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The glenohumeral joint is the most dislocated major joint in the body; however despite such a 

high rate of injury, the proper treatment protocol remains unclear.  Rehabilitation has proved to 

be insufficient with an 80% chance of redislocation in teenagers and 10-15% chance after the age 

of 40.  Following surgical repair, nearly 25% of patients still experience redislocation and 

complain of joint stiffness and osteoarthritis.  In an attempt to improve these results, the normal 

function of the glenohumeral capsule has been evaluated using both experimental and 

computational methods.  Recent data (strain and force patterns) suggests that the capsule 

functions multiaxially.  Therefore, simple uniaxial methods may not be sufficient to fully 

characterize the tissue and identify the appropriate constitutive model of the tissue. Inconclusive 

data has been presented in the literature regarding the collagen fiber architecture and the 

mechanical properties of the capsule that make it unclear whether the capsule is an isotropic or a 

transversely isotropic material.  For instance, the collagen fiber architecture has been shown by 

one researcher to be randomly distributed, while another researcher reported the fibers to be 

aligned.  In addition, the axillary pouch has been shown to be the primary stabilizer of the 

glenohumeral joint in positions of extreme external rotation while the posterior region of the 

capsule has been shown to stabilize the joint in positions of extreme internal rotation.  The rate of 

dislocations, however, is more frequent in the position of external rotation.   

Therefore, the overall objective of this work was to utilize a combined experimental - 

computational methodology to characterize the mechanical properties of the axillary pouch and 
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posterior region of the glenohumeral capsule.  Using an isotropic constitutive model, the stress-

stretch relationship of the axillary pouch and posterior regions in response to two perpendicular 

tensile and finite simple shear elongations showed no statistical difference.  Further, the 

constitutive coefficients of pure tensile and simple finite shear elongations in the direction 

parallel to the longitudinal axis of the anterior band of the inferior glenohumeral ligament 

(longitudinal) were able to predict the response of the same tissue sample in the direction 

perpendicular to the longitudinal axis of the anterior band (transverse).  These similarities 

between the longitudinal and transverse elongations of the tissue imply that the capsule is an 

isotropic material and functions to resist dislocation the same in all directions, rather than just 

along the longitudinal axis of the anterior band of the inferior glenohumeral ligament, as 

previously thought.  Further, the coefficients of the axillary pouch and posterior regions of the 

capsule showed no statistical difference, suggesting that these regions have similar mechanical 

properties, despite a difference in geometry.  Thus, when developing finite element models of the 

glenohumeral capsule, an isotropic constitutive model should be utilized; and both the axillary 

pouch and posterior regions could be evaluated using the same coefficients.  However, due to 

discrepancies when comparing the constitutive coefficients of tensile and shear elongations, an 

update to the constitutive model is required. With the proper representation of the glenohumeral 

capsule known, finite element models can be developed to pursue the understanding of normal 

joint function, including the effects of age and gender, as well as injured and surgically repaired 

joints.     
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NOMENCLATURE 

Abbreviations 

APTL – Axillary pouch tensile longitudinal 

APTT – Axillary pouch tensile transverse 

APSL – Axillary pouch shear longitudinal 

APST – Axillary pouch shear transverse 

PTL – Posterior region tensile longitudinal 

PTT – Posterior region tensile transverse 

PSL – Posterior region shear longitudinal 

PST – Posterior region shear transverse 

 

Computational 

W – Strain energy density 

C1, C2 – coefficients of the strain energy density function 

F – Deformation tensor 

B – Left Cauchy-Green deformation tensor 

I1, I2 – Invariants of the left Cauchy-Green deformation tensor 

λ - Stretch tensor 

T – Cauchy stress tensor
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1.0  INTRODUCTION AND BACKGROUND 

Stability of the glenohumeral joint is maintained through a complex interplay of active and 

passive constituents, where active refers to the musculature surrounding the joint and passive 

refers to the bony contact and soft tissue restraints.  One of these soft tissue restraints is known 

as the glenohumeral capsule, and will be the primary focus of this work.  The structure and 

function of the capsule has been analyzed by many in the past, and will be discussed in detail in 

Sections 1.1 and 1.2.  Even with all of the research that has been performed, however, the 

specific contribution of each capsular region to stability has been debated and is still 

controversial.   

