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Ahmet Duran, PhD

University of Pittsburgh, 2006

Overreactions and other behavioral effects in stock prices can best be examined by adjusting

for the changes in fundamentals. We perform this by subtracting the relative price changes in

the net asset value (NAV) from that of market price (MP) daily for a large set of closed-end

funds trading in US markets. We examine the days before and after a significant rise or fall in

price deviation and MP return and find evidence of overreaction in the days after the change.

Prior to a spike in deviation we find a gradual two or three day decline (and analogously in

the other direction). Overall, there is a characteristic diamond pattern, revealing symmetry

in deviations before and after the significant change. Much of the statistical significance and

the patterns disappear when the subtraction of NAV return is eliminated, suggesting that

the frequent changes in fundamentals mask behavioral effects. A second study subdivides

the data depending on whether the NAV or market price is responsible for the spike in the

relative difference. In a majority of spikes, it is the change in market price rather than NAV

that is dominant. Among those spikes for which there is little or no change in NAV, the

results are similar to the overall study. Furthermore, the upward spikes are preceded by one

or two days of declining market price while NAV rises slightly or is relatively unchanged.

This suggests that a cause of the spike may be due to over-positioning of traders in the

opposite direction in anticipation.

We propose a mathematical model by combining an implementation of a state-of-the-

art optimization algorithm, a dynamic initial parameter pool and a system of nonlinear

differential equations to describe price dynamics. Given n-day period of MPs and NAVs
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from day i to day i + n − 1, we get four optimal parameters in the Caginalp Differential

Equations. Then, we solve the initial value problem to predict MP and return on day i + n

or later. The results of our statistical methods in real data confirm the model. We provide

out-of-sample prediction that is more successful than random walk.

Keywords: numerical optimization, nonlinear optimization, overreaction, diamond pattern,

over-positioning, price deviation, deviation model with partition, market price return pre-

diction, computational finance, mathematical finance and economics, behavioral finance,

differential equations, numerical solution of differential equations, data analysis, statisti-

cal methods in financial markets, market dynamics, bubble, algorithms, inverse problem

of parameter estimation.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2.0 OVERREACTION BEHAVIOR . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Review of prior literature . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Possible theoretical reasons for overreaction or underreaction . . . . 12

2.2 THE DEVIATION MODEL (DM) . . . . . . . . . . . . . . . . . . . . . . 13

2.2.1 Basic formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.2 Sample selection and descriptive statistics . . . . . . . . . . . . . . . 14

2.2.3 Results for the deviation model . . . . . . . . . . . . . . . . . . . . . 16

2.2.3.1 Low thresholds . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3.2 Medium thresholds . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3.3 High thresholds . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2.3.4 Very high thresholds . . . . . . . . . . . . . . . . . . . . . . 29

2.3 THE DEVIATION MODEL WITH PARTITION . . . . . . . . . . . . . . 30

2.3.1 Positive deviation with partition . . . . . . . . . . . . . . . . . . . . 33

2.3.2 Negative deviation with partition . . . . . . . . . . . . . . . . . . . 42

2.4 ILLUSTRATIVE EXAMPLES AND APPLICATION: BUBBLE . . . . . . 53

3.0 DIFFERENTIAL EQUATIONS AND COMPUTATIONAL OPTIMIZA-

TION WITH FINANCIAL APPLICATIONS . . . . . . . . . . . . . . . . 58

3.1 OPTIMIZATION PROBLEM . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.1.1 The system of Caginalp differential equations (CDEs) . . . . . . . . 59

vi



3.1.1.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.1.3 CDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1.1.4 The functionality of the parameters . . . . . . . . . . . . . . 61

3.1.2 Non-linear least-square techniques with initial value problem (IVP)

approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.1 Main optimization algorithm to find optimal parameters via CDEs . 63

3.2.1.1 Quasi-Newton method for minimizing the sum of squares . . 67

3.3 OPTIMIZATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.0 MARKET PRICE RETURN PREDICTION . . . . . . . . . . . . . . . . 83

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.2 METHOD DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 SUCCESS TESTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3.1 Absolute Difference of Predicted Return and Actual Return . . . . . 87

4.3.2 Prediction of Relative Price Change Direction . . . . . . . . . . . . 88

4.4 PREDICTION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

APPENDIX A. SHORT SELLING AND MARKET EFFICIENCY . . . . . 100

APPENDIX B. TABLES FOR THE DEVIATION MODEL (DM) AND

THE DM WITH PARTITION . . . . . . . . . . . . . . . . . . . . . . . . . 102

APPENDIX C. ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . 123

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



LIST OF TABLES

2.1 Basic formalism. Interpretation of market price (MP) attitude using de-

viation operations. MP exhibits positive or negative reaction relative to the

NAV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 The computational optimization by finding parameters in the CDEs

for a small example. Quasi-Newton method with weak line search is applied

for the AMO fund data during 8.13.1999-8.24.1999. . . . . . . . . . . . . . . 79

3.2 Initial parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.3 Optimal parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 The computational optimization by finding parameters in the CDEs

for a large sample data set. Quasi-Newton method with weak line search

is applied for a six sample CEFs data during 1998-2006. . . . . . . . . . . . . 81

3.5 The computational optimization by finding parameters in the CDEs

for 10-day event period. Quasi-Newton method with weak line search is

applied for the APB data during the trading days 1.17.2002-6.20.2003. . . . . 82

B1 Positive low threshold level for the DM. Average deviations, in percent,

associated with 1947 large positive deviators of Day 0 for 2.5 < threshold 6 5

during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

B2 Negative low threshold level for the DM. Average deviations, in percent,

associated with 1954 large negative deviators of Day 0 for −5 6 threshold <

−2.5 during 1998-2006 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

viii



B3 Positive medium threshold level for the DM. Average deviations, in per-

cent, associated with 196 large positive deviators of Day 0 for 5 < threshold 6
7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B4 Negative medium threshold level for the DM. Average deviations asso-

ciated with 198 large negative deviators of Day 0 for −7.5 6 threshold < −5

during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

B5 Positive high threshold level for the DM. Average deviations associated

with 48 large positive deviators of Day 0 for 7.5 < threshold 6 10 during

1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B6 Negative high threshold level for the DM. Average deviations associated

with 41 large negative deviators of Day 0 for −10 6 threshold < −7.5 during

1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B7 Positive very high threshold level for the DM. Average deviations as-

sociated with 27 large positive deviators of Day 0 for 10 < threshold 6 50

during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

B8 Negative very high threshold level for the DM. Average deviations

associated with 19 large negative deviators of Day 0 for −50 6 threshold <

−10 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

B9 The DM with partition BP1 in the low threshold level. Average

deviations, MP returns, and NAV returns, in percent, associated with 523

large positive deviators of Day 0 for 2.5 < threshold 6 5 during 1998-2006. . 106

B10 The DM with partition BN1 in the low threshold level. Average

deviations, in percent, associated with 467 large negative deviators of Day 0

for −5 6 threshold < −2.5 during 1998-2006. . . . . . . . . . . . . . . . . . . 107

B11 The DM with partition BP1 in the medium threshold level. Average

deviations, in percent, associated with 72 large positive deviators of Day 0 for

5 < threshold 6 7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . 107

B12 The DM with partition BN1 in the medium threshold level. Average

deviations, in percent, associated with 75 large negative deviators of Day 0 for

−7.5 6 threshold < −5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . 108

ix



B13 The DM with partition BP1 in the high threshold level. Average

deviations, in percent, associated with 21 large positive deviators of Day 0 for

7.5 < threshold 6 10 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . 108

B14 The DM with partition BN1 in the high threshold level. Average

deviations, in percent, associated with 24 large negative deviators of Day 0 for

−10 6 threshold < −7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . 109

B15 The DM with partition BP1 in the very high threshold level. Average

deviations, in percent, associated with 4 large positive deviators of Day 0 for

10 < threshold 6 50 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . 109

B16 The DM with partition BN1 in the very high threshold level. Average

deviations, in percent, associated with 10 large negative deviators of Day 0 for

−50 6 threshold < −10 during 1998-2006. . . . . . . . . . . . . . . . . . . . 110

B17 The DM with partition BP2 in the low threshold level. Average

deviations, in percent, associated with 810 large positive deviators of Day 0

for 2.5 < threshold 6 5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . 110

B18 The DM with partition BN2 in the low threshold level. Average

deviations, in percent, associated with 839 large negative deviators of Day 0

for −5 6 threshold < −2.5 during 1998-2006. . . . . . . . . . . . . . . . . . . 111

B19 The DM with partition BP2 in the medium threshold level. Average

deviations, in percent, associated with 79 large positive deviators of Day 0 for

5 < threshold 6 7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . 111

B20 The DM with partition BN2 in the medium threshold level. Average

deviations, in percent, associated with 82 large negative deviators of Day 0 for

−7.5 6 threshold < −5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . 112

B21 The DM with partition BP2 in the high threshold level. Average

deviations, in percent, associated with 17 large positive deviators of Day 0 for

7.5 < threshold 6 10 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . 112

B22 The DM with partition BN2 in the high threshold level. Average

deviations, in percent, associated with 11 large negative deviators of Day 0 for

−10 6 threshold < −7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . 113

x



B23 The DM with partition BP2 in the very high threshold level. Average

deviations, in percent, associated with 7 large positive deviators of Day 0 for

10 < threshold 6 50 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . 113

B24 The DM with partition BN2 in the very high threshold level. Average

deviations, in percent, associated with 2 large negative deviators of Day 0 for

−50 6 threshold < −10 during 1998-2006. . . . . . . . . . . . . . . . . . . . 114

B25 The DM with partition BP3 in the low threshold level. Average

deviations, in percent, associated with 440 large positive deviators of Day 0

for 2.5 < threshold 6 5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . 114

B26 DM with partition BN3 in the low threshold level. Average deviations,

in percent, associated with 476 large negative deviators of Day 0 for −5 6
threshold < −2.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . 115

B27 DM with partition BP3 in the medium threshold level. Average de-

viations, in percent, associated with 28 large positive deviators of Day 0 for

5 < threshold 6 7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . 115

B28 DM with partition BN3 in the medium threshold level. Average

deviations, in percent, associated with 30 large negative deviators of Day 0 for

−7.5 6 threshold < −5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . 116

B29 DM with partition BP3 in the high threshold level. Average devi-

ations, in percent, associated with 6 large positive deviators of Day 0 for

7.5 < threshold 6 10 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . 116

B30 DM with partition BN3 in the high threshold level. Average devi-

ations, in percent, associated with 4 large negative deviators of Day 0 for

−10 6 threshold < −7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . 117

B31 DM with partition BP3 in the very high threshold level. Average

deviations, in percent, associated with 9 large positive deviators of Day 0 for

10 < threshold 6 50 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . 117

B32 DM with partition BN3 in the very high threshold level. Average

deviations, in percent, associated with 2 large negative deviators of Day 0 for

−50 6 threshold < −10 during 1998-2006. . . . . . . . . . . . . . . . . . . . 118

xi



B33 The DM with partition BP4 in the low threshold level. Average

deviations, in percent, associated with 174 large deviators of Day 0 for 2.5 <

threshold 6 5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . . 118

B34 The DM with partition BN4 in the low threshold level. Average

deviations, in percent, associated with 172 large deviators of Day 0 for −5 6
threshold < −2.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . 119

B35 The DM with partition BP4 in the medium threshold level. Average

deviations, in percent, associated with 17 large deviators of Day 0 for 5 <

threshold 6 7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . 119

B36 The DM with partition BN4 in the medium threshold level. Average

deviations, in percent, associated with 11 large deviators of Day 0 for −7.5 6
threshold < −5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . 120

B37 The DM with partition BP4 in the high threshold level. Average

deviations, in percent, associated with 4 large deviators of Day 0 for 7.5 <

threshold 6 10 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . 120

B38 The DM with partition BN4 in the high threshold level. Average

deviations, in percent, associated with 2 large deviators of Day 0 for −10 6
threshold < −7.5 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . 121

B39 The DM with partition BP4 in the very high threshold level. Average

deviations, in percent, associated with 7 large deviators of Day 0 for 10 <

threshold 6 50 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . . 121

B40 The DM with partition BN4 in the very high threshold level. Average

deviations, in percent, associated with 5 large deviators of Day 0 for −50 6
threshold < −10 during 1998-2006. . . . . . . . . . . . . . . . . . . . . . . . 122

xii



LIST OF FIGURES

2.1 Mean deviation versus threshold ranges on 11-day window. . . . . . . . . . . 15

2.2 Percentages of positive deviations on 11-day window. . . . . . . . . . . . . . 17

2.3 Variance versus low and medium threshold ranges. . . . . . . . . . . . . . . . 19

2.4 Variance versus high threshold ranges. . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Relative optimism on Day 0 and the upper diamond pattern in the low thresh-

old level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.6 Precursor, relative optimism on Day 0, and aftershock in the medium threshold

level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Precursor, relative optimism on Day 0, and the reversal during the post-event

days in the high threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.8 Relative optimism on Day 0 in the very high threshold level. . . . . . . . . . 24

2.9 Precursor, relative pessimism on Day 0, and the post-event reversal in the low

threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.10 Precursor, relative pessimism on Day 0, and aftershock in the medium thresh-

old level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.11 Pre-event relative optimism, relative pessimism on Day 0, and the post-event

reversal in the high threshold level. . . . . . . . . . . . . . . . . . . . . . . . 27

2.12 Relative pessimism on Day 0 in the very high threshold level with a small

number of events (n = 19). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.13 The percentage of large positive deviations influenced by large MP returns is

68.46% in the low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . 31

xiii



2.14 The percentage of large positive deviations influenced by large MP returns is

77.04% in the medium threshold level. . . . . . . . . . . . . . . . . . . . . . . 32

2.15 The comparison of daily MP returns, NAV returns, and the deviations shows

overreaction upper diamond patterns for both deviation and MP return. . . . 34

2.16 Comparison of daily MP returns, NAV returns, and the deviations in the

positive medium threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.17 Comparison of daily MP returns, NAV returns, and the deviations in the

positive low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.18 Comparison of daily MP returns, NAV returns, and the deviations in the

positive medium threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.19 Comparison of daily MP returns, NAV returns, and the deviations in the

positive low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.20 Comparison of daily MP returns, NAV returns, and the deviations in the

positive medium threshold level with a small number of events (n = 28). . . . 39

2.21 Comparison of daily MP returns, NAV returns, and the deviations in the

positive low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.22 Comparison of daily MP returns, NAV returns, and the deviations in the

positive medium threshold level with a small number of events (n = 17). . . . 41

2.23 The percentage of large negative deviations influenced by large MP returns is

66.84% in the low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . 43

2.24 The percentage of large negative deviations influenced by large MP returns is

79.19% in the medium threshold level. . . . . . . . . . . . . . . . . . . . . . . 44

2.25 Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.26 Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.27 Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.28 Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . 48

xiv



2.29 Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.30 Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.31 Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.32 Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level with a small number of events (n = 11). . . 52

2.33 The daily deviations indicating many short term overreactions versus the cu-

mulative MP and NAV changes in percent for SNF, between October 1, 2004

and April 13, 2005. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.34 The cumulative daily deviations versus the cumulative MP and NAV changes

in percent for SNF, between October 1, 2004 and April 13, 2005. . . . . . . . 56

3.1 Transition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.2 Curve fitting and getting optimal parameters for AMO MP’s over the first

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Curve fitting and getting optimal parameters for AMO MP’s over the second

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.4 Curve fitting and getting optimal parameters for AMO MP’s over the third

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.5 Curve fitting and getting optimal parameters for AMO MP’s over the fourth

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Curve fitting and getting optimal parameters for AMO MP’s over the fifth

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7 Curve fitting and getting optimal parameters for AMO MP’s over the sixth

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.8 Curve fitting and getting optimal parameters for AMO MP’s over the seventh

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.9 Curve fitting and getting optimal parameters for AMO MP’s over the eighth

5-day period. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

xv



4.1 A single-stage non-linear least-squares model (4.6) is applied to the Templeton

Russia Fund (TRF) data from March 4th, 1999 to March 31st, 1999. . . . . . 86

4.2 Prediction of AMO MPs over 8-day . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Prediction of AMO fund daily returns over 8-day . . . . . . . . . . . . . . . . 90

4.4 Absolute error of AMO fund predicted returns over 8-day. . . . . . . . . . . . 91

xvi



PREFACE

This work is dedicated with love to my wife Tubanur Duran, to my parents Durmuş and
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1.0 INTRODUCTION

There are different views, such as the efficient market hypothesis (EMH) and behavioral

finance, about price dynamics and predictable patterns in stock prices. The former one

has been a widespread theory for several decades. However, some recent studies have cast

doubt on EMH for some time intervals or situations. The large price bubbles and market

crashes, such as the internet/high-tech bubble, in recent years have been among the most

dramatic examples [22]. Moreover, Bremer and Sweeney [10] find significant positive three

day abnormal returns following the large price drop date, over the period between 1962 and

1986. They conclude that such a slow recovery is inconsistent with the notion that market

prices fully and quickly reflect relevant information. Furthermore, Rosenberg et al. [45]

and Zarowin [50] find evidence that stock prices overreact in the short run. They conclude

that the stock market is inefficient since arbitrageurs, who detect the market’s tendency to

overreact, could earn huge returns by buying losers and selling winners. On the other hand,

the set of assumptions and theory of behavioral finance have not been written down in the

same precise manner as EMH. Therefore, more mathematical and statistical models and

optimization techniques are needed.

