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High-risk human papillomaviruses (HPVs), such as HPV-16, are the etiological agents of 

squamous cell carcinomas (SCCs) of the anogenital tract and a subset of oropharyngeal cancers. 

High-risk HPVs encode two oncoproteins, E6 and E7, which promote unscheduled host cell 

proliferation by targeting the p53 and pRB tumor suppressor proteins, respectively. HPV-16 E7 

has been shown to stimulate structural chromosomal instability and DNA breakage. These 

findings raise several important questions. First, how does HPV-16 E7 induce DNA damage? 

Second, what are the precise consequences of HPV-16 E7-induced DNA damage for host cell 

genomic integrity, and lastly, how do HPV-16 E7-expressing cells maintain proliferation despite 

activated DNA damage checkpoints? Here, we show that HPV-16 E7 activates the Fanconi 

Anemia (FA) pathway, a branch of the host cell DNA damage response that primarily responds 

to stalled DNA replication forks. Importantly, we show that HPV-16 E7 expression in FA-

deficient cells accelerates the formation of structural chromosomal alterations, which may help 

to explain the heightened susceptibility of FA patients to HPV-associated tumors. However, we 

also provide evidence that HPV-16 E7-induced FA pathway activation in FA-proficient cells 

may contribute to evasion of anti-proliferative host cell barriers by promoting alternative 

lengthening of telomeres (ALT). Finally, we demonstrate that HPV-16 E7 circumvents DNA 

damage checkpoint control and promotes aberrant mitotic entry by increasing the proteolytic 
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turnover of claspin, which plays a role in the ATR/CHK1-mediated replication stress response. 

Collectively, our results underscore that HPV-16 E7 interferes with host cell genome integrity by 

inducing DNA replication stress. The detrimental effects of HPV-16 E7 on the genomic integrity 

of host cells with a deficient FA pathway support the notion that this DNA damage response 

pathway is crucial to prevent HPV-16 E7-induced genomic instability and malignant 

progression. However, we also provide evidence that HPV-16 E7 can exploit the FA pathway to 

promote cellular immortalization. Future experiments to explore these events for cancer therapy 

and/or prevention are warranted. 
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1.1 HUMAN PAPILLOMAVIRUSES (HPVS) AND CANCER 

Human papillomaviruses (HPVs) are circular double-stranded DNA tumor viruses that 

infect cutaneous and mucosal epithelial surfaces (1). Over 200 different genotypes of the virus 

have been identified and those that infect mucosal epithelial surfaces can be further categorized 

into “high” and “low” risk types. High-risk HPV types, such as HPV-16, -18, -31 and -33, are 

intimately associated with squamous cell carcinomas (SCCs) of the anogenital tract, including 

the cervix, vulva, anus, and penis, as well as a subset of cancers in the oropharyngeal region. 

Low-risk HPV types, such as HPV-6 and -11, cause benign tumor formation (condyloma 

acuminata) with little propensity for malignant progression (2, 3). Other HPVs that have been 

linked with cancer include HPV-5 and HPV-8, which are associated with the rare skin disease 

epidermodysplasia verruciformis (EV). Patients with EV develop wart-like, macular skin lesions 

and display a high incidence of non-melanoma skin cancer following ultraviolet (UV) exposure 

(4). 

The major route of viral transmission for mucosa-associated HPVs is through sexual 

contact (5). It has been estimated that approximately two thirds of adults are infected with HPV 

within two years of becoming sexually active (6). However, in most cases the virus is eliminated 

by the host immune system (7, 8). Risk factors for HPV-associated tumor formation include 

persistence, the presence of multiple HPV types, a compromised immune system (such as in the 

case of HIV-affected individuals), cigarette smoke and inherited gene mutations that are linked 

with genetic cancer susceptibility syndromes, such as Fanconi anemia (FA) (9-11).    

Greater than 90% of all cervical cancers are associated with chronic high-risk HPV 

infection (12, 13). Precancerous lesions, also referred to as cervical intraepithelial neoplasias 
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(CINs) are graded on a histopathological scale (I to III) based on the degree of disruption of the 

epithelial tissue architecture. It can take many years for pre-cancerous lesions to progress to 

invasive cancer, which underscores that HPV-associated carcinogenesis is a multi-step process 

that requires additional genomic insults. Cervical cancer remains the 3rd leading cause of cancer-

related deaths in women worldwide (2, 13). Recently, a prophylactic vaccine has been 

developed, which prevents infection of HPV types, -6, -11, -16, and -18 (14). However, 

additional preventive and therapeutic options are required for previously infected persons and for 

those with little access to the vaccine. 

1.2 THE BIOLOGY OF HPVS 

The HPV genome consists of circular double-stranded DNA of approximately eight 

kilobases in size. HPV genomes contain roughly eight open reading frames (ORFs) that encode 

for “early” (E) and “late” (L) genes, which are transcribed as polycistronic mRNAs (Fig. 1) (6). 

The “early” gene products include the E1 and E2 genes, which regulate viral replication and gene 

transcription. Other early genes include the E4 and E5 genes, which play roles in virion 

assembly/release or epidermal growth factor (EGFR) signaling respectively, and the E6 and E7 

oncogenes, which are required to disrupt host cell cycle control in order to promote viral 

propagation. The “late” genes, L1 and L2, encode for the structural capsid proteins (15).  
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Figure 1. Map of the HPV-16 genome.  

HPV-16 encodes for 8 open reading frames, including early genes (E) involved in various aspects of the viral life 

cycle and late genes (L) encoding for the structural capsid proteins. Viral transcription and replication is controlled 

by the long control region (LCR). 

 

Viral transcripts are processed by alternative splicing and are thought to be translated by 

leaky ribosomal scanning, a mechanism in which a proportion of translation complexes may scan 

the region upstream of the ORF until a proper start codon is identified (16). High-risk HPVs 

contain two promoters, an early promoter (p97) and late promoter (p742). The early promoter is 

found upstream of the E6 ORF and is primarily active early in infection, while the late promoter 

is found within the E7 ORF and is activated upon differentiation during the productive phase of 

the virus (6, 17). 

Early viral gene transcription is regulated by a non-coding region found upstream of the 

E6 ORF, known as the long control region (LCR) or upstream regulatory region (URR). The 

LCR contains binding sites for various host cellular transcription factors, including Sp-1, Oct-1 

and YY1, which serve to regulate HPV gene transcription (17). The LCR also harbors binding 

sites for the HPV viral E1 and E2 proteins which are involved in initiating viral replication. E1 is 
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responsible for melting the DNA near the viral origin of replication and possess helicase activity, 

while E2 increases the binding specificity of E1 to viral origins (18-20). 

The life cycle of the virus is intimately connected to the differentiation process of the 

epithelium (Fig. 2). Squamous epithelium consists of stratified cell layers with a proliferating 

basal keratinocyte layer. Normally, as the daughter cells migrate upwards within the epithelium 

they undergo differentiation, which is associated with permanent exit from the cell cycle (6).  

The virus gains access to the proliferating basal cell layer through microlesions to the 

epithelial surface and enters the keratinocyte through mechanisms that are not fully understood 

in detail (21).  Following infection, early viral genes are expressed and viral replication is kept at 

50 to 100 extrachromosomal HPV genomes per cell. During the early phase of viral infection, 

HPV E2 transcriptionally regulates the HPV E6 and E7 oncogenes and limits their expression 

(15, 22).  

Due to its small size, the HPV genome does not encode for any viral replication enzymes 

and therefore, must commandeer that of its host cell in order to establish viral replication. Since 

differentiation normally leads to irreversible cell cycle exit, the virus needs to override 

differentiation-associated cell cycle withdrawal in order to maintain a milieu that is competent 

for replication (23). Through the concerted efforts of the high-risk HPV E6 and E7 oncoproteins, 

which target the p53 and retinoblastoma (pRB) tumor suppressor proteins, respectively, the virus 

is able to maintain an S phase-like milieu that is conducive for viral replication in terminally 

differentiated keratinocytes (6, 24, 25). Within the suprabasal levels, the differentiation-

dependent HPV promoter is activated and late viral genes are expressed. High viral genome 

amplification occurs, thereby increasing the chance for successful viral transmission. The virus is 

assembled into virions and sloughed off with the uppermost layer of the epithelium (26).  
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Throughout a productive infection, the HPV genome is maintained episomally (22). 

Approximately 99% of HPV-associated cancers however, harbor viral DNA that has become 

integrated into the host cell genome. While the precise mechanism of HPV integration is not 

understood in detail, it usually occurs at a position that results in disruption of the HPV-16 E2 

gene and all others HPV-16 genes besides HPV-16 E6 and E7. Loss of HPV-16 E2 consequently 

leads to deregulation of the HPV-16 E6 and E7 oncogenes, and accordingly, the majority of 

HPV-associated tumors are characterized with high levels of HPV-16 E6 and E7. It is important 

to mention, however, that pre-cancerous lesions have been found to contain episomal and 

integrated HPV genomes (27-29). This finding highlights the notion that integration of the virus 

occurs during multistep malignant progression and, although it terminates the viral life cycle, 

may ultimately provide a growth advantage that results in the development of cancer. 

 

                       

Figure 2. The HPV life cycle.  

The virus enters through microlesions on the epithelial surface and infects the proliferating basal cell layer. Early 

viral genes are expressed and viral copy number is strictly regulated. The HPV oncoproteins attenuate G1/S 

checkpoint control and create an S phase-like milieu that is permissive for viral genome replication in terminally 

differentiated keratinocytes.  Legend continued on following page. 
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Within the suprabasal layers, the late viral genes are expressed, high viral genome amplification occurs and the virus 

is packaged into virions. HPV particles are then sloughed off with the uppermost layer of the epithelium. Adapted 

by permission from Macmillian Publishers Ltd: [Nature Reviews Cancer] 2(5); 342-350, copyright 2002. 

1.3 MOLECULAR TARGETS OF THE HIGH-RISK HPV ONCOPROTEINS 

The high-risk HPV E6 and E7 oncoproteins disrupt cell cycle regulation and promote 

proliferation by interacting with various host cell proteins. Manipulation of cell cycle proteins by 

high-risk HPV oncoproteins has also been linked to their ability to stimulate the immortalization 

and transformation of various human and rodent cell lines (25). 

1.3.1 The HPV-16 E7 oncoprotein 

The high-risk HPV E7 oncoprotein is a small, short-lived phosphoprotein consisting of 

98 amino acids that is localized mainly in the nucleus. HPV-16 E7 contains two copies of the 

Cys-X-X-Cys zinc binding domain in its C-terminus and is phosphorylated by casein kinase II 

(CKII) (Fig. 3) (30). HPV-16 E7 harbors sequences that share homology with the adenovirus 

(Ad) E1A protein and SV40 large tumor antigen (T Ag), commonly referred to as conserved 

regions 1 and 2 (CR1 and CR2) (31). The HPV-16 E7 oncoprotein is known for its ability to bind 

and induce the degradation of the retinoblastoma (pRB) tumor suppressor protein and the related 

“pocket proteins” p107 and p130 through the LXCXE motif found in CR2 and amino acids in 

CR1 (32-36). HPV-16 E7 destabilizes the pRB protein by binding and redirecting the cullin 2 

ubiquitin ligase complex (37). The pocket proteins play a critical role in regulating the G1/S 
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phase transition of the cell cycle and are required to inhibit E2F-dependent gene transcription 

prior to S phase (38). HPV-16 E7 further disrupts the pRB/E2F-regulatory axis by inhibiting the 

cyclin dependent kinase inhibitors p21Cip1 and p27Kip1 (39-41). Consequently, HPV-16 E7-

expressing cells are characterized by deregulated levels of E2F, as well as E2F targets, including 

cyclin E, cyclin A, and CDC25A (42-44).  

HPV-16 E7 interacts with various other host cell targets in order to stimulate proliferation 

(45). These include chromatin remodeling factors such as the histone acetyl transferase (HAT) 

p300 (46), the DNA methyltransferase Dnmt1 (47), and histone deacetylases (HDACs) 1 and 2 

through an interaction with Mi2a component of the NURD histone deacetylase complex (48). 

HPV-16 E7 has also been hypothesized to inhibit anchorage-independent apoptosis (anoikis) by 

binding p600 and can directly bind E2F, cyclin E/CDK2 and cyclinA/CDK2 complexes in order 

to deregulate their activity (47, 49-51). 

 

             

Figure 3. Schematic representation of the HPV-16 E7 oncoprotein.  

HPV-16 E7 contains two conserved regions (CR1 and CR2) that are highly homologous to that of the adenovirus 

E1A and SV40 large T Ag proteins. CR2 contains the LXCXE pRB binding motif and a casein kinase II 

phosphorylation site. Several important mutations are depicted with black triangles. HPV-16 E7 6-10 binds but not 

does not degrade pRB. Legend continued on following page. 
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HPV-16 E7 21-24 does not bind or degrade pRB. C-terminal mutants (CVQ68-AAA70 and 79-83) are unable to 

overcome a p21Cip1-associated growth arrest. Adapted by permission from Macmillian Publishers Ltd: [Oncogene] 

54(20); 7888-7898, copyright 2001. 

 

1.3.2 The HPV-16 E6 oncoprotein 

The E2F family of transcription factors however, also controls anti-proliferative targets, 

such as p14Arf, which if deregulated can lead to the stabilization of the p53 transcription factor 

(52-54). p53 is a crucial mediator of the cellular stress response and is involved in stimulating 

the transcription of pro-apoptotic factors and/or checkpoint proteins following negative growth 

conditions (55). Therefore, the cooperating HPV-16 E6 oncoprotein has evolved to target the p53 

protein for degradation by redirecting E6-AP, a member of the HECT domain family of host cell 

ubiquitin ligases (56-59). Further disruption of the p53 tumor suppressor protein is achieved 

through an interaction between the high-risk HPV E6 oncoprotein and p300, a co-transcriptional 

activator of p53 (60, 61).  

High-risk HPV E6 oncoprotein also drives proliferation by activating the promoter region 

of hTERT, the catalytic subunit of telomerase that is involved in maintaining telomere length 

(62). High-risk HPV E6 has been shown to deregulate hTERT activity through multiple 

mechanisms, including the binding of the transcription factor c-myc to the hTERT promoter 

region (63). hTERT activity is further enhanced by HPV-16 E6-induced histone aceytlyation of 

the hTERT promoter and degradation of NFX1-91, a transcriptional repressor of hTERT. Both of 

these activities have been shown to occur in an E6AP-dependent manner (64-66).  
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Other binding partners of high-risk HPV E6 include paxillin and proteins that contain a 

PDZ binding domain, including hDlg (the human homologue of the Drosophila melanogaster 

tumor suppressor disc large), MUPP1 and hScrib (the human homologue of D. melanogaster 

tumor suppressor scribble). Interactions between high-risk HPV E6 oncoproteins and PDZ 

proteins contribute to regulation of cell-cell contact, cell polarity and signaling (67-70).  

Due to subtle changes in amino acid sequence, the low-risk HPV E6 and E7 oncoproteins 

are unable to inactivate p53 and pRB, respectively, or do so with greatly reduced efficiency 

when compared to their high-risk counterparts (71). Low-risk HPV oncoproteins are also unable 

to promote immortalization of cells and exhibit little to no transformation abilities (25). These 

results suggest that the ability of high-risk HPV oncoproteins to effectively target the pRB and 

p53 tumor suppressor proteins is linked with their oncogenecity. It is important to note however, 

that more recent work has illustrated that low-risk HPV-6 E7 can destabilize the p130 protein, 

but not pRB or p107, similar to HPV-16 E7 (72). These results indicate that disruption of p130 

by the low-risk HPV E7 oncoprotein may be required to relax the differentiation programming in 

order to facilitate later stages of the viral life cycle, while complete disruption of pRB and pRB-

like proteins by the high-risk HPV E7 oncoprotein is linked with its ability to promote 

tumorigenesis.  

By disrupting the p53 and pRB tumor suppressor pathways, the HPV-16 E6 and E7 

oncoproteins are able to relax G1/S cell cycle checkpoint control and induce unscheduled entry 

into S phase (Fig. 4). Unscheduled proliferation, associated with deregulated E2F, cyclin E or 

CDC25A levels, has previously been shown to stimulate aberrant replication dynamics and DNA 

replication stress (73-75). Whether the high-risk HPV oncoproteins trigger a host cell DNA 

replication stress response has not been investigated in detail.  
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Figure 4. Disruption of G1/S checkpoint control by the high-risk HPV oncoproteins.  

HPV-16 E7 (16-E7) disrupts the pRB-regulatory axis and promotes deregulated E2F-mediated gene transcription by 

binding and inducing the degradation of the pRB family of proteins, as well as inhibiting the cyclin dependent 

kinase inhibitors p21Cip1 and p27Kip1. In order to evade anti-proliferative E2F-mediated signals, such as p14Arf, HPV-

16 E6 (16-E6) targets p53 for degradation. Together, the HPV oncoproteins relax G1/S checkpoint control and 

induce unscheduled entry into S phase, an activity that has been hypothesized to stimulate oncogenic stress 

associated with aberrant replication dynamics. 
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1.4 HIGH-RISK HPV ONCOPROTEINS, DNA DAMAGE AND CHROMOSOMAL 

INSTABILITY  

1.4.1 DNA damage, chromosomal instability and cancer 

Genomic instability is a hallmark of cancer, including HPV-associated cervical 

neoplasms (76). Loss of genomic integrity is a major factor for malignant progression and 

important for HPV oncoprotein-associated malignant transformation of cells (77-81).  

Chromosomal instability has been defined as “the accelerated rate of gains and losses of 

whole or portions of chromosomes in the context of continuous growth” (82, 83). While changes 

in chromosome number (aneuploidy) have been linked with mitotic defects, such as misaligned 

chromosomes or failed cytokinesis, altered chromosome structure is typically associated with 

DNA breaks (82). Exposed DNA ends can promote chromosome translocations or gene 

amplification/deletions as a result of aberrant chromosome fusions or repeated breakage-bridge 

cycles (84).  

During the evolution of a tumor, certain structural aberrations are selected for if they 

provide a growth advantage for the cell ie. gain of oncogenes or deletion of tumor suppressors. 

The idea that DNA breakage-induced chromosomal instability can drive malignant progression is 

supported by the observation that patients suffering from mutations in certain DNA repair 

enzymes suffer from enhanced cancer susceptibility (85). 

DNA breaks can occur from exogenous insults, eg. ultraviolet rays (UV) or gamma 

irradiation (86). However, it is conceivable that the most common endogenous source of DNA 

breaks are stalled replication forks that have collapsed (87). Stalled replication forks can form for 
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a variety of reasons, including physical barriers to replication such as interstrand crosslinks or 

single-strand breaks, replication enzyme deficiencies, dNTP pool imbalance or as a result of 

deregulated replication origin firing (73-75, 88). Other sources of DNA DSBs include 

chemotherapeutic agents, ionizing radiation, free radicals and DNA repair intermediates (86, 89).  

1.4.2 Evidence of DNA breakage in HPV-positive tumor cells 

Cytogenetic analysis of HPV lesions has revealed that, in addition to changes in ploidy, 

the majority of HPV tumors (up to 100%) harbor structural chromosomal changes (90, 91). 

Reoccurring patterns of chromosome gains and losses have been found in a broad spectrum of 

HPV tumors, suggesting that certain structural chromosomal aberrations are preferentially 

retained throughout HPV carcinogenesis (92). In line with this, gain of chromosome 3q has been 

correlated with the transition from pre-invasive to invasive cervical carcinomas (90). Other 

structural alterations commonly observed in HPV-associated neoplasms, include gains of genetic 

material on 1q, 5p, 6p and 20 and losses mapped to 2q, 3p, 4, 8p and 13q (92-94).   

