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Maternal cigarette smoke exposure during pregnancy has been identified as a risk factor 

for adverse reproductive outcomes, a major public health concern.  However, little is known 

about genetic susceptibility and possible interactions with environmental factors to increase risk 

of these events.  This study was designed to investigate relative contributions of genetic and 

maternal environmental risk factor interactions to adverse reproductive outcomes.  Maternal 

peripheral and umbilical cord blood samples from 1148 healthy mother/newborn pairs were 

genotyped for a panel of polymorphisms associated with the metabolic enzymes CYP1A1, 

CYP2E1, GSTM1, GSTT1 and NAT2* for several subgroups; low birthweight (<2500g, n=86), 

preterm delivery (<37th gestational week, n=93), premature birth (<2500g & <37th gestational 

week, n=53) and small for gestational age (SGA) at term (≥37th gestational week, n=948) in 

comparison to the average for gestational age (AGA) group (n=948).   

 

Maternal cigarette smoking during the last trimester was significantly associated with 

birthweight reduction (µ=101.4g, SE=32, p=0.002).  Maternal GSTT1 null genotype was 

significantly associated with low birthweight (OR=1.97, 95% CI: 1.24-3.12, p=0.004), preterm 
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delivery (OR=1.91, 95% CI: 1.22-2.98, p=0.004) and premature birth (OR=2.42, 95% CI: 1.38-

4.26, p=0.002).  The mean reduction of birthweight observed among the maternal GSTT1 null 

genotype group was 89.6g (SE=37, p=0.018) and the mean reduction in gestational age was 0.25 

weeks (SE=0.1, p=0.049).  In addition, African American women were more likely to have a 

smaller baby; the mean reduction of birthweight was 230g (SE=34.5, p<0.001) compared with 

Caucasians.  An additive interaction between smoking, African American ethnicity and GSTT1 

null genotype was observed (OR=7.81, 95% CI: 2.49-24.43, p<0.001).  The mean birthweight 

reduction observed in this group was 570.0g (SE=117, p<0.001) and the mean gestational age 

reduction was 1.10 weeks (SE=0.4, p=0.007).  A similar risk was observed for newborn GSTT1 

null genotype in the presence of maternal smoking (426.7g,SE=111, p<0.001) and (1.0 weeks, 

SE=0.4, p=0.012).   

 

These results demonstrated a clear overrepresentation of maternal and newborn GSTT1 

null genotype among adverse reproductive outcome cases.  Furthermore, a gene-gene-

environment interaction was observed where the combination of maternal and newborn GSTT1 

null genotype in the presence of maternal cigarette smoke during pregnancy significantly 

increased risk of adverse reproductive outcomes.   



 v

ACKNOWLEDGMENTS 

 

 

 I am deeply appreciative of my committee advisor Dr. M. Romkes for her continuous 

support, encouragement, and patience to spend a tremendous time and effort guiding me through 

my graduate years.  I also would like to express my appreciation to the Ph.D. committee 

members; Dr. W.L. Bigbee, Dr. B.W. Day and Dr. P. Keohavong for many suggestions and 

questions.  They thought me the importance of describing what I have done in a good and 

effective scientific fashion.  I would like to thank to Dr. R.A. Branch for his support and 

encouragement and Dr. R.B. Ness for her helpful advice and comments.     

Dr. R.D. Day is also due many thanks for assisting with the statistical analyses and 

encouraging me as to how exciting the project was.  I would like to send many acknowledgments 

to Dr. H.A. Gordish for the classification of the 3rd trimester exposure risk group, the PEPP 

database and for giving me advise for the statistical software and model generation.  I also would 

to thank the following investigators, Dr. C.S. Sims for providing clinical data and advice 

regarding the clinical definitions of adverse reproductive outcomes; Dr. N. Markovic, Ms. G. 

Harger and the Magee Womens Hospital PEPP staff for the study patient recruitment and 

collection of samples and epidemiological demographic questionnaire data that made it possible 

for me to finish my dissertation project.  This PEPP study was a large scale multiendpoint 

investigation for 4 continuous years funded by NIH RO1-HD 36880 (P.I. M. Romkes), NIH 

RO1-HD 33016 (P.I. W.L. Bigbee) and 5mo1 RR000056-410762 (P.I. J. Roberts).  

I was fortunate to learn molecular biology and cutting edge technologies for genotyping 

under the guidance of Dr. Romkes and I would like to specially thank Ms. C. A. Knoll for 



 vi 

training me in these techniques and providing technical support and advice.  I am grateful to all 

members in my laboratory especially, Dr. L.E. Janocko, Dr. S.C. Buch, S. Lerdtragool, Dr. P.A. 

Escobar and Dr. B.J. Henry for encouragement, friendship and personal support. 

Finally my sincere gratitude is to my family for giving me the opportunity to achieve my 

dream and warm support by countless phone calls day and night and for sending me goodies.  I 

am also gratefully appreciative of my best friend, T. Lee, for tremendous support, friendship and 

cooking dinner for me.     



 vii 

 

 

 

TABLE OF CONTENTS 

 

 

1 INTRODUCTION .................................................................................................................. 1 

1.1 Adverse outcomes in pregnancy..................................................................................... 1 

1.1.1 Public health perspective of adverse reproductive outcome ................................... 1 

1.2 Epidemiology of birthweight and gestational age in the U.S. ........................................ 2 

1.2.1 Intrauterine growth retardation (IUGR) and low birthweight................................. 3 

1.2.2 Preterm delivery...................................................................................................... 5 

1.3 Risk factors ..................................................................................................................... 6 

1.3.1 Maternal age ............................................................................................................ 7 

1.3.2 Maternal ethnicity and socioeconomic status ......................................................... 9 

1.3.3 Maternal alcohol consumption during the pregnancy........................................... 11 

1.3.4 Caffeine ................................................................................................................. 12 

1.3.5 Cigarette smoke exposure ..................................................................................... 14 

1.4 Cigarette consumption in the U.S. ................................................................................ 15 

1.4.1 Cigarette consumption among reproductive-age-women..................................... 16 

1.5 Smoking effects and reproductive outcomes ................................................................ 17 

1.5.1 Smoking effects on newborns ............................................................................... 18 

1.5.1.1 Cigarette smoking and fetal growth retardation and preterm delivery ......... 19 



 viii 

1.5.1.2 Timing of cigarette smoke exposure ............................................................. 19 

1.6 Measurement of cigarette smoke exposure ................................................................... 20 

1.6.1 Cotinine ................................................................................................................. 21 

1.7 Tobacco specific carcinogens ....................................................................................... 22 

1.7.1 Involvement of carcinogenic/mutagenic substances to the development of fetal 

growth retardation and preterm delivery............................................................................... 23 

1.8 Biotransformation ......................................................................................................... 25 

1.8.1 Phase I and II xenobiotic biotransforming enzymes ............................................. 26 

1.8.2 Pharmacogenetics.................................................................................................. 27 

1.8.3 Phase I/II metabolic enzyme genetic polymorphisms and carcinogenesis ........... 29 

1.9 Cytochrome P450.......................................................................................................... 30 

1.9.1 CYP1A1................................................................................................................. 32 

1.9.1.1 CYP1A1 genetic polymorphisms .................................................................. 33 

1.9.2 CYP2E1................................................................................................................. 34 

1.9.2.1 CYP2E1 genetic polymorphisms .................................................................. 35 

1.10 Phase II metabolic enzymes .......................................................................................... 36 

1.10.1 Glutathione S-transferase (GSTs) genes............................................................... 36 

1.10.1.1 GSTM1 .......................................................................................................... 37 

1.10.1.2 GSTT1 ........................................................................................................... 38 

1.10.1.3 GSTM1/GSTT1 and carcinogenesis .............................................................. 39 

1.10.2 NAT2* ................................................................................................................... 41 

1.11 Fetal metabolic enzyme activity ................................................................................... 43 

1.11.1 Phase I metabolic enzymes ................................................................................... 44 



 ix 

1.11.2 Phase II metabolic enzymes .................................................................................. 45 

1.12 Prenatal Exposure and Preeclampsia Prevention (PEPP) study ................................... 45 

2 MATERIALS AND METHODS.......................................................................................... 49 

2.1 Study population........................................................................................................... 49 

2.2 Sample collection and processing ................................................................................. 50 

2.3 DNA isolation............................................................................................................... 51 

2.3.1 Puregene DNA isolation kit .................................................................................. 51 

2.3.2 Instagene DNA isolation kit.................................................................................. 53 

2.4 Phase I/II metabolic enzyme genotyping ...................................................................... 53 

2.5 Quality control .............................................................................................................. 59 

2.5.1 Lab positive control samples................................................................................. 59 

2.5.2 Protocol specific procedures for quality control................................................... 59 

2.5.3 Genotype database specific procedures for quality control .................................. 60 

2.5.4 Laboratory wide quality control............................................................................ 60 

2.6 Data entry and analysis ................................................................................................. 60 

2.6.1 Categorization of phase I/II metabolic enzyme genetic polymorphism genotypes  

                 .............................................................................................................................. 61 

2.6.2 Classification of low birthweight, preterm delivery and small for gestational age  

                 .............................................................................................................................. 62 

2.6.3 Definition of maternal risk group variable in the last trimester ............................ 62 

2.6.4 Univariate analyses ............................................................................................... 63 

2.6.5 Multiple regression analyses ................................................................................. 64 

3 RESULTS ............................................................................................................................. 65 



 x 

3.1 Maternal demographic characteristics .......................................................................... 65 

3.2 Maternal smoking history, alcohol intake and charbroiled meat consumption at   

            enrollment ..................................................................................................................... 67 

3.2.1 The validity of self-reported smoking................................................................... 67 

3.2.2 Smoking history at enrollment .............................................................................. 68 

3.2.3 Alcohol intake and charbroiled meat consumption at enrollment ........................ 69 

3.3 Maternal cigarette smoking and alcohol consumption during the third trimester of   

            pregnancy...................................................................................................................... 71 

3.4 Maternal and newborn phase I/II metabolic enzyme genetic polymorphism allele   

            frequencies .................................................................................................................... 72 

3.5 Classification of low birthweight, preterm delivery and SGA ..................................... 74 

3.6 Maternal demographic characteristics stratified by low birthweight, preterm delivery   

            and SGA........................................................................................................................ 75 

3.6.1 Association of newborn gender with the adverse reproductive outcomes............ 75 

3.6.2 Low birthweight (<2500g) .................................................................................... 76 

3.6.3 Preterm delivery (<37th gestational week) ............................................................ 77 

3.6.4 Low birthweight and preterm delivery (<2500g and <37th gestational week)...... 78 

3.6.5 Small for gestational age (10th percentile birthweight at full term) ...................... 78 

3.7 Maternal cigarette smoke exposure and alcohol consumption prior to pregnancy   

            stratified by low birthweight, preterm delivery and SGA............................................. 80 

3.7.1 Cigarette smoke exposure ..................................................................................... 80 

3.7.2 Alcohol consumption in early pregnancy ............................................................. 82 

3.7.3 Maternal cigarette smoke exposure and alcohol consumption reported during the   



 xi 

                third trimester ........................................................................................................ 83 

3.8 Selected phase I/II metabolic enzyme genetic polymorphism allele frequencies......... 84 

3.8.1 Maternal allele frequencyies of phase I/II metabolic enzyme genetic   

                polymorphisms...................................................................................................... 84 

3.8.2 Newborn allele frequencies of selected phase I/II metabolic enzyme genetic   

                polymorphisms...................................................................................................... 86 

3.9 Univariate logistic regression analyses......................................................................... 87 

3.9.1 Univariate logistic regression analysis for low birthweight (<2500g) .................. 87 

3.9.2 Univariate logistic regression analysis for preterm delivery (<37th week gestation)  

                 .............................................................................................................................. 91 

3.9.3 Univariate logistic regression analysis for low birthweight and preterm delivery   

                (<2500g and <37th week gestation)....................................................................... 94 

3.9.4 Univariate logistic regression analysis for SGA at term (≥37th week gestation) .. 97 

3.10 Multiple logistic regression analysis........................................................................... 100 

3.10.1 Multiple logistic regression analysis for low birthweight (<2500g)................... 100 

3.10.2 Multiple logistic regression analysis for preterm delivery (<37th week gestation)  

                 ............................................................................................................................ 105 

3.10.3 Multiple logistic regression analysis for low birthweight and preterm delivery   

                (<2500g and <37th week gestation)..................................................................... 108 

3.10.4 Multiple logistic regression analysis for SGA in term (≥37th week gestation)   

                infants.................................................................................................................. 111 

3.11 Multivariate linear regression analysis ....................................................................... 120 

3.11.1 Multivariate linear regression for birthweight .................................................... 120 



 xii 

3.11.2 Multivariate linear regression analysis for the 3rd trimester exposure risk group122 

3.12 Summary..................................................................................................................... 125 

4 DISCUSSION..................................................................................................................... 127 

4.1 Low birthweight analyses ........................................................................................... 127 

4.2 Preterm delivery (<37th week of gestation) analyses .................................................. 132 

4.3 Low birthweight and preterm delivery (<2500 g and <37th weeks of gestation) analyses  

             .................................................................................................................................... 134 

4.4 SGA at term delivery (≥37th weeks of gestation) analyses ......................................... 135 

4.5 Risk factors associated with adverse reproductive outcomes ..................................... 137 

4.6 Maternal smoking during the third trimester .............................................................. 137 

4.7 Modulation by GSTT1 genotype and susceptibility of adverse events ....................... 139 

4.8 Elevation of DNA and protein adducts is positively correlated with DNA damage and   

            other health effects including adverse reproductive outcomes ................................... 142 

4.9 Association of elevated DNA adducts in placenta and disruption of placental function  

            ..................................................................................................................................... 143 

4.10 Study limitations ......................................................................................................... 143 

4.10.1 Selection and size of the study population.......................................................... 143 

4.10.2 Caffeine consumption......................................................................................... 144 

4.11 Future directions ......................................................................................................... 145 

4.11.1 Collection of additional maternal demographic and clinical information .......... 145 

4.11.2 CYP2A6 polymorphism and nicotine metabolism.............................................. 145 

4.11.3 GSTP1 polymorphism-the most abundant enzyme observed in fetal liver......... 146 

4.11.4 DNA repair enzyme polymorphisms and adverse reproductive outcome. ......... 147 



 xiii 

4.12 Summary..................................................................................................................... 148 

5 CONCLUSIONS................................................................................................................. 150 

6 Bibliography........................................................................................................................ 154 

 

 



 xiv 

 

 

 

LIST OF TABLES 

 

Table 1.  Risk factors associated with preterm delivery and low birthweight [25, 28-30] ............. 7 

Table 2.  Overall percentage of low birthweight among live births by maternal age in year 2000 

in U.S. [8] ........................................................................................................................ 9 

Table 3.  Partial list of toxic compounds contained in mainstream and sidestream tobacco smoke 

[107] .............................................................................................................................. 23 

Table 4. Carcinogens in cigarette smoke and phase I/II metabolic enzymes responsible for their 

metabolism .................................................................................................................... 29 

Table 5.  Existing human CYP families and their metabolic roles [153] ..................................... 32 

Table 6.  Known CYP1A1 genetic polymorphisms ...................................................................... 34 

Table 7.  Known CYP2E1 genetic polymorphisms ...................................................................... 36 

Table 8.  Partial list of effects of GSTT1-1 mediated metabolites ............................................... 40 

Table 9.  Selected NAT2* genetic polymorphisms ....................................................................... 42 

Table 10.  Biomarkers evaluated in the PEPP study..................................................................... 48 

Table 11.  PCR amplification conditions for phase I/II metabolic enzyme genotypes................. 57 

Table 12.  Summary of phase I/II metabolizing enzymes, RFLP-PCR, differential PCR analysis 

protocols and expected band patterns ............................................................................ 58 

Table 13.  Maternal demographic characteristics in the study population ................................... 67 



 xv 

Table 14.  Maternal smoking history, alcohol intake and charbroiled meat consumption at 

enrollment ...................................................................................................................... 70 

Table 15.  Maternal smoking, alcohol intake and other exposures during the third trimester of 

pregnancy ...................................................................................................................... 72 

Table 16.  Maternal allele frequencies of phase I/II metabolic enzyme genetic polymorphisms. 73 

Table 17.  Newborn allele frequencies of phase I/II metabolic enzyme genetic polymorphisms 74 

Table 18.  Selected maternal demographic characteristics ........................................................... 80 

Table 19.  Maternal cigarette smoke exposure and alcohol consumption prior to pregnancy...... 82 

Table 20.  Cigarette smoke exposure and alcohol consumption during the third trimester of 

pregnancy ...................................................................................................................... 84 

Table 21.  Maternal phase I/II metabolic enzyme genetic polymorphism allele frequencies....... 85 

Table 22.  Newborn phase I/II metabolic enzyme genetic polymorphism allele frequencies ...... 86 

Table 23.  Univariate logistic regression summary for the effects of maternal/newborn 

demographic, lifestyle and genetic factors on low birthweight (<2,500 g)................... 89 

Table 24.  Univariate logistic regression summary for the effects of maternal/newborn 

demographic, lifestyle and genetic factors on preterm delivery (<37th week gestation)92 

Table 25.  Univariate logistic regression summary for the effects of maternal/newborn 

demographic, lifestyle and genetic factors on low birthweight and preterm delivery 

(<2500 g and <37th week gestation) .............................................................................. 95 

Table 26.  Univariate logistic regression summary for the effects of maternal/newborn 

demographic, lifestyle and genetic factors on SGA at term.......................................... 98 



 xv i 

Table 27.  Multivariate logistic regression model for the effects of maternal ethnicity, smoking in 

the 3rd trimester, and maternal/newborn GSTT1 genotype on low birthweight (<2500 g)

..................................................................................................................................... 101 

Table 28.  Multivariate logistic regression model for combined risk of low birthweight conferred 

by maternal/newborn GSTT1 genotypes, ethnicity and maternal smoking during the 3rd 

trimester ....................................................................................................................... 104 

Table 29.  Multivariate logistic regression model for maternal cigarette smoking in the 3rd 

trimester and maternal or newborn GSTT1 and NAT2* genotypes on preterm delivery

..................................................................................................................................... 106 

Table 30.  Multivariate logistic regression model for combined risk of preterm delivery (<37th 

week gestation) conferred by maternal/newborn GSTT1 genotypes and maternal 

smoking in the 3rd trimester ......................................................................................... 107 

Table 31.  Multivariate logistic regression model for the effects of maternal smoking in the 3rd 

trimester and maternal and/or newborn GSTT1 genotype, on low birthweight and 

preterm delivery (<2500g and <37th week gestation) .................................................. 109 

Table 32.  Multivariate logistic regression model for the combined risk of low birthweight and 

preterm delivery (<2500 g and <37th week gestation) conferred by maternal/newborn 

GSTT1 and maternal smoking in the 3rd trimester ....................................................... 110 

Table 33.  Multivariate logistic regression model for the combined effects of maternal ethnicity, 

cigarette smoking during the 3rd trimester, and maternal or newborn GSTT1 genotype, 

on SGA in term (≥37th week gestation) infants........................................................... 112 



 xvii 

Table 34.  Multivariate logistic regression model for modulation of combined risk of SGA in 

term (≥37th week gestation) infants conferred by maternal smoking in the 3rd trimester 

and maternal/newborn GSTT1 genotype ..................................................................... 113 

Table 35. Univariate linear regression summary for the effect of maternal/newborn demographic, 

behavior and genetic factors on birthweight and gestational week ............................. 117 

Table 36.  Multivariate linear regression summary for the effects of ethnicity, maternal smoking 

in the 3rd trimester and maternal or newborn GSTT1 genotype, on birthweight ......... 121 

Table 37.  Multivariate linear regression summary for combined risk of reduction of infant 

birthweight and gestational week conferred by maternal smoking in the 3rd trimester 

and maternal/newborn GSTT1 genotypes.................................................................... 122 

Table 38.  Multivariate linear regression summary for the effect of ethnicity, the 3rd trimester risk 

group, and maternal GSTT1 genotype on infant birthweight ...................................... 124 

Table 39.  Multivariate linear regression summary for combined association of ethnicity, the 3rd 

trimester risk group and maternal/newborn GSTT1 genotypes on infant birthweight 125 

 



 xviii 

 

 

 

LIST OF FIGURES 

Figure 1. Model of environmental and genetic interactions that modulate newborn susceptibility 

to adverse effects ........................................................................................................... 47 

Figure 2.  Polymerase chain reaction [193] .................................................................................. 55 

Figure 3.  Genotype analysis  for CYP2E1 and GSTM1 ............................................................... 55 

Figure 4.  Correlation between birthweight and gestational week in the study population.......... 75 

Figure 5.  Combined association of maternal ethnicity, cigarette smoking during the 3rd trimester 

and maternal or newborn GSTT1 genotype with the proportion of having low 

birthweight infants ....................................................................................................... 103 

Figure 6.  Combined association of maternal ethnicity, cigarette smoking during the 3rd trimester 

and combination of maternal/newborn GSTT1 genotypes with proportion of low 

birthweight newborns .................................................................................................. 105 

Figure 7.  Combined association of exposure factors: maternal cigarette smoking during the 3rd 

trimester and combination of maternal/newborn GSTT1 genotype with proportion of 

preterm delivery infants............................................................................................... 108 

Figure 8.  Combined association of maternal cigarette smoking during the 3rd trimester and 

combination of maternal/newborn GSTT1 genotype with proportion of low birthweight 

and preterm delivery (<2500 g and <37th week gestation) .......................................... 111 



 xix 

Figure 9.  Combined association of maternal ethnicity, cigarette smoking during the 3rd trimester 

and combination of maternal/newborn GSTT1 genotypes with proportion of SGA in 

term (>37th week gestation) infants ............................................................................. 114 

 



 xx 

LIST OF ABBREVIATIONS  

 

 

4-ABP  Hb 4-aminobiphenyl-hemoglobin 

AGA  Average for gestational age 

AFMU  5-acetylamino-6-formylamino-3-methyluracil 

AHH  Aromatic hydrocarbon hydroxylase 

BD  1,3-butadiene  

bp  base pair 

CYP  Cytochrome P450  

DCM  Dichloromethane  

DEB  [2,2’]bioxiranyl (aka 1,2:3,4-dipoxy butane) 

DMSO  Dimethyl sulfoxide 

DNA  Deoxyribonucleic acid 

EO  Epoxide  

FAS  Fetal alcohol syndrome  

FISH  Fluorescent in situ hybridization  

GED  General equivalency diploma  

GPA  Glycophorin A  

GSH  Glutathione  

GST  Glutathione S-transferase  

GSTM1 Glutathione  S-Transferase mu 1  

GSTT1  Glutathione S-Transferase theta 1  



 xxi 

GW  Gestational week 

HPRT   Hypoxanthine-guanine phosphoribosyl transferase 

IUGR  Intrauterine growth retardation  

MEB  2-vinyloxirane (aka 3,4-epoxy butane) 

MRN  Medical record number  

MWH  Magee-Womens Hospital 

NAT  N-acetyltransferase  

NAT2*  N-acetyl transferase 2 

NATP  N-acetyltransferase pseudogene  

NC  Non-conjugators  

NER  Nucleotide excision repair 

NNAL  4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol  

NNAL-Gluc 4-[(methylnitrosamino)-1-(3-pyridyl)but-1-yl]β-O-D-glucosiduronic acid  

NNK  4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone  

NNN  N'-nitrosonornicotine  

OB/GYN Obstetrics and gynecology  

8-OHdG 8-hydroxy-2'-deoxyguanosine 

OR  Odds ratio 

PAH  Polycyclic aromatic hydrocarbon  

PEPP  Prenatal Exposure and Preeclampsia Prevention  

RFLP-PCR Restriction fragment length polymorphism-polymerase chain reaction 

RNA  Ribonucleic acid 

SCGE  Single cell gel electrophoresis  



 xxii 

SE  Standard error 

SGA  Small for gestational age  

SO  2-phenyloxirane (aka styrene 7,8-oxide) 

SNP  Single nucleotide polymorphisms 

TBE  Tris Borate EDT



 

1 

1 INTRODUCTION 

 
 
 

1.1 Adverse outcomes in pregnancy 

 At the beginning of the 20th century, approximately 30% of infants did not survive the 

first year of life [1].  The causes of infant mortality are strongly associated with adverse 

reproductive outcomes such as infant prematurity, low birthweight, congenital anomalies 

including heart disease, Potter’s syndrome, and trisomy [2].  Improvement of environmental 

interventions, nutrition, clinical medicine, standards of living conditions and increases in 

education levels, resulted in a dramatic decline of infant mortality of more than 90% to 

approximately 7.2 per 1000 live births in the late 1990’s compared with that in the beginning of 

the century [1].  Unlike infant mortality, however, the rate of low birthweight in the U.S. has not 

declined significantly in the last decade.    

 

1.1.1 Public health perspective of adverse reproductive outcome  

 From a public health perspective, improvement of early risk detection and prevention 

strategies will make it possible to reduce adverse outcomes in pregnancy and support a healthier 

and better quality of life for both mothers and newborns.  Identification of factors associated with 

a poor pregnancy outcome, would help to identify high risk individuals for targeted monitoring 

and intervention measures [3].  Reduction of adverse reproductive outcomes would not only 

reduce substantial expenses at labor and delivery and subsequent intensive care but also reduce 

lifelong suffering for the affected children and their families. 
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 Despite extensive epidemiological research, factors thought to be associated with adverse 

reproductive outcomes have not yet been fully characterized.  A few known risk factors include 

maternal health conditions such as diabetes, heart disease and erythroblastosis.  However, other 

factors including lifestyle and behavior factors such as maternal age, nutrition, cigarette smoking 

and alcohol intake are more controversial [4].  With advancements in medical technology, 

adverse outcomes caused by maternal health conditions have declined.  However, further 

investigations are necessary in order to better understand the contribution of genetic, 

environmental, maternal lifestyle and behavioral factors to adverse reproductive outcomes.   

 

1.2 Epidemiology of birthweight and gestational age in the U.S. 

In the U.S., the frequency distribution of birthweight is normally distributed with an 

extended lower tail accounting for approximately 2 to 5% of births [5].  The birthweight 

distribution for term births (≥37 weeks of gestation) is closely associated with gestational age but 

less correlated with preterm births (<37 weeks of gestation).  The majority of births occuring in 

the lower tail of the birthweight distribution are preterm births but not exclusively [6].  Wilcox 

and et al. [5] suggested that the birthweight distribution in preterm and term births are two 

independent events.  For example, an exposure that affects fetal growth causing birthweight 

reduction does not necessarily affect the risk of preterm delivery.   

 

Birthweight and gestational week are powerful predictors of infant survival and other 

health conditions in infancy and also in childhood [1, 2, 4, 5, 7].  Approximately 75% of infants 

who die within their first year after birth, are low birthweight babies and more than half of these 
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are preterm deliveries [4].  At the population level, the mean birthweight is associated with infant 

mortality.  Groups with lower mean birthweight often have higher infant mortality. In the U.S., 

interventions to increase birthweight are recommended as a strategy to improve the infant 

mortality rate [5].   

 

In the year 2000, approximately 7.6% of all infants were born low birthweight, defined as 

less than 2,500 grams, and the percentage of infants delivered at very low birthweight, defined as 

less than 1,500 grams, was approximately 1.43% in both singleton and multiple births.  

Approximately 6.0% of infants were singleton births with low birthweight in 2000 in the U.S. 

[8].    

 

1.2.1 Intrauterine growth retardation (IUGR) and low birthweight  

In general, low birthweight infants are typically 20 or greater times more likely to die 

than infants of normal birthweight within the first year of life [5].  Mortality ranges more than 

100-fold across the spectrum of birthweights and this phenomenon has been observed in all 

populations and occurs with stillbirth and with neonatal or infant mortality [8, 9].  In addition, it 

is strongly associated with adverse health outcomes later in life such as asthma [10], low IQ [11, 

12] and hypertension [13].  Moreover, extensive epidemiological studies have demonstrated an 

association between birthweight and adult diseases such as cardiovascular diseases [14], diabetes 

[15], cancers [16, 17], and impairments of hearing or vision [18].   

 

Reduction of birthweight is commonly caused by the restriction of fetal growth.  From a 

clinical standpoint, infants born weighing less than the tenth percentile for gestational age are 
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generally classified as growth restricted.  The cutoff values are determined by population based 

standards.  However, this classification may not be sensitive and/or specific enough to correctly 

identify growth retarded infants [19].   

 

The etiologies of fetal growth retardation are complex and still not completely 

understood.  Most growth retardation occurs after the 28th week of gestation, with increasing 

frequency to term [20].  However, it may occur at any stage of pregnancy.  Heins et al. [4] 

suggested that genetic defects and injury to the developing embryo in early pregnancy might 

cause infant growth retardation later.  Lin [20] described that if growth retardation occurs during 

the first 16 weeks of embryonic and fetal life, the primary effect is a reduction of cell number 

and these infants are usually small in size with a reduction of all external measurements 

including weight, length, and head circumference.  This type of growth retardation is frequently 

associated with congenital malformations, genetic abnormalities and other teratogenic effects 

with a higher mortality rate [20].  Perinatal mortality for fetuses without chromosome anomalies 

was approximately 27% while roughly 64% was observed for early onset SGA fetuses with 

anomalies [21].  Chromosome abnorma lities such as Down’s syndrome, trisomy 13, and trisomy 

18 are more commonly seen among these growth retarded infants [4, 22].  Chromosome loss or 

additions of extra segments affecting a large number of genes located on the chromosome causes 

significant disability, including fetal growth retardation.  Roughly 7% of infants with growth 

retardation initiated at any stages of pregnancy had chromosomal abnormalities [21].  Moreover, 

infants with growth retardation started in early pregnancy have a much higher proportion (19%) 

of having chromosome abnormalities [22, 23].   
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From 32 weeks of gestation to term, fetal cell size rapidly increases, along with the rate 

of glycogen and fat deposition.  Growth retardation occurring during this period results in a 

disproportionately larger head, smaller abdominal organs and a lack of subcutaneous fat [20].  

Maternal health conditions such as hypertension, preeclampsia, placental infarcts and multiple 

pregnancy are strongly associated with this type of fetal growth retardation [20].  The third type 

of fetal growth retardation that Lin [20] described was the combination of those two types and 

Lin speculated that the timing of the interaction of risk factors including maternal smoking and 

alcohol intake, and the stage of gestation plays an important role in the development and 

progression of fetal growth retardation.   

 

1.2.2 Preterm delivery 

Preterm labor and delivery occurs in 6-10% of pregnancies and is the major factor 

contributing to perinatal morbidity and mortality [24, 25].  Almost one-fifth of all very preterm 

infants (less than 32 weeks) do not survive the first year of life, compared with about 1% of 

infants born preterm (32 to 36 weeks) and 0.3% of infants born at term (37 to 41 weeks) [8].  

Preterm newborns who do survive are more likely to be neurologically impaired [26].  There are 

four major causes of preterm delivery: preterm labor, preterm/premature rupture of the 

membranes, maternal medical or obstetric complications ; and fetal distress or demise.  The 

proportion of each event depends on the population characteristics [25].  A large number of risk 

factors which are summarized below may modulate the proportions of these events.   
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1.3 Risk factors  

Risk factor analyses and identification are a powerful tool to identify high-risk 

individuals for adverse reproductive outcomes and to reduce these risks for better outcomes.  

Moreover, characterization of risk factors could be helpful for better understanding the etiologies 

of these adverse events.  Galbraith et al. [27] reported that two thirds of growth retarded infants 

are derived from the population with known risk factors, and one third come from the population 

with unknown risk factors.   

 

The risk factors can be roughly categorized into fetal, placental and maternal factors for 

adverse reproductive outcomes.  Fetal factors include genetic conditions and congenital 

anomalies.  Placental factors tend to involve abnormally implanted or formed placentas.  

Maternal factors include infection, nutrition, uterine perfusion of the placenta, drug use, various 

medical conditions and certain demographic variables [19].   

 

Maternal medical and obstetric factors tend to have a stronger association with adverse 

reproductive events.  However, maternal demographic and behavioral factors such as maternal 

age, socioeconomic status, cigarette smoking exposure and alcohol intake during pregnancy are 

more controversial.  Extensive epidemiological studies have been conducted to determine if 

these maternal lifestyle factors are significantly associated with adverse outcomes [25, 28-31].  

Table 1 summarizes a partial list of maternal risks associated with preterm delivery and low 

birthweight.  
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Table 1.  Risk factors associated with preterm delivery and low birthweight 
[25, 28-30]  
 

 

 Risk categories Known risk factors 
Demographic Age  

Race 
Socioeconomic status  
Marital status 

Behavioral Smoking 
Other substance abuse 
Poor nutrition 
Excessive physical activity 

Health Care Absent or inadequate prenatal care 
Medical Risks     
Predating Pregnancy 

Poor obstetric history 
Uterine or cervical malformations\myomas/DES   
exposure  
Selected medical conditions 

Current Pregnancy   
Complications 

Multiple gestations 
Abnormalities in amniotic fluid volume  
Vaginal bleeding 
Fetal abnormalities  
Serious infection  
Abdominal surgery 

 

1.3.1 Maternal age 

Due to women’s career priorities, advanced education, control over fertility, financial 

concerns, late and second marriages and infertility, increasing numbers of older women are 

bearing children.  The number of pregnancies among the age group 35 to 40 years in the U.S. is 

projected to increase 37% [32].  Since maternal age is a well-known risk factor of number of 

adverse reproductive outcomes such as fetus with chromosomal abnormalities [32, 33], incidence 

of those adverse events is expected to increase.  Moreover, maternal age has been found to be a 

risk factor for fetal growth retardation resulting in low birthweight infants [3, 8, 29, 34].   
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Not only older women but also younger women are at a high risk for adverse 

reproductive outcomes.  Teenage mothers have an increased risk of low birthweight, preterm 

delivery and a higher rate of infant mortality [35-39].  For early teenage pregnancy, both 

maternal biological factors including immaturity of the female reproductive system and 

inadequate prenatal weight gain [37], together with sociocultural factors [36, 39], and lifestyle 

choices made by adolescents, combine to influence the risk of delivering a low birthweight infant 

[35].   

 

There is therefore, a slight U-shaped association of low birthweight status by maternal 

age.  Women under 20 years and over 35 years are at increased risk for a poor pregnancy 

outcome, compared with women between 25 and 29 years of age [3]. 

