
A FRAMEWORK FOR DESIGN OF

TWO-STAGE ADAPTIVE PROCEDURES

by

Tatsuki Koyama

B.A., University of California, Berkeley, 1998

M.A., University of Pittsburgh, 2000

Submitted to the Graduate Faculty of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12208898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright by Tatsuki Koyama

2003

ii



UNIVERSITY OF PITTSBURGH

FACULTY OF ARTS AND SCIENCES

This dissertation was presented

by

Tatsuki Koyama

It was defended on

August 13, 2003

and approved by

Professor Leon J. Gleser (Co-Chairperson)

Professor Allan R. Sampson (Co-Chairperson)

Professor Ori Rosen

Professor H. Samuel Wieand

iii



A FRAMEWORK FOR DESIGN OF

TWO-STAGE ADAPTIVE PROCEDURES

Tatsuki Koyama, Ph.D.

University of Pittsburgh, 2003

The main objective of this dissertation is to introduce a framework for two-stage adaptive

procedures in which the blind is broken at the end of Stage I. Using our framework, it is possible

to control many aspects of an experiment including the Type I error rate, power and maximum

total sample size. Our framework also enables us to compare different procedures under the same

formulation. We conduct an ANOVA type study to learn the effects of different components of

the design specification on the performance characteristics of the resulting design. In addition, we

consider conditions for the monotonicity of the power function of a two-stage adaptive procedure.

To foster the practicality of our framework, two extensions are considered. The first one is an

application of our framework to the settings with unequal sample sizes. We show how to design a

two-stage adaptive procedure having unequal sample sizes for the treatment and control groups. Also

we illustrate how to modify an ongoing two-stage adaptive trial when some observations are missing

in Stage I and/or in Stage II. Second, we extend the framework to unknown population variance.

Our framework can construct a design that incorporates updating the variance estimate at the end

of Stage I and modifies the design of Stage II accordingly. All the procedures we present protect the

Type I error rate and allow specification of the power and the maximum sample size.

We also consider the problem of switching design objectives between testing noninferiority and

testing superiority. Our framework can be used to design a two-stage adaptive procedure that si-

multaneously tests both noninferiority and superiority hypotheses with controlled error probabilities.

The sample size for Stage I is chosen for the main study objective, but that objective may be switched

for Stage II based on the unblinded observations from Stage I. Our framework offers a technique to

specify certain design criteria such as the various Type I error rates, power and maximum sample

sizes.
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Chapter 1

Introduction

In a traditional single-stage clinical trial, the data remain blinded until the conclusion of the

study other than for data monitoring purposes. A clinical trial with an adaptive design, on the other

hand, allows the opportunity to look at the data at an interim stage, and to modify the ongoing

design based on observed and unblinded data. In this dissertation we introduce a framework for

two-stage adaptive procedures, in which the design of the second stage depends on the first stage

observations. We focus on unblinded examination of the first stage data, but in the literature both

blinded and unblinded examination have been considered.

Blinded sample size re-estimation [e.g., Gould and Shih (1998)] does not break a blind at the end

of Stage I, but uses techniques such as EM algorithm to estimate the pooled within-group variance.

On the other hand, unblinded examination [e.g., Prochan and Hunsberger (1995)] reveals the group

means and group variances at the end of the first stage and uses the information to design Stage II.

And in between these two, there is “partial unblinding” technique in which only the variance estimate

is revealed at the end of Stage I, but the group means are not revealed. [e.g., Zucker et. al. (1999)]

In this dissertation blinded examination is not discussed, and the “partial unblinding” technique is

briefly discussed in Chapter 3.

In the context of unblinded two-stage adaptive procedures in the literature, the phrase, “two-

stage adaptive design” is used with two different notions of adaptiveness. There are two schools of

thought as to how much adaptation is allowed at the end of Stage I. Some authors claim that one can

design Stage II (i.e., choose sample size and critical value) after observing the Stage I data. These

authors include Proschan and Hunsberger (1995) and Posch, Bauer and Brannath (2003). The others

claim that it is necessary that the design of Stage II be defined for all possible Stage I outcomes

prior to the start of Stage I [e.g., Liu and Chi (2001), Shun (2001)]. Then the design of Stage II is

predetermined before Stage I, but it is not known which design (i.e., sample size, critical value and

so on) will be realized because it depends on the Stage I observations. Predetermining the design of

Stage II can permit the unconditional power of the procedure to be calculated prior to the start of
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the study. We use the phrase “two-stage adaptive design” in this latter context. More discussion is

given on the difference between the two ideas in Chapter 2.

As the title of this dissertation indicates, we develop a framework for two-stage adaptive pro-

cedures. In recent years, especially since the mid 1990’s, there have been a number of papers

published in the field of adaptive designs. Some propose new designs [e.g., Bauer and Köhne (1994),

Lehmacher and Wassmer (1999)] while others compare existing procedures [e.g., Wassmer (1998),

Posch and Bauer (1999), Hommel and Kropf(2001)]. It is not our goal to develop another procedure

or to compare the existing procedures. Rather we develop a framework that facilitates the design of

a two-stage adaptive procedure. Using our framework, it is possible to design a two-stage adaptive

procedure which possesses certain design characteristics in terms of Type I and Type II error rates,

sample sizes and so on. Additionally, the ability of our framework to place many, if not all, different

two-stage adaptive procedures under a uniform formulation provides a tool to compare and contrast

the previously proposed procedures in a systematic fashion.

In Chapter 2, we develop the framework in the most basic context, and show how the framework

is used in designing a two-stage adaptive procedure using an example. A brief literature review

is given of some previously proposed two-stage adaptive procedures by placing them under our

formulation. We choose two specific procedures as examples and show in detail how these procedures

fit into our framework. The first of the two examples is a procedure proposed by Lan and Trost

(1995). We also show how our framework is used to facilitate a construction of similar two-stage

design but with more favorable features in terms of the expected and maximum sample sizes. The

second example is a group sequential procedure. We show how a two-stage group sequential procedure

described in Jennison and Turnbull (1999) can be placed under our formulation. We also consider

the monotonicity of the unconditional power function in a two-stage adaptive design. And we give

the results of a computational experiment which compares different two-stage adaptive designs.

This experiment is feasible because of the framework’s ability to place different designs under one

formulation.

In constructing the original framework in Chapter 2, our main focus is on sample size modifi-

cation. The critical value of the Stage II rejection region and the conditional power of the Stage II

test are also determined by Stage I data. However, from the viewpoint of the clinical trial sponsor,

sample sizes are of interest because they directly influence the cost of the clinical trial. Therefore,

whereas other modifications of goals, such as an adaptive choice of hypotheses [e.g., Hommel and

Kropf (2001)] or changing the main efficacy endpoints [e.g., Bauer and Köhne (1994)] are considered

in the literature, we focus on the sample size modification in the basic framework of Chapter 2.
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In order to make the construction of the framework simple in Chapter 2, we make two key

assumptions. The first one is that of balanced sample sizes from the treatment and control groups,

and the second one is known variances. While these two assumptions keep algebraic complexity

minimal, they may prevent us from applying this framework in practice. Therefore, in Chapter 3,

we consider as extensions to the basic framework, situations in which these assumptions cannot be

made. In Section 3.2, we show how to build a two-stage adaptive procedure with unbalanced sample

sizes from two groups, and how to handle the design when some of the observations are missing

completely at random in Stage I and/or in Stage II. In Section 3.3, we discuss a realistic situation in

which the population variances are unknown at the beginning of the study and must be estimated

within the study. Several authors, including Cui, Hung and Wang (1999) and Shun (2001), make the

assumption of known variances in their respective papers. Unknown variances present little problem

to authors [e.g., Lehmacher and Wassmer (1999), Kieser and Friede (2000) and Denne (2001)] who

allow redesigning of Stage II after observing Stage I data, including a variance estimate. However,

as stated before, our procedure predetermines the design of Stage II before Stage I for all possible

outcomes of Stage I. Consequently, we need to establish a procedure that incorporates “updating the

variance estimate” so that a design for Stage II is determined for each and all possible estimates of

the population variances from Stage I.

In Chapter 4, we consider a practically motivated problem of switching the main study objectives

in an active control study between one of testing noninferiority and one of testing superiority of the

treatment. An active control study, unlike a placebo control study, is a clinical trial in which a new

treatment is compared to a traditional treatment whose efficacy has been well established. Such

studies have become increasingly popular in recent years, especially in research areas related to

oncology and HIV. A traditional placebo control study is often impossible to conduct in these and

similar areas, because it may not be ethical to require a group of patients to receive no effective

treatment. Superiority trials and noninferiority trials are two types of active control studies. The

former is a trial to show that the new treatment is better than the active control, and the latter

seeks to show that the new treatment is at least as good as the active control.

A clinical trial with an adaptive design may start with noninferiority as its main objective. At

the end of Stage I, however, the data may show strong evidence that concluding superiority may be

plausible. Then it may be desirable to switch the main objective to superiority and adjust the Stage

II sample size for the new goal of the clinical trial. On the other hand, a clinical trial may start with

the main objective to show superiority, and at the end of Stage I, the data may suggest that showing

superiority is very difficult and costly. In such a situation, an adaptive design may switch the main

objective to noninferiority, and in doing so reduce the necessary sample size.
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A number of papers [e.g., CPMP (2000)] consider testing noninferiority and superiority simul-

taneously in a single-stage clinical trial; these papers are discussed in the literature review section

of Chapter 4. There are also a few papers [e.g., Wang, et.al. (2001) and Brannath, et.al. (2003)]

which combine two-stage adaptive designs and notions concerning active control studies to permit

the hypotheses of interests to be switched at the interim stage. These papers are discussed also in

the literature review section of Chapter 4.

Two-stage adaptive procedures are relatively new as a field of research. Although this disser-

tation gives a tool to design and analyze a two-stage adaptive procedure, there are still questions

yet to be answered. In Chapter 5, we summarize issues and topics for future research in the field of

two-stage adaptive procedures.
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Chapter 2

The Basic Framework For Two-Stage
Adaptive Procedure

2.1 Introduction

We introduce in this chapter a framework for two-stage adaptive procedure. Unlike a traditional

single-stage clinical trial in which the data remain blinded until the conclusion of the study, a clinical

trial with a two-stage adaptive design breaks the blind at the end of Stage I and allows modification

of the ongoing design in Stage II in light of observed data.

In the current chapter, we only consider the most fundamental situation in which only the basic

features of Stage II, such as the sample size and the critical value, depend on Stage I observations.

More practically interesting problems such as updating variance estimates, incorporating missing

observations and switching the main study objectives, will be presented in later chapters as extensions

of the basic framework that is developed in this chapter.

The motivation for developing a two-stage adaptive procedure stems from the fact that it is

difficult to prespecify some of the design parameters prior to the beginning of the study. When the

design parameters are incorrectly prespecified in a traditional single stage study, the sample size will

be either too small or too large for the clinical trial to have the claimed power. It is considered

unethical for a clinical statistician to recommend designs using more patients than necessary. It is

also unethical to design an underpowered clinical trial in which the probability of reaching a positive

conclusion is low, and thus patients’ participation may put them at risk with low likelihood of a

positive societal outcome.

A clinical trial with an adaptive design gives investigators the opportunity to look at the data at

an interim stage. The design of Stage II depends on the observations from Stage I. It will be shown in

the current chapter that a two-stage adaptive design may present an advantage in terms of expected

sample size over the conventional single-stage design. The challenge for statistical methodology is to

maintain proper control of experimental error rates when permitting adaptation.
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Proschan and Hunsberger (1996) introduced the concept of a “Conditional Error Function.”

With their formulation, we can formulate an adaptive design which gives the clinical trial sponsor

a chance to increase the sample size and protects the Type I error rate. There have been a number

of papers published in this field. Some introduce new two-stage adaptive procedures [e.g., Bauer

and Köhne (1994), Lehmacher and Wassmer (1999)], while others compare existing procedures [e.g.,

Posch and Bauer (1999) and Hommel and Kropf (2001)]. As noted by many authors, different two-

stage adaptive procedures can be placed under the same formulation using different conditional error

functions. There are also a number of papers addressing issues related to two-stage adaptive designs

such as inflation of the Type I error rate, the conditional and unconditional power and operational

difficulties when implementing an adaptive design. Among such papers are those by Gould (2001),

Denn (2001) and Shun (2001). What is lacking in this field is a unified framework for the adaptive

designs. As will be shown by examples, different procedures can be placed under the framework

introduced in this chapter. With our framework, we can study the properties of two-stage adaptive

procedures in an organized fashion.

The most important contribution of our framework is its ability to facilitate the design of

two-stage adaptive procedures. We show that in a two-stage adaptive procedure, there are nine com-

ponents that specify a design uniquely. We provide a calculus to manipulate these nine components

so that the resulting design possesses certain characteristics.

In Section 2.2, the framework is established. Our framework is defined by nine specification

components (five for Stage I and four for Stage II.) For Stage I, these components are:

• α1, the probability of rejecting H0 when the null hypothesis is true.

• β1, the probability of accepting H0 under a specified alternative hypothesis.

• n1, the Stage I sample size.

• k1, the Stage I critical value.

• k2, the Stage I critical value.

For Stage II, there are 4 specification components, namely:

• A(y1, ξ0), the conditional probability of rejecting the null hypothesis when the null hypothesis

is true,

• A(y1, ξ1), the conditional probability of rejecting the null hypothesis under the specified alter-

native hypothesis,
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• n2(y1), the Stage II sample size,

• w(y1), the Stage II critical value,

all of which are expressed as functions of the summary observation y1 from Stage I. We show how

previously proposed two-stage adaptive procedures (including the group sequential method) fit into

our framework.

In Section 2.3, we consider monotonicity of the power function in a two-stage adaptive procedure.

This topic has been apparently overlooked in the field of two-stage adaptive procedures. Without

the property of monotonicity of the power function, the level of significance of the test cannot be

insured by merely controlling its probability of the Type I error at the boundary between the null

and alternative hypotheses. We give simple conditions that guarantee that the power function is

increasing.

In Section 2.4, we demonstrate, using two examples, the flexibility of our framework in con-

structing a two-stage adaptive procedure. In Section 2.4.1, we show how a two-stage group sequential

method can be placed under our framework. And in Section 2.4.2, we consider a procedure proposed

by Lan and Trost (1996). First we show that their procedure, too, can be placed under our frame-

work. Then we use our framework’s ability to facilitate a design to effect a substantial improvement

to Lan and Trost’s design.

A question that has been asked a number of times concerns how to optimally choose a two-stage

adaptive procedure. So far, a clear answer to this question has not been given. In Section 2.5, we

use an ANOVA analysis to compare designs indexed by certain design components to see which of

these components are most influential in determining the performance characteristics of the designs.

Having a unified framework enables us to compare different designs in this fashion. In order to

compare the performance characteristics of different designs, we use the following three performance

criteria. The first criterion is the power at points intermediate between the null hypothesis and the

original alternative. All designs that we consider have a fixed Type I error rate and fixed power

at the original alternative. Thus, all the differences in the power curve occur at the intermediate

points between the null and the alternative values. The second and the third performance criteria

are both functions of the expected sample sizes. These criteria are introduced and explained in detail

in Section 2.5. Although the optimal design is not given, we provide the following conclusion based

on the ANOVA analysis. In determining characteristics of the design in terms of the power and

expected sample size, the Stage I design components, n1, α1 and β1 are far more important than

such Stage II design components as the shape of the conditional power functions.
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2.2 Framework

2.2.1 Construction

We suppose independent sampling from two normal populations with respective means µt and

µc and respective variances σ2
t and σ2

c . So we have

Xt ∼ Normal
(
µt, σ

2
t

)
,

Xc ∼ Normal
(
µc, σ

2
c

)
.

Consider testing

H0 : µt − µc ≤ ∆0

H1 : µt − µc > ∆0

where the subscripts stand for “treatment” and “control”, respectively. Both superiority and non-

inferiority hypotheses can be written in this form.

In some of the recent research on two-stage adaptive designs, the null hypothesis is simple, i.e.,

H0 : µt − µc = ∆0 [e.g., Proschan and Hunsberger (1995), Lan and Trost (1997), Jennison and

Turnbull (1999)]; however, we consider the more appropriate composite null hypothesis. When the

probability of the Type I error is only protected for a simple H0 : µt − µc = ∆0, the probability of

rejecting H0 when µt − µc < ∆0 can be higher than the specified α. What enables us to control the

Type I error probabilities for the composite null hypothesis in the adaptive designs that we consider

is the monotonicity of the power function. In this section, we simply assume that the power function

is monotone without proof; later in Section 2.3, we show that the power functions of the two-stage

adaptive procedures that we consider are monotone.

Consider a two-stage adaptive design where in Stage I, n1t observations are taken from the

treatment group and n1c from the control group. In order to make the construction of the framework

simple, we make the assumption that n1t = n1c ≡ n1. Later in Section 3.2, we consider the situations

in which the sample sizes from the treatment and control groups are different. The distributions of

the sample means for Stage I are:

X̄1t ∼ Normal
(
µt,

σ2
t

n1

)
,

X̄1c ∼ Normal
(
µc,

σ2
c

n1

)
.

Let σ2 =
σ2

t + σ2
c

2
and define

Y1 =
X̄1t − X̄1c√

2σ
. (2.2.1)
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For the sake of simplicity, we assume that σ2
t and σ2

c are known. The situation in which the population

variances are unknown is treated in Section 3.3.

Note that Y1 is a test statistic based upon unblinded data. We have the following result:

Y1 ∼ Normal
(

∆√
2σ

,
2σ2

2σ2n1

)
= Normal

(
ξ,

1
n1

)
, (2.2.2)

where ξ ≡ ∆√
2 σ

= µt−µc√
2 σ

. Although we set up the problem for comparison of two treatments, the

above simple formulation allows us also to apply this method to comparison of one treatment to a

constant.

A decision is made at the end of Stage I according to the following decision rule.

if


Y1 ∈ (−∞, k1] stop and accept H0,
Y1 ∈ (k1, k2] continue to Stage II,
Y1 ∈ (k2, ∞) stop and reject H0.

In Stage II, additional samples of size n2(y1) are taken from each of the control and treatment

groups. As the notation indicates, the Stage II sample size is permitted to be a function of y1. Let

X̄2t and X̄2c be the means of the observations in Stage II from the treatment and control groups,

respectively, and define

Y2 =
X̄2t − X̄2c√

2σ
. (2.2.3)

The Stage I observations influence the distribution of Y2 only through the dependence of the sample

size n2(y1) on y1, so that given that Y1 = y1,

Y2 ∼ Normal
(
ξ,

1
n2(y1)

)
.

At the end of Stage II,

if

{
Y2 ∈ (−∞, w(y1)] stop and accept H0,
Y2 ∈ (w(y1), ∞) stop and reject H0.

The Stage II critical value, w(y1), is a function of y1.

The decision rule at the end of Stage II is based on Y2, but clearly we are not disregarding the

information from the Stage I observations. All the information from Stage I is embedded into n2(y1)

and w(y1). Equivalently, we can express the Stage II decision rule in terms of Yb, the test statistic

for the entire study,

Yb =
n1Y1 + n2(y1)Y2

nb(y1)
, (2.2.4)
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where nb(y1) = n1 + n2(y1). Then the conditional distribution of Yb given Y1 = y1 is

Yb ∼ Normal
(
n1y1 + n2(y1)ξ

nb(y1)
,
n2(y1)

(nb(y1))2

)
.

H0 is rejected at the end of Stage II if Yb > c(y1), and is accepted otherwise. From the relation

between Y2 and Yb, we have the following connections:

w(y1) =
nb(y1)c(y1)− n1y1

n2(y1)
, (2.2.5)

c(y1) =
n1y1 + n2(y1)w(y1)

nb(y1)
.

Let α be the prespecified overall Type I error rate at ∆0 (equivalently at ξ0 = ∆0/
√

2σ), and

let β be the prespecified overall Type II error rate at the prespecified trial design alternative ∆1

(equivalently at ξ1 = ∆0/
√

2σ) with corresponding overall power ρ, i.e., ρ = 1− β. We assume that

α < .5 and β < .5, and define the Type I error rate, Type II error rate and power for Stage I as

follows:

α1 =P [ Reject H0 in Stage I | ξ = ξ0],

β1 =P [ Accept H0 in Stage I | ξ = ξ1],

ρ1 =P [ Reject H0 in Stage I | ξ = ξ1].

We assume that α and β are prespecified for any two-stage adaptive procedure we consider.

For Stage II, define the “conditional power function,” A(y1, ξ
∗), for ξ∗ ∈ (−∞,∞) as follows:

A(y1, ξ
∗) = Pξ∗ [ Reject H0 in Stage II |Y1 = y1 ], (2.2.6)

where Pξ∗ [ ] is the probability under ξ = ξ∗. This definition of A(y1, ξ
∗) is an extension of the

“conditional error function,” introduced by Proschan and Hunsberger (1995). Their conditional

error function is the conditional power function evaluated at ξ∗ = ξ0. When y1 ≤ k1, H0 is accepted

in Stage I, and when k2 < y1, H0 is rejected in Stage I. It thus follows that A(y1, ξ
∗) = 0 for

y1 ≤ k1 and A(y1, ξ
∗) = 1 for k2 < y1. The conditional Type I error rate given y1 is A(y1, ξ0),

and the conditional power at the original alternative, ξ1, given y1 is A(y1, ξ1). Because A(y1, ξ
∗) is

the conditional power function after observing y1, ξ∗ can be allowed to depend on y1. For example,

A(y1, ξ
∗(y1)) = A(y1, y1) is the conditional power function when the alternative is updated after

Stage I to be the Stage I effect size, y1.
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To describe the Stage I design components of our procedure, we need to provide the following

five components.

(a) α1 · · · the probability of rejecting H0 when ξ0 is true,

(b) β1 · · · the probability of accepting H0 when the alternative, ξ1, is true,

(c) n1 · · · the Stage I sample size,

(d) k1 · · · the Stage I critical value,

(e) k2 · · · the Stage I critical value.

For Stage II, there are four specification components, namely:

(i) A(y1, ξ0) · · · the conditional power when ξ0 is true,

(ii) A(y1, ξ1) · · · the conditional power function when the alternative, ξ1, is true,

(iii) n2(y1) · · · the Stage II sample size function,

(iv) w(y1) · · · the Stage II critical value function.

There are some conditions that these design components must satisfy. Obviously, n1 and n2(y1) must

be positive integers, and A(•, •) must be a non-negative function which range in [0, 1]. We also need

α1 < α, and β1 < β. Furthermore, in order to have the overall Type I error rate equal to α and the

overall power under ξ1 equal to ρ, A(y1, ξ0) and A(y1, ξ1) must satisfy the following conditions.

α2 ≡ α− α1 =
∫ k2

k1

A(y1, ξ0)gξ0(y1) dy1, (2.2.7)

ρ2 ≡ ρ− ρ1 =
∫ k2

k1

A(y1, ξ1)gξ1(y1) dy1, (2.2.8)

where gξ(y1) is the pdf of Normal (ξ, 1/n1). In addition A(y1, ξ0) and A(y1, ξ1) must satisfy the

technical condition of being measurable in y1 as argued by Liu, Proschan and Pledger (2002).

Any two-stage adaptive design can be described in terms of these nine specification components:

(a) - (e) for Stage I and (i) - (iv) for Stage II. These nine components have functional relationships

with one another and cannot be determined independently of the others. Because the underlying

distribution of Y1 is (2.2.2), we have the following relation between α1, n1 and k2.

α1 =Pξ0 [Y1 > k2]

=1− Φ [
√
n1 (k2 − ξ0)] .

Therefore,

zα1 =
√
n1 (k2 − ξ0), (2.2.9)
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where za = Φ−1(1− a). Similarly, we have the following relation between β1, n1 and k1.

β1 =Pξ1 [Y1 < k1]

=Φ [
√
n1 (k1 − ξ1)] .

Therefore,

zβ1 =−
√
n1 (k1 − ξ1) . (2.2.10)

Thus given two of α1, n1 and k2, the third quantity is determined from (2.2.9), and given two of β1,

n1 and k1, the third quantity can be found from (2.2.10). Additional care must be taken in singu-

lar cases, e.g., α1 = 0. Note that these two groupings of design components are connected through

the common component, n1. We summarize the connection between these five components as follows:

Fact 2.2.1. Any three specifications of the components of (a) - (e) chosen so that there is at least

one component from each of {(a), (c), (e)} and {(b), (c), (d)} are sufficient to determine the other

two.

The three components that determine a Stage I design must be chosen with care. The resulting

procedure must satisfy the aforesaid conditions that α1 < α, β1 < β and n1 is a positive integer.

While it is possible to specify more than three components, our choices must be coherent so that

(2.2.9) and (2.2.10) have a solution.

Given Y1 = y1 such that k1 < y1 ≤ k2, we have an analogous situation for Stage II, but with

only one critical value function, w(y1), instead of the two critical values, k1, k2 in Stage I.

Fact 2.2.2. Any two specifications of the components of (i) - (iv) are sufficient to determine the

other two.

The connections for these four Stage II design components are summarized as follows:

A(y1, ξ0) =Pξ0 [ Reject H0 in Stage II |Y1 = y1 ]

=Pξ0 [Y2 > w(y1) |Y1 = y1 ]

=1− Φ
[√

n2(y1) (w(y1)− ξ0)
]
. (2.2.11)

Therefore,

zA(y1,ξ0) =
√
n2(y1) (w(y1)− ξ0). (2.2.12)
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Similarly,

A(y1, ξ1) =Pξ1 [ Reject H0 in Stage II |Y1 = y1 ]

=1− Φ
[√

n2(y1) (w(y1)− ξ1)
]
.

Therefore,

zA(y1,ξ1) =
√
n2(y1) (w(y1)− ξ1) . (2.2.13)

Using (2.2.12) and (2.2.13), we have that any two specification components from (i) A(y1, ξ0), (ii)

A(y1, ξ1), (iii) n2(y1) and (iv) w(y1) are sufficient to solve for the other two. If A(y1, ξ0) and A(y1, ξ1)

are given, we can solve for n2(y1) and w(y1) as follows.

n2(y1) =
(zA(y1,ξ0) − zA(y1,ξ1))2

(ξ1 − ξ0)2
, (2.2.14)

w(y1) =
zA(y1,ξ0)ξ1 − zA(y1,ξ1)ξ0

zA(y1,ξ0) − zA(y1,ξ1)
. (2.2.15)

On the other hand, if n2(y1) and w(y1) are given, we can solve for A(y1, ξ) for any ξ by

A(y1, ξ) = 1− Φ
[√

n2(y1) (w(y1)− ξ)
]
. (2.2.16)

Or if A(y1, ξ
∗) and n2(y1) are given, we can solve for A(y1, ξ) for any ξ and w(y1) by

A(y1, ξ) =1− Φ
[
zA(y1,ξ∗) +

√
n2(y1) (ξ∗ − ξ)

]
, (2.2.17)

w(y1) =
zA(y1,ξ∗)√
n2(y1)

+ ξ∗.

Or if A(y1, ξ
∗) and w(y1) are given, we can solve for A(y1, ξ) for any ξ and n2(y1) by

A(y1, ξ) =1− Φ
[
w(y1)− ξ

w(y1)− ξ∗
zA(y1,ξ∗)

]
,

w(y1) =
(

zA(y1,ξ∗)

w(y1)− ξ∗

)2

. (2.2.18)

Whatever two components we choose must be chosen so that the resulting procedure satisfies

the conditions that n2(y1) is a positive integer for all y1 ∈ (k1, k2], and also that the conditions on

A(y1, ξ0) and A(y1, ξ1) stated in (2.2.7) and (2.2.8) hold. Although n2(y1) must be integer-valued,

in order to simplify computations we relax the condition and allow n2(y1) to be any positive, real

number for all y1 ∈ (k1, k2]. The actual sample size, then, will be the smallest integer that is equal

to or greater than n2(y1).

Our choice of Stage II design components can be made more flexible. Let ξ∗(y1) and ξ†(y1)

be suitable functions of y1 (with additional technical conditions noted below) and consider (i*)
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A(y1, ξ
∗(y1)) and (ii*) A(y1, ξ

†(y1)). Then the components (i) and (ii) of Fact 2.2.2 can be replaced

by the preceding (i*) and (ii*). Even when we use the preceding specification of components (i*) and

(ii*), conditions (2.2.7) and (2.2.8) must be satisfied; to check these we need to determine A(y1, ξ0)

and A(y1, ξ1) from (i*) and (ii*). We can do so from the following result.

Fact 2.2.3. Given A(y1, ξ
∗(y1)) and A(y1, ξ

†(y1)), any A(y1, ξ) can be derived by

A(y1, ξ) = 1− Φ
[

ξ†(y1)− ξ

ξ†(y1)− ξ∗(y1)
zA(y1,ξ∗(y1)) +

ξ − ξ∗(y1)
ξ†(y1)− ξ∗(y1)

zA(y1,ξ†(y1))

]
. (2.2.19)

Some conditions should be noted. First, clearly (2.2.19), as well as (2.2.14) and (2.2.15), with ξ0

and ξ1 replaced by ξ∗(y1) and ξ†(y1), do not have solutions when ξ∗(y1) = ξ†(y1). For technical

reasons, we need to require that ξ∗(y1) = ξ†(y1) only for a finite number of points. Pragmatically,

because there are a finite number of points, the probability of observing any of these points is zero.

For esthetics, one could obtain the values of A(•, ξ), n2(•) and w(•) at these points by imposing

continuity conditions on A(y1, ξ), n2(y1) and w(y1).

Another caution is necessary when A(y1, ξ
∗) and w(y1) are specified. From the relation between

these two components, A(y1, ξ
∗) = 0.5 ⇔ w(y1) = ξ∗. At any y1 where A(y1, ξ

∗) = 0.5 and

w(y1) = ξ∗, the other two components cannot be determined. We impose continuity conditions

again to solve for n2(y1) and A(y1, ξ) at ξ 6= ξ∗. Therefore, in this special case, we need to require

that A(y1, ξ
∗) = 0.5 (equivalently, w(y1) = ξ∗) only for a finite number of y1.

Finally, when two specifying components are A(y1, ξ
∗) and A(y1, ξ

†), we need to make sure that

A(y1, ξ
∗) > A(y1, ξ

†) if and only if ξ∗ > ξ† because A(y1, ξ) is an increasing function in ξ given y1.

2.2.2 Previously Proposed Procedures

A number of two-stage adaptive procedures have been proposed in the literature. They can be

expressed in terms of the framework of Section 2.2.1 with different specification components for Stage

I and for Stage II. The following summary gives the specifications of the components for various

proposed procedures. Posch and Bauer (1999) and Hommel and Kropf (2001) give summaries of

some of these procedures by placing them into one formulation using the conditional error functions.

Wassmer (1999) makes comparison of the procedures of Proschan and Hunsberger (1995) and Bauer

and Köhne (1994) and finds that the behaviors of these procedures in terms of power are very similar.

Some of these noted procedures use the Stage II p-value to make a decision at the end of Stage

II. The following lemma connects the decision rule defined by the Stage II p-value and the decision

rule defined by the Stage II critical value, w(y1).
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Lemma 2.2.1. In a two stage adaptive procedure expressed in terms of the design components of

our framework, the following two decision rules at the end of Stage II are equivalent. (1) Reject H0

if y2 > w(y1), and (2) reject H0 if Stage II p-value < A(y1, ξ0) evaluated at the observed y1.

Proof: Suppose that we observe Y2 = y2 in Stage II. Because under the null,

Y2 ∼ Normal

(
ξ0,

1√
n2(y1)

)
,

the Stage II p-value can be written as

p2 ≡ P [Y2 > y2 ] = 1− Φ
[√

n2(y1) (y2 − ξ0)
]
.

And from (2.2.11),

A(y1, ξ0) = 1− Φ
[√

n2(y1) (w(y1)− ξ0)
]
.

Thus

p2 < A(y1, ξ0) ⇔ 1− Φ
[√

n2(y1) (y2 − ξ0)
]
< 1− Φ

[√
n2(y1) (w(y1)− ξ0)

]
⇔
√
n2(y1) (y2 − ξ0) >

√
n2(y1) (w(y1)− ξ0)

⇔ y2 > w(y1).

�

We give in Table 2.1, the specification components of the various previously proposed two-stage

adaptive procedures, where the symbol “•” indicates a specification component and the symbol “-”

indicates a specification component which is implied but not fully defined.

