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THE USE OF MAPS IN THE ANALYSIS OF NETWORKS OF COUPLED NEURONAL
OSCILLATORS

Pranay Goel, Ph.D.

University of Pittsburgh, 2003

In this thesis we study aspects of periodic activity in model mutually-coupled oscillators inspired

by the nervous system. We define and use maps describing the timing of activity on successive

cycles. The central theme here is to examine emergent behavior in networks through the properties

of the individual oscillators.

In the first chapter, we describe Phase Response Curves (PRCs), which map the changes in the

period of an oscillator to perturbations at different phases along the cycle. We consider various net-

works of oscillators, pulse-coupled through their PRCs: rings, chains, arrays, and global coupling.

We study conditions under which stable patterns, such as synchrony and waves, may be found.

In the second and third chapters, we model beta (12-30 Hz) and gamma (30-80 Hz) rhythms

in the nervous system in reduced networks of excitatory and inhibitory neurons. We look at the

intriguing results of experiments that show increases in beta band activity in human MEGs upon

taking the sedative Diapam. We show that the model network is able to mimic the experimental

data. The model then clarifies the inhibitory action of the drug in tissue.

We look at another experiment that finds disruption of long-range synchrony of gamma oscil-

lations in transgenic mice with altered excitatory kinetics. We study this behavior in a reduced

network that encodes for conduction delays across spatially distal sites. The model provides an

explanation of this phenomenon in terms of the properties of the cells involved in generating the

rhythm.

In our analyses, we use maps to study stability of the patterns of activity.
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Chapter 1

Introduction

An incredible number of phenomena in nature show activity that is periodic, or very nearly so.

From the beating heart to the diurnal rhythm, hurricanes, hormonal cycles and lattice vibrations

in a quartz crystal, oscillations are ubiquitous. Man creates even more - swirling batons, traffic

lights, cerium/citric-acid reagents and class schedules. Some of these rhythms can be altered easily;

others are impossible to change. Interesting behaviors can occur when groups of these oscillators

can influence each other. In the case of the heart, for example, periodicity is enforced by the

sinoatrial node. But even in the absence of a central pacemaker driving the rhythm, cooperative

behavior can sometimes lead to a surprising results: mutual entrainment is possible. Thus old

watchmakers found it difficult to maintain good clocks, presumably because of the nearby clocks

that kept a different time (Winfree [2]). Or in hordes of fireflies in Southeast Asia that, remarkably,

flash synchronously at night (Buck [3]). In the case of the fireflies, it is already an achievement to

consider if synchrony might be a property of oscillators coupled through the flashes of light rather

than, say, chemical influences. Oscillators may be coupled through influences (perhaps periodic

themselves) that last for long (compared to the period of oscillators), or only for short times.

Periodic activity can be studied in at least one special way: by looking at behavior as the

system returns repeatedly to some specific state. For example, a particular state of the system of

oscillators may be described by specifying the phases of all the oscillators whenever the phase of

some reference oscillator is zero. The idea, then, is to describe a return to a particular configuration.

A map that encodes this variation from cycle to cycle can be used to study patterns of activity in

the pool.

In Chapter 1 we study groups of identical oscillators connected via pulsatile coupling. Any

oscillator, when perturbed due to another, responds with a shift in its (own) phase. A graph that

describes the phase shift as a function of time along the cycle when the influence is felt will be

called the phase response curve (PRC). In many cases, a phase response curve for an oscillator

can be measured experimentally, such as for neurons whose membrane potential can oscillate (and
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which can be altered either by another neuron, or an artificial electrode stimulation). Our objective

is to describe properties of mutually coupled oscillators (such as stability of synchrony), in terms

of the PRC of an individual oscillator. We consider various topologies of the connectivity: global

coupling (that, is every oscillator coupled to every other), rings, chains, arrays. We study (stability

of) synchrony, and waves.

In Chapters 2 and 3, we will focus our attention on rhythms in the brain. That there is much

periodic activity in the human body is quite obvious. There are the “mechanical” oscillations,

such as respiration, and “chemical”, such as the menstrual cycle. There is another kind of periodic

activity, electrical, in the action potential generation in nerves. Oscillatory activity in the nervous

system is seen not only in, say, the sinoatrial nerve of the heart, but also rippled across MEGs

and EEGs recorded from the brain. Thus EEG/MEG data show prominent bands of oscillatory

activity, that have been code-named (by the frequency) alpha (8-12 Hz), beta (12-30 Hz), gamma

(30-80 Hz), delta (6-8 Hz). Since they are often observed simultaneously with sensory processing

and other cognitive states, speculations have been made that they may have functional roles to

play. Modeling studies and experiments have considered (neuronal) network rhythms as arising

from the biophysical properties of the underlying neurons (that can oscillate intrinsically) and their

synaptic connectivities. It is not intuitive how this might arise. We shall focus primarily on gamma

oscillations. Several authors (see for example, Traub and colleagues [4] and Whittington et al [5]

and the references therein) have studied gamma oscillations in vitro, and in network simulations.

Gamma oscillations can be shown to arise from recurrent synaptic connections among interneurons,

inhibitory neurons that tend retard the activity of others that they are connected to.

In Chapter 2, we shall attempt to explain a rather surprising result of beta activity in humans

with the use of the drug diapam. Benzodiazepines, such as diapam, are used clinically as sedatives

(among their other uses), yet Jensen et al [6] find that beta band activity recorded in MEGs

increases upon administering the drug. We model this behavior in a network of a few inhibitory

and excitatory neurons. Significant to the model is a long-lasting current in the excitatory cells.

Adaptation of this current on successive cycles influences features of the activity such as coherence

in the network and peak of the power spectra. We shall be able to use a map of activity on

successive cycles to analyze the behavior of spiking cells in our network. We use it to predict the

specific inhibitory action of the drug.
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In Chapter 3 we return to a model for generating gamma rhythms that was used by Ermentrout

and Kopell [7] to explain long range synchrony of these neuronal populations (as seen in culture).

Ermentrout-Kopell used a model with populations reduced to a four neurons: a pair of excitatory

and inhibitory neurons coupled with conduction delays. Synchrony was shown to mediated by

rapid spike “doublets” evoked in succession in the interneurons via delayed excitation from the

distal populations. Fuchs et al [1] studied the effect of prolonging the excitatory influence onto

cells on long-range synchrony in transgenic mice. They found that while the oscillation (gamma)

continued to persist, synchrony was disrupted. We use the framework of Ermentrout and Kopell

to understand these results. In the formalism of the reduced model, the firing times on a cycle are

determined by the times of firing of the cells in the network on previous cycles. We shall show that

it is possible to study the patterns of activity in the network (while also explaining the experiments

of Fuchs et al), through a single variable: the timing response of a single inhibitory cell to excitatory

impulses received at different phases in its period.

The unifying theme across all these problems is that of the “timing map”. Periodic activity can

be studied by charting the development of some variables of the problem on successive cycles.
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Chapter 2

Synchrony, Stability, and Firing Patterns in

Pulse-Coupled Oscillators

2.1 Introduction

There have been many recent investigations of the behavior of coupled networks of neural

oscillators. A large body of experimental data indicates that brief periods of oscillatory activity

may be required for certain cognitive functions (see Gray [8], for references). Many theoretical

approaches have been applied to the general question of synchrony and phase-locking (Winfree [2];

Kuramoto [9]). These include restriction of the models to simple neurons like the integrate-and-

fire model (Mirollo and Strogatz [10]; Bressloff and Coombes [11]; van Vreeswijk et al [12]), weak

coupling (Ermentrout and Kopell [13]; Ermentrout [14]; Hansel et al [15], and simple topologies

(Dror et al [16]; Canavier et al [17]). In many of these papers, the coupling is pulse-like lasting

only briefly relative to the length of the cycle. In this chapter, we focus on the behavior of such

pulse-coupled oscillators motivated by the fact that the coupling between neurons is often through

rapidly decaying synapses.

When a stable oscillator is briefly perturbed by a sufficiently small stimulus, then, the phase of

the oscillator is shifted by an amount that depends on the timing of the perturbation (Winfree [2];

Kopell [18]). The change in phase of the oscillator is called the phase-response curve (PRC). PRCs

are popular among experimentalists as they provide a way to quantify the behavior of the system

without knowing the underlying mechanisms responsible for the behavior. Indeed, PRCs have been

computed for many biological oscillators (Winfree [2]; Buck [3]), including neurons (Reyes and Fetz

[19]; Stoop et al [20] have used experimental PRCs to devise coupled map lattices for arrays of

nearest neighbor coupled neurons. Canavier and colleagues have taken a different approach and

analyzed rings of uni-directionally coupled PRCs without forcing. Our approach is similar but not

restricted to uni-directional coupling.

The general plan of this chapter is as follows: we first define PRCs and then derive a set of
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discontinuous differential equations representing the phases of the respective oscillators. The PRC is

a timing curve that encodes the response of a single oscillator to perturbations received at different

points in its cycle. (We will sometimes describe the PRC also as a timing “map”, in the sense of

a function; this connotation will be clear in context). We then use the PRC to study properties

(i.e. firing patterns) of oscillators connected into networks. The objective is to derive maps for the

(various) networks as a discrete dynamical systems, which under iteration produce the asymptotic

behavior of the oscillators. We describe the timing difference for a single periodically forced PRC

and for a pair of coupled PRCs. We generalize this to a map for N globally coupled oscillators and

prove a stability result. Surprisingly, the stability depends on the number of oscillators. We then

turn to a ring of nearest neighbor coupled PRCs and derive conditions for the existence of traveling

waves as well as their stability. We numerically simulate the ring and a line of coupled PRCs

to show the differences. Finally, we consider two-dimensional arrays of nearest neighbor-coupled

PRCs and show the existence of (apparently numerically stable) rotating waves.

Thus, we study behavior of groups of mutually-coupled oscillators in terms of the properties

(in particular, the stably synchronous state) of individual oscillators. The oscillators themselves

are often motivated by neuronal models (and will sometimes be called “neurons”). The differences

between the various oscillator models are encoded in its response curve: the PRC. Of course, the

PRC must itself be obtained in some a priori way: either from a given mathematical model, or from

experiment. We seek to determine maps determining phases from cycle to cycle for the networks,

in terms of the timing curves of single oscillators, i.e. the PRC. (Note that the oscillators - that is,

the PRCs - are all identical in any particular network; the connection topology distinguishes one

network from another.)

This work has been previously published as [21].

2.2 Phase response curves and coupled phase models

2.2.1 Defining the PRC

Suppose that a system has a stable limit cycle solution and that we are only interested in a

particular event within that system. For example, we might only be interested in the times at

which a given neuron fires an action potential. At some fixed time after a spike, we briefly perturb
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the system (e.g., we inject a current pulse into the neuron). This perturbation changes the time

of the next spike. The change in timing is the phase response curve and it is a function of the

magnitude and the timing of the perturbation. Let T be the natural period of the oscillation and

let t = 0, T, 2T, . . . be the times of successive events. Suppose that at t = ts ∈ [0, T ) we perturb

the trajectory. Then, the new firing time is T̂ (ts). A major assumption of PRC theory is that the

events that occur after t = T̂ (ts) are at t = T̂ (ts) + T, T̂ (ts) + 2T, . . . . This says that the effect

of the perturbation is only carried for one cycle; there is no memory of the perturbation once the

event has occurred. This is a rather severe restriction, but, in practice, it often holds. (However,

in Reyes and Fetz [19], there is a small change in the next spike time due to the presence of a slow

potassium current.) That is, the second spike after the stimulus occurs at t < T̂ (ts) + T but this

difference is quite small compared to the initial phase-shift due to the perturbation.) We define the

phase-response curve to be:

∆(φ) ≡ 1− T̂ (Tφ)

T
(2.1)

where φ ≡ ts/T ∈ [0, 1) is the phase. Thus, ∆(φ) is positive (negative) if the effect of the stimulus

is to advance (retard) the time of the next event. Most neurons have phase response curves that

satisfy

∆(0) = lim
φ→1−

∆(φ) = 0.

This means that the spike time is unchanged if the perturbation arrives at the onset of the spike.

The PRCs computed for excitatory pyramidal neurons as well as inhibitory cortical neurons have

this property. (An example PRC from Reyes and Fetz is shown in Figure 2.3; Figure 1 in Stoop

[20] shows PRCs for both excitatory and inhibitory perturbations.)

2.2.2 Some exactly computable PRCs

In this section, we briefly describe PRCs for several classic model oscillators which have appeared

in the literature. The first example is the well-known integrate-and-fire model:

dV

dt
= −V + I
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Figure 2.1. The PRCs for the integrate-and-fire model (top); the quadratic integrate-and-fire model
(middle) and the radial-isochron clock (bottom).

with V (t+) = 0 when V (t−) = 1. We assume that I > 1 so that this oscillates with a period of

T = − ln
I − 1

I
.

At t = ts we add an amount a to V and then ask when the oscillator will fire next. If the ts is close

enough to t = T then the perturbation a will lift V past 1 and the oscillator will fire immediately

so that T̂ (ts) = ts. Otherwise, an elementary calculation shows that

T̂ (ts) = − ln
I − 1

I − aets .

Figure 2.1a shows the PRC for the integrate-and-fire model for I = 1.05 and various values of a.

For a > 0 the PRC never satisfies ∆(0) = 0 and for a < 0 it satisfies neither the condition that

∆(0) = 0 nor ∆(1) = 0.
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Another version of the integrate-and-fire model is the “quadratic” integrate and fire equation:

dx

dt
= I + x2

with firing defined at x(t)→∞ after which x is reset to −∞. The period is just

T =

∫ ∞

−∞

dx

I + x2
=

π√
I

This model arises as the normal form for a limit cycle near a saddle-node (see Ermentrout [22];

Hoppensteadt and Izhikevich [23]). As above, we assume that at t = ts a perturbation of size a is

given. Then, an elementary calculation (see e.g. Hoppensteadt and Izhikevich) shows that

T̂ (ts) = ts +
1√
I

(
π

2
− arctan

[
a√
I
− cot(

√
Its)

])
.

In Figure 2.1 we show the PRC for I = 1 and various values of a. Unlike the integrate-and-

fire model, the PRC for this model vanishes at both 0 and T regardless of the strength of the

perturbation. In this sense, it is a much “better” representation of what a real neuron does.

As a final example, we take the classic radial isochron clock (Glass and Mackey, [24], p107) a

two-dimensional system that is a simplified normal form for any system near a Hopf bifurcation:

dr

dt
= Λr(1− r2)

dθ

dt
= 1.

This is the polar form of the oscillator, so θ ∈ S1. Firing is defined as θ = 0 and perturbations

are defined as shifts in the x-coordinate of length a. The parameter Λ is assumed to be very large

so that perturbations are immediately brought back to the limit cycle along radii (see Fig 2.2 ). In

order for “phase” to be defined, we require that |a| < 1 (note that if |a| > 1, then a perturbation

at θ = π would “relax” to θ = 0 - since r = 0 is an unstable fixed point of the dynamics - i.e.

produce a phase shift of 0.5). As above, ts is the time after firing that the pulse is given so that in

the plane, (x, y) = (cos ts, sin ts). After the pulse, the coordinates are (a + cos ts, sin ts). The new
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Figure 2.2. The effect of a perturbation on the radial isochron clock.

angle, θ is obtained from trigonometry:

tan θ =
sin ts

a+ cos ts
,

thus

T̂ (ts) = ts + 2π − arctan

(
sin ts

a+ cos ts

)

Figure 2.1c shows the PRC for the radial isochron clock. Unlike the other two models, for a given

value of a, the PRC can both advance and delay the firing. As a → 1 the PRC becomes singular.

Note that no matter what the value of a the PRC vanishes at t = 0, T . For small values of a, the

radial isochron clock PRC has a particularly simple form:

∆(φ) = − a

2π
sin 2πφ. (2.2)

We will use this form later on when we analyze coupling in lattices.

Cortical neuron PRCs that have been measured generally either strictly advance (for positive

perturbations) or delay (for negative perturbations) the phase. However other neural PRCs can

both advance and delay. (See for example the PRCs computed for the firefly, Pteroptyx malaccae,

Buck [3], Figure 4, and the fruitfly Drosophila pseudoobscura pupae, Winfree, [2], Figures 5-7, pp

414. These PRCs looks similar to the small a version of the radial isochron clock.) It is easy to
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Figure 2.3. Experimentally measured PRC (Reyes et al) and two approximations.

compute the PRC for model neurons as well. Hanselet al [15] do this for the Hodgkin-Huxley model

and the Connor-Stevens model. In the former, the PRC both advances and delays while in the

latter, the PRC only advances the phase. In cortical PRCs such as measured by Reyes and Fetz

[19] we find the following two classes of functions to be a good fit:

∆1(φ) = a
φ(1− φ)

1 + e−c(φ−b)
, (2.3)

with c ≥ 0, 0 < b < 1 and

∆2(φ) = aφ(1− φ)e−pφ−q(1−φ) (2.4)

with 0 < p < q.

These are plotted in Figure 2.3 along with the data from Reyes and Fetz [19]. Parameters for

the fits were chosen using least squares. The former function provides a better fit however the

latter allows us more flexibility in varying the shape of the PRC.
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2.2.3 The Geometry of PRCs

Let X0(t) be an asymptotically-stable limit cycle solution to an n-dimensional system of ordi-

nary differential equations

dX

dt
= F(X) (2.5)

with period T , X0(t + T) = X0(t). And let the vector field be perturbed as

dX

dt
= F(X) + εG(X) (2.6)

where εG(X) represents a small perturbation (depending on X), and 0 < ε � 1. For a strongly

attracting limit cycle, periodic motions can be expected to persist despite the perturbation εG(X).

If C is the curve corresponding to X0(t), then one may associate with each point on C a scalar, φ,

such that its velocity along C is uniform,

dφ(X)

dt
= 1, X ∈ C. (2.7)

φ is the phase defined on C. To extend the definition of phase to points lying outside (but close to)

C, we consider a tubular neighborhood, M , of the limit cycle that contains domain of attraction of

C. The phase of a point Q in M , but not on C, is defined to be identical to the phase of that point on

C to which it approaches in the asymptotic limit. That is, if Q→ P as t→∞, then φ(Q) = φ(P ).

