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DISSERTATION:

ON PROXIMITY BASED SUB-AREA LOCALIZATION

Aylin Korkmaz, PhD

University of Pittsburgh, 2011

A localization system can save lives in the aftermath of an earthquake; position people

or valuable assets during a fire in a building; or track airplanes besides many of its other

attractive applications. Global Positioning System (GPS) is the most popular localization

system, and it can provide 7-10 meters localization accuracy for outdoor users; however, it has

certain drawbacks for indoor environments. Alternatively, wireless networks are becoming

pervasive and have been densely deployed for communication of various types of devices

indoors, exploiting them for the localization of people or other assets is a convenience.

Proximity based localization that estimates locations based on closeness to known reference

points, coupled with a widely deployed wireless technology, can reduce the cost and effort

for localization in local and indoor areas. In this dissertation, we propose a proximity

based localization algorithm that exploits knowledge of the overlapping coverages of known

monitoring stations. We call this algorithm Sub-Area Localization (SAL). We present a

systematic study of proximity-based localization by defining the factors and parameters

that affect the localization performance in terms of metrics such as accuracy and efficiency.

Then, we demonstrate that SAL can be used in multi-floor buildings to take advantage of

the infrastructure elements deployed across floors to reduce the overall cost (in terms of

the number of monitoring stations required) without harming accuracy. Finally, we present

a case study of how SAL can be used for spatial spectrum detection in wireless cognitive

networks.
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close friend Cihan Ünal for being my roommate, for his understanding in my most desperate

times, and for being kind enough to carry all the heavy grocery to home all the time; and

to Dr. Zümrüt İmamoğlu for all the tango I danced in Pittsburgh.

I would like to thank to my colleagues and especially my manager at Broadcom Corp.,

Imran (Hafiz) Hameed, for his encouragement and understanding especially during the last

months of my Ph.D. studies.

I am grateful to my uncles, Prof. Dr. Nejat Aksu and Sedat Aksu, who have always

been supportive and caring for my entire life. I feel lucky to know that I can benefit from

the experiences of these two people with such wonderful characters.

xx



I would like to thank my aunt, Gülten Dikmen, and my grandparents for their love, good

wishes and prayers. I feel happy to know that my grandfather and grandmother are in peace

and still among us.

I owe a huge debt of gratitude to my parents, Türkan and Talat Aksu and my brother

Anıl Aksu for their love and support throughout not only the course of my Ph.D. studies

but throughout my entire life. They believed in me more than I believed in myself and this

gave me the most strength through years. I miss them, and wish to have more time to spend

with them in future.

Finally, I would like to thank my loving husband Melih Korkmaz. I could never even

imagine finishing this Ph.D. without his encouragement and endless ways of motivation. His

energy and constructive criticism kept me strong, and his compassion relaxed me when I

needed the most. His patience and understanding during many stressful and long nights of

studying was unfailing and unselfish, and appreciated more than he knows.

xxi



1.0 INTRODUCTION

Localization is a term used for determining where a given object or person is physically

located in a given environment. For example, the problem of finding the room and the floor

on which an asset is located in a building is a localization problem. This problem is also

referred to by other names such as location estimation and positioning.

The most mentioned applications of positioning systems are wayfinding, search and res-

cue, asset tracking, emergency services and smart environments. A localization system can

save lives in the aftermath of an earthquake or a snow avalanche; position people or valuable

assets during a fire in a building; or track airplanes in the air and at the airport. Other

applications are office applications such as nearest printer services; tour and museum guides

which can help people navigate in an unfamiliar place; medical facilities that can track staff

and monitor patients; and home applications for home entertainment purposes [4]. Also a

number of emerging applications exist for localization systems such as monitoring of intrud-

ers in wireless ad hoc networks in the case of a security threat or detecting underutilized

spectrum with wireless cognitive networks [5].

Wireless networks are becoming pervasive and have been densely deployed for commu-

nication of various types of devices such as laptops, mobile phones, handhelds, and sensors.

Wireless Local Area Networks (WLANs) are used widely in university campuses and/or li-

braries to provide Internet connectivity to users. Exploiting these wireless networks for the

localization of people or other assets is an added convenience. Especially, the explosion of

Wi-Fi, Bluetooth (BT) and other wireless networking technologies has led to many end user

devices being equipped with radio frequency (RF) hardware which can be used for location

sensing [4].
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1.1 CHALLENGES AND MOTIVATIONS

The most popular localization system is the Global Positioning System (GPS) [6, 7] – a

worldwide satellite-based radio navigation system based on 24 low-earth orbit satellites.

GPS can provide location information for outdoor mobile users with an average positioning

error of 7 - 10 meters. The high cost, complexity, and battery consumption in receivers

are factors that make GPS undesirable for positioning small sized mobile devices [8]. More

significantly, devices that are indoors or blocked by buildings cannot be localized accurately

with GPS due to multi-path propagation, insufficient resolution and signal strength in these

places.

Especially, the indoor environment is challenging for positioning because of radio chan-

nel multi-path effects, signal interference, obstacles, and mobility [9]. To overcome these

problems and yet be able to localize indoors, researchers have created several indoor local-

ization systems. These systems may differ from each other in the type of signals (infrared,

RF, ultrasound) and the type of signal measurements (RSS, round trip time, etc.) used,

and the localization methods utilized for deriving a position from the measurements. Ap-

proaches also differ in the assumptions they make about their respective network and device

capabilities: device hardware, signal-propagation models, network structure, node density,

communication costs, and device mobility [10, 11]. For example, not every wireless device

may have GPS chips; and other types of localization that are optimized for suitable signal

measurements must be used for these devices. Therefore, employing the right technology

and right signal measurements for a given localization application poses another challenge.

Wi-Fi (and the received signal strength – RSS – with Wi-Fi), because of its widespread

presence and coverage, has high potential for localization. However, due to the time varying

and site-specific nature of the indoor wireless channel, deriving accurate locations from the

RSS measurements is not trivial. Such fine grained localization systems (using the RSS) rely

heavily on cumbersome offline calibration of the features of the RSS for localization [12]. In

other words, they need extensive experimental data (obtained prior to system deployment),

which is then used to develop the localization algorithm. This process can be time consuming,

requires manual labor, and may need to be repeated periodically in dynamically changing
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environments. More recently, Wi-Fi localization systems, still using the RSS have been

proposed (e.g., [1]), that eschew the costly offline calibration phase at the (presumed) expense

of accuracy. They are sometimes called calibration-free localization schemes. Coarse grained

localization such as proximity based localization does not suffer from multipath and hardware

related problems associated with fine grained localization that employs RSS, time, time

difference, or angle of arrival measurements. Proximity based localization measures nearness

or exploits connectivity information inferred by the quantization of received signal strength.

Therefore, it is less complex than fine grained localization. The challenge here is to determine

the tradeoffs between accuracy, cost, and practicality of the localization system.

Localization in multi-floor buildings introduces a number of additional challenges. Floor

determination problem and location estimation on a given floor must be considered together

to determine the parameters that are required for systems with good accuracy and low cost.

1.2 PROBLEM STATEMENT

Localization systems make use of the proximity or distance or directions to monitoring/reference

stations with known locations. Although there are quite a number of studies on proximity

based localization systems, there is no systematic study available. This is the first problem we

address in this dissertation. Our objective is to present a systematic study of proximity-based

localization by defining and examining the factors and parameters that affect the localiza-

tion performance. As a result of this study we expect to answer the following question: is

it possible to fine tune these parameters to improve the localization accuracy and what is the

accuracy that can be achieved?

From our efforts to answer these questions, we have determined that the number, mon-

itoring range, and locations of monitoring stations (MoSs) are significant parameters. Ba-

sically, the higher the number of monitoring stations is and the more symmetric is the

deployment shape, the better is the accuracy. However, a higher number of infrastructure

elements will have to be deployed and maintained and this would escalate the overall cost of

the localization system. Therefore, an interesting aspect we investigate is the effect of com-
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bining the readings from monitoring stations deployed in different floors for better coverage

and also better accuracy in each floor of a multi-floor building. The questions we expect to

answer here in this dissertation are: is it possible to utilize monitoring stations across floors

to localize the mobile stations with good accuracy, and how much cost and/or time can this

approach save us? Our research helped to determine that the placement of MoSs on multiple

floors; the relationship between monitoring ranges of MoSs deployed on adjacent floors; the

antenna coverage of MoSs; and the relationship between floor height and monitoring ranges

are important parameters to be optimized for the best accuracy that can be achieved with

a multi-floor localization algorithm. These parameters can also degrade or improve the per-

formance of localization system in terms of availability. We define availability as the fraction

of time/space that a location estimate is available to the user. Then, another question we

answer in this dissertation is for a given multi-floor building, is it possible to adjust these

parameters so that the localization performance in terms of accuracy and availability will be

improved with a multi-floor localization system?

In the process of improving the accuracy and availability in multi-floor buildings, de-

termining the correct floor that a mobile station is actually located becomes important.

Parameters that are fine tuned for optimizing accuracy may or may not provide a good floor

determination performance. On the other hand, when mobile stations cannot be located on

the correct floor, the overall availability is negatively affected. Related to these, we want

to find answers to the following questions: (1) How can a floor determination algorithm be

incorporated with a multi-floor localization algorithm? (2)What aspects of such a floor de-

termination algorithm affect the overall availability of a multi-floor localization system? (3)

What is the performance of floor determination when the parameters are optimized for good

accuracy and availability of multi-floor localization algorithms?

Proximity based localization studies can be applied to practical problems of interest

such as the spatio-temporal spectrum sensing in cognitive wireless networks (CWN). Spec-

trum sensing is an important problem in CWN, because if it can be realized properly, the

expensive and scarce wireless spectrum can be used efficiently by allowing secondary (un-

licensed or opportunistic) users to utilize the spectrum holes that are not used by primary

(licensed) users. Spatial knowledge of network topology and geometric relations of primary
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and secondary users can significantly be of benefit to the detection of spectrum opportunities.

Localization algorithms can be employed to estimate the locations of users in primary and

secondary networks, and determine available spectrum holes. We want to demonstrate how

proximity based localization can be utilized for sensing transmissions from primary transmit-

ters with the object of determining spectrum holes. We want to answer to the question: what

could be the effect of a possible frequency offset between the primary network and sensing fre-

quency of the localization system on the performance in localization of primary transmitters

and detecting spectrum holes?

1.3 CONTRIBUTIONS

1. In Chapter II, we provide a brief overview of localization systems, algorithms, comparison

metrics, and related issues for completeness. Then, we provide a survey of localization

schemes that employ the RSS in infrastructure Wi-Fi networks. We discuss the architec-

tures and algorithms of approaches classified as calibration-based and calibration-free.

Calibration-based systems can provide good accuracy given that the channel conditions

do not change; but, they require extensive human effort. Lately, researchers have begun

to create RSS-based localization systems which are relatively calibration-free and, in ef-

fect, shown to be less expensive in terms of the deployment costs and more robust to

changes in the wireless medium. It is not straightforward to compare these systems –

however, we have developed metrics that use the data presented in the research

related to these systems to compare them quantitatively.

2. Localization techniques often make use of distances or directions to reference nodes with

known locations. Such schemes assume range based localization using sophisticated mea-

surements such as time or angle of arrival (ToA/AoA) to estimate a node’s location

[13]-[14]. An alternative approach is proximity based approach using only the connectiv-

ity information to reference nodes. This approach may have larger granularity than range

based approaches depending on the number of infrastructure elements utilized per unit

area; however, it does not suffer from multi-path and hardware related problems asso-
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ciated with range-based localization. In Chapter III, we propose a proximity-based

localization algorithm, Sub-Area Localization (SAL), that uses the sub-areas

created by the overlapping ranges of monitoring stations (MoSs) to estimate

the location of a mobile node. We investigate the relationship between localization

accuracy (that depends on the number and sizes of sub-areas) and the monitoring ranges

of MoSs when they are placed on a virtual grid in a given workspace. We present ana-

lytical and simulation results that allow us to determine the “best” range of monitoring

stations, and understand the limits on the accuracy and availability performance of SAL.

We also investigate the channel effects such as log-normal shadowing, and environmental

effects such as wall attenuation factor. We study the effect of MoS placement schemes on

accuracy of SAL through simulations of deviation from grid placement, random place-

ment and incremental placement of MoSs.

3. Proximity based localization schemes in the literature have predominantly focused on

single-floor or 2-D localization. Multi-floored environments provide us an opportunity

to exploit the coverages of MoSs that are deployed across floors. In Chapter 4, we fo-

cus on the possibility and advantages of utilizing MoSs across floors if they

can sense transmissions across floors to achieve a satisfying accuracy with

reduced deployment cost. We call this proximity-based multi-floor localization ap-

proach as Multi-Floor Sub-Area Localization (MSAL). We first present the performance

of MSAL when floor information of MNs are known through an external floor determi-

nation mechanism. This could be possible through requesting an input from the user, or

keeping track of the floor the MNs are on through RFID tags placed at each floor of the

multi-floor building. Under this assumption, we investigate the effects of various param-

eters such as the relationship between monitoring ranges of MoSs on different floors, the

relationship between the floor height and monitoring ranges, MoS placement schemes

and the antenna coverage of MoSs on the accuracy and efficiency of a the localization

system. Our efficiency definition comprises good accuracy by utilizing as few MoSs as

possible per floor in a multi-floor building. We study the effect of log-normal shadowing,

and other signal propagation models based on wall attenuation factor and floor attenua-

tion factor through simulations. Because placing MoSs on exactly the same locations on
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different floors may not be possible, we investigate the effect of placing MoSs on random

locations on each floor in a multi-floor building. Then, we remove the assumption of

known floor information, and propose that a majority based floor determination can be

integrated with MSAL. We study the effect of floor determination mechanism on the

availability and efficiency of localization system, and the tradeoffs between floor deter-

mination mechanism and MSAL. Although it is not possible to change the floor height

in a given multi-floor building, our findings imply that there is an optimum floor height

to satisfy a given accuracy level.

4. Localization algorithms can be employed for spatio-temporal sensing in wireless cognitive

networks. Spatial knowledge of on network topology can be used to identify and utilize

the underutilized spectrum. In Chapter 5, we demonstrate how Sub-Area Local-

ization can be utilized for spatio-temporal sensing of primary transmitters

with the object of determining spectrum holes. The network may include pri-

mary transmitters operating on different frequencies. Localization system can monitor

these transmissions, however cannot modify the best monitoring range for each differ-

ent frequency once it is deployed for service. When there is an offset between primary

users’ frequency and the frequency for which the localization system is optimized, the

estimation accuracy will get affected. Therefore, we also evaluate the performance of

SAL in localization of primary transmitters and detection of spectrum holes when there

is a frequency offset between the localization system and primary network. Finally, we

provide discussion on how SAL’s performance can be improved with different scenarios

such as using secondary network topology information for spectrum hole detection, or

the effect of the location knowledge of primary receivers, etc.
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2.0 LITERATURE REVIEW

2.1 LOCALIZATION SYSTEMS AND PERFORMANCE METRICS

Localization techniques differ in the assumptions they make about their respective network

and device capabilities: device hardware, signal-propagation models, network structure, node

density, communication costs, and device mobility [10, 11]. In order to measure the perfor-

mance of these techniques various metrics can be used. These metrics are accuracy, precision,

robustness, adaptation, coverage, scalability, responsiveness, availability, cost, endurance to

security attacks, and efficiency in deployment.

The coordinate systems employed by localization schemes can be local, relative, or ab-

solute [15]. An absolute coordinate system (e.g., used in GPS) has global coherence and is

aligned with the coordinate systems used in commercial and military applications. In a local

coordinate system, the communicating devices position themselves only with respect to each

other. The estimated positions are relative to a local system, can be arbitrary, but may still

provide network-wide coherence. In these systems, the location coordinates are calculated

with respect to the coordinates of several predefined and fixed reference points (RPs). An

RP can be a cellular base station, a Wi-Fi access point (AP) or a USB Bluetooth (BT)

adapter. The number and locations of RPs have significant impact on the performance of

localization systems. Therefore, localization methods must be robust against RP failures or

non-uniform RP distribution [16].

The deployment of location estimation systems can be classified into two types: client-

based (distributed) and infrastructure-based (centralized). In client-based systems (e.g.,

GPS), also called self-positioning, location estimation is done with the information collected

at client devices; in infrastructure-based systems, also called remote positioning, localization
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depends on the information collected at RPs and the location is calculated at a server.

The accuracy of a system denotes how close the estimated location is to the actual

location. The precision is with what probability we can get that accuracy [10]. For example,

some of GPS receivers can reach 1 to 3 meter accuracy 99 percent of the time. When the

object of interest is static, localization algorithms are used to identify its location; however,

when the object of interest is moving, tracking algorithms are used to estimate its path

over time. Localization algorithms or tracking algorithms can be used for one another in

order to achieve better accuracy. For example, if the localization error is larger than the

maximum distance that a mobile can travel with a given speed in a given time duration,

then the mobile’s previous location can be used to limit the distance between the previous

and present location estimates. However, this may cause error propagation. Our focus is on

the localization algorithms rather than tracking; interested reader may refer to this paper

for more details [17].

The adaptation of localization systems in the presence of changing environmental condi-

tions is also required for good performance. Localization systems must be adaptive to noisy

environments, or should be able to provide the required accuracy and precision in different

environments with different conditions.

A localization system must be able to locate objects in a given environment in order to

satisfy the requirements of the target application. This environment may be the world, a

campus, a building or a room. However, whatever the coverage is, the number of objects

a system can locate with a certain amount of infrastructure or over a given time may be

limited. For example, while a master BT device can connect up to 7 slave BT devices,

a tag reader may not read any tag if more than one tag is within the range [10]. The

coverage area per unit of infrastructure, and the number of objects the system can locate

per unit of infrastructure per time interval values are used to determine the scalability of a

localization system [10]. Therefore, in order to provide a good scalability, the locations must

be estimated within a fairly low response time with given infrastructure. The responsiveness

of the system is determined by the latency in estimating the locations of objects [10], and

it is affected by factors such as available bandwidth, and the computational overhead of the

technique. The availability is the fraction of time/space that a location estimate is available
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to the user. Availability may depend on coverage, channel propagation characteristics and

location estimation algorithm capabilities.

The installation cost of a system includes the cost due to hardware and software require-

ments, and the wages of people who installs the system, and the maintenance cost includes

the wages of people who fix devices not functioning [15].

Localization techniques are highly vulnerable to security attacks from dishonest nodes

and external attackers. Dishonest nodes can report false positions and distance information

in order to cheat on their locations, whereas external attackers can spoof measured locations

of honest nodes. An attacker can influence localization measurements by jamming and

delaying signals and by modifying their signal strengths besides setting wormhole attacks

or cloning attacks. A number of secure localization techniques which use multiple kinds

of measurements [18], distance-bounding protocols [19] or verifiable multi-lateration [20]

were proposed in the literature. Localization techniques considered in the following sections

assume non-adversarial settings.

2.2 LOCALIZATION ALGORITHMS

Localization systems rely on some form of communication between RPs with known locations

and the object that needs to be localized. Depending on the granularity of information

inferred by this communication, indoor localization approaches can be classified into two

categories: coarse grained and fine grained [16].

2.2.1 Coarse Grained Localization (Proximity-based)

Approaches that infer coarse grained information such as proximity based approaches fall

into the coarse grained localization category. Proximity based localization measures nearness

or exploits connectivity information to a known set of RPs [21]. This approach is also called

cell-id approach. Connectivity is inferred by the quantization of received signal strength at

the RP. If the received signal strength is higher than or equal to reception sensitivity, then,
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mobile device is said to be connected to RP. Figure 2.1 shows two examples of proximity

based localization. In the first example (upper figure) the mobile device at point P is only

connected to RP P3, then, the location is approximated as the location of the RP P3. In

the second example (lower figure), the mobile at point P is connected to three RPs, then,

the estimated location is the centroid of the triangle formed by three RPs, P1, P2 and P3.

This method is called centroid algorithm [16]. According to this algorithm, the estimated

location is calculated from,

P (x, y) =
(∑N

i=1 xici∑N
i=1 ci

,
∑N

i=1 yici∑N
i=1 ci

)
, (2.1)

ci =

0 Pr < Rs,

1 Pr ≥ Rs

where ci is 1 if mobile node is connected to RP Pi, 0 otherwise. (xi, yi) denotes the two

dimensional coordinates of RP Pi, i = 1, 2, . . . , N .

Electronic article surveillance (EAS) systems that are used in retail and library settings

are an example to this approach. The EAS tags are very simple; they deter amateur theft by

an alarm which goes off when a resonance due to the tags response to a matched electronic

field. Although these systems are low cost, they have a restricted range, limited reliability

and they lack identification codes [22].

Another example is The Active Badge [23] system which is an IR-based localization sys-

tem. In Active Badge, IR identification (IRID) tags periodically transmit their identification

codes by emitting infrared light to readers installed throughout the facility. Although IR can

provide accurate location information due to its short range, IR-based localization systems

suffer from poor scalability due to the same reason. In addition, IR-based systems have high

implementation and maintenance cost, since tag prices are relatively high, and a special

hardware has to be installed to the mobile device. These systems also perform poorly in the

presence of direct sunlight and hence cannot be used outdoors [16].

Landmarc [24] is a Radio Frequency Identification (RFID) based localization system.

RFID tags are detectable up to about 3 meters away as they pass fixed readers. Inexpensive

RFID tags can be used for location determination by placing RFID readers at doorways
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Figure 2.1: Proximity-based localization

and other strategic points to detect the passage of people or objects [4]. This causes poor

scalability. RFID systems are being used for handling automated toll collection on highways.

In [25], a proximity based localization algorithm for large scale sensor networks (APIT

– approximate point-in-triangulation test) is proposed. APIT uses RPs to perform location

estimation by isolating the environment into triangular regions between RPs. A node’s

presence inside or outside of these triangular regions allows a node to narrow down the area

in which it can potentially reside. This algorithm utilizes the combination of RPs which

results in the highest number of triangles intersecting at the location of the sensor node.

The center of gravity (COG) of the intersection of all of the triangles in which a node resides

is used to determine the estimated position. This algorithm is distributed, and sensors also
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utilize neighbor information to decide whether they are inside or outside a triangle. The

simulation results show that the performance of APIT depends on the node degree (a node

degree of 8 is used in [25]). When RPs are distributed uniformly in a grid, at least 10 RPs

must be heard by a node to achieve a localization error of 70 % of the radio range. For most

of the experiments in this paper, 16 RPs are heard by localizing nodes.

Computer vision based systems use cameras and image processing techniques for local-

ization. Their drawbacks are the difficulty identifying many subjects simultaneously, high

cost and poor scalability.

In general the advantages of proximity based localization are good responsiveness due to

short computation times, and practical solution as collecting measurement metrics for more

fine-grained localization is quite complex. The major drawback is that the accuracy depends

highly on the number and locations of RPs; therefore, scalability may be a problem when

good accuracy is required.

2.2.2 Fine-Grained Localization

Approaches that infer fine grained information such as distance-based, angle-based and scene

analysis approaches fall into the fine grained localization category.

2.2.2.1 Distance-Based Approach: In distance-based methods, the distances of the

node that needs to be located to several RPs are determined by measuring one of the metrics

such as Time of Flight (ToF)/ Time of Arrival (ToA), Time Difference of Arrival (TDoA),

Received Signal Strength (RSS) or Signal-to-Noise Ratio (SNR). Depending on the deploy-

ment of the system, these metrics can be measured at the RPs and sent to a central server

to be used in the location estimation algorithm (infrastructure-based), or can be measured

at the mobile node and used in the location estimation algorithm applied at the mobile

(client-based). Then, the position of the node is estimated using the lateration technique.

Lateration is a commonly used location estimation technique in which the distance mea-

surements are acquired from (n + 1) non-collinear RPs in order to estimate the location of

an object in n-dimensional space [11]. In Figure 2.2(a), let P be the mobile to be located
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in a 2-dimensional plane. Point P known to be at a distance dk from point Pk must be

located on a circle of radius dk centered at point Pk, where k = 1, 2, 3. Three such circles

around RPs placed in 2-dimensional space, such that they are not collinear, will intersect

at one point. Point P must be at this intersection point in order to generate the observed

distances. Then, the estimated location is found from the following set of equations, since

there are 3 equations and 2 unknowns, (x, y):

di =
√

(x− xi)2 + (y − yi)2, i = 1, 2, 3, (2.2)

where (xi, yi) are the coordinates of RPi.

When errors at distance estimations occur, these circles do not intersect or they intersect

to define an area rather than a single point as shown in Figure 2.2(b). In this case, more

complex estimation algorithms are needed to locate P .

In timing based approach, the distance from a point P to a RP is inferred from the Time

of Flight (ToF) or Time of Arrival (ToA) of the communication signal [16]. Measuring ToF

means measuring the time it takes a signal to travel between the point P and a RP at a

known velocity. The basic equation for distance is the multiplication of velocity and the time

it takes the signal to arrive. The transmitted signal carries a time stamp showing when it

is transmitted. When the receiver receives the signal, it calculates the current time, and the

difference between the current time and the time stamp at the signal gives ToF.

Ultrasound signals can be used to determine distances between mobile tags and known

points in the environment. Sound waves have a velocity of approximately 344 meters per

second in 21◦C air [21]. Then, an ultrasound pulse sent by an object and arriving at point

P 14.5ms later implies that the RP is 5m away from point P . Active Bat [13] localization

system uses an ultrasound ToF lateration technique to provide accurate positioning. Because

ultrasound signals have short wavelengths, location accuracies on the order of centimeters

can be reached. A major problem is that the propagation velocity of the ultrasound is easily

affected by the temperature and humidity, which introduce ranging errors [26].

A light pulse emitted by an object has a velocity of approximately 300× 106 meters per

second, and will travel 5 meters to a point P in 16.7ns. Radio waves travel with the same
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Figure 2.2: Lateration (a) with no errors, (b) with errors

velocity as light. Therefore, measuring ToF with radio is possible but requires clocks with

much higher resolution than those used for timing ultrasound.

Pinpoint’s 3D-iD [27] uses base stations and tag hardware to measure RF ToF. It uses

an installed array of antennas at known positions to perform lateration. Pinpoint’s accuracy

is roughly 1 to 3 meters. Cricket location system [28] uses both RF and ultrasound signals

to measure the ToF, and the distance between the RP and the object to be located is found

15



based on the difference of arrival times of these signals. In Ubisense Localization System

[29], ToA measurements were used with UWB technology. Unlike conventional radio signals,

UWB signals can have pulse durations short enough to allow accurate ToA with an accuracy

of 15 centimeters. The precision capabilities combined with the very low power makes this

approach ideal for certain radio frequency sensitive environments such as hospitals and health

care. Also, UWB technology does not require a direct line of sight between tags and readers;

however, it has a high cost of initial implementation [4].

ToA method requires accurate synchronization between the RPs, but the node itself

might have a drift that can reach a few microseconds; this drift generates an error in the

location estimate. TDoA is used to help avoid node clock synchronization errors [30]. HP

Labs SmartLOCUS [31] uses synchronized RF and ultrasound differential time-of-flight mea-

surements to determine the inter-nodal range between any two nodes. This system yields an

accuracy of 2-15 cm.

Moreover, indoor environments cause a lot of reflections and multi-paths; therefore, it is

very important to calculate the ToF of the first arriving ray which is assumed to be coming

through the most direct path between a RP and a wireless device. The second and third

components of the signal follow the first ray, probably after bouncing of off doors, walls, and

other furniture. If the delay between the first ray and the others is smaller than the duration

of the pulse shape used in the wireless system, these two rays overlap, causing errors in ToA

[30]. Therefore, line of sight (LOS) is an important requirement for high accuracy in timing

based localization systems. If the environment is likely to have so much non-LOS (NLOS),

then the number of infrastructure can be increased at the expense of cost in order to increase

the probability of LOS and, in effect, to provide more accurate results.

According to the Friis free space radio model, the intensity of a signal emitted by an

object is attenuated by a factor proportional to 1/r2 when it reaches a point P at distance

r from an object [32]. The intensity of the signal is measured as RSS at the receiver and is

reported as the Received Signal Strength Indication (RSSI) in dB. According to this model,

RSS is a function of signal’s transmission power, Pt, the distance between the receiver and

the transmitter, r, the path loss of the environment, n, noise, N0 and the channel coefficients,
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h [33].

RSS = log10

(
Pt ∥h∥2

rnN0

)

In Signal Strength Based approach, knowing all the other parameters, one can calculate the

distance r from an AP to a wireless device. However, multi-path reflections, shadowing ef-

fects, diffraction around sharp corners or scattering from wall, ceiling, or floor surfaces, and

absorption by structures and even human bodies make it difficult to accurately characterize

the large-scale (signal propagation) and small-scale (fading) effects on signals inside a build-

ing using a basic model, and also degrade the link performance. For these reasons, in realistic

situations, deriving location from RSS is not trivial. The effect of reflecting and attenuating

objects in the environment can have much larger effects on RSS than distance, making it

difficult to infer distance from RSS without a detailed model of the physical environment.

Two wireless devices that are apart from an AP by the same distance can have quite different

RSS measurements due to different intermediate obstacles between the devices and the AP

[26].

It has been shown that increasing the transmission power does not help to improve the

localization accuracy, but rather degrades the performance [34]. This is due to the fact that

the increase in the transmission power makes the wireless channel more noisy as a result of

multipath fading and results in poor estimation of signal strengths.

The preprocessing of RSS samples is the first alternative proposed against the unpre-

dictable nature of RSS. It has been shown that a median filter can be used to deal with

short-term variations in RSS due to fast fading [3]. A median filter takes the median value

of RSS samples measured for a certain time duration.

Various signal propagation models are utilized for more accurate distance prediction in

environments with different characteristics. An example is Wall Attenuation Factor (WAF)

based signal propagation model [35]. In this model, the signal path loss is predicted through

counting the number of obstructions between the transmitter and the receiver. Path loss

in dB that is caused by one obtruction is denoted as WAF , wall attenuation factor. This
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model is described by,

P (d) =

P (d0)− 10nlog
(

d
d0

)
− nW ∗WAF nW < C,

P (d0)− 10nlog
(

d
d0

)
− C ∗WAF nW ≥ C

where n is the rate at which the path loss increases with distance, P (d0) is the signal power

at some reference distance d0 and d is the distance between the transmitter and the receiver.

C is the maximum number of obstructions(walls) up to which the attenuation factor makes

a difference, nW is the number of obstructions between the transmitter and the receiver.

The values of n and WAF depend on the building layout and construction material, and

are derived empirically. The value of P (d0) is also derived empirically. This model is used

to compute the distance between an object and the RP from RSS samples. The distance

information is then used to locate the object by lateration. RADAR localization system

utilizes this model [3].

When compared to timing based systems, RSS measurements are affected more sig-

nificantly by fast fading or the environmental changes such as temperature and humidity.

However, RSS based systems do not require additional hardware to provide the synchro-

nization and a fine clock; and therefore, are cheaper than timing based systems. Since no

additional hardware is required, WLANs that are already deployed can easily be utilized

with no additional cost in RSS-based systems. Therefore, widespread deployments of the

802.11 infrastructure and the ubiquity of Wi-Fi embedded devices is a compelling reason for

RF based indoor localization. Using RSS, it is possible to locate Wi-Fi enabled devices with

accuracies from several meters to tens of meters [3].

Bluetooth technology [36], which can offer shorter range (BT class 2 range is approx-

imately 10 meters) than Wi-Fi, can provide more accurate positioning, but requires more

fixed APs to provide coverage. Off-the-shelf BT adapters and devices cannot be used for

ToA measurements since they do not have the required fine clock, but can be used with RSS

easily. In [37], inexpensive BT USB adapters and BT identification badges are used with

RSS measurements.

Signal-to-Noise Ratio (SNR) can also be used as a measurement metric but it has been

shown that signal strength was more indicative of location than SNR [3].
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DC electromagnetic field based technology can be used in localization and tracking [21]

especially in the computer animation industry. Although it can provide good accuracy,

it is quite expensive and, like IR, severely range limited; hence, unsuitable for large-scale

deployment.

In [38], the ambiance of a place is used to define the logical location of a mobile. The

hypothesis of this work is that the combined effect of ambient sound, light, color of a place and

the user movement can be used in a localization algorithm. The results from 51 different

stores show that this technique can achieve an average accuracy of 87% when all sensing

modalities (optical, acoustic and motion) along with RSS are employed.

2.2.2.2 Angle-based approach: Angle-based localization systems use angulation tech-

nique to estimate the location of an unknown point. In this technique, Angle of Arrival

(AoA) measurement which shows from which angle the signal has arrived to a receiver is

used. For two-dimensional angulation, two angle measurements and one length measurement

such as the distance between the RPs are needed. For three-dimensional angulation, one

length measurement, one azimuth measurement and two angle measurements are needed

[21]. When the distance between the RPs is not available, triangulation method shown in

Figure 2.3 can be used for positioning. A constant reference vector as 0◦ can be used for

angle measurements. In order to measure the AoA, phased antenna arrays, beamforming or

directional antennas can be used. The orientation of antenna array affects the performance;

therefore, some calibration may be needed [3].

The VHF Omni-directional Ranging (VOR) technique used in aircraft navigation systems

is an example of angulation. In [14], authors use the idea of VOR for indoor positioning

and using WLAN APs with revolving antennas. In [39], authors combine AoA and RSS

measurements and show that the use of directional antennas averages out multi-path effects

in indoor environments, and also helps reduce the amount of data needed.

An advantage of using AoA is that synchronization required in time-based measurements

is not required in this case [30]. However, the hardware needed to measure AoA has high cost.

In addition, as in the time-based systems, measuring the first arriving ray is important, since

it will provide the most accurate angle measurement. Therefore, LOS is also a requirement
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Figure 2.3: Triangulation

for accurate angle-based localization.

2.2.2.3 Static Scene Analysis Approach: Static scene analysis (SSA) is an empiri-

cal technique which uses the features of a scene observed from a particular vantage point

to estimate the location of objects in the scene [21]. The scene can consist of visual im-

ages (frames captured by a camera) or a measurable physical phenomenon (electromagnetic

characteristics that occur when an object is at a particular position and orientation).

With SSA, objects can be localized using passive measurements that do not correspond

to distances. SSA has two phases. In the first phase, a dataset is obtained by observing the

scene. This phase is an offline learning or calibration phase, where the samples (RSSI, ToA,

etc.) from known locations are collected and processed so that the relationship between

the location and the measurement metrics can be revealed. The second phase is the online

localization phase where the location is estimated by matching the measurements collected

in real time to the data collected in the calibration phase. The accuracy of estimation

depends on the technique used to construct the database, and the algorithm used to match

the measured signal to the database. This method is used in RADAR localization system

[3], which will be explained in detail in the next sections.

Although SSA eliminates the need to convert the measurements to distances, it requires
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extensive calibration in order to create the dataset. Also, changes to the environment in a

way that changes the observed features of scenes may require regenerating the predefined

dataset.

In the literature, there are attempts to determine the Cramer-Rao Bound (CRB) on

the variance of the localization error of proximity based and distance based localization

schemes in sensor networks. In [40], the distribution of errors in measurements of RSS,

ToA, and AoA are used to calculate the CRB for cooperative and range-based localization

in sensor networks. In [41], the CRB is calculated for distance-free localization algorithms

where sensors only use their neighbors to estimate their own locations. If Y is the maximum

distance that a node i can move in any direction without changing its neighborhood, then

Y is the resolution limit for the localization algorithm. When the neighborhood does not

change, the proximity information stays the same. Y is a random variable and E[Y ] is the

maximum achievable accuracy of the localization algorithm.

2.3 RSS BASED LOCALIZATION

As discussed previously, the usage of RSS to localize a mobile device in indoor areas is

attractive because there is no need for additional hardware in the mobile device nor extra

spectrum for localization purposes. In what follows, RSS based localization schemes are

classified into two groups as calibration-based and calibration-free localization schemes.

2.3.1 Calibration-based Localization

2.3.1.1 Why Calibration? The RSS measured by a WiFi enabled device is not constant

at a given location. Experiments have showed that RSS measurements at a fixed position

varies over time and the variations can be as large as 10 dBm [42]. The time variation

of the channel can be due to changes in the physical environment such as movement of

people [32]. A study of the properties of the RSS, specifically for localization purposes is

presented in [43]. The RSS values change with orientation of the user holding the mobile
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Figure 2.4: Histograms of the RSS from an AP, observed at a mobile station (a) closer to

the AP and (b) away from the AP

device and are sensitive to the chipsets used in the WiFi card. It is also difficult to use

standard path-loss models since even the mean path-loss is site specific and depends on the

floor plan, construction materials, and other objects in the environment. If samples of the

RSS are collected over windows of time at a fixed location and analyzed, it is observed that

the histogram has a left skew closer to the transmitter (access point) because of limits to the

transmit power while the histogram is closer to a symmetric normal distribution at larger

distances from an AP as shown in Figure 2.4. Further, the RSS is non-stationary and can see

jumps in the mean value over time. In any case, depending on a single sample for estimating

the location of the device may lead to large localization errors, especially if this sample comes

from the tail of the distribution. Consequently, modeling the behavior of RSS samples

prior to location estimation can mitigate the problems due to the dynamic characteristic

of the wireless channel. For instance, calibration-based techniques can employ more than

one sample of the RSS in estimating the user’s location. During calibration, information

presented by weak signals or the absence of signals at a location may be characterized.
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2.3.1.2 Localization Technique Calibration-based localization systems consist of two

phases: calibration phase and location estimation phase. Calibration is an offline learning

phase; and location estimation is an online phase, where the actual location finding is realized.

In the first phase, the purpose is to relate the measurement values to the coordinates

of the known locations. This relationship can be revealed with either parametric or non-

parametric approach. In parametric approach, propagation models are used. These models

take into account several variables like the type and the number of walls and other signal

obstructers, e.g. WAF based signal propagation model used in [3]. In the non-parametric

approach, calibration, the measurement or sampling of available metrics at known locations,

is performed. Studies suggest that propagation models are not competitive against empirical

calibration models in terms of positioning accuracy due to the insufficient precision of signal

models [3].

Modeling the behavior of RSS samples prior to location estimation can mitigate the

problems due to the dynamic characteristic of the wireless channel. This can be shown

as the most convincing motivation to calibration efforts. During calibration, information

presented by weak signals or the absence of signals at a location is also significant. For

instance, while a high RSS can imply a short distance between the location and the RP, a

low RSS or the absence of RSS can imply a long distance.

The output of the calibration phase may differ from system to system. It can be a

radio map containing all measured metrics from all APs, at all possible known locations;

or it can be a trained neural network containing all the weights of the connections between

the layers and units of the network. In addition, instead of using the raw data gathered,

employing data processing or filtering may facilitate the location estimation algorithm in

the second phase. For example, the output can be a table for each RP containing the mean

and the standard deviation of the RSSs corresponding to each combination of location and

orientation of antenna [3].

The effectiveness of calibration depends on two types of parameters. The first type has a

unit per training (calibration) location, e.g. the number of samples per location, the sampling

interval per location, the number of orientations of antenna per location. The second type

is for the whole calibration area, e.g., the number of training locations, the density of the
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training locations, times of day and days of week that the measurements are collected.

In location estimation phase, RSS values at an unknown location are measured. Using

this run-time RSS, the location database created at the calibration phase is searched for the

closest match among the RSSIs of the known locations using a localization algorithm. Note

that the bigger the calibration dataset is, the worse the responsiveness of the system may

be. Therefore, efficient search algorithms must be employed in location estimation phase.