 

The data summarized in Table 2 shows that low birthweight rates tend to be highest 

among the youngest (< 15 years old) and the oldest (≥ 40 years old) age groups with the 

percentage of low birthweight of 14.1% and 18.2% respectively.  However, much of the low 

birthweight risk for the latter age group is attributable to the greater numbers of multiple births 

[8].   

 

 

 

 

 



 

9 

Table 2.  Overall percentage of low birthweight among live births by maternal 

age in year 2000 in U.S. [8] 

 
 

Maternal age Proportion of low birthweight infant (%) 
<15 years old 14.1 
15-19 years old 9.5 
20-24 years old 7.6 
25-29 years old 6.9 
30-34 years old 6.9 
35-39 years old 8.3 
40-44 years old 10.0 
≥45 years old 18.2 

 

1.3.2 Maternal ethnicity and socioeconomic status  

There are significant differences in low birthweight, preterm delivery and mortality rates 

among different racial groups.  African American infants are more than twice as likely to die as 

Caucasian infants [1, 40-47].  The median birthweight for all live births for the year 2000 in the 

U.S. [8] was 3,350 grams (3,390 grams in Caucasians  and 3,180 grams in African Americans).  

Numerous research studies have been undertaken to elucidate the reasons for this disparity.   

 

 There is a clear association between maternal ethnicity and preterm delivery.  The 

percentage of preterm African American neonates born prior to 32 weeks’ gestation is higher 

than that for Caucasian preterm neonates (23% vs. 17%).  In addition, African American women 

are more likely to deliver at a younger age, are less educated, and have a lower socioeconomic 

status.  Thus, other risk factors such as maternal age and socioeconomic status significantly 

interact with ethnicity [25].     
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Much of the disparity between the races in the frequency of preterm delivery and low 

birthweight has been attributed to differences in socioeconomic status.  Lower socioeconomic 

status may be associated with poorer nutrition, increased exposure to infectious agents, adverse 

environmental factors, and increased stress during pregnancy [47].  Moreover, some maternal 

risk behaviors including cigarette smoking, alcohol consumption and avoiding prenatal care, may 

be related to socioeconomic status.  Among the U.S. population, a higher percentage of African 

American women have lower socioeconomic status than Caucasians.  However, James [45] has 

reported that despite similar socioeconomic profiles including economic disadvantages and 

reduced access to prenatal care, infant mortality among Mexican Americans is less than half that 

observed in African Americans.  He suggested that there are unknown risk factors unique to the 

African American community and lifestyles or some other protective social and psychological 

content of Mexican culture [45].   

 

Lower socioeconomic status could also affect maternal health status at the time of 

conception.  Rawlings et al. [43] has reported that African American women tend to require a 

longer time between pregnancies than Caucasians to achieve an optimal outcome.  This 

difference could reflect lower physiologic reserves [47].  However, African American women 

are approximately 1.6 times as likely as Caucasian to have shorter interval between deliveries 

[43, 47]. 

 

Lieberman [47] also suggested that the adverse pregnancy outcomes affected by maternal 

health status may reflect not only her recent behavior but also her lifetime health status and even 

for over a number of generations.  Wang et al. [42] has reported that there is a significantly 
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higher risk of having low birthweight infant if the mother was also a low birthweight infant  

herself in both African Americans and Caucasians in the U. S.   

 

Differences in adverse pregnancy outcomes continue to exist even after the adjustment of 

the mother’s socioeconomic status [48].  The excess risk for low birthweight among African 

Americans as compared with Caucasian women has been noted to be greater among low risk 

mothers, classified as the absence of high level of cigarette smoking and other harmful 

exposures, than among high-risk mothers [46].  Wilcox [49] suggested that there might be 

involvement of genetic factors modulating adverse reproductive outcomes based on ethnic 

groups.  Our understanding of racial differences in the occurrence of low birthweight and the 

underlying biological mechanisms of adverse events is very limited.   

 

While various factors have been found to be associated with increased risk for having a 

low birthweight infant, including maternal anthropometrics, health and age, prenatal care, and 

socioeconomic status, none have been found to entirely and adequately explain the continued 

birthweight differential observed between African Americans and Caucasians.   

 

1.3.3 Maternal alcohol consumption during the pregnancy  

 In 1973, Jones et al. described a constellation of abnormalities termed the fetal alcohol 

syndrome (FAS), which provided a clear recognition and acceptance of developmental toxicity 

caused by alcohol [50-52].  Since then, extensive clinical, epidemiological and experimental 

studies of alcohol effects on fetal adverse outcomes have been demonstrated.  FAS comprises 

craniofacial dysmorphism, include prenatal and postnatal growth retardation, retarded 
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psychomotor and intellectual development, and other nonspecific major and minor abnormalities 

[51, 52].  FAS has been described in all races and countries.  The estimated worldwide incidence 

of FAS is 1.9 per 1000 live births.  FAS rates in the U.S. vary from approximately 2.5% to 4%.  

Moreover, in utero exposure to low levels of ethanol has been associated with a wide range of 

effects, including isolated components of FAS and milder forms of neurological and behavioral 

disorders [51].  In addition, several studies have been reported which show that alcohol 

consumption also affects on birthweight.  Little [53] prospectively studied 800 women to 

evaluate the effects of drinking on birthweight.  After adjusting for other known risk factors 

including smoking, gestational age, maternal height, age, parity and sex of the fetus, a dose-

related association was observed, such that each ounce of absolute ethanol consumed per day 

during late pregnancy reduced 160 g of birthweight.  However, the mechanism of alcohol’s 

effects on preterm delivery and fetal growth retardation is not fully understood.   

 

1.3.4 Caffeine  

Caffeine is widely used in multiple different beverages, including coffee, tea, many 

carbonated soft drinks and also in chocolate.  Caffeine consumption in the U. S. is estimated to 

be 4.5 kg/person/year [54].  The per-capita consumption of caffeine from all sources is estimated 

to be about 3–7 mg/kg per day, or ~200 mg/day [55].  Consumption of caffeinated beverages 

during pregnancy is quite common and is estimated to be approximately 144 mg/day, or 2.4 

mg/kg for a 60 kg human [56].  In newborns, the plasma half- life for caffeine is 4 days [57].  

Among adults, the half- life averages 2-6 h in healthy nonsmokers, although its metabolism is 

prolonged in pregnant women to 10-20 h [58].   
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Extensive epidemiological studies have reported some evidence that caffeine 

consumption during pregnancy causes fetal growth retardation and leads to low birthweight in 

offspring [59-62].  Total caffeine consumption of ≥300 mg daily during pregnancy has been 

associated with reduced birthweight, increased risk of low birthweight infants, and/or IUGR in 

case control [61], prospective [63-65], and retrospective studies [66-68].  Peacock et al. [69] 

demonstrated a 6% reduction in birthweight attributable to a caffeine intake of ≥1400 mg per 

week after adjustment for smoking and alcohol consumption.  Martin et al. reported a dose 

response of caffeine intake to increased risk of low birthweight with heavy caffeine use was 

associated with a mean of 105 g reduction in birthweight [63].  The adjusted relative risk of 

having a low birthweight infant was 1.4 for ≤150 mg of caffeine per day, 2.3 for 151-300 mg, 

and 4.6 for >300 mg daily.  Corresponding decreases in mean birthweight were 6 g, 31 g, and 

105 g, respectively.  In addition, Fenster et al. [70] has demonstrated that caffeine intake in early 

pregnancy also causes fetal growth retardation.  Women who reduced caffeine intake to ≤300 

mg/day within 6 weeks of their last menstrual period reduced the risk of having low birthweight 

newborns compared with women who did not reduce their intake early in their pregnancy.   

 

Caffeine metabolism occurs in the liver via microsomal cytochrome P450 (CYP) 

monoxygenases and the soluble enzyme xanthine oxidase.  Several studies have indicated that 

newborns are extremely deficient in metabolizing caffeine and postnatal age, gestational age and 

birthweight of premature infants are significant covariates in the maturation of caffeine 

metabolism [71-73].  The slow metabolism of caffeine in premature infants is probably related to 

the low activity of the hepatic enzymes, and the increase of caffeine metabolism is most likely 
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related to maturation of the hepatic enzymes.  Thus, even low quantities of caffeine could lead to 

toxic effects in newborns [71].   

 

Despite extensive research of caffeine and fetal growth retardation and prematurity, the 

etiologies still remain unclear.  Two biological mechanisms for these adverse reproductive 

outcomes have been hypothesized.  Given the chemical similarity of caffeine to the purine 

components of nucleic acids, caffeine may interfere as a genotoxic agent.  Several studies have 

reported that caffeine is a well-established inhibitor of DNA synthesis and repair in lower 

organisms and simple cell systems.  However, these phenomena have not been observed in 

mammalian models.  Secondly, caffeine may cause vasoconstriction of placental intervillous 

blood flow, which in turn, may contribute to the potential risk of hypoxia and fetal growth 

retardation [56, 59, 74]. 

 

1.3.5 Cigarette smoke exposure  

Cigarette smoking is one of the most strongly associated preventable risk factors for 

many adverse reproductive outcomes [75, 76].  Cigarette smoke is known to contain thousands 

of mutagenic, carcinogenic and teratogenic compounds that may exert toxic effects affecting on 

reproductive outcomes.  The potential effects of cigarette smoke exposure on reproductive 

outcomes are a major scientific and public health concern.  For example, nicotine is known to be 

vasoactive and is thought to reduce placental and fetal circulation [76].  Carbon monoxide is 

known to deplete both maternal and fetal oxygen supplies [77, 78].  Moreover, lead is a known 

neurotoxin and some polycyclic aromatic hydrocarbons are mutagenic [79, 80].   
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Both active and passive cigarette smoke exposure during pregnancy are known as the 

strongest preventable causative factors of fetal growth inhibition resulting in preterm delivery 

and low birthweight [28-30, 81-83].  In 1957, Simpson et al. first reported an association 

between smoking and preterm labor/delivery [84].  Several studies have demonstrated that the 

risk of delivering at <37 weeks of gestation was increased an estimated 30% among women who 

smoked during pregnancy and approximately 13 to 20% of all preterm births could be attributed 

to maternal smoking [25, 76].  Moreover, according to the National Vital Statistics Report for the 

year 2000 [8], the association of smoking and  low birthweight has been shown in birth certificate 

data as well as in other studies.  The incidence of low birthweight among infants born to smokers 

was two-thirds higher than that for nonsmokers, 11.9% compared with 7.2% respectively [8].  

Moreover, 11.2% of infants born to light smokers (1 to 5 cigarettes per day) are low birthweight, 

which is approximately 56% higher than that for nonsmokers [8].   

 

The etiologies of IUGR caused by maternal cigarette smoking are still unclear.  Some of 

the mechanisms by which cigarette smoking may affect birthweight are reduction of expanding 

plasma volume which increases maternal plasma carbon monoxide concentration and as a 

consequence increases fetal blood carbon monoxide, increasing maternal fetal blood viscosity 

[85]. 

 

1.4 Cigarette consumption in the U.S. 

Cigarette smoking is known as the most widely recognized preventable human health 

hazard for coronary heart disease, stroke, cancer, chronic obstructive lung disease and other 

circulatory diseases [86].  Cigarette smoking was first introduced to the U.S. in the mid 19th 
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century and became increasingly popular among adult men, followed by adult women in the first 

half of the 20th century.  The average annual consumption of cigarettes reached its highest levels 

of 4345 per adult man in the mid 1960’s and has gradually decreased after the first Surgeon 

General’s report describing smoking as a cancer causing agent [87].  The average annual 

consumption among adult men in the U.S. has dropped to 2261 in 1998 [88].  In 1999, an 

estimated 46.5 million adults (23.5%) in the U.S. were current smokers and the prevalence of 

smoking was highest among the younger generation [88-90].  The cigarette smoking prevalence 

rate varies according to ethnicity, socioeconomic status and educational levels.  Among different 

races, Native American/Alaska natives have the highest smoking prevalence in both men and 

women followed by African American and Caucasians, and the Asian/Pacific Islanders with the 

lowest rates [88-90].  In addition to this, the smoking prevalence was highest among the group 

with less than 12 years of education and lower social economic status in all races in the U.S. 

[88].   

 

1.4.1 Cigarette consumption among reproductive-age-women 

 Cigarette smoking among women began to increase in the 1920’s following public 

acceptance of female smokers.  Cigarette consumption among females reached a peak in 1965 

and then gradually decreased following the decline of male smoking prevalence [87].  In the 

1950s, the ratio of smokers between men and women was 5:1, but in the 1990s, the ratio was 

close to 1:1.  Since 1990, smoking prevalence among both men and women has remained 

constant (approximately 28.0% for men and 22.5% for women) [88, 89, 91, 92].  In 1999, 

approximately 21.5% of reproductive-age-women were current smokers and more than half 

continued smoking during pregnancy [89, 91].  Approximately 30% of pregnant women who 
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smoke during the 1st trimester quit smoking for the duration of the pregnancy.  Unfortunately, up 

to 60% of these women will return to smoking within the first 6 months postpartum and 80% to 

90% will have experienced a relapse by 12 months postpartum.  The women who quit smoking 

at the 3rd trimester are more likely to start smoking after the delivery compared to the women 

who quit smoking at an earlier time point during pregnancy [93].  Smoking prevalence among 

pregnant women is further stratified by level of education, marital status and maternal age.  

Young, unmarried women who have lower education levels are more likely to continue smoking 

during pregnancy [93].  Moreover, among women aged 17 to 18 years, the smoking prevalence 

has increased from 1968 to 1979 and in the 1990s, female adolescents were smoking at a rate 

that surpassed those of male adolescents [92, 94].  Compared with older women, young pregnant 

women were more likely to be active cigarette smokers and least likely to quit when they became 

pregnant [92].  Therefore, smoking during the reproductive age of women continues to be a 

major public health concern.  Extensive epidemiological studies have been done in the area of 

maternal and newborn health defects caused by smoking due to public health concerns regarding 

the effect of smoking on women’s health as well as the effect on fetuses when women smoke 

during pregnancy and/or are exposed to environmental tobacco smoke.   

 

1.5 Smoking effects and reproductive outcomes 

Due to environmental interventions, improvements in nutrition, advances in clinical 

medicine, improvements in access to health care, improvements in surveillance and monitoring 

of diseases, increases in education levels, and improvements in standard of living maternal and 

infant mortalities had dramatically dropped in the last century [1, 95].  Cigarette smoke, which is 

known as a major preventable risk factor of causing number of different health problems, is also 
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associated with many adverse reproductive health effects including infertility [96], ectopic 

pregnancy [97, 98], spontaneous abortion [99], placenta previa [75] and abruptio placentae [91]. 

          

1.5.1 Smoking effects on newborns  

The risks of maternal lifestyle including alcohol consumption and cigarette smoking 

during pregnancy on fetal health and development have been extensively stud ied.  Maternal 

smoking is known to reduce fetal oxygenation through increased blood levels of 

carboxyhemoglobin and through impairment of oxygen unloading [100, 101].  Nicotine, which is 

one of the major chemical substances in tobacco products, and is metabolized by phase I 

metabolic enzymes, also causes vasoconstriction, which in turn causes cyclin synthesis, 

increased vascular resistance and decreased fetal blood flow [85].  Since the placenta itself 

requires approximately 50% of oxygen and glucose extracted from uterine circulation under 

normal conditions, reducing these substrates’ availabilities causes reduction of oxygen and 

glucose and increases the metabolism of amino acid s, establishing a complex balance of nutrient 

utilization between itself and the fetus [85].  Therefore, maternal smoking could cause damage to 

the developing fetal organs, making them vulnerable to disease, or it may interfere with the 

immune system, predisposing the child to infections or other diseases [102].   

 

Several adverse prenatal outcomes caused by maternal cigarette smoking during 

pregnancy which have been investigated include intrauterine growth retardation (IUGR) [85], 

prenatal mortality [75], preterm delivery [103], sudden infant death syndrome [104] congenital 

malformations [105], central nervous system defects [106], cardiac defects [107], gastroschisis 

[108], limb reduction defects, oral clefts [109], learning behavioral and attention disorders and 
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mental retardation [12, 51, 110].  In addition, extensive epidemiological studies have been under 

taken to investigate potential associations between maternal cigarette smoking and childhood 

cancer especially leukemia [17, 111-113] and cancer in early adulthood [114-116].     

 

1.5.1.1 Cigarette smoking and fetal growth retardation and preterm delivery 

Smoking during pregnancy is one of the strongest preventable risk factors of fetal growth 

retardation that is associated with preterm delivery and low birthweight infant.  The reported 

reduction of birthweight caused by maternal cigarette smoking is an average of 200 g, and there 

is a clear dose-response correlation between birthweight and number of cigarettes smoked during 

pregnancy [29, 76, 82].  Roquer et al. [82] reported that weight reduction for term newborns was 

458 g between mothers smoking more than 10 cigarette/day compared to those who neither 

smoked or were passively exposed to tobacco smoke (p<0.001).  Moreover, not only maternal 

cigarette smoking but also environmental cigarette smoke exposure causes adverse pregnancy 

outcomes including fatal growth retardation and preterm delivery that lead to low birthweight 

[107, 117-119].  The weight reduction among newborns whose mothers were passively exposed 

to tobacco smoke was about 192 g [82]. 

 

1.5.1.2 Timing of cigarette smoke exposure  

Fetal length increases most rapidly towards the end of the second trimester, while weight 

gain primarily occurs during the third trimester [20, 85]. Therefore, maternal cigarette smoke 

exposure during those periods would be critical for inhibiting fetal growth.  Lieberman et al. [30] 

demonstrated that women who continue to smoke during pregnancy have a two fold increased 
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risk of giving birth to undersized infants than were nonsmokers.  No association with IUGR was 

observed for women who quit smoking before the third trimester.  On the other hand, women 

who began smoking during the second or third trimester of their pregnancy had a rate of small-

for-gestational-age birth close to that for women who smoked throughout pregnancy [30].   

 

Lin [20] and Heins et al. [4], however, suggested that fetal growth retardation could occur 

at a much earlier stage with involvement of genetic abnormalities and other teratogenic effects.  

Active and passive cigarette smoke exposure might result in significant genotoxic and 

chromosomal damage to the embryo that affect fetal growth in later gestational stages.  Lin [20] 

suggested that the interaction and combination of risk factors including maternal behavior, 

medical and obstetrical factors, and stage of gestation could be the important factors of 

progression of fetal growth retardation.   

 

1.6 Measurement of cigarette smoke exposure  

A large number of epidemiological studies have examined the association between 

maternal cigarette smoking and low birthweight utilizing self-reported cigarette smoke 

exposures.  However, several studies have suggested the presence of self- reporting bias.  Etter et 

al. [120] had provided misclassification rates for current cigarette smokers who reported as non-

smokers.  Misclassification rates tend to be small but the rates are found to be different by 

ethnicity.  The rates of minority groups are more likely misclassified.   

 

Biochemical assessment gives much clearer indications of the effects of cigarette smoke 

exposure on phys iological parameters and reduces misclassification.  Cotinine, which is one of 
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the primary metabolites of nicotine, has been widely used as a biomarker for assessment of 

active or passive exposure to cigarette smoke.  Single and also multiple time point cotinine 

measurement studies have been done to demonstrate a more clear association between maternal 

cigarette smoking and also passive smoke exposure and fetal growth retardation [121-124].  In 

addition, cotinine can be detected in cord blood and its concentrations are related to quantity of 

daily maternal smoking and passive cigarette smoke exposures during pregnancy [125, 126].  

Cord serum cotinine appears to be the most adequate biomarker of fetal exposure to tobacco 

smoke at the end of pregnancy, distinguishing not only active smoking from passive smoke 

exposure but also exposure to environmental tobacco smoke from non-exposure [126]. 

 

1.6.1 Cotinine  

Cotinine levels are a widely used biomarker for detecting active and passive cigarette 

smoke exposures.  However, there are wide interindividual differences in nicotine-cotinine 

metabolism that are mainly mediated by the CYP2A6 metabolic enzyme.  CYP2A6 is 

predominantly an hepatic enzyme with some expression observed in specialized extrahepatic cell 

types.  Nicotine and a few other tobacco specific nitrosamines are metabolized by this enzyme.  

Nicotine is first oxidized to nicotine iminium ion by CYP2A6 and subsequently to cotinine by 

cytosolic aldehyde oxidase.  In this reaction, up to 80% of nicotine is metabolized to cotinine 

[127].   

 

Recently, a number of genetic polymorphisms in this gene have been identified which 

influence the enzyme activities and characteristics.  Yang et al. [128] has reported that a CYP2A6 

polymorphism which results in loss of enzyme activity was significantly associated with the 
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urinary cotinine level.  Therefore, CYP2A6 polymorphisms may modulate the amount of 

nicotine/cotinine exposure to individuals and may affect adverse pregnancy outcomes.  

 

Cotinine is a sensitive and specific biomarker for cigarette smoke exposure.  However, it 

has very short lifetime (48 h).  Thus, it is not an ideal marker to detect cigarette smoke exposure 

more than two days ago.  It would be difficult to detect moderate smokers who do not smoke 

daily.  Moreover, cotinine level widely reflects based on the interval of time between the last 

exposure and measurement time.  Cotinine levels may therefore produce false negative results of 

smoking status and/or the level of tobacco smoke exposures.      

 

1.7 Tobacco specific carcinogens  

Although more than 4000 chemical compounds have been identified in cigarette smoke, 

the biological activities of only a few hundred have been characterized [129].  Many tobacco 

smoke constituents are defined as promoters of the neoplastic process, some are mutagenic, some 

are neurotoxic, some cause or intensify allergies, and some are fetotoxic [86].  It is also well 

documented that the concentrations of most tobacco smoke constituents associated with serious 

health damaging properties are higher in side-stream than in mainstream smoke [107].   

 

Based on types of tobacco, styles of smoking and sources of smoke such as mainstream  

smoke and sidestream smoke,  the composition of chemical compounds contained in smoke are 

different [107].  These hazardous substances are qualitatively similar in both mainstream and 

sidestream, although quantitatively, sidestream contains much more of almost each substance.  

The quantitative difference between chemical constituents of these two types of smoke 
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represents a factor between 2 to a few hundred [107].  Table 3 summarizes a partial listing of 

known carcinogens/mutagens contained in mainstream and sidestream smoke. 

 

Table 3.  Partial list of toxic compounds contained in mainstream and 

sidestream tobacco smoke [107] 

 
 
Compounds Examples Carcinogenicity Unit Mainstream Sidestream 
Aromatic 
amines 

Aniline 
o-Toluidine 
ß -Naphthylamine 
4-Aminobiphenyl 

+ 
+ 
+ 
+ 

ng/cigarette 64 
162 
1.7 
4.6 

10800 
3030 
67 
143 

Dioxins Polychlorinated dibenzodioxins 
Polychlorinated dibenzofurans 

+ 
+ 

pg/pack 770 
720 

1360 
1670 

Heavy metals  Cadmium 
Nickel 

+ ng/cigarette 100 
20 

360 
600 

Nitrosamines 4-(Methylnitrosamino)-1-(3-
pyridyl)-1-butanone 
N-Nitrosodimethylamine 
N-Nitrosopyrrolidine 

+ 
 
+ 
+ 

ng/cigarette 100 
 

10 
6 

400 
 
1000 
180 

Polycyclic 
aromatic 
hydrocarbons 

Anthanthrene 
Benz0[a]fluorine 
Benzo[a]pyrene 
Chrysene/Benzanthracene 
Dibenz[a,j]anthracene 

+ 
+ 
+ 
+ 
+ 

ng/cigarette 22 
184 
44 
191 
11 

39 
751 
199 
1224 
44 

Radioactive 
elements 

Polonium-210  pCi/cigarette 0/5 1.8 

Solvents, 
gases  

Acrolein 
Ammonia 
Benzene 
Carbone monoxide 
Formaldehyde 
Toluene 

 
 
+ 
 
+? 

µ g/cigarette 60 
100 
12-48 
20000 
70 
160 

480 
17000 
120-480 
80000 
700 
960 

 

1.7.1 Involvement of carcinogenic/mutagenic substances to the development of fetal 

growth retardation and preterm delivery  

A number of studies have reported that cigarette smoke specific adducts and metabolites 

were detected in placental samples and even in urine from the fetus [80, 130-135].  Thus, 
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prenatal cigarette smoke exposure could be a significant risk factor associated with DNA damage 

levels that might lead to teratogenic events and other adverse reproductive outcomes.  Several 

studies have reported that high frequencies of genetic abnormalities were observed in the fetus 

with growth retardation and prematurity [21-23].    

 

There is increasing evidence from animal models that administration of tobacco related 

carcinogens/mutagens during pregnancy elevates the frequency of fetal genetic damage and 

future tumor formation.  The presence of aromatic DNA adducts in the placentas of mice 

exposed to environmental carcinogens predicted the presence of adducts in fetal tissues, 

including liver, brain, heart, lung, kidney, intestines, and skin [136].  Lu et al. reported similar 

results [137] showing that higher levels of polycyclic aromatic hydrocarbon (PAH)-DNA 

adducts were observed in fetal tissues in early gestation compared to late gestation in a non-

human primate model.  Therefore, a fetus in the early gestational stages could be more 

vulnerable to the toxic effects of these compounds than a fetus in later gestational stages.   

 

In humans, many xenobiotic agents including carcinogens/mutagens and their metabolites 

can pass through placenta and reach the fetus.  Tobacco specific carcinogens such as 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanol, (NNAL) and its metabolites, 4-

[(methylnitrosamino)-1-(3-pyridyl)but-1-yl]β-O-D-glucosiduronic acid (NNAL-Gluc) have been 

detected in the urine of newborns whose mother smoked cigarettes [130].  Moreover, NNAL was 

detected even at early stage of pregnancy in the fetus [131]. 
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In a recent molecular epidemiological study, Evans et al. [138] reported a dose-response 

relationship between maternal cigarette smoking and tobacco specific DNA adduct levels in the 

placenta.  In addition, the levels of those DNA adducts were inversely associated with the 

birthweight.  Moreover, Perera et al. [80] has reported a negative correlation between leve l of 

PAH–DNA adducts in cord blood cells and birthweight/head circumference.  In addition, PAH-

DNA adducts were significantly correlated with levels of chromosomal aberrations [139].  

Interestingly, a significant association was found between low birthweight and childhood cancer 

(OR=2.5) and low birthweight was significantly related with risk of two of the most common 

childhood cancers, leukemias (OR=2.7) and lymphomas (OR=4.7) [140].  These studies clearly 

provide evidence of a molecular link between exposures of carcinogenic/mutagenic substances 

and adverse reproductive outcomes including fetal growth retardation, preterm delivery and to 

cancer.     

 

1.8 Biotransformation 

All living organisms are constantly exposed to foreign chemicals.  Xenobiotic 

biotransformation is the primary biological mechanism for eliminating these molecules and is 

catalyzed by metabolic enzymes for conversion to a water-soluble chemical compound(s).  In 

general, xenobiotic biotransformation is accomplished by a limited number of enzymes with 

broad substrate specificities.  Multiple metabolic enzymes are involved in the biotransformation 

process and multiple pathways may exist for a given substrate.  It is well-known that wide inter-

individual differences exist in the metabolism of these harmful chemical compounds which are 

influenced by several factors including age, health conditions such as stress and diseases, 

nutritional level, presence of other exposures, and genetic factors such as genetic polymorphisms 
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of phase I/II metabolic enzymes.  The genetic polymorphisms result in altered enzymatic 

activities, substrate specificities and create significant differences in the rates of xenobiotic 

biotransformation among individuals.  This variability among individuals in xenobiotic 

biotransforming enzymes and susceptibility toward certain health defects is a field of study 

known as pharmacogenetics [141] and extensive research has been done to identify candidate 

risk factors for specific health effects.    

 

1.8.1 Phase I and II xenobiotic biotransforming enzymes 

 The reactions catalyzed by xenobiotic biotransforming enzymes are classified as two 

separate processes, which are called phase I and phase II.  Phase I reactions involve hydrolysis, 

reduction and oxidation.  These steps expose or introduce a functional group such as -OH, -NH2, 

-SH, or -COOH, to increase substrate hydrophilicity, and are typically mediated by CYP 

enzymes.  Phase II biotransformation reactions include glucuronidation, sulfonation, acetylation, 

methylation, conjugation with glutathione and conjugation with amino acids.  The cofactors for 

these reactions react with functional groups that are either present on the xenobiotic or are 

introduced during the phase I biotransformation step.  Most phase II biotransformation reactions 

increase hydrophilicity, hence they greatly promote the urinary excretion of foreign chemicals 

[141].  In the process of biotransformation, carcinogenic/mutagenic compounds are converted to 

reactive intermediates by oxidation of CYP enzymes that bind to cellular components, including 

DNA, RNA, and protein.  DNA is the most critical target that is associated with increased 

incidence of cancer in genetically susceptible individuals [142].  For example, PAHs and 

aromatic amines contained in cigarette smoke can form bulky DNA adducts that block DNA 

synthesis, resulting in DNA strand breaks.  Although mutational events occur in many genes 
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from exposure to carcinogenic compounds, mutation occurring in a few specific genes could be 

most critical to neoplastic transformation.  Proto-oncogenes, cellular oncogenes and tumor 

suppressor genes are involved primarily in cellular growth, signal transduction, nuclear 

transcription and regulation of cell cycle.  Mutated proto-oncogenes, cellular oncogenes and 

tumor suppressor genes are the most commonly observed in neoplastic tissues sites and they 

accelerate the neoplastic process [142].      

 

1.8.2 Pharmacogenetics 

The majority of CYPs and phase II metabolizing enzymes are predominantly expressed in 

liver but they are also found in virtually all tissues.  These metabolic enzymes vary in expression 

according to tissue, gender, and demonstrate specificity for both substrates and inhibitors.   

 

Moreover, many of these enzymes are associated with genetic polymorphisms resulting 

in altered activity and/or substrate specificity.  Wide inter- and intra- individual differences 

associated with the metabolizing enzymes are caused by both environmental and genetic factors.  

A polymorphism is defined as the least common allele occurring in 1% or greater of the 

population whereas mutations are rare differences that occur in less than 1% of the population 

[143-145].  A summary of various types of genetic polymorphisms which may influence the 

expression of gene products or the catalytic activity of an enzyme is  indicated below.  These 

include: 1) Nucleotide variations in the coding region of the gene resulting in amino acid 

substitution and altered enzyme activity or substrate binding; 2) deletions in the coding region 

leading to an inactive enzyme or absence of protein synthesis; 3) polymorphisms in the 

noncoding region affecting transcriptional control elements involved in basal enzyme expression 
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and induction; 4) variations in the polyadenylation signal of a gene affecting transcript half- life 

and thus the quantity of enzyme; 5) gene amplification increasing the quantity of enzyme and 6) 

complex interactions of polymorphic genes and/or their enzyme catalysis products [129]. 

 

Single nucleotide polymorphisms (SNPs) are single-base differences in the DNA 

sequence that can be observed between individuals in the population.  SNPs are present 

throughout the human genome with an average frequency of approximately 1 per 1,000 base 

pairs [143, 144, 146].  Other types of genetic polymorphisms result from the insertion or deletion 

of a sequence of DNA.  The most common type of insertion/deletion polymorphisms are variable 

numbers of repeated base or nucleotide patterns in a specific region [144].  Repeated base 

patterns range in size from several hundreds of base pairs, known as variable number of tandem 

repeats, to two, three or four repeated nucleotides known as simple tandem repeats.  The 

genome-wide frequency estimates for simple  tandem repeats average every 3-10 kb in the 

genome [144].  Another type of insertion/deletion polymorphism involves the presence or 

absence of Alu segments at a particular genetic location.  Alu segments, named according to the 

restriction enzyme used to detect them, contain two sequences approximately 120-150 bases in 

length, separated by an A base-rich segment.  Insertions of this type occur on average 

approximately every 3 kb [144]. 

 

Some of the nucleotide substitutions are silent (do not result in an amino acid 

substitution) and may therefore be considered insignificant.  However, recent studies have shown 

that silent SNPs in gene coding regions yield allele specific mRNA variants that differ markedly 
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in structural folding that may alter splicing, processing, translational control, and/or regulation of 

the mRNA [147].   

 

1.8.3 Phase I/II metabolic enzyme genetic polymorphisms and carcinogenesis  

Drug metabolizing enzymes, which often display genetic polymorphisms, convert many 

tobacco carcinogens into DNA-binding metabolites in target cells and can thereby modulate 

intermediate effect markers such as DNA adducts and ultimately, the risk for cancer [129].  

Table 4 provides a partial list of enzymes responsible for metabolizing carcinogens contained in 

cigarette smoke.   

 

 Table 4. Carcinogens in cigarette smoke and phase I/II metabolic enzymes 

responsible for their metabolism 

 
 
Compound Examples Metabolizing enzyme 
PAHs Benzo[a]pyrene 

 
Benzo[a]anthracene 

CYP1A1, 1A2, 1B1, 2C8, 2C9, 2C18, 2C19, 3A4,   
GSTM1   
GSTT1 
CYP1A1, 1A2, 1B1, 2B6, 2C9, GSTM1 

Aza-arenes Quinoline CYP1A1, 1A2, 2E1, 3A, NAT2, GST, EH 
N-nitrosamines NNN, NNK, NNAL CYP1A2, 2A6, 2B1, 2E1, 3A4 
Aromatic amines 4-ABP CYP1A1, 1A2, NAT 
N-heterocyclic amines PhIP GSTA1, GSTP1, NAT 
Aldehydes  Acetaldehyde CYP1A2, 2E1, 4A2, ALDH2, GST 
Miscellaneous 1.3-butadiene CYP2A6, 2E1, GSTT1 
 

 

 The majority of xenobiotic agents are metabolized by phase I/II metabolic enzymes in 

two steps, activation and detoxification.  During the process of biotransformation, some chemical 
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compounds are activated and have carcinogenic/mutagenic potential.  For example, 

benzo[a]pyrene, which is contained in cigarette smoke, is metabolized by CYPs such as 

CYP1A1, to ultimately form a bay region diol epoxide.  Diol epoxides are well recognized as 

tumorigenic metabolites and form bulky DNA adducts.  The diol epoxides may be further 

metabolized by a phase II metabolic enzyme such as epoxide hydrolase as a detoxification 

pathway.  Thus, genetic polymorphisms of the metabolizing enzymes may affect the level of 

activated metabolites in the body.    

 

Differences in metabolic activation and detoxification pathways of environmental agents 

are likely to be a major source of interindividual variation in the level of cancer early biological 

effect markers such as somatic cell mutation frequency.  Many molecular epidemiological 

studies have been completed to evaluate the associations between metabolizing enzyme allelic 

variants and cancer susceptibility [129, 148-152]. 