1.4.3 High-risk HPV oncoproteins induce DNA damage and DNA damage checkpoints 

The finding that HPV tumors display structural chromosomal instability raises the 

important question whether high-risk HPV oncoproteins can induce DNA damage. Work from 

several labs suggests that this is the case and that high-risk HPV oncoproteins are in fact able to 

promote DNA breakage in host cells. First, HPV-16 E6 and/or E7 expression has been reported 

to act as mutagenic agents in primary human keratinocytes (95-97). Second, the HPV-16 E6 or 

E7 oncoproteins enhance the integration of foreign DNA, an event that requires DNA DSB 
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formation (98). Third, comet assay analyses, a technique which visualizes DNA breaks on a cell 

by cell basis, has revealed that stable expression of HPV-16 E6 or E7 in primary human 

keratinocytes stimulates increased DNA breakage (99). Fourth, HPV-16 E6 and/or E7 have been 

shown to induce structural chromosomal instability as evidenced by anaphase bridge formation 

(Fig. 5) and micronuclei, in the absence of telomere attrition (99, 100). Anaphase bridges form 

when exposed DNA ends fuse together to produce a dicentric chromosome and can ultimately 

lead to repeated cycles of breakage-bridge-fusion events (84). Lastly, HPV-16 E7 expression was 

found to stimulate nuclear foci containing H2AX, a marker of DNA DSBs and an early 

signaling event in the cellular stress response (refer to section 1.5 for a complete overview of the 

host cell DNA damage response).  

Other viral oncoproteins such as Ad E1A and SV40 large T Ag, which share similar 

functions as HPV-16 E7, have also been shown to activate DNA damage checkpoints, trigger 

DNA breakage and promote structural chromosomal instability (Table 1) (101-104). Previous 

work suggests that expression of E1A and large T Ag promotes chromosome breaks independent 

of viral replication and it has been hypothesized that host cells in S phase are particularly 

susceptible to viral oncoprotein-induced DNA breakage (101-104).  
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Figure 5. The high-risk HPV oncoproteins stimulate structural chromosomal instability and activate the host 

cell DNA damage response.  

(A) Primary human keratinocytes engineered to stably express the HPV-16 E6 and E7 oncoproteins were analyzed 

microscopically for structural abnormalities following a nuclear DAPI stain. The white arrow points to an anaphase 

bridge. (B) Primary human keratinocytes stably expressing HPV-16 E7 or empty vector control (control) were 

processed for immunofluorescence microscopic analysis of H2AX. Note the appearance of H2AX foci in HPV-

16 E7-expressing cells. Adapted by permission from Copyright Clearance Center: [Cancer Research] 62(23); 7075-

7082, copyright 2002. 

 

How do HPV-16 oncoproteins stimulate DNA damage? While it is thought that HPV-16 

E6-induced degradation of p53 permits the accumulation of DNA damage (96), the mechanisms 

behind HPV-16 E7-induced DNA breaks are less clear. Importantly, expression of low-risk 

HPV-6 E7 in human keratinocytes has not been found to stimulate mutagenesis (95). Since low-

risk HPV-6 E7 oncoprotein is unable to efficiently target the pRB protein for degradation, this 

result suggests that deregulation of the pRB/E2F axis by HPV-16 E7 may play a role in 

stimulating host cell DNA damage. Therefore, the goals of this thesis was to investigate 1) the 

molecular mechanisms behind HPV-16 E7-induced host cell DNA damage, 2) the consequences 

of HPV-16 E7-associated DNA damage on host cell genomic integrity and 3) to determine how 
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HPV-16 E7-expressing cells continue to proliferate in a DNA damage response-activated host 

cell environment. 

 

Virus  Viral Protein  Evidence of DNA breaks Refs

Adenovirus  E1A  Structural chromosomal instability [103, 104]

HPV  HPV‐16 E6  Structural chromosomal instability, 
mutagenesis, foreign DNA integration, 
DNA comet assay 
 

[95‐100]

HPV  HPV‐16 E7  Structural chromosomal instability, 
mutagenesis, foreign DNA integration,  

DNA comet assay, H2AX foci 
 

[95‐100]

SV40  Large T Ag  Structural chromosomal instability, 
ATM/ATR activation 

                       [101, 102]

 

Table 1. Summary of viral oncoproteins that induce host cell DNA damage.  

1.5 THE HOST CELLULAR DNA DAMAGE RESPONSE  

1.5.1 ATM and ATR signaling cascades 

Cells has evolved a highly complex signaling network, known as the DNA damage 

response, which is required to detect and facilitate the repair of damaged DNA as well as 

coordinate cell cycle arrest or apoptosis (Fig. 6) (105-107). The DNA damage response is 

orchestrated mainly by the phospho-inositide kinase (PIK)-related ataxia telangiestacia mutated 

(ATM) and ATR (ATM and Rad 3-related) protein kinases, which become activated in response 

to specific types of DNA lesions and phosphorylate multiple downstream targets that lead to the 
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assembly of DNA repair proteins on chromatin and activation of checkpoint proteins (105). 

ATM is primarily activated in response to DNA DSBs, while ATR is generally linked with 

replication stress and stalled replication forks (106). However, there is a significant amount of 

cross talk as evidenced by the fact that ATR can also be activated in response to DNA DSBs, 

albeit with slower kinetics (108-112). 

In response to DNA DSBs, the MRN (Mre11-Rad50-Nbs1) complex is required to recruit 

ATM to the chromatin, where ATM is then activated through an intermolecular 

autophosphorylation at serine 1981 (pATM S1981) (113-115). Activated ATM phosphorylates 

histone variant H2AX at serine 139 (H2AX), which serves as a platform for the adaptor 

protein, MDC1 (116). Through multiple interactions between MDC1, H2AX and the MRN 

complex, the DNA damage signal is spread to surrounding chromatin and facilitates the rapid 

recruitment of DNA repair factors into what are termed nuclear foci (117, 118). The detection of 

nuclear foci is a common method used to characterize DNA damage response activation. 

Additional ATM substrates found to localize to broken DNA include BRCA1 and the p53 

binding partner, 53BP1 among others (119).  

In contrast, ATR is activated by stretches of RPA-coated single stranded DNA that form 

at replication blocks as a result of continued DNA unwinding (120). Activation of the ATR 

kinase is facilitated in part by ATRIP (ATR-interacting protein), which regulates the localization 

of ATR to sites of stalled replication, and the TOPBP1 protein (121-125). ATR requires the 

mediator protein, claspin, in order to phosphorylate the downstream checkpoint kinase, Chk1, 

which signals to various targets in order to arrest the cell cycle to allow time for DNA repair 

(126-128).  
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ATR and ATM signal primarily through the downstream effector checkpoint kinases, 

Chk1 and Chk2, respectively (129). Activated Chk1 and Chk2 phosphorylate multiple substrates, 

including p53, p21Cip1 and the CDC25 family of phosphatases, which play a more direct role in 

imposing a cell cycle arrest by inhibiting CDK activity. Many of these targets can also be 

directly phosphorylated by ATM and ATR as well (130). 

             

Figure 6. The DNA damage response signaling cascade.  

In response to specific types of DNA lesions the ATM or ATR kinases are activated by either autophosphorylation 

or re-localization. The ATM and ATR kinases phosphorylate various substrates which are required to 

transduce/spread the DNA damage signal throughout the cell. Phosphorylation of the effector checkpoint kinases 

facilitates cell cycle arrest, DNA repair or apoptosis. 
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1.5.2 The Fanconi Anemia (FA) pathway 

The Fanconi Anemia pathway (FA) is a signaling cascade that participates in the DNA 

damage response and is specifically activated following DNA replication stress and stalled DNA 

replication forks (131). Much of what is known today about the FA pathway stems from research 

done using patient-derived cell lines that harbor inherited inactivating mutations in one of the 

many FA genes (132). FA is an extremely rare, recessive or X-linked, genetic cancer 

susceptibility syndrome that affects 1 in every 350,000 live births. FA patients display a variety 

of abnormalities, including bone marrow failure, developmental defects and a high incidence of 

solid tumors, specifically SCCs (133). FA-deficient cells are characterized by high levels of 

spontaneous chromosomal instability and exhibit hypersensitivity to interstrand cross linking 

agents, such as Mitomycin C (MMC), which causes chromosome breaks and abnormal radial 

structures (134).  

The FA pathway consists of at least thirteen proteins, which assemble into multi-protein 

core complexes that are thought to play a role in the detection, stabilization and restart of stalled 

replication forks (135). Following genotoxic stress, eight of the FA proteins (FANCA, B, C, E, 

F, G, L, M) and the interacting proteins FAAP24 and FAAP100 form a high molecular weight 

nuclear core complex that serves to monoubiquitinate the FANCI and FANCD2 proteins (FA-

ID) at conserved lysine residues (Fig. 7A) (136). FANCL has been shown to harbor E3 ligase 

activity and therefore, is likely to be involved in ubiquitin moiety transfer (137, 138). However, 

each of the indicated FA proteins is required for core complex stability and to facilitate the 

monoubiquitination of the FA-ID proteins (139). Monoubiquitination of the FA-ID proteins leads 

to their translocation to the chromatin where it then interacts with FANCD1/BRCA2, 
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FANCJ/BRIP1, FANCN/PALB2 and several DNA damage proteins including RAD51 (140) 

(Fig. 7B). These proteins have various enzymatic functions and have been implicated in 

replication fork restart and DNA repair through mechanisms that are thought to involve 

homologous recombination (HR) and DNA translesion synthesis (141, 142). In line with this, 

FA-deficient cells are characterized by hypersensitivity to MMC-induced interstrand crosslinks 

and display high levels of spontaneous chromosomal instability. The pathway is then switched 

off through the deubiquitination of the ID complex by the USP1 enzyme (143).  

FANCD2 monoubiquitination occurs in an ATR-dependent manner and is required for 

the formation of FANCD2 nuclear foci in response to genotoxic stress (144). Therefore, the 

appearance of FANCD2 foci formation is commonly used as a surrogate marker for FA pathway 

activation.          

 

 

Figure 7. The FA DNA damage pathway.  

(A) In response to stalled replication forks, eight of the FA-associated proteins and several FA-interacting proteins 

form a core complex that serves to monoubiquitinate the FANCD2 and FANCI proteins. Legend continued on 

following page. 
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(B) Monoubiquitinated FANCD2 and FANCI are recruited to the chromatin and assembled into nuclear foci where 

they interact with FANCD1/BRCA2, FANCJ, FANCN and other DNA damage proteins (not depicted) in order to 

stabilize and restart stalled replication forks. The pathway is turned off by the deubiquitinating enzyme USP1. 

1.6  FANCONI ANEMIA (FA) AND HPV 

A recent epidemiological study revealed that FA patients are 50-times more likely to 

develop solid tumors (145) and have a 500-700 fold higher incidence of head and neck squamous 

cell carcinomas (HNSCCs) than the normal population (146). Greater than 50% of all solid 

tumors found in FA patients form at organ sites with a predilection for infection with high-risk 

human papillomaviruses (HPVs), including the anogenital and oropharynx regions (145-152). 

The precise contribution of high-risk HPV infection with respect to FA tumor burden however, 

remains unclear due to conflicting results in the literature. An analysis of HNSCCs from FA 

patients found that approximately 80% were positive for high-risk HPV DNA, type 16 (HPV-16) 

being the most prevalent (9). However, contradictory reports have been unable to detect HPV 

DNA in a separate subset of FA HNSCCs and tumor-derived cell lines (153, 154). Despite these 

differences, FA genes have been found to be epigenetic silencing in HPV-associated tumors 

(155). The reason for the increased susceptibility of FA patients to develop HPV tumors at a 

significantly younger age than the normal population remains unknown.  
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1.7 THESIS OUTLINE 

Chapter 1 consists of a general introduction to the biology of human papillomaviruses (HPVs) 

and how they are associated with cancer. The role of the high-risk HPV oncoproteins in the viral 

life cycle and in stimulating host cell DNA damage and genomic instability will then be 

discussed. This chapter also provides a review of the DNA damage response and presents 

clinical findings that support a potential link between the genetic cancer susceptibility syndrome 

Fanconi Anemia (FA) and HPV-associated carcinogenesis. 

 

Chapter 2 describes activation of the FA pathway by the HPV-16 E7 oncoprotein.  Hallmarks of 

FA pathway activation were observed in HPV-associated squamous cell carcinoma (SCC) tissue 

as well as organotypic raft cultures harboring full length HPV-16 episomes. Further experiments 

using an in vitro cell culture model revealed that the HPV-16 E7 oncoprotein is involved in 

stimulating FA pathway activation. Finally, we show that high-risk HPV E6 and E7-positive raft 

cultures generated from patient-derived FANCA-deficient primary cells display increased DNA 

DSBs and that expression of the HPV-16 E7 oncoprotein in a FANCD2-deficient cell line 

accelerates structural chromosomal instability. These results suggest that HPV-16 E7 triggers a 

host cell DNA replication stress response, which is reflected by FA pathway activation, and 

indicates that certain DNA repair pathways are essential to prevent HPV-16 E7-associated DNA 

damage and genomic instability.  

 

Chapter 3 describes a functional consequence of HPV-16 E7-associated replication stress for 

host cell genomic integrity in FA-proficient cells. HPV-16 E7-induced replication stress and 
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associated FA pathway activation was found to play a role in the telomerase-independent 

alternative lengthening of telomeres (ALT). We show that the HPV-16 E7 oncoprotein 

stimulates the appearance of ALT-associated promyelocytic leukemia bodies (APBs), a surrogate 

marker of ALT activity, which contain the FANCD2 protein. Further characterization of these 

nuclear structures revealed that their formation is linked with replication stress at telomeres and 

points to a role for the FA pathway in ALT-mediated telomere homeostasis. Finally, the HPV-16 

E7 oncoprotein was shown to stimulate the formation of FANCD2-containing APBs in primary 

human keratinocytes. Collectively, these findings may help to explain how the HPV-16 E7 

oncoprotein contributes to the immortalization of cells in a telomerase-independent manner and 

furthermore, suggests that HPV-16 E7-associated activation of the DNA damage response may 

aid in the circumvention of anti-proliferative host cell barriers. 

 

Chapter 4 describes a novel mechanism through which the HPV-16 E7 oncoprotein promotes 

cell cycle progression despite anti-proliferative stimuli. HPV-16 E7 was found to attenuate DNA 

damage checkpoint control and stimulate aberrant mitotic entry in the presence of DNA damage 

by accelerating the degradation of claspin. Claspin is a DDR protein that plays a role in the 

ATR/CHK1 signaling pathway and its degradation has recently been implicated in DNA damage 

checkpoint recovery. Several E2F-responsive components of the SCF-TrCP-based claspin 

degradation machinery were found deregulated in the presence of the HPV-16 E7 oncoprotein. 

These findings suggest that manipulation of the pRB/E2F-axis by HPV-16 E7 may contribute to 

altered claspin protein stability and thus relax DNA damage checkpoint control in order to 

maintain mitotic entry in the presence of anti-proliferative stimuli. 
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Chapter 5 summarizes findings from each of the previous sections and develops a 

comprehensive model of how the HPV-16 E7 oncoprotein activates and exploits the host cell 

DNA damage response. This chapter will highlight results which illustrate how interplay 

between HPV-16 E7 and the host cell DNA damage response contribute to genomic instability, 

malignant progression and the viral life cycle. Future directions will also be discussed.  
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2.0  THE HPV-16 E7 ONCOPROTEIN ACTIVATES THE FANCONI ANEMIA (FA) 

PATHWAY AND CAUSES ACCELERATED CHROMOSOMAL INSTABILITY IN FA 

CELLS 

Work described in this section was published in the Journal of Virology (JVI 2007, 

81:13265-13270) with authors Nicole Spardy, Anette Duensing, Domonique Charles, Nathan 

Haines, Tomomi Nakahara, Paul F. Lambert and Stefan Duensing.  

 

D. Charles and N. Haines performed experiments using the organotypical raft cultures. T. 

Nakahara and P.F. Lambert provided the organotypical raft cultures. N. Spardy performed all 

other experiments described in this section. A. Duensing helped with the experimental design 

and data analysis. N. Spardy and S. Duensing conceived the project, analyzed the results and 

wrote the manuscript. 

 

Work described in this section was also done in collaboration with Susanne Wells 

(Cincinnati Children’s Hospital) and was published in Oncogene 2009, (28:674-685) with 

authors EE Hoskins, TA Morris, JM Higginbotham, N Spardy, E Cha, P Kelly, DA Williams, 

KA Wikenheiser-Brokamp, S Duensing and SI Wells. 
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2.1 INTRODUCTION 

As reviewed in Chapter 1, the HPV-16 E7 oncoprotein plays a critical role in the viral life 

cycle by disrupting the pRB/E2F-axis in order to create a replication-competent milieu 

conducive for viral replication in growth-arrested keratinocytes. However, unscheduled S phase 

entry and deregulated cyclin expression has been hypothesized to trigger aberrant replication 

dynamics and DNA replication stress (73-75). The FA pathway is part of the host cell DNA 

damage response that is specifically activated in response to stalled replication forks (136). 

Therefore, we tested whether HPV-16 oncoprotein expression triggers host cell replication stress, 

using induction of the FA pathway as a molecular readout. Since replication stress can ultimately 

lead to DNA breakage (87), we also examined whether a functional FA pathway is required to 

prevent high-risk HPV oncoprotein-associated DNA breakage. Lastly, based on epidemiological 

studies which suggest that FA patients are increasingly susceptible to HPV tumors (9, 148), we 

tested whether FA-deficient cells are more prone to HPV-16 oncoprotein-induced structural 

chromosomal instability.  

We show that hallmarks of FA pathway activation are observed in HPV-associated SCCs 

as well as organotypic raft cultures harboring full length HPV-16 episomes. Further experiments 

revealed that the HPV-16 E7 oncoprotein is involved in activating the FA pathway, as assessed 

by FANCD2 foci formation and recruitment of monobiquitinated FANCD2 and 

FANCD1/BRCA2 to chromatin. Importantly, FA gene deficiency was found to enhance high-

risk HPV oncoprotein-associated DNA breakage and furthermore, that HPV-16 E7 expression in 



 38 

 

patient-derived FANCD2-deficient cells accelerates the accumulation of structural chromosomal 

instability. Collectively, our results suggest that FA pathway activation represents an early host 

cell response to HPV infection and that HPV-16 E7 oncoprotein activity is involved in 

promoting FA pathway induction. Our finding that HPV-16 E7 expression exerts deleterious 

effects for the genomic integrity of FA-deficient cells supports the notion that certain DNA 

repair pathways are crucial to prevent malignancy and may help to explain the increased 

susceptibility of FA patients to HPV tumors.  

