
METRICS AND ALGORITHMS FOR PROCESSING

MULTIPLE CONTINUOUS QUERIES

by

Mohamed A. Sharaf

M.Sc. in Computer Science, University of Pittsburgh, 2004

M.Sc. in Computer Engineering, Cairo University, 2000

B.Sc. in Computer Engineering, Cairo University, 1997

Submitted to the Graduate Faculty of

the Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2007

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12208842?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

ARTS AND SCIENCES

This dissertation was presented

by

Mohamed A. Sharaf

It was defended on

June 22nd 2007

and approved by

Panos K. Chrysanthis, PhD, Professor

Alexandros Labrinidis, PhD, Assistant Professor

Walid Aref, PhD, Professor

Christos Faloutsos, PhD, Professor

Kirk Pruhs, PhD, Professor

Dissertation Advisors: Panos K. Chrysanthis, PhD, Professor,

Alexandros Labrinidis, PhD, Assistant Professor

ii

METRICS AND ALGORITHMS FOR PROCESSING MULTIPLE

CONTINUOUS QUERIES

Mohamed A. Sharaf, PhD

University of Pittsburgh, 2007

Data streams processing is an emerging research area that is driven by the growing need for

monitoring applications. A monitoring application continuously processes streams of data

for interesting, significant, or anomalous events. Such applications include tracking the stock

market, real-time detection of disease outbreaks, and environmental monitoring via sensor

networks.

Efficient employment of those monitoring applications requires advanced data processing

techniques that can support the continuous processing of unbounded rapid data streams.

Such techniques go beyond the capabilities of the traditional store-then-query Data Base

Management Systems. This need has led to a new data processing paradigm and created

a new generation of data processing systems, supporting continuous queries (CQ) on data

streams.

Primary emphasis in the development of first generation Data Stream Management Sys-

tems (DSMSs) was given to basic functionality. However, in order to support large-scale

heterogeneous applications that are envisioned for subsequent generations of DSMSs, greater

attention will have to be paid to performance issues. Towards this, this thesis introduces

new algorithms and metrics to the current design of DSMSs.

This thesis identifies a collection of quality of service (QoS) and quality of data (QoD)

metrics that are suitable for a wide range of monitoring applications. The establishment

of well-defined metrics aids in the development of novel algorithms that are optimal with

respect to a particular metric.

iii

Our proposed algorithms exploit the valuable chances for optimization that arise in the

presence of multiple applications. Additionally, they aim to balance the trade-off between

the DSMS’s overall performance and the performance perceived by individual applications.

Furthermore, we provide efficient implementations of the proposed algorithms and we also

extend them to exploit sharing in optimized multi-query plans and multi-stream CQs. Fi-

nally, we experimentally show that our algorithms consistently outperform the current state

of the art.

iv

TABLE OF CONTENTS

PREFACE . xii

1.0 INTRODUCTION . 1

2.0 SYSTEM MODEL . 4

2.1 Continuous Queries . 4

2.2 Continuous Query Processing . 7

2.2.1 Processing Sliding Window Joins . 8

2.2.2 Processing Sliding Window Aggregates 9

3.0 QOS METRICS AND ALGORITHMS . 11

3.1 Average-case Performance . 13

3.1.1 Response Time Metric . 13

3.1.1.1 Highest Rate Policy (HR) . 13

3.1.2 Slowdown Metric . 14

3.1.3 Highest Normalized Rate Policy (HNR) 15

3.1.4 HNR vs. HR . 17

3.1.5 HNR vs. HR vs. SRPT . 19

3.2 Average-case vs. Worst-case Performance 20

3.2.1 Worst-case Performance . 20

3.2.2 Balancing the Trade-off between Average-case and Worst-case Perfor-

mance . 21

3.2.2.1 The Second Norm Metric . 21

3.2.2.2 Balancing the Trade-off for Slowdown 21

3.2.3 Balancing the Trade-off for Response Time 23

v

3.3 Implementation Issues . 24

3.3.1 Priority Dynamics under HNR . 24

3.3.2 Priority Dynamics under BSD . 24

3.3.2.1 Search Space Reduction . 25

3.3.2.2 Search Space Pruning . 26

3.3.2.3 Clustered Processing . 27

3.3.3 Adaptive Scheduling . 28

3.4 Multi-Stream Queries . 31

3.4.1 Metrics For Joins . 31

3.4.1.1 Response Time of Joined Tuples 31

3.4.1.2 Slowdown of Joined Tuples 32

3.4.2 Scheduling Multi-stream Queries . 34

3.5 Aggregate Continuous Queries . 36

3.5.1 EDF vs. HR for Scheduling Aggregate CQs 36

3.5.2 Hybrid Policy for Scheduling Aggregate CQs 37

3.6 Operator Sharing . 39

3.6.1 HNR with Operator Sharing . 39

3.6.2 Priority-Defining Tree (PDT) . 41

3.7 Evaluation Testbed . 42

3.8 Experiments . 44

3.8.1 Performance under Different Metrics 44

3.8.1.1 Average Slowdown . 44

3.8.1.2 Average Response Time . 45

3.8.1.3 Maximum Response Time . 45

3.8.1.4 Maximum Slowdown . 45

3.8.1.5 Trade-off in Slowdown . 47

3.8.1.6 Second Norm of Slowdowns 47

3.8.1.7 Second Norm of Response Times 47

3.8.1.8 Slowdown per Class . 49

3.8.1.9 Impact of Selectivity . 49

vi

3.8.1.10 An Oracle Scheduling Policy 50

3.8.1.11 Performance over Time . 52

3.8.1.12 Second Norm for Multi-stream Queries 52

3.8.1.13 Tardiness of Aggregate CQs 54

3.8.2 Memory Usage . 56

3.8.3 Comparison of Implementation Techniques 58

3.8.4 Operator Sharing . 59

3.8.5 Adaptive Scheduling . 62

4.0 QOD METRICS AND ALGORITHMS . 65

4.1 Freshness of Data Streams . 67

4.1.1 Average Freshness for Single Streams 67

4.1.2 Average Freshness for Multiple Streams 69

4.2 Freshness-Aware Scheduling of Multiple Continuous Queries 70

4.2.1 Scheduling without Selectivity . 70

4.2.2 Scheduling with Selectivity . 72

4.2.3 The FAS-MCQ Policy . 73

4.2.4 Weighted Freshness . 73

4.3 Scheduling for QoD vs. Scheduling for QoS 76

4.3.1 Scheduling for QoS . 76

4.3.2 Balancing the Trade-off between QoD and QoS 77

4.4 Evaluation Testbed . 78

4.4.1 Implementing the FAS-MCQ Scheduler 78

4.4.2 Simulation Parameters . 78

4.5 Experiments . 81

4.5.1 Impact of Utilization . 81

4.5.2 Staleness vs. Response Time . 82

4.5.3 Impact of Selectivity . 84

4.5.4 Impact of Bursts . 85

4.5.5 Real Data . 86

5.0 RELATED WORK . 88

vii

6.0 SUMMARY AND FUTURE WORK . 91

6.1 Summary . 91

6.2 Future Work . 94

6.2.1 Integrated Processing and Dissemination Schedulers 94

6.2.2 Integrated Load Shedding . 94

BIBLIOGRAPHY . 96

viii

LIST OF TABLES

1 Table of Symbols . 15

2 Results for Example 1 . 19

3 Simulation Parameters for QoS Experiments 43

4 Priority functions for scheduling QoS vs. QoD 77

5 Simulation Parameters for QoD Experiments 80

6 Classification of priority-based scheduling policies for CQs 93

ix

LIST OF FIGURES

1 Core components of a DSMS . 5

2 Continuous Queries Plans . 6

3 Output of Example 1 . 18

4 An example that illustrates the different implementation techniques 28

5 An example of a multi-stream query plan . 32

6 Multiple CQs plans sharing operator Ox . 39

7 [§3.8.1.1] Avg. slowdown vs. system load . 44

8 [§3.8.1.2] Avg. response vs. system load . 45

9 [§3.8.1.3] Max. response time vs. system load 46

10 [§3.8.1.4] Max. slowdown vs. system load . 46

11 [§3.8.1.5] Max. vs Avg. Slowdown for HNR, LSF, and BSD 47

12 [§3.8.1.6] `2 of slowdowns vs. system load . 48

13 [§3.8.1.7] `2 of response times vs. system load 48

14 [§3.8.1.8] Slowdown per class for low-cost queries 49

15 [§3.8.1.9] `2 of slowdown vs. maximum operator selectivity 50

16 [§3.8.1.10] Performance of an oracle scheduling policy 51

17 [§3.8.1.11] Response time over time . 53

18 [§3.8.1.11] Slowdown over time . 53

19 [§3.8.1.11] `2 of response times over time . 53

20 [§3.8.1.11] `2 of slowdowns over time . 53

21 [§3.8.1.12] `2 of slowdown for multi-stream queries 54

22 [§3.8.1.13] Tardiness of aggregate CQs . 54

x

23 [§3.8.1.13] Tardiness of aggregate CQs at low utilization 55

24 [§3.8.1.13] Tardiness of aggregate CQs at high utilization 55

25 [§3.8.2] Memory usage vs. system load . 56

26 [§3.8.2] Performance of Chain under QoS metrics 57

27 [§3.8.3] `2 of slowdown vs. number of clusters 58

28 [§3.8.3] Efficient implementation of BSD . 59

29 [§3.8.4] Response time for grouped queries . 60

30 [§3.8.4] Slowdown for grouped queries . 61

31 [§3.8.4] `2 of slowdowns for grouped queries 61

32 [§3.8.5] Ratio of adaptive scheduler performance vs. static 62

33 [§3.8.5] Impact of monitoring window length on adaptive scheduling 63

34 [§3.8.5] Impact of α value on adaptive scheduling 64

35 An example on measuring the freshness of a data stream 68

36 [§4.5.1] Average staleness vs. system utilization 81

37 [§4.5.1] Average response time vs. system utilization 82

38 [§4.5.2] Response time for different βs . 83

39 [§4.5.2] Staleness for different βs . 83

40 [§4.5.2] Trade-off between staleness and response time at utilization 0.95 . . . 84

41 [§4.5.3] Staleness vs. skewness in selectivity (using Zipf parameter) 85

42 [§4.5.4] Staleness vs. number of bursty streams (out of 10) 86

43 [§4.5.5] Staleness vs. system utilization (real data traces) 87

xi

PREFACE

I would like to thank my advisors, Panos K. Chrysanthis and Alexandros Labrinidis, for

their guidance and support throughout my PhD studies. Their knowledge, intelligence,

dedication, and personal integrity have helped me set higher standards for myself on the

academic, professional, and personal levels. Moreover, they are two of the most thoughtful

and considerate people that I have ever met in my life.

Panos has provided me with all the time and support I have needed. He has always

presented me with observations and challenges that have helped me to continuously improve

my work. I also appreciate his insightful vision that made my research more comprehensive

and mature.

Alex has taught me how to formulate research problems and how to clearly present my

solutions. He has always been able to identify new problems that added depth and strength

to my research. I also appreciate his constructive critiques and his careful review of my work.

I am also grateful to Kirk Pruhs for spending long hours with me working on several

theoretical problems that I have faced during my research. I have been very fortunate to

work with him.

I would also like to extend my gratitude to my external committee members, Christos

Faloutsos and Walid Aref, for their support, thoughtfulness, and the invaluable reviews and

suggestions.

Acknowledgment is also due to the NSF for supporting my research through grants:

ANI-0123705, ANI-0325353, and IIS-0534531.

I also appreciate the collaborative work I have had with several members of the ADMT

Lab. at Pitt, especially, my work with Jonathan Beaver and Shenoda Guirguis.

I have also enjoyed the support of many friends during my stay in Pittsburgh. I would

xii

especially mention Soudi Abdesalam, Christina Adamou, Polina Kats, Yiannis Koutis, and

Panickos Neophytou.

Finally, the most appreciation is due to my family: my mother Shadya, my father Abdel-

Kader, and my brother Ahmed. With gratitude, I dedicate this work to them.

xiii

1.0 INTRODUCTION

Mission-critical systems incorporate a set of sub-systems and personnel that work together

for accomplishing a certain set of critical tasks. Succeeding in accomplishing a critical task

relies on different factors including the early detection of events, and the timely availability of

the right information at the right place and to the right people. To fulfill these requirements,

monitoring applications are employed as a core component in any mission-critical system.

That is, sub-systems will install a set of monitoring applications that continuously report

the information required for these sub-systems to accomplish their tasks. Typically, events

arrive at the different components in the form of data streams which a monitoring application

continuously scans, searching for significant or anomalous events, and reports its findings in

near real-time.

Efficient employment of monitoring applications requires using advanced data processing

techniques that can support the continuous processing of continuous rapid data streams.

Such techniques go beyond the capabilities of the traditional store-then-query Data Base

Management Systems and have to be implemented in an ad-hoc manner by a combination of

stored procedures, triggers, and external database applications. This need has led to a new

data processing paradigm and created a new generation of data processing systems, called

Data Stream Management Systems (DSMSs), that support Continuous Queries (CQs) on

data streams. In such systems, each monitoring application registers a set of CQ, where a

CQ is continuously executed with the arrival of new relevant data [63]. Tribeca [60], Niagara

[20], Aurora [15], STREAM [44], TelegraphCQ [17], Gigascope [23], Niagara [20] and Nile

[31] are examples of current prototype DSMSs.

Primary emphasis in the development of first generation DSMSs was given to basic

functionality of query processing and workload shaping. In order to support the large scale

1

applications that are envisioned for subsequent generations of DSMSs, greater attention will

have to be paid to performance issues.

Such performance can be captured by means of non-functional, Quality of Service (QoS)

measures as well as functional, Quality of Data (QoD) measures. Optimizing performance

will require the development of integrated policies and new execution algorithms of query

operators that exploit the specific properties of queries and state of the DSMS components.

It will also result in new designs for DSMSs.

In this thesis, we address the following algorithmic and design issues:

1. Collection of QoS and QoD metrics: We identify a collection of quality of service

(QoS) and quality of data (QoD) metrics that are suitable for a wide range of monitoring

applications. For instance, fairness is one metric that has been overlooked in current

DSMSs prototypes.

2. Scheduling Policies: The establishment of well-defined metrics will aid us in the de-

velopment of novel algorithms for query scheduling policies, as we seek policies that are

optimal with respect to a particular metric or algorithms that can strike a fine balance

between different metrics.

The contribution of this dissertation is a set of multiple query scheduling policies whose

effectiveness is empirically demonstrated [55, 57, 54, 56]. Further, our analysis and com-

parison of our proposed algorithms with the various algorithms in the literature is expected

provides an insight to the inherent performance trade-offs for the metrics that we identify.

Specifically, we examine the problem of how to schedule multiple Continuous Queries

(CQs) in a DSMS to optimize different Quality of Service (QoS) metrics. We show that,

unlike traditional on-line systems, scheduling policies in DSMSs that optimize for average

response time will be different from policies that optimize for average slowdown, which is a

more appropriate metric to use in the presence of a heterogeneous workload. Towards this,

we propose policies to optimize for the average-case performance for both metrics.

Additionally, we propose a hybrid scheduling policy that strikes a fine balance between

performance and fairness, by looking at both the average- and worst-case performance, for

both metrics. We also show how our policies can be adaptive enough to handle the inherent

2

dynamic nature of monitoring applications. Furthermore, we discuss how our policies can

be efficiently implemented and extended to exploit sharing in optimized multi-query plans

and multi-stream CQs.

Finally, we propose to exploit query scheduling to improve QoD in DSMSs. Specifically,

we are presenting a new policy for scheduling multiple continuous queries with the objective of

maximizing the freshness of the output data streams and hence the QoD of such outputs. The

proposed Freshness-Aware Scheduling of Multiple Continuous Queries (FAS-MCQ) policy

decides the execution order of continuous queries based on each query’s properties (i.e.,

cost and selectivity) as well the properties of the input update streams (i.e., variability of

updates). We also propose and evaluate a parameterized version of our FAS-MCQ scheduler

that is able to balance the trade-off between freshness and response time according to the

application’s requirements.

The rest of the thesis is organized as follows: Chapter 2 provides the system model.

In Chapter 3, we define our QoS metrics and present our proposed scheduling policies for

improving QoS for single-stream and multi-stream queries. It also includes implementation

details, scheduling queries with shared operators, and experimental evaluation and results

for QoS metrics and policies. In Chapter 4, we present our freshness-based QoD metric along

with scheduling polices and experimental results. Chapter 5 describes the related work and

in Chapter 6, we summarize the thesis and discuss potential future work.

3

2.0 SYSTEM MODEL

We assume a DSMS whose four core components are shown in Figure 1. Specifically, the

figure shows the following components: 1) the query optimizer, 2) the query scheduler, 3)

the load shedder and 4) the memory manager. The role of each these components will be

illustrated through the following discussion.

2.1 CONTINUOUS QUERIES

In a DSMS, users register continuous queries that are executed as new data arrives. Data

arrives in the form of continuous streams from different data sources, where the arrival of

new data is similar to an insertion operation in traditional database systems. A DSMS is

typically connected to different data sources and a single stream might feed more than one

query.

For the purpose of this work, we assume a SQL-like continuous query language (e.g.,

CQL [4]) which is used in the STREAM system. CQL (Continuous Query Language) pro-

vides the typical semantics of SQL in addition to stream window semantics. A continuous

query evaluation plan can be conceptualized as a data flow tree [15, 6], where the nodes are

operators that process tuples and edges represent the flow of tuples from one operator to

another (Figure 2). An edge from operator Ox to operator Oy means that the output of Ox

is an input to Oy. Each operator is associated with a queue where input tuples are buffered

until they are processed.

Multiple queries with common sub-expressions are usually merged together to eliminate

the repetition of similar operations [48]. For example, Figure 2 shows the global plan for

4

Input Data
Streams

Output Data
Stream D1

1 2 3

Query Scheduler

Continuous Query Qn

1 2 3

Output Data
Stream Dn

Continuous Query Q1

Load Shedder

Memory ManagerQuery Optimizer

Figure 1: Core components of a DSMS

two queries Q1 and Q2. Both queries operate on data streams M1 and M2 and they share

the common sub-expression represented by operators O1, O2 and O3, as illustrated by the

half and half pattern for these operators.

A single-stream query Qk has a single leaf operator Ok
l and a single root operator Ok

r ,

whereas a multi-stream query has a single root operator and more than one leaf operators.

In a query plan Qk, an operator segment Ek
x,y is the sequence of operators that starts at

Ok
x and ends at Ok

y . If the last operator on Ek
x,y is the root operator, then we simply

denote that operator segment as Ek
x . Additionally, Ek

l represents an operator segment that

starts at the leaf operator Ok
l and ends at the root operator Ok

r . For example, in Figure 2,

E1
1 =<O1, O3, O4 >, whereas E2

1 =<O1, O3, O5 >.

In a query, each operator Ok
x (or simply Ox) is associated with two parameters:

1. Processing cost or Processing time (cx): is the amount of time needed to process an input

tuple.

2. Selectivity or Productivity (sx): is the number of tuples produced after processing one

tuple for cx time units. sx is less than or equal to 1 for a filter operator and it could be

greater than 1 for a join operator.

Given a single-stream query Qk which consists of operators

<Ok
l , ..., O

k
x, O

k
y , ..., O

k
r > (Figure 2), we define the following characterizing parameters for

5

M1

Q1 Q2

1 σσ

M2

2 σσ

3

4 ππ 5 ππ

Oy

Oz

Ox

Ol

Operator
Segment Ex

k

Qk

Or

Shared
Operators

Figure 2: Continuous Queries Plans

any operator Ok
x (or equivalently, for any operator segment Ek

x that starts at operator Ok
x):

• Operator Global Selectivity (Sk
x): is the number of tuples produced at the root Ok

r

after processing one tuple along operator segment Ek
x .

Sk
x = sk

x × sk
y × ...× sk

r

• Operator Global Average Cost (C
k
x): is the expected time required to process a

tuple along an operator segment Ek
x .

C
k
x = (ck

x) + (ck
y × sk

x) + ... + (ck
r × sk

r−1 × ...× sk
x)

If Ok
x is a leaf operator (x = l), when a processed tuple actually satisfies all the filters in

Ek
l , then C

k
l represents the ideal total processing cost or time incurred by any tuple produced

or emitted by query Qk. In this case, we denote C
k
l as Tk:

• Tuple Processing Time (Tk): is the ideal total processing cost required to produce a

tuple by query Qk.