We believe differential equations are powerful tools to understand price dynamics and

the corresponding cognitive and emotional factors in financial markets. The marketplace is

an outstanding laboratory to test it. We study overreaction behavior and computational

optimization techniques for a large set of closed end funds such as Specialized Equity Funds

(SEFs), General Equity Funds (GEFs) and World Equity Funds (WEFs), trading in US

markets.

The remainder of the thesis is organized as follows. In Chapter 2, we present our deviation

model (DM) and DM with partition. In Chapter 3, we obtain optimal parameters for the
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nonlinear differential equations by using two line search algorithms which are our customized

designs and implementations for the problem. In Chapter 4, we perform out-of-sample

prediction by employing past financial data and the optimal parameters. Chapter 5 concludes

the thesis.
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2.0 OVERREACTION BEHAVIOR

2.1 INTRODUCTION

During the past few decades, there has been an intense debate about the dynamics of stock

prices. The prevalent theory has been the Efficient Market Hypothesis (EMH), which stipu-

lates that stock prices move in accordance with the change in valuation. Since all participants

quickly gain access to the same public information, there is a unique valuation about which

the stock fluctuates randomly due to the presence of traders who are less informed. Thus,

according to EMH, there is a unique price at each given moment that represents the value.

Since a large number of traders are aware of this value, and eager to exploit any deviations

from it, these deviations are not only temporary, but also random. If the deviations were

biased in a particular way, the knowledgeable traders, argue the EMH theorists, would be

aware of the bias and seek to exploit it, thereby eliminating it. The existence of systematic

patterns in prices thus argues against the underlying assumptions of EMH.

In recent years, a new set of ideas, known as Behavioral Finance (BF), has gradually pro-

vided an alternative to EMH by stipulating that systematic biases exist in market dynamics.

One aspect of this is that even experts are subject to the behavioral biases. Even if portfolio

managers were not subject to these biases, they often do not have the latitude to reduce

their exposure to stocks, or even a particular sector. For example, a manager may believe

that almost all of the technology stocks are overvalued at a particular time. However, his

fund prospectus may require that at least 95% of the assets be invested and that it be sector

neutral (so that the percentage of technology stocks in his portfolio must match that of the

S&P). The decision to buy the mutual fund itself is made by a less informed individual,

but the manager can only mitigate that decision by an insignificant amount. To aggravate
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matters, any rise in the overvalued sector automatically increases their percentage ratio in

the S&P, thereby forcing the manager to buy even more of the stocks that he believed to be

overvalued.

Of course, EMH theorists would say that while a particular set of managers may be in this

situation, there will be a large amount of capital, for example in hedge funds, that will take

advantage of this by using short selling (see Appendix A for further discussion). Ultimately,

these issues involve the quantities of assets and the behavior of investors controlling them.

Hence the question of whether these assets are adequate to restore efficiency needs to be

decided by an examination of the data. If the basic ideas of EMH are essentially correct,

then the data would not exhibit any systematic biases, since the more informed traders would

recognize and exploit them, thereby eliminating the effect.

A number of studies have shown systematic bias by examining either a long or short

time horizon, as discussed below in the literature survey. A key idea in these studies involves

comparing the return on a stock with the expected return based upon the overall market.

In examining returns, there is an error or noise term specific to the stock or the sector,

as discussed in classical finance (see Bodie et al. [7]). Essentially, this means that many

factors can be expected to influence a particular stock. The randomness involved in these

firm specific changes adds a significant amount of noise to any data analysis. For a given

stock, if one has a reliable model for changes in valuation which could be subtracted from the

trading price return, then this “noise” arising from the random events that alter valuation

could be removed. This would leave behind either random fluctuations (as EMH would

assert) or particular patterns reflecting systematic bias (as BF would assert). The difficulty

here, for most stocks, is that there is no unique way to quantify changes in valuation. Data

analysis utilizing a particular scheme for computing the valuation on a day-to-day basis

would leave open the question of whether a different valuation procedure would lead to the

same conclusions.

In order to circumvent these issues we consider a class of stocks, namely closed-end funds,

for which the valuation is available based upon the underlying assets. Closed-end funds have

been studied in numerous papers (see Anderson and Born [2] for survey), and are similar to

other companies in that they are initiated by the pooling of a sum of money for the purpose
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of a particular type of investment. For example, suppose that $300 million is raised for

investment in Germany and the shares are priced (initially arbitrarily) at $15, yielding 20

million shares. Once the fund is launched and the $300 million is used to purchase German

stocks, these investments will rise and fall along with these German stocks. The net asset

value (NAV) is defined as the total value of the investments divided by the total number

of shares and is computed daily. In our example, this would be $15 initially, but would

change with the German market subsequently. Meanwhile, once the initial public offering

is concluded, the shares trade on the NYSE as any other stock. This means of course that

there is no requirement that they trade at, or even near, the NAV. If they trade below the

NAV, the stock is said to be trading at a discount, and analogously for a premium. Precisely,

one defines the premium as

Premium = (Trading Price -NAV)/NAV.

The theoretical value of a closed-end fund is clearly related to its NAV. The NAV, plus

or minus some percentage that varies very slowly in time, can be regarded as fundamental

value. The major difference between the closed-end investment companies and most other

companies is that the former is simpler, and its value is easier to establish. If the fund

were liquidated at any point, the amount rendered for each share would be the NAV minus

a small amount for the cost of the transactions. This is not only a theoretical possibility

but also a reality for several funds that have been liquidated in this way. The fact that

NAV is explicitly determined on a regular basis provides an opportunity to examine relative

price changes and their relationship with valuation. Any inefficiency that is discovered in

markets is usually labeled as an “anomaly”, suggesting that it is an unusual aberration from

the norm of efficient markets. Studies of closed-end funds that demonstrate inefficiency

are often classified in this way, suggesting that similar phenomena do not occur with other

stocks. An examination of some features of the closed-end fund data we have used suggests

that the trading volume, ownership and exchange under which they are traded are similar

to most other stocks. In particular, the daily trading volume in many closed-end funds

is highly significant, usually in tens of thousands of shares, as with many mid-cap stocks.

An examination of securities filings for closed-end funds shows ownership by a spectrum

of institutions as well as individual investors. A large majority of these are traded on the
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NYSE, so that the same rules apply. Given these similarities in trading volume, ownership

and rules of trading (exchange mechanism), there is little to suggest that the short term

price dynamics of closed-end funds would be significantly different from other stocks.

The vast majority of the studies of closed-end funds have focused on the long term issues.

Many of the closed-end funds have traded at discounts for prolonged times ([2], Chapter

6.). There have been various explanations advanced to account for this phenomenon, such

as the structure of the fund, and the possibility that they will issue more shares, etc 1. In

some cases the discount may be compatible with EMH. For example, there may be a tax

liability in the closed-end fund.

However, it is more difficult for EMH to justify systematic changes in the discount or

premium that occur on a short term basis, which is our main interest in this chapter.

If the EMH were valid, the discount or premium would either be zero for all time, or

slowly changing. Hence, the existence of a chronic discount or premium that may be due

to tax related issues, for example, will not be relevant for our study. Even if there were

some fundamental reason for an abrupt change in the discount or premium, it would not

address the issue that we study in this chapter, namely, the precursors and aftershocks of

this change.

In many cases, a premium or discount widens over a time period of weeks or months

with relatively little change in the NAV. In the case of a large premium, the phenomenon

appears to have the characteristics of a classical bubble. Sometimes, the origin of the bubble

is due to a large interest in a particular country for which there are only a few ways to invest

(Bosner-Neal et al. [8]). However, similar bubbles occur even when this is not the case. For

example, the premium for the Spain Fund (SNF) grew to 50% in January of 2005, while

the NAV was gradually declining, even though an exchange traded fund (EWP) could be

purchased within 1% of its net asset value. Near the end of the Spain Fund bubble there

were several days on which the trading price rose by several percent while the NAV was

almost unchanged. The bubble burst as the trading price dropped by 19.32% on one day,

1Value based managers often say that some stocks (particularly those that are not in the limelight)
are chronically undervalued. However, since there is no unique calculation to assess the value of a typical
industrial corporation, the studies that can be done (e.g., using price-to-earnings ratios) are not as precise
or convincing as the studies of closed-end funds.
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again with little change in the NAV.

Utilizing 52 closed-end funds we begin by considering the set of days (“events”) in which

there is a significant deviation between the relative change in the market price and that of

the NAV (see Section 2 for precise definition). This could occur in several ways; either there

is a large change in the NAV and little corresponding change in the trading price, or there

is a large change in the price without much change in the NAV. Alternatively, there could

be a moderate change for both in opposite directions. For example, suppose there is a 1%

increase in NAV on a given day (Day 0). If there is a 5% increase in the price, then we

would have a 4% deviation. [Obviously, there is a strong relation between deviation and

premium such that a positive deviation on Day 0 corresponds to a decrease in discount or

an increase in premium. If the change in discount or premium is zero, then the deviation is

zero as well.] We allow for the possibility that the excess change in price (on Day 0) could

be due to some fundamental reason, such as a share buyback offer. The question is, what

do we expect for the following day (Day 1)? If there were no systematic biases, then we

would expect that the deviation of the following day would be zero. [Note that although

there is a tiny drift term in both the NAV and the market price, the expected difference in

drift will be zero. See main diagonal of Table 2.1.] If, on the other hand, we were to obtain

a large sample of such events (Day 0), and find that, on average, there is a decrease in the

difference between the relative change in the market price and that of NAV on Day 1, then

this would be evidence of a systematic bias. Often the terminology “overreaction” is used

when there is the change on a subsequent day in the opposite direction of the original day,

and the term “underreaction” refers to subsequent change in the same direction. Using this

procedure, we do not need to make a determination as to which market, say the closed-end

fund in the NYSE, or the German market in the example above, is more efficient, and which

market is overreacting. In many cases, we expect that it is the NAV representing the trading

in a larger market that will be more efficient and less volatile. This is confirmed by a study

of Pontiff [40] that showed a set of closed-end funds that were 64% more volatile than the

underlying index. For example, the NAV of a fund investing in Japan is determined by

a huge trading volume compared with the volume of the closed-end fund that invests in

Japan. Consequently, one would expect, from the perspective of either EMH or BF, that the
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volatility would be greater in the smaller market, namely the closed-end fund. To examine

this further, we have also performed a statistical testing using as “events” the days for which

the NAV change exceeded particular threshold levels. Consistent with the study of Pontiff,

our data suggests that a relatively small fraction of the events are characterized by large

relative changes in NAV accompanied by small relative changes in the trading price. Most of

the deviations occur with a relatively small change in the NAV that triggers a large change

in trading price.

In both sets of statistical results we have found that there is evidence of an overreaction,

i.e., on Day 1 there is a statistically significant change in the deviation that is in the opposite

direction. Hence, a drop in the deviation on Day 0 is followed by a rise on Day 1, and

analogously for a rise in the deviation. We have found overreaction for the market price

returns as well. Unlike some of the studies on prices alone, these predictable changes on Day

1 are very substantial. Even more surprising, however, is the price movement in the opposite

direction on the day prior to Day 0. In other words, a rise of the deviation on Day 0 is

preceded by a dip. The key features of our results are displayed in Figure 2.1, in which the

characteristic diamond pattern displays the gradual decline in deviations before the spike,

and the decline after the spike. The opposite is true for a significant decline in deviations

on Day 0. Figure 2.1 shows a symmetry between the upward and downward spikes, for low

and medium threshold levels, on Day 0. But, more surprisingly, there is also an approximate

symmetry between the days before and the days after the significant change (see Figure 2.1).

The presence of a decline before a sharp rise, from the perspective of EMH, is even

more surprising than a subsequent decline. After all, one can attribute the decline after

a sharp rise to an imperfect price adjustment process that has a time scale of a few days.

However, the decline before a sharp rise indicates that there is a precursor of the deviation

that is part of the cause. In the absence of an infinite amount of capital that is immediately

available, one can explain this phenomenon as follows. On the day before the sharp rise

there is an anticipation of negative news and, consequently, underinvestment on the part of

the speculative traders. When the news is better than expected (e.g., a small rise in NAV

instead of a sharp drop), there is an imbalance of cash/asset as the underinvested are rushing

to buy. This initial and rapid price rise fuels further momentum buying that leads to a price
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at the end of Day 0 that is considerably higher than the previous day.

In other words, the overreaction happens because too many traders are caught short or

underinvested, and there is a subsequent stampede to buy. The situation is analogous for

downward spike on Day 0.

The perspective outlined above differs significantly from the EMH in that it invokes the

concept of the finiteness of assets (see Caginalp and Balenovich [19]), rather than infinite

arbitrage capital that is central to EMH. In order to examine the possible underlying causes

we partition the data in Section 3 into four parts. We find that a majority of the spike events

we consider are the result of market price returns rather than relative changes in NAV (see

Figure 2.13, 2.14, 2.23 and 2.24). In a second study, we consider those spikes which occur

while NAV is relatively unchanged. The data show that for upward spikes there is a gradual

rise in the NAV accompanied by a gradual decline in market price (see Figure 2.15 and

Figure 2.17). This is consistent with the concept (see Hypothesis 3) that traders with finite

assets have been “caught short” or “underinvested” in anticipation of an event that turns

out to be more positive than expected.

To the best of our knowledge, this is the first study to establish a precursor to significant

short term changes. Another novel feature is the subtraction of the relative changes in

fundamentals, thereby eliminating much of the noise that encumbers statistical testing.

2.1.1 Review of prior literature

The existence of an abnormal price reversal following a large price movement has been

considered as evidence of the overreaction hypothesis. Several types of studies have discussed

the existence and degree of overreaction or underreaction in the stock markets. While some

of them consider overreaction or underreaction associated with momentum and reversal

strategies over relatively long term, others examine it at the time of an extreme price change.

The latter studies focus on daily market price adjustments to new information.

Positive (negative) cumulative abnormal returns following large positive (negative) price

changes indicate underreaction, whereas reversals of returns suggest overreaction (Madura

and Richie [34]).
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Rosenberg et al. [45] and Zarovin [50] find evidence that stock prices overreact in the

short run. They conclude that the stock market is inefficient since arbitrageurs who detect

the market’s tendency to overreact could earn huge returns by buying losers and selling

winners.

Most of the latter studies define events as stock price changes in excess of M% (in either

direction). A winner (loser) stock is a stock experiencing a one-day return at least M%

(−M%). Bremer and Sweeney [10] and Akhigbe et al. [1] used 10% trigger value to identify

events.

Bremer and Sweeney examine the reversal of large price decreases for Fortune 500 firms.

They find significant positive three day abnormal returns following the drop date, upon

examining the period between 1962 and 1986. They conclude that such a slow recovery is

inconsistent with the notion that market prices fully and quickly reflect relevant information.

They suggest that this is incompatible with market efficiency. Moreover, they consider that

one of the potential explanations for these remarkably large returns is market illiquidity.

Akhigbe et al. find a greater degree of overreaction within extreme positive price move-

ments in technology stocks than within non-tech stocks, based on their subsequent stock price

behavior, during the 1998-2000 period. Moreover, they detect a greater degree of underre-

action within extreme negative changes in technology stocks than in non-tech stocks. They

observe that the market is overoptimistic while evaluating technology stock prices in reac-

tion to favorable and unfavorable information relative to a matched sample of non-technology

firms.

Sturm [48] hypothesizes that post-event price behavior following large one-day price

shocks is related to pre-event price and firm fundamental characteristics. He suggests that

these characteristics proxy for investor confidence. He tests the relationship between pre-

event long term returns and post-event short-term returns, for companies from the 2002

Fortune 500 index. He finds presence of a price shock effect whereby post-event reversals are

smaller for larger price shocks.

More recently, Madura and Richie [34] find substantial overreaction of Exchange-Traded

Funds (ETFs) during normal trading hours and after hours, giving opportunities for feedback

traders. Their sample includes observation of daily opening and closing prices for AMEX-
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traded ETFs during the 1998-2002 period. The degree of overreaction is also more evident

for international ETFs. They use three M values such as 5, 6 and 7, where trigger > M%

for winners and trigger < −M% for losers.

Related to deviation of stock prices, Poterba and Summers [42] discuss the presence of

transition periods when stock prices deviate from their fundamental values in illogical ways.

Financial markets are dynamic. Experimental economics has shown that even when there

is no change or uncertainty in the expected payout of an asset, there is robust trading with

dramatic changes (see Porter and Smith [41]), as there is always some uncertainty in the

anticipation of the actions of other traders. For the closed-end funds we study, there is, of

course, a stream of news that constantly readjusts the value of the fund. This is reflected in

the NAV of the fund. However, the anticipation of strategies of other traders’ actions and

the inflow of information are also part of the market. As traders have access to faster and

faster means of acquiring and processing information, it becomes possible to react on a more

rapid time scale. While rapid dissemination of information could be a stabilizing force in the

markets, the positive feedback strategies involved in trying to trade quickly on news or price

movements could provide a destabilizing force that is often characterized by overreaction.