2.2 MATERIALS AND METHODS 

Cell culture and transfection 

(hTERT)-immortalized normal human oral keratinocytes (NOKs), kindly provided by 

Karl Münger (Channing Laboratory, Brigham & Women’s Hospital, Boston, MA) were 

maintained in serum-free keratinocyte growth media (KGS, Invitrogen, Carlsbad, CA) 

supplemented with 50 U/ml penicillin (Cambrex, Walkersville, MD), 50 g/ml streptomycin 

(Cambrex) and fungizone (Gibco/Invitrogen). FA complementation group D2 (GM16633; 

Coriell Cell Repositories, Camden, NJ) immortalized fibroblasts were grown in Dulbecco 

Modified Eagle’s medium (DMEM; Biowhittaker/Lonza Inc., Allendale, NJ) supplemented with 

10% FBS and antibiotics as described. Stable populations of NOKs expressing the high-risk 

HPV-16 E6, HPV-16 E7, HPV-16E6/E7, or low-risk HPV-6 E6 or HPV-6 E7 oncoproteins were 

created by transfecting 2 g of plasmid using nucleofection (Lonza Inc.), followed by antibiotic 

selection in G418 and/or puromycin. Stable populations of FANCD2-deficient fibroblasts 



 39 

 

expressing the various HPV oncoproteins were generated using 2g of plasmid and fugene 

lipofection (Invitrogen), followed by antibiotic selection. pCMV-based plasmids containing 

HPV-16 E6 or HPV-16 E7 were kindly provided by Karl Münger. LXSN-based low-risk HPV-6 

E6 and HPV-6 E7 constructs were kindly provided by Denise Galloway (Fred Hutchinson 

Cancer Research Center, Seattle, WA) and subcloned into pCMV-based vectors. Correct plasmid 

expression was verified using PCR (data not shown).  

 

Immunological methods 

Whole cell lysates were prepared by scraping cells into lysis buffer (1% NP-40, 50 mM 

Tris-Hcl pH 8.0, 100 mM sodium fluoride, 30 mM sodium pyrophosphate, 2 mM sodium 

molybdate, 5 mM EDTA, 2 mM sodium orthovanadate) containing protease inhibitors (10 g/ml 

aprotinin, 10 g/ml leupeptin, 1 mM phenylmethylsulfonyl fluoride). Lysates were incubated for 

1 hr with rocking at 4°C and then cleared by centrifugation for 30 min at 13,000 rpm at 4°C. 

Protein concentrations were determined by the Bradford assay (Bio-Rad, Hercules, CA).  

Chromatin fractionation was done according to Mendez and Stillman (156). Briefly, cells 

of even confluency were spun down at 1,100 rpm for 10 min at room temperature (RT) and 

washed once in PBS.  The pellet was resuspended in Buffer A (10 mM HEPES, pH 7.9, 10 mM 

KCl, 1.5 mM MgCl2, 10 mM NaF, 340 mM sucrose, 10% glycerol, 1 mM dithiothreitol (DTT), 

0.1 mM phenylmethylsulfonyl fluoride, 1 mM sodium orthovanadate, 0.1% Triton X-100, 5 

g/ml leupeptin, 10 g/ml aprotinin) and incubated on ice for 5 min.  The nuclear pellet (P1) was 

collected by centrifugation at 3,500 rpm for 5 min at 4°C, and the supernatant containing the 

cytoplamic fraction of soluble proteins (S2) was further clarified by high-speed centrifugation at 

13,000 rpm for 15 min to remove cell debris and insoluble aggregates. The nuclear pellet was 
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washed once in Buffer A, and then lysed in Buffer B (3 mM EDTA, 0.2 mM EGTA, 1mM DTT, 

0.1 mM phenylmethylsulfonyl fluoride, 1mM sodium orthovanadate, 5 g/ml leupeptin, 5 g/ml 

aprotinin) on ice for 10 min. The soluble nuclear proteins (S3) and insoluble chromatin fraction 

(P3) were collected by centrifugation at 4,000 rpm for 5 min at 4°C. The pellet was washed once 

in Buffer B and then resuspended in SDS-sample buffer containing 40% -mercaptoethanol and 

sheared for 15 sec in a 550 Sonic Dismembrator (Fischer Scientific, Pittsburgh, PA) at 15% 

amplitude. 

Equal amounts of protein were then loaded onto a 3-8% Tris-Acetate gel (Invitrogen) or a 

4-12% Bis-Tris gel (Invitrogen) and blotted onto a nitrocellulose membrane.  

For immunofluorescence analysis of organotypical raft cultures and paraffin embedded 

tissue samples, slides were deparaffinized by baking overnight, followed by xylene treatment and 

dehydration in 100% ethanol. After rehydration in a graded ethanol series (90%, 70%, 50%), 

slides were washed twice in dH2O and microwave treated in 0.01 M Citrate buffer, pH 6.0 for 30 

min. Slides were allowed to cool, washed once in dH2O and twice in PBS, followed by digested 

using pepsin solution (Digest-all 3; Zymed Laboratories, San Francisco, CA) for 30 sec at 37°C. 

Slides were rinsed in PBS and blocked in 10% normal donkey serum in distilled water for 30 

min at room temperature. Primary antibodies were diluted in PBS and slides were incubated for 

at least 2 nights at 4°C, followed by several hours at 37°C. Slides were washed in PBS and a 

FITC-conjugated secondary antibody was applied and incubated overnight at 4°C, followed by 

37°C for several hours. Slides were washed in PBS and counterstained with 4’,6’-diamidino-2-

phenylinodole (DAPI, Vector Laboratories, Burlingame, CA). Cells were analyzed using an 

Olympus AX70 epifluorescence microscope equipped with a SpotRT digital camera.  



 41 

 

For immunofluorescence analysis of cells grown on coverslips, cells were washed briefly 

in PBS and fixed in 4% paraformaldehyde in PBS for 10 min at room temperature. Following a 

brief wash in PBS, cells were permeabilized using 1% Triton-X 100 in PBS for 30 min at room 

temperature, washed in PBS and blocked in 10% normal donkey serum (Jackson 

Immunoresearch, West Grove, PA) in distilled water for 15 min at room temperature. Cells were 

then incubated with primary antibodies overnight at 4°C, followed by several hours at 37°C in a 

humidified chamber. Cells were washed in PBS, incubated with a FITC-conjugated anti-rabbit 

secondary antibody (Jackson Immunoresearch) for at least 2 h at 37°C, washed in PBS and 

counterstained with DAPI    

Primary antibodies used for immunoblotting, and immunofluorescence were 

FANCD1/BRCA2 (Calbiochem, San Diego, CA), FANCD2 (Genetex, Irvine, CA) and ORC2 

(BD Biosciences PharMingen, San Jose, CA). Ponceau stain (Pon S) was used to demonstrate 

equal protein loading. 

  

Metaphase spread analysis 

Cells were treated 2 h prior to harvesting with 0.1 g/ml colcemid solution (Sigma, St. 

Louis, MO). Cells were then spun down at 1,100 rpm for 10 min at RT. The pellet was 

resuspended in 50 l of the supernatant and 1 ml of prewarmed 75 mM KCl and then incubated 

for 10 min at 37°C. The cells were collected by centrifugation at 1,100 rpm for 10 min at RT. 

The supernatant was discarded and the pellet was resuspended drop by drop with Carnoy’s 

fixative (3:1, methanol: glacial acetic acid). The cells were collected by centrifugation at 1,100 

rpm for 10 min at RT and resuspended in Carnoy’s fixative. The cell suspension was then 
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dropped from an approximate height of 10 cm onto glass slides. Chromosomes were visualized 

with DAPI stain.   

 

Densitometric analysis 

Quantification of band intensities was performed using NIH Image J software, 

http://rsbweb.nih.gov/ij/. 

 

Statistical significance 

Student’s two-tailed t test for independent samples was used to assess statistical 

significance. 

2.3 RESULTS  

The FA pathway is activated in the presence of high-risk HPV oncoproteins. 

We first determined the activation status of the FA pathway, using FANCD2 foci 

formation as a surrogate marker of FA pathway activation, in two different tissue arrays 

(Cybridi, Bethesda, MD and Biomax USA, Rockville, MD) that contained a total of 82 cervical 

squamous cell carcinomas (SCCs) and 39 control tissue specimens. Immunofluorescence 

microscopic analysis for FANCD2 revealed different staining patterns in cancer tissue versus 

that in normal cervical tissue. In 17 out of the 39 control samples (43.6%) we observed small 

punctate FANCD2 foci that was restricted to the supra-basal/basal strata of the epithelium and 

therefore, likely represents S phase-associated FA pathway activation. In contrast, a proportion 
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of SCC samples displayed cells with large FANCD2 foci in addition to the smaller foci, with 

some of the larger FANCD2 foci displaying a ring-like morphology (Fig. 8). Out of a total of 82 

cervical cancers, 50 tumor samples (61%) were found to contain large FANCD2 foci. The 

number of tumor cells positive for large FANCD2 foci ranged from a few positive cells (1 per 

high-power field (HPF); 27 tumors), to a moderate number (1 to 5 per HPF; 15 tumors), to a high 

number (>5 per HPF; 8 tumors). Large FANCD2 foci were also observed in high-risk HPV-

associated anal SCCs (data not shown). Since large FANCD2 foci were not detected any of the 

normal tissue samples this suggests that their formation represents FA pathway activation that is 

associated with oncogenic stress.  

         

Figure 8. FANCD2 foci in normal cervical tissue and cervical SCCs.  

Immunofluorescence analysis of FANCD2 revealed small punctate FANCD2 foci in normal tissue (upper panel) in 

contrast to large FANCD2 foci observed in SCC samples (lower panel). Nuclei were stained with DAPI. The white 

line in the top right panel indicates the basement membrane. Scale bar indicates 10 m. 
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Activation of the FA pathway involves the HPV-16 E7 oncoprotein and occurs 

independently of viral integration.  

The majority of HPV-associated tumors contain HPV DNA that has been integrated 

within the host cell genome, which leads to increased HPV oncoprotein activity. Precancerous 

lesions however, maintain the virus in an episomal state (157). Therefore, we were interested in 

determining whether episomal expression of the high-risk HPV oncoprotein is sufficient to 

activate the FA pathway. An immunofluorescence microscopic analysis of FANCD2 on three 

independently generated organotypical raft cultures from spontaneously immortalized human 

foreskin keratinocytes that stably express full length HPV-16 episomes or control was performed 

(Fig. 9A). We found that a significant proportion of cells harboring HPV-16 episomes contained 

large FANCD2 foci (1.7%) in comparison to control raft cultures, in which no such staining was 

observed (0%, p≤0.05, Fig. 9B). Inactivation of HPV-16 E7 by a translational termination linker 

(TTL) mutant in two independently generated raft cultures was found to significantly reduce the 

formation of large FANCD2 foci to 0.08% (p≤0.05, Fig. 9B). Raft cultures expressing a mutant 

HPV-16 E7 oncoprotein in which the pRB binding motif had been deleted was also found to 

decrease the percentage of cells with large FANCD2 foci (0.8%, data not shown). These findings 

suggest that the HPV-16 E7 oncoprotein is involved in stimulating the FA pathway and that FA 

activation occurs independently of viral integration. 

In order to further explore the contributing roles of the high-risk HPV oncoproteins with 

respect to FA pathway induction, we performed immunofluorescence microscopic analysis of 

FANCD2 on hTERT-immortalized normal oral keratinocytes (kindly provided by K. Munger, 

Channing Laboratory, Brigham and Women’s Hospital, Boston, MA) that have been engineered 

to stably express the high-risk HPV-16 E6 and/or HPV-16 E7 or low-risk HPV-6 E6 or E7 
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oncoproteins (Fig. 9C). We found that HPV-16 E7 expression lead to a significant 5.6-fold 

increase in the percentage of cells that contain large FANCD2 foci, from 1.5% in controls to 

8.4% (p≤0.0005, Fig. 9D). Expression of the HPV-16 E6 oncoprotein did not lead to a significant 

increase of large FANCD2 foci as compared to the corresponding controls (4.6% versus 5.3%, 

p>0.05, Fig. 9D). Co-expression of HPV-16 E6 and E7 lead to a moderate further increase of 

cells with large FANCD2 foci, from 12.1% in cells expressing HPV-16 E7 (HPV-16 E7/neo) to 

14.9% in cells expressing both HPV-16 E6 and E7 (Fig. 9E). No significant change in the 

percentage of cells positive for large FANCD2 foci was observed in cell populations expressing 

the low-risk HPV-6 E6 or E7 oncoproteins (3.5% and 5.5%, respectively) compared to controls 

(4.8%, p>0.05; Fig. 9F). The differences in the base line percentage of control cells positive for 

large FANCD2 foci are likely due to the fact that cells observed in Figs. 9E and F as well as 

HPV-16 E6-expressing cells and the corresponding controls (Fig. 9D) underwent two rounds of 

selection, whereas the HPV-16 E7-expressing cells and corresponding controls were only 

selected once. Nevertheless, the HPV-16 E7 oncoprotein was able to stimulate a significant 

increase in the percentage of cells that contain large FANCD2 foci regardless of the background 

levels in the respective controls.   
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Figure 9. Induction of large FANCD2 foci involves HPV-16 E7 and occurs independently of viral integration.  

(A) Immunofluorescence microscopic analysis of FANCD2 in organotypic raft cultures generated from primary 

human keratinocytes stably transduced with either HPV-16 episomes or control. Note the small punctate FANCD2 

foci in a control cell in contrast to the large nuclear FANCD2 focus in a cell with HPV-16. Nuclei were stained with 

DAPI. Scale bar indicates 10 m. (B) Quantification of the percentage of cells with large FANCD2 foci observed in 

organotypic rafts cultures transduced with control, full length HPV-16 episomes or HPV-16 episomes with a TTL 

inserted at nucleotide 711 of the E7 gene (E7TTL). Each bar indicates the mean and standard error for at least two 

independent immunofluorescence experiments, with at least 100 cells counted per experiment. Asterisk indicates 

statistical significance difference in comparison to controls. (C) Immunofluorescence microscopic analysis of 

FANCD2 in hTERT-immortalized normal oral keratinocytes stably transfected with either HPV-16 E7 or control. 

Note the different FANCD2 foci pattern in control versus HPV-16 E7-expressing cells. Nuclei stained with DAPI. 

Scale bar indicates 10 m. (D to F) Quantification of the percentage of cells with large FANCD2 foci in cells 

expressing HPV-16 E6 or HPV-16 E7 (D), co-expression of HPV-16 E6 and E7 (E), or low-risk HPV-6 E6 or E7 

(F) and their corresponding controls. Each bar represents the mean and standard error for triplicate quantifications of 

at least 100 cells. Asterisks indicate statistically significant differences in comparison to controls. 
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In order to provide further biochemical evidence that the HPV-16 E7 oncoprotein 

activates the FA pathway, we performed a chromatin fractionation analysis of cell lines stably 

expressing the various high- and low-risk HPV oncoproteins (Fig. 10). Chromatin fractions (P3) 

and soluble nuclear fractions (S3) were collected from stable cell populations and analyzed by 

western blot analysis for FANCD2 and FANCD1/BRCA2 levels. As expected, the chromatin 

fractions contained mostly the monoubiquitinated form of FANCD2 (also referred to as “long 

form”; L), while the soluble fraction consisted primarily of the faster migrating “short form; S” 

of FANCD2. HPV-16 E7-expressing cells were found to contain a 2.3-fold increase of 

monoubiquitinated FANCD2 present in the chromatin fraction compared to control cells 

(densitometric analysis of band intensities was quantified using the NIH image J program), 

indicative of FA pathway activation (Fig. 10A). Furthermore, HPV-16 E7-expressing cells 

displayed an increase of FANCD1/BRCA2 at the chromatin as well. Levels of the short form of 

FANCD2 and FANCD1/BRCA2 were also increased in the soluble fraction of HPV-16 E7-

expressing cells compared to controls.  

 

 



 48 

 

          

 

Figure 10. HPV-16 E7 stimulates the recruitment of monoubiquitinated FANCD2 and FANCD1/BRCA2 to 

chromatin.  

(A-D) Chromatin fractionation analysis of hTERT-immortalized keratinocytes stably expressing HPV-16 E7 (A), 

HPV-16 E6 (B), HPV-16 E6/E7 (C) or low-risk HPV-6 E6 or E7 (D) and their corresponding controls. Immunoblot 

analysis was used to assess the amount of FANCD2 and FANCD1/BRCA2 protein found in the soluble nuclear (S3) 

and chromatin-bound (P3) fractions. Note the molecular shift of FANCD2 corresponding to the monoubiquitinated 

form of FANCD2 (long form, L) or non-ubiquitinated (short form, S). Immunoblot for ORC2 is shown to 

demonstrate chromatin enrichment of P3 fractions. Ponceau S (Pon S) staining is shown to visualize total protein 

loading. 
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Expression of the HPV-16 E6 oncoprotein was not found to increase the recruitment of 

monoubiquitinated FANCD2 or FANCD1/BRCA2 to the chromatin compared to controls (Fig. 

10B). Co-expression of the HPV-16 E6 and E7 oncoprotein lead to a slight further increase in the 

amount of monoubiquitinated FANCD2 recruited to the chromatin compared to cells expressing 

the HPV-16 E7 alone (2.4-fold increase versus the 2.2-fold increase, respectively, Fig. 10C). No 

further increase of FANCD1/BRCA2 at the chromatin was observed in cells co-expressing HPV-

16 E6 and E7 compared to HPV-16 E7-expressing cells. Co-expression of the high-risk HPV 

oncoproteins did not result in a further increase of FANCD2 or FANCD1/BRCA2 found in the 

soluble fractions compared to cells expressing HPV-16 E7 alone. 

Ectopic expression of the low-risk HPV E7 oncoprotein was found to stimulate only a 

minor increase of monoubiquitinated FANCD2 (1.3-fold) recruited to chromatin compared to 

controls (Fig. 10D). Interestingly however, cells expressing HPV-6 E7 displayed an increase of 

both FANCD2 and FANCD1/BRCA1 found in the soluble fraction. No difference in the amount 

of FANCD2 or FANCD1/BRCA2 was observed in either of the cellular fractions between cells 

expressing the HPV-6 E6 oncoprotein and controls.  

These findings further corroborate that the HPV-16 E7 oncoprotein activates the FA 

DNA damage response. 

 

FA-deficiency enhances high-risk HPV oncoprotein-associated DNA damage.   

Based on these results and the fact that persistently stalled replication forks can collapse 

to form DNA DSBs, we hypothesized that deficiencies in the FA pathway would lead to an 

increase of DNA breakage in high-risk HPV E6/E7-positive cells. In order to test this, we 

performed immunofluorescence microscopic analysis for the p53 binding protein 53BP1, a 



 50 

 

marker of DNA DSBs, in organotypic raft cultures that had been generated from patient-derived 

FANCA-deficient primary keratinocytes that had been immortalized by retroviral transduction 

with an HPV-18 E6/E7 expression vector, and then either complemented with a FANCA-

expressing retroviral vector (FANCA complemented) or transduced with an empty vector control 

(denoted FANCA-/-) (Fig. 11A). We observed that HPV-18 E6/E7-positive, FANCA-/- raft 

cultures displayed a significant increase in the percentage of cells that contain 53BP1 foci when 

compared to HPV-18 E6/E7-positive FANCA-complemented cells. Furthermore, HPV-18 

E6/E7-expressing FANCA deficient cells contained significantly more 53BP1 foci per nucleus as 

compared to HPV-18 E6/E7-positive FANCA-complemented cells (Fig. 11B).  These results 

suggest that FA-deficient cells are increasingly susceptible to high-risk HPV-induced DNA 

breakage and furthermore, that the FA pathway plays a role in preventing or repairing host cell 

DNA damage induced by high-risk HPV oncoprotein expression. 

 

The HPV-16 E7 oncoprotein accelerates chromosomal instability in FA-deficient cells. 

