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VARIABLE SELECTION WHEN CONFRONTED WITH MISSING DATA

Melissa L. Ziegler, PhD

University of Pittsburgh, 2006

Variable selection is a common problem in linear regression. Stepwise methods, such as

forward selection, are popular and are easily available in most statistical packages. The

models selected by these methods have a number of drawbacks: they are often unstable,

with changes in the set of variable selected due to small changes in the data, and they

provide upwardly biased regression coefficient estimates. Recently proposed methods, such

as the lasso, provide accurate predictions via a parsimonious, interpretable model.

Missing data values are also a common problem, especially in longitudinal studies. One

approach to account for missing data is multiple imputation. The simulation studies were

conducted comparing the lasso to standard variable selection methods under different missing

data conditions, including the percentage of missing values and the missing data mechanism.

Under missing at random mechanisms, missing data were created at the 25 and 50 percent

levels with two types of regression parameters, one containing large effects and one containing

several small, but nonzero, effects. Five correlation structures were used in generating the

data: independent, autoregressive with correlation 0.25 and 0.50, and equicorrelated again

with correlation 0.25 and 0.50. Three different missing data mechanisms were used to create

the missing data: linear, convex and sinister. These mechanisms

Least angle regression performed well under all conditions when the true regression pa-

rameter vector contained large effects, with its dominance increasing as the correlation be-

tween the predictor variables increased. This is consistent with complete data simulations

studies suggesting the lasso performed poorly in situations where the true beta vector con-

tained small, nonzero effects. When the true beta vector contained small, nonzero effects,
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the performance of the variable selection methods considered was situation dependent.

Ordinary least squares had superior performance in terms confidence interval coverage

under the independent correlation structure and with correlated data when the true regres-

sion parameter vector consists of small, nonzero effects. A variety of methods performed well

when the regression parameter vector consisted of large effects and the predictor variables

were correlated depending on the missing data situation.
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1.0 OVERVIEW OF VARIABLE SELECTION METHODS

1.1 INTRODUCTION

The goal of this research is to study and understand the properties of modern variable

selection methods, to assess their performance in the presence of missing data, and ultimately

to apply variable selection methodology to the motivating data set to find the covariates most

closely related to, and predictive of, major depressive disorder (MDD). More details about

the study and the data analysis are in chapter 6.

The following chapters will: (i) summarize the development of variable selection, with

special attention paid to modern methods (Chapter 1); (ii) provide a detailed analysis of the

properties and implementation of the least absolute shrinkage and selection operator (lasso)

(chapter 2); (iii) review missing data terminology and methods that will be applied in this

research (chapter 3); (vi) detail the results of the simulation study that will examine the

performance of variable selection methods when data are missing; (v) provide background

on the psychobiology of depression in children and adolescents (chapter 6); and, finally (vi)

highlight directions for future research (chapter 7).

1.2 VARIABLE SELECTION

One of the most common model building problems is the variable selection problem [18]. In

modeling the relationship between a response variable, Y, and a set of potential predictor

variables, X1, · · · , Xp, what is desired is to select a subset of the possible predictors that

explains the relationship with Y, provides accurate predictions of future observations, and has
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a simple, scientifically plausible interpretation. Many methods have been, and continue to be,

developed to address this problem. This chapter will focus on variable selection methods,

paying special attention to some of the more recent advances in this area. Additionally,

the concept of shrinkage of parameter estimates will be introduced to provide a basis for

understanding the most recent advances in variable selection methodology. These newer

methods attempt to capitalize on the variance reduction provided by shrinkage methods to

improve the performance of variable selection methods.

The history of selection methods is outlined in a 2000 review paper by George [18]. The

development of these methods began in the 1960’s with methods designed to handle the

linear regression problem which, due to its wide applicability, is still the focus of much of the

new methodology. The early methods focused on reducing the rather imposing 2p possible

subsets of covariates to a manageable size using, for example, the residual sum of squares

(RSS) to either identify the ‘best’ subset of a given size or to proceed in a stepwise manner to

select covariates. Refinements of these methods add a dimensionality or complexity penalty

to the RSS to penalize models with a large number of covariates. Examples of such penalties

include Akaike’s Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

Advances in computing have expanded the use of variable selection methods to models such

as nonlinear and generalized linear models. An overview and more detailed description of

these methods can be found in Miller’s Subset Selection in Regression [29].

Stepwise variable selection methods are some of the most widely taught and implemented

selection methods in regression. These methods are attractive because they provide an au-

tomatic solution and thus are available in virtually every general statistics software package.

Three types of stepwise methods are: forward selection, backward elimination and general

stepwise regression (which combines forward selection and backward elimination). Forward

selection starts with the model containing no predictors and adds one predictor at each step.

Within a given step, the variable selected for inclusion in the model is that which minimizes

the RSS. The process stops when some prespecified stopping criterion based on the amount

of reduction in RSS between steps is met. On the other hand, backward elimination starts

with the model containing all predictors under consideration and at each step the predictor

that minimizes the RSS upon its removal. Again, the process continues until a prespecified
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stopping criterion is met. Finally, general stepwise regression proceeds as in forward selec-

tion, but with an added check at each step for covariates that can be removed from the

model.

Stepwise selection methods have a number of drawbacks. Miller notes, “forward selection

and backward elimination can fare arbitrarily badly in finding the best fitting subsets” [29].

The estimates of the regression coefficients of the selected variables are often too large in

absolute value, leading to false conclusions about the actual importance of the corresponding

predictors in the model. The value of R2 is often upwardly biased, overstating the accuracy

of the overall model fit. The estimates of the regression coefficients and the set of variables

selected may be highly sensitive to small changes in the data. Selection bias and overfitting

resulting from the use of the same data to select the model and to estimate the regression

coefficients can be difficult to control [29]. Methods proposed to address one or more of these

deficiencies will be considered in the next two sections (1.3, 1.4).

The following notation will be used in the description of the variable selection methods.

Consider the usual regression model Y = β′X + ε with Y the n × 1 vector of responses, ε

the n× 1 vector of random errors, and X the n× p matrix of predictors with row vector xi

the values for the ith subject.

1.3 SHRINKAGE METHODS

Shrinkage estimators introduce a small amount of bias into a parameter estimate in an

attempt to reduce its variance so that there is an overall reduction in the mean squared

error (MSE). Some of the best known shrinkage methods are the James-Stein estimator and

ridge regression.

The James-Stein result [23] demonstrates that the application of shrinkage can improve

estimation under squared error loss. Let X ∼ Np(ξ, Ip), that is, ξ = E(X) and

E(X − ξ)′(X − ξ) = Ip. The goal is to estimate ξ, say by ξ̂, under squared error loss,

L(ξ, ξ̂(X)) =‖ ξ − ξ̂ ‖2. The usual estimator, ξ0(X) = X, has expected

loss E L(ξ, ξ0(X)) = E ‖ ξ − ξ0 ‖2= p. James and Stein showed that for p ≥ 3, there exists
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an estimator,

ξ1(X) =

(
1− p− 2

||X||2
)+

X (1.1)

that has smaller expected loss than ξ0(X) for all ξ, where (·)+ denotes the positive part [21].

1.3.0.1 Ridge Regression Ridge regression was proposed by Hoerl and Kennard [21]

as a way to improve the estimation of regression parameters in the case where the predictor

variables are highly correlated. The method introduces bias into the estimation process with

the goal of reducing the overall mean square error. The ridge regression parameter estimates

are given by

β̂RR(k) = (X′X + kIp)
−1X′Y (1.2)

where k ≥ 0 and β = (β1, · · · , βp)
′. Setting k equal to zero gives the usual ordinary least

squares (OLS) estimators and for k > 0 some bias is introduced into the estimates [21].

Hoerl and Kennard use the ridge trace, a plot constructed by simultaneously plotting

each element of β̂RR(k) versus k, to estimate the optimal value of k. The value of k is selected

at the initial point where the β̂RR(k) estimates all appear to stabilize.

The ridge regression estimates can also be expressed as a constrained minimization

β̂ = argmin β

N∑
i=1

(yi − β′xi)
2 subject to

∑
j

β2
j ≤ t. (1.3)

where t ≥ 0 is a tuning parameter which controls the amount of shrinkage applied to the

regression parameter estimates. By rewriting the ridge regression parameter estimates as

β̂RR(k) = [Ip + k(X′X)−1]−1β̂OLS = Zβ̂OLS, (1.4)

the standard errors of the parameters can be obtained, as in linear regression, as

var(β̂RR) = var(Zβ̂OLS) = Z(X′X)−1X′var(Y)X(X′X)−1Z′ = σ̂2Z(X′X)−1Z′. (1.5)

This standard error estimate for ridge regression will be useful later to approximate the

standard errors of parameter estimates in other variable selection methods.
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1.3.0.2 Other Shrinkage Methods A variety of other shrinkage methods have been

proposed for the regression situation. See Dempster, Schatzoff and Wermuth [15] for an

extensive overview of past methods. Two of the more recent methods are highlighted in a

comparison paper by Vach, Sauerbrei and Schumacher [43]. In the global shrinkage factor

method, each of the regression coefficients is shrunk by a common shrinkage factor c which is

estimated by cross-validation calibration. To obtain the cross-validated estimate ĉ, an OLS

regression of Y on X is performed with the ith observation removed resulting in β̂OLS
(−i) for

i = 1, · · · , n. Using these estimated regression coefficients, predictions Ŷ(−i) = (β̂OLS
(−i) )′Xi

are computed. A simple linear regression of the orignal Y on the predictions Ŷ(−i) is then

performed and the resulting regression coefficient is used as the estimate ĉ. Note that the

Xi are assumed to be standardized so that
∑

i xij/N = 0 and
∑

i x
2
ij/N = 1 prior to any

analyses. The shrunken regression coefficients are then obtained from the OLS estimators

by β̂global
j = ĉ β̂OLS

j .

The second method extends the first by allowing parameter-wise shrinkage factors, that

is, a different value of the shrinkage factor for each regression coefficient. Estimates of these

parameter-wise shrinkage factors are again obtained by cross-validation calibration after

standardizing the Xi. Parameter estimates can be obtained simply from the OLS estimates

as β̂PW
j = ĉj β̂OLS

j [43]. The parameterwise shrinkage method addresses one drawback of the

global method, namely that it may shrink small coefficients too much. It is recommended

that parameterwise shrinkage be applied subsequent to standard backward elimination due

to the large number of parameters to be estimated if one starts with the full model. In this

way, the pool of possible predictor variables is reduced first and then shrinkage is applied

to provide some variance reduction [35]. This parameter-wise shrinkage can also be used

directly as a technique for variable selection by setting coefficient estimates, β̂j with negative

shrinkage factors, that is ĉj < 0, to zero. [43].

Shrinkage methods provide some improvement over OLS in terms of mean square error of

prediction, but generally do not reduce the number of predictors in the model. The variable

selection methods discussed in section 1.2 reduce the number of predictors, but may not do

so in an optimal way. In the next section, the ideas of shrinkage and variable selection are

combined to develop an improved variable selection method.
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1.4 COMBINING SHRINKAGE AND SELECTION

Newer methods in variable selection have attempted to combine shrinkage with variable

selection in regression to address some of the drawbacks of standard variable selection meth-

ods. A number of methods which combine shrinkage and selection will be introduced here.

The lasso, which will be the focus of this dissertation, will be introduced briefly here and

described in more detail in Chapter 2.

1.4.1 Nonnegative Garrote

Breiman’s nonnegative garrote [8] is similar in form to parameter-wise shrinkage proposed

by Sauerbrei [35] in that each parameter coefficient is shrunk by some factor ĉj. Let β̂OLS

be the vector of OLS parameter estimates. Then the nonnegative garrote shrinkage factors,

ĉj minimize

∑

k

(
yn −

∑

k

ckβ̂k

OLS
xkn

)2

subject to

p∑
j=1

cj ≤ t and cj > 0, (1.6)

where t ≥ 0 is the shrinkage threshold [8]. Variable selection is achieved when the coefficient

associated with a particular variable is shrunk to zero, removing it from the model. One

potential drawback of the nonnegative garrote is that the parameter estimates depend on

both the sign and magnitude of the OLS estimates, causing this method to perform poorly

in situations where the OLS estimates perform poorly, for example in situations involving

high correlation among predictor variables [41]. The lasso estimates are not based on the

OLS estimates and in fact the lasso estimates may differ in sign from the OLS estimates.

1.4.2 Least Absolute Shrinkage and Selection Operator

The least absolute shrinkage and selection operator, or lasso, is a penalized regression

method, where the L1 norm of the regression parameters is constrained below a tuning

parameter t, which controls the amount of shrinkage applied and the number of variables

selected for inclusion in the model [41]. As in the nonnegative garrote, variable selection
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occurs when regression coefficients are shrunk to zero. The lasso parameter estimates are

given by:

β̂ = arg min
β

N∑
i=1

(yi − β′jxi)
2 subject to

p∑
j=1

|βj| ≤ t (1.7)

where t ≥ 0 is a tuning parameter. As this method will be the focus of this dissertation,

further details on the lasso are reserved for Chapter 2.

1.4.3 Least Angle Regression and Related Approaches

The least angle regression algorithm (LARS) presented by Efron, Hastie, Johnstone, and Tib-

shirani [17] unites, under a common computational framework, three distinct, yet related,

variable selection methodologies: forward stagewise linear regression, least angle regression,

and the lasso. It is important to note the distinction between the least angle regression algo-

rithm (LARS) and least angle regression as a model selection procedure. For each method,

the algorithm proceeds in a stepwise manner through the pool of potential predictors, select-

ing a predictor at each step based on the correlation with the current residual vector. The

lasso formulation of the LARS algorithm is of particular interest here because it provides an

efficient algorithm for computing the lasso estimates needed for this research. Details of the

modifications of the LARS algorithm needed to compute the lasso parameter estimates are

in section 2.1.1.1.

1.4.4 Bridge Regression

Bridge regression [20] encompasses both ridge regression and the lasso as special cases by

allowing the exponent in the constraint to vary. The bridge regression parameter estimates

are given by

β̂ = arg min
β

N∑
i=1

(yi − β′jxi)
2 subject to

p∑
j=1

|βj|γ ≤ t (1.8)

where the tuning parameter t ≥ 0 and the exponent γ ≥ 0 are estimated via generalized

cross-validation. Ridge regression corresponds to γ = 2, and the lasso to γ = 1.
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Fu [20] presents the results of a simulation study comparing bridge regression to OLS,

the lasso, and ridge regression in the linear regression model. Each of the m = 50 data sets

has n = 30 observations of p = 10 predictors. Each matrix has between-column pairwise

correlation ρm drawn from a uniform distribution on the interval (−1, 1). The true vector of

regression coefficients, βm, is drawn from the bridge prior,

πλ,γ(β) =
γ2−(1+1/γ)λ1/γ

Γ(1/γ)
exp

(
−1

2

∣∣∣∣
β

λ−1/γ

∣∣∣∣
γ)

. (1.9)

This prior distributions is a member of the class of elliptically contoured distributions [9].

As a special case, if we take γ = 2 in the bridge prior, the resulting distribution is normal

with mean zero and variance λ−1.

For fixed λ = 1, OLS, bridge regression, the lasso, and ridge regression are compared

for γ = 1, 1.5, 2, 3, and 4. For γ = 1 and 1.5, bridge regression and the lasso have a similar

significant reduction in both MSE and PSE over OLS, whereas for γ = 2, 3, and 4 both

methods result in an increase in MSE over OLS. For all values of γ ridge regression has a

moderate reduction in MSE and PSE, with similar amounts of reduction for all γ values. For

γ = 1 and 1.5 bridge regression and the lasso outperform ridge regression. These results

agree with those of Tibshirani in that the lasso method outperformed ridge regression in

those cases (γ = 1 and 1.5) where the true beta values were either zero or relatively large

in absolute value, and was outperformed by ridge regression when the true beta values were

small, but nonzero (γ = 2, 3, and 4).

Because the performance of bridge regression and the lasso did not differ significantly for

any value of γ and bridge regression provides a lesser degree of variable selection than the

lasso for 1 < γ < 2 and no variable selection for γ ≥ 2, this method will not be considered

further in this research.

1.4.5 Elastic Net

A recently proposed generalization of the lasso and LARS is the elastic net [48]. The elastic

net provides variable selection in the p > n case (where the lasso can select at most n

predictors), improves performance in the case of highly correlated predictor variables (where
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the lasso is dominated by ridge regression) and improves selection when groups of predictors

are highly correlated (where the lasso typically simply selects one representative predictor

from the group).

The basic idea of the elastic net is to combine the ridge regression and lasso penalties. In

the näive elastic net, a convex combination of L1- and L2- norms of the regression coefficients

is constrained. The näive elastic net parameter estimates are obtained via the constrained

minimization

β̂nEN = arg min
β

N∑
i=1

(yi − β′jxi)
2 subject to (1− α)

p∑
j=1

|βj|+ α

p∑
j=1

β2
j ≤ t for some t. (1.10)

Zou and Hastie [48] present empirical evidence via both a real data example and a simulation

study indicating that the näive elastic net resulted in coefficient estimates that incurred

’double shrinkage’ leading to an increase in the bias without a corresponding decrease in

the variance. They modified their original procedure by rescaling to avoiding overshrinking

while preserving the advantageous properties the elastic net. The elastic net is given by

β̂EN = arg min
β

β′
(

X ′X + λ2I

1 + λ2

)
β − 2y′Xβ + λ1

p∑
j=1

|βj| (1.11)

Via their simulation study and real data example, Zou and Hastie [48] illustrate the

properties of the elastic net and its performance relative to the lasso and ridge regression.

The elastic net achieves better prediction error than both the lasso and ridge regression. The

selection of groups of correlated predictors in the elastic net leads to the selection of larger

models than the lasso. Whether the lasso or elastic net is a superior method depends on the

goal of the analysis. If prediction is the goal, the lasso may be preferred because it selects

only one representative predictor from highly correlated groups. However, if interpretation

is the goal, the elastic net may be preferred because it will include all the predictors in a

highly correlated group. Zou and Hastie propose the elastic net as a useful method in the

analysis of microarray data, where the inclusion of highly correlated groups of predictors is

preferred because these groups are biologically interesting.
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2.0 LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR

2.1 LASSO BASICS

As described in section 1.4.2, the least absolute shrinkage and selection operator(lasso) con-

strains the L1 norm of the regression parameters. Variable selection occurs when regression

coefficients are shrunk to zero.

Consider the linear regression situation with Y the n × 1 vector of responses yi and

X the n × xp matrix of predictors, with row vector xi the values for the ith subject. The

lasso assumes that either the observations are independent or that the yi are conditionally

independent given the xij, where the xij have been standardized so that
∑

i xij/n = 0 and
∑

i x
2
ij/n = 1. In addition, the yi have been centered to have sample mean 0. Under these

assumptions, the lasso estimates are given by:

β̂ = arg min
β

n∑
i=1

(yi − β′jxi)
2 subject to

p∑
j=1

|βj| ≤ t, (2.1)

where t ≥ 0 is a tuning parameter which controls the amount of shrinkage applied to the

parameter estimates and, therefore, the degree of variable selection [41].

2.1.1 Computational Algorithms

In order for the lasso to be applicable in practical situations, an easily implemented, efficient

computational algorithm is needed. In the paper introducing the lasso method, Tibshirani

[41] presented two different algorithms. The first is based on a method proposed by Lawson

and Hansen [24] used to solve linear least squares problems under a number of general linear

inequality constraints. The second method reformulates the lasso problem to construct
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a quadratic programming problem with fewer constraints, but more variables, which can

be solved by standard quadratic programming techniques. Many improvements of these

algorithms have been suggested [30].

Osborne, Presnell, and Turlach [30] studied the lasso computations from the quadratic

programming perspective, exploring the associated dual problem. The resulting algorithm

was an improvement over those proposed by Tibshirani [41] and had the advantage of in-

cluding the case where the number of predictors is larger than the number of observations.

The exploration of the dual problem also provided improved estimates of the standard errors

of the parameter estimates. Standard error estimation for the lasso parameter estimates will

be discussed in detail in 2.4.

2.1.1.1 Least Angle Regression Algorithm The LARS algorithm with a small mod-

ification, provides efficient computation of the lasso parameter estimates. An additional

constraint, sign(β̂j) = sign(ĉj), where ĉj = x′j(y − β̂′xj) i.e. the sign of any nonzero β̂j in

the model must agree with the sign of the current correlation is required [17] to obtain the

lasso parameter estimates. The consequence of this restriction, in terms of computation,

is that additional steps, compared with the unmodified LARS algorithm, may be required.

In the regular LARS algorithm, once a covariate has entered the model, it cannot be re-

moved, whereas with the lasso restriction in place, covariates can leave the model when the

constraint above is violated. The LARS algorithm is easily implemented in the R software

package version 2.2.1 in the lars library version 0.9-5 [32].

2.2 COMPARISON OF LASSO TO OTHER METHODS

The usefulness of the lasso method depends in large part on its performance in comparison

with other variable selection methods and other types of parameter estimation. Simulation

studies and real data examples have been used by several authors to illustrate the prop-

erties of the lasso method and to compare its performance with other standard methods.

Vach, Sauerbrei, and Schumacher [43] compared four of the more recently developed vari-
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able selection methods: the global and parameterwise shrinkage factor methods (section

1.3), Breiman’s nonnegative garrote (section 1.4.1), and Tibshirani’s lasso (section 1.4.2) to

backward elimination in ordinary least squares (OLS) in a simulation study. Four settings

are considered in the simulation study, two involving independent covariates (A and B) and

two involving pairwise correlated covariates (C and D). The correlated covariates condition

is considered to examine the selection patterns for groups of correlated covariates. The true

parameter values in each setting are:

βA = (0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0.0)′

βB = (0.8, 0.8, 0.6, 0.6, 0.4, 0.4, 0.2, 0.2, 0.0, 0.0)′

βC = (0.8, 0.8, 0.6, 0.6, 0.4, 0.4, 0.2, 0.2, 0.0, 0.0)′

βD = (0.8, 0.0, 0.6, 0.0, 0.4, 0.0, 0.2, 0.0, 0.0, 0.0)′

The methods are compared in terms of complexity of the selected model, distribution of

the shrinkage parameters, selection bias, prediction error, and the bias and variance of the

parameter estimates. Model complexity is measured by both the inclusion frequency of each

variable, that is the Pr{β̂j 6= 0}; and the average number of covariates selected. In settings

A, B, and C, in terms of both measures, the lasso selected the largest models, followed by the

nonnegative garrote and then both types of shrinkage and backward elimination. In setting

D, the shrinkage methods select models that are larger than the nonnegative garrote. As

in the other three settings, in setting D, the lasso selected the largest models and backward

elimination selected the smallest models.

Selection bias is given by E[|β̂j| − |βj|
∣∣β̂j 6= 0] for j = 1, · · · , p. This definition of

selection bias differs from that typically used, for example Miller [29], in that the absolute

values prevent under- and over-estimates from canceling out in small effects. [43] In terms

of selection bias, the lasso is less biased in the case where the true parameter values are

small, whereas the nonnegative garrote, parameterwise shrinkage, and backward elimination

are least biased for large true parameter values. The authors conclude that overall the lasso

performs well if one is aware of its propensity to underestimate large parameter values. The

global shrinkage factor, while not a variable selection method, is useful in its reduction of

average prediction error and the mean square error of the parameter estimates.

The average prediction error (APE) for a new observation (X∗, Y ∗) is given by
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APE(β̂) = E[(Y ∗ − β̂′X∗)2], which can be expressed as APE = σ2 + MSE where the mean

square error (MSE) is MSE(β̂) = E[β̂′(X∗) − β(X∗)]2. Thus, comparisons based on MSE of

predictions are the same as those based on APE.

Taken together, the results of this simulation study do not clearly identify one method

as best in all circumstances. The relative performance of the various methods depends not

only on the true parameter values, as seen earlier, but also on the goal(s) of the analysis. For

example, none of the methods considered performs well if parsimony is the most important

criterion: they all resulted, on average, in larger models than backward elimination. Vach,

Sauerbrei, and Schumacher [43] hypothesize that in order to achieve a reasonable level of

parsimony, some sacrifice in terms of the other criteria must be made.

2.3 SELECTION OF LASSO MODEL

The LARS algorithm provides a convenient, computationally efficient method for producing

the full set of lasso coefficient estimates that avoids the computational burden of previously

proposed lasso algorithms [41]. In fact, the entire set of lasso parameter estimates can

be computed for an order of magnitude less computing time than previous methods [17].

However, because of the nature of the link between LARS, the forward stagewise method

and the lasso, use of the LARS algorithm removes the automatic model selection provided

by the direct use of the tuning parameter to control the amount of shrinkage and selection

in the lasso.

In the LARS algorithm, a Mallows’ Cp-type statistic is proposed for selecting the optimal

model in LARS. An approximation of this statistic is given by

Cp(β̂
[k]) ∼= (‖ y − β̂[k]X ‖2)/(σ̄2)− n + 2k, (2.2)

where β̂[k] is the vector of the k -step LARS parameter estimates and σ̄2 is the residual

mean square error of regression on k variables. This Cp estimate applies only for the LARS

selection method, not for the lasso or the forward stagewise method [17]. The proposed

Cp-type statistic for model selection in LARS has been widely criticized, especially in the
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many discussions of LARS paper [17]. In particular, the first discussant, Ishwaran, shows in a

simulation study that the use of Cp can lead to models that are too large. He suggested that

accounting for model uncertainty through model averaging may improve the performance of

the Cp statistic. Stine also criticizes the Cp statistic and proposes the Sp statistic, another

penalized residual sum of squares estimate, to be used instead. This statistic is given by

Sp = RSS(p) + σ̂2

p∑
j=1

2j log

(
j + 4

j + 2

)
, (2.3)

where p is the number of predictors in the current model and σ̂2 is “an honest estimate of

σ2” computed using the (conservative) estimated error variance from the model selected by

the standard forward selection method. Using Sp to select the model size resulted in the

selection of a model that is smaller than that selected by Cp and has smaller residual mean

square error.

Leng, Li and Wahba [25] found that under the minimum prediction error criterion, LARS

and the lasso are not consistent variable selection methods. A consistent variable selection

method is one in which the probability of correctly identifying the set of important predictors

tends to one as the sample size tends to infinity. Moreover, it is shown that the probability

of selecting the correct model in LARS or the lasso is less than a constant not depending

on the sample size. In simulation studies, the lasso method selected the exact true model

with small probability between 10% and 30%. The authors are careful to point out that

their criticisms are not with the LARS concept; they question only the validity of the use of

prediction error as a criterion for selecting the tuning parameter. Other criteria may provide

consistent variable selection.

The use of a form of the BIC for model selection with the lasso is proposed by Zou,

Hastie and Tibshirani [49]. The authors present a more careful examination of the degrees

of freedom for the lasso than do Efron, Johnstone, Hastie and Tibshirani [17]. They prove

the following for the lasso: “Starting at step 0, let mk be the index of the last model in the

Lasso sequence containing k predictors. Then df(β̂[mk]) ∼= k.” This implies that the degrees

of freedom for the lasso estimates containing k nonzero coefficients, obtained by mk steps, is

approximately k. Note that the number of steps could be larger than the number of nonzero

coefficients because predictors that have entered can exit the lasso model in later steps.
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Given this approximation for the degrees of freedom, selection methods based on Akaike’s

Information Criterion (AIC) and the Bayesian Information Criterion (BIC) are derived for

the lasso. Based on the properties of AIC and BIC as described in section 1.2 and supported

by the results of their simulation study, Zou, Hastie and Tibshirani [49] recommend the use of

BIC in selecting the lasso model when variable selection is the primary goal. BIC was shown

to select the exact correct model with higher probability than AIC which conservatively

included additional covariates. In comparison with the Cp-type statistic suggested in LARS,

the BIC criterion selected the same 7 covariates from among 10 predictors and a smaller 11

variable model compared with the Cp 15 variable model from among 64 predictors.

Recall that the LARS algorithm produces the complete set of lasso parameter estimates,

providing the ‘best’ model of each size (number of nonzero coefficients) k for the computation

cost of the fit of a single least squares regression model. A theorem proved by Zou, Hastie and

Tibshirani shows that the optimal lasso model is among the models in the LARS algorithm

output, thus we need only choose between them. Computation of the BIC based on the

output of the LARS is simplified by the following result. Let β[mk] be the vector of lasso

parameter estimates at the mth step in the algorithm with k nonzero coefficients at a given

iteration. To find the optimal number of nonzero coefficients, we need only solve [49]

kopt = arg min
k

‖ y − β[mk]′X ‖2

nσ2
+

log(n)

n
k. (2.4)

Because of the easy of implementation using the lasso estimates provided by the LARS

algorithm and the evidence pointing to the BIC as the ‘best’ stopping criterion proposed

thus far, BIC for the lasso will be used to select final models in this research.