The locus of all such points Q ∈ M with the same phase as P is an (n − 1)-dimensional surface

termed an isochron (Winfree [25], Guckenheimer [26]), and denoted by I(φ) in Figure 2.4. If we

take a stroboscopic map of the unperturbed system at times t = nT (n = 0, 1, 2...), then any point

on a particular isochron will continue to remain on that isochron, and will move closer and closer

to C with n. We have then, extending Equation (2.7) to M ,

dφ(X)

dt
= 1, X ∈M. (2.8)

Since

dφ(X)

dt
= ∇φ . dX

dt
, (2.9)

11



using Equation (2.5), we have

∇φ .F(X) = 1, X ∈M. (2.10)

To obtain an expression for dφ(X)/dt when the system is perturbed we have

dφ(X)

dt
= ∇φ . dX

dt

= ∇φ . [F(X) + εG(X)]

= 1 + ε∇φ .G(X) (2.11)

for X ∈M. However, in this case a state point typically migrates from the isochron it was restricted

to in the unperturbed case. If we restrict to the case of small perturbation, we may assume that

any point on C does not deviate very far from the limit cycle when the perturbation is turned

on. That is, |X − X0(φ)| → 0 as ε → 0, where X0(φ) is the intersection of C and the isochron

containing X. Under this assumption, to the lowest-order we can approximate X on the right hand

side of Equation (2.11) with X0:

dφ(X)

dt
= 1 + εZ(φ) .G(X0(φ)), where

Z(φ) = (∇φ)X=X0 (2.12)

If however, the perturbation is not small, i.e. ε = 1, then the previous discussion leading to

Equation (2.12) is not valid. However, immediately after the perturbation the state point is on

some isochron of the unperturbed dynamics (assuming the an isochron exists at that point). Thus,

both before and after the perturbation, the dynamics obey the unperturbed equation:

dφ(X)

dt
= 1. (2.13)

So that for a delta function perturbation

dφ(X)

dt
= 1 + δ(t− ts) ∆(φ) (2.14)
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where the PRC is defined through,

∆(φ) = 1− T̂ (ts)

T
. (2.15)

We note that the Equation (2.15) is valid even if the perturbation is not delta-like, but transient

(and lasts for a time smaller than the unperturbed period, T ). Very often, it is not clear what the

form of the coupling is. In the absence of a set of model equations for the oscillator, equation (2.15)

shows that one can measure a PRC experimentally by applying brief pulses at different phases and

measuring the change in period.

But let us suppose that the coupling is through one component Xi. For example, Hodgkin-

Huxley cells are usually coupled in the voltage equations. If the perturbation is a brief positive

pulse (at time ts) i.e. a delta function, then Equation (2.12) reduces to

dφ(X)

dt
= 1 + ε δ(t− ts)Zi(φ) (2.16)

and Zi(φ) can be recognized as the “infinitesimal” PRC (computed as the limε→0
∆(φ)
ε ). It was

Figure 2.4. The geometry of equation Equation (2.12).

shown in Ermentrout [27] that the infinitesimal PRC can be computed as the ith component of the

solution to the adjoint equation:

dX∗

dt
= −DF(X0(t))T X∗, X∗(t) · X′0(t) = 1. (2.17)
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In our theory we assume throughout that the coupling is pulsatile i.e. delta-like, and the limit

cycle is strongly attracting (the state point relaxes to the limit cycle infinitely fast; the PRC is

a function only of phase). Thus two stimuli in succession result in a phase reset composed as

F (F (φ)), withF (φ) = φ + ∆(φ). We remark that Equation (2.14) might suggest that the PRC

due to two (or more) pulses arriving at exactly the same phase is computed from a linear sum

over inputs. This is not necessarily the case. For example, a synapse that saturates after a single

action potential will not respond to another (near simultaneous) input with any further increase

in conductance. We shall retain only the phase of the stimulus, so we assume that the phase reset

continues to be F (φ) regardless of the number of simultaneous inputs.

2.2.4 Coupling with PRCs

Suppose that one has computed a PRC. Then how can we use this to analyze the coupling

between oscillators? The easiest way to think about this is to first consider a single oscillator that

is periodically driven with a pulsatile stimulus. Assume that every P time units, a stimulus of

strength a is given to the system. Then the phase right before the time of the nth stimulus is

θ̂n = θn−1 +
P

T

where θn−1 is the phase right after the (n− 1)th stimulus. The phase after the nth stimulus is thus

θn = θ̂n + ∆(θ̂n) = θn−1 +
P

T
+ ∆(θn−1 +

P

T
)

which gives a map for the phase. Let φ = θ + P/T. Then we get the more standard map:

φn =
P

T
+ φn−1 + ∆(φn−1) ≡ P

T
+ F (φn−1). (2.18)

We call F (φ) = φ + ∆(φ) the phase transition map and it describes what the new phase is as a

function of the old phase. This class of circle maps has been analyzed by many people. Glass and

Mackey (1988) provide a good overview of circle maps. We note here that if F ′(φ) > 0 then the

map is invertible and there is no chaotic behavior.

Another way to formally describe the periodic driving is to embed the map into a discontinuous
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differential equation:

dθ

dt
=

1

T
+ δP (t)∆(θ)

where

δP (t) =
∑

n

δ(t− nP )

and δ(t) is the Dirac delta function. The solution to this differential equation between the nth and

(n+ 1)th stimulus is just

θ(t) = θ(nP ) + ∆(θ(nP )) + t/T,

and if we let φn be defined as the phase right after the nth stimulus, φn = θ(nP ) + ∆[θ(nP )], then

we get the map (2.18). This formal version of the forced map leads us easily to the obvious way of

coupling PRCs:

dθj
dt

=
1

Tj
+ C

∑

n,k

δ(t− tnk)∆jk(θj) (2.19)

where tnk is the nth time that the kth oscillator fires, ∆jk(θ) is the effect on the phase of the jth

oscillator by the kth oscillator firing, and C is the overall coupling strength. Note that ∆jk = 0

if oscillator k is not connected to oscillator j. Dror et al and Canavier et al assume this form

of coupling in their series of papers. Hoppensteadt and Izhikevich derive a similar model from

synaptically coupled neurons near a saddle-node bifurcation. Winfree [28] replaces the Dirac-delta

functions with a smooth pulsatile periodic function. The case of all-to-all coupling of the Winfree

model was recently analyzed by Ariaratnam and Strogatz [29]. Ermentrout and Kopell [30] also

replace the delta functions with smooth functions and analyze the resulting systems of equation.

They derive the smoothed version from general neural net equations.

Stoop et al [20] consider an alternative means of coupling between PRCs which is akin to

“diffusive” coupling and coupled map lattices:

φj(n+ 1) = (1− C)F (φj(n)) +
C

m

∑

k

F (φk(n))

where the sum is over connections and m is the number of such connections. A biological interpre-

tation of this form of coupling was not suggested.
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2.2.5 “Weak” coupling

Before turning to our results on “strong” coupling, we consider a limiting case when C is small.

We assume that C = ε� 1 is a small number and 1/Tj = 1 + εωj . We let θj(t) = t+ φj(t). For ε

small, tnj ≈ n+ φj(t) so we obtain:

dφj
dt

= ε


ωj +

∑

k,n

δ(t− n+ φk)∆jk(t+ φj)


 .

Averaging this over one period leads to

dφj
dt

= ε

(
ωj +

∑

k

∆jk(φj − φk)
)

+O(ε2). (2.20)

Phase equations such as this have been analyzed by numerous authors and have been shown to

have many different non-trivial phase-locked solutions (Ermentrout [31]). Thus, it should not be

surprising that (2.19) also has a variety of different complex behaviors. We note that a phase-locked

solution to (2.20) has the form,

φj = Ωt+ ψ̄j

where ψ̄j is a constant and Ω is a constant determined from the equations. A sufficient (but not

necessary) condition for stability of this solution is ∆′jk(ψ̄j − ψ̄k) ≤ 0.

2.2.6 Smooth pulsatile coupling

One other way to approach the instantaneous pulsatile coupling implicit in the definition of the

PRC is to study a “smoothed” version:

dθj
dt

= ωj +
∑

k

P (θk)∆jk(θk)

where P (θ) is a smooth periodic pulse-like function centered at 0. For example,

P (θ) = Am(1 + cos θ)m
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where Am is chosen so that the integral of P is 1. As m gets large, P will approach the Dirac δ

function. Winfree [28] first posed this class of models and recently Ariaratnam & Strogatz analyzed

the “all-to-all” coupled case for m = 1 and ∆jk(θ) = c sin θ. In this brief section, we give a condition

for the existence and stability of synchronous solutions. We assume the following:

i. ∆jk(φ) = cjk∆(φ)

ii. cjk = ckj , ωj = ω,
∑

k

cjk = c,

and c is non-singular.

iii. There is a solution to

φ′ = ω + cP (φ)∆(φ) (2.21)

satisfying φ(t+ T ) = φ(t) + 2π for some finite positive T.

The first assumption says that the responses to any perturbation differ only in magnitude. The

second assumption says that the coupling is homogeneous, the oscillators are identical, the coupling

is symmetric, and nondegenerate. The third assumption says the oscillators don’t get stuck at fixed

points. With these assumptions, a synchronous solution to

dθj
dt

= ω +
∑

k

cjkP (θk)∆(θj) (2.22)

exists, θj(t) = φ(t). This is easily seen by substitution into (2.22) and using the homogeneity

assumption and assumption (iii).

Suppose in addition, we have the following:

iv. cjk ≥ 0,

v.

Q ≡
∫ T

0
P (φ(t))∆′(φ(t)) dt < 0.

Then, the synchronous solution is asymptotically stable.

Remark The integral Q is generalization of the “XZ” loop conditions that Winfree derives for

all-to-all coupling for pulse-coupled oscillators (Winfree [28]).
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To prove this, we linearize (2.22): θj(t) = φ(t) + yj . To lowest order

dyj
dt

=
∑

k

cjk
(
P ′(φ(t))∆(φ(t))yk + P (φ(t))∆′(φ(t))yk

)
.

Recall that φ satisfies (2.21) so that if we differentiate this with respect to t we obtain:

dφ′(t)
dt

=
(
P ′(φ(t))∆(φ(t)) + P (φ(t))∆′(φ(t))

)
φ′(t).

Since φ′(t) is periodic, this means

∫ T

0
P ′(φ(t))∆(φ(t)) + P (φ(t))∆′(φ(t)) dt = 0

or

−
∫ T

0
P ′(φ(t))∆(φ(t)) dt =

∫ T

0
P (φ(t))∆′(φ(t)) dt ≡ Q. (2.23)

Let ~ξ be an eigenvector of the matrix cjk with eigenvalue, λ. Since cjk is nonnegative, nonsingular,

and symmetric, it has a unique eigenvector with nonnegative components. (This is a consequence

of the Frobenius-Perron theorem.) Since cjk is homogeneous (i.e., its column sums are the same),

this eigenvector is the vector of all 1’s and the eigenvalue is c. Furthermore since cjk is nonnegative

and nonsingular, this is the maximal eigenvalue. Thus c > λ for all ~ξ 6= ~1. The solutions to the

linearized equation are

yj(t) = x(t)[~ξ]j

where x(t) is a scalar satisfying:

x′(t) =
(
cP (φ(t))∆′(φ(t)) + λP ′(φ(t))∆(φ(t))

)
x(t).

Integrating this over a period, we see that x(t) will decay if and only if

M ≡
∫ T

0

(
cP (φ(t))∆′(φ(t)) + λP ′(φ(t))∆(φ(t))

)
dt < 0.
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Using (2.23), we see that

M = Q(c− λ).

Since c > λ, then a necessary and sufficient condition for stability of the synchronous state is that

Q < 0 which is assumption (v). Note that there is a single zero eigenvalue corresponding to the

time-translation invariance of the periodic solution.

We remark that this integral condition can be understood intuitively. Suppose that ∆′(φ) is

negative near the origin. (For example, in the radial isochron clock, this is true.) Suppose that

P (φ) is positive and rapidly falls off to zero away from the origin. Then the integral quantity, Q

will be negative as required. We also remark that this condition is analogous to the condition for

the weakly coupled case. Indeed, the “weak interaction” function is

H(φ) =
1

T

∫ T

0
∆(t+ φ)P (t) dt.

The condition for stability of the synchronous state is H ′(0) < 0 which is equivalent to Q < 0.

2.3 Two oscillators

We now consider a pair of mutually coupled PRCs and derive a one-dimensional map. For

simplicity we will assume identical frequencies. We assume that the function F (x) = x + ∆(x) is

invertible (F ′(x) > 0). This has several important consequences:

1. No stimulus can cause a neuron to fire immediately. The phase can be advanced but never

sufficiently to induce instant firing. This means that if x < 1 then F (x) < 1 as well. Since

F (1) = 1 and F is monotone increasing F (x) < 1 for x < 1.

2. Similarly, invertibility means that the phase of an oscillator can never be brought below 0.

This assumption holds if the coupling is not too strong.
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Figure 2.5. Construction of the map, x 7→ G(x) for a pair of coupled PRCs.
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2.3.1 Locking

We assume identical frequencies in order to obtain an ordering principle for the oscillators. The

pair of oscillators satisfies the formal differential equation:

dθ1

dt
= 1 +

∑

k

δ(t− tk2)∆(θ1)

dθ2

dt
= 1 +

∑

k

δ(t− tk1)∆(θ2)

where tk1,2 are the times at which oscillators 1 and 2 fire. Suppose that θ1 is ahead of θ2. Then

invertibility of F implies that θ1 will always be ahead of θ2 if they have identical frequencies. This

is because the firing of θ1 can never push θ2 past 1 nor can θ2 pull θ1 below 0. If the frequencies are

different, then it becomes more difficult to describe a map. Figure 2.5 describes the construction of

the map. Suppose that at the moment that θ1 crosses 1, θ2 = x. Then immediately after firing, the

new phase of θ2 is θ̂2 = F (x). θ1 is reset to 0 and θ2 will then fire at t = 1−F (x) by which time θ1

has advanced to y = 1−F (x). θ1 is mapped to θ̂1 = F (y) = F (1−F (x)). It takes 1−F (1−F (x))

amount of time for θ1 to again reach 1 completing the map. Thus, the new value of θ2 is found to

be:

x −→ 1− F (1− F (x)) = x+ ∆(x)−∆(1− x−∆(x)) ≡ G(x). (2.24)

Fixed points of this map satisfy:

0 = ∆(x)−∆(1− x−∆(x)).

If ∆(0) = 0 as we usually assume, then x = 0 is always a fixed point. That is, there is a synchronous

solution. There can be other fixed points as well; generically at least one interior fixed point. For

the maps (2.2-2.4) there are two roots: the synchronous root and the anti-synchronous root. The

maps arising from both the radial isochron clock and the integrate-and-fire model also have two

fixed points: a synchronous and anti-synchronous root. The quadratic integrate-and-fire map is

degenerate, G(x) = x.

An alternate way of deriving a map is to consider the timing rather than the phases of the

oscillators. Let T1 be the last time that oscillator 1 fired and T2 > T1 be the last time that
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oscillator 2 fired. Let T ′j denote the next firing time of each oscillator. Then

T ′1 = 1 + T1 −∆(T2 − T1)

T ′2 = 1 + T2 −∆(T ′1 − T2)

defines the firing time map since both oscillators have a frequency of 1. Letting φ = T2 − T1 we

recover the phase map.

2.3.2 Stability of the fixed points of the map

Let x̄ be a fixed point of (2.24). Stability is found by linearizing about x̄ leading to

G′(x̄) = [1 + ∆′(x̄)][1 + ∆′(1− x̄−∆(x̄))].

This is just the product of the derivative of the phase transition map evaluated at the phase of

oscillator 1 when 2 fires and vice versa. Since each term is positive from the invertibility of F (x),

this means that the fixed point will be stable if the product of the terms is less than 1. In particular,

the condition for stability of the synchronous solution is

σ = [1 + ∆′(0+)][1 + ∆′(1−)] < 1. (2.25)

Note that it is important that we take the correct limits for the PRC as often, a PRC does not have

a continuous derivative. We can visually look at the PRC and determine if synchrony will be stable.

For example, in the simple PRC (2.2) if a > 0 then ∆′(0) = ∆′(1) = −a and thus σ = (1− a)2 < 1

provided that a is less than 2. For the PRC’s illustrated in Figure 2.3, ∆′(0+) = a0 > 0 and

∆′(1−) = −a1 < 0 so that σ = 1 + a0 − a1 − a0a1. If aj is not too large, then a sufficient condition

for stability is that a1 > a0 which clearly holds in the maps of Figure 2.3. Thus, synchrony is

stable.

The anti-phase solution is unstable for the maps illustrated in Figure 2.3. For the simple

sinusoidal map (2.2) we see that φ = 1/2 is the anti-phase root and that it is unstable for a > 0

and stable for −2 < a < 0. The synchronous state is stable and the anti-phase solution unstable

for the radial isochron clock if a > 0 while for a < 0 the situation is reversed.
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2.3.3 All-to-all coupling

While the majority of this work is devoted to patterns seen with local coupling, we can say a

few general things about the “all-to-all” coupled case in which every cell is identically connected to

every other cell. This is reminiscent of the case studied by Mirollo and Strogatz (1993) for pulse-

coupled integrate and fire models. They show that all initial conditions outside a set of measure

zero converge to the synchronized state. In order to study all-to-all coupling, we need to make an

important preliminary observation. Suppose (as we have throughout) that F is monotone and thus

invertible. Then 1 ≥ F (θ1) ≥ F (θ2) ≥ 0 for all 1 ≥ θ1 ≥ θ2 ≥ 0. Thus, if oscillator 1 is ahead of

oscillator 2, then after both receive stimuli, oscillator 1 is still ahead of oscillator 2. Furthermore,

neither oscillator can be brought to firing by the stimulation nor can either oscillator be pushed to 0

since F (1) = 1 and F (0) = 0. This means that if we have an array of N all-to-all identically coupled

oscillators, then the order of their firing is always preserved. To study the stability of synchrony,

we will create a locally defined map after the perturbation away from synchrony is given. This

perturbation will determine a set of firing times which will be preserved. We can now assume that

they are labeled in order of their firing and from this derive the N − 1 dimensional map. The map

is done in N pieces corresponding to the single firing of each of the N oscillators in a cycle. We

will go through the case of N = 3 oscillators to illustrate how the map is constructed for general

N. We label the oscillators θ1, θ2, θ3 and suppose that the firing order is 1-2-3. We start θ1 = 1 and

1 > θ2 > θ3 > 0 and follow the evolution as θ2, θ3 fire and then θ1 is brought up to firing. We define

two variables x2, x3 which will represent the two oscillators which are not firing so that initially x2

represents θ2 and x3 represents θ3. However, when oscillator 2 fires, x2 will represent oscillator 3

and x3 will represent oscillator 1 which will now be the furthest back in phase since it fired most

recently. Once oscillator 2 fires, x2 becomes oscillator 1 and x3 becomes oscillator 2 as oscillator

3 is the next in line to fire. Once oscillator 3 fires, it goes to the back of the line and waits for

oscillator 1 to fire again. We define three maps:

Ma(x2, x3) = (F (x2), F (x3)),

Mb(x2, x3) = (1− x2 + x3, 1− x2),
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and

Mc(x2, x3) = (F (1− x2 + x3), F (1− x2)) = Ma(Mb(x2, x3))

The first map is the initial response of 2 and 3 to 1 firing. The time elapsing until 2 fires is thus

1− x′2 where x′2 = F (x2). At this point oscillator 3 has advanced to 1− x′2 + x′3 where x′3 = F (x3).