We next sought to determine whether the increase of HPV-associated DNA breakage in 

FA-deficient cells has a negative impact for host cell genomic integrity. In order to test this, we 

performed metaphase spread analysis on immortalized patient-derived FANCD2-deficient 

fibroblasts that had been engineered to stably express HPV-16 E6 and/or E7, HPV-6 E6 or E7 or 

empty vector control. hTERT-immortalized NOKs stably expressing HPV-16 E7 or empty vector 

control were used as FA-proficient control cells. Cells were stained with DAPI and 

microscopically analyzed for the appearance of chromosomal abnormalities. We observed that a 

proportion of HPV-16 E7-expressing FANCD2-deficient cells displayed structural genomic 

alterations, including chromosome breaks and fusions (Fig. 12A). In line with previous findings, 
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HPV-16 E7 was shown to stimulate an increase of chromosomal abnormalities in FA-proficient 

keratinocytes, from 1.6% in controls to 6.7%, albeit without reaching statistical significance (Fig. 

12B). In FANCD2-deficient cells however, HPV-16 E7 expression stimulated a statistically 

significant 2.9-fold increase of chromosomal abnormalities, from 3.3% in controls to 9.7% 

(p≤0.001, Fig. 12C). Co-expression of HPV-16 E6 and E7 lead to only a minor further increase 

in the percentage of abnormal metaphases, from 9.8% in cells expressing HPV-16 E7 alone 

(HPV-16 E7/neo) to 12.3% (1.3-fold). Expression of HPV-16 E6 or low-risk HPV-6 E6 or E7 

did not lead to a significant increase in the percentage of chromosome alterations compared to 

controls. These results underscore that HPV-16 E7 expression accelerates the accumulation of 

structural chromosomal instability in FA deficient cells. 
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Figure 11. FANCA deficiency augments high-risk HPV oncoprotein-associated DNA damage. 

(A) Immunofluorescence microscopic analysis of 53BP1 in organotypic raft cultures generated from HPV-18 

E6/E7-immortalized FANCA-deficient keratinocytes complemented with either control vector (FANCA-/-, upper 

panel) or FANCA (FANCA complemented, bottom panel). White box indicates the 53BP1-positive FANCA-

deficient cell shown at higher magnification in insert. Nuclei stained with DAPI. Scale bar indicates 10 m. (B) 

Quantification of the proportion of FANCA-deficient or complemented cells that contain the indicated number of 

53BP1 foci per cell. Each bar represents the mean and standard error of two independent experiments with at least 

triplicate quantification of a minimum of 100 cells. Asterisks indicate statistically significant differences in 

comparison to controls (*p≤0.05, **p≤0.01). Adapted by permission from Macmillan Publishers Ltd: [Oncogene] 

(28:674-685), copyright (2009). 
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Figure 12. HPV-16 E7 accelerates structural chromosomal instability in patient-derived FANC2-deficient cells.  

(A) FANCD2-deficient immortalized fibroblasts were stably transfected with HPV-16 E7 or control and subjected to 

metaphase spread analysis. Chromosomes were stained with DAPI. Inserts depict chromatid breaks (right panels) 

and fusion events (bottom left panel) observed in HPV-16 E7-expressing FA-deficient cells at higher magnification.   

(B and C) Quantification of the percentage of metaphase spreads with chromosome aberrations from stably 

transfected empty vector (control) or HPV-16 E7-expressing immortalized human keratinocytes (FA-proficient) (B) 

or immortalized FANCD2-deficient fibroblasts stably expressing low-risk HPV-6 E6 or E7 or high-risk HPV-16 E6 

and/or E7 (C). Each bar represents the mean and standard error for at least triplicate quantifications of a minimum of 

25 metaphases. Asterisks indicate statistically significant differences in comparison to controls.  
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2.4 DISCUSSION 

Here, we show that high-risk HPV oncoproteins activate the FA pathway in a manner 

which involves the HPV-16 E7 oncoprotein and occurs independently of viral integration. We 

provide evidence that a FA-deficient host cell environment enhances high-risk HPV oncoprotein-

induced DNA breakage and moreover, that HPV-16 E7 accelerates the accumulation of 

structural chromosomal instability in FANCD2-deficient cells. Collectively, our findings suggest 

that activation of the FA pathway represents an early host cell response to HPV infection and 

that a functional FA pathway is crucial to prevent high-risk HPV oncoprotein-associated DNA 

breakage and structural chromosomal instability.  

Although our results clearly point to a role for the HPV-16 E7 oncoprotein in activating 

the FA pathway, the molecular mechanism through which this occurs remains unclear. Since the 

FA pathway responds primarily to DNA replication stress (132), it is plausible that HPV-16 E7-

associated unscheduled entry into S phase stimulates aberrant host cell replication dynamics, 

which ultimately cause DNA replication forks to stall. In line with this, deregulated cyclin E, 

CDC25A and E2F levels, important characteristics of HPV-16 E7-expressing cells, has been 

found to trigger DNA replication stress (73-75). Further evidence that HPV-16 E7-associated 

disruption of cell cycle control plays a role in activating the FA pathway is supported by our 

finding that deletion of the core pRB binding motif (21-24), which is required to promote 

unscheduled entry into S phase, lead to a reduction in the percentage of cells with large 

FANCD2 foci (data not shown). It is important to note however, that the decrease of cells with 

large FANCD2 foci in HPV-16 E7 21-24 mutant rafts was not as pronounced as in HPV-16 

E7TTL rafts, which indicates that pRB-independent activities of HPV-16 E7 may also contribute 
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to FA pathway activation. These results suggest that the HPV-16 E7 oncoprotein activates the 

FA pathway; however, further experiments to directly show how HPV-16 E7 expression affects 

replication fork dynamics are warranted.  

A similar frequency of large FANCD2 foci was detected in both HPV-16 episome-

containing raft cultures and HPV-associated neoplastic tissue, which underscores that episomal 

expression of HPV-16 oncoproteins is sufficient to activate the FA pathway. Since the majority 

of precancerous lesions harbor episomal HPV DNA, these findings support the notion that HPV-

16 oncoprotein-induced replication stress and subsequent FA pathway activation may play a role 

in promoting early steps of carcinogenesis.  

FA deficiency was found to increase high-risk HPV oncoprotein-induced DNA breakage, 

as evidenced by the increase of 53BP1 foci observed in FANCA-deficient, HPV-18 E6/E7-

positive organotypic raft cultures. Since a functional FA pathway is required to maintain 

replication fork stability (158), these results suggest that the collapse of stalled replication forks 

may drive DNA DSB formation and structural chromosomal instability in cells expressing the 

HPV-16 E7 oncoprotein.  

Our results support the notion that a FA-deficient host cell environment facilitates the 

acquisition of genomic alterations in HPV-positive cells that are required for malignant 

progression. In line with this, certain FA genes have been found to be epigenetically silenced in a 

subset of HPV cancers (155). Interestingly, the FA pathway has been implicated in maintaining 

the stability of chromosomal fragile sites (CFS) (159), which are specific regions with the host 

cell genome that are hypothesized to be hot spots for HPV integration (160-163). While the 

molecular mechanisms behind HPV integration are unknown, it has been hypothesized to 

involve host and viral genome breakage. Based on our results, we suggest that inherited or 
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epigenetic silencing of the FA pathway may enhance viral integration. Since viral integration is 

thought to drive malignant progression in HPV tumors, the idea that HPV integration may be 

accelerated in FA-deficient host cells may help to explain the rapid progression of HPV tumors 

in FA patients.  

FA-deficient cells have previously been shown to be readily transformed by viral 

oncoproteins, including the SV40 large T Ag (164), which shares key functions with the HPV-16 

E7 oncoprotein. SV40-transformed cells, like HPV-positive malignant cells (165), have been 

characterized with structural chromosomal instability (166, 167). Hence, our model that HPV-16 

E7-induced replication stress contributes to host cell genomic instability may also be applicable 

to other small DNA tumor viruses that disrupt cell cycle progression in a manner similar to HPV. 

Our results suggest that FA-deficient cells are increasingly susceptible to HPV-16 E7-

induced chromosomal instability. However, it must be emphasized that the precise role of HPV 

infection with respect to malignancies in FA patients is currently unclear. Alternatively, it may 

be that FA deficiency, in the absence of HPV infection, facilitates genomic instability at these 

anatomical sites in a manner that is similar to that observed during HPV infection in normal 

populations. Furthermore, despite our inability to detect a significant increase of chromosomal 

changes in FA-deficient cells expressing HPV-16 E6, it is likely that HPV-16 E6-mediated p53 

degradation also contributes to genomic instability in these cells. In support of this, p53-deficient 

FANCD2 knockout mice have been found to develop an increase of epithelial cancers (168).  

Collectively, our findings provide evidence that the HPV-16 E7 oncoprotein triggers 

activation of the host cell FA pathway and that FA deficiency promotes the rapid accumulation 

of structural chromosomal instability in HPV-16 E7-expressing cells. Future experiments are 
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required to assess how induction of the FA pathway by HPV-16 E7 contributes to the viral life 

cycle and malignant progression in FA-proficient host cells.   
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3.0  HPV-16 E7 REVEALS A LINK BETWEEN DNA REPLICATION STRESS, 

FANCONI ANEMIA D2 PROTEIN AND ALTERNATIVE LENGTHENING OF 

TELOMERE-ASSOCIATED PROMYELOCYTIC LEUKEMIA BODIES 

Work described in this section was published in Cancer Research (Cancer Res. 2008, 68: 

(23); 9954-9962) with authors Nicole Spardy, Anette Duensing, Elizabeth E. Hoskins, Susanne I. 

Wells and Stefan Duensing 

 

E.E. Hoskins and S.I. Wells provided the primary human foreskin keratinocytes stably 

expressing the HPV-16 E7 oncoprotein or corresponding control. N. Spardy performed all the 

experiments described in this section. A. Duensing contributed to experimental designs and data 

interpretation. N. Spardy and S. Duensing conceived the project, analyzed and interpreted the 

results and wrote the manuscript. 
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3.1 INTRODUCTION 

The high-risk HPV oncoproteins profoundly disrupt cell cycle control in order to promote 

host cell proliferation (reviewed in Chapter 1). However, unscheduled proliferation is 

accompanied by gradual telomere loss, which ultimately leads to anti-proliferative responses 

including replicative senescence or apoptosis. The acquisition of mechanisms by which to 

maintain telomere length contributes to the immortalization of cells and represents a critical step 

in tumor evolution. The human papillomavirus (HPV) represents a useful tool through which to 

study activation of telomere maintenance mechanisms, as HPV-associated oncoproteins have 

been found to promote proliferation by interfering with telomere homeostasis through multiple 

mechanisms in order to maintain telomere length and extend the lifespan of primary human cells 

(62, 169, 170). 

Telomeres are structures found at the end of chromosomes, which are required to protect 

DNA ends from being recognized as DNA double strand breaks. Structurally, telomeres consist 

of 10 to 15 kb of tandem TTAGGG repeats with a 3’ single strand overhang of the G-rich strand. 

Erosion of telomeric DNA occurs with each successful round of cell division due to the inability 

of the DNA polymerase to completely replicate the ends of chromosomes during lagging strand 

synthesis. Critically short telomere length leads to aberrant fusions of chromosomes and negative 

growth signaling, which results in apoptosis or replicative senescence (171). Self-renewing cells, 

such as male germ cells, are able to maintain telomere length as a result of activated telomerase. 

Telomerase is a specialized enzyme that encodes a RNA component that allows the addition of 



 60 

 

telomeric repeats to the 3’ end of telomeres. Telomerase activation is also observed in a large 

proportion of tumor cells and is thought to be a major mechanism involved in the 

immortalization of cells (172). 

Expression of the high-risk HPV oncoproteins E6 and E7 is able to independently extend 

the life span of primary human keratinocytes by interfering directly with telomere maintenance 

mechanisms (62). The HPV-16 E6 oncoprotein contributes to cellular immortalization by 

upregulating hTERT, the catalytic subunit of telomerase, through mechanisms described in 

Chapter 1. Despite high levels of telomerase however, late passages of HPV-16 E6-expressing 

primary human keratinocytes do not maintain telomere length (62). This finding supports the 

notion that additional activities besides telomerase may contribute to the complete 

immortalization of cells by high-risk HPV oncoproteins. In contrast, the HPV-16 E7 oncoprotein 

has been found to avoid replicative senescence associated with critical telomere shortening 

through a mechanism that is independent of the HPV-16 E6 oncoprotein and telomerase. Late 

passages of HPV-16 E7-expressing primary human keratinocytes are able to maintain 

heterogenous telomere length in the absence of detectable telomerase activity (169, 170). While 

the precise telomere maintenance mechanism utilized by the HPV-16 E7 oncoprotein remains 

unknown, it has been suggested that the alternative lengthening of telomeres (ALT) may be 

involved (169, 170). 

ALT was originally identified in lower organisms and is believed to extend chromosome 

ends through a mechanism that involves the recombination of homologous DNA sequences 

found at telomeres (173, 174). Further evidence that ALT is a recombination-based mechanism 

is supported by the fact that various HR proteins, including MRE11 and RAD51, are required for 

ALT-associated activity (175). Signs of ALT have since been observed in approximately 10% of 
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human cancers, frequently detected in tumors of mesenchymal origin, and in various tumor-

derived cell lines (176). Cells with activated ALT are characterized by heterogenous telomere 

length, extrachromosomal telomeric DNA circles and the appearance of subnuclear 

promyelocytic leukemia bodies (PML) (177). While the precise function of ALT-associated 

PML bodies (APBs) remains unclear, they are thought to represent sites of recombining 

telomeric DNA, as they have been found to contain telomeric DNA, telomere binding proteins 

and various proteins involved in HR. APBs appear at the onset of ALT immortalization and 

therefore are often used as a surrogate marker of ALT activity (177, 178). 

Telomeric DNA is replicated using normal DNA replication machinery. However, recent 

reports suggest that the TTAGGG repeats found at chromosome ends can be particularly difficult 

to replicate and prone to replication fork stalling (179-181). Since stalled replication forks are 

excellent substrates for HR, it is not surprising that patients suffering from HR gene deficiencies, 

such as Fanconi Anemia (FA), display telomere defects. FA patient cells have been characterized 

by accelerated telomere erosion and breakage, as well as the presence of extrachromosomal 

telomeric DNA, indicative of disrupted telomere homeostasis (182, 183).  

We have previously described how the HPV-16 E7 oncoprotein triggers a host cell DNA 

replication stress response, as reflected by FA pathway activation (Chapter 2, (184). The HPV-16 

E7 oncoprotein was found to accelerate chromosomal aberrations, including those which 

frequently occurred at chromosome ends. Whether activation of the FA pathway by HPV-16 E7 

plays a role in preserving telomere integrity in FA-proficient cells currently remains unknown.  

Here, we provide evidence that the HPV-16 E7 oncoprotein stimulates the appearance of 

APBs that contain the FA-associated D2 (FANCD2) protein. We provide several lines of 

evidence that HPV-16 E7-induced FANCD2-positive APBs form as part of a replication stress 
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response at telomeres. First, FANCD2-containing APBs co-localize with proteins commonly 

found at stalled replication forks, most notably BRCA2 and MUS81, as well as single-stranded 

DNA. Second, treatment of cells with replication stress agents lead to a similar increase in the 

frequency of FANCD2-containing APBs and finally, their formation was found to depend on the 

ATR replication stress kinase. We show that depletion of FANCD2 using a small hairpin 

construct lead to an increase of dysfunctional telomeres, suggesting that the FA pathway is 

required to maintain telomere homeostasis in ALT-positive cells. Importantly, HPV-16 E7 was 

able to stimulate FANCD2-positive APB formation in early passage primary human 

keratinocytes, which may help to explain how the HPV-16 E7 oncoprotein contributes to cellular 

immortalization in a telomerase-independent manner.  Collectively, our results suggest that 

HPV-16 E7-associated replication stress and FA pathway activation at telomeres promotes 

recombination-based ALT activity. These findings underscore that viral oncoproteins may be 

able to manipulate the DNA damage response in order to bypass anti-proliferative host cell 

barriers. 

3.2 MATERIALS AND METHODS 

Cell culture, treatment and transfection 

U-2 OS, MCF-7, HeLa cells (ATCC, Manassas, VA) and GM00847 fibroblasts (Coriell, 

Camden, NJ) were maintained in DMEM (Biowhittaker/Lonza, Inc.) as described earlier.  

Primary human keratinocytes were maintained in serum-free keratinocyte growth medium 
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(Epilife, Cascade Biologics/Invitrogen). Cells were treated with 100 ng/ml mitomycin C (MMC; 

Sigma), 1 mM hydroxyurea (HU; Calbiochem) or dH2O for the indicated time intervals. 

U-2 OS cells were stably transfected using Fugene 6 (Invitrogen) transfection reagent and 

2 g of plasmid DNA followed by selection in DMEM supplemented with 3 mg/ml of G418 

(Cellgro, Herndon, VA) for 48 h. pCMV-based plasmids containing HPV-16 E6, HPV-16 E7 or 

mutant HPV-16 E7 21-24 were kindly provided by K. Münger (Channing Laboratory, Brigham 

& Women’s Hospital, Boston, MA). LXSN-based low-risk HPV-6 E7 construct and mutant 

HPV-16 E7 CVQ68-70AAA and E7 79-83 constructs were kindly provided by Denise 

Galloway (Fred Hutchinson Cancer Research Center, Seattle, WA) and subcloned into pCMV-

based vectors. The pCDNA3-3HA-Mus81 plasmid was kindly provided by Clare H. McGowan 

(The Scripps Research Institute, La Jolla, CA). Empty vector controls were included in all 

experiments. All stable cell lines were passaged at least five times after antibiotic selection. 

Primary human foreskin keratinocytes (HFKs) were transduced with an LXSN-based 

high-risk HPV-16 E7 construct or LXSN empty vector followed by selection in G418-

supplemented medium. 

 

Immunological methods 

Preparation of cell lysates and immunofluorescence staining were performed as described 

earlier, with the exception that cells processed for immunofluorescence of PML were first treated 

with a soluble protein extraction buffer (10 mM PIPES, 300 mM sucrose, 3 mM MgCl2, 20 mM 

NaCl, 0.5% Triton-X 100, [pH 6.8]) as previously described (185). 

Primary antibodies used for immunoblotting, and immunofluorescence were 53BP1 

(Novus Biologicals, Littleton, CO), actin (Sigma), ATM (Genetex), phosphorylated ATM at 
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serine 1981 (Novus Biologicals), ATR (Genetex), BLM (Bethyl, Montgomery, TX), BRCA2 

(Calbiochem), 5’-bromo-2’deoxyuridine (BrdU; Roche Diagnostics, Indianapolis, IN), FANCD2 

(Genetex), HA (Santa Cruz Biotechnology, Santa Cruz, CA), HPV-16 E7 (Santa Cruz 

Biotechnology), -H2AX (Trevigen, Gaithersburg, MD), MRE11 (Genetex), PML (Santa Cruz 

Biotechnology), RAD51 (Genetex), RPA32 (Lab Vision, Fremont, CA), and TRF2 (Imgenex, 

San Diego, CA).  

 

Detection of single-stranded DNA (ssDNA) 

To detect ssDNA, cells were labeled for 24 h in DMEM supplemented with 10 mol/L of 

BrdU (Roche Diagnostics). All cells were washed once with fresh DMEM and processed 

immediately for BrdU immunofluorescence as described above without any prior DNA 

denaturation step. Cells were then incubated with a mouse monoclonal BrdU antibody (Roche 

Diagnostics), followed by incubation with a Rhodamine Red-conjugated anti-mouse secondary 

antibody (Jackson Immunoresearch). This technique utilizes the property that the monoclonal 

BrdU antibody only recognizes the incorporated base analog when the DNA is found in the 

single-stranded form (186). 