Tk = ck
l + ... + ck

x + ck
y + ... + ck

r

We extend the above parameters for multi-stream queries in Section 3.4.

6

2.2 CONTINUOUS QUERY PROCESSING

The DSMS is responsible for processing the multiple CQs registered by different monitoring

applications. In order to accomplish that, the DSMS uses a query optimizer that decides the

query plans and the execution algorithm used by each query operator.

The DSMS also employs a query scheduler that decides the local execution order of oper-

ators within each CQ as well as the global execution order of multiple CQs. The algorithms

and policies employed by the DSMS directly affects its overall performance.

Improving the response time of a single query over data streams has been the focus of

many research efforts (e.g., [16, 66, 64]). These efforts are the successors of past efforts

on improving the response time of interactive queries over Web databases (e.g., [65, 20]).

The work in [66] proposed a rate-based query optimization technique for CQs to replace

the traditional cost-based query optimization in DBMSs. However, in both optimization

strategies, the way operators are scheduled can lead to significantly different kinds of output

behavior for the same generated query plan [65]. The work in [65] focused on the problem of

operator scheduling. It proposed the dynamic rate-based pipeline scheduling policy. Aurora

[15, 16] also uses a policy similar to the rate-based pipeline scheduling to minimize the

average tuple latency.

For multiple queries, multi-query optimization has been exploited by [19] to improve

system throughput in an Internet environment and by [42, 18] for improving the throughput

of DSMSs. Multi-query scheduling is exploited by Aurora to achieve application-specified

QoS requirements [16]. In Aurora, each query is associated with a QoS graph which defines

the utility of stale output. That is, the QoS decreases with the increase in tuple’s response

time. The QoS graph is user-specified and it assumes that the specification is feasible.

In the next section, we will describe QoS requirements based on the stretch metric [43,

12, 45, 2]. We believe that the stretch of the output provides a natural way to define the

QoS requested by a query for the following reasons: (1) it does not require the user to have

any prior knowledge about the query processing requirements or to guess the appropriate

QoS graph; and (2) it prevents the user from specifying unrealistic QoS requirements for the

submitted query.

7

Aside from QoS, QoD is another important requirement in a DSMS. QoD typically

measures the freshness of data, that is the deviation between the latest information provided

to an application and the latest available update for that information. That deviation

could be time-based, value-based or both time-based and value-based. For a comprehensive

overview of QoD metrics can be found in our work in [35].

Current DSMSs prototypes do not provide any mechanisms to control the provided QoD.

However, QoD has been extensively studied in the context of online and Web databases. For

example, the work in [21, 22] provides policies for crawling the Web in order to improve the

freshness of a local database. More mechanisms have been exploited in [47] for refreshing

distributed caches and in [36] for multi-casting updates over the Web.

2.2.1 Processing Sliding Window Joins

Understanding the semantics of sliding window joins is essential for extending the QoS and

QoD metrics for multi-stream queries as well as designing multi-stream query schedulers as

proposed in Section 3.4. To simplify the discussion, we assume time-based sliding window

equi-joins that use Symmetric Hash Join (SHJ) [68, 33] which is a non-blocking, in-memory

join processing algorithm.

To illustrate the semantics of a time-based sliding window join, let us assume a sliding

window continuous query Q that performs a join between two streams ML and MR with a

window interval VQ. Each tuple that arrives at the system has a timestamp which is either

assigned by the data source or the DSMS. For such a query Q, when a tuple t arrives at

stream ML, it will be compared against the tuples from MR that are within VQ time units

from t’s timestamp [23, 15]. That range defines the set of tuples from MR that are compared

against the newly arriving tuple at ML. Out of those tuples, the ones that satisfy the join

predicate are streamed up the query plan.

To use SHJ for performing the join operation in the query described above, hash tables

HL and HR are defined over streams ML and MR respectively. As a tuple t with timestamp

t.ts arrives at one of the streams (say ML), it is first hashed and inserted into HL, then

the hash value is used to probe HR for tuples with matching key. Out of those matching

8

tuples, each tuple that satisfies the window predicate is concatenated to the input tuple and

a new composite tuple is generated. Additionally, all tuples in HR with a timestamp less

than (t.ts − VQ) are pruned from the hash table since they are not expected to match any

of the tuples that will arrive at ML in the future.

2.2.2 Processing Sliding Window Aggregates

Aggregate queries over a data stream typically use windows to divide the unbounded data

stream into subsets of tuples. A Sliding Window, which is the most widely used type of

windows, is defined by means of two attributes: 1) RANGE; and 2) SLIDE. RANGE defines

the length of the window which is either time-based or tuple-based, whereas SLIDE defines

how the window boundaries move over the data stream. Processing each subset of tuples

produces new values for the aggregate function used in the aggregate query. We will call

each produced aggregate result an aggregate instant.

When the SLIDE is less then the RANGE, different consecutive windows overlap and a

single tuple will belong to more than one window, hence, it is involved in the computation

of different aggregate instants. For example, for an aggregate query with a RANGE of 100

tuples and a SLIDE of 100 tuples, there is no overlapping between consecutive windows and a

new aggregate value should be produced for every 100 tuples entering the system. However,

if the SLIDE is 5 tuples, then the boundary line is reached after the arrival of each 5th tuple

and each aggregation is performed over the last 100 tuples.

In a straight forward implementation of aggregates, input tuples are buffered and once a

boundary line is reached, the aggregate function is evaluated using the buffered tuples that

are within the window boundaries. After evaluating the aggregate, the window boundaries

are shifted and all the buffered tuples that fall outside the new boundaries are expired since

they cannot be involved in any future computation.

An alternative implementation that uses Window-Id (WID) appeared in [38]. In that

implementation, each input tuple is mapped to one or more WID. The mapping is done

using the tuple’s timestamp for time-based windows, or using a tuple’s serial number for

tuple-based windows. For instance, in our example above where the RANGE is 100 and

9

the SLIDE is 5, each arriving tuple (after the first 100) is mapped to the 20 WIDs that

correspond to all the windows where the input tuple is used for generating 20 aggregate

instants.

Additionally, a hash table is used to incrementally maintain the aggregate values for

each of the currently active windows. Specifically, after mapping a newly input tuple to its

set of corresponding WIDs, for each WID, if it exists in the hash table, then the aggregate

value is updated, whereas if it does not exist in the hash table, then a new entry is inserted.

When a new tuple signals that the boundary of some window has been reached, then the

aggregate instant for that window is retrieved from the hash table and the corresponding

entry is purged.

It should be clear that the WID implementation leads to significant saving in buffer

space. However, the amount of savings depends on the ratio between the window size and

the hop size. Additionally, when augmenting the WID approach with panes [37], significant

saving in processing time is achieved.

The techniques mentioned above fall under the Input Triggered execution model [29].

In the Input Triggered execution model the operators are activated with the arrival of new

input tuples. Unfortunately, that execution model will not always provide correct answers for

time-based windowed aggregates. The reason is that if the input rate of tuples is relatively

low, then using the timestamps associated with the input tuples to detect which tuples to

expire and which is the current window instant is insufficient. For example, if the RANGE

and SLIDE are 100 and 10 time units respectively and the tuples’ input rate is uniform and

it is 1 tuple every 20 time units, then at time 110, the window should slide (i.e., the first

tuple should expire) and a new aggregate should be reported. However, since the next tuple

will not arrive until time 120, then the system will only update the aggregate at time 120

and report the aggregate value for the window instant 20-120 and it will miss reporting the

aggregate for the window 10-110.

The above anomaly motivated the proposal of what is called the Clock Triggered execution

model where windowed query processing is based on time [29]. Currently, time probing [29],

negative tuples [29] and direct approach [28] are examples of mechanisms for implementing

the Clock Triggered execution model.

10

3.0 QOS METRICS AND ALGORITHMS

One of the main goals in the design of a data stream management system is the development

of scheduling policies that optimize Quality of Service (QoS).

This goal is complicated by the fact that the scheduling policy must take into account

that the CQs are heterogeneous, i.e., they may have different time complexities (the amount

of processing required to find if input data represents an event), and different productivity

or selectivity (the number of events detected by the CQ). For example, consider two CQs,

GOOGLE and ANALYSIS on streams of stock market data. GOOGLE is a simple query that asks

the DSMS to be notified when there is a stock quote for GOOGLE. ANALYSIS is a complex

query that asks the application to provide some specific technical analysis for any new stock

price. Obviously, GOOGLE has low cost and it detects less events, whereas ANALYSIS has high

cost and it detects more events.

The most commonly used QoS metric in the literature is average response time. In

this work, we show that if the objective is to optimize the response time, then the “right”

strategy is to schedule CQs according to their output rate. Specifically, we present a new

scheduling policy called Highest Rate (HR). HR generalizes the Rate-based policy (RB) [65]

for scheduling operators in multiple CQs as opposed to RB that has been proposed for

scheduling operators within a single query. Under HR, the priority of a query is set to its

output rate where the output rate of the query is the ratio between its expected selectivity

and its expected cost.

Although scheduling to minimize average response time works well for homogeneous

workloads, there are some well known disadvantages to using average response time as the

metric to optimize when the workload is heterogeneous. In the above example, the user

who issued the ANALYSIS query likely knows that it is a complex query, and is expecting a

11

higher response time than the user that issued the GOOGLE query. A metric that captures

this phenomenon is average slowdown. The slowdown of a job is the response time of the job

to the ideal processing time of the job [45]. So, for example, if each job had slowdown 1.1,

then each user would experience a 10% delay due to queuing (although the responses could

be very different).

Interestingly, in most on-line systems (e.g., Web servers), Shortest-Remaining-Processing-

Time (SRPT) is one policy that is optimal for average response time and near optimal for

average slowdown [45]. A surprising discovery of this work is that this is not the case with

the HR policy that optimizes average response time of CQs. In general, HR will not optimize

average slowdown because of the “probabilistic” nature of CQs where the selectivity might

not equal to 1. In this work, we argue that if the objective is to optimize average slowdown

then the “right” scheduling strategy is to set the priority of a query to the ratio of its

selectivity over the product of its expected cost and its ideal total processing cost. We call

this policy the Highest Normalized Rate (HNR) policy.

The average slowdown provided by the DSMS captures the system’s average-case per-

formance. However, improving the average-case performance usually comes at the expense

of unfairness toward certain classes of queries that might experience starvation. Starva-

tion is typically captured by measuring the maximum slowdown of the system [13], i.e., the

perceived worst-case performance.

Starvation is an unacceptable behavior in a DSMS that supports monitoring applications

where all kinds of events are equally important. Hence, it is crucial to balance the trade-

off between the average-case and worst-case performances of the DSMS. Toward this, we

propose a hybrid scheduling policy that optimizes the `2 norm of slowdowns [9]. As such, it

is able to strike a fine balance between the average- and worst-case performances and hence

it avoids starvation and exhibits higher degree of fairness.

12

3.1 AVERAGE-CASE PERFORMANCE

In this section, we focus on QoS metrics for single-stream queries and present our scheduling

policies for optimizing these metrics. Multi-stream queries are discussed in Section 3.4.

3.1.1 Response Time Metric

In DSMSs, the arrival of a new tuple triggers the execution of one or more CQs. Processing

a tuple by a CQ might lead to discarding it (if it does not satisfy some filter predicate) or it

might lead to producing one or more tuples at the output, which means that the input tuple

represents an event of interest to the user who registered the CQ. Clearly, in DSMSs, it is

more appropriate to define response time from a data/event perspective rather than from

a query perspective as in traditional DBMSs. Hence, we define the tuple response time or

tuple latency as follows:

Definition 1 Tuple response time, Ri, for tuple ti is Ri = Di − Ai, where Ai is ti’s arrival

time and Di is ti’s output time. Accordingly, the average response time for N tuples is:

1
N

∑N
i=1 Ri.

Notice that tuples that are filtered out do not contribute to the metric as they do not

represent any event [64].

3.1.1.1 Highest Rate Policy (HR) The Rate-based policy (RB) has been shown to

improve the average response time of a single query [65]. In Aurora [16], RB was used for

scheduling operators within a query, after the query had been selected by Round Robin (RR).

Below, we present a policy that extends RB for scheduling both queries and operators.

In the basic RB policy, each operator path within a query is assigned a priority that is

equal to its output rate. The path with the highest priority is the one scheduled for execution.

In our proposed Highest Rate policy (HR), we simply view the network of multiple queries

as a set of operators and at each scheduling point we select for execution the operator with

the highest priority (i.e., output rate).

13

Specifically, under HR, each operator Ok
x is assigned a value called global output rate

(GRk
x). The output rate of an operator is basically the expected number of tuples produced

per time unit due to processing one tuple by the operators along the operator segment

starting at Ok
x all the way to the root Ok

r . Formally, the output rate of operator Ok
x is

defined as follows:

GRk
x =

Sk
x

C
k
x

(3.1)

where Sk
x and C

k
x are the operator’s global selectivity and global average cost as defined in

Section 2. The intuition underlying HR is to give higher priority to operator paths that

are both productive and inexpensive. In other words, the highest priority is given to the

operator paths with the minimum latency for producing one tuple.

The priority of each operator Ok
x is set to its global output rate GRk

x, or equivalently,

the output rate of the operator segment Ek
x starting at Ok

x. Hence, the priority of Ek
x is

basically equal to the priority of Ok
x and executing Ok

x implies the pipelined execution of

all the operators on Ek
x unless it is interrupted by a higher priority operator (or operator

segment) as we will describe in Section 3.3.

3.1.2 Slowdown Metric

Average response time is an expressive metric in a homogeneous setting, i.e., when all tuples

require the same processing time. However, in a heterogeneous workload, as in our system,

the processing requirements for different tuples may vary significantly and average response

time is not an appropriate metric, since it cannot relate the time spent by a tuple in the

system to its processing requirements. Given this realization, other on-line systems with

heterogeneous workloads such as DBMSs, OSs, and Web servers have adopted average slow-

down or stretch [45] as another metric. This motivated us to consider stretch as the metric

in our system.

The definition of slowdown was initiated by the database community in [43] for measuring

the performance of a DBMS executing multi-class workloads. Formally, the slowdown of a

job is the ratio between the time a job spends in the system to its processing demands [45].

In DSMS, we define the slowdown of a tuple as follows:

14

Table 1: Table of Symbols

Symbol Description
Oi

x Operator x in query i

Ei
x,y Segment of operators that starts at Oi

x and ends at Oi
y

Ei
x Segment of operators that starts at Oi

x and ends at the root Oi
r

ci
x Processing time/cost of operator Oi

x

si
x Selectivity of operator Oi

x

C
i
x Expected processing time/cost of operator segment Ei

x

Si
x Selectivity of operator segment Ei

x

W i
x Wait time for tuple at the head of Oi

x’s input queue
Ti Ideal processing time/cost of a tuple produced by query Qi

Vx Window interval for join operator Ox

τl Mean inter-arrival time of data stream Ml

SEx Set of operator segments starting at shared operator Ox

SCx Expected processing time/cost of set of segments in SEx

Definition 2 The slowdown, Hi, for tuple ti produced by query Qk is Hi = Ri

Tk
, where Ri is

ti’s response time and Tk is its ideal processing time. Accordingly, the average slowdown for

N tuples is: 1
N

∑N
i=1 Hi.

Intuitively, in a general purpose DSMS where all events are of the same importance, a

simple event (i.e., event detected by a low-cost CQ) should be detected faster than a complex

event (i.e., event detected by a high-cost CQ) since the latter contributes more to the load

on the DSMS.

3.1.3 Highest Normalized Rate Policy (HNR)

Based on the above definitions, we developed the Highest Normalized Rate (HNR) policy for

minimizing average slowdown. Table 1 summarizes the parameters used for describing the

HNR policy for single-stream queries as well as the other scheduling policies policies discussed

in the next Section. It also includes the parameters used for join operators (Section 3.4) and

shared operators (Section 3.6).

To illustrate the intuition underlying HNR, consider two operator segments Ei
x and Ej

y

15

starting at operators Oi
x and Oj

y respectively. For each of the two operator segments, we

compute its global selectivity and global average cost as described above. Further, assume

that the current wait time for the tuple at the head of Oi
x’s queue is W i

x and for the tuple

at the head of Oj
y’s queue is W j

y .

We then consider two different scheduling policies:

• Policy (A), where Ei
x is executed before Ej

y, and

• Policy (B), where Ej
y is executed before Ei

x.

In policy A, where Ei
x is executed before Ej

y, the total slowdown of tuples produced under

this policy is:

HA = Si
x ×HA,i + Sj

y ×HA,j (3.2)

where Si
x and Sj

y is the number of tuples produced by Ei
x and Ej

y respectively, and HA,i and

HA,j are the slowdowns of the Ei
x tuples and the Ej

y tuples respectively.

Recall that the slowdown of a tuple is the ratio between the time it spent in the system

to its ideal processing time. Hence, HA,i and HA,j are computed as follows:

HA,i =
Ti + W i

x

Ti

HA,j =
C

i
x + Tj + W j

y

Tj

where C
i
x is the amount of time Ej

y will spend waiting for Ei
x to finish execution. By

substitution in (3.2),

HA = Si
x ×

Ti + W i
x

Ti

+ Sj
y ×

C
i
x + Tj + W j

y

Tj

Similarly, under the alternative policy B, where Ej
y is executed before Ei

x, the total slowdown

HB is:

HB = Sj
y ×

Tj + W j
y

Tj

+ Si
x ×

C
j
y + Ti + W i

x

Ti

In order for HA to be less than HB, then the following inequality must be satisfied:

Sj
y ×

C
i
x

Tj

< Si
x ×

C
j
y

Ti

(3.3)

The left-hand side of Inequality 3.3 shows the increase in total slowdown incurred by the

tuples produced by Ej
y when Ei

x is executed first. Similarly, the right-hand side shows the

16

increase in total slowdown incurred by the tuples produced by Ei
x when Ej

y is executed first.

The inequality implies that between the two alternative execution orders, we should select

the one that minimizes the increase in the total slowdown. That is, we should select the

segment with the smallest negative impact on the other one.

In order to select the segment with the smallest negative impact, in our HNR policy,

each operator Ok
x is assigned a priority V k

x which is the weighted rate or normalized rate of

the operator segment Ek
x that starts at operator Ok

x and it is defined as:

V k
x =

1

Tk

× Sk
x

C
k
x

(3.4)

The term Sk
x/C

k
x is basically the global output rate (GRk

x) of the operator segment starting

at operator Ok
x as defined in [65]. As such, the priority of each operator Ok

x is its normalized

output rate, or equivalently, the normalized output rate of the operator segment Ek
x starting

at Ok
x. Hence, executing Ok

x implies the pipelined execution of all the operators on Ek
x unless

it is interrupted by a higher priority operator as we will describe in Section 3.3.

3.1.4 HNR vs. HR

It is interesting to notice that if the objective is optimizing the response time, then the

ideal total processing cost T should be eliminated from the denominators of all the above

equations resulting in setting the priority V k
x of operator Ok

x to:

V k
x =

Sk
x

C
k
x

= GRk
x (3.5)

In fact, this is the prioritizing function we use in our Highest Rate (HR) policy for optimizing

the response time presented in Section 3.1.1.1. The HR policy, schedules jobs in descending

order of output rate which might result in a high average slowdown because a low-cost query

can be assigned a low priority since it is not productive enough. Those few tuples produced

by this query will all experience a high slowdown, with a corresponding increase in the

average slowdown of the DSMS.

17

Q1 Q2 Q2 Q2Q1 Q1

5 10 15 17 19 210

Q1Q2 Q2 Q2 Q1 Q1

11 16 212 4 60

Q1

Q2

Q2Tuples accepted by Q1

Tuples accepted by Q2

Tuples discarded by Q2

(B) Optimizing for Slowdown (HNR)

(A) Optimizing for Response Time (HR)

SD=1 SD=2 SD=3 SD=9.5

SD=2 SD=2.2 SD=3.2 SD=4.2

SD: Slowdown

Figure 3: Output of Example 1

Our policy HNR, like HR, is based on output rate, however, it also emphasizes the ideal

tuple processing time in assigning priorities. As such, an inexpensive operator segment with

low productivity will get a higher priority under HNR than under HR.

Example 1 To further illustrate the difference between the HR and the HNR policies, let us

consider an example where we have two queries Q1 and Q2. Each query consists of a single

operator. For Q1, the cost of the operator is 5 ms and its selectivity is 1.0. For Q2, the cost

of the operator is 2 ms and its selectivity is 0.33. Further, assume that there are 3 pending

tuples to be processed by the 2 queries and that all 3 tuples have arrived at time 0.

