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TOPOLOGICAL ALGEBRAIC STRUCTURE IN THE DENSITY

TOPOLOGY AND ON SOUSLIN LINES

Thomas J. Poerio, PhD

University of Pittsburgh, 2008

This research investigates which topological algebraic structures can exist on two types of

topological spaces: the real line R with the density topology; and any linearly ordered topo-

logical space (LOTS) satisfying the countable chain condition (CCC) that is not separable

(i.e. any Souslin Line). Some surprising results are established in the density topology when

considering the common group operations on R. Indeed, this research shows that addition

and multiplication are not topological group operations in this space. These theorems are

then generalized to show that there are no topological group operations on R with the den-

sity topology. The case of cancellative topological semigroups, however, is left as an open

question.

On the other hand, the conditions of existence of topological algebraic structures on

Souslin lines is rather completely determined by this work. The main results in this space

are that paratopological groups do not exist on any Souslin line, but cancellative topological

semigroups do exist. The research on this space culminates with the construction of a

cancellative topological semigroup on a Souslin line.
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1.0 INTRODUCTION

1.1 DEFINITIONS AND NOTATION

We begin with some, but not all, of the basic de�nitions of terms used throughout the disser-

tation. Many of these de�nitions will be familiar to mathematicians, especially topologists,

but they are stated here for reference and completeness. Additional de�nitions will be

provided in subsequent sections as they are needed.

In what follows, the nine basic axioms of Zermelo-Fraenkel Set Theory will be assumed

as will the Axiom of Choice. This will be denoted ZFC. Familiarity with Lebesgue measure

will also be assumed, and measurable will mean Lebesgue measurable as de�ned in [26].

The Lebesgue measure on R and R2 will be denoted m1 and m2, respectively.

De�nition 1. Given any set X a topology � on X is de�ned to be a family of subsets

� = fT� � X : � < �g such that the following three conditions are satis�ed. These subsets

are said to be open.

1. Any union of elements of � is in � .

2. The intersection of any �nite number of elements of � is in � .

3. X and ; are in � .

De�nition 2. A topological space is a pair (X; �) where X is a set and � is a topology on

X.

For brevity we will denote a topological space simply as X when the topology is clear

from context or when a statement is independent of the topology.

De�nition 3. A subset A � X of X is closed if its complement XnA is open.
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De�nition 4. A set is clopen if it is both closed and open. For example, the entire set,

X, and the empty set ; are both clopen.

De�nition 5. The closure of a set A, denoted A, is the intersection of all closed sets

containing it.

De�nition 6. A map f : X �! Y between topological spaces is continuous if for each

open subset U of Y the inverse image f�1 (U) is open in X.

De�nition 7. The symmetric di¤erence between two sets A and B, denoted A4B, is

the set of all points in one and only one of the sets. i.e. A4B = fx : x 2 A; x =2 Bg [

fx : x =2 A; x 2 Bg = (A [B) n (A \B).

De�nition 8. A topological space X is Hausdor¤ if, for any two points x1; x2 2 X; there

exist disjoint open sets U1 and U2 containing x1 and x2, respectively.

De�nition 9. A topological space X is regular if, for any point x 2 X and for any closed

subset C � X with x =2 C, the singleton fxg is closed and there exists disjoint open sets U1
and U2 with x 2 U1 and C � U2. The requirement that singletons be closed is sometimes

omitted from the de�nition, and a topological space is said to have property T3 if it is regular

and singletons are closed. The distinction is irrelevant in this dissertation since all singletons

are closed in the topologies being considered.

De�nition 10. A topological space X is completely regular if, for any point x 2 X and

for any closed subset C � X with x =2 C, the singleton fxg is closed and there exists a

continuous function f : X �! [0; 1] such that f (x) = 0 and f (C) = f1g.

De�nition 11. A topological space X is normal if, for each pair of disjoint closed sets

C � X and D � X, there exist disjoint open sets U1 and U2 with C � U1 and D � U2.

De�nition 12. A map f : X �! Y is injective if for all a; b 2 X, a 6= b implies f(a) 6=

f(b). The map is surjective if every element of Y is the image of some element of X.

The map is bijective if it is both injective and surjective.

De�nition 13. A bijection f : X �! Y between topological spaces is a homeomorphism

if both f and the inverse map f�1 : Y �! X are continuous.
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De�nition 14. A set X is countable if there is a bijective map from a subset of the natural

numbers onto X.

De�nition 15. An open covering of a topological space X is a collection of open subsets

of X such that every point of X is contained in at least one of the subsets.

De�nition 16. A topological space X is compact if every open covering has a �nite sub-

collection that covers X.

De�nition 17. A G� set in a topological space X is a set equal to a countable intersection

of open subsets of X.

De�nition 18. Let X be a topological space, let A be a subset of X, and let U be a collection

of subsets of X. The star of U about A, denoted st(A;U), is the set

st(A;U) = [fU 2 U : A \ U 6= ;g. If A is a singleton (i.e. A = fxg), st(fxg ;U) is denoted

st(x;U) for simplicity.

De�nition 19. In a topological space (X; �) a collection B of elements of � is a base of �

if, for all T� 2 � ; T� is a union of elements of B.

De�nition 20. A local base at a point x 2 X is a collection of open sets containing x such

that any open set containing x has a subset in the collection.

De�nition 21. A topological space X is �rst countable if at each x 2 X there is a countable

local base.

De�nition 22. A Hamel Basis is an algebraic basis for the vector space of real numbers

over the �eld of rationals.

De�nition 23. A binary relation, E, on a set X is re�exive if for all a in X, a E a.

De�nition 24. A binary relation, E, on a set X is antisymmetric if for all a and b in

X, a E b and b E a implies a = b.

De�nition 25. A binary relation, E, on a set X is transitive if for all a, b, and c in X,

a E b and b E c implies a E c.

De�nition 26. A binary relation, E, on a set X is a partial ordering if it is re�exive,

antisymmetric, and transitive. In general, there can exist a and b in X such that neither
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a E b nor b E a.

De�nition 27. A binary relation E on a set X is total if for all a and b in X, a E b or

b E a.

De�nition 28. A total ordering, or linear ordering, on a set X is a binary relation

that is re�exive, antisymmetric, transitive, and total.

De�nition 29. A linearly ordered topological space (LOTS) is a linearly ordered space for

which open intervals are a base for the topology i.e. � = f(a; b) : a; b 2 Xg where (a; b) =

fx : a < x < bg .

De�nition 30. A well ordering on a set X is a total ordering with the property that every

non-empty subset of X has a least element.

De�nition 31. A tree is a partially ordered set T that has a least element such that, for

each a 2 T , the set fb 2 T : b E ag is well ordered.

De�nition 32. A subset A � X of a topological space X is a dense subset if A = X.

De�nition 33. A linearly ordered set (X;E) is order dense if for all a; b 2 X with a < b

there exists c 2 X such that a < c < b.

De�nition 34. A subset A � R of the real numbers is a c-dense subset if for every non-

empty open interval U � R the cardinality of A \ U is the cardinality of the continuum,

c.

De�nition 35. A subset A of a topological space X is nowhere dense if the complement

of its closure, XnA, is a dense subset of X.

De�nition 36. A topological space X satis�es the Countable Chain Condition (CCC)

if every collection of pairwise disjoint open sets is countable.

De�nition 37. A topological space X is separable if it has a countable dense subset.

De�nition 38. A topological space X is connected if there does not exist a pair of disjoint

nonempty open subsets of X whose union is X.

De�nition 39. A separation of a topological space X is a pair of disjoint nonempty open

subsets of X whose union is X. So, a space is connected if a separation does not exist.
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De�nition 40. A LOTS is complete if every nonempty subset with an upper bound has a

least upper bound (supremum) and every nonempty subset with a lower bound has a greatest

lower bound (in�mum).

De�nition 41. Two linearly ordered sets (X;E) and (Y;�) are isomorphic if there exists a
bijective map f : X �! Y such that for all x1; x2 2 X, x1 E x2 if and only if f(x1) � f(x2).

The map, f , is called an isomorphism.

De�nition 42. A binary operation � is an operation on two variables in a nonempty set

X (i.e. � : X �X �! X) that is de�ned for all pairs of elements in X and such that for all

a; b 2 X the product a � b is a unique element of X.

De�nition 43. A semigroup is a pair (X; �) where X is a nonempty set and � is a binary

operation such that the associative law holds (i.e. for all x; y; z 2 X, x � y 2 X and x �

(y � z) = (x � y) � z).

De�nition 44. A group is a semigroup that contains an identity element e and an inverse

element for every element of X (i.e. there exists e 2 X such that for every x 2 X, x � e =

e � x = x and for all x 2 X, there exists x�1 2 X such that x � x�1 = x�1 � x = e).

De�nition 45. For any Lebesgue measurable subset E � R and for any point x 2 R the

density of E at x is given by D (E; x) = lim
h�!0+

m1(E\(x�h;x+h))
2h

.

De�nition 46. A real number x 2 R is a density point of a subset E of R if D (E; x) = 1,

and x is a dispersion point of E if D (E; x) = 0. Equivalently, x is a dispersion point of

E if and only if x is a density point of the complement of E. The set of all density points

of E is denoted by � (E) = fx 2 R : D (E; x) = 1g.

De�nition 47. The set of natural numbers is denoted by ! or !0 or N. The set of rational

numbers is denoted by Q, and the set of real numbers is denoted by R.

De�nition 48. The �rst uncountable ordinal number will be denoted by !1.