Table 2.1: Specification components of previously proposed adaptive procedures.
n1 α1 β1 k1 k2 A(y1, ξ0) A(y1, ξ

∗) n2(y1) w(y1)
(a) PH • - • - •
(b) BK - • • •
(c) GSP • • • • •
(d) LW • • • - •
(e) LC • • • • •
(f) LD - • • • •
PH = Proschan and Hunsberger (1996). BK = Bauer and Köhne (1994).

GSP = group sequential procedure. LW = Lehmacher and Wassmer (1999).

LC = Liu and Chi (2001). LD = Lan and DeMets (1983).

We now provide detailed discussion of the procedures described in Table 2.1.
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(a) Proschan and Hunsberger (1996) in defining their procedure use n1 = (zα + zβ)2/(ξ1 − ξ0)2,

the original sample size for the conventional one-stage design with the same α and β. They specify

a particular A(y1, ξ0) for Stage II, which is A(y1, ξ0) = 1 − Φ
[√

n1

√
(k2 − ξ0)2 − (y1 − ξ0)2

]
. This

A(y1, ξ0) is not flexible; that is, we cannot choose any set of k1 and k2 to use with this A(y1, ξ0).

In order to protect the Type I error rate, (2.2.7) must be satisfied. Consequently, for Proschan

and Hunsberger’s A(y1, ξ0), fixing k2 automatically fixes k1 through (2.2.7). For their procedures,

Proschan and Hunsberger give functional relationships between the conditional power, Stage II sam-

ple size and Stage II critical value. They state that for an observed y1, conditional power can be

chosen subjectively, and that this choice will determine the Stage II sample size and critical value. As

is discussed at the end of this section, it is necessary that these elements be defined before observing

y1 for all values of y1 ∈ [k1, k2). If Proschan and Hunsberger had provided the functions A(y1, ξ1),

n2(y1) and w(y1) beforehand, their procedure would have been in our framework.

(b) Bauer and Köhne (1994) specify α1 and P(Accept H0 in Stage I |H0), which determines k1

if n1 is given. For Stage II, the rejection region is given in terms of the conditional p-value, which by

Lemma 2.2.1, is equivalent to specifying A(y1, ξ0). The procedure of Bauer and Köhne lacks one of

two specification components for Stage II. The discussion at the end of this section, therefore, also

applies to their procedure.

(c) Our framework encompasses the conventional one-sided two-stage group sequential tests.

[ Jennison and Turnbull (1999) discuss these tests. ] For two-stage group sequential tests, the sample

sizes for both stages (assumed equal) and the critical values for both stages are given in advance.

Therefore, specification components for this are n1, k1 and k2 for Stage I; and n2(y1) = n1 and w(y1)

obtained through c(y1) = c [see (2.2.5)]. The connection between the group sequential method and

our framework is discussed in detail in Section 2.4.1.

(d) Lehmacher and Wassmer’s (1999) procedure, like most group sequential methods, is essen-

tially designed for more than two stages. When artificially restricted to two stages, this procedure

can be placed in our framework. For Stage I, specification components are n1, k1 and k2. The criti-

cal values are the same as for a two-stage group sequential test. If n2(y1) = n1 for all y1 ∈ [k1, k2),

this procedure would be identical to the group sequential method described in (c) above. However,

without an explicit rule to determine the Stage II sample size, it lacks one specification component

for Stage II.

(e) Liu and Chi (2001) specify n1, α1 and β1 for Stage I. For Stage II, they specify A(y1, ξ0) =

1−Φ
[
γ
√
n1

√
(k2 − ξ0)2 − (y1 − ξ0)2

]
, which is an extension of the conditional power function that

Proschan and Hunsberger use, and A(y1, ξ
∗) = ρ2, where ξ∗ is the minimum significant effect size,

and ρ2 is a conditional probability of rejecting H0 in Stage II, which does not depend on y1.
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(f) Lan and DeMets’ (1983) concept of alpha-spending is suitable for more than two stages, but

two-stage versions fit into our framework. In alpha-spending, values α1 and A(y1, ξ0) = α − α1 for

all y1 ∈ [k1, k2) are specified. Because their method does not allow early termination in favor of H0,

it follows that β1 = 0. In their formulation, the Stage II sample size is equal to n1 regardless of the

observed Stage I value, y1. Thus the specification components are α1, β1 for Stage I and n2(y1) = n1,

A(y1, ξ0) = α− α1 for Stage II.

Lan and Trost (1997) also propose a two-stage adaptive procedure. A detailed discussion of this

design is given in Section 2.4.2.

As summarized above, some of the procedures proposed in the literature do not explicitly define

the components for Stage II as a function of y1. Allowing Stage II components to be determined after

y1 is observed appears to offer flexibility. However Liu, Proschan and Pledger (2002) argue that for

any two stage adaptive design, n2(y1) must be a measurable function of y1, as must be w(y1), A(y1, ξ0)

and A(y1, ξ1). They demonstrate that one is not permitted to choose the conditional power and/or

the Stage II sample size after observing a particular y1, rather than prespecifying conditional power

and Stage II sample size for all y1 ∈ (k1, k2]. Beyond the specific measurability requirement, we need

the specification of the noted functions of y1 in the design phase for all y1 ∈ (k1, k2] in order to be able

to calculate, when planning the design, the overall unconditional power at a specified alternative.

Therefore, it is important that these components for Stage II be defined before observing y1 in Stage

I.

2.3 Power Function Considerations

We define the conditional power function in (2.2.6). Now we consider the unconditional power

function. We allow for the calculation of conditional power at an alternative, ξ∗, depending on y1.

However, in order to define the unconditional power, we need to specify a ξ∗ that is fixed and does

not depend on y1.

Suppose that a two-stage adaptive design is defined using Fact 2.2.1 and Fact 2.2.2; that is,

whichever specification components are used, all nine (five for Stage I and four for Stage II) spec-

ification components are properly specified. Then we can write the unconditional power function,

ψ(ξ) for ξ ∈ (−∞,∞) as follows:

ψ(ξ) =
∫ ∞

−∞
A(y1, ξ)gξ(y1) dy1, (2.3.20)

where gξ(y1) is the pdf of Normal (ξ, 1/n1).

Because we consider a composite null hypothesis of the form, H0 : ∆ ≤ ∆0, the power function,

ψ(ξ) needs to be bounded above by α for all values of ∆ below ξ0. A straightforward way to

17



guarantee that the power function is bounded above for all ξ in (−∞, ξ0] is the monotonicity of the

power function in this range of ξ. The following lemma gives a sufficient condition for the power

function (2.3.20) to be nondecreasing over an interval (a, b).

Lemma 2.3.1. A sufficient condition for the unconditional power function, ψ(ξ), to be nondecreasing

in ξ ∈ (a, b) is that A(y1, ξ) is nondecreasing in y1 for every fixed ξ ∈ (a, b).

Proof: We need to show that ψ(ξ3) ≥ ψ(ξ2) for arbitrary ξ2 and ξ3 such that ξ3 > ξ2. We have

ψ(ξ3) =
∫ ∞

−∞
A(y1, ξ3)gξ3(y1)dy1

=
∫ ∞

−∞
A(y1, ξ3)

gξ3(y1)
gξ2(y1)

gξ2(y1)dy1

=
∫ ∞

−∞
A(y1, ξ3)gξ2(y1)dy1 + Cov

[
A(Y1, ξ3) ,

gξ3(Y1)
gξ2(Y1)

]
.

For a fixed y1 ∈ (k1, k2], by the definition of A(y1, ξ) in (2.2.6),

A(y1, ξ3) ≥ A(y1, ξ2) for all y1 ∈ (−∞,∞).

Moreover, by the given condition, A(y1, ξ3) is nondecreasing in y1, and because normal densities have

monotone likelihood ratio,
gξ3(y1)
gξ2(y1)

is nondecreasing in y1. Then it follows that

Cov
[
A(Y1, ξ3) ,

gξ3(Y1)
gξ2(Y1)

]
≥ 0.

Therefore,

ψ(ξ3) ≥
∫ ∞

−∞
A(y1, ξ2)gξ2(y1)dy1 + Cov

[
A(Y1, ξ3) ,

gξ3(Y1)
gξ2(Y1)

]
≥ ψ(ξ2).

�

When A(y1, ξ) satisfies the condition of the preceding lemma with a = −∞ and b = ξ0, the size

of the two stage procedure is

α = sup
ξ≤ξ0

ψ(ξ) = ψ(ξ0). (2.3.21)

The condition of Lemma 2.3.1 is difficult to check because there are infinitely many A(y1, ξ) for

ξ ∈ (−∞, ξ0). In addition to the Type I error rate, it is often of interest to specify the power at

some alternative, ξ1. When the power is specified to be ρ at ξ = ξ1, it is desirable that the power is

at least ρ for ξ ∈ (ξ1,∞). Again, monotonicity of ψ(ξ) is one way to guarantee that the power is at
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least ρ for any ξ which is greater than ξ1. To use Lemma 2.3.1 to guarantee the monotonicity of the

power function in (ξ1,∞), we need to check A(y1, ξ) for all ξ in (ξ1,∞).

Because the condition of Lemma 2.3.1 involves infinitely many A(y1, ξ), we replace it with the

following two conditions on the specification components of Stage II:

1. A(y1, ξ1) is nondecreasing in y1 ∈ (k1, k2].

2. n2(y1) is nonincreasing in y1 ∈ (k1, k2].

These two conditions only involve two specific functions and it is straightforward by direct compu-

tation to check these conditions. The motivation for imposing these conditions is two-fold. The first

is that by Lemma 2.3.2 which follows, they guarantee that the power is monotone up to ξ1 and it

is at least ψ(ξ1) for ξ > ξ1 though it may be decreasing for some range of values of ξ ∈ (ξ1,∞).

The second reason for imposing the conditions is a practical consideration. The larger the observed

Stage I value, y1, gets (in the interval (k1, k2]), the more evidence there is against H0. Therefore,

it is desirable to have the probability of rejecting H0 under H1 increase as y1 increases, without a

penalty of an increased Stage II sample size.

Lemma 2.3.2. For an arbitrary ξ∗, if A(y1, ξ
∗) is nondecreasingin y1, and n2(y1) is nonincreasing

in y1 for y1 ∈ (k1, k2], then,

1. ψ(ξ) is nondecreasing in ξ for all ξ ∈ (−∞, ξ∗) and

2. ψ(ξ) > ψ(ξ∗) for all ξ ∈ (ξ∗,∞).

Proof: 1. Let ξ† ∈ (−∞, ξ∗). Using the connection among the specification components of Stage

II, it can be shown that

zA(y1,ξ†) = zA(y1,ξ∗) +
√
n2(y1) (ξ∗ − ξ†).

Then, because zA(y1,ξ∗) and n2(y1) are both nonincreasing in y1 and ξ∗ − ξ† > 0, we have that

zA(y1,ξ†) is nonincreasing. Consequently, A(y1, ξ
†) for ξ† ∈ (−∞, ξ∗) is nondecreasing. So we can

apply Lemma 2.3.1 to have the first result of the lemma.

2. Let ξ† ∈ (ξ∗,∞). Then by the definition of A(y1, ξ) in (2.2.6), A(y1, ξ
†) > A(y1, ξ

∗). Thus,

ψ(ξ†) =
∫ ∞

−∞
A(y1, ξ

†)gξ†(y1)dy1 >

∫ ∞

−∞
A(y1, ξ

∗)gξ†(y1)dy1.

Since A(y1, ξ
∗) is nondecreasing, we can apply the same reasoning as in the proof of Lemma 2.3.1 to

get ∫ ∞

−∞
A(y1, ξ

∗)gξ†(y1)dy1 =
∫ ∞

−∞
A(y1, ξ

∗)
gξ†(y1)
gξ∗(y1)

gξ∗(y1)dy1

>

∫ ∞

−∞
A(y1, ξ

∗)gξ∗(y1)dy1 = ψ(ξ∗),
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giving the second result of the lemma. �

When the conditions of Lemma 2.3.2 are met with ξ∗ = ξ1, we have a desirable property of the

power function that the overall power is nondecreasing up to ξ1 at which it is set to be 1− β. And

the power function is guaranteed not to go below 1 − β when the true ξ exceeds ξ1. Furthermore,

from Lemma 2.3.2 (i), the Type I error rate is as described by (2.3.21). The conditions in Lemma

2.3.2 are sufficient and not necessary. The power function may be nondecreasing even though the

noted conditions are not satisfied.

We provide, as an example, a two-stage adaptive design of which A(y1, ξ0) and n2(y1) do not

meet the conditions of Lemma 2.3.2 and the power function is not nondecreasing. In this design,

although the Type I error rate is set at ∆0 to be α = .025, the probability of rejecting H0 is higher

for some values of ∆ that smaller than ∆0. Consider testing

H0 : µt − µc ≤ ∆0

H1 : µt − µc > ∆0,

where ∆0 = 0. Suppose that the desired power is ρ = .9 at ∆1 = 1. We assume that σ is known

to be 4. Then the single-stage conventional design’s sample size is N = 337. We choose the Stage I

sample size to be 80% of N , i.e., n1 = 337 × .8 = 270. For the remaining two Stage I specification

components, we choose k1 = −1.0 and α1 = .005. With these three components specified, we

can obtain the remaining components, β1 and k2. The Stage I is characterized by the following 5

specification components. {α1 = .005, β1 = .000, n1 = 270, k1 = −1.0, k2 = .1568}.

For Stage II specification components, we choose A(y1, ξ0) and A(y1, ξ1) that are not increasing

in y1. Let

A(y1, ξ0) =


.90 for k1 ≤ y1 < −.5
−.20375− 2.2075 y1 for −.5 ≤ y1 < −.1
.0201 for −.1 ≤ y1 < k2.

And let

A(y1, ξ1) =


.95 for k1 ≤ y1 < −.5
.675− .55 y1 for −.5 ≤ y1 < −.1
.73 for −.1 ≤ y1 < k2.

These A functions satisfy (2.2.7) and (2.2.8), respectively, so that the probability of rejecting H0 is

.025 and .90 at ∆ = ∆0 and ∆ = ∆1, respectively. See Figure 2.1 for these A-functions. Figure 2.2

shows the total sample size, nt(y1) = n1 + n2(y1) for this design. The Stage II sample size, n2(y1),

is not nonincreasing. So neither of the conditions of Lemma 2.3.2 is satisfied.
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Figure 2.1: Example of Section 2.3: The conditional power functions, A(y1, ξ0) and A(y1, ξ1).

As can be seen in Figure 2.3, the power function of this procedure is not monotone. Although

the probability of rejecting H0 is set to be .025 at ∆ = ∆0, it is greater than .025 for a wide range

of ∆’s in (-∞, ∆0). The probability of rejecting H0 is as high as .511 in (−∞, ∆0). Therefore,

obviously, the Type I error rate is not .025 for this design, even though the probability of rejecting

H0 is controlled at ∆ = ∆0. Table 2.2 summarizes the Stage I probabilities, power and expected

sample sizes for this procedure.

As noted before, the conditions of Lemma 2.3.2 are sufficient ones and not necessary ones. Many

designs that do not satisfy these conditions still have monotone power functions. However, as this

example shows, it is possible for a two-stage adaptive procedure to have a power function that is not

monotone. Therefore, for the two-stage adaptive procedures that we consider, we impose the two

conditions of Lemma 2.3.2.

The conditions of Lemma 2.3.2 concern A(y1, ξ
∗) for some ξ∗ and n2(y1). However, the two

prespecified components for Stage II need not necessarily be A(y1, ξ
∗) and n2(y1). If not, A(y1, ξ

∗)

and n2(y1) must be obtained through the functional relationships described in (2.2.12) and (2.2.13).

It is then difficult to guarantee that A(y1, ξ
∗) and n2(y1) satisfy the conditions of Lemma 2.3.2. For

example, specifying A(y1, ξ0) and A(y1, ξ1) such that n2(y1) is nonincreasing for all y1 ∈ (k1, k2]

is not a simple task. Or specifying A(y1, ξ0) and n2(y1) such that A(y1, ξ1) is nondecreasing for
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Figure 2.2: Example of Section 2.3: n1 + n2(y1).

all y1 ∈ (k1, k2] is also not a simple task. In such cases, the flexibility of our framework plays a

significant role. The key fact is that it is relatively easy to make adjustments to the specifying

components. For example, suppose that we specify A(y1, ξ0) and A(y1, ξ1) at the beginning, and

the resulting n2(y1) is not nonincreasing in y1 ∈ (k1, k2]. Instead it is a convex function of y1 in

this range. Then we can modify the n2(y1) function so that it is nondecreasing in y1 while keeping

A(y1, ξ0) fixed. When A(y1, ξ0) is fixed and n2(y1) is altered, the other two components, A(y1, ξ1)

and w(y1) are reobtained accordingly. Thus we have a new set of A(y1, ξ0), A(y1, ξ1), n2(y1) and

w(y1). It is, of course, desirable to make the new A(y1, ξ1) satisfy the condition (2.2.8). Even when

the conditions of Lemma 2.3.2 are satisfied, if there still is need to modify the design to satisfy certain

design characteristics (e.g., A(y1, ξ1) is too small for some y1 ∈ (k1, k2]) then we can continue altering

the components until the design is satisfactory. We use the following examples to demonstrate the

flexibility of our framework for designing two-stage adaptive trials.

2.4 Examples

In this section, we use two examples to demonstrate the flexibility of our procedure in construct-

ing a two-stage adaptive design. First, we show how a two-stage group sequential method can be

placed into our framework. Using tabulated critical values for Stage I and for Stage II from Jennison
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Table 2.2: Example of Section 2.3: Stage I probabilities, power and expected sample sizes.
Stage I Stage II

∆ Accept Continue Reject Reject Power E[nt(y1)]

−4.00 .000 1.000 .000 .432 .432 274.2
−3.00 .000 1.000 .000 .480 .480 276.1
−2.00 .000 1.000 .000 .094 .094 299.1
−1.00 .000 1.000 .000 .018 .018 375.5
0.00 .000 .995 .005 .020 .025 503.7
1.00 .000 .371 .629 .271 .900 358.8

and Turnbull (1999), we find the corresponding A-functions. Our calculation of the Type I error rate

and the power agrees with their result.

In the second example, we consider a procedure proposed by Lan and Trost (1996). Their

procedure is atypical because Stage II is divided into two pieces based on y1, and each part has

different specification components. However, by treating these two parts of Stage II separately,

we can place their method into our framework. In their paper, they obtain the Type I error rate

using simulations, but with our method, it is computed analytically using numerical integration.

Their maximum Stage II sample size in this particular example is 3222 whereas N is only 288. The

modification of this procedure using our framework yields the same Type I error rate, the same power

at the original alternative while allowing the maximum sample size to be prespecified.

Both examples demonstrate our framework’s flexibility and show that the framework can encom-

pass a variety of two-stage adaptive design. The second example, in addition, shows the framework’s

ability to facilitate a two-stage adaptive design with specific characteristics in terms of Type I error

rate, power and expected and maximum sample size.

2.4.1 Two-Stage Group Sequential Procedure

Our framework encompasses the conventional one-sided two-stage group sequential tests. The

two-stage conventional group sequential procedure is more restricted than what our framework is

capable of because the Stage II sample size, n2(y1) and the Stage II critical value, c(y1) for the group

sequential method do not vary with y1.

Jennison and Turnbull (1999) give a discussion of a general one-sided group sequential test. They

provide sample sizes and critical values for Stage I and Stage II. Their discussion of the procedure is

in terms of the standardized Z statistics. To comply with their definition, let

Z1 =
√
n1 Y1, (2.4.22)

Zb =
√
n1 + n2 Yb, (2.4.23)
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Figure 2.3: Example of Section 2.3: The power function.

where Y1 is defined in (2.2.1) and Yb is given by (2.2.4) but with n2 that does not depend on y1. A

general two-stage one-sided group sequential test is defined by three constants, a1, b1 and a2, where

a1 < b1. A decision is made at the end of Stage I according to the following decision rule, which is

based on the standardized Stage I statistic, Z1. At the end of Stage I,

if


Z1 ≤ a1 stop and accept H0,
a1 < Z1 ≤ b1 continue to Stage II,
b1 < Z1 stop and reject H0.

The decision rule at the end of Stage II is written similarly in terms of the standardized statistic,

Zb, from the combined data. At the end of Stage II,

if

{
Zb ≤ a2 stop and accept H0,
a2 < Zb stop and reject H0.

In order to place this group sequential method into our framework, the following two character-

istics of the group sequential method are noticed.

1. The Stage II sample size, n2, is the same for all y1.

2. The Stage II critical value, c, for Yb is the same for all y1.

Jennison and Turnbull (1999) only give the constants C̃1 and C̃2 that are used to calculate

critical values in the case with an equally spaced information level, meaning that n1 and n2 are equal.
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However, the case where n2 is not the same as n1 is also easily implemented in our framework. Let

n2 = f∗n1, where f∗ is any positive number. Now since both c and n2 do not depend on y1, we can

write w(y1), using (2.2.5), as follows:

w(y1) =
n1

n2
(c− y1) + c = (1 +

1
f∗

)c− y1

f∗
(2.4.24)

Substituting (2.4.24) in (2.2.16), we get

A(y1, ξ) = 1− Φ
[√

f∗n1

(
(1 +

1
f∗

) c− y1

f∗
− ξ

)]
(2.4.25)

Note that if f∗ = 1, that is, if the Stage II sample size is equal to the Stage I sample size, then

(2.4.24) and (2.4.25) simplify to

w(y1) = 2c− y1,

A(y1, ξ) = 1− Φ [
√
n1 (2c− y1 − ξ)] . (2.4.26)

In this example, we use Jennison and Turnbull’s tabulated values to find the critical values and

sample sizes for Stage I and II, and obtain the corresponding A-functions. We show, by calculating the

Type I error rate and the power, that our result agrees to theirs. Consider the following situation. The

hypotheses of interest areH0 : µt−µc ≤ 0 againstH1 : µt−µc > 0. The error probabilities are α = .05

and β = .1 at ∆ = ∆1 = 1. We assume that σ = 4. Note that ξ0 = 0 and ξ1 = ∆1/(
√

2σ) = .1768.

From Table 4.2 in Jennison and Turnbull (1999), we have C̃1 = 1.657 and C̃2 = 1.332 for K = 2

(two stages). The total sample size, nb, and the Stage I sample size, n1, are

nb =
(C̃1 + C̃2)2

ξ21
=

(1.657 + 1.332)2

.17682
= 285.9 ≈ 286,

n1 = (1/2)nb = 143.

The Stage I critical values, a1 and b1, for the standardized test statistic are given by

a1 = ξ1
√
n1 − C̃2(1/2)−1/2 = .1768

√
142.9 − 1.332(1/2)−1/2 = .2298,

b1 = C̃1(1/2)−1/2 = 1.657(1/2)−1/2 = 2.343.

The Stage II critical value for the standardized test statistic is

a2 = .25
√

142.9 − 1.332 = 1.657.

Using (2.4.22) and (2.4.23) we can transform these critical values to k1, k2 and c to be used with Y1

and Yb. We have

k1 = a1/
√
n1 = .2298/

√
143 = .0192,

k2 = b1/
√
n1 = 2.343/

√
143 = .1959,

c = a2/
√
n1 + n2 = 1.657/

√
286 = .0980.
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With these k1 and k2, we can calculate the Stage I probabilities of accepting H0, of continuing to

Stage II and of rejecting H0 under H0 and H1. These are tabulated in Table 2.3.

Using f∗ = 1, and thus the A-functions in (2.4.26), we get

A(y1, ξ0) = 1− Φ
[√

143 (2× .0980− y1)
]

= 1− Φ [2.34− 11.96y1] ,

A(y1, ξ1) = 1− Φ
[√

143 (2× .0980− y1 − .1768)
]

= 1− Φ [.230− 11.96y1] .

These two A-functions are displayed in Figure 2.4. Note that both A(y1, ξ0) and A(y1, ξ1) are

nondecreasing in y1. The resulting total sample size when continuing to Stage II is uniformly 143

as planned. Therefore, by Lemma 2.3.2, the power function, ψ(ξ) is nondecreasing in ξ. As Table

2.3 shows, the Type I error rate of this design is α = .05 and the power at the original alternative

is 1 − β = .90. The expected sample size is reduced compared to the sample size, N = 274, of the

conventional single-stage design. The percentage reduction in expected sample size from N is 27%

when ξ = ξ0, 19% when ξ = ξ1 and 12% when ξ = ξ1/2. These results agree with Jennison and
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Figure 2.4: Example of Section 2.4.1: A(y1, ξ0) and A(y1, ξ1) for a group sequential procedure.

Turnbull’s calculations.
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Table 2.3: Example of Section 2.4.1: Group Sequential Procedure. Stage I probabilities, power and
expected sample sizes.

Stage I Stage II
∆ Accept Continue Reject Reject Power E[nt(y1)]

0.00 .591 .400 .009 .041 .050 199.2
0.25 .383 .582 .035 .146 .181 225.2
0.50 .205 .695 .100 .329 .429 241.4
0.75 .088 .686 .225 .485 .710 240.2
1.00 .030 .560 .410 .490 .900 222.1
1.25 .008 .374 .617 .360 .977 195.6

2.4.2 Lan and Trost’s Procedure And Its Modifications

In this example, we consider a procedure proposed by Lan and Trost (1997). Their Stage I

sample size is expressed as a fraction of N . At the end of Stage I, they calculate CP , the conditional

power under the Stage I result and apply the following rules:

1. If CP ≤ cl (lower limit), then stop the trial and accept H0.

2. If CP ≥ cu (upper limit), then continue to the scheduled end of the study and reject

H0 if the final Z ≥ zα.

3. If cl < CP < cu, then extend the study to a sample size of mN (m > 1) so that

CPm, the conditional power under the current trend after extension, is cu. Reject

H0 if Zm, the final Z-statistic after extension, exceeds zα.

Conceptually, CP is a function of y1, so we denote it by B(y1). Then, k1 satisfies B(k1) = cl. Let κ

be the point such that B(κ) = cu. For this procedure, the Stage I specification components are n1,

k1 and k2. Note that k2 = ∞ because the trial does not stop at the end of Stage II to reject H0,

thus resulting in α1 = 0. The specification of Stage II components is divided into two regions based

on y1. The first region is where y1 ∈ (k1, κ) and the second is where y1 ∈ (κ,∞). First we show how

to obtain k1 and κ.

The decision rule at the end of Stage II is Z > zα. Since Yb = Z/
√
n1 + n2, it can be written in

terms of Yb as Yb > zα/
√
n1 + n2. Using (2.2.5), we get

w(y1) =

√
n1 + n2(y1)
n2(y1)

zα −
n1

n2(y1)
y1. (2.4.27)
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Now we can express B(y1) using n2(y1) and N . We use the critical value, w(y1), in (2.4.27) but with

a constant Stage II sample size n2(y1) = N − n1 to find:

B(y1) =1− Φ
[√

N − n1 (w(y1)− y1)
]

=1− Φ

[ √
N√

N − n1
zα −

N√
N − n1

y1

]
.

Then given N and n1, we can solve B(k1) = cl and B(κ) = cu to obtain

k1 =
1√
N

zα −
√
N − n1

N
zcl
, (2.4.28)

κ =
1√
N

zα −
√
N − n1

N
zcu . (2.4.29)

Now we shift our attention to Stage II specification components. For the region y1 ∈ (k1, κ),

A(y1, y1) = cu for all y1. So we have

A(y1, y1) = cu = Φ
[√

n2(y1)(w(y1)− y1)
]
. (2.4.30)

We can simultaneously solve (2.4.27) and (2.4.30) numerically for w(y1) and n2(y1). Then using

these w(y1) and n2(y1), we find the conditional probability of rejecting H0 under any ξ by (2.2.16).

For the region y1 ∈ (κ,∞), we have a fixed n2 = N − n1 and A(y1, y1) = B(y1). Using these

two elements, we can find

A(y1, ξ) =1− Φ
[
zB(y1) +

√
N − n1 (y1 − ξ)

]
,

w(y1) =
zB(y1)√
N − n1

+ y1.

Consider a specific example. Let ∆0 = 0, ∆1 = 1 and σ = 4. Then ξ0 = 0 and ξ1 = .1768. With

α = .025 and β = .15, we obtain N = 288. Further suppose that f = n1/N = .4. Then n1 = 115

and n2 = 173. Let cl be .05 and cu be .65. Then using (2.4.28) and (2.4.29) we get k1 = .0405 and

κ = .1332.

The conditional power functions are displayed in Figure 2.5. The dotted curve line represents

B(y1). The three solid lines are conditional power functions. The bottom one is A(y1, ξ0), the

middle one is A(y1, y1), and the top one is A(y1, ξ1). Note that A(y1, y1) and A(y1, ξ1) cross each

other at y1 = ξ1. Also note that A(y1, ξ1) is not monotonically increasing. Figure 2.6 shows nb(y1)

(the total sample size) of this procedure. The maximum of nb(y1) occurs at y1 = k1 and it is 3338.

(n2(k1) = 3338− 115 = 3222).

Because A(y1, ξ0) is nondecreasing in y1 and n2(y1) is nonincreasing in y1, Lemma 2.3.2 can

be applied with ξ∗ = ξ0 to guarantee that Type I error rate is
∫ k2

k1
A(y1, ξ0)gξ0(y1) dy1. However,
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Figure 2.5: Example of Section 2.4.2: A(y1, ξ0) and A(y1, ξ1) for Lan and Trost’s original procedure.

note that A(y1, ξ1) is not monotonically increasing. Therefore, monotonicity of the power function in

y1 ∈ (−∞, ξ1) cannot be guaranteed by Lemma 2.3.2. However, numerical computation does show

that the power function is increasing in ξ ∈ (−∞,∞).

In this example, although A(y1, ξ1) is nonincreasing, the power function is increasing for all

ξ ∈ (−∞,∞). However, from a practical viewpoint, this A(y1, ξ1) gives the following contradiction.

As shown in Figure 2.5, the conditional probability of rejecting H0 under H1 is virtually 1 if we

observe y1 = .0405, which is on the borderline of accepting H0 and continuing to Stage II. On the

other hand, if we observe y1 = .1332, then the conditional power is down to about .8 even though

there is stronger evidence against H0 in Stage I. Also, as seen in this example, forcing A(y1, y1) to

be fairly high (in this case .65) is not practical because it inflates the necessary sample size when y1

is close to ξ0. If k1 ≤ ξ0 (which is possible in their formulation), n2(y1) = ∞ at y1 = ξ0.

Since we have A(y1, ξ0) and A(y1, ξ1), we can calculate for the Lan and Trost procedure the

Type I error rate and the unconditional power at the original alternative, ξ1, using (2.3.20). The

type I error rate is .024, which agrees with their simulation result. The power at ξ1 is .877.

We now show how to use our technique to modify the Lan and Trost design to effect a substantial

improvement. In order to make the new design comparable to the original Lan and Trost design,

we set α = .024 and the power at ξ1 equal to .877; the corresponding conventional one-stage sample
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Figure 2.6: Example of Section 2.4.2: Total sample size for Lan and Trost’s original procedure.

size is N = 316. The maximum total sample size is set at 442, a 40% increase from N . We use the

same n1 = 115. Further, k1 is kept fixed at .0405, so that β1 remains .072. We change k2 from ∞ to

.2406, so that α1 = .005. Hence α2 = .019 and β2 = .051.

For Stage II specification components, first we choose A(y1, ξ0) to have a quadratic form.

A(y1, ξ0) = .02 + 6.93(y1 − k1)2. This function satisfies the condition, α2 =
∫ k2

k1
A(y1, ξ0)g0(y1) dy1,

and it is very similar to the Lan and Trost’s original A(y1, ξ0) function over values of y1 in (k1, k2).