Moreover, studies involving long term behavior of prices (e.g., one or more years) tend

to average over large disturbances, thereby hiding abnormal events. Hence, focusing on

significantly large short term price changes can provide researchers with a tool to study

these phenomena, and help decide the issues in an empirical manner. Of course, a large

price change in itself does not necessarily indicate any abnormal investor reaction. A world

event may drastically change the valuation of a closed end fund, for example. However, by

subtracting out the NAV return of the fund, we can study changes that are predominantly

exclusive of the changes in valuation. The closed-end funds comprise many stocks so that

private information, etc., cannot provide an explanation for the rapid changes between the

trading price return of the stock and the NAV return.
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2.1.2 Possible theoretical reasons for overreaction or underreaction

1. Deviation of stock prices from their fundamental values (see [42]). For example, people

tend to place too much emphasis on the strength of new information (see [31]). There

may be overreaction to rumors or to facts ([34]).

2. Attribution theory. Weiner [49] gives a property of causal reasoning such that if an out-

come is attributable to a non-stable cause, the future expectation will be either uncertain

or different from the immediate past. Particularly, Sturm [48] suggests that if the price

shock is attributed to a non-stable cause, the future outcome will either be uncertain or

different from the price shock, leading to a reversal.

3. Stock price behavior is affected by feedback traders who trade based on recent price

movements rather than fundamental factors (see [18] and [23]).

4. Affect and representativeness theories. If a particular market or sector is moving up

rapidly, there is a positive image about it. Investors tend to flock to a particular in-

vestment, thereby increasing the price as they provide a posterior arguments to justify

the ever higher price. For example, when the Spain Fund traded at a steep premium of

about 100%, the justification for it was that it was difficult to buy Spanish stocks in the

US in any other way. Yet if the potential for Spanish stocks is so great, why wouldn’t

the stocks already reflect that information?

5. Reference points in investments. Investors are often keenly aware of prices at which

major turning points occurred. For example, if a closed-end fund touched $20 and then

retreated quickly, there is a general feeling of regret on the part of investors who wish

they had sold at that point. The next time the stock reaches that point, it may be amply

justified by the NAV; yet selling to avoid regret may be a cause of a larger deviation from

NAV at that point. In other words, the selling near $20 causes the price to lag behind

the upward move in the NAV. This would be a negative deviation, as we define in the

next section.

Moreover, Caginalp et al. [18] examine the relationship between momentum, funda-

mental value and overreaction based on a series of experiments to test the predictions of a

momentum model using a dynamical systems approach.
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The remainder of the chapter is organized as follows. In Section 2.2, we present our

deviation model. In Section 2.3, the deviation model is handled with partition. In Section

2.4, we examine the Spain Fund Inc (SNF), as an illustrative example.

2.2 THE DEVIATION MODEL (DM)

In this section we examine the relative change in the market price to the relative change in

the net asset value (NAV) price. Let Pt denote the market price at time t, and Vt denote

the NAV price at time t. We define the deviation between the relative changes of these two

quantities from day t to day t + k (with k nonnegative) by

Dt+k = (Pt+k − Pt)/Pt − (Vt+k − Vt)/Vt. (2.1)

2.2.1 Basic formalism

Table 2.1: Basic formalism. Interpretation of market price (MP) attitude using deviation

operations. MP exhibits positive or negative reaction relative to the NAV.

NAV

Deviation Large Decrease Small Decrease Small Increase Large Increase

Large Decrease neutral more negative highly negative highly negative

MP Small Decrease positive neutral highly negative highly negative

Small Increase highly positive highly positive neutral negative

Large Increase highly positive highly positive more positive neutral

In Table 2.1, we consider the Dt+k in terms of the relative changes to the NAV and the

market price. For example, if there is a small decrease in NAV but a large decrease in market

price, then Dt+k is negative, and we say that the market price exhibits negative sentiment

relative to the NAV. That is, there is a relative pessimism of investor.
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Before examining the statistics, we need to verify that the deviation formulation (2.1)

introduced above is not biased. This is immediate from the definitions, and is summarized

below in Proposition 1.

Proposition 1. Let A be any array of market price returns and B be any array of NAV

returns such that A = B. That is, A(i) is an entry in the first column, B(j) is an entry in

the first row, and Dt+k is the corresponding deviation, in Table 2.1. Then, the double sum

of all the possible deviation outcomes is zero, independent from the chosen threshold level.

n∑
i=1

n∑
j=1

Dt+k =
n∑

i=1

n∑
j=1

(A(i)−B(j)) = 0 (2.2)

Also,
n∑

i 6=j

Dt+k =
n∑

i6=j

(A(i)−B(j)) = 0 (2.3)

With a model that is not biased a priori, we can now determine if the deviations before

and after days of significant change have zero mean, as would be predicted by the efficient

market hypothesis, or whether there is a systematic tendency in the deviations.

2.2.2 Sample selection and descriptive statistics

To assess and analyze the overreaction or underreaction behavior of 52 closed-end funds

(CEFs), we used not only Market Price (MP) but also Net Asset Value (NAV) data by using

daily closing prices from CEFs such as 20 Specialized Equity Funds (SEFs), 15 General

Equity Funds (GEFs) and 17 World Equity Funds (WEFs) during April 1, 1998-March 31,

2006.

Events are defined as abnormal deviations having threshold levels (L < threshold 6 U)

for positive deviations where threshold is deviation in percent, L > 0 is the lower bound

and U > 0 is the upper bound. Similarly, events for negative deviations are defined as

abnormal deviations having threshold level (−U 6 threshold < −L). Given MP and NAV

sequences for a fund and threshold level, we search successively for Day 0, a day experiencing

an abnormal deviation. Then, we collect the deviations on 11-day window containing five

pre-event days, Day 0 and five post-event days.

We group the threshold levels for large deviations into four groups for positive events
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Figure 2.1: Mean deviation versus threshold ranges on 11-day window.
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1. low (2.5 < threshold 6 5),

2. medium (5 < threshold 6 7.5),

3. high (7.5 < threshold 6 10), and

4. very high (10 < threshold 6 50) ,

and four groups for negative events

1. low (−5 6 threshold < −2.5),

2. medium (−7.5 6 threshold < −5),

3. high (−10 6 threshold < −7.5), and

4. very high (−50 6 threshold < −10).

Overreaction to minor changes (particularly recent ones) in valuation is emerging as a key

concept in behavioral finance. In terms of our definitions, we examine the set of deviations

between the market price returns and NAV returns (Day 0), and determine whether the

following day (Day 1) is in the same or opposite direction.

Hypothesis 1. If there is a positive deviation on Day 0, there is a greater probability

that there will be a negative deviation on Day 1. Similarly, a negative deviation on Day 0 is

likely to be followed by a positive deviation on Day 1.

Hypothesis 2. If there is a positive deviation on Day 0, there is a greater probability

that there will be a positive deviation on Day 1. Similarly, a negative deviation on Day 0 is

likely to be followed by a negative deviation on Day 1.

In both cases the null hypothesis (of the EMH) is that the mean of relative changes

on Day 1 is zero. Note that the drift term (average increase of a stock per day) is present in

both of the quantities (market price and NAV) so that the subtraction eliminates this term.

2.2.3 Results for the deviation model

Figure 2.1 shows the mean deviation versus threshold ranges for positive and negative events

on 11-day window. Prior to a spike in deviations we find a gradual two or three day decline

(and analogously in the other direction). This suggests that a cause of the spike may be

due to positioning of traders in the opposite direction. Overall, there is a characteristic

diamond pattern, revealing a symmetry in the deviations before and after the significant
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change. Figure 2.1 suggests overreaction for both directions because of the reversals during

the post-event days. In addition, the magnitude of the reversal increases as the degree of

shock increases. Moreover, the amounts on pre- and post-day are very close to each other

for the low threshold levels, revealing another component of symmetry. Furthermore, the

magnitude of the negative deviation is higher than that of positive deviation, only for the

very high threshold level, on Day 0. This indicates that the effect of unfavorable information

is higher than that of favorable information for this level, in the short term.

Figure 2.2 demonstrates the average percentage of positive deviations with respect to the

large positive and negative deviations on Day 0. It supports the evidence of overreaction for

both directions and all threshold levels. On Day 1, the percentages of positive deviations

are less than 36%, indicating the reversal, for all positive threshold levels. In the negative

direction the percentages of positive deviations are greater than 60%, indicating the reversal

for the low, medium and high threshold levels on Day 1. During the two pre- and post-day,

the percentages of positive deviations are less than 50%, for the large positive deviators. In

the negative direction during the two pre- and post-day, the percentages of positive deviations

are greater than 50% for the low and medium threshold levels.

Figure 2.3 and Figure 2.4 illustrate the volatility of the market on the 11-day window [29].

On Day 0, the variance approaches 0.40 for both directions for the low threshold level. They

are another dimension of the symmetry. During pre- and post-event days, variance seems

to be more stable for low threshold level, while the volatility becomes maximum around the

shock day for very high threshold levels for both directions.

Figures 2.5 - 2.8 show that there is a decline before a sharp rise in MP return for all

large positive deviators. Then there is reversal both in deviation and MP return. Figures

2.9 - 2.12 illustrate that there is at least one day rise before a sharp dip in MP return for

the negative deviators. Then, there is reversal in MP return on Day 1 for the first three

threshold levels. The reversal of a very large dip is slower because of the price effect.

2.2.3.1 Low thresholds In Table B1, the average deviation on Day 0 is 3.25% for the

1947 large positive events, after statistically significant three pre-day pessimism in the low

threshold level. During the first five post-event days, there is reversal. In other words, MP
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Figure 2.6: Precursor, relative optimism on Day 0, and aftershock in the medium threshold

level.
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Figure 2.7: Precursor, relative optimism on Day 0, and the reversal during the post-event

days in the high threshold level.
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Figure 2.8: Relative optimism on Day 0 in the very high threshold level.
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Figure 2.9: Precursor, relative pessimism on Day 0, and the post-event reversal in the low

threshold level.
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Figure 2.10: Precursor, relative pessimism on Day 0, and aftershock in the medium threshold

level.
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returns exhibit statistically significant pessimism relative to the percentage changes in NAV

for this period.

In Table B2, after a four-day significant pre-day rise, the average deviation on Day 0 is

−3.28%, close to that of positive events in magnitude, for the 1954 large negative events in

the low threshold level. During the first two post-event days, there is statistically significant

reversal. That is, MP returns show positive sentiment relative to the NAV returns for this

period, while it is negative sentiment on Day 0.

2.2.3.2 Medium thresholds In Table B3, the average deviation on Day 0 is 5.95%,

following two significant drops for the 196 large positive events in the medium threshold

level. There is statistically significant two post-day reversal.

In Table B4, after two-day significant rise in relative optimism, the average deviation

on Day 0 is −5.93%, close to that of positive events in magnitude for the 198 large neg-

ative events in the medium threshold level. During the first two post-event days, there is

statistically significant reversal.

2.2.3.3 High thresholds In Table B5, the average deviation on Day 0 is 8.54% following

two-day significant drop for the 48 large positive events in the high threshold level. Then,

there is a statistically significant one day reversal. In other words, the relative positive

sentiment on Day 0 is replaced by the negative sentiment subsequently.

In Table B6, the average deviation on Day 0 is −8.37% for the 41 large negative events

in the high threshold level. On Day 1 and Day 3, statistically significant reversal takes place.

2.2.3.4 Very high thresholds In Table B7, the average deviation on Day 0 is 16.29%

following two-day significant relative pessimism for the 27 large positive events in the very

high threshold level. There is then a one day statistically significant reversal.

In Table B8, the average deviation on Day 0 is −21.04%, larger than that of positive

events in magnitude, for the 19 large negative events in the very high threshold level. During

the first four post-day, there is limited significant behavior due to the small sample size. Also,

there may be price shock effects making the post-event reversals smaller in magnitude for
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the negative very high threshold levels. This suggests that the size of the threshold level on

Day 0 affects the investor sentiment during the post-event days.

The statistically significant results thereby confirm Hypothesis 1, and reject both the

null hypothesis and Hypothesis 2.

2.3 THE DEVIATION MODEL WITH PARTITION

In Section 2.2, we examined the spikes in the difference of daily MP returns and NAV returns.

Now, we analyze the data by decomposing events into spikes in MP returns versus spikes in

NAV returns. Partitioning in this way provides more detailed information.

The EMH involves another assumption, namely, that there is effectively an infinite

amount of capital for arbitrage. An alternative set of ideas that explicitly utilizes the finite-

ness of assets of different groups has been the foundation of a mathematical approach to

behavioral finance (see Caginalp and Balenovich [19] and references therein). This uses a

price equation in which the transition between cash and asset can depend on other factors

beyond valuation such as momentum trading (i.e., buying due to rising prices). Using mod-

els of this type, Caginalp et al. [18] were able to resolve some key issues in asset market

experiments in which bubbles have been observed. One of the predictions of the differential

equations has been that a larger bubble results if there is a larger total cash to asset ratio.

Our current study allows us to test an important feature of this approach, namely the im-

pact of finite assets, against the null hypothesis of EMH which stipulates infinite capital for

arbitrage.

Hypothesis 3. Consider the subset of “events”, (i.e., there is a significant deviation on

Day 0) for which relatively little change occurs for NAV (as defined by BP1 in Section 3.1).

Then on Day (-1) there is a deviation in the opposite direction.

In other words, suppose we consider the set of events in which there is little relative

change in NAV on Day 0. If there is significant relative change in the market price on Day

0, what is the average change on Day (-1)? There is no reason for this to deviate from zero,

according to the default hypothesis of the EMH. However, the asset flow approach in
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BP1 26.86%

BP2 41.60%

BP3 22.60%

BP4 8.94%

Partition of Large Positive Deviations in the Low Threshold Level

Figure 2.13: The percentage of large positive deviations influenced by large MP returns is

68.46% in the low threshold level.
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BP1 36.73%

BP2 40.31%

BP3 14.29%

BP4 8.67%

Partition of Large Positive Deviations in the Medium Threshold Level

Figure 2.14: The percentage of large positive deviations influenced by large MP returns is

77.04% in the medium threshold level.
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[19] stipulates that a cause of a significant change is the excess of cash that can be used to

buy stock. If investors have an excess of cash due to net selling on Day (-1) there will be a

significant rebound on Day 0.

2.3.1 Positive deviation with partition

Definition Let ΩRO be the set of events for large positive deviations on Day 0. Then, a

partition of ΩRO is a collection PRO = {BP1, BP2, BP3, BP4} of nonempty subsets of ΩRO,

where BPis are the blocks of the partition. They satisfy the following properties:

1. The blocks are pairwise disjoint

2. All of the ΩRO is the union of the blocks.

In particular, we define “relatively unchanged” to mean that the change in one quantity is

less than one-fifth of the other.

1. BP1 = {Large positive deviations | MP return spikes up while NAV is relatively un-

changed on Day 0}.
2. BP2 = {Large positive deviations | both MP return and NAV return are changed where

the influence of MP return on Day 0 is greater}.
3. BP3 = {Large positive deviations | both MP return and NAV return are changed where

the influence of NAV return on Day 0 is greater}.
4. BP4 = {Large positive deviations | NAV return spikes down while MP is relatively

unchanged on Day 0}.

Figure 2.13 and Figure 2.14 show that the vast majority of large positive deviations are

influenced by large MP returns. Figure 2.15 - Figure 2.22 compare daily MP returns, NAV

returns, and the deviations in the positive low and medium threshold levels for each block of

partition on the 11-day window. Odd numbered tables from B9 to B39 represent the average

deviations, MP returns, NAV returns, and reversals associated with large positive deviators

of Day 0. The statistically significant results with the partitions BP1 and BP2 in the low and

medium threshold levels and the partitions BP3 and BP4 in the low threshold level support

Hypothesis 1, where the number of events is sufficiently large (n ≥ 30). These subsets have
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Figure 2.15: The comparison of daily MP returns, NAV returns, and the deviations shows

overreaction upper diamond patterns for both deviation and MP return.
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Figure 2.16: Comparison of daily MP returns, NAV returns, and the deviations in the positive

medium threshold level.
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Figure 2.17: Comparison of daily MP returns, NAV returns, and the deviations in the positive

low threshold level.
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Figure 2.18: Comparison of daily MP returns, NAV returns, and the deviations in the positive

medium threshold level.
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Figure 2.19: Comparison of daily MP returns, NAV returns, and the deviations in the positive

low threshold level.
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Figure 2.20: Comparison of daily MP returns, NAV returns, and the deviations in the positive

medium threshold level with a small number of events (n = 28).
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Figure 2.21: Comparison of daily MP returns, NAV returns, and the deviations in the positive

low threshold level.
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Figure 2.22: Comparison of daily MP returns, NAV returns, and the deviations in the positive

medium threshold level with a small number of events (n = 17).
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also statistically significant reversals in MP returns on Day 1. There are post-event reversals

in the deviations for the other partitions also, but the number of events is small (n < 30) to

make a conclusion.

Moreover, the subsets BP1 in the low threshold level and BP2 in the low and medium

threshold levels confirm Hypothesis 3. All BPis in the low threshold levels and BP2 in the

medium threshold level have statistically significant drop in MP return on Day (-1).