1.1 STRUCTURE OF THE GLENOHUMERAL CAPSULE 

The glenohumeral capsule is a sheet of fibrous tissue composed of variably thick regions 

(superior glenohumeral ligament, middle glenohumeral ligament, anterior and posterior bands of 

the inferior glenohumeral ligament) that surrounds the ball and socket glenohumeral joint. [1, 2] 

(Figure 1.1) Engineers and clinicians have interpreted the mechanical function of these variably 

thick regions as uniaxial ligaments, and as the primary contributors to stability of the joint. [3-6] 

Additionally, these structures have been the primary focus of research efforts for several 
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decades. Anatomic studies of cadaveric specimens [7-9] and observations during surgery [10-12] 

have been the most common methods used to elucidate their function.  For  

 

Figure 1.1:  Lateral view of glenohumeral joint with humerus removed, showing regions of the 

capsule 

 

instance, DePalma and coworkers [1] described the marked variability of the regions of the 

capsule and noted six types of anatomic arrangements that they believed could be correlated with 

the risk for anterior instability. Arthroscopic examinations have confirmed the high variability in 

size and appearance of the thickenings. [13-15] 

In an effort to better understand the structure of the capsular regions, their collagen fiber 

orientation has been examined qualitatively by several researchers, [16-19] using standard and 

polarized light microscopy.  Cooper and associates [19] demonstrated that the superior 

glenohumeral ligament has a ligamentous structure with collagen fibers organized parallel to the 
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longitudinal axis.  O’Brien et al [17] reported that the axillary pouch was less organized than 

either the anterior band or posterior band of the inferior glenohumeral ligament (AB- and PB-

IGHL).  Furthermore, a great deal of crossing of the fibers was noted. In some shoulders, the 

anterior and posterior bands of the inferior glenohumeral ligament and the axillary pouch were 

best visualized by placing the humeral head in internal or external rotation in varying degrees of 

abduction. In contrast, Gohlke et al [16] found an organized pattern of collagen fibers in the 

axillary pouch with the fibers predominately organized parallel to the longitudinal axes of the 

anterior and posterior bands of the inferior glenohumeral ligament.  Although both investigators 

[16, 17] reported that the fiber organization in the AB-IGHL was greater than in the axillary 

pouch, some discrepancy regarding the overall alignment in the axillary pouch remained.  More 

recent studies have used a small angle light scattering (SALS) device to analyze the collagen 

fiber alignment in the axillary pouch and posterior regions of the glenohumeral capsule.  [20]  

The results showed that localized regions had a preferred direction of alignment, suggesting a 

transverse isotropic organization; however on a global scale the fibers were disorganized, 

suggesting the overall structure of the tissue to be isotropic. 

The structural and mechanical properties of the capsular regions have been measured 

under uniaxial tension applied in the direction parallel to their longitudinal axes. [3, 6, 21-26] 

The mechanical properties of four different sites (anterior, posterior, superior, and inferior) of the 

glenohumeral capsule have also been examined by Itoi and coworkers. [6]  The posterior site 

exhibited the greatest ultimate stress and modulus compared to the other three sites tested, with 

the superior site having the least strength. No significant differences could be demonstrated 

between the ultimate loads of the four sites. In contrast, position dependent variations were found 

in the mechanical properties of the inferior site.  Furthermore, the AB-IGHL was also examined 
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with the joint in the apprehension position. [23-26]  The mechanical properties of the axillary 

pouch and posterior regions of the capsule have also been tested under uniaxial tension applied 

parallel and perpendicular to their longitudinal axes.  [27]  Significant differences were found for 

ultimate stress and tangent modulus between loading directions, however, no significant 

differences were found for ultimate strain and strain energy density between loading directions.  

Currently, with the inconclusive results regarding the mechanical properties and collagen fiber 

architecture that have been presented in the literature, the true nature of the glenohumeral 

capsule remains elusive. 

1.2 FUNCTION OF THE GLENOHUMERAL CAPSULE 

At the mid-range of motion, all capsular regions are relatively lax and contribute very little to 

joint stability [5, 28].  At end-range, extreme positions, however, the regions of the glenohumeral 

capsule play a significant role in stabilizing the joint.  The roles of each capsular region are 

highly dependent upon the extreme joint position in question.  Selective sectioning experiments 

have shown that the coracohumeral and superior glenohumeral ligaments limit external rotation 

in the lower range of abduction [5].  During the mid-range of abduction, the middle 

glenohumeral ligament and AB-IGHL provide anterior restraint, but at 90° of abduction the AB-

IGHL and axillary pouch are the dominant anterior stabilizers.  The axillary pouch, AB-IGHL, 

and anteroinferior capsular regions became the dominant restraint as abduction increased with 

the humerus externally rotated [29]. Malicky and coworkers [30] included the effect of the 

rotator cuff muscle forces on the ability of the capsular regions to provide joint stability.  They 
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found that the anterior and inferior capsular regions were most effective at stabilizing the joint in 

positions of external rotation.  

