timing variability, as measured by the coefficient of variation (CV) of the

ISI, defined as CV(ISI) = std(ISI)/mean(ISI).

In Fig(4.8B), as in Fig(4.6B), the noise amplitude increases down the rows (σ = 0.05 top,

σ = 0.4 bottom), and the stimulus amplitude increases left-to-right in the columns (η = 0.4,

left, η = 2 right). Setting aside the region of depolarization block, we otherwise find that

the largest CV values in each panel occur in the bursting region of parameter space.

Fig(4.8A) shows a summary of each block of panel B, with blue circles indicating the mean

value inside the bursting region and red circles indicating the mean over the tonic regime.

Note that the error bars represent the standard deviation of the CV measurement across the

respective subsets of parameter space, and as such, they indicate the diversity of dynamical

behaviors. It is important to note that the error bars in this and subsequent figures do not

reflect variability across noisy samples, nor do they indicate insufficient statistical power.

The means in Fig(4.8A) show that the ISI CV decreases with inceasing signal amplitude

for the bursting regime, while the opposite occurs across the tonic region. We conjecture

that in both cases the spiking activity becomes more entrained to the higher amplitude
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Figure 4.9: Cross correlation between pairs of spike trains within each parameter set. Each
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panels, though both regimes exhibit comparable peaks at zero lag across the various amplitude
conditions.
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Figure 4.10: Spike train auto- and cross-correlation power spectral density. (A) The color gradient
indicates the integral of the normalized power spectral density (PSD) of the autocorrelation, calcu-
lated over a 10 Hz window centered on the firing rate of the simulated cells at each parameter grid
point. (B) The color gradient indicates the integral of the PSD of the normalized cross correlation,
calculated as in (A). (C, D) Blue circles indicate the mean value inside the bursting region and red
circles indicate the mean over the tonic regime of the quantities shown in (A, B), respectively.
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broadband signal, so that the observed changes in ISI CV represent a convergence toward a

level of variability consistent with the signal characteristics.

Next let us consider the cross correlation between the responses to a repeated stimulus.

In Fig(4.9), each horizontal line in each panel represents the cross correlation of a pair of

spike trains produced by one model cell, and in each panel the cells have been sorted in

order of increasing frequency from top to bottom. We can see that oscillations in the cross

correlation quickly die out for the bursting cells, though both regimes exhibit comparable

peaks at zero lag across the various amplitude conditions.

These observations are captured more concisely in Fig(4.10), where we first computed the

power spectral density (PSD) of the autocorrelation (panel A) for each simulated spike train,

and the PSD of the cross correlation (panel B), each normalized by firing rate. We integrated

the power over a 10 Hz window centered on the firing rate, defined as the reciprocal of the

median ISI. Thus greater integrated power indicates regular oscillations, which are largely

absent within and near the bursting region of the parameter grids. Significantly, oscillatory

power in the tonic region appears to vary inversely with stimulus amplitude, indicating that

broadband stimulation increases response variability across time.

By contrast, the correlation coefficient between pairs of responses increases with signal

amplitude throughout the parameter space in Fig(4.11), suggesting that spike time reliability

most likely increases as entrainment to the signal increases. Note that the spike trains were

first convolved with a Gaussian of width 3 ms before the correlation computation.

Together, the preceding calculations present an intuitively agreeable picture showing that

entrainment to a broadband signal reduces oscillatory activity in favor of more diverse spike

patterns. At the same time, spike train correlations at zero lag increase with increasing signal

strength, suggesting a tightening of spike time precision. This combination of increased

variability across time together with decreased variability across stimulus repetitions will

have implications for information propagation, as discussed in the next section.
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Figure 4.11: The spike train correlation coefficient. (A) Blue circles indicate the mean value
inside the bursting region and red circles indicate the mean over the tonic regime of the correlation
coefficient shown in the next panel. (B) The color gradient represents, for each simulated cell in
the parameter grid, the mean correlation coefficient across all pairs of responses over 50 trials of
the signal plus independent noise at the indicated intensities.
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4.3 SHANNON INFORMATION AND STOCHASTIC SYNCHRONY

We can quantify the correspondence between the signal and the response in at least two ways

that will be discussed here. First, the Shannon mutual information can be used to probe

the coding capacity of neural systems without necessitating an explicit characterization of

the neural code. Second, as discussed in earlier chapters, stochastic synchrony quantifies

the extent to which correlations in noisy input currents produce correlations in output spike

trains. Both of these measures can be understood as ways to characterize the statistical

dependence between the inputs and outputs of a neural system.

Previous work has related the information capacity of a cell or population of cells to

intrinsic membrane properties [61, 52]. In particular, St. Hilaire and Longtin [61] found that

type I dynamics provided greater information than type II in a noiseless setting, while the

reverse was true in the presence of noise. The authors conjectured that type I membranes,

featuring arbitrarily low firing rates, should provide more flexible dynamics and thus greater

information capacity in general. By a similar argument, we have seen in the previous section

that the bursting regime shows greater dynamical flexibility than the tonically firing regime,

so we expect corresponding results in the information calculations ahead.

4.3.1 Entropy, information and stochastic synchrony

Before we proceed with our methods and results, let us take a moment to introduce the

concepts of entropy and information and to describe their relationship with stochastic syn-

chrony.

In his 1948 paper [58], Claude Shannon described communication in terms of selecting

a message from a set of possible messages with a known probability distribution. For Shan-

non, the messages consisted of discrete symbols transmitted across a telegraph wire, and

the stochasticity arose from the error-prone transmission process. For us, the situation is

analogous if we take the messages to consist of sensory stimuli, or of synaptic inputs from

upstream neurons.

Shannon wanted to quantify the degree of uncertainty in the message selection process:
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Figure 4.12: Entropy in the case of a binary random variable. Note that entropy is maximized
when the distribution is uniform, that is, when P = 1− P = 1/2.

given a probability distribution over all possible messages, how uncertain is the outcome

of drawing a sample? He defined this measure of uncertainty, the entropy H, as a func-

tion satisfying three axioms, and he proved that the only such function, up to a positive

multiplicative constant K, is

H(X) = −K
N∑
i=1

P (X = xi) logP (X = xi), (4.9)

where xi is the ith message, i = 1, 2, . . . , N , and we usually set K = 1. Furthermore, in the

case that P (X = xk) = 0 for some k, we define 0 log 0 = 0.

An elementary property of entropy is H(X) ≥ 0, with equality if and only if P (X =

xk) = 1 and P (X = xi) = 0 for all i 6= k. In other words, there is always uncertainty in a

random variable, unless of course the outcome is certain. These facts follow easily from the

properties of the logarithm and the fact that 0 ≤ P ≤ 1.

Another important property of entropy is that H is maximal for a uniform distribution.

That is, of all discrete distributions on N values, H(X) achieves its maximum when P (X =

xi) = 1
N

for all i = 1, 2, . . . , N . This can be seen from the monotonicity of the logarithm and

the fact that a probability must sum to one. It also agrees with our intuition about what
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should constitute a maximally uncertain situation. See Fig(4.12) for an illustration of the

case where N = 2 and thus there are only two probabilities: P and 1− P .

Given two random variables X and Y , we can quantify the degree to which knowledge

about one variable reduces our uncertainty about the other variable. Accordingly, the mutual

information between X and Y is defined as

I(X;Y ) = H(X)−H(X|Y ), (4.10)

where H(X|Y ) is the conditional entropy:

H(X|Y ) = −
M∑
j=1

P (Y = yj)H(X|Y = yj)

= −
M∑
j=1

P (Y = yj)
N∑
i=1

P (X = xi|Y = yj) logP (X = xi|Y = yj). (4.11)

The conditional entropy of X given Y can be understood as the mean uncertainty in X

conditioned on Y , as the first line of Eq.(4.11) suggests. Note that I(X;Y ) is a symmetric

quantity, since the definition of conditional probability allows one to rearrange Eq.(4.10) to

read I(X;Y ) = H(Y )−H(Y |X).

