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SCAFFOLDING PROBLEM SOLVING WITH EMBEDDED EXAMPLES TO

PROMOTE DEEP LEARNING

Michael A. Ringenberg, M.S.

University of Pittsburgh, 2006

This study compared the relative utility of an intelligent tutoring system that uses procedure-

based hints to a version that uses worked-out examples. The system, Andes, taught college

level physics. In order to test which strategy produced better gains in competence, two

versions of Andes were used: one offered participants graded hints and the other offered

annotated, worked-out examples in response to their help requests. We found that providing

examples was at least as effective as the hint sequences and was more efficient in terms of

the number of problems it took to obtain the same level of mastery.
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1.0 INTRODUCTION

At the heart of most educational research is the search for ways to improve the instruction of

novices. One strategy that has been found to be very effective is one-on-one human tutoring

[Bloom, 1984]. The economics of providing one-on-one tutoring has prompted the investiga-

tion of other techniques to boost learning. Another technique is to use intelligent tutoring

systems to supplement classroom instruction and to substitute for individualized instruction

[Anderson et al., 1995], [Aleven and Ashley, 1997], [Koedinger and Anderson, 1997],

[Katz et al., 1998], [Corbett and Anderson, 2001], [VanLehn et al., 2005]. Another technique

is to use embedded examples in instructional material [Sweller and Cooper, 1985],

[Cooper and Sweller, 1987], [Reed and Bolstad, 1991], [Brown, 1992], [Catrambone, 1995],

[Renkl et al., 1998], [Koehler, 2002]. As both paths have met with some success, it is worth

comparing them and exploring ways to combine them.

Our study was done with a modification of Andes, an intelligent tutoring system that

aids the instruction of college-level introductory physics [VanLehn et al., 2005]. The main

function of Andes is to present students with problems and to let the students solve them

with the option of receiving adaptive scaffolding from the system. See Figure 1 for a screen

shot of the interface. The two types of adaptive scaffolding in Andes are flag feedback and

hints. Flag feedback marks the student’s input as either correct or incorrect. When the

student asks for help, Andes presents the student with a hint. The hint either points out

what is wrong with the input or suggests a step to do next. The hint is based on the

anticipated next step in solving the problem. It is designed to help the student identify and

apply relevant basic principles and definitions. In this way, Andes tries to link the current

problem-solving step with domain knowledge the student has already been taught.

The hints are staged in a graded fashion known as a hint sequence. The student is
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typically presented first with a vague suggestion to prompt self explanation of the next

step or to identify and correct the current error. The student can then ask for the next

level in the hint sequence if the student judges that the previous hint was insufficient. The

hints become more concrete as the sequence is followed. The last level in a hint sequence

typically supplies the entire anticipated next correct problem-solving step. This is referred

to as the bottom-out hint. See Figure 2 for an example. This graded structure of hints has

been used in several intelligent tutoring systems (For more information on Andes, please see

http://www.andes.pitt.edu/). Students can and do resort to “help abuse” when this form

of adaptive scaffolding is offered [Aleven and Koedinger, 2001]. Students can click through

the hints rapidly in order to get to the bottom-out hint and will ignore the rest of the

hint sequence. This strategy is a problem because it is associated with shallow learning

[Aleven and Koedinger, 2001].

Our basic hypothesis is that novice students will learn more effectively if we replace

Andes’ hint sequences with worked-out near-transfer examples. A worked-out example is a

solved problem with all of the anticipated problem-solving steps explicitly stated. A near-

transfer example has a deep structure similar to that of the current problem and uses the

same basic principles. Several lines of evidence suggest that worked-out examples will be

more effective for novices than hint sequences.

First, based on an observation from previous Andes studies, some students will find the

solution to one problem through help abuse and then refer back to that solved problem

when faced with a similar problem. In essence, they are using the first problem to create a

worked-out example. This observation is consistent with studies showing that novices prefer

to learn from examples as opposed to procedural instructions [LeFevre and Dixon, 1986].