2.4 STANDARD ERRORS FOR LASSO

The usefulness of the lasso method in practice depends in part on the accuracy of the param-

eter estimates. In order to perform significance testing for individual parameter estimates,

estimation of the standard errors of the lasso parameter estimates will be required. A number

of standard error estimates have been proposed in the literature.

15



Tibshirani [41] presents two standard error estimates: one based on bootstrap resam-

pling, and a closed form expression using an approximation based on ridge regression. The

standard error estimate based on bootstrap resampling. The second standard error esti-

mate is developed by exploiting the connection between the lasso and ridge regression. This

method has the undesirable property of giving the estimate zero for any regression coefficient

that was shrunk to zero by the lasso. Improvements on these standard error estimates have

been proposed by Osborne, Presnell and Turlach [30] (see equation 2.7).

Tibshirani’s estimate is

v̂ar(β̂lasso)
TIBS = (X′X + αW−)−1X′X(X′X + αW−)−1σ̂2 (2.5)

where σ̂2 is an estimate of the error variance, W = diag(|β̂lasso
j |) and α is chosen so that

∑
j |β̂lasso

j | = t. The improved estimate [30] is given by

v̂ar(β̂lasso)
OPT = (X′X + V)−1X′X(X′X + V)−1σ̂2 (2.6)

where, again, σ̂2 is an estimate of the error variance and V is a slightly more complicated

expression than W given by

V = X′
(

1

‖ β̂lasso ‖1‖ X′r ‖∞
rr′

)
X (2.7)

where r = r(β̃) = (Y − β̃′X) is the vector of residuals corresponding to β. The standard

error estimate, v̂ar(β̂lasso)
OPT , presented by Osborne, Presnell and Turlach has been shown

to be superior to that of Tibshirani and will be used in this research.
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3.0 MISSING DATA METHODS

Almost all longitudinal data sets have missing data values, and the motivating data for this

study is no exception. The goal of this research is to assess the performance of the variable

selection methods described in chapters 1 and 2 in the presence of missing data. Major texts

on missing data methods include Analysis of Incomplete Multivariate Data by J.L. Schafer

[36] and Statistical Analysis with Missing Data by Roderick J.A. Little and Donald B. Rubin

[26].

The following notation, taken from Little and Rubin [26], will be used in the discussion

of missing data. Let Y = {yij} denote an n by k rectangular data set without missing values.

Define the missing-data indicator matrix M = (mij), such that mij = 1 if yij is missing and

mij = 0 if yij is observed. The matrix M then describes the pattern of missing data.

3.1 CATEGORIZATION OF MISSINGNESS

Missing data are commonly classified based on two characteristics: the pattern of missing

values and the missingness mechanism. Together, these classifications can indicate which

method is appropriate for the missing values in a data set. Some methods are developed to

be applied only with data that follow a specific pattern. For example, many methods are

useful only in the case of a monotone missing data pattern. Other methods can be used

with a general pattern of missingness, but some computational savings can be achieved if

the data follow a special pattern.
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3.1.1 Missing Data Patterns

Three broad categories of missing data patterns: monotone missingness, file matching and

general missingness, are defined by Little and Rubin [26]. Consider a set of variables

y1, · · · , yk observed on a set of individuals. A monotone missing data pattern is one in

which the variables can be ordered in such a way that when yj is missing for a given indi-

vidual the variables yj+1 through yk are also missing [37]. Subject attrition in longitudinal

studies is one example of a monotone pattern of missing data. It is important to note that

the covariates need not be collected over time for a monotone pattern of missing to exist. The

file matching pattern of missingness occurs when two variables (or two sets of variables) are

never jointly observed. Arbitrary missingness describes any pattern that cannot be classified

as either monotone or file matching.

3.1.2 Missingness Mechanisms

The missingness mechanism attempts to answer, from a statistical perspective, the question

of why data is missing. Meng [28] describes the missingness mechanism as the process

that prevents us from observing the intended data. What is of central importance is the

probabilistic relationship between the value that should have been observed (the intended

data) and the fact that it was not observed. This relationship is defined statistically in terms

of the conditional distribution of the missing data indicator matrix given the observed data.

The three general types of missing data mechanisms defined by Little and Rubin [26]

are missing completely at random (MCAR), missing at random (MAR), and not missing at

random (NMAR). To characterize the distinctions between these categories, let the condi-

tional distribution of the missing data mechanism M , given the data Y = (Yobs, Ymis) be

denoted by f(M |Yobs, Ymis, φ), where φ denotes unknown parameters related to the missing

data mechanism.

Missing completely at random is the case when nonresponse and the data values (both

missing and observed) are unrelated; that is, nonresponse is unrelated to both the value that

should have been observed and was not, and to the other values in the data set. Under the

MCAR assumption, the conditional distribution of the missing data mechanism given the
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data Y is given by

f(M |Yobs, Ymis, φ) = f(M |φ) for all Yobs, Ymis, φ. (3.1)

The MCAR assumption is often too strong to be plausible in practical situations [28], except

in the case where data is missing by design [26]. An example of data missing by design is the

double sampling method, often used in survey sampling, where the entire sample is asked

one set of questions and only a preselected subsample of respondents is asked an additional

set of questions.

A more plausible, but weaker assumption, is that the data is missing at random (MAR).

Under the MAR mechanism, the missingness depends only on the observed components of

the data, Yobs, not on the missing values, Ymis. That is,

f(M,Yobs, Ymis|, φ) = f(M |Yobs, φ) for all Ymis, φ. (3.2)

In other words, after other variables in the analysis have been controlled for, the missingness

is unrelated to Ymis [1].

If, in addition to meeting the MAR assumption, the parameters governing the complete

data model, θ, and those governing the missing data mechanism, φ, are distinct in the sense

that the joint parameter space of θ and φ is the Cartesian product of the parameter space of θ

(Ωθ) and the parameter space of φ (Ωφ), i.e., (Ω(θ,φ) = Ωθ×Ωφ), the missing data mechanism

is called ignorable. Ignorability does not remove the need for missing data techniques, it

simply means that an explicit model of the missingness mechanism is not required. In both

Allison [1], and Little and Rubin [26], the distinctness assumption is essentially ignored,

and ignorability is taken as an equivalent condition to MAR. If ignorability is erroneously

assumed, the resulting inference is not improper, however, a loss of efficiency is incurred.

Data that does not meet the MAR criteria is said to be not missing at random (NMAR).

Under this assumption, the fact that an observation is missing is related to the value of the

intended data. Specification of a model for the missingness mechanism is difficult because

in most situations the observed data provide little or no information about the missing data

mechanism [27].
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3.2 OVERVIEW OF METHODOLOGY

3.2.1 Deletion Methods

The simplest missing data method is complete case analysis. Observations that are not

complete are simply deleted from the data set. This solves the problem of how to handle

those cases where data are missing, but can lead to substantial bias in any resulting inference

because the cases with complete data may not be a random subsample of all cases. Equally

disconcerting, large quantities of data are likely to be discarded and a loss of precision is

incurred due to the reduction in sample size. A similar method, called available case analysis,

attempts to reduce the amount of data deleted. In this strategy, summary statistics are

computed using all the data that is available for that particular statistic. For example, to

compute the correlation between U and V , all observed pairs (U, V ) are used, regardless

of whether other variables in the data set are observed or not. Note that in this example,

available case analysis may result in a covariance matrix that is not positive definite.

3.2.2 Likelihood-Based Methods

Maximum likelihood and Bayesian inference in the incomplete data case is similar to that in

the complete data case. The likelihood function is derived and the maximum likelihood pa-

rameter estimates or posterior distributions are obtained. The difference is that the missing

data mechanism must be accounted for in some way in the likelihood function, depending

on the type of missingness mechanism.

Recall, the data is denoted Y = (Yobs, Ymis), where Yobs is the observed data and Ymis

denotes the missing values. The joint probability distribution of Yobs and Ymis is given by

f(Yobs, Ymis|θ).
For ignorable mechanisms, the likelihood is proportional to the marginal distribution of

the observed data because the missingness does not depend on the unobserved values. Then

the marginal density of Yobs is given by

f(Yobs|θ) =

∫
f(Yobs, Ymis|θ)dYmis. (3.3)
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Then, under ignorability, the likelihood of θ based on the observed data Yobs is

Lign(θ|Yobs) ∝ f(Yobs|θ) for θ ∈ Ωθ. (3.4)

From a Bayesian perspective, the posterior distribution for inference on θ based on the data

Yobs, and assuming a prior distribution p(θ) for θ is given by p(θ|Yobs) ∝ p(θ)× Lign(θ|Yobs).

When ignorability does not hold, the missing data mechanism must be explicitly mod-

eled. Let f(M, Y |θ, φ) be the joint distribution of M , the missing data indicator matrix, and

Y = (Yobs, Ymis), where f(M,Y |θ, φ) = f(Y |θ)f(M |Y, φ) for (θ, φ) ∈ Ωθ,φ. Then, the

marginal distribution of the observed data is given by

f(Yobs,M |θ, φ) =

∫
f(Yobs, Ymis|θ)f(M |Yobs, Ymis), (3.5)

which involves the term f(M |Yobs, Ymis) not included in equation 3.3 under the ignorability

assumption. Specification of this term makes ML inference under nonignorable mechanisms

difficult. The likelihood function for inference on θ is given by

L(θ, φ|Yobs,M) ∝ f(Yobs,M |θ, φ) for (θ, φ) ∈ Ωθ,φ. (3.6)

From a Bayesian perspective, the posterior distribution of p(θ, φ|Yobs,M) is obtained by

combining the likelihood in equation 3.6 with a prior distribution p(θ, φ),

i.e., p(θ, φ|Yobs,M) ∝ p(θ, φ)× L(θ, φ|Yobs,M).

3.2.2.1 EM Algorithm The maximization of the likelihood function in missing data

cases often requires special computational techniques. The expectation and maximization

(EM) algorithm is a popular tool for computing ML estimates with incomplete data pro-

posed by Dempster, Laird and Rubin in 1977 [14]. The algorithm consists of two steps, the

expectation (E) step and the maximization (M) step, which are repeated iteratively until

convergence. A set of starting parameter values are required and are often obtained using

complete-case analysis or available case analysis. While the choice of starting values for the

algorithm is often not crucial when there is a low to moderate amount of missing information,

using a number of different sets of starting values can be informative, illustrating features of

the complete-data likelihood and can serve as a diagnostic tool.
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In the notation of Little and Rubin [26], let l(θ|Yobs, Ymis) = lnL(θ|Yobs, Ymis) denote the

complete data log-likelihood and θ(t) the current estimate of θ.

The E step computes the expected complete-data log-likelihood if θ(t) were the true value

of θ.

Q(θ|θ(t)) =

∫
l(θ|Yobs, Ymis)f(Ymis|Yobs, θ = θ(t))dYmis. (3.7)

This step does not fill in the individual data values that are missing rather, the functions of

the data (sufficient statistics) appearing in the likelihood function are estimated [26].

The M step consists simply of the standard maximum likelihood estimates based on

the estimated functions of the missing data and the observed data. The next value in the

sequence, θ(t) is found by maximizing Q(θ|θ(t)); that is, finding the value θ(t+1) such that

Q(θ(t+1)|θ(t)) ≥ Q(θ|θ(t)) for all θ. The estimated parameter values obtained in the M step

are then used in a subsequent E step. The algorithm continues iteratively until the parameter

estimates converge.

3.2.3 Imputation

The basic premise of imputation is to fill in the missing data with plausible values and then

to proceed with the analysis as if the data were completely observed [1]. One advantage of

imputation methods is that once the missing values have been filled in, existing statistical

software can be used to apply any statistical model or method. Imputation is a flexible

method which can be used with any type of data and for any kind of model. Methods for

generating imputations will be discussed in section 3.3.

Single imputation methods construct and analyze one completed data set. For example,

mean imputation replaces the unobserved values of each variable with the mean of the

available cases for that variable. The major drawback of single imputation methods is that

the standard analytic techniques applied to the completed data set fail to account for the

fact that the imputation process involves uncertainty about the imputed values [1]. The

failure to account for this uncertainty leads to the underestimation of variances and the

distortion of the correlation structure of the data, biasing the correlations towards zero. For
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this reason, single imputation is not recommended.

The uncertainty resulting from the missing values and the imputation process can be

properly accounted for by creating multiple imputed data sets. Multiple imputation repeats

the single imputation process a number of times creating several filled-in data sets which are

each analyzed separately. The parameter estimates obtained from each of the filled in data

sets are then combined in a way that incorporates the added uncertainty due to the missing

values.

3.2.3.1 Combination Rules Once parameter estimates have been obtained for each of

the completed data sets, a single combined parameter estimate, along with an appropriately

adjusted variance estimate, are computed. The following notation for the combination rules

is taken from Little and Rubin [26]. Let θd and Wd be the parameter estimate and associated

variance for the parameter θ calculated from completed data set d for d = 1, . . . , D.

The combined estimate is

θ̄D =
1

D

D∑

d=1

θ̂d (3.8)

The variability associated with this estimate has two components: the average within-

imputation variance,

W̄D =
1

D

D∑

d=1

Wd (3.9)

and the between-imputation variance component,

BD =
1

D − 1

D∑

d=1

(θ̂d − θ̄D)2 (3.10)

The total variability associated with θ̄D is

TD = W̄D +

(
D + 1

D

)
BD (3.11)

where (D + 1)/D is an adjustment for the finite number of imputations D.
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3.2.4 Nonignorable Missingness Mechanisms

The nonignorable or NMAR mechanism is the most difficult missing data problem. Unlike

under the MAR assumption, data involving nonignorable missing data mechanisms require

an explicit model for the missingness mechanism. Because the observed data provide little

information about the nature of the missingness mechanism, subjective information about

the data and its collection must be used. Sensitivity analysis is recommended in any NMAR

model because results can depend greatly on the choice of model for the missingness mech-

anism.

The use of nonignorable models in some situations has been controversial. Schafer points

out that “with the complicated patterns of missingness often encountered in multivariate

datasets, it may be quite difficult to specify any realistic mechanism for the nonresponse,

ignorable or otherwise.” [36] In their review article, Schafer and Graham [37] claim that the

complex modeling required for a nonignorable mechanism may not be worth the resulting

reduction in bias. The work of Collins, Schafer and Kam supports this claim, finding that

simply implementing an inclusive strategy when building an imputation model may result in

an acceptable amount of bias without the hard work and potential for model misspecification

[11]. An inclusive imputation model strategy involves including additional variables in the

imputation model that are not of interest in the complete data model, but may provide

useful information to improve the imputation process. More details on the inclusive strategy

and the study by Collins, Schafer and Kam are found in section 3.3.3.

3.3 GENERATING IMPUTATIONS

The generation of imputed values is most easily motivated from a Bayesian perspective. A

parametric complete data model is combined with a prior distribution to obtain the posterior

predictive distribution of the missing values conditioned on the observed data. Imputed

values are then generated by sampling from this distribution. If the posterior distribution is

of a simple form, such as a normal distribution, sampling from it is straightforward. However,
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in many cases sampling from the posterior predictive distribution is a difficult task requiring

the use of sophisticated techniques (see section 3.3.2). In cases where the missing data are

generated by a nonignorable mechanism, a model for the nonresponse mechanism is also

incorporated into the posterior predictive distribution. In practice, the prior distribution of

the parameters is often assumed to be a noninformative prior or conjugate with the likelihood.

Two broad types of methods for generating imputations are to assume the posterior

distribution is of a standard form from which sampling is straightforward or to use sophis-

ticated techniques for obtaining a sample from a complex distribution. On example of each

approach will be discussed in detail.

3.3.1 Assuming Normality

Multivariate normality is one of the most common assumptions for the posterior predictive

distribution. It has been shown in many situations that methods based on the normality

assumption perform well even in cases where the data are far from normally distributed

[36]. Well-known transformation techniques can also be applied to variables that clearly

violate the multivariate normality assumption to improve the performance of the imputation

procedure. The imputation model is applied only to the missing values in the data set;

the normality assumption has no impact on variables that have no missing data. Under

both the multivariate normal and multivariate t distribution assumptions, reliable parameter

estimation can be obtained using a ‘surprisingly’ small, between 2 and 10, number of imputed

data sets in cases where the fraction of missing information is not too large [26]. Little and

Rubin [26] define the fraction of missing information about θ due to the missing data as, γ̂D,

the ratio of the estimated between-imputation variance and the total variance. That is,

γ̂D =

(
D + 1

D

)(
BD

TD

)
(3.12)

3.3.2 Multiple Imputation by Chained Equations

Multivariate imputation by chained equations (MICE) is essentially a Gibbs sampler modified

to provide imputations from missing data values. Methods of this type are also known as
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variable-by-variable imputation methods or regression switching methods. Before giving

details of the MICE algorithm, some background on the Gibbs sampler will be presented.

3.3.2.1 Gibbs Sampler The Gibbs sampler is an algorithm that allows for the gen-

eration of random variables from a complicated joint probability distribution (or target

distribution) by generating draws from a series of full conditional distributions of this target

distribution. The algorithm is useful in those situations in which it is difficult to sample from

the target distribution, but draws from the conditional distributions are easily obtained. The

Gibbs sampler framework converts a k-dimensional problem into k 1-dimensional problems.

The following description of the Gibbs sampler is taken from Tanner [39]. The target dis-

tribution is p(θ) where θ = (θ1, θ2, · · · , θd). Given a starting point θ(0) = (θ
(0)
1 , θ

(0)
2 , · · · , θ

(0)
d )

sampling is done systematically from the conditional distributions by the following scheme.

Sample θ
(i+1)
1 from p(θ1|θ(i)

2 , · · · , θ
(i),Y
d )

Sample θ
(i+1)
2 from p(θ2|θ(i+1)

1 , θ
(i)
3 , · · · , θ

(i),Y
d )

...

Sample θ
(i+1)
d from p(θd|θ(i+1)

1 , · · · , θ
(i+1),Y
d−1 )

The above sample scheme is known as a systematic scan Gibbs sampler because the algorithm

proceeds from the first component of θ to the last component with each component visited

once. More complicated visiting schemes may improve computational efficiency and allow

for the preservation of transformations, constraints and interactions in the data set[46].

3.3.2.2 MICE The MICE algorithm and uses a Gibbs sampler to obtain random draws

from the target distribution, treating the missing values as parameters. The imputations are

then random draws from the joint distribution of the missing data and the observed data,

p(Xmis, Xobs). The observed data set, X, is partitioned into (d+1) parts with X0 representing

the completely observed variables and (X1, · · · , Xd) the variables with missing values. In

many situations obtaining random draws directly from this joint distribution is difficult,

however, draws from the conditional distribution p(Xi|Xj for all j 6= i) are more easily

obtained. In these situations, a Gibbs sampler can be constructed to generate imputations
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more easily.

For X1 draw X t+1
1 from p(X1|X t

2, X
t
3, · · · , X t

k)

For X2 draw X t+1
2 from p(X2|X t+1

1 , X t
3, · · · , X t

k)
...

For Xk draw X t+1
k from p(Xk|X t+1

1 , X t+1
2 , · · · , X t+1

k−1)

A set of starting values (X
(0)
1 , · · · , X

(0)
d ) are obtained as a random draw from some known

probability distribution.

The major assumption of MICE is that a multivariate distribution to which the speci-

fied set of conditional distributions converges to exists theoretically. The existence of this

distribution is not guaranteed. A set of conditional distributions with no corresponding mul-

tivariate distribution are said to be incompatible conditional distributions. More precisely,

two conditional distributions f(x|y) and g(y|x) are compatible if and only if their density

ratio can be factor into the product of two functions, that is, f(x|y)
g(y|x)

= u(x)v(y), for some

integrable functions u and v[45]. The use of multiple imputation with incompatible condi-

tional distributions has been shown to be reasonably robust. Imputations generated with

incompatible distributions has been shown via simulation to provide reasonable results [45],

although more work in this area is needed.

The variable-by-variable approach taken by the MICE algorithm allows for the inclusion

of variables of mixed type: both continuous and categorical [31]. This is an improvement

over the normality assumption under which handling categorical variables is more difficult.

Assessing the convergence of the MICE algorithm is can be difficult because what is

required is to assess convergence in distribution rather than assessing convergence to a par-

ticular value. Several strategies have been proposed for assessing convergence of the Gibbs

sampler and the MICE algorithm. The number of iterations required for convergence is sur-

prisingly small in comparison to most Markov chain Monte Carlo methods, in part because

no burn in period is required to ensure the independence of successive draws, the imputed

values are independent because for a given variable all draws are independent[46]. One

method of assessing convergence is to increase the number of iterations and check for notice-

able differences in results[44]. Another method for convergence compares parallel sequences,
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with convergence achieved when the sequences overlap and are free of trend. This method

is easily implemented with the MICE algorithm because parallel draws are automatically

produced.

3.3.3 Included Variables

An imputation model consists of two parts: the choice of a set of donor variables and the

choice of a statistical model representing the relationship between the variable with missing

data and its donors. A donor variable is one that is known to be associated with a variable

with missing data (the target variable), and is either completely observed or is observed in

more cases than its target [31].

The choice of donor variables to include in the imputation model is crucial to providing

accurate imputed values. Collins, Schafer and Kam [11] conducted an extensive simulation

study investigating the inclusion of what they term auxiliary variables in the imputation

model. Auxiliary variables are those variables included in the analysis solely for the purpose

of improving the missing data model. Such variables improved the performance of both

maximum likelihood and multiple imputation. Because similar results were obtained by

both methods, only the multiple imputation results were presented.

While auxiliary variables are not informative in terms of the hypothesis of interest, they

may provide useful information regarding the missing data mechanism. A restrictive variable

selection strategy incorporates few auxiliary variables, while an inclusive strategy utilizes all

or almost all of the available auxiliary variables. In assessing and comparing the performance

of both strategies, standardized bias, root mean square error, coverage of confidence intervals

and the average length of confidence intervals were compared. Values of the standardized

bias greater than 40% were considered to be a significant amount of bias and coverage levels

for a 95% confidence interval were considered poor if they dropped below 90%.

Van Buuren, et al. [44] present a strategy for selecting a group of donor variables from

a large data set. First, all variables of interest in the ultimate analysis should be included

in the imputation model. Second, add those variables that are related to the ‘cause’ of

missingness. Third, variables that are highly correlated with the target variables. In the
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final step, those variables added as donor variables that contain a high amount of missing

data must be removed from the model. One advantage of the MICE approach is that because

it proceeds variable by variable, different donor variables can be used to impute the value of

each target variable, potentially allowing the use of donor variables that might otherwise have

been excluded. In addition, the variable by variable approach allows for the easy inclusion

of both continuous and categorical target variables because the type of model used for each

target variable can be adjusted to match its measurement type.

In the Collins, Schafer and Kam study, the simulated data consist of 1000 samples of

size 500 of 3 variables X, Y, and Z from a multivariate normal distribution. Variables X

and Z are always observed and variable Y is observed or missing, with variable Z as a

possible ‘cause’ of the missingness of Y . Missing data was created within the simulated data

sets, by four different mechanisms: MCAR, MAR-linear, MAR-convex and MAR-sinister,

as described below, at 25% and 50% missingness rates. Two different correlation structures

were considered in the data generation: ρXY = 0.6, ρY Z = 0.4, ρXZ = 0.24; and ρXY = 0.6,

ρY Z = 0.9, ρXZ = 0.54. As a result of these correlation choices, X and Z are conditionally

independent given Y . Thus, when Z is not observed, the missingness in Y will appear to

depend only on Y and not on X. Thus, when Z is included in the data set, the data are

truly MAR because the ‘cause’ of missingness is included in the model. Moreover, when Z is

excluded from the model, the data are truly NMAR because missingness now depends solely

on the value of Y . Note that the names given to the missing data mechanisms (MCAR,

MAR-linear, MAR-convex and MAR-sinister) are as the data are only truly MAR when Z

is included in the imputation model.

The MCAR condition creates missingness in Y at the specified probabilities independently

of X, Y, and Z. In the MAR-linear condition, the probability of missingness is taken to be

linearly related to the value of Z. Specifically, the values of Z are divided into quartiles and

missingness probabilities (0.1, 0.2, 0.3, 0.4) are assigned to each quartile for 25% missingness

and probabilities (0.2, 0.4, 0.6, 0.8) are assigned for 50% missing data. In the MAR-convex

condition, the values of Z are again divided into quartiles with the probabilities of missingness

set to make values at the tails less observed than those at the center of the distribution of Z.

The missingness probabilities assigned are (0.4, 0.1, 0.1, 0.4) and (0.8, 0.2, 0.2, 0.8) for 25%
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missing data and 50% missing data, respectively. The MAR-sinister condition was created

specifically to introduce bias into the relationship between X and Y when Z is not included

in the missing data model. The probability of missingness is not a function of Z directly, but

of the correlation between X and Z. The implementation of this mechanism is a bit more

complicated. To start, the 500 data points are randomly divided into 10 groups of 50 points

each. The sample correlation between X and Z is computed within each group. Based on

the degree of correlation, the groups are assigned to either a high or low correlation group.

The probabilities of missingness for the low and high correlation strata are (0.1, 0.4) and

(0.2, 0.8), respectively.

The simulation study focused on four questions of interest, addressing the impact of the

inclusion or exclusion of particular categories of variables from the analysis. The results of

each question are summarized below.

Question 1: What is the impact of the omission of auxiliary variables that are both corre-
lated with Y and related to missingness?

When the missing data mechanism was truly MAR (Z was included in the imputation model)

under all structures (linear, convex or sinister), both correlation structures and both missing

data percentatges, multiple imputation performed well in estimating all parameters. When

Z was excluded from the imputation model, i.e. the data were NMAR, the results were

‘surprisingly robust’ suggesting that the use of methods intended for situations where the

missing data mechanism is ignorable (or MAR) may provide acceptable results even in cases

where the missing data mechanism is truly nonignorable. Recall, the omission of Z from the

missing data model makes the missing data mechanism nonignorable and biased estimates

more likely.

Multiple imputation did not perform uniformly well under all types of missing data

mechanisms. Under the linear mechanism, the estimation of the mean of Y was affected in

all situations, with high levels of bias in parameter estimates and low coverage probabilities

for confidence intervals. The estimation of standard deviations, regression parameters and

correlations performed reasonably well in most cases with the exception of the case where

ρY Z = 0.9 with 50% missingness. In both the convex and sinister mechanisms, the estimation

of the mean of Y was largely unaffected by the missing data. The case of ρY Z = 0.4 with 25%

30



missingness produced good results. Other correlation and rate of missingness combinations

were not as good in terms of bias and coverage.

The results for question one indicate that the structure of the missingness mechanism

impacts the estimation of population quantities in different fashions. The type of MAR mech-

anism has an impact on the effectiveness of missing data methods and, therefore, simulation

studies should examine a number of different MAR mechanisms. In most studies, the MAR

linear mechanism is the only type of MAR mechanism considered. This may give a false

measure of the performance of an estimate of the standard deviation, regression parameters

and correlations when the MAR structure is not linear.

Question 2: Will including variables that are correlated with Y, but not related to miss-
ingness, improve the precision of estimates without negatively impacting bias or coverage?

The second question addresses the improvements in the precision of parameter estimates

obtained by including covariates correlated with Y, but not correlated with the ‘cause’ of

missingness Z, as auxiliary variables. The simulation study used to address this question

focused on a data set with missing rate of 50% imposed in a MCAR fashion and included

one of two Z variables, the first with ρY Z = 0.4 and the second with ρY Z = 0.9. Multiple

imputation based inference was obtained both with and without the Z variable in the impu-

tation model. In all cases the bias of the estimates was within the acceptable range and the

coverage percentage of the confidence intervals was not adversely impacted by the inclusion

of the auxiliary variable. Confidence interval coverage actually increased above the nominal

level with the inclusion of Z particularly in the ρY Z = 0.9 case.

Question 3: Will including variables correlated with Y, but not related to missingness under
a nonignorable missingess mechanism reduce bias?