Here, we are specifically interested in the mutual information between a broadband signal

and the spike train it evokes. It stands to reason that observing a sequence of evoked spikes

reduces the uncertainty we have about the stimulus. Conversely, knowledge of the input

current tells us something about the likely neural response, as long as the stimulus and

response are not completely independent.

Mutual information can, in fact, be understood as a measure of the statistical dependence

of two random variables. More precisely, it indicates the degree to which the joint distribution

P (X, Y ) differs from the product P (X)P (Y ). To see this, let us consider a commonly

used measure of the difference between two probability distributions, the Kullback-Leibler

divergence:

DKL(P (X)||Q(X)) :=
∑
x∈X

P (x) log
P (x)

Q(x)
. (4.12)
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The KL divergence resembles a metric in that DKL(P ||Q) ≥ 0, and DKL(P ||Q) = 0 if and

only if P ≡ Q. However, KL divergence is not symmetric; nor does it satisfy the triangle

inequality. For a discussion see, for example, [14].

Using the definitions of entropy and conditional entropy, Eq.(4.9) and Eq.(4.11), we can

rewrite the definition of mutual information, Eq.(4.10), as follows:

I(X;Y ) = H(X)−H(X|Y ),

= −
∑
x∈X

P (x) logP (x)−

(
−
∑
y∈Y

P (y)
∑
x∈X

P (x|y) logP (x|y)

)
,

= −
∑
x∈X

P (x) logP (x) +
∑
y∈Y

P (y)
∑
x∈X

P (x, y)

P (y)
log

P (x, y)

P (y)
,

= −
∑
y∈Y

∑
x∈X

P (x, y) logP (x) +
∑
y∈Y

∑
x∈X

P (x, y) log
P (x, y)

P (y)
,

=
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
,

≡ DKL(P (X, Y )||P (X)P (Y )).

Hence the mutual information between X and Y is identically the KL divergence between

their joint distribution P (X, Y ) and the distribution they would have if they were indepen-

dent P (X)P (Y ).

Stochastic synchrony also measures statistical dependence between neural inputs and

outputs.The Pearson product-moment correlation coefficient, which we discussed extensively

in Chapter 3, provides a measure of the linear dependence of two random variables in terms

of only the second moments of their joint distribution. As such, correlation transfer is more

easily computed than mutual information. Moreover, both quantities will be identically zero

if the output spike trains are independent of the inputs.

So why bother with mutual information? In the next sections will see that the information-

theoretic quantity provides a fine-grained characterization of neural fidelity to a signal in the

presence of perturbative noise. In addition to quantifying statistical dependence between

signal and response, entropy and mutual information reflect key dynamical properties of

spike trains such as variability and reliability.
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4.3.2 Entropy Estimation Methodology

Because it is a functional on entire probability distributions, mutual information is notori-

ously difficult to estimate empirically. Yet it provides an elegant quantification of the useful

diversity in a neural signal, and thus we persevere. Next we introduce a common variation

on the so-called “direct” method for estimating mutual information [50, 52, 33, 49, 55] and

demonstrate the results on our model system.

We will see that this method assumes, and in effect imposes, independence across the

time bins used to discretize the neural signal. For a spike train with Poisson statistics

this poses no issue. However, real neural signals exhibit temporal correlations, as do the

simulated responses discussed here. Later we will see that the original direct method [16, 65]

produces arguably more accurate results in the present case.

The mutual information between a signal S and a neural response R is defined as the

difference

I(S;R) = H(R)−H(R|S), (4.13)

where H(R) is the entropy of the total neural response, or total entropy, and H(R|S) is the

entropy of the response conditioned on the stimulus, or noise entropy.

Since information theory applies most naturally to discrete distributions, the direct

method for calculating the entropy of a neural response relies on segmenting spike trains

into a collection of ”words” of fixed length composed of a finite alphabet. Spike trains are

discretized into time bins of width ∆t, and if the temporal precision is sufficiently small,

there will be no more than one spike per bin. Thus a spike train becomes a binary sequence

consisting of the symbols {0, 1}. In order to estimate the probability distribution of R,

multiple spike trains are recorded in response to a repeated stimulus, and a K-letter word

is constructed at each time bin from K spike trains, either from the same cell or from a

population of different cells. See Fig(4.13C1).

In order to calculate the first term in Eq(4.13), we estimate the probability of a response

as the empirical frequency of all K-letter words across all time bins and all recordings in the

experiment. Namely P (R) := P (W ), and the first term of Eq.(4.13) is calculated as

H(R) = −
∑
i

P (W = wi) log2 P (W = wi). (4.14)
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Figure 4.13: Two entropy estimation methods. (A) A raster plot of sample spike trains binned
at ∆t = 20 ms. (B) Detail showing spikes from 10 cells across 10 time bins. (C1) The “vertical”
method of entropy estimation constructs 10-letter binary words at each time bin using spikes from
10 sample spike trains. (C2) The “horizontal” method constructs 5-letter words from 10 possible
numerical symbols representing the spike count in each time bin across 9 spike trains.
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For the second term, we estimate the conditional probability P (R|S) by considering the

frequency of word occurrence within each time bin, P (W |t). Then, as defined in Eq.(4.11),

the noise entropy is an average over the stimuli, meaning it is the time average of entropies

conditioned on each time bin. Thus, Eq(4.13) becomes

I(S;R) = −
∑
i

P (W = wi) log2 P (W = wi)

−

〈
−
∑
j

P (W = wj|t) log2 P (W = wj|t)

〉
t

. (4.15)

As we will discuss below, the total entropy can be understood as the overall diversity of

neural spike patterns, and the noise entropy represents the variability of the response given

identical stimuli. Therefore mutual information is maximized when a cell exhibits a large

“vocabulary” of spike patterns, so that the total entropy is large, together with absolute

reliability under identical stimulus conditions, so that noise entropy is zero. Recalling that

the uniform distribution maximizes entropy, we thus we have an upper bound on mutual

information. Let L be the number of letters in our alphabet, and let K be the number of

letters per word, as before. Then

I(S;R) ≤ −
LK∑
i=1

1

LK
log2

1

LK
= − log2

1

LK
,

For binary words, of course, I(S;R) ≤ K since L = 2.

Note that the way that we calculate the noise entropy effectively marginalizes out any

temporal correlations that may exist in the neural response. That is to say, P (W |t) is in fact

the marginal distribution of words at time t summed over all occurrences of words in the

other time bins. Of course, estimating the full joint distribution would require prohibitively

large data sets, so this method of information estimation remains a tractable compromise.

Even in the restricted space of K-letter binary words, care must be taken to obtain

sufficiently large data sets to overcome the significant bias of the “naive” [65], maximum

likelihood estimator of entropy represented in Eq.(4.14). Let m = 2K denote the width of

the histogram of all possible K-letter binary words, and let N be the number of sample

spike trains used for the estimate. It is well known that entropy estimated using Eq.(4.14)
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with N < m always underestimates the true entropy. See [2] and [53] for proofs. Moreover,

performing this calculation repeatedly on samples of the same small size will yield a mislead-

ing result: the variance about the mean estimate will be small although the negative bias

remains large.

A brute force solution with N � m would eliminate the bias, but would require quantities

of data that grow exponentially with the number of letters per word. It has also been shown

[53] that commonly used corrections to Eq.(4.14) [44, 18] suffer from the same problems. We

have therefore chosen to minimize the bias in entropies reported here by using the modified

estimator developed by Paninski [53], which provides an upper bound on the error in the

entropy estimate given m and N .