For A(y1, ξ1), we also choose a quadratic function: A(y1, ξ1) = .89 + 2.4(y1 − k1)2. Using these

A(y1, ξ0) and A(y1, ξ1), we can calculate n2(y1) and w(y1). For n2(y1), in addition to the noted

condition that max(n2(y1)) = 442−n1 = 327, we impose a condition that n2(y1) ≥ 201 which makes

the minimum value of n1+n2(y1) equal to N = 316. These two conditions provide a flat n2(y1) = 327

for y1 in (k1, .0685) and a flat n2(y1) = 201 for y1 in (.202, k2]. Keeping A(y1, ξ0) unchanged and

modifying n2(y1) to accommodate these maximum and minimum requirements alters A(y1, ξ1). The

final A(y1, ξ1) is:

A(y1, ξ1) =


1− Φ

[
zA(y1,ξ0) +

√
327 (.1768)

]
if k1 < y1 < .0685

.89 + 2.4(y1 − k1)2 if .0685 ≤ y1 < .202
1− Φ

[
zA(y1,ξ0) +

√
201 (.1768)

]
if .202 ≤ y1 < k2
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Figure 2.7: Example of Section 2.4.2: A(y1, ξ0) and A(y1, ξ1) for the modified procedure.

Figure 2.7 shows the conditional power functions. The total sample size is shown in Figure 2.8.

Tables 2.4 and 2.5 summarize the power and the expected sample size for various values of ∆ in

[0, 1.25] for the original Lan and Trost’s design and for the modified design. While the powers at

∆ = 0 and at ∆ = 1 are the same (by design), the powers at intermediate points are somewhat

higher in the Lan and Trost design. However, from our perspective, the most drastic differences are

in expected sample sizes. The percentage reduction in expected sample size is 48% when ∆ = 0, 43%

when ∆ = .5 and 31% when ∆ = 1. Furthermore, the maximum total sample size for the modified

design is 442, whereas it is 3338 for the original design.

Table 2.4: Example of Section 2.4.2: Lan & Trost’s original design. Stage I probabilities, power and
expected sample sizes.

Stage I Stage II
∆ Accept Continue Reject Reject Power E[nt(y1)]

0.00 .668 .332 0 .024 .024 282.4
0.25 .484 .516 0 .178 .178 361.6
0.50 .304 .696 0 .457 .457 386.0
0.75 .162 .838 0 .706 .706 353.7
1.00 .072 .928 0 .877 .877 292.7
1.25 .026 .974 0 .961 .961 235.8
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Figure 2.8: Example of Section 2.4.2: Total sample size for the modified procedure.

2.5 Design Parameters And Their Relative Significance

To construct a two-stage adaptive design, the various design components have to be specified.

For example, in Stage I, one can choose α1, β1 and n1 and for Stage II, any A(y1, ξ0) and A(y1, ξ1)

can be used as long as they satisfy the conditions (2.2.7) and (2.2.8). In this section, we discuss

the results of a computational experiment that examines which of these components have significant

influence on the characteristics of the resulting design.

Different combinations of the values of design components of interest yield different designs

with different performance characteristics. For each performance characteristic, we investigate its

“response surface” as a function of the design factor combinations. A design component that demon-

strates relatively substantial variability in the “response surface” is considered influential; if the

“response surface” does not vary much for different values of a particular component, then the

component is considered unimportant in determining performance characteristics.

More specifically, consider the setting where H0 : µt − µc ≤ 0 is tested against H1 : µt − µc > 0.

Let Y1 and Y2 be defined, respectively, by (2.2.1) and (2.2.3). Let α = .05 and β = .10 at the chosen

alternative ξ1, where ξ1 varies among {.125, .2, .25}.
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Table 2.5: Example of Section 2.4.2: The modified design. Stage I probabilities, power and expected
sample sizes.

Stage I Stage II
∆ Accept Continue Reject Reject Power E[nt(y1)]

0.00 .668 .327 .005 .020 .025 191.3
0.25 .484 .494 .018 .097 .115 226.6
0.50 .304 .644 .052 .280 .332 252.9
0.75 .162 .714 .124 .500 .624 260.8
1.00 .072 .680 .248 .602 .850 247.8
1.25 .026 .555 .418 .538 .956 219.4

Let the Stage I sample size, n1, have the form n1 = f × N , where 0 < f < 1, where f varies

among {.3, .5, .75}, and N is the sample size needed for the conventional single-stage procedure to

achieve the same α and the power. Given ξ1 and f , n1 can be calculated. Let α1 and β1, respectively,

vary among {.01, .025, .04} and {.02, .05, .08}; so that for each combination of α1, β1, f and ξ1, k1

and k2 are uniquely determined.

For Stage II, in order to see the effect of the conditional power functions, five choices for each

of A(y1, ξ0) and A(y1, ξ1) are included in the study. The first choice is AFlat(y1, ξ0) = a0F , which

takes a constant value, a0F , for all y1 ∈ (k1, k2]. For each combination of Stage I components, a0F is

determined so that the Type I error rate is α by solving

α2 = a0F

∫ k2

k1

gξ0(y1) dy1 = a0F (Φ [
√
n1 k2]− Φ [

√
n1 k1]).

The second is ALC(y1, ξ0), which is a generalization by Liu and Chi (2001) of the A(y1, ξ0) that

Proschan and Hunsberger (1995) used. For ALC(y1, ξ0), we need to find γ that satisfies

α2 =
∫ k2

k1

(
1− Φ

[
γ
√
n1

√
(k2 − ξ0)2 − (y1 − ξ0)2

])
gξ0(y1) dy1.

The third A-function is a straight line with the form, ALinear(y1, ξ0) = a0 + a1L(y1 − k1). The

fourth type is a step function, AStep(y1, ξ0) = a0 + a1SI(y1 > (k1 + k2)/2). And finally, the fifth

A-function is a square root function of the form, ARoot(y1, ξ0) = a0 + a1R
√
y1 − k1 . Note that the

last three A-functions all have the same value, a0, at y1 = k1, where 0 ≤ a0 ≤ a0F . To vary the

A−functions and yet have some consistency, we require ALC(y1, ξ0), ALinear(y1, ξ0), AStep(y1, ξ0) and

ARoot(y1, ξ0) all have the same value, a0, at y1 = k1. A concern is that without careful attention,

we would inadvertently make these A−functions similar to each other, so that the effect of different

A−functions could not be well assessed. For example, if a0 = a0F , ALinear(y1, ξ0), AStep(y1, ξ0) and

ARoot(y1, ξ0) would all be identical to AFlat(y1, ξ0). However, our preliminary findings suggest that

ALC(y1, ξ0) at y1 = k1 is usually very small, and thus very different from a0F , allowing the desired

variability.
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By fixing a0, we can solve numerically for a1L in ALiner(y1, ξ0), a1S in AStep(y1, ξ0) and a1R

in ARoot(y1, ξ0) so that the Type I error rate is α. For example, a1R is computed by solving the

following:

α2 =
∫ k2

k1

(a0 + a1R

√
y1 − k1 )gξ0(y1) dy1

= a0(Φ [
√
n1 k2]− Φ [

√
n1 k1]) + a1R

∫ k2

k1

√
y1 − k1 gξ0(y1) dy1.

Similarly, five functions for A(y1, ξ1) of the same forms as A(y1, ξ0) are considered. They are

AFlat(y1, ξ1) =b0F ,

ALC(y1, ξ1) =1− Φ
[
γ
√
n1

√
(ξ1 − k1)2 − (ξ1 − y1)2

]
,

ALinear(y1, ξ1) =b0L + b1L(y1 − k1),

AStep(y1, ξ1) =b0S + b1SI(y1 > (k1 + k2)/2),

ARoot(y1, ξ1) =b0R + b1R

√
y1 − k1 .

For AFlat(y1, ξ1), b0F can be found analogously to a0F . The form of ALC(y1, ξ1) is obtained

through the same optimization that Proschan and Hunsberger (1995) used in deriving their A(y1, ξ0)

function. For the other three functions, b0 and b1 are calculated to satisfy

ALC(k2, ξ1) = ALinear(k2, ξ1) = AStep(k2, ξ1) = ARoot(k2, ξ1).

In other words, they all have the same ending point (i.e., when y1 = k2) as ALC(y1, ξ1).

We observe that some combinations of A(y1, ξ0) and A(y1, ξ1) actually yield an increasing n2(y1).

We checked each such design that does not satisfy the condition (ii) of Lemma 2.3.2 and found for

these that nonetheless the power functions are increasing.

These values of all the design components are summarized in Table 2.6. Note that there are

2025 possible combinations.

We now specify the three criteria used to compare designs’ performance characteristics. The

first is the power at three intermediate points, λξ1 where λ = 1
4 , 1

2 and 3
4 . By design the powers at

λ = 0 and 1 are set to be .05 and .90, respectively. To compare the expected sample sizes of the

procedures, we define the following two ratios:

(i) R1 =
n1 + E[n2(Y1)]

N
, at λξ1 where λ = 0, 1

4 , 1
2 , 3

4 and 1.

(ii) R2 =
n1 + E[n2(Y1)]

N∗ , at λξ1 where λ = 1
4 , 1

2 and 3
4 ,

where N∗ is the conventional single-stage sample size that is necessary to achieve the same power at

λξ1. The numerators of the ratios R1 and R2 are the expected sample size of a two-stage adaptive
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Table 2.6: Design parameters and their values of the response surface analysis for two-stage adaptive
procedures.

Design Parameter Values
α1 .01 .025 .04
β1 .02 .05 .08
f .3 .5 .75
ξ1 .125 .2 .25

AFlat(y1, ξ0) = a0F

ALC(y1, ξ0) = 1− Φ
[
γ
√
n1

√
(k2 − ξ0)2 − (y1 − ξ0)2

]
A(y1, ξ0) ALinear(y1, ξ0) = a0 + a1L(y1 − k1)

AStep(y1, ξ0) = a0 + a1SI(y1 > (k1 + k2)/2)
ARoot(y1, ξ0) = a0 + a1R

√
y1 − k1

AFlat(y1, ξ1) = b0F

ALC(y1, ξ1) = 1− Φ
[
γ
√
n1

√
(ξ1 − k1)2 − (ξ1 − y1)2

]
A(y1, ξ1) ALinear(y1, ξ1) = b0L + b1L(y1 − k1)

AStep(y1, ξ1) = b0S + b1SI(y1 > (k1 + k2)/2)
ARoot(y1, ξ1) = b0R + b1R

√
y1 − k1

design. Therefore, R1 compares a two-stage adaptive design to a conventional single-stage design that

has the same power at the original ξ1, and R2 compares a two-stage adaptive design to a conventional

single-stage design with the same power at the intermediate value, λξ1. Power and expected sample

size are numerically computed for each combination of design components.

To see which components cause relatively more variability in a response surface, an ANOVA

type analysis is conducted. For each response, we analyze the ratios of the sum of squares of the main

effects and the interaction effects to the total sum of squares. The model includes all six main effects

and 15 two-way, 20 three-way, 15 four-way and 6 five-way interactions. Because this is essentially

like a “one observation per cell” ANOVA design, the six-way interaction is not included in the model.

We ignore the differences in the degrees of freedoms for the various sums of squares, and declare

a particular effect to be “significant” if its sum of squares explain at least 5% of the total sum of

squares.

Table 2.7 summarizes the results. Only significant effects (i.e., those with sums of squares

accounting for more than 5% of the total sums of squares) are included in the table, with the

exception of the effects due to A(y1, ξ0) and A(y1, ξ1). More detailed results are given in Appendix

A. As Table 2.7 shows, the combination of f , α1, β1, f × α1 and f × β1 explain at least 90% of the

variation for each response variable: R1, R2 and the three powers.

A surprising result is that neither A(y1, ξ0) nor A(y1, ξ1) are “significant” factors. The biggest

contribution that A(y1, ξ0) makes is 4.2% of the total variation in R1 at ξ = ξ1. For the power, the
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Table 2.7: Proportions of sums of squares to the total sums of squares.
Response λ f α1 β1 f × α1 f × β1 Total A(y1, ξ0) A(y1, ξ1)

R1 0 .250 .189 .349 .094 .019 .901 .026 .022
1
4 .371 .200 .220 .102 .020 .913 .018 .016
1
2 .543 .131 .085 .111 .067 .937 .007 .006
3
4 .570 .081 .107 .078 .099 .935 .019 .003
1 .445 .144 .181 .028 .105 .903 .042 .009
λ f α1 β1 f × α1 f × β1 Total A(y1, ξ0) A(y1, ξ1)

R2
1
4 .200 .418 .126 .197 .008 .949 .008 .000
1
2 .253 .349 .138 .196 .002 .938 .009 .000
3
4 .499 .164 .042 .181 .015 .901 .037 .005
λ f α1 β1 f × α1 f × β1 Total A(y1, ξ0) A(y1, ξ1)

Power 1
4 .057 .561 .130 .172 .037 .957 .006 .006
1
2 .001 .425 .303 .124 .097 .950 .008 .007
3
4 .045 .215 .470 .055 .162 .947 .009 .007

contribution of A(y1, ξ0) is less than 1% everywhere. A(y1, ξ1) is even less significant, its maximum

contribution being only 2.2%. We have included various shapes for the A(y1, ξ0) and A(y1, ξ1)

functions, and yet the effects of varying these shapes are much less significant than f , α1 and β1.

The findings above suggest that when we design a two-stage adaptive trial, we should care-

fully choose the design of Stage I, namely, the sample size, n1, α1=P(Reject in Stage I |H0) and

β1=P(Accept in Stage I |H1). The fact that the shapes of A(y1, ξ0) and A(y1, ξ1) are less impor-

tant justifies altering these functions in designing process to meet specific design criteria such as

controlling the maximum Stage II sample size.

In the example in Section 2.4.2, we start our planning of Stage II with A(y1, ξ0) and A(y1, ξ1).

And we make modifications to the resulting n2(y1) so that the 201 ≤ n2(y1) ≤ 327. As a result,

A(y1, ξ1) is different from the originally planned one, but in light of the findings in this section, we

conclude that this change has little effect on the design characteristics (power and expected sample

size) of the design.

We now further summarize some general findings describing how these components affect the

resulting design. Each “response surface” is complex and in addition there are 11 response variables

(5 for R1, 3 for R2 and 3 for power). For each response variable, at a particular combination of f ,

α1 and β1, there are 75 combinations of A0, A1 and ξ1. Because the variation due to A0, A1 and

ξ1 is found insignificant, we use the median of these 75 responses as the score for each of the 27

combinations of f , α1 and β1. For each of the 11 response variables, the rank of these 27 scores is

used to assess the effect of f , α1 and β1. For R1 and for R2, a smaller value is more preferable, and

the rank is given in ascending order; for the power, a larger value is more preferable, and the rank
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is given in descending order. In other words, an ideal combination would have the rank of 1 for all

11 outputs.

Generally speaking, a small α1 and a large β1 seem to perform well. The best overall combination

is f = .5, α1 = .01, β1 = .08. This combination ranks 5th or better in 8 of 11 responses. The second

best is f = .75, α1 = .01, β1 = .08. This ranks 5th or better in 7 responses. The combination f = .3,

α1 = .01, β1 = .08 gives the best power at all three intermediate points, but the sample size for this

combination, especially ξ near ξ1, is among the worst.

It seems that as β1 increases, the power increases, but so does the sample size. And as α1

increases, the power and the sample size tend to decrease. However, the effect of α1 is less clear than

the effect of β1. As seen in Table 2.7, the interaction effect between f and α1 is fairy high. A small f

generally gives very high power but the sample size is also large. It should also be noted that when

f is large, there are very small differences in the performance characteristics for different choices of

α1 and β1.

In conclusion, an intermediate to large f appears to be preferred to a small one. And a small

to intermediate α1 and an intermediate to large β1 are preferred. Although A(y1, ξ0) and A(y1, ξ1)

are found to have much smaller effect than α1, β1 and f , we did, for completeness, examine the

effects of the A-functions in this study. One notable fact is that the combination of Aflat(y1, ξ0) and

Aflat(y1, ξ1) performed much worse than any other combination of A-functions.

2.6 Discussion

In this chapter, we provided a framework to facilitate the design of two-stage adaptive proce-

dures. This framework enables one to specify certain design components so as to construct a design

which satisfies specific criteria with respect to unconditional Type I error rate, power and expected

and maximum sample size.

For proper design of a two-stage adaptive procedure, the study protocol should clearly state

all the actions to be taken at the end of Stage I. Some papers allow in an adaptive design for the

clinical trial sponsor to choose the conditional power and the sample size of Stage II after observing

y1. From our perspective (and others, e.g., Liu et.al (2002)), in order to define the power function

properly, these Stage II components need to be specified for all values of y1 at the beginning of the

trial.

The monotonicity of the power function of two-stage adaptive procedures appears to be often

overlooked, but without this property the Type I errors rate need not be defined by the powers at the

boundary of the null hypothesis. By specifying a nondecreasing A(y1, ξ1) and nonincreasing n2(y1),
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we can guarantee that the power function increases monotonically up to ξ1 and never goes below the

power at ξ1 when the alternative is greater than ξ1.

Having this framework enables us to compare the effects of various design components. Our

computation experiment shows that in constructing a two-stage adaptive design, Stage I specification

components, α1, β1 and n1 are relatively more important than the conditional power functions for

Stage II despite the fact that the literature pays a fair amount of attention to the choice of conditional

power functions. Our result suggests that the shape of the conditional power functions matters

relatively little in determining design characteristics of a two-stage adaptive procedure.
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Chapter 3

Practical Considerations For Two-Stage
Adaptive Procedure

3.1 Introduction

In this chapter we present two important extensions of the framework for two-stage adaptive

procedures developed in the previous chapter. In the construction of the framework, two restrictive

assumptions have been made, namely equal sample sizes from both groups and known population

variances. These assumptions served to make the development of the framework simple and straight-

forward. However, to be useful in practice, the framework should be able to handle those situations

in which the assumptions of equal sample sizes and known variances cannot be made.

We first extend the framework to the case where the sample sizes from the two groups are not

equal. It is sometimes advantageous to plan a two-stage adaptive design with unequal sample sizes

from the control and treatment groups because of differences in the availability of observations from

each group. Unequal sample sizes also result from missing observations. In Section 3.2.1, we provide

a method for determining the sample sizes for a single-stage conventional study when the assumptions

of balanced design and equal population variances cannot be made. Then, in Section 3.2.2, we show

how to build a two-stage adaptive procedure with unbalanced sample sizes. Section 3.2.3 shows how

to handle missing observations in Stage I, and Section 3.2.4 deals with missing observations in Stage

II. Finally, Section 3.2.5 presents an example in which the techniques from the previous sections are

utilized. We consider only those situations in which observations are missing completely at random.

In treating missing observations, we still make the assumption of known population variances.

Another important practical extension is to unknown population variance, which is addressed in

Section 3.3. In the construction of the original framework in Chapter 2, it was assumed that the two

underlying populations were normally distributed with known variances, σ2
t for the treatment group

and σ2
c for the control group. In this extension of the framework, we do assume that σ2

t = σ2
c ≡ σ2,

but we do not assume that the common variance, σ2, is known. First we present a brief motivation
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for using our framework. Several papers [e.g., Wittes and Brittain (1990) and Zucker, et.al. (1999)]

suggest that we should break the blind to estimate the population variance, σ2, without obtaining an

estimate of the population means. In Section 3.3.1, we argue against this idea of “partially breaking

the blind.” In Section 3.3.2, we give a justification for not using the variance estimate from the

combined-stage data. We consider only a variance estimate from a single stage, either Stage I or

Stage II, in our framework. We show that if the sample size from one stage is moderately large, a

variance estimate from this stage is almost as good as a variance estimate utilizing the data from

both stages. The treatment of unknown variances is divided into two sections. First in Section 3.3.3,

we suppose that the Stage I sample sizes, n1t and n1c, are large enough to treat s21p, the pooled

sample variance from Stage I observations, as an accurate estimate of σ2. An example is presented

in Section 3.2.5. Then in Section 3.3.5, we discuss designs with small Stage I sample sizes.

3.2 Unequal Sample Sizes

3.2.1 Sample Sizes For One-Stage Conventional Study

When determining the Stage I sample size for a two-stage adaptive design, we may use the one-

stage conventional design’s sample size as a guide. When the sample sizes from the treatment and

control groups are allowed to be different and σ2
t and σ2

c are known but unequal, obtaining sample

sizes that yield specific α and β is not straightforward even for the simple single-stage conventional

study. In this section, we give a general form of the sample sizes for the single-stage design, Nt and

Nc, and also derive the optimal sample sizes that yield the minimum total sample size.

As in Chapter 2, we suppose independent sampling from two normal populations with unknown

means µt and µc and known variance σ2
t and σ2

c , respectively, as below.

Xt ∼ Normal
(
µt, σ

2
t

)
,

Xc ∼ Normal
(
µc, σ

2
c

)
.

(3.2.1)

Consider testing the following hypotheses:

H0 : µt − µc ≤ 0

H1 : µt − µc > 0.

The sample sizes Nt and Nc are determined so that the Type I error rate is α and the Type II error

rate is β at the alternative, µt − µc = ∆1. First we derive a general form for Nt and Nc, followed by

a discussion of the optimal sample sizes. We have

X̄t − X̄c ∼ Normal
(
µt − µc,

σ2
t

Nt
+
σ2

c

Nc

)
. (3.2.2)
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Let λ =
Nc

Nt
. We can then represent the variance in (3.2.2) as

σ2
t

Nt
+
σ2

c

Nc
=

2A2

M
, (3.2.3)

where A =
√

(λσ2
t + σ2

c )/2 and M = Nc. We consider A as a “variance component” and M as a

“sample size component.” In order to have α and β as specified, we need

M = 2A2W, (3.2.4)

where W = (zα + zβ)2/∆2
1. Using (3.2.3) and (3.2.4), we obtain

1
W

=
2A2

M
=
λσ2

t

Nc
+
σ2

c

Nc
=

1
Nc

(λσ2
t + σ2

c ),

which leads to

Nc = W
(
λσ2

t + σ2
c

)
. (3.2.5)

Substituting λ = Nc/Nt and solving for Nc, we get

Nc =
Ntσ

2
cW

Nt − σ2
tW

. (3.2.6)

We can solve (3.2.6) for Nt to get

Nt =
Ncσ

2
tW

Nc − σ2
cW

. (3.2.7)

From (3.2.6) and (3.2.7), it is clear that Nc and Nt must be at least as large as σ2
cW and σ2

tW ,

respectively. We can use any Nt and Nc as long as they satisfy (3.2.6) or equivalently (3.2.7).

Now, we discuss the minimum total sample size. Let Ns = Nt +Nc. We can write Ns as follows:

Ns =
(

1
λ

+ 1
)
Nc =

(
1
λ

+ 1
)
W
(
λσ2

t + σ2
)
. (3.2.8)

To obtain the minimum value of Ns, we differentiate (3.2.8) with respect to λ to get

∂Ns

∂λ
=
(
− 1
λ2

)
W (λσ2

t + σ2
c ) + σ2

tW

(
1
λ

+ 1
)
. (3.2.9)

Setting (3.2.9) equal to 0 and solving for λ, we get

λopt =
σc

σt
. (3.2.10)

And ∂2Ns/∂λ
2 evaluated at λopt is greater than 0, so (3.2.10) gives the minimum value of Ns.
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Substituting (3.2.10) into (3.2.8) and (3.2.5) and because Nt = Nc/λ, we find that the optimal

sample sizes, Nopt
c and Nopt

t that make the minimum total sample size, Nopt
b , are

Nopt
c = σc(σt + σc)W,

Nopt
t = σt(σt + σc)W.

And

Nopt
s = (σt + σc)2W.

3.2.2 Planned Unequal Sample Sizes

As in Chapter 2, we assume that the underlying distributions for the treatment and control

groups are (3.2.1). And let n1t and n1c be the planned sample sizes of Stage I. Then the distributions

of the sample means for Stage I are as follows :

X̄1t ∼ Normal
(
µt,

σ2
t

n1t

)
,

X̄1c ∼ Normal
(
µc,

σ2
c

n1c

)
.

Hence,

X̄1t − X̄1c ∼ Normal
(
µt − µc,

σ2
t

n1t
+
σ2

c

n1c

)
, (3.2.11)

Suppose that the ratio of the sample sizes from the treatment and control group, λ1 = n1c/n1t is

given. As shown in Section 3.2.1, λ1 = σc/σt is a reasonable choice, but practically, λ1 may be

determined by outside factors such as availability and cost of the observations from each group. This

ratio could be different in each stage, so we let λ1 and λ2 be the ratios of the sample sizes in Stage

I and Stage II, respectively. Both λ1 and λ2 need to be determined prior to the start of Stage I.

In order to denote the variance of X̄1t − X̄1c and X̄2t − X̄2c in general, we define the following

function:

V (θ2
1, θ

2
2, n, λ) =

λθ2
1 + θ2

2

n
.

Note that the variance of (3.2.11) is V (σ2
t , σ

2
c , n1c, λ1). In order to put the current formulation into

the formulation of Chapter 2, we let:

V (θ2
1, θ

2
2, n, λ) =

2[a(θ2
1, θ

2
2, λ)]2

n
,

42



where a(θ2
1, θ

2
2, λ) =

√
(λθ2

1 + θ2
2)/2 . To simplify the notation, let a1 = a(σ2

t , σ
2
c , λ1) and m1 = n1c.

As in (2.2.1), we redefine Y1 as follows:

Y1 =
X̄1t − X̄1c√

2 a1

. (3.2.12)

Then the distribution of Y1 in (3.2.12) is

Y1 ∼ Normal
(
ξ•1,

1
m1

)
, (3.2.13)

where ξ•1 is defined as ∆•/
√

2 a1. The first subscript of ξ is associated with ∆ and the second

subscript is associated with a. For example, ξ11 = ∆1/
√

2 a1.

Conceptually, a2
1 is a linear combination of σ2

t and σ2
c , and m1 serves as a new “sample size” for

Stage I. Some special cases should be noted.

1. If n1t = n1c ≡ n1, then let a1 = a(σ2
t , σ

2
c , 1) =

√
(σ2

t + σ2
c )/2 and m1 = n1.

2. If σ2
t = σ2

c ≡ σ2, then let a1 = a(σ2, σ2, λ1) =
√
σ2(1 + λ1)/2 .

3. If σ2
t = σ2

c ≡ σ2 and n1t = n1c ≡ n1, then let a1 = a(σ2, σ2, 1) = σ and m1 = n1.

The original formulation of Chapter 2 is the special case 3 above. For planning Stage I, we can use

the method of Chapter 2 with σ2 and n1 replaced by a2
1 and m1, respectively. The actual sample

sizes are n1t = m1/λ1 and n1c = m1.

For Stage II, let

m2(y1) = n2c(y1).

And define Y2, similarly to (2.2.3), as follows:

Y2 =
X̄2t − X̄2c√

2 a2

, (3.2.14)

where a2 = a(σ2
t , σ

2
c , λ2). The distribution of Y2 given that Y1 = y1 is Normal (ξ•2, 1/m2(y1)) where

ξ•2 is defined as ∆•/
√

2 a2.

The method of Chapter 2 is again applicable with n2(y1) replaced by m2(y1). The actual sample

sizes from both groups are then calculated as n2t(y1) = m2(y1)/λ2 and n2c = m2(y1). There is a small

additional complexity when λ1 6= λ2, (unless ∆• = 0) because then ξ•1 6= ξ•2. When specifying Stage

I components, we use ξ•1. For example, α1 = 1−Φ
[√
m1 (k2 − ξ01)

]
. And for Stage II components,

we use ξ•2. For example, A(y1, ξ02) = 1 − Φ
[√

m2(y1) (w(y1)− ξ02

]
. When λ ≡ λ1 = λ2, the

second subscript on the ξ’s introduced in this section can be omitted. Letting λ ≡ λ1 = λ2 simplifies

notation and computation without losing much generality, therefore, in the following sections, we

assume that λ ≡ λ1 = λ2.
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3.2.3 Missing Observations In Stage I

In this section and the next we consider situations where observations are missing completely

at random. We assume that the population variances, σ2
t and σ2

c , are known.

Suppose that sample sizes of n1t and n1c from the treatment and control groups are planned for

Stage I and that some observations are missing completely at random. Let n′1t and n′1c be the actual

number of observations. While n′1t and n′1c are random variables, their distributions are assumed not

to depend on any parameters. Hence, we can treat them as constants (conditioned on their observed

values). Let λ = n1c/n1t. With the change of sample sizes, λ also changes. Let λ′1 = n′1c/n
′
1t. Let

Y ′
1 be defined like Y1 in (3.2.12):

Y ′
1 =

X̄1t − X̄1c√
2 a

, (3.2.15)

where a = a(σ2
t , σ

2
c , λ) =

√
(λσ2

t + σ2
c )/2 . The distribution of Y ′

1 is as follows:

Y ′
1 ∼ Normal

(
ξ,

1
m′

1

)
. (3.2.16)

The new “sample size,” m′
1, satisfies the following:

2a2

m′
1

=
n′1cσ

2
t + n′1tσ

2
c

n′1tn
′
1c

(3.2.17)

Solving (3.2.17) for m′
1, we get

m′
1 =

n′1tn
′
1c(λσ

2
t + σ2

c )
n′1cσ

2
t + n′1tσ

2
c

= n′1c

λσ2
t + σ2

c

λ′1σ
2
t + σ2

c

. (3.2.18)

Because m′
1 arises due to missing observations, it follows that m1 > m′

1. This can be verified as

follows:

m′
1 = n′1c

(n1c/n1t)σ2
t + σ2

c

(n′1c/n
′
1t)σ

2
t + σ2

c

= n1c
σ2

t /n1t + σ2
c/n1c

σ2
t /n

′
1t + σ2

c/n
′
1c

≤ n1c = m1

The inequality is true because n′1t ≤ n1t and n′1c ≤ n1c with at least one strict inequality holding.

The equality, m′
1 = m1, only holds when there are no missing observations.

Obviously, the distribution of Y ′
1 is different from the distribution of the original Y1. The

relationship between Y1 and Y ′
1 is,

Y ′
1 =

√
m1√
m′

1

(Y1 − ξ) + ξ. (3.2.19)
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Before Stage I, k1, k2 are calculated so that α1 and β1 are the Stage I error probabilities based

on the distribution of Y1. When there are missing observations we handle this by modifying k1 and

k2 to reflect the distribution of Y ′
1 . We note that modifying k1 and k2 is not the only way to respond

to the change of sample size in Stage I. For example, we could keep the same k1 and k2 and calculate

new α1 and β1, and change A(y1, ξ0) to keep the overall α at the targeted level. However, we feel

that to change the critical values, k1 and k2, rather than α1 and β1, is a simpler way to deal with

missing observations. Also a potential problem with keeping the original k1 and k2 is that the actual

Stage I error probabilities may exceed the targeted overall error probabilities.

Recall that k1 is determined in order to set β1, which depends on the distribution under the

original alternative, and k2 determines α1, which depends on the null distribution. Thus ξ in (3.2.19)

is ξ1 for the transformation of k1, and ξ0 for the transformation of k2:

k′1 =
√
m1√
m′

1

(k1 − ξ1) + ξ1,

k′2 =
√
m1√
m′

1

(k2 − ξ0) + ξ0.

(3.2.20)

By these transformations, the Stage I error probabilities, α1 and β1, are maintained at the targeted

values.

When k1 and k2 are modified, the Stage II components need to be modified to keep the Type

I error rate at α and the power at 1 − β. To preserve the integrity of the adaptive procedure, one

needs to describe in the protocol how to modify the design of Stage II at the end of Stage I. Let

A′(y′1, ξ) be the new conditional power function at ξ, and let m′
2(y

′
1) be the new Stage II sample size

function and let w′(y′2) be the new critical value function.

We first establish the following fact with regards to the ordering of k1 and k′1 and k2 and k′2.

We assume that k1 6= −∞ and k2 6= ∞.

Fact 3.2.1. When there are missing observations in Stage I, k′1 < k1 and k2 < k′2.

The proof is straightforward from the facts that follow from (3.2.20), that is,
√
m′

1 (k′1 − ξ1) =
√
m1 (k1 − ξ1) and k1 < ξ1, k′1 < ξ1;

√
m′

1 (k′2 − ξ0) =
√
m1 (k2 − ξ0) and k2 > ξ0, k′2 > ξ0. Thus, the

continuation region is extended when m′
1 < m1.

There are numerous ways to modify the Stage II specification components, but we present one

straightforward approach. Let A′(y′1, ξ0) have the following forms:

A′(y′1, ξ0) =


θ0A(k1, ξ0) if k′1 < y′1 ≤ k1,

θ0A(y′1, ξ0) if k1 < y′1 ≤ k2,

θ0A(k2, ξ0) if k2 < y′1 ≤ k′2.