Other studies have attempted to quantify the contribution of the capsuloligamentous 

regions to joint stability by examining the changes in their length between the origin and 

insertion. These elongation patterns were determined using radiographic markers, [5, 31] 

electromagnetic tracking devices, [32] Hall effect strain transducers, [33] mercury strain gauges 

[34], and simple mathematical models. [35] A stereoradiogrammetric technique was also utilized 

to determine the strain field in sites of the anterior band of the the inferior glenohumeral ligament 

and axillary pouch during joint subluxation [36].  Lead spheres were adhered to the surface of 

the specified capsular tissue in a grid pattern and measurements were taken during a “nominal” 

and “strained” state.  Maximum principal strain fields were greater on the glenoid side compared 

to the humeral side. Non-recoverable strain regions were found to exist throughout the specified 

capsular tissue after joint subluxation.  This was the first attempt to examine the capsular tissue 

multiaxially. 

Although a great deal of research has examined the strain within each capsular region, the 

force and stress remains largely unknown, with our knowledge base coming predominantly from 

qualitative observation and palpation during cadaver dissections [37, 38]. The forces in the 

capsuloligamentous regions were measured indirectly [34] using mercury strain gauges mounted 

on the surface of the capsule. As direct measurement of these forces is experimentally 

challenging due to the complexity of the joint geometry, [39] it has been suggested by Lew and 

coworkers that a computational model or finite element analyses of the capsule be developed.   

To date, few analytical models of the glenohumeral joint have been developed [40, 41]. 

These models have been used to predict joint kinematics and investigate the stabilizing effect of 
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the capsuloligamentous regions and articular contact. However, uniaxial springs that wrapped 

around the articular surface of the humeral head were utilized and most modeled only specific 

portions of the capsule, disregarding the interactions that occur between capsuloligamentous 

regions.  [20]  These computational models of the glenohumeral capsule did not consider the 

effect of all the capsular regions and the 3D nature of the tissue was neglected.    

1.3 DEMOGRAPHICS 

The glenohumeral joint is the most commonly dislocated major joint in the body with 

dislocations occurring most often when the arm in an abducted and externally rotated position.  

The majority of these dislocations (>80%) occur in the anterior direction [42, 43], resulting in 

injury to the anterior portion of the inferior glenohumeral ligament.  [25, 44-48]  Approximately 

2% of the general population (~5.6 million in the United States) dislocates their glenohumeral 

joint between the ages of 18-70 years.  [49, 50]  Roughly 34,000 shoulder dislocations occur per 

year in the young adult population between the ages of 15 to 25 years.  [50, 51] Moreover, the 

activity level of the general population has increased over the last two decades.  This increased 

level of activity has resulted in an increase in the incidence of dislocation in this age range of the 

population.  [52, 53] 
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1.4 CLINICAL TREATMENT 

1.4.1 Diagnosis 

Anterior shoulder dislocations can be diagnosed with radiographs, which illustrate an 

anteroinferior displacement of the humeral head in relation to the glenoid. However, once the 

joint has been reduced, there is often little or no radiographic evidence of the dislocation. While 

techniques, such as magnetic resonance imaging, may reveal avulsion of the capsule from the 

glenoid rim, cases with a lesser degree of instability, such as a small increase in subluxation, are 

far more difficult to ascertain.   

In such cases, physicians can use clinical exams that have been developed to generally 

assess which capsular regions are injured.  Typically, these exams are performed when the arm is 

positioned in an abducted and externally rotated position (Figure 1.2).  Because most patients are 

apprehensive to put their joint in this position for fear of redislocation, this position has been 

named the apprehension position and often indicates an injury may have occurred to the 

glenohumeral capsule regions that stabilize the joint in this position.   The physician can then 

compare the injured shoulder to the contralateral shoulder to determine the extent of injury.  In 

addition to determining the region of injury, physicians may also use the results of these exams 

to create a surgical plan. 