Briefly, let ni be the number of empirical observations of the ith word in our histogram

of width m, and let N be the number of total observations. Then the empirical frequency

of the ith word is pi = ni/N , and Eq.(4.14) becomes

H = −
m∑
i=1

P (W = wi) log2 P (W = wi)

= −
m∑
i=1

pi log2 pi. (4.16)

We can rewrite this sum in terms of the “histogram order statistics,” defined as

hj :=
m∑
i=1

1(ni = j).

In other words, hj is the number of bins containing exactly j observations. Then the sum in

Eq.(4.16) can be rearranged so that

H =
N∑
j=0

aj,Nhj,

where the coefficients aj,N are simply aj,N = j
N

log j
N

. Paninski’s best upper bound, or BUB,

entropy estimator makes use of the fact that the bias B can be written as the function H

minus a polynomial with coefficients aj,N :

−B(H) = H −
∑
i

∑
j

aj,NBj,N(pi),
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where Bj,N(x) :=
(
N
j

)
xj(1 − x)N−j are the binomial polynomials. The BUB estimator re-

places the coefficients aj,N with those of an approximating polynomial that simultaneously

minimizes the bias and variance. Matlab code implementing this estimator was obtained

on-line at http://www.cns.nyu.edu/∼liam. For details see [53].

One final methodological issue requires attention, namely the method by which responses

to a repeated stimulus are generated. In experimental settings it is generally not possible to

obtain the hundreds or thousands of neural responses necessary to ensure low bias, even using

the BUB estimator. And the computational resources required to integrate lengthy simula-

tions may also limit the number of trials that can feasibly be obtained. Thus some variation

on a bootstrapping method becomes necessary, whereby repeated samples are drawn from a

data set that is necessarily smaller than required for entropy estimation, yet sufficiently rich

to represent the full range of neural responses.

In the next section, we generate bootstrapped spike trains from our data set by estimating

the probability of a spike in each time bin of width ∆t = 20 ms across 50 trials. Then we

construct new spike trains as independent samples from the probabilities per bin. Note that

this procedure is equivalent to randomly drawing a spike for each time bin from the trials in

the data set, but the former procedure is more readily vectorized for efficient computation.

4.3.3 Mutual Information, Version 1

We calculated total and noise entropy using the direct method as discussed in the previous

section, replacing the maximum likelihood “naive” entropy estimator with the BUB estima-

tor. For 10-letter binary words, we generated N=500 bootstrapped samples, giving an upper

bound on the error of 0.538 bits. See Fig(4.13C1).

Fig(4.14) shows the total entropy over our parameter space in panel A, and the noise

entropy in panel B. In the low noise conditions (upper plots of A and B), we can see elevated

entropy near the bifurcation between tonic and bursting regimes. However in the high noise

conditions (lower plots of A and B) the region of elevated entropy appears to span the 20-

40 Hz range of firing rates irrespective of the bifurcation boundary. The large standard

deviations in panels C and D reflect this diffuse distribution of entropy across dynamical
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Figure 4.14: Total entropy and noise entropy using the “vertical” entropy estimation method. (A)
The color gradient depicts the total entropy calculated over 10-letter binary words constructed at
each time bin of width ∆t = 20ms from 10 independently bootstrapped samples from the same
simulated cell at each point on the grid. (B) Noise entropy is shown, with the same color scale as
for panel (A). Note the apparent dependence of entropy on firing rate, which is visible as vertically
oriented regions of elevated entropy that are particularly prominent in high noise conditions shown
in the bottom panels of (A,B). (C,D) Blue circles indicate the mean value inside the bursting region
and red circles indicate the mean over the tonic regime of the entropies in the panels above. Note
that the large error bars reflect the fact that the distribution of entropy across parameter space
does not respect the bifurcation boundaries.
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Figure 4.15: Mutual information calculated using the “vertical” entropy estimation method. (A)
Blue circles indicate the mean value inside the bursting region and red circles indicate the mean
over the tonic regime of the entropies in the panels to the right. (B) The mutual information
displays the same diffuse distribution across parameter space as the entropies in Fig(4.14). At low
noise levels, information appears to paradoxically decrease with signal amplitude (upper panels),
while at high noise levels, information increases with signal amplitude (lower panels).
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regimes, although the trends indicate higher total and noise entropy in the bursting region.

The mutual information shown in Fig(4.15B) is the arithemtic difference between the values

in Fig(4.14A) and Fig(4.14B), and as such exhibits a similarly diffuse distribution across

parameter space.

These results can be explained by the fact that our entropy estimator ignores temporal

correlations, together with the fact that spike time reliability increases with signal ampli-

tude. Regarding the latter claim, we know from the previous section that increased signal

amplitude produces an increase in the spike train correlation coefficient (Fig(4.11)), indicat-

ing tighter synchronization. Additionally, the CV decreases for bursting cells and increases

for tonic cells (Fig(4.8)), apparently converging on an intermediate level of ISI variability

that presumably reflects greater correlation with the stimulus in both cases. Therefore, as

signal amplitude increases we expect to see greater entrainment and thus less variability

in spiking within a given time bin. As a further measure of spike time reliability, let ρ(t)

denote the standard deviation of the spike count within a time bin of width ∆t as defined

for the entropy calculations. Fig(4.16) shows that the mean of ρ(t) decreases with increasing

stimulus amplitude, as predicted. Furthermore, we observe that the probability of spiking

within a given time bin is simply P (W |t), where the words are composed of a single letter,

that is, with K=1. Thus, as this distribution becomes narrower, we are not surprised to find

that independent samples of K-letter words (here K = 10) produce entropies that vary with

ρ(t). In fact, the diffuse distribution of 〈ρ(t)〉 across the bifurcation boundaries in Fig(4.16B)

closely resembles the distribution of the entropies in Fig(4.14A,B).

Before moving on, we note that, although both the total entropy and the noise entropy

decrease with increasing signal amplitude in Fig(4.14), we see a differential pattern in the

information in Fig(4.15). At low noise levels, information appears to paradoxically decrease

with signal amplitude (upper plots of Fig(4.15B)), while at high noise levels, information

increases with signal amplitude (lower plots of Fig(4.15B)). The reason for this is not im-

mediately apparent from the preceding discussion, and we suspect the phenomenon may not

be robust across a wider range of signal and noise amplitudes.
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4.3.4 Mutual Information, Version 2

The original version of the direct method of information estimation [16, 65] constructs words

“horizontally” such that the K letters span multiple time bins. See Fig(4.13C2). The re-

sulting distribution P (W |t) spans non-overlapping neural response segments of length K∆t,

and thus incorporates temporal correlations on that time scale. However, adapting this

method to populations of multiple cells would be nontrivial. A straightforward analogy with

the “vertical” method for L distinct cells would lead to words of size K × L, resulting in

a combinatorial explosion in histogram size that would necessitate prohibitively large data

sets.

We suggest here a hybrid method that incorporates temporal information by constructing

words horizontally, and that accomodates multiple cell responses by summing the spikes

across cells in each time bin. Thus the words are no longer binary, but instead L-ary, where

L is one plus the number of cells considered simultaneously.

This procedure has the drawback of discarding information related to cell identity, and

it has been shown using the vertical method that individually identified spikes carry more

information than spike rates in area MT [50]. However we will argue that disregarding

temporal correlations results in a significant loss of information as well. Moreover, while the

vertical entropy method is insensitive to shuffling the spike times (jointly across cells), the

horizontal method produces significantly different results after shuffling. In fact, the result

of applying the horizontal method to shuffled data qualitatively resembles the results from

the vertical method.

In order to preserve temporal correlations, we will also need to modify our bootstrapping

procedure. The method we used previously, in which spikes were sampled independently for

each time bin, clearly eliminates temporal correlations. We suggest that the simplest way to

preserve the full joint distribution of spikes across time is to randomly sample entire spike

trains from the available pool of trials. We note that, for populations of L = 10 cells, there

is little chance of exhausting the available combinations, as
(

50
10

)
≈ 1010.