(3.2.21)
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A′(y′1, ξ0) is an extension of A(y1, ξ0) from the domain (k1, k2 ] to the domain (k′1, k
′
2 ] through

rescaling (by θ0) over (k1,k2], and a constant extension beyond. The value θ0 is chosen to adjust

A(y1, ξ0) so that the Type I error rate is α. In addition, let m′
2(y

′
1) have the following form:

m′
2(y

′
1) =


m2(k1) + η if k′1 < y′1 ≤ k1,

m2(y′1) + η if k1 < y′1 ≤ k2,

m2(k2) + η if k2 < y′1 ≤ k′2,

(3.2.22)

where η is a non-negative number. The new “sample size,” m′
2(y

′
1), is a constant extension to the

broader domain (k′1, k
′
2 ] and an upward shift by some constant, η. Given (3.2.21) and (3.2.22), we

can obtain A′(y′1, ξ1) and w′(y′2) through the relationships that these four components must satisfy.

We can adjust η in (3.2.22) so that the resulting A′(y′1, ξ1) satisfies the condition that the power is

1− β at ∆1:

ρ2 =
∫ k′

2

k′
1

A′(y′1, ξ1)g
′
ξ1(y

′
1) dy

′
1, (3.2.23)

where g′ξ1(y
′
1) is the pdf of Normal (ξ1, 1/m′

1). With this approach, we can also control the maximum

Stage II sample size by introducing an upper bound for (3.2.22). It is possible that the power 1− β

is not attainable with a limit on the Stage II sample size. If so, we then take the maximum number

of observations allowed, regardless of y′1.

In this particular method, we choose A′(y′1, ξ0) and m′
2(y

′
1) to be the two specifying components

of Stage II. One could develop similar procedures for specifying any two components among A′(y′1, ξ0),

A′(y′1, ξ1), m
′
2(y

′
1) and w′(y′2). However, we feel that A′(y′1, ξ0) and m′

2(y
′
1) are important because

they give the sponsor direct control of the Type I error rate and the sample size. As in Stage I, the

actual sample sizes are obtained from m′
2(y

′
1) as n′2t(y

′
1) = m′

2(y
′
1)/λ2 and n′2c(y

′
1) = m′

2(y
′
1). With

the approach described above, the form of all the elements of Stage II can be completely determined

for any y′1.

3.2.4 Missing Observations In Stage II

Now suppose further that some observations in Stage II are missing completely at random. We

illustrate the Stage II procedure assuming that there are no missing observations in Stage I. However,

if there are some missing observations in Stage I, by applying the method described in Section 3.2.3

we are essentially in the situation of no missing observations in Stage I. Suppose that we observe, in

Stage I, Y1 = t, where k1 < t ≤ k2. Then we plan to use ν2 ≡ m2(t) for the Stage II “sample size.”

For each group, the planned sample sizes are ν2t = ν2/λ2 and ν2c = ν2. Let ν ′2t and ν ′2c be the actual

sample sizes of Stage II, and let λ′2 = ν ′2c/ν
′
2t. Let Y ′

2 be defined like Y2 in (3.2.14) as follows:

Y ′
2 =

X̄2t − X̄2c√
2 a

,
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where a = a(σ2
t , σ

2
c , λ) =

√
(λσ2

t + σ2
c )/2 . Given that Y1 = t and given the actual sample sizes of

ν ′2t and ν ′2c, the distribution of Y ′
2 is:

Y ′
2 ∼ Normal

(
ξ,

1
ν ′2

)
,

where the new “sample size,” ν ′2, satisfies the following:

2a2

ν ′2
=
ν ′2cσ

2
t + ν ′2tσ

2
c

ν ′2tν
′
2c

. (3.2.24)

Solving (3.2.24) for ν ′2, we get

ν ′2 = ν ′2c

λσ2
t + σ2

c

λ′2σ
2
t + σ2

c

. (3.2.25)

An argument similar to that used in Section 3.2.3 to show that m′
1 < m1, it can be shown that

ν ′2 < ν2 when there are missing observations in Stage II.

The Type I error rate of the procedure is protected simply by keeping A(y1, ξ0) unchanged

because the power function evaluated at ξ0 does not depend on the Stage II sample size. The sample

size of Stage II cannot be changed because a sample had already been taken. By Fact 2.2.2, changing

the “sample size” from the planned ν2 to the actual ν ′2 while keeping A(y1, ξ0) unchanged will alter

A(t, ξ∗) for all ξ∗ 6= ξ0. More precisely, by (2.2.17), we can write

zA(t, ξ0) = zA(t, ξ∗) +
√
ν2 (ξ∗ − ξ0).

Therefore,

A′(t, ξ∗) = 1− Φ
[
zA(t, ξ0) −

√
ν ′2 (ξ∗ − ξ0)

]
= 1− Φ

[
zA(t, ξ∗) +

√
ν2 (ξ∗ − ξ0)−

√
ν ′2 (ξ∗ − ξ0)

]
= 1− Φ

[
zA(t, ξ∗) + (

√
ν2 −

√
ν ′2 )(ξ∗ − ξ0)

]
. (3.2.26)

Similarly, because zA(t, ξ0) =
√
ν2 (w(t)− ξ0),

w′(t) =
zA(t, ξ0)√

ν ′2
+ ξ0

=
√
ν2 (w(t)− ξ0)√

ν ′2
+ ξ0

=
√
ν2

ν ′2
w(t) +

(
1−

√
ν2

ν ′2

)
ξ0. (3.2.27)

From (3.2.26), when there are missing observations in Stage II and hence ν ′2 < ν2, A′(t, ξ∗) < A(t, ξ∗)

for all ξ∗ > ξ0. In other words, the conditional power at ξ∗ > ξ0 is smaller than what was originally
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planned. The conditional Type I error rate, A′(t, ξ0) is equal to A(t, ξ0), and for ξ < ξ0, the

conditional power increases when ν ′2 < ν2, but even so, for all ξ < ξ0, we have A′(t, ξ) < A(t, ξ0).

Therefore, the Type I error rate for a composite null hypothesis is protected at α.

While we do not endorse the concept of post-hoc power, there may be circumstances when

it needs to be computed for an adaptive test. In order to calculate honest post-hoc power, one

theoretically needs to know what the “missingness” would have been for y1 values other than the one

observed. The reason, as noted in Chapter 2, is that in order to calculate the overall unconditional

power, one needs to specify the Stage II sample size for all values of y1 ∈ (k1, k2]. We present two

different reasonable approaches to obtain the Stage II sample size as a function of y1 ∈ (k1, k2] when

there is missingness in Stage II.

First, we could assume that the number of missing observations would be proportional to the

intended sample size regardless of the value of y1. We do not consider the proportion of missing

observations within each of the treatment and control groups. Instead of using v′2t/v2t or v′2c/v2c, we

use ν ′2/ν2 as the ratio of number of non-missing observations to intended number of observations.

With this assumption, we can write the new Stage II sample size function as m∗
2(y1) =

ν ′2
ν2
m2(y1).

Alternatively, the Stage II sample size may be truncated to ν ′2. In this case we assume that the new

sample size function, m∗
2(y1), is,

m∗
2(y1) =

{
m2(y1) if m2(y1) < ν ′2,
ν ′2 otherwise.

No matter which of the two approaches is used to obtain m∗
2(y1), we can write, by Fact 2.2.2, the

Stage II critical value, w′(y1), and the conditional power function, A′(y1, ξ) at any ξ, as functions of

m∗
2(y1) and A(y1, ξ0) as follows.

w′(y1) =
zA(y1,ξ0)√
m∗

2(y1)
+ ξ0,

A′(y1, ξ) = 1− Φ
[
zA(y1,ξ0) −

√
m∗

2(y1) (ξ − ξ0)
]
. (3.2.28)

Because the conditional power at ξ 6= ξ0 is different from what was planned, the unconditional

power at the original alternative, ξ1, is no longer 1− β. We can calculate the post-hoc power of this

procedure at any fixed ξ by

1− Φ [
√
m1 (k2 − ξ)] +

∫ k2

k1

A′(y1, ξ)gξ(y1) dy1. (3.2.29)

We note that this post-hoc power approach is very dependent on the assumption one makes

about the unobserved values of y1. For instance, if one were to make the unrealistic assumption that

for all values other than the observed y1, the sample size did not change, then the post-hoc power

would be the same as the planned power because A(y1, ξ1) = A′(y1, ξ1) almost everywhere.
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3.2.5 Example

In this section, we present an example that illustrates the techniques discussed in Sections 3.2.2,

3.2.3 and 3.2.4. Suppose that the hypotheses of interest are H0 : µt − µc ≤ 0 and H1 : µt − µc > 0.

The error probabilities are set to be α = .025, and β = .10 at µt − µc = ∆1 = 1. And suppose

that the known population variances are σ2
t = 52 and σ2

c = 32. Further suppose that the ideal

ratio of control to treatment sample sizes is 1 : 2, i.e., λ = 1/2. Given this λ, we can calculate

a =
√

(25/2 + 9)/2 = 3.279 and ξ1 = 1/(
√

2 × 3.279) = .2157. Note that ξ0 = 0.

First, we find the optimal sample sizes for the one-stage conventional procedure. As in Section

3.2.1, let W = (zα + zβ)2/∆2
1. For this example, we have W = (z.025 + z.10)2/12 = (1.96 +1.28)2/1 =

10.5. Thus, by (3.2.7), we can use any Nt and Nc as long as they satisfy

Nt =
Nc(25)(10.5)
Nc − (9)(10.5)

=
262.5Nc

Nc − 94.5
.

In order to minimize the total sample size, the ratio of sample sizes, Nc/Nt needs to be λopt =

σc/σt = 3/5. The sample sizes that make the total sample size minimum are

Nopt
t = σt(σt + σc)W = 5(5 + 3)(10.5) = 420,

Nopt
c = σc(σt + σc)W = 3(5 + 3)(10.5) = 252.

A single-stage conventional study’s sample sizes are plotted as a function of λ in Figure 3.1. As

shown before, the minimum total sample size occurs at λopt = 3/5, and it is 420 + 252 = 672. As

the plot shows, the necessary total sample size decreases sharply for λ in (.1, .4) and it is fairly flat

for λ in (.4, .8). Therefore, even though the given restriction, λ = .5 does not give the most effective

sampling plan, it is very close to the ideal situation, λ = .6.

For λ = .5, we can calculate the one-stage conventional study’s sample sizes using (3.2.5), and

they are Nc = 10.5(.5 × 52 + 32) ≈ 226 and Nt = 226/.5 = 452. Let the maximum sample sizes

allowed be a 30% increase from Nt and Nc. The restrictions are Nmax
t = Nt × 1.3 = 588 and

Nmax
c = Nc × 1.3 = 294.

Suppose that 75% of Nt and Nc are taken in Stage I. So we have n1t = 340 and n1c = 170.

Further suppose that the Stage I specification components, in addition to m1 = n1c = 170 are

α1 = .005 and β1 = .05. With these three specification components, the remaining two can be

calculated.

k1 = ξ1 −
zβ1√
m1

= .2157− 1.645/
√

170 = .0895,

k2 = ξ0 +
zα1√
m1

= 0 + 2.576/
√

170 = .1976.
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Figure 3.1: Total sample size for one-stage conventional procedure as a function of λ.

Thus, the five specification components for this particular Stage I are {α1 = .005, β1 = .05, m1 = 170,

k1 = .0895, k2 = .1976 }.

For Stage II specification components, we might choose the following A functions.

A(y1, ξ0) = .08 + 49.8(y1 − k1)2, (3.2.30)

A(y1, ξ1) = .80 + 11.8(y1 − k1)2.

These two functions give the correct Type I error rate and the power at ∆1, and they are shown in

Figure 3.2. The resulting sample size function is also displayed in Figure 3.3. It is decreasing in y1

in the entire range of y1 in (k1, k2] and thus satisfies the condition of Lemma 2.3.2. The maximum

Stage II sample sizes are n2t(k1) = 218 and n2c(k1) = 109 resulting in the maximum total sample

sizes of 340 + 218 = 558 and 170 + 109 = 279 for the treatment and control groups, respectively.

These values are below the maximum allowed sample sizes of 588 and 294. Table 3.1 shows Stage I

probabilities, power and expected sample sizes for various values of ∆.

Now we specify how to handle missing observations in Stage I and in Stage II. If there are any

missing observations in Stage I, the critical values, k1 and k2, are transformed using (3.2.20) to k′1

and k′2 in order to protect α1 and β1. With this change of Stage I critical values, Stage II specification

components need to be modified. We use the transformation of A(y1, ξ0) as described in (3.2.21)
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Figure 3.2: Example of Section 3.2.5: A(y1, ξ0) and A(y1, ξ1) for the original design.

and the transformation of m2(y1) in (3.2.22) to obtain A′(y′1, ξ0) and m′
2(y

′
1). Missing observations

in Stage II are handled by calculating new critical value and conditional power using formulas in

(3.2.27) and (3.2.26).

Suppose that by the end of Stage I, 44 observations are missing at random from the treatment

group, 29 observations are missing at random from the control group. We have n′1t = 296 and

n′1c = 141. In order to keep α1 and β1 as planned, we modify k1 and k2. First we calculate

λ′1 = 141/296 = .4764. From (3.2.18), we get

m′
1 = 141

.5× 52 + 32

.4764× 52 + 32
= 145.0.

And from (3.2.20), the modified Stage I critical values are

k′1 =
√

170√
145.0

(.0895− .2157) + .2157 = .0791,

k′2 =
√

170√
145.0

(.1976) = .2140.

In order to modify A(y1, ξ0) to A′(y′1, ξ0) we need to find the appropriate θ0 in (3.2.21). In order

to do that, we temporary let θ0 = 1, and we find that P[Reject H0 in Stage II ] = .029. Because we

need this probability to be α2 = .025 − .005 = .020, the correct θ is .020/.029 = .6897. And from
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Figure 3.3: Example of Section 3.2.5: Total Sample Sizes for the original design.

(3.2.30), A(k1, ξ0) = .08 and A(k2, ξ0) = .6624, and we have the following result.

A′(y′1, ξ0) =


.6897× .08 if k′1 < y′1 ≤ k1,

.6897A(y′1, ξ0) if k1 < y′1 ≤ k2,

.6897× .6624 if k2 < y′1 ≤ k′2.

Stage II “sample size,” m′
2(y

′
1), is obtained as follows. First we use (3.2.22) with η = 0 to obtain

the general form of m′
2(y

′
1). This m2(y1) is extended by flat lines for y′1 in (k′1, k1) and in (k2, k

′
2).

Then η determines how much upward shift is added to this basic shape. Also note that the maximum

allowed for m′
2(y

′
1) is 294 − 170 = 124. With various η, we have different m′

2(y
′
1) function, and we

can obtain A′(y′1, ξ1) using the connection among the four specification components. We find that

A′(y′1, ξ1) resulting from m′
2(y

′
1) with the choice η = 33 satisfies the unconditional power condition,

ψ(ξ1) =
∫ ∞

−∞
A′(y′1, ξ1)gξ1(y

′
1) dy

′
1 = .90,

where gξ1(y
′
1) is the pdf of Normal (ξ1, 1/m′

1). Thus, we use η = 33. And we also compute, for this

particular η, to find that m′
2(y

′
1) = 124 (maximum allowed) for all y′1 that is smaller than .1170.

Thus,

m′
2(y

′
1) =


124 if k′1 < y′1 ≤ .1170,
m2(y′1) if .1170 < y′1 ≤ k2,

60 if k2 < y′1 ≤ k′2.

(3.2.31)
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Table 3.1: Example of Section 3.2.5: Stage I probabilities, power and expected sample sizes with no
missing observations.

Stage I Stage II Sample Size
∆ Accept Continue Reject Reject Power Control Treatment

0.00 .878 .117 .005 .020 .025 179.8 359.6
0.25 .678 .291 .031 .098 .130 192.2 385.4
0.50 .405 .474 .121 .255 .376 203.7 407.4
0.75 .173 .507 .320 .369 .689 202.5 405.0
1.00 .050 .357 .593 .307 .900 190.5 381.0
1.25 .009 .165 .826 .154 .980 178.5 357.0
The last two columns are expected total sample sizes of 2 stages for the control and

treatment groups.

The number 60 is η+m2(k2). The actual sample sizes are n2t(y′1) = λm′
2(y

′
1) and n2c(y′1) = m′

2(y
′
1).

See Figure 3.4 for the new A functions and Figure 3.5 for the new sample sizes.

Table 3.2: Example of Section 3.2.5: Stage I probabilities, power and expected sample sizes after
accommodating Stage I missing observations.

Stage I Stage II Sample Size
∆ Accept Continue Reject Reject Power Control Treatment

0.00 .830 .165 .005 .020 .025 184.1 368.2
0.25 .619 .354 .027 .101 .128 197.8 395.6
0.50 .364 .535 .101 .275 .376 207.9 415.8
0.75 .159 .576 .265 .424 .689 206.0 412.0
1.00 .050 .442 .508 .392 .900 194.1 388.2
1.25 .011 .241 .748 .231 .979 181.5 363.0
The last two columns are expected total sample sizes of 2 stages for the control and

treatment groups.

Now suppose that we observe, in Stage I, that y′1 = .15. Because k′1 < y′1 < k′2, we move on to

Stage II. From (3.2.31), we find that ν2 = m′
2(.15) = 91. So the actual sample sizes for Stage II are

ν2t = n2t(.15) = 182 and ν2c = n2c(.15) = 91. Moreover, our calculation shows that the Stage II

critical value is w(.15) = .0954.

Then suppose that in Stage II, the numbers of missing observations are 33 from the treatment

group and 18 from the control group, respectively. Then ν ′2t = 149 and ν ′2c = 73, which leads to

λ′2 = 73/149 = .4899. Using (3.2.25), we get

ν ′2 = 73
.5× 52 + 32

.4899× 52 + 32
= 73.9.
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Figure 3.4: Example of Section 3.2.5: A(y1, ξ0) and A(y1, ξ1) after accommodating missing observa-
tions in Stage I.

Using (3.2.26), we can calculate the conditional power at any ξ. At the original alternative, ξ1,

A′(.15, .2157) = 1− Φ
[
zA(.15, .2157) + (

√
91 −

√
73.9 )(.2157− 0)

]
= 1− Φ [z.8650 + .9429× .2157]

= 1− Φ [−1.1029 + .2034] = 1− Φ [−.8995] = .8158.

The conditional Type I error rate does not change from

A(.15, 0) = .1738.

Moreover, using (3.2.27), we can calculate the new critical value as follows:

w′(.15) =

√
91

73.9
w(.15) +

(
1−

√
91

76.7

)
× 0

=
√

1.231 × 0.0954 = .1059.

So we would reject H0 in Stage II if y′2 > .1059.

We now calculate the post-hoc power at the original alternative, ξ1, using the two assumptions

on missingness discussed in Section 3.2.4. The first of the assumptions is that ν ′2/ν2 stays constant
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Figure 3.5: Example of Section 3.2.5: Total Sample Sizes after accommodating missing observations
in Stage I.

for all values of m′
2(y

′
1). For this example, ν2 = 91 and ν ′2 = 73.9, so ν ′2/ν2 = .81. And we can write

m∗
2(y

′
1) = .81m′

2(y
′
1). With this m∗

2(y
′
1), we can obtain A′(y′1, ξ1) using (3.2.28), and further calculate

the post-hoc power using (3.2.29). At ξ = ξ1, P[Reject in Stage I]= .508. Post-hoc power for Stage

II is .382 giving the total post-hoc power of .890. The second of the assumptions is that the sample

size is truncated to the observed ν ′2 = 73.9. Our calculation shows that at ξ = ξ1, post-hoc power

for Stage II is .383, therefore, the total post-hoc power is .508 + .383 = .891 under this assumption.

We summarize the sample sizes for this example. The one-stage conventional study’s sample

sizes with the same α, β and λ are Nt = 452 and Nc = 226. For this two-stage adaptive procedure,

we set the maximum sample sizes to be Nmax
t = 588 and Nmax

c = 294 which are 30% increase from

Nt and Nc. Then in Stage I, we take 75% of Nt and Nc giving n1t = 340 and n1c = 170. Stage II

sample sizes are designed so that the maxima are below Nmax
t and Nmax

c . As shown in Figure 3.3,

the maxima are controlled at 558 for the treatment group and 279 for the control group. In Stage I,

44 observations from the treatment group and 29 observations from the control group are missing.

They account for 13% and 17% of the total number of observations within each group. Then the

Stage II sample sizes are modified as shown in Figure 3.5. By this modification, the unconditional

power of the procedure at the original alternative is still .90. For y′1 = .15, the actual sample size
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for Stage II are calculated to be ν2t = 182 and ν2c = 91 from each group. In Stage II, 33 from the

treatment group and 18 from the control group are missing. They account for 18% and 20% of the

planned sample sizes. By adjusting the critical value, the Type I error is controlled. We also showed

that the post-hoc power is .890 and .891 under the two reasonable assumptions on missingness.

3.3 Unknown Variances

Now we consider a more realistic situation where the underlying population variances are un-

known. It is desirable to have reasonable estimates of the true variances, σ2
t and σ2

c , at the beginning

of the study, but it is often impossible to obtain good estimates. The basic idea of the approach

we propose for an adaptive design is to update the estimates of the population variances at the end

of Stage I, when n1t and n1c observations from respective groups are available to estimate the true

variances. Additionally, when the Stage I sample sizes are not large enough to estimate the variances

accurately using Stage I observations alone, the estimates of the variances are updated at the end of

Stage II.

We introduce the following notation. Let σ2
0t and σ2

0c be the pre-study estimates. Let s21t and

s21c be the estimates using the Stage I observations, as below.

s21t =

∑n1t
j=1(x1tj − x̄1t•)2

n1t − 1
, (3.3.32)

s21c =

∑n1c
j=1(x1cj − x̄1c•)2

n1c − 1
, (3.3.33)

where x1tj is the jth observation from the treatment group in Stage I, and x1cj is the jth observation

from the control group in Stage I, and x̄1t• and x̄1c• are the Stage I means for the treatment and

control group, respectively. Similarly, let s22t and s22c be the variance estimates using (only) the Stage

II observations. Then, given n2t and n2c,

s22t =

∑n2t
j=1(x2tj − x̄2t•)2

n2t − 1
, (3.3.34)

s22c =

∑n2c
j=1(x2cj − x̄2c•)2

n2c − 1
. (3.3.35)

We use a similar method to the one we developed for unequal sample sizes. In (3.2.15), we use

a which acts like a new standard deviation for the statistic Y1. For the argument in this section,

we make an additional assumption of equal population variances; let σ2 ≡ σ2
t = σ2

c . By assuming

that the underlying populations’ variances are equal, we do not lose much generality. The difference

between equal variance and unequal variance occurs in the definition of a and not directly in Y1.

So the extension of the method in this section to the situation in which σ2
t 6= σ2

c is straightforward.
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The difference between these two approaches (with and without the equal population variances

assumption) is essentially the difference in degrees of freedom in the estimators of the population

variance. With the equal variances assumption, we use the pooled sample variance to estimate σ2.

Using Stage I data,

s21p =
(n1t − 1)s21t + (n1c − 1)s21c

n1t + n1c − 2
. (3.3.36)

And from the Stage II data,

s22p =
(n2t − 1)s22t + (n2c − 1)s22c

n2t + n2c − 2
. (3.3.37)

3.3.1 Motivation

An intuitive way to handle the unknown variances is to redesign Stage II using the new estimate,

s21p, as the true variance. Before revealing the Stage I means, x̄1t• and x̄1c•, we would calculate s21p

and redesign Stage II. Theoretically, it is possible to do so and still maintain the integrity of the

study. Because s21p is independent of x̄1t• and x̄1c• theoretically in this situation, no information

about x̄1t• − x̄1c• is gained by seeing s21p. However, practically, this is not a good solution to the

problem. The variance based on all the observations can be calculated without breaking the blind.

Then, as Liu (2002) argues, if the pooled variance of the two groups is revealed, the squared difference

of the means of the two groups can be calculated from the available information. Thus, “partially

breaking the blind” by revealing only s21p and using it to redesign the trial before seeing x̄1t• and

x̄1c• may jeopardize the integrity of the study due to Liu’s argument that s21p also often in essence

reveals x̄1t• − x̄1c•. In Appendix B, we show in detail how (x̄1t• − x̄1c•)2 can be calculated from s21p

in addition to the overall variance, s21•, without group identity.

Redesigning Stage II after breaking the blind, i.e., after revealing x̄1t•, x̄1c•, s21t, s
2
1c, may not

be done, either. As pointed out in Section 2.2.2, it is necessary to design Stage II sample size and

critical values in the protocol prior to the start of Stage I. Otherwise, we cannot guarantee the Type

I error rate in a rigorous point of view as shown in Liu, et.al. (2002). Stage II needs to be defined in

some measurable way with respect to the Stage I observations prior to the start of the study.

Therefore, even when the population variances are unknown and they have to be estimated

within the study, it is essential that the plan of Stage II be defined prior to the start of Stage I for

all values of s21t and s21c.

3.3.2 Ratio Of Variances

In Section 3.3.3, we propose a procedure in which the pooled estimate of the variance is updated

at the end of Stage I when the sample sizes for Stage I are large. At the end of Stage II, we still use
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the same estimate of the variance from Stage I. We do not use additional information from Stage

II to update the estimate again. Similarly, when the Stage I sample sizes are small and the Stage

II sample sizes are large, we use the variance estimate from Stage II observations only at the end

of Stage II. We do not combine Stage I and Stage II observations in this case, either. It is because

the variance estimate utilizing the data from only one large stage is similar to the variance estimate

utilizing all the data from both stages as shown in Appendix C. When the sample size of one stage

is moderate to large, the loss of information for not combining the data from two stages to estimate

σ2 is negligible. [See Appendix C.]

3.3.3 Designs With A Large Stage I Sample Sizes

Before the study begins, we use a pre-study estimate, σ2
0, of the common population variance

to design a procedure. Moreover, we assume that these estimates are the true variances for each

population. Let λ = n1c/n1t like before, and we define the test statistic Y1 as follows:

Y1 =
X̄1t − X̄1c√

2 a
, (3.3.38)

where

a = a(σ2
0, σ

2
0, λ) =

√
(1 + λ)σ2

0

2
. (3.3.39)

Because we assume that σ2
0 is the true variance, we have the following result for the distribution of

Y1.

Y1 ∼ Normal
(
ξ,

1
m1

)
,

where ξ = ∆/
√

2 a and m1 = n1c. We can use the method described in Section 3.2.2 for “planned

unequal sample sizes” to design a two-stage adaptive procedure with all five specification components

of Stage I and all four specification components of Stage II.

Note that if we do not make the equal variance assumption, then we use the following a in

(3.3.38):

a = a(σ2
0t, σ

2
0c, λ) =

√
λσ2

0t + σ2
0c

2
.

We examine first the effect of misspecifying variance estimates if we do not make any modifi-

cations to the design at the end of Stage I. When the true variance is s21p, the distribution of Y1

is

Y1 ∼ Normal

(
ξ,

1
m1

s21p

σ2
0

)
.
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The variance of Y1 is larger than 1/m1 if s21p > σ2
0. Then consequently, P[Reject H0 in Stage I |H0]

> α1 and P[Accept H0 in Stage I |H1] > β1. As a small example, the following Table 3.3 summarizes

the inflation of α1 when α1 = .01. The inflation of α1, unlike the inflation of β1, is independent

of m1 and σ0; it only depends on the ratio of σ0 and s1p. As can be seen from this example, a

Table 3.3: An example of inflation of α1 as a function of s1p/σ0.
s1p/σ0 0.5 0.75 1 1.25 1.5 1.75 2
p .000 .001 .010 .0314 .0605 .0919 .1224

For this small example, α1 = .01.

p is the probability of rejecting H0 in Stage I under H0.

relatively small increase of s1p from σ0 results in a rather significant increase in α1. On the other

hand, we also notice that a relatively small decrease of s1p results in a significant decrease in α1.

However, naturally, we are mostly concerned with inflation of α1 and α in the case in which σ2
0 < s21p.

Therefore, we present in this section how to modify a design when σ2
0 < s21p.

The most important criterion for the design is the overall Type I error rate, α. It is also desirable

to keep the original power, but the necessary sample size may be enormous when s21p is larger than

σ2
0. In order to avoid an unrealistic solution with practically unattainable sample size, we choose the

maximum sample size to be the next criterion. Let Nmax be the pre-set maximum total sample size

allowed for each group, and let nmax
2 = Nmax − n1. If the original power is still attainable with this

limit, this design controls both Type I and Type II errors. Otherwise, the power of the study will be

less than 1− β.

The unknown variance problem is treated in a similar way as the missing observations problem.

In the current section, Y1 is defined in (3.3.38) which is exactly the same as (3.2.12) except for the

definition of a. Let Y ′
1 be defined like Y1 in (3.3.38) as follows:

Y ′
1 =

X̄1t − X̄1c√
2 a

,

where a = a(σ2
0, σ

2
0, λ) =

√
(1 + λ)σ2

0/2 . The distribution of Y ′
1 is

Y ′
1 ∼ Normal

(
ξ,

1
m′

1

)
, (3.3.40)

where

m′
1 = m1

σ2
0

s21p

. (3.3.41)

We use the notation m′
1 in (3.2.16). Although m′

1 in (3.2.16) and m′
1 in (3.3.41) have different

meanings, we use the same notation because they are both the new “sample size” for Stage I. By
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(3.3.41), it is obvious that m′
1 < m1 if and only if σ2

0 < s21p. Even when the equal population variance

assumption is not made, we can still use (3.3.40) but with

m′
1 = m1

λσ2
0t + σ2

0c

λs21t + s21c

. (3.3.42)

For (3.3.42), the relationship of m′
1 to m1 is more complicated. Using the fact that λ = n1c/n1t, we

can deduce that m′
1 < m1 if and only if s21t < σ2

0t +
n1t

n1c
(σ2

0c − s21c).

With Y ′
1 defined as in (3.3.40), we can apply the same method of redesigning Stage II as the one

for the missing observation in Stage I described in Section 3.2.3. Fact 3.2.1 is easily adapted to the

current situation as follows:

Fact 3.3.1. If s21p > σ2
0 then k′1 < k1 and k2 < k′2. And if s21p < σ2

0 then k′1 > k1 and k2 > k′2.

One difference between the current situation and the missing observations is that we do not always

have m′
1 < m1 in the unknown variances case. It is conceivable that the prestudy estimate, σ2

0 is

a pessimistic one, and thus s21p < σ2
0. As pointed out before, without making any modifications to

the procedure, the Type I and II error rates are both smaller than the planned values if s21p < σ2
0.

However, it is possible to reduce the Stage II sample size by making modifications to the procedure

when s21p < σ2
0. Therefore, although the main discussion is for the case in which σ2

0 < s21p, we also

make some comments for the case in which s21p < σ2
0.

When σ2
0 < s21p and thus m′

1 < m1, we use the new A′(y′1, ξ0) defined in (3.2.21) and the new

m′
2(y

′
1) defined in (3.2.22). When s21p < σ2

0, the continuation region is narrower. Similarly to (3.2.21),

we can let A′(y′1, ξ0) = θ0A(y′1, ξ0) for k′1 < y′1 ≤ k′2. Note that the domain is shortened and the

original A function which is outside of the new domain is cut off. The constant, θ0, for this case is

greater than 1. For the Stage II sample size, m′
2(y

′
1), the constant, η, is now some negative number,

making the modified Stage II sample sizes smaller than the original ones. In the missing observation

case, we use (3.2.23) to calculate an appropriate η. However, for the unknown variance case, we use

a different criteria to find η. A discussion on how to find η will be given later.

Another difference between the unknown variances case and missing observations case is that

even though we assume that s21p is the true variance, it is obviously a random variable. In the missing

observations case, because we assume that observations are missing completely at random we treat

n′1c and n′1t as constants. Because the underlying distributions of X1t and X1c are:

X1t ∼ Normal
(
µt, σ

2
)
,

X1c ∼ Normal
(
µc, σ

2
)
,
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the distribution of s21p is:

s21p ∼
σ2

2(n1t + n1c − 1)
χ2

2(n1t+n1c−1), (3.3.43)

where χ2
p is a chi squared random variable with p degrees of freedom. With this new concept, one

slight modification becomes possible. Instead of using s21p to design the new Stage II, we can find a

pessimistic estimate, s∗21p, which is an upper bound of a confidence interval of σ2 from Stage I. When

treating s21p as a random variable, a concern is what effect this treatment has on the Type I error

rate. However, it does not inflate the Type I error rate. The reason for this is that using the method

described in this section, we can protect the Type I error rate for any value of s21p. To show this, we

define the new concept, the conditional power given s21p, which is denoted by ρ∗(ξ | s21p), as

ρ∗(ξ | s21p) =
∫ ∞

−∞
A′(y′1, ξ)g

′
ξ(y

′
1) dy

′
1,

where g′ξ(y
′
1) is the pdf of Y ′

1 assuming that the true variance is s21p. Thus, this concept is the

conditional power given s21p. We note that for any possible value of s21p, A
′(y′1, ξ0) is obtained so that

ρ∗(ξ0 | s21p) = α. Therefore, regardless of the distribution of s21p, the Type I error rate is always α.