 

1.9 Cytochrome P450  

Cytochrome P450s (CYPs) are classified as phase I metabolizing enzymes and are 

responsible for the metabolism of a wide variety of drugs and xenobiotics, including those found 

in cigarette smoke and alcohol.  The highest concentration of CYP enzymes is found in the liver 

endoplasmic reticulum, but CYP enzymes are present in various tissues.  CYP enzymes in liver 

play an important role in determining the intensity and duration of action of drugs, and they also 

play a key role in the detoxication of xenobiotics.  Moreover, CYP enzymes in both liver and 

extrahepatic tissues play important roles in the activation of xenobiotics to toxic and/or 

tumorigenic metabolites.   
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 All CYP enzymes are heme-containing proteins.  The heme iron in CYPs is usually in the 

ferric (Fe3+) state.  When reduced to the ferrous (Fe2+) state, CYP can bind ligands.  The complex 

between ferrous CYP and a ligand absorbs light maximally as 450 nm, from which cytochrome 

P450 derives its name. 

 

CYP enzymes use O2 and electrons to oxidize substrates.  Oxidation together with 

conjugation reactions yield metabolic products that are usually more hydrophilic than the parent 

compounds and therefore more readily excreted from the body.  To date, 74 CYP gene families 

have been described, of which 14 exist in mammals (Table 5). 
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Table 5.  Existing human CYP families and their metabolic roles [153]  

 
 
CYP family Main function 

CYP1 Xenobiotic metabolism 

CYP2 Xenobiotic metabolism 

CYP3 Xenobiotic metabolism 

CYP4 Fatty acid hydroxylation 

Xenobiotic metabolism? 

CYP5 Thromboxane synthesis 

CYP7 Cholesterol 7a -hydroxylation 

CYP8 Prostacyclin synthesis 

CYP11 Cholesterol side-chain cleavage 

Steroid 11ß -hydroxylation 

Aldosterone synthesis 

CYP17 Steroid 17a -hydroxylation 

CYP19 Androgen aromatization 

CYP21 Steroid 21-hydroxylation 

CYP24 Steroid 24-hydroxylation 

CYP27 Steroid 27-hydroxylation 

CYP51 Sterol biosynthesis 

 

1.9.1 CYP1A1  

The CYP1A1 gene product, aromatic hydrocarbon hydroxylase (AHH), catalyzes the first 

step in the conversion of many environmental carcinogens, such as benzo[a]pyrene in cigarette 

smoke, to their ultimate DNA-binding, carcinogenic form.  Human CYP1A1 protein is 

composed of 512 amino acid residues, which is smaller by 12 amino acids than its rodent 

equivalent.  Human CYP1A1 is considered to function primarily as an extrahepatic enzyme and  
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both mRNA and protein are detected at high levels in lung, lymphocytes, and placenta, in 

contrast to undetectable levels in most human livers examined [154].   

 

1.9.1.1 CYP1A1 genetic polymorphisms 

The human CYP1A1 gene is located on chromosome 15.  Currently, nine CYP1A1 genetic 

polymorphisms have been characterized and some of the SNPs may cause an amino acid change 

that leads to conformational changes of the protein (Table 6).  However, the functional 

significance of many of these SNPs remains unknown.  CYP1A1*2A contains  a single nucleotide 

polymorphism in the 3’ flanking region, and is closely linked in Asians and less so in Caucasians 

with another polymorphism in exon 7 (CYP1A1*2C).  The exon 7 point mutation is located in a 

region that codes for part of the catalytic region of AHH, and the presence of both of these 

polymorphisms confers a significant 3-fold increase in the catalytic activity of the AHH enzyme 

[155].  The CYP1A1*3 allele is African in origin and is located just beside the codon 462-Ile/Val 

mutation (CYP1A1*2B) near the heme binding region.  The allele frequency of this 

polymorphism is 0.09 in African Americans and 0.13 in Africans [155]. In a recent study, there 

was not a significant association observed between the CYP1A1*3 allele and lung cancer but 

there was a trend of increased CYP1A1*3 frequency among the nonsmokers and moderately 

smoking cancer patients [156].  Many molecular epidemiological studies have been conducted to 

evaluate the association between CYP1A1 genetic polymorphisms and specific types of cancer 

[129].  However, the results are currently inconclusive, mainly due to sample size and varying 

racial allele frequency differences.        
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Table 6.  Known CYP1A1 genetic polymorphisms 

 
 
Allele Position Location Enzyme activity 
CYP1A1*1A 
CYP1A1*1B 
CYP1A1*1C 

None 
-3219 C ?  T 
-3229 G ?  A 

  

CYP1A1*2A 
CYP1A1*2B 
CYP1A1*2C 

3801 T ?  C 
2455 A ?  G, 3801 T ?  C 
2455 A ?  G (Ile? Val) 

3` flanking region 
 

Exon 7 in the heme-binding region 

There is a linkage with *2C 
 

2 fold increase in microsomal 
enzyme activity 

CYP1A1*3 3205 T ?  C Intron 7  
CYP1A1*4 2453 C ?  A (Thr? Asn) Exon 7 in the heme-binding region  
CYP1A1*5 2461 C ?  A (R? S)   
CYP1A1*6 1636 G ?  T (M? I)   
http://www.imm.ki.se/CYPalleles/cyp1a1htm [157] 
 

 

 CYP1A1 gene expression can be induced by many different carcinogenic compounds 

found in tobacco and cigarette smoke.  Additional inducers of the CYP1A enzymes include 

charcoal-broiled meat, which is a source of polycyclic aromatic hydrocarbons, cruciferous 

vegetables, and omeprazole, a protein-pump inhibitor used to suppress gastric acid secretion.   

 

1.9.2 CYP2E1 

 The CYP2E1 enzyme is known to be an ethanol- inducible enzyme, and is involved in the 

metabolism of many low molecular weight chemical compounds including alcohol, halogenated 

alkanes and other procarcinogenic substances including N'-nitrosonornicotine (NNN), and 4-

(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) [158].  CYP2E1 is primarily expressed in 

human liver and possibly in the kidney, lung, and lymphocytes [159].  Wide interindividua l 

difference exist in CYP2E1 protein or activity levels ranging from 6-20 fold when induced by 
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alcohol consumption [158].  It has been suggested that the observed variation might in part, be 

genetically determined.   

 

1.9.2.1 CYP2E1 genetic polymorphisms 

Several genetic polymorphisms in the upstream regulatory sequence and in certain 

introns of CYP2E1 have been detected and their relationship to both CYP2E1 activity and disease 

susceptibility have been widely investigated (Table 7).  To date, five genetic polymorphisms 

have been characterized in the CYP2E1 gene.  A C to T transition PstI or RsaI polymorphism, 

located in the regulatory 5’- flanking region of the CYP2E1 gene, has been identified 

(CYP2E1*5B).  In vitro expression studies indicate that this variant allele is associated with 

increased transcriptional activity and it has been suggested that individuals heterozygous or 

homozygous for the variant have an increased susceptibility to alcoholic liver disease which 

would be consistent with higher than normal CYP2E1 activity.   Lack of the Rsa I restriction site 

is associated with higher transcriptional activity, protein levels, and enzyme activity than the 

wild-type allele [160].  The frequency of the CYP2E1*5B allele varies in different ethnic 

populations and is higher among Asians (0.19 – 0.27) but lower in Caucasian and African 

Americans (0.01 – 0.05).  A number of molecular epidemiological studies have been performed 

to evaluate the association between this polymorphism and alcoholic liver disease and/or 

cigarette smoking-related hepatocarcinogenesis, but results have been inconclusive.  Other 

genetic factors or other environmental factors such as diet may explain the large interindividual 

variations observed.           
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Table 7.  Known CYP2E1 genetic polymorphisms 

 
 

Allele Location Known Effect 
CYP2E1*1A 
CYP2E1*1B 
CYP2E1*1C 
CYP2E1*1D 

None 
9893 C ?  G 
6 repeats in the 5` flanking region 
8 repeats in the 5` flanking region 

 
 
 
Increase activity 

CYP2E1*2 1132 G ?  A R ?  H reduced 
CYP2E1*3 10023 G ?  A V ?  I 
CYP2E1*4 4768 G ?  A V ?  I 
CYP2E1*5A 
CYP2E1*5B 

-1293 G ?  C, -1053 C ?  T, 7632 T ?  A 
-1293 G ?  C, -1053 C ?  T 

 

CYP2E1*6 7632 T ?  A  
CYP2E1*7A 
CYP2E1*7B 
CYP2E1*7C 

-333 T ?  A 
-71 G ?  T, -333 T ?  A 
-333 T ?  A, -352 A ?  G 

 

http://www.omm.ki.es/CYPalleles/cyp2e1.htm [157] 
 

1.10 Phase II metabolic enzymes 

Phase II enzymes such as glutathione S-transferase (GST) and N-acetyltransferase (NAT) 

conjugate electrophilic compounds producing non-toxic agents, which can be readily eliminated 

from the body.  Absent or deficient phase II enzyme activities may result in poorer elimination of 

electrophilic carcinogens, particularly in the presence of very active electrophilic activation by 

phase I enzymes.  Phase II reactions generally proceed much faster than phase I reactions.  

Therefore, the rate of elimination of xenobiotics whose excretion depends on biotransformation 

by CYP followed by phase II conjugation is generally determined by the slower phase I reaction.    

 

1.10.1  Glutathione S-transferase (GSTs) genes 

GSTs are one of the most important cellular detoxification systems and have evolved to 

protect cells against reactive oxygen metabolites.  These enzymes catalyze the conjugation of 
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aliphatic aromatic heterocyclic radicals, epoxides, or arene oxides to glutathione conjugation.  

Reaction at the electrophilic center of these compounds occurs at the sulfur atom of the 

glutathione molecule [161].  The GSTs are expressed at high levels in liver and to date, seven 

distinct classes are identified which are α, µ, θ, π , σ, κ and ζ [162].  These classifications are 

based on the substrate specificity, chemical affinity, protein structure, amino acid sequence and 

behavior of enzymatic kinetics.  By definition, the subunits in the different classes share less than 

40% amino acid identity.  Generally, the subunits within a class are up to 70% identical and can 

form heterodimers, whereas the subunits in different classes are only up to 30% identical, which 

appears to prevent dimerization of two subunits from different classes.   

 

1.10.1.1 GSTM1 

 Five GST µ genes (M1-M5) located on chromosome 1p13 have been identified and all 

are polymorphic [163].  Human GSTM1 is expressed primarily in the liver and was first 

identified as the benzo[a]pyrene oxide-conjugating enzyme [164]. GSTM1 is also present in 

stomach, brain and other tissues while GSTM2-GSTM5 isoforms have been detected in 

extrahepatic tissues and cell lines [163].  

 

In humans, three GSTM1 alleles, GSM1*0, GSTM1*A, GSTM1*B, have been described.  

The GSTM1*0 is a gene deletion that results in the absence of enzyme activity.  The GSTM1*A 

and GSTM1*B differ by a C to G substitution at base position 534, resulting in an amino acid 

change at position 173 (lysine to asparagine) substitution which encodes monomers that form 

active homo- and heterodimeric enzymes [141, 165, 166].  In vitro data indicate similar catalytic 
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effectiveness of the homo- and heterodimeric enzymes resulting from these alleles [163].  The 

GSTM1 allele frequencies observed in Caucasians from North Staffordshire, England and Berlin, 

Germany were as follows GSTM1*A (26.5%); GSTM1*B (11.8%); GSTM1*A/*B (4.3%); and 

GSTM1*0 (57.3%) [167].  Another study has reported that in the U.S. approximately 49–54% of 

Caucasians are of the null GSTM1 genotype [161].  Comparisons of the homozygous deletion 

genotype (GTM1*0) with genotypes containing at least one GSTM1*A or GSTM1*B allele are of 

primary interest to molecular epidemiological studies [161].  Since the GST family is a major 

detoxification pathway, GSTM1 null carriers are more susceptible to electrophile exposures 

[161].       

 

1.10.1.2 GSTT1 

 Human GSTT1, whose gene is localized on chromosome 22q11.2, is expressed in 

erythrocytes, lung, kidney, brain, skeletal muscles, heart, small intestine, spleen, and colon 

mucosal cytosol [162, 168].  GST theta has some differences in the catalytic activity compared 

with the other GSTs.  The presence of Ser-11 residue in place of the N-terminal tyrosine creates 

the unique substrate specificity of the theta class [157].  Two functionally different genotypes in 

GSTT1 have been identified that consist of an entire gene deletion, resulting in the lack of active 

GSTT1-1 enzyme [161, 162].  Experiments on dichloromethane (DCM)-incubated erythrocytes 

from humans with different genetic backgrounds measuring the GSH-conjugation rate and the 

release of formaldehyde showed that humans with the null genotype are non-conjugators (NC).  

Humans with the null genotype lack the GSTT1-1 enzyme, and are unable to conjugate DCM 

with GSH.  Among positive genotype variants, erythrocytes from heterozygotes show an 

intermediate ability of GSH-conjugation whereas erythrocytes from the homozygotes show the 
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highest rate [162].  The GSTT1 null genotype frequency is highest among Chinese (64.4%), 

followed by Koreans (60.2%), African Americans (20-24%), and Caucasians in the U.S. (23.7%) 

[161, 162]. 

 

1.10.1.3 GSTM1/GSTT1 and carcinogenesis 

Normal or increased GST enzyme activity or levels may protect susceptible tissues from 

adduct formation and somatic mutations in DNA by facilitating the conjugation and subsequent 

elimination of electrophilic carcinogens  and mutagens.  Absent or deficient GST enzyme activity 

may result in poor elimination of electrophiles, particularly in the presence of very active 

electrophilic activation by phase I enzymes.  GST deficiencies may therefore result in increased 

risk of somatic mutation, leading to tumor formation [161]. Based on this hypothesis, extensive 

molecular epidemiological studies have been done to demonstrate increasing risk modulated by 

GSTM1 and/or GSTT1 genetic polymorphisms.   

 

As shown in Table 8, several substrates are known to be metabolized by GSTT1-1 and 

absence of GSTT1-1 causes several types of DNA damage observed in  in vitro and also in in 

vivo studies.  According to those studies, absence of GSTT1-1 increases susceptibility to DNA 

damage and ultimately to cancer and other adverse health events. 
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Table 8.  Partial list of effects of GSTT1-1 mediated metabolites    

 
 
Source of exposure Related chemicals or 

metabolites 
Effect of GSTT1 absence in 
various in vitro assays 

Effect among GSTT1  
null genotype in human 

Cigarette smoke 
 
1,3-butadiene 
Styrene 
Ethylene 
Metabolite of aflatoxin B1 

PAHs 
ethylene expoxide 
3,4-epoxibutene 
styrene-7,8-oxide 
ethylene epoxide 
exo-aflatoxin B1-8,9-
oxide 

Not metabolized 
↑ hemoglobin adducts in WHB 
↑ SCEs in WHB lymphocytes 
↑ SCEs in PBL from WHB (2) 
↑ Hemoglobin adducts in WHB 
↑ mutagenicity (1) 

 
↑ SCEs in PBL of WHB 
↑ CAs  
not determined 
↑ SCEs, ↑ Hb adducts * 
not determined 

* = effect seen only in non smokers, (1) = mutagenicity increased in transgenic Salmonella strans expressing the 
rat GSTT1  compared with the parental strain, (2) = comparison between GSTT1 null and postive human subjects  
 

 

Extensive molecular epidemiological studies have been done to evaluate the association 

of GSTs in cancer risk.  In general, among Caucasians, the GSTT1 null genotype was associated 

with slightly increased risks of tumors of the head, neck, oral cavity, pharynx, and larynx [162].  

Some studies described the GSTT1-GSTM1 double null genotype as the genotype conferring the 

highest risk, with a 2.7-fold increase as compared with the GSTT1-GSTM1 double positive 

genotype [162].  A number of studies have been done to evaluate the association between the 

GSTT1 polymorphism and lung cancer.  However, the findings to date are inconclusive.  Since 

the GSTT1 null genotype is highly associated with basal cell carcinoma  of the skin and with 

brain tumors, it would be intriguing to ascertain if both of these cancers have common causes, 

such as endogenous mutagenic substrates for GSTT1-1 [162].  Several studies have provided 

evidence to suggest that individuals lacking the GSTT1-1 enzyme might be at an increased risk 

of cancer of different organs whereas evidence that GSTT1-1 positive individuals have an 

increased risk of cancer to exposure to halogenated compounds are rather limited.  In addition,  

GSTT1 appears to be a possible risk factor in lung carcinogenesis when GSTM1 is concurrently 

lacking, under particular circumstances and for a specific type of tumor, but its role remains to be 
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ascertained precisely [162].  Presumably these genotypes, alone or in combination, should 

identify subjects who are detoxification-deficient and consequently more likely to suffer 

formation of carcinogen-DNA adducts and/or mutations [169].   

 

1.10.2 NAT2*   

N-acetyltransferase has a primary role in the activation and/or deactivation of many 

aromatic amine and hydrazine compounds.  There are three N-acetyltransferase genes in humans, 

NAT1, NAT2*, and a pseudogene (NATP), which all are located on chromosome 8p22.  N-

acetyltransferases are cytosolic enzymes found in the liver and many other tissues of most 

mammalian species.  In humans, NAT1 is expressed in virtually all tissues, whereas NAT2 is 

expressed mainly in the liver and the intestinal tract.  NAT1 and NAT2 share 87% nucleotide 

homology in the coding region, yielding 55 amino acid differences and have substrate 

specificity.  NAT2* is involved in the detoxification of several carcinogenic arylamines including 

ß -naphthylamine, 4-aminobiphenyl and in the bioactivation of food mutagens such as 2-amino-

3-methylimidaz[4,5-f]quinoline [170].  This enzyme is highly polymorphic in humans and the 

presence of two germ line copies of any of several defective alleles of the NAT2* gene produces 

a slow acetylation phenotype, leading to altered rates of metabolism of arylamines [170].  

Currently, 26 alleles of the NAT2* gene have been identified and the frequency varies widely 

among ethnic groups.  Approximately, 50-60% of Caucasians have the slow acetylator 

phenotype but the worldwide distribution of this phenotype varies from 5% among Canadian 

Eskimos to 90% among Northern Africans [147].  NAT2*4 is considered the wild-type allele, 
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however, NAT2*4 is not the most common allele in many ethnic groups, including Caucasians 

and Africans.   

 

The four most common alleles in Caucasian and African American population are 

NAT2*5B, *6A, *7A and *14A.  NAT2*5B (M1) and NAT2*6A (M2) account for over 90% of the 

alleles associated with slow acetylation among Caucasians [171].  The NAT2*7A (M3) is much 

more rare, (1-2% in Caucasians) and NAT2*14A (M4) which is African specific, occurs in 

approximately 9% of the African American population [170].  There is a bimodal distribution of 

acetylation activities and that a value of up to 0.6 for the 5-acetylamino-6-formylamino-3-

methyluracil (AFMU)/1X ratio is a useful dividing point between slow and rapid acetylation 

phenotypes [170].  Bell et al. have demonstrated a 100% concordance between NAT2* genotype 

and phenotype in Caucasian and African American populations [170]. The four most common 

alleles are summarized in Table 9.   

  

Table 9.  Selected NAT2* genetic polymorphisms 

 
 

Allel Position Amino Acid change(s) 
NAT2*4 None None 
NAT2*5 341 T ?  C 

481 C ?  T 
803 A ?  G 

114 I? T 
268 K? R 

NAT2*6 282 C ?  T 
590 G ?  A 

197 R? Q 

NAT2*7A 857 G ?  A 286 G? E 
NAT2*14A 191 G ?  A 64 R? Q 

http://www.louisville.edu/medschool/pharmacology/NAT.html [172] 
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 Extensive epidemiological studies have been done to investigate the role of NAT2 

polymorphisms in a number of cancers.  Aromatic amines such as 4-aminobyphenyl and 

heterocyclic amines found in cigarette smoke and heterocyclic amines found in charcoal broiled 

meat produce tumors at a multiple sites in rodents but require metabolic activation to mutate 

DNA and initiate carcinogenesis [147].  Oxidation, the N-hydroxy-aromatic and N-hydroxy-

heterocyclic amines are further activated by N-acetyltransferases to acetoxy intermediates, which 

react spontaneously with DNA to form DNA adducts [173].   

 

Previous epidemiological studies have demonstrated that the slow acetylation phenotype 

is associated with higher risk for bladder cancer in textile dye exposed workers and with low risk 

for colorectal cancer.  This reflects the specificity of the NAT2* enzyme for N-acetylation of 

carcinogenic arylamines, a detoxification step, and O-acetylation of N-hydroxylated heterocyclic 

amines found in the diet, resulting in bioactivation.      

 

1.11 Fetal metabolic enzyme activity 

The majority of lipid-soluble xenobiotics including carcinogenic and mutagenic 

compounds can the reach fetus by placental transfer following maternal exposure [153].  Fetal 

biotransformation is known to be limited compared with adults but it is also well established that 

human fetal tissues metabolize many foreign compounds and endogenous substrates [174].  

Since phase I/II metabolic enzymes are present at low levels at birth, and reach adult levels with 

1-3 weeks of age, infants are considered highly susceptible to prenatal exposure to harmful 

substrates.  Poor capacity for metabolic detoxification is probably one of the major reasons for 

the high sensitivity of the neonate to chemical carcinogenesis [175]. 
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1.11.1 Phase I metabolic enzymes 

 Pelkonen [176] reported that the human fetal hepatic enzyme system is detectable at the 

age of 6-7 weeks of gestation, the end of embryogenesis.  It has been demonstrated that several 

CYP metabolic enzymes such as CYP1A1, CYP1B1, CYP2C8, CYP2D6, CYP2E1, CYP3A4, 

CYP3A5 and CYP3A7, are present in the fetal liver after 8 to 9 weeks of gestation [153].  In 

addition, significant xenobiotic metabolism occurs also before week 8 of gestation and some 

fetal extrahepatic tissues, most notably the adrenal gland, contain substantial levels of CYP 

enzymes [153].  At the age of 12-14 weeks, the enzyme system seems to attain a relatively 

constant level [176].  However, fewer forms of CYPs are present in the fetal liver compared with 

the adult liver, and their levels are generally lower.  The amount of total CYP in fetal liver is 

approximately 0.2 to 0.4 nmol/mg microsomal proteins, which is 20 to 70% of the level in the 

adult liver [153].   

 

The major CYP form in the human fetal liver is CYP3A7 and accounts for over 30% of 

the total fetal liver CYP content but it is only a minor form in the adult liver [153].  The 

nucleotide sequence of CYP3A7 cDNA is approximately 90% similar to that of CYP3A4.   

 

A recent study by Shimada et al. [177] identified the presence of very low levels of the 

CYP1A1 protein before 20 weeks of gestation and it is approximately one tenth of the adult liver 

levels.  Hepatic CYP1A1 mRNA has been detected in both the embryonic and fetal phase of 

development.   
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 In early studies, CYP2E1, which is responsible for alcohol metabolism, was not believed 

to be expressed before birth [178], suggesting that some inhibitory factor restricts CYP2E1 

expression in the intact liver [179].  However, more recent stud ies provide evidence for the 

expression of CYP2E1 in human fetal liver at gestational age from 16 to 24 weeks [180].  

Moreover, Carpenter et al. detected ethanol oxidation in fetal liver microsomes and found it to 

being inhibited by an anti-CYP2E1 antibody.  Immediately after birth, CYP2E1 levels increase 

dramatically due to a stabilization of the CYP2E1 protein, potentially a consequence of the 

increase in ketone bodies at this period.  Thereafter, the levels of CYP2E mRNA and protein 

levels rise gradually [153].   

 

1.11.2 Phase II metabolic enzymes 

In 8 week embryos, GSTP1 was the predominantly expressed GST isoform in all tissue 

samples but the kidney in which GSTA is more highly expressed [181].  The relative levels of 

GST distribution observed was 23% GSTA, 73% GSTP1 and 4% GSTM1 [162, 165, 182].  The 

levels of GSTM1 expression was comparable in all tissues studied.  Levels of GSTP1 were high 

in early gestation, but decreased during gestation, whereas GSTM1 and GSTA expression were 

moderate and weak, respectively.  Levels of GSTT1 expression were not determined in these 

studies.   

 

1.12 Prenatal Exposure and Preeclampsia Prevention (PEPP) study 

Recent epidemiological studies have demonstrated that maternal environmental and/or 

occupational exposures, lifestyle factors and habits including cigarette smoking, alcohol 
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consumption and specific types of diets during pregnancy increased risk of subsequent infant and 

pediatric malignancies in human newborns [183-187].  Previous studies have found that maternal 

exposure to tobacco smoke and/or maternal lifestyle factors associated with lower 

socioeconomic status appeared to increase the frequency and alter the spectrum of the molecular 

mechanisms of somatic mutation and chromosomal aberration in utero [188].  It is also well 

established that those maternal lifestyle factors including cigarette smoke exposure affect the 

frequency of adducts observed in placental and also fetal DNA [132, 189, 190].  In addition, the 

level of chromosomal aberrations was modulated by materna l phase I/II metabolic enzyme 

genetic polymorphisms [191, 192].  It is also known that infants with growth retardation and/or 

premature births are more likely to have higher frequencies of adducts, DNA damages and 

chromosomal aberrations in the placenta and fetal cells.   

 

Therefore, we hypothesized that, among mothers who were exposed to toxic 

substances such as tobacco smoke and alcohol during pregnancy, a panel of maternal 

susceptibility factors such as metabolic enzyme activities, maternal age, nutritional status , 

parity, stress levels, other genetic factors , related health condition, disease states and the 

presence of other exposures would influence the level of toxic substrates metabolized and 

reaching the placenta.  Placental metabolism may further modulate the level of toxic 

metabolites which ultimately reach the fetus.  It is also likely that the level of newborn DNA 

damage that may influence the incidence of adverse reproductive outcomes is modulated by 

fetal susceptibility factors  including metabolic enzyme activities, and DNA repair capacity 

(see Figure 1).   
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Figure 1. Model of environmental and genetic interactions that modulate 

newborn susceptibility to adverse effects 

 

The Prenatal Exposure and Preeclampsia Prevention (PEPP) study at University of 

Pittsburgh/Magee Womens Hospital was designed as a molecular epidemiological study to 

investigate the potential transplacental genotoxic impact of prenatal exposures on levels of DNA 

damage observed in newborns and adverse reproductive outcomes by applying biomarkers of 

exposure, genetic susceptibility, and early biological effects.  Table 10 lists the panel of the 

biomarkers evaluated in the PEPP study.   
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Table 10.  Biomarkers evaluated in the PEPP study 

 
 

 Biomarkers 
Genetic susceptibility 
biomarkers 1 

Phase I/II metabolic enzyme genotypes (CYP1A1, CYP2E1, GSTM1, GSTT1, NAT2*) 
Phase I metabolic enzyme mRNA (CYP1A1, CYP2E1, CYP1B1) expression 

Tobacco smoke 
exposure biomarkers 1 

Serum cotinine 
4-Aminobiphenyl-hemoglobin (4-ABP Hb) adducts 

Other early biological 
effect biomarkers 2 

GPA somatic cell mutation frequencies in erythrocytes 
HPRT locus mutation frequency and mutational spectra 
Single cell gel electrophoresis (SCGE)(Comet) assay 
FISH-based chromosome translocations 

1 In collaboration with Drs. W. Bigbee and B. Day (University of Pittsburgh) 
2 In collaboration with Drs. W. Bigbee, P. Keohavong, S. Grant (University of Pittsburgh) and Dr. J. Tucker 

(Lawrence Livermore National Laboratory) 
 

This dissertation reports my investigation of the role of maternal and/or newborn 

phase I/II metabolic enzyme genetic polymorphisms contributing to increased risk of adverse 

reproductive outcomes including preterm delivery, fetal growth retardation and low 

birthweight in the PEPP population.   
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2 MATERIALS AND METHODS 

 

2.1 Study population 

The Prenatal Exposure and Preeclampsia Prevention (PEPP) project was designed as a 

multi-endpoint cohort study to evaluate the impact of maternal and/or newborn phase I/II 

metabolic enzyme genotype combinations in the presence of prenatal exposure to cigarette 

smoke, alcohol and other environmental compounds on the level of DNA damage observed in 

newborns, other effect biomarker endpoints and adverse reproductive outcome endpoints.  The 

study population was recruited at the Magee-Womens Hospital (MWH), Pittsburgh PA and its 

associated private OB/GYN practice groups, starting in March 1997 (IRB #MWH-92-031). 

 

 Healthy pregnant women in the Pittsburgh area between the ages of 14 through 44 were 

recruited into the study.  Those subjects at less than 18 weeks gestation at the time of recruitment 

and presenting for care at the Magee-Womens Hospital (MWH), or MWH associated OB/GYN 

practice groups were eligible for enrollment into the study.  Exclusion criteria for the study 

include women presenting for their first prenatal visit or at any point up to 18 weeks gestation 

with chronic hypertension, defined as a blood pressure of greater than 140/90 mmHg, and 

women with a history of diabetes mellitus or known cardiac disease.  All subject participants 

were given a baseline questionnaire by trained staff upon enrollment.  The questionnaire 

included demographic characteristics such as age, ethnicity, education, marital status, household 

income, current employment status, occupation, occupational history and potential exposures and 

health insurance information.  The questionnaire also included family history, medical history, 
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obstetric and gynecological history, anthropometric history, current medications, dietary intake 

and substance use and paternal smoking history.  A follow up questionnaire, which focused on 

selected maternal lifestyle factors during the last three months of the pregnancy, was also 

administered to each study participant within 48 hours of delivery.   

 

 Birthweight was recorded from the medical chart and the gestational week was calculated 

from the last menstruation date, which patients had reported at the baseline interview and clinical 

visit.  The number of gestational weeks were confirmed by uterus size measured by ultrasound.     

 

2.2 Sample collection and processing 

Maternal peripheral blood samples were collected at three times during the pregnancy; at 

less than 22 weeks (baseline), 28-32 weeks of gestation and one day postpartum.  The blood 

samples collected at the first prenatal visit were classified as baseline.  Umbilical cord blood 

samples were collected at delivery for newborn analysis. All peripheral and cord blood samples 

were drawn into a green top Vacutainer tube (Becton Dickinson, Inc) containing sodium 

heparin anticoagulant by trained clinical staff and stored at -4°C.  These peripheral blood 

samples were transferred to the Department of Environmental & Occupational Health research 

facility within 24 hours of collection.  Both maternal and newborn blood samples were aliquoted 

in the receiving laboratory and were stored at -80°C until transfer to Dr. Romkes’ laboratory.  In 

order to ensure anonymity of the subjects and blind the laboratory investigations, a 6 or 9 digit 

unique identification number, Medical Record Number (MRN), was assigned to each subject and 

used to label blood samples, database entries, data printouts, and computer records.   
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For the Phase I and II metabolizing enzyme genotype analyses, 150 µl of maternal and/or 

newborn whole blood was used to isolate genomic DNA, either by the PureGene DNA Isolation 

Kit (Gentra Systems, Inc. Minneapolis, MN) or Instagene DNA isolation kit (Bio Rad, Hercales, 

CA).  The extracted genomic DNAs were stored at –30°C until further analysis and all whole 

blood samples were stored at –80°C for long time storage. 

 

2.3 DNA isolation 

 Two DNA isolation protocols, InstageneTM Matrix DNA isolation kit (Bio Rad Company, 

Hercules, CA) and Puregene DNA Isolation Kit (Gentra Systems, Inc. Minneapolis, MN) were 

used.  These two protocols are briefly described below.       

 

2.3.1 Puregene DNA isolation kit 

The protocol was adapted to a miniaturized form based on the recommended protocol 

from Gentra Systems.  The frozen maternal peripheral blood and umbilical cord blood samples 

were thawed at room temperature for preparation of DNA isolation processing.  Approximately 

150 µl of whole blood was mixed with 450 µl of the RBC Lysis solution in a 1.5 ml 

microcentrifuge tube.  The mixture was then vortexed for a few seconds and incubated at room 

temperature for 10 min.  The mixture was inverted once during the incubation.  After the 

incubation, the mixture was centrifuged for 20 seconds at high speed.  The supernatant was 

removed with a pipette from the microcentrifuge tube leaving behind the visible white cell pellet 
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and about 10-20 µl of the residual liquid.  The microcentrifuge tube was vortexed for few 

seconds to resuspend the cells in the residual liquid and 150 µl of the Cell Lysis Solution (Gentra 

System) and 0.75 µl of RNase A Solution (Gentra System) were added to the resuspended cells.  

The mixture was vortexed for few seconds and incubated in a 37°C waterbath for 15 min.  The 

DNA isolation mixture was incubated at room temperature until all visible clumps were 

dissolved.  The Protein Precipitation Solution (Gentra System) (50 µl) was added to the 

microcentrifuge tube and vortexed for 30 sec to mix with the cell lysate.  Then, the 

microcentrifuge tube was centrifuged at 14,000 rpm for 6 min.  The proteins precipitated on the 

bottom of the tube.  The supernatant was poured into a sterile 1.5 ml microcentrifuge tube 

containing 150 µl of 100% isopropanol (Sigma).  After a gentle mix, the tube was centrifuged at 

14,000 rpm for 4 minutes.  The supernatant was poured off and the microcentrifuge tube was 

drained briefly with clean paper.  The white pellet deposited on the bottom of the 

microcentrifuge tube was washed with 150 µl of 70% ethanol (Sigma).  The tube was 

centrifuged at 14,000 rpm for 4 min and the supernatant was poured off.  The microcentrifuge 

tube was drained with clean paper.  The white pellet was dried in a vacuum centrifuge for 5 min 

at the medium temperature setting.  Fifty µl of the DNA Hydration Solution (Gentra System) 

was added to the microcentrifuge tube.  The isolated DNA was incubated for complete hydration 

at room temperature overnight.  The typical yield of genomic DNA using the PureGene DNA 

isolation kit with 150 µl of frozen whole blood was 200 ng/µl.  The samples were stored at  

–30°C for phase I/II metabolic enzyme genotype analysis and –80°C for long time storage.     
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2.3.2 Instagene DNA isolation kit 

 The protocol was directly adapted from the Instagene recommended protocol.  The frozen 

maternal/newborn whole blood samples were thawed at room temperature for DNA isolation 

processing.  Twenty µl of whole blood was added to a sterile 1.5 ml microcentrifuge tube 

containing 1 ml of PCR dH2O (Sigma).  The mixture was incubated for 30 min at room 

temperature after a few seconds of vortexing.  The mixture was centrifuged at 12,000 rpm for 3 

min, and then the supernatant was removed from the microcentrifuge tube with a pipette leaving 

behind about 30 µl of the residual liquid.  Instagene matrix (Bio Rad) (200 µl) was added to the 

microcentrifuge tube and the mixture was incubated for 30 min at 56°C.  After the incubation, 

the microcentrifuge tube was vortexed for 10 sec and heated for 8 min at 100°C with a heat 

block.  The mixture was vortexed for 10 sec after the heating and then centrifuged at 12,000 rpm 

for 3 min.  The isolated genomic DNA was stored at –30 °C for the analysis and –80°C for long 

time storage.  The genomic DNA isolated by Instagene DNA Isolation Kit needed to vortexed for 

few seconds and then centrifuged at 12,000 rpm for 3 min every time just before preparation of 

PCR analysis to increase PCR efficiency.   