In the following, various calibration based localization algorithms are discussed in two

groups: deterministic and probabilistic. Probabilistic techniques calculate for each known

location the probability that the device is at that location. Then, the location with the

highest probability is considered as the estimated location of the device with that probability.

Deterministic techniques estimate the location without any probabilistic claim.

2.3.1.3 Deterministic Calibration-based Approaches Empirical Trilateration

(ET) uses calibration data in order to estimate the distances to RPs from an unknown

point instead of using signal propagation models as in regular trilateration. Thus, the radius

of each circle centered at RPs is determined by matching the run-time RSS values to those of

the offline collected at the calibration phase. The centroid of the smallest perimeter triangle

created by any three RPs is the estimated location. When compared to traditional lateration,

ET improves the accuracy by 11.8% [44].

Smallest M-vertex polygon (SMP) uses the run-time RSS values to search for a

number of candidate locations in signal space with respect to each RP separately [44]. M-

vertex polygons are formed by choosing at least one candidate from each RP (total of m

RPs). SMP chooses the smallest polygon, which has the shortest perimeter. Averaging

the coordinates of vertices of the smallest polygon gives the final location estimate. When

compared, SMP and ET have similar mean errors; however, the variation of error of SMP is

less than the variation of error of ET.

Fingerprinting is proposed as another deterministic calibration based localization ap-

proach in [45, 3, 46, 47]. This method is an example of SSA explained in previous sections.

In the first phase of fingerprinting, the entire area is covered by a rectangular grid of

points. The RSS is measured with enough statistics to create a database of predetermined
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RSS values on the points of the grid. The vector of RSS values at a point on the grid is

called the location fingerprint of that point. Each entry in the database includes a mapping

of the grid coordinate l = (x, y) to the vector of corresponding RSS values from all RPs in

the area, sl =< RSSl1, RSSl2, . . . , RSSlm >, when there are m RPs. This process is also

called RF profiling or RF mapping.

In the second phase, a sample of the RSS from all RPs at the user’s current position is

obtained. This run-time RSS vector is compared with all existing entries in the database.

The fingerprint entry that has the closest match to the user’s sample of RSS is returned as

the estimate of the user’s current location.

In [45], each element in each vector in the database is assumed to be the mean of the

RSS from each of the RPs in the area. Least squares error (LSE) algorithm estimates the

location by computing the Euclidean distance between the run-time RSS vector, RSS, and

each fingerprint in the database. The coordinates associated with the fingerprint, l = (x, y),

that provide the smallest Euclidean distance are returned as the estimate of the position,

(x, y) = argminl∈L

m∑
i=1

(RSSli −RSSi)
2

RADAR [3] system considers also the orientation of the antenna on the training locations.

For each location-orientation tuple, (x, y, θ), the standard deviation, and the median of the

corresponding RSS values are computed for each of the RPs. The processed data set rather

than the original raw data set is used in the second phase. RADAR uses Nearest Neighbor in

Signal Space (NNSS) algorithm to find the closest match. The location with the minimum

Euclidean distance between the real-time data and the database is returned as the estimated

location.

Another algorithm which is similar to NNSS is K-nearest neighbor averaging (KNN)

algorithm. KNN searches for K closest matches by comparing the root mean square (rms)

errors between the run-time and offline RSS vectors. Averaging the coordinates of the K-

locations gives the final location estimate. In [1] a performance comparison of ET, KNN and

SMP was held, and it was shown that KNN performs better than ET and SMP yielding the

smallest mean distance errors.
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In traditional fingerprinting approaches, in order to create the database, RSS samples

are collected from known locations, which usually are the vertices of a virtual grid at the

experiment area. LEASE system [46], on the other hand, instead of using training locations,

uses stationary emitters (SEs) in addition to sniffers (APs). The SEs are wireless transmitters

that send a few packets occasionally, and they are not necessarily placed to form a grid. The

coordinates of the SEs are known to the location estimation engine (LEE). The sniffers sniff

on the wireless medium, and listen for all communication from wireless clients and SEs.

They behave like monitors instead of reference points.

In calibration phase, the LEE collects from all sniffers the RSS from the SEs, and uses

this information to build its RSS model for location estimation. The RSS is modeled for

each sniffer as a function of the coordinates of the SEs at a site. First, the data points

are smoothed using a generalized additive model (GAM) [46]. Second, the site is divided

into small grids and using Akima splines, the smoothed values obtained from the GAM are

interpolated to estimate the RSS at each grid center. To generate this synthetic model of

RSS grid, only the coordinates of the SEs and the RSS from the SEs are needed. This

technique is repeated for each sniffer deployed, and at the end of this process, a set of grids

for the site is obtained, where each grid has an associated n-vector of estimated RSS, when

there are n sniffers on the site. Calibration in LEASE is not limited by the offline phase, it is

continuously processed also in online phase. Assuming RSS follows a log-normal distribution,

the system rebuilds the model when a statistically significant deviation in RSS coming from

an SE is observed by at least one sniffer. With this approach, a model will be rebuilt if an

SE or sniffer is moved, or the environment changes significantly.

As a difference from other proposed works, LEASE justifies its approach with the exper-

iments done in two different floors in a site. In order to locate a client, LEE uses the RSS

information from the client as recorded by all the sniffers, first to map the client to a floor

at a site, then, to estimate the client’s location by “matching” the run-time and offline RSS

vectors. Mapping a client to a floor is realized by sorting the RSS coming from sniffers and

applying the majority rule. According to the majority rule, the floor which has the majority

of the sniffers from which m strongest signals are seen is the floor where the client is located.

After the floor is estimated, the client’s RSS vector can be matched to that floor’s model by
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using Nearest Neighbor Search (NNS) algorithms. Two variations of NNS are used in this

work: Full-NNS, and Top(k)-NNS. Full-NNS matches the entire RSS vector as seen from the

client to the RSS vectors at each synthetic grid point to find the closest match. However,

Top(k)-NNS considers only the top k RSS from the client, and matches the client’s RSS

k-subvector with the corresponding k-subvector of only those grid points where the sniffers

with the top k RSSs.

[46] investigates the effect of the channel sampling interval, the number of sniffers and

SEs. Minimizing the number of SEs was shown to be equivalent to minimizing the amount of

profiling needed. Another work which investigates the effect of reducing manual calibration

on the accuracy of the localization system is [47]. This work uses the interpolation of RSS

calibration data taken from known locations. It is shown that it is unnecessary to spend

much time at each location, as more time beyond a threshold does not improve accuracy

very much.

Experiments showed that fingerprinting approaches yielded higher accuracies than the

approaches using signal propagation models; however, they require extensive calibration

effort.

[37], [48], [49, 50, 51, 52, 53] propose Neural Networks (NN) as alternative to pre-

viously mentioned calibration based localization methods. A neural network is an inter-

connected group of artificial neurons, and it uses a mathematical or computational model

for information processing [54]. NNs differ from other algorithms in that they learn from

experience allowing them to improve their performance and adapt themselves to changes in

the environment.

In the calibration phase, RSS measurements collected from multiple APs are fed into a

neural network, and this neural network is trained so that the distance between the output

location and the target location is minimized. At the end of the calibration phase, the neural

network has all the weights and parameters calculated. At the location estimation phase,

the system collects run-time RSS and feeds it into the neural network to get the output as

the estimated location. There is no need to interpolate the training locations, since this is

already done by the neural network itself [37].

A number of studies exploiting neural networks for location estimation or location track-
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ing were published. These works differ from each other in terms of the location measurement

methods, the types of neural networks, and training functions used. Among these studies

[49, 50, 51, 52] use RSS measurements as input to the neural networks, whereas [53] uses

ToA. For instance, [48] feeds RSS measurements from 5 different APs to the neural net-

work, and the output is the two dimensional coordinates of the device that is to be located.

The most important contribution of this paper is that it contains the comparison of the

performances in terms of error and response times of the neural networks trained by vari-

ous training functions. According to their results, the best performing training function is

Levenberg-Marquardt back-propagation algorithm when the neural network has one hidden

layer of 8 hidden units. The authors also show that the neural network performs similar to

NNSS algorithm; but, it uses less memory, and it has better responsiveness, i.e., its response

time is shorter than the response time of NNSS algorithms.

2.3.1.4 Probabilistic Calibration-Based Approaches Joint Clustering (JC) Tech-

nique is a probabilistic approach which is based on the joint distribution of RSS values

collected from multiple RPs [55]. In the calibration phase, given an indoor region covered by

multiple RPs (access points with known locations), the system collects RP RSSs at various

locations and constructs a histogram-based radio map.

For a given training location l, the probability that RSS reading at RPi is si equals to

the histogram of RPi at si,

P (RPi = si|l) = Histl,RPi
(si). (2.3)

Then, the histograms are used to estimate the joint distribution of the RSS values received

from k RPs at each training location l. When RPs are assumed independent, the problem of

estimating the joint probability distribution becomes the problem of estimating the marginal

probability distributions as:

P (RP1 = s1, RP2 = s2, . . . , RPk = sk) = P (RP1 = s1)P (RP2 = s2) . . . P (RPk = sk).(2.4)
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Therefore, at the calibration phase, the radio map stores the joint probability distribution

of RSSs received from k RPs at each training location. It is important to choose k such that

all locations are covered by at least k RPs most of the time.

After calibration, location clustering is performed to reduce the size of the search space

and the computational requirements of the algorithm. In location clustering the locations

that share q RPs with the highest RSS are grouped together by putting them in the same

cluster.

In the location estimation phase, RSS samples from RPs at an arbitrary location are

taken. Then, the joint distributions are used to find the most probable location given the

run-time RSS values. q RPs with the largest RSS values are used to determine one cluster

to search within for the most probable location. The locations in this cluster are called

target locations. Then, the location estimation algorithm looks for location l in the target

locations, which maximizes the probability that being at location l given the run-time RSS

samples, samples, from the RPs, P (l|samples). Using Bayes’ theorem,

argmaxl[P (l|samples)] = argmaxl

[
P (samples|l)P (l)

P (samples)

]
(2.5)

= argmaxl[P (samples|l)P (l)], (2.6)

assuming P (samples) is independent of l.

If the user’s profile is not known, then all locations for a user is equally likely, then

P (l) can be factored out from the maximization process. And the remaining term can be

calculated by using:

argmaxl[P (l|samples)] = argmaxl[P (samples|l)],

P (samples|l) =
|samples|∏

n=1

k∏
i

Histl,RPi
(samples(n)),

where k is the number of RPs to be included in the joint distribution. k RPs with the largest

average RSS are chosen among a total of N RPs.

Therefore, in [55], Bayes’ theorem is used to estimate the probability of each location

within the cluster given the run-time samples and the radio map built during the offline

phase. The most probable location is reported as the estimated user location l.
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The radio map of the Incremental Triangulation (IT) Technique technique is

the same as the radio map of JC technique except location clustering [55]. JC technique

calculates the probability of a location using k RPs all at the same time, using k operations

per sample. IT uses the RPs incrementally, one after the other, until it can estimate the

location with certain accuracy, using a predetermined threshold.

Given the run-time observations from each RP, IT calculates the probability of each

location in the radio map set given the sample vector from the RP with the strongest av-

erage RSS alone. If the probability of the most probable location (argmaxl[P (l|samples)])

is “significantly” higher than the probability of the second most probable location accord-

ing to a measure defined in the algorithm, the most probable location is returned as the

location estimate, after consulting only one RP. If this is not the case, for the RP with the

second strongest average RSS, the same process is repeated, but only for the set of candidate

locations obtained from the first RP. This process of calculating the probabilities and deter-

mining the significance of the most probable location is repeated incrementally, for each RP

in order, until the location can be estimated or all RPs are consulted. In the latter case,

the algorithm returns the most probable location in the candidate list that remains after

consulting all the RPs.

This iterative process leads to a multi-level clustering which reduces the search space

significantly at each iteration; and hence, leads to less computation than the JC approach.

However, treating each RP incrementally, instead of using the joint distribution, causes the

loss of some information in IT and a lower accuracy than the JC technique.

In another probabilistic approach Youssef proposes Horus system which exploits the

samples correlation in calculating the parameters of the distribution of the average of n

samples for each RP in the radio map [42]. This algorithm assumes RSS has Gaussian dis-

tribution. Since the individual distribution of each sample follows Gaussian distribution, the

probability distribution of the average of n samples also follows a Gaussian distribution. This

algorithm exploits samples correlation in order to estimate the variance and the mean of this

Gaussian distribution. The mean of the distribution of the average of n samples, is the same

as the mean of the distribution of each sample, E(A(n)) = E(s). The variance of the averag-

ing process, V ar(A(n)) depends on the variance of the original process, V ar(s), the number
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of samples, n, and the independence coefficient, α. V ar(A(n)) is always less than or equal to

the variance of the original process, V ar(s), being equal in case α equals one or if the RSS

samples are independent. Intuitively, the lower the variance of the RSS distribution at each

location, the better the ability to discriminate between different locations and the better the

accuracy. Therefore, this approach takes the independence of samples into account. Youssef

[42] showed that as the number of samples increases, the estimation of the distribution of

the average of n samples becomes worse due to the wrong independence assumption. Before

the location estimation phase, training locations are grouped into clusters according to the

RPs that cover the locations. The objective is to reduce the computational requirements of

the system.

In location estimation phase, the algorithm obtains the average of n run-time samples

from an RP, and calculates the probability of each radio map location given this value of

the average using the distribution of the average of n samples calculated during the offline

phase. Then, the location estimation phase calculates the probabilities for each RP, and

then, returns the radio map location that has the maximum probability as the estimated

location.

In Bayesian Inference (BI) algorithm, instead of using only the histograms of RSS

measurements, both frequency count from RPs and RSS histograms are employed [56]. In

the calibration phase, a sensor map of the environment is built by gathering data at various

predefined points of the environment. The state space S consists of the points defined by

a tuple si = (x, y, θ) coordinates and the orientation. Each observation o consists of the

frequency count and RSS measurements from all base stations (BS). At each state si, i =

1, . . . , n, an observation is taken, and two histograms are built for each BS for that point:

the distribution of frequency counts over the sampled observations, and the distribution of

observed RSSs. Based on these histograms, two conditional probabilities are calculated: the

probability that the frequency count for the jth BS is a at state si, Pr(fj = a|si); and the

probability that BS bj has RSS RSSj at state si, Pr(RSSj|bj, si). By multiplying these

conditional probabilities the conditional probability of receiving a particular observation,

o =< k, f1, . . . , fN , (b1, RSS1), . . . , (bk, RSSk) >,
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at a state si is obtained, when there are N BSs and k readings from BSs. This probability

is,

Pr(o|si) =
(∏N

j=1 Pr(fj|si)
)
·
(∏k

j=1 Pr(RSSj|bj, si)
)
. (2.7)

In location estimation phase, the prior state distribution, π, is assumed uniform. After

making the observation, Bayes’ rule is used to compute the probability distribution over the

states, π′.

π′
i =

πiPr(oj |si)∑n
i=1 πiPr(oj |si) (2.8)

Then an appropriate candidate location is chosen as the estimated location. When the

location with the highest probability is chosen, the observed error is less than 1.5 meters

with probability 0.77.

In order to improve the results, a sensor fusion technique is used after obtaining π′. In

sensor fusion, the probability distributions found by the Bayes’ rule are post-processed. A

simplistic sensor fusion technique transforms the probability distribution over the states to

π′
i = (πi + u1)(νi + u2), where π is the prior distribution, ν is the probability distribution

computed with the Bayes’ rule, and u1 and u2 are small constants representing artificial

uniform distributions. This technique improved results by 8%.

2.3.2 Calibration-Free Localization

Laborious calibration efforts in calibration-based localization systems has led researchers to

develop calibration-free localization algorithms.

A calibration free system does not require an offline phase where the RSS vectors are

mapped to training locations. Learning is realized during the online phase with or without

the location information requirement for the training points. The majority of calibration-

free algorithms takes as input the online measurements of RSSs between APs, and between a

mobile device and its neighboring APs. RSS measurements among APs are used to capture

the real time behavior of RSS and to create a mapping between the RSS measure and the

actual geographical distance to anchors. For online training, for most of the calibration-

free solutions no human intervention or client side effort is needed, and learning can be
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repeated continuously. Therefore, calibration-free systems eliminate laborious offline RSS

measurements, while they are robust against the changes in the environment due to their

adaptation capabilities. In this section state-of-the-art calibration-free localization systems

are discussed in two groups, deterministic and probabilistic.

2.3.2.1 Deterministic Calibration-free Approaches Triangular Interpolation

and eXtrapolation (TIX) is based on inter-AP distance mapping curves which are gen-

erated online to find the approximate distances between the mobile and RPs [1].

This localization system uses the mobile RSS measurements which are the RSSs measured

at the mobile device from all APs, and also the inter-AP measurements which are the RSSs

measured at all APs from all the other APs. Inter-AP measurements are used to generate

multiple distance mapping curves (RSS vs. distance curve) for each AP observed. Generating

equation of a line requires at least two points. The first point is obtained by using inter-AP

RSS measurement and each AP’s location, which is known to the system. The second point

is the maximum RSS value measured at the minimum measurable range, which is also known

to the system. When there are four APs collecting RSSIs from all other APs excluding itself,

the system generates three mapping curves for each AP. Figure 2.5 shows an example of

distance mapping curves for each AP observed at AP2, when there are four APs in total.

The mobile RSS measurements and the appropriate mapping curves from each AP are

used to find the approximate distance between the mobile and the APs. In order to select

the appropriate curves, a simple heuristic called Proximity in Signal Space (PSS) is used.

According to this, the curves that are generated with the highest RSS are chosen for each AP.

For the example shown in Figure 2.5, the AP with the highest RSS isAP2, S2 > S1 > S3 > S4,

where Si is the RSS measured at the mobile from APi. Using the curves and the mobile RSS

measurements, the approximated distances between the mobile and each AP is found as d1,

d3 and d4. d2 is found from the curves generated at AP1, since it has the second highest

RSS. The approximated distances between the mobile and APs and location coordinates of

APs are input to TIX algorithm. As in trilateration, in order to give a 2-dimensional result,

TIX needs at least three APs. When there are more than three, TIX chooses the best three

APs, highest three mobile-measured RSSIs.
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Figure 2.5: RSS distance curves for AP2 when there are four APs in total

TIX first forms a triangle, whose vertices are the locations of APs, then, uses the internal

or external dividers of the sides of this triangle to determine the final location estimate. In

the triangular interpolation, the sides of the triangle are internally divided by points D1, D2,

and D3. The centroid of triangle D1D2D3 gives the final location estimate. In triangular

extrapolation, two sides of the triangle are externally divided by points D1 and D3 while the

third side is internally divided by D2. Again, the centroid of triangle D1D2D3 gives the final

location estimate. Triangular interpolation and extrapolation are shown in Figures 2.6 and

??.

Similar to TIX algorithm,Truncated Singular Value Decomposition (SVD) Tech-

nique takes as input the online measurements of RSSs between APs, and between a mobile

device and its neighboring APs [26]. RSS measurements among APs are used to capture

the real time behavior of RSS and to create a mapping between the RSS measure and the

actual geographical distance to anchors. The mapping is created online with the use of trun-

cated singular value decomposition (SVD) techniques. The objective is to mitigate the effect

of measurement errors and to characterize the anisotropic relationship between RSSs and

geographic distances, while retaining as much environmental information as possible. The

location of a wireless mobile device can be calculated with the signal-distance map (SDM)

and the user-measured RSSs between itself and its neighboring APs via trilateration.
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Figure 2.6: Triangular interpolation [1]

Figure 2.7: Triangular extrapolation [1]

In this work, localization is considered as an embedding problem that maps the set of

objects into an embedding space. Based on this concept, each mobile device to be localized

has two coordinates in Lipschitz embedding spaces that correspond to the RSS measure and

the Euclidean distance between itself and neighboring APs, respectively. According to this,

the RSSs measured from a node to APs define the coordinate of the node. Given that there
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exist m APs, the coordinate of a node i in an m-dimensional Lipschitz embedding space is

represented by a signal vector, si = [si1, si2, . . . , sim]
T , where sij is the RSS emitted by the jth

AP and received by node i. Then, RSSs measured between APs can be represented by an m-

by-m RSS matrix S = [s1, . . . , sm], whose ith column is the coordinate of the ith beacon node.

Similarly, they define the geographic distance vector and matrix as di = [di1, di2, . . . , dim]
T

and D = [d1, . . . , dm].

As a good candidate for the SDM, an optimal linear transformation matrixT is employed.

In T the geographic distance from a mobile device node to an AP is represented as a weighted

sum of the RSSs to all the APs. The element tij of matrix T represents the effect of RSS

measurement to the jth AP on the geographic distance to the ith AP, and can be considered

as a scaling factor from RSS to distance. Each row vector ti can be obtained by minimizing

the following error function:

ei =
m∑
k=1

(log(dik)− tisk)
2 = ||log(dTi)− tiS||2.

Then the least square solution obtained for ti and SDM matrix T are ti = log(di
T )ST (SST )−1

and T = log(D)ST (SST )−1, respectively. SDM retains the effects of physical wireless charac-

teristics on the RSS to all the APs, and hence well characterizes the anisotropic relationship

between RSSs and geographic distances.

Having RSS measurements between itself and its neighboring APs, a mobile device node

n can calculate the distance from itself to APs by matrix multiplication,

dn = exp(Tsn).

Then, a lateration algorithm can be used to estimate the location. In this paper, the simple

descent gradient method which minimizes the error between the actual location and the

estimated location is used. This method minimizes the following equation:

ϵi =
1

2

m∑
i=1

(fd(x̃, xi)− d̃i)
2,

where x̃ and d̃i are the estimated location of the mobile node and the estimated distance

to the ith AP computed by SDM, respectively. fd(x̃, x) denotes the Euclidean distance
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between locations x and x̃. By differentiating the objective function, an iterative equation

for updating x̃ is found as:

x̃[k + 1] = x̃[k] + α

m∑
i=1

(1− d̃i
fd(x̃, xi)

)(x̃[k]− xi),

where α is a constant step size.

Truncated SVD pseudo-inverse method is used to reduce the measurement noises in

matrix T. According to SVD, S can be expressed in a matrix form as a function of Σ, U

and V, where Σ is a diagonal matrix, Σ = diag(ρ1, . . . , ρw), and U = [u1, . . . , um] and V =

[v1, . . . , vm] are column and row orthogonal matrices, and w is the rank of matrix S. ρs are

the singular values of S. Then the pseudo-inverse of S can be written as S+ = ST (SST )−1 =∑w
i=1

1
ρi
viu

T
i . Furthermore, the truncated pseudo-inverse of S, S+

γ =
∑γ

i=1
1
ρi
viu

T
i . Then,

SDM can be expressed as T = log(D)S+
γ , and can be updated online. Then, the geographic

location of the mobile n can be determined by lateration algorithms as explained above.

The only calibration in the deployment phase is the RSS measured between two co-

located APs. In this work authors measure the RSS between two co-located APs for 5 minutes

and take the median value of the measurements as the self-RSS. In the implementation, in

order to effectively deal with short-term variations in RSS, SDM uses a median filter that

takes the median value of RSS samples measured for a time duration Ts, which is set to 60

seconds in the experiments.

REDPIN system [57] proposes a calibration free fingerprinting approach that does

not require an offline calibration phase but incorporates the training into the usage of the

system, making the system adaptive against environment changes. As a difference from the

other discussed algorithms, the objective of REDPIN is to identify the room the mobile

is located in rather than identifying the coordinates of the mobile. Therefore, this is a

coarse-grained localization system.

At the initialization, the system does not know anything about the building, or the

locations of APs, etc. REDPIN allows the users of the system create and manage the

locations in a collaborative way. In order to identify the room, the application on the mobile

device measures the RSS of the currently active GSM cell, the RSS of all WiFi APs as

well as the Bluetooth identifier of all non-portable Bluetooth devices in range. Then, these
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measurements are sent to a central server which will compute the Euclidean distance between

the current measurements and the fingerprints at the database. The system will return the

best match. If the device cannot be located, the user will be prompted to name the place

of his or her current location and to indicate the appropriate position on the floor plan.

Therefore, the time it takes to get at least one fingerprint for every room depends only on

how active users are in contributing to the system and on their mobility. This approach

works if there are enough users in the system contributing to the training of the system.

2.3.2.2 Probabilistic Calibration-Free Approaches In [58], authors proposes a prob-

abilistic calibration free approach that is based on wireless sniffers and reference APs,

and construction of a radio propagation map (RPM) containing the grid positions in a given

space associated to the probability that receiving a RSS tuple from k sniffers given the po-

sition. During the RPM construction, the sniffers detect wireless mobile devices and record

RSS values from them. The sniffers capture frames for each detected transmitting device

during the capturing interval (CI), which is set to 1 second in the experiments, taking ad-

vantage of high auto-correlation between consecutive RSS values in this interval [58]. The

average value RSS of all RSSIs measured in the CI is computed and sent to the database.

In addition, sniffers (i) capture M beacon frames from each reference AP (n) and calculate

the mean and the standard deviation of M RSSIs; and then send the pair (µi;n, ρi;n) to the

database. The sniffers’ and APs’ locations are known to the system. Therefore, when there

are k sniffers and n APs, n times k pairs are sent to the database.

The position l which maximizes P (l|s), the probability that the wireless device is at

location l given the RSS vector s = (s1, . . . , sk) measured by k sniffers, is the estimated

location. The location server, having the locations of reference APs and the RSS readings

from sniffers, associates each grid position, l = (x, y) ∈ L with P (s|l), the probability that

having vector s given the location is l. Having (µi;n, ρi;n), a Gaussian distribution is used to

calculate P (s|l) as follows:

P (s|l) = 1

ρ(l)
√
2π

exp

(
−
(s− µ(l))

2

2ρ2(l)

)
,
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where ρ(l) and µ(l) are the standard deviation and the expected RSS value given the object

is located at l. µ(l) is estimated by using a large scale propagation model and the distances

between sniffers and APs, and sniffers and transmitter located at l. ρ(l) is assumed equal to

ρi;n.

Since this model uses reference APs and sniffers to model the RSS behavior, it is adaptive

to the changes in the environment, and the radio propagation map can be updated when a

deviation in the mean of RSS measured at sniffers occurs.

Then the probability that a mobile device is at a location given the RSS vector s from

the sniffers is calculated using Bayes rule as follows:

P (l|s) = P (s|l)P (l)∑
l′∈L P (s|l′)P (l′)

,

where l′ is all locations in the RPM grid. Also, the measurements at each sniffer are assumed

independent, and the user profile P (l) is assumed uniformly distributed. Therefore,

P (l|s) = P (l|s1, . . . , sk) =
k∏

i=1

P (l|si).

Then, the most probable location, l = argmax[P (l|s)], is returned as the estimated location

of the wireless device.

Against the possibility that several different grid points can present similar values and

cause estimation errors, the estimation window technique is used. When the estimation win-

dow is 10, the estimation is done 10 times, and the estimation with the highest probability

is returned as the estimated location. Despite the increased accuracy of this technique, re-

sponse time increases with the increasing estimation window. Another technique to increase

the accuracy without increasing the response time is to calculate the weighted average of the

locations. According to this technique, the higher the probability the more weight a location

gets.

All localization algorithms, we previously cited require location information of either

wireless sniffers or reference points or training locations in calibration phase. Madigan et. al.

used Bayesian Graphical (BG) models for location estimation and showed that a hierarchical

Bayesian approach can provide accurate location estimates without any location information

in the training data [2].
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Figure 2.8: A simple acyclic directed graph model [2]

In a BG Model, model parameters are random variables and appear as vertices in the

graph, and edges represent the conditional independence relationships between the random

variables. Figure 2.8 shows an example of a directed graph, which represents the assumption

that Xγ and Xα are conditionally independent given Xβ. The joint density of the three

variables then,

P (Xα, Xβ, Xγ) = P (Xα)P (Xβ|Xα)P (Xγ|Xβ).

A more general expression is for a joint density of random variables Xv, v ∈ V is given by,

P (V ) =
∏
v∈V

P (v|pa(v)),

where pa(v) represents the parents of a vertex v.

When some variables are discrete and others are continuous in a graphical model, a closed-

form Bayesian analysis is not available. In this case, Markov chain Monte Carlo (MCMC)

simulation method is employed for the analysis. Gibbs sampler and MCMC algorithm for

BG models are explained in the paper.

The Gibbs sampler starts with some initial values for each unknown parameter in the

graph, and then cycles through the graph by simulating each variable v in turn from its

conditional probability distribution, given all the other quantities, denoted as V \v. Then,

the simulated v replaces the old value, and simulation shifts to other quantity. After sufficient

iterations, MC reaches its stationary distribution, and then the future simulated values for
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the random values are monitored. The analytic summaries of these monitored values are

used to estimate the inferences concerning the unknown quantities.

The full conditional distribution for any vertex v depends on a prior terms and a set of

likelihood terms, and is equal to

P (v|V \v) = p(v|pa(v))
∏

w∈child(v)

p(w|pa(w)).

Thus, when sampling from the full conditional for v, only vertices which are parents, children

or parents of children of v is required for local computations.

In the paper, two BG Models are proposed and the results for them are shown. The first

model is a Non-Hierarchical Bayesian Graphical (NHBG) Model which requires

location information along with the RSS information from the training locations. In Figure

2.9, the first graphical model is shown. In this model, X and Y represent location, and they

are assumed uniformly distributed, X ∼ Uniform(0, L) and Y ∼ Uniform(0, B), where L

and B are the length and the breadth of the building respectively. Vertex Di represent the

Euclidean distance between the location specified with X and Y and the ith AP, and it is

deterministic. The vertex Si represents the RSS measured at (X,Y ) with respect to ith AP,

and it has a Gaussian distribution, Si ∼ N(bi0 + bi1log(Di), τi). The mean and the standard

deviation of this distribution depend on other Gaussian distributions, bi0 ∼ N(0, 0.001) and

bi1 ∼ N(0, 0.001) and a precision value (τ).

The second model, Hierarchical Bayesian Graphical (HBG) Model, only requires

RSS measurements. This model incorporates the knowledge that RSS decays approximately

linearly with the logarithm of distance with the knowledge that the different APs behave

similarly, because each AP has similar physical processes. With this model, the training data

comprise vectors of RSSs with unknown locations; the location coordinates, X and Y , in the

model become latent variables. Figure 2.10 shows this graphical model. The difference from

the previous model is that, the parameters bi0 ∼ N(b0, τb0) and bi1 ∼ N(b1, τb1) depend on

other Gaussian and Gamma distributed parameters, b0 ∼ N(0, 0.001), b1 ∼ N(0, 0.001) and

τb0 ∼ Gamma(0.001, 0.001) and τb1 ∼ Gamma(0.001, 0.001).

After training the model, MCMC algorithm estimates the parameters and produces loca-

tion estimates. According to the results, the second model without the location information,
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Figure 2.9: Nonhierarchical Bayesian Graphical Model [2]

from about 10 training vectors onwards, performs almost as well as the LEASE technique

[46] which has trained on data with complete location information for each RSS vector.

This model, despite not eliminating the training phase all together, drops the location

data requirement, and; therefore, provides significant practical benefits: gathering RSSs

vectors without the corresponding locations does not require human intervention; suitably

instrumented APs or sniffing devices can solicit RSS measurements from existing Wi-Fi

devices and can do this repeatedly at essentially no cost.

2.3.3 Comparison of Calibration-based and Calibration-free Localization

Table 2.16 presents a summary for the deployment and training features and the results in

terms of the accuracy and responsiveness of the systems described in the previous sections.

According to this table, it is not trivial to compare different localization systems due to

the differences in the deployment and differences between the conditions that the systems

trained and tested. For example, the size and the shape of the area the system tested, the

number of APs used, the number training locations used in calibration can change from

system to system. In this section, four different error metrics are used to compare different
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Figure 2.10: Hierarchical Bayesian Graphical Model [2]

localizations systems as fair as possible. For the sake of simplicity, shorter names are given

to the localization algorithms, they can be found in Table 2.16.

The first metric considers the median localization error, m, and the size of the experiment

area, A. The objective of this metric is to reveal the relationship between the localization

accuracy that can be achieved in a given localization service area.

e1 =
m
A
. (2.9)
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Figure 2.11: Median error per experiment area for calibration-based and calibration-free

techniques

Figure 2.11 shows the performance of various localization algorithms according to this

error metric, e1. This figure implies that when compared to calibration-free techniques,

calibration based techniques (except NN) results in lower error on the average per experiment

area. However, this metric does not take the cost due to calibration efforts into account.

The second metric considers the number of training locations, t, in addition to m and A

[46],

e2 =
timj

A
. (2.10)

The parameters i and j are used to tune the error metric to emphasize the cost of calibration,

t, or the raw error estimation, m, respectively.

We first use this metric to show the effect of calibration on localization accuracy rather

than comparing different systems. Figure 2.12 is plotted using the results of the RADAR

[3] system. According to this figure, as the number of training locations decreases, error

metric increases. However, note that when the emphasis on the median error is not high, the

performance does not suffer greatly from decreasing the number of training locations until

it reaches a point where the number of training locations is very low. Another observation
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Figure 2.12: Error metric vs. the number of training locations in RADAR [3]

is that as the emphasis on the median error (j) is increasing, the error metric increases

with a higher slope with decreasing t. The effect of the number of readings per location is

investigated in [47]. According to this work, the accuracy becomes worse although it does

not suffer significantly even when the time spent in each location is only ten seconds when

compared to 60 seconds. Therefore, the performance of a calibration-based method depends

on how much effort is spent at the calibration phase, although parameters can be reduced

without a correspondingly significant reduction in the performance.

Figure 2.13 shows the effect of the emphasis on the median error, j, on the error metric

for different calibration-based systems. According to this figure, when j = 1, 2 the best algo-

rithm is GD40, when j = 3, 4, the best algorithm is BI52, and the probabilistic approaches

outperform deterministic approaches.

The second metric is useful in comparing different calibration-based systems, but it

cannot be used to compare calibration-based and calibration-free systems. Therefore, the

third metric is considered to include the number of infrastructure used, a, such as the number
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Figure 2.13: Logarithm of error metric for calibration-based techniques

of APs, instead of the number of training locations,

e3 =
mjak

A
, (2.11)

where k is used to tune the emphasis of the deployment cost due to hardware.

Figure 2.14 shows the effect of the emphasis on the error median in calibration-based

and calibration-free techniques. When j = 1, the best algorithm is F24, j = 2, the best

algorithm is GD40, and otherwise, the best algorithm is BI52. All of these algorithms are

calibration-based algorithms. Among the calibration-free algorithms, HBG25 is the best

performing algorithm.

And, Figure 2.15 shows the effect of the number of infrastructure used in the systems.

According to this, when j = k = 2, calibration-based probabilistic algorithms, GD40 and

BI52 perform better than other algorithms, and otherwise, BI52 outperforms others. HBG25

and WS53 perform better than the other calibration-free approaches, and their performances

are comparable to calibration-based approaches.
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Figure 2.14: Logarithm of error metric for calibration-based and calibration-free techniques,

for changing values of j
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Figure 2.15: Logarithm of error metric for calibration-based and calibration-free techniques,

for changing values of k

In order to comment on the scalability of localization techniques, a forth metric,

e4 =
timjak

A
, (2.12)
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is used; and for calibration-free techniques the number of training locations is assumed

1. According to Figure 2.15, calibration free systems are more desirable than calibration

based systems in terms of the scalability. The reason is the difficulty of calibrating a whole

system in a very large area containing high number of infrastructure. These systems involve

a steep upfront cost and effort to deployment, and add significantly to the complexity of

maintaining the model. The installation cost increases due to the wages of people who work

in the measurement collection for the calibration phase. In addition, it has been shown that

a reasonable calibration result can be obtained by collecting training data roughly uniformly

from each location in the whole area [3]. This procedure consists of physically moving a

wireless device over each training point and capturing RSS values from APs, and it can be

considered as a significant barrier to wider adoption of such location methods. In previous

studies the authors reported a 4-9 hours of calibration. Moreover, the environment may not

remain consistent due to the addition or replacement of APs and structural changes that

would affect radio propagation. In addition to the structural changes, the channel values can

change significantly due to fading or the changes in the environmental conditions, and cannot

be assumed constant from calibration to estimation period [30]. In most of the calibration-

based studies, a bunch of measurements are taken and divided into two, in order to use the

first part in calibration and the second part in estimation. This implies test results cannot

be relied on as a simulation of real-life example.

A more reliable calibration may be reached by periodic calibrations or by an extensive

data collection held in different times of day and different days of week. Therefore, calibration

repeatedly consumes human labors and creates significant maintenance and scalability issues.

On the other hand, calibration free techniques can provide more robust and scalable solutions

due to their adaptation ability against the changing conditions of wireless environment. This

ability stems from the online learning process of calibration-free techniques. This process is

more cost effective, since it does not require human intervention or any kind of labor.

Calibration-based and calibration free techniques cannot be compared with respect to

responsiveness due to unclear experimental information. However, intuitively, since the

learning in calibration-free techniques is held in real time, the number of samples used in

learning affects the latency of calculating the location estimate.
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All of the works cited in this chapter are interested in location estimation techniques

aiming better accuracy; however, they lack the experiments and discussion on the effect of

the background traffic on the accuracy of the localization system. [59] implements a simple

RSSI-based localization system on a 802.15.4-based sensor network testbed, investigates the

effect of background IEEE 802.11 traffic on localization error. According to the results, the

80th-percentile of the localization error may increase by 141% at worst in an office building

with active use of WiFi for data due to losses in RSSI readings as the beacon messages collide

with background traffic. Since we cannot find this kind of analysis in other studies, we are

not able to compare the calibration-based and calibration-free systems with respect to their

reliability under background traffic creating interference.

2.4 REFERENCE NODE PLACEMENT STRATEGIES

Irrespective of the localization algorithm used, the reference node placement strategy adopted

in a localization system significantly affects the accuracy, practicality and the cost of the

system directly. In this section, we will briefly review the literature on reference node

deployment.

In [60], an empirically adaptive beacon placement scheme for a proximity based local-

ization algorithm has been proposed. The objective is to adjust the number and locations

of beacons (reference points) to adapt to the noisy and unpredictable environmental con-

ditions. This is a calibration based approach as it requires exploration of the localization

area conditions by a mobile human or robot agent. According simulations results, beacon

density can significantly effect the mean localization error; however, increasing the density

more than 0.01 per m2 does not help improve accuracy. The effect of relationship between

the density and beacon transmission range was discussed.

Reference node placement strategies presented in [61], [62] and [63] assume a fixed trans-

mission range. [61] is proposing landmark placement strategies in topology based localization

in sensor networks. In this localization scheme, the coordinates of sensor nodes are given

depending on the hop count distance to multiple landmarks. In [61] and [62] it is shown
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that placing equally spaced RNs on the perimeter of the network yields better accuracy. In

[63], a RN placement strategy for a triangulation based localization algorithm is proposed.

In this strategy, the RNs must be placed so that they will form a equilateral triangle, where

one side of the triangle is equal to the transmission range.

On the other hand, [64] uses RF profiling with an offline calibration, and argues that the

effect of the location and the number of calibration locations are more important than the

effect of the number and the locations of RNs. In [65], a range based landmark placement

optimization algorithm is proposed. A pre-specified deployment shape is stretched/shrinked

iteratively to minimize the localization error. According to this work, for small number of

landmarks, simple shapes such as equilateral triangles and squares result in better localiza-

tion performance. In [66], Zheng et.al. proposed a strategy for placing RNs to improve the

accuracy of ToA based localization.