This advance without a firing is map Mb. Now, right after oscillator 2 fires, oscillator 3 has a phase

F (1− x′2 + x′3) and oscillator 1 has a phase F (1− x′2). This explains the form of Mc. We apply Mc

one more time accounting for oscillator 3 firing. Finally we apply Mb one more time to bring θ1 up

to the threshold for firing. Thus, the map is:

(θ2, θ3) −→MbMcMcMa(θ2, θ3).

This is defined only in the domain:

1 ≥ θ2 ≥ θ3 ≥ 0

which as we have already noted is an invariant under these maps. The generalization to N > 3

oscillators is immediate. Synchrony is clearly a solution to this system (i.e. a fixed point). Stability

is determined by linearizing about the fixed point, (0, 0, . . . , 0). We consider two cases. In the

simplest case, we suppose that the PRC is continuously differentiable at the origin. That is,

∆′(0+) = ∆′(1−). This is true for the radial isochron clock and for the PRC of the Hodgkin-Huxley

equations. However, it appears to not be true for the PRCs of cortical neurons and the models

(2.3) and (2.4). If the PRC is continuously differentiable then F ′(0) = F ′(1) ≡ α. However if the

PRC is not continuously differentiable, then F ′(0) ≡ α0 6= α1 ≡ F ′(1). We will discuss this more

difficult case shortly. In the former case, the linearized map is just

B = ENαN
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where the general form of E (the linearization of Mb) is:

E =




−1 1 0 0 . . . 0

−1 0 1 0 . . . 0

...

−1 0 0 . . . 0 1

−1 0 0 . . . 0 0




The (N − 1) × (N − 1) matrix E is just a permuted transpose of a companion matrix so that its

characteristic polynomial is

pE(λ) = λN−1 + λN−2 + . . .+ λ+ 1

whose roots are just the N th roots of unity different from 1. These sit exactly on the unit circle so

that the roots of B have magnitude αN . From this we conclude that the synchronous fixed point is

asymptotically stable if and only if α = F ′(0) < 1. “Excitatory coupling” for the Hodgkin-Huxley

equations as well as for the radial isochron clock leads to locally stable synchrony with all-to-all

coupling.

What about stability in the second case? Here, we no longer have the simple structure for the

linearization. To see why, consider the synchronous solution, (0, . . . , 0). One can see that

Ma(0, . . . , 0) = (1, . . . 1)

so that linearization of MbMa leads to the matrix:

A1 = diag(α1, . . . , α1)E.

However application of Mc to the vector of 1’s leads to

Mc(1, . . . , 1) = (1, . . . , 1, 0)

25



and the linearization is:

A2 = diag(α1, . . . , α1, α0)E.

Since α0 6= α1 the matrix A2 is not a scalar multiple of E. We continue in this manner up the chain

of maps and find that at each point, we replace the bottom-most α1 by an α0. We thus must study

the spectrum of a matrix consisting of products of E and products of diagonal matrices which are

not scalar multiples of the identity matrix. For example for the case N = 3 the linearization is:

B =



−1 1

−1 0






−α1 α1

−α0 0






−α1α0 α1α0

−α1α0 0




For the cases N = 3, 4, the resulting matrices B are upper triangular and the eigenvalues can be

explicitly read off of the diagonals. In the case of N = 3, the eigenvalues are α2
0α1, α0α

2
1 while

for N = 4 they are α3
0α1, α

2
0α

2
1, α0α

3
1. We show that is a general form for the eigenvalues. Thus,

synchrony will be linearly stable if and only if each of the terms αkα` is less than 1. That is:

THEOREM The N − 1 eigenvalues of B are of the form: α`0α
N−`
1 where 1 ≤ ` < N. Synchrony

is stable for an N -dimensional all-to-all coupled PRC network if each of these is less than 1

The proof of this theorem is in the Appendix.

This has an interesting implication. Suppose that α0 > 1 and α1 < 1 as is the case for the

experimentally computed PRCs. Suppose that α0α1 < 1 so that a pair stably synchronizes. Since

α0 > 1 we can find a sufficiently large k such that αk0α1 > 1 so that a network with k+1 cells coupled

in an all-to-all fashion does not have a stable synchronous solution while any smaller network does

have a stable synchronous solution. The critical network size is thus N = k + 1 where k is the

smallest integer larger than

− logα1

logα0
.

For the cortical PRCs, α0 is very close to 1 so that the network would have to be very large.

However, it is easy to construct a simple PRC for which synchrony is stable for a pair but not for

a three oscillator system. Take ∆(θ) = a| sinπθ|/π. Then α0 = 1 + a and α1 = 1− a. Synchrony is

stable for the pair since the eigenvalue is α0α1 = 1−a2. However, for a network of 3 oscillators, the

maximum eigenvalue is α2
0α1 = 1 + a− a2 − a3 which is greater than 1 if a < (

√
5− 1)/2 ≈ 0.618.
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Figure 2.6. (A) The evolution of the phases for 3 all-to-all coupled PRCs (left) and the projection
into the θ2 − θ3 phase-plane. (B) Same as A for 4 all-to-all PRCs.

Thus for small values of a synchrony is not a stable solution. A similar bound can be found for

N = 4 oscillators:a < a∗ ≈ 0.839 then synchrony is unstable for 4 oscillators. We illustrate this

point for N = 3, 4 oscillators in Figure 2.6. This shows the behavior of the map for a = 0.2 with

initial data close to synchrony. The relative phases move around with longer and longer periods

tending to synchrony for many iterates only to escape and drift around. This is quite similar to

the approach of a dynamical system to a heteroclinic cycle. If we increase a past the critical value,

then small perturbations from synchrony remain small and rapidly converge to the synchronous

solution.
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2.4 One-dimensional geometries

We now turn to one-dimensional geometries. The first case to consider is a chain of N coupled

maps with nearest neighbor coupling:

dθj
dt

= 1 + ∆(θj)[δ(θj−1) + δ(θj+1)] (2.26)

with the stipulation that the end oscillators receive only one input for the linear chain or, in the

case of a ring, N + 1 is identified with 1 and N with 0. Clearly one solution to this equation is the

synchronous solution since ∆(0) = 0. (Note that for the integrate-and-fire PRC, ∆(0) 6= 0 so that a

simple linear chain cannot synchronize. Indeed, the oscillators in the middle advance by an amount

2∆(0) while the ends only advance by an amount ∆(0) so synchronization is impossible.) One can

ask if synchrony is stable and furthermore if there are other possible solutions. The issue of stability

remains open. In the case of a ring with N = 3, the network is actually all-to-all coupled and thus

covered by our previous results. However, N > 3 remains an open problem. We conjecture that

if the PRC is continuously differentiable at the origin, and if 0 < F ′(0) < 1, synchrony in both a

ring and a linear chain is stable. This is certainly true for weak coupling since F ′(0) < 1 implies

that ∆′(0) < 0 and thus the synchronous phase-locked state is stable. Furthermore, this is also

consistent with the results for smooth-pulse coupling of section 2.2.6.

Conjecture Suppose that a group of oscillators is connected such that it is possible to reach

any one oscillator from any other via connected links. Then synchrony is stable if 0 < F ′(1) < 1.

Argument We denote the phase of an oscillator i by θi. Let the oscillators be perturbed away

from synchrony. Let some oscillator(s) be very close to firing, i.e. at 1−. The phases of the other

oscillators are close to 1; let {θi} denote these phases. We denote this stage, State 1. We are

interested in the map that describes the phases of oscillators in State 1 on successive cycles.

Let us also denote the phase of an oscillator j, once it has fired, by θ̄j . In what follows, it will

be slightly more convenient to use θ̄j synonymously with its equivalent, 1 + θ̄j (since phases are

described on a periodic domain). (Similarly, we will consider the effect of coupling by using either

the phase resetting curve, F (θ) (for θ < 1), or its lift, F̄ (θ̄) ≡ F (θ̄ − 1), for θ̄ > 1.). Once the last

oscillator to fire (on the given cycle) has done so, let us also denote that stage, State 2. It is clear
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that the State 1 that follows State 2, thus completing the cycle, is obtained from it by a simple

translation of all oscillators by the same amount (i.e. no oscillator fires).

Consider State 1 on some cycle, and the State 2 that immediately follows it. Let us denote the

maximum lower bound of the set of phases in State 1, θmax ≡ min{θi}, and the least upper bound

of the phases after firing, in State 2, by θ̄max ≡ max{θ̄j}. θmax is the phase of the oscillator that is

most distant from 1 in State 1, and θ̄maxj is the phase that is most distant from 1 in State 2. We

show below that the strict inequality

(θ̄max − 1) < (1− θmax) (2.27)

holds. Then construction of the map above shows that once we start with a given distribution of

phases about synchrony, the phases continue to be bound to within this perturbation. Although

(2.27) is not a sufficient condition to prove asymptotic stability of synchrony all numerical simula-

tions that we have performed suggest that this is the case.

We will now make some assumptions on the nature of F , and the connection topology, to obtain

a sufficient condition that guarantees (2.27) holds. We show this as follows:

Let us assume that (in addition to F being monotone and F (1) = 0) that

0 < F ′(1) < 1. (2.28)

This implies that

F (θi) < θi and F (θ̄j) < θ̄j . (2.29)

Condition (2.29) says that upon the firing of any oscillator m, the phase(s) of any oscillator(s) n,

connected to it, are always pulled closer to 1. Let us also assume that the oscillators are connected

such that there is always a path between every two oscillators in the group.

Let t̄ be the time between States 1 and 2, i.e. the time since the first oscillator to fire on the
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cycle until the last. Then

t̄ ≤ (1− θmax) (2.30)

. There are two cases possible:

Case 1. t̄ < (1−θmax). Then (θ̄max−1) ≤ t̄ < (1−θmax), and the inequality ( 2.27) is satisfied.

Case 2. t̄ = (1 − θmaxi ). This says that the last oscillator (say p) to fire is also the one that

lags behind the most in State 1, and that its phase is not reset for θmax < θp < 1. (Recall that

F (1) = 0). Since this implies that every other oscillator m, that p is connected to, can only reset

the phase of p at θm = θp = 1, m must be at exactly the same phase as p throughout. Since this is

true for any m, it is true for all m; this implies that all every cell is at the same phase. Thus, this

is simply a re-statement that synchrony is a solution.

Although we have seen in numerics that the conjecture seems to hold, this argument is never-

theless incomplete because (2.27) is not sufficient to prove an asymptotic approach to zero.

2.4.1 Waves in a ring

In addition to synchrony, there are other possible solutions in a ring. The simplest such solution

is a wave in which the timing interval between the firing of successive oscillators is constant. We now

establish conditions for the existence of such a fixed timing wave by deriving an N − 1-dimensional

map valid near such a wave. As with the all-to-all coupled case, that map will advance the oscillator

index as well as the phase. Suppose that oscillator N has fired and all the remaining oscillators

coupled to N (e.g. N − 1 and 1) have also been reset. The next oscillator to fire will be oscillator

1 since the sequence is assumed to be 1 → 2 → . . . → N. The amount of time that it takes for

oscillator 1 to reach firing is 1 − θ1 so that oscillator j < N will have advanced to θj + 1 − θ1

and oscillator N will have advanced to 1 − θ1. Oscillator 2 and oscillator N receive inputs from

oscillator 1 (since it is nearest neighbor coupling) thus they both will receive a resetting pulse so

that their respective phases are F (1− θ1 + θ2) and F (1− θ1). We are now back to where we started
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but shifted forward one step. Thus, we obtain the following N − 1-dimensional map:

θ′1 = F (1− θ1 + θ2)

θ′2 = 1− θ1 + θ3

... =
...

θ′N−2 = 1− θ1 + θN−1

θN−1 = F (1− θ1)

This map gets iterated N times per wave but the map is the same at each step so that we need

only consider one step for issues such as the existence of a nontrivial fixed point or the stability.

We suppose that the time between successive firings is τ. Thus, we must have 1− θ1 = τ. We can

use this to find the fixed points:

θN−1 = F (τ)

θN−2 = τ + F (τ)

θN−3 = 2τ + F (τ)

... =
...

θ2 = (N − 3)τ + F (τ)

1− τ = F ((N − 2)τ + F (τ))

From this we see that there will be such a fixed point for the map if and only if

G(τ,N) = F (F (τ) + (N − 2)τ) + τ = 1.

Suppose for the moment that the PRC is small so that F (x) = x + ε∆(x) where ε is small and

positive. Then, upon expanding in ε to order 2 we find

τ =
1

N
− ε

N
[∆(

1

N
) + ∆(1− 1

N
)]

+
ε2

N2
[(∆(

1

N
) + ∆(1− 1

N
))(∆′(

1

N
)−∆(1− 1

N
)) +N∆(1− 1

N
)∆′(1− 1

N
)]
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Figure 2.7. The period as a function of the number of oscillators in the ring for (A) the cortical
neuron PRC and (B) the sine model at different amplitudes of coupling.

Thus, the timing difference is roughly the length of an uncoupled cycle divided by the number

of oscillators. If the PRC is anti-symmetric as is the case for the radial-isochron clock, then the

firing interval is 1/N + O(ε2). Since it is a simple matter to numerically solve G(τ,N) = 1 we

do so in Figure 2.7 for the model (2.3) which fits Reyes data and for the standard sine model

∆(x) = −a sin(2πx)/2π for a variety of values of a. Rather than plot τ , we instead plot T = Nτ

which is the period of a wave. Thus the figures represent a “dispersion” curve for the ring of coupled

PRCs. We point out that the neurally motivated PRC (top panel) has a period that is always less

than the uncoupled period. This is a consequence of the fact that ∆ is nonnegative and the effect

of a pulse is to always advance the phase. In contrast, the sine model can both advance and delay

the phase and this is shown by the fact that the period is slightly longer for small values of N .

Local stability is determined by linearizing about the fixed point. The resulting matrix has the
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form:

BN =




−αN αN 0 0 . . . 0

−1 0 1 0 . . . 0

...
...

...
...

...
...

−1 0 . . . 0 0 1

−α1 0 0 0 . . . 0




,

where αN = F ′((N−2)τ+F (τ)) and α1 = F ′(τ). A direct calculation shows that the characteristic

polynomial of BN is just:

P (λ) = λN + αN (λN−1 + . . .+ λ) + αNα1.

The “Jury” test (Edelstein-Keshet [32]) is a test similar to the Routh-Hurwitz test which allows

us to determine when the roots of P lie inside the unit circle. First we note that αN , α1 are both

positive by the monotonicity of F . Applying this test to P (λ) shows that the roots lie in the unit

circle if and only if: (i) αN < 1; (ii) α1αN < 1; and (iii) 1 + αNα1 > αN . The last condition is

trivially satisfied if the first two are satisfied. These conditions are quite intuitively satisfying and

very simple to verify. Condition (ii) says that the slope of the PRC must be negative as φ approaches

1. This condition is always met in the cortical models when the coupling is excitatory. The second

condition is similar to our condition for stability of synchrony for the two neuron network.

We cannot use the map to look at the stability of synchrony since the map is defined under the

strict firing order assumption. Small perturbations of the wave maintain this ordering. However,

the ordering will not be maintained for the synchronous solution.

Numerical solutions indicate that the waves for N ≤ 10 are unstable for the model (2.3). For

the sine model, (2.2), the stability depends on a; for a small enough we expect that all waves with

N > 4 will be stable. This is because when a � 1 the weakly coupled PRCs become the simple

phase models:

dφj
dt

= ∆(φj − φj+1) + ∆(φj − φj−1).

The phase differences between the successive oscillators are 1/N and it follows from Ermentrout

(1992) that a sufficient condition for stability is that ∆′(1/N) < 0. For the sine model this means

that cos(2π/N) > 0 so that N > 4. However, for larger values of a bigger rings are required to get
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a stable pattern.

This result generalizes the result of Canavier et al [17] and Dror et al [16] to bi-directional

coupling and to arbitrary rings of oscillators. However, the results here are local stability results

whereas the results from the Canavier group are global.

2.4.2 Chains of PRCs

If we eliminate the coupling between the 1st and the N th oscillator in the ring, we are left

with a one-dimensional chain of oscillators. If the coupling is bidirectional and symmetric, then

one possible solution is synchrony. It is difficult to create a map for this case due to the fact that

there is no reason to believe that ordering will be maintained as was the case for global coupling.

Thus, stability of this state is difficult to prove in general. Even the case of a three-oscillator chain

is difficult due to the many possible cases and firing orders. If the PRC is small enough then

we can appeal to results for a weakly coupled chain (section 2.2.5) which imply that synchrony

is stable if ∆′(0) < 0. However, if the PRC is not continuously differentiable at the origin, as

seems to be the case for cortical neurons, then even this rather restrictive result cannot be applied.

Instead, we must resort to numerical simulations. Figure 2.8 shows the results of a simulation

of a chain of twenty nearest neighbor coupled oscillators using the PRC from equation (2.3) with

a = 1.116, b = 0.775, c = 10.2 which fits the cortical PRC shown in Figure 2.3.

We plot a synchrony index for five different initial conditions in which the phases are either

randomly distributed over [0,1] or biased toward a traveling wave solution. The synchrony index,

S is defined as

S =
√

(A2 +B2)

A =
1

20

N∑

j=1

sin 2πθj

B =
1

20

N∑

j=1

cos 2πθj .