Suppose that the pdf of s21p is h(s21p). Then we have

Type I error rate =
∫ ∞

−∞
ρ∗(ξ0 | s21p)h(s

2
1p) ds

2
1p

= α

∫ ∞

−∞
h(s21p) ds

2
1p = α.

Thus, the unconditional Type I error rate is α.

We shift now our attention to the power at the original alternative, ξ1. The ρ∗(ξ | s21p) for ξ 6= ξ0

has different values for different s21p, and it depends on η through m′
2(y

′
1). The minimum value of

ρ∗(ξ | s21p) for ξ > ξ0 occurs when η = 0 and the maximum occurs when η is large enough so that

m′
2(y

′
1) = mmax

2 for the entire continuation region. We can calculate this range of ρ∗(ξ | s21p) for any

ξ. If ρ is within the range of ρ∗(ξ1 | s21p), then we can find η such that the ρ∗(ξ1 | s21p) is exactly equal

to ρ. On the other hand, if the maximum of ρ∗(ξ1 | s21p) is below ρ, then the conditional power of ρ

is not attainable for the particular s21p.

The unconditional power at the original alternative is less than 1 − β because, for large values

of s21p, ρ
∗(ξ1 | s21p) is less than ρ unless there is essentially no limit to the Stage II sample size. The

unconditional power at an alternative, ξ, depends on the true value of σ2, and given by the form,

Power =
∫ ∞

0
ρ∗(ξ | s21p)h(s

2
1p)ds

2
1p, (3.3.44)

where h(s21p) is the pdf of s21p, and depends on σ2. [See (3.3.43).]
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At the end of Stage II, we do not update the estimate of the variance. The key assumption in

this procedure is that n1 is large enough to treat s21p from Stage I as the truth. Therefore, there is

no need to recalculate the post-hoc power at the end of Stage II when the variance estimate from

the Stage II and the variance estimate utilizing both stages are available.

3.3.4 Example

As an example, consider the following situation. The hypotheses to be tested are H0 : µt−µc ≤ 0

against H1 : µt − µc > 0. We set the error probabilities to be α = .025, and β = .10 at µt − µc =

∆1 = 1. We assume that the underlying populations’ variances are equal, but we do not assume

that the common population variance, σ2, is known. At the beginning of the study, we assume that

the best available estimate for σ2 is σ2
0 = 42, and we design the trial at the start using this σ2

0. We

design a study with λ = .8, i.e., the sample size from the control group is 80% of the sample size

from the treatment group. Given this λ, we can calculate, by (3.3.39), a =
√

1.8× 42/2 = 3.795,

and ξ1 = 1/(
√

2 × 3.795) = .1863. As in the example of Section 3.2.5, W = 10.5. Thus for a

one-stage conventional study, the sample sizes are Nc = W (1 + λ)σ2
0 = 10.5 × 1.8 × 16 = 302 and

Nt = 302/.8 = 378. Suppose that the Stage I sample sizes are 80% of Nt and Nc, i.e., n1t = 302

and n1c = 242. The maximum sample sizes that are to be allowed are set at Nmax
t = 604 and

Nmax
c = 483, which are each 60% increases from Nt and Nc. Further suppose that we set the Stage

I error probabilities to be α1 = .005 and β1 = .05. Then we can calculate Stage I critical values,

k1 = .0806 and k2 = .1656. In summary, this particular Stage I is characterized by the following

components: {α1 = .005, β1 = .05, m1 = 242, k1 = .0806, k2 = .1656}.

For the Stage II specification components, we choose A(y1, ξ0) = .10 + 3.70(y1 − k1) and

A(y1, ξ1) = .8 + .885(y1 − k1). These linear equations satisfy the conditions that α = .025 and

ρ = 1 − β = .90. Using these two A-functions, we can obtain m2(y1) and w(y1) for Stage II. This

A(y1, ξ1) is nondecreasing and m2(y1) is nonincreasing, satisfying the conditions of Lemma 2.3.2. If

σ2 were known to be 42, then the design of the two-stage adaptive clinical trial is complete. We can

calculate the maximum sample size, expected sample size and the power. Assuming that σ2 = 42,

the maximum total sample size for the control group is m1 + m2(k1) = 242 + 130 = 372, and for

the treatment group, it is 372/.8 = 465. Stage I probabilities, the power and the expected sample

sizes are summarized in Table 3.4 for various values of ∆ ∈ (0, 1.25). However, since σ2 is unknown,

before the study begins, we need to address how to modify the study at the end of Stage I to reflect

the observed s21p.

Because Nmax
c = 483, the maximum m′

2(y
′
1) allowed is 483 − 242 = 241. If s1p were 6.0, then

ρ∗(ξ1 | s21p) is .90 if m′
2(y

′
1) = 241 for all y′1 ∈ (k′1, k

′
2). More importantly, this implies that if s1 > 6.0

62



Table 3.4: Example of Section 3.3.4: Stage I probabilities, power and expected sample sizes for the
original design assuming that σ2 = σ2

0 = 42.
Stage I Stage II Sample Size

∆ Accept Continue Reject Reject Power Control Treatment
0.00 .895 .100 .005 .020 .025 251.5 314.4
0.25 .702 .266 .032 .096 .128 266.0 332.5
0.50 .422 .448 .130 .245 .375 279.9 349.9
0.75 .179 .477 .344 .343 .687 279.9 349.9
1.00 .050 .323 .627 .273 .900 266.1 332.6
1.25 .009 .139 .853 .128 .981 251.7 314.6
The last two columns are expected total sample sizes of 2 stages for the control and

treatment groups.

then ρ∗(ξ1 | s21p) = .90 is not attainable. For 4 < s1 < 6.0, we can find η so that ρ∗(ξ1 | s21p) is .90.

For example, if s1 = 4.5 then η = 59; if s1p = 5 then η = 102; or if s1 = 5.5 then η = 141. Table 3.5

Table 3.5: The new Stage I critical values, θ0 and η for various s1p.
s1p k′1 k1 k2 k′2 θ0 η

4.0 .0806 .0806 .1656 .1656 1.000 0
4.5 .0674 .0806 .1656 .1863 .6250 59
5.0 .0542 .0806 .1656 .2070 .4444 102
5.5 .0410 .0806 .1656 .2277 .3448 141
6.0 .0278 .0806 .1656 .2484 .2817 max

summarizes the new Stage I critical values, the values of θ0, which adjust A(y1, ξ0) function and the

values of η for the cases in which the observed s1p = 4.0, 4.5, 5.0, 5.5, 6.0.

In Figure 3.6, the original A-functions (for σ = 4) and the modified A′-functions for s1p = 5 are

shown. And in Figure 3.7, the original and the modified total sample size functions are displayed.

Note that k′1 = .0542 and k′2 = .2070 when s1p = 5.0.

To fulfill the requirement that all possible design modifications for observed s21p be stated prior

to Stage I, we would use the following rule:

if


s1p ≤ 6.0 then m′

2(y
′
1) = min(241,m2(y1) + η)

where η is chosen so that ρ∗(ξ1 | s21p) = .90.
6.0 < s1p then m′

2(y
′
1) = 241 for all y1.

With this rule, we have a two stage adaptive design for any value of s21p from Stage I.

If s1p is much larger than 6.0, then the ρ∗(ξ1 | s21p) may be very low. For example, if s1p = 8,

then ρ∗(ξ1 | s21p) is about .0.79 even we take the maximum sample size allowed in Stage II for all

y1 ∈ (k′1, k
′
2). Because our original belief is σ0 = 4, this s1p = 8 would be twice as large as σ0.

In a conventional setting, it would lead to an increased sample size by 4-fold. Clearly, a two-stage
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Figure 3.6: Example of Section 3.3.4: A(y1, ξ0), A(y1, ξ1), A′(y′1, ξ0), A
′(y′1, ξ1).

adaptive procedure can not rescue a badly planned clinical trial, and the virtue of a careful planned

study should not be underestimated.

When ρ∗(ξ1 | s21p) is observed to be below an acceptable level, the clinical trial sponsor may

decide not to proceed to Stage II. We do not put this formally as an additional decision rule. It

should be noted that when it is decided to stop the trial for futility, α is not inflated.

In this example, if we assume the true variance is σ = σ0 = 4, i.e., the pre-study guess is correct,

a 99% prediction interval of s1p is (3.64, 4.37), which is much smaller than 6.0, the maximum s1p for

which the ρ∗(ξ1 | s21) = .90 is achieved. Therefore, we conclude that the unconditional power (3.3.44)

is virtually equal to .90 in this example if σ = 4. We can calculate the power of this procedure for

any value of σ2 using (3.3.44).

So far in this example, we have assumed that s21p is the correct variance when redesigning Stage

II. However, Y2 actually does not follow the distribution with s21 as its variance. The true variance is

still σ2 which remains unknown. To be conservative, we can redesign the Stage II using a pessimistic

estimate of σ2. We can find a 99% confidence interval of σ2 and use its upperbound, s∗21p as the

estimate of σ2. In the current example, if we observe s1 = 5, the original estimate, σ0 = 4, is not

plausible because a 99% confidence interval of σ is (4.58, 5.50). We can redesign Stage II using
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Figure 3.7: Example of Section 3.3.4: n1t + n2t(y1), n1c + n2c(y1), n1t + n′2t(y
′
1), n1c + n′2c(y

′
1).

s∗1p which is 5.50, instead of s1p = 5.0. When we use s∗1p = 5.5 as the estimate of σ, m′
2(y

′
1) is

min(241, m2(y′1) + 141).

3.3.5 Designs With A Small Stage I Sample Sizes

In this subsection, we consider situations in which the common population variance, σ2, is

unknown, and the Stage I sample size is small. The Stage I sample size is a part of the design,

and it is chosen by the investigator. However, outside factors may prevent a design from having

a large Stage I. A natural remedy for such a case is to use a t distribution in place of a normal

distribution. Using t distribution can protect the Type I error rate when the variance is unknown

and the Stage I sample size is small. However, when σ is not known, we cannot correctly specify

the Type II error rate even using a noncentral t distribution. It is not a problem particular to a

two-stage adaptive procedure; the same problem exists for a conventional single-stage design. The

problem exists because we do not know how far the alternative is from the null value in standardized

units, and using a t distribution does not solve this problem. To calculate the Type II error rate, we

need to know the distribution of the Stage I observations. The distribution is a noncentral t, and its

noncentrality parameter is a function of the unknown σ.
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In a two-stage adaptive procedure, the design of Stage II depends on the observations from

Stage I. When Stage I sample size is small, the design of Stage II must be based on an unreliable

estimate of the population variance. Even at the end of Stage II when a more reliable estimate of

the population variance is available, we cannot modify the sample size. If we make a bad decision

on the Stage II sample size due to an unreliable variance estimate at the end of Stage I, there is

very little can be done at the end of Stage II to fix the problem. For completeness we present here a

procedure, but we do not recommend using a small Stage I sample size when the population variance

is unknown and must be estimated.

We assume that the underlying population variances for two groups are equal, i.e., σ2 ≡ σ2
t = σ2

c .

We also assume that the sample sizes from the treatment and control groups are the same for Stage

I and the same for Stage II. For Stage I, let n1 = n1t = n1c. Furthermore, without loss of generality,

assume that ∆0 = 0. Let σ2
0 be the prestudy estimate of the variance, s21p be the pooled variance

estimate from Stage I and s22p be the pooled variance estimate from Stage II. For Stage I, define

T1 =
√
n1 (X̄1t − X̄1c)√

2 s1p

.

And let h(t1, ∆, n1, s) be the pdf of t2(n1−1)

(√
n1 ∆√
2 s

)
, where tv(δ) represents a non-central t

distribution with degrees of freedom, v, and the non-centrality parameter, δ. The variable s appears

in the non-centrality parameter, and s = σ gives the true distribution of T1. However, because σ is

unknown, we use an estimate for it such as σ0 or s1p, where s denotes one of these quantities.

Let n2(t1, s) be the Stage II sample size function. The Stage II sample size is a function of the

stage I observations, t1, and the estimate, s, of the standard deviation. Given T1 = t1 let

T2 =

√
n2(t1, s) (X̄2t − X̄2c)√

2 s2p

.

Table 3.6: Example of Section 3.3.4: Stage I probabilities, power and expected sample sizes for the
modified design for s1p = 5.

Stage I Stage II Sample Size
µ Accept Continue Reject Reject Power Control Treatment

0.00 .750 .245 .005 .020 .025 292.2 365.3
0.25 .538 .439 .023 .107 .130 328.9 411.1
0.50 .314 .608 .078 .303 .381 357.4 446.8
0.75 .143 .655 .201 .491 .692 361.1 451.4
1.00 .050 .551 .399 .501 .900 338.3 422.9
1.25 .013 .360 .627 .351 .978 302.8 378.5
The last two columns are expected total sample sizes of 2 stages for the control and

treatment groups.
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Let G(t1, n2(t1, s), ∆, s) be the cdf of t2(n2(t1, s)−1)

(√
n2(t1, s) ∆√

2 s

)
.

Stage I decision rule is

if

{
T1 ≤ k2 continue to Stage II,
k2 < T1 stop and reject H0.

Note that we do not allow “stop and accept H0” in Stage I. The reason is that we cannot control Type

II error rate for Stage I when the sample size is small. Type I error rate is protected by choosing k2

that satisfies α1 = P [T1 > k2] where T1 ∼ t2(n1−1). Because the distribution of T1 does not depend

on variance estimate under H0, α1 is correct no matter what s21p is. Using different notation, we have

α1 =
∫∞
k2
h(t1, 0, •) dt1. The third argument of h is irrelevant under H0 because T1 has a central t

distribution.

The specification components of Stage I are {α1, n1, k2}. When either α1 or k2 is specified in

addition to n1, we have all the specification components for the Stage I.

For Stage II, we need to find sample size and critical value. The sample size is, as mentioned

before, n2(t1, s). The critical value is also a function of T1 and s; let w(t1, s) denote the critical

value. The Stage II decision rule is

if

{
T2 ≤ w(t1, s) accept H0,
w(t1, s) < T2 reject H0.

(3.3.45)

In order to specify n2(t1, s) and w(t1, s) so that the Type I error rate and power are controlled, we

define the conditional power function A(t1, ∆, s) as follows:

A(t1, ∆, s) = P [ Reject H0 in Stage II |T1 = t1, ∆, s ].

It follows that

A(t1, ∆, s, ) = P [T2 > w(t1, s) | t1, ∆, s ]

= 1−G (w(t1, s), n2(t1, s), ∆, s) .

Similarly to the discussion in Chapter 2, the specification components for Stage II are {A(t1, 0, s),

A(t1, ∆1, s), n2(t1, s) and w(t1, s)}. In the planning before the Stage I, we choose 2 of these 4 com-

ponents so that

α2 =
∫ k2

−∞
A(t1, 0, σ0)h(t1, 0, •) dt1, (3.3.46)

ρ2 =
∫ k2

−∞
A(t1, ∆1, σ0)h(t1, ∆1, σ0) dt1. (3.3.47)
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Under H0, (3.3.46) gives the correct α2. Under H1, the correct distribution of T1 is h(t1, ∆1, σ), but

since σ is unknown, we replace it with the best estimator available, which is σ0 at this point. So in

the planning before the Stage I, the four components are:

{A(t1, 0, σ0), A(t1, ∆1, σ0), n2(t1, σ0), w(t1, σ0)}.

Then we need to specify how to update these components including the sample size and critical

value of Stage II. At the end of Stage I, we have x̄1t, x̄1c and s21p. Therefore we can calculate t1.

There is no need to change the Stage I critical value, k2, because it is still true that

α2 =
∫ ∞

k2

h(t1, 0, •) dt1.

The correct distribution of T1 under H0 is independent of the Stage I variance estimate.

Now we consider updating Stage II specification components. There is no need to change

A(t1, 0, σ0) because (3.3.46) is independent of the Stage I variance estimate. For the power require-

ment similar to (3.3.47), we need A(t1, ∆1, s1p) such that

ρ2 =
∫ k2

−∞
A(t1, ∆1, s1p)h(t1, ∆1, s1p) dt1. (3.3.48)

Because controlling Stage II sample size is often of interest, we may choose to specify n2(t1, s1p) =

n2(t1, σ0)+ η so that (3.3.48) is true or so that n2(t1, s1p) = max(n2) for all t1 ∈ (−∞, k2). the new

critical value function is then w(t1, s1p). Note that 3.3.48 does not give the correct Stage II power

because the distribution of T1 is h(t1, ∆1, σ), but 3.3.48 uses the “best guess” for the distribution

of T1 at this point.

Finally at the end of Stage II, we obtain s22p, which we treat as a reliable estimate of σ2. The

conditional Type I error rate, i.e., A(t1, 0, σ0) should not be changed because it does not depend

on the variance estimate. Type I error rate is correct without any modification to A(t1, 0, σ0).

Moreover, the sample size cannot be changed because the sample has already been taken. So we have

n2(t1, s2p) = n2(t1, s1p). Because two out of four specification components are fixed, the remaining

two cannot be modified, either. We have A(t1, ∆1, s2p) = A(t1, ∆1, s1p) and w(t1, s2p) = w(t1, s1p).

Then we can compute a Stage II “posterior” power by:

ρ2 =
∫ k2

−∞
A(t1, ∆1, s2p)h(t1, ∆1, s2p) dt1.

3.4 Discussion

In this chapter, we discuss two practically important extensions of the framework for two-stage

adaptive procedures. The first of the two extension, unequal sample sizes, is categorized into planned
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unequal sample sizes and unequal sample sizes due to missing observations. They are treated by

defining a which acts like σ, and m1 which acts like n1. The original framework is applicable with

these minor changes. For missing observations, we only consider MCAR, missing completely at

random. When there are some missing observations in Stage I, the critical values, k1 and k2 are

updated to keep α1 and β1 as planned. We show that the continuation region is wider when there

are missing observations in Stage I. Hence, the Stage II specification components need to be extended.

We provide one method which controls the maximum sample sizes in addition to the Type I error rate.

The method we present is not the only one, and one can develop similar procedures to accommodate

missing observations in Stage I. The main reason that we choose this particular one method is that

it controls two of the more important aspects of a design, namely Type I error probability and the

sample size. As a result, the desired power of the study may not be achievable. However, in order

to achieve a particular power while keeping the Type I error rate fixed, the necessary sample sizes

may be enormous. We want to avoid developing a procedure which may require unpractical and

unattainable sample sizes.

When there are some missing observations in Stage II, there is little that we can do beyond

protecting the Type I error rate. Because the samples have already been taken, there is no concept

of adjusting the sample size. Type I error rate is kept at the targeted level simply by keeping A(y1, ξ0)

unchanged at the end of Stage II. Then we have the connections among 4 specification components,

and we can calculate the new critical value functions and the conditional power function at any

alternative. The post-hoc power can be calculated, but we recognize that the post-hoc power is

dependent on the assumptions one makes on missingness. In other words, we have to assess what the

missingness would be for other values of y1 than the actual observed one. Because this assumptions

is not verifiable, we do not recommend using the post-hoc power, although we present how it is

computed for the completeness of the discussion.

As mentioned in Chapter 2, we view it necessary to specify the plan of Stage II before Stage I

begins. The same argument is applicable to the situations with missing observations. It is necessary

to specify before Stage I begins all the actions at the end of Stage I with regard to potential patterns

of missingness. In other words, we cannot choose how to modify the A-functions after seeing the

Stage I observations, or after finding out how many observation are missing in Stage I. The method

presented in this chapter uniquely determines all the Stage II specification components for any

missing- observations behavior in Stage I.

The second extension is to unknown variances. For simplicity, we develop the original framework

assuming the population variance for each of the treatment and control groups is known. In this

section, we present an extension to the original framework to handle unknown variances. The problem
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is divided into two parts. The first part is when the Stage I sample sizes are large, and the second

part is when the Stage I sample sizes are small and the Stage II sample sizes are large. Our main

focus is on the first situation. When Stage I is sufficiently large and a variance estimate from Stage I

is reliable, we can reflect the estimate from Stage I in the design of Stage II. The method we present

for this situation is similar to the one used for the missing observations in Stage I. We update m1 at

the end of Stage I to m′
1 which reflects the new estimate of the population variance.

If the Stage I sample size is adequate, we do not update the variance estimate again at the end

of Stage II. Not using a variance estimate utilizing all the data from Stage I and Stage II makes the

mathematics of the procedure simpler. In Appendix C, we study the relationship between a variance

estimate from Stage I and a variance estimate using the entire data.

There are many additional problems and concerns when the population variance is unknown

and the Stage I sample sizes are small. We presented a procedure in this chapter, but one should be

cautious in considering applying this procedure. Because the design of Stage I is based on a prestudy

estimate of the variance and a reliable estimate is not available at the end of Stage I, the design

of Stage II must be based on an unreliable estimate of the variance. When a good estimate of the

variance becomes available at the end of Stage II, there is little we can do to “fix” the design. An

additional issue arises when the Stage I estimate of the variance is very different from the prestudy

estimate. One would need a rule to update the pre-study estimate by the Stage I estimate, but it is

very difficult to see how to establish such a rule. The rule would depend on how much confidence

one has on the prestudy estimate. The question is which of these two estimates or their combination

are to be used in designing Stage II. For example, suppose that we start with a prestudy estimate,

σ0 = 4, and in Stage I with a small sample size, we observe s1p = 6. Then we could design Stage

II using either σ0 or s1p or a combination. If we believe that σ0 is close to the truth than the small

sample estimator from Stage I, we should use σ0. Or, if we have little confidence in σ0, we can update

using s1p. In addition, we can obtain a confidence interval of σ using s1p and use its upper bound as

a pessimistic estimate. We do want to emphasize that for small sample sizes in Stage I, the Type I

error rate is protected using the procedure given in this chapter.
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Chapter 4

Switching Study Objectives Between
Noninferiority And Superiority

4.1 Introduction

In a clinical trial setting, the hypotheses of interest are often ones of noninferiority or of supe-

riority. The objective of a noninferiority trial is to show that the new treatment is at least as good

as the active control, while the objective of a superiority trial is to show that the new treatment is

better than the control.

In a noninferiority trial, the null hypothesis, HNI
0 : µt−µc ≤ −∆I is tested against the alternative

hypothesis, HNI
1 : µt − µc > −∆I , where ∆I is a preset positive value (noninferiority margin). In a

superiority trial, the null hypothesis, HS
0 : µt−µc ≤ 0 is tested against HS

1 : µt−µc > 0. Customarily,

the power of a noninferiority trial is set at the alternative ∆ = 0, but in some situations one may

want to power the study at some value other than 0. Therefore, we let ∆N to be the point at which

the power of the noninferiority trial is set. The power of the superiority trial is set at some positive

∆S .

Noninferiority and superiority can be tested in the same trial without multiplicity penalties. This

is because the two null hypotheses can be viewed as nested hypotheses. [See Aras (2001), Morikawa

and Yoshida (1995) and Marcus, Peritz and Gabriel (1976).] Because of the lack of a multiplicity

penalty, as long as ∆I is prespecified, these two hypotheses can always be tested simultaneously at

the end of an active control study.

In a context of noninferiority trial, the lack of assay sensitivity is well documented. [e.g., Hwang

and Morikawa (1999), Snapinn (2000), Aras (2001)] Assay sensitivity is the ability to demonstrate

a difference between treatments when such a difference truly exists. In establishing superiority of

a test treatment, assay sensitivity is automatically established. However, the same is not true in a

noninferiority trial. A poorly executed noninferiority trial biases toward “no difference” and increases

the likelihood that an ineffective treatment be found noninferior to an efficacious control. Therefore,
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in a noninferiority trial assay sensitivity must be demonstrated separately. Thus, for the case in

which the intent of the trial is to show superiority but only the noninferiority conclusion is reached,

CPMP (2000) cautions about the lack of assay sensitivity. In a two-stage adaptive procedure, even

when the trial is started with superiority as its main study objective, because there is a chance

of showing only noninferiority, demonstrating assay sensitivity should be a consideration from the

beginning.

When a clinical trial is planned for the main design objective (noninferiority or superiority) and

the hypotheses for the other objective are also tested at the end of a single stage conventional study,

the power of the second test is not controlled. It may be either too high or too low depending on

the relation of ∆N −∆I and ∆S . For example, suppose that the main objective is to establish the

noninferiority of the treatment in question to a competitor and the noninferiority margin is set at

∆I = −1. The sample size, NI , from each of the control and treatment groups of this single-stage

study is planned so that α = .025 and the power at µt − µc = ∆N = 0 is .90. Suppose that, if

one wishes to presuppose superiority, the power would be evaluated at µt − µc = ∆s = .5. Because

∆S − 0 is only half of ∆N −∆I , if the primary objective were superiority and the sample size were

planned for that objective, then the sample size, NS , would be four times as large as NI , the sample

size of a noninferiority trial with the same Type I and Type II error rates. However, suppose that we

were to test these two sets of hypotheses in one trial for which the design objective is noninferiority,

and let NI be the sample size for an α = .025, 90% power test, then the power of the superiority

test would be only 36.8%.

For this situation in which both superiority and noninferiority hypotheses are considered, a

two-stage adaptive procedure can be advantageous because a two-stage adaptive procedure allows

changes to be made at the end of Stage I. We propose that the primary design objective be chosen

and the Stage II sample sizes and critical values be adjusted based on the data accumulated in Stage

I so that the power of both hypotheses are controlled.

There are some complications that arise for two-stage adaptive procedures which allow for the

possibility of switching the main study objectives. These complications can be classified into two

categories: complications due to the fact that there are two sets of hypotheses, and complications

due to the adaptive nature of the trial.

The first category includes issues regarding the power functions. In a single-stage setting with

only one set of hypotheses, the power function is defined as the probability of rejecting the null

hypothesis as a function of ∆. However, for the current situation, there are two null hypotheses,

and consequently we need to define two separate power functions. The first one is the probability of

rejecting HNI
0 , and the second one is the probability of rejecting HS

0 . Because HS
0 is nested within
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HNI
0 , rejecting HNI

0 implies that HS
0 is also rejected. Therefore, the power function associated with

HNI
0 is always larger than the power function associated with HS

0 .

The issues concerning Type I and Type II errors are related to the preceding ones concerning

power functions. When there are two sets of hypotheses, there are more than the two possible

conclusions in a single-stage trial: accepting null and rejecting null. In Section 4.2, we describe the

types of errors that need to be controlled for an adaptive procedures in which the possible switching

of study objectives are allowed.

Issues that arise due to the adaptive nature of the procedures are, again, related to the power

functions. To control Type I error rate for a composite null hypothesis, the power function needs

to be bounded above by α for all the ∆’s such that ∆ ≤ ∆I for the noninferiority hypotheses. The

monotonicity of the power function is an easy way to guarantee that. It is shown in Chapter 2

that even without a possible switch of the study objectives, it is not a simple task to guarantee the

monotonicity of the power function in an adaptive procedure. With the additional option to switch

the main study objective at the end of Stage I, the monotonicity of the power function becomes even

more difficult to analytically prove. A discussion on the monotonicity of power functions is given in

Section 4.6.

A related issue is the natural ordering of the decisions at the end of Stage I. It makes intuitive

sense that the decisions at the end of Stage I are ordered as:

• “conclude inferiority and stop,”

• “proceed to Stage II with noninferiority as the main objective (Stage II-N),”

• “conclude noninferiority and stop,”

• “proceed to Stage II with superiority as the main objective (Stage II-S),”

• “conclude superiority and stop”.

A question is whether to allow concluding “inferiority” in Stage II-S, and whether to allow concluding

“superiority” in Stage II-N. According to the ordering of the decisions mentioned above, “proceeding

to Stage II-S” gives more evidence in Stage I against inferiority than “concluding noninferiority

and stop”. Does “proceeding to Stage II-S” automatically mean at least“concluding noninferiority”?

And does “proceeding to Stage II-N” automatically mean at least “concluding not superiority”? Our

framework, which is established for the most general case where all decisions are possible at the end

of Stage I and at the end of Stage II, can produce procedures with various design characteristics,

and thus we have the possibility to design a procedure that does not conclude noninferiority in Stage

II-S or that does not conclude superiority in Stage II-N.
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4.2 Types Of Errors

Recall that there are the following two sets of hypotheses.

HNI
0 : µt − µc ≤ −∆I , HS

0 : µt − µc ≤ 0,

HNI
1 : µt − µc > −∆I , HS

1 : µt − µc > 0,

where ∆I > 0 is prespecified. When we test both sets of hypotheses, there are three different

conclusions we can reach at the end of the study. The first one is to accept HNI
0 , i.e., to conclude

inferiority. The second one is to reject HNI
0 and accept HS

0 , i.e., to conclude noninferiority but not

superiority. The last one is to reject HS
0 , i.e., to conclude superiority. The fact that there are only

three conclusions is a special feature of combining noninferiority and superiority objectives, that

stems from the fact that these null hypotheses are nested hypotheses.

In order to make notation consistent with Chapter 2, we use ξ instead of µ and ∆. In general,

let ξ = (µt − µc)/
√

2σ. Some special values are: ξI ≡ ∆I/
√

2σ, ξN ≡ ∆N/
√

2σ and ξS ≡ ∆S/
√

2σ.

We can regard this problem as a three-decision problem by defining the following three disjoint

sets: I = {ξ : ξ ≤ ξI}, N = {ξ : ξI < ξ ≤ 0} and S = {ξ : 0 < ξ}. Then these three sets correspond

to the three decisions mentioned above. The set I is equivalent to accepting HNI
0 , N is equivalent to

rejecting HNI
0 and accepting HS

0 , and S is equivalent to rejecting HS
0 . Note that I, N and S span

the entire parameter space, <. Only one of these three states is true, and choosing one of the other

two results in an error. When the truth is I, concluding N or S are Type I errors because we reject

HNI
0 when it is true. When the truth is N , concluding S is a Type I error because we reject HS

0

when it is the true state, and concluding I is a Type II error because we fail to reject HNI
0 . When

the truth is S, concluding N by failing to reject HS
0 and concluding I by failing to reject HS

0 and

HNI
1 are both Type II errors.

When we consider the two study objectives, noninferiority and superiority, there are two sets of

hypotheses, and consequently, there are two power functions. They are:

ψIc(ξ) = Pξ[Reject HNI
0 ] = Pξ[Conclude N or S], (4.2.1)

ψS(ξ) = Pξ[Reject HS
0 ] = Pξ[Conclude S]. (4.2.2)

The subscript of the first power function is Ic because “Conclude N or S” is the same as “conclude

Ic” . The first one is the power function for the noninferiority objective, and the second one is the

power function for the superiority objective. When the true state is I, the Type I error rate, denoted

by αI , is

αI = sup
ξ≤ξI

ψIc(ξ),
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and when the true state is N , the Type I error rate, denoted by αN , is

αN = sup
ξ≤0

ψS(ξ).

As mentioned in Section 4.1, it is not easy to guarantee the monotonicity of these power functions

for adaptive designs. In Section 4.6, the monotonicity of the power functions are discussed in detail,

but in this section, we simply assume that these power functions are monotonically nondecreasing.

Using the monotonicity, we conclude that

αI = ψIc(ξI), (4.2.3)

αN = ψS(0). (4.2.4)

Controlling αI and αN satisfies the requirements on the Type I error rate. However, it may be

additionally desirable to control P [Conclude S | ξ ≤ ξI ], because it is the probability of the error

which occurs when we conclude superiority of the treatment in question when the truth is actually

an inferior treatment. This represents a major risk to consumers, in that the new treatment is ∆I

worse than the standard and yet we would claim its superiority. By the monotonicity of ψS(ξ), we

have

αIS ≡ sup
ξ≤ξI

ψS(ξ) = ψS(ξI).