Fig(4.17) shows the total entropy and noise entropy calculated using the horizontal

method withK = 5 letter horizontal words and L = 10 (identical) cells, while Fig(4.18) shows
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Figure 4.17: Total entropy and noise entropy using the “horizontal” entropy estimation method.
(A) The color gradient depicts the total entropy calculated over K = 5 letter horizontal words and
nine (identical) cells, so that the size of the alphabet is L = 10. Histograms were constructed using
N = 10, 000 independent draws of 10 spike trains each from an available pool of 50 simulation runs,
giving an upper bound on error in the entropy estimate of 0.488 bits. (B) Noise entropy is shown,
with the same color scale as for panel (A). Note the close correspondence between variations in
entropy and the boundaries between dynamical regimes, in contrast to the diffuse pattern of entropy
distribution in Fig(4.14). (C,D) Blue circles indicate the mean value inside the bursting region and
red circles indicate the mean over the tonic regime of the entropies in the panels above. Note the
relatively small error bars, indicating consistent values of the entropy within dynamically defined
regions of parameter space.
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Figure 4.18: Mutual information calculated using the “horizontal” entropy estimation method.
(A) Blue circles indicate the mean value inside the bursting region and red circles indicate the
mean over the tonic regime of the information values in the panels to the right. (B) The mutual
information varies sharply with the model dynamics and increases with larger signal amplitudes,
as expected.
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Figure 4.19: Total entropy and noise entropy calculated using the horizontal method on shuffled
data. Compare the diffuse pattern of entropy distribution seen here with that found using the
vertical method in Fig.(4.14).
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Figure 4.20: The diffuse distribution of mutual information calculated using the horizontal method
on shuffled data resembles the pattern of entropy distribution calculated using the vertical method
(Fig(4.18)).

the corresponding measure of information. Histograms were constructed using N = 10, 000

independent draws of 10 spike trains each from an available pool of 50 simulation runs. This

value for N , together with a histogram width of m = 510, gives an upper bound on error in

the BUB entropy estimate of 0.488 bits. Fig(4.19) and Fig(4.20) show results for the same

bootstrapped data sets, but in these figures the horizontal words were constructed after the

binned spike counts had been shuffled in time.

Two effects immediately stand out. First, we note that the total entropy computed with

the horizontal method grows with increasing stimulus amplitude (Fig(4.17A,C)), in direct

contradiction to the trends for both the vertical method (Fig(4.14A,C)) and the horizontal

method with shuffled data (Fig(4.19A,C)). Since we have seen that autocorrelation power

shows a corresponding decrease with stimulus amplitude (Fig(4.10)A,C), it seems reasonable

to expect that entrainment to the stimulus should produce spike patterns that are less

repetitive. Thus the total variability across time should increase with stimulus amplitude,

as seen with the horizontal method applied to intact spike trains, but not in the other cases.

Secondly, in contrast to Fig(4.14), the estimated entropies using the horizontal method
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Figure 4.21: Linear regression of mutual information on firing rate for both entropy estimation
methods and one shuffled data set. (A,B,C) Scatterplots of information values against firing rate
for intrinsically bursting (blue) and tonic (red) cells. For the tonic cells, the regression line that
minimizes the mean squared error is shown in solid black, with 95% confidence intervals in the
regression coefficients plotted as dashed lines. (D) The correlation coefficients, R, of the regressions
indicate that the vertical method and the shuffled data each show significantly stronger correlation
between information and firing rate than that obtained via the horizontal method (p = 0.0258 and
p = 0.0050, respectively, using the Fisher transformation). At the same time, the R-value is not
significantly different between the vertical method and the horizontal method applied to shuffled
data (p = 0.5620).
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in Fig(4.17) appear to depend more strongly on the bifurcation structure rather than only

on the firing rate. We can see in Fig(4.17A,B) that the regions of high entropy are sharply

delineated by the bifurcation boundary between the tonic and bursting regimes, and the

standard deviations shown in the error bars of Fig(4.17C,D) display significantly less overlap

than when the vertical method was used in Fig(4.14C,D). Furthermore, a diffuse distribution

of elevated entropy reappears when the horizontal method is applied to shuffled spike trains

in Fig.(4.19).

We can quantify the reduced dependence on firing rate explicitly by considering the

regression of information on firing rate in all three cases, as depicted in Fig(4.21). The

panels A, B, and C of Fig(4.21) show a scatterplot of information values against firing

rate for intrinsically bursting (blue) and tonic (red) cells. By inspection, one can see that

there is a broad range of information values associated with each frequency in Fig(4.21A),

indicating that information estimated using the horizontal method depends only weakly on

firing rate. For the intrinsically tonic cells, we computed the regression line that minimizes

the mean squared error, shown in solid black, with 95% confidence intervals in the regression

coefficients plotted as dashed lines. The correlation coefficients of the regressions R in

Fig(4.21D) indicate that the vertical method and the shuffled data each show significantly

stronger correlation between information and firing rate than that obtained via the horizontal

method (p = 0.0258 and p = 0.0050, respectively, using the Fisher transformation). At the

same time, the R-value is not significantly different between the vertical method and the

horizontal method applied to shuffled data (p = 0.5620). (Note that the highest frequency

cells, which undergo depolarization block as discussed in the previous section, were omitted

for this calculation. Also, we did not perform a separate regression for the intrinsic bursters

(blue circles) for the sake of visual clarity.)

4.3.5 Stochastic Synchrony

We can use the present data to probe the susceptibility to stochastic synchrony of the various

dynamical regimes represented in our model. The six combinations of two levels of noise

amplitude σ = 0.05, 0.4 and three levels of signal amplitude η = 0.4, 1, 2, yield a stimulus
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Figure 4.22: Stochastic synchrony. (A) The six combinations of two levels of noise amplitude
σ = 0.05, 0.4 and three levels of signal amplitude η = 0.4, 1, 2, yield a stimulus ensemble with 15
unique pairwise correlation coefficients that span, approximately uniformly, the full range of input
correlation. (B) An example scatterplot of ouput correlation as a function of input correlation
for one cell, shown together with the regression line. (C) The average slope of the stochastic
synchrony regression line within the bursting region (blue bar) is significantly greater than in the
tonically firing region (red bar) (p = 3 × 10−33, Wilcoxon rank-sum test). (D) The color gradient
indicates the distribution of output correlation slope across the parameter grid. The greatest
stochastic synchrony is observed within and just beyond the region of intrinsically bursting cells.
Furthermore, type II cells at the top of the grid show a greater degree of correlation transfer than
type I at the bottom.
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ensemble with 15 unique pairwise correlation coefficients that span, approximately uniformly,

the full range of input correlation. See Fig(4.22A).

We obtain a measure of stochastic synchrony by computing the pairwise correlations of

the corresponding output spike trains for each point in our parameter space, which yields

scatterplots like the example shown in Fig(4.22B). Then Fig(4.22D) plots the slope of the

regression line at each parameter point.

As results in previous sections would suggest, the greatest stochastic synchrony is ob-

served within and just beyond the region of intrinsically bursting cells. Fig(4.22C) shows

that the average slope within the bursting region (blue bar) is significantly greater than in

the tonically firing region (red bar) (p = 3× 10−33, Wilcoxon rank-sum test).

It is interesting to recall that the vertical segment of Fig(4.22D) that spans the 30-40

Hz firing rates includes intrinsic oscillators with dynamics that range from type I at the

bottom where gA = 0, to type II at the top where gA = 5. Earlier results on stochastic

synchrony, are corroborated in the present model, with type II cells showing a greater degree

of correlation transfer than type I. However, stochastic synchrony appears to drop off away

from the bifurcation to bursting, even in the strongly type II regime. Thus the present

results in the tonic regime likely reflect an interaction between type II phase resetting and

proximity to the bifurcation boundary, which has a strong and measurable influence on

spiking dynamics, as we will see in the next section.