Because of the difficulties encountered when the missing data mechanism is nonignorable,

the use of auxiliary variables correlated with Y as a way of obtaining reasonable parameter

estimates without explicitly modeling the missing data mechanism is considered. The sim-

ulation study addressing this question considered cases with missing values in Y at a 50%

rate created under all three MAR mechanisms. Three sets of variables were considered: X

and Y only; X, Y and Z where ρZ = 0.4; and X, Y and Z where ρZ = 0.9. Estimation of
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all parameters with only X and Y in the model had considerable bias, often in a negative

direction implying that the parameter estimates were too small. This bias was reduced with

the inclusion of the auxiliary covariate, Z. This suggests that an inclusive strategy is the

best course when building a missing data model either using MI or ML under a nonignorable

mechanism, however, the incorporation of these extra covariates is most easily performed

with MI due to the limitations of the software packages currently available.

Question 4: Is there any disadvantage to including variables that are uncorrelated with Y,
i.e. what is the negative impact of including extraneous variables?

The results of the third question suggest an improvement due to the inclusion of an auxiliary

covariate that is correlated with Y . Question 4 addresses the potential cost of including co-

variates which are completely uncorrelated with X and Y . Comparisons were made between

cases with 5, 25 and 50 ‘junk’ variables included. While the estimation in the case of 5 extra

covariates is within the acceptable range, in the cases with 25 and 50 extra variables, there

is a noticeable increased in the bias of the estimates and reduction in the coverage of the

confidence intervals for σ2
Y , ρXY and βXY . This is likely due in part to the increasing number

of parameters with a fixed sample size of 500. The authors suggest that, as the effective

sample size is increased, these biases should disappear.
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4.0 SIMULATION STUDY OVERVIEW

The major goal of this research is to examine the impact of missing data on the performance

of variable selection methods, in particular the lasso and stepwise regression. Ultimately,

the results of the simulation study will be used to inform the application of the lasso to the

psychobiological data described in Chapter 6.

4.1 SIMULATION OF DATA

The simulation study will focus on the performance of variable selection in the multiple linear

regression model. The performance of ordinary least squares regression, stepwise regression,

ridge regression and the lasso method will be examined, with each method applied to the

complete data and data sets containing missing data. The simulated data will cover a variety

of conditions that are often encountered in real data situations. The factors and factor levels

considered: sample size, number of predictor variables, correlation structure and missing

data characteristics, are intended to provide information about the performance of variable

selection in a number of practical situations.

In each combination of factors considered, N = 1000 sets of simulated covariates,

X1, · · · , Xp, will be generated from a multivariate normal distribution. Five different correla-

tion structures were selected for consideration to attempt to mirror the degree of correlation

often encountered in real data. The independent correlation structure agrees with the usual

assumption in linear regression. The equicorrelated structures (ρ = 0.25, ρ = 0.5) are consid-

ered to mirror those cases where there is a moderate to high correlation between all covariates

under consideration. The autoregressive structures (ρ = 0.25, ρ = 0.5) were selected as a
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convenient way to create data sets with a higher level of correlation between some covariates

and little to no correlation between other covariates. The balance between sample size, n,

and the number of covariates, p, is known to influence parameter estimation and variable

selection in regression. The combinations we will consider in this study are: n = 50, p = 5

and p = 10; n = 100, p = 10 and p = 20; and n = 200 and p = 20.

The multiple linear regression model is of the form Y = Xβ + ε where yi is the response

for subject i and xi is the vector of predictor variables for the ith subject, for i = 1, · · · , n. It

is usually assumed E(ε) = 0 and E(ε′ε) = σ2In. The least squares estimates of the regression

parameters β are given by β̂ = (X′X)−1X′Y.

The rows of the design matrix are assumed to be normal random vectors, generated from

a distribution with mean zero and variance one and are then transformed to exhibit the

given correlation structure. Due to the assumptions of the lasso method, the variables are

centered and scaled prior to parameter estimation. The vector used in the estimation of the

prediction error, X∗, is generated in the same manner, with one X∗ generated in each of the

1000 simulations. The entries of the error vector are assumed to have unit common variance.

Investigation of the impact of other values of this variance is left to future research.

In the generation of the response variable Y based on the simulated covariates, two beta

vectors will be considered: β1 consists of several large nonzero coefficients and coefficients

that are exactly zero, while β2 includes coefficients that are small in magnitude along with

coefficients that are exactly zero. For p = 5, β1 = (3, 1.5, 0, 2, 0) and β2 = (0.85, 0.85, 0, 2, 0).

For p > 5, the beta vectors are constructed by repeating the pattern for p = 5 to obtain a

vector of the needed length, i.e. for p = 10, β1 = (3, 1.5, 0, 2, 0, 3, 1.5, 0, 2, 0).

4.1.1 Missing Data

The missing data mechanisms used to simulate missing data will be based on those used

by Collins, Schafer, and Kam [11] as outlined in 3.3.3. The linear, convex and sinister

mechanisms will be extended to the case of more than three covariates. These mechanisms

were considered both under MAR and NMAR conditions, that is both including and excluding

the cause of missingness from the imputation model. The MCAR assumption is too strong
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to be practical in most real data situations and therefore will not be considered [28]. Missing

data will be created under each mechanism at 25 percent and 50 percent levels.

The data analysis will be completed using multiple imputation to account for the missing

data. This method was selected because the variable selection methods under consideration

can easily be performed on the imputed data sets and their results compared.

MI will be implemented using the MICE package developed for R [32] by Van Buuren

and Oudshoorn which provides MI as described in 3.3.2 [46].

4.2 COMPARISON OF RESULTS

The assessment of the performance of the variable selection methods in the various missing

data situations will focus on the accuracy of predictions based on future observations using

the estimated model and on the accuracy with which the regression parameters are estimated.

The average mean square error of the estimation of the regression parameters will be

computed as

ˆMSEβ̃ =
1

B

B∑
i=1

‖ β̃i − β ‖2, (4.1)

where β̃ is the estimate of β obtained from the variable selection method under consideration.

In addition, the actual coverage probability of a nominal 95% confidence interval for β will

be computed.

Mean square error of prediction will be used to assess the accuracy of predictions based

on future observations. The average MSE of prediction will be computed by

MSEpred =‖ β̃′x∗ − β′x∗ ‖2, (4.2)

where x∗ is a vector ‘future’ observations.

Assessment of the degree to which each method selects the correct model or a model

containing the correct model in quantitative terms is an area for future research. The

number of methods considered and the number of conditions under which these methods

were compared made this assessment difficult. In selected cases, boxplots illustrating the

variation of hte parameter estimates about their ture values will be presented.
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5.0 RESULTS UNDER THE MISSING AT RANDOM ASSUMPTION

Recall that the simulated data consist of N = 1000 data sets of size n with p parameters from

a multivariate normal distribution. Two types of beta vectors were considered, beta 1 consists

of repetitions of (3, 1.5, 0, 2, 0) and the second, β2, consists of repetitions of (0.85, 0.85, 0, 2, 0).

Missing data was created under 3 different mechanisms: linear, convex and sinister. This

chapter summarizes the performance of the various models considered when the data were

missing at random, that is the ‘cause’ of missingness was included in the imputation model.

Because of computational difficulties, parameter estimates for 50 percent missing data with

n = 50, p = 5 and n = 100, p = 20 were unattainable.

5.1 PREDICTION ERROR

One goal of a regression model is to provide accurate predictions of future outcome based on

the selected set of predictor variables. The mean square error of prediction is one measure

of the accuracy of predictions. In this study, prediction mean square error was computed as

the mean of the squared deviation between the true outcome y and the predicted outcome

ŷ, where ŷ was computed using the estimated regression parameters on a new data set.

Tables containing the prediction error results for the n = 50, p = 5 case are presented in

the text here, the entire set of prediction error tables can be found in Appendices A and

B. In comparing the prediction error, five different correlation structures are considered:

independent, autoregressive with ρ = 0.25 and ρ = 0.50 and equicorrelated with ρ = 0.25

and ρ = 0.50.
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Table 1: MAR, Beta 1, independent, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 54.6914 68.2929 126.1785 68.3981 132.0979 68.6678 136.1288

Stepwise 53.0424 65.6315 122.9691 68.7254 129.7173 67.0359 133.8803

Ridge 54.8543 67.6266 121.8536 67.5476 130.0766 67.3922 133.5684

LASSO 55.1775 64.1683 119.6536 66.2485 127.2515 65.3432 127.3544

5.1.1 Beta 1 - Independent

For the complete data case, there is little difference between the methods considered. Exclud-

ing the n = 100, p = 10 case, the percent difference between the best and worst performing

methods was small ranging from 0.2 to 3.9 percent. In the n = 100, p = 10 case, ridge

regression performed poorly compared to the other methods, with a 10.9 percent difference

between it and the best method. Excluding ridge regression, the percentage change from the

best to the worst method drops to 4.9 percent.

In the incomplete data case, the lasso performed best in the n = 50, p = 5 situation in

terms of mean square error of prediction. The lasso resulted in a decrease of between 1.8 and

4.7 percent over its closest competitor. Stepwise regression performed best in the n = 50,

p = 10; n = 100, p = 10; and n = 100, p = 20 situations, with the percent decrease in

MSE prediction ranging from 1.9 to 3.6 percent, 0.1 to 4.5 percent, and 0.2 to 1.4 percent,

respectively. In the n = 200, p = 20 case, stepwise regression performed best in the 25

percent missing data cases, with percent decreases ranging from 2.7 to 3.8 percent across

missing data mechanisms. In the 50 percent missing data cases, OLS outperformed stepwise

regression by between 0.2 and 2.0 percent across the missing data mechanisms.
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Table 2: MAR, Beta 1, autoregressive 0.25, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 55.5467 65.7170 125.7308 66.1434 123.1692 68.6117 132.3267

Stepwise 53.7703 64.9161 124.8871 63.6737 122.2519 68.0792 131.6722

Ridge 56.1997 65.8453 121.9880 65.3392 120.2885 68.3793 126.6165

LASSO 53.5634 63.4803 111.1292 62.2114 113.6424 66.4535 121.6055

5.1.2 Beta 1 - Autoregressive 0.25

For the complete data analysis as under the independent correlation structure, the methods

performed similarly, with the exception of one case in which ridge regression performed

poorly. In the n = 100, p = 20 case, ridge regression yields a prediction mean square error

9.8 percent higher than the best method. Excluding ridge regression, this percentage drops

to 5.5 percent.

The lasso performs best in n = 50 p = 5 situation, with a small decrease in MSE

prediction. For the 25% missing data cases, the lasso yields around a 2.0 percent reduction,

where in the 50% missing cases, the decrease in between 4 and 9 percent. In n = 50, p = 10

case, ridge regression seemed to perform best, but with only a slightly smaller MSE prediction

than the lasso (less than one percent). In the n = 100, p = 10 case, the lasso performs best

followed closely by ridge regression in all but the convex and sinister 50% cases, where it

is slightly outperformed by ridge regression. The percentage difference is between 1.0 and

2.5 percent. In the n = 100, p = 20 case, ridge regression performs best in the linear and

convex cases, and stepwise performs best in the sinister mechanism with 25 percent missing

data. In the n = 200, p = 20 case, OLS performs best in the linear mechanism but by less

than one percent over its closest competitor. The difference between the best and worst case

in the linear 25% and 50% are 2 percent and 4 percent, respectively. Stepwise regression

performs best in the convex and sinister situations.
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5.1.3 Beta 1 - Autoregressive 0.50

For the complete data case, again all methods perform similarly with the exception of OLS in

the n = 50, p = 10 case, in which it has a mean square error of prediction 7.0 percent higher

than the best method. Excluding OLS in the n = 50, p = 10 case, the percent difference

between the best and worst method ranges from 1.9 to 3.6 percent.

The lasso performs best in all missing data cases, except the n = 100, p = 20 case,

where it is outperformed in the 25 percent linear missing data case by stepwise regression

(0.4 percent) and by ridge regression in the 25 convex missing data case (1.1 percent). In

the complete data case, in all but the n = 50, p = 10 case, the methods perform similarly,

with between 1.9 and 3.5 percent difference between the best and worst methods. In the

n = 50, p = 10 case, OLS performs poorly compared to the other methods, differing from

the best method by seven percent. Excluding OLS, this percentage is only 3.6 percent.

The largest percentage decrease in MSE prediction exhibited by the lasso is in the n = 50,

p = 5 case. For the 25% missing data situations, the percent decrease is between 1.2 and 3.4

percent. For the 50 percent missing data cases, the percentage jumps to between 7.8 and

12 percent. For the other parameter-sample size combinations the 50 percent missing data

cases yield a larger percent decrease for the lasso, but not as dramatically as in the n = 50,

p = 5 case. For example, in the n = 100, p = 10 case, the percentages range from 2.6 and 3.4

percent for the 25 percent missing data cases and from 5.3 and 6.9 percent in the 50 percent

missing data cases.

5.1.4 Beta 1 - Equicorrelated 0.25

In the complete data cases, stepwise regression performs uniformly best, but all methods

performed similarly with percent differences between the best and worst method ranging

from 2 to 3.6 percent across sample sizes and number of parameters. In the incomplete data

cases, the lasso method performs best in terms of mean square error of prediction under

all conditions. For the n = 50, p = 5 case, the lasso outperforms its closest competitor

by a small amount (between 1.9 and 3.4 percent) in the 25 percent missing data cases and

by a slightly larger amount (6.8 to 9.0 percent) in the 50 percent missing data cases. For
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Table 3: MAR, Beta 1, autoregressive 0.50, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 54.8208 67.2951 115.0031 66.0225 112.9062 66.9540 118.0505

Stepwise 53.7677 66.2884 112.6266 65.4333 118.0544 66.9004 116.2644

Ridge 53.9582 67.1818 112.1185 66.9024 113.3605 67.3742 115.0649

LASSO 53.8426 65.5285 102.3797 63.8824 99.3837 64.7271 106.0956

n = 50, p = 10, the percent change is similar to the 50 percent missing data case for p = 5,

ranging from 6.1 to 10.4 percent. The n = 100, p = 10 case follows a similar patter to the

n = 50, p = 5 case, with slightly higher percentages, ranging from 3.1 to 6.4 percent in the

25 percent missing data situation and 8.3 to 10.5 percent in for 50 percent missing data.

The n = 200, p = 20 case also follows the same general pattern and again has an increased

percent decrease over the n = 100, p = 10 case, for 25 percent missing data ranging from

8.9 to 9.9 percent and for 50 percent missing data ranging from 13.5 to 14.8 percent.

Table 4: MAR, Beta 1, equicorrelated 0.25, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 55.1837 68.1253 124.6244 68.0459 120.3575 67.5179 126.0433

Stepwise 53.7651 67.1208 122.8441 65.8799 117.7967 66.0484 124.1935

Ridge 54.2000 67.9600 120.7277 67.9454 118.4358 67.6775 122.5943

LASSO 54.6877 64.8556 109.9059 64.6156 109.7634 63.8032 112.3873
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5.1.5 Beta 1 - Equicorrelated 0.50

For the complete data the results under this correlation structure reveal larger differences

in performance between the methods. The percent difference between the best and worst

methods ranges from 1.4 to 8.6 percent. Excluding OLS, the worst performer, this percentage

drops to between 1.2 and 5.7 percent.

The results of this correlation structure are similar to the equicorrelated ρ = 0.25 struc-

ture. When n = 50 and p = 5 in the 25 percent missing data case, the lasso is the best

method in the linear and sinister missing data mechanisms, with a percent decrease over its

closest competitor, stepwise regression of 4.3 and 3.5 percent, respsectively. In the convex

missing data case, ridge regression outperforms stepwise regression by 4.1 percent. In the

50 percent missing data case the lasso is the best performing method under all missing data

mechanisms, with percent decreases of 8.5, 9.4 and 9.2 percent in the linear, convex and

sinister missing data mechanisms, respectively.

The lasso is again the best performer in the n = 50, p = 10 case with percentage decreases

in MSE of prediction similar to the n = 50, p = 5 50 percent missing data case, ranging from

8.9 to 9.4 percent over its closest competitor. For n = 100, p = 10, the percent decreases

in MSE of prediction of the lasso over stepwise regression for the 25 percent and 50 percent

missing data situations are 1.3 to 6.4 and 9.6 to 13.4, respectively. For n = 100, p = 20

with 25 percent missing data the lasso with the best performing method with the percent

decrease in mean square error of prediction over the closest competitor ranging from 13.5 to

16.5 percent. For n = 200, p = 20, the percent decrease in MSE of prediction of the lasso

over its closest competitor for 25 percent missing data ranges from 7.5 to 8.1 percent and

for 50 percent missing data it ranges from 11.5 to 12 percent. Both the n = 100, p = 20 and

n = 200, p = 20 follow a pattern similar to the n = 50, p = 5 case.

5.1.6 Beta 2 - Independent

For the complete data cases, the percent difference between the best and worst performing

methods ranges from 1.7 to 5.7 percent. The highest percentage difference occurs in the

n = 100, p = 10 case, where ridge regression and the lasso perform poorly compared to OLS
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Table 5: MAR, Beta 1, equicorrelated 0.50, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 56.5982 63.0679 130.3273 66.5053 114.2230 68.1162 118.4149

Stepwise 51.7356 64.0486 124.0407 62.2755 114.7393 66.5011 117.4116

Ridge 53.4086 65.1481 117.2939 59.7011 113.0369 67.1418 114.6097

LASSO 54.8507 60.3818 107.3554 63.9047 102.4125 64.1699 104.1159

and stepwise regression. The percent difference between OLS and stepwise regression is 3.0

percent.

Under the independent correlation structure in the 25% missing data situation with

n = 50 and p = 5 in the linear and sinister cases, the lasso outperforms stepwise regression

only slightly by 0.7 percent and stepwise and ridge regression by 2.0 percent, respectively.

In the 50 percent missing data case, the lasso method was the best performer, with percent

increases in the prediction MSE, of 3.5, 3.5 and 3.2 percent over ridge regression in the linear,

convex and sinister missing data mechanisms, respectively.

The 25 percent linear and sinister missing data cases with n = 50 and p = 10, ridge and

stepwise regression are tied for best performer. In the 25% convex missing data situation

when n = 50 and p = 10 shows stepwise regression with a 3.0 percent decrease in prediction

mean square error over OLS, its closest competitor.

In the other sample size, parameter combinations, there was no clearly best method and

the difference between the best method and its closest competitor is less than 2 percent, with

the exception of a few select cases. For n = 100, p = 10, in the 25 percent linear and convex

situations and for all mechanisms with 50 percent missing data, stepwise regression and the

lasso have similar performance, while the lasso method outperforms stepwise regression by

1.2 percent in the 25 percent sinister missing data case.

In the highest sample size situation with n = 200 and p = 20, stepwise regression is the

dominant method in the 25 percent linear and convex cases, while OLS and ridge regression
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Table 6: MAR, Beta 2, independent, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 55.4664 61.9923 83.4059 61.7500 86.5321 63.2000 84.4271

Stepwise 54.2861 60.2779 83.4562 61.1181 85.1575 62.4822 83.5028

Ridge 55.8484 62.5328 80.7426 59.9136 84.8708 62.5470 80.7851

Lasso 54.1250 59.8385 77.9304 61.0997 81.9225 61.2615 78.1704

are tied as the best methods in the 50 percent linear and convex missing data cases. In the

25 percent sinister missing data case, stepwise regression and the lasso perform similarly,

while in the 50 percent sinister missing data case, OLS and ridge regression are tied as the

best methods.

5.1.7 Beta 2 - Autoregressive 0.25

For the complete data case, the percent difference between the best and worst perform-

ing methods ranges from 1.7 to 6.4 percent across the number of parameter, sample size

combinations.

In the n = 50, p = 5 case, the lasso has the best performance for both the 25 percent and

50 percent missing data cases. In the 25 percent missing data case the lasso outperforms

its closest competitor by between 0.1 and 2 percent, while in the 50 percent missing data

case, the decrease in MSE of prediction ranges from 2.7 to 4.2 percent. For the n = 50,

p = 10 case, the performance of ridge regression and the lasso is quite similar in the linear

and convex conditions with 25 percent missing data, with ridge regression beating the lasso

by 0.3 and 0.1 percent, respectively. In the 25 percent sinister missing data case, however,

ridge regression outperforms the lasso by 2.7 percent.

When n = 100 and p = 10, the lasso shows a small degree of improvement in MSE of

prediction over closest competitor, with percent decreases ranging from 0.3 to 1.8 percent.
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Table 7: MAR, Beta 2, autoregressive 0.25, n=50, p=5

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 53.3920 61.3784 81.0871 62.2971 84.5883 62.9392 84.6691

Stepwise 50.8729 64.9137 79.0989 60.4346 82.6154 61.9896 83.5984

Ridge 54.3701 63.1675 78.7286 60.5885 80.7941 62.7609 81.4928

Lasso 52.8584 61.3054 75.4485 59.1969 78.6286 61.2443 79.0849

In the 50 percent sinister missing data case, the lasso is outperformed slightly, 0.5 percent,

by ridge regression. In the n = 100, p = 20 case with 25 percent linear missing data stepwise

regression performs best, 2.9 percent decrease over ridge regression. Ridge regression enjoys

a 8.6 percent decrease in MSE of prediction over the lasso in the 25 percent convex missing

data case and a 0.8 percent decrease over stepwise regression in the 25 percent sinister missing

data case.

In the final situation with n = 200, p = 20, with 25 percent missing data, the lasso is the

best method by a small margin in the linear and convex missing data types, outperforming

stepwise regression by one percent and ridge regression by 0.2 percent, respectively. In the

25 percent sinister missing data case, the lasso is the worst method, whereas OLS is the

best method, outperforming stepwise regression by a tiny 0.05 percent margin. Under 50

percent missing data OLS is the best method by a small margin, outperforming its closest

competitor by between 0.3 and 1.3 percent.

5.1.8 Beta 2 - Autoregressive 0.50

For the complete data case, the percent difference between the best and worst method ranges

from 3 to 4.2 percent across the number of parameter, sample size combinations.

In the n = 50, p = 5 case, the lasso demonstrates the best performance of the methods

considered. This difference is small in the 25% missing data cases, at less than 2 percent, and
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Table 8: MAR, Beta 2, autoregressive 0.50, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 53.8760 61.5450 82.4335 62.1179 84.2433 62.2811 86.7815

Stepwise 51.9671 63.0262 80.7499 60.0994 83.7700 61.7423 85.5888

Ridge 54.2307 62.5154 79.6514 60.2089 81.2988 63.4752 81.8031

Lasso 53.4871 60.5544 76.6797 58.9193 78.5940 62.5772 79.3891

only slightly larger in the 50% missing and complete data cases, at about 3%. The lasso was

also the best method in the n = 50, p = 10 case, with decreases over its closest competitor

of 0.3%, 2.6%, 1.1% and 2.8% in the complete data, 25% linear, convex and sinister missing

data cases, respectively. Recall that the 50% missing data case was not estimable.

The lasso again performed well in the n = 100, p = 10 case, with a slightly larger percent

decrease. The differences ranged from 0.7% in the complete data case, to 5.8% in the 50%

linear missing data case. The largest differences were seen in the 50% missing data cases.

Stepwise and ridge regression performed almost identically in the n = 100, p = 20 case, the

largest difference occurring in the complete data where stepwise regression was 2.6% lower

in terms of mean square error of prediction. For n = 100, p = 20 in the complete data and

all missing data types, stepwise and ridge regression performed almost identically. The lasso

method performed poorly, stepwise and ridge regression had prediction mean square errors

between 2.6 and 4.7 percent less than the lasso.

In the final parameter combination, n = 200, p = 20 there was no clear best method

across all situations. In the 25% missing case, stepwise regression performed best with the

lasso a close second. In the 50% missing data case, OLS performed best with ridge regression

a close second. The largest difference between closest competitors was seen in the complete

data case, where the prediction MSE for stepwise regresion was 2.3% less than that for OLS.
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5.1.9 Beta 2 - Equicorrelated 0.25

With complete data, the percent difference between the best and worst method ranges from

2.9 to 4.5 percent across the number of parameter, sample size combinations.

Under the equal correlation structure with ρ = 0.25, the performance of the various

methods depends on the sample size, number of parameters combination being considered.

When n = 50 and p = 5 the lasso method performed best, with the greatest amount of

decrease in mean square error of prediction in the 50% missing data case, where the percent

decrease ranged from 2.7% to 4.2%. In the n = 50, p = 10 case, the lasso was again the

best performer, with a larger amount of decrease, ranging from 7.1% to 9.4%, over its closest

competitor.

In the n = 100, p = 10 case, there is a small amount of difference between the methods

considered. In the linear missing data cases both 25% and 50% the lasso was 1.2% and

1.6%, respectively better. In the convex missing data and 25% sinister missing data cases,

the lasso and ridge regression had similar performance with less than 0.5 percent difference

between methods. There was a moderate 2.5% decrease in mean square error of prediction

in the sinister 50% missing data situation, with the lasso outperforming stepwise regression.

In the n = 100, p = 20 case with 25 percent linear missing data stepwise regression has

a prediction MSE 1.1 percent lower than ridge regression, while in the 25 percent convex

and sinister cases, ridge regression and stepwise regression differ by 0.3 and 0.4 percent,

respectively.

In the n = 200, p = 20 case, the type and percentage of missing data had a differing

impact on the performance of the methods. In the complete data case, stepwise regression

had a mean square error of prediction 2.3% lower than its closest competitor, OLS. The

linear cases shows a 0.6 percent difference between stepwise regression and ridge regression

under 25 percent linear missing data, while OLS enjoys the same percentage decrease in

prediction MSE over ridge regression under 50 percent linear missing data. In the convex

and sinister methods, however, there was a large percentage difference between methods. The

lasso method outperformed its closest competitor by 6.2% and 11.9% in the convex cases

and 6.7% and 14.4% in the sinister cases with 25 and 50 percent missing data, respectively.
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Table 9: MAR, Beta 2, equicorrelated 0.25, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 54.2568 61.5160 81.0871 62.2971 84.5883 62.9392 84.6691

Stepwise 52.1352 63.0013 79.0989 60.4346 82.6154 61.9896 83.5984

Ridge 54.2883 62.7029 78.7286 60.5885 80.7941 62.7609 81.4928

Lasso 53.5933 60.4873 75.4485 59.1969 78.6286 61.2443 79.0849

5.1.10 Beta 2 - Equicorrelated 0.50

For the complete data case, the percent difference between the best and worst method ranges

from 2.6 to 7.3 percent across the number of parameter, sample size combinations. In the

n = 50, p = 5 case ridge regression is the worst performer with a MSE of prediction 7.3

percent higher than the best performer. Excluding this method, the percentage difference

drops to 5.2 percent.

Under this correlation structure the n = 50 sample size had the greatest percent difference

between methods. For p = 5, the complete data case had stepwise regression 3.9% smaller

than the lasso, its closest competitor. In the 25% missing data percentages, there was a small

percent difference in MSE prediction, from 1.1 to 1.8 percent across all missing data types.

OLS performed best in the linear missing data case, while the lasso performed bed in the

convex and sinister mechanisms. In the 50% missing data percentages the lasso exhibited a

larger percentage difference, 4.9 percent under the linear mechanism, to 2.9% in the convex

missing data type and 5.8 percent in the sinister missing data mechanism. For p = 10, the

difference in the complete data case is only 0.6%. In the 25% missing data cases, the lasso

performed 8.4%, 5.2% and 9.3% better than its closest competitor in the linear, convex and

sinister missing data types, respectively.

In the n = 100 and n = 200 cases, there was little difference between methods. The

largest differences occurred in the complete data cases, where stepwise regression was ap-
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Table 10: MAR, Beta 2, equicorrelated 0.50, n=50, p=5, MSE of Prediction

Linear Missing Convex Missing Sinister Missing

Complete 25% 50% 25% 50% 25% 50%

OLS 52.9322 60.9278 84.6885 62.3759 83.4234 62.9092 89.5624

Stepwise 50.1963 66.2506 83.6840 60.4004 82.6522 62.4638 88.3228

Ridge 54.1270 63.6931 81.9715 60.7036 80.1711 62.8453 84.6423

Lasso 52.2217 61.6363 77.9630 59.2910 77.8270 61.5606 79.7528

proximately 2.0% than ridge regression. In the missing data cases, the percent difference

between closest competitors ranged from 0.2 to 1.0%. The difference between the best and

worst methods in the missing data cases ranged between 0.5% and 6.9%. In the n = 100,

10 cases the lasso was the dominant method with a slight decrease, between 0.2 and 0.8

percent in prediction MSE over the other methods, with the exception of the 50 percent

sinister missing data case, where ridge regression was 0.8 percent below the lasso in terms

of MSE. In the n = 100, p = 20 case, stepwise regression and ridge regression have similar

performance, differing by less and 1.0 percent in all missing data mechanisms.