Under the HR policy, Q1’s priority is 1.0
5.0

= 0.2, whereas Q2’s priority is 0.33
2.0

= 0.1667

(which is the output rate of each query). Figure 3(A) shows the queries’ output under the

HR policy where Q1 is executed first and it accepted/emitted all the pending 3 tuples, then

Q2 is executed and it only accepted one of the 3 pending tuples (since its selectivity is 0.33);

we assume it was the middle one in this example.

Under the HNR policy, Q1’s priority is 1.0
5.0×5.0

= 0.04, whereas Q2’s priority is 0.33
2.0×2.0

=

0.08. Hence, under HNR, Q2 is scheduled before Q1 resulting in the output shown in Fig-

ure 3(B).

18

Table 2: Results for Example 1

Response Time Slowdown

HR 12.25 3.875

HNR 13.0 2.9

Table 2 summarizes the results of the two different policies and shows that HNR provides

the lower average slowdown compared to HR. The reason is that the one tuple accepted by

Q2 experienced a slowdown of 4
2

= 2.0 under HNR while its slowdown under HR is 19
2

= 9.5.

This unfairness of HR toward Q2 resulted in a higher overall average slowdown compared to

HNR.

3.1.5 HNR vs. HR vs. SRPT

It should be clear that under HR, if all the operators’ selectivities are equal to one, then

Equation 3.5 is simply the inverse of the processing time. Hence, in this case, HR is equivalent

to SRPT. Similarly, if all the operators’ selectivities are equal to one, then in Equation 3.4,

C
k
x is equal to Tk and Oi

x is executed before Oj
y if 1/(Ti)

2 > 1/(Tj)
2. By taking the square

root of both sides, then HNR is also equivalent to SRPT.

The above observation shows the effect of the selectivity parameter on this problem. That

is, under a probabilistic workload, HR reduces the response time, whereas, HNR reduces the

slowdown. However, as the workload becomes deterministic, both HR and HNR converge

to a single policy which is the SRPT policy, which has been shown to be optimal for task

scheduling when looking at response time and near optimal when looking at slowdown.

19

3.2 AVERAGE-CASE VS. WORST-CASE PERFORMANCE

Here, we first define the worst-case performance and a policy that minimizes it. Then, we

introduce our scheduling policy for balancing the trade-off between the average- and worst-

case performance.

3.2.1 Worst-case Performance

It is expected that a scheduling policy that strives to minimize the average-case performance

might lead to a poor worst-case performance under a relatively high load. That is, some

queries (or tuples) might starve under such a policy. The worst-case performance is typically

measured using maximum response time or maximum slowdown [13].

Definition 3 The maximum response for N tuples is max(R1, R2, ..., RN).

Definition 4 The maximum slowdown for N tuples is max(H1, H2, ..., HN).

Intuitively, a policy that optimizes for the worst-case performance should be pessimistic.

That is, it assumes the worst-case scenario where each processed tuple will satisfy all the

filters in the corresponding query. An example of such a policy is the traditional First-Come-

First-Serve (FCFS) that has been shown to optimize the maximum response time metric in

[13]. Similarly, the traditional Longest Stretch First (LSF) [2] has been shown to optimize

the maximum slowdown. Under LSF, each operator Ok
x is assigned a priority V k

x which is

computed as:

V k
x =

W k
x

Tk

(3.6)

where W k
x is the wait time of the tuple at the head of Ok

x’s input queue and Tk is the ideal

processing cost for that tuple.

LSF is a greedy policy under which the priority assigned to an operator Ok
x is basically

the current slowdown of the tuple at the top of Ok
x’s input queue; the current slowdown of

a tuple is the ratio of the time the tuple has been in the system thus far to its processing

time.

20

3.2.2 Balancing the Trade-off between Average-case and Worst-case Perfor-

mance

A policy that strikes a fine balance between the average-case and worst-case performance

needs a metric that is able to capture this trade-off. In this section, we first present such a

metric, and then describe our proposed scheduling policy which optimizes that metric.

3.2.2.1 The Second Norm Metric On one hand, the average value for a QoS metric

provided by the system represents the expected QoS experienced by any tuple in the system

(i.e., the average-case performance). On the other hand, the maximum value measures the

worst QoS experienced by some tuple in the system (i.e., the worst-case performance). It

is known that each of these metrics by itself is not enough to fully characterize system

performance.

To get a better understanding of system performance, we need to look at both metrics

together or, alternatively, we can use a single metric that captures both of these metrics.

The most common way to capture the trade-off between the average-case and the worst-case

performance is to measure the `2 norm [9]. Specifically, the `2 norm of response times, Ri,

is defined as:

Definition 5 The `2 norm of response times for N tuples is equal to
√∑N

1 R2
i .

The definition shows how the `2 norm considers the average in the sense that it takes

into account all values, yet, by considering the second norm of each value instead of the first

norm, it penalizes more severely outliers compared to the average slowdown metric.

Similarly, the `2 norm of slowdowns, Hi, is defined as:

Definition 6 The `2 norm of slowdowns for N tuples is equal to
√∑N

1 H2
i .

In the following sections, we present our policies for balancing the trade-off between the

average and worst cases.

3.2.2.2 Balancing the Trade-off for Slowdown Our proposed HNR policy is still

biased toward certain classes of queries. These classes are:

21

1. Queries with high productivity; and/or

2. Queries with low processing cost.

For example, under HNR, a query with high cost and low productivity comes at the

bottom of the priority list. When the system is overloaded, such low priority query will

starve waiting for execution. This behavior may be viewed as being unfair as it yields a

system with a high value for the maximum slowdown metric. The LSF policy, on the other

hand, avoids the starvation of tuples yet yields a poor average-case performance.

In order to balance the trade-off between the average- and worst-case performance, we

are proposing a new scheduling policy that minimizes the `2 norm of slowdowns. We will call

this new policy Balance Slowdown (BSD). To understand the intuition underlying BSD, we

will use the same technique from the previous section but with the objective of minimizing

the `2 norm of slowdowns.

Specifically, consider a policy A where operator segment Ei
x is executed before operator

segment Ej
y. The `2 norm of slowdowns of tuples produced under this policy is:

LA =
√

Si
x × (HA,i)2 + Sj

y × (HA,j)2

where Si
x, HA,i, Sj

y, and HA,j are calculated as in Section 3.1. Similarly, we can compute LB

which is the `2 norm of slowdowns of tuples produced under policy B. In order for LA to be

less than LB, then the following inequality must be satisfied:

Sj
y

C
j
y(Tj)2

(2W j
y +2Tj+C

i
x)<

Si
x

C
i
x(Ti)2

(2W i
x+2Ti+C

j
y)

As an approximation, we drop (2Tj +C
i
x) and (2Ti +C

j
y) from the above inequality which

yields to:
Sj

y

C
j
yTj

× W j
y

Tj

<
Si

x

C
i
xTi

× W i
x

Ti

Hence, under our proposed policy BSD, each operator Ok
x is assigned a priority value V k

x

which is the product of the operator’s normalized rate and the current highest slowdown of

its pending tuples. That is:

V k
x =

 Sk

x

C
k
xTk

(
W k

x

Tk

)
(3.7)

22

Notice that the term Sk
x/C

k
xTk is the normalized output rate of operator Ok

x as defined

in (3.4), whereas the term W k
x /Tk is the current highest slowdown experienced by a tuple in

Ok
x’s input queue. As such, under BSD, an operator is selected either because it has a high

weighted rate or because its pending tuples have acquired a high slowdown. This makes our

proposed heuristic a hybrid between our previous policy for reducing the average slowdown

(i.e., HNR) and the greedy heuristic to optimize maximum slowdown (i.e., LSF). Comparing

the priority used in BSD to that used by HNR, we find that BSD considers the waiting time

of tuples, and gives greater emphasis to the cost.

3.2.3 Balancing the Trade-off for Response Time

We use the same observations from above to devise a policy that balances the trade-off be-

tween average response time and maximum response time. Specifically, our proposed heuris-

tic for balancing the trade-off under the response time metric is a hybrid of our proposed HR

policy (that optimizes average response time) and the FCFS policy (that optimizes maxi-

mum response time). As such, under our proposed Balance Response Time (BRT) policy,

each operator Ox is assigned a priority value Vx which is defined as:

V k
x = (

Sk
x

C
k
x

)
(
W k

x

)
(3.8)

23

3.3 IMPLEMENTATION ISSUES

At each scheduling point, our scheduler is invoked to decide which operator to execute next.

The definition of a scheduling point depends on the scheduling level as follows:

• Query-level Scheduling, where the scheduling point is reached when a query finishes

processing a tuple (i.e., non-preemptive)

• Operator-level Scheduling, where the scheduling point is reached when an operator

finishes processing a tuple (i.e., preemptive).

3.3.1 Priority Dynamics under HNR

Under HNR, the priority given to each operator is static over time. Thus, the scheduler

simply keeps a sorted list of pointers to operators. At each scheduling point, the scheduler

traverses the list in order and selects for execution the first operator with pending tuples.

In query-level scheduling, it is sufficient to only keep a list of the priorities of leaf operators

where the priority of a leaf operator Ol is basically the normalized output rate of segment

El.

In operator-level scheduling, the scheduler might decide to proceed with the next operator

Ox on the currently executing query or to execute a leaf operator in another query for which

new tuples have arrived. As such, it is required to keep a list of the priorities of all operators,

where the priority of operator Ox is computed as the normalized output rate of the segment

of operators starting at Ox and ending at the root as shown in Section 3.1.

3.3.2 Priority Dynamics under BSD

Recall, the priority of an operator Ox under BSD depends on its static normalized output

rate and the current slowdown of its pending tuple where the latter increases with time. The

increase in the current slowdown for different tuples happens at different rates according to

each tuple’s current wait time (W) and ideal processing cost (T). As such, the priority of

each operator under BSD should be re-computed at any instant of time. However, such an

implementation renders BSD very impractical. An obvious way to reduce such an overhead is

24

to implement BSD using a query-level scheduler; this approximation will reduce the frequency

of scheduling points, however it is not enough. For instance, if there are q installed CQs,

then at each scheduling point the scheduler will have to compute the priorities for q leaf

operators. Next, we describe techniques for an efficient implementation of BSD.

3.3.2.1 Search Space Reduction Notice that the priority of an operator under the

non-preemptive implementation of BSD can be expressed by the product of two components:

W k
x and Sk

x/(C
k
x×T 2

k) where the former is dynamic, while the latter is static. We will denote

that static component Sk
x/(C

k
x × T 2

k) as Φx.

To reduce the search space, we divide the domain of priorities into clusters where each

cluster covers a certain range in the priority spectrum. An operator belongs to a cluster if

its priority falls within the range covered by the cluster. Then each cluster is assigned a new

priority and all operators within a cluster inherit that priority.

Using clustering is a well know technique to reduce the search space for dynamic sched-

ulers. In the particular context of DSMSs, Aurora uses a uniform clustering method for its

QoS-aware scheduler. However, uniform clustering has the drawback of grouping together

operators with large differences in their priorities. For example, if the priority domain is

[1, 100] and we want to divide it into 2 clusters, then we will end up with clusters covering

the ranges [1,50] and [50,100]. Notice how the ratio between the highest and lowest priority

in the second cluster is only 2, whereas that ratio in the first cluster goes up to 50.

In this thesis, we propose to logarithmically divide the domain of priorities into clusters,

where the priorities of the operators that belong to the same cluster are within a maximum

value ε from each other. Specifically, the first cluster will cover the priority range [ε0, ε1], the

second covers [ε1, ε2] etc.. In general, a cluster i will cover the priority range [εi, εi+1] where

a cluster i is assigned a pseudo priority equal to εi and an operator Ox will belong to cluster

i if εi ≤ Φx ≤ εi+1.

The number of resulting clusters depends on ε and ∆, where ∆ is the ratio between the

highest and the lowest priorities in the priority domain. Hence, the number of clusters m is:

m = log(∆)
log(ε)

. For example, if the priority domain is [1, 100], then at ε = 10, the number of

clusters is equal to 2 where the first cluster covers the priorities [1,10] and the second covers

25

[10,100]. As one can see from this example, the ratio between the highest and lowest priority

in each cluster is equal to ε (i.e., 10) as opposed to 2 and 50 when using uniform clustering.

Given such a clustering method, when a new tuple arrives, instead of routing it to the

input queue of a leaf operator Ok
l , it is routed to the input queue of the cluster that contains

Ok
l . Then at each scheduling point, the priority of each cluster is computed using the W of

the oldest tuple in the cluster’s input queue and the cluster’s pseudo priority. Clearly, this

“batching” can provide significant savings in computing priorities.

3.3.2.2 Search Space Pruning The clustering method reduces the complexity of the

scheduler from O(q) to O(m), however, we can do even better by pruning the search space.

Towards this, we use the same method used in the R×W policy [3] and later generalized by

Fagin’s Algorithm (FA) which quickly finds the exact answer for top k queries [26].

FA quickly finds the exact answer for top k queries in a database where each object has

g grades, one for each of its g attributes, and some aggregation function that combines the

grades into an overall grade. FA requires that for each attribute there is a sorted list which

lists each object and its grade under that attribute in descending order. In this work, we do

not present the details of FA, but we show how to map our search space to that required by

FA.

As mentioned above, under BSD, our function for computing the priority of an operator

cluster is the product of W and its pseudo priority. Hence, the system can keep a list of

all clusters sorted in descending order of pseudo priority. Additionally, the system’s input

queue is already sorted by the tuples’ arrival time, which makes it automatically sorted in

descending order of wait time with each tuple pointing to its corresponding cluster in the

cluster list. At a scheduling point, the two lists are traversed according to FA with k = 1

(i.e., find the top 1 answer). The answer returned by FA is the cluster with the highest

priority which is selected for execution. Note that FA will provide the same answer as the

one returned by a linear traversal of the list. Hence, the only approximation so far is due to

using the clustering method.

26

3.3.2.3 Clustered Processing Once a cluster is selected for execution, then the tuple

at the top of the cluster’s input queue is processed by its corresponding query until emitted

or discarded (i.e., pipelined and non-preemptive). However, it is often the case that the

same tuple is to be processed by more than one query in the system. As such, once a cluster

is selected by the scheduler, we execute a complete set of queries Qc which belong to the

selected cluster and they all operate on the head-of-the-queue tuple.

This idea of clustered processing is kind of similar to the train processing in Aurora

[16] where once a query is selected for execution, it will process a batch of pending tuples.

However, each tuple in the same queue will have a different wait time, but in our case, all the

queries in the same cluster will have the same pseudo priority which reduces the inaccuracy

in the scheduling decision.

Example 2 Figure 4 shows an example that illustrates the three implementation techniques

described above. The figure shows two query clusters Cx and Cy together with their pending

tuples. It also shows the system’s input queue where tuples are sorted according to their

wait time W and the clusters list where clusters of queries are sorted according to their

static priority Φ. A link between a tuple t and a cluster C means that t is the tuple at the

head of C’s input queue. Notice that t could be at the head of several input queues at the

same time, however, at any point of time, it is only associated with the one cluster that has

the highest static priority among these clusters. Finally, the priority of a pair < t,C > is

computed using t’s wait time W and C’s priority Φ as described above.

In this example, we assume that the static priority Φx of cluster Cx is higher than the

static priority Φy of cluster Cy. The figure shows the status of the system’s queues right

after tuple t1 has been processed by the queries in cluster Cx. At that moment, tuple t1 is

disassociated from cluster Cx and it is instead, associated with cluster Cy which follows Cx

in the priority list. Additionally, tuple t2 is associated with cluster Cx since it is the tuple

currently at the head of Cx’s input queue.

Using FA, the two lists are searched for the pair that has the highest priority to be

executed. If the pair <t2, Cx > is executed first, then at the next scheduling point, tuple t3

would be the one associated with Cx. However, if the pair <t1, Cy > is executed first, then

27

t1

t2

t3

…

Cx

Cy

…

…

t1t3 t2… Cluster Cy
Input
for Cy

t1t3 t2… X Cluster Cx
Input
for Cx

Input queue
(sorted by wait time)

Cluster list
(sorted by value Φ)

X

Figure 4: An example that illustrates the different implementation techniques

at the next scheduling point, t1 would be associated with the next cluster in the cluster list

or it would be eliminated from the queue if it has been processed by all clusters.

3.3.3 Adaptive Scheduling

It should be clear that the success of any of our scheduling policies proposed above relies

heavily on the DSMS being able to estimate the processing time and the selectivity param-

eters for each operator. This would enable the scheduler to compute the right priority for

each query which in turn would lead to optimizing the desired QoS metric.

The first of these parameters (i.e., the processing time of an operator) is a fairly static

parameter which could be estimated once when a CQ is registered and used throughout the

lifetime of the CQ. However, the selectivity parameter of an operator could be very dynamic

as it depends on the data distribution in the input data stream which may vary significantly

over time. For example, in an environment monitoring application, a filter like where temp

< 40◦F will have higher selectivity during the night than during the day. (at least in some

parts of the world, including Pittsburgh!).

28

To circumvent this problem of dynamic selectivity, we propose an adaptive scheduling

mechanism that enables our proposed policies to deliver the expected performance all the

time. Under this mechanism, the DSMS continuously monitors the execution of queries and

updates the current priorities of queries based on the new estimations.

Specifically, the DSMS monitors the input and output of query operators over a time

window and updates the selectivity of the operator at the end of the window. If the new

selectivity is different from the old one, then the operator is assigned a new priority based on

the new selectivity. The new selectivity Snew assigned to an operator is basically computed

as follows:

Snew = (1− α)× Sold + α× NO

NI

where Sold is the current selectivity of the operator and NO and NI are respectively, the

number of output and input tuples of an operator during the window interval. Finally, α is

an aging parameter that determines how much is the weight assigned to the newly observed

selectivity as compared to the selectivity currently assigned to an operator.

For instance, if α is set to 0, then the selectivity would never be updated and the system

is static. On the contrary, if α is set to 1, then the system always ignores the past and the

new selectivity is basically the one that has been observed during the last window. This

might lead to a very unstable system especially with a short monitoring window. Hence, a

value of α that is greater than 0 and less than one should allow for a stable and and adaptive

system. In fact, we found that setting α to 0.125, the same value used in network congestion

control mechanisms [32], provides the best performance.

Notice that our mechanism for monitoring and adapting is very similar to the ticket

scheme used in eddies-based query processing [42]. However, the ticket scheme is basically

used for routing tuples between operators rather than scheduling the execution of multiple

continuous queries. Specifically, the ticket scheme provides dynamic query plans that can

adapt to changes in workload.

Under the ticket scheme, a lottery scheduling mechanism [67] is used where the eddy

gives a ticket to an operator whenever it consumes a tuple and takes a ticket away whenever

it sends a tuple back to the eddy for further processing. To choose an operator to which a

29

new tuple should be routed, a lottery is conducted between operators, with the chances of a

particular operator winning is proportional to the number of tickets it has acquired. On the

one hand, the ticket scheme gives higher priority to operators with low selectivity, which is

beneficial for query plan optimization. On the other hand, our proposed policies, generally

give higher priority to operators with high selectivity, which is beneficial for multiple query

scheduling for improved online performance.

30

3.4 MULTI-STREAM QUERIES

In this section, we extend our work to handle multi-stream queries which contain Join opera-

tors and specifically, time-based sliding window joins. To simplify the discussion, we assume

Symmetric Hash Join (SHJ) [68, 33] which is a non-blocking, in-memory join processing

algorithm.

To illustrate the semantics of a time-based sliding window join, let us assume a sliding

window continuous query Q that performs a join between two streams Ml and Mr with a

window interval V . Each tuple that arrives at the system has a timestamp which is either

assigned by the data source or the DSMS. For such a query Q, when a tuple t arrives at

stream Ml, it will be compared against the tuples from Mr that are within V time units

from t’s timestamp [6, 15]. Out of those tuples, the ones that satisfy the join predicate are

streamed up the query plan.

To use SHJ for performing the join operation in the query described above, hash tables

HTl and HTr are defined over streams Ml and Mr, respectively. As a tuple t with timestamp

t.ts arrives at one of the streams (say Ml), it is first hashed and inserted into HTl, then the

hash value is used to probe HTr for tuples with matching key. Out of those matching tuples,

each tuple that satisfies the window predicate is concatenated to the input tuple t and a new

composite tuple is generated.

3.4.1 Metrics For Joins

Next, we extend the metrics described in Section 3.1 for composite tuples generated by

multi-stream queries.