Second, we suspect that the hints provided by Andes can provide good targeted help to

students who are already familiar with the subject material and have an adequate under-

standing of the underlying principles. However, for novices, the first hints in the graded hint

sequence probably make little sense. Novices are not sufficiently familiar with the subject

material for the hints to activate the reasoning needed to finish the anticipated next step,

nor are they familiar enough with the problem solving structure to understand why the hint

is relevant.

2
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Third, worked-out examples have been shown to be effective instruction in some cases.

In one study, worked-out examples were more effective than presenting procedural rules

[Cooper and Sweller, 1987]. However, examples are more effective when they alternate with

problem solving, presumably because studying large blocks of examples becomes boring

[Trafton and Reiser, 1993]. By using a single example in place of a hint sequence for each

problem, we can avoid the boredom of large example blocks.

On the other hand, worked-out examples are not always effective. Providing overly com-

plex examples can impede learning in an intelligent tutoring system

[Nguyen-Xuan et al., 1999]. Having worked example walkthroughs do not necessarily im-

proved or degrade learning in an intelligent tutoring system [McLaren et al., 2006].

The usefulness of worked-out examples requires that students self-explain the solution

steps listed in the example. A self-explanation for an example is a meaningful and correct

explanation of a step in the student’s own words [Chi et al., 1989]. Unfortunately, students

do not tend to produce self-explanations spontaneously and many students produce ineffec-

tive self-explanations. Useful self-explanations can be categorized as either derivations or

procedural explanations [Chi and VanLehn, 1991]. Derivations answer the question “Where

did this step come from?” and procedural explanations answer the question “Why was this

step done?”

When students do not engage in self-explanation, they tend not to develop a deep under-

standing of the material. Novices tend to match surface features of a problem, like diagrams

and problem statement wording, with those in a worked-out example. In contrast, experts

use the principles and deep structure as criteria for matching a worked-out example to a

problem [VanLehn and Jones, 1993]. The deep structure refers to a general plan or sequence

of principle applications that can be followed in order to solve the problem. By providing

worked-out examples with well-structured explicit steps to the solution and annotations of

the relevant principles for each step, we are presenting students with examples of good self-

explanations. This is expected to promote identification of the underlying problem structure

and facilitate recognition of similar problem structure in different problems. It has been

shown that students often do not generalize from examples, but this style of organization

helps [Catrambone, 1995]. Providing an annotated, worked-out example during problem
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solving enables a direct comparison and should encourage the student to focus on the com-

mon deep structure between the problem and the example. This will lead the students who

are provided with these examples to perform better on tasks that test the deep structural

understanding of the problems than those who are not provided with them.
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Figure 1: The Andes Physics Workbench, an intelligent tutoring system for helping student

solve physics problems. The problem shown is from the Inductors section of problems.

First Hint: You should finish entering all of the useful given quantities in the problem.

Why don’t you work on entering the given values of the inductance of L1.

Second Hint: You can find the value of the inductance of L1 in the problem statement.

Third Hint: The value of the inductance of L1 is given as 3.2 H.

Bottom-Out Hint: Enter the equation L1 = 3.2 H.

Figure 2: An example of an Andes hint sequence in response to a next step help request.
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2.0 METHODOLOGY

This was a Pittsburgh Science of Learning Center in vivo experiment, therefor it is a hybrid

study in that it was both naturalistic and experimental. The experiment was conducted

during a second semester, college level physics course. As part of the graded homework for

this course, students solved problems with Andes. Students who volunteered to participate

in the experiment used a modified version of Andes to do this homework. The post-test for

this study was administered either three or four days before the in-class exam, depending on

students’ regular lab sessions. The time frame of homework completion was at the students’

discretion, and ranged from a few weeks before the relevant in-class exam to many weeks

after. This unanticipated confound was resolved by the creation of a new category “No-

Training” for participants who had not done any of their homework before this study’s

post-test.