Finally, for n = 200, p = 20, stepwise regression enjoys a slight edge, less than 0.7

percent, over the lasso in the linear and sinister 25 percent missing data cases, while OLS

enjoys a less than 0.7 percent decrease over ridge regression in the linear and convex 50

percent missing data cases. In the 25 percent convex missing data case, the lasso, stepwise

regression and ridge regression have essentially the same prediction MSE. In the sinister 50

percent missing data case, OLS has a 0.7 percent lower MSE than stepwise regression.

5.1.11 Overall Results

In the complete data, there was little variation between methods in terms of performance as

measured by the mean square error of prediction. This is not true under the various missing

data conditions. The performance varied across the true values of beta considered. Under

48



beta 1, composed of larger nonzero coefficients made up of repetitions of (3, 1.5, 0, 2, 0), the

lasso method was the sole best performing method in the majority of cases, with a higher

degree of correlation between the covariates. Under beta 2 consisting of smaller nonzero

coefficients made up of repetitions of (0.85, 0.85, 0, 2, 0), no one method is dominant as in

the case of beta 1. For the smallest sample size n = 50, the performance of the methods

was similar for beta 1 and beta 2, with the lasso performing best in most case for p = 5

and for the stronger correlation structures, autoregressive with ρ = 0.50 and equicorrelated

with ρ = 0.25 and ρ = 0.50. Under the autoregressive with ρ = 0.25 correlation structure,

beta 1 and beta 2 both show ridge regression and the lasso as the best methods. Under

the independent correlation structure the prediction error patterns differ slightly for beta

1 and beta 2 with stepwise regression the best method under beta 1 and ridge regression

and stepwise regression tie for the best method under beta 2. For the moderate sample

size, n = 100 the methods under which beta 1 and beta 2 are more accurately estimated

differs more than in the small sample size case. When p = 10 with n = 100, under beta

1 the independent correlation structure, stepwise regression performs best, while under the

autoregressive structure with ρ = 0.25 the lasso and ridge regression perform similarly well

and under the remaining structures the lasso is the best method. While for beta 2, under

all correlation structures, the lasso, in some cases tied with one or more other methods, is

the best performer. With p = 20 for n = 100, there is more variation in performance across

missing data types in both beta 1 and beta 2. In both cases, mixtures of methods perform

well, with little agreement. For beta 1, the lasso seems to be the best method under the

equicorrelated structures, whereas for beta 2 ridge regression and stepwise regression are

better performers. For n = 200, p = 20, there is little agreement on the best performers

between beta 1 and beta 2 in the weaker correlation structures, with a variety of methods

performing well. However, for the equicorrelated structures, the lasso again performs well

under beta 1 for both ρ = 0.25 and ρ = 0.50, while under beta 2 the lasso performs well only

in the ρ = 0.25 case. There is no clear best method in the ρ = 0.50 case, with the lasso tied

or outperformed by other methods.

Based on these results, the lasso method is preferable for more highly correlated data with

missing data and a true beta vector containing a few large effects. The preferred method is
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more situation dependent when the true beta vector consists of smaller effects. The percent

of missing data did not have a large impact on the performance pattern, but the missing

data mechanism did have an effect, most predominantly for beta 2.

5.2 CONFIDENCE INTERVAL COVERAGE

For each regression parameter the actual coverage of a nominal 95% confidence interval was

computed. The minimum of the true coverage probabilities was selected as a summary

measure to compare the results of the methods across conditions. The results for the two

extremes of correlation considered, the independent and equicorrelated with ρ = 0.5, are

compared in detail below. Tables containing the parameter estimates, standard errors and

confidence interval coverage probabilities are presented in appendices C and D.

The standard errors of the regression parameter estimates for the incomplete data case

are larger than those in the complete data case because of the added uncertainty resulting

from the use of multiple imputation. This increase in the standard errors for the parameter

estimate affects the true coverage probabilities of the associated confidence intervals because

it increases the length of the confidence interval itself, making it more likely to cover the

true parameter value. The increase in the standard errors due to the imputation method was

consistent across methods, for a fixed sample size a number of parameters the increase in the

standard errors due to imputation was approximately constant across methods. The ratio

was not constant between the two beta vectors under consideration. The ratio was larger

when beta 1 was the true beta vector, which is reflected in the confidence interval minimum

coverage probabilities. A summary of the ratio of the complete data standard errors to the

incomplete standard errors for both β1 and β2 under the missing at random condition is

given in table 11 (see 5.2). Because of the consistency across methods, the ratio in OLS for

the regression coefficient for X1 is used as a representative of each sample size, number of

parameters combination.
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5.2.1 Beta 1 - Independent

For the complete data, the coverage probabilities were below the nominal level, however,

in all but a small number of cases the minimum coverage probabilities remained above 90

percent. The lasso method performed poorly with the complete data, it had the lowest

minimum coverage probability in every case and in all but two cases was below 90 percent.

Across all combinations of sample size and number of parameters with the complete data,

OLS, stepwise regression and ridge regression had similar minimum coverage probabilities.

For n = 50, p = 5, with 25 percent missing data, all methods performed poorly, with

all minimum coverage probabilities below 90 percent. There was little variation between the

methods and no clearly dominant method. For the 50 percent missing data, the performance

of all methods improves. OLS has the highest minimum coverage probability in each case

with all probabilites increasing over the complete data. The n = 50 p = 10 case with 25

percent missing data is similar to the 50 percent missing data case with n = 50, p = 5. OLS

is again the best performer with increased minimum coverage over the complete data. The

n = 100, p = 10 case is similar to n = 50, p = 5. With 25 percent missing data, all methods

perform poorly, in all but two cases dropping below 90 percent. With 50 percent missing

data, the performance again improves, with OLS as the dominant method. In the n = 100,

p = 20 case, the performance of all methods in all conditions is the worst of any sample

size number of parameter combinations. In both missing data percentages, the coverage

probabilities are all below 77 percent, with many below 65 percent with 50 percent missing

data. OLS is again the dominant method, with the best performance in all but one case.

In the n = 200, p = 20 case, the performance of all methods improves. With 25 percent

missing data, the coverage probabilities remain below 90 percen, but are above 79 percent

in all cases. OLS remains the dominant method.

5.2.2 Beta 1 - Equicorrelated 0.50

The comparative performance of the methods considered across situations in the equicorre-

lated ρ = 0.5 case differs from the independent case. The decreased performance of the lasso

in the independent case does not occur here.
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For the complete data, the methods perform similarly well with a few exceptions. In the

complete data generated for the convex missing data, ridge regression exhibited poor perfor-

mance compared with the other methods in that case. In addition, all methods performed

poorly in the data generated for the linear 25 percent missing data case compared with the

data generated for the convex and sinister 25 percent missing data mechanisms.

In the n = 50, p = 5 case with 25 percent missing data, there is a decrease in performance

from the linear to convex to sinister missing data mechanisms. In the linear case, stepwise

regression was the best performer, but all methods have minimum coverage probability above

90 percent. In the convex case, OLS and the lasso are tied for the best method with stepwise

and ridge regression drop below 90 percent. In the sinister case, all methods drop below 90

percent with the lasso as the best performer. With 50 percent missing data, OLS is the best

method in the linear case, while the lasso is the best performer in the convex and sinister

cases. In the convex and sinister mechanisms, there was little variation between the methods.

In the linear case there was more variation, with stepwise regression and the lasso lagging

behind OLS and ridge regression. For n = 50, p = 10, stepwise regression lags behind the

other methods under all three missing data mechanisms. OLS and the lasso are tied for the

best method in the linear case, with ridge regression a close second. In the convex case, OLS

is the best method with the lasso and ridge regression close behind. The lasso is the best

performing method in the sinister case, with OLS and ridge regression close behind.

For the n = 100 p = 10 case, with 25 percent missing data, under all mechanisms the

minimum coverage probabilities are all below 90 percent with all values at or below 80 percent

in the linear case. In all three cases, the lasso is the best performing method, although there is

not much variation across methods. With 50 percent missing data in the linear mechanism

the lasso is the best performer, with OLS and ridge regression a close second and third.

Stepwise regression lags behind the other methods. In the convex missing data mechanism,

with 50 percent missing data OLS is the best method with a minimum coverage probability

1.6 percent higher than the closest competitor. Under the sinister missing data mechansim

with 50 percent missing data stepwise regression is the best performer with a 2.8 percent

increase over its closest competitor. With n = 100 and p = 20 there is little variation across

methods in this case. In the linear case, ridge regression is the best performer by one percent
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over stepwise regression. In the convex case, ridge regression is the best method with a 0.2

percent increase over OLS. In the sinister case, the OLS is the best method by 0.1 percent

over the lasso and ridge regression.

In the n = 200, p = 20 case, there is again little variation across methods in this

case. In the 25 percent missing data case, under the linear mechanism, OLS is the best

method with OLS and stepwise regression performing similarly well. Under the convex

and sinister mechanisms stepwise regression is the best method with 2.3 and 1.0 percent

difference between stepwise regression and the worst performing method. With 50 percent

missing data, OLS is the best method in the linear and sinister cases, with a 0.4 percent

advantage over ridge regression in the linear case and a 0.2 percent advantage over the lasso

in the sinister case. The lasso is tie with ridge regression and 0.1 percent higher than OLS

in terms of minimum coverage probability in the convex missing data case.

5.2.3 Beta 2 - Independent

As in the beta 1 independent case, the lasso method lags behind the other methods in

terms of minimum coverage probability in the complete data cases with beta 2, repetitions

of (0.85, 0.85, 0, 2, 0). The other methods perform similarly in most cases. All methods

perform poorly, with minimum coverage probabilities below 90 percent with the complete

data generated for the n = 50, p = 10 and n = 100, p = 20 25 percent convex missing data

and for the n = 100, p = 10 25 percent linear missing data case.

For the n = 50 p = 5 case, all methods perform similarly in each of the missing data

mechanisms in both the 25 and 50 percent missing data percentages, no one method outper-

forms the other methods by a great margin. With 25 percent missing data, the minimum

coverage probabilities range from 87.8 to 90.1 percent. The lasso method is the best method

in both the linear and convex missing data mechanisms, while ridge regression is best in

the sinister case. For the 50 percent missing data case, OLS is the best performer in each

case. The minimum coverage probabilities are more variable for the 50 percent missing data,

ranging from 83.3 to 91.7 percent. There is also more variability between the methods, with

OLS outperforming its closest competitor by between 1 and 3 percent in the 50 percent
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missing data, compared with only 0.3 to 1.9 percent edge in the 25 percent missing data.

For the n = 50 p = 10 case, OLS outperforms the other methods under each missing

data mechanism by a substantial margin, ranging from 5.8 to 6.0 percent higher than the

closest competitor. OLS is the only method for which the minimum coverage probability

remains above 90 percent, whereas the other methods have poor performance, with minimum

coverage probabilities between 85 and 88.5 percent.

In the n = 100, p = 10 case with 25 percent missing data there is little variation between

the methods. OLS, the best performer under each missing data mechanism, outperforms

its closest competitor by between 0.2 and 0.8 percent. With 50 percent missing data, the

degree of variability increases. In the linear case, stepwise regression outperforms its closest

competitor by 1.2 percent, while in the convex and sinister cases OLS outperforms its closest

competitor by 3.5 and 1.8 percent, respectively. For n = 100 p = 20, OLS is again the

dominant method, outperforming its closest competitor by between 2.2 and 3.5 percent.

The three other methods, with the exception of stepwise regression under the sinister missing

data mechanism, have minimum coverage probabilities below 90 percent, ranging from 81.2

to 88.9 percent.

The performance of all methods decreases substantially in the n = 200, p = 20 case with

all minimum coverage probabilities below 90 percent. With 25 percent missing data, the

minimum coverage probabilities range from 78.3 percent to 87.2 percent. The lasso method

is by far the worst method, with minimum coverage probability between 2.9 and 6.6 percent

below its closest competition. OLS is the best method, resulting in coverage probabilities

between 1.7 and 2.0 percent larger than its closest competitor. With 50 percent missing

data, OLS is again the dominant method. OLS outperforms its closest competitor by 5.8,

8.1 and 4.6 percent in the linear, convex and sinister mechanisms, respectively. The lasso is

again the worst method, with minimum coverage probabilities in the 60 to 70 percent range.

5.2.4 Beta 2 - Equicorrelated 0.50

With complete data, most methods perform similarly within each missing data mechanism

and missing data percentage combination. In the n = 100, p = 20 case with 25 percent
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missing data, and in the n = 200, p = 20 case with both 25 and 50 percent missing data, the

performance of all methods is decreased in the data sets generated for the convex missing

data, in each case the minimum coverage probabilities drop below 90 percent, while they are

above 90 percent in the corresponding linear and sinister mechanisms.

With incomplete data, for the n = 50, p = 5 case with 25 percent missing data, all

methods perform poorly, with the minimum coverage probability exceeding 90 percent in

only one case. The lasso is the best performing method in the linear and convex cases, out-

performing its nearest competitor by 2.5 percent in both cases. Under the sinister missing

data mechanism, OLS is the best method, with ridge regression a close second. With 50

percent missing data, OLS is the best performing method under each missing data mecha-

nism, outperforming the closest method by 0.4, 3.4 and 4.5 percent in the linear, convex and

sinister mechanisms, respectively over ridge regression.

For n = 50, p = 10, stepwise regression is the worst performer, with minimum coverage

probabilities below 90 percent in each case. The lasso is the best performer in both the linear

and convex cases, outperforming ridge regression by 1.1 and 1.8 percent respectively. Under

the sinister missing data mechanism, OLS is the best performer, outperforming the lasso by

0.6 percent.

When n = 100 and p = 10 and 25 percent missing data is imposed all method have

coverage probabilities below 90 percent. OLS is the best method, outperforming its clos-

est competitor by 0.8, 1.1 and 2.5 percent in the linear, convex and sinister mechanisms,

respectively. With 50 percent missing data imposed in most cases the minimum coverage

probabilities exceed 90 percent, and OLS remains the best method under the linear and

sinister mechanisms, outperforming stepwise regression, its closest competitor, by 4.1 per-

cent in both cases. Under the convex mechanism, ridge regression outperforms OLS by 1.7

percent. For n = 100 with p = 20, OLS is the best performer under each missing data

mechanism, exceeding stepwise regression by 2.1, 3.6 and 2.5 percent in the linear, convex

and sinister mechanisms, respectively. In most cases, the minimum coverage probability is

below 90 percent.

For n = 200, p = 20, the minimum coverage probabilities are below 90 percent with 25

percent or 50 percent missing data imposed. Under the 25 percent missing data condition,
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minimum coverage probabilities range from 76.5 to 87 percent. OLS is the best method under

each missing data mechanism, outperforming stepwise regression by 3.1 and 2.5 percent,

respectively, in the linear and convex mechanism, and outperforming ridge regression by 3

percent in the sinister mechanism. Under 50 percent missing data imposed, the coverage

probabilities decrease from the 25 percent missing data case, ranging from 60.9 to 83.8

percent. OLS remains the dominant method, outperforming stepwise regression by 5.1, 7.6

and 7.6 percent in the linear, convex and sinister mechanisms, respectively.

5.2.5 Overall Results

Under the independent correlation structure for both beta 1 and beta 2, OLS has dominant

performance in terms of the minimum coverage probability of a nominal 95 percent confi-

dence interval. For beta 1, OLS dominates for all sample size and number of parameter

combinations, whereas for beta 2 OLS dominates for n = 100 and n = 20 with p = 20 but

OLS is tied or outperformed in a few cases with n = 50 and n = 100 with p = 10. Under

the equal correlated structure with ρ = 0.50, OLS remains the dominant method for beta 2,

being outperformed by the lasso in a few cases with n = 50 and by ridge regression in one

case with n = 100 and p = 10. For beta 1, under the equicorrelated ρ = 0.50 structure, the

dominant method is situation dependent. In many cases, OLS is tied with other methods.

Based on these results, OLS is the dominant method under the independent correlation

structure regardless of the true beta vector and is the dominant method for correlated data

with a true beta vector consisting of small effects. Again, the missing data percentage did

not have a large impact on performance, while the type of missing data did have an impact.

Missing data type was more important with correlated data under beta 1.
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6.0 ANALYSIS OF MOTIVATING DATA

6.1 MOTIVATION

The data motivating this research was collected as part of a study entitled “Neurobehavioral

Changes in Pediatric Affective Disorder.” The main goals of this study are to understand the

causes of pediatric affective disorders and their interaction with the developmental changes of

childhood and adolescence; and to determine possible improvements in the treatment of such

disorders. As part of these main goals, focus was placed on identifying the psychobiological,

psychosocial and other correlates of MDD in children and adolescents. The data collected

related to this subgoal consist of biological and EEG sleep data collected at the time of intake

into the study; and symptomatology, life events and psychosocial measurements detailing the

subject’s relationship with his or her family and friends, collected at intake and at follow-up

visits.

Previous analysis of this data set had focused on differences between subgroups of sub-

jects on various psychobiological and sleep measurements; and on the time-to-event (MDD)

outcome. In particular, survival analysis using Cox proportional hazards regression was

conducted using the one-at-a-time approach, with each model containing one covariate of

interest and a set of demographic variables, including age, gender, body mass index (BMI),

Tanner stage of pubertal development and the socioeconomic status (SES) of the subject’s

family. This one-at-a-time approach was employed in an attempt to address the research

questions without addressing the missing data values that exist in the data set.

The original motivation of this dissertation research was to address the missing data

problem, subsequently employing variable selection methods, such as stepwise selection, to

select a relevant set of predictors focusing on the time-to-MDD outcome. Over the course of
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time, the direction of the research changed to focus on linear regression models rather than

survival analysis techniques. Additionally, the focus of new research at WPIC has shifted to

anxiety disorders in children and adolescents. In particular researchers were interested in the

relationships between the psychobiological predictors of depression and anxiety disorders. A

data set suitable for linear regression and addressing this new focus on anxiety disorders was

selected for analysis as part of this dissertation. The outcome of interest will be an index

of the severity of anxiety symptoms as determined by the Screen for Child Anxiety Related

Emotional Disorders (SCARED). More details about the psychobiological predictors can be

found in Appendix C.

6.1.1 Background

In the overall study, psychobiological data were collected on about 200 subjects between

the ages of 6 and 13 years and at Tanner stage I or II at the time of intake into the study.

Tanner stages are a measure of sexual maturation with Stage I corresponding to pre-pubertal

and Stage V being adult or fully mature. Body mass index (BMI), a measure of body fat

based on height and weight, was computed. The Hollingshead four-factor index was used to

determine the family’s socioeconomic status (SES). Because the SCARED was not developed

until the late 1990’s, it was added more recently to the study protocol and, therefore, only

a subsample of subjects were administered the SCARED assessment.

Three diagnostic groups are considered within this study: the MDD group consisting of

children with a current episode of MDD, the children at high-risk for MDD and a control group

at low risk for MDD. The depressed children were within episode at the time psychobiological

and sleep measurements were collected; either in their first MDD episode or have one or more

prior episodes. To be classified as at high-risk to develop depression, subjects were required

to have never been depressed but to have at least one first-degree (parent or sibling) and

one second-degree (grandparent, aunt or uncle) relative with a history of childhood-onset,

recurrent, bipolar, or psychotic depression. Children classified as at low-risk of developing

depression (or normal controls) are those who had not developed a psychiatric disorder at

intake and had no first-degree relatives and less than 20% of their second degree relatives
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with a lifetime history of an affective disorder. The Schedule for Affective Disorders and

Schizophrenia for School-age Children Present Episode Version (K-SADS-P) was used to

assess the depressed children and the K-SADS-E epidemiological version was used to assess

the high- and low-risk subjects and their families.

6.2 DATA ANALYSIS

The data set will be analyzed employing multiple imputation via chained equations MICE

to account for the missing data values. Each of the multiple imputed data sets was analyzed

using ordinary least squares, stepwise regression and the lasso. The imputed data sets

were constructed using the MICE implementation in Stata coded by Patrick Royston [38].

Stata was selected to perform the multiple imputations because it is easily accessible to

the researchers, provides an graphic user interface that allows for easy manipulation of

the imputation model, and allows more easily for the inclusion of categorical and ordinal

covariates in their correct form. The subsequent regression analyses and the combination of

the parameter estimates was performed in R [32].

The outcome of interest in this analysis is the severity of anxiety symptoms as assessed

by the Screen for Anxiety Related Emotional Disorders (SCARED). The SCARED is a self-

report questionnaire consisting of separate child and parent report forms designed to screen

subjects for the presence of anxiety disorders; including general anxiety disorder, separation

anxiety disorder, panic disorder, social phobia and school phobia [6]. The total score of

a subject on this assessment can be used as an overall measure of the severity of their

anxiety disorder, with a score of 25 used on the child assessment as the threshold for anxiety

disorder [7]. The measure has been repeatedly studied and has been shown to possess good

psychometric properties and to exhibit sensitivity to treatment effects [10]. Both the parent

and child SCARED have been shown to discriminate between subjects with anxiety and

those without, and between subjects with anxiety and those with disruptive disorders. In

addition, the child SCARED scores have been shown to discriminate between anxiety and

depression[7]. The child SCARED scores will be used as the outcome in the analysis.
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6.2.1 Missing Data

Missing values arise for two general reasons. The first is due to the typical data collection

problems, such as difficulties with blood samples or assays, subject discomfort, failure to

appear for a follow-up interview, etc. The second reason for missing data is that modifi-

cations have been made to the protocol over time that led to the discontinuation of some

measurements. The missing data values in the data made it impossible to employ variable

selection techniques to identify a relevant set of predictor variables related to MDD and

directly address the questions of interest.

6.2.1.1 Amount of Missing Data The amount of missing data varies across variables,

with approximately 25 percent missing values overall. Some individual measurements, in-

cluding growth hormone, cortisol and prolactin measurements, have considerably higher

percentages of missing data. Figure 6.2.1.1 gives the number of complete observations and

missing values for each variable included in the final data analysis. Figure 6.2.1.1 presents

the missing data patterns for the variables, in the order they appear in the first figure.

6.2.1.2 Data Characteristics A subset of the variables collected are used in the sub-

sequent data analysis. Details about these variables can be found in Appendix E. The other

variables were used as auxiliary variables, in the context of Collins, Schafer and Kam, to

improve the performance of the multiple imputation [11]. The variables included in the

imputation model as auxiliary covariates are: Tanner PH, dhea, DHEAS, androstendione,

estradiol, testosterone and the mean level, peak level during sleep and levels 2 hours before

and after sleep onset of cortisol (cortmsl, cortpksl, cortpre2, cortpo2), and growth hormone

(ghmsleep, ghpksl, ghpre2, ghpo2) and cortisol (crfprecrt, crfpocrt, crfpecrt) and adrenocor-

ticotrophic hormone (ACT) (crfpreact, crfpoact, crfpeact) response to corticotropin releasing

factor (CRF).

There is a high degree of correlation between the variables included in the model and

there is approximately 25 percent missing data. The OLS parameter estimates contain values

that are small to moderate in size, suggesting that the true beta vector may be similar to
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Figure 1: Motivating Data Missing Data Pattern

  +------------------------------------+
  |             _pattern   _mv   _freq |
  |------------------------------------|
  | +++++ +++++ ++++ +++     0      25 |
  | ..... .++++ ++++ +++     6       9 |
  | ..... ....+ ++++ +++     9       6 |
  | +++++ +...+ ++++ +++     3       4 |
  | +++++ ++++. .+++ +++     2       3 |
  |------------------------------------|
  | +++++ +...+ ++.. +++     5       3 |
  | +++++ +++++ +.++ +++     1       1 |
  | +++++ ++++. ++++ +++     1       1 |
  | +++++ +...+ ++++ +++     3       1 |
  | +++++ +++++ +... +++     3       1 |
  |------------------------------------|
  | +++++ ++++. ..++ +++     3       1 |
  | +++++ +.... .+++ +++     5       1 |
  | +++++ ++++. .+++ ...     5       1 |
  | +++++ ++++. ..++ ...     6       1 |
  | ..... .+++. ..++ +++     9       1 |
  |------------------------------------|
  | ..... ....+ ++++ +++     9       1 |
  | ..... ....+ ++.. +++    11       1 |
  | ..... ..... ..++ +++    12       1 |
  +------------------------------------+
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Table 12: Motivating Data Missing Data Percents

Complete Missing

Variable Data Values

l5peprl 44 19

lrpoprl 44 19

l5preprl 44 19

l5pecrt 44 19

l5pocrt 44 19

l5precrt 44 19

clonpegh 45 18

clonpogh 45 18

clonpregh 45 18

ses 52 11

grfpregh 58 5

grfpogh 58 5

grfpegh 58 5

crfprecrt 61 2

crfpocrt 61 2

crfpecrt 61 2
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the beta 2 case considered in the simulation study. The n = 50, p = 10 and n = 100, p = 20

cases match most closely with the motivating data set. Based on the simulation study

results, OLS would be expected to have good performance in terms of coverage probability

for confidence intervals, but may suffer from increase variability of parameter estimates,

which in part accounts for this improvement. In terms of the prediction accuracy, the lasso

would be expected to have good performance based on the simulation study.

The variables included for possible selection in the data analysis are: body mass index

(BMI); age; gender; Tanner stage of development; socioeconomic status (SES); pre infu-

sion, post infusion and peak after infusion levels of growth hormone released in response to

growth hormone releasing hormone (grfpregh, grfpogh, grfpegh)and clonidine hydrochloride

(clonpregh, clonpogh, clonpegh); prolactin (L5HTP) (l5preprl, l5poprl, l5peprl), and corti-

sol (l5precrt, l5pocrt, l5pecrt) response to L–5–Hydroxytryptophan and diagnostic group

predicting the combined anxiety score as measure by the SCARED diagnostic tool.

6.2.2 Motivating Data Results

Using multiple imputation via chained equations implemented in the Stata software package,

a set of 10 multiply imputed data sets were constructed. The combined parameter estimates

using ordinary least squares, stepwise regression, ridge regression and the lasso were obtained

for the set of imputed data sets and the results are given in tables 6.2.2, 6.2.2, 6.2.2 and

6.2.2.

The parameter estimates using ordinary least squares have extremely large standard er-

rors, resulting in large confidence intervals. The mean square error computed as

1
n

∑n
i=1(y)i − ŷi)

2, for OLS is 329.8. In the ridge regression case, the parameter shrinkage

imposed by the ridge constraint yields parameter estimates with much smaller standard er-

rors. The mean square error for the ridge regression parameter estimates is 81.3 a significant

reduction over ordinary least squares. For stepwise regression, the standard errors for the

parameter estimates are extremely large as in ordinary least squares, however the mean

square error is dramatically larger than the ordinary least squares case at 12575.83. The

lasso has a similar decrease in standard error as in ridge regression. The mean square error,
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at 1283.2 is larger than in OLS and much larger than in ridge regression.

In both selection methods, stepwise regression and the lasso, the models selected are

larger, with only 2 variables not included in the model. Because of the small degree of

variable selection and the superior performance of ridge regression in terms of standard

errors of parameter estimates and mean square error, ridge regression is the best method in

the case.
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6.3 CONCLUSIONS

The analysis of the motivating data set was not as fruitful as may have been expected.

The degree of variable selection was not great and the parameter estimates had extremely

large standard errors making interpretation difficult. In attempting to control the overall

percentage of missing data in the motivating data set to be analyzed, the degree of correlation

between predictor variables was quite high. A more careful selection of covariates for the

initial pool on which to perform variable selection, with input from the researchers may yield

more satisfactory and interpretable results.

The performance of ridge regression, resulting in significantly smaller standard errors for

the parameter estimates, illustrates its importance as a tool for accounting for multicollinear-

ity within the predictor variables. It also shows that the lasso may not provide a sufficient

degree of shrinkage especially in the case of correlated predictor variables. The elastic net

may provide a useful improvement over the lasso in this case.
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7.0 FUTURE RESEARCH

As with all academic research, many new questions have been raised as a consequence of

this research. An obvious starting point would be an analysis of the impact of different

choices for the parameters considered here. Time and space constraints restricted the scope

of the project. Different choices for the beta vectors, the variance of the error term, and the

correlation structure exhibited by the predictor variables, among others, could impact the

results. Under the MAR assumption, variations of the imputation model could impact the

results. In many cases, the MAR assumption is not valid, the data under consideration are

truly NMAR. The use of specialized methods for handling NMAR data could be considered in

a subsequent simulation study. Perhaps more informative would be an analysis of the impact

of the incorrect, but often more tractable use of MAR methods are truly NMAR data.