If the phases, θj are uniformly dispersed around the circle, then S = 0 and if they are perfectly

synchronized, S = 1. Kuramoto ([9], page 71) defines a similar index of synchrony for a globally

coupled array of weakly coupled oscillators. For rings, the random initial data generally converge
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Figure 2.8. Synchronization in a chain of 20 oscillators starting at random phases and using the
PRC from Figure 2.3 (the phases of only a few of the oscillators are shown, for clarity). S = 1 is
the perfectly synchronized state.

to a synchronous solution. However, the biased initial data converge to a traveling wave which has

a small synchrony index as the phases are nearly evenly dispersed. We conjecture that if synchrony

is stable for pairwise interactions, then it will be stable for chains of nearest neighbor connectivity

as long as the coupling is not too strong. This is completely consistent with the results of smooth

pulse coupling in section 2.2.6. We remark that the behavior of coupled chains is different from the

behavior of chains of phase-difference models such as those analyzed by Ermentrout and Kopell [33].

In generic phase-difference models, synchrony is not even a solution unless one makes adjustments

at the ends. Such adjustments are unnecessary with PRCs since there is no effect from an input

coming at the exact moment a cell fires (∆(0) = ∆(1) = 0).

2.5 Two-dimensional arrays of coupled oscillatory neurons

We consider a network of neural oscillators (“neurons”) that are arranged in an N ×N square

array. Each oscillator is bi-directionally coupled to its nearest neighbors through a PRC. In this
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section we show that for the sine PRC, persistent circular waves can be set up in certain size arrays.

That is, the firings proceed systematically in a circular fashion on the array.

2.5.1 A simulation of the wave

We first simulate the wave, to determine the times that the various neurons fire relative to the

neuron in the top leftmost corner. That is, the time of firing of the θ00 is chosen to be the reference

zero time in each period that the wave goes around. The algorithm is as follows. Each neuron is

represented as a variable in a two dimensional array. The time this neuron last fired is stored in

this variable. Thus, as the wave passes through the array, each cell reflects either the firing time

(with respect to θ00) from the previous cycle of the wave passing through it, or if the wave has

struck it in this cycle, the (current) time it fired. The variables are updated to their most recent

value of the firing time, after θ00. We start of the simulation with a certain guess at the firing

times of the neuron (detailed below), and see if, as one wave after the other passes through, the

system settles into an invariant firing sequence. The wave passing through is implemented by first

allowing the θ00 neuron to fire, then searching the array for that neuron θij that is closest to firing.

All the neurons are updated to reflect their phases just before θij fires. Finally, the phase of this

θij is reset to 0, and simultaneously the phases of its (four) nearest neighbors are affected by the

PRC. This is repeated until θ00 fires again. This leads to a sequence that presumably persists and

corresponds to a stable rotating wave.

The initial firing times that we choose for the simulation can be described as follows. The array

can be visualized as being roughly composed of concentric rings ( in analogy with the term circular

wave). Then, if we consider successive rings, we notice that firings must proceed (counter)clockwise

on each ring. To guess at the firing times of the neurons on a ring, we choose the following. Consider

the outermost ring of 4(N − 1) neurons. Since the θ00 neuron fires at the time t = 0, and again at

(roughly) t = 1, the other neurons are setup to fire α = 1/(4(N − 1)) apart, going round on the

ring. We can then choose, for a clockwise wave, the firing times for neurons on the outer ring to be

α for θ01, 2α, for θ02, and so on. The next inner ring is initialized similarly, with θ11 set to 0, and

the other neurons β = 1/(4(N − 3)) apart going clockwise around. And so on until all the neurons

have been initialized.
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2.5.2 The exact system of equations

We now consider the algebraic conditions necessary for a rotating wave with the sinusoidal

PRC. There are N2 unknowns that need to be determined for an N × N array: the period of

the oscillation and the N 2 − 1 times relative to the upper left corner. From reflection symmetry

only a quarter of these actually need to be found. This leads to (N/2)2 unknowns. We derive the

equations for phase-locking for the 4 × 4 array and then find the roots of this. We compare them

to the simulated times.

2.5.3 The 4×4 array

The simplest case to study circular waves in square arrays is N = 4.

2.5.3.1 Results of the simulation.

We considered a PRC ∆(φ) = −a sin(2πφ)/(2π) with a value of a = 0.2. The following table

contains the steady state firing times of the different neurons. (Note that the actual simulations

were done on the interval 0 < φ < 2π for convenience; here we scale the times back to the interval

0 < φ < 1.)

0.0/(2π) 0.337/(2π) 1.172/(2π) 1.564/(2π)

5.864/(2π) 0.018/(2π) 1.158/(2π) 1.901/(2π)

5.029/(2π) 4.710/(2π) 3.146/(2π) 2.736/(2π)

4.692/(2π) 4.300/(2π) 3.465/(2π) 3.128 /(2π)

τ = 6.256/(2π) ≈ 0.9956 is the period of the wave, i.e. the time that θ00 fires again. Note that

the period is shorter than the uncoupled period of 1 but only by a very small amount.

A pattern of firing times can be discerned by perusing the table of values from the simulation.

The following table summarizes the various firing times in terms of four ((N/2)2) unknowns:

0 α τ/4− β τ/4

τ − β γ τ/4 + γ τ/4 + α

3τ/4 + α 3τ/4 + γ τ/2 + γ τ/2− β

3τ/4 3τ/4− β τ/2 + α τ/2

The structure of this table depends crucially on the fact that the PRC we use is odd-symmetric.
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Like the work of Paullet and Ermentrout [14], we exploit this symmetry to reduce the number of

equations. If ∆(−φ) 6= −∆(φ) then there can generally be no such simplification. However, the

simulation scheme works for any PRC, ∆ such that |∆′(φ)| < 1 (i.e F (φ) is invertible.)

From this table, we can derive a set of four equations. Consider the θ00 neuron. When it fires

at time t = 0, its phase is 0 at that instant. The phase then continues to increase, until one of its

neighbors fires. Based on the simulations we expect that going around in a wave the neuron θ01

(rather than θ10) will fire first. At this point the phase of θ00 changes from α to F (α). Once more,

the phase of θ00 continues to grow independently until a time τ − β, when θ10 fires, and disturbs

its phase to F (F (α) + (τ − β − α)). With no other firings to affect it, it can continue to rise until

1, when it fires and must be reset to 0. Thus the following equation must hold:

F (F (α) + (τ − β − α)) + β = 1

Similarly, we can write three other equations by choosing three other oscillators to get a complete

system:

F (F (α) + (τ − β − α)) + β = 1

F (F (F (β) + γ) + .75τ + α− γ) + β = 1

F (F (F (.25τ − β − α) + .75τ + β) + γ) + α− γ = 1

F (F (F (F (α− γ) + .25τ + γ − α) + .5τ) + .25τ − β − γ) + γ + β = 1 (2.31)

(In Paullet and Ermentrout, τ = 1, α = β, and γ = 0 so that there was a single algebraic equation.)

The system of equations (2.31) above can be solved for α, β, γ and τ , using Newton’s method.

Furthermore, we can use a continuation package such as XPPAUT [34] to study how the roots

evolve as the magnitude a increases.

2.5.4 The 6×6 array

The next case to study is N = 6. Again, we carry out a simulation, and compare the results

to a computation from a system of exact equations. Proceeding as outlined above we obtain the

following array of firing times:
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Figure 2.9. The relative phases for the 6×6 array in the sine model. Lines denote the angle relative
to the upper left corner. Outer, middle, and inner “rings” are different grey scales.

0.0/(2π) 0.125/(2π) 0.447/(2π) 0.960/(2π) 1.345/(2π) 1.563/(2π)

6.036/(2π) 6.162/(2π) 0.287/(2π) 1.046/(2π) 1.471/(2π) 1.688/(2π)

5.651/(2π) 5.737/(2π) 6.188/(2π) 1.497/(2π) 1.851/(2π) 2.011/(2π)

5.138/(2π) 4.978/(2π) 4.624/(2π) 3.061/(2π) 2.609/(2π) 2.523/(2π)

4.816/(2π) 4.598/(2π) 4.173/(2π) 3.414/(2π) 3.034/(2π) 2.909/(2π)

4.690/(2π) 4.473/(2π) 4.087/(2π) 3.575/(2π) 3.252/(2π) 3.127/(2π)

As the above table shows, this is a wave circling on a 6-dimensional array. The wave is stable

and (locally) attracting. Figure 2.9 shows a plot of these relative phases. The outermost ring of

20 oscillators looks like a traveling wave that covers one full cycle as the perimeter is traversed.

Similarly the middle ring of 12 oscillators is also a traveling wave. The inner ring of four oscillators

consists of cells one quarter of a cycle apart. Thus, these apparently stable patterns look like nested

rings of coupled maps, nearly synchronized along the diagonals. We point out that the patterns
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Figure 2.10. The period as a function of the strength of coupling in a square array for the sine
model.

here are the direct analogues of those found by Paullet and Ermentrout [14] in arrays of weakly

coupled oscillators. The pattern of phases in two dimensions is like a pinwheel such as seen in the

analysis of the Ginzberg-Landau equation (Greenberg [35], Hagan [36]; Paullet [14]):

zt = z(1 + iω − zz̄) +∇2z.

In Figure 2.10 we show the period of the rotating wave as a function of the strength of the

coupling, a for the 4- and 6-dimensional square arrays. We note that this is not monotonic.

2.5.5 Larger two-dimensional arrays

We have extended our simulations to arbitrary sized arrays. Simulations show similar waves.

The analyses based on writing an analytical set of equations grows increasing difficult to imple-

ment, however. We note that the small arrays of odd-dimension (e.g.5x5) seem to have only the
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synchronous solution (at least for the initial conditions implemented in above). However, prelim-

inary results on large arrays show that the dependence on the evenness of the dimension is an

artifact of small dimensionality. We expect these circular waves exist in all even N -dimensional

(N ≥ 4) arrays and sufficiently large odd-dimensioned arrays. A general existence is still an open

question as is the rigorous determination of stability.

2.6 Discussion

We have generally examined a number of networks of coupled phase-response curves. Under

certain assumptions (i.e. a fixed firing sequence) it is possible to reduce these to discrete maps.

However, the existence of such a map depends on maintaining this fixed firing sequence. Thus, the

issue of heterogeneity in uncoupled frequency becomes an important one for the all-to-all networks.

For then, near synchrony, it is possible for the order of firing to be changed. On the other hand,

with heterogeneity, we don’t expect exactly synchronous solutions. Instead, we expect that the

oscillators will fire in order of their uncoupled frequency. Small perturbations will not destroy this

order so that our techniques are probably applicable. Heterogeneity in coupling is significantly

more difficult. The development of a theory for general all-to-all systems remains to be found.

For the ring models where there is a fixed firing sequence bounded away from synchrony, small

differences in the oscillators will not affect the map as the sequence will be maintained. The

maps for linear chains and the two-dimensional systems remain to be described. We note that

it is probably possible (albeit tedious) to prove the synchrony of the rotating waves in the two-

dimensional lattices. The idea is to exploit the fact that there is a fixed firing sequence. This allows

us to define a local linearization of the map and from this determine whether synchrony is stable.

All numerical simulations seem to point to stability at least for the simple sinusoidal PRC. Ideally,

a general theorem analogous to that in Ermentrout [31] could be proven.

Canavier et al and Dror et al have concentrated their efforts on computing and analyzing the

PRCs for coupled “burst-like” neurons. This is in some ways a much more difficult problem than

that which we have derived here. In bursting neurons the effect of one oscillator on the other

can be prolonged. Furthermore, the length of time of the effect can depend on the inputs to that

oscillator. Effects of such a large perturbation can affect the next cycle as well. Thus, the maps
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that one derives from coupled bursters are much more challenging to analyze. In the present work,

the interactions are presumed to be very short-lasting compared to the period of the oscillators.

For example, cortical excitatory synapses typically last only 2-5 milliseconds while the period of

oscillations varies from 25 to 100 milliseconds. This allows us to ignore the possibility of inputs

“bleeding” over into the next cycle.

Appendix

Proof of theorem: We define the following N diagonal matrices, dk, k = 1, . . . , (N − 1), as fol-

lows: d0 is the (N−1) dimensional diagonal matrix with all its (non-zero) elements α0’s, d1with α1’s,

and the other di’s having both α0’s and α1’s. d2 = D(α1, α1, ..., α1, α0), d3 = D(α1, α1, ..., α0, α0),

and so on, with di having as its last (i − 1) elements α0 (and the others α1), where D stands for

the (N − 1)× (N − 1) diagonal matrix. Also, let

E =




−1 1 0 0 · · ·

−1 0 1 0 · · ·

−1 0 0 1

...
. . .

−1 0 0




If B = EDn−1...E D1ED0, then the eigenvalues of B are of the form αp0α
N−p
1 with 1 ≤ p ≤ N − 1.

Proof. Let us consider the product B above. We claim that the following matrix S is a

similarity transformation that diagonalizes B with the required eigenvalues on the diagonal. S

is the (N − 1) × (N − 1) matrix with all elements on the diagonal, and above it, unity, and zero

otherwise. That is,

S =




1 · · · 1

0 1

...
. . .

. . .
...

...
. . . 1

0 · · · · · · 0 1
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with an inverse

S−1 =




1 −1 0 · · · 0

0 1
. . .

. . .
...

...
. . .

. . .
. . . 0

...
. . . 1 −1

0 · · · · · · 0 1




Thus we need to show that S−1BS is a diagonal matrix. We proceed as follows: It is a simple

matter to evaluate the product E D1 E D0 S which is of the following general form:

E D1 E D0 S =




0 −α0α1 0 · · · 0

. . .
. . .

...

...
...

. . . 0

0 −α0α1 · · · −α0α1

α0α1 0 · · · 0




Next, we make the following claim: every matrix product up to the kth factor E Dk...E D1 E D0 S

is of the general form:

Pk = E Dk...E D1 E D0 S =




0 · · · 0 −α0α
k
1 0 · · · 0

...
...

. . .
. . .

...

...
. . . 0

0 · · · 0 −α0α
k
1 · · · −α0α

k
1

αk0α1 αk−1
0 α2

1 · · · α2
0α

k−1
1 α0α

k
1 0 · · · · · · 0

0 αk−1
0 α2

1

...
...

...
...

. . .

...
. . . α2

0α
k−1
1

...
...

...

0 · · · 0 α0α
k
1 0 · · · · · · 0




We remark the following characteristics of this matrix: The (N-1) dimensional matrix above is

made up of two submatrices of dimensions k and l with l = (N − 1) − k. Let us call the ’lower-

triangular’ submatrix occupying the upper right l × l corner of Pk, the L (sub)matrix, and the
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’upper-triangular’ submatrix occupying the bottom left k×k corner of Pk, the K (sub)matrix. (We

note all other elements of Pk are identically zero). All elements of L are identical, and equal to

−α0α
k
1 . All elements in the ith column of K are identical, and equal to αk+1−i

0 αi1. We next consider

the product of Pk with the next (premultiplying) factor Pk+1 = EDk+1Pk in S−1BS. If our original

claim is to be true, the matrix Pk+1must be of the same general form that we described for Pk.

Except that for Pk+1, its K matrix is of dimension (k + 1) (and L is one dimension smaller). We

verify this is indeed the case. We note that Dk+1 is a diagonal matrix with the last k+ 1 elements

α0 (the first N−1−k elements α1). Hence we observe that the product Dk+1Pk is simply obtained

by multiplying the elements of L in Pk by α1, and those of K by α0! We also notice that under

(pre)multiplication by E, every jth column (r1, r2, . . . , rN−2, rN−1)T in the multiplicand matrix is

simply permuted to (−r1 + r2,−r1+r3, . . . ,−r1 + rN−2,−r1)T . The product E Dk+1 Pk is then of

the desired form. Proceeding to write B S ≡ PN−1 we obtain the upper triangular matrix:

B S =




αN−1
0 α1 αn−2

0 α2
1 · · · α2

0α
N−2
1 α0α

N−1
1

0 αN−2
0 α2

1

...
...

...
. . .

. . . α2
0α

N−2
1

...

0 · · · 0 α0α
N−1
1




It can easily be verified that premultiplying by S−1 (given above) then sets all the elements besides

those on the diagonal to zero. Hence the eigenvalues of B follow as proposed.
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Chapter 3

On the Increase in the Human Beta Rhythm Activity

with the Sedative Diapam

3.1 Introduction

Oscillatory activity of the human cerebral cortex, monitored by electroencephalographic (EEG)

and magnetoencephalographic (MEG) recordings, comprises several prominent frequency bands.

EEG recordings from the sensorimotor cortex show oscillations primarily around 10 and 20 Hz. Both

bands show a task dependent modulation. In clinical EEG records, rhythmic beta oscillations are

seen in frontal scalp areas in subjects who have taken benzodiazepine-type drugs. Less prominent

beta oscillations are also found in extrastriate, temporal and parietal areas. 20-Hz activity in a

healthy human subject occurs in the sensorimotor cortical areas (and is modulated) during various

motor and cognitive tasks. Moreover, a part of the (approximately) 20-Hz motor-cortex oscillations

are coherent with simultaneously recorded surface electromyogram during isometric contraction;

this coherent activity has been suggested to be related to recalibration after movements. Thus there

seems to be good evidence to suggest that beta oscillations play an important role in processing of

sensorimotor information.

Recent experiments of Jensen et al [6] have been directed towards investigating whether ben-

zodiazepine might modify the motor-cortex 20-Hz oscillations. They recorded MEG signals from

healthy adults before and after oral application of benzodiazepine. Clinical properties of ben-

zodiazepine include sedation, anxiolysis, amnesia, anticonvulsion, and muscle relaxation. (It is

important to note that in the experiment, subjects are asked to relax under the MEG helmet dur-

ing the recording, both before (control) and after taking the drug.) They were also able to locate

the sources of the beta-range oscillations and characterize its frequency spectrum. They find that

following administration of the drug, power in the beta band increases dramatically, and the fre-

quency shifts a few Hz lower. The primary effect of benzodiazepines is to increase the conductance

of GABAA mediated currents. It is counterintuitive how an increase in inhibition mediated by the
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higher inhibitory conductance should increase the power of a rhythm (and why that increase should

be in the beta band).

The human beta oscillations appear to resemble gamma band oscillations (30–90 Hz) observed

in various animal preparations. Gamma oscillations have been modeled in vitro by Whittington and

collaborators in the hippocampus. In the in vitro persistent gamma oscillations the pyramidal cells

fire very sparsely, while the interneurons fire at gamma frequencies. The computational network

model proposed here suggests that the human beta oscillations are an analogue of the gamma

oscillations studied in rats.