 

Small interfering RNA (siRNA) and small hairpin RNA (shRNA) 

 Synthetic RNA duplexes were used to reduce ATM or ATR expression. Oligonucleotides 

targeting ATM, ATR, or control were obtained commercially (siGENOME SMARTpool; 

Dharmacon, Lafayette, CO). For each experiment cells were grown on coverslips in 2 ml DMEM 

free of antibiotics. Cells were transfected with 12 l of 20 M annealed RNA duplexes using 
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Oligofectamine (Invitrogen) transfection reagent and 0.5 g of DsRED (Clontech). Cells were 

processed for further analyses at 72 h after transfection.  

Small hairpin RNA (shRNA) constructs against FANCD2 or control (GFP) were 

obtained commercially (HuSh, Origene, Rockville, MD). U2-OS were transiently transfected 

using nucleofection (Lonza, Inc.) with either pooled shFANCD2 contructs (2 g of each of the 

four constructs provided) or 2 g of shGFP plus 6 g of herring sperm. Cells were processed for 

further analyses at 72 h after transfection. 

 

Telomere fluorescence in situ hybridization (FISH) 

Telomere FISH was performed using a Cy3-conjugated telomere PNA probe (Telomere 

PNA FISH kit/Cy3; Dako, Glostrup, Denmark) according to the manufacturer’s protocol. 

Briefly, cells grown on coverslips were rinsed in PBS and fixed in 4% paraformaldehyde in PBS 

for 10 min at room temperature. Cells were then washed in PBS, permeabilized with 1% Triton-

X 100 in PBS for 30 min at room temperature, and washed in PBS. Cells were then rinsed in tris 

buffered saline (TBS), incubated in 3.7% formaldehyde in TBS for 2 min, and washed 2 times 5 

min in TBS. Cells were then incubated in a proteinase K pre-treatment solution for 10 min, 

followed by 2 times 5 min in TBS. Cells were then dehydrated in an ice cold ethanol series 

(70%, 85%, 90%) and allowed to air dry. Cells were incubated with the Telomere PNA 

probe/Cy3 for 5 min at 80°C, followed by hybridization at room temperature for 1.5 h in the 

dark. The cells were then rinsed, and washed for 5 min at 65°C. Cells were then blocked with 

10% normal donkey serum for 15 min at room temperature and processed for 

immunofluorescence analyses as described above.  
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Statistical methods 

Student’s two-tailed t test for independent samples was used to assess statistical 

significance. 

3.3 RESULTS 

HPV-16 E7 overexpression stimulates the formation of FANCD2 nuclear foci that show key 

characteristics of APBs. 

In Chapter 2 we show that HPV-16 E7 expression activates the FA pathway, as 

evidenced by the appearance of large nuclear FANCD2 foci (184). Unexpectedly, a small 

proportion of FANCD2 foci observed in squamous cell carcinoma (SCC) tissue and organotypic 

raft cultures containing HPV-16 episomes displayed a ring-like structure. Ring-shaped foci have 

previously been found in cells which maintain their telomeres by the alternative lengthening of 

telomeres (ALT) (177). Therefore, in order to test whether HPV-associated oncoproteins are able 

to stimulate ring-shaped FANCD2 foci, we performed immunofluorescence microscopic analysis 

of FANCD2 in U-2 OS cells that have been engineered to stably express high-risk HPV-16 E7 or 

HPV-16 E6, low-risk HPV-6 E7 or empty vector control. We observed that a proportion of HPV-

16 E7-expressing cells harbored ring-shaped FANCD2 foci (Fig. 13A). The HPV-16 E7 

oncoprotein was found to stimulate a significant 2.0-fold increase in the percentage of cells that 

contain ring-shaped FANCD2 foci from 7.2% in controls to 14.3% in HPV-16 E7-expressing 

cells (p≤0.005; Fig. 13B). In contrast, stable expression of HPV-16 E6 (Fig. 13B) or low-risk 
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HPV-6 E7 (Fig. 13C) was unable to stimulate an increase of ring-shaped FANCD2 foci when 

compared to control cells. 

A mutational analysis was performed in order to test which sequences of HPV-16 E7 are 

required to induce ring-shaped FANCD2 foci. We observed that expression of the HPV-16 E7 

mutant 21-24, which is deficient in pRB binding and degradation, was unable to stimulate a 

significant increase of ring-shaped FANCD2 foci compared to control cells (Fig.13D). 

Expression of C-terminal HPV-16 E7 mutants (CVQ68-AAA70 or 79-83; kindly provided by 

D. Galloway), which can degrade pRB but are deficient in overcoming a p21Cip1-associated 

growth arrest were found to stimulate only a minor increase of ring-shaped FANCD2 foci 

compared to control cells (Fig. 13D).  These results suggest the pRB-dependent and pRB-

independent activities of the HPV-16 E7 oncoprotein are involved in stimulating these specific 

FANCD2-positive structures. 
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Figure 13. HPV-16 E7 stimulates the appearance of ring-shaped FANCD2 foci.  

(A) Immunofluorescence microscopic analysis of FANCD2 in U-2 OS cells stably expressing HPV-16 E7 or 

control. Note the ring-shaped FANCD2 foci (arrow, insert) in contrast to the smaller FANCD2 foci observed in the 

control cell. Nuclei stained with DAPI. Scale bar indicates 10m. (B-D) Quantification of the percentage of cells 

with ring-shaped FANCD2 foci in U-2 OS cells stably expressing high-risk HPV-16 E7 or E6 (B), low-risk HPV-6 

E7 (C) or various HPV-16 E7 mutants (D) and their corresponding controls (empty vector). Bars represent mean and 

standard error from three independent experiments with at least 100 cells counted (B) or mean and standard error 

from a representative experiment with at least 100 cells counted in triplicate (C,D). Asterisks indicate statistically 

significant differences in comparison to controls. 
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ALT cells are characterized by ring-shaped nuclear foci, commonly referred to as ALT-

associated PML bodies or APBs, which contain PML, telomere binding proteins and telomeric 

DNA (177). In order to test whether FANCD2 is localized to APB structures, we performed co-

immunofluorescence microscopic analysis of FANCD2 and known ABP components in HPV-16 

E7-expressing U-2 OS cells (Fig. 14A). Ring-shaped FANCD2 foci were found to co-localize 

with PML (72.5%) and TRF2 (80.4%). By combining immunofluorescence analysis of FANCD2 

and in situ hybridization using a telomere DNA probe we show that ring-shaped FANCD2 

structures harbor telomeric TTAGGG repeats (94.1%; Fig 14A). FANCD2 was also found to co-

localize with PML and TRF2 in a second ALT positive cell line, GM00847, but not in 

telomerase-positive Hela cells (data not shown). Collectively, these results underscore that 

FANCD2 is a novel component of APBs. 
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Figure 14. Ring-shaped FANCD2 foci co-localize with known APB components and ssDNA.  

(A) Co-immunofluorescence microscopic analysis of HPV-16 E7-expressing U-2 OS cells for FANCD2 and PML 

(top) or TRF2 (middle). Immunofluorescence microscopic analysis of FANCD2 combined with FISH using a Cy3-

conjugated telomeric DNA probe (bottom) in HPV-16 E7-expressing cells. Arrows indicate foci shown at higher 

magnification in the insert. Nuclei stained with DAPI. Scale bar indicated 10 m. (B) Co-immunofluorescence 

microscopic analysis of FANCD2 and BrdU in HPV-16 E7-expressing U-2 OS cells. Arrow indicates foci shown at 

higher magnification in inserts. Nuclei stained with DAPI. Scale bar indicates 10 m. (C) Quantification of the 

proportion of cells with BrdU and FANCD2-positive APBs in U-2 OS cell populations stably expressing empty 

vector (control) or HPV-16 E7. Each bar represents the mean and standard error for two independent experiments 

with at least triplicate quantification of a minimum of 100 cells. Asterisks indicate statistically significant 

differences in comparison to controls. 
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HPV-16 E7-induced FANCD2-positive APBs co-localize with ssDNA and DNA damage 

proteins involved in the processing and restart of stalled replication forks. 

FANCD2 is recruited to chromatin in response to replication stress, as evidenced by 

chromatin fractionation analyses performed in Chapter 2. Therefore, we were interested in 

testing whether FANCD2-positive APBs contain DNA structures or DNA damage proteins that 

are commonly found at stalled replication forks. We show, using a modified BrdU technique, 

that a proportion of HPV-16 E7-induced FANCD2-positive APBs contain single-stranded DNA 

(ssDNA; Fig. 14B). ssDNA frequently forms at stalled replication forks as a result of continued 

DNA unwinding. HPV-16 E7 expression was found to stimulate a significant increase of 

FANCD2-positive APBs that harbor ssDNA (1.6-fold; 21.5%) when compared to control cells 

(13.2%, p≤0.001; Fig. 14C). 

Next, we performed co-immunofluorescence microscopic analyses of FANCD2 and a 

variety of DNA damage proteins that localize to sites of stalled replication. We found that 

several DNA damage proteins, which have previously been identified as APB components, co-

localize with FANCD2-positive APB structures in HPV-16 E7-expressing cells. These proteins 

include RPA32, BLM, RAD51 and MRE11 (Fig. 15). The percentages of co-localization 

between FANCD2-APBs and the respective proteins were as follows, 100% for RPA32, 86% for 

BLM, 27.3% for RAD51 and 86.6% for MRE11 in HPV-16 E7-expressing cells. We also 

identified BRCA2 and MUS81 as novel components of APB structures (Fig. 15). The percentage 

of co-localization between FANCD2-positive APBs and BRCA2 and MUS81 in HPV-16 E7-

expressing cells was 33% and 38.4%, respectively.  BRCA2 (also known as FANCD1) has been 

linked with the loading of FANCD2 to chromatin in response to genotoxic stress and is required 

for replication fork stability (187, 188). MUS81 possesses endonuclease activity that is involved 
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in processing abnormal DNA structures, such as Holliday junctions that form during HR-

mediated replication fork restart (189). DNA double strand breaks (DSBs) have also been 

suggested to form as HR intermediates. In line with this, a small subset of ring-shaped FANCD2 

were found to co-localize with phosphorylated ATM at serine 1981 and H2AX, two markers 

of DNA breaks (data not shown). Collectively, our findings that FANCD2-APBs contain ssDNA 

and DNA damage proteins, in particular BRCA1 and MUS81, suggests that the processing of 

stalled replication forks may be a trigger of ALT activity in HPV-16 E7-expressing cells.    

 

Replication stress-inducing agents stimulate FANCD2-positive APB formation. 

In order to further corroborate these results, we next examined whether treatment of U-2 

OS cells with replication stress-inducing agents was able to phenocopy the HPV-16 E7-

associated increase of FANCD2-positive APBs. U-2 OS cells treated with the cross-linking 

agent, Mitomycin C (MMC) for 24 h was found to stimulate a significant 2.3-fold increase in the 

percentage of cells harboring FANCD2-containing APBs (23.2%) when compared to control 

treated cells (10.1%, p≤0.001; Fig. 16A, left panel). MMC is a classical activator of the FA 

pathway, and thus verifies that the localization of FANCD2 to APBs represents a bona fide 

activation of the FA pathway. MMC treatment however, may also lead to DNA DSBs due to 

replication fork breakdown. Therefore, to directly test whether FANCD2-APBs form as a result 

of stalled replication forks, we treated cells with hydroxyurea (HU), a ribonucleotide reductase 

inhibitor that causes forks to stall by depleting the deoxynucelotide pool. We observed a 

significant 2.3-fold increase of FANCD2-positive APBs in cells treated with HU for 72 h, from 

15.3% in controls to 34.8% (p≤0.005; Fig. 16A, right panel). These results further support the 

notion that replication stress is a trigger for FANCD2-positive APB formation. 
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Figure 15. FANCD2-APBs co-localize with DNA damage proteins commonly found at stalled replication forks.  

Co-immunofluorescence microscopic analysis of HPV-16 E7-expressing U-2 OS cells for FANCD2 in combination 

with RPA32, BLM, RAD51, MRE11, BRCA1 or MUS81. MUS81 was detected by transiently transfecting cells 

with a plasmid encoding for MUS81-HA, followed by immunofluorescence analysis for HA. Arrows indicate the 

FANCD2-APBs shown at higher magnification in inserts. Nuclei stained with DAPI. Scare bar indicates 10 m. 
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HPV-16 E7-associated FANCD2-positive APB formation requires the ATR DNA damage 

kinase.  

Since replication stress is known to activate the FA pathway via the ATR-CHK1-

signaling axis (144), we next sought to determine whether FANCD2-positive APB formation is 

dependent on the ATR DNA damage kinase. HPV-16 E7-expressing U-2 OS cells were 

transiently transfected with small interfering RNA (siRNA) duplexes targeting ATM, ATR or 

control. Immunoblot analysis showed a significant reduction in the respective protein levels at 72 

hours (Fig. 16A). Immunofluorescence microscopic analysis of FANCD2 revealed that cells 

depleted for ATR lead to a significant 2.8-fold reduction in the percentage of cells harboring 

FANCD2-positive APBs (4.8%) when compared to cells treated with control siRNA for 72 h 

(13.7%, p≤0.0005; Fig. 16C&D). Depletion of ATM had no significant affect on the frequency 

of HPV-16 E7-expressing U-2 OS cells with FANCD2-positive APBs (15%, p>0.05; Fig. 16D) 

when compared to control cells. Notably, previous reports have not detected a requirement for 

ATM or ATR in conventional APB formation (190). Our finding that the HPV-16 E7 

oncoprotein stimulates FANCD2-positive APBs in an ATR-dependent manner further 

underscores that their formation is part of a replication stress response. 
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Figure 16. FANCD2-APBs form in response to exogenous replication stress and their formation requires the ATR 

DNA damage kinase in HPV-16 E7-expressing cells.  

(A) Quantification of the proportion of U-2 OS cells harboring FANCD2-APBs following treatment with 100 ng/ml 

MMC or dH2O for 24 h (left) or treated with 1 mM HU or dH2O (control) for the indicated time intervals (right). 

Each bar represents the mean and standard error for two independent experiments with at least triplicate 

quantification of a minimum of 50 cells. Asterisks indicate statistically significant differences in comparison to 

controls. (B) Immunoblot analysis of U-2 OS cell expressing HPV-16 E7 or control treated with either control 

(ctrl.), ATM or ATR siRNA duplexes for the indicated time intervals. Immunblot for actin demonstrates total 

protein loading. (C) Immunofluorescence analysis for FANCD2 in HPV-16 E7-expressing cells treated with ctrl., 

ATM or ATR duplexes for 72 h, using dsRED as a transfection control. Note the disappearance of FANCD2-APBs 

in HPV-16 E7-expressing cells treated with ATR siRNA. Legend continued on next page. 



 76 

 

Arrows indicate the FANCD2-APBs shown at higher magnification in inserts. Nuclei were stained with DAPI. Scale 

bar indicates 10 m. (D) Quantification of the proportion of HPV-16 E7-expressing cells with FANCD2-APBs 

following treatment with respective siRNA duplexes. Bars indicate the mean and standard deviation of two 

independent experiments with at least triplicate quantification of a minimum of 100 cells. Asterisk indicates 

statistically significant differences in comparison to controls. 

 

FANCD2 depletion leads to telomere dysfunction in ALT-positive cells. 

To directly test the role of FANCD2 in maintaining telomere homeostasis in ALT-

immortalized cells, we depleted FANCD2 protein by transfecting U-2 OS cells with small 

hairpin RNA (shRNA) constructs targeting FANCD2 or control (GFP; Fig. 17A). Previous 

reports have suggested that critically short telomere length can lead to the binding of DNA 

damage proteins to chromosome ends (also termed telomere dysfunction-induced foci, TIF) 

(191). By combining in situ hybridization using a telomeric DNA probe with 

immunofluorescence analysis of the DNA damage marker, 53BP1 we found that depletion of 

FANCD2 in U-2 OS cells leads to dysfunctional telomeres, as evidence by an increase of 

telomeric signals that co-localize with 53BP1 (Fig. 17B). A significant 6.9-fold increase of cells 

that harbored at least 5 TIFs per nucleus was observed in FANCD2-depleted cells (17.9%) when 

compared to control treated cells (2.6%, p≤0.0001; Fig. 17C). These results suggest that the 

FANCD2 protein plays a role in maintaining telomere integrity in ALT-immortalized cells. 
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Figure 17. FANCD2 depletion in U-2 OS cells leads to telomere dysfunction.  

(A) Immunoblot analysis of U-2 OS cells 72 h after transient transfection with shRNA targeting FANCD2 

(shFANCD2) or control (shGFP). Immunoblot for actin demonstrates total protein loading. (B) Immunofluorescence 

analysis of 53BP1 in combination with FISH using a Cy3-conjugated telomere probe in U-2 OS cells 72 h after 

transfection with shFANCD2 or shGFP. Nuclei were stained with DAPI. Scale bar indicates 10 m. (C) 

Quantification of the proportion of U-2 OS cells transiently transfected with shFANCD2 or shGFP that display >5 

telomeric signals that co-localize with 53BP1. Bars indicate mean and standard error of two independent 

experiments with at least duplicate quantification of a minimum of 50 cells. Asterisk indicates statistically 

significant differences in comparison to controls. 
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The HPV-16 E7 oncoprotein stimulates APB formation in early passage primary human 

keratinocytes. 

Lastly, we were interested in determining whether HPV-16 E7 expression stimulates 

FANCD2-positive APBs in non-immortalized primary human foreskin keratinocytes. Early 

passage primary human keratinocytes that had been stably transduced with a LXSN-based 

construct encoding HPV-16 E7 or control were analyzed by immunofluorescence microscopic 

analysis of FANCD2 and TRF2 for the appearance of FANCD2-positive APBs (Fig. 18A). 

Remarkably, FANCD2-positive APBs were observed in a small percentage of HPV-16 E7-

expressing primary keratinocytes (0.05%) as early as passage 2 (Fig. 18B). The frequency of 

HPV-16 E7-expressing cells positive for FANCD2-APB foci gradually increased with passage 

number, reaching 1.05% in cells at passage 9 (p≤0.05 when compared to control; Fig. 18B). 

Later passages of HPV-16 E7-expressing cells showed a fluctuation in the percentage of cells 

positive for FANCD2-containing APBs ranging between 0.2% and 1.7% (passage 18). 

Importantly, FANCD2-positive APBs were not detected in control cells from passage 2 to 

passage 9 when cells ceased to proliferate. These results underscore that the HPV-16 E7 

oncoprotein is capable of stimulating FANCD2-positive APBs in primary human keratinocytes 

and furthermore, suggest that cells harboring FANCD2-positive APBs may exhibit a growth 

advantage. 
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Figure 18. HPV-16 E7 stimulates FANCD2-APBs in early passage primary human foreskin keratinocytes.  

(A) Co-immunofluorescence microscopic analysis of FANCD2 and TRF2 in primary human foreskin keratinocytes 

stably transduced with an LXSN-based HPV-16 E7 construct or empty vector control (LXSN). Note the appearance 

of FANCD2-APB foci in HPV-16 E7-expressing primary cells. Arrow points to the FANCD2-APB depicted at 

higher magnification in insert. Nuclei were stained with DAPI. Scale bar indicates 10 m. (B) Quantification of the 

proportion of primary human keratinocytes stably expressing HPV-16 E7 (closed square) or control (open circle) 

that contains FANCD2-APBs. Each point corresponds to the mean and standard deviation of at least triplicate 

quantification of 500 cells at the passage number indicated. Asterisks indicate statistically significant differences in 

comparison to controls. 
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3.4 DISCUSSION  

The HPV-16 E7 oncoprotein has previously been found to extend the lifespan of primary 

human keratinocytes and promote telomere lengthening through a mechanism independent of 

telomerase (169, 170). The precise molecular process through which this occurs remains unclear; 

however, late passages of HPV-16 E7-expressing cells share key characteristics with cells that 

maintain their telomeres through the ALT pathway (169, 170).  