4.4 MEASURES OF DYNAMICAL SENSITIVITY

Throughout the preceding discussion we have seen that the bursting regime induced by the

presence of IA displays profoundly different spike train statistics compared to the oscillatory

regime, and that these differences have significant repercussions for information content

and correlation transfer. Two commonly used measures of the sensitivity of a dynamical

system to perturbation can shed light on the mechanisms underlying these phenomena. The

local Lyapunov exponent can be applied generally to any dynamical system, while the PRC

describes the phase-dependent sensitivity of a limit cycle oscillator.
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Figure 4.23: The local Lyapunov exponent. We iterated the combined variational system forward
for τ = 50 ms using initial conditions spaced every 5 ms during the course of a trajectory lasting a
total of 1000 ms. (A) The mean LLE across the 1000 ms of simulation time is positive within the
bursting region of parameter space and negative for the oscillatory regions. (B) Bursting trajectories
have Λτ (t) > 0 during a greater proportion of their limit cycle. (C,D) Sample trajectories with the
LLE superimposed in red show regions of local expansion and contraction that oscillate with the
membrane voltage. Note that the long subthreshold excursion between successive bursts in panel
(C) occurs in a particularly sensitive region of the phase space as indicated by the extended epoch
of positive LLE.
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4.4.1 The local Lyapunov exponent

The Lyapunov exponent quantifies the tendency of nearby trajectories of a dynamical system

to either converge or diverge. More precisely, let Ẋ = F (X) with X(0) = X0 be a generic

n-dimensional dynamical system, and let ΦX0(t) be the trajectory with initial condition X0.

Differentiating this solution with respect to the initial condition will allow us to track the

divergence of nearby trajectories. Let A(t) := ∂ΦX0(t)/∂X0, and note that A is a matrix-

valued function. Then by the chain rule, nearby solutions evolve in time according to the

variational equation:

d

dt
A(t) =

∂F

∂X
(ΦX0(t))A(t),

with initial condition A(0) = Id, the n × n identity matrix. The Lyapunov exponent is

defined as the limit

λ(X0) = lim
t−>∞

1

t
log |A(t)|,

where |M | denotes the matrix 2-norm, or the largest eigenvalue of MTM .

Usually the Lyapunov exponent is calculated for an ergodic system or an ergodic compo-

nent of a dynamical system, so the result is independent of the initial point X0. However, we

are interested here in the local sensitivity of trajectories to perturbation, so we will dispense

with the long-time limit and calculate only the so-called local Lyapunov exponent (LLE) at

points along our trajectory. In practice, this means we evolve the dynamical system together

with its variational equation as a coupled n(n+ 1)-dimensional system using a common nu-

merical algorithm for computing Lyapunov exponents [17]. However, instead of running

many iterations to approximate the asymptotic solution, we obtain the LLE by evolving the

system for only a brief time τ [73]. Thus for points X(t) along a trajectory of our system,

the local exponent is

Λτ (t) :=
1

τ
log

|δX(t)|
|δX(t− τ)|

,

where |δX(t)| represents a small distance between two trajectories at the initial time t,

and Λτ gives the average rate of convergence or divergence in the finite interval τ . These

calculations were performed without noise or signal, that is, with σ = 0 and η = 0, in order

to probe the sensitivity of the deterministic dynamics.
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Figure 4.24: Regions of heightened sensitivity to perturbation in the phase space of the model
system. (A) The PRC is shown in the top panel, together with the membrane potential V and
the sodium inactivation variable hNa in the panels below. The highlighted segments of the phase
correspond to the trough (1) and the peak (2) of the PRC, respectively. (B) Regions (1) and (2) are
shown in the projection of a periodic trajectory of an intrinsic oscilllator (gA = 5, I = 3.6) onto the
(V ,hNa)-plane. Red and blue circles indicate points on the trajectories where the LLE was found to
be positive or negative, respectively. (C) A bursting trajectory is shown (gA = 3.8, I = 2.4), with
superimposed circles indicating that the sign of the LLE follows a similar distribution as in panel B.
However, for this example in the bursting regime, an accumulation of positive LLE measurements
in the vertically oriented segment of constant voltage preceding a burst indicates that the system
spends most of its time lingering on the cusp of the next action potential. This gives incoming
perturbations significantly more opportunity to influence spike timing than in the tonically firing
dynamical regime.
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To produce Fig(4.23) we iterated the combined variational system forward for τ = 50 ms

using initial conditions spaced every 5 ms during the course of a trajectory lasting a total of

1000 ms. We chose τ = 50 ms as an interval on the order of one period for most points in the

parameter space. The mean LLE across the 1000 ms of simulation time is shown in panel A

of Fig(4.23), where we find that the mean exponent is positive within the bursting region of

parameter space and negative for the oscillatory regions. Panel B provides a different view

on the same phenomenon, whereby the bursting trajectories have Λτ (t) > 0 during a greater

proportion of their limit cycle. The lower panels C and D illustrate sample trajectories

with the LLE superimposed in red, showing regions of local expansion and contraction that

oscillate with the membrane voltage. As we would expect, the LLE is strongly negative

in the immediate vicinity of a spike, indicating that small perturbations would have little

effect when the regenerative spiking process is underway. By contrast, the exponent becomes

positive between spikes in both the bursting and oscillating cases, but the long subthreshold

excursion between successive bursts occurs in a particularly sensitive region of the phase

space as indicated by the extended epoch of positive LLE in Fig(4.23C).

In the next section we will discover that this sensitive region of phase space in the bursting

regime also underlies the peak of the PRC for the tonically oscillating cells.

4.4.2 Phase resetting

Let us recall that the PRC characterizes how the response of an oscillator to small pertur-

bations depends on the phase at which the perturbations arrive. In particular, the maxima

and minima of the PRC indicate regions of the limit cycle where the dynamics are especially

susceptible to perturbation.

Fig(4.24A) shows the PRC in the top panel, together with the membrane potential V

and the sodium inactivation variable hNa in the panels below for the parameter pair gA = 5,

I = 3.6. We have highlighted the segments of the phase across all three plots corresponding

to the trough (1) and the peak (2) of the PRC, respectively. This allows us to identify

the regions of greatest sensitivity in the (V ,hNa)-plane, as indicated in Fig(4.24B). As the

oscillator in panel B traverses its limit cycle in the clockwise direction, it encounters region
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(2) just before firing a spike; perturbations at this phase strongly advance the timing of

the next spike. Subsequently, the membrane repolarizes as the trajectory enters region (1),

where incoming perturbations interact with the local dynamics to delay the onset of the next

spike in this type II oscillator.

The red and blue circles in Fig(4.24B,C) indicate points on the trajectories where the

LLE was determined to be positive and negative, respectively. In Fig(4.24B) we find a

telling correspondence between extrema of the PRC and positive values of the LLE. Note

that, while the PRC indicates the direction in which perturbed trajectories will diverge, the

LLE only indicates that the magnitude of the distance between trajectories either grows or

shrinks during the timescale under consideration. Thus Λ > 0 at the PRC trough as well as

the peak.

In Fig(4.24C), a bursting trajectory is shown (gA = 3.8, I = 2.4), with superimposed

circles indicating that the sign of the LLE follows a similar distribution as in panel B.

The crucial difference is evident in the accumulation of positive LLE measurements in the

vertically oriented segment of constant voltage preceding the first spike in a burst. The

density of evenly timed LLE samples reflects the slow passage of the bursting trajectory

along a stable branch of fixed points of the slow subsystem, as discussed in Section 4.1.

This extended subthreshold excursion between successive bursts occurs in a region of phase

space analogous to region (2) in panel B corresponding to the peak of PRC sensitivity

in the oscillator regime. However, in the bursting regime, the system spends most of its

time lingering on the cusp of the next action potential, which gives incoming perturbations

significantly more opportunity to influence spike timing than in the tonically firing dynamical

regime.