The frequency of the beta oscillations decreases when the inhibitory cells receive increased inhi-

bition modeling the effect of benzodiazepines. A more subtle effect comes from the accompanying

increase in period: excitatory cells that were partially suppressed by the inhibition at a given period

can spike on a larger fraction of each cycle, so the proportion of pyramidal cells firing on any given

cycle increases. We also show that an increase in inhibition to the pyramidal cells causes them to

fire at a smaller fraction of each cycle, making firing more coherent. We conclude that it is the

effect of benzodiazepines on inhibitory cells that is the major cause of the increase in beta power

with administration of benzodiazepines.

3.2 Modeling

The aim of the modeling is to show that an increase in benzodiazepine, modeled as an increase in

GABA(A)-mediated (inhibitory) conductance, can increase the power in the beta frequency band

of the MEG. We simulate a network of a 64 excitatory and 16 inhibitory cells globally coupled

together to represent the cortical population. (The detailed equations are in the Appendix at the

end of the chapter.) We separate the simulations into ones in which the inhibition to inhibitory

(i-cells) was increased, and ones in which the inhibition to excitatory (e) cells was increased. We

show below that the increase in the former is consistent with all the experimental data, while the

latter is not.

The model we propose here accounts for the apparently paradoxical result (namely that exci-

tatory activity increases upon application of an “inhibitory” drug) by assigning a regulatory role

to inhibitory cells in the network. Thus the i-cells not only produce produce spontaneous oscilla-
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tions in the beta bands synchronized via recurrent connections, but also keep the activity in the

e-cells low under normal conditions (i.e. in absence of the drug). As benzodiazepine is applied, the

increased gi→i lowers this frequency (through the increased inhibition), and the weaker inhibition

to the e-cells (gi→e) also allows many more of them to be released from suppression. This mode

of activity where clearly the i-cells gate activity in the e-cells is thus a form of the ING rhythm

(although at beta frequency, see also Chapter 4, section 4.1.3, and Discussion below); a relatively

stronger e→i connection is implicated in the creation of the PING rhythm.

We are also faced with two other possibilities that can be attributed to state of the subject

during experiment: relaxed, or actively processing. Excitatory conductance to the i-cells is thought

to be weaker in the states of the network that correspond to resting, than during active processing,

when there are likely to be effects of arousing neuromodulators, which have the effect of decreasing

habituation of excitatory synapses. Thus, in a relaxed state, with some ongoing activity at beta

frequencies, the excitatory synapses are likely to be at a state of lower maximal conductance than

during active processing. We will examine the simulations in parameter regimes suited to these

two cases below.

3.3 The “Rest State Network”: Weak gei

The baseline parameters of the network are chosen so that the i-cells are active in the absence

of excitatory input, and the mutual inhibition among those cells is strong enough to create a

synchronous rhythm (Traub et al [37], White et al [38], Wang and Buzsaki [39]). Such a mechanism

is known to produce a gamma rhythm in vitro (Traub et al [4], Whittingon et al [5]). It is also

known that, for this mutually inhibitory rhythm, the period is proportional to the decay time of

the inhibition. (Chow et al [40]). This motivates modeling a beta-frequency mutually inhibitory

frequency by taking a relatively large decay time constant of the GABA(A) mediated inhibition,

which we take here to be τi=20 ms.

The parameters for the e-cells were chosen so that, in the absence of the benzodiazepine input,

few of the cells fire, and those that do fire at frequencies lower than the beta range. This is done by

having a relatively low range of drives to the e-cells and having a significantly large slow outward

current, both compatible with the resting state of the subjects.
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Figure 3.1 (top panel) shows the computed power spectrum for three values of gii, the maximal

inhibitory conductance to an i-cell. As the maximal conductance is increased, the power in the

beta frequency range increases, the maximal power increases, and the spectral plot widens. Also,

the frequency decreases.

Fig 3.1 (bottom panel) shows the power spectra for increasing values of gie, the maximal in-

hibitory conductance for the E-cells, while holding gii fixed at one of the values in the plot above.

Note that, as gie increases, the power decreases, the frequency remains constant, and the spectral

plot becomes thinner.

The mechanism behind the above results can be understood from looking at the raster plots in

figures 3.2 and 3.3. The firing of the i-cells are plotted at the bottom (negative indices), and that

of the e-cells at the top (positive indices), ordered according to the amount of external drive. The

figure E-cells have a range of excitability (i.e., range of imposed drives), the only cells that fire are

the ones that have enough drive to spike before the next pulse of inhibition .

Figure 3.2 shows that, as gii is increased, the period of the underlying inhibitory rhythm grows.

This allows more E-cells to fire in a given period. The e-cells that fire for the larger value of gii

are more spread out within a given cycle as can be seen in the histogram, where each of the cycle

periods has been normalized to 1 for comparison. We show below in section 3.3.1 that this is true

because the e-cells fire when the inhibition has decayed sufficiently (depending on the drive to those

cells); with the period increasing, but the inhibition to the e-cells not changing as gii is increased,

there is a longer interval for e-cells to fire before the next bout of inhibition.

Increasing gie has a different effect, as shown in Figure 3.3. As this conductance is increased,

the e-cells get more inhibition, and fewer of the cells fire. However, (as shown in the histogram)

the e-cells that do fire are more coherent. The reason is the converse of the decrease in coherence

for increasing gii: as gie increases, the inhibition to the e-cells suppresses the firing of the latter for

a longer proportion of the period, and hence those that fire must do so more coherently.

3.3.1 Analysis of the Role of Inhibition in Determining the Relative Phases of Firing

of the E-cells

We can simplify the physics of this problem to examine the role of varying inhibition to the e-cells

in determining the number of e-cells that can fire in a given cycle and the range of phases relative
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Figure 3.1. Power spectra computed for various values of the inhibition in the rest-state network.
In the top panel, gie is held fixed at 0.9 and gie is varied. The bottom panel shows the result of
holding gii at one of the values (taken from above) and increasing gie.
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Figure 3.2. Rasters and histograms of activity in the rest-state network, for fixed gie, and varying
gii. Time (in milliseconds) is on the x-axis, and the cells are plotted by index on the y-axis.
The fastest e-cells lie closest to the top. Parameter values for the run appear on the top-right
of each panel. The bottom right panel shows a histogram of the spike times over a run of 100
periods normalized with respect to the period of the i-cells for the three rasters. Notice that the
parameter values between this figure and the next, Figure 3.3, are the same as used in Figure 3.1,
for comparison.
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Figure 3.3. Rasters and histograms for rest-state activity, at fixed gii, and varying gie. Note that,
for reference, the red curve (and the corresponding raster panel) is the same as in Figure 3.2 above.

to the cycle period over which they fire. Figure 3.4 shows the behavior of the synaptic conductance

from an i-cell taken from the full simulation and an e-cell’s own afterhyperpolarization1 (AHP),

the two variables that determine when (or if) that e-cell can fire next. Notice that the inhibition

from i-cells arrives at an e-cell at the period of the rhythm (since the i-cells fire synchronously).

Following an action potential in an e-cell, an outward hyperpolarization current turns on. This

tends to further inhibit the cell. Since the time constant of AHP conductance is large compared to

the period of the rhythm (around 50 ms), there is significant adaptation in that current from cycle

to cycle. The figure strongly suggests modeling these quantities as exponentially decaying variables.

Thus we take the inhibition from i-cells as a quantity (proportional to) gie s, and the AHP current
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as gahp z, where ṡ = −s/τi and ż = −z/τa are assumed to decay with appropriately chosen decay

constants. (We will not be too concerned for the particular numerical values we shall pick for these

numbers below, only their approximate relative strengths matter.) The e-cell is assumed to fire

when the total inhibition has decayed to a value I, which is related to the current drive to the cell;

the larger the I, the sooner the e-cell can fire on a given cycle.

Figure 3.5 shows one such e-cell phase-locked to an i-period. The synaptic variable s is assumed

to decay with a time constant τi=20 ms, and the AHP variable, z, with τa=50 ms. gie=3, and

gahp = 0.5. We take P, the period of the i-rhythm to lie between 40 ms (25 Hz), and 50 ms (20

Hz) for the different values of gii. Thus, the change in the period of the oscillation corresponds to

a change in gii; for a given value of P, setting the sum (gie s + gahp z) equal to I for a particular

e-cell determines the time, t̄, when it fires in that cycle. Since we assume fast inhibitory synapses,

s is reset to 1 at the beginning of every cycle. The value of z, however, depends strongly on its

value during the previous cycle. Let the value of z be z̄ at the beginning of some cycle. When the

e-cell fires at a time t̄ in the cycle, z is reset at to z(t̄) + 1 (note that the we can assume 1 without

loss of generality, since in the following analysis any other value can be absorbed by rescaling gahp).

As the system approaches its steady state, the value of z̄ can be determined as the fixed point of

the map that generates z̄ on successive cycles. Thus we find that

z̄ =
1

exp(P − t̄)/τa − exp(−t̄/τa)
(3.1)

For simplicity, we consider here only those e-cells that have a periodicity of P, and each cell is

assumed to fire at most once in the cycle. These two conditions will determine the minimum and

maximum values of the allowable drives to these cells. The phase φ = t̄/P of an e-spike is a function

of the drive I. If an e-cell is to spike at least once every period, the drive to it must be above a

critical value Il (Figure 3.5, left panel). That is, at Il, t̄ = P . Thus Il is determined as

Il = gie exp(−P/τi) + gahp/(exp(P/τa)− 1) (3.2)

In order to prevent firing more than once every cycle, the drive must be kept below a value,

Ih (Figure 3.5, right panel) for all cells. In order, to obtain the critical value Ih, we note that the

1The variable z in the figure is identical to the gating variable of the AHP current, w (see Appendix).
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Figure 3.4. Voltage traces of an i- and e-cell taken from the full simulation (top panel). The
corresponding synaptic variable for i-cell, s, and AHP gating variable, z, for that e-cell are shown
below (bottom panel). The inhibitory synapse peaks when the i-cell fires, and the AHP current
turns on when the e-cell fires. Note that the decay time of the AHP current is larger than the time
constant for decay of synaptic current. Notice also that z adapts on successive cycles..
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e-cell spikes at t̄, but is just prevented from firing again by a spike of inhibition arriving at P. This

leads to pair of equations that contain t̄ implicitly:

Ih = gie exp(−t̄/τi) + gahp/(exp(P/τa)− 1) (3.3)

Ih = gie exp(−P/τi) + gahp exp(t̄/τa)/(exp(P/τa)− 1) (3.4)

For cells with intermediate values of drive, Il < I < Ih, the time t̄ of the e-spike can be

determined as the root of

I = gie exp(−t̄/τi) + gahp/(exp(P/τa)− 1) (3.5)

We numerically compute the values of phases φ (relative to the normalized period) of spiking

for e-cells driven with different I. Figure 3.6 plots the phase of the e-spike relative to the i-cycle

for various values of P (i.e. gii), for two values of gie. The phase is seen to retract into the cycle for

higher value of I. For larger values of gie the number of cells firing in the cycle is also decreased.

As the period is increased (i.e. increasing gii), more cells are seen to emerge from suppression. This

figure thus reproduces qualitatively the results in the discussion above (section 3.3).

If we assume drive I is distributed linearly in the e-cells, we can estimate the number of e-cells

spiking per cycle at a given P to be proportional to Ih(P = 50) − Il. (At P=50 ms, Ih=0.83 and

Il=0.54. The drives are between these values for all P and gie.) (The number of spikes per cycle

thus computed ignores that for lower drives there will be cells firing at larger periodicities. The

complexity in computing the map grows combinatorially beyond period two.) Hence by fixing an

upper bound on the drives the cells Ih(P = 50) and assuming a linear distribution of drives, we

may plot the number of cells that fire for the values of gii and gii considered. Figure 3.7 shows

clearly that, more cells fire with increasing gii, and decreasing gie.

The maximum spread of the phases at which the cells fire can be used to measure coherence

of the e-cells. Figure 3.7 (bottom panel) indicates the variation in “coherence” 1/(1 − φmin) with

inhibition, where φmin is the lowest value of phase among the firing e-cells at a given gii and gie. As

expected, we find that coherence increases with increasing gie, that is, the cells fire closer together;
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Figure 3.5. The variables in the analytic model. One i-period for two values of the “drive” I to
an e-cell, Il, (top panel) and Ih (bottom panel) is shown. The e-cell fires when the total inhibition
(gie si + gahp z) wears off to the value I, i.e. blue curve touches zero. The i-cells are firing with a
period of 50 ms in this example. If the I is too small the cell may be never fire in any one period,
as the top panel suggests. If, on the other hand, I is large enough, the cell may recover sufficiently
to fire more than one spike within that cycle (bottom).
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Figure 3.6. Phases of e-spikes relative to the i-period at different gie and gii numerically computed
from Equations 3.2 through 3.5. Cells towards the top have the higher drives. The red dots indicate
the lower value of gie than the black dots. The curves P=50, 48,..., 40 for gie=3 indicate the effect
of a lowering the period, corresponding to smaller giis. A similar set of curves are also plotted for
gie=4.5 (with the black dot with the least phase being computed at P=50).
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Figure 3.8. Non-monotonicity of the peak in the power spectrum of the total synaptic conductance
with increasing gie. Parameters are as for the active state network.

it decreases with increasing gii.

We remark that with increasing gie, the number of e-cells that fire decreases, however, at the

same time coherence increases, so that they fire closer together. This suggests the interesting

possibility that in simulations it may be possible to obtain an increase in the power spectral peak

on increasing gie. Indeed, as Figure 3.8 shows, a power spectrum of the total excitatory synaptic

conductance shows an increase in the peak as gie is increased from 0.7 to 0.8. Note also the tighter

coherence at 0.8. (Parameters used in this simulation correspond to those for the active state

network, see below.)

3.4 Active Processing: the Effects of a Significant gei

When gei is sufficiently strong in the network, the number of e-cells firing has a significant effect

on the period of the e/i network oscillation. In that case, as the average rate of e-cell firing increases

with increasing gii, the increased excitation to the e-cells tends to increase the network frequency

and counters the frequency-decreasing effect of increasing gii. Similarly, if gei is set high enough,

as gie is increased the decreasing number of E-cells participating can lower the frequency of the

network and allow more cells to fire, again countering the primary effect.

Figure 3.9 shows the spectral plots computed by varying gii alone, and then gie. The corre-
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sponding histograms and rasters are shown in figures 3.10 and 3.11. The effect of increasing gii is

seen to be typical: frequency shifts lower, and the spectrum is taller and broader; coherence can

also be seen to decrease from the histograms and rasters in Figure 3.10. At a given value of gii,

varying gie however, shows behavior that is in contrast to that of the resting state network (see

above, section 3.3). As gie is increased frequency is seen to increase; this is reasonable, as argued

above. Coherence does increase as expected, as seen from the histograms in Figure 3.11. (As a

curiosity, we also remark that frequency does not change very much between values gie=0.8 and

1.0. This is because a significant proportion of the cells are firing on alternate cycles, presumably

the net e→i influence is then not nearly strong enough.)

3.5 Discussion

Clearly, there is a tremendous gap between the quantities that experiments can measure and

theories comprehensive enough to explain the observed quantities in terms to the intrinsic biophys-

ical properties of (groups of) the participating cells. We try here to speculate on MEG data that

indicates a beta rhythm sensitivity to benzodiazepines in the sensorimotor cortex. We model a

population of 16 inhibitory, and 64 excitatory single-compartment neurons that generate an os-

cillation around 20 Hz. Interneurons are known to play a key role in generating gamma rhythms

(30-90 Hz), specifically the type of rhythm dubbed ING. Here we claim that this beta rhythm is

produced by a mechanism similar to hippocampal gamma, except at lower frequencies. Thus, in-

terneurons generate a synchronous rhythm via recurrent inhibition; the pyramidal cells participate

only weakly, they are more likely to be gated by the inhibition.

We have considered two cases, one when e→i synaptic influence is weak (the case most relevant

to the experiments described here), and one in which their role might be more prominent. We

claim that increase in the beta-frequency rhythm found in relaxed subjects given benzodiazepines

comes from an increase in the inhibitory conductance to the i-cells. If the inhibitory conductance

to the e-cells also increases with benzodiazepines, it does so at a lower rate, and is not the major

cause of the increased beta power. Then our model predicts behavior that is consistent with the

experimental results: increasing beta power with application of the drug, and the accompanying

lowering of the frequency.
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Figure 3.9. Spectra computed for the active state network, that is, when the role of gei is significant.
(Contrast with Figure 3.1).
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spectra in Figure 3.9.
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Figure 3.11. Rasters and histograms for fixed gii, and varying gie corresponding to the power
spectra in Figure 3.9.

3.6 Appendix

The equations for each cell are obtained from a model of Traub and Miles for spiking [41].

The network consists of 64 e-cells and 16 i-cells connected all-to-all,but without any significant e-e

coupling which is thought to be sparse in the cortex (gee=0).

The i-cells were modeled with equations

C
dVi
dt

= −gL(Vi − VL)− gkn4(Vi − VK)− gNam3h(Vi − VNa)− Isyn,i + I0
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and the e-cells by equations of the form:

C
dVe
dt

= −gL(Ve − VL)− gkn4(Ve − VK)− gNam3h(Ve − VNa)− gAHPw(Ve − VK)− Isyn,e + I0

Both types of cells have a leak, a transient sodium, and a delayed rectifier potassium current. The

e-cells have an additional AHP current in the form of a slow outward potassium current. Parameters

and functional forms of the equations are taken from R. Traub & R. Miles [4], [41]. The gating

variables, m,h, n satisfy equations of the form:

dx

dt
= ax(V )(1− x)− bx(V )x

for x = m,h, n where

am(V ) = 0.32(54 + V )/(1− exp[−(V + 54)/4])

bm(V ) = 0.28(V + 27)/(exp[(V + 27)/5]− 1)

ah(V ) = 0.128 exp(−(50 + V )/18)

bh(V ) = 4/(1 + exp[−(V + 27)/5]

an(V ) = 0.032(V + 52)/(1− exp[−(V + 52)/5])

bn(V ) = 0.5 exp[−(57 + V )/40].

The gating variable, w satisfies

dw

dt
= (w∞(v)− w)/τw(V )

where

w∞(V ) = 1/(1 + exp[−(V + 35)/10])

τw(V ) = 400/(3.3 exp[(V + 35)/20] + exp[−(V + 35)/20]).