De�nition 49. A Souslin line is a totally ordered set L such that, in the order topology,

L satis�es the CCC but is not separable.
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1.2 THE DENSITY TOPOLOGY

The density topology grew from the study of approximately continuous functions, which were

de�ned by Denjoy [17] in 1916. A point x 2 R is a density point of a measurable subset

E � R if and only if the densityD (E; x) = lim
h�!0+

m1(E\(x�h;x+h))
2h

= 1. A real valued function,

f (t), is said to be approximately continuous at a point x 2 R if, for any � > 0, x is a

density point of ft 2 R : f (t) 2 (f (x)� �; f (x) + �)g. Many years later, Haupt and Pauc

[18] showed that approximately continuous functions are those functions that are continuous

when the range has the standard topology (given by unions of open intervals) and the

domain has the topology �D = fE � R : E is measurable and for all x 2 E, D (E; x) = 1g,

which they named the density topology. All of the standard open sets (unions of open

intervals) are open in the density topology as are many sets that are not open in the standard

topology. For example, the set of points that remain after all rational numbers are removed

from any open interval is an open set in the density topology so that (a; b) nQ 2 �D. The

density topology is, therefore, �ner than the standard topology.

The study of approximately continuous functions and the density topology continued

with the work of Go¤man and Waterman [19], but the density topology soon began a life of

its own. Today, the topological properties of (R; �D) are well known. They are described by

Tall [21] who �rst began to consider the density topology from a topological point of view.

Consider the following known results:

Theorem 50 (Go¤man and Waterman). (R; �D) is connected. See [19].

Theorem 51 (Go¤man, Neugebauer, and Nishiura). (R; �D) is completely regular, but it is

not normal. See [20].

Theorem 52 (Tall). (R; �D) satis�es the CCC. See [21].

Theorem 53 (Tall). (R; �D) is neither separable nor �rst countable. See [21].

Theorem 54 (Lebesgue Density Theorem). The measure of the symmetric di¤erence be-

tween a set of positive measure and its set of density points is zero. In other words, for any

measurable set E � R, m1 (E4� (E)) = 0 where � (E) is the set of all density points of E.

See [24] and [25].
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In higher dimensions there is more than one way to de�ne both density and the density

topology. For example, in R2 a point (x; y) is an ordinary density point of a measurable

subset E � R2 if and only if the ordinary density

Do (E; (x; y)) = lim
h�!0+

m2 (E \ ((x� h; x+ h)� (y � h; y + h)))

4h2
= 1

and a strong density point if and only if the strong density

Ds (E; (x; y)) = lim
h�!0+; k�!0+

m2 (E \ ((x� h; x+ h)� (y � k; y + k)))

4hk
= 1

The ordinary density topology (denoted � o), then, consists of the set of measurable

subsets of R2 such that every point in the subset is an ordinary density point, and the

strong density topology (denoted � s) de�ned similarly with every point in the subset a

strong density point. These de�nitions can, of course, be extended to higher dimensions.

While the present work is mainly concerned with the one dimensional case, an interesting

comparison will be made later between continuous functions of two variables with domain

(R; �D)� (R; �D) and continuous funtions with domain (R2; � s) or (R2; � o).

1.3 SOUSLIN LINES

Any complete, separable, order dense LOTS with no �rst or last point is "the same" as

the real numbers. That is to say, the space of real numbers, with their natural ordering

(R; <), is isomorphic to any complete, separable, order dense, linearly ordered set with no

�rst or last point. This is a well known fact. Indeed, for any other such LOTS (S;C)
with a countable dense subset P there is an isomorphism from P to the rational numbers Q.

Thus, (S;C) is isomorphic to (R; <) by the uniqueness of the completion. In 1920, in the

�rst volume of Fundamenta Mathematicae [14], Russian mathematician Mikhail Yakovlevich

Souslin (1894-1919), whose name is also spelled Suslin in the literature, considered whether

an isomorphism would still exist if "separable" was replaced by "CCC". Speci�cally, Souslin

asked
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Un ensemble ordonné (linéairement) sans saut ni lacunes et tel que tout ensemble de ses
intervalles (contenant plus qu�un élément ) n�empiétant pas les uns sur les autres est au
plus dénombrable, est-il nécessairement un continu linéaire (ordinaire)?

Paraphrasing, Souslin was asking whether the ordering of the real numbers is completely

characterized by a LOTS that is complete, order dense, satis�es the CCC and does not have

a �rst or last point. The hypothesis that separable could be replaced by CCC became known

as Souslin�s Hypothesis (SH). Any LOTS that is isomorphic to (R; <) must be separable

since the isomorphism would preserve the countable dense set. Another way, then, of looking

at Souslin�s question is to ask whether a complete, order dense, LOTS without endpoints and

satisfying the CCC must be separable. A complete order dense LOTS without endpoints can

be constructed from any order dense LOTS by taking an open interval of the completion.

Furthermore, if a LOTS satis�es the CCC and is not separable, it can be made to be

order dense by de�ning an equivalence relation on any closed subinterval that is separable.

Collapsing each of these subintervals to a point will make an order dense LOTS satisfying

the CCC that is not separable. Therefore, the existence of a LOTS satisfying the CCC that

is not separable would imply that SH is false. This is the de�nition of a Souslin line, and

Souslin�s Hypothesis is that there are no Souslin lines.

So, do Souslin lines exist? More than 45 years after Souslin �rst asked the question the

surprising answer was found independently by Thomas Jech [15] and S. Tennenbaum [16].

The answer, however, wasn�t a simple "yes" or "no". Jech and Tennenbaum proved that the

existence of a Souslin line can be neither proven nor disproven using the standard axioms of

set theory (ZFC). Additional axioms are needed, and a Souslin line can be proven to exist or

not exist depending on which axioms are chosen. Indeed, Ronald Jensen proved the existence

of Souslin lines assuming Gödel�s axiom of contructibility (all sets are constructible). Gödel�s

axiom of contructibility implies �, and � implies both the Continuum Hypothesis and the

existence of Souslin lines. On the other hand, Martin�s Axiom (MA) along with the negation

of the Continuum Hypothesis (dCH) implies that Souslin lines do not exist. In the following

sections Souslin lines are assumed to exist.
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1.4 TOPOLOGICAL GROUPS AND SEMIGROUPS

The following sections will be concerned with whether or not certain topological algebraic

structures can exist on (R; �D) and on Souslin lines. First, some de�nitions are required.

De�nition 55. A topological group is a triple (X; �; �) such that (X; �) is a topological

space and (X; �) is a group and in which both the binary operation � : (X; �) � (X; �) �!

(X; �) and the inverse function i (x) = x�1 are continuous where the domain of � is X �X,

and it has the product topology.

De�nition 56. A paratopological group is a triple (X; �; �) such that (X; �) is a topologi-

cal space and (X; �) is a group and in which the binary operation � : (X; �)�(X; �) �! (X; �)

is continuous where the domain has the product topology. Note that the inverse function

does not need to be continuous.

De�nition 57. A topological semigroup is a triple (X; �; �) such that (X; �) is a topolog-

ical space and (X; �) is a semigroup and in which the binary operation � : (X; �)�(X; �) �!

(X; �) is continuous where the domain has the product topology.

De�nition 58. A semigroup or topological semigroup is cancellative if for all x, y, z 2 X,

x � y = x � z implies y = z, and y � x = z � x also implies y = z.

The existence of these structures on (R; �D) and on Souslin lines will be analyzed. Ob-

viously, groups and semigroups exist on R and other linearly ordered sets. The question,

then, boils down to the one of continuity of the binary operation � in the topology being

studied. A study of the properties of binary operations is, therefore, a good place to start.

Let � be a binary operation on a topological space, X, and let a 2 X be �xed. Right

translation by a is a map �a : X �! X de�ned for all x 2 X by �a (x) = x � a, and left

translation by a is a map a� : X �! X de�ned for all x 2 X by a� (x) = a � x. We will

just say translation when a statement applies to both left and right translation.

Additionally, suppose the topological space has a total ordering denoted by <. Right

translation by a will be called order preserving if for all x; y 2 X with x < y translation

gives �a (x) < �a (y), and it will be called order reversing if �a (x) > �a (y) for all x < y.

If right translation is order preserving (reversing) for all a 2 X then right translation will be
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called order preserving (reversing) without any mention of the element a. The same holds,

of course, for left translation, and the operation � will be called order preserving (reversing)

if both left and right translation are order preserving (reversing) for all a 2 X.

We will use some well known results that follow directly from the de�nitions.

Theorem 59. Let � be a continuous binary operation on a topological space, X. For any

a 2 X, translation by a is continuous.

Proof. Let W � X be an arbitrary open set. We will show ��1a (W ) is open by showing

for all x 2 ��1a (W ) there exists an open set V with x 2 V such that V � ��1a (W ). Let

�: X � X �! X denote the map such that for all x; y 2 X; � (x; y) = x � y. For any

x 2 ��1a (W ), (x; a) 2 ��1 (W ). The continuity of � implies ��1 (W ) is open. So, there

exists open sets U and V with a 2 U and x 2 V such that V �U � ��1 (W ). Now, for any

v 2 V , (v; a) 2 ��1 (W ) so v 2 ��1a (W ). Thus, V � ��1a (W ). Therefore, �a is continuous.

A similar argument shows a� is continuous.

Although translation is easily shown to be a homeomorphism for topological groups and

paratopological groups, the result that we�ll be using is that translation maps open sets to

open sets.

Theorem 60. For any topological group or paratopological group, translation is an open

map, i.e. translation maps open sets to open sets.

Proof. For any open set U � X, �a (U) = ��1a�1 (U) is open since translation by a�1 is

continuous. Therefore, right translation is an open map, and the same argument holds for

left translation.