An interesting research area is related to connectivity and coverage problems in wireless

ad hoc networks. In [67], authors discuss the importance of exposure of a mobile object to

the sensor network over a given period of time. Depending on the exposure requirement

and with the heuristics to calculate the minimal exposure path representing the worst case

exposure-based coverage, the parameters of uniform distribution for sensor placement are

given. [68] discusses the sensor deployment problem when sensor locations are unknown

and random due to airdropping. The objective is to optimize the number and coverage

of sensors. [69] discusses the incremental deployment algorithm for maximum coverage for

mobile sensor networks. The location of each sensor added to the network is calculated by

using the information from sensors deployed previously. This work differs from [60] because

network nodes are assumed to be equipped with sensors that require line-of-sight to operate

such as cameras.

2.5 MULTIPLE FLOOR LOCALIZATION ALGORITHMS

Most localization schemes proposed in the literature have predominantly focused on single-

floor or 2-D localization. In indoor areas with multiple floors, it is important to distinguish
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between floors and also localize mobile nodes within a floor accurately.

Otsason et al. used RSS fingerprints of GSM signals [70] in three multi-floor buildings

and showed that they can achieve 2.48m - 5.44m within-floor accuracy, and correct floor

classifications between 89% and 97% of the time. Varshavsky et al. also proposed a GSM-

fingerprint based localization system called SkyLoc for floor identification in tall multi-floor

buildings [71]. Using machine learning techniques, Skyloc could determine the correct floor

in up to 73% of the cases and was within 2 floors of the correct floor in 97% of the cases.

Rehman et al. presented CILoS, a fingerprinting localization system based on the signal delay

[72] of multiple CDMA channels. This system could achieve a median accuracy between 4.5

and 6.7 m in a large multifloor building. CILoS also correctly differentiated between floors

90% of time. Letchner et al. used a hierarchical Bayesian network for wireless localization,

and tested their model in a 7-floor building [73]. Krishnan et al. used fingerprinting with

wireless sniffers for localization [46] which they tested in two floors. They used a heuristic

majority-based logic to distinguish between floors. If a majority of the sniffers that “hear”

the m strongest signals are in the same floor F and adding 5 dB to the m+ 1-st signal does

not change this, then, the client is declared to be in floor F. The quantity m is called the

decision depth. They reported that they could classify the floors correctly with m ≤ 3, and

in most cases m = 1 was sufficient.

To reduce the calibration effort (but not eliminate it completely), Wang et al. proposed a

fingerprinting based localization algorithm [74] inspired by similar floor plans across floors in

buildings. By collecting calibration data with known locations (labeled data) from a source

floor, and with unknown locations (unlabeled data) from a target floor, they could localize

mobile nodes on the target floor, i.e., labeled data can be used to train the localization

system for all floors with only unlabeled data.
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Figure 2.16: Calibration-based and Calibration-free Localization Systems
52



3.0 SUB-AREA LOCALIZATION ALGORITHM

Coarse grained localization is usually less complex than fine grained localization that em-

ploys received signal strength (RSS) or time of arrival (ToA) or angle of arrival (AoA). A

simple technique that falls into coarse grained localization category is proximity based local-

ization which uses the connectivity information between mobile nodes (MNs) and monitoring

stations (MoSs) to estimate a node’s location.

Proximity based localization algorithms usually locate a MN at the same position as

that of the closest point of association (e.g., access points - APs, RF-ID tags, or the MoS

that receives signal with highest strength from the MN to be localized). For good accuracy

and precision, such points of reference need to have a small range. In the extreme case,

each reference point would cover a small area of radius r, and r would be the maximum

localization error. According to the classical circle covering problem, [75], to cover an area

with the smallest number of circles with radius r, the circles must be placed at the vertices

of an equilateral triangle graph overlaying the target area. Each triangle has side r
√
3.

However, this would require a large number of densely deployed reference points. In the

next sections, we will show that the number of MoSs can be decreased by 41% compared

to simply densely covering the required area with MoSs for the same maximum localization

error, with a carefully chosen monitoring range 1. Therefore, the coverage of reference points

is as significant as the number and placement of reference points, and an effort to fine tune

1 In a target area of size L× L, the smallest number of vertices (circles) is

N =

⌊
⌈2(L− d)/3d⌉+ 1

2

⌋
×
(⌈

L

d
√
3

⌉
+ 1

)
+

⌈
⌈2(L− d)/3d⌉+ 1

2

⌉
×
(⌈

L

d
√
3

⌉)
. (3.1)

In the next sections, we will show that with 9 MoSs we can achieve a maximum localization error of 0.15L
with SAL under ideal conditions. Covering the area with MoSs, each with range 0.15L, requires at least
N = 22 MoSs, which is more than twice this number.
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these parameters may lead to achieve a given performance requirement in terms of a set of

specified performance metrics.

Four performance metrics that are usually adopted in evaluation of localization perfor-

mance are accuracy, precision, availability, and cost. The accuracy of a localization system

denotes how close the estimated location is to the actual location and can be expressed in

terms of the average localization error or the maximum localization error. Precision is the

probability with which a given accuracy is achieved. Availability is the fraction of time

and/or space that the location estimate is available to the user. And, the cost consists of

the cost of installation and maintenance of the localization system, and it is directly pro-

portional to the number of infrastructure entities used in a localization system. Typically,

the accuracy is the metric of most importance, although this may be application dependent.

Our initial focus will be on accuracy although we consider other metrics subsequently.

A previously proposed proximity based localization algorithm determines the estimated

location as the centroid of the positions of MoSs that hear a MN. This algorithm is called

Centroid Localization Algorithm (CA) [16]. We propose a novel idea of using the

knowledge of the average monitoring ranges of MoSs and their intersections to improve the

accuracy of localization. The intersection of monitoring ranges of MoSs create unique sub-

areas that restrict the possibilities of where a MN is when multiple MoSs can hear the MN.

We call this approach Sub-Area Localization (SAL).

In this chapter, we define a localization scenario as a localization algorithm using a

given number (N) and placement (P) of MoSs in a given localization area (A = L × L),

and denote this as < N,P, A >. Then, we determine that for a given localization scenario,

< N,P, A >, the monitoring range of a MoS affects the localization performance significantly.

Our objective in this chapter is to demonstrate the results of a broad investigation of the

effect of monitoring range on localization performance under various localization scenarios

and channel conditions.

1. In order to estimate the best monitoring range that minimizes the average localization

error, we first approach this problem with an analytical framework using a scenario with

grid placement of MoSs, < N,G, A >, under ideal channel conditions, and show that

the number, size and shape of sub-areas created by joint coverage areas can be used to
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estimate the best monitoring range providing best accuracy. Furthermore, we show that

with < N,G, A >, the monitoring range providing the best accuracy falls into the range

(
√
2g/2, g), where g is the grid spacing. SAL can provide at least 30cm better accuracy

compared to CA in a localization area of size 100m2. When the number of MoSs increases

in this scenario, the grid spacing will get smaller, and intuitively this should reflect in a

better accuracy. We show that the best monitoring range and corresponding accuracy

follow an exponential decrease with exponentially increasing numbers of MoSs.

2. Localization performance may be different in different environments unlike the ideal

case. In different environments, different channel conditions arise, and they have to be

considered while determining the monitoring range that results in the best localization

performance. We explore the effect of log-normal shadowing and wall attenuation factor

(which incorporates RSS attenuation due to walls and other objects). Then, we show

that irrespective of the placement scheme, under severe channel conditions, the best

monitoring range approaches
√
2g/2 which is the range needed to barely cover the whole

localization area.

3. In realistic localization environments, due to the presence of widely deployed wireless sys-

tems, there may be available APs that have been previously deployed, but can now be

also used for localization. We explore the effect of incrementally adding MoSs to a SAL

system, and show that increasing the number of MoSs can provide better accuracy. A

formula generated by curve fitting demonstrates a 20cm improvement in a 10×10m2 area

with the addition of each MoS in a grid placement. Grid placement may not be possible

due to various reasons such as walls, furnitures, etc. Therefore, we also show the effect of

perturbed grid placement < N, G̃, A > on the best monitoring range and corresponding

localization performance. As mentioned earlier the effort during installation and main-

tenance has a close relationship to the cost of the localization system. Therefore, we also

investigate random placement schemes which require much less effort in deployment, and

demonstrate that although random placement disturbs the number/shape and size of the

subareas the accuracy is not affected significantly, and using SAL is still advantageous

over the centroid localization algorithm.

This chapter is organized as follows. Sections 3.1 and 3.2 explain how SAL and CA works.
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Then, in Section 3.3, we provide the analytical framework, and analyze the performance of

SAL under ideal channel conditions. In Section 3.4, we compare SAL and CA performance

under various channel conditions and explore the effect of multiple RSS thresholds and

incremental addition of MoSs. Then, in Sections 3.5 and 3.6, we investigate the effect of

perturbation of grid placement and random placement of MoSs.

3.1 SUB-AREA LOCALIZATION (SAL)

We first explain how SAL works in an ideal and general case. Let a number of MoSs be

placed at known locations in a given area A with mean monitoring range d. If a transmission

occurs from a MN that is at a distance less than or equal to d from a MoS, the MoS can

“hear” the MN – otherwise it cannot. Ideally, the monitoring range is a circular area with

radius d for each MoS. This model resembles the unit disk graph model commonly used in

the ad hoc networking literature. According to this standard path-loss model [76], the power

of the received signal at the MoS, Pr, can be calculated as,

Pr = Pt − 10α log(dij) +X, (3.2)

where Pt is the MN’s transmit power, α is the path-loss coefficient, dij is the distance between

MoSi and MNj, and X = N(0, σ) is a normal random variable with zero mean and standard

deviation σ representing the effect of shadowing on the received power. Under ideal channel

conditions X = N(0, 0). A MN at distance dij can be detected if Pr is equal to at least the

detection threshold of the MoS, Rth (Rth must be at least at the receiver sensitivity level).

Pr ≥ Rth

Pt − 10α log(dij) ≥ Pt − 10α log(d)

−10α log(dij) ≥ −10α log(d). (3.3)

We assume that Pt is known by the localization system and fixed for all mobile devices; and

Rth can be tuned so that the required monitoring range, d, can be achieved.
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Then, under ideal conditions, we can partition the area A into K distinct small subareas

Ai, i = 1, 2, · · · , K, i.e., A =
∪K

i=1 Ai, and |A| =
∑K

i=1 |Ai| such that each of these subareas

is monitored by a unique subset of MoSs, and area A can be wholly covered by MoSs. For

example consider Figure 3.1. Here, four MoSs of range d = L are placed at the corners of

an L× L network and they create K = 9 unique subareas. When MoSs detect a MN, they

could report this information along with the time of detection to a central server. With

the knowledge of which MoSs heard the MN and which did not, the correct subarea can

be identified and the estimated location is the center of mass of the identified subarea. In

Figure 3.1, when all MoSs detect a transmission from the MN, the subarea is A5, and the

estimated location is the center of this area, shown as point P in the figure.
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Figure 3.1: The sub-area localization

We assume that there can exist only one transmission at a time in a subarea covered by

a set of MoSs, and a MN detected by MoSs must be in area A.

3.1.1 Accuracy

We employ error metrics defined as follows in our analyses and evaluations in later sections.

Let us suppose that when N MoSs are deployed, there exist K distinct subareas, Ai, i =

1, 2, . . . , K, where different subsets of MoSs can hear a MN. Let point Pi = (x̃i, ỹi) represent
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the coordinates of the center of mass (centroid) of area Ai, which is also the estimated

location of any MN detected in area Ai. As there is no closed-form solution for the centroid

of a subarea, we assume a large number M of MNs are placed uniformly randomly in A with

Mi nodes in subarea Ai. Then, we calculate the coordinates of point Pi as,

(x̃i, ỹi) =

(∑
∀x∈Ai

x

Mi

,

∑
∀y∈Ai

y

Mi

)
. (3.4)

The maximum localization error of a MN detected in subarea Ai is equal to the distance

between Pi and the point which is the farthest away from Pi in Ai. We denote the maximum

localization error in subarea Ai by ϵmax(Ai):

ϵmax(Ai) = maxx,y∈Ai
dist[(x, y), (x̃i, ỹi)], (3.5)

where (x, y) is any point in subarea Ai, and dist[(x, y), (x̃i, ỹi)] is the Euclidean distance

between (x, y) and Pi = (x̃i, ỹi). Then, the average maximum localization error is,

Emax =
K∑
i=1

P (MN in Ai)ϵmax(Ai), (3.6)

where P (MN in Ai) is the probability that a MN is in subarea Ai. If all locations in A are

equally likely for any MN,

P (MN in Ai) = |Ai|/|A| = Mi/M. (3.7)

Similarly, the mean localization error of a MN detected in subarea Ai is equal to the

average distance between Pi and all of the points (locations) in subarea Ai. The mean

localization error in area Ai and the overall mean localization error, respectively, are,

ϵavg(Ai) =
1

Mi

∑
∀(x,y)∈Ai

dist[(x, y), (x̃i, ỹi)], (3.8)

Eavg =
K∑
i=1

P (MN in Ai)ϵavg(Ai) (3.9)

=
1∑K

i=1 Mi

K∑
i=1

∑
∀(x,y)∈Ai

dist[(x, y), (x̃i, ỹi)].
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real range
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Figure 3.2: Real and unit disk ranges

We compute the maximum and mean localization errors numerically as there are no easy

closed form solutions. It is also possible to compute the cumulative distributions of errors

assuming that a MN’s location can be anywhere in the area. Note that maximum localization

error is the accuracy that can be achieved in a subarea with 100% precision, whereas the

median localization error is the accuracy with 50% precision.

3.1.2 Availability

The monitoring range, d, can vary with time since it depends on the path-loss and radio

propagation in addition to the transmission power of MNs and the sensitivity of MoSs, i.e.,

X = N(0, σ), σ > 0 in Eqn. 3.2. Therefore, the actual coverage area of a MoS may not be

an exact circle as shown in Figure 3.2. We observe that the joint areas between MoSs may

not be symmetric, and in fact, under certain circumstances joint areas between groups of

MoSs may emerge while they do not exist assuming fixed circular ranges. In SAL, MoSs do

not collect samples from known locations to capture channel parameters either in an offline

or in an online phase as in [2] and [58]. A MN can be detected by a set of MoSs that have a

subarea as defined in Section 3.1 assuming a unit disk model. Therefore, it can be detected
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by a set of MoSs that do not create a subarea if the unit disk model is used, but in reality do

have intersecting monitoring areas because of radio propagation peculiarities. For example,

with 9 MoSs in grid placement, when d <
√
2L/2, the monitoring ranges of MoS1 at (0,0)

and MoS9 at (L,L) are not supposed to intersect if unit disk model is used. However, the

monitoring system may still observe that a MN is heard by both MoS1 and MoS9 (i.e., they

have an intersection). A MN may not be detected by any MoSs at all because there are

coverage holes not identified by the unit disk model. There is no way that the localization

system can even know about the existence of these MNs; therefore, their locations are not

estimated (i.e., the coverage is not 100%).

We define localization availability as the fraction of area in A that the location estimate

is available to the user. We are interested in availability in space rather than time, and we

assume that the availability is averaged out in time. Let C ′ be the size of the area in A that

can be sensed by at least one MoS. When σ = 0, MNs are always located in valid sub-areas

whose boundaries are determined from the unit disk model. When σ > 0, an area Cinvalid

of the localizable area C ′ may belong to invalid subareas. These areas arise because radio

propagation vagaries may create intersections of monitoring areas of MoSs, that theoretically

do not have intersecting ranges. SAL cannot be directly used for localizing nodes in these

invalid subareas. Nodes in such invalid subareas can be localized for instance, by using the

centroid localization algorithm. Let C = C ′ − Cinvalid. Then, the fraction of the area in

which a node can be localized by SAL is given as the availability of SAL (RSAL),

RSAL =
C

|A|
(3.10)

Under ideal conditions, and given that the whole localization area is covered by the

monitoring ranges of MoSs, i.e., d ≥
√
2g/2, C = C ′ = |A|; the availability of SAL is 100%.

However, channel conditions may cause deformations on monitoring ranges, then, availability

may be affected negatively. We show the effect of these differences on the localization error

using simulations with a normally distributed shadowing factor (in dB) in Section 3.4.
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3.1.3 Efficiency

The efficiency definition for a localization system depends on the requirements of localization

system application. The application may require location estimates that are as accurate as

possible when they are available; or it may require estimates in as large an area as possible

without caring a lot about the accuracy. Another parameter may be the cost; we may need

to provide the location estimate using a small budget by trading off accuracy or availability;

or we may need to determine the cost for a given requirement of target < Eavg, R > pair.

When we bring together accuracy, availability and the number of monitoring stations as

a representative of system cost, we define an efficiency metric, which we call localization

efficiency, η. This metric is directly proportional to R and reversely proportional to Eavg

and N . Thus, the localization system is more efficient when the localization error and the

number of infrastructure entities used are small, and availability factor is large. Efficiency

metric is given as,

ηSAL(i, j) =
RSAL

N i × (Eavg,SAL/L)
j , (3.11)

where the impact of the localization error and the cost in terms of the number of MoSs

deployed weighed with i and j, respectively.

3.2 CENTROID ALGORITHM (CA)

Instead of using the sub-areas, it is possible to use the centroid of the locations of the MoSs

that hear the nodes as the estimated location of a MN. This algorithm is proposed in [16].

Again, the monitoring range d influences which MoSs hear the nodes and thus what the

error is, in the location estimate. The difference here is that the estimated location is not

the center of mass of the subareas (the subareas can be small) but the centroid of the MoS

locations. Let MoS be the set of MoSs that detects a MN, and (xi, yi) be the coordinates

of MoSi, then the estimated location Pi is given as,

(x̃i, ỹi) =

(∑
∀MoSi∈MoS xi

|MoS|
,

∑
∀MoSi∈MoS yi

|MoS|

)
, (3.12)
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Table 3.1: SAL acronyms and variables

Variable Explanation

A = (L× L) Localization area

N Number of Monitoring Stations

< N,P, A > Localization algorithm using N MoSs,

with placement scheme P in area A

d Monitoring range

Ai, i = 1, 2, . . . , K Unique subarea

Ri and ki Region and Number of occurance of the same region

Di Diagonal of subarea Ai

Pi(xi, yi) Two dimensional coordinates of

the center of mass of subarea Ai

X = N(0, σ) Log normal shadowing with variance σ2

Eavg Expected average localization error

Emax Expected maximum localization error

R Availability of localization algorithm

η Efficiency of localization algorithm

The availability of location estimates with CA only depends on whether the MN is

detected by at least one MoS. In that case, the estimated location is the location of that

MoS and availability is 100%. Then, the fraction of MNs that can get location estimate from
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CA is given as the availability of CA (RCA),

RCA =
C

|A|
=

C ′

|A|
(3.13)

In a manner similar to the definition in SAL, localization efficiency of CA is given as,

ηCA(i, j) =
RCA

N i × (Eavg,CA/L)
j . (3.14)

3.3 PERFORMANCE UNDER IDEAL CHANNEL CONDITIONS

From Eqs. 3.6 and 3.9 in Section 3.1, it is clear that the accuracy of SAL depends on the size

(|Ai|) and number (K) of subareas which depend on the number (N) and placement (P) of

MoSs as well as the size and shape of localization service area (A). For a given localization

scenario < N,P, A >, the partitioning of the area into subareas, and therefore, the number

of subareas (K) and their sizes (|Ai|) change with the monitoring range d. Note that in

Figure 3.3 when d = L/2, the center of the network is not covered by the MoSs. In this case,

a MN in this area cannot be localized. As the monitoring range d increases, the network

gets completely covered. As d continues to increase, at some point, each MoS can hear a MN

where ever it is in the network and the estimated location will always be at the center of the

network. There is an optimal d where the network is covered and the (average or maximum)

localization error is the smallest. Therefore, the monitoring range d is a parameter that has

a significant effect on the accuracy and precision (and eventually availability).

In this section, we investigate the effect of monitoring range (d) on accuracy that can

be achieved by SAL under ideal channel conditions (unit disk model). However, we are

aware that this is not a realistic assumption and the real monitoring contour depends on the

transmission powers of nodes, the environment, and the localization protocol. We use this

assumption to develop a tractable analysis and to obtain insights on the problem. We note

that under ideal channel conditions, availability is 100% when d ≥
√
2g/2; therefore, only

accuracy and precision affect the efficiency of localization algorithm.
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3.3.1 Subarea Characterization

For our analysis, we first assume that a given number of monitoring stations (N) are placed

on a virtual grid with grid spacing g = L√
N−1

in a square shaped area A of size L× L as in

localization scenario < N,G, A >. Several instances of joint subareas of < 4,G, A > and

< 9,G, A > scenarios for different d values are shown in Figures 3.3 and 3.4, respectively

(the overall area A is the black rectangle – a larger area is shown to illustrate the monitoring

ranges/areas). From Figures 3.3 and 3.4, we observe that the number, shape and sizes

of subareas change as monitoring range changes. Tables 3.2 and 3.3 show the number of

subareas, K, for various ranges of d with 4 and 9 MoSs.

We note that for each case, the sizes and shapes of the subareas vary as d changes in the

specified range. Therefore, there is space to optimize the accuracy by tuning the monitoring

range. Intuitively, we expect the accuracy to be better with larger K and smaller |Ai|.

An upper bound on K (irrespective of d) is that K ≤ 2N − 1, where there are N MoSs.

This is because there could potentially be subareas that are covered by exactly one MoS, by

combinations of two MoSs, three MoSs and so on for a total of
∑N

i=1

(
N
i

)
= 2N − 1 subareas.

However, under ideal channel conditions, not all such combinations are possible because we

assume that each MoS has the same range. Another way of looking at the subareas is to

think of them as RSS fingerprints, but quantized to such an extent that only the presence

or absence of an RSS value is observed (i.e., a MoS can hear the MN or not).

Considering only the number of subareas, Case D with N = 4 (shown in Figure 3.5) and

Case G with N = 9 represent the best intervals for the best monitoring range. With N = 4,

the upper bound on K is 15, but it is physically impossible to have only the diagonally

opposite MoSs cover a subarea (i.e., subareas covered by exactly MoS1 and MoS4 or MoS2

and MoS3 in Figure 3.5) when all MoSs have the same range. We note that the lower bound

on the best monitoring range is also the range that is providing 100% availability under ideal

channel conditions.

With a given monitoring range, there may exist many small areas and a smaller number

of larger areas which will cause higher overall error. As previously discussed, we would like to

have several small regions for good localization accuracy. Due to the symmetry in placement
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Figure 3.3: Visualization of subareas in localization scenario < 4,G, A >
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Figure 3.4: Visualization of subareas in localization scenario < 9,G, A >

and ranges of MoSs, subareas can be classified into a smaller set of types of “regions”. For

example, four distinct types of regions with N = 4 MoSs are shown in Figure 3.5. To take

into account both the number of subareas and the size of distinct regions into consideration,

we evaluate the ratio of the number of subareas K to the maximum “region” size :

max

(
K

max(Ri)

)
(3.15)

In Figure 3.6, we plot the ratio of K and the maximum area among all Ri’s for a given d

with 9 MoSs using numerical computation. From this figure, clearly, the best monitoring
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Table 3.2: Number of distinct subareas Ai as a function of d; N = 4 MoSs

Case Interval K

A 0 < d ≤ L/2 4

B L/2 < d ≤
√
2L/2 9

C d =
√
2L/2 8

D
√
2L/2 < d < L 13

E d = L 9

range with N = 9 falls into the interval defined by Case C. An instance of case D and

case C for N = 4 and N = 9 are shown in Figures 3.5 and 3.7. Note that, Case C with

N = 9 is a cascaded version of Case D with N = 4. For larger N , the visualization of the

subareas in the best case will remain the same. Then, for a localization scenario with grid

placement < N,G, A > with grid spacing g = L√
N−1

, the best monitoring range minimizing

the localization error is in the interval
√
2g/2 < d < g.

3.3.2 Heuristics Towards the Best Monitoring Range

In the previous section, we showed that with grid placement, and under ideal channel con-

ditions, the range
√
2g/2 < d < g represents a potential interval for monitoring range which

can provide the best accuracy. In this section, we introduce four heuristics towards best

monitoring range that we evaluate in this interval. Two of these heuristics depend on the

areas of the distinct regions Ri(d) as they change with d and the number of such regions ki,d,

whereas the remaining two consider the shapes of these distinct regions instead of sizes.

To explain these heuristics and to evaluate them later, we start with computing the sizes

of the subareas with N = 4. In case D, the 13 distinct subareas can be classified into 4

types of regions, Ri, i = 1, 2, 3, 4 as shown in Figure 3.5. If Cj is the monitoring area of
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Table 3.3: Number of distinct subareas Ai as a function of d; N = 9 MoSs

Case Interval K

A d = L/4 9

B L/4 < d ≤
√
2L/4 21

C
√
2L/4 < d < L/2 41

D d = L/2 32

E L/2 ≤ d <
√
5L/4 41

F d =
√
5L/4 29

G
√
5L/4 < d < 5L/8 49

H d = 5L/8 37

I 5L/8 < d <
√
2L/2 41

J d =
√
2L/2 32

K
√
2L/2 < d <

√
10L/4 37

L d =
√
10L/4 25

M
√
10L/4 < d ≤ L 37

MoSj, the centers of C1, C2 and C4 are located at (0, L), (L,L) and (L, 0), respectively.

The calculation of size of regions Ri based on the intersection areas B1(d, g) = C1 ∩ C2 and

B2(d, g) = C1 ∩ C4 as functions of d and g are given as:

B1(d, g) = 2(R2 + 2R3 +R4) = 4

[
πd2

2π/ arccos(g/2d)
−
√

d2 − g2/4

4

]
(3.16)

B2(d, g) = 2R3 +R4 = 4

[
πd2

2π/ arccos(
√
2g/2d)

−
√
d2 − g2/2

4

]
(3.17)
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Figure 3.7: Visualization of subareas when N = 9,
√
2L/4 < d < L/2

Other relations between Ri and L can be derived as follows:

4(R1 +R2 +R3) +R4 = L2 (3.18)

R1 + 2R2 + 3R3 +R4 =
πd2

4
. (3.19)

Then the areas of regions Ri, i = 1, 2, 3, 4 can be calculated as,

R1 =
B2(d, g) + g2

2
+

πd2

4
(3.20)

R2 =
B1(d, g)

2
−B2(d, g) (3.21)

R3 =
B2 − g2 + πd2 − 2B1(d, g)

2
(3.22)

R4 = g2 − πd2 + 2B1(d, g) (3.23)

Figure 3.8 shows how the areas of the four types of regions Ri change with increasing d

when
√
2L/2 < d < L. The y-axis in this plot corresponds to the percentage of area in A

that a region Ri occupies, i.e., Ri×100/|A|. From Figure 3.8, we see that regions R1, R3 and

R4 are small when d is roughly 0.8L. As previously discussed, we would like to have several

small regions for good localization accuracy. We will see later that this visual observation
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Figure 3.8: Areas of regions Ri in % of A as a function of d/L, N = 4

of the potentially best value of d for good accuracy is confirmed through the numerically

computed error metrics.

When N = 9, there are 7 types of regions Ri in case C that make up the 41 distinct

subareas. Once again, we note that case C with N = 9 is basically the concatenation or

cascade of case D with N = 4 MoSs. Thus, we can compute the areas of these regions in a

manner similar to the method used for N = 4 case. Four of these subareas can be calculated

from equations 3.20-3.23, and the remaining three are:

R5 = 2R1; R6 = 2R2; R7 = 4R1. (3.24)

Figure 3.9 shows how the areas of the seven types of regions Ri change with increasing

d when
√
2g/2 < d < g. From Figure 3.9, we see that regions are small when d is roughly

0.425L. As previously discussed, we would like to have several small regions for good local-

ization accuracy. Again, we will see later that this visual observation of the potentially best

value of d for good accuracy is confirmed through the numerically computed error metrics.

Now we define the four heuristics. The quantity d̂1 gives the d that minimizes the ratio

between the largest region and the smallest region created over
√
2g/2 < d < g; the quantity
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d̂2 weighs this ratio by the number of regions – for example, there are k2,d = 4 regions

R2 in case D in Table 3.2. The two other heuristics consider the shapes of regions. The

intuition for these two heuristics comes from comparing the maximum error in a square and
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a rectangle of the same size. When we think of a square of size a× a = |A|, and a rectangle

of size a
2
×2a = |A|, although the area of these two shapes are the same, the maximum error

in the square is
√
2a/2, whereas it is

√
17a/2 in the rectangle. The maximum error here

is calculated by the largest possible distance between two MNs in a region divided by two,

which corresponds to the diagonal size divided by two. In other words, although two regions

may have the same area, their shapes may contribute to very different localization errors.

Therefore, the two other heuristics (d̂3 and d̂4) are based on the length of the diagonals

of regions, Di(d) as shown in Figure 3.10. We define the diagonal as the largest possible

distance between two MNs in subarea Ai. The four different diagonal lengths when N = 4

are given as,

D1(d) = dist[(0, g), I1] (3.25)

D2(d) = dist[(d, g), I1] (3.26)

D3(d) = dist[I1, I2] (3.27)

D4(d) = 2I2(y)− g, (3.28)

where g = L when N = 4, and I1 and I2 are the intersection coordinates of MoS2 and MoS3,

and MoS3 and MoS4, respectively. These intersection coordinates are calculated as follows

and shown on Figure 3.10.

I1(d) =

(
g −

√
d2

1 +m2
1

, g − m1d√
1 +m2

1

)
, (3.29)

m1 = tan

(
π

4
− acos

(
g√
2d

))
,

I2(d) =

(
g −

√
d2

1 +m2
2

,
−m2d√
1 +m2

2

)
, (3.30)

m2 = −tan
(
acos

( g

2d

))
For N = 9, 3 more distinct regions are created and the diagonals for these regions can be

calculated as follows:

D5(d) = dist[(0, 2g − d), I1]; D6(d) = 2(g − I2(y)); D7(d) = 2D1(d). (3.31)
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The third heuristic quantity d̂3 is the monitoring range that minimizes the weighted sum

of the diagonals and the last heuristic quantity d̂4 is the monitoring range that minimizes

the difference between the largest and smallest diagonals (i.e., it tries to balance the shapes

of the regions). Table 3.4 summarizes our findings from these four heuristics. The smallest

estimate for best monitoring range is given by the 3rd heuristic. We observe differences in

the effect of different heuristics when N = 4 and N = 9. The reason is that with 9 MoSs

three more distinct regions are created. We will refer to this table in the next sections when

comparing best monitoring ranges calculated with simulations to ranges calculated from

these heuristics.

Table 3.4: Heuristics for d̂i, i = 1, 2, 3 for N = 4 and N = 9

Heuristic 4 MoSs 9 MoSs

d̂1 = argmind

[
maxi(Ri(d))
mini(Ri(d))

]
0.815L 0.407L

d̂2 = argmind

[
maxi(Ri(d)ki,d)

mini(Ri(d)ki,d)

]
0.859L 0.405L

d̂3 = argmind [
∑

i Di(d)ki,d] 0.748L 0.356L

d̂4 = argmind [maxi(Di(d))−mini(Di(d))] 0.783L 0.405L

It is also possible that from Di, we can estimate the accuracy with 100% precision

approximately as follows:

Ẽmax(d) =
1

K

K∑
i=1

ki,d
Di(d)

2
. (3.32)

Note that this equation resembles the heuristic d̂3; therefore, the minimum Ẽmax is 0.202L

with N = 4 at d = 0.748L, and 0.08L with N = 9 at d = 0.356L.
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3.3.3 Evaluation of Localization Error

In order to obtain a more concrete picture, we numerically evaluated the error metrics

defined in Section 3.1.1 using MATLAB. We assume N MoSs with same monitoring range

d are placed on a grid in area A of size L × L as in scenario < N,G, A >. Given scenario

< N,G, A >, 104L2 MNs were randomly placed in A using a uniform distribution. The

locations of MNs that are inside a subarea Ai are determined, and the center of mass of

those MNs, calculated as (x̃i, ỹi), is defined as the estimated location for each of those MNs

in subarea Ai as explained in Section 3.1.
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Figure 3.11: Average and maximum error in < 4,G, A > and < 9,G, A >

We ran exhaustive simulations to evaluate Emax, Eavg, ϵmax, ϵavg, for different values of

L and d with N = 4 MoSs and N = 9 MoSs. Figure 3.11 shows Emax/L and Eavg/L as a

function of d/L for d ≥
√
2g/2 for 100% coverage of area A. With N = 4 MoSs, a monitoring

range of d = 0.77L provides the smallest mean localization error of 14% of one side of the

unit of area A = L× L. Similarly, the smallest mean accuracy of 8% of one side of the area

A can be achieved when N = 9 with d = 0.41L. We observe that optimal d providing the

minimum error falls into the range
√
2 g
2

< d < g determined in Section 3.3 for both N = 4

MoSs and N = 9. We also observe increases and decreases in Emax and Eavg when N = 9 as

d increases. This is due to the changing numbers and sizes of subareas for different values
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of d. Also, we can observe that higher K
max(Ri)

regions in Figure 3.6 match the lower error

regions in Figure 3.11.

Table 3.5 provides the maximum and average error and corresponding best monitoring

ranges with 4 and 9 MoSs. When we compare the optimal d values in Table 3.4 and Table 3.5,

the first and fourth heuristics, d̂1 and d̂4, provide the closest results to optimal d according

to numerical calculations. And Ẽmax in Eq. 3.32 provides an upper limit on the accuracy.

Figure 3.12 shows the CDF of the localization error for the d values that minimize the

mean localization error for N = 4 and N = 9 MoSs that can be used for additional analysis.

For instance, from the CDFs, we see that SAL can provide an accuracy of 0.17L and 0.1L

with a precision of 70% with N = 4 and N = 9 MoSs respectively.

Table 3.5: Optimal monitoring range d̂ and minimum localization error

4 MoSs 9 MoSs

mind[Emax] 0.28L 0.15L

d̂ = argmind[Emax] 0.765L 0.411L

mind[Eavg] 0.14L 0.08L

d̂ = argmind[Eavg] 0.768L 0.431L

We showed that the optimal monitoring range when N = 9 falls into the case C which

is realized by concatenation of subareas created by N = 4 in case D. Therefore, the pattern

of subareas repeats for larger N . It is possible to confirm that the above analysis can be

generalized for N =
(

L
g
+ 1
)2

MoSs when N MoSs are on a grid with grid spacing g = L√
N−1

.

As Figure 3.13 for N = 25 MoSs shows, the pattern of subareas repeats for larger N . The

best values for d̂ fall in the range
√
2 g
2

< d < g. We ran simulations (not shown here) to

confirm this. A curve fitting model indicates that the best values for d and the corresponding

minimum localization error follow an exponential model. Figures 3.14 and 3.15 show the

smallest Emax and Eavg values for different numbers N of MoSs and the curve fits that are

obtained with MATLAB. The smallest Emax with N = 4 MoSs is 0.15L, whereas it is less
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Figure 3.13: Subareas for smallest localization error with N = 25 MoSs

than 0.05L with N = 25 MoSs. Depending on the localization error requirement, having a

large number of MoSs is appropriate for larger network sizes (e.g., an accuracy of 5m can be

achieved in an area of size 10000m2 with 25 MoSs).
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3.3.4 Evaluation of Efficiency

Having a large number of MoSs can provide better accuracy even for larger network sizes,

but could be costly. In Figure 3.16, we plot the efficiency metric, in which the impact of the
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localization error and the cost in terms of the number of MoSs deployed weighed with i and

j, respectively:

η(i, j) =
1

N i(E/L)j
(3.33)

Note that since d ≥
√
2g/2, availability is 100%, R = 1.

In this figure, ηmax is calculated with Emax, whereas ηavg is calculated with Eavg. When

accuracy and cost are weighed equally (i = j = 1), η decreases until the number of MoSs

is 36, and then starts to increase with increasing number of MoSs. It appears that using

smaller numbers of MoSs is better if both cost and localization error are equally weighed.

The rest of the results are in line with intuition: if i > j, i.e., i = 2, j = 1, then, using

smaller number of MoSs is more efficient, whereas if j > i, i.e., i = 1, j = 2, using higher

number of MoSs is more efficient.
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Figure 3.16: Efficiency η(i, j) of SAL
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3.4 IMPACT OF LOG-NORMAL SHADOWING

Under shadowing effects, it is likely that the monitoring areas of MoSs are not circular and

could lead to anomalous situations not considered under unit model assumption. In this

section, we will investigate the errors that are caused by the lack of any such information

with SAL.

According to log-normal shadowing model, the power of the received signal at the MoS,

Pr, is calculated from a standard path-loss model [76] as,

Pr = Pt − 10α log(dij) +X, (3.34)

where Pt is the MN’s transmit power, α is the path-loss coefficient, dij is the distance between

MoSi and MNj, and X = N(0, σ) is a normal random variable with zero mean and standard

deviation σ representing the effect of shadowing on the received power. Since the localization

system does not capture channel parameters, while calculating the monitoring range d, it

assumes X = N(0, 0). A MN at distance dij can be detected if Pr is equal to at least the

detection threshold of the MoS, Rth (Rth must be at least at the receiver sensitivity level).

Pr ≥ Rth

Pt − 10α log(dij) +X ≥ Pt − 10α log(d)

−10α log(dij) +X ≥ −10α log(d). (3.35)

We assume that Pt is known by the localization system and fixed for all mobile devices; and

Rth can be tuned so that the required monitoring range, d, can be achieved. X is unknown to

localization system; therefore, the accuracy and availability of the estimation will be affected

by X.

The approach in the previous sections are identical to the approach taken in this section

if σ = 0. However, as discussed in previous sections, when σ > 0, the availability with SAL

and CA may change. (1) If a MN is detected in a valid subarea, it can be located via SAL

or CA. Availability in this case is 100% for both CA and SAL. (2) If a MN is detected in

an invalid subarea, then SAL cannot estimate the location; however, CA can. Therefore,

availability in this case is 0% for SAL although these regions are in the coverage area of
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MoSs, and 100% for CA. (3) When the coverage is not 100% due to channel conditions

or monitoring range, some fraction of MNs may not be detected at all, under which the

availability is 0% for both CA and SAL.

We evaluate (via simulations) the error performance using only SAL, using CA on top

of SAL (SAL+CA), and using only CA. When only SAL is used, MNs detected in valid

subareas are localized using SAL, and the remaining cannot get location estimations. When

SAL+CA is used, SAL is used to localize MNs detected in valid subareas, and CA is used

to localize MNs detected in invalid subareas. When only CA is used, all nodes detected in

valid and invalid subareas are localized using the centroid of the locations of the MoSs that

hear the MNs.

In the simulations, 50,000 MNs were uniformly distributed in an area A of size 10× 10.

The path-loss coefficient was α = 3 and Pt = 10 dBm. (In the simulations in Section IV,

106 nodes were used – hence some minor variations are observed between those results and

the ones seen here for σ = 0.) For σ > 0, multiple simulations were run, the regions that

Eavg achieved in these simulations fall into the regions shown in Figure 3.17; therefore, the

difference in the results were insignificant.

Figures 3.18 - 3.21 show the minimum achievable average error and corresponding moni-

toring range, availability and overall efficiency with respect to σ for N = 4 and N = 9 MoSs

in grid placement, < N,G, A, sh >. The error reported in Figure 3.18 is the smallest mean

localization error over different values of d. As expected, the error increases with σ which

causes MNs to be localized erroneously. SAL or SAL+CA outperform CA significantly in

accuracy. When σ is increased from 0 to 5, the increase in the minimum mean error is

by 0.11L with 4 MoSs, and by 0.07L with 9 MoSs with SAL. Using SAL+CA results in

a slightly higher error due to a higher number of localized MNs, and these are MNs that

fall into invalid subareas and are localized with CA. Since no intersection area is available

for such MoSs, the location estimates can be fairly far off. On the other hand, using only

CA has a worse error performance than using SAL or SAL+CA; this justifies the effort in

partitioning the network into distinct subareas and using SAL.