A careful analysis of the accuracy of the model selected by the various methods would

add to our understanding of the impact of missing data on variable selection methods. The

selection of the correct model, or a model containing the correct model would add to our

understanding of how well each of the selection methods is able to determine which variables

are important predictors of the response variable.

Subsequent to the development of the lasso, the elastic net has been proposed. Inclusion

of this method in the simulation study would yield additional insight. Extension of variable

selection methods to include models such as the logistic regression, survival analysis, etc.

would also be an interesting question.

71



BIBLIOGRAPHY

[1] Allison, P.D. (2001), Missing Data, Thousand Oaks, CA: Sage.

[2] Birmaher, B., R. Dahl, J. Perel, et al. (1996), “Corticotropin-Releasing Hormone Chal-
lenge in Prepubertal Major Depression,” Biological Psychiatry, 39,267-277.

[3] Birmaher, B., R. Dahl, D. Williamson, et al. (2000), “Growth Hormone Secretion on
Children and Adolescents at High Risk for Major Depressive Disorder,” Archives of
General Psychiatry, 57,867-872.

[4] Birmaher, B., J. Kaufman, D. Brent, et al. (1997), “Neuroendocrine Response to 5-
Hydroxy-L-Tryptophan in Prepubertal Children at High Risk of MDD,” Archives of
General Psychiatry, 54,1113-1119.

[5] Birmaher, B., N. Ryan, D. Williamson, et al. (1996), “Childhood and Adolescent De-
pression: A Review of the Past 10 Years. Part I,” Journal of the American Academy of
Child & Adolescent Psychiatry, 35,1427-1439.

[6] Birmaher, B., S. Khetarpal, D. Brent, et al. (1997), “The Screen for Child Anxiety Re-
lated Emotional Disorders (SCARED): Scale Construction and Psychometric Character-
istics,” Journal of the American Academy of Child % Adolescent Psychiatry, 36(4):545-
553.

[7] Birmaher, B., D. Brent, L. Chiappetta, et al. (1999), “Psychometric Properties of
the Screen for Child Anxiety Related Emotional Disorders (SCARED): A Replica-
tion Study,” Journal of the American Academy of Child and Adolescent Psychiatry,
38(10):1230-1236.

[8] Breiman, L. (1995), “Better Subset Selection Using the Nonnegative Garrote,” Techno-
metrics, 373-384.

[9] Cambanis, S., S. Huang, and G. Simons (1981), “On the Theory of Elliptically Con-
toured Distributions, Journal of Multivariate Analysis, 11, 368-385.

[10] Clark, D., B. Birmaher, D. Axelson, et al. (2005), “Fluoxetine for the Treatment of
Childhood Anxiety Disorders: Open-Label, Long-Term Extension to a Controlled Trial,”

72



Journal of the American Academy of Child and Adolescent Psychiatry, 44(12),1263-
1270.

[11] Collins, L., J. Schafer, C. Kam (2000), “A Comparison of Inclusive and Restrictive
Strategies in Modern Missing Data Procedures,” Psychological Methods, 6(4),330-351.

[12] Dahl, R., B. Birmaher, D. Williamson, et al. (2000), “Low Growth Hormone Response
to Growth Hormone Releasing Hormone in Child Depression,” Biological Psychiatry,
48,981-988.

[13] Dahl, R., N. Ryan, B. Birmaher, et al. (1991), “Electroencephalographic Sleep Measures
in Prepubertal Depression,” Psychiatry Research, 38,201-214.

[14] Dempster, A.P., N.M. Laird, D.B. Rubin (1977. “Maximum Likelihood from Incomplete
Data via the EM Algorithm.” Journal of the Royal Statistical Society, Series B, 39(1),1-
38.

[15] Dempster, A.P., M. Schatzoff, et al. (1977). “A Simulation Study of Alternatives to Or-
dinary Least Squares (with discussion).” Journal of the American Statistical Association
72(357): 77-106.

[16] Dorn, L., R. Dahl, B. Birmaher, et al. (1997), “Baseline Thyroid Hormones in Depressed
and Non-depressed Pre- and Early Pubertal Boys and Girls,” Journal of Psychiatric
Research, 31,555-567.

[17] Efron, B., T. Hastie, I. Johnstone, et al. (2004) “Least Angle Regression,” Annals of
Statistics 32, 407-499.

[18] George, E. (2000), “The Variable Selection Problem,” Journal of the American Statis-
tical Association, 95,1304-1308.

[19] Frank, I. and J. Friedman (1993). ”A Statistical View of Some Chemometrics Regression
Tools.” Technometrics 35(2): 109-135.

[20] Fu, W. (1998), “Penalized Regressions: The Bridge versus the Lasso,” Journal of Com-
putational and Graphical Statistics, 7(3).

[21] Hoerl, A. and R. Kennard (1970), “Ridge Regression: Biased Estimation for Nonorthog-
onal Problems,” Technometrics, 12, 55-67.

[22] Kadane, J. and N. Lazar (2004) ”Methods and Criteria for Model Selection.” Journal
of the American Statistical Association 99(465) 279-290.

[23] James, W., C. Stein (1961), “Estimation with Quadratic Loss,” Proceedings of the
Fourth Berkeley Symposium, 1, 361-379.

[24] Lawson, C. and R. Hansen (1974), Solving Least Squares Problems, New York: Chap-
man and Hall.

73



[25] Leng, C., Y. Lin, G. Wahba “A Note on the LASSO and Related Procedures in Model
Selection,” University of Wisconsin-Madison Statistics Department Technical Report
1091, April 2004.(to appear Statistica Sinica 2005)

[26] Little, R. and D. Rubin (2002), Statistical Analysis with Missing Data, 2nd edition,
Hoboken, NJ: Wiley.

[27] Lu, G. and J. Copas (2004), “Missing at Random, Likelihood Ignorability and Model
Completeness.”Annals of Statistics 32(2), 754-765.

[28] Meng, X. (2000), “Missing Data: Dial M for ???,” Journal of the American Statistical
Association, 95 (452), 1325-1330.

[29] Miller, A. (2002), Subset Selection in Regression, London: Chapman and Hall.

[30] Osborne, M., Presnell, B., Turlach, B., (2000) “On the LASSO and its Dual,” Journal
of Computational and Graphical Statistics, 9(2):319-337.

[31] Oudshoorn, K., S. van Buuren, and J. van Rijckevorsel (1999), “Flexible Multiple Impu-
tation by Chained Equations of the AVO-95 Survey,” Report PG/VGZ/99.045 Leiden.

[32] R Development Core Team (2005), R: A language and environment for statistical com-
puting. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0,
URL: http://www.R-project.org.

[33] Ryan, N., Birmaher, B., Perel, J., et al. (2000), “Neuroendocrine Response to L–5–
Hydroxytryptophan Challenge in Prepubertal Major Depression,” Archives of General
Psychiatry, 49,843-851.

[34] Ryan, N., R. Dahl, B. Birmaher, et al. (1994), “Stimulatory Tests of Growth Hormone
Secretion in Prepubertal Major Depression. Journal of the American Academy of Child
& Adolescent Psychiatry, 33,824-833.

[35] Sauerbrei, W. (1999), “The Use of Resampling Methods to Simplify Regression Models
in Medical Statistics,” Applied Statistics, 48, 313-329.

[36] Schafer, J. (1997), Analysis of Incomplete Multivariate Data, New York:CRC Press.

[37] Schafer, J.L. and J.W. Graham, (2002), “Missing Data: Our View of State of the Art,”
Psychological Methods, 7(2), 147-177.

[38] Royston, P., (2004), “Multiple imputation of missing values,” Stata Journal 4(3),
227241.

[39] Tanner, M.A. (1991), Tools for Statistical Inference, New York: Springer-Verlag.

74



[40] Tanner, M.A., W.H. Wong, (1987), “The Calculation of Posterior Distributions by Data
Augmentation (with discussion),” Journal of the American Statistical Association, 82,
528-550.

[41] Tibshirani, R. (1996), “Regression Shrinkage and Selection via the Lasso,” Journal of
the Royal Statistical Society, Series B, 58, 267-288.

[42] Tibshirani, R. (1997), “The Lasso Method For Variable Selection in the Cox Model,”
Statistics in Medicine, 16, 385-395.

[43] Vach, K., W. Sauerbrei, and M. Schumacher (2001), “Variable Selection and Shrinkage:
Comparison of Some Approaches” Statistica Neerlandica 55, 53-75.

[44] van Buuren, S., H.C. Boshuizen, and D.L. Knook (1999), “Mutliple Imputation of Miss-
ing Blood Pressure Covariates in Survival Analysis,” Statistics in Medicine, 18: 681-694.

[45] van Buuren, S., J.P.L. Brand, C.G.M. Groothuis-Oudshoorn, and D.B. Rubin (2005),
“Fully Conditional Specification in Multivariate Imputation,” Need reference here.

[46] van Buuren, S., K. Oudshoorn (1999), “Flexible Multivariate Imputation by MICE,”
Report PG/VGZ/99.054 Leiden.

[47] van Houwelingen, J. (2001), “Shrinkage and Penalized Likelihood as Methods to Improve
Prediction Accuracy,” Statistica Neerlandica, 55(1).

[48] Zou, H. and T. Hastie (2005). “Regularization and Variable Selection via the Elastic
Net.” Journal of the Royal Statistical Society, Series B, 67(2),301-320.

[49] Zou, H., T. Hastie, and R. Tibshirani, (2004), “On the “Degrees of Freedom” of the
Lasso,”submitted.

75



APPENDIX A

MAR PREDICTION ERROR TABLES- BETA 1

76



T
ab

le
17

:
M

A
R

,
B

et
a

1,
in

d
ep

en
d
en

t,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

54
.6

91
4

68
.2

92
9

12
6.

17
85

68
.3

98
1

13
2.

09
79

68
.6

67
8

13
6.

12
88

S
te

p
w

is
e

53
.0

42
4

65
.6

31
5

12
2.

96
91

68
.7

25
4

12
9.

71
73

67
.0

35
9

13
3.

88
03

R
id

ge
54

.8
54

3
67

.6
26

6
12

1.
85

36
67

.5
47

6
13

0.
07

66
67

.3
92

2
13

3.
56

84

L
A

S
S
O

55
.1

77
5

64
.1

68
3

11
9.

65
36

66
.2

48
5

12
7.

25
15

65
.3

43
2

12
7.

35
44

T
ab

le
18

:
M

A
R

,
B

et
a

1,
in

d
ep

en
d
en

t,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

60
.5

56
5

18
5.

70
87

18
3.

31
91

19
2.

92
25

S
te

p
w

is
e

59
.0

67
0

18
0.

26
69

17
7.

20
87

18
5.

25
73

R
id

ge
60

.1
81

1
18

4.
42

57
18

6.
02

56
19

2.
12

65

L
A

S
S
O

61
.0

84
6

18
8.

45
79

19
0.

08
52

20
2.

12
98

77



T
ab

le
19

:
M

A
R

,
B

et
a

1,
in

d
ep

en
d
en

t,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

10
7.

28
88

18
6.

54
16

49
0.

70
70

18
3.

78
54

50
1.

46
83

18
5.

40
17

50
9.

56
73

S
te

p
w

is
e

10
2.

12
18

18
1.

12
32

49
0.

11
74

17
9.

23
69

50
6.

43
19

17
9.

00
49

50
2.

02
01

R
id

ge
11

4.
56

74
18

8.
02

88
49

8.
74

18
18

0.
24

99
51

4.
82

87
18

4.
90

06
51

6.
34

45

L
A

S
S
O

10
2.

04
26

17
7.

94
25

51
3.

73
85

17
1.

22
51

53
5.

89
41

18
0.

81
31

53
8.

35
56

T
ab

le
20

:
M

A
R

,
B

et
a

1,
in

d
ep

en
d
en

t,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

51
8.

26
71

90
1.

47
94

25
34

.1
98

5
91

2.
65

44
26

24
.2

23
4

90
6.

57
27

26
88

.9
70

0

S
te

p
w

is
e

51
7.

91
39

89
0.

25
09

25
27

.2
60

5
90

1.
92

95
25

98
.9

92
1

89
4.

02
07

26
58

.8
06

9

R
id

ge
51

7.
72

48
90

7.
55

95
26

21
.5

30
5

91
2.

19
38

26
91

.5
47

3
91

1.
51

18
27

84
.5

72
4

L
A

S
S
O

51
8.

83
61

93
8.

64
54

28
92

.1
33

7
94

0.
37

93
29

96
.5

91
7

94
9.

62
54

30
75

.2
90

1

78



T
ab

le
21

:
M

A
R

,
B

et
a

1,
in

d
ep

en
d
en

t,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
1.

95
23

69
2.

78
12

20
12

.8
56

4
66

7.
48

70
20

52
.7

94
2

68
2.

04
23

21
47

.7
56

1

S
te

p
w

is
e

21
8.

39
11

67
3.

88
47

20
13

.2
49

1
64

9.
50

72
20

85
.8

39
2

65
6.

18
44

21
52

.2
92

6

R
id

ge
22

1.
77

89
70

3.
38

06
20

84
.2

54
0

67
3.

09
77

21
49

.6
78

5
68

8.
34

15
22

30
.8

03
8

L
A

S
S
O

22
0.

86
26

71
3.

35
34

22
76

.7
40

0
70

0.
35

02
23

09
.2

95
1

71
4.

39
15

24
28

.8
63

2

T
ab

le
22

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
25

,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

55
.5

46
7

65
.7

17
0

12
5.

73
08

66
.1

43
4

12
3.

16
92

68
.6

11
7

13
2.

32
67

S
te

p
w

is
e

53
.7

70
3

64
.9

16
1

12
4.

88
71

63
.6

73
7

12
2.

25
19

68
.0

79
2

13
1.

67
22

R
id

ge
56

.1
99

7
65

.8
45

3
12

1.
98

80
65

.3
39

2
12

0.
28

85
68

.3
79

3
12

6.
61

65

L
A

S
S
O

53
.5

63
4

63
.4

80
3

11
1.

12
92

62
.2

11
4

11
3.

64
24

66
.4

53
5

12
1.

60
55

79



T
ab

le
23

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
25

,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

61
.3

04
5

17
8.

98
80

17
9.

92
35

18
4.

07
79

S
te

p
w

is
e

58
.8

85
1

17
2.

88
78

17
6.

13
73

18
1.

24
08

R
id

ge
59

.9
30

2
17

0.
40

82
16

5.
67

29
17

8.
68

23

L
A

S
S
O

60
.9

79
4

17
1.

30
20

17
4.

68
82

17
8.

90
26

T
ab

le
24

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
25

,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

11
0.

05
77

17
7.

05
43

45
4.

28
15

17
9.

62
69

46
5.

07
19

18
5.

31
40

48
5.

34
00

S
te

p
w

is
e

10
8.

65
12

17
4.

81
91

45
5.

29
07

17
5.

75
48

46
2.

53
54

17
5.

30
18

48
6.

57
69

R
id

ge
10

9.
80

92
17

6.
77

54
45

2.
17

87
17

6.
71

48
45

7.
79

49
18

1.
40

86
47

6.
81

04

L
A

S
S
O

11
0.

22
23

17
0.

81
54

44
3.

58
16

17
1.

59
41

46
5.

48
16

17
2.

70
67

48
6.

39
23

80



T
ab

le
25

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
25

,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
0.

12
16

72
1.

70
36

65
4.

24
93

68
6.

45
36

S
te

p
w

is
e

11
3.

46
67

69
2.

82
22

65
1.

15
90

67
4.

92
35

R
id

ge
12

5.
74

04
68

1.
85

09
64

7.
01

10
69

6.
21

15

L
A

S
S
O

12
3.

12
68

68
2.

97
06

68
4.

04
28

71
4.

10
92

T
ab

le
26

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
25

,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

21
9.

57
02

60
9.

83
40

19
75

.7
05

4
62

8.
39

53
17

82
.4

16
2

63
6.

96
47

19
67

.4
43

5

S
te

p
w

is
e

21
9.

18
17

61
0.

96
40

20
52

.5
85

0
59

9.
15

72
17

58
.4

16
0

62
1.

87
66

19
60

.7
87

2

R
id

ge
22

7.
73

75
61

9.
17

31
19

93
.3

62
7

61
5.

42
82

17
97

.2
59

7
63

6.
76

36
19

78
.0

90
1

L
A

S
S
O

22
2.

17
71

61
0.

33
45

20
41

.6
51

2
62

0.
19

07
18

72
.1

95
6

63
6.

65
27

20
72

.8
71

6

81



T
ab

le
27

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
50

,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

54
.8

20
8

67
.2

95
1

11
5.

00
31

66
.0

22
5

11
2.

90
62

66
.9

54
0

11
8.

05
05

S
te

p
w

is
e

53
.7

67
7

66
.2

88
4

11
2.

62
66

65
.4

33
3

11
8.

05
44

66
.9

00
4

11
6.

26
44

R
id

ge
53

.9
58

2
67

.1
81

8
11

2.
11

85
66

.9
02

4
11

3.
36

05
67

.3
74

2
11

5.
06

49

L
A

S
S
O

53
.8

42
6

65
.5

28
5

10
2.

37
97

63
.8

82
4

99
.3

83
7

64
.7

27
1

10
6.

09
56

T
ab

le
28

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
50

,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

62
.0

97
8

15
0.

06
50

15
5.

65
68

15
9.

47
55

S
te

p
w

is
e

57
.7

59
8

15
1.

24
37

15
7.

05
54

15
8.

48
60

R
id

ge
59

.5
96

5
15

0.
04

48
15

0.
15

03
15

5.
46

02

L
A

S
S
O

59
.8

98
7

14
7.

80
80

14
5.

27
92

14
7.

01
19

82



T
ab

le
29

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
50

,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

11
0.

44
89

17
1.

17
41

40
7.

85
71

17
2.

82
61

40
7.

49
06

17
3.

59
72

42
8.

79
48

S
te

p
w

is
e

10
6.

60
21

16
5.

70
86

40
7.

23
57

16
7.

87
01

40
3.

51
22

16
9.

47
62

42
4.

25
51

R
id

ge
10

8.
55

40
16

6.
66

32
39

2.
71

61
17

2.
70

42
40

0.
30

27
17

1.
31

50
41

2.
91

40

L
A

S
S
O

10
7.

84
30

16
1.

41
40

37
1.

80
90

16
2.

22
57

37
8.

63
45

16
4.

04
78

38
4.

62
15

T
ab

le
30

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
50

,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
3.

39
67

54
4.

78
07

57
1.

11
12

57
8.

76
99

S
te

p
w

is
e

12
1.

81
38

51
5.

90
43

56
2.

49
40

57
1.

92
95

R
id

ge
12

2.
37

53
51

7.
81

49
54

8.
99

73
56

7.
61

15

L
A

S
S
O

11
9.

61
02

53
5.

55
14

55
5.

21
52

55
8.

49
12

83



T
ab

le
31

:
M

A
R

,
B

et
a

1,
au

to
re

gr
es

si
ve

0.
50

,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
2.

08
19

58
2.

70
92

15
88

.6
87

5
55

1.
61

58
15

96
.3

00
2

56
4.

83
37

16
74

.6
14

6

S
te

p
w

is
e

21
6.

45
31

55
8.

22
96

15
88

.8
78

0
53

9.
68

59
16

02
.5

89
7

55
1.

27
13

16
79

.0
47

9

R
id

ge
22

0.
07

12
57

5.
12

49
15

52
.6

29
1

54
6.

91
28

15
81

.5
66

8
55

9.
51

57
16

28
.4

65
6

L
A

S
S
O

22
2.

26
17

54
3.

13
09

14
78

.4
91

4
51

8.
46

04
15

35
.1

32
0

53
6.

80
10

15
72

.6
39

6

T
ab

le
32

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

55
.1

83
7

68
.1

25
3

12
4.

62
44

68
.0

45
9

12
0.

35
75

67
.5

17
9

12
6.

04
33

S
te

p
w

is
e

53
.7

65
1

67
.1

20
8

12
2.

84
41

65
.8

79
9

11
7.

79
67

66
.0

48
4

12
4.

19
35

R
id

ge
54

.2
00

0
67

.9
60

0
12

0.
72

77
67

.9
45

4
11

8.
43

58
67

.6
77

5
12

2.
59

43

L
A

S
S
O

54
.6

87
7

64
.8

55
6

10
9.

90
59

64
.6

15
6

10
9.

76
34

63
.8

03
2

11
2.

38
73

84



T
ab

le
33

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

61
.1

54
6

17
5.

57
98

17
7.

49
67

17
3.

32
70

S
te

p
w

is
e

59
.0

90
8

17
0.

28
85

17
0.

62
52

16
9.

05
61

R
id

ge
61

.2
79

8
16

7.
93

51
17

3.
00

97
16

6.
60

10

L
A

S
S
O

59
.0

76
3

15
2.

05
06

16
0.

15
21

14
9.

23
75

T
ab

le
34

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

11
0.

27
74

17
8.

56
75

45
0.

55
28

17
5.

64
82

44
2.

09
42

18
2.

33
21

46
8.

19
80

S
te

p
w

is
e

10
7.

40
45

17
4.

43
53

44
3.

23
01

17
0.

42
47

43
4.

55
93

17
6.

91
43

46
5.

43
17

R
id

ge
11

0.
26

21
17

7.
36

21
43

5.
24

75
17

3.
56

12
42

9.
20

71
17

9.
99

86
44

7.
14

88

L
A

S
S
O

10
9.

02
74

16
6.

77
07

38
9.

77
53

16
5.

11
15

39
3.

49
13

16
5.

67
68

40
6.

96
05

85



T
ab

le
35

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
3.

39
97

72
3.

25
53

67
6.

53
17

68
8.

64
27

S
te

p
w

is
e

11
9.

99
72

69
4.

83
54

64
4.

02
97

67
9.

76
34

R
id

ge
12

1.
86

46
67

6.
36

51
64

7.
84

24
67

5.
29

92

L
A

S
S
O

12
0.

25
13

57
1.

98
98

56
3.

78
16

57
4.

24
75

T
ab

le
36

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
0.

58
43

63
2.

56
37

19
65

.4
28

3
63

2.
07

38
19

98
.8

82
3

65
4.

26
81

21
59

.6
61

0

S
te

p
w

is
e

21
6.

91
33

62
0.

01
31

19
32

.2
01

4
62

4.
01

22
19

87
.2

83
1

63
4.

78
71

21
47

.1
97

8

R
id

ge
22

1.
24

14
63

2.
44

39
19

24
.1

42
3

61
6.

27
48

19
60

.7
70

2
65

1.
57

49
21

10
.4

51
4

L
A

S
S
O

21
8.

10
37

56
5.

06
84

16
63

.7
62

8
55

5.
29

61
16

71
.4

73
7

57
5.

94
36

18
09

.8
21

9

86



T
ab

le
37

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

56
.5

98
2

63
.0

67
9

13
0.

32
73

66
.5

05
3

11
4.

22
30

68
.1

16
2

11
8.

41
49

S
te

p
w

is
e

51
.7

35
6

64
.0

48
6

12
4.

04
07

62
.2

75
5

11
4.

73
93

66
.5

01
1

11
7.

41
16

R
id

ge
53

.4
08

6
65

.1
48

1
11

7.
29

39
59

.7
01

1
11

3.
03

69
67

.1
41

8
11

4.
60

97

L
A

S
S
O

54
.8

50
7

60
.3

81
8

10
7.

35
54

63
.9

04
7

10
2.

41
25

64
.1

69
9

10
4.

11
59

T
ab

le
38

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

60
.0

90
7

15
2.

33
49

14
6.

55
78

16
4.

52
13

S
te

p
w

is
e

60
.2

23
9

14
7.

35
91

14
4.

15
40

16
0.

92
19

R
id

ge
62

.7
39

1
14

6.
52

71
14

1.
64

29
15

9.
88

48

L
A

S
S
O

58
.3

28
9

13
2.

75
02

12
9.

09
17

14
5.

19
45

87



T
ab

le
39

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

10
9.

11
57

18
6.

22
94

41
5.

41
10

16
7.

82
91

40
4.

06
33

16
7.

87
50

42
9.

34
74

S
te

p
w

is
e

10
6.

63
08

17
8.

84
17

40
4.

40
96

16
6.

73
91

40
5.

87
36

16
6.

49
44

42
4.

37
20

R
id

ge
11

0.
24

45
17

8.
56

52
39

8.
27

67
16

6.
23

41
40

1.
47

05
16

7.
18

99
42

4.
50

93

L
A

S
S
O

10
5.

38
76

17
6.

16
94

36
0.

02
92

15
5.

54
53

34
7.

64
78

15
6.

83
01

37
2.

05
73

T
ab

le
40

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
3.

66
26

58
7.

57
74

58
0.

11
53

60
5.

29
85

S
te

p
w

is
e

11
9.

42
73

57
8.

82
55

56
6.

12
65

59
4.

85
56

R
id

ge
12

1.
87

57
7.

76
22

56
6.

20
02

59
6.

69
94

L
A

S
S
O

12
0.

41
36

48
2.

23
36

48
9.

45
24

51
2.

46
38

88



T
ab

le
41

:
M

A
R

,
B

et
a

1,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
0.

16
70

53
4.

03
68

18
61

.8
94

3
53

5.
95

10
18

14
.8

95
6

55
1.

26
35

19
96

.2
50

9

S
te

p
w

is
e

21
9.

32
79

52
3.

05
66

18
40

.6
90

9
53

2.
11

03
18

06
.3

04
8

54
5.

63
49

19
84

.5
29

0

R
id

ge
21

9.
80

33
53

3.
86

35
18

42
.0

74
0

53
9.

16
64

17
92

.0
62

3
55

6.
29

16
19

71
.9

49
4

L
A

S
S
O

21
7.

09
54

48
3.

83
11

16
20

.0
22

8
48

8.
83

79
15

86
.2

40
8

50
3.

80
77

17
40

.7
74

5

89



APPENDIX B

MAR PREDICTION ERROR TABLES - BETA 2

90



T
ab

le
42

:
M

A
R

,
B

et
a

2,
in

d
ep

en
d
en

t,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

55
.4

66
4

61
.9

92
3

83
.4

05
9

61
.7

50
0

86
.5

32
1

63
.2

00
0

84
.4

27
1

S
te

p
w

is
e

54
.2

86
1

60
.2

77
9

83
.4

56
2

61
.1

18
1

85
.1

57
5

62
.4

82
2

83
.5

02
8

R
id

ge
55

.8
48

4
62

.5
32

8
80

.7
42

6
59

.9
13

6
84

.8
70

8
62

.5
47

0
80

.7
85

1

L
as

so
54

.1
25

0
59

.8
38

5
77

.9
30

4
61

.0
99

7
81

.9
22

5
61

.2
61

5
78

.1
70

4

T
ab

le
43

:
M

A
R

,
B

et
a

2,
in

d
ep

en
d
en

t,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

61
.9

42
4

10
8.

40
76

10
3.

40
98

10
8.

60
80

S
te

p
w

is
e

59
.9

77
5

10
4.

74
71

10
0.

28
06

10
5.

91
19

R
id

ge
61

.3
26

2
10

4.
78

98
10

7.
44

64
10

5.
96

47

L
as

so
60

.7
56

6
10

9.
64

82
10

8.
06

34
10

6.
80

93

91



T
ab

le
44

:
M

A
R

,
B

et
a

2,
in

d
ep

en
d
en

t,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
D

at
a

25
%

50
%

25
%

50
%

25
%

50
%

O
L
S

10
5.

55
57

14
0.

39
98

23
4.

77
38

13
8.

93
23

23
6.

91
96

14
2.

68
05

24
3.

65
77

S
te

p
w

is
e

10
8.

84
56

13
7.

49
37

23
8.

05
56

13
9.

36
74

23
6.

07
74

14
1.

45
35

24
3.

26
29

R
id

ge
11

1.
93

39
14

3.
76

99
23

2.
92

70
13

8.
59

79
23

2.
41

02
14

2.
43

50
23

9.
33

44

L
as

so
11

1.
29

63
13

8.
51

74
23

0.
66

21
13

7.
92

50
23

0.
43

43
13

9.
70

01
24

0.
13

04

T
ab

le
45

:
M

A
R

,
B

et
a

2,
in

d
ep

en
d
en

t,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
3.

80
02

31
7.