Additional useful properties of the binary operation depend on the topology. Let�s start

with the density topology on the real line.
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2.0 TOPOLOGICAL GROUPS AND SEMIGROUPS ON (R; �D)

2.0.1 Addition

For any group or semigroup (R; �) onR to be a topological group or semigroup with respect to

the density topology �D requires the operator to be a continuous map from (R; �D)�(R; �D)

into (R; �D). The existence of topological groups and semigroups in the density topology is

mainly a question of continuity of binary operations on (R; �D). The topology on the domain

of the binary operation is, by de�nition, the product topology, which has not yet been studied

much. Continuous transformations from R2 into R have been studied, however, in the case in

which the domain has the "two dimensional" strong or ordinary density topology in lieu of the

product topology, and the range has the density topology. Those continuous transformations

are call strongly density continuous and ordinary density continuous, respectively.

In [22] Ciesielski and Wilczynski show that the set of strongly density continuous functions is

a proper subset of the set of ordinary density continuous functions. Furthermore, if a subset

of R2 is open in the product topology then it is open in the strong density topology. So, it

is easy to see that any continuous binary operation is strongly density continuous. Is the

set of continuous binary operations equal to the set of strongly density continuous functions

or is the containment proper?

In [22] Ciesielski and Wilczynski provide an important criterion for strong density con-

tinuous transformations. The criterion requires some de�nitions.

De�nition 61. For any open interval U � R the function f : U �! R is bi-Lipschitz if

there exists a constant L � 1 such that for every a; b 2 U L�1 ja� bj � jf (a)� f (b)j �

L ja� bj where j�j denotes the absolute value.

De�nition 62. A function f : R2 �! R is locally bi-Lipschitz if for every p 2 R2 there

11



exists an open rectangle U = (a; b) � (c; d) with p 2 U and there exists a constant L � 1

such that for every xo 2 (a; b) and yo 2 (c; d) the coordinate functions gyo (x) = f (x; yo) and

hxo (y) = f (xo; y) are bi-Lipschitz with constant L.

In [22] Ciesielski and Wilczynski prove the following theorem.

Theorem 63 (Ciesielski and Wilczynski). If f : R2 �! R is locally bi-Lipschitz, then f is

strongly density continuous.

Now, consider the function f : R2 �! R given by adding the components so that

f (x; y) = x + y. In this case, both of the coordinate functions gyo (x) = f (x; yo) = x + yo

and hxo (y) = f (xo; y) = xo + y are bi-Lipschitz with constant L = 1. The function f is

locally bi-Lipschitz, and, by the theorem, f is strongly density continuous. Does this mean

that addition is continuous as a binary operation? The answer turns out to be "no", and the

explanation comes by way of a variation on a theorem of Hugo Steinhaus, which appeared in

the �rst volume of Fundamenta Mathematicae (coincidently, the same volume as Souslin�s

problem). In [23] Steinhaus proves the following theorem.

Theorem 64 (Steinhaus). L�ensemble des distances D de deux ensembles A et B de mesures

positives contient au moins un intervalle entier.

Paraphrasing, Steinhaus proved that for any two sets A and B of positive measure,

the set of distances between points contains an entire interval. In other words, if C =

fja� bj : a 2 A; b 2 Bg then C contains an interval. The variation on this theorem of

Steinhaus that applies to the current question, is the following. (See, for example, Halmos

[27], Chapter III, Section 16, Theorem B.)

Theorem 65. Let E be a measurable subset of R with m1 (E) > 0. Then there exists � > 0

such that the interval

(��; �) � E � E := fx� y : x; y 2 Eg .

Theorem 66. Addition is not a continuous binary operation on (R; �D), and, therefore,

(R; �D;+) is not a topological group, nor even a topological semigroup.

Proof. Suppose, in order to get a contradiction, that addition is a continuous binary opera-

tion. Fix an arbitrary irrational a 2 R, and note that a + a is also irrational. Fix � > 0.

12



De�ne the open neighborhood V of a+ a in �D by

V := fx 2 R : a+ a� � < x < a+ a+ � and x =2 Qg :

From above, (x; y) �! x+ y is continuous at (a; a), from the �D product topology on R2 to

the �D topology on R. Thus, there exist �D open neighborhoods U1 and U2 of a such that

U1 + U2 := fx+ y : x 2 U1 and y 2 U2g � V .

Consider the open neighborhood U of a in �D given by U := U1 \ U2. Clearly, U + U � V .

Next, de�ne W := U � a = U + (�a). By our assumed continuity of addition, W is a

�D open neighborhood of 0. Also, U = a +W . Now, from the de�nition of the topology

�D, it is easy to check that �W := f�x : x 2 Wg is another �D open neighborhood of 0.

Consequently, H := W \ (�W ) is a �D open neighborhood of 0 such that

�H = H and (a+H) + (a+H) � V .

Hence,

(a+H) + (a+H) = (a+H) + (a�H)

= fa+ h1 + a� h2 : h1; h2 2 Hg

= a+ a+ (H �H).

Since H 2 �D, H is measurable and m1 (H) > 0. Thus, by the variation of Steinhaus�

theorem, there exists an interval of the real numbers (��; �) with

a+ a+ (��; �) � a+ a+ (H �H) = (a+H) + (a+H) � V .

However, V \ Q = ;, and so we have reached a contradiction. Therefore, addition cannot

be a continuous binary operation.

13



2.0.2 Multiplication

The set of continuous binary operations is, therefore, a proper subset of the set of strong

density continuous functions, but the set is not empty. Continuous binary operations do

exist in the form of constant functions. For example, for all x; y 2 R, let x�y = 5. This is a

rather uninteresting continuous binary operation. Interesting continuous binary operations

would at least be cancellative, but do any of these exist? What about multiplication? Is

multiplication a continuous binary operation?

At �rst blush, multiplication might seem to follow easily by using logarithms and the

result for addition. However, this requires the logarithm to be a density continuous function,

and showing that functions are continuous in the density topology is frequently more di¢ cult

than expected. So, a multiplicative analog of Steinhaus�s theorem results in an easier path.

Consider only the positive real numbers denoted R+.

Theorem 67. Any bounded subset E � R+ of positive measure contains 2 distinct points

with a rational quotient.

Proof. Suppose for contradiction there exists a bounded subset of positive measure such

that no two distinct points of E have a rational quotient. For any w 2 R+ de�ne w � E =

fw � x : x 2 Eg where � is standard multiplication. Under the supposition the family

of sets given by
�
1 + 1

n

�
� E with n 2 N is pairwise disjoint. To see this, suppose the

sets
�
1 + 1

h

�
� E and

�
1 + 1

k

�
� E have a point � in common where h; k 2 N and h 6= k.

� 2
�
1 + 1

h

�
� E =)

�
h
h+1

�
� � 2 E =) � =

�
1 + 1

k

�
�
�

h
h+1

�
� � 2

�
1 + 1

k

�
� E. Thus, �

and � are both in
�
1 + 1

k

�
� E and �

�
= h

k
� k+1

h+1
2 Q. Let a = k

k+1
� � and b = k

k+1
� �.

Now, a and b are distinct points in E and their quotient b
a
= �

�
is rational, which contradicts

the supposition. So, the family of sets
�
1 + 1

n

�
� E with n 2 N is pairwise disjoint.

Let V = [1k=1
�
1 + 1

k

�
� E.
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m1 (V ) =

1X
k=1

m1

��
1 +

1

k

�
� E

�
since the sets are pairwise disjoint

=
1X
k=1

�
1 +

1

k

�
�m1 (E)

= m1 (E)�
1X
k=1

�
1 +

1

k

�
= +1

However, E bounded implies that there exists y such that E � (0; y], and, therefore,

V � (0; 2� y]. Thus, m1 (V ) � 2 � y, which is of course �nite. This is a contradiction.

Therefore, there exist 2 distinct points of E with a rational quotient.

The preceeding theorem can be used to show that multiplication is also not a continuous

binary operation. We thank Chris Lennard for showing us a proof that for any �D open

neighborhood U of 1 contained in the interval (1=a; a), U�1 is also a �D open neighborhood

of 1. With his permission, we include this argument in our proof of Theorem 68.

Theorem 68. Multiplication is not a continuous binary operation on (R+; �D), and, there-

fore, (R+; �D;�) is not a topological group nor a topological semigroup.

Proof. Suppose, in order to get a contradiction, that multiplication is a continuous binary

operation. Fix � 2 (0; 1). De�ne the open neighborhood C of 1 in �D by

C := fx 2 R : 1� � < x < 1 + � and x =2 Qg [ f1g .

Note that 1 is the only rational element of C. From above, (x; y) �! x � y is continuous

at (1; 1), from the �D product topology on R2 to the �D topology on R. Thus, there exist

�D open neighborhoods U1 and U2 of 1 such that

U1 � U2 := fx� y : x 2 U1 and y 2 U2g � C.

Fix a 2 R with a > 1. Then the interval (1=a; a) is a �D open neighborhood of 1. Consider

the open neighborhood U of 1 in �D given by U := U1 \U2 \ (1=a; a). Clearly, U �U � C.
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We claim that U�1 := fx�1 = 1=x : x 2 Ug also belongs to �D. To see this, �rst note that

the function � : x �! 1=x : (I; �u) �! (I; �u) is a homeomorphism, where I := [1=a; a] and

�u is the usual topology on R. Our function � is also absolutely continuous and monotone.

Now, U � I and U 2 �D. In particular, U is Lebesgue-measurable. By (for example) [26],

Chapter 3, Section 3, Proposition 15(v), page 63, there exists an F� set Y and a disjoint set

of Lebesgue measure zero, Z, such that U = Y [ Z. Thus,

U�1 = � (U) = � (Y ) [ � (Z) .

Since � is a homeomorphism, in the sense discussed above, it follows that � (Y ) is also an

F� set. Moreover, by (for example) [26], Chapter 5, Section 4, Problem 18, page 111, � (Z)

has Lebesgue-measure zero. Hence, U�1 is a Lebesgue measurable subset of the interval

(1=a; a).