The study had two experimental conditions: Examples and Hints. In both conditions,

participants received Andes normal flag feedback. In the Examples condition, participants

were presented with annotated, worked-out examples in response to any help request while

using Andes. Each problem was mapped to a single example, but several problems were

mapped to the same example if they shared the same deep structure. In the Hints condition,

participants were given Andes’ normal graded, step-dependent hints in response to help

requests.

The dependent variable for this experiment was performance on a problem matching

task. Participants were asked to choose which of two problem statements would be solved

most similarly to the given problem statement. This task is meant to evaluate deep learning

by measuring participants’ recognition of deep structure similarities.

The study participants were recruited from students already participating in the physics
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section of Pittsburgh Science of Learning Center LearnLab

(http://www.learnlab.org/). The physics section was run as part of the General Physics

I/II classes in the United States Naval Academy in Annapolis, Maryland. A total of forty-

six volunteers were recruited from two sections of this course taught by the same professor.

Participants were instructed to download the version of Andes which was modified for this

study to use for the assigned homework problems on the topic of “Inductors.” Because use of

Andes was demonstrated in class and required for homework throughout the course, students

in these sections were expected to be familiar with it. No restrictions were placed on use of

the study-assigned Andes program, textbooks, professors, peers, or any other supplementary

material. Due dates for Andes homework in the course were not rigidly enforced. Only

the unmodified Andes version of the homework on Inductors was made available to the

participants for in the Hints condition. Those in the Examples condition were assigned the

same homework problems but instead were given access only to a modified version of Andes

with the graded hints replaced with a worked-out example problem.

The worked-out examples were designed to be near-transfer problems where numeric

values and some other surface features were changed. The solution to a homework problem

requires solving for a variable in an equation while the worked-out example shows steps to

solving a different variable in the same equation. For example, the equation for Ohm’s law is

V = IR (voltage = current*resistance). If one homework problem gives values for V and R

and asks the student to calculate I, and another gives values for V and I and asks for R, then

the one worked-out example used for both of these questions would show steps for calculating

V from given values for I and R. This relationship means that only five worked-out examples

were needed for the ten homework problems. One of the homework problems is shown in

Appendix B.1. The problem solving steps in the examples were written and annotated

with the principle used in each step, or with a list of the equations that were algebraically

combined for a given step. The example was designed to show completed problem solving

steps and solutions identical to those used in unmodified Andes problems. The principles in

the annotations were linked to the appropriate Andes subject matter help pages so that the

same body of problem-solving information was available to all participants. Appendix B.2

shows one of the worked-out examples used.

7
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The post-test was administered during the last lab session of the class prior to the in-class

examination on this material. The test format was adapted from the similarity judgment

task described by Dufresne, et. al [Dufresne et al., 1992]. It consisted of twenty multiple

choice questions in random order, with randomly ordered answer choices, presented one at a

time with thirty minutes given to complete the test. Each question contained three unsolved

problems: a model problem and two comparison problems. Each of these problems consisted

of a few sentences and a diagram. There were four possible types of relationship between

the model problem and the two comparison problems:

I. Same surface features with different deep structure

II. Same surface features with the same deep structure

III. Different surface features with different deep structure

IV. Different surface features with the same deep structure

Only one of the comparison problems in each question had the same deep structure as

the model problem (Type II and IV). The homework covered five different deep structure

concepts. In the post-test, four questions were related to each deep structure concept, each

with a different combination of surface feature relatedness. The theoretical strengths of this

method of measuring competence include emphasis on deep structure and de-emphasis of

algebraic skills [Dufresne et al., 1992]. The participants were given the following written

instructions:

“In the following evaluation, you will be presented with a series of problem statements. You
do not have to solve the problems! Your task will be to read the first problem statement
and then decided which of the following two problems would be solved most similarly to
the first one.”