Finally, we note that the bifurcation to bursting exerts an influence on the dynamical

behavior of intrinisic oscillators near the bifurcation boundary. Specifically, we see a marked

increase in PRC amplitude as the boundary is approached in parameter space from the

oscillating regime. Fig(4.25A) shows the numerically generated adjoint for I = 3.6 as gA

increases from gA = 0 to gA = 5. This level of input current lies to the right of the

bifurcation boundary in parameter space, so that we have a smooth transition from type

I dynamics to type II. However, the bifurcation to bursting grows nearer as gA increases,
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and the amplitude of the PRC grows accordingly. Fig(4.25B) illustrates that the heightened

sensitivity to perturbation near the bifurcation boundary becomes more pronounced with

increasing stimulus amplitude. In this figure, the PRC was estimated as the integral of the

spike triggered average (STA):

PRC(θ) ∝
∫ T

0

STA(s)ds,

as described in [21]. Moreover, the STAs from which the PRCs were estimated in Fig(4.25B)

were calculated after normalizing the input current to have unit amplitude. Thus the in-

creased amplitudes in the right-hand column reflect altered dynamical sensitivity, and not

merely a multiplicative constant.

4.5 DISCUSSION

We have seen that the A-type potassium current induces a dynamical regime that shows

pronounced sensitivity to perturbation, but without chaotic behavior. This apparent balance

of sensitivity and stability endows the bursting regime with a greater ability to propagate

information about a broadband stimulus when compared with the tonically firing regions of

the model’s parameter space. And insofar as mutual information indicates greater statistical

dependence between input currents and output spike trains, the bursting cells also exhibit

an increased propensity to transfer correlations from input to output, and thus increased

stochastic synchrony.

Electrophysiological evidence suggests that a dynamical regime such as this may be

exhibited by mitral cells (MCs) of the mouse olfactory bulb [52]. Furthermore, a gradient

of IA expression may account for the biophysical diversity observed in that sensory system.

Using a combination of experimentation and bootstrapped sampling, Padmanabhan and

Urban find [52] that biophysically diverse populations of olfactory MCs can carry more

information than homogeneous populations.

In the present work, we have only explored the information capacity of cells in our pa-

rameter space taken individually. However we have seen that a modification of the original
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direct method for entropy estimation may reveal interesting distinctions between biophysi-

cally distinct populations that would not be apparent using methods that eliminate temporal

correlations. A future exploration of diversity in neural populations using our model system

would be an obvious extension of the present study.

Other directions to explore include the application of more structured stimuli. The

cells in our model show intrinsic timescales that could interact productively with temporal

structure in the signal. Also, the current work addresses interactions between cells only

in the sense of stochastic synchrony among uncoupled spiking units. In a living nervous

system, cells rarely, if ever, act in isolation. However, synaptic interactions and the resulting

correlational structure across a population would be difficult to address using the methods

discussed here. A recent application of statistical modeling techniques [54] was able to

incorporate spatial and temporal correlations into entropy estimation by fitting a multi-

neuron linear-nonlinear model to data from macaque retinal ganglion cells. Perhaps model-

based approaches that combine the dynamical richness of conductance based models with

the statistical convenience of linear filters will be able to address questions of neural coding

at the next level of complexity.
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5.0 CONCLUSION

In the present body of work, we have sought to understand collective neural phenomena

such as synchronization, correlation transfer and information propagation in the presence of

additive broadband noise.

Our findings contribute to a growing scientific literature that has shown that uncoupled

type II neural oscillators synchronize more readily under the influence of noisy input currents

than do type I oscillators; this has been demonstrated previously in simulations and in

vitro [25, 24], by deriving the probability distribution of the phase difference [41], and by

calculating the spike count correlation over a range of time windows [5].

Here we have used stochastic phase reduction and regular perturbations to show that

the type II PRC minimizes the Lyapunov exponent. We also derived expressions for the

correlation between output spike trains using the steady state probability distribution of the

phase difference between oscillators. Over short time scales, we find that, for a given level

of input correlation, spike trains from type II membranes show greater output correlation

than from type I. However, we find the reverse is true for oscillators observed over long time

scales, in agreement with recent results [5].

By abstracting away the ionic conductances and channel kinetics, the technique of

stochastic phase reduction generates results that are broadly applicable to many neuron

classes that exhibit oscillatory behavior throughout the brain. At the same time, investiga-

tions of specific ion channels have generated insights into mechanisms by which neuromod-

ulators can switch the bifurcation structure of an oscillator [22, 62]. In a similar vein, we

have undertaken an exploratory and qualitative study of the influence of the A-type potas-

sium current (IA) on spike train synchrony, correlation transfer and information content in

a reduced 3-dimensional neuron model that exhibits both type I and type II oscillations, as
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well as a bifurcation to bursting dynamics.

While the oscillatory regimes of the model display previously described characteristics

with respect to synchrony and correlation transfer, we find that the bursting regime shows

distinctive properties that may prove advantageous for sensory processing. Since phase

reduction techniques do not readily apply in this regime, we characterize the bursting spike

trains in terms of phase plane analysis and descriptive statistics.

Using the local Lyapunov exponent in place of the PRC as a measure of sensitivity

to perturbation, we find that the region of bursting dynamics shows prolonged elevated

sensitivity during the inter-burst interval. In the oscillatory regime of the model, a similar

phenomenon occurs at parameter values near the bifurcation to bursting, and we see that

the magnitude of the PRC grows markedly as this border is approached.

Furthermore, we find that the highly sensitive dynamics induced by IA result in a com-

bination of spike time reliability and increased ISI variability that produces greater mutual

information between a spike train and a broadband input signal. Likewise, we find that

cells in the bursting region, together with neighboring type II oscillators, exhibit increased

stochastic synchrony. Together these findings suggest that there may be an optimal balance

of dynamical sensitivity and stability that maximizes the computationally relevant statistical

dependence between input signals and output spike trains.

Results such as ours in the characterization of stochastic neural oscillators may one day

contribute to clinically relevant techniques for controlling the precise timing of neural firing

[63, 71]. Furthermore, we have seen here that it is possible to have identical firing rates

at identical input intensities, but with significantly different degrees of stochastic synchrony

and spike train entropy as a function of intrinsic bifurcation structure. This suggests the

possibility of pharmacologically manipulating neuronal synchrony in vitro or in vivo, or even

manipulating the more abstract quantity of spike train information, in order to assess the

functional consequences of neural dynamics.

If we are to take seriously the foundational premise of neuroscience, namely, that all

behavior and cognition arise as the product of collective neural activity, then we must sooner

or later account for the ”semantic aspects” of neural dynamics that we had set aside in our

introductory remarks. When technological limitations permitted recording from only one or
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two cells at a time, the signal processing framework of sender, channel and receiver provided a

useful metaphor, given the nature of the data. Nowadays trends point toward increasing use

of multiple electrode technologies that produce population-level data for which an adequate

metaphor has yet to be formulated. The notion of a “liquid state machine” [38] alludes to the

formalism of finite state machines in computer science, but with an added splash of je ne sais

quoi from fluid mechanics. Whatever its standing as an explanatory tool in neurobiology,

the idea rightly evokes our intuition that the brain must be able to perform the functions of

a universal computational device.

Recent developments in fiber optic microendoscopy and optogenetics will enable experi-

menters to record the activity of entire neuronal circuits in awake and behaving animals, and

to simultaneously control identified cells within those circuits. Such technologies could usher

in an era of computational neuroethology, where we can begin to probe large scale neural

processing in real time within the context of an ongoing behavioral paradigm. To make sense

of the resulting high-dimensional data, state-of-the-art machine learning algorithms could

be adapted to uncover high order correlations within the neural activity and to construct

maps between stimuli or task conditions and the evoked patterns of response. As part of

this scientific project, studies of neural dynamics such as the present work could be brought

to bear on questions about the biophysical mechanisms that give rise to observed activity

patterns and the computations they represent.