3.4.1.1 Response Time of Joined Tuples Definition 1 can be used directly to measure

the response time of a composite tuple as long as the arrival time is defined. This arrival

time is easily defined by considering the dependency between the two joined tuples. That

is, the composite tuple cannot be generated until the arrival of the second one (similarly to

[6]). In other words, the composite tuple “inherits” the arrival timestamp of the latest of

31

MRML

EL ER

OJ

EC

Figure 5: An example of a multi-stream query plan

the tuples used to create it. Hence, the arrival time is defined as follows:

Definition 7 The arrival time Ai of a composite tuple ti that is produced from concatenating

two tuples tl and tr with arrival times Al and Ar respectively is equal to max(Al, Ar).

Thus, the response time Ri for tuple ti is Ri = Di − Ai, where Di is the tuple output time

and Ai is the arrival time.

3.4.1.2 Slowdown of Joined Tuples In order to measure the slowdown of a composite

tuple produced by a multi-stream query Qk, we first need to identify the ideal processing

time Tk incurred by such a tuple. For simplicity, in this section, we drop the query identifier

from our notation. To compute Tk, let us consider a query consisting of four components

(Figure 5):

1. A join operator (OJ)

2. A left operator segment preceding the join operator (EL)

3. A right operator segment preceding the join operator (ER), and

4. A common operator segment following the join operator down to the query root (EC).

Each of those segments might consist of one or more operators. In the simplest case,

when each segment is composed of one operator, the query plan looks like Q1 or Q2 in

Figure 2.

32

A tuple that is generated by such a query is the result of concatenating two tuples tl

and tr received from the left and right inputs, respectively. The tuple tl is first processed

by EL, then at OJ , the hash, insert, and probe operations are performed on tl. Similarly,

tr is processed by ER and OJ . Ultimately, the concatenated tuple generated by the join is

processed by EC . Hence, the ideal processing time of a composite tuple is defined as follows:

Definition 8 The ideal processing time Tk of a composite tuple processed by a multi-stream

query Qk composed of join operator OJ , a left segment EL, a right segment ER, and a

common segment EC is defined as:

Tk = CL + CR + (2× CJ) + CC

where CL, CR, CJ , and CC are the ideal total processing costs of the operators in EL, ER,

OJ , and EC respectively.

To compute the slowdown of a tuple it is important not to penalize the DSMS for the

dependency delay. That is, the time that the first tuple has to spend waiting for the arrival

of its matching tuple. As such, we define the slowdown incurred by a composite tuple ti

produced by a multi-stream query Qk as follows:

Hi = 1 +
Dactual

i −Dideal
i

Tk

where Dactual
i is the actual departure time of the composite tuple which includes: 1) process-

ing time; 2) dependency delay; and 3) queuing delay, whereas Dideal
i is the ideal departure

time of the composite tuple if it were the only tuple in the system and it includes all the

components in Dactual
i except for the queuing delay.

33

3.4.2 Scheduling Multi-stream Queries

In order to solve the problem of scheduling multi-stream queries, we follow the same tech-

nique as in [65, 6], where we reduce the problem to that of scheduling individual segments.

Specifically, we view a multi-stream query as a set of disjoint virtual single-stream queries

and assign a priority value to each operator in these virtual queries.

However, computing such priorities requires global knowledge about the selectivity of the

multi-stream query. Specifically, we need to re-define the prioritizing parameters Sx and Cx

in the presence of windowed-join operators. As such, let us consider a multi-stream query

Q which contains a join operator OJ and operator segments EL, ER, and EC as shown in

Figure 5. Further, assume that the selectivities of the operators in Q are known, hence, we

can compute the segments’ global selectivities SL, SR, and SC . Finally, assume that data

arrives at the left and right streams with mean inter-arrival times τl and τr, respectively and

that the query performs a time-based windowed join where the window interval is denoted

by V time units.

For scheduling, we view the above query as two operator segments ELL and ERR where

ELL =<EL, OJ , EC > and ERR =<ER, OJ , EC >. For simplicity, we assume we are imple-

menting a non-preemptive scheduling policy; as such, it is sufficient to compute the priority

values for the leaf operators in ELL and ERR. Let Ox be the leaf operator in ELL, then the

parameters Sx and Cx are defined as follows:

• Global Selectivity Sx is the number of tuples produced due to processing one tuple

down segment ELL and is defined as follows:

Sx = SL × SJ × (SR × V

τR

)× SC

where (SR × V
τR

) estimates the number of tuples present in hash table HTr at any point

of time (as in [33, 6]).

• Global Average Cost Cx is the expected time required to process an input tuple along

segment ELL and is defined as:

Cx = CL + (SL × CJ) + (SL × SJ × SR × V

τR

× CC)

34

where the first two terms define the cost for processing the input tuple, and the third

term is the cost for processing all the tuples generated by concatenating the input tuple

with the matching tuples in HTr.

Using the above parameters as well as the total processing time parameter computed in

Definition 8, we set the priority of each operator by substitution in the prioritizing function

corresponding to the used scheduling policy (i.e., HR, HNR, BSD, or BRT) as defined in

Equations 3.1, 3.4, 3.7, and 3.8 respectively. For multi-stream queries with multiple join

operators, the above parameters are defined recursively.

35

3.5 AGGREGATE CONTINUOUS QUERIES

In this section, we propose policies for scheduling multiple time-based sliding window ag-

gregate continuous queries. In such queries, a Sliding Window, is defined by means of two

attributes: 1) RANGE; and 2) SLIDE. RANGE defines the window length, whereas SLIDE

defines how the window boundaries move over the data stream. Every SLIDE interval, the

set of tuples that arrived within the last RANGE interval is processed to produce a new

aggregate value.

Given the above semantics of aggregate continuous queries, the SLIDE attribute acts like

a deadline at which the new aggregate value should be produced. However, it is not always

possible for the DSMS to produce each aggregate query result at its specified deadline, espe-

cially when the system is overloaded. This highlights the need for a mechanism to schedule

the processing of multiple aggregate queries with the objective of minimizing tardiness. Tar-

diness, or lateness, is basically, the amount of elapsed time between the deadline (i.e., every

SLIDE time) and the instant when the result is actually generated.

Towards minimizing tardiness, we studied the performance of two scheduling policies:

(1) Earliest Deadline First (EDF); and (2) Highest Rate (HR) (Section 3.1.1.1). Our study

showed that HR outperforms EDF at higher system utilizations, whereas EDF is a better

policy when the system is lightly loaded. This tension between the two policies motivated

us to propose a new hybrid policy that integrates the benefits of EDF and HR and it adapts

itself automatically to the workload.

In the next sections, we will first explain the advantages and disadvantages of each of

the EDF and HR policies when used for scheduling aggregate queries, then we will describe

our proposed hybrid policy for scheduling the execution of continuous aggregate queries.

3.5.1 EDF vs. HR for Scheduling Aggregate CQs

Typically, EDF [41] guarantees that all jobs will meet their deadlines if the system utilization

is less than or equal to 1.0. In the context of aggregate continuous queries, this means that

if the system is under-utilized, then each aggregate value will be generated at the specified

36

instant of time (i.e., meeting its deadline as specified by the SLIDE attribute). As such,

the tardiness of the system is expected to be zero since all the generated results make the

deadline.

When the system is over-utilized, it is impossible to generate all the aggregate results

at the specified deadlines. That is when some results are delayed beyond their deadlines

experiencing tardiness. Using an EDF scheduler in such over-utilization situations will have

a substantial negative impact on the overall system tardiness. This negative impact is known

as the “domino effect”. In such cases, EDF gives a high priority to a query with an early

deadline that it has already missed instead of scheduling another query which has a later

deadline that could still be met.

In contrast to EDF, HR is the best policy to use when the system is over-utilized, or

to be more specific, it is the best policy to use when all queries have already missed their

deadlines. The reason is that if all queries have already missed their deadlines, then tardiness

and latency become the same metric and we have already shown earlier that HR is the one

policy that is capable of minimizing latency. However, generally, at each instant of time, the

workload is a mix of queries that have missed their deadlines as well as queries that have not

missed their deadlines yet. In that case of mixed queries, HR might run into the problem of

giving a high priority to a query with a high output rate though it has missed its deadline

as opposed to another query with a low output rare that could still meet its deadline.

3.5.2 Hybrid Policy for Scheduling Aggregate CQs

From the discussion above, it is clear that there is no clear winning policy for scheduling

aggregate CQs. Generally speaking, EDF does well at low utilization, whereas at high

utilization, HR does better than EDF. In this section, we propose a hybrid policy that

combines the advantages of EDF and HR. The proposed hybrid policy is parameter-free and

it automatically adapts to the system load. This results in a performance that is better

than the one exhibited by EDF at low utilization, while at high utilization its performance

is better than that of HR.

Under our proposed hybrid policy, the scheduler maintains two priority lists. In the

37

first list, called ListEDF, queries are ordered according to their deadlines as in the EDF

scheduling policy. In the second list, called ListHR, queries are ordered according to their

output rates as in the HR scheduling policy.

The first list, ListEDF, contains all queries that can still make their deadlines. Formally,

a query Qi with deadline Di is included in ListEDF if and only if, t + Ci ≤ Di, where t is

the current time and Ci is the time to process all the tuples that arrived before the deadline

Di.

The second list, ListHR, contains all queries that missed their deadlines. Formally, a

query Qi with deadline Di is included in ListHR if and only if, t + Ci > Di, where t and Ci

are defined as above. Notice that each query starts in the ListEDF then it might move to

the ListHR if it misses its deadline.

Given the above two lists, at each scheduling point, our hybrid policy selects for execution

either the query at the top of ListEDF or the one at the top of ListHR. For convenience, we

will call these two queries, Q1,EDF and Q1,HR, respectively.

To decide between Q1,EDF and Q1,HR, we use a a simple greedy heuristic under which,

Q1,HR is scheduled for execution if t+C1,HR < D1,EDF , otherwise, Q1,EDF is the one scheduled

for execution, where C1,HR if the processing time of Q1,HR and D1,EDF is the deadline of

Q1,EDF .

It should be clear that given the above arrangement, at the extreme case if all queries

are past their deadlines, then the hybrid policy is basically equivalent to HR. In the other

extreme case where all queries can meet their deadlines, then the hybrid policy behaves like

EDF. In the general case, where there is a mix of queries that have passed their deadlines

and others that can still meet their deadlines, our hybrid policy employs both HR and EDF.

This allows our proposed hybrid policy to outperform HR and EDF as it is experimentally

shown in Section 3.8.1.13.

38

Ox

Or

Ox+1

Or

Ox+1

Or

Ox+1

Ex

Lx

PDTx

Ex
1

1

1

m

m n

n

n

n

Figure 6: Multiple CQs plans sharing operator Ox

3.6 OPERATOR SHARING

Operator sharing eliminates the repetition of similar operations in different queries. Hence,

a multi-query scheduler should exploit those shared operators for further optimization. In

this section we show how to set the priority of a shared operator under our proposed policies.

First, let us consider a set of operator segments SEx in which operator Ox is shared

among multiple operator segments E1
x, E

2
x, ..., En

x (Figure 6) where for each segment Ei
x, we

can compute the selectivity Si
x and the average cost C

i
x.

Further, assume that the cost of the shared operator Ox is cx and SCx is the average

cost of executing the set of segments SEx. Intuitively, SCx is equal to the total average cost

of executing the N segments with the cost of the shared operator Ox counted only once.

Formally, the average cost SCx of N paths sharing an operator Ox is:

SCx =
N∑

i=1

C
i
x −

N−1∑

i=1

cx

where C
i
x is the average cost of segment Ei

x and cx is the cost of the shared operator Ox.

3.6.1 HNR with Operator Sharing

In this section, we will describe the general method for setting the priority of a shared

operator under HNR. In the next section, we will describe the particular details of this

39

method. Note that the BSD policy can also be extended in the same way, however the

details are eliminated for brevity.

To set the priority of a shared operator under the HNR policy, consider two sets of

operator segments SEp and SEq, where SEp = {E1
p , ..., E

N
p } sharing operator Op and SEq =

{E1
q , ..., E

M
q } sharing operator Oq. For now, assume that if a set of segments is scheduled,

then all the segments within that set are executed.

To measure the impact of executing one set on the other, we will use the same concept

from the definition of Inequality 3.3. Basically, we will measure the increase in slowdown

incurred by the tuples produced from one set if the other set is scheduled for execution first.

Hence, if the set of segments SEp is executed first, then the increase in slowdown incurred

by tuples from SEq is computed as follows:

Hq = S1
q

SCp

Tq,1

+ S2
q

SCp

Tq,2

+ ... + SM
q

SCp

Tq,M

where SCp is the amount of time that set SEq will spend waiting for set SEp to finish

execution and Tq,i is the ideal total processing time for the tuples processed by Ei
q.

Similarly, we can compute Hp which is the increase in slowdown incurred by tuples from

SEp. In order for Hq to be less than Hp, then the following inequality must be satisfied:

SCp

M∑

i=1

Si
q

Tq,i

< SCq

N∑

i=1

Si
p

Tp,i

Hence, the priority of a set of operator segments SEx that consists of N segments sharing a

common operator Ox is:

Vx =

∑N
i=1

Si
x

Tx,i

SCx

(3.9)

40

3.6.2 Priority-Defining Tree (PDT)

Setting the priority of a shared operator using all the N segments in a set is only beneficial

if it maximizes the value of Equation 3.9. However, that is not always the case because

Equation 3.9 is non-monotonically increasing. That is, adding a new segment to the equation

might increase or decrease its value.

We definitely need to boost the priority of a shared operator, however, we do not want

segments with low normalized rate to hurt those with high normalized rate by bringing down

the overall priority of the shared operator. As such, we need to select from each set what

we call a Priority-Defining Tree (PDT) which is the subset of segments that maximizes the

aggregated value of the priority function. Hence, the priority of a shared operator is basically

the priority of that PDT and once a shared operator is scheduled, the segments in the PDT

are executed as one unit (unless it is preempted).

In order to compute the priority value Vx for operator Ox, we sort the segments according

to their priority. Then, we visit the segments in descending order of priority, and only add

a segment to the priority defining tree of Ox (PDTx) if it increases the aggregate priority

value, otherwise we stop and the shared operator Ox is assigned that aggregate priority value.

Hence, for an operator Ox shared between N segments, with a PDTx that is composed of m

segments where m ≤ N , the priority of Ox under the HNR policy is defined as:

Vx =

∑m
i=1

Si
x

Tx,i∑m
i=1 C

i
x −

∑m−1
i=1 cx

If m = N , that is, if the PDT consists of all the segments sharing Ox, then Vx is equal to

the global normalized rate as defined in Equation 3.9.

For any operator segment Ei
x that does not belong to PDTx, such segment can be viewed

as two components: Ox and Li
x (as shown in Figure 6). Executing PDTx will naturally lead

to executing the Ox component of Ei
x. Scheduling Li

x for execution depends on its priority

which is computed in the normal way using its normalized rate as in Section 3.1. Hence, for

example, in a query-level implementation of the HNR scheduler, the priority list will contain

all the leaf operators in addition to the first operator in each segment that does not belong

to any PDT.

41

3.7 EVALUATION TESTBED

To evaluate the performance of the proposed algorithms, we created a DSMS simulator with

the following properties.

Queries: We simulated a DSMS with 500 registered continuous queries. The structure of

the query is the same as in [19, 42] where each query consists of three operators: select, join

and project. For the experiments on single-stream queries, we assume a join with a stored

relation; for multi-stream queries we use window join between data streams.

Streams: We used the LBL-PKT-4 trace from the Internet Traffic Archive1 as our in-

put stream. The trace contains an hour’s worth of wide-area traffic between the Lawrence

Berkeley Laboratory and the rest of the world. This trace gives us a realistic data arrival

pattern with On/Off traffic which is typical of many applications.

Selectivities: In order to control the selectivity, we added two extra attributes to each

packet in the trace and assigned each attribute a uniform value in the range [1,100]. Then

the selectivity of the select and join operators is uniformly assigned in the range [0.1,1.0]

by using predicates defined on the introduced attributes. Since the performance of a policy

depends on its behavior toward different classes of queries, where a query class is defined by

its global selectivity and cost, we chose to use the same selectivity for operators that belong

to the same query. This enables us to control the creation of classes in a uniform distribution

to better understand the behavior of each policy (e.g., Figure 14).

Costs: Similar to selectivity, operators that belong to the same query have the same cost,

which is uniformly selected from five possible classes of costs. The cost of an operator in class

i is equal to: K×2i time units, where i ∈ [0,4] and K is a scaling factor that is used to scale

the costs of operators to meet the simulated utilization (or load). Specifically, we measure

the average inter-arrival time of the data trace, then we set K so that the ratio between the

total expected costs of queries and the inter-arrival time is equal to the simulated utilization.

Policies: We compared the performance of our proposed policies to the two-level scheduling

1http://ita.ee.lbl.gov/html/contrib/LBL-PKT.html

42

scheme from Aurora where Round-Robin (RR) is used to schedule queries and Rate-based

(RB) is used to schedule operators within a query. Collectively, we refer to the Aurora

scheme in our experiments as RR.

We also considered the SRPT policy where the priority of an operator segment is inversely

proportional to its total ideal processing time, as well as the Chain scheduling policy [6] which

minimizes memory usage.

Here is a list of the rest of the policies considered in our experiments:

• FCFS: First Come First Served policy for minimizing maximum response time (Sec-

tion 3.2.1).

• LSF: Longest Stretch First ploicy for minimizing maximum slowdown (Section 3.2.1).

• HR: Highest Rate policy for minimizing average response time (Section 3.1.1.1).

• HNR: Highest Normalized Rate policy for minimizing average slowdown (Section 3.1.3).

• BRT: Balance Response Time policy for minimizing `2 norm of response times (Sec-

tion 3.2.3).

• BSD: Balance Slowdown policy for minimizing `2 norm of slowdowns (Section 3.2.2.2).

Table 3: Simulation Parameters for QoS Experiments

Parameter Value

Base-case policies RR, SRPT, Chain

Adopted policies FCFS, LSF, HR, HNR, BRT, BSD

Queries 500 3-operator queries

Operator cost K × 20 – K × 24 Secs

Operator selectivity 0.1 – 1.0

Window interval 1 – 10 Secs

System Utilization 0.1 – 0.99

Table 3 summarized the simulation parameters described above.

43

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
vg

. S
lo

w
do

w
n

0

200

400

600

800

1000

1200

1400

1600 RR
FCFS
SRPT
HR
HNR

Figure 7: [§3.8.1.1] Avg. slowdown vs. system load

3.8 EXPERIMENTS

In this section, we present the performance of our proposed policies under the different QoS

metrics. We also present results on the implementation of the BSD policy as well as the

performance of the PDT strategy for scheduling shared operators.

3.8.1 Performance under Different Metrics

In this section, we present the performance of our proposed policies under the different QoS

metrics.

3.8.1.1 Average Slowdown Figure 7 shows how average slowdown increases with uti-

lization. Clearly, HNR, our proposed policy, provides the lowest slowdown followed by HR.

For instance at 0.7 utilization, the slowdown provided by HNR is 74% lower than that of

RR, 51% lower than SRPT, and 18% lower than HR. At 0.97 utilization, HNR is 75% lower

than RR, 53% lower than SRPT, and 20% lower than HR.

44

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
vg

. R
es

po
ns

e
T

im
e

(µ
S

ec
)

0.0

5.0e+5

1.0e+6

1.5e+6

2.0e+6

2.5e+6 RR
FCFS
SRPT
HR
HNR

Figure 8: [§3.8.1.2] Avg. response vs. system load

3.8.1.2 Average Response Time As expected, this improvement in slowdown by HNR

would lead to an increase in response time compared to HR as shown in Figure 8. For

instance, at 0.7 utilization, HNR’s response time is 4% higher than HR and it is 7% higher

at 0.97 utilization.

3.8.1.3 Maximum Response Time In terms of worst-case performance, Figure 9

shows that FCFS provides the lowest maximum response time which is 75% lower than

HR at 0.97 utilization. However, that improvement comes at the expense of poor average-

case performance as shown in Figure 8 where the average response time provided by FCFS

is 630% that of HR.

3.8.1.4 Maximum Slowdown Similar to FCFS, Figure 10 shows that LSF reduces the

maximum slowdown by 80% compared to HNR. However, that improvement comes at the

expense of poor average-case performance (as depicted in Figure 11).