To prove that U�1 2 �D, it remains to show that for all z 2 U�1, D (U�1; z) = 1. Fix

an arbitrary z 2 U�1. Then x := 1=z 2 U . We wish to show that

lim
h�!0+

m1 (U
�1 \ (z � h; z + h))

2h
= 1.

Note that for all u; v 2 R+ with u < v, for every Lebesgue measurable subset G of [u; v],

m1 (G
�1) =

R
t2G�1 1dt =

R
s2G(t=s�1)

��� 1
s2

�� ds
=
R
s2G

1
s2
ds.

In particular, for all such G,

1

v2
m1 (G) � m1

�
G�1

�
� 1

u2
m1 (G) .

Next, �x an arbitrary h > 0 such that z � h > 1=a and z + h < a.

U�1 \ (z � h; z + h) =

�
U \

�
1

z + h
;
1

z � h

���1
,

and so,

m1 (U
�1 \ (z � h; z + h)) = m1

��
U \

�
1
z+h

; 1
z�h
���1�

� (z � h)2m1

�
U \

�
1
z+h

; 1
z�h
��
.
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Recall that x := 1=z 2 U and U 2 �D. Thus, D (U; x) = 1. Hence, x is a Lebesgue point of

the characteristic function of U , �U . (See, for example, Rudin [13], Section 7.6, page 138,

for the de�nition of a Lebesgue point.) Moreover, the family of sets�
Eh :=

�
1

z + h
;
1

z � h

��
h>0

"shrinks to x nicely as h �! 0+", in a natural variation on the de�nition of Rudin [13],

Section 7.9, page 140. Indeed, for all h > 0 and small enough (h < z=2), we have�
x� h

2z2
; x+

h

2z2

�
�
�

1

z + h
;
1

z � h

�
�
�
x� 2h

z2
; x+

2h

z2

�
.

By a simple variation on the proof of Rudin [13], Section 7.9, Theorem 7.10, page 141, it

follows that

lim
h�!0+

m1

�
U \

�
1
z+h

; 1
z�h
��

m1

��
1
z+h

; 1
z�h
�� = �U (x) = 1.

Therefore,

1 � m1(U�1\(z�h;z+h))
2h

� (z�h)2m1(U\( 1
z+h

; 1
z�h))

2h

=
(z�h)2( 1

z�h�
1

z+h)
2h

m1(U\( 1
z+h

; 1
z�h))

m1(( 1
z+h

; 1
z�h))

= (z�h)2
(z�h)(z+h)

m1(U\( 1
z+h

; 1
z�h))

m1(( 1
z+h

; 1
z�h))

�! (1) (1) = 1,

as h �! 0+.

At last we see that D (U�1; z) = 1, for all z 2 U�1; and so, U�1 2 �D.

Consequently, H := U \ U�1 is a �D neighborhood of 1 such that

H�1 = H and H �H � C.

Since H 2 �D, H is measurable and m1 (H) > 0; while H is a bounded subset of R+, by its

construction. Thus, by Theorem 67, there exist �; � 2 H with � 6= � such that �=� 2 Q.

Let 
 := 1=� 2 H�1 = H. Thus, � � 
 = �=� 2 Q and � � 
 2 H � H � C. Further,

� � 
 6= 1, which contradicts the fact that 1 is the only rational element of C. Therefore,

multiplication is not a continuous binary operation on (R+; �D); and so (R+; �D;�) is not a

topological group, nor a topological semigroup.
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2.0.3 Topological Groups and Semigroups

So, in (R; �D) neither addition nor multiplication is a topological group operation. What,

then, are the topological group operations on this space? The answer to this question

requires a closer look at the properties of translation, which, as shown earlier, must be

continuous for a continuous binary operation. The next result holds not only for topological

group operations but also for cancellative topological semigroup operations. Some lemmas

will �rst be required.

Lemma 69. Let Y be a subspace of X, and de�ne a separation of Y to be a pair of disjoint

nonempty sets C and D whose union is Y , neither of which contains a limit point of the

other. Y is connected if there exists no separation of Y .

Proof. See [1].

Lemma 70. For any continuous map � : (R; �D) �! (R; �D) that either preserves or

reverses order, the inverse image of an open interval must be an open interval.

Proof. The inverse image of any open interval must be open in �D since � is continuous. Let

U be any open interval and let a; b 2 ��1 (U). For any x such that a < x < b, � (x) 2 U

since � is order preserving or order reversing. Moreover, since ��1 (U) 2 �D, it cannot

contain an end-point that is a real number. Therefore, ��1 (U) is an open interval.

Theorem 71. Any cancellative topological semigroup operation on (R; �D) is order preserv-

ing with respect to the usual ordering on R.

Proof. The proof will consist of 5 steps.

1. Fix p 2 R and show that left translation by p is either order preserving or order

reversing.

2.Fix p 2 R and show that right translation by p is either order preserving or order

reversing.

3. Show that left translation is either order preserving for all x 2 R; or it is order

reversing for all x 2 R.

4. Show that left translation is order preserving.
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5. Repeat the third and fourth steps for right translation.

Step 1 - Fix p 2 R and let a, b, and c be arbitrary with a < b < c. Note that p� (x) is

injective since the operation is cancellative (p� (x) =p � (y) =) p�x = p�y =) x = y). Now,

there are 6 possible orderings for p� (a), p� (b), and p� (c). First, suppose for contradiction

that p� (a) <p � (c) <p � (b). The interval (a; b) doesn�t contain c so p� (c) is not in the image

of the interval p� (a; b) since p� (x) is injective. Thus, p� (a; b) is disconnected at p� (c). In

other words, by Lemma 69, the sets C =p � (a; b)\(�1;p � (c)) andD =p � (a; b)\(p� (c) ;1)

form a separation of p� (a; b), and p� (a; b) is, therefore, not connected. It remains to check

that C 6= ; and D 6= ;. It is su¢ cient to show the former, because showing the latter

is similar. The interval (a;1) is �D-open. Thus, E := (�1; a] is �D-closed, with �D-

interior equal to (�1; a). Since a is not in this interior, a belongs to the �D-closure of

the complement of E; i.e., a belongs to the �D-closure of (a;1). Thus, there exists a net

(�k)k2K in (a;1) such that �k �!
k

a with respect to the �D topology. Now, p� is �D to

�D continuous on R. Therefore, p� (�k) �!
k

p� (a) with respect to the �D topology. But

the �D topology is stronger than the standard topology on R; and so, p� (�k) �!
k

p� (a)

with respect to the standard topology. Thus, there exist k0 2 K such that p� (�k) <

p� (c), for all k � k0. Of course, we also have that �k �!
k

a with respect to the standard

topology. Consequently, there exists k1 � k0 such that �k1 < b. Hence, p�
�
�k1
�
2 C.

However, the interval (a; b) is connected since (R; �D) is connected, and p� (a; b) is then

the continuous image of a connected set, and it, therefore, must be connected. This is a

contradiction. Hence, the ordering p� (a) <p � (c) <p � (b) is not possible. Similarly, the

orderings p� (b) <p � (a) <p � (c), p� (b) <p � (c) <p � (a), and p� (c) <p � (a) <p � (b)

all lead to a contradiction of connectedness. Therefore, it is straightforward to check that

left translation by p either preserves order or reverses order; i.e., for all x < y in R,

p� (x) <p � (y); or for all w < z in R, p� (w) >p � (z).

Step 2 - Replace left translation in Step 1 with right translation.

Step 3 - Suppose for contradiction that there exist elements p and q such that left

translation by p is order preserving and left translation by q is order reversing. Without

loss of generality, suppose p < q and let

r = inf fx 2 R : p < x and left translation by x is order reversingg. Since � is cancellative,
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r � p 6= r � q, and since R is Hausdor¤ in the standard topology, there exists disjoint open

intervals Up and Uq such that r � p 2 Up and r � q 2 Uq. Thus, either every element of Up is

less than every element of Uq or vice versa.

Now, r 2
�
�p
��1

(Up) 2 �D and r 2
�
�q
��1

(Uq) 2 �D. Let V =
�
�p
��1

(Up)\
�
�q
��1

(Uq).

V is open since it is the intersection of two open sets, and V is not empty since r 2 V .

Furthermore, both
�
�p
��1

(Up) and
�
�q
��1

(Uq) are open intervals by Lemma 70 since Up

and Uq are open intervals and �p and �q either preserve or reverse order. Thus, V is an

open interval. By de�nition of r, there exists a; b 2 V such that a� is order preserving and

b� is order reversing. Thus a � p < a � q and b � p > b � q. However, a � p and b � p are

elements of Up, and a � q and b � q are elements of Uq. This contradicts the fact that either

every element of Up is less than every element of Uq or vice versa. A similar argument holds

for p > q. Therefore, left translation is either order preserving for all x 2 R; or it is order

reversing for all x 2 R.

Step 4 - Suppose for contradiction that left translation is order reversing for all x 2 R.

So, for any a < b, left translation by p gives p � a > p � b. Translating by p a second time

gives p � p � a < p � p � b. Thus, left translation by p � p is not order reversing. This

contradicts the supposition.

Step 5 - Replace left translation in Steps 3 and 4 with right translation.

So, let�s put this theorem to work right away to prove the following result for any

paratopological group or topological group. For any element, a, the inverse will be de-

noted a�1.

Corollary 72. For any topological group or paratopological group on (R; �D), a < b =)

b�1 < a�1.

Proof. Let e denote the group identity. From Theorem 71, translation is order preserving.

So, a < b =) a � a�1 < b � a�1 =) e < b � a�1 =) b�1 � e < b�1 � b � a�1 =) b�1 < a�1.