Figure 3.19 shows the monitoring range d̂ which minimizes the mean localization errors

for MNs in area A for different values of σ for N = 4 and N = 9. From this figure, we observe
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that the best monitoring range d̂ decreases with σ for SAL. The best value of d converges

to
√
2g/2 which is the point when the network is barely covered by the MoSs assuming the

unit disk model compared to the best value of 0.768L and 0.431L for N = 4 and N = 9

MoSs, respectively.

In Figure 3.20, we observe a significant decrease in availability with SAL. This is due to

MNs detected in invalid subareas. However, SAL+CA availability stays close to 100% as CA

is used for MNs detected in invalid subareas. Therefore, we can say that 40% of MNs can

get location estimations with an accuracy of 0.3L using SAL, whereas the rest are estimated

with an accuracy of 0.35L using CA. At high σ, CA can provide slightly better availability

than SAL+CA. This is due to the increase in monitoring range with CA that is minimizing

the average error. Monitoring range of SAL+CA algorithm approaches
√
2g/2 in order to

provide the best accuracy.

According to Figure 3.21, the overall efficiency with SAL is better than with CA if σ ≤ 4

with N = 4, and σ ≤ 3 with N = 9, otherwise, SAL+CA outperforms CA and SAL. The

results show that employing only SAL reduces the availability of localization. The reason

is that with N = 9 MoSs, there can be many more intersection areas which are not defined

as valid subareas by the unit disk model; therefore, there is a higher possibility that a MN

will not be detected in a subarea. Although with N = 9, availability can be as low as 35%

as shown in Figure 3.20, SAL+CA can provide 0.25L accuracy at σ = 10. Due to the same

reason, the efficiency with N = 9 is worse than efficiency with N = 4 under the same channel

conditions. Note that we use the same weights for localization error and the number of MoSs

while calculating efficiency, i.e., i = j = 1.

Figures 3.22 - 3.24 show the maximum achievable availability and corresponding mon-

itoring range and average error with respect to σ for N = 4 and N = 9. According to

Figure 3.22, the maximum availability of at least 90% can be achieved with 4 MoSs when

σ ≤ 10, whereas with 9 MoSs the availability is less than 80% when σ ≥ 6. Figure 3.23 shows

that to achieve a higher availability, d increases when N = 4, however when N = 9 in order

to decrease the chance to detect in invalid subareas, the monitoring range first increases and

then starts to decrease.

From Figure 3.24, we observe that with < 4,G, A, sh >, the accuracy achieved at max-
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Figure 3.18: Minimum Eavg with < 4,G, A, sh > and < 9,G, A, sh >

imum availability conditions with SAL is comparable to accuracy with CA due to increase

in monitoring range. With < 9,G, A, sh >, monitoring range of SAL does not increase as

much as the monitoring range of SAL+CA; therefore, accuracy is better in spite of lower

availability.
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Figure 3.19: d∗

L
= argmin(Eavg) with < 4,G, A, sh > and < 9,G, A, sh >
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Figure 3.20: Availability at d∗ = argmin(Eavg) with < 4,G, A, sh > and < 9,G, A, sh >

According to Figure 3.25, the monitoring range maximizing the availability causes SAL+CA

to have the best overall efficiency among the three algorithms when σ ≤ 4 with< 4,G, A, sh >

scenario, and SAL outperforms other two algorithms in the < 9,G, A, sh > scenario. An-

other observation is that 4 MoSs can provide better efficiency than 9 MoSs especially when
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Figure 3.21: η at d∗ = argmin(Eavg) with < 4,G, A, sh > and < 9,G, A, sh >
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Figure 3.22: Maximum availability with < 4,G, A, sh > and < 9,G, A, sh >

shadowing level is high.

Impact of Other Path-Loss Models: Although our objective is to understand the

impact of X rather than being very accurate in characterizing radio propagation, more

complicated/accurate path-loss models can be employed with similar results. For example,

according to the Xia-Bertoni model [77], the attenuation in signal strength depends on the

diffraction loss from rooftops to the street, and multiple screen diffraction past rows of

buildings in addition to free space path loss. The loss is affected by mobile and base station
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Figure 3.23: d∗

L
= argmax(R) with < 4,G, A, sh > and < 9,G, A, sh >
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Figure 3.24: Average error at d∗

L
= argmax(R) with < 4,G, A, sh > and < 9,G, A, sh >

antenna heights, height of the buildings and frequency that the signal is emitted. In [77], an

estimation of loss at a distance of d is given as

PL(d) = K + βlog10(f) + 10αlog10(d).
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Figure 3.25: Average error at d∗

L
= argmax(R) with < 4,G, A, sh > and < 9,G, A, sh >

Assuming f is fixed, and d is the monitoring range, according to this model SAL would

decide if the signal is detected if Pr ≥ Pt − PL(d):

Pt − PL(dij) +X ≥ Rth

−10αlog10(dij) +X ≥ −10αlog10(d), (3.36)

where we can clearly see that the criteria for detection of MNs stays the same as the simple

model with log normal shadowing that we previously used.

3.4.1 Effect of Wall Attenuation Factor

The use of Wall Attenuation Factor in localization was proposed by Bahl et. al in [3].

According to the model used there, each time a signal passes through a wall, the received

power decreases by WAF in dB. When we also consider the shadowing, the received power

at a monitoring station is:

Pr = Pt − 10α log(dij) +X − n WAF (3.37)
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where n is the number of walls that the signal is passing through, and X is log-normal

shadowing with mean 0 and standard deviation σ.

We assume that the localization system knows the locations of walls, the attenuation in

dB per wall, and the locations of monitoring stations. Then, monitoring stations may expect

the signals to arrive passing through an average number of walls. Then, the localization

algorithm uses the following formula to decide that a mobile is detected if the received signal

power is at least Rth:

Pr ≥ Rth = Pt − 10α log(d)− navg WAF (3.38)

where navg is the average number of walls that the signal is assumed to be passing through,

and d is planned monitoring range.

In order to show the effect of wall attenuation factor, we worked with two different floor

plans (FP 1 and FP 2) shown in Figures 3.26 (a) and (b). In each case, 4 MoSs are deployed

at the corners. Black lines represent the border of localization service area, and green lines

represent the walls. In the first floor plan, there is a hallway with three rooms on each side,

and in the second floor plan, there are rooms on all sides, and there is another room in the

middle. We assume WAF = 3.1dB which was empirically calculated for WiFi at 2.4GHz in

[3], and similar attenuation is seen over windows and doors.

Figures 3.27 and 3.28 show the minimum achievable average error and corresponding

monitoring range with respect to σ. Comparing the accuracy performance in Figures 3.27,

and Figure 3.18, we observe that the accuracy in FP1 was not affected, whereas the accuracy

in FP2 gets worse at low shadowing levels. From Figure 3.28, we see that d is decreasing with

increasing σ and approaches to
√
2g/2. The availability when the minimum error monitoring

range is employed (in Figure 3.29) is close to 100% if σ ≤ 2, and it is decreasing gradually

down to 65% at σ = 10. However, with SAL+CA a larger monitoring range is used and

availability can be increased up to 95% at σ = 10. It is important to note that although it is

observed that at σ = 10 better accuracy is achieved with SAL when compared to Figure 3.18,

this is due to lower availability of location estimation as seen from Figure 3.29.

We can observe from Figure 3.30 that the overall efficiency of SAL+CA is better than

the others due to availability and accuracy performance. When compared to < 4,G, A, sh >
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Figure 3.27: Minimum average error with < 4,G, A, waf > on FP1 and FP2

we do not see a significant reduction in efficiency for FP 1, but we see worse efficiency in
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Figure 3.28: d∗

L
= argmin(Eavg) with < 4,G, A, waf > on FP1 and FP2
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Figure 3.29: Availability at d∗ with < 4,G, A, waf > on FP1 and FP2

FP 2. However, the values are fairly close indicating that it may be sufficient to consider

situations without walls especially when there are few walls impacting the subareas.
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Figure 3.30: Efficiency at d∗ with < 4,G, A, waf > on FP1 and FP2

3.4.2 Sensitivity to Multiple Detection Thresholds

Utilization of multiple thresholds for the RSS compared to a single threshold (RSS detected

or not) may increase the resolution of sub-areas, and improve localization accuracy. This is

similar to increasing the granularity in the location fingerprint (instead of a 0 and 1). In

this section, we are investigating the effect of using multiple RSS thresholds on accuracy and

availability. When r RSS thresholds are used, the MNs are detected in the rth ring if:

Rth(r) ≤ Pr < Rth(r + 1), (Rth(0) = 0, r ≥ 1)

A visualization of subareas with three RSS thresholds in scenario < 4,G, A > is shown

in Figure 3.31. Blue, green and purple arcs represent the RSS threshold limits according to

the unit disk model. We assumed the same radius separation for each ring.

Figures 3.32 and 3.33 show the results of using single and multiple RSS thresholds.

From Figure 3.32, it seems that using multiple RSS thresholds can decrease the localization

error by 33% - 50% depending on channel conditions. Accuracy with two RSSths at σ = 0

resembles the accuracy with < 9,G, A, sh > with a single RSSth. From Figure 3.33, we see
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1 1.5 2 2.5 3
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

m
in

 [E
av

g]/L

RSS
th

 number

N=4

 

 
SAL, σ=0
SAL, σ=5
SAL, σ=10
SAL+CA, σ=0
SAL+CA, σ=5
SAL+CA, σ=10
CA, σ=0
CA, σ=5
CA, σ=10

Figure 3.32: Minimum Eavg using multiple RSS thresholds with < 4,G, A, sh >

that the monitoring range providing the smallest localization error increases with number of

RSS thresholds.

Under ideal conditions, we expect better accuracy, as using n RSS thresholds with N

MoSs can provide the subareas that can be created by nN MoSs using a single RSS thresh-
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Figure 3.33: d∗

L
= argmin(Eavg) using multiple RSS thresholds with < 4,G, A, sh >

old. As nN MoSs may create more invalid subareas than with N MoSs under shadowing,

using multiple RSS thresholds would also cause many invalid subareas leading to smaller

availability. Simulation results shown in Figure 3.34 are in line with the intuition. The

availability and accuracy performance reflects in the best efficiency that is seen for SAL+CA

among the three algorithms.
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Figure 3.34: Availability at d∗

L
using multiple RSSths with < 4,G, A, sh >

We note here that using multiple RSS thresholds comes at a calibration cost of correctly

determining the ranges at these thresholds during deployment and tuning the thresholds -
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Figure 3.35: Efficiency at d∗

L
using multiple RSSths with < 4,G, A, sh >

something that has not been considered in this work. Thus we have not assigned a cost for

this effort in the above evaluations.

3.4.3 Incremental Addition of Monitoring Stations

Access points are widely deployed and already used for wireless services. Therefore, we

investigate a scenario where there are already available access points in the localization area,

to determine how the performance may improve when additional access points are deployed.

Thus, in this section, we are assuming 4 MoSs were already deployed at the corners of the

localization area, and other 5 MoSs are incrementally deployed one by one in the order shown

in Figure 3.7. When all MoSs are finally deployed, this scenario will be equivalent to the “9

MoSs on a grid scenario”. We assume the allowed monitoring ranges with different number

of MoSs will ensure 100% availability under ideal channel conditions; therefore, for N = 4

MoSs, d ≥
√
2L/2; for N = 5, 6, 7, 8, d ≥ L/2; and for N = 9, d ≥

√
2L/4.

Figure 3.36 shows that the accuracy gets better as more MoSs are used in localization.

The MoSs added to the system are spread in the localization area; therefore, every time

a MoSs is added, an improvement in accuracy is observed. The best monitoring ranges
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Figure 3.36: Minimum average error with < 4,G, A, sh >

4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

d/
L=

ar
gm

in
 [E

av
g]/L

Incrementally deployed MoS

 

 
SAL, σ=0
SAL, σ=5
SAL, σ=10
SAL+CA, σ=0
SAL+CA, σ=5
SAL+CA, σ=10
CA, σ=0
CA, σ=5
CA, σ=10

Figure 3.37: d∗

L
= argmin(Eavg) with < 4,G, A, sh >

at each increment are shown in Figure 3.37. As also discussed before, the availability of

location estimation is reduced under shadowing with increasing number of MoSs as shown
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in Figure 3.38. Figure 3.39 shows the overall efficiency improves only under ideal channel

conditions as N increases; however, when σ > 0, using smaller number of MoSs is more

efficient.
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Figure 3.38: Availability at d∗ = argmin(Eavg) with < 4,G, A, sh >

3.5 PERTURBATION FROM GRID PLACEMENT

In our previous analyses, we assumed a grid placement for monitoring stations for the sake of

simplicity in focusing on specific aspects of the problem. However, due to the environment,

the furniture, walls or other reasons, placing the monitoring stations so that they will form

a grid may not be possible. Since the performance of our localization approach depends on

the joint monitoring areas of MoSs, we will investigate the effect of the diversion from grid

placement on the accuracy of localization. We denote this scenario as < N, G̃, A >.

For this analysis, we use N = 4 MoSs grid placement as a baseline, and gradually

increase the perturbation from grid placement. Perturbation is applied by deploying each

MoS uniformly randomly in a square area of size 2pL×2pL, of which the center is the actual
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Figure 3.39: η at d∗ = argmin(Eavg) with < 4,G, A, sh >

grid point, and p is the perturbation fraction. An instance of perturbed grid with p = 0.3

is shown in Figure 3.40, where the modified joint areas and potential estimated locations

(blue crosses) can be clearly seen. We note that the target area for the localization service

is inside the black square; although the monitoring stations (in this placement) are outside

this area, we are still interested in the localization performance inside the black square.

Perturbation can result in imbalance among the subarea sizes, as well as smaller number of

subareas (although it is not the case in Figure 3.40).

Figures 3.41 - 3.42 show the minimum achievable average error, monitoring range required

to achieve this level of accuracy and availability factor at this range when grid placement

of 4 MoSs are perturbed by p = 0, 0.1L, 0.2L, 0.3L, 0.4L, 0.5L. Every point in the plots

is the average of 20 randomly generated perturbation scenarios. In order to single out the

effects of perturbation, we assumed log-normal shadowing without WAF.

From Figure 3.41, when σ = 0, with SAL the increase in minimum average error is 21%

with p = 0.5L when compared to grid placement (p = 0), whereas with CA, the accuracy

gets worse by 75%. When σ = 10, the accuracy gets worse by 13% with SAL, and 14% with
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Figure 3.40: Perturbation on grid, N = 4

CA. For example, the accuracy gets worse by 0.03L when the grid is perturbed by 0.3L at

σ = 5. When L = 10, this corresponds to 30cm worse accuracy, when we are allowed to

change the location of monitoring stations in a 3m by 3m area which is as big as a regular

office room. Under different shadowing conditions, the effect of perturbation will not change

significantly.

In Figure 3.41, we observe that in order to provide this level of accuracy, monitoring range

shows an increasing trend while perturbation factor increases. In spite of insignificant effect

on accuracy, in Figure 3.42 SAL availability is shown to be reducing down to approximately

65% with perturbation under shadowing effect. According to the overall efficiency, using

only SAL+CA under mild or severe shadowing is a good design choice in order to provide

the accuracy shown in Figure 3.43.

Figures 3.44-3.46 show the maximum achievable availability, the monitoring range that

provides this level of availability, and average localization error at this range under different
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Figure 3.41: Minimum average error with < 4, G̃, A, sh >
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Figure 3.42: Availability at d∗ = argmin(Eavg) with < 4, G̃, A, sh >

99



0 0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

η 
at

 d
=

ar
gm

in
 [E

av
g]

p/L

 

 
SAL, σ=0
SAL, σ=5
SAL, σ=10
SAL+CA, σ=0
SAL+CA, σ=5
SAL+CA, σ=10
CA, σ=0
CA, σ=5
CA, σ=10

Figure 3.43: Efficiency at d∗ = argmin(Eavg) with < 4, G̃, A, sh >

shadowing conditions, and with different perturbation fractions. Using SAL, Rmax is around

92% with grid placement when σ = 10 and it decreases by approximately 10% when 0.5L

perturbation on grid is allowed. CA availability, on the other hand, is slightly affected by

perturbation.

Figure 3.45 shows the corresponding monitoring ranges. At higher shadowing levels,

monitoring range for SAL decreases in order to minimize the invalid subarea detection prob-

ability. According to Figure 3.46, accuracy of SAL at corresponding monitoring ranges is

not affected by perturbation significantly as it stays under 0.39L at high shadowing levels;

otherwise, it increases with increasing perturbation factor. As a result, the overall efficiency

suggests that a deployment employ SAL when there is no shadowing, and SAL+CA with

mild shadowing, and CA with high shadowing as shown in Figure 3.47.
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Figure 3.44: Maximum availability with < 4, G̃, A, sh >
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Figure 3.45: d∗

L
= argmax(R) with < 4, G̃, A, sh >

101



0 0.1 0.2 0.3 0.4 0.5
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
av

g a
t d

=
ar

gm
ax

 [R
]

p/L

 

 
SAL, σ=0
SAL, σ=5
SAL, σ=10
SAL+CA, σ=0
SAL+CA, σ=5
SAL+CA, σ=10
CA, σ=0
CA, σ=5
CA, σ=10

Figure 3.46: Average error at d∗

L
= argmax(R) with < 4, G̃, A, sh >
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Figure 3.47: Efficiency at d∗

L
= argmax(R) with < 4, G̃, A, sh >

3.6 PERFORMANCE UNDER RANDOM PLACEMENT

In the previous sections, we investigated the performance of SAL when MoSs are placed

on a virtual grid and how the performance is affected by the perturbation of this grid.
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Both these placements require some effort which will in turn reflect as higher installation

cost. Randomly placing MoSs requires much less effort as we do not have to align the

locations of MoSs so that they will form a grid. However, sub-area shapes, sizes and numbers

will be different and unpredictable when compared to grid placement. This can affect the

localization performance negatively. Therefore, in this section, we want to determine the

trade off between the accuracy and practical deployment through simulations with randomly

placed MoSs. In order to see the effect of random placement, instead of randomly placing N

MoSs into the whole area, it is better to divide the whole area into smaller areas, and then

place MoSs randomly inside those areas. This will provide a more homogeneous random

placement especially when N is small. We denote this scenario as < N,R, A >. An instance

of such placement of 4 MoSs in 4 different square areas of size L/2 × L/2 in area of size

L × L is shown in Figure 3.48. Dashed lines virtually divide the whole area into 4 square

areas. From this figure, it is clearly seen that the subarea sizes, shapes and numbers change

significantly with random placement when compared to grid placement shown in previous

sections. If centroid algorithm is used with this type of placement, the potential estimated

locations will always be inside the region that is defined by the line connecting the locations

of MoSs. However, with SAL, the potential estimated locations are more spread into the

whole area as shown with red crosses in Figure 3.48, and they do not have to be inside this

specific region. Intuitively thus, SAL can provide better accuracy.

In the following, we show the effect of random placement by simulations of two localiza-

tion scenarios using 4 and 8 MoSs, < 4,R, A, sh > and < 8,R, A, sh > assuming log-normal

shadowing. The results shown in this section are the average of 30 such instances of random

placement of MoSs.

Figure 3.49 shows the best accuracy that can be achieved by tuning the monitoring

ranges under different shadowing conditions. When < 4,R, A, sh > is compared to <

4,G, A, sh >, the accuracy gets worse by only 0.01L under ideal channel conditions. We also

observe that accuracy performance with < 8,R, A, sh > is comparable to performance with

< 9,G, A, sh > as shown in Section 3.4. While σ is increasing, the localization error increases

and approaches the error with CA. In the best random placement case, 4 MoSs are placed

at the center of each square. With this placement, the monitoring range must be at least
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Figure 3.48: Random placement of N = 4 MoSs in L× L

√
2L/4 for the coverage to be 100%. Therefore, we limited the minimum monitoring range

to this value. And this is the reason why the monitoring range providing the best accuracy

is approaching
√
2L/4 under higher σ as shown in Figure 3.50. With < 8,R, A, sh >, the

monitoring range providing the best accuracy first decreases and then increases for increasing

σ, this behavior is the same as the behavior observed with < 9,G, A, sh >.

In the worst case, all MoSs can be placed at the corners of the square shaped area, and

d ≥
√
2L/2 for full coverage. Therefore, when d <

√
2L/2, the coverage of MoSs may not be

100% when MoSs are randomly placed. For example in Figure 3.48, the lower right corner

is not covered by any of the MoSs although d >
√
2L/4. This is reflected on the location
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Figure 3.49: Minimum Eavg with < 4,R, A, sh > and < 8,R, A, sh >

estimation availability performance as shown in Figure 3.51. We observe that even under

ideal channel conditions, availability is around 93% with 4 MoSs and 98% with 8 MoSs, and

it is decreasing gradually down to 70% and 40% with increasing shadowing effects. This

behavior is also observed with < 4,G, A, sh > and < 9,G, A, sh >; therefore, availability at

best accuracy settings are not affected by random placement of MoSs.

Figures 3.52 shows the maximum availability that can be achieved under different channel

conditions and monitoring range required. SAL+CA and CA have the same availability and

same best monitoring range providing this value. For lower σ, both SAL and CA have

good availability performance. However, as σ increases, the availability with SAL starts to

decrease. In order to keep availability at the maximum level, the monitoring range increases

for small σ values (see Figure 3.53), and starts to decrease under higher σ in order to

decrease the number of MNs detected in invalid subareas. This behavior is reflected in

higher localization errors as shown in Figure 3.54.
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Figure 3.50: d∗ = argmin(Eavg) with < 4,R, A, sh > and < 8,R, A, sh >
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Figure 3.51: Availability at d∗ = argmin(Eavg) with < 4,R, A, sh >
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Figure 3.52: Maximum R with < 4,R, A, sh >

3.7 CONCLUSIONS

In this chapter, we propose Sub-Area Localization which is a 2-dimensional proximity-based

technique. Analytical and simulation results are used to determine the optimal coverage

(range) for best localization accuracy with SAL given a localization scenario with a number

of monitoring stations covering the network area. Our results indicate that there is an

optimal range and as we increase the number of MoSs, the localization error and monitoring

range reduce, following an exponential fit. From a practical standpoint, the clear-channel-

access (CCA) threshold in WiFi can be used to tune the monitoring ranges of MoSs to create

the best sub-areas for accurate localization.

We compare SAL to fine grained algorithms that has been cited in Section 2 in terms of

localization error normalized with localization area in Figure 3.55. According to this, SAL

as a proximity based algorithm has worse accuracy than fine grained algorithms due to its

coarse grained nature. However, we show that under shadowing with standard deviation of
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Figure 3.53: d∗ = argmax(R) with < 4,R, A, sh >

3dB SAL with 9 MoSs can have a similar accuracy as WS algorithm which is using wireless

sniffers to gather information regarding the current channel parameters. Nevertheless, it

is important to emphasize that SAL does not use any communication between monitoring

stations to capture channel parameters; therefore, it is more likely that online-calibration

based algorithms have less variance in terms of accuracy.

Tables 3.6, 3.7 and 3.8 show the minimum localization and best monitoring range of

SAL, CA, and SAL+CA algorithms in various localization scenarios and channel conditions.

From these tables, we can conclude that,

• SAL has a significantly better accuracy than with localization that uses the centroid of

the locations of MoSs under different channel conditions and localization scenarios.

• The best monitoring range with grid placement scenario can also provide the best accu-

racy conditions for localization in scenarios when grid placement of MoSs is not possible.
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Figure 3.54: Eavg at d∗ = argmax(R) with < 4,R, A, sh >

• The centroid localization can help increase the availability of localization when used with

SAL in SAL+CA. From the results, SAL+CA seems to have a slightly worse accuracy

than SAL. The reason is the availability of SAL+CA is larger than availability of SAL,

which reflects in a higher average error.

• When wall attenuation factor is considered in addition to log normal shadowing, SAL+CA

has similar availability to CA availability, and similar accuracy to SAL accuracy, making

this algorithm the one that has the best localization efficiency.

• When wall attenuation factor is considered, different accuracy levels are achieved with

different floor plans. The difference becomes negligible as shadowing conditions become

significant and thus may be ignored, but SAL can once again improve the accuracy com-

pared to CA.

• Utilizing multiple detection thresholds can help significantly improve accuracy of MNs
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Table 3.6: SAL accuracy with N = 4 MoSs in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

< 4,G, A, sh > E∗
avg/L 0.135 0.26 0.33

d∗/L 0.768 0.707 0.707

< 4,G, A, waf > E∗
avg/L 0.14 0.2 0.264

FP 1 d∗/L 0.77 0.707 0.707

< 4,G, A, waf > E∗
avg/L 0.19 0.22 0.27

FP 2 d∗/L 0.84 0.707 0.707

< 4, G̃, A, sh > E∗
avg/L 0.16 0.26 0.34

p = 0.3L d∗/L 0.78 0.71 0.72

< 4,G, A, sh > E∗
avg/L 0.08 0.16 0.23

|RSSth| = 3 d∗/L 0.92 0.87 0.85

< 4,R, A, sh > E∗
avg/L 0.15 0.2 0.26

d∗/L 0.468 0.358 0.357

that can be localized. A drawback of this method appears under severe shadowing as it

affects the availability negatively. Therefore, this design is more convenient for localiza-

tion areas with close to ideal channel conditions (e.g., open spaces). Further there is a

cost in determining the ranges for thresholds in real environments.

• Random placement of MoSs may affect the availability negatively for all three algorithms.

However, SAL+CA has a similar availability to availability achieved with CA, and also

similar accuracy to SAL’s accuracy.
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Table 3.7: SAL+CA accuracy with N = 4 MoSs in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

< 4,G, A, sh > E∗
avg/L 0.135 0.26 0.33

d∗/L 0.768 0.707 0.707

< 4,G, A, waf > E∗
avg/L 0.136 0.2 0.275

FP 1 d∗/L 0.77 0.707 0.707

< 4,G, A, waf > E∗
avg/L 0.19 0.22 0.27

FP 2 d∗/L 0.84 0.707 0.707

< 4, G̃, A, sh > E∗
avg/L 0.16 0.26 0.345

p = 0.3L d∗/L 0.78 0.71 0.72

< 4,G, A, sh > E∗
avg/L 0.08 0.19 0.27

|RSSth| = 3 d∗/L 0.92 0.81 0.82

< 4,R, A, sh > E∗
avg/L 0.155 0.2 0.264

d∗/L 0.465 0.356 0.355

• Finally, the results of how SAL and SAL+CA performs under grid placement, ideal

channel conditions, and under shadowing (and with monitoring ranges that barely cover

an area) seem to be sufficient to obtain reasonably good estimates of localization errors,

availability, and efficiency under more complicated scenarios.
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Table 3.8: CA accuracy with N = 4 MoSs in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

< 4,G, A, sh > E∗
avg/L 0.168 0.3 0.366

d∗/L 0.87 0.92 0.99

< 4,G, A, waf > E∗
avg/L 0.18 0.257 0.324

FP 1 d∗/L 0.9 0.99 0.94

< 4,G, A, waf > E∗
avg/L 0.22 0.25 0.31

FP 2 d∗/L 0.87 1 0.98

< 4, G̃, A, sh > E∗
avg/L 0.24 0.32 0.38

p = 0.3L d∗/L 0.86 0.9 0.98

< 4,G, A, sh > E∗
avg/L 0.09 0.21 0.278

|RSSth| = 3 d∗/L 0.95 0.97 0.98

< 4,R, A, sh > E∗
avg/L 0.19 0.22 0.276

d∗/L 0.425 0.376 0.355
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Figure 3.55: How does SAL compare to fine grained localization?
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4.0 MULTI-FLOOR SUB-AREA LOCALIZATION

In Chapter 3, we proposed a localization approach that used the sub-areas created by over-

lapping coverages of MoSs placed on a virtual grid on a two dimensional area. We showed

that this approach, called Sub Area Localization (SAL) is significantly better in terms of

accuracy than using the centroids of the MoSs hearing a mobile node (MN). We investigated

the relationship between localization accuracy and the number/monitoring range of MoSs.

We employed analysis and simulations that allowed us to determine the “best” monitor-

ing range of MoSs, and limits on the performance of this approach in 2-D environments.

We showed that accuracy achieved at the best monitoring range follows an exponential im-

provement with increasing number of MoSs placed on a grid. This leads to a trade off as

increasing number of MoSs also increases the cost as more MoSs have to be deployed. SAL is

a proximity based localization algorithm that is suitable for single floor environments, as it

is developed for two dimensional areas which can be considered as single floor areas. When

a SAL system is deployed on a multi-floor building, for location estimation on each floor, it

only utilizes MoSs that are located on that single floor.

Multi-floored environments provide us an opportunity to exploit the coverages of MoSs

that are across floors. In this chapter, we are interested in the possibility and advantages

of utilizing a proximity-based multi-floor localization approach. We are proposing Multi-

floor Sub-Area Localization (MSAL) which can exploit MoSs across floors if they can sense

transmissions across floors to achieve a satisfying accuracy with reduced deployment cost.

To the best of our knowledge, this is the first work proposing to exploit MoSs in adjacent

floors to estimate the location of a MN on the current floor. An obvious difference between

the work presented in literature and this chapter is that we evaluate whether exploiting

MoSs deployed in other floors to locate a node in the current floor can improve localization
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accuracy without increasing cost. We use only the proximity information for localization.

No systematic study was previously done on the effect of number of MoSs per floor, and on

the effect of monitoring range and floor height while utilizing MoSs across floors.

1. We first evaluate whether exploiting MoSs deployed across floors is beneficial in terms of

accuracy and efficiency. Our efficiency definition, as in the case of SAL, comprises good

accuracy, high availability, and utilizing as few MoSs as possible per floor in a multi-floor

building. We provide the results of a broad investigation of the effect of monitoring range

on localization performance under various localization scenarios and channel conditions.

We define a localization scenario as a localization algorithm using a given number of

MoSs on each floor i, Ni, and placement (P) of MoSs in a given localization area per

floor (A = L× L) in a building of F floors, and denote as < (N1, N2, . . . , NF ),P, A >.

2. We define the antenna type of MoSs, the relationship between floor height and monitoring

ranges, the repetition/placement scheme employed as parameters needed to be considered

through a systematic analysis of efficiency of MSAL. We investigate the difference in

performance with isotropic antenna pattern and modified dipole antenna pattern. The

ideal isotropic antenna pattern shows better accuracy as an outcome of its wider coverage

in the vertical direction. Under ideal conditions, we show that by utilizing MoSs across

floors, the localization error can be decreased by 40% without increasing the total number

of MoSs when compared to single floor SAL.

3. We investigate the effect of log-normal shadowing, and show that under shadowing with

5 dB standard deviation, MSAL can reduce the cost of localization system by one third

of the number needed if SAL was used, and with only a 15cm reduction in accuracy in

a building with 10m× 10m floor area, and floor height of 2.5m. Under ideal conditions,

the accuracy gets worse only by 4cm. We have also investigated the performance of

multi-floor localization when signal power is attenuated while passing through walls or

traveling from other floors.

4. Optimization of MoS placement in multiple floors is very important to maximize the

efficiency of localization system. In this chapter, rather than finding an optimized place-

ment scheme, we provide the results of simulations of various placements, and show the

performance differences between them. We have defined two and three floor repetition
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schemes (2FRS and 3FRS) in which location estimates are calculated utilizing MoSs

on two adjacent floors or three adjacent floors, respectively. With grid and random

placement schemes, we have shown that 2FRS and 3FRS can outperform multi-floor

localization scenarios utilizing centroids of MoSs or single-floor localization scenarios.

5. The number of MoSs deployed per floor is a very important parameter that has impact

on the efficiency of localization. We have shown that using the same total number of

MoSs on three floors, we can get a better efficiency when compared to using the same

total number of MoSs on two floors.

6. In the first part of the analysis, we are focused on the advantages of utilizing MoSs across

floors, therefore, we do not consider floor determination issues with MSAL. We assume

that an external floor determination mechanism is available to estimate which floor an

MN is located at.

7. In the second part, we propose that a majority-based floor determination algorithm using

RSS readings from different floors can be incorporated into MSAL. We provide the floor

determination performance under various channel conditions. We define the most impor-

tant challenge related to floor determination as minimizing false negatives (the number

of MNs that are located on a floor that they are not residing upon) with appropriate

MoS placement. Our objective is to investigate the effect of floor determination on the

performance of MSAL, rather than finding the best placement/number of MoSs that is

optimizing the floor determination parameters and maximizing its performance.

Section 4.1 describes the multi-floor sub-area localization and MoS deployment schemes.

Section 4.2 explains the multi-floor centroid algorithm (MCA) that we propose in order to

make a fair comparison between MSAL and another multi-floor proximity based algorithm.

We evaluate the performance of the MSAL in utilizing MoSs across floors in detail in Sec-

tion 4.3 without considering floor determination effects. Then, in Sections 4.4 and 4.5, we

present the majority based floor determination algorithm and its effects on the performance

of MSAL with 2FRS localization scenario. Similar results with 3FRS are presented in Ap-

pendix A.3 for interested reader. Finally, Section 4.6 concludes the chapter with a set of

tables summarizing our findings.
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4.1 MULTI-FLOOR SUB-AREA LOCALIZATION (MSAL)

Localization error with SAL can be effectively decreased by optimizing the monitoring range

for a given localization scenario, and can be further decreased by increasing the number

of MoSs which would reflect as a higher cost localization system. Multi-floor Sub-Area

Localization (MSAL) approach can exploit MoSs across floors if they can sense transmissions

across floors to achieve a satisfying accuracy with smaller number of MoSs per floor. The

target is reduced deployment cost without significantly reducing the accuracy. Multi-floor

localization introduces a number of challenges and additional dimensions to the localization

problem. Some of these are floor height, antenna coverage (monitoring range) across floors,

floor repetition schemes, and the number/placement of MoSs, and channel effects.

A MN’s location is denoted by a tuple < x, y, f > representing 2 dimensional coordinates

of a MN (x, y) on floor f . The floor f a MN is residing in is determined by an external floor

determination algorithm that we assume available to the localization system. The focus of

this chapter is to determine the performance of utilizing MoSs across floors rather than floor

classification. We show how MoSs in multiple floors can be used with SAL to estimate the

2-D coordinates of a MN in a given floor. This multi-floor SAL algorithm is called MSAL in

the rest of the chapter.

4.1.1 Adjacent Monitoring Range

On a single floor, the azimuthal coverage of MoSs is sufficient to determine the subareas

(i.e., Ai in Figure 3.1) and thus the accuracy. In multi-floor localization, the propagation

in the vertical direction gains importance. Antenna patterns and floor losses have to be

considered to calculate monitoring ranges across floors. In what follows, we use an idealized

antenna pattern (isotropic) and modified dipole antenna pattern; and ignore the impact

of floor losses for now (although this could be captured by changing the floor height, h).

Initially we assume an ideal channel without shadowing (σ = 0). Later, we allow σ of the

normally distributed shadow fading component X to be non-zero.
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4.1.1.1 Using Isotropic Antenna Pattern The monitoring range d of a MoS with an

isotropic antenna will be the same in every direction. Let MoSi be the set of MoSs deployed

in floor i, h be the height of each floor, and dij be the effective monitoring range of MoSs

in MoSi on floor j. For localizing MNs on a given floor j, the effective monitoring ranges

of MoSi, dij for all i = 1, . . . , F can be exploited if a MoS can sense a MN in a different

floor. A MoS on floor i has a smaller coverage or monitoring range in a different floor j ̸= i.

For an isotropic antenna, it is essentially a slice of a sphere that does not pass through the

sphere’s center. Given a MoS in MoSi, the monitoring range in floor j is,

dij =


√

d2ii − (|i− j|h)2, dii > |i− j|h,

0, dii ≤ |i− j|h,
(4.1)

where i, j = 1, . . . , F and F is the number of floors in a given building. The monitoring

ranges of MoSi in floor i and j are illustrated in Figure 4.1(a)1 for adjacent floors when a

MoS is placed in the center of a floor. We assume the monitoring range for all MoSs deployed

on a single floor are the same. With MSAL and the use of MoSs on different floors, we end

up with a situation which is similar to allowing different monitoring ranges for MoSs on a

single floor. Figure 4.2 shows the effective monitoring range of a MoS on an adjacent floor

with respect to monitoring range on current floor and floor height. Depending on floor height

and monitoring range, MoSs may not cover any area on an adjacent floor. This happens

when dii < h, and in this case only MoSs in the current floor can be utilized in localization.

Therefore, there exists a range that is optimum for localization of MNs on both current floor

and adjacent floor.

4.1.1.2 Using Modified Dipole Antenna Pattern With a dipole antenna, monitor-

ing ranges on the horizontal and vertical directions differ. This results in MoSs to have

even smaller and ring shaped coverage on adjacent floors instead of circle shaped coverages

as with isotropic antenna pattern. In Figure 4.1(b), the modified dipole antenna pattern

is shown with its donut shaped coverage. We assume the cross section of the donut (when

1This analysis assumes that MNs are placed on the floor with zero height. Alternatively, this can be
posed as a situation where the MoSs and MNs are at the same level on a given floor, and this level is defined
as the “floor”.
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sliced by a horizontal plane) is a circle for the sake of simplicity. We denote the effective

monitoring range with modified dipole antenna as a tuple defining the radii of the smaller

circle, r1j, and larger circle of the ring, r2j, on floor j, i.e., dij = (r1j, r2j). A MoS on floor

i can have non-zero coverage on floor j if dii/2 > |i− j|h. When this condition is satisfied,

dij = (r1j, r2j) are given as:

r1j =
dii
2

−

√(
dii
2

)2

− (|i− j|h)2, (4.2)

r2j =
dii
2

+

√(
dii
2

)2

− (|i− j|h)2. (4.3)

where j = [max(i− 1, 1),min(i+ 1, F )] in a building of F floors.

Figure 4.3 shows (r1j, r2j) with respect to the monitoring range on the current floor and

the floor height. When compared to isotropic antennas, the adjacent floor monitoring range

is much smaller with dipole antennas. We let the monitoring range on the current floor

be the same as with isotropic antennas (in reality, this implies a reduction in the antenna

gain), but the adjacent floor monitoring range is smaller in size and ring shaped. When the

condition dii < 2h is not satisfied, adjacent floor coverage is not possible. This complicates

the process of finding the best monitoring range for both floors.