45

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
ax

. R
es

po
ns

e
T

im
e

(µ
S

ec
)

0

2e+7

4e+7

6e+7

8e+7

RR
FCFS
SRPT
HR
HNR

Figure 9: [§3.8.1.3] Max. response time vs. system load

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
ax

. S
lo

w
do

w
n

0

5e+4

1e+5

2e+5

2e+5

RR
FCFS
SRPT
HR
HNR
LSF

Figure 10: [§3.8.1.4] Max. slowdown vs. system load

46

Maximum Slowdown

0 2e+4 4e+4 6e+4 8e+4 1e+5

A
ve

ra
ge

 S
lo

w
do

w
n

0

1000

2000

3000

4000

5000

6000

Highest Normalized Rate (HNR)
(minimizes avg. slowdown)

Balance Slowdown (BSD)
(balances the trade-off)

Longest Stretch First (LSF)
(minimizes max. slowdown)

Figure 11: [§3.8.1.5] Max. vs Avg. Slowdown for HNR, LSF, and BSD

3.8.1.5 Trade-off in Slowdown Figure 11 shows that BSD can strike the fine balance

between average slowdown and maximum slowdown. For instance, as shown in Figure 11,

at 0.95 utilization, BSD decreases the maximum slowdown by 44% compared to HNR while

decreasing the average slowdown by 80% compared to LSF under the same utilization.

3.8.1.6 Second Norm of Slowdowns As mentioned above, the trade-off between av-

erage and maximum slowdowns is easily captured using the `2 metric. Figure 12 shows the

`2 norm of slowdowns as the utilization of the system increases. The figure shows that BSD

reduces the `2 of slowdowns by up to 57% compared to LSF and by 24% compared to HNR.

3.8.1.7 Second Norm of Response Times Similar to BSD, BRT reduces the `2 norm

of response times by up to 51% compared to FCFS and 23% compared to HR as shown in

Figure 13.

47

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L 2
 N

or
m

 o
f S

lo
w

do
w

ns

0

1e+6

2e+6

3e+6

4e+6

5e+6
RR
FCFS
SRPT
HNR
LSF
BSD

Figure 12: [§3.8.1.6] `2 of slowdowns vs. system load

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L 2
N

or
m

 o
f R

es
po

ns
e

T
im

es

0

1e+9

2e+9

3e+9

4e+9
RR
FCFS
SRPT
HR
BRT

Figure 13: [§3.8.1.7] `2 of response times vs. system load

48

Selectivity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 S
tr

et
ch

 p
er

 C
la

ss
 (

lo
g

sc
al

e)

1

10

100

1000

10000

RR
HR
HNR
BSD

Figure 14: [§3.8.1.8] Slowdown per class for low-cost queries

3.8.1.8 Slowdown per Class To get better insight into the behavior of the different

policies toward different classes of queries, we split the workload into distinct classes (as

suggested in [2]). Tuples belong to the same class if they were processed by operators with

similar costs and selectivities. In Figure 14, we show the slowdown of tuples processed by

the class of low-cost queries (i.e., queries where an operator cost is K × 20) and different

selectivities. The figure shows how HR is unfair toward the low-selectivity queries which

leads to significant increase in the slowdown of the tuples processed by those queries. HNR

is still biased toward high-selectivity queries, yet less than HR. Similarly, BSD is less biased

than HNR. That balance allowed BSD to provide the best `2 norm of slowdowns as shown

in Fig. 12.

3.8.1.9 Impact of Selectivity To further study the impact of selectivity, we conducted

an experiment where we assigned the same cost to all operators while varying the maximum

value of selectivity assigned to an operator. For instance, if the maximum selectivity is set to

1.0, then the selectivity value assigned to an operator is uniformly distributed in the range

[0.1,1.0], whereas if the maximum is 0.5, then the selectivity value assigned to an operator

is uniformly distributed in the range [0.1,0.5] etc.

49

Maximum Operator Selectivity

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L 2
of

 S
lo

w
do

w
ns

0

1e+6

2e+6

3e+6

4e+6

5e+6

HR
HNR
BSD

Figure 15: [§3.8.1.9] `2 of slowdown vs. maximum operator selectivity

Figure 15 shows the `2 norm of slowdowns for the setting described above. The figure

shows that when the maximum selectivity is 0.1, then HR, HNR, and BSD provide almost the

same performance since all operators will have the same selectivity of 0.1. As the maximum

value of selectivity increases, HR will favor queries with higher selectivity over those with

lower selectivity resulting in a high `2 norm of slowdowns compared to HNR and BSD. The

figure shows that BSD always provides the best performance since it considers both the ideal

processing time of a query as well as the age of its pending tuples. For instance, when the

maximum selectivity is 0.5, BSD reduces the `2 norm of slowdowns by 44% compared to

HR and by 19% compared to HNR; at a maximum of 1.0, the `2 norm is reduced by 61%

compared to HR and by 27% compared to HNR.

3.8.1.10 An Oracle Scheduling Policy In order to validate our general strategy of

using output rate (or normalized output rate) for multiple CQ scheduling, we introduce

what we call an oracle scheduling strategy. The oracle strategy has the ability to “peek”

into an input tuple and determine if it will generate an output event or if it will be discarded.

Clearly, the oracle strategy is not implementable in a real system as it requires processing

the input stream in the same way continuous queries do. As such, we are introducing this

50

Maximum Selectivity

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

R
at

io
 b

et
w

ee
n

or
ac

le
 a

nd
 r

eg
ul

ar
 s

ch
ed

ul
in

g

0%

20%

40%

60%

80%

100%

HR-O vs HR (Avg. Response Time)
HNR-O vs HNR (Avg. Slowdown)

Figure 16: [§3.8.1.10] Performance of an oracle scheduling policy

strategy only for the sake of comparison, since it takes the “guess” out of the scheduling

decision. Specifically, at each scheduling point, the oracle strategy is able to compute the

exact output rate of a query as opposed to its expected output rate as computed by our

proposed policies.

As an example, consider a continuous query Q with 5 pending tuples, where only the 5th

one is an event. Under regular scheduling, each of the 5 inputs is an event with probability S

(which is the selectivity of the query), whereas under the oracle strategy, only the 5th tuple

is an event with probability 1.0 and the other tuples are known to be discarded. Given this

information, the oracle can compute the instantaneous output rate of Q as 1.0 (the number

of tuples produced) divided by the amount of time needed to process the 5 pending tuples.

Clearly, the oracle strategy has the advantage of not relying on selectivity estimation in

making the scheduling decision. This is especially beneficial when the expected selectivity

deviates significantly from the exhibited one. This is illustrated in Figure 16, where we plot

the ratio in performance between regular policies (HR and HNR) and oracle policies (HR-O

and HNR-O) while increasing the maximum selectivity in the system (as in the previous

experimental setup). The figure shows that at low maximum selectivity (i.e., 0.1), the oracle

can improve the performance by up to 80%. As the maximum selectivity increases, the gains

51

decrease and drop to 12% when the maximum selectivity is 1.0. The reason is that at low

selectivity there is a higher chance that an input tuple is not an event. However, only the

oracle knows accurately if it is an event or not, which allows it to make a better decision. As

the maximum selectivity increases, there are more queries in the system with high selectivity

which means that there is a higher chance that a regular policy’s guess about a tuple being

an event is correct. This brings the performance of regular policies close to the oracle at

higher values of maximum selectivity.

Given the above comparisons, it is clear that, in general, using variants of output rate is

the right strategy to schedule CQs. However, the exhibited gains in performance depend on

the accuracy in computing the rate as illustrated in Figure 16.

3.8.1.11 Performance over Time Figures 17, 18, 19, and 20 show the performance

of different scheduling policies over simulation time in the interval from 108 to 4× 108µsec.

The figures show that our proposed policies provide the best performance over time for each

of the optimization metrics especially at peak times where traffic is more bursty.

3.8.1.12 Second Norm for Multi-stream Queries BSD also provides the lowest `2

norm of slowdowns for multi-stream queries as shown in Figure 21. In this experimental

setting, we generated a workload where queries receive input tuples from 2 data streams,

generated following Poisson arrival. In this workload, the costs and selectivities of the

operators are assigned uniformly as before and the windows are in the range of 1 to 10 secs.

Figure 21 shows that BSD improves the `2 norm by up to 14% compared to HNR.

It is also interesting to notice the large improvement offered by BSD over policies like

RR and FCFS. For instance, at 0.9 utilization, BSD improves the performance 17 times

compared to RR, and by 15 times compared to FCFS. The reason is that RR and FCFS do

not exploit selectivity which plays a more significant role in the case of multi-stream queries

where the selectivity of the join operator often exceeds 1.0.

52

Time (µsec)

1e+8 2e+8 2e+8 3e+8 3e+8 4e+8 4e+8

A
vg

. R
es

po
ns

e
T

im
e

(µ
S

ec
)

0

1e+7

2e+7

3e+7

RR
SRPT
HR

Figure 17: [§3.8.1.11] Response time over

time

Time (µsec)

1e+8 2e+8 2e+8 3e+8 3e+8 4e+8 4e+8

A
vg

. S
lo

w
do

w
n

0

2000

4000

6000

8000

10000

12000

SRPT
HR
HNR

Figure 18: [§3.8.1.11] Slowdown over time

Time (µsec)

1e+8 2e+8 2e+8 3e+8 3e+8 4e+8 4e+8

L 2
of

 R
es

po
ns

e
T

im
es

0

2e+9

4e+9

6e+9
SRPT
HR
BRT

Figure 19: [§3.8.1.11] `2 of response times

over time

Time (µsec)

1e+8 2e+8 2e+8 3e+8 3e+8 4e+8 4e+8

L 2
of

 S
lo

w
do

w
ns

0

1e+6

2e+6

3e+6

4e+6

5e+6

SRPT
HNR
BSD

Figure 20: [§3.8.1.11] `2 of slowdowns over

time

53

Utilization

0.0 0.2 0.4 0.6 0.8 1.0

L 2
no

rm
 o

f s
lo

w
do

w
n

0

10000

20000

30000

40000 RR
FCFS
HR
HNR
BSD

Figure 21: [§3.8.1.12] `2 of slowdown for multi-stream queries

Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
vg

. T
ar

di
ne

ss
 (

µ S
ec

)

0.0

2.0e+5

4.0e+5

6.0e+5

8.0e+5

1.0e+6

1.2e+6

1.4e+6

1.6e+6

EDF
HR
HYBRID

Figure 22: [§3.8.1.13] Tardiness of aggregate CQs

3.8.1.13 Tardiness of Aggregate CQs In this workload, we generated aggregate CQs

with random values for the window RANGE and SLIDE parameters. Figure 22 shows that

our hybrid policy constantly outperforms the EDF and HR policies. This is further depicted

in Figures 23 and 24. Figure 23 shows the improvement in perfomance compared to EDF

at low utilization, whereas Figure 24 illustrates the performance at high utilization.

54

Utilization

0.0 0.1 0.2 0.3 0.4 0.5

A
vg

. T
ar

di
ne

ss
 (

µ S
ec

)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

EDF
HR
HYBRID

Figure 23: [§3.8.1.13] Tardiness of aggregate CQs at low utilization

Utilization

0.5 0.6 0.7 0.8 0.9 1.0

A
vg

. T
ar

di
ne

ss
 (

µ S
ec

)

0

1e+5

2e+5

3e+5

4e+5
HR
HYBRID

Figure 24: [§3.8.1.13] Tardiness of aggregate CQs at high utilization

55

Utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M
em

or
y

U
sa

ge
 (

T
up

le
s)

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

HR
BRT
HNR
BSD
CHAIN

Figure 25: [§3.8.2] Memory usage vs. system load

3.8.2 Memory Usage

Besides CPU, memory is another resource that needs to be considered in a DSMS. For this

reason, we also studied the memory requirements of each of the proposed scheduling policies.

Figure 25 shows the average memory usage of our proposed policies, along with that of

the Chain policy [6] that was designed to minimize memory usage; we are including Chain

as a yard-stick for comparison.

Figure 25 shows how policies that optimize for slowdown (i.e., the HNR and BSD) reduce

the memory usage compared to those that optimize for response time (i.e., the HR and BRT).

For instance, HNR reduces the memory usage by up to 22% compared to HR. Both HNR

and HR give higher priorities to queries with low processing cost. Similarly, those queries

get higher priorities under policies that optimize for memory usage like Chain, since tuples

that belong to such queries will spend a short time in memory.

When it comes to selectivity, Chain gives higher priorities to queries with low selectivities,

or in other words, to queries whose input tuples have a higher chance to be discarded, since

executing these queries will consume more input tuples than generating new output tuples.

On the contrary, HR gives those queries low priority since they will generate very few output

events. Meanwhile, since HNR emphasizes processing cost, it will boost the priority value

56

QoS Metric

C
ha

in
 n

or
m

al
iz

ed
 to

 m
in

im
um

 v
al

ue
 fo

r
Q

oS

0%

100%

200%

300%

400%

Avg. Resp.
Time

Avg.
Slowdown

L2 Norm of

Slowdowns
L2 Norm of

Resp. Times

Chain

Chain

Chain

Chain

HR HNRBRT BSD

Figure 26: [§3.8.2] Performance of Chain under QoS metrics

of a low selectivity query with low processing cost. Hence, it allows HNR to schedule low

selectivity queries earlier and save memory space.

Figure 25 also shows how the BRT and BSD policies provide more savings in memory

usage. The reason is that under such policies, if a low selectivity query has been waiting for

a long time, its priority increases until it is eventually executed. For instance, BSD decreases

the memory usage by up to 13% compared to HNR.

In order to put these results into the proper perspective, we also compared the per-

formance of Chain to our proposed policies under the different QoS metrics that we have

studied in previous experiments. Figure 26 shows that Chain consistently suffers under all

of the QoS metrics studied in this thesis.

For example at utilization 0.97, Chain provides 3 times the average slowdown of HNR

which needs only 2 times the memory of Chain. Similarly, at utilization 0.97, Chain increases

the `2 norm of slowdowns by 2.2 times compared to BSD although BSD requires memory

space that is only 1.85 times more than that of Chain. Thus, BSD is able to also strike

a fine balance between improving the interactive performance within acceptable memory

requirements.

57

Number of Clusters (log scale)

1e+0 1e+1 1e+2 1e+3 1e+4 1e+5

L 2
 n

or
m

 o
f S

lo
w

do
w

n

0

5e+5

1e+6

2e+6

2e+6

HNR
BSD-Hypothetical
BSD-Logarithmic
BSD-Uniform

Figure 27: [§3.8.3] `2 of slowdown vs. number of clusters

3.8.3 Comparison of Implementation Techniques

To evaluate the impact of the implementation techniques proposed in Section 3.3, we com-

pared the performance of four policies: HNR, BSD-Hypothetical, BSD-Uniform, and BSD-

Logarithmic which are defined as follows:

• BSD-Hypothetical is a version of BSD where we ignore the scheduling overheads.

• BSD-Uniform uses uniform clustering as in [16].

• BSD-Logarithmic uses our proposed logarithmic clustering (described in Section 3.3).

In both BSD-Uniform and BSD-Logarithmic, we set the cost of each of the priority

computation and comparison operations to the cost of the cheapest operator in the query

plans.

Figure 27 shows the `2 norm of slowdowns provided by the four policies vs. the number

of clusters (i.e., m) at 0.95 utilization. The figure shows that for BSD-Logarithmic, when m

is small (≤ 6), its `2 might exceed that for HNR, because the priority range covered by each

cluster is large which decreases the accuracy of the scheduling. However, as we increase m,

its performance gets closer to that of BSD-Hypothetical such that at 12 clusters, its provided

`2 norm is only 5% higher than BSD-Hypothetical. By increasing m beyond 12, its `2 norm

58

Implementation Technique

None +Clustering +Pruning

L 2
 S

D
 o

f B
S

D
-L

og
ar

ith
m

ic
 /

L 2
 S

D
 o

f B
S

D
-H

yp
ot

he
tic

al

0%

1000%

2000%

3000%

4000%

5000%

6000%

7000%

+Clustered
Processing

6470%

1550%

224% 105%

Figure 28: [§3.8.3] Efficient implementation of BSD

starts increasing again due to increasing the search space. On the other hand, BSD-Uniform

starts at a very high `2 and it decreases slowly with increasing m. That is, the accuracy

of the solution is very poor when the cluster size is large. As such, BSD-Uniform starts to

provide acceptable performance (10% higher than BSD-Hypothetical) when the cluster range

is very small (notice that in this setting ∆ ≈ 1.2e + 05).

Figure 28 shows the incremental gains provided by each of the proposed implementation

techniques when using 12 logarithmic clusters. The figure shows that a naive implementation

of BSD will increase the `2 norm by 6470% compared to BSD-Hypothetical. By incrementally

adding each of the implementation techniques, we achieve a performance that is only 5%

higher than BSD-Hypothetical, i.e., the implementation overhead of the BSD policy is only

5%.

3.8.4 Operator Sharing

To measure the performance of the sharing-aware versions of HNR and BSD, we created a

workload in which queries are grouped randomly in sets of 10 queries each where all queries

within a set share the same select operator.

Figures 29, 30, and 31 show the performance of different scheduling policies under the

59

Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

(µ
S

ec
)

0

2e+6

4e+6

6e+6

HR-MAX
HR-SUM
HR-PDT

Figure 29: [§3.8.4] Response time for grouped queries

response time, slowdown, and `2 norm of slowdown metrics respectively. In each figure, we

compare the performance of three variants for implementing the same policy that optimizes

the metric under investigation. These three variants are: Max, Sum, and PDT, defined as

follows:

• Max: where the shared operator priority is equal to the priority of that one segment

within the group that has the maximum priority.

• Sum: where the shared operator priority is equal to the aggregation of the priorities of

all the segments in a group.

• PDT: where the shared operator priority is equal to the aggregation of the priorities of

the segments in its priority-defining tree (as described in Section 3.6).

The figures show that the PDT strategy significantly improves the performance of each

scheduling policy. For example, Figure 29 shows that, compared to Max and Sum, PDT

reduces the response time by 21% and 12% respectively, whereas the reductions in slowdown

are 24% and 18% (Figure 30) and finally, the reductions in the `2 norm of slowdowns are

10% and 8% (Figure 31).

60

Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 S
lo

w
do

w
n

0

50

100

150

200

250 HNR-MAX
HNR-SUM
HNR-PDT

Figure 30: [§3.8.4] Slowdown for grouped queries

Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

L 2
 o

f S
lo

w
do

w
ns

0

10000

20000

30000

40000

50000

60000

70000

BSD-MAX
BSD-SUM
BSD-PDT

Figure 31: [§3.8.4] `2 of slowdowns for grouped queries

61

Standard Deviation of Gaussian Distribution

0 5 10 15 20 25 30 35 40 45 50

R
at

io
 b

et
w

ee
n

ad
ap

tiv
e

an
d

st
at

ic
 s

ch
ed

ul
in

g

0%

20%

40%

60%

80%

100%

HR-A vs HR (Response Time)
HNR-A vs HNR (Slowdown)
BRT-A vs BRT (L2 of Response Time)

BSD-A vs BSD (L2 of Slowdown)

Figure 32: [§3.8.5] Ratio of adaptive scheduler performance vs. static

3.8.5 Adaptive Scheduling

In all the previous experiments, queries operated on data that was generated according to

a uniform distribution in the range of [1, 100]. In this experiment, we use a more dynamic

setting to study the performance of our adaptive scheduling mechanism. Specifically, we

divide the simulation time into 100 intervals, where the data in each interval is generated

according to a Gaussian distribution that is specified by a mean and a standard deviation.

The mean starts at 50.0 and it is incremented by one with every new interval.

The goal of this set of experiments is to study the behavior of the adaptive variants of

our proposed policies; basically, this means that for the adaptive policies, selectivity will be

estimated dynamically, as described in Section 3.3.3.

Figure 32 shows the ratio between the performance of the adaptive and the non-adaptive

versions of each policy under the metric optimized by that policy. For instance, it compares

the performance of the adaptive HR (i.e., HR-A) to the non-adaptive HR under the response

time metric. For example, a value of 20% for HR-A vs. HR means that HR-A’s response

time is 20% of that of HR. The non-adaptive HR assumes that data is uniformly distributed,

whereas HR-A monitors the data distribution and adjusts the operators selectivities and

priorities accordingly.

62

Length of Monitogin Window

0 200 400 600 800 1000

A
vg

. S
lo

w
do

w
n

0

20

40

60

80

100

120

140

160

180

200

HNR-A
HNR (static)

Figure 33: [§3.8.5] Impact of monitoring window length on adaptive scheduling

Figure 32 shows that the adaptive versions of all policies always outperform the non-

adaptive ones especially at low values of standard deviation where the distribution is highly

skewed within each interval. For instance, at a standard deviation of 25, HR-A’s response

time is 74% of HR and HNR-A’s slowdown is 76% of HNR, whereas at a standard deviation

of 5, these values are 10% and 15% respectively.