79
41

31
4.

04
82

32
5.

39
13

S
te

p
w

is
e

11
9.

14
69

31
3.

80
23

30
6.

40
68

32
2.

22
78

R
id

ge
12

2.
12

11
31

6.
64

89
30

6.
99

49
31

9.
03

07

L
as

so
12

3.
00

28
33

1.
02

38
31

4.
92

11
33

3.
41

12

92



T
ab

le
46

:
M

A
R

,
B

et
a

2,
in

d
ep

en
d
en

t,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
0.

99
25

36
6.

56
76

74
6.

96
67

36
2.

38
35

79
7.

00
31

37
0.

50
20

83
1.

25
98

S
te

p
w

is
e

21
8.

19
31

35
7.

28
39

76
6.

67
40

35
1.

67
18

80
7.

47
23

36
1.

49
74

83
3.

33
16

R
id

ge
22

2.
02

03
36

4.
07

51
74

7.
24

26
36

1.
70

68
80

0.
74

69
36

6.
17

07
83

5.
87

43

L
A

S
S
O

22
1.

52
70

36
2.

38
33

79
9.

75
93

35
7.

20
51

85
0.

12
29

36
3.

95
96

86
3.

07
56

T
ab

le
47

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
25

,
n
=

50
,
p
=

5

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

53
.3

92
0

61
.3

78
4

81
.0

87
1

62
.2

97
1

84
.5

88
3

62
.9

39
2

84
.6

69
1

S
te

p
w

is
e

50
.8

72
9

64
.9

13
7

79
.0

98
9

60
.4

34
6

82
.6

15
4

61
.9

89
6

83
.5

98
4

R
id

ge
54

.3
70

1
63

.1
67

5
78

.7
28

6
60

.5
88

5
80

.7
94

1
62

.7
60

9
81

.4
92

8

L
as

so
52

.8
58

4
61

.3
05

4
75

.4
48

5
59

.1
96

9
78

.6
28

6
61

.2
44

3
79

.0
84

9

93



T
ab

le
48

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
25

,
n
=

50
,
p
=

10

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

61
.0

72
1

10
6.

41
61

10
5.

47
36

10
6.

78
21

S
te

p
w

is
e

58
.5

59
5

10
3.

86
74

10
1.

65
83

10
4.

82
63

R
id

ge
60

.6
03

6
10

1.
80

88
10

0.
80

84
10

0.
61

41

L
as

so
61

.3
73

6
10

2.
15

18
10

0.
81

55
10

3.
43

77

T
ab

le
49

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
25

,
n
=

10
0,

p
=

10

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

10
9.

69
89

14
0.

40
10

23
1.

46
66

13
9.

43
90

23
9.

15
63

14
2.

46
80

24
6.

50
22

S
te

p
w

is
e

10
8.

08
84

13
8.

10
40

23
4.

29
62

13
8.

55
06

23
2.

77
17

13
8.

83
89

24
7.

18
62

R
id

ge
10

9.
67

23
13

8.
80

20
23

0.
15

26
13

9.
24

49
23

3.
36

11
13

8.
56

03
24

3.
04

39

L
as

so
10

9.
90

75
13

5.
68

67
22

7.
10

10
13

7.
44

59
23

2.
17

75
13

8.
11

30
24

4.
37

87

94



T
ab

le
50

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
25

,
n
=

10
0,

p
=

20

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
4.

01
02

32
0.

07
81

33
1.

65
53

32
6.

49
45

S
te

p
w

is
e

11
8.

67
77

31
4.

99
73

34
0.

08
65

32
4.

38
75

R
id

ge
12

2.
17

51
31

7.
00

71
30

0.
40

84
32

1.
72

68

L
as

so
12

2.
48

13
33

2.
45

15
32

8.
57

02
33

3.
45

50

T
ab

le
51

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
25

,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
0.

34
95

36
9.

78
95

75
0.

51
81

35
8.

02
73

79
4.

71
97

36
8.

05
12

85
2.

83
11

S
te

p
w

is
e

21
5.

87
94

36
3.

72
06

76
6.

88
85

34
7.

59
91

81
0.

22
99

36
0.

21
78

85
3.

21
76

R
id

ge
21

9.
02

34
37

0.
67

77
75

2.
44

51
34

5.
19

00
80

4.
91

05
36

3.
07

65
86

1.
56

34

L
as

so
22

3.
40

10
36

0.
21

85
79

5.
63

05
34

4.
57

03
85

3.
73

85
36

2.
05

28
88

3.
56

25

95



T
ab

le
52

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
50

,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

53
.8

76
0

61
.5

45
0

82
.4

33
5

62
.1

17
9

84
.2

43
3

62
.2

81
1

86
.7

81
5

S
te

p
w

is
e

51
.9

67
1

63
.0

26
2

80
.7

49
9

60
.0

99
4

83
.7

70
0

61
.7

42
3

85
.5

88
8

R
id

ge
54

.2
30

7
62

.5
15

4
79

.6
51

4
60

.2
08

9
81

.2
98

8
63

.4
75

2
81

.8
03

1

L
as

so
53

.4
87

1
60

.5
54

4
76

.6
79

7
58

.9
19

3
78

.5
94

0
62

.5
77

2
79

.3
89

1

T
ab

le
53

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
50

,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

61
.7

51
4

98
.7

06
3

96
.0

50
2

98
.0

90
8

S
te

p
w

is
e

60
.1

05
4

98
.2

80
4

94
.7

29
6

97
.6

37
9

R
id

ge
60

.9
98

0
95

.4
70

9
93

.5
01

5
94

.8
41

0

L
as

so
59

.8
98

3
93

.0
24

6
92

.4
65

2
92

.1
96

6

96



T
ab

le
54

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
50

,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

61
.6

13
0

10
0.

42
88

22
1.

02
76

96
.2

79
9

21
8.

08
11

98
.8

06
3

22
9.

41
85

S
te

p
w

is
e

59
.7

94
6

10
0.

04
36

21
9.

23
31

95
.9

29
2

21
7.

67
44

99
.1

66
2

22
8.

63
06

R
id

ge
61

.3
43

2
95

.8
75

1
22

1.
10

10
93

.4
45

7
21

3.
19

06
95

.7
12

7
22

2.
17

88

L
as

so
59

.3
54

1
93

.6
13

0
20

6.
60

71
92

.4
38

7
20

4.
09

54
91

.6
75

7
21

1.
98

97

T
ab

le
55

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
50

,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
3.

85
86

31
7.

81
49

31
6.

37
27

32
5.

79
87

S
te

p
w

is
e

11
9.

25
74

31
3.

49
03

30
9.

05
34

31
8.

27
55

R
id

ge
12

2.
44

51
31

6.
33

64
30

8.
99

48
31

8.
22

55

L
as

so
12

3.
10

43
33

0.
30

37
31

7.
38

16
33

3.
75

29

97



T
ab

le
56

:
M

A
R

,
B

et
a

2,
au

to
re

gr
es

si
ve

0.
50

,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
0.

70
11

36
2.

66
40

74
6.

33
67

36
2.

83
65

79
2.

61
93

36
7.

42
92

82
9.

89
84

S
te

p
w

is
e

21
5.

61
49

35
6.

49
40

76
6.

08
13

35
2.

34
61

80
8.

59
18

36
1.

58
59

82
3.

63
09

R
id

ge
22

1.
48

42
36

0.
86

05
74

7.
90

55
36

1.
63

37
80

1.
39

06
36

4.
68

81
83

1.
24

43

L
as

so
22

3.
32

23
35

7.
17

37
79

9.
46

08
35

7.
84

21
85

3.
35

85
36

2.
87

08
85

6.
90

81

T
ab

le
57

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

54
.2

56
8

61
.5

16
0

81
.0

87
1

62
.2

97
1

84
.5

88
3

62
.9

39
2

84
.6

69
1

S
te

p
w

is
e

52
.1

35
2

63
.0

01
3

79
.0

98
9

60
.4

34
6

82
.6

15
4

61
.9

89
6

83
.5

98
4

R
id

ge
54

.2
88

3
62

.7
02

9
78

.7
28

6
60

.5
88

5
80

.7
94

1
62

.7
60

9
81

.4
92

8

L
as

so
53

.5
93

3
60

.4
87

3
75

.4
48

5
59

.1
96

9
78

.6
28

6
61

.2
44

3
79

.0
84

9

98



T
ab

le
58

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

62
.3

34
2

10
0.

20
92

10
6.

05
68

10
4.

51
09

S
te

p
w

is
e

59
.9

57
8

99
.9

68
5

10
2.

99
70

10
3.

80
35

R
id

ge
61

.8
39

6
97

.7
04

6
10

1.
39

32
10

0.
18

08

L
as

so
59

.8
72

6
88

.5
07

8
93

.3
42

0
93

.0
87

8

T
ab

le
59

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

11
0.

58
35

13
9.

94
55

23
2.

56
36

13
7.

61
97

24
0.

78
20

14
2.

21
73

25
2.

92
78

S
te

p
w

is
e

10
7.

34
60

13
8.

42
03

23
4.

99
55

13
8.

21
01

23
7.

68
44

13
8.

55
20

24
2.

02
60

R
id

ge
10

9.
36

94
13

8.
93

41
23

0.
66

10
13

8.
05

31
23

1.
14

90
13

8.
58

44
25

6.
29

97

L
as

so
11

0.
10

11
13

6.
75

51
22

7.
04

75
13

7.
39

88
23

2.
24

63
13

7.
79

01
23

6.
05

90

99



T
ab

le
60

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
4.

20
14

31
9.

06
81

31
4.

82
02

32
4.

75
82

S
te

p
w

is
e

11
9.

01
44

31
4.

43
34

30
7.

88
94

32
0.

60
41

R
id

ge
12

2.
47

30
31

7.
78

44
30

6.
53

90
31

9.
58

96

L
as

so
12

3.
61

16
33

1.
82

01
31

5.
13

52
33

1.
33

46

T
ab

le
61

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

25
,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
0.

20
49

36
2.

87
98

79
2.

91
54

36
5.

68
03

83
9.

59
05

37
1.

09
91

89
5.

89
82

S
te

p
w

is
e

21
5.

05
34

35
6.

41
57

80
8.

24
78

35
5.

55
32

81
0.

04
44

36
5.

47
16

88
4.

00
49

R
id

ge
22

1.
01

77
36

2.
23

11
79

7.
88

45
36

3.
81

40
82

4.
87

60
37

0.
97

29
88

2.
07

49

L
as

so
22

3.
37

16
35

8.
67

86
80

7.
47

07
33

3.
65

96
71

3.
32

34
34

0.
84

30
75

5.
29

49

100



T
ab

le
62

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

50
,
p
=

5,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

52
.9

32
2

60
.9

27
8

84
.6

88
5

62
.3

75
9

83
.4

23
4

62
.9

09
2

89
.5

62
4

S
te

p
w

is
e

50
.1

96
3

66
.2

50
6

83
.6

84
0

60
.4

00
4

82
.6

52
2

62
.4

63
8

88
.3

22
8

R
id

ge
54

.1
27

0
63

.6
93

1
81

.9
71

5
60

.7
03

6
80

.1
71

1
62

.8
45

3
84

.6
42

3

L
as

so
52

.2
21

7
61

.6
36

3
77

.9
63

0
59

.2
91

0
77

.8
27

0
61

.5
60

6
79

.7
52

8

T
ab

le
63

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

50
,
p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

61
.9

44
0

99
.5

82
3

98
.7

58
7

97
.4

28
6

S
te

p
w

is
e

60
.4

05
5

97
.4

58
9

99
.5

37
2

94
.6

49
6

R
id

ge
61

.3
22

8
94

.1
73

0
99

.8
79

6
93

.4
01

7

L
as

so
60

.0
21

1
86

.2
77

7
93

.6
44

8
84

.6
89

4

101



T
ab

le
64

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

10
0,

p
=

10
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

11
0.

29
27

14
0.

60
18

23
4.

43
12

13
8.

35
87

23
8.

46
04

14
5.

88
48

24
6.

04
62

S
te

p
w

is
e

10
7.

47
31

13
8.

18
72

23
8.

57
90

13
8.

13
45

23
6.

61
26

14
2.

08
71

24
6.

98
23

R
id

ge
10

9.
43

32
13

8.
76

02
23

3.
05

69
13

8.
28

77
23

1.
27

19
14

3.
40

15
24

2.
79

19

L
A

S
S
O

10
9.

98
43

13
7.

06
41

23
1.

34
74

13
7.

60
17

23
0.

72
24

14
1.

30
07

24
4.

67
32

T
ab

le
65

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

10
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
25

%
25

%

O
L
S

12
3.

42
52

31
8.

06
49

31
1.

40
63

32
7.

16
08

S
te

p
w

is
e

11
8.

94
35

31
4.

62
98

30
4.

90
00

32
5.

79
07

R
id

ge
12

1.
79

89
31

6.
01

35
30

3.
79

60
32

2.
46

71

L
A

S
S
O

12
2.

75
38

33
0.

67
42

31
3.

05
75

33
8.

10
91

102



T
ab

le
66

:
M

A
R

,
B

et
a

2,
eq

u
ic

or
re

la
te

d
0.

50
,
n
=

20
0,

p
=

20
,
M

S
E

of
P

re
d
ic

ti
on

L
in

ea
r

M
is

si
n
g

C
on

ve
x

M
is

si
n
g

S
in

is
te

r
M

is
si

n
g

C
om

p
le

te
25

%
50

%
25

%
50

%
25

%
50

%

O
L
S

22
0.

40
95

36
2.

72
99

77
2.

22
96

35
9.

95
36

79
8.

64
86

36
7.

42
92

85
6.

98
89

S
te

p
w

is
e

21
5.

97
01

35
6.

20
62

78
6.

03
86

35
3.

07
87

81
5.

26
94

36
1.

58
59

86
2.

92
32

R
id

ge
22

0.
87

59
36

2.
56

37
77

7.
66

61
35

3.
99

50
80

5.
18

90
36

4.
68

81
87

0.
63

74

L
A

S
S
O

22
3.

50
58

35
8.

79
53

81
1.

90
98

35
3.

01
24

85
8.

22
34

36
2.

87
08

90
4.

22
75

103



APPENDIX C

MAR PARAMETER ESTIMATES TABLES - N=50, P=5, BETA 1
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Table 67: OLS - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9903 1.4904 -0.0048 1.9923 -0.0043

Standard Error 0.1481 0.1482 0.1478 0.148 0.1482

True Beta 3 1.5 0 2 0

MSE 0.0219 0.0226 0.0233 0.0209 0.0235

Coverage of 95 CI 95.1 94.6 93.7 94.9 94.3

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.006 1.4557 -0.0149 1.9782 -0.0182

Standard Error 0.2154 0.229 0.2337 0.2203 0.2383

True Beta 3 1.5 0 2 0

MSE 0.0581 0.0779 0.0728 0.0579 0.0741

Coverage of 95 CI 91.4 86.8 88.7 91.6 89.8

105



Table 68: Stepwise - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9903 1.4902 -0.0011 1.9913 -6e-04

Standard Error 0.1443 0.1443 0.1406 0.1442 0.1431

True Beta 3 1.5 0 2 0

MSE 0.0218 0.0225 0.0147 0.0207 0.0152

Coverage of 95 CI 94.2 94.5 na 95.2 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0035 1.4531 -0.0117 1.9763 -0.0159

Standard Error 0.2109 0.2222 0.2133 0.2156 0.2237

True Beta 3 1.5 0 2 0

MSE 0.0575 0.0781 0.0608 0.0569 0.0618

Coverage of 95 CI 91 86.4 87.5 91.3 87.4
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Table 69: Ridge - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9765 1.4833 -0.0047 1.9832 -0.0041

Standard Error 0.1473 0.1475 0.1471 0.1473 0.1475

True Beta 3 1.5 0 2 0

MSE 0.0224 0.0227 0.0231 0.021 0.0233

Coverage of 95 CI 94.1 94.3 93.7 94.6 94.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9815 1.4432 -0.0143 1.9618 -0.0177

Standard Error 0.2124 0.2255 0.2297 0.2174 0.2342

True Beta 3 1.5 0 2 0

MSE 0.0572 0.078 0.0708 0.0574 0.072

Coverage of 95 CI 90.9 86.8 88.7 90.9 89.4
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Table 70: LASSO - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.92 1.4183 8e-04 1.9217 -0.0039

Standard Error 0.1465 0.1465 0.1465 0.1464 0.147

True Beta 3 1.5 0 2 0

MSE 0.0301 0.0325 0.0143 0.0292 0.0146

Coverage of 95 CI 89.3 89.1 95.2 91.5 95.9

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9328 1.3816 -0.0102 1.9052 -0.0131

Standard Error 0.2171 0.2308 0.2237 0.2226 0.2282

True Beta 3 1.5 0 2 0

MSE 0.0622 0.0918 0.0562 0.0657 0.0565

Coverage of 95 CI 90.2 84.7 92 88.9 92.4
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Table 71: OLS - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9998 1.4861 0.003 1.9975 -0.0044

Standard Error 0.1488 0.1492 0.1487 0.149 0.1492

True Beta 3 1.5 0 2 0

MSE 0.022 0.0209 0.0237 0.0223 0.0184

Coverage of 95 CI 94.6 95.4 93 93.4 96.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.862 1.2466 -0.0051 1.7744 0.0194

Standard Error 0.6369 0.6812 0.731 0.7023 0.7161

True Beta 3 1.5 0 2 0

MSE 0.2288 0.3077 0.2374 0.3486 0.2194

Coverage of 95 CI 96.5 96 97.7 96.2 96.2
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Table 72: Stepwise - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0002 1.4867 0.0032 1.9971 -0.0067

Standard Error 0.145 0.145 0.1421 0.1449 0.1418

True Beta 3 1.5 0 2 0

MSE 0.0215 0.0203 0.0147 0.0217 0.0099

Coverage of 95 CI 95.3 94.3 na 93.6 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.8571 1.2229 -0.003 1.7628 0.0161

Standard Error 0.5926 0.5959 0.7688 0.6179 0.7727

True Beta 3 1.5 0 2 0

MSE 0.2286 0.3282 0.2139 0.3606 0.1994

Coverage of 95 CI 95.7 91.9 93.6 94.3 93.1
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Table 73: Ridge - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9861 1.4792 0.0031 1.9883 -0.0043

Standard Error 0.1481 0.1485 0.148 0.1483 0.1484

True Beta 3 1.5 0 2 0

MSE 0.0223 0.021 0.0234 0.0224 0.0182

Coverage of 95 CI 95.3 95.5 93 93.8 96.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.7659 1.2059 0 1.7158 0.0197

Standard Error 0.593 0.6118 0.6435 0.6314 0.6356

True Beta 3 1.5 0 2 0

MSE 0.2533 0.31 0.2095 0.3504 0.1962

Coverage of 95 CI 94.4 94.5 97.2 94.8 96.1
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Table 74: LASSO - MAR, Beta 1, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.932 1.4172 0.0047 1.9293 -0.0029

Standard Error 0.1473 0.1477 0.1474 0.1475 0.1479

True Beta 3 1.5 0 2 0

MSE 0.0289 0.0293 0.0137 0.0301 0.009

Coverage of 95 CI 89.9 91.4 96 88.4 98.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.6926 1.1097 0.0049 1.6173 0.0142

Standard Error 0.614 0.6176 0.591 0.6427 0.5822

True Beta 3 1.5 0 2 0

MSE 0.2891 0.3801 0.1621 0.4193 0.1558

Coverage of 95 CI 92.2 89.2 96.3 89.8 96.2
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Table 75: OLS - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.004 1.499 -0.0064 2.0167 0.0149

Standard Error 0.1495 0.1496 0.1498 0.1499 0.1497

True Beta 3 1.5 0 2 0

MSE 0.0228 0.0203 0.0238 0.0246 0.024

Coverage of 95 CI 94.1 94.1 93.1 92.2 93.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0183 1.4503 -0.0081 1.9977 0.0015

Standard Error 0.2209 0.2295 0.2438 0.2291 0.2419

True Beta 3 1.5 0 2 0

MSE 0.0541 0.0704 0.0783 0.0685 0.0909

Coverage of 95 CI 93.6 90.9 91.4 92.1 88.2
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Table 76: Stepwise - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0044 1.4974 -0.0045 2.0165 0.0126

Standard Error 0.1455 0.1455 0.1438 0.1456 0.1416

True Beta 3 1.5 0 2 0

MSE 0.0224 0.0202 0.0159 0.024 0.0159

Coverage of 95 CI 93 94.3 na 91.6 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0163 1.4478 -0.0116 1.9943 0.003

Standard Error 0.2163 0.224 0.2266 0.2222 0.2135

True Beta 3 1.5 0 2 0

MSE 0.0535 0.071 0.067 0.0677 0.079

Coverage of 95 CI 93.6 89.9 90.1 91.1 85.5
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Table 77: Ridge - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.99 1.4917 -0.006 2.0072 0.0149

Standard Error 0.1488 0.1488 0.1491 0.1492 0.1489

True Beta 3 1.5 0 2 0

MSE 0.0229 0.0202 0.0234 0.0242 0.0238

Coverage of 95 CI 94.1 94.1 93.4 92.4 93.3

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.993 1.4377 -0.0073 1.9806 0.0018

Standard Error 0.2181 0.2262 0.2396 0.226 0.2378

True Beta 3 1.5 0 2 0

MSE 0.0527 0.0701 0.0756 0.0673 0.0887

Coverage of 95 CI 93 90.8 90.8 91.4 87.9
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Table 78: LASSO - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9371 1.4293 -0.0032 1.9467 0.013

Standard Error 0.148 0.1479 0.1485 0.1483 0.1485

True Beta 3 1.5 0 2 0

MSE 0.029 0.0268 0.0144 0.031 0.0148

Coverage of 95 CI 89.9 91.4 95 88.5 95.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9472 1.3783 -0.0084 1.9234 0.005

Standard Error 0.2223 0.2311 0.234 0.2314 0.2308

True Beta 3 1.5 0 2 0

MSE 0.0568 0.0829 0.0604 0.0735 0.0732

Coverage of 95 CI 92.2 88.7 94.4 91.1 89.8
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Table 79: OLS - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9909 1.5063 -0.0012 1.9986 -9e-04

Standard Error 0.1483 0.1481 0.148 0.1484 0.1485

True Beta 3 1.5 0 2 0

MSE 0.0241 0.0215 0.0214 0.0232 0.0217

Coverage of 95 CI 92 94.1 95.4 93.3 94.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.8231 1.2052 0.0217 1.6931 0

Standard Error 0.6384 0.7118 0.7053 0.6954 0.6936

True Beta 3 1.5 0 2 0

MSE 0.2848 0.3354 0.2506 0.3702 0.2454

Coverage of 95 CI 95.3 94.7 97.1 94 98.1
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Table 80: Stepwise - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9915 1.5064 -0.0074 1.998 0.0067

Standard Error 0.1442 0.1442 0.1431 0.1443 0.1387

True Beta 3 1.5 0 2 0

MSE 0.023 0.021 0.0124 0.0225 0.0131

Coverage of 95 CI 92 94 na 93.1 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.8207 1.1857 0.0261 1.6817 0.0011

Standard Error 0.583 0.635 0.7557 0.6224 0.7636

True Beta 3 1.5 0 2 0

MSE 0.2862 0.3514 0.2286 0.3841 0.2208

Coverage of 95 CI 94.6 91.9 95.6 92.2 95.8
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Table 81: Ridge - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9769 1.4992 -0.0013 1.989 -6e-04

Standard Error 0.1476 0.1474 0.1473 0.1477 0.1477

True Beta 3 1.5 0 2 0

MSE 0.0245 0.0214 0.0213 0.0233 0.0214

Coverage of 95 CI 91.7 94.7 95.4 93.3 94.9

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.7255 1.1658 0.021 1.6379 0.0021

Standard Error 0.5908 0.6305 0.6181 0.6215 0.6164

True Beta 3 1.5 0 2 0

MSE 0.3241 0.3372 0.2212 0.3853 0.2225

Coverage of 95 CI 93.6 93.8 97 92.2 97.6
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Table 82: LASSO - MAR, Beta 1, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9196 1.4348 -0.0031 1.9273 0.0027

Standard Error 0.1467 0.1465 0.1468 0.1468 0.1471

True Beta 3 1.5 0 2 0

MSE 0.0331 0.0284 0.0127 0.0306 0.0125

Coverage of 95 CI 88.6 90.5 97 89.2 95.8

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.6496 1.0716 0.0211 1.547 0.0034

Standard Error 0.5866 0.622 0.5617 0.6196 0.5562

True Beta 3 1.5 0 2 0

MSE 0.3874 0.399 0.1735 0.4606 0.1741

Coverage of 95 CI 89.6 87.9 94.4 87.1 96.8
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Table 83: OLS - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0032 1.5028 0.0058 2.0002 -0.0036

Standard Error 0.1489 0.1485 0.1486 0.1488 0.1485

True Beta 3 1.5 0 2 0

MSE 0.0228 0.021 0.0219 0.0233 0.022

Coverage of 95 CI 94.4 94.5 94.4 94 94.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0141 1.4815 0.0048 1.9912 -5e-04

Standard Error 0.2258 0.2355 0.2439 0.2303 0.2458

True Beta 3 1.5 0 2 0

MSE 0.0651 0.0695 0.0842 0.0662 0.0741

Coverage of 95 CI 91 90.2 89.2 90.7 91.3
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Table 84: Stepwise - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0032 1.5033 3e-04 2.001 -0.0016

Standard Error 0.1448 0.1446 0.143 0.1447 0.1426

True Beta 3 1.5 0 2 0

MSE 0.0224 0.0207 0.0134 0.0229 0.0136

Coverage of 95 CI 93.6 93.8 na 93.4 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0119 1.4798 0.002 1.9892 -6e-04

Standard Error 0.221 0.229 0.2232 0.2252 0.228

True Beta 3 1.5 0 2 0

MSE 0.0643 0.0691 0.0715 0.0653 0.0625

Coverage of 95 CI 90.4 89.8 87.8 90.6 88.5
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Table 85: Ridge - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.989 1.4956 0.0058 1.9906 -0.0036

Standard Error 0.1482 0.1478 0.1479 0.1481 0.1478

True Beta 3 1.5 0 2 0

MSE 0.0229 0.0209 0.0217 0.0232 0.0218

Coverage of 95 CI 93.5 94.5 94.3 93.7 94.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9875 1.4682 0.0043 1.9732 -7e-04

Standard Error 0.2226 0.2319 0.2396 0.2272 0.2414

True Beta 3 1.5 0 2 0

MSE 0.0632 0.0686 0.0816 0.0651 0.0719

Coverage of 95 CI 90.9 90 89.1 90.5 91.1
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Table 86: LASSO - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9275 1.4279 0.0032 1.9249 -0.0026

Standard Error 0.1471 0.1468 0.1473 0.1471 0.1472

True Beta 3 1.5 0 2 0

MSE 0.0306 0.028 0.0125 0.0312 0.0122

Coverage of 95 CI 90.2 91 96.2 88.8 96.5

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9409 1.4099 0.0023 1.9187 8e-04

Standard Error 0.2284 0.2373 0.2347 0.2336 0.2349

True Beta 3 1.5 0 2 0

MSE 0.0665 0.0779 0.0658 0.0722 0.0578

Coverage of 95 CI 89.2 89.9 92.3 90.2 93.9
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Table 87: OLS - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0022 1.4973 -9e-04 2.0009 0.0024

Standard Error 0.1483 0.1483 0.1485 0.1484 0.1483

True Beta 3 1.5 0 2 0

MSE 0.0211 0.0207 0.0215 0.0204 0.0212

Coverage of 95 CI 95.4 94.9 94.1 95 95.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.8556 1.1887 0.0041 1.7269 0.0131

Standard Error 0.6648 0.7411 0.7452 0.7385 0.74

True Beta 3 1.5 0 2 0

MSE 0.2763 0.3855 0.2928 0.3576 0.2514

Coverage of 95 CI 96.5 95.3 97.5 95.1 96.3
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Table 88: Stepwise - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0031 1.4975 0.0032 2.0006 -0.0049

Standard Error 0.1442 0.1442 0.1419 0.1443 0.1418

True Beta 3 1.5 0 2 0

MSE 0.0207 0.0204 0.0135 0.0204 0.0124

Coverage of 95 CI 94.8 94 na 94.3 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.8501 1.1686 0.0053 1.7124 0.0159