The maximal conductances were gNa = 100 mS/cm2, gK = 80 mS/cm2, gL = 0.1 mS/cm2, and

gAHP = 0.3 mS/cm2. Reversal potentials are VL = −67 mV, VK = −100 mV, and VNa = 50 mV.

Parameters for both the e-cells and i-cells were the same; the only differences are in the synaptic
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currents and the driving currents, I0. The synaptic currents were of the form:

Isyn,α = giαsi,tot(Vα − Vin) + gese,tot(Vα − Vex)

for α = e, i. Reversal potentials were Vex = 0 mV and Vin = −80 mV. The synaptic gates are

described by:

sα,tot =
1

Nα

∑

α−cells

sα

dsα
dt

= aα(1 + tanh(Vα/4))(1− sα)− sα/τα

where ae = 20/ms, ai = 1/ms, τe = 2.4 ms, and τi = 20 ms. The conductances, gie, gii varied

and are given in the text; gee = 0 and gei = 0.07 mS/cm2. White noise was added to the voltages

and equations were integrated using Euler’s method with a time step of 0.025 ms. Smaller values

yielded no qualitatively different results. Simulations were done using XPPAUT (Ermentrout [34]).

Heterogeneity is introduced into the network by providing variations in the input currents (I0)

in the range 1.3 to 2.5 µA/cm2 to the e-cells for the rest-state network and 1.6 to 2.6 µA/cm2 for

the active-state. The input currents to the the i-cells in the rest-state case is 7 µA/cm2, and in the

active-state 2 µA/cm2. Choosing lower values of Ii and gii for the active-state is equivalent to a

significant gei in the network.

The field measured by MEG is thought to be a consequence of the EPSCs produced by the e-cell

spiking (Hamalainen [42]). The power spectrums in the simulation are computed by summing the

EPSCs over all I-cells, i.e. a time series obtained by sampling the quantity

EPSCtot =
∑

i−cells

se,tot(Vex − Vi).

in the integration (XPPAUT) is used to compute its FFT and estimate the power spectrum [43].

The power spectrum has units of (amplitude)2/Hz, i.e. (µA/cm2)2/Hz.

We remark that the power spectral curve computed in any particular run varies from one

simulation to the next. This is due to to noise in the membrane voltage, and depends also on the

initial conditions. To get a reasonable representative of the activity we compute an average over
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several spectral curves.
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Chapter 4

Analysis of the Disruption of Synchrony in Networks

with Altered Excitatory Kinetics

4.1 Introduction

A critical question regarding gamma-frequency oscillations (30-90 Hz) in the hippocampus has

been how synchrony arises between spatially distal sites, given the slow expected conduction times

in the cortex. Traub et al [37] have suggested that interneuron doublets are critical to synchrony

in the presence of delayed synaptic inputs. Ermentrout and Kopell [7] studied the physics of the

system in a two-site model with a pair of excitatory and inhibitory neuron on each site, mutually

coupled with negligible delay, and with significant delays between interactions across the two sites.

Their analysis clarified the role of the interneuron doublets in encoding a feedback signal that

allowed for the cells to synchronize stably. Synchrony thus arises as an emergent property of the

network, without the necessity of a central pacemaker. Fuchs et al [1] have recently used molecular

techniques and (large) network simulations to examine the role of the time constant of the synaptic

drive to the interneurons in (disrupting) synchrony. The authors delineate three regimes with

varying τe, the synaptic time constant of the excitatory postsynaptic potentials (EPSPs). With τe

too big, or too small, synchrony in the network is degraded. Here we use maps similar to those

used in the analysis in [7] to understand these results.

The present work relates to the earlier two studies in the following way: [7] laid the foundation

for studying synchrony in presence of delay in a simplified 4-cell model. We use that framework to

study (the stability of) synchrony in the presence of delay, but also for various values of τe. We are

thus able to explain the experimental results in [1]. We also study features of the model itself, in

particular the various activity patterns for different sets of parameters. The role of maps becomes

clear as we describe the analysis. In particular, we compute a simple slope condition related to

the maps (that was also obtained in [7]), to support results from direct simulation of the network

dynamics.
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4.1.1 The Findings of Fuchs et al [1]

Fuchs et al generated mice with slowed interneuron EPSPs by gene targeting. In both, the

wild-type and mutant mice, tetanic stimuli evoked gamma oscillations (local field potential record-

ings in vitro, see Figure 4.1). Oscillation synchrony across spatially separated sites, however, was

disrupted in the mutant. In addition, interneurons from wild-type mice fired in single spikes or

spike doublets (recorded during the tetanus-evoked oscillation), whereas interneurons from the mu-

tants fired doublets and triplets (Figure 4.1). (It was further confirmed that single-shock stimuli

of interneurons (could) elicit single action potentials in the wild-type mice, whereas in the mutant,

doublets could be evoked.)

The authors also carried out large network simulations [44] with values of τe altered to be a)

larger than normal, and b) smaller than normal. Thus they divide the behavior of the network

into three regimes, Figure 4.21. They conclude that in regime I, synchrony is weak because of

fewer doublet firings if the EPSC is smaller and faster. In regime II, synchrony is sharp, and the

interneuron autocorrelation shows the presence of doublet firings. In regime III the EPSC is more

persistent and stronger, interneurons in the mutant fire triplets as well as doublets.

The analysis in Ermentrout and Kopell [7] essentially covers regime II, the “normal” condi-

tions. In the appendix (published as supplementary data on the PNAS website, www.pnas.org),

representative traces (i.e. averages of the e,i-cells at each edge of the “slice”) in the detailed

simulations indicate a “doublet-triplet mismatch” occurs in regime III. They speculate on why

this doublet-triplet mismatch disrupts the feedback necessary for synchrony in the context of the

Ermentrout-Kopell model. The authors also point out that triplet firings by themselves need not

necessarily disrupt synchrony, a point that we return to in our simulations. Here we revisit the

model to study the effect of altering τe in greater detail. Our simulations reveal parameter regions

in the τe-delay plane where the dynamics displays this predicted behavior. But first, we describe

the Ermentrout-Kopell reduced model.

1Remark on the notation used in the figure: τe is identical to τAMPA (or τ); excitatory synapses here are of the
AMPA type.
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Figure 4.1. Figure 4 in [1]. Population gamma oscillations have disrupted synchrony in the mutant mice. (a) Example

traces. Paired stratum pyramidale field potential recordings illustrated from the beginning of the posttetanic oscillatory response

induced by paired tetanic stimulation. Recording site separation approximately 1 mm along the CA1 axis. Recordings are

overlaid to illustrate temporal relationship between population spikes at the two sites. Oscillations from the mutant mice show

a more erratic temporal relationship between spike generation at each site. (Scale bars: 3 mV, 100 ms.) Model data show

superimposed average voltage signals, from two ends of the model array, for the two simulations (wild type and mutant). Each

average was of 224 somatic pyramidal cell potentials, and the signals are inverted so as to resemble the experimental field

potentials. Note the tight synchrony in the wild type, contrasted with the jittering back and forth in the mutant. (Scale

bars: 50 mV, 100 ms.) (b) Pooled data showing pattern of phase relationship change in the mutant mice. Cross-correlations

are taken from data as in a. Control data show mean cross-correlation plot for data from each of six wild-type mice (gray

curves) and the global mean from these plots (black line). Inset shows distribution of modular phase relationships for 62 paired

posttetanic gamma oscillations from 11 slices from six wild-type animals. Cross-correlation data from slices from mutant mice

are represented in the same manner (n = 5 mice). Note erratic nature of central peak amplitudes. Inset shows distribution of

modular phase relationships from 74 posttetanic oscillations from 15 slices from five mice. Model data show cross-correlations

of 200 ms of data from the average signals shown in a.
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Figure 4.2. Figure 1 in [1]. Two-site synchronization occurs only over a narrow range of values for the decay time

constant of interneuron AMPA-receptor-mediated EPSCs (simulations). Data are taken from 14 simulations, each with identical

parameters, except for τAMPA (designated τ on the abscissa). The behavior of the system can be divided into three regimes: I,

with τ ≤ 0.9 ms, having poor two-site synchrony; II, with 0.925ms ≤ t ≤ 1.025ms, having good synchrony; III, with t ≥ 1.05 ms,

again with poor synchrony. In each regime, we plot superimposed cross-correlations of local average pyramidal cell voltages (e),

from opposite ends of the array, using each simulation in that regime; and also superimposed autocorrelations of local average

interneuron voltages (i), again using each simulation in the regime. In regimes I and III, the pyramidal cross-correlations lack a

clear peak at 0 ms, and interneuron autocorrelation has either small, single side peaks (I), or double side peaks (III) (arrows).

In regime II, in contrast, there is a sharp peak near 0 ms in the pyramidal cross-correlation, and single, sharp side peaks in the

interneuron autocorrelation, the latter corresponding to synchronized interneuron doublet firing.
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Figure 4.3. The reduced network: a pair of local circuits, each with an e-, and i-cell. Conduction
delays are significant only across columns.

4.1.2 The Simplified Biophysical Model

In order to elucidate the dynamic behavior of a larger network it is easier to consider a reduced

model with the excitatory and inhibitory populations each represented by a single neuron. Two

copies of such a pair representing the two edges of a slice are coupled together by a conduction

delay. Remarkably, as shown in [7], such a minimal model captures the essential dynamics very

effectively.

Figure 4.3 shows a schematic of a two-column model consisting of pair of local circuits consisting

of pyramidal cells and interneurons at two sites some distance apart. Pyramidal → interneurons

connections are modeled as AMPA receptor-mediated excitatory synapses, while interneurons in-

nervate pyramidal cells via GABA(A)ergic inhibitory synapses. The biophysical equations modeling

each cell are obtained from the reduction of a model of Traub and Miles for spiking [41]. e-e con-

nections are thought to be sparse in the CA1 region of the hippocampus, and such connections are

not included in the model (i.e. gee=0). Conduction delays are negligible within a column, but sig-

nificant across all interactions between columns. We also leave out leave out i-i connections across

columns. Only those i-cells that are connected together without appreciable delays are assumed

to be part of a local circuit. Interneurons are modeled with self-coupling to account for inhibition

from within the local population.
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4.1.3 ING and PING rhythms

Traub and colleagues [41] have classified gamma rhythms as produced by essentially two different

network topologies. Clearly, interneurons must play a significant role in these rhythms (mutual

excitation in a population of only excitatory cells would be uncontrollable). Thus Interneuron

Gamma, or ING, is a mode of activity in which strong recurrent connections between interneurons

produce network rhythms at gamma frequencies. Pyramidal cells either do not participate in the

rhythm, or if they do, they do not contribute to shaping the frequency significantly, i.e. they are

gated by the i-rhythm. (We considered this type of rhythm in the last chapter.) Network frequency

in Pyramidal-Interneuron Gamma (PING), on the other hand, involves both pyramidal cells, and

interneurons in synergy. Typically, pyramidal cells are inhibited by interneurons (slowed down),

and interneurons are excited (sped up) by pyramidal cells. Recurrent connections between the two

populations interact to produce gamma rhythms. The model considered here is an example of a

PING network.

The i-cells can be modeled as modeled either as excitable (does not fire without input) or

tonically firing, and receiving self-inhibition (which can come from other cells of this population).

The i-neuron is a Type 1 neuron. Type 1 neurons can have an arbitrarily long latency to firing

after stimulation. For an excitable cell, this means that, as the cell receives increasing amounts

of depolarized injected current, it becomes oscillatory through a saddle-node bifurcation. That is,

the onset of repetitive firing can occur at arbitrarily low frequencies. For a tonically firing cell, it

ceases oscillations with sufficient hyperpolarizing current, again through oscillations of arbitrarily

low frequency.

When the system is sufficiently close to synchrony, each e-cell fires one pulse per cycle (with

further pulses halted by the inhibition), and each i-cell fires one, two, or three pulses (in response

to excitation from the extrinsic and intrinsic e-cells).

Each reciprocally coupled e-i pair is an oscillator. In the simulations, sustained tonic currents

drive the (isolated) e-, i-cells to spike periodically. The experimental justification of this follows from

the stimulus protocol [41]. Brief tetanic stimuli - 20 pulses at 100 Hz - are delivered simultaneously

to the stratum radiatum proximal to the cell body layer at two recording sites at either end of

the CA1 region (separation 0.7-1.1 mm) every 4 minutes throughout each experiment. Repetitive

electrical stimulation of sufficient intensity (8-30 V, 50-µs duration) induce large (upto 20mV)
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depolarizations in both pyramidal and interneurons that typically last for hundreds of ms. A latent

period - about 125 ms - following the stimulus, gamma oscillations begin. (Note that gamma is a

network rhythm; in an experiment action potential trains in isolated pyramidal cells or interneurons

are markedly different from the network oscillations.)

4.2 Regions of Stable Synchrony in the τe − δ plane

We use the four-cell network described above to check if synchrony is stable while varying the

delay parameter, δ, for different values of τe. (Since we are only interested in the asymptotic

stability of synchrony,) each run is started with initial conditions sufficiently close to synchrony.

The equations are integrated for a total time of one second, allowing transients to decay sufficiently.

We then compare the firing times of the two e-cells in a cycle; we take them to be synchronized

only if they fire to within half a millisecond of each other. The results of the simulation are plotted

in Figure 4.4. (We remark that the plot here thus does not give any indication of the domain of

attraction of a stable solution.) Several regions of synchrony can be detected. The patterns of i-cell

firings are however different in these different regions, as the following table shows:

A, B, C synchrony, with i-cell triplets

D, E synchrony, with doublets

F synchrony, with singlets

We will now show that it is possible to understand this behavior in the full network (i.e. the

four-cell network) by studying a reduced map, as in [7], that encodes the response of a single i-cell

to two temporally dispersed excitatory inputs.

4.3 Reduction to a Map in the Ermentrout-Kopell Model

By reducing the network to a two-site, four-cell network, naturally one loses details of the

various biophysical processes that exist the “real” network in vivo, or even in vitro. The advantage

of studying a minimal model lies in the hope that it may be possible to specify the interactions

between cells in a relatively complete fashion, at least to a first order. (Of course, perhaps not

surprisingly, even in this simplified model the patterns of activity can become very complex.) Under
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Figure 4.4. The phase plot of synchronous behavior in the τe-delay plane as computed in the two-
site, four-cell network. Synchrony is marked in blue. Voltage traces show that in regions A, B
and C (both) interneurons fire triplets, in regions D, E, doublets, and singlets in F. Also indicated
are the regions that correspond to parameters for the interneuron firing patterns seen in wild mice
(synchrony through interneuron doublets), and mutants (loss of synchrony) [1].

the assumption that spikes are thin (with respect to the period) the times of spikes can be specified.

If, in addition, we make certain assumptions on the nature of the coupling (e.g. the topology of

connections and the direction of influence, the biophysical behavior (type) of synapses), it becomes

possible to specify firing times on successive cycles through the order in which cells influence each

other during the cycle. That is, one can derive a map that produces the time difference between

the two e-cell spikes (say) from one cycle to the next. Synchrony then corresponds to a fixed point

of this map at a time difference of zero. We assume that the system is close to synchrony; we can

then use the maps to see if the dynamics brings the system closer to synchrony or further away.

Here we briefly recall the details of the construction of the maps, which closely follows [7]. (In
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the canonical case,) each e-cell fires once per cycle. Each i-cell receives an (excitatory) input from

the e-cell in the same column, and another from the e-cell of the other column after a delay. It

may fire one, two, or three spikes depending on the decay constant of the EPSC, and the particular

value of the delay. (Note that in [7], the i-cell fires doublets, with the first spike being in response

to the excitation from the same column and the second due to the delayed excitation from across

the columns. Here, we generalize to the cases where either doublets or triplets can, in addition,

arise due to local excitation alone. This is due to the longer time constant for synaptic decay that

we consider.) Thus (close to synchrony) the oscillation follows the following mechanism:

1. Each e-cell in either column (say column 1) fires and induces the local i-cell to spike. Let t1

be the time that e1 spikes and t2 be the time that e2 spikes.

2. Each i-cell cell, say i1, experiences excitation due to the extra-columnar e-cell, i.e. e2, after

a delay, δ. In some circumstances, this may cause another spike in the i1 (if the delay is

timed such that the i1 has recovered from its refractoriness and is able to fire again) or it

may only modulate the period of the next i-spike. Spike(s) from i1 suppress e1 immediately,

but influence e2 only after a delay.

3. e1 receives inhibition from i1 and, after a delay, from i2. It is released from suppression when

the total inhibition has decayed sufficiently. e2 fires again by the same mechanism, mutatis

mutandis. Let t̄1 be the time that e1 spikes again (i.e. on the next cycle), and t̄2 be the time

that e2 spikes again.

We can use two preliminary maps to consider separately the effects of the response of the i-cell

and that of the e-cell to their inputs. TI encodes the response of the intrinsic i-cell to excitation

from the intrinsic and extrinsic e-cell. (It also gets self-inhibition, which we consider to be a part

of the definition of the intrinsic dynamics of the i-cell.) Let ψ be the time between the receipt

by an i-cell of the excitatory pulses from the intrinsic and extrinsic e-cells. We let TI(ψ) be the

time after the second excitatory input at which the (intrinsic) i-cell fires next, Figure 4.5. TI(ψ)

depends on the parameters of the i-cell and the strength of the synapses onto the cell. TI(ψ) can

be computed by considering an e-i column coupled to an extrinsic e-cell without delay; a stimulus

(whose time we can control) is applied to (cause) the extrinsic e-cell to fire at various times with
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respect to the intrinsic e-cell to mimic conduction delays. Notice that near synchrony, due to the

delay the spike from the extrinsic e-cell is always received later than the spike from the local e-cell;

thus ψ is always positive. (In some phase-locked states, this need not be the case.) We shall

make the approximation that the effect of the last two spikes received by an e-cell is much more

important than that of any previous ones in determining its next firing time. This approximation

is valid because the inhibitory synapses are close to saturation after one spike so that a later spike

of inhibition wipes out the information from an earlier spike (both coming from the same cell).