In contrast to the format used by Dufresne, et al. [Dufresne et al., 1992], which repeated

the same five model problems throughout, this study displayed each possible kind of model

problem as infrequently as possible. This approach was designed to use stimulus novelty to

encourage participants to read and analyze each problem statement. The present study also

used problems from the assigned homework and worked-out examples as problem statements

in the post-test to minimize the possibility that participants would become distracted from
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the matching task by trying to solve the problems. Other problem statements in the post-test

were drawn from other Andes problems from the inductors unit. Four problem statements

from these sources were modified to prevent simple recognition. One of the post-test problems

is given in Appendix B.3.

The participants were assigned to the two experimental groups in a pairwise random

fashion based on their cumulative Grade Point Average (GPA). This single criterion was

used to balance the two groups in terms of previous performance without regard for other

variables such as class section, gender, academic major, or age. Ten specific homework

problems from the fourteen Inductance problems available in Andes were assigned to the

class.
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3.0 RESULTS

There were forty-six participants in this study, twenty-three assigned to each condition.

Eighteen participants had not started working on any of the homework problems before the

post-test and were reassigned to a third condition labeled “No-Training”. Two participants

were excluded from the analysis because they failed to complete the post-test and had not

started any homework problems. Five participants were excluded because they had worked

on some of the homework problems but did not request any help. This resulted in having

eighteen participants in the No-Training condition, twelve participants in the Hints condition,

and nine participants in the Examples condition.

There were no significant differences in performance on circuit questions among the

three conditions on the in-class examination administered before this study. This suggests

that even though the participants who did not do homework self-selected the No-Training

condition, all three conditions ended up with equivalently competent students. (see Table 1:

In-Class Circuit Exam; F(2,36) = 0.57, p = 0.5684). There was a notable but not statistically

significant difference in the total time participants chose to spend solving homework problems

between the Examples and Hints groups, with the Hints group spending more time on

problems (see Table 1: Total Training Time; t17.6 corrected = 1.90, p = 0.0735). In contrast,

the average time spent per problem (see Table 1: Time per Problem; t19 = 1.18, p = 0.2540)

was more consistent between the two groups. There was a significant difference in the average

number of problems attempted between the two groups, with the Hints groups working on

more problems than the Examples group (see Table 1: # of Problems Solved; t19 = 2.17,

p = 0.0427).

By construction, the post-test questions varied considerably in their difficulty; for in-

stance, it should be easier to identify similar deep structure when the surface features are
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Variable Averages No-Training Hints Examples p

n = 18 n = 12 n = 9

In-Class Circuit Exam 187± 21 178± 34 201± 38 0.5684

Total Training Time (s) - 7942± 3681 4189± 2407 0.0735

Time per Problem (s) - 672± 238 508± 162 0.2540

# of Problems Solved - 11± 1.53 8.1± 2.8 0.0427

Weighted Post-Test 3.56± 0.49 4.30± 0.37 4.88± 0.56 0.0010

Problem Efficiency - 0.413± 0.076 0.711± 0.215 0.0034

Table 1: Measurements of results are reported as mean±95% confidence limits

also similar, and harder to identify them when the surface features are different. To more

accurately measure competence, a weighted score was used. The post-test questions were

weighted according to their difficulty as determined by the performance of the No-Training

participants on each of the questions. The weight given to each question was 1 − #correct
18

,

where #correct was the number of participants from the No-Training condition who answered

the given question correctly. The calculated weights on the problems were in agreement with

a priori expected performance differences on the different problem types.