However, these clinical exams are quite subjective due to movement of skin and 

musculature around the shoulder.  In addition, there are discrepancies as to how much external 

rotation and abduction to use when examining the joint.   A better understanding of the normal 

function of the joint may increase the accuracy and reliability of these procedures. 
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Figure 1.2:  Clinical apprehension test with shoulder abducted and externally rotated [54] 

1.4.2 Post-injury management 

There are two basics types of protocols that can be used after shoulder dislocation.  The first 

protocol is conservative with simple rehabilitation, in which a period of immobilization is 

allowed for soft tissue healing followed by exercises designed to increase the stability provided 

by the musculature that surrounds the joint.  The second protocol that can be used is surgical 

repair, in which the physician will enter the joint space and attempt to repair the injury. 

1.4.2.1 Conservative rehabilitation 

 

Conservative treatment may include an initial immobilization period to allow soft tissue healing, 

followed by a rehabilitation program to strengthen and condition the shoulder muscles.  These 

rehabilitation programs, however, have not been extremely successful as disability is common 
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after such treatments.  Recurrence occurs in 60 to 94% of the patients under 25 years of age [44, 

55-60], while in the elderly nearly 15% suffer weakness, pain, and loss of motion. [61] 

Therefore, patients typically require other forms of treatment, including surgical repair. 

1.4.2.2 Surgical repair techniques 

 

Given the outcomes of conservative treatment, surgical repair is often necessary.  The most 

typical repair technique for anterior dislocations is known as the plicate and shift method, 

whereby the capsular tissue is both plicated and shifted in the medial-lateral and superior-inferior 

directions such that it can be reattached to the glenoid rim. [62, 63] This procedure involves first 

plicating the capsular tissue near either the glenoid or humeral head in the superior-inferior 

direction followed by another plication in the anterior-superior capsule in the medial-lateral 

direction.  Finally, the created leaflets will be shifted and sutured to the either the glenoid or 

humeral head (Figure 1.3). 

Unfortunately, surgical repair of the glenohumeral capsule is often ineffective at restoration 

of normal function. [62, 63] Redislocation rates are as high as 12 and 23% following open and 

arthroscopic surgical repairs, respectively, [64] and 20-25% of patients suffer from pain, chronic 

instability, rotator cuff injury, joint stiffness, and osteoarthritis.  
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Figure 1.3:  Plicate and shift surgical repair technique 

 

These unsatisfactory clinical outcomes may be due to poor assessment of normal joint 

function pre- and post-operatively.  Furthermore, these outcomes may be due to the fact that the 

surgical repairs may not restore the proper orientation of the collagen fibers throughout the 

capsule, greatly altering the function within and at the interface of the capsular regions.  An 

inadequate understanding of the function of the regions of the normal glenohumeral capsule is 

likely to be part of the reason for the insufficient clinical planning and surgical repair techniques. 
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2.0  MOTIVATION: RESEARCH QUESTION AND HYPOTHESIS 

The glenohumeral capsule is a complex sheet of tissue composed of several variably thick 

regions (superior glenohumeral ligament, middle glenohumeral ligament, anterior and posterior 

bands of the inferior glenohumeral ligament) that function collectively to stabilize the joint 

(Figure 1.1). [1, 2]  Previously, these regions have been treated as discrete uniaxial ligaments, [5, 

13, 30, 41]  however, recent experimental data has suggested that the capsule functions more like 

a sheet of tissue, as their strain [36] and force [28] distributions are multiaxial and not aligned 

with the glenohumeral ligaments.  For example, the capsule has a complex geometry as it wraps 

around the articular surface of the humeral head. This configuration presents many difficulties 

when evaluating the capsule’s function experimentally. Computational approaches, such as the 

finite element method, can account for some of these complexities; however the proper 

constitutive model for this tissue is required.  Inconclusive data regarding the collagen fiber 

architecture (aligned or random) [16, 20] and mechanical properties of the capsule (similar or 

different in perpendicular directions) [27, 65] has been presented in the literature, making it 

unclear which constitutive model is appropriate for the glenohumeral capsule. 
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2.1 MOTIVATION:  SPECIFIC AIMS 

The glenohumeral capsule functions to stabilize the glenohumeral joint in extreme ranges of 

motion.  In particular, the axillary pouch stabilizes the joint in extreme positions of external 

rotation while the posterior region stabilizes the joint in extreme positions of internal rotation.  