4.1.2 Utilizing Multi-Floor MoS Sets

Utilizing MoS sets deployed across floors is the idea behind reduction of deployment cost

without harming accuracy with MSAL. In a multi-floor building, in order to achieve a re-

quired accuracy in each floor, MSAL requires a specified number of MoSs to be deployed

on each floor. When only adjacent floors are considered, MSAL can use the coverages of

MoSs from at most three different floors; two adjacent and one current floor. This scheme

where all 3 available floors are used, and repeated through the whole building is called 3 floor

repetition scheme (3FRS). If only one adjacent floor is utilized in addition to the current

floor, it is called the 2 floor repetition scheme (2FRS). In order to demonstrate the advan-

tage of MSAL over SAL, we compare MSAL with 2FRS and 3FRS scenarios to a localization

scenario with SAL using the same total number of MoSs in each scenario. We assume that
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the corresponding SAL localization scenario uses 9 MoSs in grid placement in 2D in area

A, < 9,G, A > ( evaluated in Chapter 3 with SAL). For MSAL, a deployment scheme is

adopted so that the projection of MoSs onto one of the floors is similar to the deployment

of 9 MoS on a grid in 2D. We call this placement scheme projected grid (Gp).
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Figure 4.4: (a) 3FRS, < (4, 3, 2),Gp, A >, (b) 2FRS, < (5, 4),Gp, A >

4.1.2.1 2FRS ( < (5, 4),Gp, A > ) The first MSAL scenario uses a 2 floor repetition

scheme with 5 and 4 MoSs in the first and second floors with a “projected grid” placement

scheme. The pattern of placement is shown in Figure 4.4(a). On one floor, MoSs are placed

at the corners and also in the center of the floor, shown with black dots. In the adjacent

floor, 4 other MoSs are placed at the centers of each edge of the floor boundary, shown with

red dots. Differences exist in the creation of subareas between MSAL and SAL. Figures 4.5

(a) and (b) show the projections of the coverages of the 9 MoSs with isotropic antenna in

each of the two floors with 4 and 5 MoSs with MSAL while Figures 4.5(c) and (d) do the

same for only 4 or 5 MoSs all with the same range in a single floor with SAL. Here, we
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used d11 = d22 = 0.48L, h = 0.25L for MSAL, and d = 0.48L for SAL. Visually, we can see

that MSAL results in a larger number K of subareas with smaller sizes, thereby potentially

improving the accuracy.
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Figure 4.5: Subareas on floors 1 and 2 with MSAL < (5, 4),Gp, A > and SAL < 5,G, A >

and SAL < 4,G, A >

In order to ensure 100% coverage with isotropic antennas on both floors (a MN will

be detected by at least one MoSs on one of the two floors) according to unit disk model,

following conditions must be satisfied:√
d2ii −

L2

8
+ dji ≥

√
2L

4
, j ̸= i, dii ≥

√
2L

4
(4.4)√

d2ji −
L2

8
+ dii ≥

√
2L

4
, j ̸= i, dii <

√
2L

4
(4.5)

We don’t formally prove the above equation, but qualitatively show why this is true in

Figure 4.6. In this figure, we show the monitoring ranges dii of MoSs on the same floor

(larger circles) and those (dji) of the MoSs on the adjacent floor (smaller circles) for barely
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covering Floor i. Case 1 in Figure 4.6(a) represents the 1st condition given in Eq. 4.4, and

case 2 in Figure 4.6(b) represents the 2nd condition given in Eq. 4.5.
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Figure 4.6: Ranges of MoSs in two floors for barely covering a floor.

4.1.2.2 3FRS ( < (4, 3, 2),Gp, A > ) The second MSAL scenario uses a 3 floor repetition

scheme with a total of 9 MoSs in projected grid placement. We place 4, 3, and 2 MoSs on

adjacent floors in a building as shown in Figure 4.4(b). Instead of using 4.5 MoSs per floor

with 2FRS, 3FRS uses 3 MoSs per floor to reduce the deployment costs per floor. The

coverages of MoSs or their projections onto a single floor are shown in Figure 4.7. It is

clearly seen that whole floor coverage is not available with SAL whereas with multi-floor

MoS usage, full floor coverage is provided as well as higher number of subareas with small

sizes without increasing the total number of MoSs deployed.

4.1.3 Availability

In Section 3.1.2, we defined availability as the fraction of area that a location estimate is

available for a MN in localization area A. Let C ′
i be the area on floor i that can be sensed by

at least one MoS across floors. When σ = 0, MNs are always located in valid sub-areas whose

boundaries are determined from the unit disk model. When σ > 0, an area Cinvalid,i of the

localizable area C ′
i may belong to invalid subareas. These arise because radio propagation

vagaries may create intersections of monitoring areas of MoSs, that theoretically do not
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have intersecting ranges. MSAL cannot be directly used for localizing nodes in these invalid

subareas. Nodes in such invalid subareas can be localized for instance, by using the multi-

floor centroid algorithm that is explained in Section 4.2. Let Ci = C ′
i − Cinvalid,i. Then, the

fraction of the area in which a node can be localized by MSAL on a floor i is

Ri =
Ci

|A|
(4.6)

Then, on the average, a location estimate with MSAL is available for the fraction of area

Ravg =
1
F

∑F
i=1 Ri in a building of F floors.

4.1.4 Efficiency

In order to determine the parameters so that MSAL can (i) be able to localize as large a

fraction of the area as possible (ii) provide the smallest possible localization errors and (iii)

use the smallest number of MoSs, we define a per-floor efficiency metric denoted by ηf . This

metric evaluates the performance of MSAL on floor f for a given σ, h, dff , f = 1 . . . F . ηf

is directly proportional to the availability fraction, Rf , and inversely proportional to Ef , the

mean error that can be achieved for such nodes in floor f with area A = L× L, multiplied

by Nf = |MoSf | – the number of MoSs deployed on floor f . Thus, per-floor efficiency metric

is given as,

ηf (i, j) =
Rf

N i
f × (Ef/L)

j , (4.7)

and average efficiency over all floors is ηavg = 1
F

∑F
f=1 ηf . In the following, we assume

i = j = 1.
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4.2 MULTI-FLOOR CENTROID ALGORITHM (MCA)

In Chapter 3, we compared the performance of proximity based SAL algorithm to the perfor-

mance of CA which is another proximity based algorithm. In this chapter, in order to make

a fair comparison between proximity based MSAL and another multi-floor proximity based

algorithm, we propose multi-floor centroid algorithm (MCA). MCA works similar to centroid

algorithm in that it also estimates the location as the centroid of the locations of MoSs hear-

ing a MN. However, as a difference from CA, MCA utilizes MoSs across floors. In location

estimation, only 2D coordinates of MoSs on multiple floors are taken into consideration.

Effective monitoring ranges are calculated as given in Section 4.1.1.

4.3 ANALYSIS AND EVALUATION OF MSAL

In this section, we evaluate the two deployment schemes (2FRS and 3FRS) using isotropic

or dipole antenna. We append the words iso and dpl to the algorithm names to indicate the

isotropic and dipole antenna types are used, respectively. We determine the best monitoring

ranges and best cost/accuracy metrics in each case and discuss the findings. While a uniform

distribution of MNs can be assumed, there is no easy closed form mathematical expression

for the localization error and we use simulations to determine the localization errors. We

place a large number M = 104L MNs in the given area, and compute the error between the

true location and the centroid of subareas (the estimated location) created by MoSs for each

of the large number of MNs. The simulations are run for various monitoring ranges, heights

of floors, deployment schemes, etc. as described below. We assume path loss coefficient

α = 3 and Pt = 10dBm.

4.3.1 Performance under Ideal Channel Conditions

We start our analysis by assuming ideal channel conditions. We compare MSAL performance

in terms of various metrics to the performance of multi-floor centroid algorithm (MCA).
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Again, we assume that the effective monitoring ranges of MoSs are known to the localization

system which assumes a unit disk monitoring range model.

4.3.1.1 2FRS ( < (5, 4),Gp, A > ) We first investigate the performance of MSAL un-

der localization scenario < (5, 4),Gp, A > explained in Section 4.1.2.1, and shown in Fig-

ure 4.4(a) in a building of 5 floors. The results in this section are given for two floors only,

but they can be generalized for F > 2 assuming that the range of MoSs on the odd num-

bered floors are the same and those on even numbered floors are the same. This ensures the

subareas do not change from what we have for F = 2. Therefore, the minimum achievable

errors and maximum efficiency will stay the same when F > 2.

Figure 4.8 shows the average expected errors separately in floors 1 & 2, E1 and E2, and

average error for both floors, Eavg = 1
2

∑2
i=1 Ei, for different values of monitoring ranges,

dii, i = 1, 2. Floor height is assumed h = 0.25L. The first column of figures shows MSAL-iso,

and the second column shows MSAL-dpl localization error. Only the set MoSi is used for

localization in floor i, when djj ≤ h in isotropic case, and djj ≤ 2h in dipole case. Under these

conditions, MSAL is equivalent to SAL. This is the reason why we are observing constant

error on floor 1 when d22 ≤ 0.5L when h = 0.25L, and similarly on floor 2 when d11 ≤ 0.5L

with MSAL-dpl.

We define accuracy as the minimum average localization error that can be achieved when

the whole area A is covered by MoSs, i.e., R = 1 on every floor under ideal conditions. It is

denoted as E∗
avg,

E∗
avg = min dii,i=1...F

s.t. Ri=1

1

F

F∑
i=1

Ei (4.8)

d∗ii = argmindii,i=1...F s.t. RMSAL=1
1

F

F∑
i=1

Eavg, i = 1 . . . F. (4.9)

and the monitoring ranges that provide this accuracy are denoted as d∗ii. Table 4.1 sum-

marizes the minimum localization error conditions with SAL, MSAL-iso and MSAL-dpl.

According to this table, by utilizing MoSs across floors, the localization error can

be decreased by 40% without increasing the total number of MoSs. This con-

cludes that under ideal conditions, when best monitoring ranges are determined, isotropic
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and dipole antenna coverages lead to similar localization error performances using MSAL.

With MSAL-dpl, the best monitoring ranges are longer than needed for MSAL-iso. Another

observation is that the accuracy with MSAL is similar to the accuracy (0.078L) achieved

when SAL is used with N = 9 MoSs with scenario < 9,G, A > as shown in Chapter 3.

Table 4.1: Minimum localization error in 2FRS, σ = 0

E1/L E2/L E∗
avg/L (d∗11, d

∗
22)/L

SAL (5, 4) 0.135 0.138 0.136 (0.77, 0.74)

MSAL-iso 0.0807 0.0814 0.081 (0.85, 0.70)

MSAL-dpl 0.0823 0.0801 0.0812 (0.88, 0.74)

SAL (9, 9) 0.078 0.078 0.078 (0.45, 0.45)

Figure 4.9 shows the various subareas and estimated locations for each subarea on each

floor when the accuracy is 0.081L (81 cm accuracy in a 100 square meter area) with MSAL-

iso. This accuracy is achieved when the ratio of the monitoring ranges on adjacent floors is

d11/d22 = 1.2. Intuitively, one would expect this ratio to be closer to 1, but the asymmetry

in deployment and floor height make it different from 1. The red line in Figure 4.8 shows

where d11 = d22 and E∗
avg on this line is 0.082L which is close to E∗

avg, at d11 = d22 = 0.778L.

We emphasize that the minimum localization error values mentioned are determined

only when the availability of location estimation is 100%. In order to better understand this

statement, we demonstrate the availability with MSAL-iso and MSAL-dpl when h = 0.25L in

Figure 4.10. As expected a greater range of monitoring ranges can provide 100% availability

with isotropic antennas due to wider adjacent monitoring range. Because of ring shaped

adjacent coverages, with dipole antennas, each dii has to ensure full coverage on floor i

separately. Then, with scenario < (5, 4),Gp, A >, if dii ≥ 0.5L, i = 1, 2, availability is

100%. Note that under ideal channel conditions, Cinvalid,i = 0. In what follows, we only

consider nodes with available location estimations, and provide the localization error only

for these nodes.
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Figure 4.8: Localization errors on floors 1 and 2 with MSAL-iso and MSAL-dpl, σ = 0,

h = 0.25L
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Figure 4.9: Sub-areas in floors 1 and 2 for E∗
avg = 0.081L, σ = 0

Figures 4.11 and 4.12 show the minimum average error and the corresponding best

monitoring ranges on two floors with respect to h for MSAL and MCA. We observe that

when all MoSs are deployed in one floor (h = 0) as in SAL with < 9,G, A >, the minimum

mean error is approximately 0.078L with both dipole and isotropic antenna. Note that

in this case we allow two different monitoring ranges for 2 sets of MoSs and we observe

the best monitoring ranges for two sets are the same, i.e., d∗11 = d∗22 due to current floor

coverages for isotropic and dipole antennas having the same size and shape. When h = 0,

MSAL is equivalent to SAL, and MCA is equivalent to CA. When h > 0, MSAL and MCA

can be employed. As h is increasing, d∗ii must be increased in order to utilize adjacent floor

monitoring ranges. The accuracy with MSAL-iso gets worse with increasing h as the effective

monitoring ranges on adjacent floors get smaller. With dipole antennas, when h < 0.25L,

the accuracy is similar to the isotropic case. When h continues to increase we observe a

slightly better accuracy due to a change in best monitoring range on floor 1. This is due to

the creation of the same number of subareas each now represented by different set of MoSs.

From h = 0.25L to h = 0.35L, the number of subareas stays the same; however, the sizes
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are optimized and balanced with the best monitoring ranges that will allow better accuracy.

When h > 0.35L, for 100% coverage on each floor, the monitoring ranges are increased. This

is reflected in the creation of multiple subareas in different locations (symmetric) in A and

represented however by the same set of MoSs. Since the localization system is not aware

of this, the estimate is given as the center of A, and this effect worsens the accuracy when

h = 0.45L.

We also observe that MCA has a worse accuracy than MSAL. It is important to notice

that when h > 0.35L, MCA-dpl stops using multi-floor MoSs, and instead CA uses only the

current floor MoSs for location estimates. This is due to the need to increase the monitoring

ranges by a factor of 2 of h. If h is large, this will cause a very large monitoring range on

the current floor, and not enough coverage on the adjacent floor. Then, CA will not be able

to estimate locations as accurately as possible with smaller monitoring ranges.

Figure 4.13 shows the ratio of current floor range to adjacent MoS range. We observe a

ratio close to 1. Also, as h increases the ratio gets closer to 1.

4.3.1.2 3FRS ( < (4, 3, 2),Gp, A > ) We also investigate the performance of MSAL un-

der a 3 floor repetition localization scenario < (4, 3, 2),Gp, A > explained in Section 4.1.2.1.

In order to show the effect of this deployment scheme, we assume 4, 3, 2, 4, 3 MoSs are placed

on the 1st, 2nd, 3rd, 4th and 5th floors in a 5-floor building as shown in Figure 4.4(b). In

simulations, to avoid the complexity that will be introduced by an additional variable, we

allow two different monitoring ranges to be set among 3 floors. This will also keep the
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calibration efforts at a lower level as two different monitoring ranges for MoSs has to be

calibrated instead of three. We assume floors with 4 and 3 MoSs are allowed to have the

same monitoring range for all MoSs deployed on those floors, and floors with 2 MoSs are

allowed to have a different monitoring range than the other floors have. Therefore, floors

1,2,4, and 5 have the same monitoring range d11, and floor 3 has monitoring range d22. The

results in this section are given for three floors only – namely floor 2, 3 and 4 – in order to

present the 3FRS performance.
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Figure 4.14: Eavg in 3FRS with isotropic and dipole antenna, σ = 0, h = 0.25L

Figure 4.14 shows the average expected error in 3 floors for different values of monitoring

ranges, dii, i = 1, 2 when floor height is given as h = 0.25L with MSAL-iso and MSAL-

dpl. Table 4.2 shows E∗
avg, and corresponding errors on each floor using SAL and MSAL-
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Figure 4.15: Eavg for 3FRS with isotropic antenna, σ = 0, h = 0.25L
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Figure 4.16: Eavg for 3FRS with dipole antenna, σ = 0, h = 0.25L
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Table 4.2: Minimum localization error conditions in 3FRS

E1/L E2/L E3/L E∗
avg/L (d11, d22, d33)/L

SAL(4,3,2) 0.135 0.27 0.19 0.198 (0.74,0.56,0.71)

MSAL-iso 0.082 0.079 0.077 0.079 (0.521,0.521,0.521)

MSAL-dpl 0.086 0.085 0.077 0.083 (0.778,0.778,0.778)

iso and MSAL-dpl. Under ideal conditions, best monitoring ranges can lead to similar

localization errors with isotropic and dipole antennas. The variation in accuracy between

floors is negligible as shown in Figures 4.15, 4.16 and Table 4.2.
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Figure 4.17: Effect of floor height on E∗
avg with 3FRS

Figure 4.17 shows the minimum achievable localization error with respect to floor height

with MSAL-iso/dpl and MCA-iso/dpl. The behavior seen in MSAL-iso and MSAL-dpl are

similar to the behavior seen in 2FRS scenario. MSAL-iso has an increasing trend, while

MSAL-dpl first decreases, then starts increasing. MSAL outperforms MCA significantly
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Figure 4.18: Best monitoring ranges d∗ii/L, i = 1, 2 with 3FRS

especially when h is large, and dipole antennas are used. Figure 4.18 shows the ratio of the

best monitoring ranges on two floors is close to 1.

4.3.2 Impact of Log-Normal Shadowing

Varying channel conditions has a significant impact on localization performance. The va-

garies in channel may result in creation of subareas that are not known by MSAL localization

system which is assuming unit disk model. These subareas are counted in Ci,invalid during

discussion of availability in the previous section. When Ci,invalid > 0, we propose to use

MCA for MNs that are detected in these invalid areas, and MSAL for MNs detected in valid

subareas. We call this algorithm MSAL+MCA. We expect that this algorithm will have

higher availability and worse localization error than MSAL due to localization errors of MNs

detected in invalid subareas just as in the case of SAL. These MNs’ location estimations are

not available when only MSAL is employed.

In this section, we investigate the effect of standard deviation in shadowing on location

accuracy, availability and efficiency with MSAL, MCA and MSAL+MCA with 2FRS and

3FRS scenarios. We assume isotropic or dipole antennas are used.

Figures 4.19 and 4.20 show that when h = 0.25L, the localization accuracy gets worse

under increasing shadowing effect with both 2FRS and 3FRS scenario. Other observations

are as follows: (1) 3FRS has slightly worse accuracy (6.6% on the average) than 2FRS due

to more MoSs with smaller adjacent ranges. (2) MSAL performs best under all shadowing

levels; however, we remind that accuracy is given for MNs for which an estimate is available.
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Table 4.3: MSAL acronyms and variables

Variable Explanation

MoSi Monitoring station deployed on floor i

dii Monitoring range on floor i of a MoSi

dij Effective monitoring range on floor j of a MoSi

h Floor height

2FRS 2 Floor repetition scheme

3FRS 3 Floor repetition scheme

E∗
avg Average accuracy on multiple floors

η∗avg Maximum achievable average efficiency on multiple floors

Ravg Average of availability on multiple floors

f∗ Estimated floor according to MBFD algorithm

Afn,i The fraction of area on floor i in which MNs

cannot be located on the correct floor.

Figures 4.21 and 4.22 show the availability under best accuracy conditions under differ-

ent shadowing conditions. Table 4.4 summarizes the observations from these figures, and

shows that availability with MSAL is significantly affected by shadowing when σ is large.

Under severe channel conditions, MSAL+MCA can provide close to maximum availability.

Figures 4.23 and 4.24 show the monitoring ranges with MSAL+MCA is decreasing as σ in-

creases. The reason of higher availability at σ = 10 with MSAL-dpl is that at this shadowing

level, SAL is used in order to minimize the localization error. When h = 0.25L, dii > 0.5L

for multi-floor localization has to be used.

Figures 4.25 and 4.26 shows the behavior of MSAL-iso and MSAL-dpl accuracy with
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Figure 4.20: Effect of shadowing on E∗
avg with 3FRS
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Figure 4.21: Availability at d∗ii 2FRS with isotropic and dipole antenna, h = 0.25L
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Figure 4.22: Availability at d∗ii, 3FRS with isotropic and dipole antenna, h = 0.25L
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Table 4.4: Availability at minimum error conditions (h = 0.25L)

2,3FRS 2FRS 2FRS 3FRS 3FRS

σ = 0 σ = 5 σ = 10 σ = 5 σ = 10

MSAL-iso 1 0.63 0.24 0.66 0.23

MSAL-dpl 1 0.40 0.58 0.38 0.45

MSAL+MCA-iso 1 0.96 0.98 0.96 0.97

MSAL+MCA-dpl 1 0.99 0.98 0.99 0.99

MCA-iso 1 0.99 0.99 0.99 0.99

MCA-dpl 1 0.99 0.99 0.99 0.99

2FRS and 3FRS under different floor height and shadowing conditions. The observation is

in line with expectations as smaller floor height and smaller σ provide better accuracy in all

cases, and as σ increases the effect of large floor height is more significant.

Figure 4.27 gives an idea on how MSAL accuracy performance compares to other local-

ization algorithms under shadowing with σ = 5 for different floor heights. MSAL-iso out-

performs other algorithms when location estimate is available. When compared to accuracy

under ideal conditions given in Figure 4.11, we still observe increasing trend in localization

error with isotropic antennas. We also observe increasing trend with dipole antennas as

opposed to the behavior under ideal conditions. With isotropic antennas it is best to use

MSAL+MCA in order to get as many estimates as possible (Table 4.4), and still less error

than MCA. MCA-dpl outperforms MSAL+MCA-dpl if h < 0.2L; otherwise, MSAL+MCA-

dpl is again the best choice. The observation of efficiency at minimum localization error

conditions are in line with this conclusion.

In order to find out the overall efficiency performance of MSAL compared to other two

algorithms, we look at Figure 4.28 showing the efficiency that is provided by the best mon-
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Figure 4.23: Effect of σ on d∗ii with 2FRS

itoring range levels. According to this figure, with both 2FRS and 3FRS, MSAL+MCA

performs similar to MSAL at small σ and similar to MCA at large σ values. This is due to

the creation of larger number of invalid subareas at high shadowing levels. MSAL seems to

be the worst especially under high σ due to its poor availability performance.

Figures 4.29 shows the availability under different channel conditions and floor height

with 2FRS. We can observe higher availability with small h and small σ as expected in

isotropic case. Small h can provide a larger interval for monitoring ranges to choose from

as the best monitoring range, and small σ reflects as fewer invalid subareas. With dipole

antennas, the ring shaped adjacent range divides the isotropic range into two parts, which can

increase the number of subareas, therefore, the possibility of detecting in invalid subareas.

Therefore, as h is increasing, SAL is employed and number of invalid subareas are minimized

in order to maximize availability. The effect of invalid subareas on availability is more

significant with dipole ranges than with isotropic ranges. 3FRS availability is shown in

Figure 4.30. A significant difference is seen with dipole antennas as increasing h causes

availability to decrease as opposed to utilizing SAL as in 2FRS.
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Figure 4.24: Effect of σ on d∗ii with 3FRS

145



0
5

10

00.20.40.60.8
0

0.2

0.4

σ

2FRS, <(5,4), G
p
, A>

Isotropic

h/L

E
av

g
*

/L

0

5

10

00.10.20.30.40.5
0

0.2

0.4

σ

Dipole

h/L

E
av

g
*

/L

Figure 4.25: E∗
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avg 3FRS with isotropic and dipole antenna for different values of h and σ
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Figure 4.27: E∗
avg 2FRS with isotropic and dipole antenna, σ = 5
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Figure 4.28: Efficiency at d∗ with 2FRS and 3FRS, h = 0.25L
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avg 3FRS with isotropic and dipole antenna
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Figure 4.31 shows the maximum overall efficiency, η∗ that can be achieved with 2RFS

with respect to h under σ = 0 and σ = 5 conditions, and shows that while it is unlikely

there will be any control over h, there is a best h value maximizing efficiency when using

dipole antennas under ideal channel conditions. The maximum achievable efficiency appears

at h = 0.2L for MCA-dpl, and at h = 0.35L for MSAL-dpl when σ = 0. When σ = 5, the

maximum efficiency is where the floor height is smallest, this is expected as an increase in

floor height causes adjacent monitoring ranges to narrow down. A general observation is

that MSAL+MCA (same as MSAL when σ = 0) outperforms other algorithms under any

channel conditions. Also, isotropic antenna coverages can provide better efficiency compared

to efficiency with dipole antennas. When h = 0, SAL is used with < 9,G, A > scenario, a

comparison to multi-floor utilization reveals the advantages of using MoSs across floors over

using MoSs on the current floor only. Simulations show that the observations for 2FRS are

also valid for 3FRS localization scenario as seen in Figure 4.32, except that the maximum

efficiency appears at h = 0.4L for MSAL when σ = 0. When 2FRS and 3FRS are compared,

we see 3FRS efficiency is larger than 2FRS efficiency. This is a reflection of using less number

of MoSs per floor on 3FRS scenario. If we zoom into h = 0.25L value to compare performance

under different σ, Figure 4.33 shows that MSAL is better than MCA at close to ideal channel

conditions, and MSAL+MCA outperforms other algorithms under any channel condition for

both 2FRS and 3FRS and for both isotropic and dipole antenna models. Also, localization

errors achieved with MSAL+MCA at maximum efficiency levels are the smallest.

4.3.3 Effect of Wall Attenuation Factor

In order to show the effect of wall attenuation factor on MSAL performance we worked with

two different floor plans introduced before in Section 3.4.1. In this case, signals traveling

from adjacent floors will have to pass through walls to reach MoSs that are placed on the

floor of the current floor. We used Eq. 3.37 and 3.38 in order to calculate the received power

and detection threshold, and assumed WAF = 3.1dB. This attenuation factor causes the

MoSs to perceive the range as d/1.26. We assume the floor plans and MoS locations are

known to the localization system. Detection threshold for each MoS i is calculated separately
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by considering the average number of walls that a signal will pass through from,

Rth,i = Rs − navg,i WAF (4.10)

In previous sections, Rs is given as,

Rs = Pt − 10αlog10(d) (4.11)

Rth,i = Pt − 10αlog10(dMN)− nWAF (4.12)

Rs − navg,i WAF = Pt − 10αlog10(dMN)− nWAF (4.13)

Pt − 10αlog10(d)− navg,i WAF = Pt − 10αlog10(dMN)− nWAF (4.14)

dMN =
d

10WAF (n−navg,i)/10α
, (4.15)

If n ≥ navg,i, MN is detected if only it is in range d, otherwise, it is still detected, and

it is detected outside range d as in this case dMN > d. Detection threshold for each MoS

changes with the average number of walls that a signal must pass through to reach this

MoS. But if the signal actually passes through a less number of walls than the average, this

threshold allows MNs that are outside of monitoring range to be detected as if they are

in the range. Due to this condition, invalid subareas can appear even under ideal channel

conditions. These MNs can be located by MSAL+MCA or MCA algorithm. Therefore, we

expect to see different accuracy for MSAL and MSAL+MCA under ideal conditions.

WAF effect is investigated using 2 localization scenarios, 2FRS and 3FRS. Figures 4.34

and 4.35 show how accuracy changes with floor height in the presence of wall attenuation

factor assuming no shadowing with 2FRS and 3FRS localization scenarios, respectively. We

observe that the best accuracy is achieved at smaller floor height due to larger monitoring

ranges. Performance of three algorithms are similar with isotropic antennas, whereas with

dipole antennas, MSAL outperforms the other two algorithms. Previously, we showed that

MSAL and MSAL+MCA performs exactly the same due to no invalid subareas under ideal

channel conditions. However, when WAF is considered, invalid subareas may be formed due

to the ambiguity of the number of walls that a signal may pass through to reach MoSs.

Then, MSAL is not expected to localize the nodes that fall into the invalid subareas; but

MSAL+MCA is expected. In these two figures, MSAL+MCA has worse accuracy than
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MSAL accuracy because MSAL+MCA average error includes the localization error of nodes

in invalid subareas.
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Figure 4.34: Accuracy versus h at σ = 0 with 2FRS

In Figure 4.36, we demonstrate an instance of how MSAL+MCA localizes MNs shown

with blue stars in 2 floors in floor plan 1. Solid lines show the coverage with Rs and, dashed

lines show the coverage with Rth,i. Red diamonds show the potential estimated locations with

MSAL used to localize MNs detected in valid subareas, whereas green diamonds show the

potential estimated locations with MCA used to localize nodes detected in invalid subareas.

Note that with MSAL, even MNs out of the range with Rth,i can be located as if they are in

range. This is due to relationship between n and navg,i.

Figures 4.37 and 4.38 show the availability with 2FRS and 3FRS. These figures confirm
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Figure 4.35: Minimum error versus h at σ = 0 with 3FRS
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Figure 4.36: Visualization of estimated locations with 2FRS with Floor Plan 1, h = 0.25L

the discussion about the coverage and invalid subareas with MSAL being lower than 100%

even under ideal channel conditions. MSAL+MCA and MCA availabilities are less affected

by WAF when compared to MSAL. Also, we note that although MSAL cannot have high

availability performance, it can contribute to MSAL+MCA with reduced localization error

for an average of 100RMSAL% of the floor area.

Figure 4.39 shows the ratio of best monitoring ranges in case of no shadowing. Although

ratio of monitoring ranges stays close to unity, it changes with different floor height.

The good accuracy/availability performance of MSAL+MCA reflected as good perfor-

mance in terms of the overall efficiency in both localization scenarios and both floor plans.

Simulation results are shown in Figures 4.40 and 4.41 with 2FRS and 3FRS localization

scenarios. Isotropic antennas is also shown to be better in terms of the overall localization

efficiency. 3FRS can provide better efficiency than 2FRS especially when floor height is

small. When floor height is small, efficiency levels with isotropic and dipole antennas area

similar due to smaller difference in vertical range. As floor height increases, the efficiency

levels with isotropic and dipole antennas diverge from each other. Dipole antennas can pro-

vide less efficiency as expected. For example, for FP 1, efficiency levels with 3FRS range

155



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

R
 a

t d
*

2FRS, <(5,4), G
p
, A>, FP 1, σ=0

h/L

 

 

MSAL−iso
MSAL+MCA−iso
MCA−iso
MSAL−dpl
MSAL+MCA−dpl
MCA−dpl

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.2

0.4

0.6

0.8

1

R
 a

t d
*

2FRS, <(5,4), G
p
, A>, FP 2, σ=0

h/L

 

 

MSAL−iso
MSAL+MCA−iso
MCA−iso
MSAL−dpl
MSAL+MCA−dpl
MCA−dpl

Figure 4.37: Availability at minimum error conditions versus h at σ = 0 with 2FRS
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Figure 4.38: Availability at minimum error conditions versus h at σ = 0 with 3FRS

157



0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.8

1

1.2

1.4

1.6

d 11*
/d

22*

2FRS, <(5,4), G
p
, A>, FP 1, σ=0

h/L

 

 
MSAL−iso
MSAL+MCA−iso
MCA−iso
MSAL−dpl
MSAL+MCA−dpl
MCA−dpl

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.8

1

1.2

1.4

1.6

1.8

2

d 11*
/d

22*

2FRS, <(5,4), G
p
, A>, FP 2, σ=0

h/L

 

 
MSAL−iso
MSAL+MCA−iso
MCA−iso
MSAL−dpl
MSAL+MCA−dpl
MCA−dpl

Figure 4.39: Minimum error monitoring range versus h at σ = 0 with 2FRS
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from 20 to 16 with isotropic antennas and 20 to 10 with dipole antennas, whereas with 2FRS

levels range from 13 to 10 with isotropic antennas and 13 to 8 with dipole antennas. When

we compare best efficiency levels at h = 0.25L with and without WAF effect, we observe

17% degradation in efficiency with 3FRS and 14% degradation with 2FRS using MSAL-iso.

MSAL-dpl provides even worse efficiency.

We ran a set of simulations to show the effect of WAF while the channel is subject to

log normal shadowing. Figures 4.42 and 4.43 show the accuracy with respect to h under

shadowing with σ = 5 with 2FRS and 3FRS, respectively. Similar results such as MSAL

outperforms other algorithms, and 2FRS can provide better accuracy can be drawn from

these figures. In addition to these, we observe that with dipole antennas, when h ≤ 0.3,

MSAL and MSAL+MCA approach to similar accuracy levels.

As expected, large floor height and large σ can degrade the maximum efficiency of local-

ization system. Figures 4.44 and 4.45 show the overall efficiency with 2FRS and 3FRS with

respect to σ when h = 0.25L. In both cases, increasing shadowing effect degrades overall

efficiency, and MSAL+MCA outperforms the other algorithms. 3FRS has higher efficiency

than 2FRS due to smaller number of MoSs used per floor. Also, at high levels of shadowing,

MSAL-dpl outperforms MSAL-iso due to a higher number of invalid subareas created by a

larger adjacent monitoring range with isotropic antennas.

4.3.4 Effect of Floor Attenuation Factor

In multi-floor buildings, a signal propagation model including floor attenuation factor may

be used to simulate the signal power degradation when it travels from another floor [35]. In

this case, received power is attenuated by FAF dB as in,

Pr = Pt − 10αlog(dij) +X − FAF (f) (4.16)

where FAF represents the floor attenuation factor which is a function of number of floors that

a signal pass through to reach the receiver. However, the attenuation is not a linear function.

FAF for one floor was calculated empirically at 914Mz in [35] as 13dB. 13dB attenuation

on received power cuts the traveling distance of this signal by xf = 10FAF/(10α) ≈ 2.7. This
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Figure 4.40: Maximum efficiency versus h at σ = 0 with 2FRS
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Figure 4.41: Maximum efficiency versus h at σ = 0 with 3FRS
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Figure 4.42: Minimum error for different values of h at σ = 5 with 2FRS
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Figure 4.43: Minimum error for different values of h at σ = 5 with 3FRS
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Figure 4.44: Maximum efficiency for different values of σ and h = 0.25L with 2FRS
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Figure 4.45: Maximum efficiency for different values of σ and h = 0.25L with 3FRS

165



case is equivalent to increasing the floor height by a factor of xf , i.e., hFAF = h × xf . The

effective floor height is shown in Figure 4.46. From the relationship between h and hFAF ,

required monitoring range for multi-floor coverage and allowed current floor range (dii ≤ L),

we expect to see single floor localization is used with hFAF > L with isotropic antennas and

2hFAF > L with dipole antennas instead of multi-floor localization. then, the floor height

thresholds for multi-floor localization with isotropic antenna antenna and dipole antennas

are h > L
xf

and h > L
2xf

, respectively.
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Figure 4.46: Effective floor height when FAF = 13dB

FAF effect is investigated using two localization scenarios, 2FRS and 3FRS, as in previous

sections. Figures 4.47 and 4.48 show how accuracy changes with floor height in the presence of

floor attenuation factor assuming no shadowing. From this figure, we observe that minimum

localization error with dipole and isotropic antennas increases with increasing floor height,

and saturates at the same value for floor height larger than 0.35L. We also see a jump in

accuracy of MSAL-dpl when h ≤ 0.15L. Due to floor attenuation effect, MSAL-dpl and

MCA-dpl use MoSs only on the current floor to get the best accuracy when h ≥ 0.2L and

h ≥ 0.15L, respectively. Isotropic antennas have a wider adjacent floor range, and the

constraint on floor size is more loose (d > h) than with dipole antennas (d > 2h). This is

why MSAL-iso and MCA-iso use MoSs only on the current floor to get the best accuracy

when h ≥ 0.4L and h ≥ 0.35L, respectively. Accuracy with isotropic antennas and dipole

antennas approaches to same values as the range of dipole antennas will be equivalent to

range of isotropic antennas on the current floor.
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Figure 4.47: Minimum error for different values of h at σ = 0 with 2FRS
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Figure 4.48: Minimum error for different values of h at σ = 0 with 3FRS
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Figures 4.49 and 4.50 show the ratio of best monitoring ranges in case of no shadowing.
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Figure 4.49: Minimum error monitoring range for different values of h at σ = 0 with 2FRS

Figures 4.51 and 4.52 show the accuracy with 2FRS and 3FRS under shadowing with

σ = 5, respectively. Also under shadowing we observe the similar behavior as in ideal

channel conditions. However, in this case, accuracy with isotropic and dipole antennas

approach to the same value at a lower floor height than with ideal channel. Availability

under ideal channel conditions is equal to unity; however, as shown in Figures 4.53 and

4.54, the availability under X = N(0, 5) decreases slightly with increasing height in case

of MCA and MSAL+MCA. In case of MSAL, availability first decreases and then starts to

increase with increasing floor height. While using MoSs across floors as floor height increases

availability decreases due to both coverage and effect of invalid subareas created by largest

monitoring ranges that are preferred in order to utilize multi-floor localization. For example

with 2FRS, when h ≥ 0.25L, monitoring range stays at a level that it cannot utilize multi-

floor localization if under ideal conditions. However, with shadowing, there are still areas

that can be heard by MoSs on multiple floors. As floor height increases these areas gets

smaller and eventually disappears. This is the reason why availability starts to increase and

approach the same values as with dipole antennas while h is increasing. At h = 0.15L,

MSAL-dpl uses MoSs on current floor only, therefore the availability increases due to less
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Figure 4.50: Minimum error monitoring range for different values of h at σ = 0 with 3FRS

number of MoSs, and smaller probability of invalid subareas.

Figures 4.55 and 4.56 show the ratio of best monitoring ranges in case of shadowing with

σ = 5.

Figures 4.57 and 4.58 show how the accuracy is affected by shadowing under different

floor height assumptions in the presence of FAF with 2FRS. The observation is that for floor

smaller floor height the advantage of MSAL and MSAL+MCA is obvious when compared

to MCA even at high levels of shadowing. This advantage starts to disappear at larger floor

height values. Figures 4.59 and 4.60 show how the accuracy is affected by shadowing with

3FRS. The outcome of this simulation is similar to the outcome from 2FRS simulations.

4.3.5 Effect of Random Placement

It may not be possible or feasible to place MoSs on a grid on each floor of a building.

Therefore, in this section we provide the results of a simulation of 2FRS localization scenario

with randomly placed MoSs, < (5, 4),R, A >. In order to make a fair comparison between

grid placement scenarios and random placement scenario, we used the same number of MoSs
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Figure 4.51: Minimum error for different values of h at σ = 5 with 2FRS
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Figure 4.52: Minimum error for different values of h at σ = 5 with 3FRS
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Figure 4.53: Availability at minimum error conditions for different values of h at σ = 5 with

2FRS
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Figure 4.54: Availability at minimum error conditions for different values of h at σ = 5 with

3FRS
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Figure 4.55: Minimum error monitoring range for different values of h at σ = 5 with 2FRS
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Figure 4.56: Minimum error monitoring range for different values of h at σ = 5 with 3FRS
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Figure 4.57: Minimum error monitoring range for different values of s with 2FRS
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Figure 4.58: Minimum error monitoring range for different values of s with 2FRS
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Figure 4.59: Minimum error monitoring range for different values of s with 3FRS
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Figure 4.60: Minimum error monitoring range for different values of s with 3FRS
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in two floors as 5 and 4, 9 in total. At each floor 4 MoSs are randomly placed at 4 small

divisions of each floor, and every other floor one MoS is placed at the center of the floor.

Simulation results shown are the average of 20 such placement of MoSs in 2 floors.

The accuracy of random placement scenario on two floors are 0.0873L and 0.0879L, and

average accuracy on both floors is 0.0876L achieved at (d11, d22) = (0.48L, 0.62L). These

monitoring ranges can provide 100% availability on the average. The variance between the

performance of different placement instances are shown in Figure 4.61: the variance is very

small and the worst accuracy achieved is 0.024L larger than the best accuracy.
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Figure 4.61: Accuracy of different instances of random placement with 2FRS, <

(5, 4),R, A >, σ = 0

Figures 4.62 and 4.63 show the minimum localization error and efficiency at minimum

error conditions under different floor height assumptions and under different channel condi-

tions. According to this, under ideal conditions, accuracy achieved with MSAL is similar to

the one achieved with scenario < (5, 4),Gp, A >. In terms of efficiency MSAL+MCA out-

performs other algorithms under shadowing, and MSAL performs better than MCA under

ideal conditions due to better accuracy and same 100% availability.
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4.4 FLOOR DETERMINATION FOR MSAL

In Section 4.1, we introduced the multi-floor subarea algorithm and in the following sections,

we demonstrated that in multi-floor buildings, the monitoring stations across floors can be

utilized in order to improve the efficiency of localization system by keeping the number of

infrastructure elements minimal without increasing the localization error. Our objective was

to show that employing MoSs across floors is advantageous in terms of cost and accuracy

at the same time. For this study, we assumed that an external floor determination (FD)

algorithm was available to provide the floor information of mobile nodes.