Here, we show that the HPV-16 E7 oncoprotein increases the formation of APBs that 

contain FANCD2, a critical protein within the FA pathway, which is activated and recruited to 

the chromatin at stalled replication forks (132). We also identify BRCA2/FANCD1 and MUS81 

as novel components of FANCD2-containing APBs. This is the first report that these DNA 

damage proteins are localized to APBs; however, work from multiple labs has since recapitulated 

our findings that FANCD2 and MUS81 are localized to APBs (192, 193). These results lend 

support to the notion that aberrant replication structures, such as stalled replication forks, are 

linked with APB formation in HPV-16 E7-expressing cells. In line with these results, we show 

that treatment of U-2 OS cells with replication stress-inducing agents increases the frequency of 

cells that harbor FANCD2-positive APB foci. Furthermore, HPV-16 E7-induced FANCD2-

containing APBs were found to form in an ATR-dependent manner. A previous study failed to 

detect a change in APB frequency following HU treatment, which may be explained by cell-type 

specific differences between the U-2 OS cells used in our study and the primary cells used by 

Fasching and co-workers (194). 

Remarkably, we found that depletion of FANCD2 in ALT-positive U-2 OS cells rapidly 

leads to telomere dysfunction. The FANCD2 protein has been shown to localize to meiotic 
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telomeres (195) and has previously been implicated in protecting telomere integrity, as 

evidenced by the fact that patient-derived FA-deficient cells display telomere defects, including 

telomere breakage and increased extrachromosomal telomeric DNA. Despite the normal 

telomere length observed in FANCG-deficient mice (196), FANCD2-deficient mice have been 

reported to form epithelial cancers which are typically associated with telomere erosion (168). 

Whether the telomere dysfunction observed in FANCD2-depleted ALT cells reflects a general 

role for FANCD2 in maintaining telomere homeostasis in all cells however, requires further 

experiments.  

ALT is believed to result from deregulated HR at telomeres (197) and the FA pathway 

has been implicated in HR-mediated replication fork restart. Hence, it is possible that 

deregulated FANCD2-associated activity, potentially involving aspects of HR, at telomeres is a 

source for extrachromosomal telomeric circles or telomeric sister chromatid exchanges, both 

hallmarks of ALT. 

Our mutational analysis suggests that HPV-16 E7-associated inactivation of pRB, pRB 

family members and the p21Cip1 CDK inhibitor are involved in promoting FANCD2-positive 

APB formation. These functions are essential for HPV-16 E7-induced deregulation of 

cyclin/CDK activity and accelerated entry into S phase (39, 41). Work presented in Chapter 2 

suggests that HPV-16 E7-induced unscheduled entry into S phase is likely to lead to replication 

stress, as evidenced by FA pathway activation (Chapter 2, (184). Therefore, it is plausible that 

aberrant host cell DNA replication dynamics, which stem from HPV-16 E7-associated cell cycle 

disruption, are likely to affect processive replication through telomeric DNA, as the TTAGGG 

repeats have been shown to be particularly difficult to replication and prone to replication fork 

stalling (179-181).  Since stalled replication forks are excellent substrates for HR, our results 
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may help to provide an explanation for how replication stress at telomeres may provide a 

stimulus for ALT activity. This idea is supported by the finding that cells deficient for pRB and 

the related pocket proteins display key characteristics of ALT-positive cells (198). Furthermore, 

the majority of ALT cell lines have been immortalized using SV40, which expresses the large T 

Ag, which shares key functions with HPV-16 E7, including its ability to inactivate pRB (173). 

An intriguing possibility, based on previous studies and work presented here, is that disruption of 

the pRB/E2F-axis by viral oncoproteins such as SV40 large T Ag or HPV-16 E7 promotes ALT 

by stimulating replication stress at telomeric DNA. However, whether HPV-16 E7-associated 

replication stress is sufficient to promote ALT or if HPV-16 E7 directly targets regulators of 

ALT/HR awaits further clarification. 

A recent study has identified that DNA methyltransferase (DNMTs) play a role in 

maintaining telomere length and that DNMT-deficient cells display deregulated telomere 

recombination and APB formation (199). HPV-16 E7 has been found to interact with DNMT1 

(47). However, this interaction leads to an upregulation of DNMT1’s DNA methyltransferase 

activity and therefore, is unlikely to contribute to the increased APB frequency observed in 

HPV-16 E7-expressing U-2 OS cells.  

HPV-16 E7 and other high-risk and low-risk HPV proteins (E1, E2, E6, E1^E4, and L2) 

have been shown to co-localize and/or interact with PML or PML-containing oncogenic domains 

(PODs) (200). This study by Nakahara and Lambert (200) revealed that viral E2-dependent 

transcription and viral replication occurs independently of the PML protein and that the increase 

of PML-positive foci detected in HPV-positive cells was linked with the presence of 

extrachromosomally replicating viral DNA rather than E6 and/or E7 expression. Therefore, we 
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believe the results presented here do not disagree with these findings, as PML has been reported 

to localize to many different subsets of nuclear foci. 

While we have not directly tested whether a physical interaction between HPV-16 E7 and 

PML affects APB frequency, several lines of evidence suggest that this mechanism is unlikely to 

play a role. In previous studies, both high- and low- risk HPV E7 oncoproteins were found to 

interact with PML and equally abrogate PML IV-induced senescence (201). In contrast, our 

results show a clear difference between the ability of high-risk and low-risk HPV E7 

oncoproteins to stimulate FANCD2-positive APB foci. Furthermore, wild type HPV-16 E7 and 

mutant HPV-16 E7 C24G have been found to display similar affinities to PML (201), and yet 

differed in the ability to promote FANCD2-positive APB formation (our results, data not 

shown). These inconsistencies suggest that direct interactions between HPV-16 E7 and PML 

may not play a major role in promoting APB formation. In line with this, previous reports show 

that ectopically expressed HPV-16 E7 does not co-localize with PML in the ALT-positive U2-

OS cell line (202). 

Despite the fact that most advanced cervical neoplasias and HPV-positive cells lines 

display high levels of telomerase activity, some precancerous cervical lesions lack detectable 

telomerase expression and display telomere attrition (203). How a minimum telomere length 

necessary to evade anti-proliferative responses is maintained in these lesions, which can persist 

for many years, remains unknown. Our finding that HPV-16 E7 can stimulate APB formation in 

a small but significant proportion of early passage non-immortalized primary human foreskin 

keratinocytes suggests that this mechanism may contribute to telomere length maintenance in a 

subset of cells. Importantly, APBs were never detected in control keratinocytes which ceased to 

proliferate past passage 9. Upregulation of telomerase has clearly been found to be the more 
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efficient mechanism of telomere maintenance (204) and therefore, clonal evolution will 

undoubtedly lead to the predominance of cells with sufficient telomerase activity as evidenced 

by the high frequency of telomerase expression observed in cervical malignancies (205, 206). 

Nonetheless, the correlation between APB formation and extended cell life span may suggest 

that APB-positive cells may exhibit a growth advantage at early stages of immortalization. 

In conclusion, our results point to a novel link between DNA replication stress, FANCD2 

and ALT activity, as reflected by APB formation, in HPV-16 E7-expressing cells. These findings 

highlight the exploitation of certain aspects of the DNA damage response by HPV-16 E7 to 

circumvent anti-proliferative barriers in infected host cells. Our results suggest a model in which 

HPV-16 E7-induced replication stress leads to FA pathway activation, which if it occurs at 

telomeres, may be beneficial to the virus as it contributes to ALT-mediated extension of host cell 

lifespan and ultimately immortalization.  
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4.0  HPV-16 E7 ATTENUATES DNA DAMAGE CHECKPOINT CONTROL BY 

INCREASING THE PROTEOLYTIC TURNOVER OF CLASPIN 

Work described in this section is currently under review at Cancer Research with authors 

Nicole Spardy, Anette Duensing, Katherine Covella, Elliot Cha, Elizabeth E. Hoskins, Susanne I. 

Wells and Stefan Duensing 

 

K. Covella generated the human fibroblasts stably expressing mutant  

HPV-16 E7 21-24-HA. E. Cha performed preliminary immunofluorescence analysis 

experiments in human fibroblasts stably expressing HPV-16 E7 or control. E.E. Hoskins and S.I. 

Wells provided the primary human foreskin keratinocytes stably expressing the HPV-16 E7 

oncoprotein or corresponding control. A. Duensing contributed to experimental designs and data 

interpretation. N. Spardy and S. Duensing conceived the project, analyzed and interpreted the 

results and wrote the manuscript. 
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4.1 INTRODUCTION 

The HPV-16 E7 oncoprotein has been shown to induce DNA breakage, most likely as a 

result of host cell DNA replication stress (Chapters 2 and 3; (184, 207, 208). Despite signs of 

DNA damage and checkpoint activation, HPV-16 E7-expressing cells continue to proliferate 

through mechanisms that are not understood in detail. While several reports suggest that HPV-16 

E7 promotes proliferation in the presence of negative growth signaling by deregulating cell cycle 

proteins (209, 210), it has not been determined whether HPV-16 E7 can interfere with the DNA 

damage response in order to evade DNA damaged-induced cell cycle arrest.  

Here, we show that HPV-16 E7-expressing cells enter mitosis despite DNA damage. We 

provide evidence that this occurs as a result of HPV-16 E7’s ability to attenuate DNA damage 

checkpoint control by accelerating the proteolytic destruction of the host cell DNA damage 

response protein claspin. Claspin is a part of the ATR/CHK1-axis treatment (127) and its 

degradation by the  

SCF-TrCP pathway has recently been found to be required prior to mitotic entry in cells with 

activated DNA damage checkpoints (211-213). Further experiments revealed that claspin 

accumulation inhibits mitosis in HPV-16 E7-expressing cells and that disruption of the 

pRB/E2F-axis by HPV-16 E7 contributes to deregulated claspin levels and aberrant entry into 

mitosis. Collectively, our findings highlight a novel mechanism through which the HPV-16 E7 

oncoprotein relaxes DNA damage checkpoint control in order to maintain cell cycle progression 

in a DNA damage response-activated, anti-proliferative host cell environment. 
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4.2 MATERIALS AND METHODS 

Cell culture, treatments and transfections 

Primary human foreskin keratinocytes (HFKs) were harvested from foreskins and 

maintained as described earlier. Human foreskin fibrobasts (BJ; ATCC) and C33A cells (ATCC) 

were maintained in DMEM (Biowhittaker, Lonza, Inc.) as described earlier. CaSki cells (ATCC) 

were maintained in RPMI media (Biowhittaker/Lonza, Inc.) supplemented with 1% L-glutamine 

(Invitrogen) and antibiotics as described earlier. To assess protein stability cells were treated 

with 30 g/ml cycloheximide (Calbiochem) or dH2O for the indicated times. The proteasome 

was inhibited by treating cells with 1 M Z-Leu-Leu-Leu-Vinyl Sulfone (Z-L3VS; BioMol 

International/Enzo Life Sciences, Inc., Plymouth Meeting, PA) or DMSO for 24 h. Stalled 

replication forks were induced by treating cells with 1 mM HU (Calbiochem) or dH2O for 24 h. 

Primary HFKs were transduced with an LXSN-based high-risk HPV-16 E7 construct or 

LXSN empty vector followed by selection in G418-supplemented media. Expression was 

confirmed through immunoblot analysis. Transient transfections of primary HFKs stably 

expressing HPV-16 E7 was done using nucleofection (Lonza, Inc.) with 2 g of plasmids 

encoding a HA-tagged mutant claspin S30/34A (kindly provided by Michele Pagano, New York 

University School of Medicine, New York, NY) or empty vector control (neo-HA) in 

combination with 0.5 g of dsRED as transfection marker. Tissue culture media was replaced 24 

h after transfection and cells were fixed and mitotic index was assessed 48 h after transfection.  
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Immunological Methods 

Whole cell lysates were prepared and immunoblot analysis was performed as described 

earlier. Quantification of band intensities was performed using NIH Image J software, 

http://rsbweb.nih.gov/ij/. 

Immunofluorescence analysis of cells grown on coverslips was performed as described 

earlier, with the exception that cells were permeabilized using 1% Triton-X 100 in PBS for 15 

min.  

Paraffin-embedded tissue samples were retrieved from the archives of the Department of 

Pathology, University of Pittsburgh School of Medicine (IRB # 0505181) and HPV typed using 

the Rembrandt/PanPath in situ hybridization kit (Invitrogen). Immunofluorescence microscopic 

analysis of paraffin-embedded tissue samples was performed as described earlier, with the 

exception that slides were not subjected to pepsin digest.  

Primary antibodies used for immunoblotting, and immunofluorescence were 53BP1 

(Novus Biologicals), actin (Sigma), phosphorylated ATM at Serine 1981 (Gene Tex), Aurora A 

(Cell Signaling Technology, Inc., Danvers, MA), Claspin (antibody kindly provided by 

Raimundo Freire, Unidad de Investigaciόn, Hospital Universitario de Canarias, Tenerife, Spain), 

CUL-1 (Santa Cruz Biotechnology, Inc.), cyclin A (Novocastra Laboratories Ltd, Newcastle-

upon-Tyne, England), phosphorylated H2AX at serine 139 (Upstate, Temecula, CA), HPV-16 E7 

(Santa Cruz Biotechnology, Inc), phosphorylated PLK1 at threonine 210 (BD PharMingen), 

PLK1 (Santa Cruz Biotechnology, Inc.) and -TrCP (Zymed/Invitrogen). 
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Statistical Analysis  

Student’s two-tailed t test for independent samples was used to assess statistical 

significance. 

4.3 RESULTS 

HPV-16 E7-expressing cells enter mitosis despite DNA damage. 

To determine the frequency with which HPV-positive cells enter mitosis with DNA 

damage, an immunofluorescence microscopic analysis for the DNA damage marker H2AX 

was performed in tissue biopsies obtained from high-risk HPV-positive (types 16/18 and/or 

31/33) anal neoplasms or non-malignant tissue (Fig. 19A, left panel). A total of six carcinomas in 

situ (CIS) samples, seven squamous cell carcinomas (SCCs) and six non-malignant controls 

(hemorrhoids) were analyzed for the presence of mitotic cells with H2AX foci. Microscopic 

analysis revealed that HPV-positive biopsies displayed a statistically significant increase in the 

percentage of H2AX-positive mitotic cells from 24.5% in non-malignant tissue to 52.6% in 

CIS and 62.4% in SCC tissue (p≤0.01 and p≤0.0001, respectively; Fig. 19A, right panel). Since 

DNA damage checkpoints are crucial to prevent mitotic entry in the presence of unrepaired DNA 

breaks (214), these findings suggest that high-risk HPV oncoproteins may attenuate DNA 

damage checkpoint control that normally is involved in arresting cells at the G2/M phase of the 

division cycle. 

The HPV-16 E7 oncoprotein activates DNA damage checkpoints associated with DNA 

replication stress (Chapters 2 and 3; (184, 208) and stimulates DNA damage in a cell cycle-
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dependent manner (Fig. 20). Since HPV-16 E7-expressing cell populations continue to 

proliferate and enter mitosis, we next asked whether HPV-16 E7 is involved in circumventing 

DNA damage checkpoint control. We performed an immunofluorescence microscopic analysis 

for H2AX in primary human foreskin keratinocytes (HFKs) stably transduced with HPV-16 

E7 or empty vector control (LXSN) and tested whether HPV-16 E7 expression, independent of 

HPV-16 E6, is sufficient to permit mitotic entry in the presence of DNA damage. We found that 

a significant proportion of HPV-16 E7-expressing cells found in pro-/metaphase and later stages 

of mitosis (ana-/telophase) harbor H2AX foci (Fig. 19B, left panel). A statistically significant 

1.6-fold increase in the percentage of total H2AX-positive mitotic cells was observed in HPV-

16 E7-expressing cells (72.3%) compared to controls (44%, Fig. 19B, right panel/top position; 

p≤0.005). Furthermore, we show that the presence of HPV-16 E7 leads to a significant 1.5-

increase of H2AX-positive pro-/metaphase (75.2%) compared to controls (49.5%, Fig. 1B, 

right panel/middle position; p≤0.005) and a significant 2.0-fold increase of H2AX-positive 

ana-/telophases in HPV-16 E7-expressing cells (68%) compared to controls (33.7%, Fig. 19B, 

right panel/bottom position; p≤0.005). Collectively, these results underscore that HPV-16 E7 

expression inflicts host cell DNA damage and furthermore, suggest that HPV-16 E7-expressing 

cells are able to enter mitosis in the presence of DNA damage.  

 

 



 91 

 

              

 

Figure 19. The HPV-16 E7 oncoprotein promotes mitotic entry despite the presence of DNA damage.  

(A) Immunofluorescence microscopic analysis of H2AX in high-risk HPV-positive anal carcinomas in situ (CIS), 

squamous cell carcinomas (SCCs) or non-malignant tissue samples (hemorrhoids). Nuclei stained with DAPI. Scale 

bar indicates 10 m (left panel). Legend continued on following page.  
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Quantification of the proportion of mitotic cells with H2AX foci in CIS, SCC or non-malignant tissue samples. 

Bar indicates the mean percentage of H2AX-postitive mitotic cells observed in at least six cases with at least 350 

mitotic cells analyzed for each category (right panel). (B) Immunofluorescence microscopic analysis of H2AX in 

primary HFKs stably expressing HPV-16 E7 or control (LXSN). Nuclei stained with DAPI. Note the appearance of 

H2AX foci (arrows) in HPV-16 E7-expressing cells at various stages of mitosis. Scale bar indicates 10 m (left 

panel). Bars indicate the fold changes of the percentage of total mitotic cells (top), pro-/metaphase cells (middle) or 

ana-/telophase cells (bottom) that contain H2AX foci.  Five counts of at least 50 cells were analyzed from a 

representative experiment (right panel). (C) Quantification of the percentage of mitotic cells detected in primary 

HFKs stably expressing HPV-16 E7 or empty vector control (LXSN) following treatment with either 1 mM HU or 

dH2O for 24 h. Bars indicate mean and standard error of two independent experiments with triplicate quantification 

of a minimum of 50 cells. Asterisk indicates statistically significant differences in comparison to controls.   

 

HPV-16 E7 attenuates DNA damage checkpoint control and promotes mitotic entry in the 

presence of replication stress. 

We next sought to rule out that the increase of mitotic cells with H2AX foci in HPV-16 

E7 cell populations is not simply as a result of an overall increase of DNA damage. In order to 

directly test whether HPV-16 E7 relaxes DNA damage checkpoints required to prevent aberrant 

mitotic entry, HPV-16 E7-expressing or control primary HFKs were treated for 24 hours with 

hydroxyurea (HU), a ribonucleotide reductase inhibitor that causes replication forks to stall by 

depleting the intracellular deoxynucleotide pool, followed by quantification of the percentage of 

cells in mitosis. HU treatment was chosen as it mimics certain aspects of the DNA damage 

response observed in HPV-16 E7-expressing cells, such as activation of the FA pathway. No 

significant difference in the mitotic index of HPV-16 E7-expressing cells (1.8%) compared to 

control cells (1.5%, p>0.05) was observed following control treatment (Fig. 19C). In contrast, a 

statistically significant 4.5-fold increase of HPV-16 E7-expressing cells were found in mitosis 
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(0.9%) following HU treatment compared to control cells (0.2%, p≤0.001; Fig. 19C). These 

results underscore that a proportion of HPV-16 E7-expressing cells enter mitosis despite 

exogenous replication stress, which suggests that the HPV-16 E7 oncoprotein can attenuate DNA 

damage checkpoint responses that would normally arrest cells following DNA replication stress.    