Standard Error 0.6228 0.6647 0.7943 0.658 0.8208

True Beta 3 1.5 0 2 0

MSE 0.2786 0.405 0.2675 0.3734 0.226

Coverage of 95 CI 95.3 90 93.7 90.8 92.9
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Table 89: Ridge - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9882 1.4902 -8e-04 1.9914 0.0025

Standard Error 0.1476 0.1476 0.1477 0.1477 0.1476

True Beta 3 1.5 0 2 0

MSE 0.0213 0.0206 0.0214 0.0204 0.021

Coverage of 95 CI 95.3 94.5 94.1 94.7 95.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.7552 1.1509 0.0055 1.6689 0.0115

Standard Error 0.6106 0.66 0.6602 0.6622 0.656

True Beta 3 1.5 0 2 0

MSE 0.3028 0.3832 0.2565 0.3699 0.2258

Coverage of 95 CI 93.9 94 97.1 94 95.8
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Table 90: LASSO - MAR, Beta 1, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9299 1.4252 0.0016 1.9276 -0.0037

Standard Error 0.1467 0.1467 0.1472 0.1467 0.147

True Beta 3 1.5 0 2 0

MSE 0.0288 0.0282 0.0125 0.0277 0.012

Coverage of 95 CI 91.3 90.5 96.2 91.5 96.5

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.6827 1.0646 0.0079 1.5771 0.0076

Standard Error 0.6396 0.6693 0.6208 0.6893 0.6125

True Beta 3 1.5 0 2 0

MSE 0.3564 0.4465 0.2055 0.4452 0.1824

Coverage of 95 CI 92.5 89.3 97.6 91.4 96.4

128



Table 91: OLS - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9613 1.4995 0.0141 1.9967 -0.0016

Standard Error 0.1908 0.1952 0.1956 0.1959 0.1917

True Beta 3 1.5 0 2 0

MSE 0.0288 0.052 0.044 0.0395 0.0434

Coverage of 95 CI 97.5 92.1 97.6 98.1 92

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.968 1.5207 0.0581 2.0135 0.0831

Standard Error 0.2683 0.2962 0.2991 0.2841 0.2821

True Beta 3 1.5 0 2 0

MSE 0.0684 0.0872 0.0794 0.0681 0.107

Coverage of 95 CI 96 95.7 95.4 97 90.5
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Table 92: Stepwise - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.96 1.501 -0.0015 1.9949 0.0139

Standard Error 0.1812 0.1839 0.1995 0.1851 0.1849

True Beta 3 1.5 0 2 0

MSE 0.0268 0.0527 0.0309 0.0371 0.0316

Coverage of 95 CI 97.2 91.7 na 97.4 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.969 1.5176 0.0597 2.0119 0.0857

Standard Error 0.2582 0.2818 0.2607 0.2687 0.234

True Beta 3 1.5 0 2 0

MSE 0.0672 0.0854 0.0663 0.068 0.0952

Coverage of 95 CI 95.1 94.8 94.2 96.7 89.7
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Table 93: Ridge - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9522 1.4973 0.0195 1.9923 0.0034

Standard Error 0.1899 0.1941 0.1945 0.1949 0.1907

True Beta 3 1.5 0 2 0

MSE 0.0293 0.0512 0.0438 0.0389 0.0428

Coverage of 95 CI 97.7 92.1 97.4 98 91.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9552 1.5179 0.0654 2.0068 0.0895

Standard Error 0.2655 0.2925 0.2954 0.2807 0.2786

True Beta 3 1.5 0 2 0

MSE 0.0682 0.0849 0.0795 0.0667 0.1061

Coverage of 95 CI 95.9 95.6 95.2 96.8 90.3
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Table 94: LASSO - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.8928 1.4456 0.0613 1.9367 0.0509

Standard Error 0.1894 0.1942 0.1917 0.1949 0.1875

True Beta 3 1.5 0 2 0

MSE 0.035 0.0486 0.0187 0.0434 0.0186

Coverage of 95 CI 97 92.4 98.4 97.8 92.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9202 1.4657 0.1082 1.9599 0.1199

Standard Error 0.2634 0.2914 0.2761 0.2782 0.2672

True Beta 3 1.5 0 2 0

MSE 0.0708 0.0828 0.0647 0.0667 0.0884

Coverage of 95 CI 96.2 95.7 96.4 96.3 91
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Table 95: OLS - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0142 1.4946 -0.0138 1.9701 0.023

Standard Error 0.1963 0.1955 0.1948 0.1976 0.1974

True Beta 3 1.5 0 2 0

MSE 0.0301 0.0268 0.0363 0.0294 0.0375

Coverage of 95 CI 98.4 99.4 94.8 95.7 95

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.011 1.3643 0.3664 1.9377 0.3828

Standard Error 0.7724 0.8914 0.8325 0.7798 0.8087

True Beta 3 1.5 0 2 0

MSE 0.2597 0.4258 0.6009 0.3048 0.4388

Coverage of 95 CI 98.5 95.4 96.4 98.5 96.4
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Table 96: Stepwise - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0139 1.4941 -0.013 1.9754 0.015

Standard Error 0.183 0.1833 0.1809 0.1849 0.1942

True Beta 3 1.5 0 2 0

MSE 0.0281 0.0247 0.0199 0.0269 0.0248

Coverage of 95 CI 98.2 99.3 na 95.6 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0214 1.3466 0.3539 1.9456 0.3747

Standard Error 0.6995 0.8076 0.8503 0.6802 0.8603

True Beta 3 1.5 0 2 0

MSE 0.2671 0.4388 0.5821 0.2979 0.4246

Coverage of 95 CI 96.9 93.9 92.1 95.7 89.4
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Table 97: Ridge - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0044 1.4927 -0.0083 1.9655 0.0287

Standard Error 0.1953 0.1945 0.1938 0.1965 0.1963

True Beta 3 1.5 0 2 0

MSE 0.0295 0.0266 0.0357 0.0295 0.0374

Coverage of 95 CI 98.4 99.4 93.5 95.7 95

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9785 1.3596 0.3778 1.9239 0.3906

Standard Error 0.7167 0.827 0.7812 0.7273 0.7545

True Beta 3 1.5 0 2 0

MSE 0.2435 0.4004 0.5756 0.2927 0.4286

Coverage of 95 CI 98.6 94.1 95 98.5 95.1
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Table 98: LASSO - MAR, Beta 1, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9594 1.4502 0.0423 1.9175 0.0702

Standard Error 0.1951 0.1946 0.1914 0.1965 0.1948

True Beta 3 1.5 0 2 0

MSE 0.0272 0.0262 0.0179 0.0367 0.0214

Coverage of 95 CI 98.4 99.5 97.9 92.9 97.9

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9346 1.3205 0.3932 1.862 0.4013

Standard Error 0.6906 0.7656 0.7058 0.6991 0.6669

True Beta 3 1.5 0 2 0

MSE 0.237 0.3684 0.5123 0.2769 0.3734

Coverage of 95 CI 95.8 92.6 93.9 94.5 97.7
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Table 99: OLS - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.009 1.5064 0.0358 1.9933 0.0161

Standard Error 0.1899 0.1916 0.1937 0.1908 0.1933

True Beta 3 1.5 0 2 0

MSE 0.0361 0.0347 0.0261 0.0346 0.0247

Coverage of 95 CI 97.4 97.2 97.1 97.1 96.9

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0907 1.4348 0.1229 1.9911 0.0413

Standard Error 0.2754 0.2869 0.2888 0.2876 0.2931

True Beta 3 1.5 0 2 0

MSE 0.0834 0.0827 0.1041 0.0868 0.1018

Coverage of 95 CI 96.4 95 93.4 90.4 87.7
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Table 100: Stepwise - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0161 1.5134 0.0224 2.0035 0.0021

Standard Error 0.1765 0.1772 0.1829 0.1765 0.1798

True Beta 3 1.5 0 2 0

MSE 0.0323 0.0319 0.0158 0.0359 0.011

Coverage of 95 CI 97 97.1 na 90.9 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0971 1.4366 0.112 1.9981 0.0289

Standard Error 0.2611 0.2761 0.2834 0.2717 0.2541

True Beta 3 1.5 0 2 0

MSE 0.0837 0.0799 0.0903 0.0859 0.0817

Coverage of 95 CI 89.9 94.7 92.4 90.3 86.5
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Table 101: Ridge - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0003 1.5045 0.0408 1.9892 0.021

Standard Error 0.189 0.1907 0.1927 0.1899 0.1923

True Beta 3 1.5 0 2 0

MSE 0.0357 0.0344 0.0263 0.0343 0.0247

Coverage of 95 CI 97.3 97.1 97.1 97 96.8

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0767 1.4332 0.1298 1.9849 0.0477

Standard Error 0.2721 0.2833 0.2852 0.2841 0.2894

True Beta 3 1.5 0 2 0

MSE 0.0799 0.0813 0.1041 0.0853 0.1021

Coverage of 95 CI 96.3 95 93.2 90.4 87.5
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Table 102: LASSO - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9639 1.4596 0.0569 1.9504 0.0434

Standard Error 0.1892 0.1909 0.1919 0.1902 0.1913

True Beta 3 1.5 0 2 0

MSE 0.0342 0.0358 0.016 0.0356 0.0136

Coverage of 95 CI 97 97.2 97.8 96.7 98.1

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0448 1.3851 0.1597 1.9486 0.0752

Standard Error 0.2717 0.282 0.2685 0.2823 0.2823

True Beta 3 1.5 0 2 0

MSE 0.0712 0.0872 0.088 0.0842 0.078

Coverage of 95 CI 96.6 95.6 95 90.4 94.9
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Table 103: OLS - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9923 1.5115 -0.0079 2.0035 0.0022

Standard Error 0.1936 0.1942 0.194 0.1925 0.1934

True Beta 3 1.5 0 2 0

MSE 0.0394 0.0368 0.0387 0.0367 0.0412

Coverage of 95 CI 93.7 93.9 94.2 94.8 92.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0015 1.4247 0.3133 1.8479 0.3143

Standard Error 0.7529 0.8202 0.7694 0.7641 0.7687

True Beta 3 1.5 0 2 0

MSE 0.3295 0.3181 0.3833 0.3444 0.4721

Coverage of 95 CI 96.9 97.3 92.2 94.6 93.1
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Table 104: Stepwise - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9919 1.5107 7e-04 2.0022 -0.002

Standard Error 0.1805 0.1806 0.1819 0.1792 0.1841

True Beta 3 1.5 0 2 0

MSE 0.0374 0.0353 0.0225 0.0364 0.0258

Coverage of 95 CI 92.6 93.4 na 93.5 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0099 1.4172 0.3047 1.8462 0.3053

Standard Error 0.6842 0.7009 0.8417 0.6758 0.8223

True Beta 3 1.5 0 2 0

MSE 0.3303 0.3303 0.3649 0.3499 0.447

Coverage of 95 CI 95 94.3 85.8 92.3 86.5
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Table 105: Ridge - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.983 1.5096 -0.0026 1.9989 0.0075

Standard Error 0.1926 0.1931 0.1929 0.1915 0.1923

True Beta 3 1.5 0 2 0

MSE 0.0394 0.0364 0.0382 0.0363 0.0409

Coverage of 95 CI 93.8 93.9 94.2 94.9 92.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9665 1.4201 0.3251 1.8332 0.3257

Standard Error 0.7077 0.769 0.7258 0.7204 0.7248

True Beta 3 1.5 0 2 0

MSE 0.3159 0.3026 0.3781 0.3321 0.4587

Coverage of 95 CI 96.7 97.3 92 94.3 92.1
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Table 106: LASSO - MAR, Beta 1, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9352 1.4562 0.0408 1.9467 0.0404

Standard Error 0.1925 0.1931 0.1909 0.1914 0.1906

True Beta 3 1.5 0 2 0

MSE 0.0419 0.0356 0.0201 0.0383 0.023

Coverage of 95 CI 93 95.5 95.5 93.6 95

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9234 1.3704 0.3443 1.7732 0.3415

Standard Error 0.6928 0.737 0.655 0.6961 0.6591

True Beta 3 1.5 0 2 0

MSE 0.3108 0.294 0.3435 0.3394 0.4042

Coverage of 95 CI 96.1 96.3 93 94.3 93.4
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Table 107: OLS - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0082 1.4926 -0.0031 2.0073 -3e-04

Standard Error 0.1937 0.1927 0.1933 0.1938 0.1931

True Beta 3 1.5 0 2 0

MSE 0.0384 0.0349 0.0342 0.0414 0.0357

Coverage of 95 CI 93.6 95.8 95.3 93.1 95.8

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0375 1.4956 0.0619 1.9934 0.0674

Standard Error 0.2823 0.2929 0.3001 0.288 0.3013

True Beta 3 1.5 0 2 0

MSE 0.0981 0.1061 0.1189 0.1097 0.1201

Coverage of 95 CI 90.8 92.2 89.2 88 90.2
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Table 108: Stepwise - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0079 1.4905 -5e-04 2.0061 0.0022

Standard Error 0.1798 0.1795 0.1801 0.1801 0.1812

True Beta 3 1.5 0 2 0

MSE 0.0363 0.0341 0.0193 0.0385 0.0206

Coverage of 95 CI 92.1 94.4 na 91.5 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0395 1.495 0.0584 1.9954 0.0626

Standard Error 0.2708 0.2782 0.2813 0.2748 0.274

True Beta 3 1.5 0 2 0

MSE 0.0956 0.1064 0.1009 0.1073 0.1035

Coverage of 95 CI 90.1 90.5 87.1 86.9 86.2
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Table 109: Ridge - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9989 1.4907 0.0023 2.0029 0.0051

Standard Error 0.1927 0.1918 0.1923 0.1928 0.1921

True Beta 3 1.5 0 2 0

MSE 0.038 0.0345 0.0338 0.041 0.0354

Coverage of 95 CI 93.3 95.8 95.2 92.8 95.9

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0232 1.4929 0.0694 1.9872 0.0748

Standard Error 0.2788 0.289 0.2963 0.2842 0.2973

True Beta 3 1.5 0 2 0

MSE 0.0953 0.104 0.1178 0.1077 0.1192

Coverage of 95 CI 90.8 92.2 89 87.8 89.6
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Table 110: LASSO - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.952 1.4344 0.0405 1.9512 0.0422

Standard Error 0.1927 0.1917 0.1904 0.1928 0.1902

True Beta 3 1.5 0 2 0

MSE 0.0379 0.0381 0.0168 0.0411 0.0179

Coverage of 95 CI 93.7 94.8 96.8 92.4 97.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9851 1.4428 0.1053 1.9418 0.108

Standard Error 0.2782 0.2881 0.284 0.2833 0.2832

True Beta 3 1.5 0 2 0

MSE 0.0912 0.1032 0.0927 0.1064 0.0965

Coverage of 95 CI 91.5 92 91.8 88.4 92.3
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Table 111: OLS - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.012 1.5032 -0.0032 1.9951 -0.001

Standard Error 0.1928 0.1933 0.1928 0.1933 0.1922

True Beta 3 1.5 0 2 0

MSE 0.0387 0.0339 0.0381 0.04 0.039

Coverage of 95 CI 94.1 95.4 93.8 94 94

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0247 1.3983 0.3242 1.8664 0.3185

Standard Error 0.8254 0.8939 0.854 0.8662 0.8537

True Beta 3 1.5 0 2 0

MSE 0.3547 0.3401 0.442 0.3706 0.4465

Coverage of 95 CI 96.4 95.9 93.4 96.7 94.9

149



Table 112: Stepwise - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0114 1.5038 -0.0054 1.9971 -0.0013

Standard Error 0.18 0.18 0.1799 0.1802 0.1804

True Beta 3 1.5 0 2 0

MSE 0.0367 0.0327 0.0232 0.0378 0.0236

Coverage of 95 CI 92.4 95 na 92.9 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 3.0335 1.388 0.3171 1.8641 0.3137

Standard Error 0.7589 0.7994 0.9094 0.7562 0.9127

True Beta 3 1.5 0 2 0

MSE 0.3531 0.3503 0.4195 0.3752 0.4236

Coverage of 95 CI 96 93.8 88.9 92.7 90.7
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Table 113: Ridge - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 3.0028 1.5012 0.0022 1.9908 0.0043

Standard Error 0.1918 0.1923 0.1918 0.1923 0.1912

True Beta 3 1.5 0 2 0

MSE 0.0384 0.0336 0.0377 0.0397 0.0386

Coverage of 95 CI 93.8 95.5 93.7 94.2 94.1

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9862 1.3926 0.3377 1.8532 0.3314

Standard Error 0.7666 0.8308 0.7986 0.8084 0.7995

True Beta 3 1.5 0 2 0

MSE 0.3351 0.3214 0.4322 0.3542 0.4344

Coverage of 95 CI 96.4 95.6 93.1 96 94.4
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Table 114: LASSO - MAR, Beta 1, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 2.9557 1.4475 0.0417 1.9402 0.0428

Standard Error 0.1918 0.1923 0.1898 0.1923 0.1894

True Beta 3 1.5 0 2 0

MSE 0.0392 0.0353 0.0196 0.04 0.0213

Coverage of 95 CI 94.1 95.6 95.8 94 96.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 2.9386 1.3416 0.3552 1.7942 0.3517

Standard Error 0.7522 0.7817 0.7279 0.7771 0.7268

True Beta 3 1.5 0 2 0

MSE 0.3269 0.3123 0.3827 0.3579 0.386

Coverage of 95 CI 96.4 95.3 93.8 94.7 95.5
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APPENDIX D

MAR PARAMETER ESTIMATES TABLES - N=50, P=5, BETA 2
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Table 115: OLS - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8526 0.8411 0.0038 2.0048 -0.0145

Standard Error 0.1532 0.1577 0.1577 0.1579 0.1535

True Beta 0.85 0.85 0 2 0

MSE 0.0251 0.0248 0.0272 0.0265 0.0242

Coverage of 95 CI 93.2 96 93.4 93.6 93.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8435 0.8275 0.0314 2.0024 0.0045

Standard Error 0.1993 0.2065 0.2128 0.1989 0.2048

True Beta 0.85 0.85 0 2 0

MSE 0.0537 0.0505 0.0598 0.0456 0.0598

Inclusion Frequency 95.4 95.5 9.8 100 12.2
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Table 116: Stepwise - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8512 0.8435 0.0015 2.0042 -0.0135

Standard Error 0.1489 0.1501 0.1521 0.1463 0.1468

True Beta 0.85 0.85 0 2 0

MSE 0.0244 0.0245 0.0166 0.0253 0.015

Coverage of 95 CI 93 94.2 na 92 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8406 0.8249 0.028 2.0015 0.0033

Standard Error 0.1906 0.1953 0.1832 0.1888 0.1762

True Beta 0.85 0.85 0 2 0

MSE 0.0555 0.0524 0.0488 0.0441 0.0482

Coverage of 95 CI 88 89.8 88.6 91 87.8
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Table 117: Ridge - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8442 0.8329 0.0121 1.979 -0.0081

Standard Error 0.1511 0.1553 0.1553 0.1555 0.1513

True Beta 0.85 0.85 0 2 0

MSE 0.0245 0.0243 0.0266 0.0268 0.0234

Coverage of 95 CI 93.7 95.9 93.5 93.6 93.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8314 0.8157 0.0421 1.9656 0.0117

Standard Error 0.1937 0.2003 0.206 0.1937 0.1988

True Beta 0.85 0.85 0 2 0

MSE 0.0513 0.0485 0.0571 0.046 0.0567

Coverage of 95 CI 89.5 91.6 90.2 91.1 87.9
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Table 118: LASSO - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7923 0.7833 0.0277 1.9268 0.0016

Standard Error 0.1512 0.1559 0.155 0.1546 0.151

True Beta 0.85 0.85 0 2 0

MSE 0.0297 0.0302 0.0163 0.0326 0.0142

Coverage of 95 CI 90.7 90.1 95.4 91.2 94.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.785 0.7695 0.0506 1.9256 0.0162

Standard Error 0.1986 0.2034 0.2026 0.1989 0.1969

True Beta 0.85 0.85 0 2 0

MSE 0.0554 0.0537 0.0441 0.0492 0.0431

Coverage of 95 CI 89.7 90.6 93.4 91.6 92.8
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Table 119: OLS - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.86 0.8464 0.0079 1.9958 -0.0089

Standard Error 0.1567 0.1608 0.1611 0.1611 0.1557

True Beta 0.85 0.85 0 2 0

MSE 0.0219 0.0259 0.0249 0.024 0.0271

Coverage of 95 CI 94.3 93.7 93.8 93.8 92.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7584 0.7959 0.1522 1.8989 0.0766

Standard Error 0.4098 0.4436 0.4256 0.3901 0.4068

True Beta 0.85 0.85 0 2 0

MSE 0.1392 0.1522 0.1486 0.1485 0.1419

Coverage of 95 CI 94.3 93.9 93.9 90.7 94.5
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Table 120: Stepwise - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8603 0.8434 0.0106 1.997 -0.0102

Standard Error 0.1522 0.1533 0.1556 0.1487 0.15

True Beta 0.85 0.85 0 2 0

MSE 0.0215 0.0246 0.0161 0.0217 0.0183

Coverage of 95 CI 93.2 93.8 na 94.9 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7411 0.7842 0.1437 1.9002 0.0749

Standard Error 0.3611 0.3927 0.4287 0.3538 0.4218

True Beta 0.85 0.85 0 2 0

MSE 0.1479 0.1546 0.1354 0.1458 0.1277

Coverage of 95 CI 90.5 92.5 88.5 88 88.5
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Table 121: Ridge - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8517 0.8381 0.017 1.9694 -0.0026

Standard Error 0.1544 0.1582 0.1585 0.1585 0.1535

True Beta 0.85 0.85 0 2 0

MSE 0.0211 0.0255 0.0245 0.025 0.0262

Coverage of 95 CI 94.3 94.2 94.2 92.9 93.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7356 0.7714 0.1606 1.8254 0.082

Standard Error 0.3617 0.3866 0.3723 0.3454 0.3616

True Beta 0.85 0.85 0 2 0

MSE 0.1262 0.1371 0.1351 0.1634 0.1258

Coverage of 95 CI 93.5 92.6 92.4 86.5 93.8
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Table 122: LASSO - MAR, Beta 2, indep, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7978 0.7831 0.0334 1.9153 0.0029

Standard Error 0.1547 0.1588 0.1583 0.1579 0.1531

True Beta 0.85 0.85 0 2 0

MSE 0.0253 0.0301 0.0137 0.0306 0.0157

Coverage of 95 CI 93.6 91.3 95.8 90.7 94.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.6702 0.7134 0.1527 1.7694 0.0738

Standard Error 0.359 0.3851 0.3526 0.3609 0.3473

True Beta 0.85 0.85 0 2 0

MSE 0.1415 0.1412 0.1043 0.1886 0.0982

Coverage of 95 CI 90.4 90.3 95.3 85.5 95.5

161



Table 123: OLS - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8434 0.8612 0.0165 1.9957 -0.0056

Standard Error 0.1525 0.1575 0.1575 0.1592 0.1551

True Beta 0.85 0.85 0 2 0

MSE 0.0229 0.027 0.0267 0.0203 0.0225

Coverage of 95 CI 96.9 94.2 95.4 96 97.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8661 0.825 0.0395 1.9916 0.0251

Standard Error 0.2048 0.2166 0.2132 0.2034 0.2111

True Beta 0.85 0.85 0 2 0

MSE 0.0508 0.054 0.0619 0.045 0.0505

Coverage of 95 CI 91.3 93.4 87.9 93.6 91.6
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Table 124: Stepwise - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.843 0.8645 0.0141 1.9929 0.0066

Standard Error 0.1479 0.1498 0.1484 0.1464 0.1509

True Beta 0.85 0.85 0 2 0

MSE 0.0231 0.0257 0.0153 0.0188 0.0121

Coverage of 95 CI 96.8 91.9 na 96.8 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8625 0.822 0.0331 1.9934 0.0245

Standard Error 0.1986 0.2063 0.1869 0.1928 0.18

True Beta 0.85 0.85 0 2 0

MSE 0.0535 0.0555 0.048 0.0429 0.0385

Coverage of 95 CI 88.4 93 87.9 93.6 90.3
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Table 125: Ridge - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8358 0.8524 0.0246 1.9699 0.0015

Standard Error 0.1504 0.1551 0.1551 0.1568 0.1528

True Beta 0.85 0.85 0 2 0

MSE 0.0224 0.026 0.026 0.0208 0.0218

Coverage of 95 CI 96.8 94.2 96.5 95.8 97.8

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8525 0.8111 0.0503 1.9538 0.0326

Standard Error 0.1987 0.2095 0.2064 0.1978 0.2046

True Beta 0.85 0.85 0 2 0

MSE 0.0476 0.0521 0.06 0.0452 0.0486

Coverage of 95 CI 90.2 93.6 88.1 92.6 91.6
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Table 126: LASSO - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7814 0.8003 0.0306 1.9156 0.0183

Standard Error 0.1506 0.1555 0.1548 0.1559 0.1524

True Beta 0.85 0.85 0 2 0

MSE 0.0314 0.0302 0.0158 0.0277 0.0118

Coverage of 95 CI 91.5 92.9 95.9 92.1 98

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8012 0.7612 0.0586 1.9141 0.0354

Standard Error 0.2028 0.2134 0.2043 0.2013 0.2023

True Beta 0.85 0.85 0 2 0

MSE 0.0525 0.0578 0.0442 0.0496 0.0346

Coverage of 95 CI 90.1 90.6 92.2 93.1 98
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Table 127: OLS - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8521 0.8479 0.0057 2.0055 7e-04

Standard Error 0.1486 0.1485 0.1486 0.1487 0.1485

True Beta 0.85 0.85 0 2 0

MSE 0.0225 0.0227 0.0233 0.0232 0.0209

Coverage of 95 CI 94.6 93.6 94.9 93.8 94.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.6832 0.6881 0.0158 1.9207 -0.006

Standard Error 0.3909 0.3856 0.381 0.3474 0.3826

True Beta 0.85 0.85 0 2 0

MSE 0.1667 0.1569 0.1265 0.1136 0.1299

Coverage of 95 CI 91.9 91.5 94.2 93.4 92.1
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Table 128: Stepwise - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8515 0.8484 0.0013 2.0055 0.0017

Standard Error 0.1444 0.1445 0.1432 0.1444 0.1419

True Beta 0.85 0.85 0 2 0

MSE 0.0222 0.0224 0.0144 0.0228 0.0124

Coverage of 95 CI 94 93.6 na 93.5 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.668 0.6716 0.0149 1.9167 -0.0076

Standard Error 0.3542 0.3477 0.3875 0.3211 0.3886

True Beta 0.85 0.85 0 2 0

MSE 0.1725 0.1611 0.112 0.1136 0.1179

Coverage of 95 CI 88.4 86.9 89.7 92.1 89.3
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Table 129: Ridge - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.841 0.8371 0.0056 1.9801 9e-04

Standard Error 0.1465 0.1465 0.1466 0.1467 0.1465

True Beta 0.85 0.85 0 2 0

MSE 0.0222 0.0226 0.0228 0.0237 0.0204

Coverage of 95 CI 94.3 93 95 93.1 94.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.6568 0.6612 0.0153 1.8413 -0.0051

Standard Error 0.3473 0.3438 0.3397 0.3207 0.3373

True Beta 0.85 0.85 0 2 0

MSE 0.1595 0.1506 0.111 0.1298 0.1144

Coverage of 95 CI 90.3 89.2 93.6 89.7 92
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Table 130: LASSO - MAR, Beta 2, indep, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7783 0.7757 0.004 1.9321 0.0018

Standard Error 0.1457 0.1457 0.1463 0.1458 0.1463

True Beta 0.85 0.85 0 2 0

MSE 0.0301 0.0303 0.0135 0.0301 0.0114

Coverage of 95 CI 89.7 90.5 96.2 89.6 96.5

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.5917 0.5938 0.012 1.7856 -0.0043

Standard Error 0.3447 0.3429 0.3207 0.3301 0.3185

True Beta 0.85 0.85 0 2 0

MSE 0.1812 0.1719 0.0843 0.1556 0.089

Coverage of 95 CI 83.4 83.3 94 86.4 93.4
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Table 131: OLS - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8511 0.8544 -0.0024 2.0075 -0.0095

Standard Error 0.1543 0.1587 0.1588 0.1594 0.1541

True Beta 0.85 0.85 0 2 0

MSE 0.0225 0.023 0.0264 0.0273 0.0214

Coverage of 95 CI 96.2 95.4 92.7 92.9 95.3

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8422 0.82 0.0556 2.0014 -0.001