[29]  Even with both regions functioning to stabilize the joint, the axillary pouch is more often 

injured as the joint is dislocated more frequently in the position of external rotation, suggesting 

differences may exist between the mechanical properties of these regions. 

Due to the complexity of the glenohumeral joint geometry as well as the multi-axial 

deformations of the tissue, it has been suggested by Lew and coworkers that a computational 

model or finite element analyses be developed. [58] However, when creating such a model, it is 

imperative that a constitutive model describing the stress-strain response of tissues be 

appropriate.  While the capsuloligamentous regions have been evaluated extensively in the 

direction parallel to their longitudinal axes, [3, 6, 21, 22, 24, 26, 66] the mechanical response of 

the capsule in other directions remains largely unknown.  Although there has been studies 

evaluating the mechanical properties in two perpendicular directions, [11, 62] dog-bone tissue 

samples were used, which may have removed important collagen fiber interactions, and large 

standard deviations in the mechanical properties were reported.  Moreover, discrepancies exist 

regarding the collagen fiber organization of this tissue with some researchers finding a clear axis 

of collagen fiber alignment [74] while others have found a certain level of disorganization in 

capsuloligamentous regions. [17]  In addition, these studies have primarily determined the 

mechanical response of the tissue in the linear region of the stress-strain curve, neglecting the toe 

region.  Since during activities of daily living most soft tissues are only loaded into the toe 

region, this is an important region to characterize.  Therefore, for the current work, there existed 
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a need to determine the appropriate constitutive model for the capsuloligamentous regions by 

using large sheets of tissue to minimize the removal of fiber interactions.  

Due to the inconclusive data that has been presented in the literature regarding the 

collagen fiber architecture [16, 20] and mechanical properties [27, 65] of the capsule, it is 

unclear as to which constitutive model best represents its behavior.  Therefore a protocol capable 

of characterizing both isotropic and anisotropic materials was essential.  [67]  Isotropic materials 

can be fully characterized by using simple tensile loading conditions in two perpendicular 

directions; however, anisotropic materials require additional loading conditions.  Therefore, to 

allow for the possibility of an anisotropic material, tensile tests alone could not be used.  Instead, 

a second loading condition was implemented to allow for the characterization of an anisotropic 

material.  Since tensile loading is primarily used to characterize the contribution of the collagen 

fibers, finite simple shear loading was chosen as the second loading condition, allowing for the 

characterization of the fiber-fiber, fiber-matrix, and matrix-matrix interactions of an anisotropic 

material.  [67]  Unlike the infinitesimal strain theory, finite simple shear cannot be maintained by 

shear stress alone.  [68]  Normal stresses are needed to keep the normal strains minimized.  In the 

absence of normal stresses, however, the tissue will undergo contraction through the thickness of 

the tissue as well as in the plane that the shear strains are applied.  These contractions will create 

non-homogeneous strain fields that cannot be predicted without additional analyses.  Two 

methods are capable of applying both tensile and finite simple shear elongations to sheets of 

tissue:  planar bi-axial and bi-directional.  [69] [70]  Planar bi-axial methods apply elongations to 

tissue samples through hooks that are inserted along each edge of the tissue sample, while bi-

directional methods utilize soft tissue clamps to apply elongations.  These hooks can create stress 

concentrations in the tissue that are not easily predicted.  However, because bi-directional testing 
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uses clamps instead of hooks to apply elongations to the tissue, they can be used in conjunction 

with computational methods, as described by Weiss, et al [69].  These computational analyses 

allow the non-homogeneous strains that occur during finite simple shear to be predicted. 

Therefore, because the material behavior of the glenohumeral capsule is unclear (isotropic versus 

transversely isotropic), and finite simple shear tests have been used in the past to characterize 

transversely isotropic materials such as ligaments [69], the method proposed by Weiss  et. al. 

[69], which uses bi-directional methods, will be used.   In addition, this method will characterize 

the entire stress-stretch curve, not just the linear region which has been reported in the past. 

To ensure the appropriateness of the chosen constitutive model, it was required that it 

first be validated using experimental results.  One such validation that can be used is the strains 

that are generated in the capsule during loading.  To calculate these strains, a grid of small beads 

can be adhered to the surface of the tissue, and the motions of the beads can be tracked as the 

tissue deforms.    Therefore, a method for tracking the deformation of beads that are on the 

surface of a tissue sample during loading was required.   Another form of validation is to use 

optimized constitutive coefficients from one loading condition to predict the tissue’s response for 

other loading conditions.  