 

2.4 Phase I/II metabolic enzyme genotyping 

Phase I (CYP1A1*2A,*3 and CYP2E1*5B) and phase II (GSTM1, GSTT1, and NAT2*) 

metabolizing enzyme genotypes were analyzed for 1,148 mother/newborn pairs by either 

Restriction Fragment Length Polymorphism – Polymerase Chain Reaction (RFLP-PCR) or 

differential PCR approaches.  In general, the RFLP-PCR approach is commonly used for SNP 

detection and the differential PCR is useful for gene deletion detection analyses.   
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Briefly in RFLP-PCR, PCR is used to amplify a target DNA fragment.  Figure 2 

summarizes the basic principle of the PCR amplification.  A single stranded DNA template is 

created by heating double stranded DNA near boiling temperature.  The temperature is then 

lowered to allow specific primers to anneal to the complement DNA template.  A single pair of 

forward and reverse primers is designed to recognize a complementary sequence surrounding the 

polymorphic site.  Taq polymerase synthesizes new strands of DNA, complementary to the 

template, that extend a variable distance beyond the position of the primer binding site on the 

other template.  The original and newly synthesized DNA stands are separated by increasing the 

temperature.  New sets of primers are allowed to anneal to the newly synthesized DNA single 

strand template by reducing the temperature and Taq polymerase again synthesizes new strands.  

The PCR amplification process generates millions of copies of the target DNA region by 

repeating these cycles.  Restriction enzymes can cleave the amplified DNA fragments due to the  

presence of a unique sequence in the fragments.  If the DNA fragment carries a mutated 

nucleotide which creates a unique sequence recognized by a specific restriction enzyme, 

following enzyme digestion a different band pattern is observed from the fragment without the 

substituted nucleotide.  Band patterns are detected by polyacrylamide gel electrophoresis for the 

determination of genotypes.  For example, the CYP2E1*5B genotype was identified by gaining a 

recognition site for the restriction enzyme (Pst I) which results in two fragments.  The expected 

band size for CYP2E1 *5B/*5B is 290 and 122 bp while the wild type genotype (CYP2E1*1/*1) 

band pattern is a single 412 bp fragment (Figure 3).     
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Figure 2.  Polymerase chain reaction [193] 

  

       

 
 

Figure 3.  Genotype analysis  for CYP2E1 and GSTM1 

 
Similarly for differential PCR, a set of forward and reverse primers are designed to 

anneal to template DNA strands within the polymorphic gene.  If the gene is deleted, the primer 

cannot anneal to the template DNA to initiate new strand synthesis and the PCR amplification 

fails.  As an internal control to confirm a successful PCR reaction, a house keeping gene such as 

  - 268 bp 

  - 215 bp 

GSTM1   −     +    +    +  marker 

- 412 bp 

- 290 bp 

 

 

CYP2E1 wt mut marker 
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β-globin is amplified in the same reaction mix.  As shown in Figure 3, the GSTM1 null genotype 

appears as a single band at 268 bp (β-globin) but absent GSTM1 gene (215 bp).  On the other 

hand, the presence of two bands at the expected sizes represents the GSTM1 positive genotype. 

 

PCR conditions for the genotyping analyses are summarized in Table 11.  Briefly, the 

PCR is carried out with dimethyl sulfoxide (DMSO) (Sigma), 1X PCR buffer (Perkin Elmer), 

MgCl2 (Perkin Elmer), 10mM dNTPs (Pharmacia), and 400ng/sample of both forward and 

reverse specific primers (Midland).  The amount of genomic DNA used in the analyses was 

dependent on the specific PCR reaction.  The hot-start PCR reaction was initiated by a pre-PCR 

reaction by 5 min of denaturation (94°C) prior to the addition of AmpliTaq DNA polymerase 

(2.5 unit/reaction) (Perkin Elmer) at 86°C, followed by 2.5 min of extension at 94°C.  Each PCR 

cycle had three different temperature cycles starting with 1) denaturation or the separation of 

genomic DNA to single strands at 94°C for 1 min, 2) an annealing step that allowed the primer to 

anneal at a specific temperature for 1 min and 3) then an extension step at 72°C for 3 min.  The 

PCR cycles were repeated for 40 times followed by 7 min of extension at 72°C and a 4°C soak.  

PCR protocols for each specific genotype analysis were optimized and validated in Dr. Romkes’ 

laboratory.  Every PCR reaction was performed with at least one positive control sample of a 

known genotype confirmed by DNA sequencing as a test for reproducibility and a negative 

control used as a contamination indicator.   
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Table 11.  PCR amplification conditions for phase I/II metabolic enzyme 

genotypes 

 
 
Metabolic 
Enzymes 

DMSO  1X Buffer MgCl2 Taq polymerase Annealing 
Temperature 

Reference 

CYP1A1*2A/*3 Yes Buffer II 1µM  AmpliTaq 55°C [194] 
CYP2E1*5B Yes Buffer II 1 µM AmpliTaq 53°C [195] 
NAT2* No Buffer F No AmpliTaq 57°C [170] 
GSTM1 Yes Buffer II 1.5 µM AmpliTaq Gold 55°C [148] 
GSTT1 No Buffer B No AmpliTaq 55°C [196] 

 

For the RFLP analysis, the amplified PCR products were initially run on 8% poly-

acrylamide (National Diagnostics) gels to verify that the PCR amplification was successful.  

PCR products were then digested with the appropriate restriction enzyme (Table 12) for 

approximately 2 hours at the recommended temperature in a waterbath.  A stop solution, which 

contained formamide (Sigma), bromophenol blue (Sigma), and Tris Borate EDTA (TBE) buffer 

(Sigma) was added to the digested PCR products to terminate restriction enzymatic digestion.  

Then, the digested products were run on 8% poly-acrylamide gels at 300V for about 1 hour or 

until the stop solution reached the bottom of the gels.  The gels were stained with ethidium 

bromide (Sigma) and photographed.  Positive control samples representing the 3 possible 

genotypes were also digested with the restriction enzyme and run on each poly-acrylamide gel to 

verify 1) complete restriction enzyme digestion and, 2) accuracy of expected band pattern.  A 

DNA fragment size ladder, 100 bp DNA (MBI Fermentas) was added to one of the lanes.   
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Table 12.  Summary of phase I/II metabolizing enzymes, RFLP-PCR, 

differential PCR analysis protocols and expected band patterns 

 
 

 Metabolic 
Enzymes 

Allelic 
Variants 

Expected Band Sizes 
(bp) 

Restriction 
Enzyme 

Reference 

CYP1A1 *1 (wt),  
*2A (Msp),  
*3 

*1/*1=1032 
*1/*2A=206,826,1032, 
*1/*3=260,772,1032 
*2A/*2A=206,826 
*3/*3=260,772 

MspI [194] 

CYP2E1 *1 (wt),  
*5B  

*1/*1=412 
*1/*5B=412,290,122 
*5B/*5B=290,122 

PstI [195] 

RFLP-PCR 

NAT2* *4 (wt), 
*5(m1), 

  
*6A (m2),  
 
 
*7A (m3),  
 
*14A (m4) 

*4/*4=1093 
*5A/5B= wt-660, 433   ht-1093, 660, 433   
mut-1093 
*6A= wt-104, 122, 170, 317, 380   ht-104, 
122, 170, 274, 317,380    mut-122, 274, 
317, 380 
*7A= wt-811, 282   ht-1093, 811, 282   
mut-1093 
*14A= wt759, 189, 91, 53   ht-759, 280, 
189, 91, 53 mut-759, 280, 53 

 
KpnI 
 
TaqI/AvaII, 

 
 
BamHI, 

 
MspI/Alu I 

[170] 

GSTM1 Present, null β-globin band=268 (+C), GSTM1=215 None [148] Differential 
PCR GSTT1 Present, null β-globin band=268 (+C) ,GSTT1=480 None [196] 

 

Since the GSTM1 and GSTT1 genetic polymorphisms are complete gene deletions, the 

differential PCR approach was performed.  Briefly, the PCR reaction contained one set of 

forward and reverse primers for each gene, GSTM1/GSTT1 and β-globin (a positive control).  

The primers were designed to amplify different fragment sizes of these genes which the expected 

fragment sizes summarized in Table 12.  The amplified PCR products were then run on 8% poly-

acrylamide gels to determine the band pattern.  GSTM1 or GSTT1 positive, which has at least one 

copy of the gene, would be expected to show two bands of different band sizes and GSTM1 or 
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GSTT1 null was determined as the presence of only β-globin band (Figure 3).  Similarly, a 

known genotype positive control and a negative control were run with each gel for verification.   

 

2.5 Quality control 

A major concern in these analyses were the inclusion of a number of different quality 

control measures to monitor quality of data obtained.  The strategies used for quality control are 

summarized below.   

 

2.5.1 Lab positive control samples 

Previously sequenced genomic DNA samples were used with every PCR analysis to 

verify reproducibility of RFLP-PCR and differential PCR reactions and to confirm accuracy of 

genotype classifications.  Each possible allele combination for all genotypes screened was 

included in this positive control reference DNA sample set.     

 

2.5.2 Protocol specific procedures for quality control 

The entire DNA isolation protocol and PCR preparation were performed in separate 

chemical and laminar flow hoods, respectively.  Only sterile filtered tips were used for the entire 

procedure and all microcentrifuge tubes were sterilized.  All pipette tips were changed between 

samples to prevent cross-contamination.  For PCR reaction setup, the hood, pipettes, tips, micro 

centrifuge tubes, 96-well PCR plates and other reagents needed for the PCR reaction except 
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primers and DNA polymerase were UV-irradiated for at least 5 min.  This process is necessary to 

prevent the introduction of any foreign DNA to the PCR amplification process.  

  

All PCR reactions were performed with at least one positive control, and a negative 

control (without DNA).  These controls were included as the last tubes to be processed in order 

to detect the presence of any carryover contamination.  

 

2.5.3 Genotype database specific procedures for quality control 

Two individuals independently reviewed the polyacrylamide gel pictures for 

classification of genotypes.  Following entry of the genotype data into the database, a second 

person cross-checked all results.  The genotype analyses was repeated if the results were 

discordant.   

     

2.5.4 Laboratory wide quality control 

A monthly log documenting the calibration checks for the PCR thermal cyclers, balance, 

spectrophotometer, autoclave, pipettes, waterbaths and centrifuges was maintained.  The pipettes 

were calibrated every 6 months by an external professional service.   

 

2.6 Data entry and analysis 

The maternal/newborn phase I/II metabolic enzyme genotypes, maternal demographic 

characteristics and lifestyle variables were entered in an Excel spreadsheet (Microsoft).  All 
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statistical analyses were performed using STATA version 7 statistic software (Stata 

Corporation).    

 

2.6.1 Categorization of phase I/II metabolic enzyme genetic polymorphism genotypes        

Initial characterization of the genotype allelic frequency data for the following 

metabolizing enzymes were classified according to predicted phenotypic activity, from which the 

high risk (value=1) or low risk groups (value=0) were derived.  If the maternal or newborn 

subject carried at least one copy of CYP1A1*2A or CYP1A1*3, the subject was classified as risk 

group (value=1).  On the other hand, if the subject carried two copies of CYP1A1*1 (wild type), 

they were classified as low risk group (value=0).  Similarly, if the subject carried at least one 

copy of CYP2E1*5B, they were classified as the high risk group (value=1).  If the subject carried 

two copies of CYP2E1*1 (wild type), they were classified as the low risk group (value=0).  For 

both GSTM1 and GSTT1 genotype classifications, the subject was categorized in the high risk 

group (value=1), if they had the null or absent genotype.  If they carried at least one copy of the 

gene, they were classified as the low risk group (value=0).  Finally for the NAT2 genotype, 

individual subjects were categorized as a slow acetylator if they carried at least two copies of 

NAT2*5A/5B, NAT2*6A, NAT2*7A or NAT2*14A or a fast acetylator if they carried no or one 

copy of the NAT2* allelic variant for the high risk group (value=1) and for the low risk group 

(value=0), respectively.   
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2.6.2 Classification of low birthweight, preterm delivery and small for gestational age          

From among the overall study group, singleton live birth maternal/newborn pairs 

(n=1148) were classified into five groups based on birthweight and gestationa l weeks as follows: 

1) preterm delivery (n=86); 2) low birthweight (n=93); 3) preterm delivery and low birthweight 

(n=53); 4) small for gestational age (SGA) (n=107); and 5) average for gestational age (AGA) 

(n=948).  Preterm delivery was defined as less than 37 gestational weeks.  Low birthweight was 

defined as weight less than 2,500 g.  Group #3 included both of these criteria of low birthweight 

and preterm delivery.  SGA was defined as weight at or below the 10th percentile of birthweight 

for gestational age at full term (≥ 37 weeks) delivered at MWH.  AGA was defined as ≥2,500 g 

in birthweight at full term.   

 

2.6.3 Definition of maternal risk group variable in the last trimester 

Maternal risk groups in the last trimester were calculated and classified according to the 

method developed by Dr. Gordish in her dissertation [197].  Briefly, the risk groups consisted of 

four separate maternal risk factors, which were maternal cigarette smoking, alcohol intake, 

consumption of caffeine and charbroiled meat consumption in the last trimester.  These four risk 

factors were combined into one categorical risk group variable as follows.  If the maternal 

subject smoked at least one cigarette per day during the last trimester, she was classified as 

positive in maternal cigarette smoke category.  If the maternal subject had not smoked or had 

less than one cigarette per day, she was classified as negative in this risk category.  Similarly, if 

maternal subject drank any alcohol during the last trimester, she was classified as positive and if 

she had not, she would be negative in the alcohol intake risk category.  Daily caffeine 
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consumption was determined from four-caffeinated beverage intake levels, which were regular 

coffee, black tea, soft drink and hot chocolate, during the last trimester.  The maternal subject 

was classified as positive for caffeine consumption, if she had at least one caffeinated beverage 

per day.  For the consumption of charbroiled meat risk category, the maternal subject was 

classified as positive if she ate charbroiled meat once or more per month.  All four risk categories 

were then combined into one categorical risk group variable comprising three risk groups.  Those 

maternal subjects classified as negative for all four risk factors were placed in the low risk group 

(value=0).  Maternal subjects classified as positive for any one or two of the risk categories were 

placed in the medium risk group (value=1) and finally, maternal subjects classified as positive 

for any three or four of the risk categories were placed in the highest risk group (value=2).   

 

2.6.4 Univariate analyses 

Univariate comparisons between the birthweight/gestationa l week and specific 

maternal/newborn characteristics/lifestyle factors were performed.  These maternal factors 

included maternal age, household income, maternal education level, maternal cigarette smoking, 

passive cigarette smoking, alcohol intake, caffeine consumption, charbroiled meat intake, 

maternal third trimester risk group and maternal and/or newborn’s phase I/II metabolic enzyme 

genotypes.  These univariate analyses were performed by single variable logistic regression and 

also by single variable linear regression. 
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2.6.5 Multiple regression analyses 

Both logistic and linear multivariable regressions were performed to determine maternal 

and/or newborn risk factors associated with lower birthweight and/or preterm delivery.  In 

logistic regression, the adverse reproductive outcome, low birthweight and/or preterm delivery 

were the dependent variables.  In the linear regression models, birthweight was the dependent 

variable.  The independent variables such as maternal age, household income, maternal 

education level, maternal cigarette smoke in the last trimester, passive cigarette smoke exposure, 

alcohol intake, caffeine consumption, charbroiled meat intake, maternal third trimester risk group 

and maternal and/or newborn phase I/II metabolic enzyme genotypes were tested for an 

association with low birthweight and/or preterm delivery.  Once maternal demographic and 

lifestyle risk factors were identified, maternal and newborn genetic polymorphisms of phase I/II 

metabolizing enzymes were tested for modulation of these adverse reproductive outcome.   
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3 RESULTS 

 

3.1 Maternal demographic characteristics 

The study population consisted of 1148 maternal/newborn pairs of which, by self-report, 

376 (32.8%) were African American, 754 (65.7%) were Caucasian and 18 (1.5%) were defined 

as other ethnic group (Table 13).  Maternal age ranged from 13 to 45 years old and African 

American women were significantly younger than women in the other ethnic groups (p<0.001).  

The mean maternal age was 22.5 ± 5.1 years in African Americans, 26.4 ± 6.3 years in 

Caucasians, and 27.4 ± 6.0 years in others.  More than 40% of the African American women 

were under age 20 years old, while approximately 20% of women in Caucasian and 15% of 

women in other ethnic groups were in this young maternal age group.   

 

The family income profiles for African American women tended to be lower compared to 

Caucasians and others.  However, the differences in mean income were not statistically 

significant (p=0.20) at α=0.05.  There are distinct differences in family income among racial 

groups, especially in the lowest and highest income groups.  Almost a two-fold higher 

percentage of African American women (33.0%) were in the lowest income group (<$10,000) 

compared with Caucasian women (18.3%).  Similarly, a more than three fold higher percentage 

of Caucasian women (36.4%) and also women in the other racial groups (27.8%) were in the 

highest income group (≥$35,000) compared with African American women (9.0%).  In addition, 

approximately a two to three times higher percentage of African American women (30.1%) did 
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not know their family income compared with Caucasian women (10.5%) and women of other 

ethnic groups (16.7%).   

 

Maternal education level demonstrated a similar pattern to that of family income with 

significant differences among ethnicity (p<0.001).  African American women were more likely 

to have a lower level of education compared with women in the other racial groups.  

Approximately a two fold higher percentage of African American women (29.3%) had not 

graduated from high school compared with Caucasian women (14.9%) and the other ethnic 

group women (11.1%).  Moreover, more than a five fold higher percentage of Caucasian women 

(28.9%) and fourteen fold for women in the other ethnic groups (61.1%) were college graduates 

or higher compared with African American women (4.2%).   
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Table 13.  Maternal demographic characteristics in the study population 

 
 

 African American 
N=376 (32.8%) 
Mean ± s.d.     
(range) 

Caucasian 
N=754 (65.7%) 
Mean ± s.d.  
(range) 

Other 
N=18 (1.5%) 
Mean ± s.d.  
(range) 

Overall 
N=1148 
Mean ± s.d.  
(range) 

Maternal age * 
≤ 15 years old 
16-20 years old 
21-30 years old 
31-39 years old 
≥40 years old 

22.5 ± 5.1 (13-41) 
7 (1.9%) 
158 (42.0%) 
179 (47.6%) 
30 (8.0%) 
2 (0.5%) 

26.4 ± 6.3 (14-45) 
4 (0.5) 
157 (20.8%) 
379 (50.3%) 
196 (26.0%) 
18 (2.4%) 

27.4 ± 6.0 (17-37) 
0 
3 (15.7%) 
9 (50.0%) 
6 (34.3%) 
0 

25.1 ± 6.2 (13-45) 
11 (1.0%) 
318 (27.7%) 
567 (49.4%) 
232 (20.2%) 
20 (1.7%) 

Family income: 
<$10,000 
$10,000-<$20,000 
$20,000-<$35,000 
≥$35,000 
Don’t know 

 
124 (33.0%) 
67 (17.8%) 
38 (10.1%) 
34 (9.0%) 
113 (30.1%) 

 
138 (18.3%) 
145 (19.2%) 
117 (15.5%) 
275 (36.4%) 
79 (10.5%) 

 
4 (22.2%) 
4 (22.2%) 
2 (11.1%) 
5 (27.8%) 
3 (16.7%) 

 
266 (23.2%) 
216 (18.8%) 
157 (13.7%) 
314 (27.4%) 
195 (16.9%) 

Maternal education* 
< 12 grade 
High school   

     diploma 
Some collage 
BS or greater 

 
110 (29.3%) 
148 (39.4%) 
 
102 (27.1%) 
16 (4.2%) 

 
   112 (14.9%) 

260 (34.5%) 
 
164 (21.7%) 
218 (28.9%) 

 
   2 (11.1%) 

2 (11.1%) 
 
3 (16.7%) 
11 (61.1%) 

 
   224 (19.5%) 

410 (35.7%) 
 
269 (23.4%) 
245 (21.4%) 

* Indicates a statistically significant difference among ethnic groups (p = 0.05). 
 

3.2 Maternal smoking history, alcohol intake and charbroiled meat consumption at 

enrollment 

 

3.2.1 The validity of self-reported smoking 

Plasma cotinine levels were measured in order to evaluate the reliability of the maternal 

self-reported cigarette smoking in the last trimester for a subset of randomly selected 107 

subjects.  Maternal whole blood samples were collected when the subjects were admitted to 

MWH for delivery.  Positive tobacco exposure was defined as a cotinine levels of ≥25 ng/ml 

indicative of active smoking [124, 198].  The statistical analyses of the degree of agreement 
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between self-reported active smoking and cotinine level were performed by Dr. Gordish[197].  

According to her analysis, of the 30 women who reported smoking during the last trimester, 24 

had cotinine positive tobacco exposure while 6 did not.  Of the 77 women who reported no 

smoking exposure during the last trimester, 73 had no cotinine verified exposure while 4 showed 

positive cotinine levels.  These observations yielded a sensitivity value of 85.7% and a 

specificity value of 92.4%.  The level of agreement calculated by the kappa statistic was 90.7%.  

Thus, cigarette smoking self-reports among the PEPP study population were considered reliable.   

 

3.2.2 Smoking history at enrollment 

More than 50% of women in the study population had smoked at least 100 cigarettes in 

their lifetime (44.4% of African Americans, 62.6% of Caucasians and 33.3% of other racial 

groups).  Approximately 46% of the women were current smokers not baseline, defined as 

smoking one year prior to the pregnancy (40.2% of African Americans, 49.7% of Caucasians, 

and 33.3% of other racial groups).  There was a significant difference in the number of cigarettes 

smoked per day among racial groups (p=0.009) (Table 14).  Caucasian women tended to be 

heavier smokers compared with women in other racial groups.  The mean number of cigarettes 

smoked per day was 16.3 ± 9.1 in Caucasians, 10.3 ± 7.6 in African Americans and 10.2 ± 8.2 in 

the other ethnic groups.  There was also a significant difference in the amount the women 

smoked prior to pregnancy among racial groups (p=0.001).  More than 66% of women in all 

racial groups continued to smoke after they became pregnant (64.9% of African Americans, 

67.2% of Caucasians and 66.7% of others).  The mean number of cigarettes smoked per day 

decreased substantially compared with the mean prior to pregnancy, 6.2 ± 9.3, 8.4 ± 6.8, and 3.5 



 

69 

± 1.7 cigarette per day, respectively.  There are significant differences among racial groups for 

the mean number of cigarette smoked once pregnant (p=0.001).  However, approximately 10% 

of smokers did not change the amount smoked since pregnant, 10.6%, 10.4% and 0%, 

respectively.   

 

3.2.3 Alcohol intake and charbroiled meat consumption at enrollment   

The vast majority of women consumed alcoholic beverages prior to pregnancy.  

However, there was a significant difference in the number of drinkers (p<0.001) and the mean 

grams of alcohol consumed per week (p<0.001) among racial groups.  The amount of alcohol 

(grams) was calculated as follows.  First, the numbers of drinks per week for each type of 

alcoholic beverage (beer, wine and liquor) were determined separately.  These values were 

converted to grams of alcohol where one can of beer (12oz) contained 12.8 g of alcohol, one 

grass of wine (4oz) contained 10g of alcohol and one shot of liquor (1.5oz) contained 15.1g of 

alcohol. 

 

Caucasian women were more likely to drink and consumed higher amounts of alcohol per 

week compared with African American women and other racial groups.  The average grams of 

alcohol consumed per week was 61.0 ± 128.0 in African Americans, 73.0 ± 142.3 in Caucasians 

and 31.3 ± 78.5 in the other ethnic groups.  Only 10.5% of women continued to drink once 

pregnant (9.0% of African Americans, 11.5% of Caucasians and 0% of other).    
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The consumption of charbroiled meat was also significantly different among racial 

groups (p<0.001).  African American women consumed less charbroiled meat compared with 

Caucasian women and others.  Over 50% of African American women consumed charbroiled 

meat less than once per month or never while 39.7% in Caucasians and 38.9% of others reported 

such intake.   

 

Table 14.  Maternal smoking history, alcohol intake and charbroiled meat 

consumption at enrollment 

 
 

 African 
American 
N=376 (32.8%) 
Mean ± s.d.  
  (range) 

Caucasian 
N=754 (65.7%) 
Mean ± s.d.    
  (range) 

Other 
N=18 (1.5%) 
Mean ± s.d.   
  (range) 

Overall 
N=1148 
Mean ± s.d.  
  (range) 

Smokers (N) 
Current smokers (N)* 

167 (44.4%) 
151 (40.2%) 

472 (62.6%) 
375 (49.7%) 

6 (33.3%) 
6 (33.3%) 

645 (56.2%) 
532 (46.3%) 

Cigarettes/day prior to 
pregnancy * 

10.3 ± 7.6  
(1-45) 

16.3 ± 9.1  
(0.1-50) 

10.2 ± 8.2  
(0.3-20) 

14.5 ± 9.1 
 (0.1-50) 

Continue to smoke since   
   pregnant 
Cigarettes/day since pregnant* 

98 (64.9%) 
 
6.2 ± 9.3  
(0.2-80) 

252 (67.2%) 
 
8.4 ± 6.8  
(0.1-40) 

4 (66.7%) 
 
3.5 ± 1.7 
 (1-5) 

354 (66.5%) 
 
7.6 ± 7.6  
(0.1-80) 

Quit smoking 
Increased smoking 
Decreased smoking 
No change in smoking 

53 (35.1%) 
6 (4.0%) 
76 (50.3%) 
16 (10.6%) 

123 (32.8%) 
4 (1.1%) 
209 (55.7%) 
39 (10.4%) 

2 (33.3%) 
0 
4 (66.7%) 
0 

178 (33.4%) 
10 (2.0%) 
289 (54.3%) 
55 (10.3%) 

Drinkers (N) 
Current drinkers (N) 
Drinks/week prior to pregnancy 
(g) 

272 (72.3%) 
236 (62.8%) 
61.0 ± 128.0  
(0.1-1177) 

692 (91.8%) 
630 (83.6%) 
73.0 ± 142.3  
(0.1-1281) 

15 (83.3%) 
14 (77.8%) 
31.3 ± 78.5  
(0.6-296.4) 

979 (85.3%) 
880 (76.7%) 
69.1 ± 137.9  
(0.1-1281) 

Continue to drink once 
pregnant 

34 (9.0%) 87 (11.5%) 0 121 (10.5%) 

Charbroiled meat 
Never 
< 1x/month 
1-4X/month 
>4x/month 
No response 

 
51 (13.6%) 
182 (48.4%) 
94 (25.0%) 
37 (9.8%) 
12 (3.2%) 

 
82 (10.9%) 
217 (28.8%) 
301 (39.9%) 
132 (17.5%) 
22 (2.9%) 

 
3 (16.7%) 
4 (22.2%) 
6 (33.3%) 
4 (22.2%) 
1 (5.6%) 

 
136 (11.9%) 
403 (35.1%) 
401 (34.9%) 
173 (15.1%) 
35 (3.0%) 

* Indicates a statistically significant differences among racial groups 
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3.3 Maternal cigarette smoking and alcohol consumption during the third trimester of 

pregnancy 

Approximately 57% of smokers continued to smoke during the last trimester of 

pregnancy (58.3% of African Americans, 56.8% of Caucasians, and 66.7% of other ethnic 

groups).  Overall, approximately 27.7% of the mothers in this study population who smoked 

during the last trimester (24.1% of African Americans, 29.5% of Caucasians and 25.0% of other 

ethnic groups).  The mean number of cigarettes smoked per day was significantly different 

among racial groups (p=0.003).  Among Caucasian women, the mean number of cigarettes per 

day was 9.0 ± 6.9, while women in other racial groups smoked less (6.4 ± 7.6 of African 

American and 3.3 ± 2.6 of others).   

 

 More than a three fold higher percentage of Caucasian women consumed alcohol in the 

last trimester (11.5%) while only 3.8% of African American women reported drinking.  This 

difference was statistically significantly different (p<0.001).  The average grams of alcohol 

consumed in the third trimester was 5.9 ± 6.9 for African Americans, 12.4 ± 71.9 for Caucasians 

and 2.5 for other.   

 

 The consumption of charbroiled meat during the last trimester continued to be 

significantly different among racial groups (p=0.001).  African American women consumed less 

charbroiled meat during the last trimester in pregnancy compared with Caucasian women and 

others.   
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Table 15.  Maternal smoking, alcohol intake and other exposures during the 

third trimester of pregnancy 

 
 

 African American 
N=365 (33.1%)* 
Mean ± s.d.   
(range) 

Caucasian 
N=722 (65.5%)* 
Mean ± s.d. 
(range) 

Other 
N=16 (1.4%)* 
Mean ± s.d. 
(range) 

Overall 
N=1,103* 
Mean ± s.d. 
(range) 

Smoked during the last   
   trimester 
Cigarette/day 

88 (58.3%) 
 

6.4 ± 7.6 (0.1-40) 

213 (56.8%) 
 

9.0 ± 6.9 (0.1-40) 

4 (66.7%) 
 

3.3 ± 2.6 (0.3-6) 

305 (57.3%) 
 

8.1 ± 7.2 (0.1-40) 
Drink alcohol during last  
   trimester 
Alcohol (g)/week 

14 (3.8%) 
 

5.9 ± 6.9  
(0.4-25.6) 

79 (11.5%) 
 

12.4 ± 71.9  
(0.08-640) 

1 (6.3%) 
 

2.5 

94 (8.2%) 
 

11.3 ± 65.9  
(0.08-640) 

Charbroiled meat during  
   last trimester 

Never 
< 1x/month 
1-4X/month 
>4x/month 
No response 

 
 

120 (32.9%) 
115 (31.5%) 
94 (25.8%) 
36 (9.8%) 
0 

 
 

182 (25.2%) 
180 (24.9%) 
245 (34.0%) 
114 (15.8%) 
1 (0.1%) 

 
 

3 (18.7%) 
3 (18.7%) 
9 (56.3%) 
1 (6.3%) 
0 

 
 

305 (27.7%) 
298 (27.0%) 
348 (31.5%) 
151 (13.7%) 
1 (0.1%) 

         * The number of subjects with the third trimester data differs from the number of subjects with baseline   
          demographic data due to missing follow-up questionnaires 

 
 

3.4 Maternal and newborn phase I/II metabolic enzyme genetic polymorphism allele 

frequencies 

Maternal and newborn allele frequencies of phase I/II metabolic enzyme stratified by 

ethnicity are summarized in Table 16 and Table 17.  The overall population frequencies observed 

for each racial groups were as we expected based on other existing data [147, 155, 162, 165, 

195].  Pairs of maternal/newborn genotypes were verified for Mendelian inherited patterns.  In 

the very rare instances where the genotypes observed were not biologically plausible, the 

analyses were repeated; no data remained discordant.   