 

HPV-positive cells lines show altered claspin protein stability. 

Claspin facilitates ATR-mediated phosphorylation of the CHK1 kinase in response to 

DNA replication stress (126, 127). Its degradation however, has recently been implicated in the 

recovery from DNA damage checkpoint arrest (211-213). Therefore, we next monitored whether 

claspin expression is altered in the presence of high-risk HPV-16 oncoproteins. Claspin protein 

stability was assessed by treating HPV-16-positive cancer cells (Caski) or HPV-negative cancer 

cells (C33A) with cycloheximide (CHX) for up to 8 hours, followed by immunoblot analysis for 

claspin protein levels (Fig. 21A, upper panel). Densitometric analyses revealed a 6.2-fold drop in 

claspin protein found in Caski cells following an 8 hour CHX block, as compared to a 2.1-fold 

decrease in C33A cells (Fig. 21A, lower panel). These results suggest that claspin protein 

stability is negatively affected in cells expressing HPV-16 oncoproteins.   
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Figure 20. The HPV-16 E7 stimulates DNA breaks in a cell cycle dependent manner. 

(A) Co-immunofluorescence microscopic analysis of 53BP1 and pATM in BJ fibroblasts stably expressing HPV-16 

E7-HA or control (neo-HA). Nuclei stained with DAPI. Scale bar indicates 10 m (left panel). Quantification of the 

percentage of BJ cells stably expressing control (neo-HA), HPV-16 E7-HA or mutant HPV-16 E7 21-24-HA that 

contain 53BP1/pATM S1981 foci. Bars indicate the mean value of fold changes generated from two independent 

experiments with triplicate counts of a minimum of 50 cells (right panel).  (B) Co-immunofluorescence microscopic 

analysis of 53BP1 and cyclin A in BJ fibroblasts stably expressing HPV-16 E7-HA or control (neo-HA). Nuclei 

stained with DAPI. Scale bar indicates 10 m (left panel). Quantification of the percentage of BJ cells stably 

expressing control (neo-HA), HPV-16 E7-HA or mutant HPV-16 E7 21-24-HA that contain cyclin A–positive 

cells with 53BP1 foci. Bars indicate the mean value of fold changes generated from two independent experiments 

with triplicate counts of a minimum of 50 cells (right panel).   

 



 95 

 

The HPV-16 E7 oncoprotein accelerates the proteolytic turnover of claspin. 

To test whether HPV-16 E7 plays a role in regulating claspin protein stability, we treated 

primary HFKs stably expressing HPV-16 E7 or control cells with CHX and monitored claspin 

protein levels (Fig. 21B, upper panel). Immunoblot analysis revealed an increase in the base-line 

level of claspin in HPV-16 E7-expressing cells in comparison to control cells. Importantly, 

however, densitometric analyses revealed a 3.3-fold decrease in claspin protein levels in HPV-16 

E7-expressing cells following CHX treatment for 2 hours as compared to the 2-fold decrease in 

control cells (Fig. 21B, lower panel). These results support the notion that despite the overall 

increase of claspin protein levels in HPV-16 E7-expressing cells, the proteolytic turnover of 

claspin is accelerated in the presence of the HPV-16 E7 oncoprotein.    

To further corroborate the role of HPV-16 E7 in claspin proteolysis, we next tested 

whether inhibition of the proteasome lead to claspin protein stabilization. Treatment of primary 

HFKs stably expressing HPV-16 E7 or control cells with the proteasome inhibitor Z-L3VS for 24 

hours led to a greater fold increase in claspin protein levels in HPV-16 E7-expressing cells (2.8-

fold) compared to control cells (1.8-fold; Fig. 21C). These results underscore that the ubiquitin-

proteasome pathway plays an important role in HPV-16 E7-associated claspin protein 

destabilization.  
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Figure 21. The proteolytic turnover of claspin is accelerated in HPV-positive cells and involves the HPV-16 E7 

oncoprotein.  

(A) Immunoblot analysis of claspin in HPV-negative (C33A) and HPV-positive (Caski) cells treated with 

cycloheximide (CHX) for the indicated times. Immunoblot for actin was used to demonstrate total protein loading. 

Densitometric analyses was used to quantify claspin levels and the fold changes were plotted using arbitrary units. 

Legend continued on following page.  
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(B) Immunoblot analysis of claspin in primary HFKs stably expressing HPV-16 E7 or control (LXSN) following 

CHX treatment. Immunoblot for actin was used to demonstrate total protein loading. Densitometric analyses was 

used to quantify claspin levels and the fold changes were plotted using arbitrary units. (C) Immunoblot analysis of 

claspin in primary HFKs stably expressing HPV-16 E7 or control (LXSN) treated with Z-L3VS or dH2O for 24 h. 

Immunoblot for actin was used to demonstrate total protein loading. Densitometric analyses was used to quantify 

claspin levels and the fold changes were plotted using arbitrary units. 

 

Claspin degradation is required for mitotic entry in HPV-16 E7-expressing cells.  

Mitotic entry following DNA damage checkpoint responses requires the destruction of 

claspin, as it relieves further ATR-mediated CHK1-associated cell cycle arrest. To directly test 

whether claspin degradation by the G2/M-specific claspin proteolysis machinery facilitates entry 

into mitosis in HPV-16 E7-expressing cells, we transiently transfected primary HFKs stably 

expressing HPV-16 E7 or LXSN with a non-degradable mutant of claspin, in which two 

conserved serine residues (30 and 34) within the phospho-degron motif of claspin have been 

mutated to alanines (S30/34A; kindly provided by M. Pagano, New York University School of 

Medicine, New York, NY) or empty vector control and monitored the mitotic index 48 hours 

following transfection. Transfection of control cells (LXSN) with the phospho-degron mutant 

claspin S30/34A did not change the mitotic index (1.35%) as compared to cells transfected with 

empty vector control (1.32%, p>0.05). In contrast, transfection of HPV-16 E7-expressing 

primary cells with the phospho-degron mutant claspin S30/34A lead to a significant 1.8-fold 

decrease in the percentage of cells in mitosis (2.2%) compared to cells transfected with empty 

vector control (1.2%, p≤0.001; Fig. 22). These findings underscore that acceleration of claspin 

degradation by HPV-16 E7 promotes entry into mitosis and suggests that accumulation of 

claspin in HPV-16 E7-expressing cells reinforces G2/M checkpoint control.  
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Figure 22. A non-degradable mutant of claspin inhibits mitotic entry in HPV-16 E7-expressing cells.  

The mitotic index was assessed in HPV-16 E7-expressing or control (LXSN) primary human keratinocytes 48 h 

after transient transfection with either a HA-tagged phospho-degron mutant of claspin (S30/34A-HA) or empty 

vector control (Neo-HA) using dsRED as a transfection marker. Mean values and standard error was generated from 

a representative experiment for LXSN cells and three independent experiments for HPV-16 E7-expressing cells, 

with at least 100 cells counted in triplicate per experiment. Asterisk indicates statistically significant differences in 

comparison to controls. 

 

HPV-16 E7-induced claspin degradation involves deregulation of multiple components of 

the SCF-TrCP-based claspin degradation machinery. 

DNA damage checkpoint recovery is facilitated, in part, by the mitotic kinase Polo-like 

kinase 1 (PLK1), which promotes SCF-TrCP-mediated claspin proteolysis in the G2/M phase of 

the cell cycle (211-213). Therefore, we next sought to test whether HPV-16 E7 affects claspin 
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protein stability by deregulating components of the SCF-TrCP-based claspin degradation 

machinery. Immunoblot analysis of primary HFKs expressing HPV-16 E7 or control revealed 

that multiple proteins implicated in SCF-TrCP-mediated claspin degradation were upregulated in 

the presence of the HPV-16 E7 oncoprotein, including cullin 1 (CUL1), -TrCP, Aurora A and 

PLK1 (Fig. 23A). However, since claspin protein stability is also regulated by the 

deubiquitinating enzymes (DUBs), USP7 and USP28 (215-217), we were also interested in 

assessing their expression level in HPV-16 E7-expressing and control primary HFKs. No 

significant difference in the USP7 expression level, which primarily counteracts SCF-TrCP-based 

claspin ubiquitination in G2/M (215), was detected in HPV-16 E7-expressing cells compared to 

control cells (Fig. 23B). A slight increase of USP28 protein levels, which opposes APC/CCdh1-

based claspin degradation in G1 (215, 216), was observed in HPV-16 E7-expressing cells 

compared to controls. Collectively, these findings suggest that HPV-16 E7-associated claspin 

proteolysis may involve the deregulation of the SCF-TrCP-based claspin degradation machinery, 

but not the deregulation of the DUB that thwarts SCF-TrCP-mediated claspin degradation.    
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 Figure 23. The HPV-16 E7 oncoprotein deregulates multiple components of the claspin degradation machinery.  

(A) Immunoblot analysis of various claspin degradation machinery in primary HFKs stably expressing HPV-16 E7 

or control (LXSN). Immunblot for HPV-16 E7 was used to verify correct expression. Immunblot for actin was used 

to demonstrate total protein loading. Legend continued on following page. 
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(B) Immunoblot analysis of claspin deubiquitinating enzymes in primary HFKs stably expressing HPV-16 E7 or 

control (LXSN). Immunblot for actin was used to demonstrate total protein loading. (C) Immunoblot analysis of 

claspin degradation machinery in primary HFKs stably expressing HPV-16 E7 or control (LXSN) following 

treatment with HU or dH2O for 24 hours. Immunblot for actin was used to demonstrate total protein loading. Arrow 

points to band corresponding to pPLK1 T210. (D) Proposed model of HPV-16 E7-induced deregulation of claspin 

protein stability. HPV-16 E7-associated pRB/E2F disruption leads to increased levels of claspin in S-phase in order 

to promote DNA replication. However, deregulated E2F gene transcription in G2/M may stimulate an increase of 

PLK1 and Aurora A expression levels, which accelerates SCF-TrCP-mediated claspin proteolysis, thereby facilitating 

aberrant entry into mitosis in the presence of DNA damage. 

 

Activation of PLK1 prior to DNA damage checkpoint recovery is regulated by the 

Aurora A kinase (218). Therefore, we next analyzed Aurora A and PLK1 expression as well as 

PLK1 activation in primary HFKs stably expressing HPV-16 E7 or control cells exposed to 

exogenous DNA replication stress. We found that HPV-16 E7-expressing cells maintain high 

levels of Aurora A in response to HU-induced replication stress compared to control cells (Fig. 

23C). In addition, HPV-16 E7-expressing cells maintained detectable levels of total PLK1 

protein as well as Aurora A-mediated phosphorylation of PLK1 at threonine 210 (T210). 

Phosphorylation at this residue is a prerequisite for PLK1 to promote mitotic entry after DNA 

damage checkpoint arrest (218). Together, these results show that HPV-16 E7 disrupts multiple 

layers of control involved in DNA damage checkpoint recovery.   
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4.4 DISCUSSION 

Here, we show that HPV-16 E7-expressing cells enter mitosis despite DNA damage. We 

provide evidence that HPV-16 E7 circumvents DNA damage checkpoints required to prevent 

aberrant mitotic entry by accelerating the proteolysis of claspin, a critical mediator of the 

ATR/CHK1 signaling axis. Previous reports have linked SCF-TrCP-based claspin degradation in 

G2/M with recovery from DNA damage checkpoint activation (211-213). We found that HPV-

16 E7 deregulates the expression and activity of several key proteins involved in this process, 

thus creating a cellular environment that permits mitotic entry despite the presence of anti-

proliferative stimuli.  

Although our results clearly point to a role for HPV-16 E7 in attenuation of DNA damage 

checkpoint control (Fig. 19C), it is noteworthy that we discovered H2AX-positive mitotic cells 

in non-malignant tissue samples and control keratinocyte populations. It is possible that 

genotoxic stress associated with unfavorable growth conditions or oxidative damage contributes 

to the appearance of H2AX foci in these cells. Recent studies suggest that cells with un-

repairable DNA damage escape prolonged cell cycle arrest and enter mitosis through a process 

known as checkpoint adaptation before being eliminated by mitotic catastrophe or apoptosis 

(219-223).  

We show that HPV-16 E7 accelerates claspin proteolysis, which may provide an 

explanation for how HPV-16 E7-expressing cells are able to overcome replication-stress 

associated DNA damage checkpoint responses and aberrantly enter mitosis. While we assume 

that HPV-16 E7 accelerates claspin degradation at the G2/M-transition of the cell division cycle, 

the inability to efficiently synchronize HPV-16 E7-expressing keratinocyte populations 
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prevented us from directly testing this hypothesis. We do, however, show that the HPV-16 E7-

associated decrease in claspin protein stability is not simply due to a higher percentage of cells in 

mitosis, as no significant difference was detected in the mitotic indexes of HPV-16 E7-

expressing and control cell populations. 

Since claspin is required for ATR-mediated activation of CHK1, is important to mention 

that phosphorylation of CHK1 was observed in HPV-16 E7-expressing cells (data not shown). 

These results suggest that claspin remains functional within the ATR/CHK1-signaling axis in 

HPV-16 E7-expressing cells, but that it is more efficiently degraded as cells nears the G2/M 

transition in order to alleviate DNA damage checkpoint responses and promote mitotic entry. 

This line of thinking is supported by our finding that a non-degradable mutant of claspin inhibits 

mitotic entry in HPV-16 E7-expressing cells, thus underscoring that claspin accumulation 

reinforces G2/M checkpoint control. 

Several components of the SCF-TrCP-based claspin degradation machinery were found 

upregulated in HPV-16 E7-expressing cells, including CUL1, -TrCP, PLK1 and Aurora A. 

Recently, however, claspin protein stability has also been shown to be regulated by the 

deubiquitinating enzymes (DUBs) USP7 and USP28, which counteract SCF-TrCP- and 

APC/CCdh1-mediated claspin degradation, respectively, in order to re-establish claspin-associated 

DNA damage checkpoint activation (215-217). Despite the slight upregulation of USP28 levels, 

no such increase in USP7 protein expression was detected in HPV-16 E7 keratinocyte 

populations compared to controls.  

Prior to DNA damage checkpoint recovery, claspin must be targeted for degradation by 

PLK1-mediated phosphorylation which creates a recognition motif for the SCF-TrCP ubiquitin 

ligase (211-213). Recent studies have implicated Aurora A-mediated phosphorylation of PLK1 at 
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T210 as a pre-requisitive for PLK1 activation and DNA damage checkpoint recovery (218). 

Here, we show that HPV-16 E7-expressing cells maintain elevated levels of Aurora A and PLK1 

in the presence of HU-induced replication stress when compared to control cells. Furthermore, 

we found that phosphorylation of PLK1 at T210 also remains detectable in HPV-16 E7-

expressing cells treated with HU. Our finding that HU-treatment in control keratinocytes lead to 

significantly less Aurora A and PLK1 protein levels could be explained by the fact that these 

cells are more efficiently arrested by HU treatment in early S phase, when PLK1 and Aurora A 

levels are kept low (224-226). In contrast, our result that HPV-16 E7-expressing cells display 

higher levels of Aurora A and PLK1 despite HU treatment may suggest that HPV-16 E7-

expressing cells do not arrest properly following HU and/or that HPV-16 E7 disrupts the 

regulation of these two mitotic kinases.  

Collectively, these findings indicate that the HPV-16 E7 oncoprotein accelerates claspin 

proteolysis by disrupting the balance between positive and negative regulators involved in  

SCF-TrCP-mediated claspin protein stability during DNA damage checkpoint recovery in the 

G2/M phase of the cell division cycle. At this time however, we are unable to rule out the 

possibility that HPV-16 E7 may accelerate claspin degradation in a more direct manner.  

Interestingly, claspin, PLK1 and Aurora A genes have each been shown to have E2F-

responsive promoter elements (227-229). Therefore, it is likely that HPV-16 E7-associated 

disruption of the pRB/E2F-axis contributes to claspin expression levels in both a positive and 

negative manner. Deregulation of E2F-mediated gene transcription by HPV-16 E7 is likely to 

stimulate higher levels of claspin in S phase in order to promote more efficient host cell DNA 

replication. This is in line with our result that HPV-16 E7-expressing keratinocytes display 

increased baseline levels of claspin when compared to control cells. However, enhanced E2F-
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mediated transcription would also deregulate expression and/or activity of components of the 

SCF-TrCP degradation machinery in cells nearing the G2/M transition, thereby leading to 

accelerated and/or premature claspin degradation and hence, attenuated DNA damage checkpoint 

control and aberrant entry into mitosis. Our finding that inhibition of claspin degradation 

prevents mitotic entry in HPV-16 E7-expressing cells suggests that Aurora A or PLK1 inhibitors 

may be potentially therapeutic in treating high-risk HPV-associated malignancies and in cancers 

that display deregulated claspin degradation. 
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5.0  GENERAL DISCUSSION 
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The high-risk HPV-16 E7 oncoprotein has been shown to stimulate host cell DNA 

breakage and structural chromosomal instability through mechanisms that are not understood in 

detail (95, 99, 100). Therefore, the goal of this report was to answer several key questions: (1) 

How does HPV-16 E7 induce DNA damage? (2) What are the precise consequences of HPV-16 

E7-associated DNA damage for host cell genomic integrity? and (3) How do HPV-16 E7-

expressing cells continue to proliferate in the presence of DNA damage and activated DNA 

damage checkpoints? This chapter will discuss our findings and highlight how the disruption of 

host cell cycle regulation by HPV-16 E7 triggers DNA damage checkpoint activation and DNA 

DSBs. Furthermore, we will discuss how the interplay between HPV-16 E7 and the host cell 

DNA damage response contributes to host cell genome instability, malignant progression and the 

viral life cycle.  

5.1 HOW DOES THE HPV-16 E7 ONCOPROTEIN INDUCE HOST CELL DNA 

DAMAGE? 

HPV-16 E7-associated replication stress contributes to DNA breakage 

Stalled replication forks are a frequent source of DNA DSBs and several lines of 

evidence suggest that replication stress contributes to DNA breakage in HPV-16 E7-expressing 

cells. First, we show that HPV-16 E7 expression activates the FA pathway, as evidenced by 

increased FANCD2 foci and recruitment of FANCD2 to chromatin (Chapter 2; (184). Activation 

of the FA pathway was used as a surrogate marker of replication stress, since techniques 

currently used to monitor the progression of replication forks are difficult and error-prone. 
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Second, we demonstrate that FANCA gene deficiency enhances high-risk HPV oncoprotein-

induced DNA breakage (Chapter 2, (207). Further experiments revealed that the HPV-16 E7 

oncoprotein is responsible for causing an accelerated accumulation of structural chromosomal 

instability in FA-deficient host cells (Chapter 2; (184). Third, we show that HPV-16 E7 

expression in non-immortalized human foreskin fibroblasts stimulates an increase of 53BP1 foci, 

a marker of DNA breaks, in cells that at the same time express S phase markers (cyclin A) 

(Chapter 4). Finally, we report that HPV-16 E7 activates the FA pathway and induces DNA 

DSBs in a cell cycle dependent manner. This was evidenced by the fact that expression of the 

HPV-16 E7 21-24 mutant, which is deficient in pRB binding/degradation and accelerating S 

phase entry, was unable to stimulate an increase of cells with FANCD2 foci (Chapter 2; (184) or 

cyclin A-positive cells that harbor 53BP1 foci (Chapter 4). These results underscore that HPV-16 

E7 is likely to drive DNA DSB formation by triggering host cell replication stress.  