Once an appropriate constitutive model has been chosen and validated, differences in 

mechanical properties of the axillary pouch and posterior regions of the glenohumeral capsule 

can be assessed.  This information will provide insight into which constitutive coefficients to use 

when developing finite element models.  In addition to finite element modeling, understanding 

how each region functions will provide insight for physicians when surgically repairing the 

capsule.  As discussed previously, a common surgical repair technique plicates and shifts the 
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capsule, however, due to the uncertainty of mechanical properties between regions this may alter 

the overall response of the capsule and thus not return the joint to its normal function.   

2.2 RESEARCH QUESTIONS 

Based on the inconclusive data that has been presented in the literature, the appropriate 

constitutive model for describing the behavior of the glenohumeral capsule remains unclear.  In 

addition, because both the axillary pouch and posterior regions play a role in glenohumeral joint 

stability, yet the axillary pouch is more frequently injured; it is unclear if the mechanical 

properties of these regions differ.  Recently, finite element models have been used to evaluate the 

function of the glenohumeral capsule. While a powerful tool, the finite element method must be 

properly applied with the appropriate constitutive models of the tissue of interest. This leads to 

the following research questions:  

1. Is a hyperelastic isotropic constitutive model appropriate to describe the mechanical 

response of the glenohumeral capsule? 

 

2. Are there differences in the mechanical properties of the axillary pouch and posterior 

regions of the capsule? 
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2.3 HYPOTHESES 

Therefore, the following hypotheses were addressed by the current work: 

Hypothesis #1 –Since the collagen fiber architecture is disorganized overall and there is 

evidence that there is no difference in certain mechanical properties in two perpendicular 

directions, a hyperelastic isotropic constitutive model will effectively describe the function of the 

glenohumeral capsule (R2 of experimental and computational load-elongation curves > .9). 

Hypothesis #2 – Because both the axillary pouch and posterior capsule function to 

stabilize the glenohumeral joint, there will be no significant differences in the mechanical 

properties between these regions.    

2.4 SPECIFIC AIMS 

These hypotheses were tested with the following specific aims: 

Specific Aim #1 – Develop a multi-dimensional motion tracking system and evaluate the 

accuracy and repeatability in two testing environments 

Specific Aim #2 – Evaluate the efficacy of using a hyperelastic isotropic constitutive 

model to represent the glenohumeral capsule by determining the constitutive parameters in 

response to tensile and finite simple shear elongations in two perpendicular directions 

Specific Aim #3 –Compare the mechanical properties of the axillary pouch and posterior 

regions of the glenohumeral capsule 
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3.0  DEVELOPMENT OF MOTION TRACKING SYSTEM 

3.1 INTRODUCTION 

The purpose of developing a motion tracking system was to allow the motion of small beads on 

the glenohumeral capsule to be determined as loads are applied to the tissue, and then calculate 

the strain distribution on the surface of the tissue based on those motions.  Many types of motion 

tracking systems have been reported in the literature, including stereoradiogrammetry [36, 71] 

and optical tracking systems [27, 36, 65, 69].  However, due to size limitations, 

stereoradiogrammetry would be unable to accomplish our goal.  Therefore an optical motion 

tracking system was chosen. 

Many different varieties of optical motion tracking systems exist in the literature to track 

the position of markers throughout time.   [3, 27, 36, 69]  To determine which system would be 

capable of accurately tracking motions of markers on the surface of the capsule in mechanical 

testing environments, multiple systems were analyzed. 

3.1.1 Experimental environment 

The primary use of this motion tracking system is to track the position of markers that have been 

placed on the surface of a tissue during loading.  Two environments exist for which this system 

would be used - the mechanical testing environment, used in this thesis work, and a robotic 
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testing environment, which is used by others in our laboratory.  In both cases, the system will be 

used to track the motion of markers, which will be used to calculate the surface strain of the 

tissue. 