 



 

73 

Table 16.  Maternal allele frequencies of phase I/II metabolic enzyme genetic 

polymorphisms 

 
 

 African American 
N=376 (32.8%) 

Caucasian 
N=754 (65.7%) 

Other 
N=18 (1.5%) 

Overall 
N=1,148 

CYP1A1* 
*1/*1 
*1/*2A, *1/*3 
*2A/*2A, *2A/*3, *3/*3 

 
186 (49.5%) 
173 (46.0%) 
17 (4.5%) 

 
572 (75.9%) 
172 (22.8%) 
9 (1.3%) 

 
9 (50.0%) 
7 (38.9%) 
2 (11.1%) 

 
767 (66.8%) 
352 (30.7%) 
28 (2.5%) 

CYP2E1* 
*1/*1 
*5B/*5B 
*5B/*5B 

 
340 (90.4%) 
34 (9.0%) 
2 (0.5%) 

 
716 (95.0%) 
38 (5.0%) 
0 

 
11 (61.1%) 
7 (38.9%) 
0 

 
1067 (92.9%) 
76 (6.8%) 
2 (0.2%) 

GSTM1 
Present 
Null 

 
242 (64.4%) 
134 (35.6%) 

 
359 (47.6%) 
395 (52.4%) 

 
13 (72.2%) 
5 (27.8%) 

 
614 (53.5%) 
534 (46.5%) 

GSTT1 
Present 
Null 

 
271 (72.1%) 
105 (27.9%) 

 
571 (75.7%) 
183 (24.3%) 

 
13 (72.2%) 
5 (27.8%) 

 
855 (74.5%) 
293 (25.5%) 

NAT2* 
Fast 
Slow 

 
239 (63.6%) 
137 (36.4%) 

 
368 (48.9%) 
385 (51.3%) 

 
11 (61.1%) 
7 (38.9%) 

 
618 (53.9%) 
529 (46.1%) 

Note: The number of subjects with allele frequency data differs from the number of subjects with baseline 
demographic data due to missing genotype data 
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Table 17.  Newborn allele frequencies of phase I/II metabolic enzyme genetic 

polymorphisms 

 
 

 African American 
N=376 (32.8%) 

Caucasian 
N=754 (65.7%) 

Other 
N=18 (1.5%) 

Overall 
N=1,148 

CYP1A1* 
*1/*1 
*1/*2A, *1/*3 
*2A/*2A, *2A/*3, *3/*3 

 
204 (54.3%) 
138 (36.7%) 
34 (9.0%) 

 
599 (79.7%) 
149 (19.8%) 
4 (0.5%) 

 
8 (44.4%) 
10 (55.6%) 
0 

 
811 (70.8%) 
297 (25.9%) 
38 (3.3%) 

CYP2E1 
*1/*1 
*1/*5B 
*5B/*5B 

 
346 (92.0%) 
30 (8.0%) 
0 

 
710 (94.2%) 
44 (5.8%) 
0 

 
14 (77.8%) 
3 (16.7%) 
1 (5.5%) 

 
1070 (93.2%) 
77 (6.7%) 
1 (0.1%) 

GSTM1 
Present 
Null 

 
246 (65.4%) 
130 (34.6%) 

 
347 (46.0%) 
407 (54.0%) 

 
12 (66.7%) 
6 (33.3%) 

 
605 (52.7%) 
543 (47.3%) 

GSTT1* 
Present 
Null 

 
276 (73.4%) 
100 (26.6%) 

 
606 (80.5%) 
147 (19.5%) 

 
12 (66.7%) 
6 (33.3%) 

 
894 (77.9%) 
253 (22.1%) 

NAT2* 
Fast 
Slow 

 
236 (62.8%) 
140 (37.2%) 

 
352 (46.8%) 
400 (53.2%) 

 
10 (55.6%) 
8 (44.4%) 

 
598 (52.2%) 
548 (47.8%) 

Note: The number of subjects with allele frequency data differs from the number of subjects with baseline 
demographic data due to missing genotype data 
 

 

3.5 Classification of low birthweight, preterm delivery and SGA 

From among the overall study group, singleton live birth mother/newborn pairs (n=1148) 

were classified into five groups based on birthweight and gestational weeks as follows: 1) 

preterm delivery (<37th gestational week) (n=93); 2) low birthweight (<2500 g birthweight) 

(n=85); 3) preterm and low birthweight (<37th gestational week and <2500 g birthweight) 

(n=52); 4) SGA (=10th percentile of birthweight at term (≥37 gestational week)); and 5) AGA 

(n=947) as the referent group.  Figure 4 summarizes how these groups are distributed among the 

total study population.   
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Figure 4.  Correlation between birthweight and gestational week in the study 

population 

 

3.6 Maternal demographic characteristics stratified by low birthweight, preterm 

delivery and SGA 

3.6.1 Association of newborn gender with the adverse reproductive outcomes 

 

A possible gender effect was evaluated for an association with these adverse reproductive 

outcomes in the fetus.  The mean birthweight for female infants was less than that among male 

infants, but this difference was not statistically significant.  Although a greater number of male 

infants were low birthweight and preterm delivery, this too was not statistically significant.   
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3.6.2 Low birthweight (<2500g) 

Overall, the mean maternal age for low birthweight infants (<2500g) was 23.8 ± 6.1 

compared to 25.4 ± 6.3 for AGA mothers, a statistically significant difference (p=0.033).  The 

majority of mothers of low birthweight infants were between 21 and 30 years old (48.8%); a 

similar age distribution was observed in AGA (49.0%).  However, women younger than 15 years 

old with low birthweight infants were represented at a much higher percentage (3.5%) compared 

with AGA (0.7%).   

 

In this study, race was a significant risk factor for delivering a low birthweight baby.    

African American women were more likely to have low birthweight infants compared with 

Caucasian women (p=0.028).  The proportion of low birthweight infant among African 

Americans was approximately 9.8% while 6.3% for Caucasians.   

 

Family income was also significantly different among the groups of low birthweight 

infants (p=0.037).  The low birthweight infants were more likely to be from the lower family 

income group (55.9%), defined as <$20,000, while only 40.3% for the AGA group.  Moreover, 

only 16.3% of the low birthweight infant mothers were in the highest income level, while 29.3% 

women in the AGA group were in this high income level.   

 

Furthermore, maternal education level was significantly different between the low 

birthweight and AGA groups (p=0.003).  Over 70% of women were high school graduates or 
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less in the low birthweight group compared to 50% of women in the AGA group.  Moreover, less 

than 10% of women in the low birthweight achieved a BS degree or higher compared with over 

20% of the women in the AGA.   

 

3.6.3 Preterm delivery (<37th gestational week) 

No significant difference in maternal age was observed between the preterm delivery and 

AGA groups (p=0.408).  The mean age was 24.5 ± 5.9 years in preterm delivery while 25.4 ± 6.3 

years old in AGA.  Approximately half of the women in the both preterm delivery (47.3%) and 

AGA groups (49.0%) were between age 21 and 30.  However, about a three times higher 

percentages of women were younger than 15 years old in the preterm delivery group (2.1%) 

compared to the women in the AGA group (0.7%).   

 

There was not a significant difference in ethnicity between the preterm delivery and AGA 

group (p=0.210).  Approximately 9.0% of African American women delivered before 37 

gestational weeks compared to 7.6% of Caucasian women.   

 

No significant differences were observed in either family income (p=0.496) or maternal 

education (p=0.084) between women in the preterm delivery and in AGA groups.  Similar to the 

AGA group, over 20% of the women in the preterm delivery were in the lowest and highest 

family income groups.  For the maternal education, over half of the women in both the preterm 

delivery and AGA groups were high school graduates or less.   
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3.6.4 Low birthweight and preterm delivery (<2500g and <37th gestational week) 

No significant differences were observed in the following demographic factors; maternal 

age (p=0.197); ethnicity (p=0.395); and family income (p=0.271) for women in the low 

birthweight and preterm delivery group compared with women in the AGA group.  However, 

maternal education was significantly different between the low birthweight and preterm delivery 

and the AGA groups (p=0.029).  Women in the low birthweight and preterm delivery group were 

more likely to be less educated compared with women in the AGA group.  Over 70% of the 

women were high school graduates or less and approximately 7.5% of the women had a BS or 

higher education in the low birthweight and preterm delivery group.  Compared to approximately 

50% women had less than a high school graduates and over 20% women had a BS or greater in 

the AGA group.   

 

3.6.5 Small for gestational age (10th percentile birthweight at full term) 

Maternal ages in the SGA and AGA groups were significantly different (p=0.004).  

Women in the SGA group were more likely to be younger (mean=23.5 ± 5.3 years old) 

compared with women in the AGA group (mean=25.4 ± 6.3 years old).  Approximately half of 

women in both groups were between age 21 and 30.  However, 13.1% women in the SGA group 

were between age 31-39 and none were age over 40, whereas over 20% of women in the AGA 

group were 31-39 years old and 2.1% were over 40 years old.   

 

A significant difference was observed in ethnicity between the SGA and AGA groups 

(p<0.001).  African American women had over a two-fold higher risk of having a SGA infant 
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compared with Caucasian women.  Approximately 14.4% of the 376 African American women, 

had an infant the 10th weight percentile for full term delivery while only 6.9% of the 772 

Caucasian women, had SGA infants.   

 

The distribution of family income for the SGA group was skewed to the lower end 

compared with that for the AGA group and this difference was statistically significant (p=0.001).  

Nearly 40% of the women in the SGA group were in the <$10,000 family income category 

whereas only 21% were in the AGA group.  On the other hand, approximately a two-fold higher 

percentage of women in the AGA group (29.3%) were in the highest income category compared 

with women in the SGA group (15.0%).   

 

Similar to family income, maternal education was also significantly different between 

these two groups (p=0.014).  Women in the SGA group were more likely to have less education 

compared with women in the AGA group.  Over 60% of women in the SGA group were high 

school graduates or less compared to approximately of 53.3% women in the AGA group.   
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Table 18.  Selected maternal demographic characteristics 

 
 

 <2500g 
N=86 
Mean ± s.d. 
(range) 

<37th G. W. 
N=93 
Mean ± s.d. 
(range) 

<2500g & 
<37th G. W. 
N=53 
Mean ± s.d. 
(range) 

SGA 
N=107 
Mean ± s.d. 
(range) 

AGA 
N=948 
Mean ± s.d. 
(range) 

Overall 
N=1,148 
Mean ± s.d. 
(range) 

Maternal age  
 

≤ 15 years old 
16-20 years old 
21-30 years old 
31-39 years old 
≥40 years old 

23.8 ± 6.1 
(14-39) 
3 (3.5%) 
27 (31.4%) 
42 (48.8%) 
14 (16.3%) 
0 

24.5 ± 5.9 
(14-39) 
2 (2.1%) 
29 (31.2%) 
44 (47.3%) 
18 (19.4%) 
0 

24.2 ± 6.2  
(14-39) 
2 (3.7%) 
16 (30.2%) 
25 (47.2%) 
10 (18.9%) 
0 

23.5 ± 5.3  
(14-38) 
2 (1.9%) 
32 (29.9%) 
59 (55.1%) 
14 (13.1%) 
0 

25.4 ± 6.3 
(13-45) 
7 (0.7%) 
257 (27.1%) 
464 (49.0%) 
200 (21.1%) 
20 (2.1%) 

25.1 ± 6.2 
(13-45) 
11 (1.0%) 
318 (27.7%) 
567 (49.4%) 
232 (20.2%) 
20 (1.7%) 

Ethnicity* 
African American 
Caucasian 

 
37 (9.8%) 
49 (6.3%) 

 
34 (9.0%) 
59 (7.6%) 

 
19 (5.1%) 
34 (4.3%) 

 
54 (14.4%) 
53 (6.9%) 

 
288 (76.6%) 
660 (85.4%) 

 
376 
772 

Family income: 
<$10,000 
$10,000-<$20,000 
$20,000-<$35,000 
≥$35,000 
Don’t know 

 
27 (31.4%) 
21 (24.4%) 
9 (10.5%) 
14 (16.3%) 
15 (17.4%) 

 
20 (21.5%) 
22 (23.7%) 
13 (13.9%) 
20 (21.5%) 
18 (19.4%) 

 
11 (20.8%) 
16 (30.2%) 
6 (11.2%) 
11 (20.8%) 
9 (17.0%) 

 
40 (37.4%) 
18 (16.8%) 
16 (15.0%) 
16 (15.0%) 
17 (15.8%) 

 
206 (21.7%) 
176 (18.6%) 
128 (13.5%) 
278 (29.3%) 
160 (16.9%) 

 
266 (23.2%) 
216 (18.8%) 
157 (13.7%) 
314 (27.4%) 
195 (16.9%) 

Maternal education * 
<12 grade 

 High school   
   diploma 
 Some collage 

BS or greater 

 
18 (20.9%) 
44 (51.2%) 
16 (18.6%) 
8 (9.3%) 

 
21 (22.6%) 
36 (38.7%) 
25 (26.9%) 
11 (11.8%) 

 
12 (22.6%) 
26 (49.1%) 
11 (20.8%) 
4 (7.5%) 

 
28 (26.2%) 
44 (41.1%) 
23 (21.5%) 
12 (11.2%) 

 
175 (18.5%) 
330 (34.8%) 
221 (23.3%) 
222 (23.4%) 

 
224 (19.5%) 
410 (35.7%) 
269 (23.4%) 
245 (21.4%) 

* Indicates statistically significant difference at p= 0.05 between low birthweight, preterm delivery or low 
birthweight & preterm delivery, SGA and AGA  
 

3.7 Maternal cigarette smoke exposure and alcohol consumption prior to pregnancy 

stratified by low birthweight, preterm delivery and SGA 

 

3.7.1 Cigarette smoke exposure  

Approximately half of women in all groups were current cigarette smokers at baseline 

(52.9% in low birthweight, 47.3% in preterm delivery, 67.3% in low birthweight and preterm 
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delivery, 61.7% in SGA and 44.5% in AGA).  The mean number of cigarettes smoked per day 

was 14.3 ± 8.6, 15.3 ± 10.1, 14.2 ± 9.2, 15.0 ± 9.6, and 14.3 ± 8.9, respectively.  Over 60% of the 

women continued to smoke since pregnant (80.0% in low birthweight, 75.0% in preterm 

delivery, 60.0% in low birthweight and preterm delivery, 72.7% in SGA and 62.7% in AGA).  A 

significant difference was observed in the percentage of women who continued smoking during 

pregnancy between the low birthweight and AGA groups (p<0.001).  The average number of 

cigarettes smoked per day during the pregnancy dramatically dropped substantially in all groups.  

The mean number of cigarettes smoked per day since pregnant was 9.6 ±  8.6 in low birthweight, 

8.0 ± 5.7 in preterm delivery, 8.2 ± 5.2 in low birthweight and preterm delivery, 7.7 ± 8.6 in the 

SGA group and 7.7 ± 8.6 in the AGA group (Table 19). 

 

Over 35% of women (45.3% of the low birthweight, 39.8% of the preterm delivery, 

41.5% of the low birthweight and preterm delivery, 44.9% of the SGA and 36.1% of the AGA 

groups) were passively exposed to passive cigarette smoke during the early stages of pregnancy.  

The mean hours of exposure per week for the women in each group were 46.5 ± 36.1, 34.2 ± 

28.8, 37.7 ± 29.2, and 36.9 ± 34.7, respectively.  A significant difference was observed in the 

passive cigarette smoke exposure between the low birthweight and AGA groups (p=0.01).  

Approximately 20.9% of women in the low birthweight group reported being passively exposed 

more than 49 hours per week, while only 10.1% of AGA women were exposed to that level.   
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3.7.2 Alcohol consumption in early pregnancy 

As summarized in Table 19, approximately 70% of women had consumed alcohol prior 

to pregnancy.  The mean alcohol (g) consumed per week was 69.7 ± 79.8 in low birthweight, 

64.8 ± 98.9 in preterm delivery, 66.4 ± 63.8 in low birthweight and preterm delivery and 68.5 ± 

142.6 in AGA.  However, the vast majority of women stopped drinking once pregnant.  

 

Table 19.  Maternal cigarette smoke exposure and alcohol consumption prior 

to pregnancy 

 
 

 <2500g 
N=86 
Mean ± s.d. 
(range) 

<37th G. W. 
N=93 
Mean ± s.d. 
(range) 

<2500g & 
<37th G. 
week 
N=53 
Mean ± s.d. 
(range) 

SGA 
N=107 
Mean ± s.d. 
(range) 

AGA 
N=948 
Mean ± s.d. 
(range) 

Overall 
N=1,148 
Mean ± s.d. 
(range) 

Current smoker (N) 
Cigarettes/day prior 
to pregnancy 

45 (52.9%) 
14.3 ± 8.6  
(2-40) 

44 (47.3%) 
15.3 ± 10.1 
(3-50) 

27 (67.3%) 
14.2 ± 9.2  
(3-40) 

66 (61.7%) 
15.0 ± 9.6 
(2-45) 

422 (44.5%) 
14.3 ± 8.9 
(0.1-50) 

532 (46.3%) 
14.5 ± 9.1 
(0.1-50) 

Continue to smoke 
since pregnant 
Cigarettes/day since 
pregnant 

36 (80.0%) 
 
9.6 ± 8.6  
(1-40) 

33 (75.0%) 
 
8.0 ± 5.7  
(1-20) 

21 (60.0%) 
 
8.2 ± 5.2  
(2-20) 

52 (72.7%) 
 
7.7 ± 8.6  
(1-40) 

269 (62.7%) 
 
7.7 ± 8.6  
(0.1-80) 

354 (66.5%) 
 
7.6 ± 7.6 (0.1-
80) 

Passive smoking (N) 
Exposed hours/week 

 
<3.5 h/week 
3.5-48 h/week 
>49 h/week 

39 (45.3%) 
46.5 ± 36.1 
(1-168) 
50 (58.1%) 
18 (20.9%) 
18 (20.9%) 

37 (39.8%) 
34.2 ± 28.8 
(1-112) 
59 (63.4%) 
23 (24.7%) 
11 (11.8%) 

22 (41.5%) 
37.7 ± 29.2 
(1-108) 
34 (64.2%) 
10 (18.9%) 
9 (17.0%) 

48 (44.9%) 
45.1 ± 34.5 
(2-168) 
61 (57.0%) 
27 (25.2%) 
19 (17.8%) 

342 (36.1%) 
36.9 ± 34.7 
(1-168) 
630 (66.5%) 
222 (23.4%) 
96 (10.1%) 

427 (37.2%) 
37.5 ± 343 

 
751 (65.2%) 
274 (23.8%) 
127 (11.0%) 

Drinker 
Alcohol(g)/week 
prior to pregnancy 

63 (72.9%) 
69.7 ± 79.8 
(0.5-347.5) 

69 (74.2%) 
64.8 ± 98.9 
(0.2-642) 

37 (69.2%) 
66.4 ± 63.8  
(0.5-231) 

82 
78.1 ± 123.3  
(0.5-842) 

729 (76.9%) 
68.5 ± 142.6 
(0.1-1281) 

880 (76.7%) 
69.1 ± 137.9 
(0.41-1281) 

Continue to drink 
since pregnancy 

8 (12.7%) 11 (15.9%) 6 (16.2%) 9 (11.0%) 101 (13.9%) 121 (13.8%) 
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3.7.3 Maternal cigarette smoke exposure and alcohol consumption reported during the 

third trimester 

Overall 35% of women smoked during the third trimester (43.4% in the low birthweight, 

35.2% in the preterm, 43.1% in the low birthweight and preterm delivery, and 48.6% in the 

SGA) and approximately 24.5% in the AGA group.  This maternal smoking behavior for each 

group was significantly different compared with that in the AGA group.  The p-values were 

p<0.001, p=0.025, p=0.003 and p<0.001, respectively.  The mean number of cigarettes smoked 

per week in each group was 9.0 ± 9.1, 8.0 ± 8.2, 8.3 ± 8.6, 7.9 ± 6.1 and 8.2 ± 7.3, respectively, 

and was not significantly different compared with that of the AGA group.   

 

Women in the low birthweight, low birthweight and preterm delivery and SGA groups 

were more likely to be exposed to cigarette smoke for longer time periods than women in the 

AGA group.  Approximately 40.2% of women in the low birthweight group were exposed longer 

than 3.5 hours per week during the third trimester compared with women in the AGA group 

(27.3%).  Similarly, there was a higher percentage of women in the SGA group (44.3%) who 

were exposed more than 3.5 hours per week compared with women in the AGA group.  The 

differences were statistically significant between the AGA and the low birthweight (p=0.027), 

and the SGA groups (p=0.001).  However, the difference in maternal passive smoke exposure 

during the third trimester in the preterm delivery and in the low birthweight & preterm delivery 

groups compared with the AGA group did not reach statistical significance.   

 

The majority of women in all groups did not drink alcohol during the third trimester.  For 

the women who did drink, the mean alcohol (g) consumed per week was 6.7 ± 8.6, 4.0 ± 5.0, 2.2 
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± 1.2, 8.4 ± 10.3 and 12.1 ± 71.0 in the low birthweight, the preterm delivery, the low 

birthweight and preterm delivery, the SGA and the AGA groups, respectively.   

 

Table 20.  Cigarette smoke exposure and alcohol consumption during the 

third trimester of pregnancy 

 
 

 
 

Exposure  
during the third 
trimester 

<2500g 
N=83 
Mean ± s.d. 
(range) 

<37th G. 
week 
N=91 
Mean ± s.d. 
(range) 

<2500g & 
<37th G. 
week 
N=51 
Mean ± s.d. 
(range) 

SGA 
N=105 
Mean ± s.d. 
(range) 

AGA 
N=907 
Mean±s.d. 
(range) 

Overall 
N=1,103 
Mean ± s.d. 
(range) 

Smoked  
Yes 
No 
Cigarette/day 

 
36 (43.4%) 
47 (56.6%) 
9.0 ± 9.1 
(0.2-30) 

 
32 (35.2%) 
59 (64.8%) 
8.0 ± 8.2  
(0.2-30) 

 
22 (43.1%) 
29 (56.9%) 
8.3 ± 8.6  
(0.2-30) 

 
51 (48.6%) 
54 (51.4%) 
7.9 ± 6.1 
(0.2-20) 

 
222 (24.5%) 
685 (75.5%) 
8.2 ± 7.3  
(0.1-40) 

 
305 (26.6%) 
798 (72.4%) 
8.1 ± 7.2 
(0.1-40) 

Passive smoking  
<3.5 hr/week 
3.5-49 hr/week 
>49 hr/week 

 
49 (59.8%) 
26 (31.7%) 
7 (8.5%) 

 
35 (76.1%) 
8 (17.5%) 
3 (6.5%) 

 
34 (66.7%) 
13 (25.5%) 
4 (7.8%) 

 
58 (55.8%) 
35 (33.7%) 
11 (10.6%) 

 
658 (72.6%) 
177 (19.5%) 
71 (7.8%) 

 
782 (71.0%) 
231 (21.0%) 
88 (8.0%) 

Drink alcohol (N) 
Alcohol (g)/week 

6 (7.2%) 
6.7 ± 8.6  
(0.64-22.8) 

5 (5.5%) 
4.0 ± 5.0  
(0.8-12.8) 

3 (5.9%) 
2.2 ± 1.2  
(0.8-3.2) 

8 (7.6%) 
8.4 ± 10.3 
(0.3-25.6) 

81 (8.9%) 
12.1 ± 71.0 
(0.08-640) 

94 (8.5%) 
11.3 ± 65.9  
(0.08-640) 

* The number of subjects with the last trimester data differs from the number of subjects with baseline demographic 
data due to missing follow up questionnaires 
 

3.8 Selected phase I/II metabolic enzyme genetic polymorphism allele frequencies 

 

3.8.1 Maternal allele frequencyies of phase I/II metabolic enzyme genetic polymorphisms  

Maternal allelic frequencies of selected phase I/II metabolic enzyme genetic 

polymorphisms classified as low risk or high-risk genotype as previously defined were 

summarized (Table 21).  A significantly higher percentage of women in the low birthweight 
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group (44.2%) carried at least one CYP1A1*2A or *3 variant allele compared with 32.2% of 

women in the AGA group (p=0.024).   

 

Also, a significantly higher frequency of the GSTT1 null genotype was observed among 

women in the low birthweight (p=0.003), the preterm delivery (p=0.004) and the low birthweight 

and preterm delivery (p=0.002) compared with the frequency observed in the AGA group.  

However, we did not observe a significantly different GSTT1 null frequency between low 

birthweight and AGA groups (p=0.818).  In addition, the frequency of the NAT2* fast acetylator 

genotype was significantly higher among women in the preterm delivery group (64.5%) as 

compared with women in the AGA group (p=0.032).   

 

Table 21.  Maternal phase I/II metabolic enzyme genetic polymorphism allele 

frequencies 

 
 

 <2500g 
N=86 

<37th G. week 
N=93 

<2500g and 
<37th G. week 
N=53 

SGA 
N=107 

AGA 
N=948 

Overall 
N=1,148 

CYP1A1 
 *1/*1 
 at least one *2A/*3 

 
48 (55.8%) 
38 (44.2%) 

 
59 (63.4%) 
34 (36.6%) 

 
34 (64.1%) 
19 (35.1%) 

 
66 (61.7%) 
41 (38.3%) 

 
642 (67.8%) 
305 (32.2%) 

 
767 (66.8%) 
380 (33.2%) 

CYP2E1 
  *1/*1 
  al least one *5B 

 
77 (89.5%) 
9 (10.5%) 

 
85 (91.4%) 
8 (8.6%) 

 
46 (86.8%) 
7 (13.2%) 

 
97 (90.7%) 
10 (9.3%) 

 
885 (93.4%) 

63 (6.6%) 

 
1067 (92.9%) 

81 (7.1%) 
GSTM1 
  Present 
  Null 

 
50 (58.1%) 
36 (41.9%) 

 
49 (52.7%) 
44 (47.3%) 

 
30 (56.6%) 
23 (43.4%) 

 
60 (56.1%) 
47 (43.9%) 

 
505 (53.3%) 
442 (46.7%) 

 
614 (53.5%) 
534 (46.5%) 

GSTT1 
  Present  
Null 

 
53 (61.6%) 
33 (38.4%) 

 
58 (62.4%) 
35 (37.6%) 

 
30 (56.6%) 
23 (43.4%) 

 
77 (72.0%) 
30 (28.0%) 

 
720 (76.0%) 
228 (24.0%) 

 
855 (74.5%) 
293 (25.5%) 

NAT2* 
Fast 
Slow 

 
48 (55.8%) 
38 (44.2%) 

 
60 (64.5%) 
33 (35.5%) 

 
31 (58.5%) 
22 (41.5%) 

 
56 (52.3%) 
51 (47.7%) 

 
502 (53.1%) 
445 (46.9%) 

 
618 (53.9%) 
529 (46.1%) 

* Indicates statistical significant difference at p=0.05 between low birthweight, preterm delivery or low birthweight 
& preterm delivery, SGA and AGA groups 
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3.8.2 Newborn allele frequencies of selected phase I/II metabolic enzyme genetic 

polymorphisms  

A significantly higher frequency of the GSTT1 null genotype among newborns in the 

preterm delivery group was also observed (p=0.014) compared with that in the AGA referent 

group.  In addition, the differ in GSTT1 null genotype frequency observed in the low birthweight 

and preterm delivery group (32.1%) compared to that in the AGA group (21.2%) was very close 

to significance (p=0.062) (Table 22).    

 

Table 22.  Newborn phase I/II metabolic enzyme genetic polymorphism allele 

frequencies 

 
 

 <2500g 
N=86 

<37 G. week 
N=93 

<2500g & 
<37th G. W. 
N=53 

SGA 
N=107 

AGA 
N=948 

Overall 
N=1,148 

CYP1A1 
*1/*1 

at least one *2A /*3 

 
53 (62.4%) 
32 (37.6%) 

 
64 (68.8%) 
29 (31.2%) 

 
33 (62.3%) 
20 (37.7%) 

 
69 (65.1%) 
37 (34.9%) 

 
678 (71.6%) 
269 (28.4%) 

 
811 (70.8%) 
335 (29.2%) 

CYP2E1 
*1/*1 
al least one *5B 

 
77 (89.5%) 
9 (10.5%) 

 
86 (92.5%) 
7 (7.5%) 

 
49 (92.5%) 
4 (7.5%) 

 
98 (91.6%) 

9 (8.4%) 

 
886 (93.5%) 

62 (6.5%) 

 
1074 (93.2%) 

78 (6.8%) 
GSTM1 

Present 
Null 

 
46 (53.5%) 
40 (46.5%) 

 
52 (55.9%) 
41 (44.1%) 

 
30 (56.6%) 
23 (43.4%) 

 
58 (54.2%) 
49 (45.8%) 

 
495 (52.2%) 
453 (47.8%) 

 
605 (52.7%) 
543 (47.3%) 

GSTT1 
Present  
Null 

 
62 (72.1%) 
24 (27.9%) 

 
63 (67.7%) 
30 (32.3%) 

 
36 (67.9%) 
17 (32.1%) 

 
85 (79.4%) 
22 (20.6%) 

 
746 (78.8%) 
201 (21.2%) 

 
894 (77.9%) 
253 (22.1%) 

NAT2* 
Fast 
Slow 

 
51 (60.0%) 
34 (40.0%) 

 
51 (54.8%) 
42 (45.2%) 

 
32 (60.4%) 
21 (39.6%) 

 
60 (56.6%) 
46 (43.4%) 

 
487 (51.4%) 
460 (48.6%) 

 
598 (52.2%) 
548 (47.8%) 

* Indicates statistically significant difference at p= 0.05 between low birthweight, preterm delivery or low 
birthweight & preterm delivery, SGA and AGA  
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3.9 Univariate logistic regression analyses 

Univariate logistic regression analyses were performed to determine the 

maternal/newborn lifestyle and genetic factors associated with the following adverse 

reproductive outcomes: the low birthweight (<2500g), the preterm delivery (<37th gestational 

week), the low birthweight and preterm delivery (<2500g and <37th week gestational week) and 

the SGA groups(Table 23 – Table 26).    

 

3.9.1 Univariate logistic regression analysis for low birthweight (<2500g) 

 As shown in Table 23, African American race was associated with low birthweight 

(OR=1.74, 95% CI: 1.11-2.73) (p=0.016).  Approximately 9.8% of 376 African American 

women had low birthweight infants while 6.3% of 772 Caucasians had an infant weighting less 

than 2500 g.  Similarly, several other maternal demographic factors were associated with low 

birthweight including maternal age, lower family income and lower educational level.  The ORs 

were 4.72 (95% CI, 1.18-18.9), 2.62 (95% CI, 1.34-5.11), 2.40 (95% CI, 1.19-4.84), 2.86 (95% 

CI, 1.21-6.73) and 3.68 (95% CI, 1.70-7.96) for maternal age (≤15 years old), family income 

(<$10k and $10-<$20k), and maternal education (less than 12 grade and high school graduate), 

respectively.   

 

 Maternal cigarette smoke exposure both active and passive, during the last trimester was 

clearly associated with low birthweight.  The OR was 2.37 (95% CI, 1.49-3.75) and 1.79 (95% 

CI, 1.12-2.85) for active smoking and passive smoke exposure, respectively.  The proportion of 



 

88 

having a low birthweight infant approximately doubled if the mother smoked or was exposed to 

cigarette smoke during the last trimester.   

 

 Mothers with at least one *2A or *3 CYP1A1 variant allele (p=0.025) or GSTT1 null 

(p=0.004) genotypes were at an increased risk of a having low birthweight infant, with the ORs 

of 1.67 (95% CI, 1.07-2.61) and 1.97 (95% CI, 1.24-3.12) respectively.  However, no significant 

association between any newborn genotype alone and low birthweight was observed.   
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Table 23.  Univariate logistic regression summary for the effects of 

maternal/newborn demographic, lifestyle and genetic factors on low 

birthweight (<2,500 g) 

 
Risk factor N <2500 g (%) OR (95% CI) P value 

Maternal demographics 
Ethnicity 
    African American* 
    Caucasian  
Maternal age (years) 
   ≤15* 
   16-20 
   21-30 
   ≥31 
Family income 
    <$10K* 
   $10K-<$20K* 
   $20K-<$35K 
   ≥$35K 
    Don’t know 
Maternal education 
    < 12 grade* 
    High school diploma* 
    Some collage 
    BS or greater 

 
 
376 
772 
 
11 
318 
567 
252 
 
266 
216 
157 
314 
195 
 
224 
410 
269 
245 

 
 
9.8 
6.3 
 
27.3 
8.5 
7.4 
5.6 
 
10.2 
9.7 
5.7 
4.5 
7.7 
 
8.0 
10.7 
5.9 
3.3 

 
 
1.74 (1.11-2.73) 
1.0 
 
4.72 (1.18-18.9) 
1.16 (0.70-1.93) 
1.0 
0.70 (0.38-1.32) 
 
2.62 (1.34-5.11) 
2.40 (1.19-4.84) 
1.40 (0.59-3.31) 
1.0 
1.86 (0.88-3.96) 
 
2.86 (1.21-6.73) 
3.68 (1.70-7.97) 
2.01 (0.84-4.79) 
1.0 

 
 
0.016 
 
 
0.028 
0.56 
 
0.27 
 
0.005 
0.015 
0.449 
 
0.106 
 
0.016 
0.001 
0.116 

Exposure in early pregnancy 
Smoking 
    No 
    Yes 
Passive 
    No 
    Yes 
Alcohol use 
    No 
    Yes 

 
 
616 
532 
 
750 
398 
 
169 
979 

 
 
6.7 
8.5 
 
6.7 
9.0 
 
6.5 
7.7 

 
 
1.0 
1.37 (0.88-2.16) 
 
1.0 
1.43 (0.91-2.24) 
 
1.0 
0.74 (0.33-1.69) 

 
 
 
0.17 
 
 
0.12 
 
 
0.48 

Exposure during 3rd trimester 
Smoking  
    No 
    Yes* 
Passive 
    No 
    Yes* 
Alcohol use 
    No 
    Yes 
Risk group 
    Low risk 
    Medium risk 
    High risk 

 
 
798 
305 
 
782 
319 
 
1002 
99 
 
305 
721 
77 

 
 
5.9 
11.8 
 
6.3 
10.3 
 
7.7 
6.1 
 
7.5 
7.2 
10.4 

 
 
1.0 
2.37 (1.49-3.75) 
 
1.0 
1.79 (1.12-2.85) 
 
1.0 
0.74 (0.33-1.69) 
 
1.0 
0.99 (0.59-1.65)  
1.47 (0.63-3.43) 

 
 
 
<0.001 
 
 
0.014 
 
 
0.48 
 
 
0.97 
0.38 
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Table 23 cont.     
     

Maternal genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3* 
CYP2E1 
     *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1* 
    Present 
    Null* 
NAT2* 
    Fast 
    Slow 

 
 
688 
342 
 
959 
72 
 
552 
479 
 
771 
260 
 
548 
482 

 
 
7.0 
11.1 
 
8.0 
12.5 
 
9.1 
7.5 
 
6.9 
12.7 
 
8.8 
7.9 

 
 
1.0 
1.67 (1.07-2.61) 
 
1.0 
1.64 (0.78-3.42) 
 
1.0 
0.82 (0.52-1.28) 
 
1.0 
1.97 (1.24-3.12) 
 
1.0 
0.89 (0.57-1.39) 

 
 
 
0.025 
 
 
0.19 
 
 
0.37 
 
 
0.004 
 
 
0.61 

Newborn genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3 
CYP2E1 
    *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1 
    Present 
    Null 
NAT2* 
    Fast 
    Slow 

 
 
729 
300 
 
960 
71 
 
540 
491 
 
806 
224 
 
535 
494 

 
 
7.3 
10.7 
 
8.0 
12.7 
 
8.5 
8.2 
 
7.7 
10.7 
 
9.5 
6.9 

 
 
1.0 
1.52 (0.96-2.41) 
 
1.0 
1.66 (0.80-3.48) 
 
1.0 
0.95 (0.61-1.48) 
 
1.0 
1.44 (0.88-2.37) 
 
1.0 
0.70 (0.44-1.10) 

 
 
 
0.074 
 
 
0.175 
 
 
0.83 
 
 
0.15 
 
 
0.12 

* Indicates statistically significant difference at p= 0.05 
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3.9.2 Univariate logistic regression analysis for preterm delivery (<37th week gestation) 

Maternal education level was associated with preterm delivery with an OR of 2.42 (95% 

CI, 1.14-5.16), 2.19 (95% CI, 1.09-4.40) and 2.28 (95% CI, 1.10-4.75) for women with < 12 

grade, those who were high school graduates, and those with some college degree, respectively 

compared to the AGA group.   

 

 Maternal cigarette smoking during the last trimester was significantly associated with 

preterm delivery (p=0.026) with an OR of 1.68 (95% CI, 1.06-2.65).  However, no association 

between passive cigarette smoke exposure during the last trimester and preterm delivery 

(p=0.98) was observed.   