Standard Error 0.2097 0.2139 0.218 0.2037 0.2111

True Beta 0.85 0.85 0 2 0

MSE 0.0558 0.0679 0.062 0.0515 0.0558

Coverage of 95 CI 92.8 89.2 90.3 92.2 90.5
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Table 132: Stepwise - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8526 0.8532 -0.0022 2.0057 -0.0046

Standard Error 0.1501 0.1512 0.1531 0.1473 0.1456

True Beta 0.85 0.85 0 2 0

MSE 0.0225 0.0229 0.0171 0.0255 0.0121

Coverage of 95 CI 95.6 93.8 na 92.6 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8383 0.8165 0.0488 1.9991 5e-04

Standard Error 0.1995 0.2011 0.1964 0.1926 0.1846

True Beta 0.85 0.85 0 2 0

MSE 0.0576 0.0686 0.0494 0.0494 0.0431

Coverage of 95 CI 90.7 87 89.4 90.6 90.5
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Table 133: Ridge - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8432 0.8459 0.0063 1.9816 -0.0033

Standard Error 0.1522 0.1563 0.1563 0.1569 0.1519

True Beta 0.85 0.85 0 2 0

MSE 0.022 0.0224 0.0257 0.0277 0.0207

Coverage of 95 CI 96.1 95.5 93 92.9 95.3

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8294 0.8089 0.0655 1.9631 0.0073

Standard Error 0.2031 0.2068 0.2109 0.1979 0.2044

True Beta 0.85 0.85 0 2 0

MSE 0.0534 0.0647 0.0598 0.0514 0.0525

Coverage of 95 CI 92.4 89.3 89.5 90.6 90.2
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Table 134: LASSO - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7909 0.7906 0.0251 1.9255 0.0052

Standard Error 0.1525 0.1567 0.1559 0.156 0.1515

True Beta 0.85 0.85 0 2 0

MSE 0.0276 0.0274 0.0144 0.033 0.0115

Coverage of 95 CI 91.4 92.4 95.8 89.7 96.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.778 0.7597 0.072 1.9178 0.0124

Standard Error 0.2076 0.2104 0.2068 0.2023 0.2018

True Beta 0.85 0.85 0 2 0

MSE 0.0594 0.0695 0.0446 0.0554 0.0383

Coverage of 95 CI 91.6 88.4 93.1 90 93.3
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Table 135: OLS - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8476 0.8455 0.0014 1.9973 -0.0033

Standard Error 0.1539 0.1594 0.159 0.1582 0.1535

True Beta 0.85 0.85 0 2 0

MSE 0.0263 0.0263 0.0238 0.0241 0.0241

Coverage of 95 CI 93.3 94.8 95.3 95.7 95.5

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7764 0.7793 0.1382 1.8755 0.0863

Standard Error 0.4169 0.4318 0.4387 0.3963 0.42

True Beta 0.85 0.85 0 2 0

MSE 0.1397 0.1508 0.1558 0.1314 0.1341

Coverage of 95 CI 92.7 94.1 91.7 92.7 94.6
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Table 136: Stepwise - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8487 0.8439 0.004 1.9958 0.0013

Standard Error 0.1496 0.1506 0.15 0.1462 0.149

True Beta 0.85 0.85 0 2 0

MSE 0.0267 0.0252 0.0132 0.0221 0.0154

Coverage of 95 CI 91.8 93.9 na 94.9 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7616 0.7659 0.1353 1.8727 0.0809

Standard Error 0.3723 0.3848 0.453 0.3623 0.4391

True Beta 0.85 0.85 0 2 0

MSE 0.1442 0.155 0.144 0.1311 0.1216

Coverage of 95 CI 91 92.8 87.8 90.9 91.4
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Table 137: Ridge - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8399 0.8366 0.0102 1.9714 0.0028

Standard Error 0.1517 0.1568 0.1565 0.1557 0.1514

True Beta 0.85 0.85 0 2 0

MSE 0.0257 0.0258 0.0233 0.0247 0.0233

Coverage of 95 CI 93.4 94.8 94.9 95.1 95.3

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7495 0.7545 0.1487 1.7961 0.0927

Standard Error 0.3706 0.3792 0.3849 0.36 0.3713

True Beta 0.85 0.85 0 2 0

MSE 0.13 0.1342 0.1415 0.1488 0.1198

Coverage of 95 CI 92.3 93.2 90.3 89.2 93.7
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Table 138: LASSO - MAR, Beta 2, indep, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7905 0.7839 0.0292 1.9165 0.014

Standard Error 0.1522 0.1573 0.1562 0.1548 0.1509

True Beta 0.85 0.85 0 2 0

MSE 0.0311 0.0308 0.0128 0.0305 0.0129

Coverage of 95 CI 90.1 93.3 96.6 91.8 96.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.6881 0.696 0.1459 1.7452 0.0857

Standard Error 0.3719 0.3731 0.3643 0.3712 0.3478

True Beta 0.85 0.85 0 2 0

MSE 0.1425 0.1391 0.1165 0.1714 0.096

Coverage of 95 CI 89.3 91.3 92.9 87.8 94.4
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Table 139: OLS - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8445 0.8423 0.0101 1.9941 0.0074

Standard Error 0.1546 0.1577 0.1581 0.159 0.1538

True Beta 0.85 0.85 0 2 0

MSE 0.0158 0.023 0.0196 0.016 0.0182

Coverage of 95 CI 96.1 94.2 99.8 100 94.1

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8326 0.8654 0.0233 1.9872 0.0359

Standard Error 0.2038 0.2095 0.2142 0.1934 0.2055

True Beta 0.85 0.85 0 2 0

MSE 0.0467 0.0603 0.0694 0.0442 0.0571

Coverage of 95 CI 92.2 94.1 84.5 90.4 91.6
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Table 140: Stepwise - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8423 0.8473 0.0031 1.9891 0.0163

Standard Error 0.1495 0.1499 0.1566 0.146 0.1389

True Beta 0.85 0.85 0 2 0

MSE 0.0145 0.0238 0.0091 0.0164 0.0105

Coverage of 95 CI 96.1 94.2 na 97.9 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8288 0.8599 0.0201 1.9867 0.0395

Standard Error 0.1961 0.1984 0.1798 0.1836 0.1659

True Beta 0.85 0.85 0 2 0

MSE 0.049 0.0634 0.0576 0.0433 0.0445

Coverage of 95 CI 86.6 90.4 86.4 90.3 91.7
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Table 141: Ridge - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.836 0.8344 0.0186 1.968 0.014

Standard Error 0.1524 0.1553 0.1557 0.1565 0.1516

True Beta 0.85 0.85 0 2 0

MSE 0.0157 0.0227 0.0191 0.0172 0.0178

Coverage of 95 CI 96.1 96.1 99.8 97.8 94.1

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8198 0.8536 0.0359 1.9528 0.0431

Standard Error 0.1978 0.2028 0.2069 0.1886 0.1992

True Beta 0.85 0.85 0 2 0

MSE 0.0449 0.0568 0.0655 0.0456 0.0548

Coverage of 95 CI 92.2 92.3 84.5 90.4 89.8
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Table 142: LASSO - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7841 0.7917 0.0222 1.9163 0.0189

Standard Error 0.1526 0.1563 0.1554 0.1557 0.1514

True Beta 0.85 0.85 0 2 0

MSE 0.0197 0.0276 0.0085 0.0261 0.0101

Coverage of 95 CI 92.1 94.2 99.8 99.6 99.7

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7683 0.8012 0.0495 1.9103 0.0473

Standard Error 0.2037 0.2077 0.2041 0.1938 0.1975

True Beta 0.85 0.85 0 2 0

MSE 0.0539 0.0592 0.0502 0.0533 0.0396

Coverage of 95 CI 90.4 88.6 94.1 88.6 93.7
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Table 143: OLS - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.845 0.8639 -0.0154 2.0178 0.0022

Standard Error 0.1531 0.1582 0.1584 0.1583 0.1539

True Beta 0.85 0.85 0 2 0

MSE 0.0242 0.0265 0.0227 0.0255 0.0245

Coverage of 95 CI 94.8 95.2 96.4 95 94.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7582 0.7769 0.1329 1.906 0.0877

Standard Error 0.4017 0.4253 0.4196 0.3624 0.4005

True Beta 0.85 0.85 0 2 0

MSE 0.1388 0.1525 0.1474 0.1241 0.1347

Coverage of 95 CI 93.3 93 91.7 93.9 92.8
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Table 144: Stepwise - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.846 0.8605 -0.0065 2.0143 0.0023

Standard Error 0.1488 0.1498 0.1513 0.1456 0.1477

True Beta 0.85 0.85 0 2 0

MSE 0.0237 0.0249 0.0124 0.0236 0.014

Coverage of 95 CI 94.1 94.5 na 93.5 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7449 0.7672 0.1287 1.905 0.0851

Standard Error 0.3582 0.3793 0.4274 0.3333 0.4124

True Beta 0.85 0.85 0 2 0

MSE 0.144 0.1571 0.1355 0.1216 0.1228

Coverage of 95 CI 90.1 89.4 87.3 91.3 89
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Table 145: Ridge - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8378 0.8555 -0.0064 1.9927 0.0083

Standard Error 0.151 0.1558 0.156 0.1559 0.1517

True Beta 0.85 0.85 0 2 0

MSE 0.0237 0.0257 0.0217 0.0254 0.0238

Coverage of 95 CI 94.9 94.7 96.3 95 94.3

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7376 0.7556 0.1426 1.8381 0.0954

Standard Error 0.3605 0.3763 0.3723 0.3334 0.3576

True Beta 0.85 0.85 0 2 0

MSE 0.131 0.1405 0.136 0.1332 0.1226

Coverage of 95 CI 92.3 92.2 90.8 91.4 92.2
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Table 146: LASSO - MAR, Beta 2, equi 0.50, n=50, p=5, Linear Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7846 0.7982 0.0173 1.9337 0.0155

Standard Error 0.1513 0.1561 0.1555 0.1548 0.1511

True Beta 0.85 0.85 0 2 0

MSE 0.0295 0.0281 0.0115 0.0301 0.0125

Coverage of 95 CI 91.3 93.4 97.1 93.7 96.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.6762 0.6959 0.1403 1.7817 0.0906

Standard Error 0.3579 0.3726 0.3491 0.3423 0.3363

True Beta 0.85 0.85 0 2 0

MSE 0.1394 0.1476 0.1077 0.1527 0.0958

Coverage of 95 CI 89.4 89.7 93.4 88.7 94.5
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Table 147: OLS - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8454 0.8561 -0.0019 1.9999 0.0059

Standard Error 0.1523 0.1573 0.1571 0.1572 0.152

True Beta 0.85 0.85 0 2 0

MSE 0.0229 0.0246 0.0268 0.0274 0.0224

Coverage of 95 CI 94.7 93.6 93.6 93.1 94.8

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8268 0.8385 0.0412 1.9891 0.023

Standard Error 0.2018 0.2082 0.2107 0.1989 0.2034

True Beta 0.85 0.85 0 2 0

MSE 0.0508 0.0519 0.0586 0.0515 0.0541

Coverage of 95 CI 92.6 90.9 87.9 90.8 90.7
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Table 148: Stepwise - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8461 0.8557 0.0016 1.9992 0.0051

Standard Error 0.1482 0.1497 0.1506 0.1455 0.1443

True Beta 0.85 0.85 0 2 0

MSE 0.0226 0.024 0.0173 0.0258 0.0134

Coverage of 95 CI 94.2 92.8 na 92 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8234 0.8358 0.0348 1.989 0.0209

Standard Error 0.1924 0.1957 0.1826 0.1884 0.1759

True Beta 0.85 0.85 0 2 0

MSE 0.0533 0.0537 0.047 0.0492 0.0425

Coverage of 95 CI 89.9 88 87.7 90.1 90
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Table 149: Ridge - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8375 0.8473 0.0068 1.9743 0.0118

Standard Error 0.1502 0.1549 0.1547 0.1548 0.1499

True Beta 0.85 0.85 0 2 0

MSE 0.0226 0.024 0.0259 0.0282 0.0219

Coverage of 95 CI 94.2 93.8 93.7 91.3 94.5

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.815 0.8263 0.051 1.9529 0.0304

Standard Error 0.1959 0.2017 0.204 0.1937 0.1974

True Beta 0.85 0.85 0 2 0

MSE 0.0492 0.0501 0.0568 0.0532 0.0519

Coverage of 95 CI 92.1 90.4 87.8 89.3 90.5
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Table 150: LASSO - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7862 0.7932 0.0269 1.9197 0.0171

Standard Error 0.1505 0.1552 0.1542 0.1539 0.1495

True Beta 0.85 0.85 0 2 0

MSE 0.0281 0.0287 0.0146 0.0343 0.0123

Coverage of 95 CI 92.2 92.9 95.6 89.3 95.9

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7684 0.7791 0.0591 1.9122 0.0335

Standard Error 0.2002 0.2056 0.2004 0.1985 0.195

True Beta 0.85 0.85 0 2 0

MSE 0.0558 0.0543 0.0438 0.057 0.0387

Coverage of 95 CI 90.3 90.3 91.6 90.3 93.5
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Table 151: OLS - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8484 0.8472 7e-04 1.9998 2e-04

Standard Error 0.1541 0.1589 0.1591 0.1589 0.1541

True Beta 0.85 0.85 0 2 0

MSE 0.0233 0.0256 0.0255 0.0263 0.0232

Coverage of 95 CI 94.7 94.2 94.9 93.7 94.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7629 0.7833 0.1235 1.8906 0.0746

Standard Error 0.4005 0.4117 0.4112 0.373 0.3991

True Beta 0.85 0.85 0 2 0

MSE 0.1453 0.1304 0.1498 0.1406 0.1292

Coverage of 95 CI 92.7 94.3 93.7 91.9 93.9
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Table 152: Stepwise - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8476 0.8476 -0.0024 2.0002 7e-04

Standard Error 0.1498 0.1508 0.1526 0.1471 0.1479

True Beta 0.85 0.85 0 2 0

MSE 0.0226 0.025 0.0156 0.0245 0.0144

Coverage of 95 CI 94.3 93.7 na 92.9 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7496 0.7708 0.1181 1.8895 0.0715

Standard Error 0.362 0.3622 0.4185 0.3407 0.41

True Beta 0.85 0.85 0 2 0

MSE 0.15 0.1354 0.1362 0.1399 0.1169

Coverage of 95 CI 90.2 91.5 87.5 90.3 89.1
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Table 153: Ridge - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8408 0.8384 0.0094 1.974 0.0061

Standard Error 0.1519 0.1565 0.1566 0.1565 0.1519

True Beta 0.85 0.85 0 2 0

MSE 0.0228 0.025 0.0248 0.0269 0.0226

Coverage of 95 CI 94.5 93.9 94.9 93.3 94.4

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7404 0.7578 0.1339 1.8186 0.0827

Standard Error 0.358 0.3671 0.3659 0.3426 0.3566

True Beta 0.85 0.85 0 2 0

MSE 0.134 0.1201 0.1359 0.1554 0.1154

Coverage of 95 CI 91.7 93.9 92.8 88.8 92.9
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Table 154: LASSO - MAR, Beta 2, equi 0.50, n=50, p=5, Convex Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7884 0.7851 0.0226 1.9189 0.0136

Standard Error 0.1522 0.1569 0.1563 0.1556 0.1514

True Beta 0.85 0.85 0 2 0

MSE 0.0278 0.03 0.0146 0.0323 0.0121

Coverage of 95 CI 91.5 91.5 95.9 91.2 95.9

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.6795 0.6985 0.1311 1.7629 0.0828

Standard Error 0.3517 0.3597 0.3398 0.3474 0.3323

True Beta 0.85 0.85 0 2 0

MSE 0.1436 0.1288 0.1092 0.178 0.0908

Coverage of 95 CI 88 89.6 93.7 87.5 94.2
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Table 155: OLS - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8539 0.8535 -0.0037 2.0061 -0.0137

Standard Error 0.1542 0.1586 0.1585 0.1591 0.1538

True Beta 0.85 0.85 0 2 0

MSE 0.0223 0.0248 0.0253 0.0266 0.0225

Coverage of 95 CI 95.5 94.4 93.3 92.9 95.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8477 0.8223 0.0485 1.9948 -5e-04

Standard Error 0.2101 0.214 0.2168 0.2034 0.2114

True Beta 0.85 0.85 0 2 0

MSE 0.0559 0.069 0.0609 0.052 0.0574

Coverage of 95 CI 93 88.8 90.6 91.6 90.1
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Table 156: Stepwise - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8551 0.8521 -0.0018 2.0031 -0.0052

Standard Error 0.1501 0.151 0.152 0.1469 0.1451

True Beta 0.85 0.85 0 2 0

MSE 0.0223 0.0247 0.0164 0.0249 0.0127

Coverage of 95 CI 95.2 93 na 92.5 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.844 0.8188 0.0415 1.9927 5e-04

Standard Error 0.2001 0.2011 0.1946 0.1924 0.1845

True Beta 0.85 0.85 0 2 0

MSE 0.0571 0.0695 0.0485 0.0499 0.0442

Coverage of 95 CI 91.1 85.9 89.9 90.2 90
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Table 157: Ridge - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8459 0.8449 0.0051 1.9801 -0.0074

Standard Error 0.152 0.1561 0.156 0.1566 0.1516

True Beta 0.85 0.85 0 2 0

MSE 0.0218 0.0243 0.0246 0.027 0.0217

Coverage of 95 CI 95.6 94.6 93.8 93 95.2

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.8348 0.8112 0.0585 1.9566 0.008

Standard Error 0.2036 0.2069 0.2097 0.1976 0.2046

True Beta 0.85 0.85 0 2 0

MSE 0.0532 0.0659 0.0587 0.0522 0.054

Coverage of 95 CI 92.8 88.7 89.8 89.8 89.8
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Table 158: LASSO - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 25 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7938 0.7903 0.0227 1.9238 0.0049

Standard Error 0.1523 0.1565 0.1556 0.1556 0.1511

True Beta 0.85 0.85 0 2 0

MSE 0.0267 0.0295 0.0138 0.0325 0.0119

Coverage of 95 CI 91.1 91.9 95.7 90.2 96.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7837 0.7621 0.0659 1.9114 0.0137

Standard Error 0.208 0.2106 0.2058 0.2019 0.2021

True Beta 0.85 0.85 0 2 0

MSE 0.0576 0.0708 0.044 0.0565 0.0392

Coverage of 95 CI 92.6 87.9 93.1 89.6 92.9
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Table 159: OLS - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8403 0.8643 0.0143 2.012 0.0054

Standard Error 0.1508 0.1548 0.1557 0.1567 0.1513

True Beta 0.85 0.85 0 2 0

MSE 0.0234 0.0254 0.0226 0.0216 0.0232

Coverage of 95 CI 96.5 93.1 95.2 95.9 96.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7283 0.7503 0.1307 1.9512 0.0517

Standard Error 0.4218 0.4339 0.4342 0.4023 0.442

True Beta 0.85 0.85 0 2 0

MSE 0.1543 0.2052 0.1683 0.1494 0.1168

Coverage of 95 CI 93.1 92.5 92.5 93.7 94.5
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Table 160: Stepwise - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8409 0.8643 0.0016 2.0173 -0.0077

Standard Error 0.147 0.1476 0.15 0.1442 0.1418

True Beta 0.85 0.85 0 2 0

MSE 0.0224 0.0235 0.0119 0.0194 0.0109

Coverage of 95 CI 95.9 93.8 na 95.7 na

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7167 0.7427 0.1209 1.9475 0.0494

Standard Error 0.376 0.3958 0.4361 0.373 0.4709

True Beta 0.85 0.85 0 2 0

MSE 0.1591 0.2053 0.1558 0.1538 0.1064

Coverage of 95 CI 87.6 85.5 87.7 92.3 91
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Table 161: Ridge - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.8329 0.8561 0.0225 1.987 0.0112

Standard Error 0.1488 0.1526 0.1534 0.1544 0.1492

True Beta 0.85 0.85 0 2 0

MSE 0.023 0.0247 0.0221 0.0217 0.0227

Coverage of 95 CI 95.8 93.1 95.2 94.5 96.6

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.7082 0.7278 0.1443 1.8696 0.0608

Standard Error 0.3775 0.3851 0.3827 0.3676 0.3886

True Beta 0.85 0.85 0 2 0

MSE 0.1451 0.186 0.1548 0.1469 0.1015

Coverage of 95 CI 92.4 90.5 92.5 89.6 93.1
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Table 162: LASSO - MAR, Beta 2, equi 0.50, n=50, p=5, Sinister Missing at 50 percent

Complete Data

X1 X2 X3 X4 X5

Estimate 0.7799 0.8011 0.033 1.9326 0.0151

Standard Error 0.1491 0.1528 0.1531 0.1536 0.1487

True Beta 0.85 0.85 0 2 0

MSE 0.0281 0.0286 0.0125 0.0264 0.0121

Coverage of 95 CI 91.6 91.7 97.4 91.6 97.3

Incomplete Data

X1 X2 X3 X4 X5

Estimate 0.6431 0.6784 0.1347 1.814 0.0532

Standard Error 0.3798 0.3813 0.369 0.3947 0.3674

True Beta 0.85 0.85 0 2 0

MSE 0.1625 0.1875 0.1228 0.1699 0.0805

Coverage of 95 CI 91 87.8 95.2 87.5 93.8
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APPENDIX E

PSYCHOBIOLOGICAL MEASURES

The measurements collected as part of this study were selected based on the results of studies

of depression in adults and a priori hypotheses of the investigators based on their knowledge

of pediatric affective disorders and maturational changes during adolescence. The following

sections briefly explain the action of, and results about, a subset of the measurements that

were collected as part of the study, a subset of which are used in the application of variable

selection methods.

One method of collection involved stimulatory tests meant to measure the body’s re-

sponse to stimulation by some pharmacological agent. For the purposes of this study, mea-

surements are taken at 15 minute intervals for 30 minutes before and two to two and one

half hours after infusion of the challenge agent. The mean pre-infusion and the mean and

peak post-infusion levels of the hormonal response are used in the subsequent data analysis

[34].

E.1 GROWTH HORMONE RESPONSE TO STIMULATORY TESTS

Growth hormone (GH), as its name implies, is involved in the growth and regeneration

of body tissues. It is released by the anterior pituitary gland and acts within the body

to promote protein synthesis and the breakdown of fatty cells to provide energy. Growth

hormone measurements were collected by a number of different methods, including baseline
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hormone measurements and through stimulatory tests.

Stimulatory tests were used to measure the amount of growth hormone released in re-

sponse to growth hormone releasing hormone (GHRH), and clonidine hydrochloride (CLON).

GHRH is released by the hypothalamus causing the body to produce growth hormone. Cloni-

dine acts in the brain to reduce the response of the sympathetic nervous system.

Preliminary hypotheses about GH response were that children with MDD would show

less GH secretion in response to CLON and hypoglycemia than the low risk subjects and

similar GH response to GHRH. Published results indicate that the MDD children had a

lower response than the normal controls in all three tests with the differences in response to

GHRH and hypoglycemia reaching statistical significance [34]. A second set of results with a

larger sample again indicated this blunted GH response to GHRH in MDD children compared

with normal controls. Additionally, the “GH response to GHRH remained low in subjects

studied during clinical remission from depression [12].” When comparing normal controls

and children at high-risk for depression, the blunted GH response to GHRH persisted [3].

E.2 CORTISOL AND PROLACTIN RESPONSE TO L5HTP

Cortisol is secreted by the adrenal glands in response to physical and psychological stress.

Its purpose is to prepare the body to deal with stressors and to insure that the brain receives

adequate energy in times of stress. Prolactin is a hormone closely related to GH. Stimulatory

tests measuring cortisol response to L–5–Hydroxytryptophan (L5HTP) and corticotropin

releasing hormone (CRH) were performed.

Corticotropin releasing hormone is released by the hypothalamus and stimulates the

release of adrenocorticotrophic hormone (ACTH), which is released by the anterior pituitary

gland and controls the secretion of cortisol. L-5-Hydroxytryptophan is an amino acid that

stimulates the serotonergic system and causes the release of prolactin and cortisol. Prior

to the L5HTP challenge test subjects are given oral carbidopa at intervals over the evening

prior and the morning of the test. The purpose of this drug is to block the metabolism of

L5HTP outside of the central nervous system allowing a lower dosage of L5HTP to be used

203



in the challenge test itself.

After infusion with L5HTP, children with MDD when compared to normal controls had a

significantly smaller cortisol response and a significantly larger prolactin response. Because of

a significant gender by diagnosis interaction, analysis was performed separately for males and

females and revealed that depressed females released significantly more prolactin than their

control group counterparts whereas no difference was seen in the males [33]. A subsequent

paper compared cortisol and prolactin response to L5HTP in children with MDD, children

at high-risk for MDD and normal controls. The cortisol response was similar in the MDD

and high-risk children with both groups secreting significantly less cortisol than the normal

controls. The gender by diagnosis interaction was again seen in the prolactin response; MDD

and high-risk girls secreted more prolactin than normal control girls with no difference seen

in boys [4]. The comparisons for response to L5HTP were in terms of area-under-the-curve

(AUC) and peak post-infusion measures.

E.3 CORTISOL AND ADRENOCORTICOTROPHIC HORMONE

RESPONSE TO CRH

The hypothalamic-pituitary-adrenal (HPA) axis is known to be associated with adult MDD.

Briefly, the HPA axis refers to a number of hormones released by the hypothalamus, the

pituitary gland and the adrenal glands that work together to regulate the overall level of

certain hormones in the body. Specific results in the literature suggest that dysregulations

arising from the hypothalamus may be particularly important. The corticotropin-releasing

hormone (CRH) stimulatory test is used to test this hypothesis. The focus of this study is

on the influences of development on the HPA axis dysregulation associated with depression.

Consistent with previous studies, the results showed no significant differences in either

cortisol or ACTH response to CRH in any measure considered including baseline, mean post-

infusion, peak post-infusion, time to peak level and time to return to baseline level. This

may indicate that the HPA axis is influenced by maturational changes that result in the

dysregulation found in adults [2].
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E.4 NIGHTTIME CORTISOL AND GROWTH HORMONE MEASURES

As part of their stay in the sleep laboratory, detailed in section E.5, plasma levels of cortisol

and growth hormone were determined around sleep onset. The measurements were collected

on the subjects’ second, or baseline, night in the lab. Blood samples were collected every 20

minutes following lights out time. For the current research, summary measurements were

computed including mean secretion during awake time, mean secretion during sleep, peak

secretion during sleep and secretion levels in the 1 and 2 hour period before and after sleep

onset.

Results published on this data used the following summary measures: area under the

curve (AUC) in the 4 hours after sleep onset, AUC over the total sleep period and the peak

hormonal concentrations during sleep. For the cortisol measurements, it was shown that the

depressed sample had lower cortisol than normal controls in the 4 hours post sleep onset,

while no difference was seen in the other measures. No significant group differences were

seen in the growth hormone measurements, although within the depressed, girls secreted less

growth hormone than boys.

E.5 SLEEP MEASURES

The motivation to collect electroencephalographic (EEG) sleep measures was the apparent

contradictions between the results seen in adults and those seen in children and adolescents.

The results of the adult studies include “decreased delta sleep, reduced rapid eye movement

(REM) latency, increased sleep continuity disturbances, and accelerated accumulation of

REM sleep across the night [13].” The data were collected over the two nights the subject

spent in the sleep laboratory. Subjects kept a sleep diary during the week preceding their

time in the sleep lab that was used to collect subjective sleep data and to determine the

bedtime and wake-up times typical for the subject that were then replicated in the lab.

“Major dependent variables were defined as follows: Sleep latency was the time from

lights out to sleep onset. Sleep onset was the first 10 minute stage 2 (or deeper) sleep with
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less than 1 minute of intervening awake time. REM period latency was the interval from

sleep onset to the first REM period lasting 3 minutes. . . . REM activity was an integrated

estimate of eye movement frequency during each minute of REM, score on a 0 to 8 scale.

Sleep maintenance was the percentage of time spent asleep from sleep onset to wake-up time

[13].”

The initial analysis of the sleep measures in 1991 were concordant with the existing

literature in that they resulted in no significant differences between children with MDD and

normal control children. Based on these results, it is hypothesized that EEG sleep measures

in children and adolescents are not affected by depression, but that sleep disturbances may

increase with age thereby affecting adults more significantly than children [13].
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