A colleague once ruefully observed that, if we draw an analogy between the develop-

ment of neuroscience and physics as fields of study, then we must admit that our present

day understanding of the principles of neural function is essentially pre-Galilean. And rev-

olutions comparable to those of Newton and Einstein are nowhere in sight. We remain

optimistic, however, that new experimental technologies will soon bring about the occasion

for a paradigm-shifting synergy between the diverse mathematical, computational, statistical

and physiological perspectives on neural dynamics and their behavioral function.
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	2.1. 1In the case where the second derivative is left unconstrained, the optimal PRC deviates from a pure cosine function as the noise amplitude  increases. Parameters are a=1, b=1, c=0.
	2.2. 1When the first derivative is unconstrained while the second derivative is constrained, Euler-Lagrange optimization produces a family of candidates for the minimizer of the Lyapunov exponent ranging smoothly from Type II to Type I as the parameter K ranges from 0 to 1. For negative K (dashed), the curves do not represent biologically plausible PRCs. Parameters are a=0,b=1,c=1.
	2.3. 1The magnitude of the optimal PRC depends on the whether or not the second derivative is constrained. The numerical solution (open circles) and the analytic result (solid lines) coincide. Parameters are a=1,b=1 and = 0.05.
	2.4. 1When the second derivative is unconstrained, the optimal PRC shape deforms with increasing noise. The numerical solution (open circles) and the analytic result (solid lines) are in good agreement. Parameters are a=1,b=1,c=0.
	3.1. We use the parametrization ()=-sin(+)+sin() to vary the PRC smoothly from type I (solid gray), where =2 and ()=1-cos(), to type II (solid black), where =0 and ()=-sin(). Note that intermediate values of  produce PRC shapes (dashed) that more closely resemble those found empirically in vitro.
	3.2. The steady state distribution P() of phase differences  is shown for type I (solid gray) and type II (solid black) as well as for intermediate PRCs (dashed). Note that the unperturbed period of the oscillators is 2. (A) Input correlation cin=0.4. (B) Input correlation cin=0.8.
	3.3. Output correlation for large time windows is shown as a function of the PRC shape parameter . Note that when =0 the PRC is a pure sinusoid and therefore the oscillator is type II; when =/2, the oscillator is type I (see Eq.(3.10)). Theoretical curves (solid) are a good match for both the simulated total phase correlation (dots) and the simulated spike count correlation (stars). Colors indicate the level of input correlation: 0.2 (blue), 0.4 (green), 0.6 (red), 0.8 (cyan), 0.99 (purple). In all cases, noise amplitude = 0.05, and results are shown for the large time window T=502.
	3.4. The perturbation expansion of cout for small input correlation (dashed) agrees well with the full output correlation (solid). Note that, to lowest order in cin, the output correlation goes to zero as the PRC shape parameter  goes to zero, that is, as the PRC shape approaches the pure type II. Colors indicate the level of input correlation: 0.01 (light gray), 0.05 (medium gray), 0.1 (black).
	3.5. Joint spiking probability for two oscillators receiving partially correlated noise is shown for observations windows T 2, where 2 is the natural frequency of the oscillation. The subscripts i j indicate the probability that the corresponding oscillator does (1) or does not (0) spike.
	3.6. (A,B) Theoretical (solid) and simulated (dotted) output correlation curves are shown as a function of the observation window T2. (A) Type I oscillators. (B) Type II oscillators. (C,D) The initial slope (dashed) of the spike count correlation (solid) is the linear approximation of Eq.(3.16) at T=0, given in Eq.(3.18). (C) Type I oscillators. (D) Type II oscillators. For all plots, noise amplitude =0.05, and colors indicate the level of input correlation: 0.2 (blue), 0.4 (green), 0.6 (red), 0.8 (cyan), 0.99 (purple).
	3.7. Output correlation is shown as a function of intermediate-length observation windows T. Colors indicate the level of input correlation: 0.2 (blue), 0.4 (green), 0.6 (red), 0.8 (cyan), 0.99 (purple). (A) Type II oscillators (solid) exhibit higher output correlations over short time scales than do type I (dashed) over long time scales. (B) This result reverses over short time scales. In all cases, noise amplitude = 0.2.
	4.1. 1Selected ion channel kinetics. (A) The activation (solid) and inactivation (dashed) curves for IA . (B) Time constants for INaactivation (dashed red) and inactivation (solid red), as well as IA activation (dotted blue) and inactivation: hA1 (dashed blue) and hA2 (solid blue). 
	4.2. 1Phase plane and bifurcation diagram. (A) The phase plane of the fast subsystem showing three equilibria where the h-nullcline (green) intersects the z-shaped V-nullcline (red). The stable fixed point (circle) is the neuron's rest potential. The middle equilibrium is a saddle point (triangle), which spawns stable and unstable manifolds (blue dashed and solid, respectively), and the most depolarized equilibrium is unstable (square) for the parameters in the figure (gA=5, I=3.2, hA=0.03). (B) The bifurcation diagram of the fast subsystem showing two subcritical Hopf bifurcations. Branches of stable equilibria are shown in solid black, unstable equilibria in dashed blue. Maxima and minima of limit cycle solutions are shown as filled circles (stable orbits) and open circles (unstable orbits).
	4.3. 1FI-curves plot the reciprocal of the ISI for the full model. (A) The type I regime where gA=0 shows arbitrarily low firing rates. (B) When gA=5, a prominent region of bursting behavior, indicated by multiple ISI reciprocals per each value of I, is followed by the onset of regular oscillations at nonzero frequency for I > I*=3.16.
	4.4. 1The bifurcation to bursting is explained by a slow-fast decomposition. The averaged derivative of the slow variable is shown in red superimposed on the bifurcation diagram of the slow subsystem. Trajectories of the full system appear in blue. (A) For I=1, the lower red curve representing d hA/d evaluated along the rest states of the fast subsystem crosses zero, indicating a stable rest state for the full system. (B) For I=2, d hA/d> 0 on the periodic orbits of the fast subsystem (upper red curve) and d hA/d< 0 on the rest states (lower red curve). Thus the full system shows bursting behavior, oscillating between spiking and quiescence. (C) For I=3, the dynamics are similar to (B), with more spikes per burst. (D) For I=5, d hA/d evaluated on the fast subsystem's periodic orbits (upper red curve) reaches zero, so the full subsystem has a stable periodic orbit.
	4.5. 1Grid of discretized parameter values, with firing rate represented by the color gradient. (A) The parameter space is spanned by (I,gA)[0,5] [0,5]. The bursting regime is contained within the superimposed bifurcation boundaries shown in black. (B) The same parameter space as shown in (A) with the rows shifted so that each increment of gA is matched with the values of I that keep firing rates approximately constant in the columns.
	4.6. 1Firing rates of simulated cells with the indicated parameter values together with a broadband stimulus and independent additive white noise. (A) The black curve shows the grand mean ( one standard deviation) across all trials and all conditions for each column. A parameter grid is superimposed for reference. (B) Firing rates remain stable across all noise intensities (= 0.05, 0.4) and signal amplitudes (=0.4, 2).
	4.7. 1Sample voltage traces from indicated points in parameter space. Left-hand traces reflect bias current alone, while right-hand traces show responses to noise amplitude =0.4 and signal strength =2.
	4.8. 1ISI CV. (A) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime. The left-hand plots correspond to the low-noise condition in the top two panels of (B), and the right-hand plots correspond to the high-noise condition in the bottom two panels of (B). Note that error bars represent the standard deviation of the CV across the respective subsets of parameter space and, as such, they indicate the diversity of dynamical behaviors. In this and similar figures, the error bars do not reflect variability across noisy samples, nor do they indicate insufficient statistical power.
	4.9. 1Cross correlation between pairs of spike trains within each parameter set. Each horizontal line in each panel represents the cross correlation of a pair of spike trains. Cells have been sorted in each panel in order of increasing frequency from top to bottom. On the left-hand side we see that oscillations in the cross correlation quickly die out for the bursting cells in the left-hand panels, though both regimes exhibit comparable peaks at zero lag across the various amplitude conditions.