 

 Not only maternal (p=0.004) but also newborn (p=0.015) GSTT1 null genotype was 

clearly associated with preterm delivery.  The OR was 1.91 (95% CI, 1.22-2.98) and 1.77 (95% 

CI, 1.12-2.81) for maternal and newborn GSTT1 null genotype, respectively.  In addition, an 

inverse association was observed between maternal NAT2* slow acetylator genotype and preterm 

delivery with an OR of 0.62 (95% CI, 0.40-0.97).   
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Table 24.  Univariate logistic regression summary for the effects of 

maternal/newborn demographic, lifestyle and genetic factors on preterm 

delivery (<37th week gestation) 

 
Risk factor N <37 G. week (%) OR (95% CI) P value 

Maternal demographics 
Ethnicity 
    African American 
    Caucasian  
Maternal age (years) 
   ≤15 
   16-20 
   21-30 
   ≥31 
Family income 
    <$10K 
   $10K-<$20K 
   $20K-<$35K 
   ≥$35K 
    Don’t know 
Maternal education 
  < 12 grade 
  High school diploma 
  Some collage 
   BS or greater 

 
 
376 
772 
 
11 
318 
567 
252 
 
266 
216 
157 
314 
195 
 
224 
410 
269 
245 

 
 
9.0 
7.6 
 
18.2 
9.1 
7.8 
7.1 
 
7.5 
10.2 
8.3 
6.4 
9.2 
 
9.4 
8.8 
9.3 
4.5 

 
 
1.33 (0.85-2.07) 
1.0 
 
3.01 (0.61-14.9) 
1.19 (0.73-1.95) 
1.0 
0.86 (0.49-1.53) 
 
1.36 (0.71-2.59) 
1.75 (0.93-3.31) 
1.41 (0.68-2.93) 
1.0 
1.56 (0.80-3.04) 
 
2.42 (1.14-5.16) 
2.19 (1.09-4.40) 
2.28 (1.10-4.75) 
1.0 

 
 
0.21 
 
 
0.18 
0.49 
 
0.62 
 
0.36 
0.082 
0.35 
 
0.19 
 
0.022 
0.027 
0.027 

Exposure in early pregnancy 
Smoking 
    No 
    Yes 
Passive 
    No 
    Yes 
Alcohol use 
   No 
   Yes  

 
 
616 
532 
 
750 
398 
 
169 
979 

 
 
8.0 
8.3 
 
7.9 
8.5 
 
7.1 
8.3 

 
 
1.0 
1.12 (0.73-1.71) 
 
1.0 
1.14 (0.73-1.78) 
 
1.0 
1.18 (0.63-2.23) 

 
 
 
0.61 
 
 
0.56 
 
 
0.60 

Exposure during 3rd trimester 
Smoking  
    No 
    Yes* 
Passive 
    No 
    Yes  
Alcohol use 
    No 
    Yes 
Risk group 
    Low risk 
    Medium risk 
    High risk 

 
 
798 
305 
 
782 
319 
 
1002 
99 
 
305 
721 
77 

 
 
7.4 
10.5 
 
8.4 
7.8 
 
8.6 
5.1 
 
8.2 
8.5 
6.5 

 
 
1.0 
1.68 (1.06-2.65) 
 
1.0 
1.01 (0.62-1.63) 
 
1.0 
0.56 (0.22-1.41) 
 
1.0 
1.07 (0.66-1.74) 
0.84 (0.31-2.29) 

 
 
 
0.026 
 
 
0.98 
 
 
0.22 
 
 
0.79 
0.74 
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Table 24 cont. 
 

    

Maternal genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3 
CYP2E1 
        *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1 
    Present 
    Null* 
NAT2* 
    Fast 
    Slow*  

 
 
699 
338 
 
967 
71 
 
551 
487 
 
776 
262 
 
560 
477 

 
 
8.4 
10.1 
 
8.1 
11.3 
 
8.9 
9.0 
 
7.5 
13.4 
 
10.7 
6.9 

 
 
1.0 
1.21 (0.77-1.89) 
 
1.0 
1.32 (0.61-2.84) 
 
1.0 
1.02 (0.66-1.56) 
 
1.0 
1.91 (1.22-2.98) 
 
1.0 
0.62 (0.40-0.97) 

 
 
 
0.39 
 
 
0.48 
 
 
0.94 
 
 
0.004 
 
 
0.034 

Newborn genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3 
CYP2E1 
        *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1 
    Present 
    Null* 
NAT2* 
    Fast 
    Slow 

 
 
740 
297 
 
969 
69 
 
546 
492 
 
807 
230 
 
535 
502 

 
 
8.7 
9.8 
 
8.9 
10.1 
 
9.5 
8.3 
 
7.8 
13.0 
 
9.5 
8.4 

 
 
1.0 
1.14 (0.72-1.81) 
 
1.0 
1.16 (0.51-2.61) 
 
1.0 
0.86 (0.56-1.33) 
 
1.0 
1.77 (1.12-2.81) 
 
1.0 
0.87 (0.56-1.33) 

 
 
 
0.57 
 
 
0.72 
 
 
0.50 
 
 
0.015 
 
 
0.51 

* Indicates statistically significant difference at p= 0.05 
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3.9.3 Univariate logistic regression analysis for low birthweight and preterm delivery 

(<2500g and <37th week gestation) 

A similar set of risk factors was observed for the low birthweight and preterm delivery 

group as seen for the low birthweight group.  African American women had a significantly 

higher risk of having a low birthweight infant, delivered at less than 37 gestational weeks 

(p=0.032) with an OR of 1.29 (95% CI, 0.72-2.30).  Moreover, maternal age (younger than 15 

years old) was strongly associated with preterm delivery (OR=5.29, 95% CI, 1.04-26.8).  Lower 

family income and lower maternal education level were also risk factors for both low birthweight 

and preterm delivery with an OR of 2.32 (95% CI, 1.05-5.12), 3.81 (95% CI, 1.21-12.02) and 

4.35 (95% CI, 1.50-12.64) for family income $10K-<$20K, less than 12 grade maternal 

education and high school graduate, respectively.   

 

Active maternal cigarette smoking during the third trimester was clearly associated with 

low birthweight and preterm delivery (p=0.004) with an OR of 2.34 (95% CI, 1.32-4.16).  The 

proportion of infants with low birthweight and preterm delivery was approximately doubled 

(7.2%) if the mother smoked in late pregnancy.   

 

Maternal GSTT1 null genotype significantly increased the risk of low birthweight and 

preterm delivery (p=0.002); the OR was 2.42 (95% CI, 1.38-4.26).  Newborn GSTT1 null 

genotype also increased the risk (OR=1.76, 95% CI, 0.97-3.19), however, it was not statistically 

significant (p=0.065).   
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Table 25.  Univariate logistic regression summary for the effects of 

maternal/newborn demographic, lifestyle and genetic factors on low 

birthweight and preterm delivery (<2500 g and <37th week gestation) 

 
 

Risk factor N <2500g &<37th 
G.week (%) 

OR (95% CI) P value 

Maternal demographics 
Ethnicity 
   African American* 
   Caucasian  
Maternal age (years) 
   ≤15* 
   16-20 
   21-30 
   ≥31 
Family income 
   <$10K 
  $10K-<$20K* 
  $20K-<$35K 
  ≥$35K 
  Don’t know 
Maternal education 
  < 12 grade* 
  High school diploma* 
  Some collage 
  BS or greater 

 
 
376 
772 
 
11 
318 
567 
252 
 
266 
216 
157 
314 
195 
 
224 
410 
269 
245 

 
 
5.1 
4.4 
 
18.2 
5.0 
4.4 
3.4 
 
4.1 
7.4 
3.8 
3.5 
4.6 
 
5.4 
6.3 
4.1 
1.6 

 
 
1.29 (0.72-2.30) 
1.0 
 
5.29 (1.04-26.8) 
1.16 (0.61-2.21) 
1.0 
0.85 (0.40-1.79) 
 
1.36 (0.58-3.19) 
2.32 (1.05-5.12) 
1.18 (0.43-3.27) 
1.0 
1.42 (0.58-3.50) 
 
3.81 (1.21-12.02) 
4.35 (1.50-12.64) 
2.76 (0.87-8.81) 
1.0 

 
 
0.032 
 
 
0.044 
0.66 
 
0.66 
 
0.49 
0.037 
0.74 
 
0.45 
 
0.022 
0.007 
0.086 

Exposure in early pregnancy 
Smoking 
    No 
    Yes 
Passive 
    No 
    Yes 
Alcohol use 
   No 
   Yes  

 
 
616 
532 
 
750 
398 
 
169 
979 

 
 
4.2 
5.1 
 
4.5 
4.8 
 
4.1 
4.7 

 
 
1.0 
1.29 (0.74-2.25) 
 
1.0 
1.11 (0.62-1.97) 
 
1.0 
1.15 (0.51-2.60) 

 
 
 
0.36 
 
 
0.73 
 
 
0.73 

Exposure during 3rd trimester 
Smoking  
    No 
    Yes* 
Passive 
    No 
    Yes  
Alcohol use 
    No 
    Yes 
Risk group 

    Low risk  

 
 
798 
305 
 
782 
319 
 
1002 
99 
 
305 

 
 
3.6 
7.2 
 
4.3 
5.3 
 
4.8 
3.0 
 
4.9 

 
 
1.0 
2.34 (1.32-4.16) 
 
1.0 
1.33 (0.73-2.42) 
 
1.0 
0.60 (0.18-1.95) 
 
1.0 

 
 
 
0.004 
 
 
0.35 
 
 
0.40 
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Table 25 cont. 
 

    

    Medium risk 
    High risk 

721 
77 

4.4 
5.2 

0.94 (0.50-1.76) 
1.12 (0.36-3.50) 

0.84 
0.84 

Maternal genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3 
CYP2E1 
        *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1 
    Present 
    Null* 
NAT2* 
    Fast 
    Slow  

 
 
674 
323 
 
 928 
70 
 
532 
466 
 
748 
250 
 
531 
466 

 
 
5.0 
5.9 
 
5.0 
10.0 
 
5.6 
4.9 
 
4.0 
9.2 
 
5.8 
4.7 

 
 
1.0 
1.17 (0.66-2.10) 
 
1.0 
2.13 (0.94-4.91) 
 
1.0 
0.87 (0.50-1.52) 
 
1.0 
2.42 (1.38-4.26) 
 
1.0 
0.80 (0.46-1.40) 

 
 
 
0.58 
 
 
0.076 
 
 
0.62 
 
 
0.002 
 
 
0.434 

Newborn genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3 
CYP2E1 
        *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1 
    Present 
    Null* 
NAT2* 
    Fast 
    Slow 

 
 
709 
288 
 
932 
66 
 
524 
474 
 
780 
217 
 
516 
481 

 
 
4.7 
6.9 
 
5.3 
6.1 
 
5.7 
4.9 
 
4.6 
7.8 
 
6.2 
4.4 

 
 
1.0 
1.53 (0.86-2.71) 
 
1.0 
1.16 (0.41-3.33) 
 
1.0 
0.84 (0.48-1.47) 
 
1.0 
1.76 (0.97-3.19) 
 
1.0 
0.69 (0.39-1.21) 

 
 
 
0.15 
 
 
0.78 
 
 
0.54 
 
 
0.065 
 
 
0.20 

* Indicates statistically significant difference at p= 0.05 
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3.9.4 Univariate logistic regression analysis for SGA at term (≥37th week gestation) 

From Table 26, it can be seen that the ethnicity was clearly associated with SGA 

(p<0.001) with an OR of 2.33 (95% CI, 1.56-3.50).  Approximately 14.4% of African American 

women had an infant with SGA at full term, whereas this was observed in only 6.9% of 

Caucasians.  Women with lower family income and lower education level were also at a 

significantly increased risk for SGA infants with an OR of 3.37 (95% CI, 1.84-6.19), 2.17 (95% 

CI, 1.05-4.48), 2.96 (95% CI, 1.46-5.99), and 2.47 (95% CI, 1.27-4.78) for <$10K, and $20K-

<$35K family income and maternal education (< 12 grade, and high school graduate), 

respectively.  Also women over 31 years old had a reduced risk of having a SGA infant 

(OR=0.50 95% CI, 0.27-0.92) 

 

Maternal cigarette smoke exposure during pregnancy was associated with SGA with an 

OR of 2.01 (95% CI, 1.33-3.02) for early pregnancy smoking and 2.91 (95% CI, 1.93-1.74) for 

smoking during the third trimester.  Passive cigarette smoke exposure in late pregnancy also 

increased the risk of SGA (OR=2.10 95% CI, 1.39-3.18).  Moreover, the third trimester maternal 

exposure risk group was significantly associated with SGA in a dose-responsive fashion 

(OR=2.22, 95% CI, 1.02-4.86 in high risk).   

 

No associations of the selected phase I/II metabolic enzyme genetic polymorphisms in 

mothers or newborns with SGA was observed.   
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Table 26.  Univariate logistic regression summary for the effects of 

maternal/newborn demographic, lifestyle and genetic factors on SGA at term 

 
 

Risk factor N SGA (%) OR (95% CI) P value 
Maternal demographics 

Ethnicity 
    African American* 
    Caucasian  
Maternal age (years) 
   ≤15 
   16-20 
   21-30 
   ≥31* 
Family income 
    <$10K* 
   $10K-<$20K 
   $20K-<$35K* 
   ≥$35K 
   Don’t know 
Maternal education 
   < 12 grade* 
   High school diploma* 
  Some collage* 
   BS or greater 

 
 
376 
772 
 
11 
318 
567 
252 
 
266 
216 
157 
314 
195 
 
224 
410 
269 
245 

 
 
14.4 
6.9 
 
18.2 
10.1 
10.4 
5.6 
 
15.0 
8.3 
10.2 
5.1 
8.7 
 
12.5 
10.7 
8.6 
4.9 

 
 
2.33 (1.56-3.50) 
1.0 
 
2.25 (0.46-11.07) 
0.98 (0.62-1.55) 
1.0 
0.50 (0.27-0.92) 
 
3.37 (1.84-6.19) 
1.78 (0.88-3.58) 
2.17 (1.05-4.48) 
1.0 
1.85 (0.91-3.75) 
 
2.96 (1.46-5.99) 
2.47 (1.27-4.78) 
1.93 (0.93-3.96) 
1.0 

 
 
<0.001 
 
 
0.32 
0.93 
1.0 
0.025 
 
<0.001 
0.12 
0.036 
 
0.09 
 
0.003 
0.007 
0.075 
 

Exposure in early pregnancy 
Smoking 
    No 
    Yes* 
Passive 
    No 
    Yes 
Alcohol use 
   No 
   Yes  

 
 
616 
532 
 
750 
398 
 
169 
979 

 
 
6.7 
12.4 
 
8.1 
11.6 
 
9.5 
9.3 

 
 
1.0 
2.01 (1.33-3.02) 
 
1.0 
1.49 (1.00-2.24) 
 
1.0 
0.99 (0.57-1.74) 

 
 
 
0.001 
 
 
0.053 
 
 
0.98 

Exposure during 3rd trimester 
Smoking  
    No 
    Yes* 
Passive 
    No 
    Yes* 
Alcohol use 
    No 
    Yes 
Risk group 
    Low risk 
    Medium risk 
    High risk* 

 
 
798 
305 
 
782 
319 
 
1002 
99 
 
305 
721 
77 

 
 
6.8 
16.7 
 
7.4 
14.4 
 
9.5 
9.1 
 
6.9 
10.1 
14.3 

 
 
1.0 
2.91 (1.93-4.40) 
 
1.0 
2.10 (1.39-3.18) 
 
1.0 
1.20 (0.88-1.63) 
 
1.0 
1.53 (0.92-2.55) 
2.22 (1.02-4.86) 

 
 
 
<0.001 
 
 
<0.001 
 
 
0.25 
 
 
0.098 
0.045 
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Table 26 cont. 
 

    

Maternal genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3 
CYP2E1 
    *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1 
    Present 
    Null 
NAT2* 
    Fast 
    Slow  

 
 
708 
346 
 
982 
73 
 
565 
490 
 
797 
258 
 
558 
496 

 
 
9.3 
11.9 
 
9.9 
13.7 
 
10.6 
9.6 
 
9.7 
11.6 
 
10.0 
10.3 

 
 
1.0 
1.30 (0.87-1.98) 
 
1.0 
1.45 (0.72-2.91) 
 
1.0 
0.89 (0.60-1.33) 
 
1.0 
1.23 (0.79-1.92) 
 
1.0 
1.02 (0.69-1.53) 

 
 
 
0.20 
 
 
0.30 
 
 
0.58 
 
 
0.36 
 
 
0.90 

Newborn genotype 
CYP1A1 
    *1/*1 
    at least one copy of *2A or *3 
CYP2E1 
        *1/*1 
    at least one copy of *5B 
GSTM1 
    Present 
    Null 
GSTT1 
    Present 
    Null 
NAT2* 
    Fast 
    Slow 

 
 
747 
306 
 
984 
71 
 
553 
502 
 
831 
223 
 
547 
506 

 
 
9.2 
12.1 
 
10.0 
12.7 
 
10.5 
9.8 
 
10.2 
9.9 
 
11.0 
9.1 

 
 
1.0 
1.35 (0.88-2.06) 
 
1.0 
1.31 (0.63-2.72) 
 
1.0 
0.92 (0.62-1.48) 
 
1.0 
0.96 (0.59-1.57) 
 
1.0 
0.81 (0.54-2.10) 

 
 
 
0.16 
 
 
0.47 
 
 
0.70 
 
 
0.87 
 
 
0.31 

* Indicates statistically significant difference at p= 0.05 
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3.10 Multiple logistic regression analysis 

Multiple logistic regression analysis was performed to determine maternal/newborn 

lifestyle and/or genetic risk factors for adverse reproductive outcomes: low birthweight, preterm 

delivery, low birthweight and preterm delivery and SGA at term.  Moreover, the analysis was 

performed to evaluate the modulation of the percentage of adverse reproductive outcomes by 

combinations of maternal/newborn phase I/II metabolic enzyme genetic polymorphisms.  

Maternal demographic and lifestyle risk factors, which were significantly associated with the 

adverse reproductive outcomes in univariate analyses, were included in the multiple logistic 

regression model for their independent significance.  If the factor did not reach significance, it 

was removed from the model.   

Once the risk factors which were associated with these adverse reproductive outcomes 

were identified by multiple logistic regression analyses, the combined association of these risk 

factors was evaluated by creating subgroups.  These subgroups contained different combinations 

of these risk factors.  The observed and calculated expected proportions of each subgroup for a 

specific adverse reproductive outcome were determined by the goodness-of-fit test.   

 

3.10.1 Multiple logistic regression analysis for low birthweight (<2500g) 

As shown in Table 27, ethnicity, maternal smoking during the 3rd trimester and maternal 

and newborn GSTT1 genotype were significantly associated with low infant birthweight.  The 

combinations of these three risk factors clearly influenced the proportion of low birthweight 

newborns.  Among non-smoking Caucasian women, maternal or newborn GSTT1 genotype alone 

did not confer a significant risk of low birthweight.  However, in the presence of maternal 
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smoking during the 3rd trimester, the highest observed proportion of low birthweight infants 

(0.2941) was found when mothers were African American and carried the GSTT1 null genotype 

with OR of 7.81 (p= 0.001).   

 

Table 27.  Multivariate logistic regression model for the effects of maternal 

ethnicity, smoking in the 3rd trimester, and maternal/newborn GSTT1 

genotype on low birthweight (<2500 g) 

 
 
Ethnicity Smoking during 

3rd trimester 
GSTT1 
genotype 

N Observed 
proportion 

Expected 
proportion 

OR (95% CI) p-value 

  Maternal      
Caucasian 

 
No    Present 

   Null 
375 
115 

0.0507 
0.0435 

0.0411 
0.0827 

1.0 
0.85 (0.31-2.33) 

 
0.76 

African 
American 

No    Present 
   Null 

180 
60 

0.0722 
0.1667 

0.0744 
0.1448 

1.46 (0.70-3.02) 
3.75 (1.65-8.52) 

0.31 
0.002 

Caucasian Yes    Present 
   Null 

130 
55 

0.0769 
0.2364 

0.0940 
0.1793 

1.56 (0.71-3.45) 
5.80 (2.67-12.58) 

0.27 
<0.001 

African 
American 

Yes    Present 
   Null 

55 
17 

0.1455 
0.2941 

0.1631 
0.2908 

3.19 (1.32-7.69) 
7.81 (2.49-24.43) 

0.01 
<0.001 

  Newborn      
Caucasian 

 
No    Present 

   Null 
392 
97 

0.0408 
0.0825 

0.0479 
0.0668 

1.0 
2.11(0.88-5.09) 

 
0.10 

African 
American 

No    Present 
   Null 

180 
60 

0.0833 
0.1333 

0.0829 
0.1140 

2.14 (1.03-4.42) 
3.62 (1.47-8.86) 

0.041 
0.005 

Caucasian Yes    Present 
   Null 

151 
34 

0.1192 
0.1471 

0.1103 
0.1501 

3.18 (1.58-6.42) 
4.05 (1.39-11.84) 

0.001 
0.011 

African 
American 

Yes    Present 
   Null 

53 
19 

0.2075 
0.1053 

0.1823 
0.2410 

6.15 (2.68-14.13) 
2.76 (0.59-13.00) 

<0.001 
0.198 

 

After the identification of significant associated factors for low birthweight which were 

maternal ethnicity, maternal cigarette smoking during the 3rd trimester and maternal/newborn 

GSTT1 genotype by the multivariable logistic regression, the combined association of these 

factors was evaluated by creating 8 subgroups.  Each subgroup contained a different combination 

of the risk factors.  As shown in Table 27, the observed proportion and expected proportion 
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values of having a low birthweight infant were calculated.  The observed proportion value was 

calculated by dividing the total number of subjects by the number of the low birthweight subjects 

in a specific risk factor subgroup.  For example, of the 375 total subjects who were non-smoking 

Caucasians with the GSTT1 present maternal genotype, 19 delivered a low birthweight infant, 

giving the observed proportion value of 0.0507.  Based on the model predicted ORs, the 

expected proportion value was calculated.  The goodness of fit test was applied to the estimated 

model to evaluate the quantitative relationship between the observed proportions and those 

predicted by the model.   

Figure 5 presents the combined association of maternal ethnicity, cigarette smoking 

during the 3rd trimester and maternal or newborn GSTT1 genotype with observed and modeled 

proportions of low birthweight infants.  The histogram represents the modeled low birthweight 

proportion by logistic regression and the circles indicate the observed low birthweight proportion 

in the study.  A higher proportion of low birthweight infants was observed if the mother was 

GSTT1 null genotype along with African American ethnicity and/or cigarette smoking in the 

third trimester.   
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Figure 5.  Combined association of maternal ethnicity, cigarette smoking 

during the 3rd trimester and maternal or newborn GSTT1 genotype with the 

proportion of having low birthweight infants 

 

 
Table 28 presents the combined association of maternal ethnicity, cigarette smoking 

during the 3rd trimester along with combination of maternal/newborn GSTT1 genotype with the 

observed proportion of low birthweight infants.   

Among non-smoking Caucasian and African American women, the combination of null 

GSTT1 genotype in both maternal/newborn pairs alone did not confer a significant elevation in 

risk of low birthweight.  In the presence of maternal smoking but absence of the null GSTT1 

genotype, a significant elevation of low birthweight births was observed in both Caucasian and 

African American women.  The highest proportion of low birthweight infants was observed 
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among the African Americans where mother were GSTT1 null genotype, and in the presence of 

cigarette smoking exposure (OR=10.82, observed proportion=0.3333, p=0.002).   

 

Table 28.  Multivariate logistic regression model for combined risk of low 

birthweight conferred by maternal/newborn GSTT1 genotypes, ethnicity and 

maternal smoking during the 3rd trimester 

 
 
Ethnicity Smoking 

during 3rd 
trimester 

Maternal 
GSTT1 
genotype 

Newborn 
GSTT1 
genotype 

 N Observed 
proportion 

Expected 
proportion 

OR (95% CI) P-value 

Caucasian No Present 
 
Null 

Present 
Null 
Present 
Null 

317 
57 
75 
40 

0.0442 
0.0877 
0.0267 
0.0750 

0.0426 
0.0348 
0.0677 
0.1094 

1.0 
2.08 (0.72-6.02) 
0.59 (0.13-2.67) 
1.75 (0.48-6.39) 

 
0.176 
0.496 
0.394 

African 
American 

No Present 
 
Null 

Present 
Null 
Present 
Null 

145 
35 
35 
25 

0.0759 
0.0571 
0.1143 
0.2400 

0.0763 
0.0627 
0.1188 
0.1857 

1.77 (0.79-4.02) 
1.31 (0.29-6.02) 
2.79 (0.87-9.01) 
6.83 (2.36-19.78) 

0.167 
0.727 
0.086 
<0.001 

Caucasian Yes Present 
 
Null 

Present 
Null 
Present 
Null 

114 
16 
37 
18 

0.0877 
0.00 
0.2162 
0.2778 

0.0974 
0.0804 
0.1498 
0.2295 

2.08 (0.90-4.83) 
 

5.97 (2.31-15.41) 
8.32 (2.60-26.61) 

0.088 
 

<0.001 
<0.001 

African 
American 

Yes Present 
 
Null 

Present 
Null 
Present 
Null 

44 
11 
9 
8 

0.1818 
0.00 
0.3333 
0.2500 

0.1668 
0.1396 
0.2464 
0.3561 

4.81 (1.89-12.25) 
 

10.82 (2.45-47.82) 
7.21 (1.33-39.00) 

0.001 
 

0.002 
0.022 

 

 

Figure 6 indicates combined risk status: ethnicity, cigarette smoking during the 3rd 

trimester and combinations of maternal/newborn GSTT1 genotype with modeled and observed 

proportion of low birthweight births.  A smoking dose-response association was observed in each 

of the risk status groups. 
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Figure 6.  Combined association of maternal ethnicity, cigarette smoking 

during the 3rd trimester and combination of maternal/newborn GSTT1 

genotypes with proportion of low birthweight newborns 

 

3.10.2 Multiple logistic regression analysis for preterm delivery (<37th week gestation) 

As shown in Table 29, a combined risk factor association was observed for maternal 

cigarette smoke during the 3rd trimester and maternal or newborn GSTT1 genotype with infant 

preterm delivery.  Among non-smoking women, GSTT1 genotype alone did not confer a 

significant risk of shortened gestational weeks.  However, the combination of maternal smoking 

during the third trimester and maternal or newborn GSTT1 null genotype significantly elevated 
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the proportion of preterm infants with ORs of 3.87 and 2.48 for maternal or newborn GSTT1 null 

genotype, respectively (p<0.001, p=0.030).   

 

Moreover, the combined risk factors of maternal smoking and NAT2* genotype were also 

clearly associated with preterm delivery independent of GSTT1 genotype.  Maternal fast 

acetylators had a significantly higher proportion of preterm delivery infants (OR=2.24 and 2.80) 

in both non-smoking and smoking women, respectively (p=0.007, 0.004).   

 

Table 29.  Multivariate logistic regression model for maternal cigarette 

smoking in the 3rd trimester and maternal or newborn GSTT1 and NAT2* 

genotypes on preterm delivery 

 
 
Genotype Smoking during 

3rd trimester 
N Observed 

proportion 
OR (95% CI) P-value 

GSTT1 (Maternal) 
  Present 

 
  Null 

 
No 
Yes 
No 
Yes 

 
563 
183 
179 
70 

 
0.0710 
0.0874 
0.1061 
0.2286 

 
1.0 
1.55 (0.87-2.76) 
1.25 (0.68-2.29) 
3.87 (2.03-7.38) 

 
 

0.133 
0.466 
<0.001 

GSTT1 (Newborn) 
  Present 

 
  Null 

 
No 
Yes 
No 
Yes 

 
579 
199 
162 
54 

 
0.0656 
0.1206 
0.1296 
0.1481 

 
1.0 
2.12 (1.21-3.73) 
1.95 (1.14-3.35) 
2.48 (1.09-5.62) 

 
 

0.009 
0.015 
0.030 

NAT2* (Maternal) 
  Fast 

 
  Slow 

 
No 
Yes 
No 
Yes 

 
400 
141 
342 
111 

 
0.1050 
0.1261 
0.0497 
0.1277 

 
2.24 (1.25-4.02) 
2.80 (1.40-5.60) 
1.0 
2.76 (1.31-5.80) 

 
0.007 
0.004 

 
0.007 

 

A combination of maternal/newborn GSTT1 genotypes further modulated the proportion 

of preterm delivery infants (Table 30).  Among non-smoking women, maternal or newborn 

GSTT1 null genotype did not confer a significant adverse effect on preterm delivery.  However, 
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if both mother and infant were of GSTT1 null genotype, approximately a three fold increased risk 

of preterm delivery was observed (OR of 3.17 and p=0.001).  In the presence of maternal 

cigarette smoking, during the last trimester, the preterm delivery proportion dramatically 

increased and the highest proportion was observed among the group of both maternal and 

newborn GSTT1 null genotype (OR=4.31, p=0.004).   

 

Table 30.  Multivariate logistic regression model for combined risk of preterm 

delivery (<37th week gestation) conferred by maternal/newborn GSTT1 

genotypes and maternal smoking in the 3rd trimester 

 
 
Smoking 
during 3rd 
trimester 

Maternal 
GSTT1 
genotype 

Newborn 
GSTT1 
genotype 

N Observed 
proportion of 
preterm 
delivery 

Expected 
proportion of 
preterm 
delivery 

OR (95% CI) P-value 

No Present 
 

Null 

Present 
Null 
Present 
Null 

469 
93 

110 
69 

0.0682 
0.0860 
0.0545 
0.1884 

0.0644 
0.0720 
0.0886 
0.1791 

1.0 
1.29 (0.57-2.89) 
0.79 (0.32-1.93) 
3.17 (1.57-6.40) 

 
0.54 
0.60 
0.001 

Yes Present 
 

Null 
 

Present 
Null 
Present 
Null 

154 
29 
45 
25 

0.0909 
0.0690 
0.2222 
0.2400 

0.1026 
0.1140 
0.1390 
0.2658 

1.37 (0.71-2.63) 
1.01 (0.23-4.45) 
3.90 (1.77-8.59) 
4.31 (1.61-11.55) 

0.35 
0.99 
0.001 
0.004 

 

Figure 7 clearly demonstrates the combined association of maternal smoking during the 

3rd trimester and combination of maternal/newborn GSTT1 genotype with preterm delivery.   
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Figure 7.  Combined association of exposure factors: maternal cigarette 

smoking during the 3rd trimester and combination of maternal/newborn 

GSTT1 genotype with proportion of preterm delivery infants 

 
 

3.10.3 Multiple logistic regression analysis for low birthweight and preterm delivery 

(<2500g and <37th week gestation) 

A similar set of risk factors was observed in low birthweight and preterm delivery infants  

(<2500 g and <37th week gestation) analysis.  The highest proportion of low birthweight and 

preterm delivery (0.2059) was found among smoking women with GSTT1 null genotype with an 

OR of 6.78 p<0.001 (Table 31).  The combination of maternal cigarette smoking during the 3rd 

trimester and newborn GSTT1 null genotype clearly elevated the proportion of low birthweight 

infants at less than 37th weeks of gestation.  Among non-smoking women, the proportion 

increased from 0.0322 (referent group) to 0.0885 (OR=2.92, p=0.002) for presence and absence 
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of newborn GSTT1 genotype, respectively.  Similarly, among smoking women, the proportion 

elevated from 0.0724 (OR=2.34, p=0.031) to 0.0980 (OR=3.27, p=0.025) for presence and 

absence of newborn GSTT1 genotype, respectively.   

 

Table 31.  Multivariate logistic regression model for the effects of maternal 

smoking in the 3rd trimester and maternal and/or newborn GSTT1 genotype, 

on low birthweight and preterm delivery (<2500g and <37th week gestation) 

 
 
GSTT1 Genotype Smoking during 

3rd trimester 
N Observed proportion of 

<2500g & <37G.W. 
OR (95% CI) P-value 

Maternal: 
  Present 

 
  Null 

 
No 
Yes 
No 
Yes 

 
543 
169 
175 
68 

 
0.0368 
0.0533 
0.0457 
0.2059 

 
1.0 
1.47 (0.66-3.29) 
1.25 (0.54-2.90) 
6.78 (3.24-14.18) 

 
 
0.35 
0.60 
<0.001 

Newborn: 
  Present 

 
  Null 

 
No 
Yes 
No 
Yes 

 
559 
152 
192 
51 

 
0.0322 
0.0724 
0.0885 
0.0980 

 
1.0 
2.34 (1.08-5.08) 
2.92 (1.47-5.79) 
3.27 (1.16-9.20) 

 
 
0.031 
0.002 
0.025 

 

 

As shown in Table 32 and Figure 7, the combination of maternal/newborn GSTT1 

genotype modulated the proportion of adverse effects on birthweight and gestational period in 

both the presence and absence of maternal cigarette smoking exposure during the 3rd trimester.  

The highest observed proportion (0.2083) was found among the group of both mother and 

newborn GSTT1 null genotype in the presence of cigarette smoking exposure (OR=7.19, 

p<0.001).  Moreover, a dose-response association of GSTT1 null genotype was observed in both 

presence and absence of cigarette smoke exposure. 
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Table 32.  Multivariate logistic regression model for the combined risk of low 

birthweight and preterm delivery (<2500 g and <37th week gestation) 

conferred by maternal/newborn GSTT1 and maternal smoking in the 3rd 

trimester 

 
 

GSTT1 genotype Proportion of <2500g and <37th 
GW 

Smoking 
during 3rd 
trimester  

Maternal 
 

Newborn 

N 

 
Observed 

 
Expected 

OR (95% CI) P-value 

No Present 
 

Null 

Present 
Null 
Present 
Null 

453 
89 
106 
63 

0.0353 
0.0449 
0.0189 
0.1111 

0.0308 
0.0269 
0.0550 
0.1080 

1.0 
1.28 (0.42-3.94) 
0.53 (0.11-2.32) 
3.41 (1.35-8.66) 

 
0.66 
0.40 
0.010 

Yes Present 
 

Null 
 

Present 
Null 
Present 
Null 

148 
27 
44 
24 

0.0541 
0.00 
0.2045 
0.2083 

0.0678 
0.0594 
0.1174 
0.2176 

1.56 (0.65-3.72) 
 

7.02 (2.89-17.04) 
7.19 (2.38-21.68) 

0.316 
 

<0.001 
<0.001 
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Figure 8.  Combined association of maternal cigarette smoking during the 3rd 

trimester and combination of maternal/newborn GSTT1 genotype with 

proportion of low birthweight and preterm delivery (<2500 g and <37th week 

gestation) 

 

3.10.4 Multiple logistic regression analysis for SGA in term (≥37th week gestation) infants 

For SGA in term infants, maternal/newborn GSTT1 genotype alone did not confer a significant 

effect on the risk of fetal growth retardation by univariate logistic regression analysis (Table 33).  