In this section, we propose that a majority based floor determination algorithm can be

used to find which floor a MN is residing in. When floor information is not correct, it is

not worthwhile to find the two dimensional location of the MN on the wrongly estimated

floor. Therefore, the availability of the localization algorithm will be affected by the FD

algorithm’s performance. The FD performance on the other hand will get affected by the

number and placement of MoSs on adjacent floors, and also the antenna type. For FD, the

monitoring range on the vertical direction is very important, because inputs from multiple

floors are needed in order to decide which floor the MN is located at.

In the following, we first explain how majority based floor determination algorithm works,

then we analyze the effect of antenna type and its relationship with the floor height. Then,

we investigate the floor determination performance under log normal shadowing. And we

continue with the evaluation of multi floor localization performance when integrated with

floor determination algorithm.

4.4.1 Majority Based Floor Determination (MBFD)

Exploiting MoSs on multiple floors to improve efficiency implies that it is now necessary to

use the RSS observed at MoSs to determine the correct floor on which a MN is located. We

determine the floor based on the sum ofm strongest RSS values observed at the MoSs on each

floor that detect the same MN. This algorithm is called majority based floor determination

(MBFD) [46].
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Let the sum of the m strongest RSSs observed in set MoSi be RSS
(m)
sum,i, where MoSi

is the set of MoSs in floor i that detect the same MN. We call m the decision depth. Then

the algorithm decides that the MN is located on floor with the highest sum of m RSS

measurements:

f ∗ = argmaxf=1,...,F

(
RSS

(m)
sum,f

)
(4.17)

4.4.1.1 Special case When m = 1, this algorithm only compares the strongest RSSs

observed in different floors.

In ideal conditions (no shadowing), for this algorithm with m = 1 to estimate the floor

of a MN correctly as floor i, following two constraints have to be satisfied:

1. The first constraint is that the monitoring range dii of MoSs in MoSi must be sufficiently

large so that the area A of floor i is covered fully.

2. The second constraint exists due to the relationship between the placement of MoSs,

the floor height, and antenna type: Let MN∗
i be a MN on floor i that is located at the

farthest physical distance from any MoSs ∈ MoSi. And let the MoS∗
i is the closest MoS

to MN∗
i on floor i,MoS∗

i = argmink (dist[MN∗
i ,MoSik]). Then, the distance MN∗

i to

its closest MoS, dist[MN∗
i ,MoS∗

i ], on floor i must be upper bounded by the minimum

distance of MN∗
i to a MoS on floor j that can detect it, mink (dist[MN∗

i ,MoSjk]), so

that MN∗
i is closer to a MoS on the same floor and not one on a different floor (j):

mink (dist[MN∗
i ,MoSik]) < mink (dist[MN∗

i ,MoSjk]) , j ̸= i, (4.18)

The detection of MN∗
i by a MoS on floor j depends on the vertical coverage of MoSs in

floor j.

Under ideal channel conditions, when floor attenuation factor is neglected, RSS measure-

ments only depend on the distance between MNs and MoSs. This implies that, when these

two conditions are satisfied, MBFD with m = 1 always detects the floor of a MN correctly

irrespective of its two dimensional coordinates on the floor.
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4.4.2 False Negatives

When a MN is estimated to be on floor j but not on the correct floor i, it is counted as

a false negative for floor i, and a false positive for floor j. We call Afn,i – the fraction of

areas in floor i declared to be in floor j, j ̸= i – as the percentage of false negatives for floor

i. In other words, Afn,i denotes the fraction of area in which MNs cannot be located on

the correct floor. For good FD performance, Afn,i must be small for all floors i in a given

building.

When both constraints mentioned in special case explained in Section 4.4.1.1 are satisfied

and channel conditions are ideal, then, a MN in floor i is estimated on the correct floor, and

adjacent monitoring ranges (djj and dji) cannot influence Afn,i.

4.4.3 Effect of Antenna Type

In MBFD, RSS measurements regarding the same MN are collected from multiple floors

and the sum of them are compared to each other for the decision. If MoSs do not have

adjacent floor coverages, then there will exist RSS measurements from only the floor the

MN is residing in. In this case there is no need for FD. However, our objective is to utilize

the MoSs across floors in order to increase the overall efficiency of the localization system.

Therefore, adjacent (vertical) coverages gain significance in FD performance.

As FD algorithm depends on the adjacent coverages of MoSs, its performance gets af-

fected by the antenna type. The difference between the monitoring range on the vertical

direction for isotropic and dipole antennas is expected to cause a difference in floor deter-

mination performance for these two types of antennas. With isotropic antennas, although

the adjacent monitoring range is smaller than on current floor, the center point of circular

coverage is the same on 2 dimensional coordinates. However, with dipole antennas, donut

shaped coverage causes an uncovered circular area in the middle of the covered area on the

adjacent floor. With both antenna assumptions, an equal size coverage exists on the current

floor.

For MBFD to estimate the floor of a MN correctly with m = 1, both constraints given

in the previous sections must be satisfied. Antenna type related details of 2nd constraint
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must be considered carefully depending on the placement of MoSs on adjacent floors.

4.4.4 Evaluation of MBFD Algorithm

According to our simulation results in previous sections, MSAL with 3 floor repetition scheme

and 2 floor repetition scheme can provide better localization efficiency when compared to

efficiency with SAL. We showed that this is possible without harming the accuracy of localiza-

tion system. In this section, we provide a detailed performance analysis on FD performance

of a 2 floor repetition localization scenario (2FRS) under various channel conditions and

with different antenna types. Later in Section A.3.1, the performance of multi-floor subarea

localization and multi-floor centroid algorithm with 2FRS are shown when integrated with

MBFD algorithm. We have held the exact same evaluation with a 3 floor repetition scenario;

however, we chose to present 2FRS evaluation in detail for the sake of simplicity. We provide

the evaluation results on 3FRS in Appendix A.3.

While evaluating the floor determination performance, 2FRS < (5, 4),Gp, A > that is

introduced in Section 4.3, and shown in Figure 4.4(a) is used. With this placement scheme,

for no false negatives, the first constraint in special case is satisfied if dii ≥ 0.5L with both

isotropic and dipole antennas. For second constraint to be satisfied, detailed analysis for

different antenna types is given as follows:

• Assuming isotropic antennas, the distance MN∗
i to its closest MoS, MoS∗

i on that floor

must be upper bounded by the floor height, h, i.e.,

mink (dist[MN∗
i ,MoSik]) < h

so that MN∗
i is closer to a MoS on the same floor and not one on a different floor.

This follows from the fact that the minimum distance between a MoS and a MN on the

adjacent floor equals to the floor height when they both are located on the same 2D

coordinates on adjacent floors. Due to spherical coverage of isotropic antennas, this MoS

can monitor the MN. Therefore, the minimum distance, mink (dist[MN∗
i ,MoSik]) = h.

If minimum distance is smaller than floor height, MN can be estimated on the correct

floor.
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• Assuming dipole antennas, the distance MN∗
i to its closest MoS, MoS∗

i on that floor

must be upper bounded as,

mink (dist[MN∗
i ,MoSik]) < mink (dist[MN∗

i ,MoSjk]) , j ̸= i

h2 > d2s −
√
2dsr1j

where ds = min(dist[MoS∗
i ,Mos∗j ]) in 2D coordinates, so that MN∗

i is closer to a MoS

on the same floor and not one on a different floor. This can be explained as follows:

According to the placement of MoSs on adjacent floors, we know that the closest distance

between two MoSs on the 2-dimensional coordinates is ds = dist2D[MoS∗
i ,MoS∗

j ].

mink (dist[MN∗
i ,MoSik]) < mink (dist[MN∗

i ,MoSjk]) , j ̸= i√
r21j
2

+

(
ds −

r1j√
2

)2

<
√

h2 + r21j

h2 > d2s −
√
2dsr1j

Right and left side of this inequality is shown in Figure 4.64 assuming MoSs are placed

on a projected grid, and different floor heights. For simplicity, we denote the right side of

the inequality with T in the figure. We observe that the condition for zero false negatives

is only satisfied when h ≥ 0.35L and djj < 0.86. Also, as h is smaller, the monitoring

range has to be smaller too.

We show the percentage of false negatives with isotropic antennas when h = 0.5L with

2FRS scenario in Figure 4.65. In this case, it is obvious that when dii ≥ L/2, the first

constraint is satisfied. When m = 1 at h = 0.5L, second constraint is also satisfied, and

false negatives percentage is 0. As m increases, the range that can provide zero false nega-

tives narrows down because multiple RSS values from each floor are combined together and

compared against each other for FD. In 2FRS scenario, for every MN, m RSS measurements

are collected from 2 different floors and the sum of these values are compared to each other

to find the correct floor among the two floors. From Figure 4.64, we can observe that with

dipole antennas, zero false negatives can be achieved when d < 0.86 and h = 0.35L, assuming

d satisfies the first condition. Therefore, in Figure 4.66, we show the Afn on two floors using

dipole antennas when h = 0.35L. The constraint on djj is also observed in this figure. We
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Figure 4.64: Second constraint for dipole antennas

remind that for adjacent monitoring ranges to be non-zero with dipole antennas, dii > 2h

must be satisfied.

We determine the smallest possible fraction of false negatives A∗
fn over the possible

monitoring ranges in each floor. Figures 4.67 and 4.68 show theminimum average percentage

of false negatives, A∗
fn that can be achieved for a given decision depth m, floor height, h,

and the standard deviation of the shadowing, σ with 2FRS scenario, where:

A∗
fn = mindii,i=1,2

(
1

2

F∑
i=1

Afn,i

)
. (4.19)

In these figures, we ensure that the 1st constraint is satisfied, i.e., under ideal conditions,

full coverage on every floor is provided by adjusting the monitoring ranges. In general, we

observe increasing percentage of false negatives for increasing floor height and shadowing

effect. The effect of floor height arises from the adjacent monitoring range depending on

floor height as discussed before. Shadowing effect disrupts the adjacent monitoring range,

therefore, false negative percentage gets higher. With dipole antennas, we observe A∗
fn = 0

when h ≤ 0.35L as discussed previously. Monitoring ranges are allowed to be dii > 2h so
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185



0
0.5

1

0
0.5

1
0

0.5

d
11

/L

Floor 1, m=1

d
22

/L

A
fn

,1
/L

0
0.5

1

0
0.5

1
0

0.5

d
11

/L

Floor 2, m=1

d
22

/L

A
fn

,2
/L

0
0.5

1

0
0.5

1
0

0.5

1

d
11

/L

Floor 1, m=2

d
22

/L

A
fn

,1
/L

0
0.5

1

0
0.5

1
0

0.5

1

d
11

/L

Floor 2, m=2

d
22

/L

A
fn

,2
/L

0
0.5

1

0
0.5

1
0

0.5

1

d
11

/L

Floor 1, m=3

d
22

/L

A
fn

,1
/L

0
0.5

1

0
0.5

1
0

0.5

1

d
11

/L

Floor 2, m=3

d
22

/L

A
fn

,2
/L

Dipole, 2FRS, <(5,4), G
p
, A>, σ=0, h=0.35L
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that MSAL can be utilized. When this requirement is removed, we do not see a difference in

FD performance with isotropic antennas. But with dipole antennas, we see A∗
fn = 0 when

h ≥ 0.3L. The reason is that at 0.3L, the first constraint is satisfied, but the monitoring

range d < 2h, therefore, adjacent monitoring ranges do not exist, then, in floor determination

each MN is detected by MoSs on the floor they reside in. In this case, multiple RSS readings

cannot be collected from multiple floors.

0
5

10

00.20.40.60.8

0

0.5  

Isotropic, 2FRS, <(5,4), G
p
, A>

m=1

h/Lσ

 

A
fn

,a
vg

*

0

5

10

00.20.40.60.8

0

0.5
 

h/L

m=2

σ
 

A
fn

,a
vg

*

0
5

10

00.20.40.60.8

0

0.5
 

h/L

m=3

σ

 

A
fn

,a
vg

*

0

0.2

0.4

0.1

0.2

0.3

0.4

0.1

0.2

0.3

0.4

Figure 4.67: Minimum false negative percentage with < (5, 4),Gp, A, iso >

To get a more detailed look, Figure 4.69 shows minimum false negatives percentage with

respect to floor height under ideal conditions. According to analysis, percentage of false

negatives is 0 at decision depth m = 1 when h ≥ 0.5L and σ = 0. As also shown with the

conditions, at h = 0.5L, decision depth m = 1 can provide zero false negatives under ideal

conditions. However, using a larger decision depth can provide a lower Afn value for smaller
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floor height. We also observe that floor height has a sharper effect on false negatives with

dipole antennas. This is due to smaller vertical range of dipole antennas.
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Figure 4.69: Minimum false negative percentage with < (5, 4),Gp, A, iso/dpl >, σ = 0

Figure 4.70 shows the minimum false negatives with respect to σ when h = 0.25L. With

isotropic antennas, we observe A∗
fn with decision depth m = 1 is higher than with m = 2, 3

when σ < 5. Under higher shadowing effect, m = 1 gives the smallest percentage of false

negatives. A∗
fn with dipole antennas is much larger than A∗

fn with isotropic antennas due

to smaller vertical range on dipole antennas when compared to isotropic antennas. As σ is

getting larger, we observe A∗
fn continues to increase, and smaller A∗

fn is given by decision

depth m = 2, 3 when σ ≤ 8.

4.5 EVALUATION OF MSAL WITH MBFD

Floor determination is independent of the 2D localization algorithm that is used to find

where on a given floor the MN is located at. However, it affects the overall performance
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Figure 4.70: Minimum false negative percentage with < (5, 4),Gp, A, iso/dpl >, h = 0.25L

of localization system in terms of efficiency. Our definition of efficiency comprises of good

accuracy, high availability and small number of infrastructure elements per unit area. Be-

cause FD changes the availability of location estimates, we want to investigate the effect

of different decision depths and antenna types with 2FRS, < (5, 4),Gp, A >. This scenario

has been used in determining the floor determination performance of majority based floor

determination algorithm in the previous section.

4.5.1 Availability with MBFD

In considering the efficiency, we would like to consider only nodes that can be localized,

and that too on the correct floor. Availability definition in Section 4.1.3 takes the invalid

and uncovered areas into consideration. In this section, we also must consider Afn,i which

corresponds to the fraction of area in which MNs cannot be located on the correct floor.

Towards this, we make the following definitions and computation.

Let C ′
i be the area on floor i that can be sensed by at least one MoS. Then, C ′

i(1−Afn,i)

190



is the area on floor i where a MN is determined to be on the correct floor. When σ = 0,

MNs are always located in valid sub-areas whose boundaries are determined from the unit

disk model. When σ > 0, an area Cinvalid,i of the localizable area C ′
i(1− Afn,i) may belong

to invalid subareas. As discussed in Section 4.1.3, these arise because radio propagation

vagaries will create intersections of monitoring areas of MoSs, that theoretically do not have

intersecting ranges. MSAL cannot be directly used for localizing nodes in these invalid

subareas. Nodes in such invalid subareas can be localized for instance, by using MCA. Let

Ci = C ′
i(1−Afn,i)−Cinvalid,i. Then, the fraction of the area in which a node can be localized

by MSAL on a floor i is

RMSAL,i =
Ci

|A|
. (4.20)

Since MCA can localize nodes in invalid subareas, the availability with MSAL+MCA

and MCA are the same and calculated as,

RMSAL+MCA,i = RMCA,i =
C ′

i(1− Afn,i)

|A|
. (4.21)

Under ideal conditions and when floor information is known, availability is not affected

by shadowing or the performance of FD algorithm, but affected only by MoS coverage.

MoS coverage depends on floor height as adjacent monitoring range is a function of vertical

coverage. When floor information is not given, we use the FD algorithm with different

decision depths, m. In the following we show the average availability in 2FRS scenario

with different antenna type assumptions when floor information is available and when floor

determination is used withm = 1, 2, 3. We note that under ideal conditions, Cinvalid,i = 0 and

RMSAL,i = RMSAL+MCA,i = RMCA,i = Ri. Average availability is given as Ravg =
1
2

∑2
i=1 Ri.

Average availability on two floors are shown in Figures 4.71 and 4.72 using isotropic and

dipole antennas. We assume h = 0.25L. When h < L/2, floor determination algorithm

causes the availability to decrease below 100% even under ideal channel conditions and

monitoring range on current floor is large enough to cover the whole area on both of the

floors. This was shown before in Figure 4.70. With dipole antennas in order for floor

determination can be realized between multiple floors, d > 2h. Therefore, we can neglect

d < 0.5L when h = 0.25L, and focus on where d ≥ 0.5L. Figures A6 and A7 show the

availability that can be achieved with isotropic and dipole antennas on two floors.
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Figure 4.71: 2FRS Average availability with different decision depths with isotropic antennas,

σ = 0, h = 0.25L
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Figure 4.72: 2FRS Average availability with different decision depths with dipole antennas,

σ = 0, h = 0.25L
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4.5.2 Best Accuracy Conditions

Depending on floor determination algorithm’s performance with different decision depths,

the availability of location estimation increases or decreases. This reflects as higher or lower

minimum average localization error.

Figure 4.73 shows the accuracy with different floor heights under ideal channel conditions

with 2FRS. With both MSAL and MCA, m = 3 is providing the best accuracy levels, while

m = 1 has the worst accuracy levels. This is due to availability degradation with larger

decision depth. Decision depth m = 1 provides the closest accuracy levels to the levels with

known floor information. When h ≥ 0.55L, we observe that CA-iso is preferred instead of

MCA-iso.

With dipole antenna assumption, best achievable accuracy approaches to the same value

for different decision depths at h ≥ 0.35L as shown in Figure 4.73. The reason can be

explained as follows: When floor height is larger than a threshold, in order to use adjacent

monitoring, monitoring ranges must be increased; however, increasing monitoring ranges

may not be the best choice in accurate location estimation of MNs on the current floor.

Therefore, when floor height is larger than this threshold, instead of using MSAL, SAL is

used in location estimation. In this case, there is no need to floor determination algorithm

and the percentage of false negatives is zero. Therefore, the availability is the same as in the

case when floor information is known.

Effect of log normal shadowing with σ = 5 on localization accuracy of 2FRS is given in

Figure 4.74 when different decision depths are used in FD. Our first observation is that the

difference in accuracy caused by different decision depths is disappearing under shadowing

with σ = 5 when MSAL+MCA or MCA is used. When MSAL is used in localization, m = 1

provides the closest accuracy to the accuracy with known floor information. Decision depths

m = 2 and m = 3 causes worse availability therefore lower localization errors. Among the

three localization algorithms MSAL performs best in terms of accuracy although availability

with MSAL+MCA is higher. Error with m = 3 is the smallest due to higher percentage in

false negatives (lower availability) at this decision depth.
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Figure 4.73: Minimum localization error with respect to h when σ = 0, 2FRS
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Figure 4.74: Minimum localization error with respect to h when σ = 5, 2FRS
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4.5.3 Best Efficiency Conditions vs. Floor Height

Efficiency with known floor information constitutes the upper bound of efficiency that can

be achieved with any floor determination algorithm under ideal conditions.
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Figure 4.75: Maximum efficiency with respect to h when σ = 0, 2FRS

Figure 4.75 shows the maximum efficiency that can be achieved under ideal channel

conditions with 2FRS. Maximum efficiency under ideal conditions is achieved by MSAL. As

floor height increases, the maximum efficiency that can be achieved with FD approaches to

maximum possible value that can be achieved assuming known floor information, therefore no

false negatives. Afn decreases as the floor height increases, this reflects as better availability

and better efficiency. When h > 0.5L, availability stays at 100%; however accuracy gets

affected by large floor height. Therefore, worse efficiency levels are seen. Although it is

not possible to change the floor height, it looks like there is an optimum value for h that

is maximizing the efficiency. For isotropic coverage and dipole coverage, h = 0.55L and

h = 0.35L are the best values. Accuracy at maximum efficiency levels with different decision

depths are similar to each other. As floor height increases, SAL is preferred to MSAL on
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one of the floors; as h continues to increase SAL is preferred on both floors. If dii is set so

that only MSAL is allowed, then we would see with this is only possible when h ≤ 0.3L and

h ≤ 0.1L with with isotropic and dipole antennas, respectively.
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Figure 4.76: Maximum efficiency with respect to h when σ = 5, 2FRS

Figure 4.76 shows the maximum efficiency that can be achieved under shadowing with

σ = 5 with 2FRS. Maximum efficiency is achieved by MSAL+MCA with known floor infor-

mation. As floor height increases, maximum efficiency with floor determination approaches

to maximum efficiency level. Efficiency levels with different decision depths are similar to

each other under this shadowing level.

4.5.4 Best Efficiency Conditions vs. Shadowing Effect

Finally, we show the effect of shadowing effect on maximum efficiency with 2FRS using floor

determination algorithm with various decision depth values.

Figures 4.77, 4.78 and 4.79 show the maximum efficiency, average localization error and

availability possible at maximum efficiency conditions with respect to σ when h = 0.25L
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Figure 4.77: Maximum efficiency with respect to σ when h = 0.25L, 2FRS
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with 2FRS. We observe the decision depth effect on maximum efficiency is minimal especially

under high shadowing effect. With dipole antennas, when σ ≥ 6, we see similar efficiency

with floor information is known or estimated. The reason is that in these cases, SAL is

preferred to MSAL.

Figure 4.78 shows the average localization error at maximum efficiency conditions. At

small σ values MSAL and MSAL+MCA perform similarly and outperform MCA, whereas

at high σ values MSAL provides the smallest localization error due to lower availability. The

observation is similar for both isotropic and dipole antenna assumptions.
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Figure 4.78: Average localization error at maximum efficiency conditions with respect to σ

when h = 0.25L, 2FRS

Figure 4.79 shows the availability at maximum efficiency conditions. This figure also ex-

plains the degradation in maximum efficiency with isotropic antenna assumption. We observe

a decrease in availability due to false negatives caused by floor determination algorithm.
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Figure 4.79: Availability at maximum efficiency conditions with respect to σ when h = 0.25L,

2FRS

4.5.5 Effect of Floor Attenuation Factor

Floor attenuation factor (FAF) affects the way the floor determination and localization

algorithms perceive the floor height. When FAF is utilized in signal propagation model, floor

height is perceived as if it is larger than it actually is. Therefore, we expect the minimum

localization error and maximum efficiency values using different decision depths will merge

to the same values at smaller floor height values than the values shown in previous section,

where we did not consider FAF.

4.5.5.1 Best Accuracy Conditions Figure 4.80 shows the minimum localization error

with 2FRS under ideal channel conditions. When we compare this figure to Figure 4.73,
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we observe that the localization errors with different decision depths are approaching to the

same value at a smaller floor height, i.e., h ≥ 0.35L and h ≥ 0.2L with isotropic and dipole

antenna assumptions, respectively. At these floor heights, we see similar accuracy values

with isotropic and dipole antennas. The reason is that SAL is preferred to MSAL, and on

current floor isotropic and dipole antennas has the same coverage. For h smaller than these

values, localization error with FAF is higher than without FAF. The reason is the narrower

adjacent monitoring ranges because of larger path loss due to floor attenuation.
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Figure 4.80: Minimum localization error with respect to h when σ = 0, 2FRS

Figure 4.81 demonstrates the same results from the false negatives point of view with

2FRS under best accuracy conditions. False negatives percentage approaches to zero as floor

height increases.

Similar conclusions can be drawn from Figure 4.82 showing the minimum localization

error under shadowing with σ = 5. As shown in Figure 4.83, false negatives percentage is

higher under shadowing effects, and smallest with m = 1.
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Figure 4.81: False negative percentage with respect to h when σ = 0, 2FRS
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Figure 4.82: Minimum localization error with respect to h when σ = 5, 2FRS
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Figure 4.83: False negative percentage with respect to h when σ = 5, 2FRS

4.5.5.2 Best Efficiency Conditions vs. Floor Height The best efficiency that can

be achieved with 2FRS under ideal channel conditions with FAF is shown in Figure 4.84.

When compared to Figure 4.75, we do not observe a significant decrease in efficiency values

with isotropic antennas at small floor height. However, we do observe that at larger floor

height, the efficiency with MSAL approaches to efficiency with MCA. This implies that at

these floor height values, adjacent monitoring ranges approaches to zero, and SAL is used

for localization. Since in SAL only current floor MoSs are used, the number of MoSs used in

localization decreases, therefore accuracy gets worse as so efficiency. This is the reason why

the efficiency approaches to the same values when h ≥ 0.4L and h ≥ 0.2L with isotropic and

dipole antenna, respectively.

Best efficiency under shadowing with σ = 5 is shown in Figure 4.85. When compared

to the case without FAF shown in Figure 4.76, we observe that efficiency with and without

floor determination approaches to same values at a smaller floor height as expected. Also,

when floor heights is larger than these values, we observe similar results as SAL is used in
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Figure 4.84: Maximum efficiency with respect to h when σ = 0, 2FRS
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localization instead of MSAL.
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Figure 4.85: Maximum efficiency with respect to h when σ = 5, 2FRS

Figures 4.86 and 4.87 show the availability during best efficiency conditions under ideal

conditions and shadowing with σ = 5. As also observed from the figures, we allow the

coverage to be less than 100%. This is why at large floor height values, availability is not

100%. In addition, we observe higher availability at larger floor height, SAL is started to be

used rather than MSAL.

4.5.5.3 Best Efficiency Conditions vs. Shadowing Effect Lastly, we want to

present the best efficiency conditions under shadowing with varying σ assuming h = 0.25L.

Figures 4.88 and 4.89 show the best efficiency levels and localization accuracy available at

these levels with and without floor determination. When compared to the case without FAF

shown in Figure 4.77, we observe a degradation in efficiency especially at lower σ values. At

higher values, the difference vanishes. In both cases, decision depth effect is insignificant,

and MSAL+MCA outperforms other algorithms.
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Figure 4.86: Availability with respect to h when σ = 0, 2FRS
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Figure 4.87: Availability with respect to h when σ = 5, 2FRS
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Figure 4.88: Maximum efficiency with respect to σ when h = 0.25L, 2FRS
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From Figure 4.89, we observe MSAL+MCA and MSAL can provide best accuracy with

dipole antennas for the whole range of σ values. And, with isotropic antennas, MSAL+MCA

and MSAL perform similarly at low σ values, and as σ increases localization error of

MSAL+MCA approaches to error with MCA. The reason is obviously the availability and

false negatives percentage effects. False negative percentages with two types of antennas are

shown in Figure 4.90.
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Figure 4.89: Localization error with respect to σ when h = 0.25L, 2FRS
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Figure 4.90: False negative percentage with respect to σ when h = 0.25L, 2FRS
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4.6 CONCLUSION

We have introduced a proximity based multi-floor localization approach that increases de-

ployment efficiency by utilizing MoSs in multiple floors. We investigated the effect of antenna

model, floor height, floor repetition scheme and the variance of the shadow fading on the

efficiency of the system. Our simulation results indicate that using MoSs across floors can

increase the deployment efficiency by up to 50%. Our multi-floor localization system pro-

vides within-floor localization accuracy comparable to that on a single floor with fewer MoSs.

Under ideal conditions, when best monitoring ranges are determined, isotropic and dipole

antenna coverages leads to similar localization error performances using MSAL with both

2 and 3 floor repetition schemes. The best ratio of monitoring ranges of MoSs on adjacent

floors is between 0.5 and 1.5 depending on floor height and shadow fading. However, as

RSS shadowing fluctuations are included, system designers can select the same monitoring

range on all floors without significantly sacrificing accuracy. The performance in real sys-

tems may be tuned by changing signal sensing thresholds, using attenuators. Estimating

channel parameters through online calibration can benefit in determining the monitoring

range close to reality. This is part of our ongoing work. Finally, in real environments, sev-

eral (sometimes > 10) WiFi access points are often visible at many locations. These access

points are placed randomly but may create subareas suitable for localization. We plan to

experimentally evaluate the localization performance in these scenarios.

The key takeaways from the tables summarizing our findings in A.1.3 are:

• As shadowing effects gets more powerful, accuracy and efficiency get worse with every

localization scenario and every localization algorithm employed.

• Different floor plans with different wall or furniture characteristics will result in different

accuracy and efficiency conditions with different best monitoring ranges on different

floors. However, it has been observed that there is a minor difference between best

accuracy and best efficiency levels on two floor plans that we have simulated with different

localization scenarios, especially under shadowing effect.

• FAF changes how localization algorithm perceives the floor height. Therefore, a signifi-

cant decrease is observed both in efficiency and in accuracy.
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• With MSAL+MCA, efficiency is higher than with MSAL only localization. The rea-

son is the availability of location estimates for MNs detected in invalid subareas with

MSAL+MCA. A detailed discussion has been provided in the previous sections.

• With random placement of the same total number of MoSs on two floors, we have shown

that the accuracy gets worse by 0.06L and 0.03L under ideal conditions and under shad-

owing with σ = 5, respectively. This small difference implies that the accuracy will not

suffer significantly when MoSs cannot be placed on a projected grid.

• Under ideal conditions, MSAL and MSAL+MCA performs exactly the same in all local-

ization scenarios except the ones including WAF effect. The reason is that the localization

system assumes signals arriving to a MoS receiver passes through the same navg number

of walls while traveling. However, in reality, they may be passing through a less or more

number of walls. This causes the creation of invalid subareas even under ideal channel

conditions shown with σ = 0. While MSAL+MCA can localize MNs detected in these

invalid subareas, MSAL cannot; therefore, differences in performance occurs. signals

arriving to a MoS receiver passes through the same navg number of walls while traveling.

However, in reality, they may be passing through a less or more number of walls. This

causes the creation of invalid subareas even under ideal channel conditions shown with

σ = 0. While MSAL+MCA can localize MNs detected in these invalid subareas, MSAL

cannot; therefore, differences in performance occurs.

• When considering the performance with dipole antennas, we have to keep in mind that

for multi-floor localization to be used, d > 2h (d > 2hFAF with scenario including FAF).

Therefore, in order to use multi-floor localization, monitoring range must be larger than

the monitoring range that is required with isotropic antennas. We can see this in Tables

A5 and A13 for 2FRS and in A7 and A15 for 3FRS. Under ideal conditions, multi-

floor localization is preferred to single floor localization as can be inferred from optimum

monitoring ranges. However, increasing the monitoring range so that the adjacent cov-

erages will exist may result in not optimum results from a single floor point of view.

Therefore, we also observe when dipole antennas are utilized, single floor localization is

preferred to multi-floor localization. These are observed with WAF and FAF scenarios

under shadowing effects. This statement is valid for both 2FRS and 3FRS.
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• In terms of localization efficiency, dipole antennas can perform as good as isotropic

antennas systems under ideal conditions and open environment with no FAF and WAF

effect. However, as shadowing starts to take effect or WAF and FAF are included, a

significant degradation in efficiency is observed. Nevertheless, the performance with

MSAL+MCA is comparable or better than multi-floor centroid algorithm.

• Although floor determination performance does not depend on localization algorithm, it

does depend o placement of Moss, floor height, and floor repetition schemes in multi-floor

buildings. On the other hand, it affects the performance of localization system in terms

of both accuracy and efficiency, because it changes the availability of location estimates.

When floor determination algorithm cannot determine Afn percentage of MNs located

on a floor in correct floor, then the efficiency of localization system goes down even if

those nodes can get location estimates, since the MNs are determined to be on the wrong

floor, there is no value of that location estimate.

• In Tables in Appendix A.1.3, we present simulation results of MSAL, MSAL+MCA

and MCA accuracy and efficiency conditions under various localization scenarios, and

also false negatives with decision depth equals to 1. We remind that decision depth 1

compares maximum RSS values collected from multiple floors to decide in which floor

the MN is residing in. For example with MSAL and MSAL+MCA in 2FRS scenario, at

the best localization error conditions, we observe 28% false negatives even under ideal

channel conditions, and larger than 30% under shadowing.

• When floor attenuation factor is included in signal propagation model, floor height h =

0.25L is perceived as hFAF = 0.7L. This corresponds to a special case where h > 0.5L,

and leads to zero false negatives percentage under ideal channel conditions. And this

can also be observed from simulation results. While shadowing starts to take effect, false

negatives starts to appear.

• With 3FRS, we observe higher false negative percentage at best accuracy and efficiency

conditions. One important reason is that in 3FRS floor determination works to differen-

tiate between three floors whereas in 2FRS only RSS from 2 floors are compared to each

other.

• With dipole antennas, we notice false negatives percentage decreases to the contrary
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with isotropic antennas with increasing shadowing level. However, when we look at

closely, we observe that under high levels of shadowing, SAL is preferred to MSAL or

monitoring range is decreased so that adjacent floor coverage narrows down. This results

in MNs to be mostly heard by MoSs on their on floor; in effect, a smaller percentage of

false negatives. When SAL is preferred, there is no need to floor determination, false

negatives do not exist, localization errors are higher, and efficiency is lower.
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5.0 CASE STUDY: USING SAL FOR SPATIO-TEMPORAL SENSING

According to FCC’s Spectrum Policy Task force, at any given time and location, most of the

licensed spectrum is idle. Spectrum shortage resulting from static spectrum management

policies can be overcome using dynamic spectrum access techniques to identify and utilize

the underutilized spectrum [78]. Underutilization exists if the spectrum can accommodate

secondary transmissions without harming the operation of the primary user of the band [79].

In Cognitive Wireless Networks (CWN), in order to increase the flexibility and utilize the

available spectrum efficiently, opportunistic spectrum access (OSA) of licensed spectrum by

secondary nodes is allowed. The region of space-time-frequency in which a secondary use

is possible is called a spectrum hole. To fill in spectrum holes dynamically, wireless sys-

tems must determine where the holes exist in space, time, and frequency. Once spectrum

opportunities are detected, secondary users must decide whether and how to exploit them

(what modulation and transmission power to use, how to share opportunities among sec-

ondary users are some of the issues), and reconfigure for opportunistic access to spectrum

without harming the primary user. Many studies on methods of spectrum sensing have

been proposed for CWN. Energy detection of frequency bands, and event based detection of

arrival/departure of signals are examples of two single user algorithms that are mentioned

among the others in a survey given in [79]. Cooperation based spectrum sensing was pro-

posed to exploit the diversity gains in wireless medium, soft/hard combining of information,

etc [79].

Spatial knowledge of network topology and geometric relations of primary and secondary

users can be of significant benefit in detecting spectrum use opportunities. Localization

algorithms can be employed to estimate the locations of users in primary and secondary

networks, and determine the available spectrum holes. One of the challenges of such local-
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ization for identifying spectrum holes is that sophisticated localization techniques may be

costly and there may often be no location information readily available. As described previ-

ously, Sub-Area Localization (SAL) is a proximity-based localization algorithm which avails

of the sub-areas created by the overlapping monitoring coverages of N monitoring stations

(MoSs) with known locations. This localization algorithm is explained in detail in Chapter

3. In this chapter, we want to evaluate whether SAL can be utilized for spatio-temporal

sensing of primary transmitters with the object of determining spectrum holes.

If the MoSs in SAL are networked together, SAL can provide a global awareness in

terms of active primary user topology to secondary users. Without such a system, secondary

users will be required to perform local sensing and somehow share this information with

each other in order to be aware of transmissions that they are not able to monitor due to

their locations and radio propagation vagaries. The sharing process may incur overhead and

latency in utilization of spectrum holes. In addition, the information gathered with local

sensing greatly depends on the mobility patterns, distribution and the numbers of secondary

users. In the case of clustered distribution of secondary users, the sharing process would be

redundant, whereas with small number of secondary users, sufficient information regarding

primary transmitters may not be collected.

The objective of this case study is to examine the performance of SAL in detecting pri-

mary transmitters. We evaluate the efficiency of SAL in determining the spectrum holes

under ideal channel conditions. The network may include primary transmitters operating

on different frequencies. The localization system can monitor these transmissions, but it

however may not be able to modify the “optimum monitoring range” for each different fre-

quency once it is deployed for service. When there is a difference between the frequency

of primary users that is being monitored and the frequency for which the localization sys-

tem is optimized, the estimation accuracy will get affected. Therefore, we also examine

the performance of SAL in localizing primary transmitters for detection of spectrum holes

when it senses transmissions at frequencies for which it is not optimized through simulation

results with various path-loss models. Then, we will conclude the chapter with a qualita-

tive discussion on how SAL performance can be perhaps improved under different scenarios

such as using secondary network topology information for spectrum hole detection, or the
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effect of the location knowledge of primary receivers, etc. We assume that SAL has the RF

and antennas necessary for wideband monitoring of spectrum. Our goal is not to provide a

solution for spectrum monitoring, but to illustrate the potential of SAL in emerging appli-

cations and we employ detection of spectrum holes as an example. Thus, this chapter has

its own background section, but the examination of the spectrum hole detection problem is

not comprehensive.

5.1 RELATED WORK

In the literature, there exist a number of studies looking at location based spectrum access.

These studies argue that the use of network topology information and the geometric relations

of the nodes can significantly benefit the operation of CWN. The work in [5] argues that

the topology information has direct usage and implications on connectivity and capacity

estimates of the network, and should be exploited to optimize network efficiency. The work

in [80] focuses on DSA concepts in the context of using spatial statistics to understand the

network topology of primary and secondary users. In [81], opportunistic access is allowed

only if the experienced interference by the primary licensed users due to the activity of

secondary users’ does not exceed a predefined threshold. To calculate the transmit power

of a secondary user, the positions of primary users must be known so that the interference

to primary users can be estimated beforehand and does not exceed the limit. In [82], to

find the maximum allowed transmit power of the secondary node while respecting primary

constraints, the authors propose a heuristic algorithm that is based on a dynamic threshold

for detecting the activity of primary base stations. In this paper, the detection of spectrum

holes is based on transmitter detection, considering that the position of primary users are

unknown but the boundaries for each cell, where the users are enclosed are approximated

and made available to the secondary users.

Radio environment maps (REM) are used to provide an architecture to record, store,

access and share relevant information about the environment to assist in functions such

as collaborative spectrum sensing [83]. The information stored may be the locations of
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transmitters, spectrum usage maps or so on. In [84], the authors proposed an enhanced

radio environment map concept that makes use of spatial statistics and probabilistic models

to reduce the overhead of basic REMs. Probabilistic models can let the wireless environment

be expressed in a very compact form compared to the original data set (perhaps of measured

quantities). A topology engine is developed, which is an agent in CWN collecting and

processing spatial information about the environment for storage in the REM.

5.2 THE SETTING FOR SECONDARY SPECTRUM USE WITH SAL

We consider a primary network with primary users with an activity pattern that is unknown

to the secondary users. Secondary users do not possess spatial topology information of the

primary network. We let the spectrum hole be the space, time, and frequency channels

that secondary transmitters can transmit. Secondary users can transmit with the highest

power possible without causing interference to primary receivers using the same frequency.

This is the primary constraint that secondary users must satisfy while utilizing the available

spectrum. An additional secondary constraint is possible where a secondary transmitter

can transmit with the highest power it can transmit without interfering with another sec-

ondary user’s transmission on same frequency band. While the primary constraint protects

the primary network from possible interference from the secondary network, the secondary

constraint protects secondary nodes from each other in order utilize the available spectrum

fairly.

There are two phases in opportunistic utilization of spectrum holes by secondary nodes.

In the first phase, a global spatio-temporal sensing with Sub-Area Localization algorithm

is realized to gain knowledge of the topology of primary users. This knowledge along with

transmission characteristics will help determine the spectrum holes. In the opportunistic

access configuration phase, secondary transmitters receive the knowledge of location esti-

mates for spectrum holes for a given frequency band from the localization system. They use

this information to decide whether they can transmit and with which power and on which

frequency according to the primary and secondary constraints. We do not consider in detail
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the protocols to convey this information or the geographic identification of locations and po-

sitions (e.g., whether latitudes and longitudes are used or local coordinates). Similarly, other

details (e.g., the need and use of common channels, perhaps unlicensed, for communicating

information, the latency in communicating information, etc.), not mentioned in this chapter

are assumed to be handled appropriately.