2.3.2 Negative deviation with partition

Definition Let ΩRP be the set of events for large negative deviations on Day 0. Then, a

partition of ΩRP is a collection PRP = {BN1, BN2, BN3, BN4} of nonempty subsets of ΩRP ,

where BNis are the blocks of the partition. They satisfy the following properties:

1. The blocks are pairwise disjoint

2. All of the ΩRP is the union of the blocks.

In particular,

1. BN1 = {Large negative deviations | MP return spikes down while NAV is relatively

unchanged on Day 0}.
2. BN2 = {Large negative deviations | both MP return and NAV return are changed where

the influence of MP return on Day 0 is greater}.
3. BN3 = {Large negative deviations | both MP return and NAV return are changed where

the influence of NAV return on Day 0 is greater}.
4. BN4 = {Large negative deviations | NAV return spikes up while MP is relatively un-

changed on Day 0}.

The results are similar to the positive deviations of the previous section and are displayed

in Figures 2.23-2.32 and even numbered tables from B10 to B40. The statistically significant

results with the partitions again confirm Hypothesis 1. Moreover, the subsets BN1 in the

low threshold level and BN2 in the low and medium threshold levels confirm Hypothesis 3.

Furthermore, as the influence of NAV return on Day 0 increases (from BN1 to BN4), the

magnitude of reversal in the MP return on Day 1 increases in the low threshold level.
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BN1 23.90%

BN2 42.94%

BN3 24.36%

BN4 8.80%

Partition of Large Negative Deviations in the Low Threshold Level

Figure 2.23: The percentage of large negative deviations influenced by large MP returns is

66.84% in the low threshold level.
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BN1 37.88%

BN2 41.41%

BN3 15.15%

BN4 5.56%
Partition of Large Negative Deviations in the Medium Threshold Level

Figure 2.24: The percentage of large negative deviations influenced by large MP returns is

79.19% in the medium threshold level.
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Figure 2.25: Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level.
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Figure 2.26: Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level.
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Figure 2.27: Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level.
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Figure 2.28: Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level.
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Figure 2.29: Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level.
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Figure 2.30: Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level.
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Figure 2.31: Comparison of daily MP returns, NAV returns, and the deviations in the

negative low threshold level.
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Figure 2.32: Comparison of daily MP returns, NAV returns, and the deviations in the

negative medium threshold level with a small number of events (n = 11).
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2.4 ILLUSTRATIVE EXAMPLES AND APPLICATION: BUBBLE

Overreaction played an important role in some recent financial market bubbles, and the

methodology of our study examines this effect qualitatively and quantitatively.

The causes of the internet/high-tech bubble of the late 1990ś and the subsequent collapse

are yet to be fully resolved.

One way to study bubbles is through experimental economics [41] where a bubble is

defined as trading at prices above the fundamental value of an asset. Porter and Smith [41]

summarize the results of laboratory asset market bubbles and discuss the effect of proposed

changes in the asset market environment and institution to diminish bubbles. Caginalp,

Porter and Smith [16, 17] report on a large number of laboratory market experiments indi-

cating that a market bubble can be reduced under the following conditions: 1) a low initial

liquidity level, 2) deferred dividends, and 3) a bid-ask book that is open to traders. Caginalp

and Ermentrout [21] proposed a complete dynamical system for investor behavior resulting

in a system of ordinary differential equations. The model assumes that investors have pref-

erences based on a trend-based component or a fundamental value component. Too much

emphasis on the price derivative (momentum) will generally result in large bubbles and sub-

sequent crashes [19]. In the laboratory experiments of asset markets, one usually observes

an initial period trading price, that is well below the realistic value, followed by rising prices

that overshoot the fundamental value in the intermediate periods, resulting a characteristic

“bubble” and a dramatic “crash” of prices near the end of the experiment.

Bubbles in the world’s financial markets share many of the features of experimental asset

bubbles. During the first half of the 1990’s, some favorable developments, such as the end of

the long Cold War, accelerated U.S. productivity growth, the inventions of the World Wide

Web and the Internet browser, rapid commercialization of the Internet, and widespread use

of computer networks and databases, stimulated interest in the stock market. The optimism

of stock market investors encouraged entrepreneurs and firm managers to invest in capital

assets. Consequently, overinvestment and malinvestment became common during the late

1990s [46]. The final movement in the stock market bubble appeared in telecommunications

and information technology equipment manufacturing stocks, following the dot.coms peak
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in 1999. Twelve of the top 20 U.S. corporations by market capitalization were technology-

related firms, and six of them had very high price earnings ratios in excess of 100. The

Internet/high-tech bubble burst in the first quarter of 2000. The prices of information

technology and telecommunications stocks experienced a steep drop during early 2000.

The concept of price changes based solely upon the classical self-optimization of agents

is not enough to understand the recent internet/high-tech bubble. Schiller [47] examines the

rise and fall of the internet/high-tech bubble and discusses the manner in which people had

projected a relatively brief trend into the distant future.

The “overreaction diamond” pattern [27] has been shown to be statistically significant in

our data set, and has demonstrated the systematic behavioral bias exhibited by the market

price in relation to its fundamental value. This leads to the question of whether the method-

ology can be utilized as a tool in out-of-sample forecasts. The overreactions to positive

developments in assessing the value of companies may be an important factor particularly

in the emergence of the initial stage of a bubble that is subsequently aggravated by momen-

tum trading (i.e., focus on market price increases). In many market situations the peak of

a bubble is particularly frustrating to those who are attempting to time a market that is

overvalued. As prices rise above fundamental value, traders who would like to exploit this

overvaluation– as the efficient market hypothesis suggests they should – often find prices

moving even further above the fundamental value. At some point the practical constraints

(e.g., margin requirements) force them to buy the asset, which is now even more overval-

ued, at higher prices, thereby enhancing the bubble. Thus the issues of understanding the

stages of the bubble are of enormous practical consequence, and overshadow such academic

considerations as whether the trader motivations are rational or irrational – an issue that is

almost philosophical by comparison.

Toward this end we consider a sample from our data set. We choose one with a par-

ticularly large bubble, namely the Spain Fund, to determine whether the daily deviations

between the market price and net asset value have the potential to provide an indication

of the peak of the bubble [28]. Figure 2.34 displays the cumulative market price changes

and the cumulative NAV changes together with the difference, i.e., the cumulative daily de-

viations, which illustrates the emergence, expansion and bursting phases of the bubble. Of
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Figure 2.33: The daily deviations indicating many short term overreactions versus the cu-

mulative MP and NAV changes in percent for SNF, between October 1, 2004 and April 13,

2005.

55



0 20 40 60 80 100 120 140
−20

−10

0

10

20

30

40
The Relative Cumulative Sentiment of the Investors For SNF vs Cumulative NAV and MP Changes

Day

P
er

ce
nt

ag
e

MP change
NAV change
Cumulative deviation

Figure 2.34: The cumulative daily deviations versus the cumulative MP and NAV changes

in percent for SNF, between October 1, 2004 and April 13, 2005.

56



course, in retrospect it is clear when the bubble burst. However, examining the graph up to

(but not beyond) the peak of the bubble, it is not as obvious that the market price would

not move higher from this point.

Alternatively, as shown in Figure 2.33, we examine the cumulative market price change

and the cumulative fundamental changes with simply the daily (not cumulative) deviations.

The daily deviations remain within a fairly narrow band of a few percent throughout the 78

days of the sample, even though there is a substantial bubble (i.e., the cumulative difference

becomes very large) between days 70 and 78, when it is overvalued by more than 20%.

However, on Day 79 the daily deviation breaks clearly beyond this band and signals that the

peak has been attained. Examining the period just before the peak we see that the integral

of the daily deviations appears to be at the largest value, since the values are in the positive

region for a number of consecutive days. In previous parts of the graph there is much more

noise, in that positive values are followed by negative values.

In order to examine this possibility further, we return to the cumulative daily deviations

which we denote by f(t), displayed in Figure 2.34, and consider the integral I(f), which is

a measure of the magnitude of the bubble in that it sums the products of overvaluation and

time. We examine this integral over time intervals with the lower limit t0 defined by f(t0) = 0

and upper limit t1 defined by the next time at which f(t1) = 0. A possible criterion for the

peak of a bubble would be to establish a mean and standard deviation for these integrals,

along with f(t) itself and the daily deviations. A signal that the bubble is near its peak

occurs when both f(t) and I(f) are outside of the 95% confidence interval of their respective

means.

Out-of-sample tests on this idea can be performed on a large data set such as the one we

have used. One can approximate I(f) as In(f) by using Newton-Cotes integration formulas

[4] or some automatic numerical integration programs such as CADRE (Cautious Adaptive

Romberg Extrapolation) and DQAGP from QUADPACK package.
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3.0 DIFFERENTIAL EQUATIONS AND COMPUTATIONAL

OPTIMIZATION WITH FINANCIAL APPLICATIONS

3.1 OPTIMIZATION PROBLEM

We use a nonlinear computational optimization technique successively to evaluate the vector

K of four parameters (c1, q1, c2, q2 ) in the Caginalp Differential Equations (CDEs) (see

[21] and [19]). That is, the inverse problem of parameter identification is converted into an

optimization problem to minimize a function in four variables by using nonlinear least-square

curve fitting via CDEs. We try to employ most of the data up to any given time in order

to choose the parameters optimally. Then, we make a forecast for the next few days and

compare the forecasts with the actual values.

In practice, optimization problems may have several local solutions. However, optimiza-

tion methods which seek global minima can confuse whether a point K∗ that has been found

is a local minimum or a global minimum. There is no strategy that will guarantee the

number of necessary iterations to discover the neighborhood of the global optimum (see [5],

Chapter 23). Therefore, we use an initial parameter pool which has fixed initial vectors

initially for each fund. The second part of the pool is updated via previously found optimal

parameters and specific to the fund’s price behavior. Then, we pick the minimum of the

resulting relative minimum functional values and the corresponding optimal parameter to

be used for the next day return prediction [24].

After presenting the proposed optimization algorithm in this chapter, we discuss the

out-of-sample daily return prediction in Chapter 4.
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3.1.1 The system of Caginalp differential equations (CDEs)

3.1.1.1 Notation P (t) : The market price of the single asset.

1
P

dP
dt

: The relative price change.

Pa(t) : The fundamental value.

V (t) : The NAV price at time t.

k : The transition rate.

M : All the cash in the system.

N : The total number of shares.

L := M
N

: The liquidity value. L is a fundamental scale for price.

B : The fraction of total funds in the asset.

ζ1(t) : The trend-based component of the investor preference.

ζ2(t) : The value-based component of the investor preference.

ζ(t) : The investor sentiment function, which expresses the tendency to buy or sell.

ζ := ζ1 + ζ2.

3.1.1.2 Assumptions

(A) The demand D is the total cash supply times the transition rate k, or the probability

that one unit of cash will be used to place an order. The supply S is 1 − k times the

fraction of total funds in the asset.

D = k(1−B), S = (1− k)B,
D

S
=

k

1− k

1−B

B
(3.1)

(B) The transition rate k is a weighted sum of the current derivative and the valuation

discount,

k(t) =
1

2
+

1

2
tanh(ζ), ζ := ζ1 + ζ2, (3.2)

where

ζ1 =
q1τ0

P

dP

dt
, ζ2 = q2

Pa(t)− P (t)

Pa(t)
(3.3)

(C) The relative price changes linearly with excess demand

τ0

P

dP

dt
=

D

S
− 1 (3.4)
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Figure 3.1: Transition.

3.1.1.3 CDEs The finiteness of assets, preference influenced by price momentum, and

valuation (preference influenced by discount from fundamental value) are among several

factors determining the price of an asset and its time evolution. “In the absence of a clear

focus on fundamentals, the prices evolve into the liquidity value. Too much emphasis on the

price derivative can generally result in larger bubbles and subsequent crashes. (see [19])”

The dependence of traders’ preference on the price derivatives, deviation from funda-

mental value and the finiteness of traders’ assets are involved in the following CDEs which

are first published in [21] and improved in [19]. The subtraction of an exponential moving

average value of a discount for the last equation is considered in [14].

1. The price equation:

dP

dt
= Pr(

k

1− k

1−B

B
) (3.5)

where r is an increasing function satisfying that r(1) = 0 and taken as r(x) = log(x).

60



2. “The finiteness of traders’ asset” equation:

dB

dt
= k(1−B)− (1− k)B + B(1−B)

1

P

dP

dt
(3.6)

B changes as the asset is bought and sold (the first two terms), and as the price changes

(the last term). (See Figure 3.1)

3. Transition rate equation:

k(t) =
1

2
+

1

2
tanh(ζ1 + ζ2) (3.7)

4. “Change of trend-based component”:

dζ1

dt
= c1(

q1

P

dP

dt
− ζ1) (3.8)

5. “Change of value-based component”:

dζ2

dt
= c2(q2A(t)− ζ2) (3.9)

where
∑10

k=1 e−0.25k = 3.2318 related to the normalization and the relative valuation change

At = Vt−Pt

Vt
−{∑10

k=1(3.2318)−1 Vt−k−Pt−k

Vt−k
e−0.25k} for our discrete implementation. q2 is multi-

plied by A(t) which is the difference between the discount at t and the exponentially weighted

average value of a discount that persists. For example, the discount for APB is often around

10%. The fact that the discount is 10% today does not mean people are eager to buy it due

to undervaluation. However, if it goes to a 20% discount then some people look at that as

bargain. Similarly, the Templeton Russia fund is usually at a 25% premium, so that a 10%

premium looks like an undervaluation.

3.1.1.4 The functionality of the parameters The parameters c1, q1, c2, and q2 (see

[19]) are the only parameters on the system of price evolution besides the scaling of time.

• c−1
1 is a measure of the “memory length”. The numerical computations show that a very

large value of c1 may lead to unstable oscillation.

• Increasing q1 tends to increase the importance of trend-based investing and amplitude

of oscillations.

• A large value for c2 means that investors take action very quickly when there is an over-

or under-valuation.

• Increasing q2 tends to drive prices closer to the fundamental value Pa(t).
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3.1.2 Non-linear least-square techniques with initial value problem (IVP) ap-

proach

Suppose we have a sequence of observed daily market prices Y (K, ti), i = 1, .., m at times

t1, .., tm. We solve the IVP (3.10) with CDEs (3.5-3.9) for U by using Runge-Kutta (RK4)

method and an assumed value K̃ of the parameter K from the fund’s initial parameter pool.

dU

dt
=




dP
dt

dB
dt

dζ1
dt

dζ2
dt




= f(U,K, t), U(t1) =




Y (K, t1)

0.5

0

0




(3.10)

where f is the right hand side of four differential equations in (3.5-3.9). We define F [K̃]

such that

F [K̃] :=
n∑

i=1

W (i){P (K̃, ti)− Y (K, ti)}2 (3.11)

where F [K̃] represents the sum of exponentially weighted squared differences between the

actual market price values Y (K, ti) and the computed market price values P (K̃, ti) obtained

from the first row vector of the numerical solution U of IVP (3.10) by picking the values at

time tis. W is a positive weighting vector (for example, a vector of normalized exponentially

increasing positive entries such as W = (0.11405072375141, 0.14644402808844,

0.18803785418769, 0.24144538407642, 0.31002200989605)T for n = 5) for the squared differ-

ences at time tis.
∑n

i=1 W (i) = 1. We minimize F [K̃] over <4 by using line search algorithms.

i.e., we seek a vector K̂ such that F [K̂] 6 F [K̄] ∀K̄ ∈ <4.

The dynamical system of CDEs (3.5-3.9) has four first order ordinary differential equa-

tions and one algebraic equation. It is non-linear in terms of the dependent variables. More-

over, there are products of optimization parameters in the system (3.5-3.9) such that a

product of c1 and q1 in the equation (3.8) and a product of c2 and q2 in the equation (3.9).

The optimization problem is a non-linear least-squares problem since the subfunctions in the

equation (3.11) are not linear in the components of K (i.e., c1, q1, c2, and q2). Furthermore,

we assume K > 0 to be financially meaningful in the model (c1 and c2 are (positive) time

scales. q1 and q2 are assumed to be positive in the original modeling).
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3.2 ALGORITHMS

3.2.1 Main optimization algorithm to find optimal parameters via CDEs

Definition of constants, variables, and functions in the algorithm

computedNLS : The computed sum of squared terms in (3.11).

PER1 : Period of event minus 1 over which optimal parameter vector is found.

PER2 : Long period of most recent days before beginning of an event day. It is used to

estimate the chronic discount which depends on a fund and time series of market price

(MP) and net asset value (NAV).

rkstsz : RK4 step size.

eventInd : Day index from price list of a fund. It corresponds to the beginning of the

current event period.

firstEvent : eventInd of the first event.

parF ixed : The pool of initial parameters chosen via a set of grid points in a hyper-box

defined by Li 6 Ki 6 Ui.

y : A vector of candidate optimal parameters for the current event.

ε1 : Threshold for the gradient, for example 10−6.

ε2 : Threshold for the computedNLS (3.11) according to the exponential weights. For

example, ε2 = 0.16 means that the average error allowed per day for fitting (during

optimization phase) is sqrt(0.16) = 0.4 corresponding to 40 cent.

QNewton: A function call to get candidate optimal parameter vectors by using quasi-

Newton weak line search with BFGS formula and a dynamic initial parameter pool.