The other map, TE , encodes the response of an e-cell to (the last) two inhibitory pulses. TE

can be derived as follows. Let tie denote the time after the e-cell fires that the i-cell of the same

circuit fires last, assuming no other input. And let φ be the time between the arrival of the last two

spikes at an e-cell. In absence of the extrinsic input an e-cell is released from suppression when the

inhibition decays to some value g∗ = gie exp(−(tp − tie)/τ), where tp is the period of the uncoupled

circuit, and τ is the inhibitory decay time. If then, there is also inhibition from the extrinsic i-cell

(near synchrony) it is received later by the e-cell, in which time the inhibition from the intrinsic cell

has decayed to a value gie exp(−φ/τ). The sum of the two inhibitory conductances then decays to

the value g∗ in the time

TE(φ) = τ ln{e−φ/τ + cie/gie}+ tp − tei (4.1)

after the last input to the e-cell.

The time that e1 fires on the next cycle can be derived as follows. Recall that t1 and t2 denote

the times that the intrinsic and extrinsic e-cells fire on some cycle. Let ∆ = t2 − t1. Inhibitory

pulses from Iint and Iext are received at Eint at the following times, with the following paths:

1. Eint → Iint → Eint. Arrives at t1 + tei.

2. Eext → Iext → Eint. Arrives at t2 + tei + δ.

3. Eext → Iint → Eint. Arrives at t2 + δ + TI(∆ + δ).

4. Eint → Iext → Eint. This pulse is sent from Iext at t1 + δ + TI(∆ + δ) and arrives at Eint at

t1 + 2δ + TI(−∆ + δ).

We make the approximation that the effects of the latter two spikes is more important than that

of the first two. This assumption is valid because the inhibitory synapses are close to saturation
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Figure 4.5. An i-cell (red) fires in response to excitation from the intrinsic (black) and extrinsic
(blue) e-cells. Note that although the two e-cells are firing very close to each other, the EPSP from
the distal site is experienced by the i-cell only after the delay δ (dashed blue). The map TI(ψ)
thus encodes the response of the i-cell to two e-inputs, temporally dispersed by an amount ψ. TI
is then defined as the (next) firing time of the i-cell since the last received e-pulse. Note that since
the inhibitory synapses are close to saturation (section 4.3) upon firing once from immediate local
excitation, we make the assumption that the time of the last i-spike in the cycle is most relevant
to the dynamics of the network: that is, TI is measured upto whichever is the last i-spike in that
cycle.

after one spike: thus the third spike of inhibition wipes out the information from the first, and the

fourth does the same for the second. Pulses 3 and 4 are clearly the last to arrive at Eint.

Thus the times t̄1, t̄2 at which Eint and Eext fire again can be specified as

t̄1 = t1 + 2δ + TI(−∆ + δ) + TE(−∆ + δ + TI(−∆ + δ)− TI(∆ + δ)), (4.2)

with t̄2 obeying a similar formula with indices 1 and 2 reversed, and the replacement ∆→ −∆. We

thus obtain a map for the difference between the timings of the two e-cells on consecutive cycles,

∆ 7→ ∆̄ = (t̄2 − t̄1) ≡ Gδ(∆)

Gδ(∆) = ∆ + Fδ(∆)− Fδ(−∆) (4.3)

where

Fδ(∆) = TI(∆ + δ) + TE(∆ + δ + TI(∆ + δ)− TI(−∆ + δ)). (4.4)
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4.3.1 Analysis of Synchrony

The synchronous solution is given by Gδ(0) = 0, and is stable if |G′δ(0)| < 1. This in turn means

that

−1 < F ′δ(0) < 0, (4.5)

where F ′δ(0) = T ′I(δ) + T ′E(δ)[1 + 2T ′I(δ)].

Recall that TE(φ) is essentially independent of φ for large φ, Equation 4.1. We also note that

taking the limit cie → 0 implies that the map

TE(φ) = −φ+ tp − tei (4.6)

is linear in φ. In our simulations we shall neglect long-range i→e connections (and take cie ≈ 0).

When cie → 0, TE(φ) is independent of any influence from the extrinsic i-cell; however, it formally

serves as a bookkeeping device to locate the position of the next e-spike.

Taking T ′E = −1 from Equation 4.6, the stability boundary occurs for T ′I(δ) = −1, when

F ′δ(0) = −1. We thus obtain the slope of the TI map as an index of (a)synchrony. Note that a map

that is stable to perturbation expresses the fact that, mechanistically speaking, there is a feedback

process in the network that drives cells towards the stable solution on successive cycles. That is, if

either e-cell is driven away from (stable) synchrony, the network exerts a corrective effect to drive

the cells together on the next cycle.

An alternate derivation of the above result is given in [7]. The derivation given there does

not rely on taking the limit of a vanishingly small cie. Instead, it supposes that i→e connections

across columns do not exist at all. The analysis follows along lines such as above, but with the

essential difference that each e-cell receives two pulses of inhibition and not four, both from the

intrinsic i-cell (spikes 1 and 3 above) alone. In that case, TE is interpreted as encoding how the

e-cell responds to two inputs from its own circuit. The condition on the slope of the TI map for

stability of synchrony that is arrived at then, is identical to the one here (see also, [7] for additional

details of the algebra).

Equation 4.5 (and the corresponding condition on T ′I) says that if we compute T ′I for a given

τe, we should be able to predict the (loss of) synchrony in the full network by determining if
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slope of TI is (greater) less than 1 in magnitude. Recall (section 4.3) that the map TI(ψ) can be

computed for several values of ψ, by applying two excitatory stimuli ψ ms apart to an i-cell and

measuring the time taken for the i-cell to fire since the last input. We will examine some such maps

below; for example, Figure 4.12 (right panel) shows the map computed for τe = 4. At (network)

synchrony then, an i-cell receives two e-inputs a time ψ = δ apart, since the local excitation arrives

immediately while the extrinsic excitation takes a time precisely δ to arrive. Thus: to look for

stable synchrony for a given value of delay in the full network (at a given τe), one picks out the

slope of the map, T ′I(ψ = δ) (computed for that value of τe); if this slope is less than 1 in magnitude,

synchrony ought to be stable, else not.

We will next examine the behavior of the network for various values of τe and δ. We shall

compute T ′I(ψ) (and its derivative) at different τe and correlate the regions of synchrony in the

network to regions in the map where the slope is less than unity. The process of computing the

map (described above) indicates whether an i-cell will respond with singlets, or doublets, or triplets

to two excitatory inputs, and this will also enable us to predict firing patterns in the full network.

In order to fix these ideas, we will begin by describing the dynamics in network in the case

considered in [7], which we find in our phase plot 4.4 at parameter values τe = 2, δ = 7 (say). Then,

we shall consider three different sections of the plane at τe = 1.5, 3 and 4 which are representative

of the regions of synchrony in τe−δ, as broadly classified above. For each of these cases, we examine

the voltage traces from simulations of the full network to identify the different activity patterns;

we also compute the map TI to verify if it predicts the onset of synchrony.

4.4 Dynamics of Synchrony in the τe − δ plane

At parameter values, τe = 2 and δ = 7, synchrony can be seen to be stable, as in Figure 4.4 (full

simulation). A simulation, Figure 4.6, shows that in absence of input from the extrinsic cell (by

setting cei = 0) an i-cell fires only one spike per cycle. Figure 4.7 (left panel) shows the response of

the i-cell to two excitatory inputs a time ψ apart. Another excitatory input arriving at short time

later evokes a second spike in the cell. (It is the time of this second spike that is plotted in the

figure.) Thus if two e-cells in the full network are synchronized, and the delay in the network is a

value δ = δ̄, the response of the i-cell in the network can be read as TI(δ̄). The right panel plots
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the slope of the TI curve. By the analysis in the previous section, if synchrony is to be stable in

the full network, the figure indicates that ψ (or equivalently, the delay, in the full network) must be

greater than 2.36 (as can be read off readily in Figure 4.7 on the right). Indeed, the boundary of

the stable region E in Figure 4.4 lies close to this value (δ ≈ 2.25). We remark that this parameter

set corresponds to experimental observations in wild-type mice: recall that synchrony is mediated

by interneuron “doublets”. The analysis with the map shows that synchrony is not possible for

very short delays.

Figure 4.6. τe = 2, δ = 7. Left. An EPSP in an i-cell from the intrinsic e-cells alone evokes single
spikes, e-cell in black, i-cell in red. Right. In the full network e-cells (blue and black overlaid) are
synchronized through interneuron doublets (red).

We now turn to the various other regions in the Figure 4.4.

4.4.1 τe = 3

We begin by describing the dynamics at a section τe=3 of the phase-plot in Figure 4.4. Five

qualitatively different regions can be seen in the figure: at very small values of the delay one

observes that synchrony is stable, for somewhat larger delays unstable, then stable, and unstable

again and stable for large delays. Figure 4.8 shows spiking activity in the cells in each of these

different regions. Note that in the plots (a), (b), (c) and (e) the i-cells fire doublets; in plot (d)

half the i-cells fire doublets, the other half triplets, and in (e) both i-cells fire triplets. Evidently,

with larger delays in the network it becomes easier to evoke triplets in the i-cells due to the clear

separation of excitation from the local and distal e-cells. The role of local and extrinsic circuits in
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Figure 4.7. The TI map (left), and its slope (right) at τe=2. Note that the slope −1 < T ′I < 0 for
ψ > 2.36.

evoking either doublets or triplets in an intrinsic i-cell is made clear by looking at the TI map for

τe=3.0, Figure 4.9.

4.4.1.1 The TI map.

Figure 4.9 shows the map TI for increasing values of ψ. Only the last elicited spike is plotted

in the graph. There are, qualitatively, three pieces to this curve, marked blue, black and red. We

find that τe = 4 is large enough to evoke spike doublets due to intrinsic excitation alone. For

ψ < 6.9 (blue curve), the second excitatory arrives soon enough that it can modify the timing of

this “intrinsic” interneuron doublet. For ψ > 6.9 (black; broken), the later e-input arrives after

the second i-spike, and hence the time of the doublet is determined by the intrinsic pulse alone.

Here the slope of the “doublet” TI is therefore -1. It is not difficult to estimate the critical value

of ψ for which a third spike may be evoked due to the second excitatory input. (This is the value

of ψ corresponding to the vertical asymptote of the “triplet” curve (red).) Due to the saddle-node

nature of these (Type 1) neurons, this third spike can appear after an arbitrarily long latency. The

e-cells, however, recover from suppression in finite time (and the cycle is terminated). Thus, in the

simulations of the full network i-cells effectively fire doublets in this regime. (ψ < 9.4 was estimated

from a direct computation of the map). For ψ > 9.4 (red curve), as the map shows, the i-cell fires
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Figure 4.8. The phase plot of synchronous behavior in the τe-δ plane around τe=3. Traces
of activity in the e-cells (black, blue) and the i-cells (red, green) are shown at points repre-
sentative of the different regions with increasing δ. The plots are computed at values of delay
δ = 0.5, 1, 4, 8, 9.7, 16; τe = 3.0. Note, in particular, the dots in red that mark where the slope of
TI evaluated for τe=3, crosses -1.
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Figure 4.9. The TI map at τe=3. The red curve indicates a firing of triplets. For lower values of
δ, however, the excitation does not arrive late enough to induce a third spike (blue). For δ > 6.9
(broken curve), distal excitation can no longer influence the second spike.
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Figure 4.10. The slope of the TI map in the “doublet” regime (left), and in the “triplet” regime
(right) at τe=3. The slope crosses the line T ′I=-1 at the points ψ = 0.7, 1.9 and 6.9 successively
(left panel); and 11.61 (right). Notice that the rightmost point on the abscissa on the left is the
same as the leftmost abscissa point on the right i.e. the two panels may be “concatenated” with
respect to the horizontal axis..

a third spike soon enough to inhibit the (intrinsic) e-cell within that same cycle.

4.4.1.2 δ=0.5.

The slope of the TI map is greater than -1, and we expect that synchrony is a stable solution.

Figure 4.8 (a) shows the spike activity computed in the simulation. The upper panel indicates the

spikes of the e1 (in black), and e2 (in blue), and the lower panel shows activity of the i-cells, i1

(in red), and i2 (in green). An overlap of the black and blue, and red and green, curves indicates

a sub-millisecond phase difference between the cells. We remark on the difference between the

mechanism of doublet firing here and in [7] (which arises from the larger value of τe). In [7] (as

in the case τe = 2 above) the second spike of the doublet arises from a delayed excitation arriving

from the inter-columnar e-cell (a case that we consider below). With a more persistent excitation

(larger τe) each interneuron can fire doublets in rapid succession under the influence of the local

e-cell alone; the distal excitation, if received soon enough, modulates the TI map, resulting in a

non-constant slope. Synchrony is possible if this slope is shallow enough.
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4.4.1.3 δ=1.

Figure 4.8 (b) shows that synchrony is unstable. This is also corroborated by looking at the

slope of the TI map at ψ=1 in Figure 4.10, the slope in this region takes a steep dive below −1.

Nevertheless, with initial condition that are close to the synchronous state, a small perturbation

drives the system into a nearby phase-locked position. Since the system is symmetric with respect

to the two columns, the solution with the identities of the two columns reversed (i.e. spike times

with i,e-cells 1 and 2 reversed) is also equivalent to the latter. Thus, (starting from initial conditions

near synchrony), a symmetry-breaking bifurcation leads to either of the two phase-locked positions.

Numerically, this phase-locked solution seems to be stable. We now reason the existence of this

solution. Suppose that on some cycle e1 fires ahead of e2, the figure shows that i1 spikes ahead

of i2 (both spikes in the doublet, compared pairwise). Then, if ti1 and ti2 denote the spike times

of the second spikes of the respective i-cells: e1 receives a delayed inhibition from i2, and a local

inhibition from i1. Clearly, the latter arrives later. So the time e1 spikes again is given by ti2 + δ+

TE(ti2 + δ− ti1). e2, on the other hand, receives its inhibition from ti1 delayed, and local inhibition

from i2. So that the time that e2 spikes again is given by max(ti1 +δ, ti2)+TE(|(ti1 +δ)−ti2|). Note

that the effect of the delay is to bring ti1 and ti2 “effectively” closer (i.e. decreasing φ) with regard

to e2, and farther (i.e. larger φ) with respect to e1. Since the TE map decays with φ, e1 continues

to fire sooner than e2 on the next cycle. (Indeed, algebra of the usual kind reveals the fixed point

∆̄ ≈ δ. This is not, however, entirely accurate since in this case (i.e. locking with a phase difference

comparable to the delay) it becomes important to distinguish the local and distal spikes in the

computation of the TI map. That is, TI(ψ; ei then ej) 6= TI(ψ; ej then ei). Of course, this issue

does not arise in the calculation considering synchrony since ψ = ±∆ + δ is always positive: the

perturbation in either e-cell can be made smaller than any value of delay without loss of generality.

So the spike from the distal e-cell is always experienced later than that from the local column.)

4.4.1.4 δ=4.

Figure 4.8 (c) shows synchrony is stable. The slope of the TI map is greater than -1. This region

is qualitatively similar to the case δ = .5 considered above. Excitation from the extrinsic e-cell

arrives with a delay so as to modify the time of the interneuron spike doublet, but not sufficiently

late in the cycle to evoke a third spike (Figure 4.9). This region of stability spans delays over nearly
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5 ms.

4.4.1.5 δ around 8.

As the delay increases beyond δ=6.9, the extrinsic excitation is received late enough that the

timing of the second spike in the local cell is entirely unaffected (black curve in Figure 4.10). The

slope in TI for doublet firing is therefore = −1.

Near a value of δ greater than 6.9, then, the i-cell can fire triplets. The relevant slope to consider

is that for the “triplet” TI map, Figure 4.10, right panel. As noted earlier, this third spike can be

evoked after an arbitrarily long time so that slope of the map is large here. And the network loses

its synchrony.

A common pattern of firing in this region, Figure 4.8 (d) at δ = 8, results from a doublet-triplet

mismatch [1]. Say e1 fires ahead of e2 in some cycle, then the prolonged EPSP will cause the i1 to

fire triplets (local plus distal excitation). Since the spike from e1 is received by i2 after a delay, e1

and e2 are temporally less separate for i2 than for i1. Thus, i2 may only fire doublets. The extra

inhibition from the triplet spikes pushes the i1 farther out so that the order of spiking of the two

e-cells is reversed on the next cycle.

As delays become greater than 9.4, triplets can be evoked with latencies comparable to the

period of the oscillations. The TI slope however, is large and negative, and synchrony continues

to be unstable. A commonly recurring solution in this region (as seen in simulation) shows that

anti-synchrony seems to be the preferred mode of locking here. Figure 4.8 (e) shows e-cells started

near synchrony quickly step out of phase. (Notice that this implies that the frequency of the

rhythm doubles, i.e. a field potential recording of the network population will indicate a power

spectral peak at twice the frequency of the individual cells.) Although this is one (of the more

likely) possible solutions, other solutions may well exist in this regime: the (arbitrarily) delayed i-

spike can influence firing in complex ways. Ermentrout and Kopell indicate the existence of chaotic

solutions in a similar regime (see also below).

4.4.1.6 δ=16.

The TI slope is nearly zero; synchrony is stable. Triplet spikes form at both sites, Figure 4.8

(f). Note that the frequency of the rhythm is somewhat slower due to the larger delays in the
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circuit. However, with such a low slope while synchrony is stable, locking is very weak. Hence

heterogeneity in the cells is not likely to be tolerated, even less so for larger delays. Figure 4.11

shows the results of adding the same amount of heterogeneity in the drives to the two e-cells for

two nearby values of delta. For larger δ (and smaller slope) synchrony is broken, while at slightly

lower δ the cells continue to lock nearby.

Figure 4.11. τe = 3, δ = 15(left), and 17. There is a 14 % heterogeneity in the drives to the two
e-cells. For larger delays, synchrony is weaker.

4.4.2 τe=4

We next consider the effect of an even larger τe on the dynamics of synchrony. In this regime, τe

is sufficiently large to evoke intrinsic triplets in each i-cell. (Distal excitation, however, modulates

the timing of the i-spikes.) Figure 4.14 shows a computation of the TI map, and Figure 4.12 shows

the corresponding regions in τe − δ. Synchrony is lost in the regions of delay where the slope is

more negative than unity. For large values of the delay, the last i-spike is evoked with nearly a

fixed latency, so the slope of TI is nearly zero, and synchrony is feeble.

4.4.3 τe=1.5

At the rather low value τe=1.5, Figure 4.4 shows that synchrony is largely unstable. This is in

keeping with experiment and large-scale simulations; doublets have been noted to be necessary for

synchrony.
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Figure 4.12. The TI map (left), and it slope (right) at τe=4. The slope curve in red is a piecewise
polynomial fit to the numerical data (blue; overlaid). The slope crosses the line T ′I=-1 at the points
ψ = 0.35, 2.1, 4.58, 5.95 successively.