The subscript “IS” means that the true state is I and we conclude S. In general, when there are

two subscripts are attached to α’s and β’s, the first one represents the true state and the second one

represents the conclusion. When there is only one subscript, it represents the true state, and the

second one is omitted because either the conclusion is not specified or there is only one conclusion

for the particular power.

So far we have considered αI , αN and αIS . When the true state is I, one can commit a Type I

error by concluding either N or S. We have considered the error “IS” individually in αIS but not

the error “IN” yet. So define αIN as follows:

αIN = αI − αIS . (4.2.5)

To analyze this probability more closely, define another power function, ψN (ξ), as

ψN (ξ) = Pξ[Conclude N ].

Then from (4.2.1) and (4.2.2), ψN (ξ) = ψIc(ξ)−ψS(ξ). So αIN = ψN (ξI). Unlike ψIc(ξ) and ψS(ξ),

the supremum of ψN (ξ) in ξ ≤ ξI does not occur at the border, ξ = ξI . The shape of ψN (ξ) is not
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easy to analyze because ψN (ξ) is the difference of two nondecreasing functions. Therefore, although

we use αIN to represent the probability of the error “IN ,” it is not the supremum of ψN (ξ) in ξ ≤ ξI .

However, obviously by (4.2.5), αIN is bounded above by αI .

In the rest of this chapter, when we refer to α’s, as well as β’s and ρ’s, we indicate in parenthesis

at which value the power functions are evaluated. The four error rates we have considered so far are

αI(ξI), αN (0), αIS(ξI), αIN (ξI).

Now we consider Type II errors. For the noninferiority objective, the Type II error probability

is βN (ξN ) ≡ 1 − ψIc(ξN ). For the superiority objective, the Type II error probability is βS(ξS) ≡

1− ψS(ξS). Additionally, it may be desirable to control βSI(ξS) ≡ 1− ψIc(ξS) individually because

it is the probability of the error that causes a great loss for the clinical trial sponsor, who actually

has a superior treatment to a competitor but fails to even claim noninferiority to the competitor.

And we define βSN (ξS) ≡ βS(ξS)− βSI(ξS), which is bounded above by βS(ξS).

Table 4.1 summarizes the probabilities of various Type I and Type II errors and their represen-

tations using the power functions. As can be seen from Table 4.1, under I, the two power functions

Table 4.1: Probabilities of Type I and Type II errors and their representations in terms of the power
functions.

Conclusion
I N S

αI(ξI) = ψIc(ξI)
I

αIN (ξI) = ψN (ξI) αIS(ξI) = ψS(ξI)
βN (ξN ) = 1− ψIc(ξN )

Truth N
αN (0) = ψS(0)

βSI(ξS) = 1− ψIc(ξS) βSN (ξS) = ψN (ξS)
S

βS(ξS) = 1− ψS(ξS)

are evaluated at the same point, ξI , for αI(ξI) and αIS(ξI). Similarly, under S, the two power func-

tions are evaluated at ξS to obtain both βSI(ξS) and βS(ξS). In contrast, under N , the two power

functions are evaluated at different ξ’s for αN (ξN ) and βN (0) unless ξN = 0.

In order to satisfy the requirements on the Type I error we set αI(ξI) = α and αN (0) = α.

Because the states I and N cannot be true simultaneously, we can set these two Type I error

probabilities individually at α. The Type II error probabilities for the noninferiority objective and

superiority objective can be set at different values.
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4.3 Framework

4.3.1 Stage I

Consider a two-stage adaptive design where in Stage I, n1 observations are taken from each of

the treatment and control groups. The underlying distributions are independent normals with means

µt and µc and variances σ2
t and σ2

c . So we have

X̄1t ∼ Normal
(
µt,

σ2
t

n1

)
X̄1c ∼ Normal

(
µc,

σ2
c

n1

)
.

We assume that both σ2
t and σ2

c are known. Define

Y1 =
X̄1t − X̄1c√

2σ
,

where σ2 = (σ2
t +σ2

c )/2. Note that Y1 is a test statistic based upon unblinded data. The distribution

of Y1 is

Y1 ∼ Normal
(
ξ,

1
n1

)
,

where ξ =
µt − µc√

2σ
. At the end of Stage I, based on the observed y1, a decision is made according

to the following rule.

If



Y1 ∈ (−∞, kI
1] stop and conclude I,

Y1 ∈ (kI
1, k

I
2] continue to Stage II-N with primary objective of noninferiority,

Y1 ∈ (kI
2, k

S
1 ] stop and conclude N ,

Y1 ∈ (kS
1 , k

S
2 ] continue to Stage II-S with primary objective of superiority,

Y1 ∈ (kS
2 ,∞) stop and conclude S.

We have kI
1 ≤ kI

2 ≤ kS
1 ≤ kS

2 with at least one inequality holding. This rule is most general when all

the k-values (critical values) are distinct and different from ±∞. Various special cases are possible

by choosing specific k-values, and they are briefly discussed in Section 5.3.

4.3.2 Stage II-N

In Stage II-N, n2(y1) additional samples are taken from each of the control and treatment

groups. The sample size, n2(y1), is allowed to be a function of y1, and the method of choosing n2(y1)

is discussed in Section 4.4. Let X̄2t and X̄2c be the means of the observations in Stage II-N from the

treatment and control groups, respectively. Define

Y2 =
X̄2t − X̄2c√

2σ
. (4.3.6)
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The Stage I observations influence the distribution of Y2 only through the dependence of the sample

size n2(y1) on y1. Thus, the conditional distribution of Y2 given that Y1 = y1 is Normal (ξ, 1/n2(y1)).

At the end of Stage II-N, the decision is made according to the following criteria.

If


Y2 ∈ (−∞, w1(y1)] stop and conclude I,
Y2 ∈ (w1(y1), w2(y1)] stop and conclude N ,
Y2 ∈ (w2(y1),∞) stop and conclude S.

Like n2(y1), the critical values, w1(y1) and w2(y1), are allowed to be functions of y1. It is possible to

conclude HS even in Stage II-N. However, we can make P [Conclude S in Stage II-N]= 0 by choosing

w2(y1) = ∞ for all y1.

4.3.3 Stage II-S

In Stage II-S,m2(y1) additional samples are taken from each of the control and treatment groups.

Let Y2 be defined as in (4.3.6). The distribution of Y2 given Y1 = y1 is Normal (ξ, 1/m2(y1)) . At the

end of Stage II-S,

if


Y2 ∈ (−∞, v1(y1)] stop and conclude I,
Y2 ∈ (v1(y1), v2(y1)] stop and conclude N ,
Y2 ∈ (v2(y1),∞) stop and conclude S.

We have two critical value functions for Stage II-S also. Unless v1(y1) = −∞ for all y1, there is

nonzero probability of concluding I in Stage II-S.

In summary, in order to define a two-stage adaptive procedure with a possible switching of

hypotheses, we need n1, kI
1, k

I
2, k

S
1 and kS

2 for Stage I; n2(y1), w1(y1) and w2(y1) for Stage II-N for

y1 ∈ (kI
1, k

I
2]; m2(y1), v1(y1) and v2(y1) for Stage II-S for y1 ∈ (kS

1 , k
S
2 ]. Both n2(y1) and m2(y1) are

the sample size functions for Stage II, and they can be regarded as a single function evaluated at

different intervals of y1. In other words, we can define a single function in the entire range of y1 that

takes the same values as n2(y1) for y1 in (kI
1, k

I
2] and the same values as m2(y1) for y1 in (kS

1 , k
S
2 ]

and 0 otherwise. We, however, use separate notation, n2(y1) and m2(y1), to emphasize that we treat

Stage II-N and Stage II-S separately when we design a procedure. The same argument is applied for

treating w’s and v’s separately when they both represent the Stage II critical value functions.

Table 4.2 shows a flowchart of a two-stage adaptive procedure with a possible switch of the main

study objective.

4.4 Determining Sample Sizes And Critical Values

We discuss how to determine the sample sizes and critical values for Stage I, Stage II-N and Stage

II-S. For this purpose, the error probabilities discussed in Section 4.2 are further divided into Stage I
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Table 4.2: A flowchart of a general two-stage adaptive procedure with a possible switch of the main
study objective.

Stage I
Sample size

n1

kI
1 kI

2 kS
1 kS

2

I N S
Stop Continue to Stop Continue to Stop

==== Stage II-N ==== Stage II-S ====

⇓ ⇓

⇓ ⇓

Stage II-N ‖ Stage II-S
Sample size ‖ Sample size
n2(y1) ‖ m2(y1)

‖
w1(y1) w2(y1) ‖ v1(y1) v2(y1)

‖
I N S ‖ I N S

‖
‖

and Stage II error probabilities. For example, the error probability, αIN (ξI) is defined in Section 4.2

as the probability of concluding N when the truth is ξ = ξI . The error, “IN” (Concluding N when

the truth is I) can be made in Stage I, Stage II-N or Stage II-S. These error probabilities are denoted

by α1
IN (ξI), α2N

IN (ξI) and α2S
IN (ξI). The superscripts indicate the stage in which the error is made.

And the sum of α2N
IN (ξI) and α2S

IN (ξI) is denoted by α2
IN (ξI), so that αIN (ξI) = α1

IN (ξI) + α2
IN (ξI).

Even though we use α’s to represent these error probabilities in individual stages, we do not claim

that these are the suprema of the error probabilities in their respective null spaces. For example, α2N
I

is not necessarily equal to supξ≤ξI
Pξ[Conclude N or S in Stage II-N]. We do not need Pξ[Conclude

N or S] or Pξ[Conclude S] for each individual stage to be increasing in ξ in order to have the overall

power functions ψIc(ξ) and ψS(ξ) to be increasing in ξ.
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4.4.1 Stage I

To specify a design of Stage I, we need to determine the sample size and critical values. The

four critical values of Stage I satisfy the following:

α1
IN (ξI) = P [ kI

2 < Y1 ≤ kS
1 | ξ = ξI ] β1

N (ξN ) = P [Y1 ≤ kI
1 | ξ = ξN ]

α1
IS(ξI) = P [ kS

2 < Y1 | ξ = ξI ] β1
SI(ξS) = P [Y1 ≤ kI

1 | ξ = ξS ] (4.4.7)

α1
N (0) = P [ kS

2 < Y1 | ξ = 0 ] β1
SN (ξS) = P [ kI

2 < Y1 ≤ kS
1 | ξ = ξS ].

Using the fact that Y1 ∼ Normal (ξ, 1/n1), we can connect the critical values, sample size and error

probabilities of Stage I1. These Stage I parameters cannot be specified independently of each other

because they are connected through the relationships described in (4.4.7). For example, if n1 and

kS
2 are given, then α1

IS and α1
N are both determined. More precisely, these components form the

following three groups:

1. {n1, kS
2 , α1

IS(ξI), α1
N (0)},

2. {n1, kI
1, β

1
N (ξN ), β1

SI(ξS)},

3. {n1, kI
2, k

S
1 , α1

IN (ξI), β1
SN (ξS)}.

Any two components from group 1, any two components from group 2 and any three components from

group 3 are necesarry and sufficient to determine the remaining components within each respective

group2. And these three groups are connected by the common component, n1.

4.4.2 Stage II-N

For Stage II-N, define the “conditional power functions,” AIc
(y1, ξ) and AS(y1, ξ), for ξ ∈

(−∞,∞) as follows:

AIc
(y1, ξ) = Pξ[ Conclude N or S |Y1 = y1], (4.4.8)

AS(y1, ξ) = Pξ[ Conclude S |Y1 = y1]. (4.4.9)

For all ξ and y1 ∈ (kI
1, k

I
2 ], AIc

(y1, ξ) and AS(y1, ξ) take some value in (0, 1). For y1 ∈ (−∞, kI
1 ],

they are uniformly 0 and for y1 ∈ [ kI
2,∞), they are uniformly 1. Because AIc

(y1, ξ) and AS(y1, ξ)

are conditional power function, ξ is permitted to be a function, ξ(y1), of y1. From the above def-

initions, for all y1 ∈ (kI
1, k

I
2 ] we have AIc

(y1, ξ) ≥ AS(y1, ξ) with equality holding if and only if

1For example, α1
IS(ξI) = 1− Φ[

√
n1(k

S
2 − ξI)].

2In trivial situations such as when α1
IS(ξI) = 0, α1

N (0) = 0 and kS
2 = ∞, the remaining component, n1 in this case,

cannot be determined.
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Pξ[ Conclude N |Y1 = y1 ] = 0 at the particular ξ. We can express the Stage II-N error probabilities

using A-functions. First, α’s are:

α2N
IS (ξI) =

∫ kI
2

kI
1

AS(y1, ξI)gξI
(y1)dy1, (4.4.10)

α2N
I (ξI) =

∫ kI
2

kI
1

AIc
(y1, ξI)gξI

(y1)dy1, (4.4.11)

α2N
N (0) =

∫ kI
2

kI
1

AS(y1, 0)g0(y1)dy1. (4.4.12)

And β’s are:

β2N
N (ξN ) =

∫ kI
2

kI
1

(
1−AIc

(y1, ξN )
)
gξN

(y1)dy1, (4.4.13)

β2N
SI (ξS) =

∫ kI
2

kI
1

(
1−AIc

(y1, ξS)
)
gξS

(y1)dy1, (4.4.14)

β2N
S (ξS) =

∫ kI
2

kI
1

(
1−AS(y1, ξS)

)
gξS

(y1)dy1. (4.4.15)

For these, we let gξ(y1) to be the pdf of Normal (ξ, 1/n1). We also have α2N
IN (ξI) and β2N

SN (ξS),

but we do not include these in the specification components. Each of these two error probabilities

involves two conditional error functions, and they are not specified but rather calculated through

α2N
IN (ξI) = α2N

I (ξI)− α2N
IS (ξI), and β2N

SN (ξS) = β2N
S (ξS)− β2N

SI (ξS).

Using the decision rules for Stage II-N, (4.4.8) and (4.4.9) can be expressed as follows:

AIc
(y1, ξ) = Pξ[Y2 > w1(y1) |Y1 = y1], (4.4.16)

AS(y1, ξ) = Pξ[Y2 > w2(y1) |Y1 = y1]. (4.4.17)

Because the conditional distribution of Y2 given Y1 = y1 is Normal (ξ, 1/n2(y1)), (4.4.16) and (4.4.17)

can be further expressed in terms of n2(y1), w1(y1) and w2(y1).

AIc
(y1, ξ) = 1− Φ

[√
n2(y1) (w1(y1)− ξ)

]
, (4.4.18)

AS(y1, ξ) = 1− Φ
[√

n2(y1) (w2(y1)− ξ)
]
. (4.4.19)

Stage II-N is characterized by the following specification components: n2(y1), w1(y1), w2(y1), AIc
(y1, ξ)

and AS(y1, ξ), and these components are categorized into the following two groups:

1. {AIc
(y1, ξI),AIc

(y1, ξ
∗),n2(y1),w1(y1) }

2. {AS(y1, ξ
†),AS(y1, ξ

‡),n2(y1),w2(y1) }
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Note that the choice of ξ∗, which may be a function of y1, is arbitrary as long as it is not equal to ξI .

Also ξ† and ξ‡ can be arbitrarily chosen as long as they are not equal to each other. The members of

the first group are connected through (4.4.18), and the members of the second group are connected

through (4.4.19), and specifying two components determines the remaining two components within

each group3. These two groups are connected by the common component, n2(y1).

For the first group we choose AIc
(y1, ξI) to be one of the specification components as AIc

(y1, ξI)

is the most natural choice for a specification component because it gives, by (4.4.11), the probability,

α2N
I (ξI), which is necessary to control Type I error rate, αI(ξI).

For the second group, unlike the first group, there is not a primary choice for ξ† and for ξ‡. In

order to control Type I error rate, it seems that AS(y1, ξI) and AS(y1, ξN ) are reasonable choices.

However, because n2(y1) is usually determined by the first group, we only have one element to choose

freely. Choosing an AS(y1, ξ) at any ξ, or w2(y1) in addition to n2(y1) will determine the all the

necessary elements.

4.4.3 Stage II-S

Stage II-S is analogous to Stage II-N. First we define, for Stage II-S, the “conditional power

functions,” BIc
(y1, ξ) and BS(y1, ξ), for ξ ∈ (−∞,∞) as follows:

BIc
(y1, ξ) = Pξ[ Conclude N or S |Y1 = y1],

BS(y1, ξ) = Pξ[ Conclude S |Y1 = y1].

The B-functions take values in (0, 1) if y1 ∈ (kS
1 , k

S
2 ]. If y1 ∈ (−∞, kS

1 ] then B-functions take the

value of 0, and if y1 ∈ (kS
2 ,∞) then B-functions take the value of 1. The Stage II-S error probabilities

can be expressed using the conditional power functions First, for α’s,

α2S
IS(ξI) =

∫ kS
2

kS
1

BS(y1, ξI)gξI
(y1)dy1, (4.4.20)

α2S
I (ξI) =

∫ kS
2

kS
1

BIc
(y1, ξI)gξI

(y1)dy1, (4.4.21)

α2S
N (0) =

∫ kS
2

kS
1

BS(y1, 0)g0(y1)dy1. (4.4.22)

3Fact 2.2.2 is applicable with the four components within each group, and the actual algebraic connections within
each group are similar to the ones described in equations (2.2.14) through (2.2.18).
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And β’s are:

β2S
N (ξN ) =

∫ kS
2

kS
1

(
1−BIc

(y1, ξN )
)
gξN

(y1)dy1, (4.4.23)

β2S
SI (ξS) =

∫ kS
2

kS
1

(
1−BIc

(y1, ξS)
)
gξS

(y1)dy1, (4.4.24)

β2S
S (ξS) =

∫ kS
2

kS
1

(
1−BS(y1, ξS)

)
gξS

(y1)dy1. (4.4.25)

Similarly to Stage II-N, we have the following two groups of specifying elements:

1. {BIc
(y1, ξ

†),BIc
(y1, ξ

‡),m2(y1), v1(y1)},

2. {BS(y1, 0),BS(y1, ξ
∗),m2(y1), v2(y1)}.

The primary objective for Stage II-N is to protect Type I error rate, α2
NS(0), and in order to

accomplish that objective, BS(y1, 0) needs to be chosen so that it satisfies (4.4.22). Then one

additional component from group 2, we can obtain the other two components in group 2. And

with one additional component other than m2(y1) specified for the group 1, Stage II-S is completely

determined.

As long as the AIc
(y1, ξ), AS(y1, ξ), BIc

(y1, ξ), BS(y1, ξ) functions satisfy the conditions, (4.4.10)

∼ (4.4.15), and (4.4.20) ∼ (4.4.25), the probabilities of errors described in Section 4.2 are all con-

trolled. Moreover, we can impose criteria such as maxima and minima on the Stage II sample sizes.

With the additional restrictions on the Stage II sample sizes, not all of Type II error probabilities

may be controlled. The criteria that must be satisfied are controlling αI(ξI) and αNS(0). Type II

error probabilities, or the power, of the study may not be achievable with sample size restrictions.

As discussed in Chapter 2, it is fairly easy to alter Stage II specification components so as to give

rise to a particular design. And additionally, we can explore numerous designs and choose the one

that is most satisfactory among them.

4.5 Literature Review

Two-stage adaptive procedures which test both noninferiority and superiority hypotheses are a

new field of research, and there are only few papers that discuss such procedures. In this section, we

consider papers by Wang et.al. (2001) and by Brannath et.al. (2003).

4.5.1 Wang et.al. (2001)

Wang et.al. (2001) consider adaptive multi-stage procedures, but they only allow one adaptation

by which the main study objective and the sample size may be changed. Therefore, their procedure
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is similar to the two-stage adaptive procedures that we consider in this dissertation. They have

separate schemes for designing the study to show superiority as the main objective and noninferiority

as the secondary objective (S-NI) and vice versa (NI-S). They let N and M be the group sequential

procedure’s sample sizes for the superiority objective and noninferiority objective, respectively.

They consider three types of procedures: group sequential stepwise test procedure (GSS), group

sequential closed test procedure (GSC) and adaptive group sequential closed procedure (AGSC).

GSS and GSC do not allow an interim sample size adjustment. Both GSS and GSC test for the main

objective at each stage and if the superiority claim is reached, the study terminates. The difference

between these two occurs when only the noninferiority conclusion is reached in an intermediate stage.

In GSS, the procedure terminates with only the noninferiority claim, but in GSC, the procedure

continues to the next stage without making any conclusion. Wang, et.al. (2001) cite the finding

of Wang, et.al. (1999) that the unconditional power of GSS is very low for both superiority and

noninferiority mainly because achievement of noninferiority will terminate the trial preventing testing

further for superiority.

AGSC is a variation of GSC which allows for one interim adjustment (at an arbitrary time s)

of the planned sample size based on the observed sample path. They only allow the sample size

to increase, which indicates that the study’s main objective for which the original sample size is

determined needs to be the easier one of the two. In an S-NI situation, the decision to increase the

total sample size from N to M is based on the conditional powers at the observed ∆. At the time

s, they calculate CPS(∆) which is the conditional power for concluding superiority at the trial end

with total sample size of N and CPE(∆) which is the conditional power for concluding noninferiority

but not superiority at the trial end with total sample size of M . And if CPS(∆) < CPE(∆), the

sample size is increased from N to M , otherwise it remains N .

Wang, et.al. (2001) conduct simulation studies of the AGSC procedure with four possible interim

analyses and one final analysis at equal time intervals before and after sample size adjustment. They

set α = .025 and β = .20 for both objectives and use N = 330 and M = 1200. The a priori

chosen time of sample size adjustment s is varied among {.20, .40, .60, .80}. One alternative to a

priori choosing s is that the conditional power criterion is checked at each interim analysis until the

criterion is satisfied to increase the sample size at one interim analysis.

Wang, et.al. (2001) compute the Type I error rate (based on 50,000 simulations) and power

(based on 10,000 simulations) for both superiority and noninferiority objectives. The Type I error

rate ranges (for different choices of s) from .0250 to .0259 for the superiority objective and .0247 to

.0255 for the noninferiority objective, and they claim that the Type I error rate of the AGSC test
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is maintained at the targeted 0.025 level for superiority and noninferiority. The power ranges from

.846 to .947 for the superiority objective and .607 to .768 for the noninferiority objective.

4.5.2 Brannath et.al. (2003)

Brannath et.al. (2003) consider the problem of simultaneous sequential tests for noninferiority

and superiority. A unique feature of their procedure is that they consider a continuous hierarchical

family of null hypotheses as follows: for ∆ ∈ [0, ∆I ],

H
(∆)
0 : µt − µc = −∆,

H
(∆)
1 : µt − µc > −∆,

where ∆I > 0 is the preassigned noninferiority margin. Possible conclusions of such a procedure

are either inferiority (to accept all H(∆)
0 , ∆ in [0, ∆I ]), ∆∗-noninferiority (to reject all H(∆)

0 , ∆ in

[∆∗, ∆I ]) or superiority (to reject all H(∆)
0 , ∆ in [0, ∆I ]).

Brannath et.al. (2003) consider a two-stage adaptive procedure in which the sample sizes for

Stage I (n1) and for Stage II (n2) are fixed, but they claim that sample-size reassessments are possible

within the framework they present. They also claim that in contrast to Wang et.al. (2001), Stage II

(sample size) do not have to be changed to achieve sufficient overall power.

Their key result is proving that their procedure controls the multiple level α for the continuous

family of null hypotheses H(∆)
0 , ∆ in [0,∆I ]. In other words, this is the probability that at least one

erroneous rejection within this family does not exceed α.

They treat the following two situations, where ∆I is the noninferiority margin, and ∆S is the

point at which the superiority test is powered. In the first situation, ∆S = 2∆I ; here establishing

noninferiority requires a much larger sample size than necessary for superiority. In the second

situation, ∆S = ∆I/2, and the proof of superiority requires a larger sample size than necessary for

noninferiority. They construct two designs for situation 1 and one design for situation 2 as examples.

In each situation, α = .025 and β = .2 for both superiority and noninferiority objectives. And NS for

situation (1) and N I for situation (2) are both 1005 so that α = .025 and β = .20. In the following

paragraphs, we describe how to place their designs into our framework.

Example 1: Situation 1, “Ambitious” design: First the maximum total sample size is set at

NI = 1005. For Stage I, the probability of concluding S when ∆ = ∆S is set to be .8. With the

decision to use Pocock boundaries (Pocock 1977), n1 = 298 and kS
2 are determined. From a condition

to control the multiple level α, they obtain kS
1 . This procedure does not stop to conclude I and that

there is only one Stage II (Stage II-S), therefore, kI
1 = kI

2 = −∞. With this sample size and critical

values, they calculate that the probability of concluding N and stop in Stage I when ∆ = 0 .014.
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For Stage II-S, the sample size, n2, is N I − n1 for all y1. And the overall probability to conclude N

or S when ∆ = 0 is set to be .8, and it is used to specify the Stage II-S probability to conclude N or

S when ∆ = 0. Because the critical value v1(y1) has a constant value for all y1 in standardized (z)

units, one can find v1(y1) given n2 and P∆0 [N or S in Stage II |Y1 = y1]. The critical value function

v2(y1), which is constant for all y1, is set to have the same standardized (z) value as kS
2 . Thus, the

Stage II-S components are all specified.

Example 2: Situation 1, “Modest” design: Again the sample size limit is NI = 1005. This design

is similar to the “Ambitious” design above. The Stage I sample size remains at n1 = 298. There

is no Stage II-N again, so kI
1 = kI

2 = −∞. They still specify the probability of concluding S when

∆ = ∆S in Stage I to be .8 so that kN
2 is specified. The difference from the design of Example 1 is

that in this design, there is higher probability of concluding N and terminating the study at the end

of Stage I. By this change, the probability of continuing to Stage II is smaller than the “Ambitious”

design, and the overall power to conclude N or S under ∆ = 0 decreases as a result. By adjusting the

critical value for Stage I (kS
1 ) and for Stage II-S (v1(y1)), we can make the overall power to conclude

N or S under ∆ = 0 as high as .795. The other critical value function v2(y1) is the same as for the

“Ambitious” design.

Example 3: Situation 2, “Modest” design: The sample size for a conventional single-stage

superiority procedure is NS = 1005 when α = .025 and power = .80. For this design, they again

use the same n1 = 287, and set the probability to conclude Ic (and stop) in Stage I to be .8. This

determines kS
1 . In terms of the standardized values, kS

1 and kS
2 for this design are the same as kS

1

and kS
2 in Example 1. Also for this design, kI

1 = kI
2 = −∞ and Stage II-N does not exist. The

probability to conclude S when ∆ = ∆S in Stage I is .019 by computation. For Stage II-S, v2(y1) is

chosen so that the overall power to conclude S when ∆ = ∆S is .8. The other critical value v1(y1)

has the same standardized value as kS
1 for all y1.

In examples 1 and 2, α, for both objectives, is controlled at .025 and the overall powers for the

noninferiority hypothesis are .800 (Example 1) and .795 (Example 2). The overall powers for the

superiority hypothesis are not controlled and they are virtually 1 in both examples. In Example 3, α

for both objectives is controlled at .025, and the overall power for the superiority hypothesis is .800

and the overall power for the noninferiority hypothesis is virtually 1. Although constructing their

procedure involves a complex numerical computation, the resulting designs fit in our framework.
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4.6 Power Function Considerations

In this section, we consider the power functions of a two-stage adaptive procedure with possible

switching of the main objectives. In Section 2.3, we establish the monotonicity of the power function

of a two-stage adaptive procedure when there is no switching of the main objectives. The discussion

in the current section is an extension of the discussion in Section 2.3.

In Section 4.2, we introduce two power functions: ψIc(ξ) = Pξ[conclude N or S] and ψS(ξ) =

Pξ[conclude S]. We need these functions to be bounded above by α for all ξ ≤ ξI and for all ξ ≤ 0,

respectively, to control the Type I error rates for the composite null hypotheses. An easy way to

show that the power function is bounded above is to show that it is monotonically increasing in

ξ. Monotonicity of the power function is also important in inference. Although not considered in

this dissertation, it is our intention to develop methods to obtain unbiased estimators and confidence

intervals for the difference of the means and the unconditional p-value of the test. We anticipate that

the monotonicity of the power function will be a key property in developing the mentioned concepts

for two-stage adaptive procedures.

In Chapter 2, we show that for a two-stage adaptive design with a single objective, the follow-

ing two properties of the specification components are sufficient for the monotonicity of the power

function, ψ(ξ), in −∞ < ξ ≤ ξ∗:

1. A(y1, ξ
∗) is nondecreasing in y1 ∈ (k1, k2].

2. n2(y1) is nonincreasing in y1 ∈ (k1, k2].

We first consider the monotonicity of ψIc(ξ). To replace the condition 1 above, we need that

the conditional probability to conclude N or S is nondecreasing in y1. What is not explicitly stated

in the condition 1 above is that A(y1, ξ
∗) = 0 for y1 in (−∞, k1] and A(y1, ξ

∗) = 1 for y1 in (k2,∞),

making A(y1, ξ
∗) nondecreasing in the entire range of y1. We extend the conditional probability to

conclude N or S to the entire range of y1, and define CIc
(y1, ξ) as follows:

CIc
(y1, ξ) =



0 for y1 in (−∞, kI
1]

AIc
(y1, ξ) for y1 in (kI

1, k
I
2]

1 for y1 in (kI
2, k

S
1 ]

BIc
(y1, ξ) for y1 in (kS

1 , k
S
2 ]

1 for y1 in (kS
2 , ∞).

An example of CIc
(y1, ξ) is given in Figure 4.1. We observe that CIc

(y1, ξ) is nondecreasing if

AIc
(y1, ξ) is nondecreasing in y1 for all y1 in (kI

1, k
I
2] and BIc

(y1, ξ) = 1 for all y1 in (kS
1 , k

S
2 ]. If these

two conditions and an additional condition that n2(y1) is nonincreasing in y1 ∈ (kI
1, k

I
2] are satisfied

then we could use the analogous proofs to Lemma 2.3.1 and Lemma 2.3.2 to prove that
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Figure 4.1: An example of CIc
(y1, ξ).

• ψIc(ξ) is nondecreasing in ξ for all ξ in (−∞, ξ∗],

• ψIc(ξ) > ψIc(ξ∗) for all ξ in [ξ∗, ∞).

One of the conditions, BIc
(y1, ξ) = 1 for all y1 in (kS

1 , k
S
2 ], states that the probability to conclude

N or S in Stage II-S is 1, which is accomplished by specifying v1(y1) = −∞ for all y1 in (kS
1 , k

S
2 ].

When v1(y1) 6= −∞ we cannot use the analogous proofs to Lemma 2.3.1 and Lemma 2.3.2. These,

however, are clearly not necessary conditions to provide monotonicity. The power function, ψIc(ξ),

may possess the characteristics mentioned above even if BIc
(y1, ξ) 6= 1 or the other two conditions

are not satisfied. So when these conditions are not satisfied, the monotonicity of the power function,

ψIc(ξ), can be checked by computation.

The argument for the monotonicity of the other power function, ψS(ξ) is analogous. We define

CS(y1, ξ) as the conditional probability to conclude S.

CS(y1, ξ) =



0 for y1 in (−∞, kI
1]

AS(y1, ξ) for y1 in (kI
1, k

I
2]

0 for y1 in (kI
2, k

S
1 ]

BS(y1, ξ) for y1 in (kS
1 , k

S
2 ]

1 for y1 in (kS
2 , ∞)
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If AS(y1, ξ
∗) = 0 for all y1 in (kI

1, k
I
2], B

S(y1, ξ
∗) is nondecreasing, then CS(y1, ξ

∗) is nondecreasing

in y1 for the entire range of y1. With the condition that m2(y1) is nonincreasing in y1 for y1 in

(kS
1 , k

S
2 ], we can apply the same argument as Lemmas 2.3.1 and 2.3.2 to conclude that

• ψS(ξ) is nondecreasing in ξ for all ξ in (−∞, ξ∗],

• ψS(ξ) > ψS(ξ∗) for all ξ in [ξ∗, ∞).

However, even when AS(y1, ξ
∗) 6= 0, we may still have monotonicity of ψS(ξ), but we need to check

it by computation.