3.1.1.1 Mechanical testing environment 

 

The mechanical testing environment (Figure 3.1a) is contained within an Enduratec ELF 3200 

mechanical testing system and in general has an estimated working volume of 125 cm3.  A grid 

of nine (3 rows x 3 columns) markers will be applied to the tissue sample during mechanical 

testing, thus markers with a small diameter (1.6 mm) must be used.  Because the assumption that 

minimal movement will occur out of the plan of the tissue, only a 2D camera configuration is 

required for this environment.  Finally, marker motions during mechanical testing can range 

from 0 to 5 mm, thus an accuracy of at least 0.5% of the field of view is desired.   

3.1.1.2 Robotic testing environment 

 

The robotic testing environment (Figure 3.1b) is used during simulated clinical exams and is 

estimated at 1000 cm3.  A grid of 77 (7 rows x 11 columns) markers will be applied to the tissue 

during robotic tested, thus markers with a small diameter (1.6 mm) must be used.  Because the 

capsule will wrap around the humeral head during these tests, a 3D camera configuration is 

required.  Marker motions during robotic tests can range from 0 to 20 mm, thus an accuracy of at 

least 0.05% of the field of view is desired. 

   

A B
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Figure 3.1:  Mechanical testing (A) and robotic testing (B) environments 

3.2 EXISTING  OPTICAL TRACKING SYSTEMS 

There are two general categories of optical tracking systems:  active and passive.  Active motion 

tracking systems have markers that are physically attached to the system via wires.  These 

markers will then emit light, which can then be tracked by the camera system.  Passive motion 

tracking systems have markers that have no connection to the system, and often reflect light that 

is emitted by the system or an outside source.  Because active motion tracking systems are 

physically attached to the motion tracking system, it would be difficult to use such a system with 

either environment, due to interference between the wires and markers on the tissue, therefore 

only passive systems will be evaluated for the current work. 

3.2.1 Vicon-Peak motion tracking system 

A VICON 612 motion tracking system was evaluated for use with the current protocol.  This 

system is designed to locate and track retroreflective markers moving in a calibrated 

measurement space. The system is designed primarily for use in biomechanics research and 

clinical medicine, in particular whole body kinematics.  Marker trajectories are measured by 
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numerous 120Hz video cameras while the measurement space is illuminated by infra-red or 

visible-red strobe lights mounted on each camera. Illumination and video data collection is 

synchronized and controlled by the VICON 612 Datastation, which is in turn controlled by a 

Pentium-based PC running the Windows 2K operating system.  From these files, the X, Y, and Z 

coordinates of each marker throughout time can be obtained. 

3.2.2 Motion Analysis motion tracking system 

Similar to Vicon, Motion Analysis systems are contrast based tracking systems that track the 

position of retroreflective markers throughout time.  Motion Analysis, however, offers smaller 

camera systems that would be more flexible with our smaller working volume, and therefore was 

assessed for use with our protocol. 

3.2.3 Spicatek motion analysis system 

Unlike Vicon and Motion Analysis, Spicatek systems do not use retroreflective markers.   

Instead, Spicatek systems use live video feeds from high speed digital cameras, and then post-

process the images based on contrast levels.  Unlike Vicon and Motion Analysis, this system 

would provide a digital video record of each experiment, allowing the close inspection of the 

experiment if oddities arise in the experimental data as well as the ability to reprocess the data.  

Since this system is capable of outputting X, Y, and Z coordinates of markers throughout time, it 

was assessed for use with this protocol. 
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3.3 METHODS OF ASSESSMENT 

3.3.1 Vicon motion tracking system 

To assess the Vicon motion tracking system, a Vicon 612 system in the Human Movement and 

Balance Lab at the University of Pittsburgh was used.  Because the actual experimental 

environments could not be used, simulations were created.  The robotic environment was 

simulated first by creating a six degree of freedom device that modeled the approximate working 

volume.  (Figure 3.2)  The system was then calibrated using a custom made frame that was 

scaled to the original calibration frame provided by Vicon.  A Sawbones model of the 

glenohumeral joint, with a sheet of rubber simulating the glenohumeral capsule was placed 

within the simulated robotic environment and a grid of 60 retroreflective markers (6 rows x 10 

columns) were adhered to the rubber capsule.  The joint was then placed in 90° of external 

rotation and 60° abduction, simulating a clinical exam.  In this position, the 3D location of the 

markers was recorded and exported for post processing. 

 
Figure 3.2: Simulated robotic testing environment 
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During post processing, it was noted that many of the markers were not visible due to the 

fact that only one camera was able to capture the location of those markers.  For this system to 

track markers in 3D space, at least three cameras are required to locate a particular marker in 

space.   