However, a significant association of GSTT1 genotype was observed in combination with 

maternal ethnicity or cigarette smoking in the 3rd trimesters.  Among non-smokers, the presence 

of at least one risk factor: African American ethnicity or maternal or newborn GSTT1 null 
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genotype, significantly increased the proportion of SGA compared with the non-exposed group 

(non-smoking Caucasians with GSTT1 present genotype).  Moreover, the presence of more than 

two risk factors dramatically increased the proportion of SGA.  The highest proportion (0.294) 

was observed among African American smokers with maternal GSTT1 null genotype (OR=9.89, 

p<0.001). 

 

Table 33.  Multivariate logistic regression model for the combined effects of 

maternal ethnicity, cigarette smoking during the 3rd trimester, and maternal 

or newborn GSTT1 genotype, on SGA in term (≥37th week gestation) infants 

 
 
Ethnicity Smoking 

during 3rd 
trimester 

GSTT1 
Genotype 

N Observed 
proportion 
of SGA  

OR (95% CI) P-value 

  Maternal:     
Caucasian No Present 

Null 
371 
114 

0.0404 
0.0351 

1.0 
0.863 (0.28-2.62) 

 
0.80 

African 
American 

No Present 
Null 

187 
67 

0.1016 
0.2388 

2.68 (1.33-5.41) 
7.45 (3.47-15.97) 

0.006 
<0.001 

Caucasian Yes Present 
Null 

149 
47 

0.1879 
0.1064 

5.49 (2.84-10.63) 
2.83 (0.98-8.17) 

<0.001 
0.055 

African 
American 

Yes Present 
Null 

60 
17 

0.2167 
0.2941 

6.56 (2.94-14-65) 
9.89 (3.09-31.68) 

<0.001 
<0.001 

  Newborn:     
Caucasian No Present 

Null 
392 
92 

0.0408 
0.0326 

1.0 
0.79 (0.23-2.78) 

 
0.716 

African 
American 

No Present 
Null 

192 
62 

0.1354 
0.1452 

3.68 (1.92-7.04) 
3.99 (1.68-9.49) 

<0.001 
0.002 

Caucasian Yes Present 
Null 

161 
35 

0.1677 
0.1714 

4.74 (2.47-9.06) 
4.86 (1.77-13.37) 

<0.001 
0.002 

African 
American 

Yes Present 
Null 

56 
21 

0.2500 
0.1905 

7.83 (3.57-17.17) 
5.53 (1.67-18.33) 

<0.001 
0.005 

 

As shown Table 34 and Figure 9, the same sets of risk factors were observed in multivariate 

logistic regression analysis for SGA as were identified in the low birthweight infants (<2500g).  
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The combination of maternal/newborn GSTT1 genotype modulated the proportion of growth-

retarded infants in term births (≥37 week gestation).  

 

Table 34.  Multivariate logistic regression model for modulation of combined 

risk of SGA in term (≥37th week gestation) infants conferred by maternal 

smoking in the 3rd trimester and maternal/newborn GSTT1 genotype 

 
 

GSTT1 genotype Proportion of SGA Ethnicity Smoking 
during 3rd 
trimester Maternal Infant 

N 

Observed Expected 

OR (95% CI) P-value 

Caucasian No Present 
 

Null 

Present 
Null 
Present 
Null 

316 
54 
76 
38 

0.0411 
0.0370 
0.0395 
0.0263 

0.0469 
0.0421 
0.0633 
0.0530 

1.0 
0.896 (0.20-4.09) 
0.96 (0.27-3.45) 
0.63 (0.08-4.95) 

 
0.888 
0.947 
0.661 

African 
American 

No Present 
 

Null 

Present 
Null 
Present 
Null 

150 
37 
42 
25 

0.1000 
0.1081 
0.2619 
0.2000 

0.1128 
0.1020 
0.1487 
0.1264 

2.59 (1.20-5.59) 
2.83 (0.81-9.17) 
8.27 (3.42-20.02) 
5.83 (1.89-17.97) 

0.015 
0.084 
<0.001 
0.002 

Caucasian Yes Present 
 

Null 

Present 
Null 
Present 
Null 

129 
20 
32 
15 

0.1860 
0.2000 
0.0938 
0.1333 

0.1366 
0.1238 
0.1785 
0.1525 

5.32 (2.62-10.84) 
5.83 (1.71-19.90) 
2.41 (0.65-8.95) 
3.59 (0.73-17.56) 

<0.001 
0.005 
0.189 
0.115 

African 
American 

Yes Present 
 

Null 

Present 
Null 
Present 
Null 

47 
13 
 9 
 8 

0.2340 
0.1538 
0.3333 
0.2500 

0.2903 
0.2676 
0.3597 
0.3176 

7.12 (2.97-17.07) 
4.23 (0.85-21.11) 
11.65 (2.62-51.86) 
7.77 (1.43-42.27) 

<0.001 
0.078 
0.001 
0.018 
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Figure 9.  Combined association of maternal ethnicity, cigarette smoking 

during the 3rd trimester and combination of maternal/newborn GSTT1 

genotypes w ith proportion of SGA in term (>37th week gestation) infants 

 

3.11 Univariate linear regression analyses 

Univariate linear regression was performed to evaluate the associations of maternal 

demographic, lifestyle behavioral and maternal/newborn genetic factors with birthweight and 

also gestational week.  The analyses were performed using of birthweight and gestational week 

as continuous variables.  The predictor variables included: 1) maternal demographic factors such 

as age, family income, education level; 2) maternal lifestyle/exposure in early and late 
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pregnancies, active/passive cigarette smoke exposure, alcohol use, and the 3rd trimester risk 

factors; and 3) maternal/newborn genetic factors, CYP1A1, CYP2E1, GSTM1, GSTT1 and 

NAT2* genetic polymorphism frequencies data (Table 35).   

 

The key results of this analysis are: African American infants were significantly smaller 

than Caucasian infants, with a mean reduction in birthweight of approximately 230g (p<0.001).   

 

The greatest reduction in mean birthweight was observed among infants of teenage 

women.  Early teenage women (≤15 years old) delivered infant weighing an average of 320 g 

less than infants of older women (21-30 years old) (referent group).  Similarly, late teenage 

women (16-20 years old) delivered infants weighing 119.5 g less than infants average in the 

referent group (p=0.002).  A significant positive correlation was observed between the mean 

birthweight (12.3 g/year old: SE, 2.6) and maternal age (p<0.001).   

 

Compared to the AGA group, a reduction in mean birthweight was also found among 

women with lower family income (-203.3 g, -181.6 g, and –105.4 g) for <$10K, $10K-<$20K, 

and $20K-<$35K, respectively.  Moreover, women with lower education also had significantly 

lower birthweight infants than women with higher education.  The mean birthweight reduction 

observed among women with GED, high school graduate, and some college degree was –310.3 

g, -231.2 g, and –217.4 g, respectively.   

 

A reduction of the mean birthweight (-101.4 g, -63.8 g) was also observed if mothers 

were either actively or passively exposed to cigarette smoke during early pregnancy.  A stronger 
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association and greater reduction of the mean birthweight (-228.6 g, -163.0 g) was observed if 

the mother actively smoked or was passively exposed to cigarette smoke during the third 

trimester.  Moreover, a significant reduction of the mean gestational week (-0.24: SE, 0.1) was 

observed among infants of women who smoked during the 3rd trimester (p=0.05).  In addition, a 

dose-response association was observed between the 3rd trimester exposure risk group and the 

reduction of mean birthweight (-45.4 g, -146.8 g) for the medium risk and high risk categories, 

respectively.     

 

Lastly, a significant reduction of mean birthweight (-89.6 g: SE, 37) and mean gestational 

week (-0.25 week: SE, 0.1) was observed among the group with maternal GSTT1 null genotype 

(p=0.018, p=0.049), respectively.  Moreover, a significant reduction of the mean birthweight  

(-98.3 g: SE, 36) was found among the group with newborn CYP1A1*2A,*3 genotype (p=0.007). 
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Table 35. Univariate linear regression summary for the effect of 

maternal/newborn demographic, behavior and genetic factors on birthweight 

and gestational week 

 
 

Birthweight (g) Gestation (week) Risk factor N 
β (SE) P-value β (SE) P-value 

Maternal demographics 
  Ethnicity 
    African American 
    Caucasian  
  Maternal age (years) 
    ≤15 
    16-20 
    21-30 
    ≥31 
 Continuous variables (13-45 years) 
  Family income 
     <$10K 
    $10K-<$20K 
    $20K-<$35K 
    ≥$35K 
    Don’t know 
  Maternal education 
    < 12 grade 
    High school diploma 
    Some collage 
    BS or greater 

 
 
376 
772 
 
11 
318 
567 
252 
1148 
 
266 
216 
157 
314 
195 
 
224 
410 
269 
245 

 
 

-230.0 (34.5)* 
Referent 

 
-320.7 (168) 
-119.5 (38)* 
Referent 
67.9 (41) 
12.3 (2.6)* 

 
-203.3 (46)* 
-181.6 (48)* 
-105.4 (54) 
Referent 
-226.2 (50)* 

 
-310.3 (50)* 
-231.2 (44)* 
-217.4 (48)* 
Referent 

 
 
<0.001 
 
 
0.058 
0.002 
 
0.106 
<0.001 
 
<0.001 
<0.001 
0.051 
 
<0.001 
 
<0.001 
<0.001 
<0.001 
 

 
 

-0.21 (0.1) 
Referent 

 
-0.16 (0.5) 
-0.11 (0.1) 
Referent 
-0.20 (0.1) 
-0.008 (0.001) 

 
0.15 (0.2) 
-0.07 (0.2) 
0.010 (0.2) 
Referent 
-0.11 (0.2) 

 
-0.24 (0.2) 
-0.22 (0.2) 
-0.13 (0.2) 
Referent 

 
 
0.072 
 
 
0.776 
0.418 
 
0.161 
0.38 
 
0.333 
0.682 
0.958 
 
0.514 
 
0.175 
0.142 
0.439 
 

Cigarette exposure in early pregnancy 
  Active 
     No 
     Yes 

 
    Never 
    Less than a pack/day 
    Less than 2 pack/day 
    More than 2 pack/day 
  Continuous variable  
  (0-50 cigarettes/day) 

 
  Passive 
    No 
    Yes 

 
   <3.5 h/week 
  3.5-48 h/week 
  >48 h/week 

 
  Continuous variable  

  (0-168 h/week) 

 
 
616 
532 
 
605 
261 
211 
71 
1148 
 
 
 
750 
398 
 
750 
272 
126 
 
1144 
 

 
 

Referent 
-101.4 (32)* 

 
Referent 
-113.7 (41)* 
-86.3 (44) 
-214.5 (69)* 
-3.4 (2.2) 

 
 

 
Referent 
-63.8 (34) 

 
Referent 
-51.1 (39) 
-91.1 (53) 

 
-1.18 (0.6)* 
 

 
 
 
0.002 
 
 
0.006 
0.052 
0.002 
0.133 
 
 
 
 
0.066 
 
 
0.196 
0.091 
 
0.047 
 

 
 

Referent 
0.08 (0.1) 

 
Referent 
0.076 (0.1) 
0.128 (0.1) 
-0.337 (0.2) 
<0.001 (0.007) 

 
 

 
Referent 
0.08 (0.1) 

 
Referent 
0.06 (0.1) 
0.123 (0.2) 
 
 0.001 
 

 
 
 
0.467 
 
 
0.585 
0.392 
0.152 
0.997 
 
 
 
 
0.478 
 
 
0.631 
0.497 
 
0.473 
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Table 35 cont. 
 

     

 Alcohol use 
    No 
    Yes  

 
  Continuous variable (0.41-1281 g) 

 
169 
979 
 
1123 

 
Referent 
40.6 (46) 

 
0.002 (0.1) 

 
 
0.383 
 
0.985 

 
Referent 
0.13 (0.2) 

 
<0.001 

 
 
0.421 
 
0.090 

Exposure during 3rd trimester 
  Smoking  
     No 
     Yes 

 
   Never 
   Less than a pack/day 
   Less than 2 pack/day 
   More than 2 pack/day 

 
  Continuous variable  
  (0-40 cigarettes/day) 

 
 Passive 
     No 
     Yes  

 
   <3.5 h/week 
  3.5-48 h/week 
   >48 h/week 

 
  Continuous variable (0-168 h/week) 

 
 Alcohol use 
     No 
     Yes 

 
  Continuous variable (0.08-640 g) 

 
 Risk group 
     Low risk 
     Medium risk 
     High risk 

 
 
798 
305 
 
798 
171 
87 
47 
 
1103 
 
 
 
782 
319 
 
782 
231 
88 
 
1101 
 
 
1002 
99 
 
1096 
 
 
305 
721 
77 

 
 

Referent 
-228.6 (37)* 

 
Referent 
-236.1 (46)* 
-199.8 (62)* 
-254.4 (82)* 

 
-13.9 (3.2)* 

 
 

 
Referent 
-163.0 (36)* 

 
Referent 
-168.7 (41)* 
-148.1 (62)* 

 
-2.0 (0.7)* 

 
 

Referent 
-7.0 (59) 

 
-0.7 (0.9) 

 
 

Referent 
-45.4 (38) 
-146.8 (71)* 

 
 
 
<0.001 
 
 
<0.001 
0.001 
0.002 
 
<0.001 
 
 
 
 
<0.001 
 
 
<0.001 
0.018 
 
0.005 
 
 
 
0.906 
 
0.426 
 
 
 
0.236 
0.040 

 
 

Referent 
-0.24 (0.1)* 

 
Referent 
-0.34 (0.2) 
0.29 (0.2) 
-0.53 (0.3) 

 
-0.012 (0.01) 

 
 

 
Referent 
-0.05 (0.1) 

 
Referent 
-0.02 (0.1) 
0.09 (0.2) 

 
0.001 (0.002) 

 
 

Referent 
0.11 (0.12) 

 
<0.001 

 
 

Referent 
0.07 (0.1) 
-0.02 (0.2) 

 
 
 
0.05 
 
 
0.034 
0.177 
0.059 
 
0.25 
 
 
 
 
0.57 
 
 
0.903 
0.673 
 
0.83 
 
 
 
0.37 
 
0.91 
 
 
 
0.581 
0.918 

Maternal genotype 
  CYP1A1 
       *1/*1 
       at least one copy of *2A or *3 
  CYP2E1 
       *1/*1 
      at least one copy of *5B 
  GSTM1 
       Present 
      Null 
  GSTT1 
      Present 
      Null 
  NAT2* 
      Fast 
      Slow*  

 
 
767 
380 
 
1067 
81 
 
614 
534 
 
855 
293 
 
618 
529 

 
 

Referent 
-44.9 (35) 

 
Referent 
-84.0 (64) 

 
Referent 
63.1 (33) 

 
Referent 
-89.6 (37)* 

 
Referent 
28.0 (33) 

 
 
 
0.20 
 
 
0.192 
 
 
0.056 
 
 
0.018 
 
 
0.398 

 
 

Referent 
-0.1 (0.1) 

 
Referent 
-0.28 (0.2) 

 
Referent 
0.25 (0.1)* 

 
Referent 
-0.25 (0.1)* 

 
Referent 
0.08 (0.1) 

 
 
 
0.4 
 
 
0.19 
 
 
0.024 
 
 
0.049 
 
 
0.46 
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Table 35 cont. 
 

     

Newborn genotype 
   CYP1A1 
       *1/*1 
       at least one copy of *2A or *3 
  CYP2E1 
        *1/*1 
       at least one copy of *5B 
  GSTM1 
      Present 
      Null 
  GSTT1 
      Present 
      Null 
  NAT2* 
      Fast 
      Slow 

 
 
811 
335 
 
1070 
78 
 
605 
543 
 
894 
253 
 
598 
548 

 
 

Referent 
-98.3 (36)* 

 
Referent 
-43.9 (65) 

 
Referent 
54.2 (33) 

 
Referent 
-65.0 (39) 

 
60.2 (33)* 
Referent 

 
 
 
0.007 
 
 
0.503 
 
 
0.101 
 
 
0.102 
 
0.07 
 

 
 

Referent 
-0.11 (0.1) 

 
Referent 
-0.09 (0.2) 

 
Referent 
0.18 (0.1) 

 
Referent 
-0.17 (0.1) 

 
0.15 (0.1) 
Referent 

 
 
 
0.37 
 
 
0.68 
 
 
0.11 
 
 
0.208 
 
0.17 
 

* Indicates statistically significant difference at p= 0.05 
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3.12 Multivariate linear regression analysis 

Multivariate linear regression analysis was performed to further evaluate the role of 

maternal/newborn phase I/II metabolic enzyme genetic polymorphisms on adverse reproductive 

outcomes such as reduction of birthweight and shortened gestational week.  The significant 

predictor variables that were found in the univariate linear regression analyses were tested in 

multivariate linear regression models.  If these predictor variables did not reached significance, 

they were then removed from the model.   

 

3.12.1 Multivariate linear regression for birthweight 

As shown in Table 36, the combination of ethnicity, maternal smoking during the 3rd 

trimester and maternal/newborn GSTT1 null genotype were significantly associated with both 

birthweight reduction and shortened gestational weeks.  Much greater birthweight reductions 

were observed among the groups with GSTT1 null in maternal and newborns genotypes 

compared with the group with GSTT1 present.  The greatest reduction in birthweight and 

gestational week were found among African American smokers with GSTT1 null genotype with 

(-570g: SE, 117, p<0.001) and (-1.10 week: SE, 0.4, p=0.007), respectively.    
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Table 36.  Multivariate linear regression summary for the effects of ethnicity, 

maternal smoking in the 3rd trimester and maternal or newborn GSTT1 

genotype, on birthweight 

 
 
Ethnicity Smoking 

during 3rd 
trimester 

GSTT1 
genotype 

N β (SE) of 
birthweight (g) 

P-value β (SE) of 
gestation 
(week) 

P-value 

  Maternal      
Caucasian 

 
No     Present 

    Null 
398 
123 

Referent 
24.8 (55) 

0.654 
<0.001 

Referent 
-0.07 (0.2) 

 
0.713 

African 
American 

No     Present 
    Null 

200 
77 

-235.3 (46) 
-372.9 (66) 

<0.001 
<0.001 

-0.15 (0.2) 
-0.37 (0.2) 

0.362 
0.108 

Caucasian Yes     Present 
    Null 

159 
58 

-200.3 (50) 
-472.2 (75) 

<0.001 
<0.001 

0.05 (0.2) 
-0.63 (0.3) 

0.774 
0.016 

African 
American 

Yes     Present 
    Null 

66 
22 

-389.9 (71) 
-570.0 (117) 

<0.001 
<0.001 

-0.46 (0.2) 
-1.10 (0.4) 

0.066 
0.007 

  Newborn      
Caucasian 

 
No     Present 

    Null 
418 
102 

Referent 
-18.8 (59) 

 
0.753 

Referent 
-0.008 (0.2) 

 
0.967 

African 
American 

No     Present 
    Null 

204 
73 

-254.5 (46) 
-360.1 (68) 

<0.001 
<0.001 

-0.11 (0.2) 
-0.43 (0.2) 

0.486 
0.070 

Caucasian Yes     Present 
    Null 

178 
39 

-273.9 (48) 
-317.3 (90) 

<0.001 
<0.001 

-0.13 (0.2) 
-0.05 (0.3) 

0.432 
0.879 

African 
American 

Yes     Present 
    Null 

63 
25 

-450.3 (72) 
-426.7 (111) 

<0.001 
<0.001 

-0.46 (0.3) 
-1.0 (0.4) 

0.070 
0.012 

 

 

Table 37 presents the combined association of ethnicity, maternal smoking during the 3rd 

trimester and maternal/newborn GSTT1 genotype with infant birthweight and gestational week 

reduction.  A significant reduction of birthweight and gestational week were observed among the 

groups which carried the GSTT1 null genotype in mother, newborn or both compared with the 

group with both mother and newborn carried the GSTT1 positive genotype.  The greatest 

reduction in infant birthweight was observed among the group where both mother and newborn 

were GSTT1 null genotype in the presence or absence of maternal smoking in both African 

Americans and Caucasians.  A similar phenomenon was found in infant gestational age where 
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maternal/infant pairs of combined GSTT1 null genotype were at the highest risk for gestational 

week reduction.  The greatest reduction of gestational age (-1.51: SE, 0.5) was observed among 

the highest risk group that both mother and newborn carried GSTT1 null genotype and the 

mothers were African Americans who smoked during the last trimester (p=0.008).     

 

Table 37.  Multivariate linear regression summary for combined risk of 

reduction of infant birthweight and gestational week conferred by maternal 

smoking in the 3rd trimester and maternal/newborn GSTT1 genotypes 

 
 

GSTT1 genotype Birthweight (g) Gestation (week) Ethnicity Smoking 
during 3rd 
trimester Mother Bany 

N 

β (SE) P-value β (SE) P-value 

Caucasian No Present 
 

Null 

Present 
Null 
Present 
Null 

337 
60 
81 
42 

Referent 
-39.8 (75) 
19.5 (66) 
20.5 (87) 

 
0.597 
0.769 
0.816 

Referent 
0.04 (0.2) 
-0.04 (0.2) 
-0.10 (0.3) 

 
0.867 
0.848 
0.733 

African 
American 

No Present 
 

Null 

Present 
Null 
Present 
Null 

161 
39 
43 
34 

-238.4 (51) 
-248.1 (90) 
-296.8 (87) 
-480.4 (96) 

<0.001 
0.006 
0.001 

<0.001 

-0.25 (0.2) 
0.30 (0.3) 
0.36 (0.3) 
-1.3 (0.3) 

0.163 
0.337 
0.230 

<0.001 
Caucasian Yes Present 

 
Null 

Present 
Null 
Present 
Null 

138 
21 
40 
18 

-218.3 (54) 
-119.9 (120) 
-449.1 (89) 
-539.5 (130) 

<0.001 
0.321 

<0.001 
<0.001 

0.02 (0.2) 
0.33 (0.4) 
-0.68 (0.3) 
-0.50 (0.4) 

0.932 
0.438 
0.029 
0.266 

African 
American 

Yes Present 
 

Null 

Present 
Null 
Present 
Null 

52 
14 
11 
11 

-399.7 (80) 
-376.6 (146) 
-667.9 (164) 
-481.9 (164) 

<0.001 
0.010 

<0.001 
0.003 

-0.42 (0.2) 
-0.56 (0.5) 
-0.69 (0.5) 
-1.51 (0.5) 

0.129 
0.273 
0.225 
0.008 

 

3.12.2 Multivariate linear regression analysis for the 3rd trimester exposure risk group 

Multivariate linear regression analyses were performed to determine the effect of the 3rd 

trimester exposure risk group factors along with other maternal demographic, lifestyle and 

maternal/newborn genetic factors on the infant birthweight reductions.  The risk factors, which 
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were identified by their association with birthweight in univariate linear regression analyses, 

were tested in a multivariate linear regression model.  If the association did not reach a 

statistically significant level, the factor was removed from the model.  The combined 

associations of ethnicity, the 3rd trimester risk group and maternal GSTT1 genotype on infant 

birthweight were examined.  Since maternal education level was significantly associated with the 

birthweight in the multivariate linear regression model in the presence of the 3rd trimester risk 

group, it was adjusted in the analyses.   

 

As shown in Table 38, the greatest infant birthweight reduction was observed among 

GSTT1 null genotype in the higher level of the risk group.  The greatest birthweight reduction 

was found among the group of African Americans, high-risk group and maternal GSTT1 null 

genotype (-649.3 g: SE, 388).  However, it did not reach statistical significance 

(α=0.05)(p=0.095) although there are very few subjects in this combined subgroup.   
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Table 38.  Multivariate linear regression summary for the effect of ethnicity, 

the 3rd trimester risk group, and maternal GSTT1 genotype on infant 

birthweight 

 
 
Ethnic ity The 3rd trimester risk 

group 
GSTT1 
genotype 

N β (SE) of 
birthweight (g) 

P-value 

  Maternal    
Caucasian 

 
Low risk     Present 

    Null 
119 
50 

Referent 
-2.7 (91) 

 
0.976 

African 
American 

Low risk     Present 
    Null 

103 
33 

-260.6 (73) 
-344.2 (107) 

<0.001 
0.001 

Caucasian Medium risk     Present 
    Null 

395 
108 

-97.5 (56) 
-146.2 (72) 

0.088 
0.044 

African 
American 

Medium risk     Present 
    Null 

154 
64 

-279.0 (66) 
-445.3 (84) 

<0.001 
<0.001 

Caucasian 
 

High risk     Present 
    Null 

 43 
 23 

-99.5 (96) 
-507.6 (124) 

0.305 
<0.001 

African 
American 

High risk     Present 
    Null 

  9 
  2 

-415.5 (188) 
-649.3 (388) 

0.028 
0.095 

 

 

Table 39 summarizes the combined effects of ethnicity, the 3rd trimester risk group and 

maternal and newborn GSTT1 genotypes on infant birthweight reduction.  Greater birthweight 

reductions were observed among the group in which both mother and newborn were of GSTT1 

null genotype compared with either one being GSTT1 null genotype. The greatest reduction of 

infant birthweight was found among African Americans whom both maternal and infant of 

GSTT1 null genotypes (the high risk group) compared with Caucasians with both maternal and 

infant carried GSTT1 present genotypes (the low risk group) (-846.7g: SE, 548).  However, this 

association was not statistically significant (p=0.123).   
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Table 39.  Multivariate linear regression summary for combined association 

of ethnicity, the 3rd trimester risk group and maternal/newborn GSTT1 

genotypes on infant birthweight 

 
 

GSTT1 genotype Birthweight (g) Ethnicity The 3rd 
trimester 
risk group Maternal Newborn 

N 

β (SE) P-value 
Caucasian Low risk Present 

 
Null 

Present 
Null 
Present 
Null 

99 
20 
36 
14 

Referent 
-189.3 (133) 
-75.4 (106) 
70.0 (155) 

 
0.157 
0.478 
0.654 

African 
American 

Low risk Present 
 
Null 

Present 
Null 
Present 
Null 

88 
15 
18 
15 

-317.1 (80) 
-146.0 (151) 
-281.8 (139) 
-488.5 (151) 

<0.001 
0.335 
0.044 
0.001 

Caucasian Medium risk Present 
 
Null 

Present 
Null 
Present 
Null 

338 
56 
68 
40 

-137.5 (62) 
-90.3 (91) 
-161.0 (85) 
-206.9 (102) 

0.028 
0.323 
0.061 
0.043 

African 
American 

Medium risk Present 
 
Null 

Present 
Null 
Present 
Null 

117 
37 
35 
29 

-291.6 (74) 
-370.6 (105) 
-456.6 (107) 
-501.2 (115) 

<0.001 
<0.001 
<0.001 
<0.001 

Caucasian High risk Present 
 
Null 

Present 
Null 
Present 
Null 

38 
5 
17 
6 

-153.2 (104) 
36.1 (250) 
-474.4 (143) 
-723.5 (229) 

.0.141 
0.885 
0.001 
0.002. 

African 
American 

High risk Present 
 
Null 

Present 
Null 
Present 
Null 

8 
1 
1 
1 

-405.5 (200) 
-780.7 (548) 
-515.5 (548) 
-846.7 (548) 

0.044 
0.155 
0.348 
0.123 

 

3.13 Summary 

These analyses clearly demonstrate that maternal/newborn phase I/II metabolic enzyme 

polymorphism can interact with other demographic and lifestyle risk factors such as ethnicity 

and cigarette smoke exposure to modulate individual risk of adverse reproductive outcomes (low 

birthweight, preterm delivery and growth retardation).  As we anticipated from the results of 

other reproductive epidemiology, adverse reproductive outcomes in this study have strongly 



 

126 

associated with ethnicity and maternal smoking, especially during the last trimester.  

Interestingly, maternal and also newborn GSTT1 genotypes were significantly associated most of 

those adverse reproductive outcomes.  Moreover, the clear association of additive risk of 

maternal smoking during the last trimester and maternal/newborn GSTT1 null genotype was 

observed for all adverse reproductive outcomes evaluated in this study.   
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4 DISCUSSION 

 

The objective of this study was to determine if maternal/newborn phase I/II metabolic 

enzyme genetic polymorphisms contribute to individual risk of low birthweight, fetal growth 

retardation and/or preterm delivery.  This study had several unique features.  It is one of only a 

few published studies to investigate the association of phase I/II metabolic enzyme genetic 

polymorphisms on low birthweight, preterm delivery and SGA in term.  It is the first study to 

evaluate the impact of not only maternal genotypes but also newborn genotypes as a 

maternal/newborn combined unit at risk of these adverse reproductive outcomes.  It is based on a 

large and sociodemographically diverse population of pregnant women in Pittsburgh for whom 

epidemiological and clinical data were collected with a validated questionnaire using consistent 

methods by trained staff.  This PEPP study was designed to evaluate the effects of maternal 

lifestyle variables and exposure on newborns at the molecular level using multiple biomarkers.  

This population of healthy pregnant women provided an opportunity to evaluate gene-

environment interactions without substantial other medical confounders.     

 

4.1 Low birthweight analyses 

This study produced several important findings.  In univariate analyses, maternal 

demographic factors including ethnicity, age, family income and education level were 

significantly associated with low birthweight (<2500 g).  Women who were African American in 

their early teens, from low family income homes, and less educated were at increased risk for 

having a low birthweight infant.  Similar results have been reported in recent studies[8, 40, 199, 



 

128 

200].  Several studies have suggested that these demographic factors are associated with 

maternal populations with health related disadvantages such as lack of prenatal care, poor 

nutrition, substance abuse including cigarette smoking and alcohol use during pregnancy, and 

other exposures [36, 39].  In multivariate regression analyses, only maternal ethnicity had a 

significant association with low birthweight.  It is likely that the other demographic factors 

identified in the univariate analyses were highly correlated with ethnicity or maternal cigarette 

smoking history.  For instance, African American women were more likely to be from lower 

family income groups or the mothers who continued to smoke were more likely to be less 

educated.  The significant difference in birthweight between African Americans and Caucasians 

remained after consideration of all of the other risk factors evaluated in the study.  African 

American infants were, on average, 230 g lighter at birth compared with the Caucasian infants, a 

value similar to that previously reported [8].  The OR of low birthweight for African American 

infants was 1.74.  This ethnic might be differenced associate with socioeconomic status.  A 

greater number of African American women in the study were of lower socioeconomic status by 

both family income and maternal education level measures, compared with Caucasians.  There 

may also be some specific cultural differences, lifestyles and environmental exposures among 

the African American subjects that result in this reduction of infant birthweight [45, 49].   

 

 Both active and passive cigarette smoke exposure during the 3rd trimester were 

significantly associated with low birthweight in the univariate analyses.  The mean birthweight 

reduction was approximately 228.6 g for active maternal smoking and 163.0 g for passive 

exposure.  For every cigarettes smoked per day during the 3rd trimester, birthweight decreased 

approximately 13.9 g.  Similarly, each increase by one hour of passive exposure per week during 
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this period reduced birthweight by approximately 2 g (Table 35).  These results confirm similar 

observations in previously published studies in a range of 24-189 g birthweight reduction [30, 

83, 201-203]. 

 

 Maternal CYP1A1 and GSTT1 genetic polymorphisms alone were significantly associated 

with low birthweight in the presence of cigarette smoke exposure.  Moreover, a statistically 

significant association of newborn CYP1A1 genotype alone with low birthweight was found.  

These results agreed with a recent previous study by Wang et al. [203].  They reported a 

significant association of maternal CYP1A1*2A and GSTT1 null genotypes with birthweight 

reduction.  The mothers who continued smoking during pregnancy with at least one CYP1A1*2A 

allele increased the risk of having a low birthweight infant (OR=3.2) compared with the non-

smoking mother with homozygous CYP1A1*1 genotype.  Similarly, the mothers who continued 

to smoke during pregnancy and were of GSTT1 null genotype, had an increased risk of a low 

birthweight infant (OR=3.5) compared with non-smoking mothers with the GSTT1 present 

genotype [203].  However, in the PEPP study, nether maternal nor newborn CYP1A1 genotypes 

did not reach statistically significance for low birthweight in multiple regression analyses.   

 

In our final regression model, maternal ethnicity, cigarette smoking during the 3rd 

trimester and maternal GSTT1 genotype were all significantly associated with low birthweight.  

This is partially consistent with the findings of Wang et al. [203], who found that maternal 

GSTT1 null genotype significantly modified the association between maternal cigarette smoking 

and infant birthweight in a Boston, MA population.  We failed to observe the association of 

CYP1A1*2A and low birthweight in the multiple regression analyses.  This might result from the 
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different ethnic distributions of the study population and the resulting differing CYP1A1*2A 

allele in this frequencies.  In the Boston study, approximately 49.1% of the population was 

African American, only 16.5% of Caucasians, over 22.8% of Hispanic and more than 11.6% of 

other ethnical groups, while in the PEPP study, roughly 1/3 of the population was African 

Americans, 2/3 was Caucasians.  A higher frequency of CYP1A1*2A has been observed in Asian 

populations and a lower frequency in African American populations [155, 156].  In addition, we 

screened the CYP1A1*2A and the CYP1A1*3 polymorphism in the PEPP study population.  

CYP1A1*3 is an African American specific polymorphism and approximately 30% of our study 

population was African American.  Therefore, this might lead to conflicting results.  The 

CYP1A1*2A polymorphism has been extensively studied for an association of the potential for 

activation of pro-carcinogenic compounds forming adducts and promotion of cancer 

development [134, 204-206].  It is also known that CYP1A1*2A is linked with the CYP1A1*2C 

polymorphism that affects CYP1A1 enzymatic activity [154].  However, the linkage between 

CYP1A1*2A and CYP1A1*2C depends on ethnicity.  High linkage between those two alleles was 

observed among Asian populations but not in African American or African populations [129, 

155].  Thus, if the population has a high percentage of African Americans, screening only for the 

CYP1A1*2A allele might not be reliable and could explain the non-concordant results of the two 

studies.     

 

Figure 3 illustrates a bevy finding of this study that there is increase in the proportion of 

expected low birthweight infants for associated with the additive of maternal and newborn risk 

factors (ethnicity, cigarette smoking and maternal or newborn GSTT1 genotypes) to the model.  