	4.10. 1Spike train auto- and cross-correlation power spectral density. (A) The color gradient indicates the integral of the normalized power spectral density (PSD) of the autocorrelation, calculated over a 10 Hz window centered on the firing rate of the simulated cells at each parameter grid point. (B) The color gradient indicates the integral of the PSD of the normalized cross correlation, calculated as in (A). (C, D) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime of the quantities shown in (A, B), respectively.
	4.11. 1The spike train correlation coefficient. (A) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime of the correlation coefficient shown in the next panel. (B) The color gradient represents, for each simulated cell in the parameter grid, the mean correlation coefficient across all pairs of responses over 50 trials of the signal plus independent noise at the indicated intensities.
	4.12. 1Entropy in the case of a binary random variable. Note that entropy is maximized when the distribution is uniform, that is, when P=1-P=1/2. 
	4.13. 1Two entropy estimation methods. (A) A raster plot of sample spike trains binned at t = 20 ms. (B) Detail showing spikes from 10 cells across 10 time bins. (C1) The ``vertical" method of entropy estimation constructs 10-letter binary words at each time bin using spikes from 10 sample spike trains. (C2) The ``horizontal" method constructs 5-letter words from 10 possible numerical symbols representing the spike count in each time bin across 9 spike trains.
	4.14. 1Total entropy and noise entropy using the ``vertical" entropy estimation method. (A) The color gradient depicts the total entropy calculated over 10-letter binary words constructed at each time bin of width t = 20 ms from 10 independently bootstrapped samples from the same simulated cell at each point on the grid. (B) Noise entropy is shown, with the same color scale as for panel (A). Note the apparent dependence of entropy on firing rate, which is visible as vertically oriented regions of elevated entropy that are particularly prominent in high noise conditions shown in the bottom panels of (A,B). (C,D) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime of the entropies in the panels above. Note that the large error bars reflect the fact that the distribution of entropy across parameter space does not respect the bifurcation boundaries.
	4.15. 1Mutual information calculated using the ``vertical" entropy estimation method. (A) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime of the entropies in the panels to the right. (B) The mutual information displays the same diffuse distribution across parameter space as the entropies in Fig(4.14). At low noise levels, information appears to paradoxically decrease with signal amplitude (upper panels), while at high noise levels, information increases with signal amplitude (lower panels).
	4.16. 1The mean standard deviation of the spike count within time bins of width t. (A) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime of values in the next plot. (B) The mean of (t) decreases with increasing stimulus amplitude, indicating greater spike time reliability.
	4.17. 1Total entropy and noise entropy using the ``horizontal" entropy estimation method. (A) The color gradient depicts the total entropy calculated over K=5 letter horizontal words and nine (identical) cells, so that the size of the alphabet is L=10. Histograms were constructed using N=10,000 independent draws of 10 spike trains each from an available pool of 50 simulation runs, giving an upper bound on error in the entropy estimate of 0.488 bits. (B) Noise entropy is shown, with the same color scale as for panel (A). Note the close correspondence between variations in entropy and the boundaries between dynamical regimes, in contrast to the diffuse pattern of entropy distribution in Fig(4.14). (C,D) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime of the entropies in the panels above. Note the relatively small error bars, indicating consistent values of the entropy within dynamically defined regions of parameter space.
	4.18. 1Mutual information calculated using the ``horizontal" entropy estimation method. (A) Blue circles indicate the mean value inside the bursting region and red circles indicate the mean over the tonic regime of the information values in the panels to the right. (B) The mutual information varies sharply with the model dynamics and increases with larger signal amplitudes, as expected.
	4.19. 1Total entropy and noise entropy calculated using the horizontal method on shuffled data. Compare the diffuse pattern of entropy distribution seen here with that found using the vertical method in Fig.(4.14).
	4.20. 1The diffuse distribution of mutual information calculated using the horizontal method on shuffled data resembles the pattern of entropy distribution calculated using the vertical method (Fig(4.18)).
	4.21. 1Linear regression of mutual information on firing rate for both entropy estimation methods and one shuffled data set. (A,B,C) Scatterplots of information values against firing rate for intrinsically bursting (blue) and tonic (red) cells. For the tonic cells, the regression line that minimizes the mean squared error is shown in solid black, with 95% confidence intervals in the regression coefficients plotted as dashed lines. (D) The correlation coefficients, R, of the regressions indicate that the vertical method and the shuffled data each show significantly stronger correlation between information and firing rate than that obtained via the horizontal method (p=0.0258 and p=0.0050, respectively, using the Fisher transformation). At the same time, the R-value is not significantly different between the vertical method and the horizontal method applied to shuffled data (p=0.5620).
	4.22. 1Stochastic synchrony. (A) The six combinations of two levels of noise amplitude = 0.05, 0.4 and three levels of signal amplitude = 0.4, 1, 2, yield a stimulus ensemble with 15 unique pairwise correlation coefficients that span, approximately uniformly, the full range of input correlation. (B) An example scatterplot of ouput correlation as a function of input correlation for one cell, shown together with the regression line. (C) The average slope of the stochastic synchrony regression line within the bursting region (blue bar) is significantly greater than in the tonically firing region (red bar) (p=310-33, Wilcoxon rank-sum test). (D) The color gradient indicates the distribution of output correlation slope across the parameter grid. The greatest stochastic synchrony is observed within and just beyond the region of intrinsically bursting cells. Furthermore, type II cells at the top of the grid show a greater degree of correlation transfer than type I at the bottom.
	4.23. 1The local Lyapunov exponent. We iterated the combined variational system forward for = 50 ms using initial conditions spaced every 5 ms during the course of a trajectory lasting a total of 1000 ms. (A) The mean LLE across the 1000 ms of simulation time is positive within the bursting region of parameter space and negative for the oscillatory regions. (B) Bursting trajectories have (t)>0 during a greater proportion of their limit cycle. (C,D) Sample trajectories with the LLE superimposed in red show regions of local expansion and contraction that oscillate with the membrane voltage. Note that the long subthreshold excursion between successive bursts in panel (C) occurs in a particularly sensitive region of the phase space as indicated by the extended epoch of positive LLE.
	4.24. 1Regions of heightened sensitivity to perturbation in the phase space of the model system. (A) The PRC is shown in the top panel, together with the membrane potential V and the sodium inactivation variable hNa in the panels below. The highlighted segments of the phase correspond to the trough (1) and the peak (2) of the PRC, respectively. (B) Regions (1) and (2) are shown in the projection of a periodic trajectory of an intrinsic oscilllator (gA=5, I=3.6) onto the (V,hNa)-plane. Red and blue circles indicate points on the trajectories where the LLE was found to be positive or negative, respectively. (C) A bursting trajectory is shown (gA=3.8, I=2.4), with superimposed circles indicating that the sign of the LLE follows a similar distribution as in panel B. However, for this example in the bursting regime, an accumulation of positive LLE measurements in the vertically oriented segment of constant voltage preceding a burst indicates that the system spends most of its time lingering on the cusp of the next action potential. This gives incoming perturbations significantly more opportunity to influence spike timing than in the tonically firing dynamical regime.
	4.25. 1The amplitude of the PRC grows sharply near the bifurcation to bursting. (A) The numerically generated adjoint for I=3.6 as gA increases from gA=0 to gA=5, and the dynamics transition smoothly from type I resetting to type II. (B) The heightened sensitivity to perturbation near the bifurcation boundary becomes more pronounced with increasing stimulus amplitude. In this figure, the PRC was estimated as the integral of the STA.
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