5.2.1 Global Spatio-temporal Sensing with SAL

As a proximity based localization algorithm, SAL may provide a less complex and perhaps

practical solution to the spectrum sensing problem. In this section, we explain how SAL can

be utilized in global sensing of the spatio-temporal spectrum holes.

In SAL, a given number of monitoring stations with known locations are placed in a

localization area A. When a primary transmitter is active, MoSs determine the subarea in

which the activity is detected. These subareas are called active subareas. Figure 5.1 shows

three active primary transmitters and three secondary transmitters. Assuming that the

secondary and primary networks use the same frequency channel, only two of the secondary

users are allowed to transmit due to the locations of active primary users localized in three

subareas. The transmission ranges are shown as red circles.

To investigate the performance of SAL in spatio-temporal sensing, we assume the location

of primary transmitters are estimated by SAL and primary receivers are at the worst case

locations. A primary receiver is located at a worst case location if it is located on the edge

of the transmission range of the primary transmitter. This is called worst case location,

because this is the case in which primary receiver is the closest to a potential secondary

transmitter. In Figure 5.2, the worst case position (WCP) for a primary receiver is shown.

In order to determine a spectrum hole so that the primary constraint is satisfied, we as-

sume the localization system knows the transmission power of primary transmitters, Pt, and

receiver sensitivity of primary receivers is at least Rs. Then, the average (ideal) transmission

range, dt, of a primary transmitter can be calculated from a typical path-loss model from,

Rs = Pt − PL(0)− 10αlog10(dt)− 10βlog10(f), (5.1)
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where f is frequency on which the signal is transmitted, and α, β and PL(0) can be set to

simulate the channel according to the environment.

With power Pt and sensitivity Rs, a primary transmitter can transmit up to a range of

dt, and a primary user can receive the signal at a maximum range of dt. In the worst case,

the interference range that is subject to interference from secondary users may be defined

as the circle centered at the primary transmitter with di = 2 × dt radius. The interference

range and worst case positions are shown in Figure 5.2.

When a primary transmitter’s location is estimated by SAL, the estimated location is the

center of mass of the active subarea. Depending on the subarea size, the primary transmitter

can be very close to the estimated location coordinates; however, it can also be at the edge

of the active subarea. In order to satisfy the primary constraints protecting primary users

from interference, the active subarea size must be extended by di = 2× dt in all directions.

According to this very conservative approach, secondary users are not allowed to transmit if

they are in or at the edge of this extended subarea. We also assume secondary transmitters

use a power less than Pt to transmit their signals.

5.3 EXAMINATION OF THE POTENTIAL OF SAL FOR SECONDARY

SPECTRUM USE

5.3.1 Evaluation of Efficiency of SAL in Detecting Primary Transmitters

The efficiency of SAL in determining spectrum holes depends on how close the estimated

active area is to the real active area that a secondary user should not be not allowed to

utilize for opportunistic spectrum access.

For a given monitoring range, and a number of monitoring stations, SAL determines

subareas and regions as explained in Chapter 3. When the primary receiver locations are

unknown and they are assumed to be placed in the worst case position, the interference range

is calculated as di = 2dt, where dt is the transmission range of primary transmitters. When

SAL detects a primary transmitter in a region Rj, it does not know where in the region it

221



is actually located. Although the estimated location is the center of mass of the region, the

primary transmitter may also be located at the edge of the region. Therefore, in order to

minimize the possible interference to primary receivers, SAL enlarges the region area by di.

We denote the new extended region area as R′
j. Then, in the worst case, the actual occupied

area is πd2i , and estimated occupied area is R′
j. We define the efficiency of spectrum hole

detection in region Rj as

ηj(d, di) =
A− πd2i
A−R′

j

(5.2)

Assuming all locations in A are equally likely for a primary transmitter, the expected

efficiency in detecting spectrum holes in area A (ηsh) is calculated as,

ηsh =

|R|∑
j=1

kj Prob(Primary transmitter is detected in region Rj)× ηj(d, di)

ηsh =

|R|∑
j=1

kjRj

A
× A− πd2i

A−R′
j

, (5.3)

where kj is the number of regions Rj in A. We emphasize that in the best case ηj(d, di) = 1

as this will reflect the condition that the estimated occupied region is exactly the same size

as the real active region.

In the following, we will use localization scenario < 4,G, A > as an example to show the

performance of SAL in detecting spectrum holes.

To understand the performance, we start with computing the sizes of the subareas with

N = 4. In Chapter 3, we showed that
√
2g/2 < d < g is the optimal interval for monitoring

ranges for minimum localization error. In this interval, 13 distinct subareas are formed and

they can be classified into 4 types of regions, Ri, i = 1, 2, 3, 4 as shown again in Figure 5.3.

Let Cj be the monitoring area of MoSj, and the centers of C1, C2 and C4 be located at

(0, L), (L,L) and (L, 0), respectively. The calculation of sizes of regions Ri based on the
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intersection areas B1(d, g) = C1 ∩ C2 and B2(d, g) = C1 ∩ C4 as functions of d and g are

given as:

B1(d, g) = 2(R2 + 2R3 +R4) = 4

[
πd2

2π/ arccos(g/2d)
−
√

d2 − g2/4

4

]
(5.4)

B2(d, g) = 2R3 +R4 = 4

[
πd2

2π/ arccos(
√
2g/2d)

−
√
d2 − g2/2

4

]
(5.5)

Other relations between Ri and L can be derived as follows:

4(R1 +R2 +R3) +R4 = L2 (5.6)

R1 + 2R2 + 3R3 +R4 =
πd2

4
. (5.7)

223



Then the areas of regions Ri, i = 1, 2, 3, 4 can be calculated as,

R1 =
B2(d, g) + g2

2
+

πd2

4
(5.8)

R2 =
B1(d, g)

2
−B2(d, g) (5.9)

R3 =
B2 − g2 + πd2 − 2B1(d, g)

2
(5.10)

R4 = g2 − πd2 + 2B1(d, g) (5.11)

In order to calculate the extended regions R′
j, we need to decide how to modify the

monitoring ranges of MoSs. Figure 5.4 shows how the circles must be modified when an

activity is detected in subarea A5 which can be classified as an R2. The actual monitoring

ranges are shown with blue circles and the red circles denote the modified circles. In order

to calculate the extended region’s area R′
2, the radius of C2 and C4 must be increased, and

the radius of C1 and C3 must be decreased by di. Although there exist other correct sets of

modifications, Table 5.1 shows one of these sets to calculate the area of the extended regions.

dm denotes the monitoring range of MoSm, m = 1, 2, 3, 4.
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Table 5.1: MoS ranges used in calculating enlarged regions with 4 MoSs

Regions, R′
j d1 d2 d3 d4 kj

R′
1 d+ di d− di d− di d+ di 4

R′
2 d− di d+ di d− di d+ di 4

R′
3 d− di d+ di d+ di d− di 4

R′
4 d+ di d+ di d+ di d+ di 1

The calculation of extended regions is not as straight forward as the Ri calculations

shown previously because the circles that are overlapping have different radii in this case.

In the following we will show how R′
is can be calculated for scenario < 4,G, A > and when

√
2g/2 < d < g.

First, we need the size of the intersection areas of two and three circles with different

radii. They are given as,

C1(d1) ∩ C2(d2) =

(
d22θ2
2

− x2 y

)
+

(
d21θ1
2

− x1 y

)
(5.12)

θj = arccos

(
2y2 − 1

d2j

)
, j = 1, 2

(x1, x2) =

(
g2 + d21 − d22

2g
,
g2 − d21 + d22

2g

)
, x1 + x2 = g

y = d2j − x2
j , j = 1, 2,

C2(d2) ∩ C3(d3) ∩ C4(d4) =
∑

j=2,3,4

(
d2j θj

2
− Tj

)
+

a4

√
a22 −

a24+a22
2a4

2
(5.13)

Tj =
aj
√
4d2j − a2j

4

θj = arccos(
a2j − 2d2j

2d2j
)

a2 = |c3 c4|, a3 = |c2 c4|, a4 = |c2 c3|

where θ is in radians, and c2, c3 and c4 are the intersection points shown in Figure 5.5.
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Figure 5.5: Intersection points of three circles C2, C3 and C4

Then, the areas of extended regions R′
i, i = 1, 2, 3, 4 can be calculated as,

R′
1 =

R′
4 + g2

4
− (R′

2 +R′
3) (5.14)

R′
2 =

B1+2+

2
−B2+3− +B2+3−4− −B1+2+4− (5.15)

R′
3 = B2+3+ −B2+3+4− (5.16)

R′
4 = g2 − π(d+ di)

2 + 2B1+2+ (5.17)

where the intersections are given as,

B1+2+ = C1(d+ di) ∩ C2(d+ di) (5.18)

B2+3− = C2(d+ di) ∩ C3(d− di) (5.19)

B2+3+ = C2(d+ di) ∩ C3(d+ di) (5.20)

B2+3−4− = C2(d+ di) ∩ C3(d− di) ∩ C4(d− di) (5.21)

B2+3+4− = C2(d+ di) ∩ C3(d+ di) ∩ C4(d− di) (5.22)

B1+2+4− = C1(d+ di) ∩ C2(d+ di) ∩ C4(d− di) (5.23)
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We demonstrate the spectrum hole detecting efficiency with scenario < 4,G, A > in

Figure 5.6 with respect to the monitoring range and interference range. Since it is not possible

to estimate the exact real occupied region, the efficiency is always larger than 1, which is

the best possible value. The red line in this figure shows the conditions which minimize ηsh

for a given interference range, meaning that these make it approach unity. Figure 5.7 shows

the spectrum hole efficiency and best efficiency conditions with scenario < 9,G, A >. As

expected, in both figures, the observation is that as interference range increases the efficiency

moves further away from unity. This is due to larger areas of estimated occupied regions with

increasing interference range. Another observation is that there is an optimum monitoring

range minimizing ηsh for a given interference range.
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Figure 5.6: N = 4 MoSs, ηsh

The best efficiency η∗sh = mind [ηsh(di)] with < 4,G, A > and < 9,G, A > is shown

in Figure 5.8 as a function of the interference range. With 9 MoSs in grid placement, 7

different regions (calculated and shown in Chapter 3) exist, and they are smaller than the

regions formed with 4 MoSs in grid placement. Therefore, the efficiency with 9 MoSs is closer

to unity than with 4 MoSs. Figure 5.9 shows the best monitoring ranges (d∗) for a given

interference range (di), and d∗+di. We observe that as di is increasing, best monitoring range
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Figure 5.7: N = 9 MoSs, ηsh

decreases. In case of 4 MoSs, when di > 0.12L, the best monitoring range drops sharply to

its minimum value (0.707L, which is needed to cover the whole area A = L× L), although

there is a negligible difference in the minimum η∗, if the slope had continued as it was when

di < 0.12L.

5.3.2 Effect of Frequency Offset on Location Estimation

Although the primary transmitter signal is detected, it is possible that the monitoring ranges

are optimized for a frequency fLS, and so the localization accuracy of transmitters using

frequencies other than fLS may be different. In this section, we will explore the effect of the

difference between the localization system frequency and primary transmitter frequency on

the accuracy of estimated location of primary transmitters.

5.3.2.1 Free Space Path Loss Model According to the free space path loss model,

the path loss in dB is calculated as,
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PL(dB) = 32.4 + 20log10(d) + 20log10(f), (5.24)

where d is the distance between the transmitter and the receiver in kilometers and f is

the frequency of signal in MHz. The free space path loss model can be used if the primary

transmitter height and monitoring station heights are larger than the building height. In this

case, building heights and street width may not significantly impact the signal propagation

from transmitter to the receivers – MoSs.

In Figure 5.10, we assume that the localization system has been optimized with the

best monitoring ranges assuming that the signal frequency of primary transmitters is fLS =

900MHz under ideal channel conditions. According to this figure, since the optimization is

done according to fLS = 900MHz, the accuracy at this frequency is the best. The accuracy

gets worse while the primary transmitter frequency is getting smaller, while the availabil-

ity is kept at 100%. However, the availability decreases significantly when the primary

transmitter frequency is increasing. The reason is the change in the MoS’s coverage while

increasing/decreasing the frequency. Because of low availability at these frequencies, the

localization error seems to be lower than the value achieved at fLS. The efficiency achieved

at best accuracy conditions is shown in the bottom most figure. According to this, the

highest efficiency is achieved at fLS = 900MHz, and it starts decreasing towards both lower

and higher frequency sides. At f = 850MHz, the efficiency is similar to fLS due to similar

accuracy and availability conditions. By employing CA, we can provide better efficiency for

frequencies smaller than fLS. SAL+CA and SAL performs similarly under ideal channel

conditions.

Figure 5.11 shows the best accuracy conditions, and their effects on availability and

efficiency when fLS = 1900MHz under ideal conditions. For f ≥ fLS, the accuracy of SAL

is better than CA. The effect on availability is not significant; therefore, the efficiency is

higher compared to CA. However, for 1200MHz < f < fLS, the localization error with SAL

is larger than the error with CA, the availability is 100%. And for f < 900, the performance

of CA and SAL are similar.
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Figure 5.10: Performance when optimized for LS, N = 4 MoSs, free space path loss model,

fLS = 900MHz
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Figure 5.11: Performance when optimized for LS, N = 4 MoSs, free space path loss model,

fLS = 1900MHz
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5.3.2.2 Near Building Height Path Loss Model A path loss model that incorporates

parameters such as the building height is suitable for the case when primary transmitters

are at the same height as the buildings surrounding the area, and MoSs are at a lower height

than the buildings. Therefore, the building height, monitoring station antenna height and

street width must be considered in the signal propagation model. According to one such

model [85], the path loss in dB is calculated from,

PL(dB) = 42.12 + 40log10(d) + 30log10(f), (5.25)

where d is the distance between the transmitter and the receiver in kilometers and f is the

frequency of signal in MHz when the building height is hbuild = 12m, primary transmitter

height is hpt = 12m, and monitoring station height is hm = 7m, and street width is w = 30m.

We repeat the simulations above with this building height path loss model. Figure 5.12

shows the best accuracy conditions when fLS = 900MHz under ideal channel conditions.

Figures 5.13 shows the results of a similar simulation with fLS = 1900MHz under ideal

channel conditions. The observations are similar to the ones assuming free space path loss

model, although the effect of distance and frequency on path loss is more with the building

height influenced path loss model.
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Figure 5.12: Performance when optimized for LS, N = 4 MoSs, building height, fLS =

900MHz
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Figure 5.13: Performance when optimized for LS, N = 4 MoSs, building height, fLS =

1900MHz
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5.3.3 Effect of Frequency Offset on Spectrum Hole Detection
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Figure 5.14: Change of monitoring range with frequency offset

The frequency offset between primary transmitters and localization system causes dif-

ferences between actual subareas and subareas known by SAL. Figure 5.14 shows how the

actual monitoring ranges change under various frequency offsets with free space (FS) and

near building (NB) height path loss models. For example, when the frequency of the local-

ization system is 900MHz, the best monitoring range is given as d = 0.77L; however, the

same transmission power and same receiver sensitivity can generate a monitoring range of

1.15L at 600MHz, and 0.28L at 2.4GHz with FS path loss model. Due to these differences,

the actual subareas may shift, shrink or expand compared to subareas known by SAL.

Figures 5.15 and 5.16 show the impact of frequency offset on localization scenario <

4,G, A >, when fLS = 900MHz, and the primary user frequency is 700MHz and 1.2GHz,

respectively. When f < fLS in Figure 5.15, we observe that R1 shrinks, R2 shrinks on one

dimension, and expands on other dimension, R3 expands and shifts and R4 expands. And

when f > fLS in Figure 5.16, we observe that R1 expands, R2 shrinks in one dimension, and

expands in other dimensions, R3 shrinks and shifts and R4 shrinks.

After the detection of active subarea, if the frequency information is not utilized in
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estimation of new regions, these differences will reflect as differences in extended regions,

and in turn the accuracy of spectrum hole detection will be impacted negatively. In this

case, when regions expand primary users may be vulnerable to interference from secondary

users, and when regions shrink, underutilization of available spectrum occurs. In order to

get better accuracy on detection of spectrum holes, the primary user frequency information

must be used to estimate the extended regions. Although the detection of active subarea is

done with the monitoring ranges that are calculated with fLS, the primary user frequency

can be used to estimate (conservatively), the spectrum holes.

5.4 DISCUSSION ON POSSIBLE RESEARCH DIRECTIONS

The performance of SAL in detecting spectrum holes can be improved by available infor-

mation such as primary receiver locations, protocols used in communication in primary and

secondary networks and secondary transmitter locations, etc. In this section, we will discuss

how additional information on such parameters may affect the spectrum hole detection.

SAL based spectrum hole detection method proposed in previous sections only use mon-

itoring stations that are deployed at fixed locations. Employing the secondary network in

detection of spectrum holes could help satisfy the primary and secondary constraints, and

also narrow down the subarea size at the vicinity of secondary nodes, so that a more ac-

curate estimation of spectrum holes is possible. Towards this goal, an approach may be

to use secondary receivers for local sensing while using fixed monitoring stations for global

sensing. With SAL, secondary nodes can be notified of the locations of primary transmitters.

When needed, they can perform local sensing to guarantee interference free transmission,

but need not share this information with other secondary transmitters. Another approach

may be to utilize secondary nodes with known locations to help monitoring stations in de-

tecting primary transmitters in subareas during the spatio-temporal sensing phase. While

one drawback of this approach may be that the exact location of secondary nodes must be

known, it allows us to determine an upper bound on spatio-temporal sensing performance

and throughput of primary users, and spectrum utilization by secondary nodes. An ex-
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amination of this scenario would be similar to random placement of MoSs combined with

SAL.

Another research direction to take could be to employ secondary nodes as monitoring

stations in SAL instead of deploying additional fixed monitoring stations for location esti-

mation of primary users. This approach may reduce the overhead in transferring topology

information to secondary users; however, there are a number of challenges in implementation

of this approach. A secondary node must know the location of itself, be loosely synchronized

with the localization system, and communicate this information to the localization center.

The number and the spatial distribution and movement characteristics of the secondary

nodes may have a large impact on the the spatio-temporal sensing accuracy. The amount of

clustering and neighborhood properties and environmental characteristics would affect the

performance. The trade of between using only secondary nodes or only MoSs in SAL must

be investigated to find the optimum number of MoSs for global sensing and optimum number

of secondary nodes with known locations for local sensing.

In opportunistic access configuration phase, secondary users decide whether and how to

exploit spectrum opportunities, what transmission power to use and how to share oppor-

tunities among secondary users. Therefore, in this phase the objective is to determine the

transmission range of secondary users while satisfying the primary and secondary constraints

at the same time. Another objective is to provide fair utilization of spectrum holes by sec-

ondary transmitters. Fair utilization can be achieved by balancing the transmission ranges

of secondary transmitters as much as possible while maximizing the utilization of spectrum

holes. SAL may be useful in these aspects as well.

In previous sections, we assumed primary receiver locations are not known and are not

estimated. They are assumed to be located at the worst case position. If the primary net-

work only consists of transmitters which are broadcasting, and not exchanging signals with

receivers, then, estimating locations of primary receivers is more important than estimating

the locations of primary transmitters because the interference range will only be around

the receivers, transmitter will not get affected by interference. If we assume the primary

receivers are at the worst case positions, this causes a conservative approach and the esti-

mated spectrum hole may be actually smaller than the real spectrum hole. When primary
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receiver locations are known, the actual occupied area can be estimated with more accuracy

and therefore the spectrum hole detection performance improves. If the primary network

uses a protocol such as CSMA-CA where the nodes first listen to the channel, and do not

transmit if there is a transmission by a secondary node going on, and back off for collision

avoidance, then secondary transmissions must not interfere with the transmitter either. In

this case, primary transmitter locations must be estimated because primary network is the

owner of the spectrum, and has the priority to use it when needed.

As a proximity based localization algorithm Sub-Area Localization can provide an advan-

tage in terms of cost and responsiveness due to the low complexity of algorithm. However, as

discussed in previous chapters, SAL availability decreases significantly under severe shadow-

ing. In this case, using SAL+CA will be a better approach in detecting primary transmitters.
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6.0 CONCLUSIONS AND FUTURE WORK

Localization with wireless networks with many of its applications is a very interesting re-

search area that it has been continuing to draw the attention of researchers for many years.

Localization approaches can be generally classified as fine grained and coarse-grained depend-

ing on the granularity of information inferred by the communication between mobile devices

and reference points. We surveyed the literature extensively in order to understand the

characteristics, drawbacks, and strengths of many WiFi RSS based localization algorithms

that have been proposed previously. Although it is not straightforward to compare these

systems, we have developed metrics that use the data presented in the respective research

related to these systems to compare them quantitatively.

In this dissertation, the primary interest was in the potentials of proximity based local-

ization which is a coarse grained approach using connectivity information to reference nodes.

This approach may have worse accuracy; however, it does not suffer from multi-path and

hardware related problems or laborious fingerprint collection associated with fine grained

localization. This is maybe the most attractive feature of proximity based localization.

In order to study the potential of proximity based localization, we proposed Sub-Area

Localization (SAL) which is a 2-dimensional proximity-based technique. SAL utilizes the

joint monitoring regions –subareas– of multiple monitoring stations. We showed through

analytical and simulation results that there exists an optimal coverage (range) for best local-

ization accuracy with SAL given a localization scenario with a specific number of monitoring

stations covering the network area. Our analyses and simulations are enriched with perfor-

mance metrics such as availability and efficiency that help make a fair and comprehensive

comparison between different localization scenarios and algorithms. With optimized moni-

toring ranges, we showed that SAL can provide at least 30 cm better accuracy compared to
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the previously proposed Centroid Algorithm in a localization area of size 100m2.

Our research in 2-dimensional proximity based localization revealed that increasing the

number of monitoring stations can certainly reduce the localization error and monitoring

range and this follows an exponential drop in error however incurring increasing cost. Multi-

floor buildings could provide an opportunity to improve localization accuracy without in-

creasing the number of the infrastructure entities. Consequently, we examined an interesting

aspect namely whether combining the readings from monitoring stations deployed in differ-

ent floors is possible for better coverage and also better accuracy in each floor of a multi-floor

building. We demonstrated that SAL can be used in multi-floor buildings, and we call this

approach Multi floor Sub-Area Localization (MSAL). We investigated the performance of

MSAL in two parts: when floor determination is externally available, and when a floor de-

termination algorithm is integrated with MSAL. In both cases, we investigated the effect of

antenna model, floor height, floor repetition scheme (for placing monitoring stations) and

the variance in RSS due to shadow fading on the efficiency of the system. Our simulation

results indicate that using MoSs across floors can increase the deployment efficiency by up to

50%. Our multi-floor localization system provides within-floor localization accuracy compa-

rable to that on a single floor with fewer monitoring stations. As an example, if we consider

the Trump World Tower in New York, USA, it has a floor count of 72 and a per floor area

of 35 × 35m2 (assuming a square floor area) making a total area of 89,800 m2 [86]. The

approximate normalized floor height is given as 3.5m from the calculation provided by the

Council on Tall Buildings and Urban Habitat [87]. With this floor height, using a 2 floor

repetition scheme, the efficiency can be doubled when compared to single floor localization

approach. Under ideal conditions, when best monitoring ranges are determined, isotropic

and dipole antenna coverages lead to similar localization error performances using MSAL

with various floor repetition schemes (keeping the total number of visible monitoring stations

per floor similar to that on a single floor with SAL). The best ratio of monitoring ranges of

MoSs on adjacent floors is between 0.5 and 1.5 depending on floor height and shadow fading.

However, as RSS shadowing fluctuations are included, system designers can select the same

monitoring range on all floors without significantly sacrificing accuracy.

Among many applications of localization, spectrum sensing for identifying spectrum holes
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in cognitive wireless networks is an interesting and yet an emerging application. At the end

of this dissertation, we worked on a case study with the objective of showing that SAL

can provide reasonable global awareness in terms of active primary transmitter locations,

and help secondary networks utilize the available spectrum in time-space and frequency.

We determine the interference and monitoring range conditions under which the spectrum

detection efficiency reaches the best level. We evaluate the effect of two different path loss

models and frequency offset between the localization system and primary network. We

further contribute to this emerging research area with a discussion on possible research

directions.

6.1 FUTURE WORK

In this dissertation, although we have done an extensive simulation based evaluation of sub

area localization, an evaluation with real deployments of monitoring stations in appropriate

indoor and outdoor environments is missing. With real deployments the effect of channel

and obstructions in various environments and the effect of monitoring station placement may

be captured more accurately.

Our approach in SAL and MSAL requires (or assumes) that there must be only one

transmission at a time in the subareas. However, in real life, this may or may not be true.

As future work, this requirement must be understood better and perhaps removed which will

allow a localization system to distinguish simultaneous transmissions from different MNs, and

to be able to detect and localize different MNs separately, yet simultaneously. Clearly, when

there are simultaneous transmissions, using only the existence of a signal energy may cause

problems. Signals may add up together when they arrive at MoSs unless they are separable,

and an ambiguity will occur because the localization system is not aware if a transmission

has multiple sources. This may require a more sophisticated localization algorithm. One

proposal may be to utilize RSS measurements and potentially MN IDs collected at MoSs in

addition to the connectivity information.

In this dissertation, our focus was on showing the impact of different placement schemes
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on the performance of sub area localization approach instead of optimizing the placement of

monitoring stations. A more extensive study on placement schemes may provide a better idea

on the best placement schemes for various types of environments, single floor and multi floor,

etc. Application scenarios may exist where physical access to the localization environment is

not available. One example is helping firefighters to know where they are in a building that

is on fire. In this case, inside deployment of monitoring stations may not possible and they

must be deployed outside the building as this is possible and much more practical. Another

application scenario is when the detection of intruders in wireless networks is needed.

For tractable analysis we assumed that the mobile devices transmit with the same signal

power although different types or brands of wireless devices can have different specifications

on the transmission power. Transmission power is one of the parameters that the localization

system utilizes to calculate the average monitoring range. When the transmit power of mobile

device is larger than the power known to the localization system, although the mobile device

is beyond range d, it may appear that it is in range; and this may cause increased localization

error. In the case that monitoring stations can determine and differentiate between the

mobile devices, and have a database of transmit powers of various devices, this problem may

be addressed without a need to fine tune the proximity threshold. Another way is to utilize

transmission power control mechanisms.

We have compared the accuracy performance with monitoring stations equipped with

isotropic antennas to the performance with modified dipole antennas while assuming mo-

bile devices are equipped with isotropic antennas. Using dipole antennas, and furthermore,

MIMO antennas or directional antennas may also have a significant impact on the perfor-

mance due to their effect on transmission range and/or transmission direction. With direc-

tional antennas especially, the localization system will require the direction of transmission

as an additional input in order to calculate the location estimate.

One interesting problem to look at is the effect of multiple communication technologies

available on mobile devices, such as WiFi on various frequencies, Bluetooth, cell phone.

Exploiting multiple wireless communication technologies may help improve accuracy if the

localization algorithm is sophisticated enough to take advantage of it. Different frequen-

cies and different transmission powers used in different wireless signals may cause different

244



localization performance under different channel and environmental effects. The cost of in-

frastructure elements in different technologies varies, as also the communication range. For

example RFID tags have a very small range and are inexpensive, whereas Wi-Fi or Bluetooth

devices have larger range and are more expensive than RFID tags. An interesting research

can focus on efficient usage of the combinations of various communication technologies de-

pending on the environment, required accuracy, available budget, etc. Furthermore, one may

not care about minimizing the cost when the required accuracy is satisfied; or one may not

care about improving the accuracy as long as “a” location estimate is available for a large

fraction of the localization area. Determining the trade off between these parameters can be

another research direction.

We have used the term “cost” simply as the number of infrastructure entities deployed.

As the above discussion clearly indicates, cost is a more complex function of type of device,

application, environment, energy, and other factors that have not been included in this

work. Accurately characterizing the cost based on various possibilities can be useful for

system deployment.

Localization algorithms can be used as navigation and tracking mechanisms if the location

estimation is calculated periodically with a given time interval in between estimates. Sub

Area Localization algorithm can be used as a navigation system as its responsiveness only

depends on how soon the monitoring stations can transfer their findings to the central server

for location estimate calculation. Since the central server only maps the set of MoSs to a

known subarea, the responsiveness of system can be expected to be satisfactory.
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APPENDIX

DETAILED SIMULATION RESULTS FOR VARIOUS LOCALIZATION

SCENARIOS

A.1 MSAL

A.1.1 Effect of Wall Attenuation Factor

Figure A1 shows the maximum efficiency with respect to σ and floor height for MSAL-iso

and MSA-dpl in 2FRS scenario for 2 floor plans.

From Figures A2 and A3 show the behavior of maximum efficiency when h = 0.05L and

h = 0.4L, we can observe as floor height increases the maximum efficiency with isotropic

and dipole antennas decreases and approaches to similar values. Also, at small h we see that

dipole antennas can provide much better efficiency than isotropic antennas, whereas at large

h, isotropic antennas can provide better results.

A.1.2 Effect of Random Placement
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A.1.3 Summary of Results

In the following, we present the best accuracy and best efficiency values that can be achieved

with MSAL, MSAL+MCA and MCA with various localization scenarios under ideal channel

conditions and and two different levels of shadowing. We assumed h = 0.25L which can

correspond to 2.5m floor height in a building with floor are of 0× 10 m2.

Tables A1 - A4 show the accuracy and efficiency performances of MSAL-iso with 2FRS

under various localization scenarios and signal propagation conditions.

Tables A5 - A8 show the accuracy and efficiency performances of MSAL+MCA-iso with

2FRS under various localization scenarios and signal propagation conditions.

Tables A9 - A12 show the accuracy and efficiency performances of MCA-iso with 2FRS

under various localization scenarios and signal propagation conditions.

Tables A13 - A16 show the accuracy and efficiency performances of MSAL+MCA-dpl

with 2FRS under various localization scenarios and signal propagation conditions.

Tables A17 - A20 show the accuracy and efficiency performances of MCA-dpl with 2FRS

under various localization scenarios and signal propagation conditions.
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Table A1: MSAL accuracy with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > E∗
avg/L 0.081 0.172 0.251

d∗ii/L (0.705 , 0.853) (0.484 , 0.484) (0.521 , 0.558)

< (5, 4),Gp, A > E∗
avg/L 0.099 0.148 0.205

FP 1, WAF = 3.1dB d∗/L (0.484 , 0.447) (0.484 , 0.484) (0.447 , 0.447)

< (5, 4),Gp, A > E∗
avg/L 0.088 0.146 0.205

FP 2, WAF = 3.1dB d∗/L (0.484 , 0.447) (0.484 , 0.484) (0.447 , 0.447)

< (5, 4),Gp, A > E∗
avg/L 0.091 0.225 0.308

FAF = 13dB d∗ii/L (0.889 , 0.889) (0.521 , 0.521) (0.779 , 0.558)

< (5, 4),R, A, sh > E∗
avg/L 0.087 0.18

d∗ii/L (0.627, 0.487) (0.44,0.44)

< (5, 4),Gp, A > E∗
avg/L 0.077 0.171 0.248

with MBFD d∗ii/L (0.484 , 0.484) (0.484 , 0.484) (0.558 , 0.558)

Afn,avg 0.281 0.309 0.377

< (5, 4),Gp, A > E∗
avg/L 0.091 0.225 0.304

with MBFD d∗ii/L (0.889 , 0.889) (0.558 , 0.521) (0.300 , 0.779)

FAF = 13dB Afn,avg 0.000 0.037 0.206
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Table A2: MSAL efficiency with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > η∗avg 13.87 5.15 2.037

d∗ii/L (0.853 , 0.705) (0.374 , 0.374) (0.300 , 0.447)

< (5, 4),Gp, A > η∗avg 10.850 5.634 2.488

FP 1, WAF = 3.1dB d∗/L (0.374 , 0.374) (0.374 , 0.374) (0.300 , 0.447)

< (5, 4),Gp, A > η∗avg 10.357 5.553 2.528

FP 2, WAF = 3.1dB d∗/L (0.300 , 0.447) (0.300 , 0.447) (0.300 , 0.447)

< (5, 4),Gp, A > η∗avg 12.578 3.447 1.652

FAF = 13dB d∗ii/L (0.926 , 0.853) (0.300 , 0.779) (0.300 , 0.779)

< (5, 4),Gp, A > η∗avg 10.57145996 3.519244357 1.32113641

with MBFD d∗ii/L (0.484 , 0.484) (0.374 , 0.374) (0.374 , 0.374)

Afn,avg 0 0 0

< (5, 4),Gp, A > η∗avg 2.516 0.820 0.317

with MBFD d∗ii/L (0.926 , 0.853) (0.374 , 0.374) (0.374 , 0.374)

FAF = 13dB Afn,avg 0.000 0.020 0.148
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Table A3: MSAL accuracy with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > E∗
avg/L 0.080 0.179 0.262

d∗ii/L (0.521 , 0.521) (0.484 , 0.447) (0.595 , 0.521)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.098 0.151 0.211

FP 1, WAF = 3.1dB d∗/L (0.447 , 0.484) (0.484 , 0.484) (0.447 , 0.484)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.088 0.152 0.211

FP 2, WAF = 3.1dB d∗/L (0.411 , 0.484) (0.484 , 0.484) (0.521 , 0.484)

< (4, 3, 2),Gp, A > E∗
avg/L 0.099 0.264 0.337

FAF = 13dB d∗ii/L (0.926 , 0.963) (0.853 , 0.779) (0.926 , 0.889)

< (4, 3, 2),Gp, A > E∗
avg/L 0.070 0.170 0.242

with MBFD d∗ii/L (0.411 , 0.668) (0.411 , 0.558) (0.411 , 0.558)

Afn,avg 0.166 0.343 0.499

< (4, 3, 2),Gp, A > E∗
avg/L 0.088 0.251 0.313

with MBFD d∗ii/L (0.779 , 0.926) (0.926 , 0.300) (0.926 , 0.300)

FAF = 13dB Afn,avg 0.000 0.235 0.308
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Table A4: MSAL efficiency with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > η∗avg 22.752 7.323 2.655

d∗ii/L (0.521 , 0.521) (0.411 , 0.411) (0.300 , 0.632)

< (4, 3, 2),Gp, A, waf > η∗avg 17.055 8.432 3.403

FP 1, WAF = 3.1dB d∗/L (0.447 , 0.447) (0.447 , 0.447) (0.447 , 0.447)

< (4, 3, 2),Gp, A, waf > η∗avg 15.452 7.546 3.332

FP 2, WAF = 3.1dB d∗/L (0.668 , 0.668) (0.411 , 0.484) (0.411 , 0.484)

< (4, 3, 2),Gp, A > η∗avg 18.738 4.755 2.347

FAF = 13dB d∗ii/L (0.853 , 1.000) (0.300 , 1.000) (0.300 , 1.000)

< (4, 3, 2),Gp, A > η∗avg 2.801 0.543 0.157

with MBFD d∗ii/L (0.558 , 0.447) (0.300 , 0.595) (0.300 , 0.595)

Afn,avg 0.341 0.430 0.529

< (4, 3, 2),Gp, A > η∗avg 3.246 0.848 0.313

with MBFD d∗ii/L (0.926 , 0.779) (0.374 , 0.337) (0.300 , 0.300)

FAF = 13dB Afn,avg 0.000 0.038 0.224
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Table A5: MSAL+MCA accuracy with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > E∗
avg/L 0.081 0.179 0.279

d∗ii/L (0.705 , 0.853) (0.374 , 0.374) (0.411 , 0.374)

< (5, 4),Gp, A > E∗
avg/L 0.096 0.156 0.231

FP 1, WAF = 3.1dB d∗/L (0.484 , 0.447) (0.411 , 0.411) (0.337 , 0.374)

< (5, 4),Gp, A > E∗
avg/L 0.091 0.153 0.222

FP 2, WAF = 3.1dB d∗/L (0.484 , 0.447) (0.447 , 0.484) (0.374 , 0.374)

< (5, 4),Gp, A > E∗
avg/L 0.091 0.227 0.314

FAF = 13dB d∗ii/L (0.889 , 0.889) (0.521 , 0.521) (0.558 , 0.632)

< (5, 4),R, A, sh > E∗
avg/L 0.087 0.182

d∗ii/L (0.627,0.487) (0.3,0.3)

< (5, 4),Gp, A > E∗
avg/L 0.077 0.184 0.275

with MBFD d∗ii/L (0.484 , 0.484) (0.447 , 0.447) (0.374 , 0.374)

Afn,avg 0.281 0.307 0.364

< (5, 4),Gp, A > E∗
avg/L 0.091 0.227 0.310

with MBFD d∗ii/L (0.889 , 0.889) (0.521 , 0.521) (0.521 , 0.521)

FAF = 13dB Afn,avg 0.000 0.036 0.179
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Table A6: MSAL+MCA efficiency with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > η∗avg 13.87 6.13 3.965

d∗ii/L (0.853 , 0.705) (0.411 , 0.411) (0.447 , 0.484)

< (5, 4),Gp, A > η∗avg 11.643 7.218 4.793

FP 1, WAF = 3.1dB d∗/L (0.484 , 0.447) (0.447 , 0.484) (0.411 , 0.411)

< (5, 4),Gp, A > η∗avg 12.391 7.367 5.041

FP 2, WAF = 3.1dB d∗/L (0.484 , 0.484) (0.447 , 0.484) (0.447 , 0.447)

< (5, 4),Gp, A > η∗avg 12.578 4.885 3.559

FAF = 13dB d∗ii/L (0.926 , 0.853) (0.521 , 0.558) (0.558 , 0.632)

< (5, 4),Gp, A > η∗avg 10.57145996 4.187882981 2.49337063

with MBFD d∗ii/L (0.484 , 0.484) (0.447 , 0.447) (0.447 , 0.484)

Afn,avg 0 0 0

< (5, 4),Gp, A > η∗avg 2.516 0.961 0.594

with MBFD d∗ii/L (0.926 , 0.853) (0.484 , 0.484) (0.484 , 0.484)

FAF = 13dB Afn,avg 0.000 0.034 0.175
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Table A7: MSAL+MCA accuracy with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > E∗
avg/L 0.080 0.188 0.287

d∗ii/L (0.521 , 0.521) (0.411 , 0.411) (0.411 , 0.411)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.097 0.157 0.234

FP 1, WAF = 3.1dB d∗/L (0.447 , 0.484) (0.411 , 0.374) (0.411 , 0.374)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.091 0.156 0.225

FP 2, WAF = 3.1dB d∗/L (0.447 , 0.484) (0.411 , 0.374) (0.411 , 0.374)

< (4, 3, 2),Gp, A > E∗
avg/L 0.099 0.271 0.335

FAF = 13dB d∗ii/L (0.926 , 0.963) (0.742 , 0.668) (0.742 , 0.668)

< (4, 3, 2),Gp, A > E∗
avg/L 0.070 0.187 0.274

with MBFD d∗ii/L (0.411 , 0.668) (0.337 , 0.447) (0.411 , 0.411)

Afn,avg 0.166 0.343 0.499

< (4, 3, 2),Gp, A > E∗
avg/L 0.088 0.257 0.314

with MBFD d∗ii/L (0.779 , 0.926) (0.558 , 0.558) (0.595 , 0.558)