Theorem 71 is a key to proving the general result for topological groups, but some other

results will �rst be needed.
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Lemma 73. Any set of positive measure contains a nonempty subset that is open in the

density topology.

Proof. Let E � R be any measurable set with m1 (E) > 0, and let A = fx 2 E : x =2 � (E)g.

By the Lebesgue Density Theorem, m1 (A) = 0. Thus, m1 (E n A) > 0 and all points of

EnA are density points. Therefore, EnA is nonempty and open in the density topology.

Theorem 74. For any paratopological group operation on (R; �D), translation maps a set of

positive measure to a set of positive measure.

Proof. Let E � R be any measurable set with m1 (E) > 0, and let q 2 R be arbitrary. By

Lemma 73, there exists nonempty B � E such that B 2 �D. Theorem 60 then implies

q � B is open in the density topology, and it is nonempty since B is nonempty. Thus,

m1 (q � E) � m1 (q �B) > 0. Similarly, m1 (E � q) > 0.

Lemma 75. For any paratopological group operation on (R; �D), both left and right transla-

tion are continuous in the standard topology.

Proof. For any p 2 R, left translation is injective since the operation is cancellative, and left

translation is surjective since for any q 2 R there exists (p�1 � q) such that p� (p�1 � q) = q.

So, (p�)
�1 (x) =p�1 � (x) = p�1�x. Let (a; b) be an arbitrary open interval. By Theorem 71,

for any x 2 (p�)�1 ((a; b)), p�1 � a < x < p�1 � b so (p�)�1 ((a; b)) � (p�1 � a; p�1 � b). Con-

versely, for any x 2 (p�1 � a; p�1 � b) Theorem 71 implies a < p�x < b and x 2 (p�)�1 ((a; b)).

So, (p�1 � a; p�1 � b) � (p�)
�1 ((a; b)). Therefore, (p�)

�1 ((a; b)) = (p�1 � a; p�1 � b) is an

open interval in the standard topology. Thus, for any open interval in the standard topol-

ogy, the inverse image is also an open interval in the standard topology. A similar argument

shows that right translation is also continuous in the standard topology.

Lemma 76. Let � be a paratopological group operation on (R; �D) and let fqkgk2N be the

sequence given by qk = e + 1
k
where e is the identity element and k 2 N. For any point

x 2 R, the sequence of points fqk � xgk2N converges in the standard topology to x; and the

sequence
�
q�1k � x

	
k2N also converges in the standard topology to x.
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Proof. Let U be an arbitrary interval containing x. By Lemma 75, �x is continuous in the

standard topology so (�x)
�1 (U) is an open set, B. Furthermore, e 2 B since e �x = x 2 U .

Now, fqkgk2N converges to e, and this implies that there exists a natural numberM 2 N such

that qj 2 B for all j > M . Thus, qj � x 2 U for all j > M . Since U is an arbitrary interval

containing x, fqk � xgk2N converges to x in the standard topology. A similar argument shows

that
�
q�1k � x

	
k2N also converges to x in the standard topology.

Finally, the following theorem will be needed. The proof presented below for �D open

sets V that are not open in the standard topology was shown to us by Chris Lennard. We

include it with his permission.

Theorem 77. Let � be a paratopological group operation on (R; �D) with identity e. For

any V 2 �D there exists M 2 N such that each term of the sequence
�
m1

��
e+ 1

k

�
� V

�	
k2N

is greater than a constant � > 0 for all k > M .

Proof. Let �u denote the usual or standard topology on R. Recall from, for example, Rudin

[28], pages 37 and 38, that a function f : (R; �u) �! (R; �u) is called lower semicontinuous

if f�1 ((�;1)) 2 �u for all � 2 R. Moreover, as noted by Rudin [28], an example of such a

function is f := �U , the characteristic function of U , where U is any �u-open subset of R.

It is also straightforward to check that a function f : (R; �u) �! (R; �u) is lower semi-

continuous if and only if for all x 2 R, for all sequences (xn)n2N in R with xn �!n x and

xn � x for all n 2 N, it follows that f (xn) �!
n

f (x).

Now, �x an arbitrary �D-open set V . We have that m1 (V ) > 0. Without loss of

generality, we may assume V � (a; b), for some a; b 2 R with a < b. Let qk := e + 1=k, for

all k 2 N. By Theorem 60, each qk �V is a �D-open set, and in particular, it is a measurable

set.

CASE 1. The set V is open in the standard topology. We will use Lebesgue�s Dominated

Convergence Theorem to show that

m1 (qk � V ) �!
k

m1 (V ) .

Indeed, for each k 2 N, we de�ne the measurable function fk := �qk�V . Also, let f := �V .

Now, �x an arbitrary x 2 R. By Lemma 76, q�1k � x �!
k

x in the standard topology, �u.
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Fix an arbitrary k 2 N. Since e < qk, we see that q�1k < e�1 = e, by Corollary 72. Thus,

q�1k � x < e � x = x, by Theorem 71. Hence,

fk (x) := �qk�V (x) = �V
�
q�1k � x

�
�!
k

�V (x) = f (x) ;

because f := �V : (R; �u) �! (R; �u) is lower semicontinuous. Using Theorem 71 again,

we see that for all k 2 N, qk � V � (a; q1 � b); and so for all x 2 R,

jfk (x)j = �qk�V (x) � �(a;q1�b) =: h (x) .

Clearly, h is a Lebesgue-integrable function. Therefore, by Lebesgue�s Dominated Conver-

gence Theorem,

m1 (qk � V ) =
Z
R
�qk�V (x) dm1 (x) =

Z
R
fk (x) dm1 (x) �!

k

Z
R
f (x) dm1 (x) = m1 (V ) .

Since m1 (V ) > 0, the conclusion of our theorem follows in this case. Note, however, that

we have reached a stronger conclusion when V is �u-open.

CASE 2. Assume that V � (a; b) is an arbitrary �D-open set. So, V is Lebesgue-

measurable and 0 < m1 (V ) < 1. Fix � > 0. By (for example) Royden [26], Chapter 3,

Section 3, Proposition 15(ii) and (iii), page 63, there exists a �u-open set U and a �u-closed

set F such that

F � V � U and m1 (UnF ) < �.

Also, we may assume that U � (a; b). Fix an arbitrary k 2 N. Then

m1 (qk � V ) = m1 (qk � (V \ U)) +m1 (qk � (V nU))

� m1 (qk � (V \ U))

= m1 (qk � U)�m1 (qk � UnV )

� m1 (qk � U)�m1 (qk � UnF )

�!
k

m1 (U)�m1 (UnF ) > m1 (V )� �,

by CASE 1; because both U and UnF are �u-open subsets of (a; b).

Choose � = m1 (V ) =2, and let � := m1 (V ) �m1 (V ) =2 = m1 (V ) =2 > 0. Then there

exists M 2 N such that for all k > M ,

m1 (qk � V ) > �.
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The previous lemmas and theorems lead to the main result of this section.

Theorem 78. There are no topological groups on (R; �D).

Proof. Suppose for contradiction that there is a topological group with a continuous group

operation �. Let e be the group identity, and denote the inverse of any element x by x�1.

Furthermore, for any set A � R let A�1 = fx�1 : x 2 Ag. Now, let

Q0 =
�
q�1i � qj : i; j 2 N

	
. Note that e 2 Q0, and Q0 is countable.

Fix � > 0. Consider the open set U = fx 2 R : e� � < x < e+ �; x =2 Q0g [ feg. Note

that e is the only element of Q0 contained in U . Since e 2 U and � is continuous, there exists

open sets eV containing e and fW containing e such that eV �fW � U . The intersection of the

open sets eV \fW is a nonempty open set. Denote it by V 00 = eV \fW . So, V 00 � V 00 � U .

Fix an interval (a; b) containing e. Let V 0 = V 00 \ (a; b). Again, V 0 is a nonempty open

set since V 00 and (a; b) are both open sets containing e. Finally, let V = V 0 \ (V 0)�1. Note

that (V 0)�1 is an open set due to the continuity of the inverse operation, and it contains e

since e�1 = e. Therefore, V is an open set containing e, V = V �1, V � V � U , and m1 (V )

is �nite.

Let qk = e+ 1
k
. By Theorem 77, there existsM 2 N such that each term of the sequence

fm1 (qk � V )gk2N is greater than a constant � > 0 for all k > M . Thus,
P1

k=1m1 (qk � V ) =

+1. However, for all k 2 N, qk � V is contained in the interval (a; (e+ 1) � b) which has

�nite measure. So, the family of sets fqk � V g cannot be pairwise disjoint. Therefore, there

exists i; j with i 6= j such that (qi � V ) \ (qj � V ) 6= ;. So, there exists x; y 2 V such that

qi � x = qj � y and x = q�1i � qj � y. Now, V = V �1 implies y�1 2 V and x � y�1 = q�1i � qj
with x � y�1 2 U . Now, q�1i � qj 6= e since i 6= j, but q�1i � qj 2 Q0. This contradicts the

de�nition of U . Therefore, � is not a continuous group operation.
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3.0 TOPOLOGICAL GROUPS AND SEMIGROUPS ON SOUSLIN LINES

3.0.4 Topological Groups

With regard to Souslin lines, the �rst question is whether or not a topological group can

exist on a Souslin line. This question, though, is relatively easy to answer using well known

theorems. Consider the following such theorem.

Theorem 79. Any linearly ordered topological space (LOTS) satisfying the CCC is �rst

countable.

Proof. Let L denote the LOTS and �x any arbitrary point p 2 L with the intent of showing

that p has a countable neighborhood base. Assuming the Axiom of Choice, choose any

point x1 < p as the �rst point of a sequence. Secondly, choose x2 such that x1 < x2 < p.