LSusingOneIC: A function call to obtain the computedNLS corresponding to a candidate

optimal parameter vector

Inputs: fundNameMprice, fundNameNavPrice, fundNumber, and parFixed

Outputs: optimalParameters

1. Set PER1, PER2, firstEvent, lastEvent = length(fundNameMprice) − PER1 − 1,

t1, t2, rkstsz, ε1 and ε2
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2. Set param = parF ixed and optimalParameters = []

3. for eventInd=firstEvent:lastEvent

• mpr = fundNameMprice(eventInd− PER2 : eventInd + PER1, 1)

• npr = fundNameNavPrice(eventInd− PER2 : eventInd + PER1, 1)

• newSum = zeros(t2, 1)

• (Below, PER1 + 1 consecutive chronic discounts in equation (3.9) are computed by

using the most recent PER2 days for each one:)

• for t = t1 : t2

for mem = 1 : PER2

prInd = t + PER2 −mem

newSum(t, 1) = newSum(t, 1) +

(npr(prInd, 1)−mpr(prInd, 1))/(npr(prInd, 1) ∗ exp(0.25 ∗mem))

newSum(t, 1) = newSum(t, 1)/3.23180584357794

discountNav(t, 1) = 1−mpr(t + PER2, 1)/npr(t + PER2, 1)

newDiscount(t, 1) = discountNav(t, 1)− newSum(t, 1)

• Reset local variables locOptParam = [], locOptV al = [], locComputedNLSinit = [],

locQNiter = []

• lenparam = length(param)

• if (lenparam >= MAXPOOLSZ)

lenparam = MAXPOOLSZ

• outerk = 0

• while (outerk < lenparam)

outerk = outerk + 1

paramInit = param(outerk, :)
′

[y, checkQnewton, QNiter] = QNewton(paramInit, t1, t2, rkstsz,

mpr(PER2 + 1 : end, 1), npr(PER2 + 1 : end, 1), newDiscount, ε1)

if ((length(y) 6= 0)&(checkQnewton == 1))

– computedNLS = LSusingOneIC(y, t1, t2, rkstsz, mpr(PER2 + 1 : end, 1),

npr(PER2 + 1 : end, 1), newDiscount)

– if ((computedNLS < ε2)&(y > 0))
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locOptParam = [locOptParam; y
′
]

locOptV al = [locOptV al; computedNLS]

• szLocOval = size(locOptV al)

• lenLocOval = szLocOval(1)

• if (lenLocOval > 0)

minval = min(locOptV al)

minV alInd = find(locOptV al == minval)

globalOptParamCurrent = locOptParam(minV alInd, :)

if (length(param) > MAXPOOLSZ)

param = [param(1 : INITPOOLSZ, :); globalOptParamCurrent;

param(INITPOOLSZ + 1 : MAXPOOLSZ, :)]

else

param = [param(1 : INITPOOLSZ, :); globalOptParamCurrent]

optimalParameters = [optimalParameters; globalOptParamCurrent]

Given an n-day period of MPs and NAVs from day i to day i+n−1 where n = PER1+1

and i > PER2, we compute optimal parameter vector Ki for the period i. Then, we obtain

m− i + 1 optimal parameters for the overlapping periods such as [i, i + n− 1], [i + 1, i + n],

..., [m, m + n− 1] for the MP sequence of size m + n− 1.

We should choose n small enough so that the global error coming from the numerical

solution of the ODEs becomes limited. Moreover, local price patterns which are related to 3

to 15 trading days on average can be exploited by small values of n during optimization and

prediction processes. On the other hand, n should be large enough so that the parameter

optimization process can capture the price trend reasonably. For example, we set n = 5.

We implement and compare two line search algorithms to get optimal parameters during

optimization process [25]. The first algorithm uses a quasi-Newton method with weak line

search for minimizing the sum of squares by using the CDEs, while the second one employs

a refined random search technique ([11] and [37]) for this purpose. The former algorithm

has a faster rate of convergence and it is more efficient.

Bremermann [11] proposed a useful optimization algorithm combining random direc-

tional line search (a coordinate descent method) and Lagrangian interpolation. Milstein [38]
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presents a method of biochemical kinetics parameter estimation for a system of nonlinear

ODEs. Although the method [11] may converge rapidly at the beginning, it stagnates in a

neighborhood of the relative minimum. Therefore, Milstein [37] adds cubic spline approx-

imations and a Pseudo-Newton-Raphson step for the step length selection. However, it is

still derivative-free algorithm for the search direction. Moreover, they are indeterministic

methods because of the random directions. Furthermore, derivative-free algorithms which

employ only functional values can be inefficient, since they should continue iterating until the

search for minimizer is narrowed down to a small interval (see [39] for inefficiency of coordi-

nate descent methods in practice). But, they have been supposed to be employed simply to

optimize functions whose derivatives are unknown and cannot be approximated accurately.

Finally, the step length selection via a fourth degree Lagrangian polynomial or a cubic spline

requires five functional values at equidistant collinear five points to construct the Lagrangian

polynomial or the cubic spline. After setting the first derivative of Lagrangian polynomial or

the cubic spline zero, the minimum functional value is determined by evaluation of F at up

to 3 or 8 points respectively depending on the number of roots at each parameter iteration

where F is the square of the differences between the measured values and the computed

values. These many function evaluations without guidance of derivative for search direction

are more prone to fail during numerical solution of CDEs where there may be singularities

at k = 0, B = 0, k = 1, or B = 1 for some initial parameters.

We mainly focus on the quasi-Newton method due to its advantages and our experience

[26].

A line search method computes a search direction Pk and a step length sk to move along

that direction, at each iteration given by

Kk+1 = Kk + skPk. (3.12)

Effective choices of Pk and sk affect the success of the line search method. Pk needs to be

a descent direction satisfying that P T
k ∇Fk < 0, so that it is guaranteed that F defined in

equation (3.11) can be decreased along this direction. Also, Pk is of the form

Pk = −B−1
k ∇Fk, (3.13)
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where Bk is a symmetric and nonsingular matrix. In Newton’s method Bk is the exact

Hessian ∇2F (Kk).

Let

φ(sk) = F (Kk + skPk). (3.14)

Proposition 2. If s∗k is the step that minimizes φ(sk), then

P T
k ∇F (Kk + s∗kPk) = 0. (3.15)

Proof After expanding φ(sk) by using Taylor expansion, set dφ/dsk = 0 (see [5]).

Equation (3.15) implies that a perfect line search terminates at a point when the direction

of search is perpendicular to the gradient vector.

3.2.1.1 Quasi-Newton method for minimizing the sum of squares A quasi-Newton

algorithm is used to minimize the sum of squares (3.11). The Newton method was not pre-

ferred because of the following drawbacks (see [5] and [39]).

1. It requires second derivative. Although it is possible to use finite difference expressions,

the calculation of derivatives is one of the most time consuming parts. Moreover, the

approximation can be inaccurate.

2. The search direction is obtained by solving an n×n linear system where n is the number

of parameters and it is 4 in (3.11). Solving a linear system is costly and uses at least

O(1
6
n3) multiplications.

3. The Cholesky solution of GkPk = −gk may break down when Cholesky factorization is

used and Gk is not positive definite where F is a function defined in equation (3.11) to

be minimized, gk = ∇F (Kk) and Gk = ∇2F (Kk).

In quasi-Newton method, the inverse of Hessian matrix ∇2F (Kk)
−1 is approximated by

using a positive definite matrix Hk, instead of computing exact second derivatives. The

second derivative information is developed by updating the approximate matrix on each

iteration. Pk is a descent direction, since Hk is positive definite and by using (3.13) we get

P T
k ∇Fk = −∇F T

k Hk∇Fk < 0.
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Quasi-Newton method

1. Choose an initial parameter vector K0 as an estimate of K that would minimize F (K).

2. Choose initial symmetric positive definite matrix H0 (Identity matrix I can be taken as

H0).

3. Set convergence tolerance ε1 = 10−4 or set a maximum number of iterations.

4. While ‖∇F (Kk+1)‖ > ε1

• Set gk = ∇F (Kk)

• Compute search direction Pk = −Hkgk

• Find candidate step length sk by using backtracking line search algorithm where

sufficient decrease condition is obtained for F (Kk + skPk).

• Set Kk+1 = Kk + skPk, βk = gk+1 − gk, δk = Kk+1 −Kk

• Get a new positive definite matrix Hk+1, by using the Broyden-Fletcher-Goldfarb-

Shanno (BFGS) formula (3.19), such that

Hk+1βk = δk (3.16)

5. End (while)

The gradient (∇F (x)) is approximated by using the central difference formula (see [39],

Chapter 7)
∂F

∂xi

(x) ≈
F (x + ε3ei)− F (x− ε3ei)

2ε3

(3.17)

for the partial derivatives, where

∂F

∂xi

(x) =
F (x + ε3ei)− F (x− ε3ei)

2ε3

+ O(ε2
3), (3.18)

ε3 = u1/3, u is about 10−16 in double-precision arithmetic, and ei is the ith unit vector.

Backtracking line search

The backtracking method provides either that the selected step length s is at least a

fixed value (s = 1), or that it is sufficiently short to satisfy the sufficient decrease condition

but not too short ([39]).

• Set s = 1 and choose σ, θ ∈ (0, 1)

• Set s = s
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• Repeat until F (Kk + sPk) ≤ F (Kk) + θs(∇F (Kk))
T Pk

– Set s = σs

• End (repeat)

• Return with sk = s.

The BFGS formula (see [12] and [13])

Hk+1 = Hk − Hkβkδ
T
k + δkβ

T
k Hk

δT
k βk

+ (1 +
βT

k Hkβk

δT
k βk

)
δkδ

T
k

δT
k βk

(3.19)

By using the formula (3.19), positive definite matrix Hk+1 is obtained when the curvature

condition δT
k βk > 0 is satisfied (see [5]). However, sometimes the curvature condition which

rules out unacceptably short steps may not hold, even for the iterates close to the solution.

In practice, to deal with the cases where δT
k βk is negative or too close to zero, the BFGS

update (3.19) is skipped by setting Hk+1 = Hk. However, it should not be done often [39].

Experience suggests that we check the δT
k βk and update Hk+1 by identity matrix or set

H(i, i) = i/2 rather than the skipping. We allow such cases limited times (at most five

times) and try another initial parameter vector.

Each iteration of the quasi-Newton method can be done at a cost of O(n2) arithmetic

operations in addition to the function and gradient evaluations (see [39]) where n is the

number of parameters and it is 4 in (3.11). The algorithm has a super-linear rate of conver-

gence [39]. Since there are no O(n3) operations which are seen in matrix-matrix operations

or solving linear system, and calculation of second derivatives is not necessary, the quasi-

Newton method is more advantageous than Newton’s method. Although Newton’s method

converges quadratically, it is more costly per iteration because of the linear system. More-

over, rounding errors sometimes may prevent from observing such theoretical convergence

rates in practice (see [5] and [32]). Although the errors in computed values of F , and the

entries of ∇F and ∇2F in double precision arithmetic are usually negligibly small, they can

be significant when ∇F is around zero (see [5]).
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3.3 OPTIMIZATION RESULTS

Example 1. Given Actual MP = (35.40, 35.62, 35.62, 35.68, 35.46) and NAV = (43.95, 44.08,

44.75, 44.45, 43.93) for Alliance All-Market Advantage Fund (AMO) (a general equity fund

(GEF)) over the five trading days vector Day = (8.13.1999, 8.16.1999, 8.17.1999, 8.18.1999,

8.19.1999) beginning on Friday, and an initial pool having 56 parameter vectors, let us find

the first optimal parameter vector with event index 11. After applying the main optimization

algorithm in subsection 3.2.1, we get 56 candidate optimal parameter vectors via QNewton

function calls. We allow only the positive candidate vectors satisfying the threshold condi-

tion with ε2. Thus, we obtain a set of candidate vectors locOptParam and the corresponding

set of minimized functional values locOptVal. Later, we find the minimum of locOptVal and

the related optimal parameter vector globalOptParamCurrent. Figure 3.2 shows the curve

fitting over the first 5-day period. The first optimal parameter vector will be used to predict

next day (i.e. 8.20.1999) return. The optimal parameter vector is appended to the initial

parameter pool so that the experience can be exploited for future optimizations.

Similarly, we get the second optimal parameter vector globalOptParamCurrent with

event index 12 by using actual MP = (35.62, 35.62, 35.68, 35.46, 35.79) and NAV = (44.08,

44.75, 44.45, 43.93, 44.34) for AMO over Day = (8.16.1999, 8.17.1999, 8.18.1999, 8.19.1999,

8.20.1999), and the initial pool having 57 parameter vectors. The second optimal parameter

vector can be used to predict next trading day (8.23.1999) return. Figure 3.3 displays the

curve fitting over the second 5-day period.

In this small example, eight consecutive optimization processes are shown by Figures 3.2-

3.9. Table 3.1 summarizes the cost of the optimization process and the average maximum

improvement factor (MIF) where

MIF = computedNLSmin/computedNLSinit. (3.20)

While Table 3.2 illustrate the initial parameter vectors which could lead to optimal

parameters for the events from 11 to 18, Table 3.3 shows the resulting optimal parameter

vectors for these events.

70



11 11.5 12 12.5 13 13.5 14 14.5 15
35.4

35.45

35.5

35.55

35.6

35.65

35.7
Curve Fitting 1: Comparison of AMO Fund Actual MP and Computed MP via DEs

Day

M
P

Actual MP
Computed MP via DEs

Figure 3.2: Curve fitting and getting optimal parameters for AMO MP’s over the first 5-day

period.
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Figure 3.3: Curve fitting and getting optimal parameters for AMO MP’s over the second

5-day period.
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Figure 3.4: Curve fitting and getting optimal parameters for AMO MP’s over the third 5-day

period.
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Figure 3.5: Curve fitting and getting optimal parameters for AMO MP’s over the fourth

5-day period.
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Figure 3.6: Curve fitting and getting optimal parameters for AMO MP’s over the fifth 5-day

period.
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Figure 3.7: Curve fitting and getting optimal parameters for AMO MP’s over the sixth 5-day

period.
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Figure 3.8: Curve fitting and getting optimal parameters for AMO MP’s over the seventh

5-day period.
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Figure 3.9: Curve fitting and getting optimal parameters for AMO MP’s over the eighth

5-day period.
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Table 3.1: The computational optimization by finding parameters in the CDEs

for a small example. Quasi-Newton method with weak line search is applied for the AMO

fund data during 8.13.1999-8.24.1999.

Number of Events 8

Event Period 5-day

Step Size for RK4 0.05

Number of Parameters in the Initial Pool 56

Maximum Number of Parameters in the Pool 80

Threshold for Gradient 10−6

Prediction Attempt 100%

Average Number of QNw Iteration 132

Threshold for the Weighted Sum of Squares 0.16

Average Weighted Sum of Squares 0.0572

Average Maximum Improvement Factor 57.26 %

Example 2. We obtain the optimal parameters for a six sample CEFs with event

period of 5-day related to the following Table 3.4. If we cannot get an optimal parameter

satisfying the desired conditions, we skip the 5-day event and the next day prediction. So,

the prediction attempt is 66.46%.

Example 3. We get optimal parameters for Asia Pacific Fund (APB) (a world equity

fund (WEF)) with event period of 10-day by following the instructions in Table 3.5. If we

cannot get an optimal parameter satisfying the desired conditions, we use the most recent

computed optimal parameter so that we have 100 % prediction attempt.
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Table 3.2: Initial parameters.

Initial Parameters

Event # c1 q1 c2 q2

11 0.50100000000000 5.01000000000000 0.00500000000000 0.01000000000000

12 0.50151998114889 5.01012317937758 0.03341248949986 0.03893029114360

13 0.00100000000000 0.01000000000000 1.00500000000000 5.01000000000000

14 0.00100000000000 5.01000000000000 2.00000000000000 10.01000000000000

15 0.50100000000000 5.01000000000000 1.00500000000000 5.01000000000000

16 0.00100000000000 5.01000000000000 1.00500000000000 0.01000000000000

17 0.00100000000000 10.01000000000000 1.00500000000000 5.01000000000000

18 0.00100000000000 10.01000000000000 0.50500000000000 5.01000000000000

Table 3.3: Optimal parameters.

Optimal Parameters

Event # c1 q1 c2 q2

11 0.50151998114889 5.01012317937758 0.03341248949986 0.03893029114360

12 0.50260637800436 5.01053711355921 0.04689133908317 0.05508322708754

13 0.00024815673835 0.00994432123190 0.56769323787362 4.93512909446886

14 0.001555126193 379.573676710672 52.749314817565 8.049115994692

15 0.002802342929 419.708990457345 52.957130549807 8.322994033815

16 0.70321773805002 5.11794551172671 1.11144330472582 1.45832582507956

17 0.003087412095 133.925346584385 0.005573025372 649.593725911804

18 0.002073137310 565.436200421300 0.004883175322 320.677184469970

80



Table 3.4: The computational optimization by finding parameters in the CDEs

for a large sample data set. Quasi-Newton method with weak line search is applied for

a six sample CEFs data during 1998-2006.