Figure 4.13. The slope of the TI map in the “singlet” regime (blue), and in the “doublet” regime
(red) at τe=1.5. The slope crosses the line T ′I=-1 at the points ψ = 0.9 and again at 8.9. Note that
at 7.2 the doublet is evoked soon enough to affect phase in the same cycle.
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Figure 4.14. The phase plot of synchronous behavior in the τe-δ plane around τe = 4. Traces
of activity in the e-cells (black, blue) and the i-cells (red, green) are shown at points repre-
sentative of the different regions with increasing δ. The plots are computed at values of delay
δ = 0.25, 1, 4, 5, 10; τe = 4.0. Note, the dots in red that mark where the slope of TI evaluated for
τe=3, crosses -1.

Stable solutions are seen to form for very small values of δ, Figure 4.15. For very small values of

delay, each i-cell can fire only single spikes. This condition disappears around ψ=0.9, Figure 4.13,

where it now becomes possible that each i-cell can fire doublets. Due to the large response times

of the i-cells involved, complicated firing patterns, can develop. For example, at τe=5, a chaotic

seeming solution can be seen in simulations, figures 4.17 and 4.18. At about ψ=8.9, the TI maps

predicts that stably synchronous solutions can form. Indeed, the simulations indicate nearby regions

in τe-δ plane where synchrony is present. However, we note that in this case, i-cells (can) fire
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doublets with latencies comparable to the delay times involved. Thus it is not clear that the map

idea is particularly useful in such a regime. Complicated firing sequences can develop, and are

difficult to study unless on a case by case basis. (e.g. at δ=14, the e-cells are synchronized with

i-cell singlets, but at a rather high frequency of 66 Hz.) On the other hand, the map suggests

that the anti-synchronous solution might also be possible to obtain. We see such a solution at δ=7

for example, figure 4.19. We remark that the map itself, Figure 4.13, breaks down at ψ = 11 or

so. This is because the inhibition is weak enough that the e-spike of the next cycle truncates any

further measurement.
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Figure 4.15. τe=1.5, δ=0.5, stable synchrony.
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Figure 4.16. τe=1.5, δ=2, the “alternating” pattern, but with only singlets.
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Figure 4.17. τe=1.5, δ=5, a fragment of an intricate pattern.

Figure 4.18. chaos?.

4.4.4 The Experimental Results of Fuchs et al

Given the phase-plot of Figure 4.4, we can now pick out the regions that corresponds to the

results in [1]. In their study, single shocks elicit double action potentials in the mutant interneurons

(i.e. with slowed EPSP’s), but only single spikes in the wild-type mouse. Synchrony across the slice

in wild mice is mediated by doublet firing in a large fraction of the population. Such a condition

corresponds to parameters at, say, τe=2 and δ = 7 as noted above. To understand why synchrony

is degraded for larger values of τe we consider a section of plot at, say, an average delay of δ=7ms.

For τe=1.5, the doublets are disrupted on either or both columns. At larger τe, e.g. τe=3, the

doublets are disrupted too, but through an extra spike that is picked up by one of the i-cells in each
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Figure 4.19. τe=1.5, δ=7, anti-synchrony.

cycle (i.e. the doublet-triplet mismatch). This is precisely the mechanism for the loss of synchrony

with larger τe that was proposed in [1].

Carrying this argument further, our analysis also predicts that for even higher values of τe,

it may be possible to improve synchrony again, this time with a feedback involving triplets. It

may, of course, turn out be difficult to test for this in experiment because the parameter ranges

may be physiologically unrealistic. A wide variety of other interneurons are known to fire doublets

relatively easily. The mechanism of synchrony through triplets is general enough that it may be

tested for in other similar situations.

4.5 Discussion

In detailed computer simulations of the network, such as that in [1], [44], it is possible to

capture many more features of the network than we do here. Such simulations also reproduce the

morphology of neurons to some extent by constructing them out of “compartments” connected

together. Although the complexity of individual neurons and synaptic connectivity is mimicked

more closely, nevertheless it cannot be reproduced completely. Such a simulation can include several

other features of the network including dendritic integration of EPSPs and gap junction coupling,

and the effects of varying network size and connectivity. In such a large-scale simulation, it is

difficult separate cause and effect. In the reduced model we consider here, the role of the synaptic
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kinetics in the dynamics of the rhythm becomes much clearer, and available to analysis.

We use a map in the Ermentrout-Kopell [7] framework to further clarify the role of the nonlinear

response of an interneuron in providing the feedback loop mediating synchrony between signals that

would otherwise naturally be out of phase with each other. [7] showed that interneuron doublets

that arise from delayed extrinsic excitatory impulse can facilitate synchrony for certain amounts of

network delays. This (i.e. doublet synchrony) is indeed the case that seems to be most relevant to

experiments. Here we consider the effects of increasing and decreasing the EPSP time constant on

network behavior. With a more persistent excitation i-cells can fire triplets. Experiments of [1] on

mutant mice with larger decay EPSC kinetics show impaired synchrony. They observe triplet firings

in population recordings; single cell recordings, however, show the absence of (intrinsic) triplets.

We show a regime in τe and δ where synchrony is lost that is consistent with their results. We

also note that synchrony arises primarily out of the interaction between the responses of the two

i-cells (the e-cells are simply slaved to the inhibition). Thus we show it is also possible to stabilize

synchrony with (intrinsic) triplets forming on both columns. It is even possible to synchronize with

singlets; however, such a synchrony is not robust. In all of this, the map of the reduced problem,

TI , is central to the understanding.

4.6 Appendix

The equations for each cell are obtained from a model of Traub and Miles for spiking [41]. The

equations are

CdV

dt
= −gL(V − VL)− gKn4(V − VK)− gNam3h(V − VNa) + I0 + Isyn

with ion channels for leak, sodium, and delayed rectifier potassium.

Here m = m∞(V ) = am(V )/[am(V ) + bm(V )] where am(V ) = 0.32(54 + V )/(1 − exp[−(V +

54)/4]) and bm(V ) = 0.28(V + 27)/(exp[(V + 27)/5− 1]).

The K-gate n(t) satisfies dn/dt = an(V )(1− n)− bn(V )n, with an(V ) = 0.032(V + 52)/[1−

exp(−(V + 52)/5)], bn(V ) = 0.5 exp[−(57 + V )/40].

A reduction to a two-dimensional equation is obtained (28) by setting h = max(1− 1.25n, 0).
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Parameter values are C = 1, gL = 0.1, VL = −0.67, gNa = 100, VNa = 50, gK = 80, VK =

−100, I0 = 0.5 for the I cells and I0 = 13 for the E cells.

C is measured in µF/cm2, conductances in mS/cm2, currents in µA/cm2, voltages in mV , and

time in ms.

Each synaptic current has the form gsyns(t−δ)(V −V syn). Here gsyn = gii, gie, gei, cieorcei. The

subscripts denote the source and target of the synapse, the g’s denote conductance within a circuit,

and the c’s denote conductance between the circuits, gii = 0.15, gei = 0.34, gie = 1.8, cei = 0.12

and cie = 0. δ = 0 for synapses within a local circuit. s satisfies ds/dt = A S(V̂ )(1 − s) − B s,

where S(V̂ ) = 1 + tanh(V̂ /4) and V̂ is the presynaptic voltage. For excitatory synapses, A =

20 ms−1, Vsyn = 0; for inhibitory synapses, A = 1 ms−1, B = 0.05 ms−1, Vsyn = −80 mV .

Simulations were done using XPPAUT (Ermentrout [34]). The usual method of integration is a

Gear-type integrator adapted for use with delay equations.
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Chapter 5

Discussion

Recurrent activity is prominent in several aspects of brain function. Neurons, in particular,

can exhibit oscillatory modes under appropriate conditions (i.e. for particular values of “driving”

currents). We have studied here aspects of the patterns of temporal activity that can emerge in

networks of neurons (oscillators) coupled together, using maps to facilitate a mathematical analysis.

The use of maps is inspired by the idea that “firing” times of the oscillators can be “mapped out”

from cycle to cycle as the activity recurs. The steady (asymptotic) state is of primary interest, as

is the question of its stability to (small) disturbances.

In the first chapter, we study oscillators (largely inspired by neuronal behavior) pulse-coupled

with phase response curves. PRCs serve to establish the neuron’s response to perturbations (typ-

ically synaptic input – excitatory or inhibitory) received at different phases in its cycle. As is to

be expected, excitatory inputs typically advance the phase, while inhibitory input delays it; the

PRC may also have both positive and negative halves (as a function of phase). The PRC itself can

be measured directly in experiment, precluding the need to model the dynamics of the neuron. A

PRC can also be computed numerically for a given model neuron (with different PRCs resulting

for different types of “stimuli”), and for some simple cases, even analytically. We first study two

(identical) neurons coupled through their PRCs. We derive a map that describes the firing time

of one of the oscillators (using the other’s firing time for reference). Analysis of the stability of

fixed points establishes conditions on synchrony (with both oscillators firing simultaneously on all

cycles) and other phase-locked states. We show how these conditions can be related to the shape

of the PRC. Thus, properties of individual neurons – the effect of stimulus on the period – the

PRC – determine whether the synchronous solution exists in the network, and is stable to small

perturbations. (That is, if one presumes that the PRC can be obtained in some (a priori) way,

then its nature can be used to predict experimentally verifiable results on the temporal activity in

the network.) We then extend the analysis to other geometries of connectivity. We obtain neces-

sary and sufficient conditions for synchrony to be a stable solution in globally coupled networks.
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Interestingly, in networks with an asymmetry in the (slope of the) PRC about 0 (the phase at

which an oscillator is taken to fire), the size of the network becomes relevant. For no change in

the PRC or the oscillators, networks larger than a critical size fail to synchronize stably, while any

smaller network does (stably) synchronize. We demonstrate waves on a ring (with conditions on

their stability), and in two dimensional arrays (stability is suggested from numerical simulation).

We also study chains of oscillators. It is difficult, in general, to derive a map or study the stability

of synchrony for such geometries as the chain and the ring: this arises from the fact that the firing

sequence need not be maintained from one cycle to the next. (Then the problem quickly becomes

combinatorial, and many cases would need to be considered separately even for small network

sizes.) We do, however, speculate that for “sufficiently connected” topologies (with an irreducible

connectivity matrix), the PRC can indicate stability of the synchronous solution. A theory for

general all-to-all coupled networks remains open.

The techniques used here can probably be extended also to networks of oscillators with slightly

different intrinsic frequencies. Another feature of the theory is that it largely ignores the strength of

the perturbation due to multiple simultaneous inputs. That is, a neuron is assumed to respond to

stimuli with only a change in phase, and not in amplitude. (The attraction to the limit cycle is as-

sumed to be rapid (instantaneous); multiple inputs are “composed” together.) While heterogeneity

in oscillator frequency can be expected to yield to the formalism to a certain extent, heterogeneity

in coupling is significantly more difficult.

Another instance of rhythmicity in the brain is the oscillatory output evident in recordings of

electrical (EEG) and magnetic (MEG) fields around the brain. We examine certain features of

activity in the gamma band (in mice), and beta in humans.

Experiments of Jensen et al [6] observed a marked increase in the power in the human beta

band with the administration of benzodiazepines: the source of this activity was located to the

sensorimotor cortex. It seems surprising that an “inhibitory” drug (diapam) should result in the

increase in power that is thought to be indicative of activity in excitatory cells. It was also noted

that the frequency of the post-drug rhythm is slightly lower. We model this phenomenon in a small

network of 64 excitatory cells, and 16 inhibitory cells to mimic the cortical population. Particularly

significant for the model is an AHP current in the e-cells. In the model, the (oscillatory) inhibitory

cells synchronize as a population, and gate the activity of the e-cells. The effect of an increase in
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the levels of the GABAergic drug induces an increase in the inhibitory conductance; the i-rhythm

slows down, allowing a larger number of the e-cells to emerge from suppression - thus registering an

increase in the beta power recorded. We predict that the primary effect of the drug is an increase

in i-i conductance; its effect on the i-e conductance is much less significant. We then model the role

of the synaptic and AHP variables using simple exponentials. Since the time constant of AHP is

comparable to the period of the oscillation, this current shows a significant adaptation over cycles.

We can derive a map for its value at steady state that satisfies appropriate consistency conditions.

This, along with the value of drive to an e-cell, determines the phase in the cycle when (if) the

cell is able to fire. (Heterogeneity in the drive to the e-cells, and the consequential dispersion in

phase of firing is responsible for the width of the spectral peak in the simulations.) These results

complement those of the full simulation. We are thus able to indicate the possible physiological

action of benzodiazepines in the sensorimotor cortex.

The key feature of the model, of course, is that the i-rhythm itself is not the one detected in the

MEG, it is the e-rhythm entrained to it that is recorded. (Which is consistent with the literature.)

Thus, an increase in “inhibition” decreases the gating capacity of the i-cells, with an increase in

the e-activity.

In their experiments with gamma in mice, Fuchs et al [1] sought to determine the role of the

excitatory time constants in determining the coherence of the rhythm. They generate transgenic

mice with slowed EPSPs and found that the oscillations were degraded. Ermentrout and Kopell [7]

had studied a version of this problem in a modeling study where they consider a simplified network

consisting of a pair of e- and i-cells coupled with significant conduction delays. The rhythm itself is

thought to arise from the e-cells oscillating with the i-cells in concert. Synchrony across spatially

distant sites was shown in [7] to be mediated via a doublet firing mechanism (proposed earlier by

Traub et al [37]). In the model, excitatory input received by an i-cell generates a response that

varies with the phase in the oscillation at which it was received. A second input – or, equivalently

– simultaneous e-cell firings at spatially distal columns that is temporally dispersed as inputs to an

i-cell by the conduction delay – could evoke a second spike in the i-cell, a doublet. The response

of the i-cell can be mapped out as a function of the (temporal) separation of two e-inputs to an

i-cell. This curve can then be used to write down a map for the difference in firing times of the

two e-cells on successive cycles. Synchrony corresponds to a fixed point of this map. Stability of
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the synchronous solution is then seen to be related to the slope of the TI . And as shown in [7],

the doublet firing generates a feedback mechanism that is necessary for synchrony to be robust to

perturbation.

Here we have used the same model to explain the results of [1] as to why a longer EPSP time

constant can disturb this phenomena. We find that a doublet-triplet mismatch occurs at the two

sites if the EPSP is prolonged enough that it can cause a triplet firing to occur in an i-cell (as was

verified in their experiment). We generate a plot of regions of synchrony for varying values of τe,

and conduction delays δ. We use TI maps (in the spirit of [7]) computed for different τe to predict

the boundaries of regions of stability. We find that the results of the full simulations bear out the

predictions based on the map.

A noteworthy point to mention with respect to the two modeling studies above is that in the

case of the beta model, it is that i-cells that are primarily responsible for the network rhythm

(in the sense that the e-cells are slaved to them). Whereas, in the case of the gamma model the

excitatory cells are at least as important to shaping the rhythm as the i-cells: in fact, the i-cells

need not even be modeled as oscillatory, as long as they are excitable. The beta model follows

essentially an ING mechanism, while the gamma is modeled as a PING rhythm.

We have studied several aspects of rhythmicity in the brain in this work. We have been able

to formulate several of the questions in a mathematical framework of iterated maps (as discrete

dynamical systems). Questions of synchrony as a solution translate to questions concerning (the

appropriate) fixed points in these maps. We can then also often address the issue of the stability

of these fixed points: that is, of the robustness of the activity pattern.
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Appendix

Glossary of Select Terms

AHP current (One of several) currents that prolongs the afterhyperpolarization phase following

an action potential. The AHP current considered here is a slow voltage-gated K+ current.

Following a depolarization an outward potassium current rapidly leaves the membrane; at first

this conductance is large and results in the membrane repolarizing to values more negative

than the resting potential. As the inside becomes more negative the potassium diffusion slows

down, allowing the membrane to return towards rest.

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid. A prominent excitatory neuro-

transmitter in the brain.

EPSP Excitatory postsynaptic potential. An EPSP is so called because a (presynaptic) excitatory

neuron influences a (postsynaptic) neuron through a current term with a reversal potential

that is typically positive with respect to the resting potential. In a network, excitatory

neurons tend to drive postsynaptic neurons towards firing sooner than in the uncoupled case.

GABA γ-aminobutyric acid. A prominent inhibitory neurotransmitter in the brain.

ING Interneuron network gamma oscillations. Gamma oscillation that is supposed to arise from

coherence in a network composed primarily of oscillating interneurons; pharmacologically

isolated networks of interneurons have been shown to generate gamma oscillations. Pyramidal

cells play a passive role in such a network.

Interneurons A variety of neurons that are predominantly responsible for inhibitory connections

in the hippocampus and the cortex. Interneurons are GABA releasing local circuit (inhibitory)

neurons.
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IPSP Inhibitory postsynaptic potential. The reversal potential of an inhibitory synapse is typically

more negative than the resting potential. Thus, inhibitory synapses tend to delay (suppress)

firing in the postsynaptic cell.

MEG Magnetoencephalography. A non-invasive method of recording brain activity. MEGs record

magnetic fields evoked at the surface of the brain due to ionic current flow from nerve activity.

MEGs are recorded using the SQUID (Superconducting Quantum Interference Device), an

ultrasensitive detector of magnetic flux. (Compare also EEG, electroencephalography, which

is a measure of electric fields recorded as potential differences between electrodes placed on

the scalp.)

Pyramidal cells A variety of neurons especially relevant to the hippocampus and the cortex that

typically makes excitatory synapses.

PING Pyramidal-interneuron network gamma oscillations. Gamma oscillation that is supposed

to arise from coherence in a network of interneurons and pyramidal cells. Pyramidal cells are

integral to oscillations in the network. Note that one of the inhibitory population could be

modeled as excitable (with the pyramidal cells oscillatory), and not necessarily oscillatory.

Synapse The cells of neurons are connected in networks through synapses. A synapse is a physical

gap between two neurons; upon arrival of an action potential at the presynaptic terminal of

the synapse, neurotransmitters are released into the synaptic cleft. These typically influence

receptors on the postsynaptic neuron to produce changes in its membrane potential.

Tetanic Stimulus A stimulus protocol that involves delivering a train of sharp, rapid, short

voltage pulses to the neuron to induce an oscillation. (See text for more details.)
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