4.7 Example

In the following example, we show how our framework is used to design a two-stage adaptive

procedure with possible switching of the main objectives. The primary purpose of this hypothetical

example is to illustrate our computational capability in designing a procedure which controls various

error probabilities and the maximum sample sizes. This particular design’s expected sample sizes

are not satisfactory. We present in Section 4.8 another design which controls the error probabilities

and possesses better characteristics in terms of expected sample sizes.

In this example, the primary objective is to show that a new treatment is noninferior to a

competitor whose efficacy has already been established. The larger values of the observations indicate

a preferable result. The noninferiority margin is ∆I = 1. The hypotheses to be tested are:

HNI
0 : µt − µc ≤ −1 HS

0 : µt − µc ≤ 0

HNI
1 : µt − µc > −1 HS

1 : µt − µc > 0

The power for the noninferiority objective is chosen to be calculated at ∆N = 0. The superiority

margin is ∆S = .5. Because ∆N = 0, we do not have to make distinction between ξN and 0. Suppose

that the population variances, σ2
t and σ2

c , are both known to be 42; hence, σ2 = 4. We standardize

∆’s by the factor, 1/
√

2σ to get ξI = −.1768, ξN = 0 and ξS = .0884. Type I and Type II error

probabilities for the procedure are set as follows: αI = .025, αN = .025, βN = .10 and βS = .20. With

these error probabilities and ∆’s specified, we can calculate NI and NS , the single-stage procedure’s

sample sizes for noninferiority and superiority objectives, respectively. They are NI = 337 and

NS = 1005.
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We choose to take 80% of NI in Stage I, so that n1 = .8× 337 = 270. Furthermore, we choose

the Stage I critical values that satisfy the following:

P [Y1 < kI
1 | ξ = ξN ] = P [Conclude I | ξ = ξN ] = .025,

P [kI
2 < Y1 | ξ = ξI ] = P [Conclude N or S or continue to Stage II-S | ξ = ξI ] = .010,

P [Y1 < kS
1 | ξ = ξS ] = P [Conclude I or N or continue to Stage II-N | ξ = ξS ] = .050,

P [kS
2 < Y1 | ξ = ξN ] = P [Conclude S | ξ = ξN ] = .005.

Then we have kI
1 = −.1193, kI

2 = −.0352, kS
1 = −.0117 and kS

2 = .1568. For the groups noted in

Section 4.4.1, we have two components from group 1 and from group 2, and three components from

group 3. Therefore, we can obtain all the necessary Stage I components using (4.4.7) as listed below:

1. {n1 = 270, kS
2 = .1568, α1

IS(ξI) = .000, α1
N (0) = .005},

2. {n1 = 270, kI
1 = −.1193, β1

N (ξN ) = .025, β1
SI(ξS) = .000},

3. {n1 = 270, kI
2 = −.0352, kS

1 = −.0117, α1
IN (ξI) = .007, β1

SN (ξS) = .029}.

These components specify a unique Stage I. The following Table 4.3 summarizes the Stage I proba-

bilities.

Table 4.3: Example of Section 4.7: Stage I probabilities.

Conclude I Continue to Conclude N Continue to Conclude S
ξ and stop Stage II-N and stop Stage II-S and stop
ξI .828 .162 .007 .003 .000
ξN .025 .257 .142 .571 .005
ξS .000 .021 .029 .819 .131
ξI = −.1768, ξN = 0 and ξS = .0884.

Now we proceed to planning Stage II-N and Stage II-S. Before specifying the components for

Stage II-N and for Stage II-S, we need to set criteria for the error probabilities for Stage II’s. Some

of the Stage II probabilities can be specified, and others are obtained through simple calculation4

to satisfy the overall error probability conditions such as αI(ξI) = .025. In Table 4.4, the Stage II

probabilities that are specified are in the bold font, and those that result through calculation are in

italic font. Probabilities when ξ = ξS depend on the sample size functions and critical value functions

for Stage II-N and Stage II-S, and they cannot yet be determined.
4For example, we choose for Stage II-N, P [Conclude I in Stage II-N | ξ = ξN ] = .050 and P [Conclude S in Stage

II-N | ξ = ξN ] = .007. Then P [Conclude N in Stage II-N | ξ = ξN ] = .257 − .050 − .007 = .200. Furthermore, because
αN (ξN ) = .025, we need to have α2S

N (ξN ) = αN (ξN )− α1
N (ξN )− α2N

N (ξN ) = .025− .005− .007 = .013.
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Table 4.4: Example of Section 4.7: Unconditional Stage I and Stage II probabilities.

Stage I I II-N Stage II-N N II-S Stage II-S S
Stage II - - I N S - - I N S -
ξ = ξI .828 .162 .144 .018 .000 .007 .003 .003 .000 .000 .000
ξ = ξN .025 .257 .050 .200 .007 .142 .571 .025 .533 .013 .005
ξ = ξS .000 .021 .029 .819 .131

ξI = −.1768, ξN = 0 and ξS = .0884.

I, N , S are the three conclusions.

II-N and II-S are the Stage I probabilities of continuing to the respective Stage II.

For Stage II-N, we impose sample size restrictions so that the total sample size, n1 + n2(y1) is

between N I = 337 and 1.25×N I = 421. We choose5 the following AIc
-functions, which are displayed

in Figure 4.2:

AIc
(y1, ξI) = .04 + 57.05(y1 − kI

1)
2,

AIc
(y1, ξN ) =


1− Φ

[
zAIc (y1,ξI) +

√
151 (ξI − ξN )

]
if kI

1 < y1 < −.100

.70 + 1.917(y1 − kI
1) if −.100 ≤ y1 < −.0496

1− Φ
[
zAIc (y1,ξI) +

√
67 (ξI − ξN )

]
if −.0496 ≤ y1 < kI

2.

With these two AIc
functions, we can obtain n2(y1), w1(y1) and AIc

(y1, ξ) for any ξ using the

functional connections among the first group: {AIc
(y1, ξI), AIc

(y1, ξ
∗), n2(y1), w1(y1)}. The total

sample size, n1 + n2(y1) is displayed in Figure 4.3.

For the second group, we only have one free component to choose because n2(y1) is chosen by

the first group. We choose

AS(y1, ξN ) = .001 + .5232(y1 − kI
1),

which is a straight line from .001 at kI
1 to .045 at kI

2. All the components, {AS(y1, ξ
†), AS(y1, ξ

‡),

n2(y1), w1(y1)} of the second group are determined. Then using AS(y1, ξ) for ξ = ξI , ξN and ξS , we

can calculate P [Conclude S in Stage II-N] at these ξ’s. It is .000 when ξ = ξI , .007 when ξ = ξN

and .003 when ξ = ξS . The Stage II-N probabilities when ξ = ξS are now completely determined.

See Table 4.5.

Now we proceed to designing Stage II-S. Because 1 − βS = .8 and P [Conclude S in Stage

I | ξ = ξS ] = .131 and P [Conclude S in Stage II-N | ξ = ξS ] = .003, we need to have P [Conclude S

in Stage II-S | ξ = ξS ] = .8 − .131 − .003 = .666. For Stage II-S, first we impose the sample size

restriction that the total sample size is between NS = 1005 and 1.5 × NS = 1508. We choose the
5First we chose AIc

(y1, ξI) = .04 + 57.05(y1 − kI
1)2 and AIc

(y1, ξN ) = .70 + 1.917(y1 − kI
1). Then AIc

(y1, ξN ) is
modified to accommodate the sample size restrictions. See Section 2.4.2 for a detailed description of the technique.
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Figure 4.2: Example of Section 4.7: AIc
(y1, ξ) and BS(y1, ξ).

following:

BS(y1, 0) = .005 + 4.383(y1 − kS
1 )2,

BS(y1, ξS) =


1− Φ

[
zBS(y1,ξN ) +

√
1238 (ξN − ξS)

]
if kS

1 < y1 < .0171

.75 + .6647(y1 − kS
1 ) if .0171 ≤ y1 < .1179

1− Φ
[
zBS(y1,ξN ) +

√
835 (ξN − ξS)

]
if .1179 ≤ y1 < kS

2 .

(4.7.26)

See Figures 4.2 and 4.3 for the B functions and m2(y1). The second group {BS(y1, 0), BS(y1, ξ
∗),

Table 4.5: Example of Section 4.7: The Complete probabilities.

Stage I I II-N Stage II-N N II-S Stage II-S S
Stage II - - I N S - - I N S -
ξ = ξI .828 .162 .144 .018 .000 .007 .003 .003 .000 .000 .000
ξ = ξN .025 .257 .050 .200 .007 .142 .571 .025 .533 .013 .005
ξ = ξS .000 .021 .001 .017 .003 .029 .819 .000 .153 .666 .131

ξI = −.1768, ξN = 0 and ξS = .0884.

m2(y1), v2(y1)} is completely determined. For the first group, we specify

BIc
(y1, ξN ) = .94 + .5945(y1 − kS

1 ),
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Figure 4.3: Example of Section 4.7: n1 + n2(y1) and n1 +m2(y1).

which is a straight line function from .94 at y1 = kS
1 to .99 at y1 = kS

2 . With this BIc
(y1, ξN ) and

m2(y1) from the second group, all the components of the first group are determined. Then we can

calculate all the Stage II-S probabilities in Table 4.5 when ξ = ξS . The critical value functions for

Stage II-N and for Stage II-S are displayed in Figure 4.4. With the exception of w2(y1), all are

decreasing in y1, which makes practical sense because within each continuation region, a larger y1

suggests a stronger evidence against HNI
0 in favor of HNI

1 and against HS
0 in favor of HS

1 .

This particular design gives the following characteristics:

αI(ξI) = αN (0) = .025, αIN (ξI) = .025 and αIS(ξI) = .000;

βN (ξN ) = .1, βS(ξS) = .2, βSN (ξS) = .199 and βSI(ξS) = .001.

Finally, the expected sample sizes are tabulated in Table 4.6. Let

E∗[n2(y1)] = E[n2(y1) |Continue to Stage II-N],

E∗[m2(y1)] = E[m2(y1) |Continue to Stage II-S].

The probabilities of continuing and the conditional expected sample sizes, E∗[n2(y1)] and E∗[m2(y1)]

are tabulated for Stage II-N and Stage II-S. The unconditional total sample sizes in the last column
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Figure 4.4: Example of Section 4.7: Critical value functions.

are calculated as follows:

E[Total Sample Size] = n1+E∗[n2(y1)]× P [Continue to Stage II-N]

+E∗[m2(y1)]× P [Continue to Stage II-S].

Table 4.6: Example of Section 4.7: Expected Sample Sizes.

ξ n1 P[II-N] E∗[n2(y1)] P[II-S] E∗[m2(y1)] E[Sample Size]
ξ = ξI 270 .162 129.0 .003 1366.7 295.0
ξ = ξN 270 .257 95.3 .571 1080.2 911.3
ξ = ξS 270 .021 81.0 .819 911.7 1018.4
ξI = −.1768, ξN = 0 and ξS = .0884.

In the above example, our framework is able to build a design which controls the error proba-

bilities when ξ = ξI , ξN , ξS and the maximum total sample sizes. In this design, both P [Conclude

S in Stage II-N] and P [Conclude I in Stage II-S] are not equal to 0. Therefore, we cannot apply the

argument in Section 4.6. However, by numerical computation, we find that both ψIc(ξ) and ψS(ξ)

are nondecreasing in the entire range of ξ.

94



4.8 A Variation Of The Design

Various criteria may be used in choosing a design, and small expected sample sizes are an

important criterion. In the example in Section 4.7, the expected sample sizes are 295.0, 911.3, 1018.4

when ξ = ξI , ξN , ξS , respectively. The single-stage conventional design’s sample sizes are NI = 327

and NS = 1005. When ξ = ξI , the expected sample size’s percentage reduction from NI is about 10

%. When ξ = ξS , the expected sample size is actually bigger than NS by about 1.7 %. In Chapter 2,

it is shown by a computational experiment that a small n1 relative to N yields unfavorable results

in terms of expected sample size. In this example, for the superiority objectives, n1 = 270 is only

26.8 % of NS . It can be argued that because we test for both noninferiority and superiority, we

should compare the sample size of the two-stage adaptive procedure to NI +NS = 1342. Then the

percentage reduction in terms of expected sample size when ξ = ξS is (1342− 1018)/1342 ≈ 25%.

When ξ = ξN , the expected sample size is 911.3, which is about 2.8 times as large as NI .

One reason for the large expected sample size is that we move on to Stage II-S with a fairly high

probability of .571 when ξ = ξN . In Stage II-S the sample size, m2(y1), is at least 735. In order

to make the expected total sample size smaller, therefore, we propose the following two changes. 1)

make n1 larger, and 2) make P [Continue to Stage II-S | ξ = ξN ] smaller.

We consider the same setting as the last example and present a design that has larger n1 and

smaller P [Continue to Stage II-S | ξ = ξN ]. We choose n1 = 337 which is the same as NI . Then

because there should be enough information for the noninferiority objective in Stage I, we chose not

to have Stage II-N. Setting P [Y1 > kI
2 | ξ = ξI ] = .025, we calculate kI

2 = −.0699. Because the

sample size, NI is chosen so that α = .025 and β = .10 for the noninferiority objective, β1
N = .10

when kI
1 = kI

2 = −.0699. The other two critical values for Stage I, kS
1 and kS

2 are chosen so that

P [Y1 < kS
1 | ξ = ξS ] = .15 and P [ kS

2 < Y1 | ξ = ξN ] = .010. In the last example of Section 4.7,

these probabilities are .05 and .005, respectively. Both of these changes make the continuation region

narrower. We have kS
1 = .0319 and kS

2 = .1267. The Stage I probabilities are now determined, and

they are tabulated in Table 4.7. P [Continue to Stage II-S | ξ = ξN ] is .571 under the original design,

Table 4.7: Example of Section 4.8: Stage I probabilities

Conclude I Continue to Conclude N Continue to Conclude S
ξ and stop Stage II-N and stop Stage II-S and stop
ξI .975 0 .025 .000 .000
ξN .100 0 .621 .269 .010
ξS .002 0 .148 .609 .241
ξI = −.1768, ξN = 0 and ξS = .0884.
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but it is only .269 with the new design.

For Stage II-S, we impose the same sample size constraint as in Section 4.7, that is, the total

sample size is between NS = 1005 and 1.5×NS = 1508. We also note in Table 4.7 that P [Continue

to Stage II-S | ξ = ξI ]= 0. Therefore, there is no need to try to conclude I in Stage II-S. So we

let v1(y1) = −∞ for all y1 in the continuation region. We choose the following BS(y1, ξN ) and

BS(y1, ξS):

BS(y1, ξN ) = .01 + 31.03(y1 − kS
1 )2,

BS(y1, ξS) =


1− Φ

[
zBS(y1,ξN ) +

√
1171 (ξN − ξS)

]
if kS

1 < y1 < .0757

.90 + .90(y1 − kS
1 ) if .0757 ≤ y1 < .118

1− Φ
[
zBS(y1,ξN ) +

√
941 (ξN − ξS)

]
if .118 ≤ y1 < kS

2 .

These BS functions are displayed in Figure 4.5. We cannot use the same BS functions as (4.7.26)

−0.10 −0.05 0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

y1

C
on

di
tio

na
l P

ro
ba

bi
lit

y

BS(y1, ξS)

BS(y1, 0)

k1
N k1

S k2
S

Figure 4.5: Example of Section 4.8: BS(y1, ξ).

because the continuation region is different. However, in light of the result of the ANOVA study in

Section 2.5, we conclude that using different BS functions do not greatly affect the characteristics

(i.e., the powers at various ξ’s and expected sample size) of the resulting designs. The sample size

functions are displayed in Figure 4.6. And the final probabilities for this design are tabulated in

Table 4.8, and the expected sample sizes are tabulated in Table 4.9. This design’s error probabilities

are:
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Figure 4.6: Example of Section 4.8: n1 +m2(y1).

Table 4.8: Example of Section 4.8: Unconditional Stage I and Stage II probabilities

Stage I I II-N Stage II-N N II-S Stage II-S S
Stage II - - I N S - - I N S -
ξI .975 0 - - - .025 .000 0 .000 .000 .000
ξN .100 0 - - - .621 .269 0 .254 .015 .010
ξS .002 0 - - - .148 .609 0 .050 .559 .241

ξI = −.1768, ξN = 0 and ξS = .0884.

αI(ξI) = αN (0) = .025, αIN (ξI) = .025 and αIS(ξI) = .000;

βN (ξN ) = .1, βS(ξS) = .2, βSN (ξS) = .198 and βSI(ξS) = .002.

The maximum sample size is controlled at the same limit (1508) as the original design and expected

sample sizes are more preferable in this design than in the original design. Especially, when ξ = ξN ,

the expected sample size is reduced from 911.3 to 642.9.

The power functions are easier to analyze in this example than the one in Section 4.7. Because

there is no Stage II-N, by the facts that m2(y1) is nonincreasing and BS(y1, ξS) is nondecreasing, we

have, by Lemma 2.3.2, that

1. ψS(ξ) is nondecreasing for ξ in (−∞, ξS ].
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Table 4.9: Example of Section 4.8: Expected Sample Sizes.

ξ n1 P[II-N] E∗[n2(y1)] P[II-S] E∗[m2(y1)] E[Sample Size]
ξ = ξI 337 - - .000 0.0 337.0
ξ = ξN 337 - - .269 1137.2 642.9
ξ = ξS 337 - - .609 1081.1 995.4
ξI = −.1768, ξN = 0 and ξS = .0884.

2. ψS(ξ) ≥ ψS(ξS) for ξ in (ξS ,∞).

Moreover, by numerical computation, we find that ψS(ξ) is also nondecreasing for ξ in (ξS ,∞). For

ψIc(ξ), the argument is simpler. There is no Stage II-N, and we do not conclude I in Stage II-S.

Therefore, ψIc(ξ) is equal to Pξ[kS
1 < y1]. Because the distribution of Y1 is Normal (ξ, 1/n1), ψIc(ξ)

is increasing in ξ.

4.9 Discussion

In this chapter, we consider two-stage adaptive procedures which test both noninferiority and

superiority hypotheses. In addition to proper control of Type I error rates, the experimenter can

specify the power for both objectives using our framework. Although testing noninferiority and

superiority simultaneously in one trial (either adaptive or non-adaptive procedures) has been the

topic of several papers, procedures which allow specification of the power for both objectives are

rarely discussed.

In this setting in which these two study objectives are considered simultaneously, because there

are two sets of hypotheses, we must define two separate power functions, one for the noninferiority

objective and the other for the superiority objective. With the two power functions, we can specify

Type I error rate and Type II error rate for each of the two sets of hypotheses. We use these error

rates, as well as the expected and maximum sample sizes, as criteria to judge various designs.

A two-stage adaptive procedure with a possible switching of the main study objectives is more

complicated than the basic procedure we consider in Chapter 2. The main purpose of the framework

presented in this chapter is to facilitate such a design. Using our framework, one can construct a

design that controls probabilities of Type I error and Type II error for each of the noninferiority and

superiority objectives.

Our framework offers flexibility in designing a two-stage adaptive procedure. It may be desirable

to design a procedure that does not stop for futility (to conclude inferiority) in Stage I, or a procedure
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that does not conclude inferiority once it moves on to Stage II-S with superiority as the main study

objective. Using our framework, it is possible to design a procedure with these design specifications.

We presented two designs as examples in this chapter. The first example in Section 4.7 is an

example of the most general type of design in which all the decisions (I , N or S) are possible at the

end of each of Stages I, II-N and II-S. This design is fairly complex because there are four critical

values in Stage I, and two critical values in each of the Stage II’s. This example illustrates how to

construct such a design which controls Type I and Type II errors for both of the noninferiority and

superiority objectives.

We note that for the example in Section 4.7, although we control various error rates, the expected

sample sizes may not be satisfactory. Specifically, when ξ = ξN , the expected sample size is about

2.8 times as large as the sample size of a single-stage procedure with the main study objective of

showing noninferiority. Therefore, with the aim of reducing the expected sample size when ξ = ξN ,

we construct the second design in Section 4.8. This design is simpler than the first one because Stage

II-N does not exist, and concluding I in Stage II-S is not possible. The error rates of this design are

compatible to those of the first, and the expected sample sizes when ξ = ξN and when ξ = ξS are

smaller. Thus, we conclude that the second design is preferable to the first one.

When evaluating a two-stage adaptive design’s expected sample size, comparing it to a single-

stage procedure’s sample size, NI or NS , may not be a fair comparison. To illustrate this idea,

consider an extreme case in which ∆S − 0 is only one tenth of ∆N −∆I . Then, if α and β are the

same for both objectives, NS would be 100 times as large as NI . The Stage II-S sample size for a

two-stage adaptive design would also be very large compared to NI . Then even with a very small

probability of continuing to Stage II-S, the expected sample size of the two-stage adaptive design

would be much larger than NI .

We need to design a two-stage adaptive procedure carefully to avoid some undesirable features

in terms of error rates and expected sample sizes. We do not attempt to answer the question of

optimality because the desired goals may vary from case to case. Our framework offers a tool by

which different designs with various specific goals can be constructed.
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Chapter 5

Future Research Topics

5.1 The Basic Framework

In this dissertation, we present a framework for two-stage adaptive procedures. The basic

framework is established in Chapter 2. There are two topics in Chapter 2 that we would like to

explore more in the future. The first of these is the power function of two-stage adaptive procedures.

We give sufficient conditions on Stage II specification components which guarantee that the power

function of the design is nondecreasing up to some point and bounded below beyond that point. As

noted in Chapter 2, these conditions are not necessary, and many procedures that do not satisfy

these two conditions still yield a nondecreasing power function. The example in Section 2.3 gives a

procedure with a power function which is not nondecreasing. This particular design is extreme in the

sense that the conditional power when y1 is much smaller than ξ0 is .90 under the null hypothesis.

Therefore, even the Stage I data favor the null over the alternative; the conditional probability to

reject H0 in Stage II is very high. This example shows that the power function can be nondecreasing

in ξ for a two-stage adaptive design, but it also implies that a design needs to be extreme like this

one to make the power function decreasing in ξ in some interval. With examples like this in mind

we would like to find necessary conditions that guarantee the power function is nondecreasing in ξ.

The second topic that we hope to revisit is the study concerning the design parameters of

Section 2.5. The question of the optimal design has not been answered, and it is probably difficult

to answer it analytically. Therefore, a study like the one in Section 2.5 is important to shed light on

the question of optimality. Although the study in this dissertation provides the important findings

that the shape of the conditional power function has little effect on the design characteristics, we

would like to continue and perform a more thorough and systematic experiment. For example, in

this study, we only considered α1 = .01, .025 and .04. So all of the procedures in this study stop at

the end of Stage I to reject H0. Some of the procedures in the literature [e.g., Lan and Trost (1997)]

have α1 = 0, i.e., the procedure does not stop at the end of Stage I to reject H0 at all. We would
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like to study the effect of letting α1 = 0. Similarly, a procedure which does not stop at the end of

Stage I for futility is equally of interest. Some papers [e.g., Gould (2001)] distinguish procedures

with and without early stopping at the end of Stage I. From our perspective, all these procedures

can be placed in one formulation and studied together.

5.2 Practical Considerations

Chapter 3 deals with practical issues of unequal sample sizes (including missing observations)

and unknown variances. The solutions to these problems that we present in this dissertation are

clearly not the only ones. The treatment of unequal sample sizes that we provide is satisfactory, but

there may be better techniques to solve this problem. The unknown variances problem is divided

into two situations: large Stage I sample sizes and small Stage I sample sizes. The former situation

is treated in the same manner as missing observations are treated, and it is a reasonable procedure.

However, we did not fully investigate the latter situation, i.e., when the true variances are unknown

and Stage I sample sizes are small. We present an approach in Section 3.3.5, but there are issues that

we have not considered. For example, at the end of Stage I, we have an estimate, s21p, of the variance.

We also have a prestudy estimate, σ2
0. Because the Stage I sample size is small, the investigator could

decide to use σ2
0 by totally abandoning s21p. Or the upper bound of a confidence interval for σ2 using

Stage I data may be used as a pessimistic estimate of σ2
0. The decision as to which of these estimators

to use may depend on the investigator’s prior confidence concerning σ2
0.

5.3 Switching The Main Study Objectives

Chapter 4 presents an extension of the basic framework to a practically motivated problem of

testing noninferiority and superiority in the same trial. We present a framework that handles this

situation, and the framework achieves our primary goal of being able to facilitate a design. Using

the framework, one can design a fairly complicated design with the two study objectives. Design of

a two-stage adaptive procedure that allows switching the main study objective is more complicated

than the original framework for one study objective. Our framework is constructed to give a very

general design. A topic for future research is to study some special designs. The following is the list

of the special designs we would like to consider. First regarding the Stage I design:

• kI
1 = −∞: The procedure does not stop at the end of Stage I for futility, i.e., to conclude I.

• kS
2 = ∞: To stop and conclude superiority, S, at the end of Stage I is not possible.
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• kI
2 = kS

1 : The procedure does not stop at the end of Stage I to conclude “noninferiority but

not superiority,” N . It always moves on to Stage II unless y1 is extreme in either direction,

concluding inferiority, I, or S in Stage I.

• kI
1 = kI

2: Stage II-N does not exist.

• kS
1 = kS

2 : Stage II-S does not exist.

We may also use some combinations of these. The sample size n1 is a part of the Stage I design. So

our investigation whould include the choice of n1 also. Some special cases for Stage II are:

• w2(y1) = ∞: In Stage II-N, concluding S is not possible.

• v1(y1) = −∞: In Stage II-S, concluding I is not possible.

If simpler designs like these give compatible performance characteristics to more complicated designs,

the simpler ones are preferred. Therefore, we would like to see how much, if any, simplification is

possible. We plan to carry out a computational experiment similar to the ANOVA analysis of

Chapter 2 to search for simpler, but equally effective, designs. We intend to study which specification

components are influential in determining the characteristics of the resulting designs.

Another topic for future research is the unconditional power function. As we noted in Chapter

4, determination of the power functions is more difficult when there are two sets of hypotheses.

Ultimately, we would like to suggest a simpler set of conditions that guarantee monotonicity of

the power functions. We anticipate that we can apply the power function analysis for the simpler

situation in Chapter 2 to this more complicated problem.

5.4 Estimation From A Two-Stage Adaptive Procedure

As we noted, there have been quite a few papers published in the field of adaptive designs,

especially since the mid 1990’s. Because our framework encompasses many of the previously proposed

procedures, we hope that our methodology gives a new perspective to the field. Our framework gives

very powerful tools for designing a two-stage adaptive procedure.

Our framework can control Type I and Type II errors in a statistical hypothesis testing. However,

we have not addressed how to draw inferences from the results of the study. Our sense is that the

main research in this field would benefit by beginning to shift to the issues concerning estimation

when a design permits adaptation. There have been only few papers [e.g., Liu and Chi (2001)] which

address the issues in point estimation and confidence intervals for two-stage adaptive procedures. It

may be the clinical trial sponsor’s interest to obtain an unbiased estimate of ∆, a confidence interval
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for ∆ using the result in a two-stage adaptive procedure, as well as to provide a “p-value.” These

issues are not fully investigated yet, and these are not simple problems.

The difficulty of making inference from a two-stage adaptive procedure can be illustrated by the

following simple hypothetical example. Suppose that to test H0 : µt−µc ≤ 0 against H1 : µt−µc > 0,

a sample of size n1 = 100 is taken in Stage I. In the first scenario, suppose that we observe y1 = 1.0,

which is greater than k2 = .9. Then the null hypothesis is rejected in Stage I, and the study is

terminated. In the second scenario, suppose that y1 = .8. Then we move on to Stage II with sample

size of n2(.8) = 200. At the end of Stage II, we observe y2 = 2.0, and suppose that we reject H0

because w(.8) = .9. In both of these two scenarios, H0 is rejected, but which one gives a stronger

evidence against H0? When only Stage I is considered, scenario 1 gives stronger evidence against

H0. In scenario 2, the sample size of Stage II is twice as large as the one of Stage I, and the observed

y2 is much larger than y1. How we obtain an unbiased estimate of ∆ and a confidence interval for

such scenarios is a challenging problem.

It is our intention to continue research on the inference problems mentioned above making

use of the perspective provided by our framework. Because our framework covers many previously

proposed procedures, if we can establish proper inference procedures in our framework, it would give

approaches for many of the already proposed two-stage adaptive procedures.

103



Appendix



Appendix A

ANOVA Tables For Design Parameter
Analyses Of Section 2.5

The following is the detailed outputs of the ANOVA study we conducted for this research. The

description of this analysis of the “response surface” is given in Section 2.5. In this appendix, we

present an ANOVA table for each of 9 responses we consider. The actual ANOVA table includes 62

different sources (6 main effects, 15 two-way, 20 three-way, 15 four-way and 6 five-way interactions).

However all the high-degree interactions are not significant. The ANOVA tables presented here

include all the 6 main effects and 2 significant two-way interactions. For each source, DF is the

degree of freedom, SS is the sum of squares and Proportion is the SS’s proportion to the total sum

of squares.

Table A.1: ANOVA table for Power at λ = 1/4.
Source DF SS Proportion
A0 4 15.1 .006
A1 4 14.5 .006
f 2 137.5 .057
α1 2 1364.6 .561
β1 2 317.2 .130
ξ1 2 0.0 .000

f × α1 8 419.2 .172
f × β1 8 90.9 .037
Others 1992 74.5 .031
Total 2024 2433.5 1.000
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Table A.2: ANOVA table for Power at λ = 1/2.
Source DF SS Proportion
A0 4 67.0 .008
A1 4 61.7 .007
f 2 3.9 .001
α1 2 3578.4 .425
β1 2 2554.0 .303
ξ1 2 0.1 .000

f × α1 8 1040.8 .124
f × β1 8 819.7 .097
Others 1992 294.3 .035
Total 2024 8419.9 1.000

Table A.3: ANOVA table for Power at λ = 3/4.
Source DF SS Proportion
A0 4 34.3 .009
A1 4 26.8 .007
f 2 170.9 .045
α1 2 814.5 .215
β1 2 1780.0 .470
ξ1 2 0.0 .000

f × α1 8 209.5 .055
f × β1 8 615.4 .162
Others 1992 138.4 .037
Total 2024 3789.8 1.000

Table A.4: ANOVA table for R1 at λ = 0.
Source DF SS Proportion
A0 4 .368 .026
A1 4 .306 .022
f 2 3.564 .250
α1 2 2.694 .189
β1 2 4.979 .349
ξ1 2 .006 .000

f × α1 8 1.340 .094
f × β1 8 .270 .019
Others 1992 .727 .051
Total 2024 14.254 1.000
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Table A.5: ANOVA table for R1 at λ = 1/4.
Source DF SS Proportion
A0 4 .256 .018
A1 4 .236 .016
f 2 5.404 .371
α1 2 2.920 .200
β1 2 3.199 .220
ξ1 2 .009 .000

f × α1 8 1.479 .102
f × β1 8 .286 .020
Others 1992 .779 .053
Total 2024 14.568 1.000

Table A.6: ANOVA table for R1 at λ = 1/2.
Source DF SS Proportion
A0 4 .089 .007
A1 4 .073 .006
f 2 7.042 .543
α1 2 1.701 .131
β1 2 1.102 .085
ξ1 2 .013 .001

f × α1 8 1.442 .111
f × β1 8 .867 .067
Others 1992 .641 .049
Total 2024 12.970 1.000

Table A.7: ANOVA table for R1 at λ = 3/4.
Source DF SS Proportion
A0 4 .244 .019
A1 4 .039 .003
f 2 7.353 .570
α1 2 1.050 .081
β1 2 1.385 .107
ξ1 2 .011 .001

f × α1 8 1.003 .078
f × β1 8 1.272 .099
Others 1992 .547 .042
Total 2024 12.904 1.000
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Table A.8: ANOVA table for R1 at λ = 1.
Source DF SS Proportion
A0 4 .539 .042
A1 4 .116 .009
f 2 5.714 .445
α1 2 1.849 .144
β1 2 2.324 .181
ξ1 2 .000 .000

f × α1 8 .360 .028
f × β1 8 1.348 .105
Others 1992 .591 .046
Total 2024 12.841 1.000

Table A.9: ANOVA table for R2 at λ = 1/4.
Source DF SS Proportion
A0 4 .771 .008
A1 4 .029 .000
f 2 19.703 .200
α1 2 41.220 .418
β1 2 12.473 .126
ξ1 2 .000 .000

f × α1 8 19.452 .197
f × β1 8 .789 .008
Others 1992 4.28 .043
Total 2024 98.717 1.000

Table A.10: ANOVA table for R2 at λ = 1/2.
Source DF SS Proportion
A0 4 .316 .009
A1 4 .001 .000
f 2 8.654 .253
α1 2 11.956 .349
β1 2 4.716 .138
ξ1 2 .000 .000

f × α1 8 6.727 .196
f × β1 8 .071 .002
Others 1992 1.826 .053
Total 2024 34.267 1.000
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Table A.11: ANOVA table for R2 at λ = 3/4.
Source DF SS Proportion
A0 4 .412 .037
A1 4 .056 .005
f 2 5.552 .499
α1 2 1.825 .164
β1 2 .467 .042
ξ1 2 .000 .000

f × α1 8 2.014 .181
f × β1 8 .168 .015
Others 1992 .634 .057
Total 2024 11.128 1.000
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Appendix B

Liu’s Argument Against “Partially Breaking
The Blind”

In the following, we will apply Liu’s (2002) argument and show how to calculate the squared

difference of the group means in Stage I from the pooled variance and the overall variance from the

Stage I. In Appendix B and Appendix C, we use the following same notation. Let xigj be the jth

observation from the group g in Stage i, where g takes t if treatment and c if control. The averages

are denoted in a usual manner. For example, x̄1t• is the Stage I treatment group mean, and x̄1•• is

the mean of all the observations in Stage I. For the variance estimates, we use the following notation.