Number of Events 8411

Event Period 5-day

Step Size for RK4 0.05

Number of Parameters in the Initial Pool 56

Maximum Number of Parameters in the Pool 80

Threshold for Gradient 10−4

Prediction Attempt 66.46 %

Average Number of QNw Iteration 80

Threshold for the Weighted Sum of Squares 0.16

Average Weighted Sum of Squares 0.0124

Average Maximum Improvement Factor 32.16 %
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Table 3.5: The computational optimization by finding parameters in the CDEs

for 10-day event period. Quasi-Newton method with weak line search is applied for the

APB data during the trading days 1.17.2002-6.20.2003.

Number of Events 339

Event Period 10-day

Step Size for RK4 0.05

Number of Parameters in the Initial Pool 56

Maximum Number of Parameters in the Pool 80

Threshold for Gradient 10−5

Prediction Attempt 100 %

Average Number of QNw Iteration 38

Threshold for the Weighted Sum of Squares 1.00

Average Weighted Sum of Squares 0.0491

Average Maximum Improvement Factor 66.64 %

82



4.0 MARKET PRICE RETURN PREDICTION

4.1 INTRODUCTION

During the past several decades, the dominant theory of finance has been the efficient market

hypothesis (EMH). In its weak form the EMH asserts that any information relating to price

cannot be used for excess profit since such information is readily available to anyone. In its

stronger form EMH asserts similarly that all publicly available information cannot be used to

increase profits beyond the risk premium inherent in that class of investments. Consequently,

the best possible prediction that can be made for the price of a stock is given by

Pt+1 − Pt

Pt

= βrM + εt. (4.1)

In other words, the best predictor of tomorrow’s price is today’s price augmented by the

tiny factor βrM which represents the expected daily return for the overall market (i.e., a

few percent divided by the 250 trading days per year) times the beta factor that scales the

volatility of the stock relative to the overall market. The term εt is the excess return specific

to the stock for day t. The mean of this term according to EMH must be zero for reasons

stated above. Thus, we can state that neglecting a term of order (10%)(1/250) = 1/2500,

EMH asserts that

Pt+1 = Pt + εt, (4.2)

i.e., random walk (plus a tiny upward drift term), is the best forecast of tomorrow’s price

assuming knowledge of today’s price.

Moreover, the EMH asserts that since all investors have information on the price history,

such information cannot have any predictive value.
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Caginalp and Laurent [20] performed the first scientific test to provide strong evidence

in favor of any trading rule or pattern on a large scale. They applied a non-parametric

statistical test for the predictive capabilities of candlestick patterns using daily data for each

stock in the S&P 500 during the time period 1992-1996. The out-of-sample tests indicate

statistically significant profit of almost 1% during a two-day holding period. Moreover,

Caginalp and Balenovich [15] develop a foundation for the technical analysis of securities by

using a dynamical microeconomic model. They deal with a broad spectrum of patterns that

are generated by the presence of two or more trader groups with asymmetric information,

besides the patterns generated by the activities of a single group.

Rapach et al. [43] employ in-sample and out-of-sample procedures related to data mining

for international stock return predictability with macro variables.

Suppose we have a sequence of observed daily prices Yi, i = 1, .., m at times t1, .., tm.

It is hard to model such erratic data Yi (see Figure 4.1) by a smooth function such as a

polynomial. In literature, generally the trend of the sequence is determined via the least

squares line calculation. That is, K1 and K2 are computed to minimize

F (K) =
m∑

i=1

(Yi −K1 −K2ti)
2 (4.3)

It is a linear least-squares problem because the subfunctions in (4.3) are linear in K1 and

K2.

Let K∗
1 and K∗

2 be minimizers of (4.3). Then, de-trended data (Vi = Yi−K∗
1−K∗

2 ti) which

cannot be modeled by the trend-line is handled with the following autoregressive model (see

[9])

Vi = η1Vi−1 + η2Vi−2 + η3 (4.4)

and the coefficients ηis are determined.

Instead of two-stage approach (4.4), one can use a single-stage model (see [5])

Yi = K1 + K2ti + K3(Yi−1 −K∗
1 −K∗

2 ti−1) + K4(Yi−2 −K∗
1 −K∗

2 ti−2) (4.5)

and minimize

F (K) =
m∑

i=1

(Yi −K1 −K2ti −K3(Yi−1 −K∗
1 −K∗

2 ti−1)−K4(Yi−2 −K∗
1 −K∗

2 ti−2))
2. (4.6)

84



The single stage approach to fit coefficients provides a much closer estimate to the original

data than the two-stage process (see [5]).

Example 4. Given daily closing prices of TRF

MP = (10.12, 9.81, 9.87, 9.63, 10.06, 10.97, 11.09, 11.03, 11.34, 12.01,

12.07, 12.19, 12.07, 11.21, 10.48, 11.34, 11.15, 11.46, 11.21, 11.09),

and initial parameter vector K = (1, 1, 1, 1), the single-stage non-linear least-squares model

(4.5) is employed and the comparison between actual data and the least square model is

displayed in Figure 4.1. F (K) in (4.6) is minimized and the optimal parameters K1 =

10.9975, K2 = 0.0191, K3 = 0.9143, and K4 = −0.2158 are obtained. The sum of squared

errors from t3 to t20 is 2.9740. So, the corresponding mean square error is 0.1652. Since the

method combines only trend and de-trend phases without microeconomic model, the actual

MPs are repeated by the computed MPs with one day delay.

In this chapter, we study price forecast with the system of ODEs (3.5-3.9) for an arbitrary

day independent from a pattern. However, there are several factors affecting the success of

the prediction.

• Forecasting is often difficult in many disciplines. For example, weather forecasting [35]

has been studied extensively for many decades with some success, and yet there are still

many surprises. In the case of markets, forecasting is especially difficult since one is

trying essentially to make a forecast that is better than the aggregate forecast of the

market participants. As noted earlier, the efficient market hypothesis asserts that this is

not possible.

• There is a wide range of variability in getting optimal parameters. That is, the residual

values may change between 10−1 and 10−14.

• There are also difficulties arising from the numerical methods to solve the nonlinear

ODEs having singularities for some initial parameters. For example, we have methods

which are efficient for certain stiff and non-stiff applications (see [3]). For an arbitrary

day price prediction via CDEs, we meet with both stiff problems (having widely varying

time scales where the standard numerical methods may require extremely small step size
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Figure 4.1: A single-stage non-linear least-squares model (4.6) is applied to the Templeton

Russia Fund (TRF) data from March 4th, 1999 to March 31st, 1999.

h) and non-stiff problems. However, we experienced failures during Newton iterations for

BDF2 method which is suitable for stiff problems. Therefore, we need a general-purpose

code combining advantages of several algorithms.

We employ the dynamical microeconomic model (3.5-3.9) which provides valuable con-
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straints as if conservation laws in physics, rather than the classical time series analysis with

the single stage approach explained above. Despite the difficulties, we provide out-of-sample

predictions which are more successful than EMH.

4.2 METHOD DESCRIPTION

The proposed out of sample prediction is performed in the following way. Given MPs and

NAVs for an n-day period from day i to day i+n−1 and the corresponding optimal parameter

vector Ki for the i’th period computed via an optimization method in Chapter 3, we solve

the initial value problem (IVP) with CDEs (3.5 - 3.9) to predict MP value and return on

day i + n.

4.3 SUCCESS TESTS

4.3.1 Absolute Difference of Predicted Return and Actual Return

We compare two columns of paired sequences. The first column |returnPredDe−returnActual|
consists of the absolute values of differences between the actual daily returns and the pre-

dicted daily returns via the differential equations. The second column |returnPredRw −
returnActual| has the absolute values of differences between the actual daily returns and the

predicted returns via random walk. Then, we apply the Mann-Whitney U test [36] and the

Wilcoxon rank sum test [36] to column 1 and column 2. They are non-parametric tests of

the hypothesis that two independent samples come from distributions with equal medians.

We use non-parametric tests because we make no assumptions about the distribution of the

data. The Mann-Whitney U test is equivalent to the Wilcoxon rank sum test for equal

medians (see [30] and [33]).

Null Hypothesis, H0 : The median absolute value of difference |returnPredDe−returnActual|
and the median absolute value of difference |returnPredRw − returnActual| are equal.
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Alternative Hypothesis, H1 : The median absolute value of difference |returnPredDe −
returnActual| is less than the median absolute value of difference |returnPredRw−returnActual|.

Depending on the p-value of a non-parametric test, we may get a conclusion.

4.3.2 Prediction of Relative Price Change Direction

Now, we get relative price changes for the actual MP and the predicted prices via the

proposed method. Then, we count the number of the right matches corresponding to the

daily relative price increase or decrease. We get a new sequence such that the sequence

element is 1 if there is a right match. Otherwise, the sequence element is −1. We apply

z-test to the sequence. According to EMH, the mean value of the sequence would be 0 as

null hypothesis. The alternative hypothesis states that the mean value of the sequence is

different from zero.

4.4 PREDICTION RESULTS

Example 5. By using the 8 optimal parameters obtained in Example 1, we solve the initial

value problem (IVP) with CDEs (3.5 - 3.9) to predict MP value and return for the next days

from day 16 to day 23. In Figure 4.2, actual MP = (35.79, 36.29, 36.67, 37.01, 36.79, 36.62,

36.01, 35.84) and predicted MP via CDEs = (35.46, 35.79, 36.49, 37.08, 36.65, 36.50, 35.96,

35.70) are compared for the trading days Day = (8.20.1999, 8.23.1999, 8.24.1999, 8.25.1999,

8.26.1999, 8.27.1999, 8.30.1999, 8.31.1999).

In Figure 4.3, for the same days as in Figure 4.2, actual return = (0.0093063, 0.0139704,

0.0104712, 0.0092719,−0.0059443,−0.0046208,−0.0166576,−0.0047209) and predicted return

via CDEs = (0.0000001, 0.0000069, 0.0055841, 0.0112044,−0.0096853,−0.0079270,

− 0.0180671,−0.0086843) are shown.

In Figure 4.4, the absolute errors for the predicted returns via CDEs are

|returnDE−returnactual| = (0.0093062, 0.0139635, 0.0048871, 0.0019325, 0.0037410, 0.0033062,

0.0014095, 0.0039633) and the absolute errors for the predicted returns via RW are
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Figure 4.2: Prediction of AMO MPs over 8-day
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Figure 4.3: Prediction of AMO fund daily returns over 8-day
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|returnRW−returnactual| = (0.0090682, 0.0137323, 0.0102331, 0.0090338, 0.0061824, 0.0048589,

0.0168957, 0.0049590). After day 17, the absolute errors for the predicted returns via CDEs

are less than that of RW.

For example, the MP and return on day 20 is predicted (see Figure 4.2 and Figure 4.3

respectively) by using initial conditions on day 19 and the computed optimal parameter vec-

tor (0.002802342929, 419.708990457345, 52.957130549807, 8.322994033815) for 5-day period

from day 15 to day 19 as in Figure 3.6 and Table 3.3. It is remarkable to predict such a

reversal in MP and sign of return on day 20 after a 3-day rise trend in MP. This successful

prediction cannot be expected from a prediction via pure curve fitting.

By using Mann-Whitney U test for 8 events, we get

median(|returnPredDe− returnActual|) = 0.00385 and

median(|returnPredRw − returnActual|) = 0.00905. That is, the error via CDEs is less

than half of the error via RW. Point estimate for ETA1−ETA2 is -0.00422. But, computed

ETA1 − ETA2 is -0.0052. 95.9 % CI for ETA1 − ETA2 is (−0.00883, 0.00003). The rank

sum W = 49.0. Test of ETA1 = ETA2 vs ETA1 < ETA2 is significant at 0.0260. Since

0.0260 < 0.05, we can reject the null hypothesis at the 0.05 level for this small example.

Moreover, the prediction success of MP return direction by CDEs is 100 %.

Example 6. We predict the next day MP return by using the optimal parameters

obtained in Example 2. We apply Mann-Whitney U test and have

median(|returnPredDe− returnActual|) = 0.00554 and

median(|returnPredRw−returnActual|) = 0.00577 for the 5590 prediction attempts. Point

estimate for ETA1−ETA2 is−0.00018. 95.0% CI for ETA1−ETA2 is (−0.00036,−0.00001).

The rank sum W = 30898021.0. Test of ETA1 = ETA2 vs ETA1 < ETA2 is significant at

0.0193. The test is significant at 0.0193 also when adjusted for ties. Therefore, we can reject

the null hypothesis at the 0.05 level for this sample portfolio.

When we apply Wilcoxon rank sum test, p-value is 0.0386, z-val is −2.0681, and rank sum

is 30898023.0. Thus, we can reject the null hypothesis at the 0.05 level by using Wilcoxon

rank sum test, as well.

The prediction success of relative price change direction by CDEs is 63.33% (with 3540

right direction matches out of 5590 prediction attempts) which is greater than 50%. When
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we apply z-test to the direction match sequence of −1 and 1, the mean value is 0.2666, p-

value is 0, 95.0% CI is (0.2403, 0.2928), and z-val is 19.9288. Therefore, we can reject the null

hypothesis. Moreover, the success of prediction that the price will be non-increasing or non-

decreasing is 69.84% with 3904 right matches out of 5590 prediction attempts. According

to z-test, the mean value is 0.3968, p-value is 0, 95.0% CI is (0.3706, 0.4230), and z-val is

29.6658. Again, we can reject the null hypothesis.

While the success of this method is encouraging, more large scale studies are needed

before concluding that this procedure in itself can be used profitably.

Example 7. We get MP and return prediction of APB for 10-day event period by using

optimal parameters obtained in Example 3 and Table 3.5. We compare the predicted returns

with the actual returns during 2.19.2002-6.23.2003. According to Mann-Whitney U test for

339 events, median(|returnPredDe− returnActual|) = 0.00846 while

median(|returnPredRw − returnActual|) = 0.00871. Point estimate for ETA1 − ETA2 is

0.00020. 95.0 % CI for ETA1−ETA2 is (−0.00089, 0.00129). The rank sum W = 116154.0.

For the test of ETA1 = ETA2 vs ETA1 < ETA2, we cannot reject the null hypothesis for

this example by using the method of full prediction attempt via 10-day event period since

W is > 115090.5, although

median(|returnPredDe− returnActual|) < median(|returnPredRw − returnActual|).

The prediction success of relative price change direction by CDEs is 54% which is smaller

than that of Example 6 because of the rate of prediction attempt, larger event period and

larger ε2. But, it is still greater than 50%.
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5.0 CONCLUSIONS

The issues of overreaction and underreaction are central to the debate on behavioral finance,

but are often difficult to establish statistically through data analysis. We have performed a

study in which the relative change in the fundamental value is subtracted from that of the

trading price, so that the difference provides a clearer picture of the underlying dynamics

of trading price. In particular, we found that for a set of closed end funds (CEFs) over a

long period, any significant deviation between the market price return and the fundamental

value return on a particular day is likely to be followed by a reversal the next day. More

surprisingly, however, was the discovery that prior to such “event” days, there is a tendency

to move gradually in the opposite direction during the previous two or three days. This

precursor for the significant changes is also very different from the results one would expect

from the efficient market hypothesis. There is no reason for the spike from a traditional

finance perspective. However, with different groups interacting and maneuvering to find an

edge, it seems that if one group is positioned, for example, as a short in anticipation of

negative news, a small amount of good news is reason to buy aggressively to cover the short.

The aggressive buying then pushes the price far above the levels justified by the change in

fundamentals.

Within the framework of EMH, a market price is a highly stable equilibrium value that

is established by traders having common information. However, another viewpoint incorpo-

rated into the asset flow theory in [19] is that there are two or more large groups that have

widely differing assessments of value. At a particular time, the market receives either a small

amount of new information, or a small amount of additional traders. The traders are aware

of other viewpoints as the information or resources arrive. However, there is uncertainty

created by the strategies (and resources) of others. Consequently, there is a price movement
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that can be far in excess of any new information. As discussed in the asset flow references,

overreaction (Hypothesis 1) is a natural consequence of this approach within a particular

time scale that must be established by the data. While overreaction can have several other

explanations, it is difficult to justify within the context of EMH.

The statistics have confirmed our viewpoint that the random changes in fundamentals

obscure most of the behavioral effects in price movements. When the same tests are done

without subtracting the net asset value, much of the statistical significance disappears. This

is at the heart of the debate between behavioral finance and the efficient market advocates.

The latter argue that overreactions and underreactions should not be systematically distin-

guishable. Augmenting earlier studies ([1], [34] and [48]) we find that our “event” criteria,

described as a deviation between market price return and net asset value return, stipulate

sufficient conditions for overreaction. The magnitude of the overreaction we find is quite

significant even for the lower threshold levels (i.e., when the deviation is only a few per-

cent). The presence of a precursor to such events is even more difficult to explain from an

efficient market perspective. There is also remarkable symmetry between the pre-event and

post-event days, as well as for the positive and negative deviations.

Closed end funds provide a good avenue to test ideas of market dynamics. In some ways

the situation is similar to options trading. The value of an option is related to the trading

price of the underlying stock, and one can examine the efficiency of the option price relative

to the stock price, without making an a priori assumption on the efficiency of the stock

price. In a similar way, one can examine the efficiency of the closed end fund relative to

the net asset value. A previous study [40] had shown that the volatility of the closed end

fund is much greater than the volatility of the underlying index. Our study confirms this

from a different perspective, and it is consistent with the concept of finite assets (rather than

infinite capital for arbitrage) that underlies Hypothesis 3. In other words, if one compares a

large, widely followed market such as Japan with a relatively small closed end fund investing

in Japan, then the assumption of infinite arbitrage capital is much less likely to be valid for

the closed end fund. The reason for this is not so much due to a closed end fund’s structure,

but rather to its size, visibility and trading volume. After all, if there is a trading volume of

tens of thousands in a particular closed end fund, the potential profit on deviations of a few
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percent is too small for all but the tiniest hedge funds. Thus one would expect the closed

end fund to be more volatile than the underlying assets, even from the EMH perspective.