Figure 32 also shows that the relative gain provided by HNR-A is lower than that provided

by HR-A. This is because HNR uses the ideal processing time in its prioritizing function;

this makes its non-adaptive version less sensitive to the fluctuations in selectivity. Similarly,

the relative gains provided by BRT-A and BSD-A are lower than HR-A, since both BRT

and BSD use the wait time in their prioritizing functions.

Obviously, the improvement in performance provided by adaptive scheduling depends on

the choice of values for the monitoring window length and the aging parameter α. In the

results shown in Figure 32, we selected a window of length 100 input tuples and a value of α

equal to 0.175. In order to chose these specific values, we explored the combinatorial search

space of the two parameters. We observed that, in general, very low values of α yield a very

unstable system as it gives very low weight to the old observations, while high values of α

result in an almost static system that cannot adapt fast enough to changes. Similarly, for

63

Value of α

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
vg

. S
lo

w
do

w
n

0

20

40

60

80

100

120

140

160

180

200

HNR-A
HNR (static)

Figure 34: [§3.8.5] Impact of α value on adaptive scheduling

the window length, a short window does not have enough data to provide good estimates of

selectivity, while long windows provide outdated statistics.

Samples of the search space are provided in Figures 33 and 34 (at standard deviation 5 as

in Figure 32). In particular, in Figure 33, we plot the performance of the adaptive scheduler

compared to the static one when α is equal to 0.175 and variable window length. Similarly,

in Figure 34, we plot the performance when the window length is 100 and α is variable. The

figures show that, in general, windows between 50 and 150 tuples and αs between 0.1 and

0.25 provide the best performance.

64

4.0 QOD METRICS AND ALGORITHMS

As the amount of updates on the input data streams increases and the number of registered

queries becomes large, advanced query processing techniques are needed in order to effi-

ciently synchronize the results of the continuous queries with the available updates. Efficient

scheduling of updates is one such query processing technique which successfully improves the

Quality of Data (QoD) provided by interactive systems. QoD can be measured in different

ways, one of which is freshness. Freshness is especially important, when we are interested in

an accurate view of the physical world, be it an outbreak of a disease (as in the RODS sys-

tem) or the detection of traffic patterns and congestion in an urban setting during a physical

disaster. Such accurate views must reflect all positive event “signals” (i.e., updates) that

satisfy the registered CQs.

Freshness, as well as scheduling policies for improving freshness, has been studied in the

context of replicated databases [21, 22], derived views [34], and distributed caches [47]. To

the best of our knowledge, our work is the first to study the problem of freshness in the

context of data streams. In this respect, our work can be regarded as complementary to

the current work on the processing of continuous queries, which considers only Quality of

Service metrics like response time and throughput (e.g., [20, 49, 16, 17, 6]) as well as our

work presented earlier in Chapter 3.

Our contributions towards improving QoD in data streams are summarized as follows:

1. We propose a policy for Freshness-Aware Scheduling of Multiple Continuous Queries

(FAS-MCQ). The proposed policy, FAS-MCQ, has the following salient features:

• It exploits the variability of the processing costs of different continuous queries reg-

istered at the DSMS.

65

• It utilizes the divergence in the arrival patterns and frequencies of updates streamed

from different remote data sources.

• It considers the impact of selectivity on the freshness of the output data stream.

Reverting back to our RODS/event detection example, our proposed policy will

favor queries that lead to positive signals instead of “blindly” processing queries

that lead to negative signals.

2. Beyond the basic FAS-MCQ policy, we have also explored a weighted version of our

FAS-MCQ scheduling policy that supports applications in which queries have different

priorities. These priorities could reflect criticality, and hence their importance with

respect to QoD captured by freshness, or popularity, and thus be used to optimize the

overall user satisfaction.

3. To be able to study the difference in behavior between scheduling with the goal of im-

proving QoD as opposed to scheduling for improving QoS, we generalized the Rate-based

scheduling policy [65] to handle multiple continuous queries. The new generalized ver-

sion, which we call Rate-based for Multiple Continuous Queries (RB-MCQ), maximizes

the QoS defined in terms of response time.

4. Finally, we propose a parameterized version of our FAS-MCQ scheduler that is able to

balance the trade-off between freshness and response time according to the application’s

requirements.

In order to evaluate our proposed scheduling policies, we have implemented a simulator of

a DSMS scheduler and ran extensive experiments. As our experimental results have shown,

FAS-MCQ can improve QoD by up to 55% compared to existing scheduling policies used in

DSMSs. FAS-MCQ achieves this improvement by deciding the execution order of continuous

queries based on individual query properties (i.e., cost and selectivity) as well as properties

of the update streams (i.e., variability of updates).

66

4.1 FRESHNESS OF DATA STREAMS

In this section, we describe our proposed metric for measuring the quality of output data

streams. Our metric is based on the freshness of data and is similar to the ones previously

used in [21, 34, 47, 22, 35]. However, it is adapted to consider the nature of continuous

queries and input/output data streams.

4.1.1 Average Freshness for Single Streams

In a DSMS, the output of each continuous query Q is a data stream D. The arrival of new

updates at the input queue of Q might lead to appending a new tuple to D. Specifically, let

us assume that at time t the length of D is |Dt | and there is a single update at the input

queue, also with timestamp t. Further, assume that Q finishes processing that update at

time t′. At this time we distinguish two cases:

• If the tuple satisfies all the query’s predicates, then |Dt′ |=|D | +1. In this case, the

output data stream D is considered stale during the interval [t, t′] as the new update

occurred at time t and it took until time t′ to append the update to the output data

stream.

• If the tuple does not satisfy all the predicates, then |Dt′ |=|D |. In this case, the output

data stream D is considered fresh during the interval [t, t′] because the arrival of a new

update has been discarded by Q. Obviously, if there is no pending update at the input

queue of D, then D would also be considered fresh.

Equivalently, if we view a tuple that matches all the predicates of a query as a positive

“signal”, then the current definition of freshness measures the amount of time that passes

before the signal becomes “visible” to the end users.

Formally, to define freshness, we consider each output data stream D as an object and

F (D, t) is the freshness of object D at time t which is defined as follows:

F (D, t) =

1 if ∀u ∈ It, σ(u) is false

0 if ∃u ∈ It, σ(u) is true
(4.1)

67

Tx Ty

t1 t2 t3

Ideal output
data stream

Actual output
data stream

Fresh

Stale

Figure 35: An example on measuring the freshness of a data stream

where It is the set of input queues in Q at time t and σ(u) is the result of applying Q’s

predicates on update u. To measure the freshness of a data stream D over an entire discrete

observation period from time Tx to time Ty, we have that:

F (D) =
1

Ty − Tx

Ty∑

t=Tx

F (D, t) (4.2)

Figure 35 shows an example of measuring the freshness of a data stream. Specifically,

the figure shows two output data streams; (1) the ideal stream, which shows the times

instants when updates became available at the DSMS; and (2) the actual stream, which

shows the time instants when updates became available to the user. The delay between

the time an update is available at the system until the time it is propagated to the user

is composed of two intervals: (a) the interval where the continuous query is waiting to be

scheduled for execution; and (b) the interval where the continuous query is processing the

update. The sum of these two intervals represents the overall interval when the output data

stream deviates from the ideal one. That is, when the output data stream is stale compared

to the physical world. In the example illustrated in Figure 35, the output data stream is

stale for the intervals t1, t2 and t3. Hence, the staleness of the data stream is computed

as: (t1 + t2 + t3)/(Ty − Tx), equivalently, the freshness of the data stream is computed as:

((Ty − Tx)− (t1 + t2 + t3))/(Ty − Tx).

68

4.1.2 Average Freshness for Multiple Streams

Having measured the average freshness for single streams, we proceed to compute the average

freshness over all the M data streams maintained by the DSMS. If the freshness for each

stream, Di, is given by F (Di) using Equation 4.2, then the average freshness over all data

streams will be:

F =
1

M

M∑

i=1

F (Di) (4.3)

69

4.2 FRESHNESS-AWARE SCHEDULING OF MULTIPLE CONTINUOUS

QUERIES

In this section we describe our proposed policy for Freshness-Aware Scheduling of Multiple

Continuous Queries (FAS-MCQ). Current work on scheduling the execution of multiple

continuous queries focuses on QoS metrics (Chapter 3 and [16, 17, 6]) and exploits selectivity

to improve the provided QoS. Previous work on synchronizing database updates exploited

the amount (frequency) of updates to improve the provided QoD [21, 47, 22]. In contrast,

our proposal, FAS-MCQ, exploits both selectivity and the amount of updates to improve the

QoD, i.e., freshness, of output data streams.

4.2.1 Scheduling without Selectivity

Assume two queries Q1 and Q2, with output data streams D1 and D2. Each query is

composed of a set of operators, each operator has a certain cost, and the selectivity of each

operator is one. Hence, we can calculate for each query Qi its maximum cost Ti as shown in

Section 2. Moreover, assume that there are N1 and N2 pending updates for queries Q1 and

Q2 respectively. Finally, assume that the current wait time for the update at the head of

Q1’s queue is W1, similarly, the current wait time for the update at the head of Q2’s queue

is W2.

In order to determine which of the two queries should be scheduled first for execution,

we compare two policies X and Y :

• Under policy X, query Q1 is executed before query Q2,

• Under policy Y , query Q2 is executed before query Q1.

Under policy X, where query Q1 is executed before query Q2, the total loss in freshness,

LX , (i.e., the period of time where Q1 and Q2 are stale) can be computed as follows:

LX = LX,1 + LX,2 (4.4)

70

where LX,1 and LX,2 are the staleness periods experienced by Q1 and Q2 respectively. Since

Q1 will remain stale until all its pending updates are processed, LX,1 is computed as follows:

LX,1 = W1 + (N1T1)

where W1 is the current loss in freshness (i.e., increase in staleness) and (N1T1) is the time

required to apply all the pending updates. Similarly, LX,2 is computed as follows:

LX,2 = (W2 + N1T1) + (N2T2)

where W2 is the current loss in freshness plus the extra amount of time (N1T1) where Q2

will be waiting for Q1 to finish execution. By substitution in Equation 4.4, we get

LX = W1 + (N1T1) + (W2 + N1T1) + (N2T2) (4.5)

Similarly, under policy Y , where Q2 is scheduled before Q1, we have that the total loss

in freshness, LY will be:

LY = (W1 + N2T2) + (N1T1) + W2 + (N2T2) (4.6)

In order for LX to be less than LY , the following inequality must be satisfied:

N1T1 < N2T2 (4.7)

The left-hand side of Inequality 4.7 shows the total staleness incurred by Q2 when Q1 is

executed first. Similarly, the right-hand side shows the total staleness incurred by Q1 when

Q2 is executed first. Hence, the inequality implies that between the two queries, we start

with the one that has the lower NiTi value. Similarly, in the general case, where there are

more than 2 queries ready for execution, we start with the one that has the lowest NiTi

value since it will have the minimum negative impact on the freshness of the other queries in

the system. Minimizing the negative impact on the overall freshness was the same general

criterion that was used in prior work on scheduling updates over materialized WebViews

[34].

71

4.2.2 Scheduling with Selectivity

Assume the same setting as in the previous section, with the only difference being that the

total productivity of each query Qi is Si ∈ [0, 1], which is computed as in Section 2. The

objective when scheduling with selectivity is the same as before: we want to minimize the

total staleness. Recall from Inequality 4.7 that the objective of minimizing the total loss is

equivalent to selecting for execution the query that minimizes the loss in freshness incurred

by the other query. In the presence of selectivity, we will apply the same principle.

We first need to compute for each output data stream Di its staleness probability (Pi)

given the current status of the input data stream. This is equivalent to computing the

probability that at least one of the pending updates will satisfy all of Qi’s predicates. If Si

is the total selectivity of Qi, then (1 − Si)
Ni is the probability that all pending updates do

not satisfy Qi’s predicates, and hence Pi = 1− (1− Si)
Ni is the staleness probability for Qi.

If out of two queries Q1 and Q2, Q2 is executed before Q1, then the expected loss in

freshness incurred by Q1 due only to the impact of processing Q2 first will be:

LQ1 = P1N2C2 (4.8)

where N2C2 is the expected time that Q1 will be waiting for Q2 to finish execution and P1 is

the probability that D1 is stale in the first place. For example, in the extreme case of S1 = 0,

if Q2 is executed before Q1, it will not increase the staleness of D1 since all the updates will

not satisfy Q1. However, at S1 = 1, if Q2 is executed before Q1, then the staleness of D1

will increase by N2C2 with probability one.

Similarly, if Q1 is executed before Q2, then the expected loss in freshness incurred by Q2

only due to processing Q1 first is computed as:

LQ2 = P2N1C1 (4.9)

In order for LQ2 to be less than LQ1 , then the following inequality must be satisfied:

N1C1

P1

<
N2C2

P2

(4.10)

72

Thus, in our proposed policy, each query Qi is assigned a priority value Vi which is the

product of its staleness probability and the reciprocal of the product of its expected cost and

the number of its pending updates. Formally,

Vi =
1− (1− Si)

Ni

NiCi

(4.11)

4.2.3 The FAS-MCQ Policy

Our proposed policy for Freshness-Aware Scheduling for Multiple Continuous Queries (FAS-

MCQ) uses the priority function of Equation 4.11 to determine the scheduling order of

different queries. Under this priority function FAS-MCQ behaves as follows:

1. If all queries have the same number of pending tuples and the same selectivity, then

FAS-MCQ selects for execution the query with the lowest cost.

2. If all queries have the same cost and the same selectivity, then FAS-MCQ selects for

execution the query with less pending tuples.

3. If all queries have the same cost and the same number of pending tuples, then FAS-MCQ

selects for execution the query with high staleness probability.

In case (1), FAS-MCQ behaves like the Shortest Remaining Processing Time policy. In

case (2), FAS-MCQ gives lower priority to the query with high frequency of updates. The

intuition is that when the frequency of updates is high, it will take a long time to establish

the freshness of the output data stream. This will block other queries from executing and

will increase the staleness of their output data streams. In case (3), FAS-MCQ gives lower

priority to queries with low selectivity as there is a low probability that the pending updates

will “survive” the filtering of the query operators and thus be appended to the output data

stream.

4.2.4 Weighted Freshness

In many monitoring applications, some queries are more important than others. That is

especially obvious in emergency systems where a few continuous queries can be more critical

than others. For example, under the RODS system that monitors for disease outbreaks, it

73

is crucial to monitor for signs of waterborne diseases in areas affected by Hurricane Katrina

(and thus consider the corresponding query more crucial than the rest), whereas in other

areas of the world it may be more important to monitor for signs of the avian flu. In cases

like these, when the system is loaded, it is necessary to maximize the freshness of these

critical queries.

Towards this, we modify our proposed FAS-MCQ policy to increase the freshness of data

streams which have higher levels of importance. Specifically, we assign each continuous query

Qi a weight αi. This assigned weight represents the importance of the query and it takes

values in the range (0.0, 1.0] where the weight 1.0 is assigned to the most important query.

Hence, the objective of our policy would be to maximize the overall weighted freshness. A

priority function that allows us to maximize the weighted freshness can be easily deduced

from Equations 4.8 and 4.9. Recall that Equation 4.8 measures the expected loss in freshness

experienced by Q1 due to executing Q2 first, thus, the expected loss in weighted freshness

experienced by Q1 is measured as:

WLQ1 = α1P1N2C2

Similarly, the expected loss in weighted freshness experienced by Q2, when Q1 is executed

first, is measured as:

WLQ2 = α2P2N1C1

In order for WLQ2 to be less than WLQ1 , the following inequality must be satisfied:

N1C1

P1α1

<
N2C2

P2α2

Then, the priority assigned to each query is computed as:

Vi =
αi(1− (1− Si)

Ni)

NiCi

(4.12)

The weights of the queries can be explicitly or implicitly defined, depending on the

application. For example, in the case of an application that includes queries that are critical,

the critical queries can be explicitly assigned higher weights than the rest of the queries.

In applications where explicit criticality/importance information is not given, an implicit

measure of importance can be derived. For example, the popularity of each query (i.e., the

74

number of users that registered that query) can be used as the weight. In such an application,

the weighted FAS-MCQ policy will provide high levels of overall user satisfaction in terms

of QoD (freshness). Finally, it is worth mentioning that the weight given to a query can be

dynamic; for example, it can change depending on the time of day or the day of the week

(e.g., for traffic management queries).

75

4.3 SCHEDULING FOR QOD VS. SCHEDULING FOR QOS

In this section we discuss the difference in behavior between scheduling with the goal of

improving QoD as opposed to scheduling with the goal of improving QoS (i.e., when the

objective is to minimize the average response time). We also present a parameterized version

of our FAS-MCQ scheduler that balances the trade-off between both the QoD and QoS

metrics.

4.3.1 Scheduling for QoS

Recall in Chapter 3, we proposed the Highest Rate (HR) policy as a multiple query scheduling

policy for minimizing response time. To recap, HR generalizes the basic Rate-based strategy

[65] for scheduling multiple continuous queries with the objective of minimizing the average

response time. That is, multiple continuous queries are scheduled for execution based on

their output rates.

In HR, we simply view the network of multiple queries as a set of operator paths and at

each scheduling point we select for execution the path with the highest priority (i.e., rate).

Specifically, under HR, each path Ei has a value called the global output rate (GRi) which

is defined in terms of the parameters of the path operators. The output rate of a path Ei,

composed of the operators <O1, O2, O3, ..., Or >, is basically the expected number of tuples

produced per time unit due to processing one tuple by the operators along the path all the

way to the root Or. Formally,

GRi =
Si

Ci

(4.13)

or, equivalently,

GRi =
1− (1− Si)

Ci

(4.14)

where Si and Ci are the path’s expected productivity and expected cost as defined in Chap-

ter 2.

76

Table 4: Priority functions for scheduling QoS vs. QoD

Scheduling for QoS Scheduling for QoD

1−(1−Si)

Ci

1−(1−Si)
Ni

NiCi

Equation 4.14 Equation 4.11

4.3.2 Balancing the Trade-off between QoD and QoS

The difference between scheduling for QoD and QoS is easily identified by comparing the

priority functions used by FAS-MCQ (Equation 4.11) versus the one used by HR (Equa-

tion 4.14), which we replicate in Table 4. That is, FAS-MCQ considers three factors: (1)

cost (2), selectivity, and (3) number of pending tuples, whereas HR considers only the first

two factors. As a result, FAS-MCQ might favor a query with a relatively expensive cost and

very few pending tuples as opposed to HR which might favor an inexpensive query with a

large number of pending tuples. In this case, HR may be appending tuples faster to the

output data streams, however, the appended tuples would be stale most of the time. On the

other hand, FAS-MCQ might be relatively slower in appending tuples to the output data

streams yet would maintain most of those output data streams as fresh as possible.

Here, we propose a version of FAS-MCQ that balances the trade-off between QoD and

QoS. We refer to this policy as FAS-MCQ(β), where β is a parameter that specifies the

weight given to the number of pending tuples N in the priority function. Specifically, under

FAS-MCQ(β), query Qi is assigned a priority value Vi which is computed as follows:

Vi =
1− (1− Si)

Nβ
i

Nβ
i Ci

(4.15)

The parameter β takes values in the range [0.0,1.0] and it acts as a knob for shaping

the system’s behavior. For instance, for β = 0.0, FAS-MCQ(0.0) behaves like the HR policy

described above, whereas for β = 1.0, FAS-MCQ(1.0) reverts to the original FAS-MCQ

described in Section 4.2. For settings where 0.0 < β < 1.0, the system achieves the desired

balance between QoD and QoS.

77

4.4 EVALUATION TESTBED

In this section, we first describe our implementation of the FAS-MCQ scheduler then the

simulation parameters used for our experimental evaluation.

4.4.1 Implementing the FAS-MCQ Scheduler

The FAS-MCQ Scheduler is invoked at every scheduling point and uses the current values

for Ni and Si to compute the priority of each query Qi, according to Equation 4.11. In our

implementation of the FAS-MCQ policy, a scheduling point is reached when a query finishes

execution. In order to keep the scheduling overhead low when computing priorities, we use

a Calendar Queue [14] for priority management. Calendar queues have been widely used for

implementing priority-based scheduling algorithms in high-speed networks as well as in the

Aurora DSMS [16].

A calendar queue is an O(1) priority queue and is based on the idea of Bucket Sort.