Thirdly, choose x3 such that x1 < x2 < x3 < p. Continue picking points greater than the

previous point but always less than p until there are no points less than p and greater than

all of the previous points in the (possibly uncountable) generalized sequence. This portion

of the proof is more or less the same as the standard proof of the Well-ordering Theorem,

and it can be made rigorous by means of a choice function and the union of extensions of

sequences given by the choice function. When there are no more points less than p and

greater than the previous point, either the last point picked is an immediate predecessor to

p or the generalized sequence is increasing and converging to p from the left. In the �rst

case in which p has an immediate predecessor, the predecessor by itself is a �nite sequence

coverging to p from the left. In the second case of the generalized sequence, if for any

ordinal k, xk is an immediate predecessor to xk+1 then omit xk+1 from the sequence. Each

open interval (xk; xk+1) is then non-empty. Thus, since L satis�es the CCC, the increasing
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sequence converging to p must be countable. Now, repeat the above process choosing points

greater than p to obtain a countable (or �nite) sequence converging to p from the right. The

left sequence and the right sequence then form a countable neighborhood base for p given

by the family of open intervals (xl; xr) in which xl < p and xr > p. Since p is arbitrary, L

is �rst countable.

Thus, any Souslin line is �rst countable. The topological group question is then answered

by a theorem arrived at by both Kakutani [7] and Birkho¤ [8] independently.

Theorem 80 (Birkho¤ and Kakutani). Let G be a topological group. G is metrizable if and

only if G is �rst countable.

Proof of the theorem is provided in the two references, and it is not repeated here. We see,

then, that any LOTS satisfying the CCC and supporting a topological group is metrizable,

and any metrizable topological space satisfying the CCC is also separable. Since Souslin

lines are not separable, we conclude that no Souslin line can support a topological group.

3.0.5 Paratopological Groups

So, while a Souslin line can support a trivial topological semigroup, it cannot support a

topological group. How much algebraic structure can a Souslin line support? First, can a

Souslin line support a paratopological group? In order to answer this question, we�ll need

to use results from Ceder[9] and Lutzer [11], both of which appear in [10] and require some

de�nitions.

De�nition 81. In a topological space X, the diagonal � is the subset of X �X given by

� = f(x; x) : x 2 Xg.

De�nition 82. A topological space X has a G��diagonal if its diagonal � is a G� set.

Theorem 83 (Ceder). A topological space X has a G� � diagonal if and only if there exists

a sequence Gn of open covers of X such that for each x; y 2 X with x 6= y there exists n 2 !

with y =2 st (x;Gn); i.e. for all x 2 X, \nst (x;Gn) = fxg.

Proof. Following a proof described in [10], suppose X has a G��diagonal. Let the diagonal

� = \nUn with Un open in X � X. For each x 2 X and n 2 ! let g (n; x) be an open
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neighborhood of x such that g (n; x) � g (n; x) � Un. Let Gn = fg (n; x) : x 2 Xg. We

claim that for all x 2 X and for all y 2 X with x 6= y there exists n 2 ! with y =2 st (x;Gn).

Suppose for contradiction fx; yg � \nst (x;Gn) with x 6= y. For each n choose zn 2 X such

that fx; yg � g (n; zn). Then the point (x; y) of X �X is in g (n; zn)� g (n; zn) � Un. So,

(x; y) 2 \nUn, and this is a contradiction.

Conversely, suppose there exists a sequence of open covers Gn such that for each x; y 2 X

with x 6= y there exists n 2 ! with y =2 st (x;Gn). Let Un = [fG�G : G 2 Gng. Then

� � \nUn. Now, (x; y) 2 \nUn implies for each n there existsGn 2 Gn with (x; y) 2 Gn�Gn.

Thus, y 2 \nst (x;Gn) = fxg. So, y = x. Hence, � = \nUn.

Theorem 84 (Lutzer). Every linearly ordered space with a G� � diagonal is metrizable.

Proof of Theorem 84 is provided in [10].

Ceder�s theorem has been used extensively as a technique to show that a space has a

G�� diagonal. We will do the same for a �rst countable paratopological group. The result

will then allow us to use Lutzer�s theorem to show that a paratopological group cannot exist

on a Souslin line.

Theorem 85. Every �rst countable paratopological group has a G� � diagonal.

Proof. Let X be a �rst countable topological space with a paratopological group operation

�. Let e be the group identity, and let fUng be a decreasing neighborhood base at e. In

other words, U1 � U2 � U3 � : : :. By Theorem 60, for all x 2 X and for any n 2 !, x � Un
is an open set. This implies that for any �xed n, fx � Un : x 2 Xg is an open cover for X

since e 2 Un for each n. Thus, Gn = fx � Un : x 2 Xg is a sequence of open covers . Fix

p 2 X with p arbitrary and suppose there exists q 2 X such that q 2 st (p;Gn) for all n 2 !.

Then for each n there exists xn such that p; q 2 xn � Un. So, there exists pn; qn 2 Un such

that p = xn � pn and q = xn � qn and fpng ; fqng are both sequences converging to e since

fUng is a decreasing neighborhood base.

Now, x�1n = pn � p�1 = qn � q�1 where fpn � p�1g is a sequence converging to p�1 and

fqn � q�1g is a sequence converging to q�1. To see this, let W be an arbitrary open set

containing p�1 and let �: X �X �! X denote the map produced by the binary operation

so that for all x; y 2 X; � (x; y) = x�y. Thus, (e; p�1) 2 '�1 (W ), and since ' is continuous
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there exists open sets A;B with e 2 A and p�1 2 B such that A�B � '�1 (W ). Since fpng

converges to e 2 A, there exists a natural number m 2 ! such that pn 2 A for all n > m,

and this implies pn � p�1 2 W for all n > m. Finally, conclude fpn � p�1g converges to p�1

since W can be any open set containing p�1. Similarly, fqn � q�1g is a sequence converging

to q�1.

Now, fpn � p�1g and fqn � q�1gmust obviously converge to the same point since pn�p�1 =

qn � q�1 for each n. Hence, p�1 = q�1 and p = q. Thus, Gn is a sequence of open covers

satisfying the requirements of Theorem 83. Therefore, X has a G� � diagonal.

The three previous theorems combine to give the following.

Theorem 86. Every linearly ordered topological space (LOTS) satisfying the CCC and for

which there exists a paratopological group operation is separable.

Proof. Such a space has a G� � diagonal by Theorem 79 and Theorem 85. The space is

then metrizable by Theorem 84, and since any metrizable topological space satisfying the

CCC is separable, the space is separable.

This leads to the main result for paratopological groups and Souslin Lines.

Corollary 87. There are no paratopological groups on any Souslin line.

Proof. The proof is immediate from the theorem.

3.0.6 Cancellative Topological Semigroups

So what about cancellative topological semigroups? Can a Souslin line support a cancellative

topological semigroup? Let�s start by trying to determine for a LOTS those properties of a

topological semigroup operation that will actually make it a paratopological group. Consider

the following.

Proposition 88. A topological semigroup on a LOTS for which translation is both order

preserving (or reversing) and surjective is a paratopological group.

28



Proof. Suppose thatX is a LOTS and � is a topological semigroup operation for which trans-

lation is both order preserving (reversing) and surjective. The order preserving (reversing)

property requires the operation to be cancellative, and a cancellative operation implies trans-

lation is injective. Indeed, let a be arbitrary and suppose a � b = a � c. This implies b = c

since translation by a is order preserving (reversing). Similarly, b � a = c � a =) b = c.

Translation is, therefore, a bijection. So, for any a 2 X, since left translation by a is surjec-

tive, there exists some element e 2 X that is mapped to a by a. In other words a � e = a.

The order preserving (reversing) property gives us a�e = a =) a�e�a = a�a =) e�a = a.

Now, for any x 2 X, a � e �x = a �x =) e �x = x. Similarly, x � e � a = x � a =) x � e = x.

Therefore, e is an identity. Again, since translation by a is surjective, there exists some

element that translation by a maps to the element e. So, there exists b 2 X such that

a � b = e. This implies b � a � b = b � e = b = e � b giving b � a = e. Thus, b is an inverse of a.

Since a is arbitrary, an inverse exists for every element. We conclude that the topological

semigroup is, in fact, a paratopological group.

This leads us to the following result for Souslin lines.

Corollary 89. For a topological semigroup on a Souslin Line, translation cannot be both

order preserving (reversing) and surjective.

Proof. The proof is immediate from the Proposition and Corollary 87.

There are, then, some clues about how we might �nd a cancellative topological semigroup

on a Souslin line, if one exists. From Corollary 89, we see that if a cancellative topological

semigroup exists on a Souslin line, then the semigroup operation cannot be both order

preserving (reversing) and surjective. Furthermore, in [12] Feng and Heath showed that

any connected LOTS with a cancellative topological semigroup is metrizable. Therefore, a

cancellative topological semigroup cannot exist on a connected Souslin line. These theorems

provide a foundation upon which we can begin to see how a cancellative topological semigroup

might exist on a Souslin line, and we will construct one below. Ironically, we will start with

a connected Souslin line and discard points so that we end with another Souslin line that

is not connected. We will then de�ne a binary operation that is not surjective. First,
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however, we�ll need some lemmas, a de�nition, and a theorem by Mary Ellen Rudin.

Lemma 90. A complete order dense LOTS is connected.