When an ANOVA model was fit using the weighted post-test scores (see Table 1:

Weighted Post-Test), a statistically significant difference among the three groups was de-

tected (F(2,36) = 8.49, p = 0.0010). With the Tukey-Kramer adjustment for multiple com-

parisons, it was found that the participants in the Examples condition did significantly better

on the post-test than those in the No-Training condition (t = 3.98, p = 0.0009). The Hints

condition also did better than the No-Training condition (t = 2.45, p = 0.0496). However, it

was not possible to distinguish a difference between the Hints condition and the Examples

condition based solely on the weighted post-test score (t = 1.61, p = 0.2525). Other depen-

dent variables, such as GPA and in-class examination scores, were not found to be significant

factors in any ANCOVA models.
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Problem efficiency was also calculated, that is, the increase in weighted post-test score

per training problem done. The Examples and Hints conditions had weighted post-test scores

that were not significantly different from each other but the participants in the Examples

condition chose to do fewer training problems. The problem efficiency for the Examples con-

dition was significantly higher than for the Hints condition (see Table 1: Problem Efficiency

and Figure 4; t = 3.34 p = 0.0034).

An ANCOVA model was fit using the weighted post-test scores with the number of

problems attempted as the covariate and the Hints or Examples condition as the categorical

variable (see Figure 5). It was determined that the interaction effect between the condition

and the number of problems was not significant (p = 0.8290). When the number of training

problems was controlled by estimating the mean weighted post-test score at the overall

mean number of training problems (µ∗ = 9.76), the difference in scores for the two training

conditions condition was significant (µExamples = 4.88± 0.46; µHints = 4.14± 0.50; t = 2.30,

p = 0.0338). This was consistent with the Problem Efficiency results and demonstrates

that given the same number of training problems, participants in the Examples condition

performed better on the post-test than participants in the Hints condition.
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Figure 3: Results are reported as means with

error bars showing the±95% confidence limits.

Either form of training is better than none,

but the difference in weighted post-test scores

of the Hints and Examples conditions are not

statistically significant.

Figure 4: Problem efficiency is defined

as by condition where training efficiency

is the weighted post-test score divided

by the number of problems solved. Re-

sults are reported as means with error

bars showing the±95% confidence limits.

Training problems with examples were

more efficient at raising post-test scores

than training problems with hints.
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Problem Efficiency for Experimental Conditions 
with Linear Regression Analysis
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Figure 5: Weighted post-test score versus number of problems solved with a fitted regression

lines for the Hints and Examples conditions.

14



4.0 DISCUSSION

The results of this study demonstrate the value of working on Andes training problems to

improve competence, whether with worked-out examples or graded hints. Although students

in the No-Training condition were self-selected, they showed no significant difference in

competence with basic circuit concepts prior to the study (as measured by scores on an in-

class exam). One important difference between the two training conditions was the time on

task, measured by the amount of time spent on the training homework. Participants in the

Example condition chose to solve fewer training problems on average than the participants in

the Hints condition. This was not due to the participants in the examples condition taking

longer to solve problems, as the average time to solve each problem was not significantly

different, but due to participants in the Hints condition choosing to spend more time working

on more problems. Though participants in the Examples condition solved fewer problems

on average than those in the Hints condition, they did at least as well on the post-test.

This evidence supports the hypothesis that worked-out examples are a more efficient form of

problem-solving help than graded hints. Due to the small number of participants involved

in this study, aptitude treatment interactions could not be examined. A larger study might

reveal an expertise reversal effect, where worked-out examples are more effective than graded

hints for novices and less effective than graded hints for experts [Kalyuga et al., 2003].

While previous studies have shown that providing worked-out examples can lead to shal-

low learning [VanLehn and Jones, 1993], this study indicates that worked-out examples may

in fact be more efficient at promoting deep learning than graded hints. This has implications

for tutoring system design in that examples may be a valuable addition to intelligent tutoring

systems. Moreover, adding worked-out examples to an intelligent tutoring system should be

fairly easy. The examples used in this study were easily added to Andes, mostly because
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there was no “intelligence” that needed to be designed to implement this strategy. One pos-

sible disadvantage of graded hint sequences is that they may be too rigid to accommodate

the individual thought processes of different students. If the intelligent tutoring system that

provides graded hints is good at assessing the participant’s thought process, then the hints

it can provide are likely to be effective. If the system can’t identify and provide feedback

relevant to a student’s thought process, the hints will probably seem close to meaningless.

If this happens too often, the student may decide that the hints are useless.