Let s2it, s
2
ic be the Stage i variance estimates from the treatment and control group, respectively.

[See (3.3.32), (3.3.33), (3.3.34), (3.3.35).] And let s2ip be the Stage i pooled variance estimate. [See

(3.3.36), (3.3.37).] Finally, let s2i• be the Stage i overall variance. The overall variance of Stage I is

s21• =

∑n1t
j=1(x1tj − x̄1••)2 +

∑n1c
j=1(x1cj − x̄1••)2

n1t + n1c − 1
. (B.0.1)

Suppose that at the end of Stage I, the investigator has an access to the overall sample variance,

s21•. Further suppose that the pooled variance, s21p, is also revealed. Then with the above information,

the squared difference of the means, (x̄1t• − x̄1c•)2, can be calculated.

We have

n1t∑
j=1

(x1tj − x̄1••)2 =
n1t∑
j=1

(x1tj − x̄1t•)2 + n1t(x̄1t• − x̄1••)2. (B.0.2)

Using (B.0.2) and a similar identity for the control group, (B.0.1) can be written as

s21• =

∑n1t
j=1(x1tj − x̄1t•)2 + n1t(x̄1t• − x̄1••)2 +

∑n1c
j=1(x1cj − x̄1c•)2 + n1c(x̄1c• − x̄1••)2

n1t + n1c − 1
.

Using (3.3.32) and (3.3.33), s21• is

s21• =
(n1t − 1)s21t + (n1c − 1)s21c + n1t(x̄1t• − x̄1••)2 + n1c(x̄1c• − x̄1••)2

n1t + n1c − 1
. (B.0.3)
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Because x̄1•• = (n1tx̄1t• + n1cx̄1c•)/(n1t + n1c),

x̄1t• − x̄1•• =
n1c

n1t + n1c
(x̄1t• − x̄1c•). (B.0.4)

Substituting (B.0.4) and a similar result for the control group in (B.0.3), we have

s21• =
1

n1t + n1c − 1

{
(n1t − 1)s21t + (n1c − 1)s21c +

n1tn1c

n1t + n1c
(x̄1t• − x̄1c•)2

}
.

Moreover, from (3.3.36), we have (n1t + n1c − 2)s21p = (n1t − 1)s21t + (n1c − 1)s21c. Therefore,

s21• =
1

n1t + n1c − 1

{
(n1t + n1c − 2)s21p +

n1tn1c

n1t + n1c
(x̄1t• − x̄1c•)2

}
. (B.0.5)

Finally, by solving (B.0.5) for (x̄1t• − x̄1c•)2, we have

(x̄1t• − x̄1c•)2 =
n1t + n1c

n1tn1c

{
(n1t + n1c − 1)s21• − (n1t + n1c − 2)s21p

}
. (B.0.6)

Therefore, with the knowledge of s21• and s21p, we can calculate (x̄1t• − x̄1c•)2 When n1t = n1c ≡ n1,

(B.0.6) simplifies to

(x̄1t• − x̄1c•)2 =
4n1 − 2
n1

s21• −
4n1 − 4
n1

s21p.

When we do not assume that the population variances are equal, the individual group’s sample

variances, s21t and s21c, need to be revealed instead of the pooled estimate, s21p. Nonetheless, we can

calculate s21p using (3.3.36) to get the same result.
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Appendix C

The Ratio Of Variances

We consider the ratio of variances (standard deviations) as introduced in Section 3.3.2. The

goal is to show that when the sample sizes for one stage are at least moderate, the pooled variance

from that stage and the pooled variance utilizing entire data set from both stages are similar. In

order to avoid algebraic complexity, we assume that the sample sizes from the treatment and control

groups are equal. We denote the Stage I sample size by n1 and the Stage II sample size by n2.

The variance estimate from the treatment group utilizing both stages can be written as

s2•t =
1
n∗

2∑
i=1

ni∑
j=1

(xitj − x̄•t•)2,

where n∗ = n1 + n2 − 1. And we can write the variance estimate from the treatment group for each

Stage as follows:

s2it =
1

ni − 1

ni∑
j=1

(xitj − x̄it•)2,

for i = 1, 2. Because x̄•t• = (n1x̄1t• + n2x̄2t•)/(n1 + n2), we can write

x̄1t• − x̄•t• =
n2

n1 + n2
(x̄1t• − x̄2t•), x̄2t• − x̄•t• =

n1

n1 + n2
(x̄2t• − x̄1t•).

Using these identities, n∗ s2•t is expressed as

n∗ s2•t =
n1∑

j=1

(x1ti − x̄1t•)2 + n1(x̄1t• − x̄•t•)2 +
n2∑

j=1

(x2ti − x̄2t•)2 + n2(x̄2t• − x̄•t•)2

= (n1 − 1)s21t + (n2 − 1)s22t +
n1n2

n1 + n2
(x̄1t• − x̄2t•)

2 . (C.0.1)

Similarly, for the control group, we have

n∗ s2•c = (n1 − 1)s21c + (n2 − 1)s22c +
n1n2

n1 + n2
(x̄1c• − x̄2c•)

2 .
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Because s21p = (s21t + s21c)/2, s22p = (s22t + s22c)/2 and s2•p = (s2•t + s2•c)/2, we have

n∗ s2•p = (n1 − 1)s21p + (n2 − 1)s22p +
n1n2

n1 + n2

(x̄1t• − x̄2t•)2 + (x̄1c• − x̄2c•)2

2
.

Therefore,

n∗
s2•p
s21p

= (n1 − 1) + (n2 − 1)
s22p

s21p

+
n1n2

n1 + n2

(x̄1t• − x̄2t•)2 + (x̄1c• − x̄2c•)2

2s21p

= (n1 − 1) +
(n2 − 1)

s22p

σ2
+

n1n2

2(n1 + n2)

{
(x̄1t• − x̄2t•)2 + (x̄1c• − x̄2c•)2

σ2

}
s21p/σ

2

= (n1 − 1) +
U2/2 + U3/2
U1/2(n1 − 1)

,

where

U1 = 2(n1 − 1)s21p/σ
2

U2 = 2(n2 − 1)s22p/σ
2

U3 =
n1n2

n1 + n2

{
(x̄1t• − x̄2t•)2 + (x̄1c• − x̄2c•)2

σ2

}
.

We have that U1 ∼ χ2
2(n1−1) and U2 ∼ χ2

2(n2−1). For U3, we note that both x̄1t•− x̄2t• and x̄1c•− x̄2c•

are distributed as Normal
(
0, σ2(n1 + n2)/n1n2

)
, and they are independent of each other. Thus

U3 ∼ χ2
2. Moreover, U1, U2 and U3 are mutually independent.

Let U4 = U2 + U3. Then we can write

n∗
s2•p
s21p

= (n1 − 1) +
U4/2n2

U1/2(n1 − 1)
× n2

Because U2 and U3 are independent χ2 random variables with respective degrees of freedom, 2(n2−1)

and 2, U4 ∼ χ2
2n2

, which is independent of U1. Let F =
U4/2n2

U1/2(n1 − 1)
. Then F ∼ F2n2, 2(n1−1).

Finally,

s2•p
s21p

=
n1 − 1

n1 + n2 − 1
+

F

n1 + n2 − 1
× n2. (C.0.2)

Therefore, given n1 and n2 we can find a 95% prediction interval for s•p/s1p using (C.0.2). The

following Table C.1 summarizes the prediction intervals for various n1 and n2. As the table shows,

when Stage I is fairly large, the estimate of standard error from Stage I is very similar to the estimate

utilizing both stages.

When we do not assume that the underlying population variances for the treatment and control

groups are equal, we need to estimate each population variance using the data from just one group,
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Table C.1: Ratio of pooled standard errors, s•p/s1p for various n1 and n2.
n2

n1 50 100 150 200 400
50 (.91, 1.12) (.90, 1.13) (.89, 1.14) (.89, 1.15) (.88, 1.15)
100 (.95, 1.06) (.94, 1.08) (.93, 1.08) (.93, 1.09) (.92, 1.10)
150 (.96, 1.04) (.95, 1.06) (.95, 1.06) (.94, 1.07) (.94, 1.07)
200 (.97, 1.03) (.96, 1.04) (.96, 1.05) (.95, 1.05) (.95, 1.06)
400 (.98, 1.02) (.98, 1.02) (.98, 1.03) (.97, 1.03) (.97, 1.04)

treatment or control. In other words, we cannot use the pooled estimates. Suppose that in Stage I,

a sample of size n1t is taken from the treatment group, and in Stage II, a sample of size n2t is taken

from the treatment group. Then similarly to (C.0.1), we have

(n1t − 1)s2•t = (n1t − 1)s21t + (n2t − 1)s22t +
n1tn2t

n1t + n2t
(x̄1t• − x̄2t•)2.

And a similar argument as before leads to

s2•t
s21t

=
n1t − 1

n1t + n2t − 1
+

F

n1t + n2t − 1
× n2t,

where F ∼ Fn2t, n1t−1.

Tabel C.2 summarizes the ratio of standard errors for this case.

Table C.2: Ratio of nonpooled standard errors, s•t/s1t for various n1t and n2t.
n2t

n1t 50 100 150 200 400
50 (.88, 1.18) (.87, 1.20) (.86, 1.21) (.85, 1.22) (.84, 1.23)
100 (.93, 1.10) (.91, 1.12) (.91, 1.13) (.90, 1.13) (.89, 1.14)
150 (.95, 1.07) (.94, 1.08) (.93, 1.09) (.92, 1.10) (.91, 1.11)
200 (.96, 1.05) (.95, 1.06) (.94, 1.07) (.94, 1.08) (.93, 1.09)
400 (.98, 1.03) (.97, 1.03) (.97, 1.04) (.96, 1.04) (.95, 1.05)
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Appendix D

Splus Functions

In this research, we use Splus to perform computations. We use multiple short functions, rather

than a few lengthy ones. In the following, the main functions are listed with short descriptions of

what they are used for. The inputs of a function are usually named intuitively, i.e., sigma is σ, alpha

is α, and so on.

D.1 Preliminaries And Stage I

The following two functions convert a = 1− Φ(za) to za and vice versa.

atoz_function(a){qnorm(1-a)} ztoa_function(z){1-pnorm(z)}

The following simply redefine Splus functions to save spaces.

an_function(x){as.numeric(x)} ; av_function(x){as.vector(x)}

rr_function(x, r){round(x, r)} ; r0_function(x){rr(x, 0)}

r1_function(x){rr(x, 1)} ; r2_function(x){rr(x, 2)}

r3_function(x){rr(x, 3)} ; r4_function(x){rr(x, 4)}

The function “calcn” calculates the conventional one-stage sample size given σ, µ0, µ1, α and β.

calcn_function(sigma, mu0, mu1, alpha, beta){

(sqrt(2)*sigma)^2*(atoz(alpha)-atoz(1-beta))^2/(mu1-mu0)^2}

The function “findk” calculates the stage I critical values, k1 or k2. The inputs are σ, α or 1 − β,

µ (µ0 for α and µ1 for β) and n1.

findk_function(sigma, ab, mu, n1){

r4(atoz(ab)/sqrt(n1)+mu/(sqrt(2)*sigma))}

The next function, step1, calculates the specification components of Stage I. The sample size n1

must be given, either indirectly through N and f , or directly. If n1 is specified elsewhere, it should
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be given as an input, otherwise, let n1p=0. The critical value, k1 or k2, are calculated using n1, α1

and/or β1. However, they can be specified elsewhere, too. Then α1 and/or β1 are computed in this

function using n1 and k1 and/or k2. When k1 or k2 are not specified, these input should be k1p=0

k2p=0.

step1_function(sigma, mu0, mu1, f, alpha, beta, alpha1, beta1,

n1p=0, k1p=0, k2p=0){

N_ceiling(calcn(sigma, mu0, mu1, alpha, beta)) ; n1x_round(N*f)

n1x_c(n1p, n1x)[an(n1p==0)+1]

k1x_findk(sigma, 1-beta1, mu1, n1x) ; k2x_findk(sigma, alpha1, mu0, n1x)

k1x_c(k1p, k1x)[an(k1p==0)+1] ; k2x_c(k2p, k2x)[an(k2p==0)+1]

c(N, n1x, k1x, k2x)}

The following acr (which stands for accept, continue, reject) calculates the Stage I probabilities given

σ, µ, n1, k1 and k2. If mu is a vector, this function calculates the Stage I probabilities for each value

of mu.

acr_function(sigma, mu, n1, k1, k2){

xx_mu/(sqrt(2)*sigma)

ss_1/sqrt(n1)

Rej_r3(1-pnorm(k2, xx, ss)) ; Acc_r3(pnorm(k1, xx, ss)) ; Con_1-Rej-Acc

cbind(Acc, Con, Rej)}

The following two functions are used in the necessary integrations in obtaining A-functions.

ins1_function(yt, sigmat, mut, k1t, pt, n1t){

xxt_mut/(sqrt(2)*sigmat) ; sst_1/sqrt(n1t)

(yt-k1t)^pt*dnorm(yt, xxt, sst)}

out1_function(sigma, mu, p, n1, k1, k2){#Integration for calculating a1

integrate(ins1, lower=k1, upper=k2, sigmat=sigma, mut=mu,

k1t=k1, pt=p, n1t=n1)$integral}

The next function, “step2,” calculates the value of the flat conditional power function. The output

of this function is then used to decide the starting value A(k1, ξ) for the functions with linear,

quadratic and square-root shapes.

step2_function(sigma, mu, pow2, n1, k1, k2){
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stg1_acr(sigma, mu, n1, k1, k2)

pcon_an(stg1[1,2])

an(r4(pow2/pcon))}

Finally, “step3” solves a1 in A(y1, ξ) = a0 + a1(y1 − k1)r. The input a0 is a0 and pow2 is the

unconditional power for Stage II at µ = mu. The output are a0, a1 for r = 1, 2, .5, and the ending

point of the conditional power function, i.e., A(k2, ξ), which needs to be below 1.

step3_function(sigma, mu, a0, pow2, n1, k1, k2){

xi_mu/(sqrt(2)*sigma) ; sss_1/sqrt(n1)

stg1_acr(sigma, mu, n1, k1, k2)

pcon_an(stg1[1,2])

ome_out1(sigma, mu, 1, n1, k1, k2)

sqr_out1(sigma, mu, 2, n1, k1, k2)

roo_out1(sigma, mu, .5, n1, k1, k2)

a1L_r4((pow2-a0*pcon)/ome) ; a1Le_r4(a0+a1L*(k2-k1))

a1S_r4((pow2-a0*pcon)/sqr) ; a1Se_r4(a0+a1S*(k2-k1)^2)

a1R_r4((pow2-a0*pcon)/roo) ; a1Re_r4(a0+a1R*sqrt(k2-k1))

FL_an(r4(pow2/pcon))

amat_cbind(a0, a1L, a1Le, a0, a1S, a1Se, a0, a1R, a1Re, FL)

amat}

D.2 Stage II Conditional Powers And Sample Sizes

In this section, we present functions that are used to design Stage II. The first of these is Afs,

which calculates the actual value of A(y1, ξ). Note that there are 2 k1’s and 2 k2’s. For “missing

observations” and “unknown variance,” Stage I critical values k1 and k2 are updated. For this

function, we can specify the original k values and the updated k values in ascending order, k1x <

k1p < k2p < k2x. The values of A(y1, ξ) in between k1x and k1p, and in between k2p and k2x are

constant. The other inputs are a0, a1 and r which specify A(y1, ξ) = a0 + a1(y1 − k1)r. The last

input const is the constant by which A(y1, ξ) is multiplied. If the Stage I critical values are not

modified, const should be 1.
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Afs_function(y1, k1x, k1p, k2p, k2x, ab0, ab1, pab, const){

sm_an(y1<k1p) ; bg_an(y1>k2p)

pos_sm-bg # 1 for small, -1 for big, 0 otherwise

y1_an(pos == 1) * k1p + an(pos==0)*y1 + an(pos==-1) * k2p

#For extension regions, y1 is equal to k1p or k2p.

temp_const * (ab0 + ab1 * (y1 - k1p)^pab)}

The following series of functions whose name starts with n2 are used to specify a shape of n2(y1)

function. First, n2original simply calculates the Stage II sample size function from A(y1, ξ0) and

A(y1, ξ1). The new input, a0cA is the η that adjusts A(y1, ξ0) when the Stage I critical values are

modified. The next function, n2check checks where the maximum and minimum of the sample

size function occur. If the maximum occur somewhere other than at k1, or if the minimum occur

somewhere other than at k2, it indicates that the Stage II sample size function is not nonincreasing.

The output of this function is the value of y1 where the maximum and minimum Stage II sample size

occur. The third function, n2dec gives a monotone Stage II sample size function. If, for example,

the maximum occurs at y1 = t, n2(y1) for all y1 in (k1, t) will be equal to n2(t). Finally, n2func

gives the final n2(y1). It adds η = addton2 to the basic shape, which is given by n2dec. It also

checks if the resulting sample size is within the preset maximum (n2max) and minimum (n2min). If

the sample size function is outside of this range, the sample size is truncated to n2max or increased

to n2min.

n2original_function(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb){

za0_atoz(Afs(y1, k1x, k1p, k2p, k2x, a0, a1, pa, a0cA))

za1_atoz(Afs(y1, k1x, k1p, k2p, k2x, b0, b1, pb, 1))

2*(sigma*(za0-za1)/(mu1-mu0))^2}

n2check_function(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb){

y1_seq(k1x, k2x, length=200)

n2_n2original(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC)

maxpos_min(seq(1, length(y1))[n2==max(n2)])
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minpos_max(seq(1, length(y1))[n2==min(n2)])

y1top_y1[maxpos] ; y1btm_y1[minpos]

c(y1top, y1btm)}

n2dec_function(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC, y1top, y1btm){

sm_an(y1<y1top) ; bg_an(y1>y1btm) ;

pos_sm-bg # 1 for small, -1 for big, 0 otherwise

y1_an(pos==1)*y1top + an(pos==0)*y1 + an(pos==-1)*y1btm

n2original(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb)}

n2func_function(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC, n2max, n2min){

check_n2check(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb)

y1top_check[1] ; y1btm_check[2]

n2_n2dec(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC, y1top, y1btm)

n2_n2+addton2

toosmall_an(n2<n2min) ; toolarge_an(n2>n2max)

code_toolarge-toosmall #This is 1, 0 or -1

n2t_n2max*an(code==1)+n2*an(code==0)+n2min*an(code==-1)

n2t}

The following function, A0n2wA1 finds A(y1, ξ
∗) and w(y1) given the inputs A(y1, ξ0) and n2(y1).

Because n2 is obtained through the function, n2func, in which A(y1, ξ0) and A(y1, ξ
∗) is used to find

the original n2(y1), the initial A(y1, ξ
∗) must be given. The new n2(y1) accommodates restrictions

on the maximum and minimum and the restrictions on the shape. Then using this new n2(y1) and

A(y1, ξ0), this A0n2wA1 gives the resulting A(y1, ξ
∗) and w(y1).

A0n2wA1_function(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC,
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n2max, n2min, n1){

xi0_mu0/(sqrt(2)*sigma) ; xi1_mu1/(sqrt(2)*sigma) ; ss_1/sqrt(n1)

const_c(a0cC, a0cA)[an(a0cA==a0cC)+1]

A0_Afs(y1, k1x, k1p, k2p, k2x, a0, a1, pa, const) ; za0_atoz(A0)

n2_n2func(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC, n2max, n2min)

A1_ztoa(za0-sqrt(n2)*(xi1-xi0))

w_za0/sqrt(n2)+xi0

list(A0, A1, n2, w)}

The following PLOTall simply plots A(y1, ξ0), A(y1, ξ
∗), n2(y1) and w(y1).

PLOTall_function(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC,

n2max, n2min, n1){

y1_seq(k1x, k2x, length=400)

temp_A0n2wA1(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC, n2max, n2min, n1)

A0_temp[[1]] ; A1_temp[[2]] ; n2_temp[[3]] ; w_temp[[4]]

plot(c(k1x, k2x), c(0,1), xlab="", ylab="", type="n")

lines(y1, A0, lty=1, lwd=2)

lines(y1, A1, lty=1, lwd=2)

plot(c(k1x, k2x), c(0, max(n2)), xlab="", ylab="", type="n")

lines(y1, n2, lty=1, lwd=2)

plot(c(k1x, k2x), c(min(w), max(w)), xlab="", ylab="", type="n")

lines(y1, w, lty=1, lwd=2)

list(y1, A0, A1, n2, w)}

D.3 Calculating The Power And Expected Sample Size

The functions in this subsection are used to calculate the power and expected sample sizes of a

procedure. The funciton condpow calculates the conditional power at given µ = mu. And integpow

and pow perform integration to calculate the unconditional power. And integn2 computes the sample

size for Stage II for a given y1, and en2n performs integration to calculate the expected sample size

for Stage II for a given µ = mu. Finally, powV2 calculates the unconditional power and expected
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sample sizes for various values of µ = mu. The output of powV2 is a table that summarizes the Stage

I probabilities, Stage II probabilities and expected sample sizes.

condpow_function(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC,

n2max, n2min, n1, mu){

temp_A0n2wA1(y1, sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC,

n2max, n2min, n1)

n2_temp[[3]] ; w_temp[[4]]

xi_mu/(sqrt(2)*sigma) ; ss_1/sqrt(n2)

1-pnorm(w, xi, ss)}

integpow_function(y1t, sigmat, mu0t, mu1t, k1xt, k1pt, k2pt, k2xt,

a0t, a1t, pat, a0cAt, b0t, b1t, pbt, a0cCt,

n2maxt, n2mint, n1t, mut){

cond_condpow(y1t, sigmat, mu0t, mu1t, k1xt, k1pt, k2pt, k2xt,

a0t, a1t, pat, a0cAt, b0t, b1t, pbt, a0cCt,

n2maxt, n2mint, n1t, mut)

dnor_dnorm(y1t, mut/(sqrt(2)*sigmat), 1/sqrt(n1t))

cond*dnor}

pow_function(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC, n2max, n2min, n1, mu){

st2_integrate(integpow, lower=k1x, upper=k2x, sigmat=sigma, mu0t=mu0,

mu1t=mu1, k1xt=k1x, k1pt=k1p, k2pt=k2p, k2xt=k2x,

a0t=a0, a1t=a1, pat=pa, a0cAt=a0cA,

b0t=b0, b1t=b1, pbt=pb, a0cCt=a0cC,

n2maxt=n2max, n2mint=n2min, n1t=n1, mut=mu)$integral

st1_1-pnorm(k2x, mu/(sqrt(2)*sigma), 1/sqrt(n1))

st1_r3(st1) ; st2_r3(st2)

c(st1, st2, st1+st2)}

integn2_function(y1t, sigmat, mu0t, mu1t, k1xt, k1pt, k2pt, k2xt,

a0t, a1t, pat, a0cAt, b0t, b1t, pbt, a0cCt,

n2maxt, n2mint, n1t, mut){
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n2_n2func(y1t, sigmat, mu0t, mu1t, k1xt, k1pt, k2pt, k2xt,

a0t, a1t, pat, a0cAt, b0t, b1t, pbt, a0cCt,

n2maxt, n2mint)

dnor_dnorm(y1t, mut/(sqrt(2)*sigmat), 1/sqrt(n1t))

n2*dnor}

en2n_function(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC, n2max, n2min, n1, mu){

en2_integrate(integn2, lower=k1x, upper=k2x,

sigmat=sigma, mu0t=mu0, mu1t=mu1,

k1xt=k1x, k1pt=k1p, k2pt=k2p, k2xt=k2x,

a0t=a0, a1t=a1, pat=pa, a0cAt=a0cA,

b0t=b0, b1t=b1, pbt=pb, a0cCt=a0cC,

n2maxt=n2max, n2mint=n2min, n1t=n1, mut=mu)$integral

r1(en2)}

pow2V_function(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC,

n2max, n2min, n1, stm, enm, byby){

Mu_seq(stm, enm, byby) ; len_length(Mu)

xiv_Mu/(sqrt(2)*sigma) ; ss_1/sqrt(n1)

Acc1_r3(pnorm(k1x, xiv, ss))

Con1_r3(pnorm(k2x, xiv, ss)-pnorm(k1x, xiv, ss))

st2_matrix(0, nrow=len, ncol=3)

for(i in 1:len){st2[i,]_pow(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC,

n2max, n2min, n1, Mu[i])}

en2_rep(0, len)

for(i in 1:len){en2[i]_en2n(sigma, mu0, mu1, k1x, k1p, k2p, k2x,

a0, a1, pa, a0cA, b0, b1, pb, a0cC,

n2max, n2min, n1, Mu[i])}

Rej1_st2[,1] ; Rej2_st2[,2] ; Rej_st2[,3]

EN2_en2 ; ENT_EN2+n1

cbind(Mu, Acc1, Con1, Rej1, Rej2, Rej, EN2, ENT)}
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D.4 The Example Of Section 3.2.5

In this section, we show how the functions introduced above are actually used to construct the

example of Section 3.2.5. First, the following constants and parameters are defined.

mu0_0 ; mu1_1 ; sigmat_5 ; sigmac_3

alpha_.025 ; beta_.1 ; alpha1_.005 ; beta1_.05

lamb0_.5

rho_1-beta

The Stage I sample size can be calculated using calcn with sigma = a. In place of sigma, we use

the following a.

a_r4(sqrt((lamb0*sigmat^2+sigmac^2)/2))

So Nc is

Nc_r0(calcn(a, mu0, mu1, alpha, beta))

Because we take 75% of Nc in Stage I, we have

n1c_r0(Nc*.75) ; m1_n1c

As discussed in Section 3.2.2, we can use this m1 as the Stage I “sample size.” The Stage I critical

values are calculated as follows:

k1_r4(findk(a, 1-beta1, mu1, m1))

k2_r4(findk(a, alpha1, mu0, m1))

We will need α2, ρ1 and ρ2, and they are given by

alpha2_alpha-alpha1

rho1_an(acr(a, mu1, n1, k1, k2)[,3])

rho2_rho-rho1

To find A(y1, ξ0) and A(y1, ξ1), we first decide the starting values, i.e., a0 = A(k1, ξ0) and b0

= A(k1, ξ1). The function step2 is used to calculate the values of the flat conditional power function.

We have

> step2(a, c(mu0, mu1), c(alpha2, rho2), m1, k1, k2)

[,1]

[1,] 0.1709

[2,] 0.8599

123



Therefore, a0 and b0 must be smaller than .1709 and .8599, respectively. We choose to use a0=.08

and b0=.80. Then step3 is used to find appropriate a1 and b1 for the conditional power functions

at ξ = ξ0 and ξ = ξ1.

> step3(sigma, mu0, .08, alpha2, m1, k1, k2)

a0 a1L a1Le a0 a1S a1Se a0 a1R a1Re FL

[1,] 0.08 2.699 0.3718 0.08 49.8382 0.6624 0.08 0.5433 0.2586 0.1709

> step3(sigma, mu1, .8, rho2, m1, k1, k2)

a0 a1L a1Le a0 a1S a1Se a0 a1R a1Re FL

[1,] 0.8 0.9233 0.8998 0.8 11.8459 0.9384 0.8 0.244 0.8802 0.8599

Because the quadratic form is used both for A(y1, ξ0) and for A(y1, ξ1) in this example, we have

pa_2 ; pb_2

a1_49.8382 ; b1_11.8459

Note that pa and pb are r in A(y1, ξ) = a0 + a1(y1 − k1)r. To graph A(y1, ξ0) and A(y1, ξ1), m2(y1)

and w(y1), we use PLOTall. First, we set the maximum and minimum of m2(y1).

n2max_124 ; n2min_0

pow2PLOT(a, mu0, mu1, k1, k1, k2, k2,

a0, a1, pa, 1, b0, b1, pb, 1,

n2max, n2min, m1)

Because at this planning stage, there is no missing observations, we use k1 for the inputs k1p and

k1x, k2 for k2p and k2x, and also we use 1 for both a0cA and a0cC. Finally,

pow2V(a, mu0, mu1, k1, k1, k2, k2,

a0, a1, pa, 1, b0, b1, pb, 1,

n2max, n2min, m1, stm=0, enm=1.25, byby=.25)

gives the following table.

Mu Acc1 Con1 Rej1 Rej2 Rej EN2 ENT

[1,] 0.00 0.878 0.117 0.005 0.020 0.025 9.8 179.8

[2,] 0.25 0.678 0.291 0.031 0.098 0.129 22.7 192.7

[3,] 0.50 0.405 0.474 0.121 0.255 0.376 33.7 203.7

[4,] 0.75 0.173 0.507 0.320 0.369 0.689 32.5 202.5

[5,] 1.00 0.050 0.357 0.593 0.307 0.900 20.5 190.5

[6,] 1.25 0.009 0.165 0.826 0.154 0.980 8.5 178.5
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which is presented in Table 3.1.

Then because of missing observations, we have n′1t = 296 and n′1c = 141. We let n1tA=296 and

n1cA=141 and calculate the λ′1 as lamb1=n1cA/n1tA, which yields lamb1=.4764. Then m′
1 is 145.0

by

m1A_r1(n1cA*(lamb0*sigmat^2+sigmac^2)/(lamb1*sigmat^2+sigmac^2)).

The updated Stage I critical values, k′1 and k′2 are

k1A_r4(sqrt(m1)/sqrt(m1A) * (k1-xi1) + xi1)

k2A_r4(sqrt(m1)/sqrt(m1A) * (k2-xi0) + xi0)

To find the correct θ to use with θA(y1, ξ0), we first let θ = 1 and calculate the resulting Type

I error rate.

pow2V(a, mu0, mu1, k1A, k1, k2, k2A,

a0, a1, pa, 1, b0, b1, pb, 1,

n2max, n2min, m1A, stm=0, enm=1.25, byby=.25)

yields

Mu Acc1 Con1 Rej1 Rej2 Rej EN2 ENT

[1,] 0.00 0.830 0.165 0.005 0.029 0.034 14.1 159.1

[2,] 0.25 0.619 0.354 0.027 0.121 0.148 27.8 172.8

[3,] 0.50 0.365 0.535 0.101 0.294 0.395 37.9 182.9

[4,] 0.75 0.160 0.576 0.265 0.426 0.691 36.0 181.0

[5,] 1.00 0.050 0.442 0.508 0.385 0.893 24.1 169.1

[6,] 1.25 0.011 0.241 0.748 0.227 0.975 11.5 156.5

Then we can calculate the correct multiplier, θ to be .020/.029 = .6897. Finally, by trial and error

approach, we find that η = 33 gives the desired power at the original alternative. We need to define

this η = addton2 outside of the main functions as:

addton2_33

Then we reconstruct the above table using

pow2V(a, mu0, mu1, k1A, k1, k2, k2A,

a0, a1, pa, 1, b0, b1, pb, .6897,

n2max, n2min, m1A, stm=0, enm=1.25, byby=.25)

which produces Table 3.2.
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