Proof. Let L be any complete order dense LOTS and suppose for contradiction that there

exists disjoint open subsets U and V such that U [ V = L. Let (a; b) � V be any open

interval in V . There exists a subset of U that is either bounded above by (a; b) or bounded

below by (a; b). Without loss of generality, let a be an upper bound for a nonempty subset

of U . Denote the set by eU = fx 2 U : x � ag and note that both eU and U=eU are open

since there is an interval between them and U is open. Since L is complete, there exists a

point p = sup eU 2 L, and since eU is open, there exists a point c such that (c; p) � eU and

(c; p) 6= ;. Let eV = fx 2 V : x � pg and note that both eV and V=eV are open. Now, the

point p must be an element of either eU or eV . Suppose p 2 eU . Since eU is open, there

exists an open interval (r; s) � eU containing p, but p is the least upper bound of eU . So,

(p; s) = ;, and this contradicts the fact that L is order dense. On the other hand, suppose

p 2 eV . Again since eV is open, there exists an open interval (r; s) � eV containing p, but by

de�nition of eV , it contains no element less than p. So, (r; p) = ;, and this contradicts the

fact that L is order dense. Therefore, L must be connected.

De�nition 91. A Souslin line is hereditarily Souslin if every open interval is itself a

Souslin line.

In [13], Mary Ellen Rudin proved the existence of a connected hereditarily Souslin line

that we�ll need.

Theorem 92 (Mary Ellen Rudin). If a Souslin line exists, then a Souslin line exists that is

connected and hereditarily Souslin.

Proof. Suppose a Souslin line S exists. First, make S complete by adding all suprema and

in�ma. Since S is not separable and it satis�es the CCC, S contains at most countably

many maximal separable nontrivial closed subintervals. De�ne two points to be equivalent

if they are both in the same maximal separable closed subinterval. Collapse each of these

equivalence classes to a point and let S 0 denote the resulting space. For any two points

in S 0 there are uncountably many points between them. S 0 is, then, order dense, and it is
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connected by Lemma 90. Furthermore, S 0 does not contain any separable subintervals. So,

S 0 is hereditarily Souslin.

Lemma 93. Let L be a Souslin line that is hereditarily Souslin and let U � L be an arbitrary

open interval. Let U be divided into in�nitely many (necessarily countably many) abutting

subintervals and let each subinterval be divided the same way. Continue inde�nitely until

all nested sequences of subintervals fail to properly contain a subinterval in their intersec-

tion. For any � < !1 there exists a nested sequence of subintervals of length � such that

the intersection contains an open interval. Furthermore, none of the nested sequences of

subintervals reaches a length of !1.

Proof. Suppose for contradiction that there exists � < !1 such that all of the nested se-

quences of subintervals have length less than �. Let A be the set of all endpoints of the

subintervals. Since A is countable, A cannnot be dense in the Souslin line U . So, UnA

is a nonempty open set, and it must be uncountable since otherwise UnA [ A would be a

countable dense subset. Thus, there exists an uncountable open interval (a; b) � UnA. By

trans�nite induction a nested sequence of subsets of length � can be found as follows. Let

V0 = U and note (a; b) � V0. Now for successor ordinals, let � < � be an arbitrary ordinal

with (a; b) � V�. Clearly, since A \ (a; b) = ; and since (a; b) is uncountable, there exists

V�+1 such that (a; b) � V�+1 � V�: Finally, for any limit ordinal 
 < �, (a; b) � V� for

all � < 
 implies (a; b) � \�<
V�, which implies there exists V
 � (a; b). However, (a; b)

must be a proper subset because, if V
 = (a; b) then there exists V
+1 � (a; b) (since (a; b) is

uncountable), which contradicts A \ (a; b) = ;. Thus, there exists V
 � (a; b). Therefore,

there exists a nested sequence of subintervals of length �, and this contradicts the supposi-

tion. Finally, to show that none of the nested sequences of subintervals reach a length of !1,

suppose for contradiction there is a nested sequence of subintervals of length !1 denoted V


with 
 � !1. Since each V
 is divided into in�nitely many intervals, a subintervalW
+1 � V


can be chosen such that W
+1 \V
+1 = ;. Therefore, there exists an uncountable collection

of nonempty disjoint open sets W = fW
 : 
 � !1g, and this constradicts the fact that the

Souslin line must satisfy the CCC.

We will now construct a cancellative topological semigroup on a Souslin line.
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Theorem 94. There exists a cancellative topological semigroup on a Souslin line.

Proof. Assume a Souslin line exists. By Theorem 92 there exists a Souslin line that is

connected and hereditarily Souslin. So, let L0 be a connected Souslin line that is heredi-

tarily Souslin. Furthermore, assume L0 has no �rst or last point since otherwise L0 could

be replaced by one of its open subintervals. A semigroup operation will be de�ned on a

subset L � L0 that is itself a Souslin line. This operation will be a composition of con-

tinuous maps � : L �! R!1,  : �(L) � �(L) �! �(L), and ��1 : �(L) �! L where R!1

is an uncountable product space whose elements will be denoted with uncountably many

components such as a 2 R!1 ; a = ha1; a2; a3; a4; a5; : : :i. For any a; b 2 R!1, de�ne  by

 (a; b) = ha1 + b1; a2 + b2; a3 + b3; a4 + b4; : : :i where ai + bi denotes the standard addition

of real numbers. Note that  is associative. The semigroup operation is then de�ned as

follows. For every x; y 2 L; x � y = ��1 ( (� (x) ; � (y))). Of course, � and L still need to

be de�ned.

First, some subsets of R will be needed. Let H be a Hamel basis for R that is a c-dense

subset of R. Let fW and T be disjoint countable subsets of H that are dense subsets of R.

Let W = span fW over N. Let eS = span
�fW [ T

�
over N and let S = eSnW . So, W and S

are disjoint countable subsets of R such that

(i) 8a; b 2 W; a+ b 2 W

(ii) 8a; b 2 S; a+ b 2 S

(iii) 8a 2 W and 8b 2 S; a+ b 2 S

In L0 choose a collection of pairwise disjoint abutting open intervals with no �rst or

last interval as follows. Choose both a strictly increasing sequence and strictly decreasing

sequence. Such sequences exist since L0has no �rst or last point. Let each element of

the sequences be both a left endpoint of an open interval and a right endpoint of an open

interval. The result is in�nitely many disjoint abutting open intervals with no �rst or last

interval. Repeat the process in each of these open intervals and continue a countable in�nity

of times. Now let D1 be the set of endpoints of all of these intervals. Assuming the Axiom

of Choice, D1 is countable. D1 is not dense in L0 since L0 is not separable. So, L0nD1 6= ;,

and, furthermore, L0nD1 is open. Since L0 is hereditarily Souslin and the above argument
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applies to each of the intial disjoint open intervals in L0, the collection of maximal disjoint

open intervals in L0nD1 must be in�nite. Since L0 satis�es the CCC, however, the collection

must be countable. Denote the collection by

V1 =
�
V1i = (c1i; d1i) � L0nD1 : for all i 6= j; V1i \ V1j = ; and V1i [ V1j is not an interval

	
.

De�ne a map f1 : D1 �! W such that f1 is an order preserving bijection. In other words,

de�ne f1 to be a surjective map such that for all a; b 2 D1, a < b implies f1 (a) < f1 (b).

Now, de�ne another map g1 : [i2!V1i �! S such that for each i, g1 is constant on V1i and

preserves the order of the sets in V1. In other words, for all i 2 ! and for all a; b 2 V1i,

g1 (a) = g1 (b), and for all a 2 V1i, b 2 V1j with i < j, g1 (a) < g1 (b). Furthermore, since

W and S are dense subsets of R, f1 and g1 can be de�ned such that for all a 2 D1 and

b 2 [i2!V1i, a < b =) f1 (a) < g1 (b) and a > b =) f1 (a) > g1 (b). The cancellative

topological semigroup operation � will be de�ned on a subset L � L0, which is itself a Souslin

line, and � will be de�ned in terms of an injective map � : L �! � (L) � R!1 where � (L)

has the lexicographic order topology. Although L has not yet been de�ned, the de�nition

of � will commence by de�ning the �rst component of � (x) to be f1 (x) if x 2 D1 and g1 (x)

if x 2 [i2!V1i.

Now since L0 is hereditarily Souslin, each V1i 2 V1 is itself a Souslin line. Repeat

the preceeding process on each V1i de�ning D2i, V2i, V2ij; f2i, and g2i. Let the second

component of � (x) be f2i (x) if x 2 D2i and g2i (x) if x 2 [j2!V2ij. For each i discard

the set V1in (D2i [ ([j2!V2ij)). Again, each V2ij 2 V2i is itself a Souslin line, and the

process can be repeated on each V2ij de�ning D3ij, V3ij, V3ijk, f3ij, and g3ij. Let the

third component of � (x) be f3ij (x) if x 2 D3ij and g3ij (x) if x 2 [k2!V3ijk. For each j

discard the set V2ijn (D3ijk [ ([k2!V3ijk)). By Lemma 93 this process can be continued to

de�ne D�i1i2i3���in, V�i1i2i3���in, f�i1i2i3���in, and g�i1i2i3���in for all successor ordinals � < !1 and

i1; i2; i3 : : : in 2 !. Furthermore, for all limit ordinals � < !1, the process can be repeated

on the open intervals that exist by Lemma 93 to de�ne the component for the successor

ordinal �+1. Now, let the � component be equal to the �+1 component, and rede�ne the

� + 1 component to be the next successor. In e¤ect, then, the limit ordinals are skipped.

Let L = [� [i1 [i2 [i3 � � �D�i1i2i3���. Note that L is not connected since points of L0 are
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discarded. Indeed, for any V1i = (c1i; d1i) 2 V1, c1i =2 L so c1i is a point of disconnection. L

will later be shown to be a Souslin line itself, and the topological semigroup operation will

be de�ned on it. Let L have the order topology. This is an important point since the order

topology on L is quite di¤erent from the subspace or relative topology.