Worked-out examples can be a way of making sure that the system can provide a shared

context for the student. They may be of particular value when the system has not collected

enough data to evaluate the student effectively or if communication seems to have failed. One

way to integrate worked-out examples into a graded hint system is to replace the bottom-

out hint with the relevant worked-out example. This change may be particularly useful

in addressing the help abuse [Aleven and Koedinger, 2001]. It would be informative to see

whether this strategy would reduce help abuse or provide incentive for the participants

to click through a hint sequence rapidly just to see the worked-out example at the end.

Worked-out examples could be integrated into more complicated intelligent tutoring systems

that can assess the utility of different actions and provide these examples when appropriate

[Murray and VanLehn, 2000]. Increasing the diversity of possible useful actions in such a

system could only improve its performance.
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APPENDIX A

LINKS

• For examples of the training problems; the annotated, worked-out examples; and the

post-test problems, visit http://www.pitt.edu/∼mringenb/AWOE/

• For more information about Andes, visit http://www.andes.pitt.edu/

• For more information about LearnLab, visit http://www.learnlab.org/
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APPENDIX B

MATERIALS

B.1 TRAINING PROBLEM SAMPLE

B.1.1 IND1A

The current through an inductor L1 that has an inductance of 3.2 H is

increased uniformly in time from 2.0 A in a direction from left to right

to 3.5 A in a time of 3 s. Determine the emf (voltage) across the ends

of the inductor (Vb-Va) throughout this time period.
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B.2 ANNOTATED, WORKED-OUT EXAMPLE SAMPLE

B.2.1 IND1

B.2.1.1 Problem Statement

Inductor L1 has a self-inductance of 10 H. The emf (voltage) between

points A and B is held constant at 12 V. How much time does it take

for the current through L1 to change from 2.4 A to -3.6 A?

B.2.1.2 Solution

Variables

T0 = the current is 2.4 A to the right

T1 = the current is 3.6 A to the left

t = duration of time from T0 to T1

IL0 = Current through L1 at time T0

IL1 = Current through L1 at time T1

VL = Voltage across L1 at time T0 to T1

L1 = inductance of L1

dIdt = rate of change of current through L1 at time T0 to T1

Equations

Equation Source

1. L1 = 10 H Given (This information is from the problem statement.)

2. IL0 = -2.4 A Given (This information is from the problem statement.)

3. IL1 = 3.6 A Given (This information is from the problem statement.)

4. VL = 12 V Given (This information is from the problem statement.)

5. VL = -L1 * dIdt Inductor EMF (VL = -L * dI/dt)

6. dIdt = (IL1-IL0)/t Constant (avg) Rate of Change

(dI/dt = (I2-I1)/(t2-t1))

7. VL = -L1 * (IL1-IL0)/t 6,5

8. 12 V = -10 H * (-2.4 A - 3.6 A) / t 7,4,1,2,3

9. t = 5.0 s 8
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B.3 PROBLEM MATCHING TASK SAMPLE

Instructions

In the following evaluation, you will be presented with a series of problem statements.

You do not have to solve the problems! Your task will be to read the first problem statement

and then decided which of the following two statements would be solved most similarly to

the first one.

B.3.1 Question 1

The current through an inductor L1 that has an inductance of 3.2 H is

increased uniformly in time from 2.0 A in a direction from left to right

to 3.5 A in a time of 3 s. Determine the emf(voltage) across the ends

of the inductor (Vb-Va) throughout this time period.

Which of the following two problems would be solved most similarly to the

one above?

©
Calculate the energy stored in a solenoid that has a self-inductance of

0.3 H when the current through it is 8.57 A.

©

In the circuit shown, R1 = 2.0 ohm, L1 = 6.0 H and Vb = 12.0 V The

switch is closed at T0. At the instant T1 when the current through the

resistor reaches 4 A, what is the instantaneous rate of change of the

current through the inductor L1?

What is the energy in the inductor at this time?
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