Specifically, the calendar queue is structured as buckets where each bucket corresponds to

a class of priorities. To insert an element into the calendar queue, a hash function is used

to map its priority to the corresponding bucket. To retrieve elements, buckets are traversed

in order. A calendar queue allows us to avoid re-computing the priorities of queries that

received no new updates between consecutive scheduling points. Additionally, for queries

with new updates, the amortized cost of updating the priority is of O(1).

4.4.2 Simulation Parameters

We have conducted several experiments to compare the performance of our proposed schedul-

ing policy and its sensitivity to different parameters. Specifically, we compared the perfor-

mance of our proposed FAS-MCQ policy to a two-level scheduling scheme from Aurora where

Round Robin is used to schedule queries and pipelining is used to process updates within

the query. Collectively, we refer to the Aurora scheme in our experiments as RR. We also

included the HR policy described in Section 4.3 as well as a the First-Come-First-Served

(FCFS) policy where updates are processed according to their arrival times.

78

Queries: We simulated a DSMS that hosts 250 registered continuous queries. The

structure of the query is adapted from [19, 42] where each query consists of three operators:

two predicates and one projection.

Real Data Streams: We use the same LBL-PKT-4 traces from the Internet Traffic

Archive that we have used earlier in the experiments described in Chapter 3.8. The traces

contain an hour’s worth of all wide-area traffic between the Lawrence Berkeley Laboratory

and the rest of the world. In our experiments, we use the TCP and UDP packet traces as

two input data streams to the system where the registered queries are uniformly assigned to

any of the two data streams.

Synthetic Data Streams: In this setting, we generate 10 input data streams each

10K in length tuples. Initially, we generate updates for each stream according to a Poisson

distribution, with its mean inter-arrival time set according to the simulated system utilization

(or load). For a utilization of 1.0, the inter-arrival time is equal to the exact time required

for executing the queries in the system, whereas for lower utilizations, the mean inter-arrival

time is increased proportionally.

To generate a back-log of updates, we traverse the Poisson stream and group every 10

consecutive tuples in a burst where the arrival time of all tuples that belong to the same

burst is equal to that of the first tuple in the burst. In the default setting, 5 out of the 10

data streams are bursty.

Selectivities: In any query, the selectivity of the projection is set to 1, while the two

predicates have the same value for selectivity, which is selected using a Zipf distribution from

the range [0.1, 1.0]. The Zipf distribution is defined using a Zipf parameter which determines

the degree of skewness. In our setting, the skewness is toward queries with selectivity equal

to 1.0 and in the default setting the Zipf parameter is set to 0.0 (i.e., uniform distribution).

Costs: All operators that belong to the same query have the same cost, which is

uniformly selected from three possible classes of costs. The cost of an operator in class i is

equal to: K×2i time units, where i ∈ [0–2] and K is the scaling factor which is used to scale

the costs of operators to meet the desired utilization. For synthesized data, K is equal to 1.

For the network traces, we measure the inter-arrival time of the data trace, then we set

K so that the ratio between the total expected costs of queries and the inter-arrival time is

79

Table 5: Simulation Parameters for QoD Experiments

Parameter Value

Policies FAS-MCQ, HR, RR, FCFS

Number of Queries 250

Number of Operators per Query 3

Operators’ Costs 1K, 2K, 4K

Operators’ Selectivities 0.1–1.0

Utilization 0.1–0.99

Data Streams real and synthetic

Number of Data Streams 2–10

Number of Bursty Streams 0–10

equal to the simulated utilization. Finally, the cost of each of the calendar queue operations

is equal to the cost of the cheapest operator in the system.

Table 5 summarizes our simulation parameters and settings.

80

System Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 S
ta

le
ne

ss

0%

10%

20%

30%

40%

50%

60%

FCFS
RR
HR
FAS-MCQ(1.0)

FCFS

RR

HR

FAS

Figure 36: [§4.5.1] Average staleness vs. system utilization

4.5 EXPERIMENTS

4.5.1 Impact of Utilization

Figure 36 shows the average staleness over all output data streams. In this setting, we use

the basic version of FAS-MCQ which is equivalent to setting β to 1.0 in FAS-MCQ(β). The

figure shows that the staleness of output data streams increases with increasing load. It also

shows that the FAS-MCQ policy provides the lowest staleness for all values of utilization

with HR being the closest contender. Additionally, the relative improvement provided by

FAS-MCQ increases with increasing utilization. For instance, at 0.1 utilization, FAS-MCQ

achieves 30% reduction in staleness compared to HR, whereas at 0.95 utilization, HR provides

a 16% staleness while FAS-MCQ reduces the staleness to 10% (i.e., a 40% reduction).

As expected, the reduction in staleness provided by FAS-MCQ comes at the expense

of an increase in response time which is illustrated in Figure 37. The figure shows how

HR reduces the response time compared to FAS-MCQ. For example, at 0.95 utilization, the

response time provided by FAS-MCQ is 23% higher than that of HR (at a 40% reduction

in staleness compared to HR). The trade-off between freshness and response time is further

illustrated using Figures 38 and 39 as explained next.

81

System Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

0

500

1000

1500

2000

2500

3000

3500

4000

FCFS
RR
HR
FAS-MCQ(1.0)

FCFS

RR

FAS

HR

Figure 37: [§4.5.1] Average response time vs. system utilization

4.5.2 Staleness vs. Response Time

Figures 38 and 39 show the average staleness and average response time for the same sim-

ulation settings used in the previous experiment. In addition to illustrating the difference

in behavior between HR and FAS-MCQ, the figures also show the performance of the pa-

rameterized FAS-MCQ(β) policy. For instance, β = 0 corresponds to HR, whereas β = 1

corresponds to the pure FAS-MCQ policy.

Figure 38 shows how the response time of FAS-MCQ decreases by decreasing the value

of β down to β = 0.0. At β = 0.0, the response time of FAS-MCQ(0.0) is slightly higher

than HR which is due to the scheduling overheads. On the other hand, Figure 38 shows the

reduction in staleness with increasing values of β.

To better assess the magnitude of the trade-off, we plot the performance of the different

policies at utilization 0.95 in Figure 40. For instance, the figure shows how FAS-MCQ(1.0)

reduces the staleness by 40% while increasing the response time by 23%, whereas FAS-

MCQ(0.25) reduces the staleness by 20% and increases the response time by 14%.

82

System Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

0

500

1000

1500

2000

2500
HR
FAS-MCQ(0.0)
FAS-MCQ(0.25)
FAS-MCQ(0.5)
FAS-MCQ(0.75)
FAS-MCQ(1.0)

Figure 38: [§4.5.2] Response time for different βs

System Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 S
ta

le
ne

ss

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

HR
FAS-MCQ(0.0)
FAS-MCQ (0.25)
FAS-MCQ (0.5)
FAS-MCQ (0.75)
FAS-MCQ (1.0)

Figure 39: [§4.5.2] Staleness for different βs

83

Average Staleness

10% 12% 14% 16% 18% 20%

A
ve

ra
ge

 R
es

po
ns

e
T

im
e

2000

2100

2200

2300

2400

2500

2600

2700

HR

FAS-MCQ(0.0)

FAS-MCQ(0.25)

FAS-MCQ(0.5)

FAS-MCQ(1.0)

FAS-MCQ(0.75)

Decreasing ββ

Figure 40: [§4.5.2] Trade-off between staleness and response time at utilization 0.95

4.5.3 Impact of Selectivity

Figure 41 shows the average staleness for an experiment where all operators have the same

cost, utilization is set to 95%, and the skewness of selectivity is variable. Recall that we

control the degree of skewness using a Zipf parameter. Specifically, setting the Zipf parameter

to 0.0 results in a uniform distribution, whereas by the increasing its value the distribution

is skewed more towards the 1.0 value for selectivity. That is, most of the registered queries

are productive.

Figure 41 shows that by increasing the skewness, the staleness provided by all policies

increases. This is because when most of the queries have high selectivity, then the arrival

of new updates will render the output data streams stale most of the time. The figure also

shows that the gains provided by FAS-MCQ compared to HR increase with increasing the

skewness.

For instance, at 0.0, FAS-MCQ reduces the staleness by 39% compared to HR. This

reduction goes up to 55% when the distribution is highly skewed. The reason is that at a

highly skewed distribution, all queries will have the same cost and most of them will have the

same selectivity, hence, for HR most queries will have the same priority. That is in contrast

with FAS-MCQ which will utilize the extra information provided by the number of pending

84

Selectivity Skewness

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

A
ve

ra
ge

 S
ta

le
ne

ss

0%

10%

20%

30%

40%

50%

60%

FCFS
RR
HR
FAS-MCQ(1.0)

Figure 41: [§4.5.3] Staleness vs. skewness in selectivity (using Zipf parameter)

tuples to differentiate between queries and to assign higher priorities to queries that feed a

stale stream or a stream that could be quickly brought to freshness.

4.5.4 Impact of Bursts

The setting for this experiment is the same as the default one. However, the utilization at

all points is set to 95%. In Figure 42, we plot the average staleness as the number of input

data streams that are bursty increases. At a value of 0, all the arrivals follow a Poisson

distribution with no bursts, whereas at 10, all input data streams are bursty. Figure 42

shows the staleness of FAS-MCQ normalized to that of HR. The smaller the value the bigger

the reduction.

Figure 42 shows that as the number of bursty streams increases, the reduction in staleness

provided by FAS-MCQ compared to HR increases up until there are 5 bursty streams. At

that point, FAS-MCQ reduces the staleness by 40%. After that point, the performance of

the two policies gets closer. The explanation is that at a lower number of bursty streams,

FAS-MCQ has a better chance to find a query with a short queue of pending updates to

schedule for execution.

As the number of bursty streams increases, the chance of finding such a query decreases,

85

Number of Bursty Streams

0 2 4 6 8 10

S
ta

le
ne

ss
 o

f F
A

S
-M

C
Q

 n
or

m
al

iz
ed

 to
 H

R

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 42: [§4.5.4] Staleness vs. number of bursty streams (out of 10)

and as such, HR is performing reasonably well. For instance, at 10 bursty streams, FAS-MCQ

reduces the staleness by only 22% compared to HR.

4.5.5 Real Data

Figure 43 shows the results for our final experiment where we use real network traces.

The selectivities and costs of operators are the same as in the first experiment. In this

figure, the behavior of the different scheduling algorithms is consistent with the previous

experiments, where FAS-MCQ provides the lowest staleness followed by HR, then RR and

FCFS. Additionally, it shows the relatively high values of staleness exhibited by all policies,

which is explained by the fact that the two traces are highly bursty, reflecting an ON/OFF

traffic.

86

System Utilization

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
ve

ra
ge

 S
ta

le
ne

ss

0%

20%

40%

60%

80%

100%
FCFS
RR
HR
FAS-MCQ(1.0)

Figure 43: [§4.5.5] Staleness vs. system utilization (real data traces)

87

5.0 RELATED WORK

The growing need for monitoring applications has led to the development of several prototype

DSMSs (e.g., [15, 44, 15, 23, 17, 31]). These prototypes utilize new techniques for the efficient

processing of continuous queries over unbounded data streams. For example, [66] proposed

rate-based query optimization as a replacement to the traditional cost-based approach. Also,

new techniques for processing aggregate CQs appeared in [37], while techniques for processing

join CQs appeared in [27].

For multiple queries, multi-query optimization has been exploited by [19] to improve

system throughput in the Internet and by [42] for improving throughput in TelegraphCQ.

TelegraphCQ uses a query execution model that is based on eddies [5]. In that model,

the execution order of operators is determined at run-time. This is particularly important

when the operators’ costs and selectivities change over time. Similar to TelegraphCQ, our

policies can work in a dynamic environment with support for monitoring the queries’ costs

and selectivities, and updating the priorities whenever it is necessary.

Sharing of common work is another important technique for multi-query optimization.

That technique has been extended for optimizing multiple CQs by using group filters for

processing common predicates [42] and it has also been exploited in processing multiple

joins with different window specifications [30].

Load shedding is another mechanism that allows a DSMS to cope with high loads. Specif-

ically, when the input load is beyond the DSMS’s capacity, its performance deteriorates

significantly as the system becomes unstable. The amount of deterioration depends on the

input rate of the arriving streams and the duration of the instability status. As such, a

load shdder is used to control the degree of degradation in the provided performance under

overloaded conditions.

88

Overloading might occur when the processing requirements are beyond the DSMS’s pro-

cessing capacity (e.g., [62, 8]) or when the memory requirements are beyond the DSMS’s

memory capacity (e.g., [59]). In the former case, overloading is detected by the query pro-

cessing engine when the input rate is higher than the output rate, whereas in the latter

case, overloading is detected by the memory manager when the intermediate queues start

overflowing.

The above techniques are also extended for distributed data stream processings (e.g.,

[64, 46]), where the main objective is assigning query operators to sites in a way that reduces

communications costs which in turn reduces the overall query processing costs. This becomes

particularly important in processing sensor data streams where communication between

sensors involves significant energy consumption. Reducing that energy has been the focus of

several research efforts including our previous work in [50, 11, 51].

Operator scheduling has been addressed in several research efforts (e.g., [65, 16, 6, 30,

61]). The work in [65] proposes the rate-based (RB) scheduling policy for scheduling op-

erators within a single query to improve response time. Aurora [16] uses a policy called

Min-Latency (ML) which is similar to the rate-based one; ML minimizes the average tuple

latency in a single query. For multiple queries, Aurora uses a two-level scheduling scheme

where Round Robin (RR) is used to schedule queries and ML (or RB) is used to schedule

operators within the query.

Aurora also proposes a QoS-aware scheduler which attempts to satisfy application-

specified QoS requirements. Specifically, each query is associated with a QoS graph which

defines the utility of stale output; the scheduler then tries to maximize the average QoS.

In this thesis, we focused on system QoS metrics that do not require the user to have any

prior knowledge about the query processing requirements or to predict the appropriate QoS

graph. Specifically, we developed policies that minimize the average response time as well

as the average slowdown for multiple CQs that include join and shared operators. We also

considered balancing the worst- and average-case performance, and presented policies to do

so for response time and for slowdown.

Multi-query scheduling has also been exploited to optimize metrics other than QoS. For

example, Chain is a multi-query scheduling policy that optimizes memory usage [6]. The

89

work on Chain has also been extended to balance the trade-off between memory usage and

response time [7].

To the best of our knowledge, no previous work has proposed multi-query scheduling

policies for improving the QoD provided by continuous queries. However, load shedding has

been devised as a technique to control the degree of degradation in the provided QoD under

overloaded conditions. The work in [62] describes a load shedding technique that decides

which tuples to drop according to the importance of their content. The work in [8] formalizes

the load shedding problem for aggregate queries.

Scheduling policies for improving the QoD has been studied in the context of replicated

databases and in Web databases. For example, the work in [21, 22] provides policies for

crawling the Web in order to refresh a local database. The authors make the observation

that a data item that is updated more often should be synchronized less often. In this work,

we utilize the same observation, however, [21, 22] assumes that updates follow a mathematical

model, whereas we make our decision based on the current status of the Web server queues

(i.e., the number of pending updates). The same observation has been exploited in [47] for

refreshing distributed caches and in [36] for multi-casting updates.

The work in [34] studies the problem of propagating the updates to derived views. It

proposes a scheduling policy for applying the updates that considers the divergence in the

computation costs of different views. Similarly, our proposed FAS-MCQ considers the dif-

ferent processing costs of the registered multiple continuous queries. Moreover, FAS-MCQ

generalizes the work in [34] by considering updates that are streamed from multiple data

sources with different traffic patterns as opposed to a single data source.

90

6.0 SUMMARY AND FUTURE WORK

In this chapter, we first summarize the thesis contributions and then discuss potential avenues

for future research.

6.1 SUMMARY

Motivated by the need to support monitoring applications which involve the processing of

update streams by continuous queries, in this thesis, we considered the problem of scheduling

multiple heterogeneous CQs in a DSMS with the goal of optimizing QoS and QoD for end

users and applications.

To quantify such QoS we first used the traditional metric of response time, which we

defined over multiple CQs, including CQs that contain joins of multiple data streams. We

also considered slowdown as another QoS metric, since we believe it to be a more fair metric

for heterogeneous workloads, and, as such, more suitable for a wide range of monitoring

applications.

Having defined the QoS metrics to optimize, we developed new scheduling policies that

optimize the average-case performance of a DSMS for response time and for slowdown.

Additionally, we proposed hybrid policies that strike a fine balance between the average-case

performance and the worst-case performance, thus avoiding starvation (which is crucial for

event detection CQs).

Further, we have extended the proposed policies to exploit operator sharing in optimized

multi-query plans and to handle multi-stream queries. We have also augmented the proposed

policies with mechanisms that ensure their adaptivity to changes in workload. Finally, we

91

have evaluated our proposed policies and their implementation experimentally and showed

that our scheduling policies consistently outperform previously proposed policies.

We also studied the different aspects that affect the QoD of monitoring applications. In

particular, we focused on the freshness of the output data stream and identified that both the

properties of queries, i.e., cost and selectivity, as well as the properties of the input update

streams, i.e., variability of updates, have a significant impact on freshness.

Towards this, we proposed a new approach for scheduling multiple queries in Data Stream

Management Systems. Our approach exploits both properties of queries and input data

streams in order to maximize the freshness of output data streams. In particular, we proposed

a new scheduling policy called Freshness-Aware Scheduling of Multiple Continuous Queries

(FAS-MCQ) and a weighted version of it that supports applications in which queries have

different priorities. We also introduced a generalized variant of FAS-MCQ that balances the

trade-off between QoD and QoS, according to application requirements.

We have experimentally evaluated our proposed FAS-MCQ policy against scheduling

policies used in current DSMS prototypes as well as Web servers.

Table 6 lists the scheduling policies discussed above. For each policy, it states the opti-

mization metric targeted by the policy. It also states if the policy is used in the context of a

single query or multiple queries and whether or not the policy handles multi-stream queries

that contain join operators.

92

Table 6: Classification of priority-based scheduling policies for CQs

Policy and Reference Objective Supported CQs
Single Multiple Join

RB Rate-based Average
√ × √

[65] Response Time
ML Min-Latency Average

√ × ×
[16] Response Time

RR Round Robin Average
√ √ ×

[16] Response Time
HR Highest Rate Average

√ √ √
§3.1.1.1 Response Time

HNR Highest Normalized Rate Average
√ √ √

§3.1.3 Slowdown
FCFS First Come First Served Maximum

√ √ √
§3.2.1 Response Time

LSF Longest Stretch First Maximum
√ √ √

§3.2.1 Slowdown
BRT Balance Response Time `2 norm of

√ √ √
§3.2.3 Response Time

BSD Balance Slowdown `2 norm of
√ √ √

§3.2.2.2 Slowdown
Chain Chain Maximum

√ √ √
[6] Memory usage

FAS Freshness-Aware Scheduling Average
√ √ ×

§4.2 Freshness

93

6.2 FUTURE WORK

6.2.1 Integrated Processing and Dissemination Schedulers

Current DSMSs prototypes do not provide an integrated data dissemination component. The

assumption is that the underlying network layer is responsible for propagating the output

data streams to end-users. However, that decoupling eliminates the chance of exploiting the

CQs’s characteristics for better bandwidth utilization.

Previous research on Publish/Subscribe information systems shows the importance of

considering queries’ semantics together with employing advanced data dissemination schemes

such as data multicast and data broadcast (e.g., [3, 2, 1, 24, 25] as well as the work in

[40, 39, 10]). In these schemes, data of interest for multiple clients is only disseminated once,

thus making an effective use of the available bandwidth and allowing maximum scalability.

The same concept above can be applied in disseminating DSMS output data streams.

That is, when multiple clients register the same CQ, the output of that query is multicasted

only once. Additionally, results from overlapping CQ’s can be efficiently merged to reduce

the bandwidth consumption as we previously proposed in [52, 58, 53].

Towards this, we want to build on our own experience in multicast scheduling [52, 58, 53]

to design an integrated cost-based stream processing and dissemination scheme that considers

both the CQs’ properties (i.e., operators’ costs and selectivities) together with the output

data properties (i.e., size and popularity).

6.2.2 Integrated Load Shedding

Load shedding techniques have been proposed to reduce the amount of work required to

process input data streams [62, 8]. This is especially important when the DSMS is overloaded.

Current load shedders decide to drop an input tuple based on its CQ’s processing cost and

selectivity, as well as on its effect on the overall QoS and QoD.