However, one would expect the level of deviations to be much smaller and less systematic

than we have found.

A large part of the patterns we have found disappear when the relative change in NAV

is not subtracted from the relative change in market price. This may explain why many

data studies of markets show fairly small deviations from efficiency. As noted earlier, the

valuation is influenced by many factors that can be regarded, from the perspective of traders,

as stochastic. Hence any effort to show systematic behavioral bias that does not account for

these changes in valuation encounters a great deal of “noise” so that obtaining statistical

significance is difficult. It has been noted by Black [6], an EMH advocate, that “noise makes

it very difficult to test either practical or academic theories about the way economic or

financial markets work.” He adds that a reasonable definition of efficiency is that the market

price is “more than half of value and less than twice value.” The methodology we have used

helps overcome this obstacle of “noise” in understanding market dynamics.

One aspect of our study focuses on those events in which there is relatively little change in

NAV during the occurrence of a significant relative change (e.g., increase) in market price. A

new phenomenon discovered in our analysis is that there is a dip during the two or three days

prior to the upward spike. It would be difficult to concoct any explanation of this based upon

the EMH, or any of the prevalent ideas in finance. However, this phenomenon is perfectly

consistent with the asset flow approach in which the classical price theory is augmented with

the concepts of finiteness of assets and trading decisions based upon momentum as well as

valuation.

A key challenge to behavioral finance has been the development of a paradigm– such

as the risk/reward criterion of classical finance– on which a quantitative theory can be

developed. This is more difficult than the paradigm for classical finance since the latter

is essentially a default theory based on an idealization. A necessary first step then is the

establishment of key phenomena that can be used to develop a theory. One of the main

arguments of efficient market theorists has been the absence of obvious systematic biases in

market prices. Early statistical studies indicated that prices were close to a random walk.
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While subsequent studies have shown some short term biases, they have often been dismissed

as too small to be profitable. The omnipresence of random events that influence valuation as

well as the wealth of traders tends to introduce a sufficient amount of noise into the system

that makes it difficult to uncover deterministic influences in price dynamics.

Both parts of our study in Chapter 2 eliminate the randomness inherent in valuation.

In particular, one of the data sets comprises significant relative changes in market price

that occur in the absence of much change in valuation. This has allowed us to examine the

remaining influences on price dynamics, and identify patterns in prices that can be used to

test the validity of new theories and methodologies in behavioral finance.

We propose a nonlinear computational optimization algorithm combining a quasi-Newton

weak line search with BFGS formula and a dynamic initial parameter pool to obtain the

vector of four optimal parameters in the Caginalp Differential Equations (CDEs). Given an

n-day period of MPs and NAVs from day i to day i + n− 1, we compute optimal parameter

vector Ki for the period i. Then, we solve the initial value problem (IVP) with CDEs (3.5 -

3.9) to predict MP and return on Day i + n. That is, we use the optimal parameters for the

next day out-of-sample return prediction. Thus, we obtain m− i+1 optimal parameters for

the overlapping periods such as [i, i+n−1], [i+1, i+n], ..., [m, m+n−1] for the MP sequence

of size m + n− 1. And also, we can predict MP returns on Days (i + n, i + n + 1, ..., m + n).

It is known in literature that the improvement of the quasi-Newton methods over steepest

descent and derivative-free algorithms are remarkable [39]. According to our experience,

the quasi-Newton method is more efficient than Newton method for CDEs because second

derivatives are not required.

The threshold for the gradient should be sufficiently small. But, decreasing the threshold

from 10−4 to 10−6 just increases the average number of quasi-Newton iterations from 89 to

156 without significant improvement in minimization for a large sequence of data. So, we

believe that the threshold values between 10−4 and 10−5 are reasonable for gradient without

perfect line search, in practice.

Another novel and important component of the proposed algorithm is the dynamic initial

parameter pool. The fixed part of the pool consists of the expected initial vectors. The

dynamic part of the pool is updated via previously found optimal parameters and it is
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specific to the fund’s price behavior. The overall pool provides a stable number of quasi-

Newton iterations because the experience is employed and the impact of most recent events

are dominated.

By reactive evaluation of the financially meaningful optimal parameters employing most

of the data up to any given time, we get a stable 32% average maximum improvement factor

and a reasonable average daily deviation in market price return during the curve fitting for

a sample large data set.

We need a reasonable minimization during the preceding period for a successful next

day price return prediction. Sometimes it is possible to get a better curve fitting locally if

one were to ignore the intrinsic constraints. However, it does not imply there would be a

better prediction always. For example, some vectors with negative parameters may provide

smaller sum of squares. But, the negative parameters are not meaningful financially in the

model. Moreover, while minimizing the sum of squares, we place exponential weights on the

most recent price changes which is financially important. Furthermore, there is a trade off

between trend curve fitting and de-trended curve fitting. As shown in Chapter 2 and [15],

there are various price return patterns which are relevant for 3 to 10 trading days. They

can be caught by de-trended curve fitting. On the other hand, trend curve fitting should

not be neglected because the percentage of momentum traders are significant. There are

other constraints such as finiteness of traders’ asset [19] as well. Also, the time scalings

to reflect the current reaction speed of momentum traders and value based traders should

be handled automatically. Therefore, the dynamical microeconomic model (3.5-3.9) which

combines several factors is more successful than pure curve fitting.

The absolute error of predicted return via CDEs decreases or becomes at least stable for

a sample portfolio of CEFs over a long period. We can reject the null hypothesis at the 0.05

level by applying non-parametric tests such as the Mann-Whitney U test and the Wilcoxon

rank sum test for the column of the absolute values of differences between the actual daily

returns and the predicted daily returns via CDEs and the column of the absolute values

of differences between the actual daily returns and the predicted returns via random walk.

Moreover, we find that the prediction success of relative price change direction for a fund is

stable along six years. According to z-test for the sequence containing 1 for right direction
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match and −1 for mismatch, we can reject the null hypothesis at the 0.05 level.

To the best of our knowledge, this is the first study to find the next day price return

direction for an arbitrary day with a significant right match probability greater than 50%

by using the power of differential equations.
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APPENDIX A

SHORT SELLING AND MARKET EFFICIENCY

Much of the classical finance arguments are a consequence of the theoretical possibility

of selling short, whereby an investor sells shares of an overvalued asset that he does not

own, and uses the cash from the proceeds to invest in a stock that is undervalued. Since

this would garner a profit without the requirement of any capital, the investment can be

increased without bound, thereby eliminating any deviation from the true valuation. There

are several serious practical problems with this argument. One is that short sales are often

not possible, particularly in large quantities, since they must be borrowed. Another is that

there are strict limits on the net amount of short sales. For example, a typical investor with

$100,000 can buy about $250,000 worth of stock using margin borrowing. However, he can

only short about $40,000. Furthermore, for most investors, a short position implies that he

must pay – not receive –interest, contrary to the theoretical hypotheses. Thus, shorting a

stock that is overvalued by 20%, for example, does not imply a profit unless the short seller

can be assured that the overvaluation will disappear before his interest expenses exceed 20%

of the stock’s value. If the cost of carrying short position is 7%, which is typical currently,

then one will not have a profit on a short sale of a 20% overvaluation if the premium does

not disappear entirely within three years. The differences between the theoretical finance

and reality is further complicated by the fact that the huge capital in many types of accounts

including retirement accounts cannot be used to short sell. Thus, it is not at all clear that

the capital of hedge funds and expert individuals is adequate to offset the buying of a huge

number of individuals through mutual funds and other accounts.
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Applying these concepts to typical closed-end funds, we see that a premium of, say 20%,

over NAV may not lead to short selling under conditions where an investor must pay a 7%

interest charge. Since many of these premiums and discounts have persisted over years, there

is no assurance for the short seller that a sharp increase in the premium will be eliminated

due to a quick return to fundamental value. Furthermore, borrowing shares for short selling

is not always possible.

In EMH, the assertion is not that all participants are rational and unbiased, but that

there is a sufficiently large pool of funds controlled by rational and value oriented investors,

so that the dynamics of the market is essentially the same as if all investors were free of

bias. In the absence of significant short selling, however, there is no mechanism whereby

the actions of a biased group of traders to be neutralized quickly by more value oriented

investors.
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APPENDIX B

TABLES FOR THE DEVIATION MODEL (DM) AND THE DM WITH

PARTITION

Eight tables for the DM in Section 2.2 and thirty two tables for the DM with partition in

Section 2.3 are included. We do not have the assumption of normality (see [44], p. 240-244).

Let x be sample mean and s be the sample’s standard deviation. We use t-statistic, t = x−µ
s/
√

n

with (n− 1) degrees of freedom, when the number of observations (n) is less than 30 where

the expected mean µ is zero as stated earlier in the null hypothesis.

When the sample size is sufficiently large (for example n ≥ 30), x and z ≈ x−µ
s/
√

n
have

approximately normal distributions (see [36], p. 246-248 and 363-367).

The values in the tables are represented in the form of two decimal digits after rounding.

Statistical significance is denoted by stars at the 0.01 (***), 0.05 (**), and 0.1 (*) levels

using a 1-tailed test for significance in all tables.
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TABLES FOR THE DM

Table B1: Positive low threshold level for the DM. Average deviations, in percent,

associated with 1947 large positive deviators of Day 0 for 2.5 < threshold 6 5 during

1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.05 −0.14 −0.22 −0.57 3.25 −0.61 −0.24 −0.20 −0.13

Z−Statistic -0.84 -2.86 -3.88 -11.34 228.99 -11.94 -4.74 -3.97 -2.71

Significance *** *** *** *** *** *** *** ***

Percentage > 0 50.13 45.87 44.74 39.03 100.00 35.90 43.97 45.97 46.69

Variance 6.03 4.70 6.14 4.84 0.39 5.11 5.04 4.82 4.71

Table B2: Negative low threshold level for the DM. Average deviations, in percent,

associated with 1954 large negative deviators of Day 0 for −5 6 threshold < −2.5 during

1998-2006

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.13 0.19 0.25 0.66 −3.28 0.56 0.35 0.05 0.06

Z−Statistic 2.40 3.44 5.02 11.72 -229.40 11.50 7.09 0.92 1.11

Significance *** *** *** *** *** *** ***

Percentage > 0 50.56 54.40 56.04 61.51 0.00 63.51 57.47 51.38 50.87

Variance 5.27 5.73 4.91 6.10 0.40 4.71 4.67 5.26 5.06
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Table B3: Positive medium threshold level for the DM. Average deviations, in percent,

associated with 196 large positive deviators of Day 0 for 5 < threshold 6 7.5 during 1998-

2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.09 -0.06 −0.64 −0.77 5.95 −1.31 −0.81 0.19 -0.16

Z−Statistic 0.46 -0.27 -2.90 -3.57 120.30 -6.67 -3.94 0.62 -0.68

Significance *** *** *** *** ***

Percentage > 0 48.47 44.39 40.82 39.29 100.00 30.10 37.76 51.02 46.94

Variance 7.26 9.11 9.44 9.18 0.48 7.54 8.36 19.29 11.08

Table B4: Negative medium threshold level for the DM. Average deviations associated

with 198 large negative deviators of Day 0 for −7.5 6 threshold < −5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.27 -0.01 0.61 0.66 −5.93 1.41 0.66 0.19 0.15

Z−Statistic 1.30 -0.06 1.70 2.03 -128.16 5.83 2.99 0.73 0.69

Significance * ** ** *** *** ***

Percentage > 0 51.01 52.02 57.58 62.12 0.00 67.17 52.02 52.53 53.54

Variance 8.72 10.51 25.13 20.73 0.43 11.56 9.78 14.27 9.68
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Table B5: Positive high threshold level for the DM. Average deviations associated

with 48 large positive deviators of Day 0 for 7.5 < threshold 6 10 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.10 -1.10 −0.98 −2.52 8.54 −1.42 -0.58 -0.13 0.09

Z−Statistic 0.21 -1.22 -1.95 -3.81 78.19 -2.58 -1.43 -0.26 0.17

Significance ** *** *** *** *

Percentage > 0 50.00 39.58 41.67 22.92 100.00 33.33 45.83 45.83 52.08

Variance 11.48 38.88 11.99 21.03 0.57 14.63 7.87 12.13 13.56

Table B6: Negative high threshold level for the DM. Average deviations associated

with 41 large negative deviators of Day 0 for −10 6 threshold < −7.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.34 0.22 0.37 0.74 −8.37 1.65 0.75 1.10 0.11

Z−Statistic -0.60 0.43 0.73 1.19 -81.14 2.62 1.33 1.85 0.26

Significance *** *** * **

Percentage > 0 48.78 60.98 58.54 58.54 0.00 60.98 56.10 58.54 56.10

Variance 13.47 11.38 10.27 15.98 0.44 16.29 13.03 13.59 7.58

Table B7: Positive very high threshold level for the DM. Average deviations associated

with 27 large positive deviators of Day 0 for 10 < threshold 6 50 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.50 0.05 −2.36 −4.57 16.29 −4.82 -0.54 -0.45 -0.40

T−Statistic -0.68 0.10 -1.70 -2.28 11.41 -2.45 -0.82 -0.69 -0.55

Significance * ** *** **

Percentage > 0 48.15 48.15 37.04 33.33 100.00 29.63 40.74 40.74 44.44

Variance 14.30 7.49 51.98 108.16 55.07 104.65 11.95 11.78 13.92
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Table B8: Negative very high threshold level for the DM. Average deviations as-

sociated with 19 large negative deviators of Day 0 for −50 6 threshold < −10 during

1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 1.10 0.59 1.37 3.46 −21.04 2.46 0.97 0.01 0.18

T−Statistic 0.97 0.76 2.69 0.95 -7.43 0.88 0.82 0.01 0.18

Significance *** ***

Percentage > 0 52.63 57.89 73.68 63.16 0 52.63 52.63 52.63 52.63

Variance 23.04 11.31 4.92 250.86 152.22 146.79 26.76 8.29 20.12

TABLES FOR THE DM WITH PARTITION

Table B9: The DM with partition BP1 in the low threshold level. Average devia-

tions, MP returns, and NAV returns, in percent, associated with 523 large positive deviators

of Day 0 for 2.5 < threshold 6 5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.04 0.03 −0.29 −0.48 3.25 −0.55 −0.16 -0.10 -0.07

Significance *** *** *** *** **

Mean MP Return 0.03 0.09 -0.12 −0.24 3.23 −0.31 -0.08 -0.02 -0.09

Significance *** *** ***

Mean NAV Return -0.01 0.06 0.17 0.24 −0.03 0.24 0.08 0.08 -0.01

Significance *** *** *** *** * *

106



Table B10: The DM with partition BN1 in the low threshold level. Average

deviations, in percent, associated with 467 large negative deviators of Day 0 for −5 6
threshold < −2.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.20 0.11 0.15 0.56 −3.22 0.40 0.42 0.06 0.06

Significance * * *** *** *** ***

Mean MP Return 0.00 0.16 0.06 0.16 −3.19 0.16 0.30 0.02 0.15

Significance * ** *** * *** *

Mean NAV Return −0.19 0.05 -0.10 −0.40 0.03 −0.24 −0.11 -0.04 0.08

Significance *** * *** *** *** **

Table B11: The DM with partition BP1 in the medium threshold level. Av-

erage deviations, in percent, associated with 72 large positive deviators of Day 0 for

5 < threshold 6 7.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.21 -0.17 -0.31 0.30 5.96 −1.28 -0.15 0.40 -0.63

Significance *** *** * ***

Mean MP Return -0.25 -0.25 -0.24 0.27 6.01 -0.20 -0.13 0.40 -0.34

Significance *** *

Mean NAV Return −0.46 -0.09 0.07 -0.03 0.05 1.08 0.02 -0.00 0.29

Significance ** *** *
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Table B12: The DM with partition BN1 in the medium threshold level. Average

deviations, in percent, associated with 75 large negative deviators of Day 0 for −7.5 6
threshold < −5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.06 0.22 1.55 -0.25 −5.80 1.54 0.38 0.10 0.16

Significance *** *** *** *

Mean MP Return -0.06 0.18 1.26 -0.22 −5.61 0.46 0.42 0.45 0.55

Significance ** *** ** * * **

Mean NAV Return -0.12 -0.04 -0.29 0.04 0.19 −1.08 0.04 0.34 0.39

Significance * *** *** ** **

Table B13: The DM with partition BP1 in the high threshold level. Av-

erage deviations, in percent, associated with 21 large positive deviators of Day 0 for

7.5 < threshold 6 10 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.46 -2.63 -1.01 -1.26 8.59 -1.51 -0.25 -0.72 -0.05

Significance * *** *

Mean MP Return 0.16 -2.87 -0.73 -1.28 8.28 0.15 0.64 -0.90 -0.21

Significance * *** *

Mean NAV Return -0.30 -0.25 0.28 -0.03 −0.31 1.66 0.89 -0.18 -0.16

Significance ** *** **
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Table B14: The DM with partition BN1 in the high threshold level. Average

deviations, in percent, associated with 24 large negative deviators of Day 0 for −10 6
threshold < −7.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.18 0.42 0.26 -0.04 −8.43 2.09 0.81 1.60 -0.48

Significance *** ** ***

Mean MP Return -0.51 -0.11 -0.08 -0.42 −8.48 0.26 0.11 1.20 −0.94

Significance *** ** **

Mean NAV Return −0.69 −0.54 -0.33 -0.38 -0.04 −1.83 −0.70 -0.46 -0.46

Significance *** ** *** ** * *

Table B15: The DM with partition BP1 in the very high threshold level.