It is important to note however, that attenuation of G1/S checkpoint control by HPV-16 

E7 may also create an environment that permits cells to progress from G1 to S phase in the 

presence of DNA DSBs (ie. prior to DNA repair) or other lesions that subsequently lead to DNA 

DSBs in S phase. Therefore, further experiments, which combine the labeling of replicated DNA 

with DSB identification, are required to directly determine the proportion of DNA DSBs that are 

generated during replication in HPV-16 E7-expressing cell populations. 

 

How does the HPV-16 E7 oncoprotein stimulate replication stress?  

Replication stress can be caused by a variety of stimuli including physical barriers that 

impede replication fork progression (88). One example of a physical replication block are 

interstrand DNA crosslinks (ICLs). ICLs are caused by the chemotherapeutic agent Mitomycin C 
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(MMC) and are considered the classical activator of the FA pathway (134). Currently, there is 

little evidence to suggest that HPV-16 E7 can directly interact with DNA in order to stimulate 

ICL formation or other types of DNA adducts. However, certain metabolic processes have been 

shown to produce reactive oxygen species (ROS), which can chemically alter DNA base 

structure as well as block replication fork progression (230). Since HPV-16 E7 can disrupt host 

cell homeostasis on multiple levels (45), we cannot rule out the possibility that increased ROS 

production may lead to chemically altered DNA structures or DNA breaks, which ultimately 

cause replication forks to stall.   

DSBs and altered DNA structures are also commonly formed as DNA repair 

intermediates. Many viral proteins, including HPV-16 E6, have been shown to interact with host 

cell DNA repair proteins (231-233). Whether HPV-16 E7 can similarly deregulate certain types 

of DNA repair is not known. However, manipulation of DNA repair pathways, resulting in too 

much or too little repair activity, could cause DNA DSBs to accumulate, which would ultimately 

lead to activation of a replication stress response. 

Currently, the most plausible explanation is that HPV-16 E7-induced replication stress 

arises from defects in replication initiation (74, 75).  Normally, cells ensure that replication 

occurs once and only once during the cell cycle by strictly regulating two key events 1) the 

licensing of replication origins by pre-replication complex (pre-RC) assembly in G1 and 2) the 

firing of replication forks during S phase (234). Since HPV-16 E7 is well known for its ability to 

profoundly disrupt host cell cycle control, it likely that replication stress may occur in HPV-16 

E7-expressing cells as a result of deregulated origin activity. Extensive research has revealed that 

pre-RC components (ORC, CDC6, CDT1 and MCM2-7) are recruited to origins in G1 when 

cyclin levels are kept low. Additional pre-RC assembly (and re-replication) is then prevented, as 
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cyclin levels rise at the G1/S transition and stay elevated throughout the remainder of the cell 

cycle (234). HPV-16 E7-expressing cells however, are characterized by deregulated expression 

of cyclin E and A (43), which may cause the window of time within the cell cycle that is 

permissive for pre-RC assembly to shorten, thus leading to a reduction in the number of properly 

licensed origins. Since multiple origins are typically fired in close proximity of one another to 

ensure that stalled replication forks can be “rescued” by surrounding forks (234); decreased pre-

RC assembly (and subsequent fork firing) could increase the chance of replication fork collapse 

and DNA DSB formation following MUS81-mediated cleavage (235). In support of this notion, 

deregulated expression of E2F and cyclin E has previously been shown to inhibit the recruitment 

of certain pre-RC components to replication origins (74, 75). Furthermore, we show here that 

sequences of HPV-16 E7 that are involved in disrupting the pRB/E2F-axis are required to 

stimulate replication stress, as evidenced by FA pathway activation (Chapter 2; (184). Further 

experiments however, are required to analyze whether pre-RC recruitment is altered in HPV-16 

E7-expressing cells. 

It is also possible that HPV-16 E7 may manipulate origin activity by directly binding pre-

RC components. In line with this, the c-myc proto-oncogene, which is functionally related to 

HPV-16 E7, has been shown to directly bind pre-RC components and manipulate the activity of 

replication origins (236). We feel that this scenario is unlikely based on our inability to detect a 

physical interaction between HPV-16 E7 and various pre-RC components (data not shown); 

however, at this time we cannot rule out the possibility that HPV-16 E7 may cause replication 

stress by interfering more directly with host cell replication enzymes. 
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5.2 WHAT ARE THE PRECISE CONSEQUENCES OF HPV-16 E7-INDUCED DNA 

DAMAGE FOR HOST CELL GENOMIC INTEGRITY?  

Host cell genetic background affects the consequences of HPV-16 E7-induced DNA damage for 

genomic integrity 

The results presented in this thesis support a model in which HPV-16 E7-associated 

replication stress and FA pathway activation elicit specific consequences for chromosomal 

integrity depending on the genetic background of the host cell (Fig. 24). We provide evidence 

that in FA-deficient host cells, stalled replication forks induced by HPV-16 E7 grow increasingly 

unstable and are prone to collapse, which ultimately leads to the accelerated accumulation of 

DNA damage and chromosome breaks (Chapter 2; (184). However, in FA-proficient host cells, 

when HPV-16 E7-induced replication stress occurs within telomeric DNA it can trigger ALT-

associated recombination activity (Chapter 3; (208), thereby preserving the integrity of host cell 

telomeres. We hypothesize that in FA-proficient cells, HPV-16 E7-associated replication stress 

that occurs outside of telomeric DNA, such as at chromosomal fragile sites, may also lead to 

replication fork collapse and DNA breaks, despite activation of the FA pathway. This notion is 

supported by our finding that HPV-16 E7 expression in BJ fibroblasts, which have a functional 

FA pathway, stimulates an increase of 53BP1 foci in cells that are also expressing cyclin A (Fig. 

20).  

Together, these results underscore that replication stress caused by HPV-16 E7 can exert 

positive or negative effects on genome integrity of the host cell. Ultimately however, each of 

these consequences contributes to malignant progression, either by facilitating cellular 
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immortalization or by promoting the acquisition of genomic changes that may provide a growth 

advantage.  

 

Role of the FA pathway during HPV carcinogenesis  

In line with our result that FA deficiency accelerates HPV 16 E7-induced structural 

chromosomal instability, certain FA genes have been found to be epigenetically silenced in a 

subset of HPV tumors (155). These findings suggest that inactivation of the FA pathway may be 

selected for at some point during HPV tumor evolution, and raise the question what the 

requirement of the FA pathway during early and late stages of HPV tumorigenesis in FA-

proficient cells may be.  

We hypothesize that the FA pathway is likely to serve several key functions early in HPV 

tumorigenesis. First, our results indicate that a functional FA pathway may be required to prevent 

excessive and hence, lethal levels of chromosomal breakage in the host cell. We show that high-

risk HPV oncoproteins induce greater levels of DNA breakage in FA-deficient cells (Chapter 2; 

(207), which is likely to lead to anti-proliferative host cell responses. In line with this, HPV-16 

E7 expression in FANCD2-deficient cells was found to stimulate signs of apoptosis (data not 

shown). These results suggest that in early stages of cancer, the FA pathway may be necessary to 

prevent levels of chromosomal breakage that could be toxic to the cell, despite the ability of 

HPV-16 E6 to degrade p53.  

A second potential requirement for the FA pathway in early stages of cancer involves its 

role in the ALT mechanism of telomere lengthening (Chapter 3; (208). While the majority of 

malignant HPV cancers show activation of telomerase, precancerous lesions display little to no 

telomerase activity, and yet can remain present for decades (205, 237). The mechanisms through 
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which precancerous cells maintain a telomere length sufficient to circumvent anti-proliferative 

host cell barriers are unknown. We hypothesize that replication stress-induced FA-mediated ALT 

activity may promote the early stabilization of telomeres. This idea is supported by several lines 

of evidence. First, we show that episomal expression of HPV-16 oncoproteins (commonly 

observed in precancerous lesions) is sufficient to activate the FA pathway (Chapter 2; (184). 

Second, HPV-16 E7 expression was found to stimulate the formation of FANCD2-positive ALT-

associated PML bodies (APBs) in a small proportion of primary human keratinocytes as early as 

passage 2. Moreover, HPV-16 E7-expressing keratinocytes harboring FANCD2-APBs were 

shown to exhibit a slight growth advantage (Chapter 3; (208). These results suggest that 

activation of ALT by HPV-16 E7 may represent an early host cell event that occurs prior to viral 

integration. 

Why then are the majority of HPV tumors telomerase positive? It may be that 

precancerous lesions contain a mixed population of cells, which maintain their telomeres via 

either telomerase or ALT. Since telomerase has been shown to be the dominant mechanism of 

telomere maintenance (204), cells that acquire higher levels of HPV-16 E6 after viral integration 

or additional mutations leading to elevated levels of telomerase, will ultimately exhibit a growth 

advantage and clonally expand.  

Collectively, our results suggest that a functional FA pathway may be beneficial early in 

HPV tumorigenesis by promoting ALT and protecting cells from anti-proliferative responses 

associated with gross chromosomal breakage. However, at later stages of malignancy, when the 

cancer cells have gained higher levels of telomerase and additional genomic changes, FA gene 

silencing may be selected for as it would further promote host cell proliferation and create an 
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environment that allows the acquisition of additional chromosomal alterations that are growth 

promoting.  

5.3 HOW DO HPV-16 E7-EXPRESSING CELLS CONTINUE TO PROLIFERATE 

DESPITE ACTIVATED DNA DAMAGE CHECKPOINTS? 

Claspin: the “Achilles heel” of the ATR signaling cascade? 

Since DNA damage checkpoint responses pose a threat to viral propagation, it is not 

surprising that the HPV-16 E7 oncoprotein has evolved a mechanism to circumvent ATR-

mediated responses. Here, we provide evidence that HPV-16 E7 attenuates DNA damage 

checkpoint control and promotes aberrant mitotic entry by accelerating the proteolytic turnover 

of claspin, a mediator of ATR activity (Chapter 4).  

Claspin represents an excellent host cell target for viral oncoproteins to exploit, as it can 

first be “used” (231) during S phase to promote host cell replication and then “abused” (231) by 

accelerating its degradation at the G2/M transition in order to aid aberrant mitotic entry. Based 

on our results that deregulated E2F transcriptional control may be linked to 

premature/accelerated claspin degradation (Chapter 4), it will be interesting to see whether other 

viral oncoproteins that can similarly disrupt the pRB/E2F axis (Ad E1A and SV40 large T Ag) 

are also able to attenuate DNA damage checkpoint control by manipulating claspin protein 

stability. Normal human fibroblasts immortalized with SV40 large T Ag have previously been 

shown to efficiently degrade claspin prior to mitotic entry (211); however, it has not been 
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determined in detail whether this contributes to attenuation of DNA damage checkpoint 

responses. 

Collectively, our results suggest that HPV-16 E7-expressing cells may rely heavily on 

branches of the ATR pathway that are required to restart stalled replication forks (Chapter 2 and 

3), but to also dampen other aspects of the ATR signaling axis that are involved in eliciting a cell 

cycle arrest (Chapter 4). The host cell DNA damage response however, is a highly complex 

signaling network with a significant level of cross-talk, especially between the ATM and ATR 

kinases (105). These findings raise the question whether HPV-16 E7 also manipulates other 

branches of the DNA damage response, specifically the ATM kinase, in order to maintain host 

cell proliferation. Based on our finding that HPV-16 E7-expressing cells display nuclear foci 

containing pATM S1981, H2AX and 53BP1 (Chapter 4), which are targets of ATM that are 

phosphorylated quickly in response to DNA breakage (119), we hypothesize that HPV-16 E7 

may also be able to induce a disconnect in the ATM axis, where early signaling is maintained 

and more downstream events that are required to induce cell cycle arrest are attenuated.   

It is important to emphasize that HPV-16 E6-mediated degradation of p53 has also been 

shown to contribute to relaxation of G2/M checkpoint control in HPV-positive cells (238). In 

response to DNA damage, activated ATM and ATR signal through p53 in order to upregulate 

p21Cip1 activity and/or promote nuclear exclusion of 14-3-3, which leaves cyclin B/CDK1 in an 

inactivated state and facilitates a G2/M arrest (239). These findings underscore that the HPV-16 

oncoproteins can profoundly disrupt at least two branches of the DNA damage response (p53 and 

claspin) that feed into activation of the G2/M checkpoint. Ultimately, these mechanisms promote 

aberrant mitotic entry, which facilitates viral propagation and host cell genomic instability. 

Future experiments will provide interesting insights on whether HPV-16 oncoproteins can 
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exploit additional aspects of the DNA damage response in order to effectively evade anti-

proliferative host cell responses.  

 

Does exploitation of the DNA damage response by HPV oncoproteins contribute to the viral life 

cycle? 

In a recent review, Weitzman and co-workers have outlined how manipulation of the host 

cell DNA damage response by viral proteins can facilitate the viral life cycle (231). For example, 

certain adenoviral proteins have been shown to evade the DNA damage response by promoting 

the degradation and mislocalization of DNA repair proteins in order to evade viral genome 

concatemerization (240). In contrast however, efficient SV40 replication was shown to depend 

on ATM signaling (241, 242).  

Remarkably, many DNA damage proteins are also required for host cell DNA replication 

(158). Therefore, it is plausible that the HPV virus may benefit from a partially activated DNA 

damage response. Our finding that the HPV-16 E7 oncoprotein activates the FA pathway 

(Chapter 2 and 3) may suggest that certain pathways within the DNA damage response that are 

involved in maintaining host cell replication fork progression during S phase may be 

preferentially retained in HPV-positive cells, in order to promote viral replication and the ALT 

pathway.   

On the other hand, aberrant host cell replication dynamics induced by HPV-16 

oncoproteins may also lead to replication fork stalling within viral DNA. Whether this results in 

a selection pressure to silence the FA pathway in order to evade slowing of viral replication is 

unknown. The finding that FA genes can be silenced during HPV tumor evolution suggests that 
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this may be a clear possibility. Further experiments are required to determine whether a 

functional FA pathway helps or hinders HPV replication.  

5.4 MODEL: INTERPLAY BETWEEN THE HOST CELL DNA DAMAGE 

RESPONSE AND HPV-16 ONCOPROTEINS CONTRIBUTES TO CARCINOGENESIS 

Based on the work presented here, we provide a comprehensive model (Fig. 24), which 

describes how the interplay between HPV-16 oncoproteins and the DNA damage response 

contributes to host cell genomic instability and malignant progression. 

HPV-16 E7 promotes unscheduled entry into S phase by binding and inducing the 

degradation of the pRB family of proteins and inhibiting p21Cip1 and p27Kip1. These activities 

lead to deregulated expression of E2F and E2F-targets, including claspin, which helps to 

promote efficient host cell replication.  Accelerated entry into S phase however, causes aberrant 

host cell dynamics, DNA replication stress, and activation of the FA pathway (Chapter 2; (184). 

HPV-16 E7-induced replication stress and FA pathway activation can exert positive (ALT 

activity) or negative (structural chromosomal changes) consequences for genomic integrity (184, 

208), depending on the genetic and/or epigenetic background of the host cell. 

Importantly, enhanced E2F-mediated transcription also plays a role in circumventing 

DNA damage checkpoint responses (associated with replication stress-associated claspin 

accumulation) by upregulating components of the SCF-TrCP-based claspin degradation pathway. 

HPV-16 E7-induced deregulation of Aurora A and PLK1 expression promotes the accelerated 
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and/or premature degradation of claspin and hence, stimulates aberrant entry into mitosis 

(Chapter 4).  

Ultimately, HPV-16 E7-induced deregulated E2F activity and DNA breakage can lead to 

the stabilization of p53 via p14Arf and ATM/ATR signaling. Therefore, the HPV-16 E6 

oncoprotein is required to target p53 for degradation, thereby circumventing p53-mediated DNA 

damage checkpoint responses and growth arrest. These results underscore the intricate 

interactions between viral oncoproteins and the DNA damage response of the host during viral 

replication as well as malignant progression. 
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Figure 24. Interplay between HPV-16 oncoproteins and the host cell DNA damage response contributes to 

chromosomal instability.   

HPV-16 E7 accelerates S phase entry by disrupting the pRB family of proteins and the p21Cip1 and p27Kip1 CDK 

inhibitors. Deregulated E2F activity upregulates S phase genes (claspin), triggers replication stress and activates the 

FA pathway. In FA-proficient cells HPV-16 E7-associated stress can lead to ALT activity and/or DNA DSBs as a 

result of replication fork collapse. In FA-deficient cells, HPV-16 E7 expression leads to enhanced DNA DSBs and 

structural chromosomal instability due to reduced replication fork stability. Deregulated E2F-transcription of Aurora 

A and PLK1 by HPV-16 E7 promote the accelerated degradation of claspin and aberrant entry into mitosis. HPV-16 

E6-mediated degradation of p53 contributes to relaxation of G1/S and G2/M checkpoint control. By exploiting 

multiple avenues of the host cell DNA damage response, HPV-16 oncoproteins promote structural chromosomal 

instability, which can ultimately contribute to cancer.  



 120 

 

5.5 FUTURE DIRECTIONS  

Work presented in this thesis describes how exploitation of the host cell DNA damage 

response by the HPV-16 E7 oncoprotein contributes to various aspects of carcinogenesis. Our 

findings raise several key issues that warrant further investigation in the future. 

While we have shown that HPV-16 E7 accelerates chromosomal instability in FA-

deficient host cells, several key questions remain unanswered with respect to the role of HPV in 

FA tumor burden. First, why do HPV-associated tumors progress at a significantly faster rate in 

FA patients as compared to that in the normal population? Second, what role does 

immunosuppression of host cells (commonly observed in FA patients following bone marrow 

transplant) play in persistency of HPV infection and/or HPV carcinogenesis in FA patients? 

Based on the conflicting reports found within the literature (9, 153, 154), it is apparent that 

additional studies, using larger sample sizes with more precise methods for HPV detection, will 

be required to definitively answer these questions.  

Little is known about the molecular mechanisms behind HPV integration, but it has been 

hypothesized to involve DNA breakage within host and viral genomes. Based on our finding that 

FA gene deficiency increases DNA breakage in HPV-positive cells, we suggest that inherited or 

epigenetic silencing of FA genes may enhance viral integration. Interestingly, HPV has been 

shown to preferentially integrate at chromosomal fragile sites (160, 161), which are known to be 

increasingly unstable in FA-deficient cells (159). Experiments designed to assess the precise 

manner in which FA gene deficiency influences HPV integration are currently underway in the 

Duensing laboratory.  
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Despite the development of a prophylactic vaccine, additional therapeutic options are 

required for patients with pre-existing infections or those with little access to the vaccine. Our 

finding that the HPV-16 E7 oncoprotein preferentially targets the ATR axis suggests that small 

molecular inhibitors of specific branches within this pathway or inhibitors of ALT may be 

potentially useful in treating or preventing HPV-associated neoplasms.  

Finally, it is important to note that small DNA tumor viruses have been instrumental in 

deciphering how normal host cell processes become deregulated in cancer. The findings 

presented in this thesis underscore that viral oncoproteins have also evolved mechanisms by 

which to circumvent anti-proliferative host cell barriers governed by the DNA damage response. 

By continuing to utilize HPV as a molecular tool, we will undoubtedly learn even more about 

how deregulation of the DNA damage response contributes to various aspects of carcinogenesis.  



 122 

 

Dedication 
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