As shown in Chapters 3 and 4, the way queries are scheduled for execution also affects

the overall QoD. Thus, we propose to investigate a collaborative scheme that utilizes the

synergy between the load shedder and the query processor to improve QoS and QoD when

94

the server is overloaded. We also plan to consider the communication properties as another

parameter in the design of the load shedder, for example, the cost of transmitting the output

produced from processing the tuple.

95

BIBLIOGRAPHY

[1] S. Acharya, R. Alonso, M. Franklin, and S. Zdonik. Broadcast disks: Data management
for asymmetric communication environments. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), 1995.

[2] S. Acharya and S. Muthukrishnan. Scheduling on-demand broadcasts: New metrics and
algorithms. In ACM/IEEE MobiCom, 1998.

[3] D. Aksoy and M. Franklin. Rxw: A scheduling approach for large-scale on-demand data
broadcast. IEEE/ACM Tran. on Networkin, 7(6):846–860, 1999.

[4] A. Arasu, S. Babu, and J. Widom. The CQL continuous query language: semantic
foundations and query execution. The International Journal on Very Large Data Bases
(VLDB J.), 15(2):121–142, 2006.

[5] R. Avnur and J. M. Hellerstein. Eddies: Continuously adaptive query processing. In
Proceedings of the ACM International Conference on Management of Data (SIGMOD),
2000.

[6] B. Babcock, S. Babu, M. Datar, and R. Motwani. Chain: Operator scheduling for
memory minimization in data stream systems. In Proceedings of the ACM International
Conference on Management of Data (SIGMOD), 2003.

[7] B. Babcock, S. Babu, M. Datar, R. Motwani, and D. Thomas. Operator scheduling in
data stream systems. The International Journal on Very Large Data Bases (VLDB J.),
13(4), 2004.

[8] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over
data streams. In Proc. of the International Conference on Data Engineering (ICDE),
2004.

[9] N. Bansal and K. Pruhs. Server scheduling in the lp norm: A rising tide lifts all boats.
In Proc. of the ACM Symposium on Theory of Computing (STOC), 2003.

[10] J. Beaver, N. Morsillo, K. Pruhs, P. K. Chrysanthis, and V. Liberatore. Scalable dis-
semination: What’s hot and what’s not. In Proc. of the ACM International Workshop
on Web and Databases (WebDB), 2004.

96

[11] J. Beaver, M. A. Sharaf, A. Labrinidis, and P. K. Chrysanthis. Location-aware routing
for data aggregation for sensor networks. In Proc. of Geo Sensor Networks Workshop,
2003.

[12] M. Bender, S. Muthukrishnan, and R. Rajaraman. Improved algorithms for stretch
scheduling. In Proc. of the ACM Symposium on Discrete Algorithms (SODA), 2002.

[13] M. A. Bender, S. Chakrabarti, and S. Muthukrishnan. Flow and stretch metrics for
scheduling continuous job streams. In Proc. of the ACM Symposium on Discrete Algo-
rithms (SODA), 1998.

[14] R. Brown. Calendar queues: A fast o(1) priority queue implementation for the simula-
tion event set problem. Communications of the ACM, 31(10):1220–1227, 1988.

[15] D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, G. Seidman, M. Stone-
braker, N. Tatbul, and S. Zdonik. Monitoring streams: A new class of data management
applications. In Proc. of the Very Large Data Bases (VLDB) Conference, 2002.

[16] D. Carney, U. Cetintemel, A. Rasin, S. Zdonik, M. Cherniack, and M. Stonebraker.
Operator scheduling in a data stream manager. In Proc. of the Very Large Data Bases
(VLDB) Conference, 2003.

[17] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, V. Raman S. Madden, F. Reiss, and M. A. Shah. Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World. In Proc. of the
Biennial Conference on Innovative Data Systems Research (CIDR), 2003.

[18] S. Chandrasekaran and M. J. Franklin. Streaming queries over streaming data. In Proc.
of the Very Large Data Bases (VLDB) Conference, 2002.

[19] J. Chen, D. J. DeWitt, and J. F. Naughton. Design and evaluation of alternative selec-
tion placement strategies in optimizing continuous queries. In Proc. of the International
Conference on Data Engineering (ICDE), 2002.

[20] J. Chen, D. J. DeWitt, F. Tian, and Y .Wang. NiagaraCQ: A scalable continuous query
system for internet databases. In Proceedings of the ACM International Conference on
Management of Data (SIGMOD), 2000.

[21] J. Cho and H. Garcia-Molina. Synchronizing a database to improve freshness. In
Proceedings of the ACM International Conference on Management of Data (SIGMOD),
2000.

[22] J. Cho and H. Garcia-Molina. Effective page refresh policies for web crawlers. ACM
Transactions on Database Systems (TODS), 28(4):390–426, 2003.

[23] C. Cranor, T. Johnson, O. Spataschek, and V. Shkapenyuk. Gigascope: A stream
database for network applications. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), 2003.

97

[24] A. Crespo, O. Buyukkokten, and H. G. Molina. Efficient query subscription processing in
a multicast environment. In Proc. of the International Conference on Data Engineering
(ICDE), 2000.

[25] A. Crespo, O. Buyukkokten, and H. G. Molina. Query merging: Improving query
subscription processing in a multicast environment. IEEE Transactions on Knowledge
and Data Engineering (TKDE), 15(1):174–191, 2003.

[26] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In
Proc. of the ACM Symposium on Principles of Database Systems (PODS), 2001.

[27] L. Golab and M. T. Ozsu. Processing sliding window multi-joins in continuous queries
over data streams. In Proc. of the Very Large Data Bases (VLDB) Conference, 2003.

[28] L. Golab and M. T. Ozsu. Update-pattern-aware modeling and processing of continuous
queries. In Proceedings of the ACM International Conference on Management of Data
(SIGMOD), 2005.

[29] M. Hammad, W. Aref, M. Franklin, M. Mokbel, and A. K. Elmagarmid. Efficient
execution of sliding window queries over data streams. Technical Report Number CSD
TR 03-035, Purdue Univ., 2003.

[30] M. Hammad, M. Franklin, W. Aref, and A. K. Elmagarmid. Scheduling for shared win-
dow joins over data streams. In Proc. of the Very Large Data Bases (VLDB) Conference,
2003.

[31] M. A. Hammad, M. F. Mokbel, M. H. Ali, Walid G. Aref, A. C. Catlin, A. K. Elma-
garmid, M. Eltabakh, M. G. Elfeky, T. M. Ghanem, R. Gwadera, I. F. Ilyas, M. Mar-
zouk, and X. Xiong. Nile: A query processing engine for data streams. In Proc. of the
International Conference on Data Engineering (ICDE), 2004.

[32] V. Jacobson. Congestion avoidance and control. In Proceedings of the ACM SIGCOMM
International Conference on Communications Architectures and Protocols (SIGCOMM),
1988.

[33] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating window joins over unbounded
streams. In Proc. of the International Conference on Data Engineering (ICDE), 2003.

[34] A. Labrinidis and N. Roussopoulos. Update propagation strategies for improving the
quality of data on the web. In Proc. of the Very Large Data Bases (VLDB) Conference,
2001.

[35] A. Labrinidis and N. Roussopoulos. Exploring the tradeoff between performance and
data freshness in database-driven web servers. The International Journal on Very Large
Data Bases (VLDB J.), 13(3):240–255, 2004.

[36] W. Lam and H. Garcia-Molina. Multicasting a changing repository. In Proc. of the
International Conference on Data Engineering (ICDE), 2003.

98

[37] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. No pane, no gain: efficient
evaluation of sliding-window aggregates over data streams. SIGMOD Record, 34(1):39–
44, 2005.

[38] J. Li, D. Maier, K. Tufte, V. Papadimos, and P. A. Tucker. Semantics and evalua-
tion techniques for window aggregates in data streams. In Proceedings of the ACM
International Conference on Management of Data (SIGMOD), 2005.

[39] W. Li, W. Zhang, V. Liberatore, V. Penkrot, J. Beaver, M. A. Sharaf, S. Roychowdhury,
P. K. Chrysanthis, and K. Pruhs. An optimized multicast-based data dissemination
middleware. In Proc. of the International Conference on Data Engineering (ICDE),
2003.

[40] V. Liberatore, P. K. Chrysanthis, and K. Pruhs. Middleware support for multicast-
based data dissemination: A working reality. In IEEE Workshop on Reliable Dependable
Systems, 2003.

[41] C. L. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a hard-
real-time environment. J. ACM, 20(1):46–61, 1973.

[42] S. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman. Continuously adaptive
continuous queries over streams. In Proceedings of the ACM International Conference
on Management of Data (SIGMOD), 2002.

[43] M. Mehta and D. J. DeWitt. Dynamic memory allocation for multiple-query workloads.
In Proc. of the Very Large Data Bases (VLDB) Conference, 1993.

[44] R. Motwani, J. Widom, A. Arasu, B. Babcock, S. Babu, M. Datar, G. Manku, C. Olston,
J. Rosenstein, and R. Varma. Query processing, resource management, and approxi-
mation in a data stream management system. In Proc. of the Biennial Conference on
Innovative Data Systems Research (CIDR), 2003.

[45] S. Muthukrishnan, R. Rajaraman, A. Shaheen, and J. E. Gehrke. Online scheduling to
minimize average stretch. In Proc. of the IEEE Symposium on Foundations of Computer
Science (FOCS), 1999.

[46] C. Olston, J. Jiang, and J. Widom. Adaptive filters for continuous queries over dis-
tributed data streams. In Proceedings of the ACM International Conference on Man-
agement of Data (SIGMOD), 2003.

[47] C. Olston and J. Widom. Best-effort cache synchronization with source cooperation. In
Proceedings of the ACM International Conference on Management of Data (SIGMOD),
2002.

[48] T. K. Sellis. Multiple-query optimization. ACM Transactions on Database Systems
(TODS), 13(1), 1988.

99

[49] J. Shanmugasundaram, K. Tufte, D. J. DeWitt, J. F. Naughton, and D. Maier. Ar-
chitecting a network query engine for producing partial results. In Proc. of the ACM
International Workshop on Web and Databases (WebDB), 2002.

[50] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. Tina: A scheme for
temporal coherency-aware in-network aggregation. In Proc. of the ACM International
Workshop on Mobile Data Engineering (MobiDE), 2003.

[51] M. A. Sharaf, J. Beaver, A. Labrinidis, and P. K. Chrysanthis. Balancing energy effi-
ciency and quality of aggregate data in sensor networks. The International Journal on
Very Large Data Bases (VLDB J.), 13(4):384–403, 2004.

[52] M. A. Sharaf and P. K. Chrysanthis. Semantic-based delivery of olap summary tables in
wireless environments. In Proc. of the ACM International Conference on Information
and Knowledge Management (CIKM), 2002.

[53] M. A. Sharaf and P. K. Chrysanthis. On-demand data broadcasting for mobile decision
making. Journal of ACM MobileNetworking and Applications (MONET), 9(6):703–714,
2004.

[54] M. A. Sharaf, P. K. Chrysanthis, and A. Labrinidis. Preemptive rate-based operator
scheduling in a data stream management system. In ACS/IEEE International Confer-
ence on Computer Systems and Applications (AICCSA), 2005.

[55] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Efficient scheduling of
heterogeneous continuous queries. In The International Journal on Very Large Data
Bases (VLDB J.), 2006.

[56] M. A. Sharaf, P. K. Chrysanthis, A. Labrinidis, and K. Pruhs. Algorithms and met-
rics for processing multiple heterogeneous continuous queries. ACM Transactions on
Database Systems (TODS), to appear.

[57] M. A. Sharaf, A. Labrinidis, P. K. Chrysanthis, and K. Pruhs. Freshness-aware schedul-
ing of continuous queries in the dynamic web. In Proc. of the ACM International
Workshop on Web and Databases (WebDB), 2005.

[58] M. A. Sharaf, Y. Sismanis, A. Labrinidis, P. K. Chrysanthis, and N. Roussopoulos.
Efficient dissemination of aggregate data over the wireless web. In Proc. of the ACM
International Workshop on Web and Databases (WebDB), 2003.

[59] U. Srivastava and J. Widom. Memory-limited execution of windowed stream joins. In
Proc. of the Very Large Data Bases (VLDB) Conference, 2004.

[60] M. Sullivan. A stream database manager for network traffic analysis. In Proc. of the
Very Large Data Bases (VLDB) Conference, 1996.

100

[61] T. Sutherland, B. Pielech, Y. Zhu, L. Ding, and E. A. Rundensteiner. An adaptive multi-
objective scheduling selection framework for continuous query processing. In Proc. of
the International Database Engineering and Applications Symposium (IDEAS), 2005.

[62] N. Tatbul, U. Cetintemel, S. B. Zdonik, M. Cherniack, and M. Stonebraker. Load
shedding in a data stream manager. In Proc. of the Very Large Data Bases (VLDB)
Conference, 2003.

[63] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous queries over append-
only databases. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD), 1992.

[64] F. Tian and D. J. DeWitt. Tuple routing strategies for distributed eddies. In Proc. of
the Very Large Data Bases (VLDB) Conference, 2003.

[65] T. Urhan and M. J. Franklin. Dynamic pipeline scheduling for improving interactive
query performance. In Proc. of the Very Large Data Bases (VLDB) Conference, 2001.

[66] S. D. Viglas and J. F. Naughton. Rate-based query optimization for streaming infor-
mation sources. In Proceedings of the ACM International Conference on Management
of Data (SIGMOD), 2002.

[67] C. A. Waldspurger and W. E. Weihl. Lottery scheduling: Flexible proportional-share
resource management. In Proc. of OSDI, 1994.

[68] A. Wilschut and P. Apers. Dataflow query execution in a parallel main-memory environ-
ment. In Proc. of the International Conference on Parallel and Distributed Information
Systems (PDIS), 1991.

101

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Table of Symbols
	2. Results for Example 1
	3. Simulation Parameters for QoS Experiments
	4. Priority functions for scheduling QoS vs. QoD
	5. Simulation Parameters for QoD Experiments
	6. Classification of priority-based scheduling policies for CQs

	LIST OF FIGURES
	1. Core components of a DSMS
	2. Continuous Queries Plans
	3. Output of Example 1
	4. An example that illustrates the different implementation techniques
	5. An example of a multi-stream query plan
	6. Multiple CQs plans sharing operator Ox
	7. [§3.8.1.1] Avg. slowdown vs. system load
	8. [§3.8.1.2] Avg. response vs. system load
	9. [§3.8.1.3] Max. response time vs. system load
	10. [§3.8.1.4] Max. slowdown vs. system load
	11. [§3.8.1.5] Max. vs Avg. Slowdown for HNR, LSF, and BSD
	12. [§3.8.1.6] 2 of slowdowns vs. system load
	13. [§3.8.1.7] 2 of response times vs. system load
	14. [§3.8.1.8] Slowdown per class for low-cost queries
	15. [§3.8.1.9] 2 of slowdown vs. maximum operator selectivity
	16. [§3.8.1.10] Performance of an oracle scheduling policy
	17. [§3.8.1.11] Response time over time
	18. [§3.8.1.11] Slowdown over time
	19. [§3.8.1.11] 2 of response times over time
	20. [§3.8.1.11] 2 of slowdowns over time
	21. [§3.8.1.12] 2 of slowdown for multi-stream queries
	22. [§3.8.1.13] Tardiness of aggregate CQs
	23. [§3.8.1.13] Tardiness of aggregate CQs at low utilization
	24. [§3.8.1.13] Tardiness of aggregate CQs at high utilization
	25. [§3.8.2] Memory usage vs. system load
	26. [§3.8.2] Performance of Chain under QoS metrics
	27. [§3.8.3] 2 of slowdown vs. number of clusters
	28. [§3.8.3] Efficient implementation of BSD
	29. [§3.8.4] Response time for grouped queries
	30. [§3.8.4] Slowdown for grouped queries
	31. [§3.8.4] 2 of slowdowns for grouped queries
	32. [§3.8.5] Ratio of adaptive scheduler performance vs. static
	33. [§3.8.5] Impact of monitoring window length on adaptive scheduling
	34. [§3.8.5] Impact of value on adaptive scheduling
	35. An example on measuring the freshness of a data stream
	36. [§4.5.1] Average staleness vs. system utilization
	37. [§4.5.1] Average response time vs. system utilization
	38. [§4.5.2] Response time for different s
	39. [§4.5.2] Staleness for different s
	40. [§4.5.2] Trade-off between staleness and response time at utilization 0.95
	41. [§4.5.3] Staleness vs. skewness in selectivity (using Zipf parameter)
	42. [§4.5.4] Staleness vs. number of bursty streams (out of 10)
	43. [§4.5.5] Staleness vs. system utilization (real data traces)

	PREFACE
	1.0 INTRODUCTION
	2.0 SYSTEM MODEL
	2.1 Continuous Queries
	2.2 Continuous Query Processing
	2.2.1 Processing Sliding Window Joins
	2.2.2 Processing Sliding Window Aggregates

	3.0 QOS METRICS AND ALGORITHMS
	3.1 Average-case Performance
	3.1.1 Response Time Metric
	3.1.1.1 Highest Rate Policy (HR)

	3.1.2 Slowdown Metric
	3.1.3 Highest Normalized Rate Policy (HNR)
	3.1.4 HNR vs. HR
	3.1.5 HNR vs. HR vs. SRPT

	3.2 Average-case vs. Worst-case Performance
	3.2.1 Worst-case Performance
	3.2.2 Balancing the Trade-off between Average-case and Worst-case Performance
	3.2.2.1 The Second Norm Metric
	3.2.2.2 Balancing the Trade-off for Slowdown

	3.2.3 Balancing the Trade-off for Response Time

	3.3 Implementation Issues
	3.3.1 Priority Dynamics under HNR
	3.3.2 Priority Dynamics under BSD
	3.3.2.1 Search Space Reduction
	3.3.2.2 Search Space Pruning
	3.3.2.3 Clustered Processing

	3.3.3 Adaptive Scheduling

	3.4 Multi-Stream Queries
	3.4.1 Metrics For Joins
	3.4.1.1 Response Time of Joined Tuples
	3.4.1.2 Slowdown of Joined Tuples

	3.4.2 Scheduling Multi-stream Queries

	3.5 Aggregate Continuous Queries
	3.5.1 EDF vs. HR for Scheduling Aggregate CQs
	3.5.2 Hybrid Policy for Scheduling Aggregate CQs

	3.6 Operator Sharing
	3.6.1 HNR with Operator Sharing
	3.6.2 Priority-Defining Tree (PDT)

	3.7 Evaluation Testbed
	3.8 Experiments
	3.8.1 Performance under Different Metrics
	3.8.1.1 Average Slowdown
	3.8.1.2 Average Response Time
	3.8.1.3 Maximum Response Time
	3.8.1.4 Maximum Slowdown
	3.8.1.5 Trade-off in Slowdown
	3.8.1.6 Second Norm of Slowdowns
	3.8.1.7 Second Norm of Response Times
	3.8.1.8 Slowdown per Class
	3.8.1.9 Impact of Selectivity
	3.8.1.10 An Oracle Scheduling Policy
	3.8.1.11 Performance over Time
	3.8.1.12 Second Norm for Multi-stream Queries
	3.8.1.13 Tardiness of Aggregate CQs

	3.8.2 Memory Usage
	3.8.3 Comparison of Implementation Techniques
	3.8.4 Operator Sharing
	3.8.5 Adaptive Scheduling

	4.0 QOD METRICS AND ALGORITHMS
	4.1 Freshness of Data Streams
	4.1.1 Average Freshness for Single Streams
	4.1.2 Average Freshness for Multiple Streams

	4.2 Freshness-Aware Scheduling of Multiple Continuous Queries
	4.2.1 Scheduling without Selectivity
	4.2.2 Scheduling with Selectivity
	4.2.3 The FAS-MCQ Policy
	4.2.4 Weighted Freshness

	4.3 Scheduling for QoD vs. Scheduling for QoS
	4.3.1 Scheduling for QoS
	4.3.2 Balancing the Trade-off between QoD and QoS

	4.4 Evaluation Testbed
	4.4.1 Implementing the FAS-MCQ Scheduler
	4.4.2 Simulation Parameters

	4.5 Experiments
	4.5.1 Impact of Utilization
	4.5.2 Staleness vs. Response Time
	4.5.3 Impact of Selectivity
	4.5.4 Impact of Bursts
	4.5.5 Real Data

	5.0 RELATED WORK
	6.0 SUMMARY AND FUTURE WORK
	6.1 Summary
	6.2 Future Work
	6.2.1 Integrated Processing and Dissemination Schedulers
	6.2.2 Integrated Load Shedding

	BIBLIOGRAPHY