Non-smoking Caucasian mothers with GSTT1 present genotype were classified as the lowest risk 
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referent group.  There was a slight increase in the proportion of low birthweight births infants 

among the maternal GSTT1 null genotype group alone and further increased among African 

Americans.  In the presence of maternal smoking, the expected proportion is dramatically 

elevated and a further increased risk was observed among the maternal GSTT1 null genotype 

group.  Approximately a 6-fold increase in the proportion of low birthweight was observed 

among the group with all three risk factors (African American ethnicity, maternal smoking 

during the 3rd trimester and maternal GSTT1 null genotype) compared with infants of the referent 

group.  A similar association was observed with the newborn GSTT1 genotype analyses.  These 

data clearly indicate a dose-response risk relationship between maternal and newborn GSTT1 

positive/null genotypes with the addition of each risk factor.   

 

Importantly, this is the first study to evaluate not only maternal polymorphisms in phase 

I/II metabolic genes but also the contribution of independent of combined newborn 

polymorphisms on low birthweight as well.  The greatest birthweight reduction was observed in 

both maternal and newborn with the GSTT1 null genotype compared with other genotype 

combination pairs.  The lowest risk group was defined as both maternal and newborn carrying 

the GSTT1 positive genotype.  The risk of low birthweight increased incrementally by adding 

newborn GSTT1 null genotype alone, maternal GSTT1 null genotype alone and both GSTT1 null 

genotypes (Figure 6).  In addition, a dose-response relationship of GSTT1 genotype was 

observed with each addition of ethnicity and maternal smoking factors.  Since there was no 

observations of low birthweight infants in two groups (Caucasian smokers and newborn GSTT1 

null genotype, and African American smokers and newborn genotype of GSTT1 null).  Overall, 
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the expected and observed proportions of low birthweight infants agreed well particularly in the 

groups with an absence of risk factors because of larger numbers of subjects in these groups.   

 

4.2 Preterm delivery (<37th week of gestation) analyses 

Unlike multiple risk factors for low birthweight, only one maternal demographic factor, 

maternal education level, was significantly associated with preterm delivery in the univariate 

analyses.  Preterm delivery has been associated with maternal smoking during the 3rd trimester in 

previous studies [203, 207, 208].  Our analyses also demonstrated both maternal and newborn 

GSTT1 null genotypes were significantly associated with preterm delivery.  Our finding confirms 

the observation made in a previous study that maternal GSTT1 null genotype frequency was 

significantly higher among the mothers with preterm delivery [203].  Wang et al. reported 

approximately a 2.1 week (SE=0.8) gestational age reduction if the mothers continued to smoke 

during pregnancy and carried the GSTT1 null genotype (OR=2.8, 95% CI 1.1-7.8) compared 

with the non-smoking mothers with GSTT1 present genotype.  Our results showed a more 

moderate reduction in gestational age (0.25 weeks, SE=0.1, p=0.049) if the mother carried the 

GSTT1 null genotype.  The greatest reduction of gestational age was observed among African 

American smokers with GSTT1 null genotype in both mothers and newborns (1.51 weeks, 

SE=0.5, p=0.008) (Table 37).  In the absence of maternal smoking, the observed and expected 

proportion of preterm deliveries was similar among the different combinations of 

maternal/newborn GSTT1 genotypes in the multivariable logistic regression model.  However, 

the proportion was dramatically increased in a dose responsive  manner among smokers.  Thus, it 

is biologically plausible that without maternal tobacco smoke exposure, the GSTT1 null genotype 

was not a risk factor.  Furthermore, we observed that if both maternal and newborn pairs carried 
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the GSTT1 null genotypes, there was a corresponding increase in susceptibility for preterm 

delivery.  One previous study reported that GSTT1 null was a high risk genotype for shortened 

gestation in the presence of low levels of maternal exposure to benzene [209].  In animal studies, 

benzene and other organic solvents result in delayed fetal development and reduced birthweight 

[210].  In human epidemiological studies, organic solvent exposures have a weak association 

with increasing risks of birth defects and spontaneous abortion [211].  The etiologies of preterm 

delivery are still unclear.  It is clear that GSTT1 is responsible for detoxification of these toxins 

and we and other investigators have observed that the absence of GSTT1 significantly increases 

the risk of preterm delivery.  This might be associated with the disturbance of blood circulation 

in the placenta.  Several studies have reported that maternal cigarette smoke exposure 

dramatically affects placental vasculature.  The observed reduced dimensions of fetal capillaries 

in villi may affect placental blood flow and the diminished area for exchange of gases and 

nutrients between the mother and the fetus will increase the risk of fetal undernourishment [212].  

Our study suggested that not only the maternal detoxification process is important but also that 

differences in genetically determined fetal metabolism also contribute to the risk of preterm 

delivery.   

 

Wang et al. [203] also reported a significant association of maternal CYP1A1*2A 

genotype with preterm delivery.  A diverse of approximately 1.5 weeks of gestational age 

occurred if the mother continued to smoke during pregnancy and carried at least one 

CYP1A1*2A allele (OR=2.2, 95% CI 1.1-4.4) compared with non-smoking mothers homozygous 

for CYP1A1*1.  However, our results did not confirm their finding.  It might be because of the 

same factors previously mentioned in the low birthweight analyses.  In addition, maternal NAT2* 
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slow acetylator genotype was a protective factor for preterm delivery in our analyses.  Since no 

clear mechanism for causing preterm delivery is known, the maternal NAT2* genetic 

polymorphism may also represent a critical detoxification pathway.  Wang et al. [203] did not 

report screening for NAT2* polymorphisms.      

 

4.3 Low birthweight and preterm delivery  (<2500 g and <37th weeks of gestation)  

analyses 

The risk factors associated with low birthweight and preterm delivery (premature birth) 

were somewhat similar to those observed in the preterm delivery and low birthweight infant 

groups alone.  Maternal ethnicity, age and education level were significantly associated with 

both low birthweight and premature birth in univariate analyses.  Early teenage (≤15 years old) 

African American mothers with lower educational level were more likely to have a premature 

infant.  Our results are similar to those of previously published studies in that maternal age less 

than 15 years is associated with increased risk of adverse reproductive outcomes [40].  In 

addition maternal smoking during the third trimester was strongly associated with preterm 

delivery and low birthweight [30, 213].  Moreover, in out study, we also observed that maternal 

GSTT1 null genotype was significantly associated with premature birth.  Newborn GSTT1 null 

genotype showed a trend towards increased risk but did not reach statistical significance 

(p=0.65).  A similar pattern was observed for the maternal/newborn combined GSTT1 null 

genotype and low birthweight/premature birth.  Both maternal and newborn GSTT1 genotype 

modulate the proportion of combined low birthweight and premature birth in the presence and 

absence of maternal smoking.  The expected proportion of this adverse outcome among the non-

smoking groups showed a slight increase in risk for each combination of maternal/newborn 
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GSTT1 null genotype.  However, if the mother smoked during the last trimester, the expected 

proportion of low birthweight/premature birth dramatically increased among the groups where at 

least one of the pair carried the GSTT1 null genotype.  The largest proportion of low 

birthweight/premature birth infants was observed among the group with both mother and 

newborn of GSTT1 null genotype in the presence of maternal smoking.  These findings are 

consistent with a previous study [203] for a smaller population.  In the previous study, Wang et 

al. [203] reported maternal GSTT1 null genotype and the CYP1A1*2A allele were the high risk 

genotype for both low birthweight (<2500 g) and preterm birth (<37th weeks of gestation) 

infants.  However, they did not analyze specifically for the combined group with less than 2500 g 

birthweight and less than 37th weeks of gestation.        

 

4.4 SGA at term delivery (≥37th weeks of gestation) analyses 

Small for gestational age (SGA) was defined as less than the 10th percentile of 

birthweight among term infants (≥37th weeks of gestation).  Several maternal demographic 

factors were identified as significantly associated with SGA including maternal ethnicity, age, 

family income and education level in univariate analyses.  Interestingly, African American 

mothers who were older than 31 years with low family income and lower educational level were 

more likely to have an infant with SGA.  As discussed, the association of ethnicity, family 

income and educational level with other adverse reproductive outcomes might be related to 

medical care access disadvantages and other ethnic specific risk factors.   
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Overall, our analyses, older women (≥31 years old) have the highest risk of SGA.  This 

might be the result of age-related increases in fetal chromosome aberrations and the presence of 

complicating maternal medical factors such as hypertension [32, 33].   

 

Maternal smoking during the 3rd trimester but also in early pregnancy was strongly 

associated with SGA.  Moreover, risk of SGA with passive cigarette smoke exposure during the 

third trimester was also statistically significant.  Our findings are consistent with previous studies 

[29, 119].  Most growth retardation occurs after the 28th week of gestation, but it may occur 

earlier [20].  Maternal smoking in early pregnancy and even before the conception are known to 

impact adverse reproductive outcomes including SGA [214].  Cigarette smoke exposure in early 

pregnancy may result in DNA and chromosomal damage that may affect fetal structural 

development [20].  Fetal cell size dramatically increases after 32 weeks of gestation.  Cigarette 

smoke exposure around this period inhibits depositions of fat and glycogen and cell growth [20, 

30, 85].       

 

Maternal and newborn GSTT1 null genotype combinations significantly associated with 

SGA and other risk factors specifically maternal ethnicity and smoking during the 3rd trimester.  

A graduated increase in the expected proportion of SGA was observed by the incremental 

addition of these risk factors.  In the absence of maternal smoking among Caucasians (low risk 

group), the expected SGA proportion was slightly increased if either mother/newborn or the pair 

together carried the GSTT1 null genotype.  The presence of at least two additional risk factors 

dramatically elevated the proportion of SGA.  A dose-response relationship was observed among 

the combination mother/newborn pair GSTT1 null genotype (Figure 8).     
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The combination of the third trimester exposure risk group and maternal/newborn GSTT1 

null genotype was significantly associated with SGA.  Mothers in the high exposure group have 

a much higher risk of having a SGA infant.  Among this same study population, Dr. Gordish 

reported that a significant elevation of maternal/newborn glycophorin A (GPA) locus somatic 

cell mutation frequency was observed among high exposure group compared with that in the low 

exposure group [197].  Maternal smoking was strongly associated with SGA but other maternal 

exposure factors such as consumption of alcohol, caffeine, and charbroiled meat, also affect 

DNA damage and other toxicity endpoints.  The affect of these individual exposures alone in 

SGA risk do not reach statistical significance, but the sum of these exposures (represented by the 

third trimester exposure group) increases the risk of SGA (OR=2.22, p=0.045) (Table 26).   

     

4.5 Risk factors associated with adverse reproductive outcomes 

Maternal ethnicity, cigarette smoking during the 3rd trimester and maternal/newborn 

GSTT1 genotype commonly appeared as risk factors for all of the adverse reproductive outcomes 

evaluated in this study.  Maternal ethnicity appeared only if adverse reproductive outcomes were 

related to reduction of birthweight but not for shorted the gestational age.     

 

4.6 Maternal smoking during the third trimester   

 Maternal cigarette smoking during the 3rd trimester was strongly associated with 

reduction of birthweight to cause low birthweight, shortened gestational age and infant growth 

retardation.  This finding is consistent with the existing literature [215].  
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Maternal passive smoke exposure was not as strongly associated with these adverse 

reproductive outcomes as active smoking during this critical period.  According to measured 

blood cortinine levels, non-smokers passively exposed to cigarette smoke generally have a 10-

100 fold lower level than active smokers.  This suggests that the biological effects of passive 

exposure should be correspondingly lower than those of active smoking.  Environmental tobacco 

smoke is composed of a complex mixture of carcinogenic/mutagenic and toxic compounds 

contained in exhaled mainstream and sidestream smoke.  Passive smoke exposure contains the 

same or much higher levels of these compounds.  Thus, passive exposure may cause adverse 

effects as strongly as active smoking.  It is difficult to separate women exposed only passively to 

cigarette smoke from active smokers.  The women in our study population might have reported a 

smaller amount of cigarettes that they smoked during the 3rd trimester especially if those adverse 

reproductive outcomes occurred.  Several existing studies evaluated accuracy of self-reported 

maternal cigarette smoke status during pregnancy.  There are ethnic differences in how 

accurately they report; self- reported smoking status among minority groups were more likely to 

be misclassified.   

 

On the other hand, physical measurements of cigarette smoke exposure, most commonly 

by cotinine measurement, may be modulated by CYP2A6 polymorphisms.  Nicotine is primly 

metabolized by CYP2A6 in humans.  The CYP2A6 gene is highly polymorphic with many effects 

on enzyme activity.  Further disussion about the possible importance of CYP2A6 is found in 

section 4.11.2.   
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4.7 Modulation by GSTT1 genotype and susceptibility of adverse events  

The biological mechanisms by which a genetic polymorphism modifies the toxic effects 

of cigarette smoke on adverse reproductive outcomes is not well understood.  Reduction of 

birthweight caused by fetal growth retardation and shortening of gestational age may be due to 

disturbance of cell regulation caused by DNA adducts and damage.  A number of 

epidemiological studies have evaluated the role of GSTT1 metabolism, and the GSTT1 

genotypes, in a number of different diseases including cancer.   

 

The most well documented examples of an association between chemical agents lack of 

GSTT1 and adverse events are a-vinyloxirane (aka 3,4-epoxybutene, MEB) and [2,2’]bioxiranyl 

(aka 1,2:3,4-diepoxybutane, DEB) which induce DNA damage, resulting in chromosomal 

aberrations, micronuclei, and sister chromatid exchanges in a variety of systems [216-221].  

MEB and DEB are reactive metabolites produced via oxidation of the 1,3-butadiene (BD) by 

CYPs.  Epidemiological studies have evaluated the induction of leukemia caused by BD 

exposure.  Resent studies had reported that MEB and DEB are substrates for GSTT1-1.  Thus, 

mothers with GSTT1 null genotype are more susceptible to BD induced DNA damage.  It had 

been confirmed in in vitro studies that GSTT1 null genotype was less protective against DEB 

genotoxic activities [191, 220, 222-226].  In addition, GSTT1-1 null subjects were more 

sensitive than GSTT1-1 positive subjects to sister chromatid exchanges caused by MEB [227].  

Human lymphocytes which are treated with DEB have a higher mean frequency of genotoxic 

events such as micronuclei and chromosomal aberrations in GSTT1 null subjects compared with 

GSTT1 positives [218, 219, 221, 223].   
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Although the studies conducted in vitro suggest an important role of GSTT1-1 against the 

metabolites of BD, the processes occurring in humans exposed in vivo to BD are largely 

unknown.  One study reported that the mean frequency of chromosomal aberrations was higher 

in peripheral blood lymphocytes of GSTT1 null genotype subjects compared with that of GSTT1 

positives by BD exposure [228].  This result agreed with in vitro studies that GSTT1 null 

individuals appear to be more susceptible to BD exposure.  However, findings from several other 

studies were inconclusive.  Other metabolic enzyme genotypes in addition to the GSTT1 

polymorphism may play an important role in further modulating the biological effects of BD 

exposure.   

 

Similarly, human GSTT1 is involved in the detoxification of Phenloxirane (aka styrene-

7,8-oxide, SO), a metabolite of Phenylethene (aka styrene).  In vitro studies with lymphocyte 

cultures with GSTT1 null genotype had approximately 1.4-1.7 times greater frequency of sister 

chromatid exchanges per cell compared with GSTT1 positive subjects [229].  It was concluded 

that although glutathione-S-transferase conjugation could be a minor metabolic pathway in vivo 

for SO or for BD, the high GSTT1-1 activity in erythrocytes may be important locally [162].    

 

Several studies have evaluated the association of the GSTT1 polymorphism and 

frequencies of in vivo genotoxic and cytotoxic events such as sister chromatid exchanges, 

chromosomal aberrations, and micronuclei in the absence of any specific source of exposure.  

Higher background frequencies of sister chromatid exchanges were observed among GSTT1 null 

genotype compared with that among individuals with active GSTT1 [191, 222, 230].  However 

this finding was not confirmed in other studies [223, 227].  In addition, the lowest mean 
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frequency of sister chromatid exchange was observed among non-smoking individuals with the 

GSTT1 positive genotype as compared with the highest levels in GSTT1 null smokers in a dose-

response relationship [230].  GSTT1 positive smokers and GSTT1 null non-smokers had 

intermediate levels of sister chromatid exchange.  Other studies suggested that GSTT1 null 

genotype individuals are less susceptible  to chromosome aberrations [229].  Several studies 

suggested that oxirane (aka ethylene oxide epoxide, EO), produced endogenously or inhaled with 

cigarette smoke, could be one of the genotoxic GSTT1-1 substrates responsible for the different 

spontaneous rate of sister chromatid exchanges and chromosome aberrations [230, 231].   

 

PAHs are well-known carcinogens contained in cigarette smoke that are metabolized by 

GSTT1-1.  However, it is not clear if the GSTT1 polymorphism is associated with increased 

genotoxic or carcinogenic risk in smokers.  Two studies reported that no differences were 

observed among GSTT1 positive or null genotype individuals exposed to PAHs in levels of DNA 

single strand breaks, DNA protein cross links, DNA adducts, or sister chromatid exchanges [232, 

233].  However, other studies reported that the GSTT1-1 positive genotype was associated with 

increased levels of excreted 1-hydroxypyrene glucuronide and the activity of GSTT1-1 in 

erythrocytes was inversely correlated with the DNA adducts in mononuclear leukocytes [232].  

Thus, although several polycyclic aromatic hydrocarbons are metabolized by GSTT1 this could 

represent only a minor metabolic pathway.  Further investigation is necessary to better 

understand the role of GSTT1 mediated metabolism in the elevation of adverse reproductive 

outcomes.   
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4.8 Elevation of DNA and protein adducts is positively correlated with DNA damage 

and other health effects including adverse reproductive outcomes 

Previous studies have reported significantly higher levels of DNA and hemoglobin 

adducts among mothers who smoked compared with non-smoking mothers [132, 133, 189].  

Moreover, cigarette smoke related specific amine adducts have been observed in smokers’ 

placentas.  Positive dose response relationships were observed between the number of cigarettes 

smoked and the level of smoking related adducts found in placenta and in cord blood. 

 

Additional studies have demonstrated that DNA adduct levels in placenta and cord blood 

are negatively correlated with infant birthweight.  In addition, these adducts were also found in 

fetal tissues [234].  The study demonstrated that maternal transfer of carcinogens present in 

cigarette smoke to fetal tissues (umbilical cord artery and vein) and showed that these tissues can 

metabolize the carcinogens to their DNA binding metabolites.  Hatch et al. reported that 

significantly higher levels of PAH-derived adducts were found in 43% of placentas and 

spontaneously aborted fetal liver (27%) and lung (42%) [235].  Another study evaluated whether 

oxidative damage to DNA, as measured by 8-oxo-7,8 dihydro-2 deoxyguanosine, is increased 

with low birthweight and fetal growth retardation early in the third trimester [236].  Since there 

is a significantly higher incidence of hepatoblastoma in children with low birthweight, oxidative 

DNA damage (8-OHdG) was measured among those children with hepatoblastoma. However, no 

statistical association was observed between the level of oxidative DNA damage and incidence 

of hepatoblastoma and low birthweight [237].  An association between elevation of oxidative 

DNA damage and low birthweight and fetal growth retardation was inconclusive.  In addition, 

Woods et al. reported increased spontaneous chromosome breakage was observed in blood and 
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fibroblasts of growth retarded infants [238].  An elevation in DNA and protein adducts in 

associated with DNA damage and risk of adverse reproductive outcomes. 

 

4.9 Association of elevated DNA adducts in placenta and disruption of placental 

function 

Extensive studies have been done to identify occupational and environmental exposures, 

including cigarette smoke, which increase DNA adduct levels in placenta.  It has been 

hypothesized that DNA damage may influence blood circulation resulting in the inhibition of gas 

and nutrient supply to the fetus.  This disfunctioning placenta might cause fetal growth 

retardation, low birthweight and preterm delivery.  Since it is known that phase I/II metabolic 

enzyme are expressed in placenta [153, 250, 251], metabolic enzyme genetic polymorphisms in 

placenta may modulate the level of DNA adducts and level of damage to DNA and affect 

placental development and function.   

    

4.10 Study limitations  

 

4.10.1 Selection and size of the study population  

In this study population, approximately 4.3% of singleton infants weighted less than 2500 

g at the birth.  The proportion of low birthweight infants in this study was less compared with 

that (6.0%) had reported in the National Vital Statistical Report for the year 2000.  Women with 

high risks of adverse reproductive outcomes may not have agreed to participate to the study.  
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Moreover, these high potential risk mothers might not have qualified to participate in the PEPP 

study and were excluded at enrollment.  In addition, these women may have been included in the 

study as a result of incomplete sample collection due to an unexpected delivery time or the 

development of complications of pregnancy.  Finally, the PEPP follow up questionnaires data 

was not obtained for approximately 4% of the maternal subjects who either refused to participate  

or did not come to the clinic for delivery, resulting in missing data.  This 4% of subjects may 

have included a disproportionate number of at risk women.  Therefore, there may have been a 

subject selection bias, resulting in the failure to include certain risk factors for adverse 

reproductive outcomes.       

 

4.10.2 Caffeine consumption 

Quantification of caffeine intake during the last trimester was not reliable.  In the follow-

up questionnaire, consumption of soft drinks during the last trimester was not quantified 

according to the amount of caffeine each beverage contained.  Similarly, the question for black 

tea consumption did not distinguish between caffeinated/decaffeinated tea.  Thus it would be 

difficult to demonstrate a true association between caffeine consumed during pregnancy and low 

birthweight and preterm delivery in this study.  In addition, only self- reported caffeine 

consumption was available in this study that might introduce misclassification of caffeine 

consumption.   
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4.11 Future directions 

 

4.11.1 Collection of additional maternal demographic and clinical information 

Other maternal demographic and lifestyle risk factors associated with low birthweight 

and preterm delivery have been identified but were not included in the analyses in this study such 

as parity, marital status, other substance abuse, nutritional status, and excessive physical activity.  

Some of this information was collected from individual women but were not available for to 

sufficient numbers of subject include in the analyses.  Several categories of maternal clinical and 

pregnancy information is ava ilable to evaluate in future analyses.  In addition, newborn length 

and head circumference data were also not available at the time of analyses but in the future, 

these could be abstracted from clinical records.  These additional measures might be used to 

characterize growth retarded infants more accurately than using only birthweight.     

 

4.11.2 CYP2A6 polymorphism   and nicotine metabolism 

Approximately 80% of nicotine is metabolized to cotinine by CYP2A6.  CYP2A6  

appears to be the sole catalyst of nicotine catabolism at low physiologically relevant nicotine 

concentrations of 50 µM.  At high nicotine concentrations (500 µM), other CYP isoforms, such 

as CYP2B6 also participate in nicotine oxidation [239].  In the general population, 

approximately less than 1% of individuals are classified as CYP2A6 poor metabolizers in 

Caucasians and up to 20% in Asians.  Several genetic polymorphisms in this gene have been 

identified that diminish enzyme activity.  Several pharmacogenetic studies reported that 
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individuals with the CYP2A6 gene deletion had only 15% of the levels of cotinine in their urine 

when compared with subjects having at least one active gene, after smoking an equal number of 

cigarettes [240].  Another study reported no detectable levels of cotinine in plasma was observed 

among individuals who were CYP2A6 poor metabolizers [241].  Thus, nicotine-cotinine 

metabolism is dependent on CYP2A6 gene activity that is affected by genetic polymorphisms.  It 

could cause misclassification of cigarette smoking status measured by cotinine level without 

considering the CYP2A6 polymorphism.  Since CYP2A6 is the major enzyme responsible  for 

nicotine metabolism, adverse reproductive outcomes caused by nicotine and/or its metabolites 

might be modulated by CYP2A6 genetic polymorphisms.   In addition, extensive studies have 

evaluated if CYP2A6 poor metabolizers differ in their smoking habits from extensive 

metabolizers, and if this polymorphism is associated with increased risk of cigarette smoke 

associated tobacco related health effects such as preterm delivery, low birthweight and also lung 

cancer later in life.   The CYP2A6 enzyme can activate several procarcinogens contained in 

cigarette smoke such as nitrosamines and aflatoxins [127].  One study reported that the allele 

frequency of the CYP2A6 gene deletion among lung cancer patients was significantly lower than 

that among healthy controls in the Japanese population [242].  The CYP2A6 poor metabolizers 

are protected from the several procarcinogens in tobacco by diminished activation and less likely 

to be addicted to cigarette smoking.   

 

4.11.3 GSTP1 polymorphism-the most abundant enzyme observed in fetal liver 

GSTP1 is known as the acidic form of the GST isoenzymes and is present only in the 

early fetal development similar to CYP3A7.  The GSTP1 protein is detectable during pregnancy 

at the neonatal stage but it is not detectable in one month old and older infants’ liver.  In 
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addition, GSTP1 is the major GSTs in fetal liver (10-22 weeks of gestational age, 18.0-25.2 

pmol/mg cytosol protein).  GSTP1 expression decreases during the second and the third trimester 

to 5.0 pmol/mg cytosol protein [243].   In addition, Cossar et al. reported that GSTP1 represents 

the major GST isoenzyme in the developing lung [244].   

 

GSTP1 is also known to be over expressed in pre-neoplastic and tumor tissues [245].  

Extensive studies have been conducted to evaluate GSTP1 as a marker for early detection of 

tumors including smoke-associated cancers.  Moreover, GSTP1 plays a role in the detoxification 

pathway for PAHs such as benzo[a]pyrene, and chrysene.   

 

Previous studies have demonstrated that the allelic variants of GSTP1 gene affect the 

catalytic efficiency of the enzyme in the detoxification of carcinogenic diol epoxides of 

benzo[a]pyrene or structurally related PAHs [246].   In epidemiological studies, approximately 

45% higher level of DNA adducts in breast tissues was observed among individuals with GSTP1 

risk genotype compared with individuals without the genotype [247].  One study reported a 

significant increase of single strand DNA breaks, chromosome aberrations and HPRT  locus 

mutations in peripheral blood lymphocytes among individuals with the GSTP1 risk genotype 

caused by styrene exposure [248].  Accordingly, newborn GSTP1 genetic polymorphisms may 

modulate the susceptibility of adverse reproductive outcomes. 

 

4.11.4 DNA repair enzyme polymorphisms and adverse reproductive outcome . 

Among the several DNA repair pathways, nucleotide excision repair (NER) is the one of 

the most effective repair pathways in removing bulky DNA adducts caused by cigarette smoke 
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exposure.  Epidemiological studies have evaluated associations of DNA repair capabilities and 

incidence of cancer and other health effects.  One of the best and extreme examples for a direct 

relationship was observed among xeroderma pigmentosum patients.  Xeroderma pigmentosum is 

known for the lack of NER and patients are unable to remove bulky adducts, resulting in a 1000-

4000-fold increased risk of skin cancer at very young ages [249].   

 

Similar to phase I/II metabolic enzymes, a number of genetic polymorphisms in NER 

genes and in genes involved in other repair pathways have been identified and evaluated for 

functional significance.  Several epidemiological and also functional studies have been done to 

evaluate the modulation of cancer risk caused by DNA repair genetic polymorphisms [252, 253].  

However, to date, these findings are inconclusive.   

 

Adverse reproductive outcomes such as fetal growth retardation and premature delivery 

are strongly associated with maternal cigarette smoking that will increase the frequency of DNA 

damage including adducts formation.  We found that risk of these adverse outcomes are 

modulated by maternal and also newborn metabolic enzyme detoxification activities.  The events 

may also be modulated by newborn DNA repair capability.  To date, currently no studies have 

been performed to evaluate the possible association between newborn DNA repair genetic 

polymorphisms and adverse reproductive outcomes.           

 

4.12 Summary 

Extensive epidemiological studies have been done to evaluate risk factors associated with 

adverse reproductive outcomes including low birthweight, preterm delivery and fetal growth 
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retardation that have higher risk of infant mortality and health problems in childhood and even 

early adulthood.  Moreover several studies have been reported that women have higher 

probabilities of adverse reproductive outcomes and developing pregnancy complications if they 

were of low birthweight, or had growth retardation and premature birth themselves.  Our results 

could be a useful strategy to decrease the incidence of these adverse reproductive outcomes by 

the identification of high risk pregnant and targeted interventions to reduce risk associated with 

modifiable lifestyle risk factors such as smoking during pregnancy.  Identification of high risk 

mothers for adverse reproductive outcomes at early stages during the pregnancy is likely to 

improve infant survival and reduce health problems later in life.   
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5 CONCLUSIONS 

 

 

The PEPP study was designed as a molecular epidemiological study to investigate the 

potential transplacental genotoxic impact of prenatal environmental exposures on levels of DNA 

damage observed in newborns by applying biomarkers of exposure, genetic susceptibility, and 

early biological effects.  The goal of this dissertation research was to evaluate the impact of 

maternal and newborn phase I/II metabolic enzyme genetic polymorphisms on birthweight 

reduction caused by fetal growth retardation and premature birth as a result of shortened 

gestational age.  These adverse reproductive outcomes have an increased infant mortality rate 

and are associated with a number of health problems at birth and even later in life.  Extensive 

epidemiological studies have been conducted to identify maternal demographic, obstetric and 

lifestyle factors associated with these adverse events.  However, little is known regarding genetic 

susceptibility to these outcomes.   

 

Phase I/II metabolic enzymes play an important role in the activation and detoxification 

of xenobiotics we are exposed to daily.  There are wide inter- and intra- individualities in 

xenobiotic and drug response and toxicity.  This variability is in part attributable to genetic 

polymorphisms.  Many molecular epidemiological studies have evaluated the association of 

metabolic enzyme genetic polymorphisms and susceptibility to disease, including cancer.  We 

hypothesized that the amount of toxic substrates which reach the fetus may be modulated by 

maternal susceptibility factors (age, nutrition, parity, stress, disease state, phase I/II metabolic 

enzyme activities and other genetic factors), and involvement of placenta metabolism when the 
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mother was exposed to toxicants such as cigarette smoke.  DNA damage and adverse 

reproductive outcomes observed in newborns may be further modulated by fetal susceptibility 

factors including phase I/II metabolic enzyme activities.  Here, we examined the contribution of 

five metabolic enzyme genotypes in both maternal and newborn samples. 

 

Several maternal demographic, lifestyle and maternal/newborn genetic factors were 

identified as significant risk factors for low birthweight, preterm delivery, premature birth and 

SGA using univariate analyses.  The risk factors for each adverse reproductive outcome were 

similar but not completely identical.  These results support the observation of Wilcox [5] that 

birthweight reduction and shortened gestational age are independent events.   

 

Our results are consistent with previous findings that maternal cigarette smoking, 

especially during the last trimester, is strongly associated with the reduction of birthweight, 

shortened gestational age and fetal growth restriction.  A dose response relationship was 

observed between the number of cigarettes smoked per day and the mean birthweight reduction.  

Passive cigarette smoke exposure during this period was also associated with those adverse 

reproductive outcomes.   

 

Ethnicity was also identified as a significant risk factor for low birthweight newborns.  

African American women have a higher risk of having a low birthweight infant compared with 

Caucasians.  However, low birthweight infants among African Americans were not associated 

with premature births.  These women were more likely to be of lower socioeconomic status, 

which may lead to a higher risk of exposure to harmful environmental agents.  Lower 
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socioeconomic status is often associated with poorer health care access, including a lack of 

prenatal care.  Furthermore, African American specific genetic factors may predispose this ethnic 

group for adverse reproductive outcomes. 

 

The association of maternal GSTT1 genotype alone on SGA was not statistically 

significant but the likelihood of delivering an infant with SGA was significantly associated with 

the GSTT1 null genotype in combination with other risk factors, i.e. maternal cigarette smoke 

exposure during the last trimester and ethnicity.  Among low birthweight infants, the observed 

proportion of mothers with the GSTT1 null genotype was significantly increased in the presence 

of exposure, in this case, maternal cigarette smoking during the last trimester.  African American 

ethnicity and newborn GSTT1 null genotype further increased the risk of low birthweight.  A 

similar set of risk factors was observed in the analyses of preterm delivery and premature birth, 

however maternal ethnicity was no longer significant.  Both maternal and newborn GSTT1 null 

genotype was identified as the “high risk” genotype combination for birthweight reduction and 

shortened gestational age and the risk dramatically increased in the presence of maternal 

cigarette smoke exposure.  These results were consistent with the recent findings of Wang et al. 

where maternal GSTT1 genotype was significantly associated with low birthweight, preterm 

delivery and premature birth.  Newborn genotype was not investigated by Wang et al. [188]. 

 

Therefore, both maternal genetic and exposure factors contribute significantly to adverse 

reproductive outcomes.  These associations were significantly modified by newborn phase I/II 

metabolic enzyme genetic polymorphisms.  A strong association was observed between 

maternal/newborn GSTT1 genotype and low birthweight, preterm delivery and SGA in term 
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infants.  The estimated association was significantly greater for GSTT1 null genotype than for 

GSTT1 positive in low birthweight, preterm delivery, <2500 g and <37th weeks of gestation, and 

SGA in term delivery infants by univariate logistic regression.  Multivariate analyses showed 

that maternal GSTT1 null genotype represents a greater risk factor for these adverse reproductive 

outcomes compared with newborn GSTT1 null genotype alone.  However, the combination of 

both maternal/newborn GSTT1 null genotype is the greatest risk factor for all of the adverse 

effects analyzed in this study.  The GSTT1 null genotype alone was not significant risk factor for 

SGA.  However, in combination with maternal ethnicity and presence of cigarette smoke 

exposure during the last trimester, maternal/newborn GSTT1 null genotype significantly 

increased the risk of SGA.  

 

Aside from observing that the frequency of the NAT2* fast acetylator genotype was 

significantly higher among women with preterm delivery compared with women in AGA 

(p=0.032) in an univariate analysis, we failed to observe an association between the CYP1A1, 

CYP2E1, GSTM1 and NAT2* genotypes and risk of adverse birth outcomes.  Insufficient power 

to detect gene-gene interactions is possible.  It is also very likely that other genetic factors not yet 

identified, may be associated with adverse reproductive outcomes.  For example, the role of fetal 

DNA repair capacity in modifying the adverse effect of maternal environmental exposures and 

maternal/newborn genetic interactions remain unclear.  Further investigation is to needed to 

provide a better understanding of the mechanisms of these adverse reproductive outcomes, which 

in turn, may help to identify high risk subpopulations for clinical and public health intervention.
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