FAF = 13dB Afn,avg 0.000 0.085 0.286
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Table A8: MSAL+MCA efficiency with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > η∗avg 22.752 9.453 6.219

d∗ii/L (0.521 , 0.521) (0.447 , 0.447) (0.447 , 0.484)

< (4, 3, 2),Gp, A, waf > η∗avg 18.895 11.348 7.594

FP 1, WAF = 3.1dB d∗/L (0.484 , 0.447) (0.374 , 0.411) (0.374 , 0.411)

< (4, 3, 2),Gp, A, waf > η∗avg 19.701 11.541 7.942

FP 2, WAF = 3.1dB d∗/L (0.484 , 0.447) (0.374 , 0.411) (0.374 , 0.411)

< (4, 3, 2),Gp, A > η∗avg 18.738 6.795 5.435

FAF = 13dB d∗ii/L (0.853 , 1.000) (0.742 , 0.668) (0.742 , 0.668)

< (4, 3, 2),Gp, A > η∗avg 2.801 0.879 0.503

with MBFD d∗ii/L (0.558 , 0.447) (0.411 , 0.374) (0.374 , 0.337)

Afn,avg 0.341 0.423 0.521

< (4, 3, 2),Gp, A > η∗avg 3.246 1.042 0.657

with MBFD d∗ii/L (0.926 , 0.779) (0.484 , 0.521) (0.447 , 0.632)

FAF = 13dB Afn,avg 0.000 0.076 0.285
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Table A9: MCA-iso accuracy with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > E∗
avg/L 0.090 0.189 0.284

d∗ii/L (0.484 , 0.484) (0.484 , 0.447) (0.521 , 0.411)

< (5, 4),Gp, A > E∗
avg/L 0.100 0.161 0.238

FP 1, WAF = 3.1dB d∗ii/L (0.447 , 0.447) (0.447 , 0.521) (0.447 , 0.521)

< (5, 4),Gp, A > E∗
avg/L 0.092 0.156 0.226

FP 2, WAF = 3.1dB d∗ii/L (0.484 , 0.411) (0.447 , 0.595) (0.411 , 0.521)

< (5, 4),Gp, A > E∗
avg/L 0.123 0.233 0.315

d∗ii/L (0.816 , 0.447) (0.558 , 0.558) (0.558 , 0.779)

< (5, 4),R, A, sh > E∗
avg/L 0.141 0.189

FAF = 13dB d∗ii/L (0.300 0.300) (0.300 0.300)

< (5, 4),Gp, A > E∗
avg/L 0.083 0.190 0.281

with MBFD d∗ii/L (0.484 , 0.484) (0.484 , 0.484) (0.521 , 0.374)

Afn,avg 0.281 0.309 0.374

< (5, 4),Gp, A > E∗
avg/L 0.122 0.233 0.311

with MBFD d∗ii/L (0.300 , 0.816) (0.558 , 0.595) (0.705 , 0.411)

FAF = 13dB Afn,avg 0.220 0.038 0.183
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Table A10: MCA-iso efficiency with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > η∗avg 12.494 5.931 3.929

d∗ii/L (0.484 , 0.447) (0.447 , 0.484) (0.411 , 0.521)

< (5, 4),Gp, A > η∗avg 11.226 6.989 4.709

FP 1, WAF = 3.1dB d∗ii/L (0.521 , 0.447) (0.447 , 0.521) (0.447 , 0.521)

< (5, 4),Gp, A > η∗avg 12.370 7.220 4.968

FP 2, WAF = 3.1dB d∗ii/L (0.484 , 0.411) (0.447 , 0.595) (0.411 , 0.521)

< (5, 4),Gp, A > η∗avg 10.430 4.789 3.560

FAF = 13dB d∗ii/L (0.816 , 0.447) (0.558 , 0.595) (0.558 , 0.779)

< (5, 4),Gp, A > η∗avg 9.710030845 4.06669776 2.46991029

with MBFD d∗ii/L (0.484 , 0.484) (0.484 , 0.521) (0.521 , 0.521)

Afn,avg 0 0 0

< (5, 4),Gp, A > η∗avg 2.034 0.926 0.586

with MBFD d∗ii/L (0.816 , 0.447) (0.595 , 0.558) (0.521 , 0.632)

FAF = 13dB Afn,avg 0.012 0.038 0.181
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Table A11: MCA-iso accuracy with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > E∗
avg/L 0.094 0.195 0.290

d∗ii/L (0.484 , 0.484) (0.521 , 0.484) (0.484 , 0.558)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.100 0.164 0.242

FP 1, WAF = 3.1dB d∗ii/L (0.447 , 0.558) (0.558 , 0.521) (0.484 , 0.484)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.094 0.160 0.230

FP 2, WAF = 3.1dB d∗ii/L (0.447 , 0.484) (0.558 , 0.484) (0.558 , 0.447)

< (4, 3, 2),Gp, A > E∗
avg/L 0.139 0.270 0.333

FAF = 13dB d∗ii/L (0.816 , 0.816) (0.705 , 0.742) (0.816 , 0.816)

< (4, 3, 2),Gp, A > E∗
avg/L 0.110 0.189 0.273

with MBFD d∗ii/L (0.484 , 0.484) (0.411 , 0.447) (0.411 , 0.411)

Afn,avg 0.166 0.343 0.499

< (4, 3, 2),Gp, A > E∗
avg/L 0.165 0.259 0.314

with MBFD d∗ii/L (0.374 , 0.816) (0.558 , 0.558) (0.963 , 0.300)

FAF = 13dB Afn,avg 0.105 0.085 0.307
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Table A12: MCA-iso efficiency with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > η∗avg 19.270 9.245 6.211

d∗ii/L (0.484 , 0.484) (0.521 , 0.484) (0.558 , 0.595)

< (4, 3, 2),Gp, A, waf > η∗avg 17.896 10.986 7.429

FP 1, WAF = 3.1dB d∗ii/L (0.558 , 0.447) (0.521 , 0.558) (0.484 , 0.484)

< (4, 3, 2),Gp, A, waf > η∗avg 19.045 11.277 7.841

FP 2, WAF = 3.1dB d∗ii/L (0.484 , 0.447) (0.484 , 0.558) (0.484 , 0.632)

< (4, 3, 2),Gp, A > η∗avg 14.614 6.785 5.454

FAF = 13dB d∗ii/L (0.816 , 0.447) (0.742 , 0.779) (0.816 , 0.926)

< (4, 3, 2),Gp, A > η∗avg 1.810 0.864 0.497

with MBFD d∗ii/L (0.484 , 0.484) (0.447 , 0.374) (0.374 , 0.337)

Afn,avg 0.341 0.431 0.521

< (4, 3, 2),Gp, A > η∗avg 1.813 1.031 0.654

with MBFD d∗ii/L (0.779 , 0.484) (0.595 , 0.521) (0.558 , 0.595)

FAF = 13dB Afn,avg 0.026 0.088 0.286
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Table A13: MSAL+MCA-dpl accuracy with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > E∗
avg/L 0.081 0.218 0.319

d∗ii/L (0.889 , 0.742) (0.558 , 0.558) (0.521 , 0.558)

< (5, 4),Gp, A > E∗
avg/L 0.115 0.193 0.251

FP 1, WAF = 3.1dB d∗ii/L (0.558 , 0.595) (0.300 , 0.374) (0.300 , 0.300)

< (5, 4),Gp, A > E∗
avg/L 0.114 0.191 0.247

FP 2, WAF = 3.1dB d∗ii/L (0.668 , 0.595) (0.484 , 0.447) (0.300 , 0.300)

< (5, 4),Gp, A > E∗
avg/L 0.137 0.230 0.316

FAF = 13dB d∗ii/L (0.742 , 0.779) (0.521 , 0.521) (0.521 , 0.558)

< (5, 4),Gp, A > E∗
avg/L 0.082 0.217 0.314

with MBFD d∗ii/L (0.742 , 0.889) (0.558 , 0.558) (0.558 , 0.521)

Afn,avg 0.233 0.107 0.069

< (5, 4),Gp, A > E∗
avg/L 0.137 0.230 0.316

with MBFD d∗ii/L (0.742 , 0.779) (0.521 , 0.521) (0.521 , 0.521)

FAF = 13dB Afn,avg 0 0 0
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Table A14: MSAL+MCA-dpl efficiency with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > η∗avg 13.874 5.125 3.471

d∗ii/L (0.889 , 0.742) (0.558 , 0.558) (0.521 , 0.595)

< (5, 4),Gp, A > η∗avg 9.834 5.744 4.057

FP 1, WAF = 3.1dB d∗/L (0.595 , 0.558) (0.558 , 0.558) (0.484 , 0.484)

< (5, 4),Gp, A > η∗avg 9.838 5.792 4.214

FP 2, WAF = 3.1dB d∗/L (0.595 , 0.668) (0.447 , 0.484) (0.484 , 0.484)

< (5, 4),Gp, A > η∗avg 8.213 4.798 3.460

FAF = 13dB d∗ii/L (0.779 , 0.742) (0.521 , 0.558) (0.668 , 0.595)

< (5, 4),Gp, A > η∗avg 2.126 0.985 0.699

with MBFD d∗ii/L (0.926 , 0.668) (0.484 , 0.484) (0.447 , 0.484)

Afn,avg 0.233 0.107 0.069

< (5, 4),Gp, A > η∗avg 1.643 0.986 0.701

with MBFD d∗ii/L (0.779 , 0.742) (0.484 , 0.484) (0.484 , 0.484)

FAF = 13dB Afn,avg 0 0 0
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Table A15: MSAL+MCA-dpl accuracy with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > η∗avg 0.083 0.241 0.350

d∗ii/L (0.779 , 0.779) (0.632 , 0.632) (0.816 , 0.742)

< (4, 3, 2),Gp, A, waf > η∗avg 0.130 0.213 0.286

FP 1, WAF = 3.1dB d∗/L (0.595 , 0.632) (0.300 , 0.300) (0.300 , 0.300)

< (4, 3, 2),Gp, A, waf > η∗avg 0.128 0.217 0.283

FP 2, WAF = 3.1dB d∗/L (0.668 , 0.668) (0.300 , 0.300) (0.300 , 0.300)

< (4, 3, 2),Gp, A > η∗avg 0.230 0.297 0.344

FAF = 13dB d∗ii/L (0.705 , 0.742) (0.705 , 0.705) (0.705 , 0.742)

< (4, 3, 2),Gp, A > η∗avg 0.076 0.223 0.287

with MBFD d∗ii/L (0.742 , 0.779) (0.558 , 0.595) (0.668 , 0.300)

Afn,avg 0 0.23725 0.46108

< (4, 3, 2),Gp, A > η∗avg 0.230 0.278 0.334

with MBFD d∗ii/L (0.705 , 0.742) (0.558 , 0.558) (0.558 , 0.558)

FAF = 13dB Afn,avg 0.000 0.000 0.000
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Table A16: MSAL+MCA-dpl efficiency with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > E∗
avg/L 22.274 7.519 5.201

d∗ii/L (0.816 , 0.779) (0.632 , 0.632) (0.816 , 0.742)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 14.480 8.090 5.644

FP 1, WAF = 3.1dB d∗/L (0.668 , 0.595) (0.595 , 0.595) (0.595 , 0.558)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 14.116 8.088 5.832

FP 2, WAF = 3.1dB d∗/L (0.668 , 0.668) (0.595 , 0.595) (0.595 , 0.595)

< (4, 3, 2),Gp, A > E∗
avg/L 9.670 6.234 5.010

FAF = 13dB d∗ii/L (0.742 , 0.705) (0.705 , 0.742) (0.742 , 0.779)

< (4, 3, 2),Gp, A > E∗
avg/L 2.813 0.882 0.511

with MBFD d∗ii/L (0.742 , 0.595) (0.447 , 0.447) (0.447 , 0.411)

Afn,avg 0.268 0.237 0.462

< (4, 3, 2),Gp, A > E∗
avg/L 1.464 1.056 0.828

with MBFD d∗ii/L (0.742 , 0.411) (0.484 , 0.521) (0.484 , 0.558)

FAF = 13dB Afn,avg 0.000 0.000 0.000
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Table A17: MCA-dpl accuracy with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > E∗
avg/L 0.117 0.221 0.320

d∗ii/L (0.558 , 0.558) (0.595 , 0.558) (0.558 , 0.668)

< (5, 4),Gp, A > E∗
avg/L 0.127 0.203 0.286

FP 1, WAF = 3.1dB d∗ii/L (0.558 , 0.595) (0.595 , 0.595) (0.558 , 0.484)

< (5, 4),Gp, A > E∗
avg/L 0.121 0.202 0.275

FP 2, WAF = 3.1dB d∗ii/L (0.668 , 0.595) (0.632 , 0.558) (0.558 , 0.484)

< (5, 4),Gp, A > E∗
avg/L 0.144 0.239 0.321

FAF = 13dB d∗ii/L (0.595 , 0.595) (0.558 , 0.558) (0.521 , 0.779)

< (5, 4),Gp, A > E∗
avg/L 0.124 0.222 0.315

with MBFD d∗ii/L (0.558 , 0.558) (0.558 , 0.595) (0.632 , 0.521)

Afn,avg 0.132 0.114 0.078

< (5, 4),Gp, A > E∗
avg/L 0.144 0.239 0.321

with MBFD d∗ii/L (0.595 , 0.595) (0.558 , 0.558) (0.632 , 0.742)

FAF = 13dB Afn,avg 0 0 0
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Table A18: MCA-dpl efficiency with 2FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (5, 4),Gp, A > η∗avg 9.588 5.082 3.501

d∗ii/L (0.558 , 0.558) (0.595 , 0.558) (0.595 , 0.668)

< (5, 4),Gp, A > η∗avg 8.856 5.518 3.885

FP 1, WAF = 3.1dB d∗ii/L (0.595 , 0.558) (0.595 , 0.595) (0.558 , 0.632)

< (5, 4),Gp, A > η∗avg 9.267 5.561 4.052

FP 2, WAF = 3.1dB d∗ii/L (0.595 , 0.668) (0.558 , 0.632) (0.484 , 0.668)

< (5, 4),Gp, A > η∗avg 7.821 4.664 3.477

FAF = 13dB d∗ii/L (0.595 , 0.595) (0.558 , 0.558) (0.779 , 0.742)

< (5, 4),Gp, A > η∗avg 1.735 0.918 0.671

with MBFD d∗ii/L (0.595 , 0.374) (0.484 , 0.558) (0.484 , 0.668)

Afn,avg 0.132 0.114 0.078

< (5, 4),Gp, A > η∗avg 1.564 0.933 0.694

with MBFD d∗ii/L (0.595 , 0.595) (0.558 , 0.558) (0.853 , 0.705)

FAF = 13dB Afn,avg 0 0 0
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Table A19: MCA-dpl accuracy with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > E∗
avg/L 0.126 0.239 0.343

d∗ii/L (0.742 , 0.705) (0.632 , 0.632) (0.705 , 0.816)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.139 0.229 0.321

FP 1, WAF = 3.1dB d∗ii/L (0.558 , 0.668) (0.632 , 0.668) (0.705 , 0.742)

< (4, 3, 2),Gp, A, waf > E∗
avg/L 0.141 0.230 0.310

FP 2, WAF = 3.1dB d∗ii/L (0.705 , 0.632) (0.705 , 0.668) (0.705 , 0.779)

< (4, 3, 2),Gp, A > E∗
avg/L 0.261 0.330 0.371

FAF = 13dB d∗ii/L (0.779 , 0.816) (0.853 , 0.816) (0.926 , 1.000)

< (4, 3, 2),Gp, A > E∗
avg/L 0.150 0.224 0.290

with MBFD d∗ii/L (0.300 , 0.742) (0.300 , 0.668) (0.668 , 0.300)

Afn,avg 0 0.23725 0.46108

< (4, 3, 2),Gp, A > E∗
avg/L 0.234 0.283 0.340

with MBFD d∗ii/L (0.632 , 0.632) (0.558 , 0.558) (0.558 , 0.595)

FAF = 13dB Afn,avg 0.000 0.000 0.000
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Table A20: MCA-dpl efficiency with 3FRS in various localization scenarios

Scenario σ = 0 σ = 5 σ = 10

h = 0.25L h = 0.25L h = 0.25L

< (4, 3, 2),Gp, A > η∗avg 14.553 7.582 5.292

d∗ii/L (0.742 , 0.705) (0.632 , 0.668) (0.779 , 0.779)

< (4, 3, 2),Gp, A, waf > η∗avg 14.008 8.011 5.693

FP 1, WAF = 3.1dB d∗ii/L (0.668 , 0.558) (0.668 , 0.668) (0.742 , 0.742)

< (4, 3, 2),Gp, A, waf > η∗avg 13.035 8.044 5.926

FP 2, WAF = 3.1dB d∗ii/L (0.632 , 0.705) (0.668 , 0.705) (0.779 , 0.705)

< (4, 3, 2),Gp, A > η∗avg 8.082 5.553 4.782

FAF = 13dB d∗ii/L (0.853 , 0.779) (0.889 , 0.926) (1.000 , 1.000)

< (4, 3, 2),Gp, A > η∗avg 1.570 0.830 0.500

with MBFD d∗ii/L (0.558 , 0.374) (0.484 , 0.484) (0.521 , 0.521)

Afn,avg 0.169 0.240 0.472

< (4, 3, 2),Gp, A > η∗avg 1.415 1.022 0.837

with MBFD d∗ii/L (0.632 , 0.447) (0.595 , 0.632) (0.779 , 0.926)

FAF = 13dB Afn,avg 0.000 0.000 0.000
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A.2 MULTI-FLOOR LOCALIZATION & FLOOR DETERMINATION

WITH 2FRS

0 0.5 1
0

0.5
1

0.6
0.8

1

d
11

/L

Floor 1, m=1

d
22

/L

R
1

0 0.5 1
0

0.5
1

0.6
0.8

1

d
11

/L

Floor 2, m=1

d
22

/L

R
2

0 0.5 1
0

0.5
1
0

0.5

1

d
11

/L

Floor 1, m=2

d
22

/L

R
1

0 0.5 1
0

0.5
1
0

0.5

1

d
11

/L

Floor 2, m=2

d
22

/L

R
2

0 0.5 1
0

0.5
1
0

0.5

1

d
11

/L

Floor 1, m=3

d
22

/L

R
1

0 0.5 1
0

0.5
1
0

0.5

1

d
11

/L

Floor 2, m=3

d
22

/L

R
2

0 0.5 1
0

0.5
1

0.7
0.8
0.9

d
11

/L

Floor 1, m=4

d
22

/L

R
1

0 0.5 1
0

0.5
1

0.7
0.8
0.9

d
11

/L

Floor 2, m=4

d
22

/L

R
2

Isotropic, 2FRS, <(5,4), G
p
, A>, h=0.25L

Figure A6: Availability on floors 1 and 2 with MSAL-iso, σ = 0, h = 0.25L
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A.3 MULTI-FLOOR LOCALIZATION & FLOOR DETERMINATION

WITH 3FRS

In this section, we provide a detailed performance analysis on FD performance of a 3 floor

repetition localization scenario (3FRS) under various channel conditions and with different

antenna types. Later in Section A.3.1, the performance of multi-floor subarea localization

and multi-floor centroid algorithm with 3FRS are shown when integrated with FD algorithm.

While evaluating the floor determination for 3 floor scheme, we also want to show the

performance under the special case where the highest RSS readings in multiple floors are

compared to each other to determine the correct floor. In the Section 4.4.1.1, we listed 2

constraints that must be satisfied for no false negatives. 3FRS scheme introduced in previous

sections use a total of 9 MoSs in 3 floors, < (4, 3, 2),Gp, A >. In this section, we modify

3FRS scheme so that these two constraints are satisfied assuming isotropic antennas are used

on MoSs. Modified 3FRS < (5, 3, 3),Gp, A > localization scenario shown in Figure A8 has

one MoS at the center of each floor and uses 3.6 MoSs on the average per floor instead of

3 MoSs on the average in scenario < (4, 3, 2),Gp, A >. The first constraint is satisfied if

dii ≥ L/2 for floors 1 and 4, and if dii ≥
√
5L/4 for floors 2,3 and 5. Second constraint is

satisfied when monitoring ranges are adjusted so that the conditions are valid under Theorem

1 and 2 with given floor height.

We show the percentage of false negatives with isotropic antennas when h = 0.5L with

3FRS scenario in Figure A9. In this case, it is obvious that when d44 ≥ L/2 and d22 ==

d33 ≥
√
5L/4, the first constraint is satisfied. When m = 1 at h = 0.5L, second constraint

is also satisfied, and probability of false negatives is 0. As m increases, the range that can

provide 0 false negatives probability narrows down because multiple RSS values from each

floor are combined together and compared against each other for FD. In 3FRS scenario,

for every MN, m RSS measurements are collected from 3 different floors and sum of these

values are compared to each other to find the correct floor among the three floors. From

Theorem 2, case 1, and Figure ??, we can observe that with h = 0.35L, 0 false negatives

can be achieved when d < 0.86, assuming d satisfies the first condition. Therefore, in Figure

A10, we show the Afn on three floors using dipole antennas when h = 0.35L. We remind
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Figure A9: Percentage of false negatives with < (5, 3, 3),Gp, A, iso >, σ = 0, h = 0.5L
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Figure A10: Percentage of false negatives with < (5, 3, 3),Gp, A, iso >, σ = 0, h = 0.35L
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that for adjacent monitoring ranges to be non-zero with dipole antennas, dii > 2h must be

satisfied. As case 1 of theorem 1 is applicable in Floor 4, monitoring ranges that satisfies

both condition 1 and condition in Theorem 1-case1 provides 0 false negatives on Floor 4.

We determine the smallest possible fraction of false negatives A∗
fn over the possible

monitoring ranges in each floor. Figures A11 and A12 show the minimum average percentage

of false negatives, A∗
fn that can be achieved for a given decision depth m, floor height, h,

and the standard deviation of the shadowing, σ with 3FRS scenario, where:

A∗
fn = mindii,i=2...4

(
1

3

F∑
i=1

Afn,i

)
. (.1)

In these figures, we ensure that the 1st constraint is satisfied, i.e., under ideal conditions,

full coverage on every floor is provided by adjusting the monitoring ranges. In general, we

observe increasing number of false negatives for increasing floor height and shadowing effect.

The effect of floor height arises from the adjacent monitoring range depending on floor height

as discussed in Theorems 1 and 2. Shadowing effect disrupts the adjacent monitoring range,

therefore, false negative probability gets higher. With dipole antennas, we observe A∗
fn = 0

when h ≤ 0.3L instead of 0.35L as discussed previously. the reason is that at 0.3L, the

first constraint is satisfied, but the monitoring range d < 2h, therefore, adjacent monitoring

ranges do not exist, then, in floor determination each MN is detected by MoSs on the floor

they reside in. Multiple RSS readings cannot be collected from multiple floors.

To get a more detailed look, Figure A13 shows minimum false negatives probability with

respect to floor height under ideal conditions. According to analysis, probability of false

negatives is 0 at decision depth m = 1 when h ≥ 0.5L and σ = 0. As also shown with the

conditions, at h = 0.5L, decision depth m = 1 can provide zero false negatives under ideal

conditions. However, using a larger decision depth can provide a lower Afn value for smaller

floor height. We also observe that floor height has a sharper effect on false negatives with

dipole antennas. This is due to smaller vertical range of dipole antennas. The reason that we

observe 0 false negatives with floor height larger than 0.3L is explained before. In contrast

to the effect of decision depth with isotropic antennas, with dipole antennas higher decision

depth values result in higher percentage of false negatives.
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Figure A11: Minimum false negative probability with < (5, 3, 3),Gp, A, iso >
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Figure A15 shows the minimum false negatives with respect to σ when h = 0.25L. With

isotropic antennas, we observe A∗
fn with decision depth m = 1 is higher than with m = 3

when σ ≤ 2. Under higher shadowing effect, m = 1 gives the smallest percentage of false

negatives. With m = 1, the reason of smaller Afn is that as σ is increasing monitoring

ranges are adjusted so that only one floor’s MoSs monitor adjacent floors, the other floor’s

MoSs only monitor their current floor. We note that A∗
fn with dipole antennas is much

smaller than A∗
fn with isotropic antennas due to smaller vertical range on dipole antennas

when compared to isotropic antennas. As σ is getting larger, we observe A∗
fn continues to

increase, and best A∗
fn is given by decision depth m = 2.
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Figure A15: Minimum false negative probability with < (5, 3, 3),Gp, A, iso/dpl >, h = 0.25L
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A.3.1 Availability with MBFD

Average availability on three floors are shown in Figures A16 and A17 using isotropic and

dipole antennas. We assume h = 0.25L. When h < L/2, floor determination algorithm

causes the availability to decrease below 100% even under ideal channel conditions and

monitoring range on current floor is large enough to cover the whole area on both of the

floors. This was shown before in Figure A15. With dipole antennas in order for floor

determination can be realized between multiple floors, d > 2h; therefore, we can neglect

d < 0.5L when h = 0.25L, and focus on where d ≥ 0.5L. However, for the full coverage on

all floors, d ≥
√
5L/4. Figures A18 and A19 show the availability that can be achieved with

isotropic and dipole antennas on three floors.

Figures A20 and A21 show the probability of false negatives for three floors with isotropic

and dipole antennas.
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Figure A19: Availability on floors 2, 3 and 4 with MSAL-dpl, σ = 0, h = 0.25L
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Figure A20: False negatives on floors 2, 3 and 4 with different decision depths with isotropic

antennas, σ = 0, h = 0.25L
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Figures A22 and A23 show the probability of false negatives for three floors on the

average with isotropic and dipole antennas and with different decision depths used in floor

determination.

A.3.2 Best Accuracy Conditions

Figures A24 and A25 show localization error with respect to two different monitoring ranges

on floors 2,3 and 4.

Table A21 summarizes the minimum achievable errors and corresponding monitoring

ranges with 3FRS scenario using MSAL-iso and MSAL-dpl under ideal conditions and

h = 0.25L. Localization error when floor information is known is the upper bound for

localization error that can be achieved with floor determination under ideal channel condi-

tions. Because depending on floor determination algorithms performance, the availability of

localization system increases or decreases. When availability decreases, the probability that

a MN estimation increasing the average accuracy level gets smaller.

Figure A26 shows the accuracy with different floor heights under ideal channel conditions

with 3FRS. With both MSAL and MCA, m = 3 is providing the best accuracy levels, while

m = 1 has the worst accuracy levels. This is due to availability degradation with larger

decision depth. Decision depth m = 1 provides the closest accuracy levels to the levels with

known floor information.

With dipole antenna assumption, best achievable accuracy approaches to the same value

for different decision depths at h ≥ 0.45L as shown in Figure A26. The reason can be

explained as follows: When floor height is larger than a threshold, in order to use adjacent

monitoring, monitoring ranges must be increased; however, increasing monitoring ranges

may not be the best choice in accurate location estimation of MNs on the current floor.

Therefore, when floor height is larger than this threshold, instead of using MSAL, SAL is

used in location estimation. In this case, there is no need to floor determination algorithm

and the percentage of false negatives is zero. Therefore, the number of MNs with estimated

locations are the same.

Effect of log normal shadowing with σ = 5 on localization accuracy of 3FRS is given in
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Figure A21: False negatives on floors 2, 3 and 4 with different decision depths with dipole

antennas, σ = 0, h = 0.25L
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Figure A22: Average false negatives with different decision depths with isotropic antennas,

σ = 0, h = 0.25L
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Figure A23: Average false negatives with different decision depths with dipole antennas,

σ = 0, h = 0.25L
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Figure A25: Localization errors on floors 2, 3 and 4 with MSAL-dpl, σ = 0, h = 0.25L
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Table A21: Minimum localization error in 3FRS, < (5, 3, 3),Gp, A >, h = 0.25L σ = 0

E2/L E3/L E4/L E∗
avg/L (d∗22, d

∗
33, d

∗
44)/L

MSAL-iso 0.069 0.073 0.063 0.068 (0.55, 0.55, 0.44)

MSAL-dpl 0.078 0.09 0.075 0.0813 (0.78,0.78,0.63)

Figure A27 when different decision depths are used in FD. Our first observation is that the

difference in accuracy caused by different decision depths is disappearing under shadowing

with σ = 5 when MSAL+MCA or MCA is used. When MSAL is used in localization, m = 1

provides the closest accuracy to the accuracy with known floor information. Decision depths

m = 2 and m = 3 causes worse availability therefore lower localization errors. Among the

three localization algorithms MSAL performs best in terms of accuracy although availability

with MSAL+MCA is higher. Error with m = 3 is the smallest due to higher percentage in

false negatives at this decision depth.

A.3.3 Best Efficiency Conditions vs. Floor Height

As for best accuracy conditions, efficiency with known floor information constitutes the upper

bound of efficiency that can be achieved with any floor determination algorithm under ideal

conditions.

Figure A29 shows the maximum efficiency that can be achieved under ideal channel

conditions with 3FRS. Maximum efficiency under ideal conditions is achieved by MSAL. As

floor height increases, the maximum efficiency that can be achieved with FD approaches to

maximum possible value that can be achieved assuming known floor information, therefore no

false negatives. Afn decreases as the floor height increases, this reflects as better availability

and better efficiency. When h > 0.5L, availability stays at 100%; however accuracy gets

affected by large floor height. Therefore, worse efficiency levels are seen. Although it is

not possible to change the floor height, it looks like there is an optimum value for h that is
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Figure A27: Minimum localization error with respect to h when σ = 5, 3FRS
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Figure A28: Availability at minimum localization error conditions with respect to h when

σ = 5

299



0.1 0.2 0.3 0.4 0.5 0.6
1

1.5

2

2.5

3

3.5

4

4.5

η av
g

*

Isotropic, 3FRS, <(5,3,3), G
p
, A>, σ=0

h/L

 

 
MSAL, m=1
MSAL, m=2
MSAL, m=3
MSAL, f known
MCA, m=1
MCA, m=2
MCA, m=3
MCA, f known

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
1

1.5

2

2.5

3

3.5

4

4.5

η av
g

*

Dipole, 3FRS, <(5,3,3), G
p
, A>, σ=0

h/L

 

 
MSAL, m=1
MSAL, m=2
MSAL, m=3
MSAL, f known
MCA, m=1
MCA, m=2
MCA, m=3
MCA, f known

Figure A29: Maximum efficiency with respect to h when σ = 0, 3FRS

300



0.1 0.2 0.3 0.4 0.5 0.6
0.06

0.08

0.1

0.12

0.14

0.16

0.18

E
av

g/L
 a

t d
*

Isotropic, 3FRS, <(5,3,3), G
p
, A>, σ=0

h/L

 

 

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0.05

0.1

0.15

0.2

0.25

E
av

g/L
 a

t d
*

Dipole, 3FRS, <(5,3,3), G
p
, A>, σ=0

h/L

 

 

MSAL, m=1
MSAL, m=2
MSAL, m=3
MSAL, f known
MCA, m=1
MCA, m=2
MCA, m=3
MCA, f known

MSAL, m=1
MSAL, m=2
MSAL, m=3
MSAL, f known
MCA, m=1
MCA, m=2
MCA, m=3
MCA, f known

Figure A30: Average localization error at maximum efficiency conditions with respect to h

when σ = 0
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maximizing the efficiency. For isotropic coverage and dipole coverage, h = 0.5L and h = 0.4L

are the best values. Accuracy at maximum efficiency levels with different decision depths

are similar to each other.
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Figure A31: Maximum efficiency with respect to h when σ = 5, 3FRS

Figure A31 shows the maximum efficiency that can be achieved under shadowing with

σ = 5 with 3FRS. Maximum efficiency is achieved by MSAL+MCA with known floor infor-

mation. As floor height increases, maximum efficiency with floor determination approaches

to maximum efficiency level as usage of adjacent coverages decreases gradually. Efficiency

levels with different decision depths are similar to each other under this shadowing level.

Assuming dipole antennas, decision depths m = 2, 3 provide the highest efficiency levels

with MSAL+MCA.
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Figure A32: Average localization error at maximum efficiency with respect to h when σ = 5
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A.3.4 Best Efficiency Conditions vs. Shadowing Effect

Finally, we show the effect of shadowing effect on maximum efficiency with 3FRS using floor

determination algorithm with various decision depth values.
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Figure A33: Maximum efficiency with respect to σ when h = 0.25L, 3FRS

Figures A33, A34 and A35 show the maximum efficiency, average localization error and

availability possible at maximum efficiency conditions with respect to σ when h = 0.25L

with 3FRS. With isotropic antenna assumption, there is a significant degradation of 33% in

maximum efficiency when floor determination is used. The decision depth effect on maxi-

mum efficiency is minimal. With dipole antenna assumption, floor determination causes less

than 20% decrease in maximum achievable efficiency. Although there is not a significant

difference in efficiency using different decision depths, m = 2, 3 provides highest efficiency
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levels especially under high σ.

Figure A34 shows the average localization error at maximum efficiency conditions. At

small σ values MSAL and MSAL+MCA perform similarly and outperform MCA, whereas

at high σ values MSAL+MCA provides the smallest localization error. The observation is

similar for both isotropic and dipole antenna assumptions.
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Figure A34: Average localization error at maximum efficiency conditions with respect to σ

when h = 0.25L, 3FRS

Figure A35 shows the availability at maximum efficiency conditions. This figure also ex-

plains the degradation in maximum efficiency with isotropic antenna assumption. We observe

a decrease in availability due to false negatives caused by floor determination algorithm.
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Figure A35: Availability at maximum efficiency conditions with respect to σ when h = 0.25L,

3FRS
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A.3.5 Effect of Floor Attenuation Factor

A.3.5.1 Best Accuracy Conditions Figure A36 shows the minimum localization error

with 3FRS under ideal channel conditions. When we compare this figure to Figure A26, we

observe that the localization errors with different decision depths are approaching to the same

value at a smaller floor height, i.e., h ≥ 0.35L and h ≥ 0.2L with isotropic and dipole antenna

assumptions, respectively. Also, as expected, with floor attenuation factor localization error

is higher than without floor attenuation. The reason is the narrower adjacent monitoring

ranges because of larger path loss due to floor attenuation.

0.1 0.2 0.3 0.4 0.5
0.05

0.1

0.15

0.2

0.25

E
av

g
*

/L

h/L

Isotropic, 3FRS, <(5,3,3), G
p
, A>, σ=0

 

 

0.1 0.2 0.3 0.4 0.5
0.05

0.1

0.15

0.2

0.25

E
av

g
*

/L

h/L

Dipole, 3FRS, <(5,3,3), G
p
, A>, σ=0

 

 

MSAL−iso, m=1
MSAL−iso, m=2
MSAL−iso, m=3
MSAL−iso, f known
MCA−iso, m=1
MCA−iso, m=2
MCA−iso, m=3
MCA−iso, f known

MSAL−dpl, m=1
MSAL−dpl, m=2
MSAL−dpl, m=3
MSAL−dpl, f known
MCA−dpl, m=1
MCA−dpl, m=2
MCA−dpl, m=3
MCA−dpl, f known

Figure A36: Minimum localization error with respect to h when σ = 0, 3FRS

Figure A37 demonstrates the same results from the false negatives point of view with

3FRS under best accuracy conditions. False negatives percentage approaches to zero as floor

height increases. Effect of different decision depths used in floor determination algorithm

vanishes when h ≥ 0.3L and h ≥ 0.15L as also observed in Figure A36. With floor height

smaller than these values, effect of higher false negative percentage at m = 2 and m = 3

reflects as lower availability, and therefore lower localization error in Figure A36.

Similar conclusions can be drawn from Figure A39 showing the minimum localization
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Figure A37: False negative percentage with respect to h when σ = 0, 3FRS
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Figure A38: False negative percentage with respect to h when σ = 0, 3FRS
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Figure A39: Minimum localization error with respect to h when σ = 5, 3FRS
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Figure A40: False negative percentage with respect to h when σ = 5, 3FRS

error under shadowing with σ = 5. As shown in Figure A40, false negatives percentage is

higher under shadowing effects, and smallest with m = 1.

A.3.5.2 Best Efficiency Conditions vs. Floor Height The best efficiency with 3FRS

that can be achieved under ideal channel conditions with floor attenuation factor are shown

in Figure A41. When compared to Figure A29, we do not observe a significant decrease in

efficiency values with isotropic antennas at small floor height. However, we do observe that

at larger floor height, the efficiency with MSAL approaches to efficiency with MCA. This

implies that at these floor height values, adjacent monitoring ranges approaches to zero, and

SAL is used for localization. Since in SAL only current floor MoSs are used, the number of

MoSs used in localization decreases, therefore accuracy gets worse as so efficiency. This is

the reason why the efficiency approaches to the same values when h ≥ 0.4L and h ≥ 0.2L

with isotropic and dipole antenna, respectively.

Best efficiency under shadowing with σ = 5 is shown in Figure A42. When compared

to the case without FAF shown in Figure A31, we observe that efficiency with and without

floor determination approaches to same values at a smaller floor height as expected. Also,
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Figure A41: Maximum efficiency with respect to h when σ = 0, 3FRS
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when floor heights is larger than these values, we observe similar results as SAL is used in

localization instead of MSAL.
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Figure A42: Maximum efficiency with respect to h when σ = 5, 3FRS

Figures A43 and A44 show the availability during best efficiency conditions under ideal

conditions and shadowing with σ = 5. As also observed from the figures, we allow the

coverage to be less than 100%. This is why at large floor height values, availability is not

100%. In addition, we observe higher availability at larger floor height, as the false negatives

decrease at these values.

A.3.5.3 Best Efficiency Conditions vs. Shadowing Effect Lastly, we want to

present the best efficiency conditions under shadowing with varying σ assuming h = 0.25L.

Figures A45 and A46 show the best efficiency levels and localization accuracy available at

these levels with and without floor determination. When compared to the case without FAF
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Figure A43: Availability with respect to h when σ = 0, 3FRS
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Figure A44: Availability with respect to h when σ = 5, 3FRS
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shown in Figure A33, we observe a degradation in efficiency especially at lower σ values.

At higher values, the difference vanishes. We observe with dipole antennas efficiency is the

half of the efficiency achieved with isotropic antennas. In both cases, decision depth effect

is insignificant, and MSAL+MCA outperforms other algorithms.
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Figure A45: Maximum efficiency with respect to σ when h = 0.25L, 3FRS

From Figure A46, we observe MSAL+MCA and MSAL can provide best accuracy with

dipole antennas for the whole range of σ values. And, with isotropic antennas, MSAL+MCA

and MSAL perform similarly at low σ values, and as σ increases localization error of

MSAL+MCA approaches to error with MCA. The reason is obviously the availability and

false negatives percentage effects. False negative percentages with two types of antennas are

shown in Figure A47. Availability is shown in Figure A48. Note that the sum of the avail-

ability with MSAL+MCA-iso and false negatives percentage with isotropic antennas makes

100%. However, we cannot draw the same conclusion for dipole antennas, as the percentage

of false negatives is 0 at h = 0.25L. Availability is only affected by monitoring ranges and
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shadowing.
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Figure A46: Localization error with respect to σ when h = 0.25L, 3FRS
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Figure A47: False negative percentage with respect to σ when h = 0.25L, 3FRS
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Figure A48: Availability with respect to σ when h = 0.25L, 3FRS
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A.4 CASE STUDY
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Figure A49: Performance when optimized for LS, N = 4 MoSs, free space, fLS = 900MHz,

σ = 5
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Figure A50: Performance when optimized for LS, N = 4 MoSs, free space, fLS = 1900MHz,

σ = 5
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Figure A51: Performance when optimized for LS, building height, fLS = 900MHz, σ = 5
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Figure A52: Performance when optimized for LS, building height, fLS = 1900MHz, σ = 5
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