Average deviations, in percent, associated with 4 large positive deviators of Day 0 for

10 < threshold 6 50 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 1.30 1.50 -10.5 0.24 12.69 -1.05 −4.60 0.64 -0.42

Significance *** ***

Mean MP Return 0.38 2.31 -10.20 0.56 12.60 1.92 -2.30 -0.14 -0.39

Significance ***

Mean NAV Return -0.87 0.81 0.31 0.32 -0.10 2.97 2.30 -0.78 0.02

Significance *
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Table B16: The DM with partition BN1 in the very high threshold level. Average

deviations, in percent, associated with 10 large negative deviators of Day 0 for −50 6
threshold < −10 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.52 1.21 1.32 -1.64 −16.14 1.85 2.10 1.30 -0.46

Significance ** *** *

Mean MP Return 1.80 0.63 0.40 0.82 −16.27 1.29 2.60 0.45 -0.80

Significance ** *** *

Mean NAV Return 1.20 -0.58 -0.92 2.46 -0.13 -0.55 0.53 -0.82 -0.34

Significance *

Table B17: The DM with partition BP2 in the low threshold level. Av-

erage deviations, in percent, associated with 810 large positive deviators of Day 0 for

2.5 < threshold 6 5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.05 −0.34 −0.19 −0.60 3.30 −0.52 −0.19 −0.25 −0.13

Significance *** ** *** *** *** ** *** **

Mean MP Return -0.05 −0.19 -0.12 −0.36 3.31 −0.30 -0.06 −0.19 -0.10

Significance *** * *** *** *** ** *

Mean NAV Return -0.00 0.15 0.08 0.24 0.01 0.21 0.12 0.06 0.04

Significance *** *** *** ***
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Table B18: The DM with partition BN2 in the low threshold level. Average

deviations, in percent, associated with 839 large negative deviators of Day 0 for −5 6
threshold < −2.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.12 0.22 0.24 0.53 −3.34 0.59 0.36 0.13 0.08

Significance * *** *** *** *** *** *** **

Mean MP Return -0.06 0.10 -0.08 -0.04 −3.42 0.32 0.40 0.23 0.12

Significance * *** *** *** *** *

Mean NAV Return −0.18 −0.12 −0.33 −0.56 -0.08 −0.28 0.04 0.11 0.05

Significance *** ** *** *** * *** **

Table B19: The DM with partition BP2 in the medium threshold level. Av-

erage deviations, in percent, associated with 79 large positive deviators of Day 0 for

5 < threshold 6 7.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.15 -0.13 -0.45 −1.19 5.88 −1.40 −1.10 0.99 -0.38

Significance *** *** *** *** ***

Mean MP Return -0.35 -0.07 0.03 −0.81 4.97 −1.22 -0.55 0.69 0.20

Significance *** *** *** * **

Mean NAV Return -0.20 0.07 0.48 0.38 −0.91 0.18 0.51 -0.30 0.58

Significance ** ** *** ** * ***
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Table B20: The DM with partition BN2 in the medium threshold level. Average

deviations, in percent, associated with 82 large negative deviators of Day 0 for −7.5 6
threshold < −5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.51 0.13 -0.07 1.12 −6.04 1.59 0.64 0.15 0.47

Significance ** *** *** *** ** *

Mean MP Return 0.23 -0.39 -0.42 0.39 −5.39 0.78 0.49 0.53 0.32

Significance * *** ** * *

Mean NAV Return -0.28 −0.52 −0.36 −0.73 0.65 −0.81 -0.14 0.38 -0.15

Significance * ** ** *** *** *** **

Table B21: The DM with partition BP2 in the high threshold level. Av-

erage deviations, in percent, associated with 17 large positive deviators of Day 0 for

7.5 < threshold 6 10 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.65 -0.04 -1.26 −3.31 8.63 −2.08 -1.00 1.10 -0.21

Significance * *** *** *** *

Mean MP Return -0.46 0.55 −1.49 −2.70 6.76 -0.88 -1.10 0.36 0.20

Significance * ** *** * *

Mean NAV Return 0.19 0.59 -0.23 0.61 −1.87 1.20 -0.10 -0.69 0.41

Significance * *** ** *
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Table B22: The DM with partition BN2 in the high threshold level. Average

deviations, in percent, associated with 11 large negative deviators of Day 0 for −10 6
threshold < −7.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.84 0.00 1.34 2.15 −8.35 1.25 1.00 1.10 1.30

Significance ** *** *

Mean MP Return -0.67 -0.49 -0.48 -0.28 −7.96 -0.12 -0.29 0.28 0.83

Significance ***

Mean NAV Return 0.17 -0.49 −1.82 −2.43 0.39 -1.37 -1.30 -0.80 -0.49

Significance ** *** * *

Table B23: The DM with partition BP2 in the very high threshold level.

Average deviations, in percent, associated with 7 large positive deviators of Day 0 for

10 < threshold 6 50 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.36 -0.99 -1.75 -2.77 16.57 −5.63 0.39 -0.72 -2.60

Significance * *** *

Mean MP Return -0.88 -0.13 −3.05 -2.95 13.71 −1.85 0.03 -0.49 -1.60

Significance * * *** *

Mean NAV Return -0.52 0.86 −1.30 -0.18 −2.86 3.78 -0.36 0.23 1.10

Significance ** ** *
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Table B24: The DM with partition BN2 in the very high threshold level.

Average deviations, in percent, associated with 2 large negative deviators of Day 0 for

−50 6 threshold < −10 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 2.60 0.74 2.28 2.50 −13.81 8.27 1.20 -2.60 -2.80

Significance * * ***

Mean MP Return 2.70 1.48 3.39 3.53 −9.75 4.40 2.10 -0.44 -0.70

Significance * * *

Mean NAV Return 0.10 0.73 1.10 1.03 4.06 −3.87 0.86 2.10 2.10

Significance * *

Table B25: The DM with partition BP3 in the low threshold level. Av-

erage deviations, in percent, associated with 440 large positive deviators of Day 0 for

2.5 < threshold 6 5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.23 -0.07 −0.20 −0.65 3.23 −0.81 −0.32 -0.15 -0.19

Significance * ** *** *** *** *** * *

Mean MP Return -0.21 -0.13 -0.13 −0.58 0.48 −0.78 −0.26 -0.09 -0.08

Significance * * *** *** *** **

Mean NAV Return 0.03 -0.06 0.07 0.07 −2.76 0.03 0.05 0.06 0.11

Significance ***
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Table B26: DM with partition BN3 in the low threshold level. Average deviations,

in percent, associated with 476 large negative deviators of Day 0 for −5 6 threshold < −2.5

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.08 0.19 0.45 0.91 −3.28 0.56 0.36 -0.07 0.02

Significance ** *** *** *** *** ***

Mean MP Return -0.03 −0.27 -0.03 0.60 −0.51 0.58 0.10 0.19 0.08

Significance *** *** *** *** **

Mean NAV Return -0.11 −0.46 −0.48 −0.32 2.77 0.02 −0.26 0.26 0.06

Significance *** *** *** *** *** **

Table B27: DM with partition BP3 in the medium threshold level. Average devia-

tions, in percent, associated with 28 large positive deviators of Day 0 for 5 < threshold 6 7.5

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.28 0.38 −1.60 −1.96 6.18 −0.90 −1.80 -2.60 1.70

Significance *** *** *** ** *** * *

Mean MP Return -0.36 0.52 −1.62 −3.01 1.31 −0.81 −1.40 -0.88 0.08

Significance *** *** *** ** ***

Mean NAV Return −0.65 0.15 -0.02 −1.05 −4.87 0.08 0.38 1.70 -1.60

Significance ** ** *** *
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Table B28: DM with partition BN3 in the medium threshold level. Average

deviations, in percent, associated with 30 large negative deviators of Day 0 for −7.5 6
threshold < −5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.10 -0.67 1.26 1.77 −5.99 1.14 0.90 -0.28 0.32

Significance *** *** *** **

Mean MP Return -0.31 -0.53 0.85 0.96 −1.83 0.95 0.31 0.44 0.56

Significance * * *** ** *

Mean NAV Return -0.20 0.14 -0.41 −0.81 4.16 -0.19 -0.59 0.72 0.24

Significance ** *** *

Table B29: DM with partition BP3 in the high threshold level. Average deviations,

in percent, associated with 6 large positive deviators of Day 0 for 7.5 < threshold 6 10

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.57 -0.11 -0.57 -4.57 8.19 -0.73 -0.01 -1.30 2.90

Significance * *** *

Mean MP Return -0.16 0.96 -0.76 −3.56 3.18 0.25 0.66 -0.41 2.30

Significance * ***

Mean NAV Return -0.72 1.07 -0.19 1.01 −5.01 0.98 0.67 0.93 -0.61

Significance * *** *
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Table B30: DM with partition BN3 in the high threshold level. Average deviations,

in percent, associated with 4 large negative deviators of Day 0 for −10 6 threshold < −7.5

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -3.80 0.15 -1.04 -0.25 −8.31 -0.11 -0.34 -1.20 0.74

Significance ***

Mean MP Return -0.94 -1.34 −2.07 -0.49 −2.29 -0.18 0.97 0.36 0.41

Significance * *** *

Mean NAV Return 2.90 −1.49 -1.04 -0.24 6.02 -0.07 1.30 1.60 -0.32

Significance * *** **

Table B31: DM with partition BP3 in the very high threshold level. Average devia-

tions, in percent, associated with 9 large positive deviators of Day 0 for 10 < threshold 6 50

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -1.90 -0.35 −0.98 -6.16 19.00 -7.46 0.03 -0.83 0.21

Significance ** *** *

Mean MP Return −1.60 -0.18 -0.46 -1.04 1.96 -0.40 0.34 -0.32 1.50

Significance ** ** **

Mean NAV Return 0.32 0.17 0.52 5.11 −17.04 7.06 0.32 0.52 1.30

Significance *** * **
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Table B32: DM with partition BN3 in the very high threshold level. Av-

erage deviations, in percent, associated with 2 large negative deviators of Day 0 for

−50 6 threshold < −10 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 5.60 −2.64 4.44 15.50 −17.66 −3.51 -0.92 -3.70 9.00

Significance *

Mean MP Return 10.00 −2.47 2.60 18.80 −5.67 −3.51 -0.80 -4.40 4.70

Significance ***

Mean NAV Return 4.50 0.16 −1.83 3.37 11.99 0.00 0.12 -0.71 -4.40

Significance * ** *

Table B33: The DM with partition BP4 in the low threshold level. Average

deviations, in percent, associated with 174 large deviators of Day 0 for 2.5 < threshold 6 5

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.19 0.10 -0.19 −0.46 3.07 −0.74 −0.55 −0.36 -0.17

Significance * *** *** *** *** **

Mean MP Return -0.06 0.16 −0.37 −0.48 0.06 −0.86 −0.46 -0.19 -0.02

Significance *** *** *** *** ***

Mean NAV Return −0.25 0.06 -0.19 -0.03 −3.01 -0.12 0.08 0.17 0.15

Significance ** * ***
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Table B34: The DM with partition BN4 in the low threshold level. Average

deviations, in percent, associated with 172 large deviators of Day 0 for −5 6 threshold <

−2.5 during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.08 0.24 -0.00 0.82 −3.08 0.89 0.05 -0.05 0.05

Significance * *** *** ***

Mean MP Return 0.05 -0.17 −0.42 0.19 −0.08 1.09 0.12 0.09 0.11

Significance *** *** ***

Mean NAV Return -0.04 −0.41 −0.41 −0.63 2.99 0.21 0.06 0.13 0.06

Significance *** *** *** *** *

Table B35: The DM with partition BP4 in the medium threshold level. Average

deviations, in percent, associated with 17 large deviators of Day 0 for 5 < threshold 6 7.5

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.35 0.05 −1.30 −1.44 5.83 −1.72 -0.83 0.23 -0.18

Significance * ** *** ***

Mean MP Return -0.22 -1.28 -0.73 −2.09 0.17 -0.91 -0.97 -0.40 −1.20

Significance * *** * **

Mean NAV Return -0.57 -1.33 0.56 -0.65 −5.66 0.81 -0.14 -0.63 -1.00

Significance *** *
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Table B36: The DM with partition BN4 in the medium threshold level. Average

deviations, in percent, associated with 11 large deviators of Day 0 for −7.5 6 threshold < −5

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.87 -0.87 -2.59 0.34 −5.92 -0.12 2.10 2.50 -2.70

Significance *** ***

Mean MP Return 1.10 -0.84 1.21 0.62 -0.11 -0.43 1.80 3.60 −1.40

Significance ** *

Mean NAV Return 0.21 0.03 3.80 0.28 5.81 -0.31 -0.36 1.20 1.40

Significance ***

Table B37: The DM with partition BP4 in the high threshold level. Average

deviations, in percent, associated with 4 large deviators of Day 0 for 7.5 < threshold 6 10

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.69 0.96 -0.24 −2.74 8.37 0.81 -1.20 -0.22 −2.20

Significance * *** ** **

Mean MP Return 0.32 0.85 1.02 -2.34 0.00 0.62 -0.50 -0.14 −2.20

Significance * **

Mean NAV Return -0.38 -0.11 1.26 0.40 −8.37 -0.19 0.72 0.08 -0.01

Significance * *** *
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Table B38: The DM with partition BN4 in the high threshold level. Average

deviations, in percent, associated with 2 large deviators of Day 0 for −10 6 threshold < −7.5

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 3.10 -0.77 -0.88 4.39 −7.84 2.11 0.82 -1.20 -0.71

Significance ***

Mean MP Return 2.90 1.33 0.61 5.52 −1.03 1.71 0.43 -0.97 -2.10

Significance ** **

Mean NAV Return -0.22 2.10 1.48 1.13 6.81 -0.39 -0.39 0.23 −1.40

Significance ** **

Table B39: The DM with partition BP4 in the very high threshold level. Average

deviations, in percent, associated with 7 large deviators of Day 0 for 10 < threshold 6 50

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation 0.15 0.79 -0.09 −7.09 14.60 -2.78 0.12 -0.33 1.10

Significance * * ***

Mean MP Return -0.24 0.18 0.05 −2.97 0.40 -2.93 -0.61 -0.74 1.00

Significance *

Mean NAV Return -0.39 -0.61 0.14 4.11 −14.20 -0.14 -0.73 -0.41 -0.05

Significance ***
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Table B40: The DM with partition BN4 in the very high threshold level. Average

deviations, in percent, associated with 5 large deviators of Day 0 for −50 6 threshold < −10

during 1998-2006.

Day -4 -3 -2 -1 0 1 2 3 4

Mean Deviation -0.26 0.56 -0.11 9.26 −35.08 3.74 -0.56 -0.00 -0.88

Significance ***

Mean MP Return -0.94 -0.17 0.34 0.43 0.13 -6.81 0.86 -0.30 -0.32

Significance *

Mean NAV Return -0.68 -0.73 0.45 -8.83 35.21 -10.60 1.40 −0.29 0.56

Significance *** * **
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APPENDIX C

ABBREVIATIONS

AMO Alliance All-Market Advantage Fund

APB Asia Pacific Fund

BF Behavioral finance

BN1 Block of large negative deviations such that MP return spikes down while NAV

is relatively unchanged on Day 0

BN2 Block of large negative deviations such that both MP return and NAV return

are changed where the influence of MP return on Day 0 is greater

BN3 Block of large negative deviations such that both MP return and NAV return

are changed where the influence of NAV return on Day 0 is greater

BN4 Block of large negative deviations such that NAV return spikes up while MP

is relatively unchanged on Day 0

BP1 Block of large positive deviations such that MP return spikes up while NAV

is relatively unchanged on Day 0

BP2 Block of large positive deviations such that both MP return and NAV return

are changed where the influence of MP return on Day 0 is greater

BP3 Block of large positive deviations such that both MP return and NAV return

are changed where the influence of NAV return on Day 0 is greater

BP4 Block of large positive deviations such that NAV return spikes down while MP

is relatively unchanged on Day 0

123



CDEs Caginalp differential equations

CEF Closed-end fund

DM Deviation model

EMH Efficient market hypothesis

ETF Exchange-Traded Fund

EWP iShares MSCI Spain Index Fund

GEF General Equity Fund

MIF Maximum improvement factor

MP Market price

NAV Net asset value

NYSE New York Stock Exchange

Pt Market price at time t

SEF Specialized Equity Fund

SNF Spain Fund Inc

S&P 500 Standard & Poor’s Composite 500

TRF Templeton Russia and East European Fund

Vt NAV price at time t

WEF World Equity Fund
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