Complete the de�nintion of � : L �! R!1 as follows. For any x 2 L there exists � < !1

such that x 2 D�i1i2i3���in. Let the �th component of � (x) be

(� (x))� =

8>>><>>>:
g�i1i2i3���in (x) � < �

f�i1i2i3���in (x) � = �

0 � > �

So, to clarify, consider the following 4 examples.

x 2 D1 =) � (x) = hf1 (x) ; 0; 0; 0; 0; � � � i

x 2 D2;5 =) � (x) = hg1 (x) ; f2;5 (x) ; 0; 0; 0; 0; � � � i

x 2 D3;7;2 =) � (x) = hg1 (x) ; g2;7 (x) ; f3;7;2 (x) ; 0; 0; 0; 0; � � � i

x 2 D4;93;1001;17 =) � (x) = hg1 (x) ; g2;93 (x) ; g3;93;1001 (x) ; f4;93;1001;17 (x) ; 0; 0; � � � i

Note that � is an injective map. Indeed, for any x in arbitrary D�ijk��� suppose there

exists y such that � (x) = � (y). Then g1 (x) = g1 (y) =) x; y 2 V1i and g2i (x) = g2i (y) =)

x; y 2 V2ij and so on until the �th component. Since x; y 2 V�ijklm��� and f�ijklm��� is injective,

x = y. Thus, � is injective, and the inverse map ��1 : � (L) �! L exists.

Let � (L) have the lexicographic order topology (dictionary order topology) in which

a < b if and only if a� < b� where the �th component is the �rst component for which

the points di¤er, and recall that L has the order topology. From the de�nitions of the

maps f�i1i2i3���in and g�i1i2i3���in, � : L �! � (L) is order preserving, and, therefore, � is an

order preserving bijection between linearly ordered topological spaces. Any order preserving

bijection between two LOTS is obviously a homeomorphism. Therefore, � : L �! � (L) is

a homeomorphism.

De�ne the semigroup operation � : L � L �! L by x � y = ��1 ( (� (x) ; � (y))) for all

x; y 2 L, and note the following:

1. � is commutative since  is commutative. So, for any a 2 L left and right translation

by a are the same.
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2. For any x 2 D���� and y 2 D
��� with � < 
 and for any � < �, x� + y� 2 S since

x�; y� 2 S and S is closed under addition.

3. For any x 2 D���� and y 2 D
��� with � < 
 and for any � such that � � � < 
, x�+y� 2 S

since x� 2 W , y� 2 S and for all ai 2 W and for all bi 2 S, ai + bi 2 S.

4. For any x 2 D���� and y 2 D
��� with � < 
 and for any � � 
, x� + y� = y� 2 W since

x� = 0.

5. For any x; y 2 D����, the �th component x�; y� is in W and x� + y� 2 W since W is

closed under addition.

The above 5 points imply that for any x 2 D���� and y 2 D
��� with � � 
, x�y is in D
���.

L is, therefore, closed under the operation �. Furthermore, note that for any a 2 D����,

translation by a is not surjective since for all x 2 L, a � x 2 D
��� with 
 � �. In fact,

translation by a does not even map intervals onto intervals.

In order to complete the proof, � must be shown to be cancellative, associative, and

continuous, and L must be shown to satisfy the CCC and not to be separable. First, to

show � is cancellative suppose x � y = z � y for x; y; z arbitrary elements of L. This gives

the following:

� (x � y) = � (z � y) since � is injective

=)  (� (x) ; � (y)) =  (� (z) ; � (y)) since � (a � b) = �
�
��1 ( (� (a) ; � (b)))

�
=) � (x) = � (z) since addition of real numbers is cancellative

=) x = z since � is injective.
The same argument shows that y � x = y � z =) x = z. Therefore, � is cancellative.

Secondly, for associativity:

(x � y) � z = ��1 ( (� (x) ; � (y))) � z

= ��1 ( ( (� (x) ; � (y)) ; � (z)))

= ��1 ( (� (x) ;  (� (y) ; � (z)))) since  is associative

= x � ��1 ( (� (y) ; � (z)))

= x � (y � z) .

Therefore, � is associative.
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Thirdly, � is a composition of the maps �,  , and ��1, and � is continuous if each of them

is continuous. � and ��1 are already known to be continuous since � has been shown to be a

homeomorphism. So,  : �(L)��(L) �! �(L) is the only map still needing to be addressed.

Let (a; b) � �(L) be an arbitrary non-empty open interval where a = ha1; a2; a3; a4; a5; : : :i

and b = hb1; b2; b3; b4; b5; : : :i and �(L) has the lexicographic order topology. a < b implies a

and b di¤er in at least one component. Let � be the �rst such component. So, a� < b�. Let

(p; q) be an arbitrary point in the inverse image (p; q) 2  �1 (a; b). There are two meanings

for (; ), and the appropriate meaning should be clear from context. (p; q) is a point in the

product space �(L)��(L) and (a; b) is an open interval in � (L). Now, there are three cases

to consider for the �th component of  (p; q).

1. Suppose a� < ( (p; q))� < b�. By the continuity of addition on R (in the standard

topology) there exists an open set U � R2 such that for any (x; y) 2 U , x+ y 2 (a�; b�).

Thus, there exists an open set V � �(L)��(L) containing (p; q) such that V �  �1 (a; b).

2. Suppose a� = ( (p; q))� < b�. By the continuity of addition on R there exists an open

set U � R2 such that for any (x; y) 2 U , x+ y > a� for some � > �. Thus, there exists

an open set V � �(L)� �(L) containing (p; q) such that V �  �1 (a; b).

3. Suppose a� < ( (p; q))� = b�. By the continuity of addition on R there exists an open

set U � R2 such that for any (x; y) 2 U , x+ y < b� for some � > �. Thus, there exists

an open set V � �(L)� �(L) containing (p; q) such that V �  �1 (a; b).

So, for any point (p; q) 2  �1 (a; b) there exists an open set V �  �1 (a; b) containing

(p; q). Thus,  �1 (a; b) is an open set. Since (a; b) is an arbitrary open set,  is continuous.

� is, then, continuous since it�s a composition of continuous functions. Therefore, � is a

cancellative topological semigroup operation on L:

Now, consider L � L0. L is totally ordered since L0 is totally ordered, and it satis�es the

CCC. Furthermore, for each � < !1 the endpoints of each interval V�i1i2i3���in 2 V�i1i2i3���in
are not in L since they are neither elements of D�i1i2i3���in nor V�i1i2i3���in. The points in

V�i1i2i3���in, then, cannot be in the closure of D�i1i2i3���in. So, D���� \ L = D����. Thus, any

dense subset must include at least one element of D���� for all � < !1. Any dense subset,

then, must be uncountable. Therefore, L is not separable. Since L is a LOTS that satis�es
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the CCC but is not separable, it is a Souslin line.
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4.0 OPEN QUESTIONS AND FUTURE RESEARCH

4.0.7 Density Topology

Theorem 78 states that there are no topological groups on (R; �D). However, neither

the paratopological group case nor the cancellative topological semigroup case is discussed.

Perhaps the proof of Theorem 78 can be modi�ed to address the paratopological group case.

A review of the proof indicates that the continuity of the inverse operation is only employed

in the construction of the open set V that contains the identity and is equal to its inverse

V �1. However, Corollary 72, which shows e < a < b =) b�1 < a�1 < e, suggests that

this should be possible in the density topology without using the continuity of the inverse

operation. For every point x in V that is greater than e, the inverse x�1 should be a density

point of V provided V is symmetric in the sense of the interval (a�1; a) containing e. This

leads to the following conjecture.

Conjecture 95. For any paratopological group on (R; �D), the inverse operation is contin-

uous, and, therefore, the paratopological group is actually a topological group.

Proof of the conjecture would immediately lead to a corollary stating that there are no

paratopological groups on (R; �D).

On the other hand, the proof of Theorem 78 relies heavily on the existence of both an

identity element and inverses of elements. Therefore, proof that cancellative topological

semigroups do not exist on (R; �D) would require a drastically di¤erent approach. Never-

theless, the fact that addition is not a continuous binary operation in the density topology,

suggests that there might not be any continuous cancellative binary operations on (R; �D).
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4.0.8 Souslin

In addition to the Souslin line, there is also a tree named after Mikhail Yakovlevich Souslin.

In order to de�ne a Souslin tree, however, we must �rst de�ne some other properties. First,

recall the de�nition of a tree.

De�nition 96. A tree is a partially ordered set T that has a least element such that, for

each a 2 T , the set fb 2 T : b E ag is well ordered.

Trees have a number of di¤erent properties such as height, number and length of branches,

and antichains. These terms are de�ned as follows.

De�nition 97. Every well ordered set is known to be isomorphic to a unique ordinal number

called the order type of the set.

De�nition 98. For any element a of a tree T , the order type of the well ordered set

fb 2 T : b E ag is called the height of a, and it is denoted h (a).

De�nition 99. The �th level of a tree T is the set T� = fx 2 T : h (x) = �g, and the

height of the tree h (T ) is the least ordinal for which the level is empty. In other words,

h (T ) = min fordinal � : T� = ;g.

De�nition 100. A branch of a tree T is a maximal linearly ordered subset of T . Since T

has a least element, every branch is well ordered, and the order type of a branch is called its

length. If the length of a branch equals the height of the tree, the branch is called co�nal.

De�nition 101. An antichain in a tree T is a subset A � T such that any two distinct

elements x; y 2 A are incomparable.

We are now able to de�ne a Souslin tree.

De�nition 102. A Souslin tree is a tree of height !1 such that all antichains are countable

and there are no co�nal branches.

A well known theorem asserts that Souslin trees exist if and only if Souslin lines exist.

Indeed, this equivalence is the reason for the name Souslin tree. We are, then, led to the

following interesting question. Since there exists a cancellative topological semigroup on a
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Souslin line (Theorem 94), does there exist a cancellative topological semigroup on a Souslin

tree?
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