In addition to this simple test, another test, in which saline was sprayed onto the capsule 

and markers, was performed.  Since the capsule is exposed to air for extended amounts of time 

during robotic tests, it is imperative to continuously moisten it with saline to prevent degradation 

and dehydration of the tissue.  Therefore this test was used to identify any issues that the camera 

system may have with wet tissue and markers, in particular reflections that would be caused by 

the saline pooling on the tissue.   

Once the markers were wet with saline, the camera system was no longer able to track the 

position of the markers because the retroreflectiveness of the markers was reduced.  Therefore, 

under normal conditions the system had difficulty tracking the positions of some markers and 

became worse when the markers were covered by saline, this system was decidedly not capable 

of meeting our requirements. 

  

3.3.2 Motion Analysis tracking system 

Since the Motion Analysis system is similar to the Vicon system, in that it uses retroreflective 

markers, the first step of assessment was to determine whether the system was capable of 

tracking saline soaked markers.  To assess this, a camera was positioned in front of a saline tank 

filled with saline.  The field of view of the camera encompassed both the saline tank and the area 

above the tank.  A marker was placed on the tip of a metal rod and translated in the field of view 
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of the camera, in and out of the saline tank.  The camera system was successful in tracking the 

marker when it was above the tank, however, when the marker was placed in the saline tank; it 

disappeared from the camera’s view.  In addition, when the marker was removed from the tank 

and waived above the tank, the system was still unsuccessful at tracking the marker due to it 

absorbing the saline.   Therefore, no additional analyses were performed with this system, as it 

was incapable of meeting this requirement of our protocol.   

3.3.3 Spicatek motion analysis system 

To assess the Spicatek system, like the Motion Analysis system, the first step was to verify its 

capabilities of tracking saline soaked markers.  A camera was positioned in front of a saline tank 

filled with saline.  The field of view of the camera encompassed both the saline tank and the area 

above the tank.  A marker was placed on the tip of a metal rod and translated in the field of view 

of the camera, in and out of the saline tank.  The camera system was successful in tracking the 

marker when it was above the tank, as well as when the marker was placed in the saline tank.  In 

addition, when the marker was removed from the tank and waived above the tank, the system 

was still successful at tracking the marker while it was soaked with saline.   Therefore, further 

analyses were performed with this system to assess parameters such as accuracy and 

repeatability. 

3.3.3.1 System calibration 

 

Calibrating a motion tracking system consists of outlining the working volume that will be used 

during testing by using specially designed calibration frames that contain markers at known 
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distances apart.  Two camera configurations (1 camera for 2D, 2 or more cameras for 3D) were 

calibrated.  For a 2D camera configuration, a black piece of acrylic with a perfectly planar face 

was covered by a 4x4 grid of white delrin markers (1.6 mm diameter – 10 mm apart).  (Figure 

3.3A)  The choice of white and black was based on the requirement of contrasting colors, due to 

the system tracking markers based on contrast.  A coordinate measuring machine (Brown & 

Sharpe, Gage 2000, accuracy – 0.005 mm) was then used to determine the exact positions of 

those markers with respect to each other, and those relationships were input into the Spicatek 

system software (DMAS6).  The software then used embedded direct linear transforms to 

compare the coordinate measuring machines measured locations of the markers to the software’s 

calculated position and determine the system’s calibration.   

For a 3D camera configuration, an aluminum calibration frame was used, and consisted 

of three separate tiers with black delrin markers (1.6mm diameter - ~40 mm apart) on each tier.  

(Figure 3.3B)  The frame was painted white to increase the contrast between the frame and the 

markers.  The choice of black markers on a white background for the 3D setup was due to the 

fact that the robotic environment is primarily white, therefore black markers served as a better 

contrasting color.  A coordinate measuring machine (Brown and Sharpe, Global Image 998, 

accuracy – 0.0064 mm) was used to determine the location of the markers with respect to a 

specified corner of the frame.   

With both setups, the calibration frame was positioned such that the specimen was 

centered within the working volume, and the markers were digitized using the Spicatek software.   
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Figure 3.3:  Calibration frame for 2-D (A) and 3-D (B) camera setups 

 

3.3.3.2 Accuracy assessment 

To determine the accuracy of both camera configurations, two markers were placed on a linear 

translation stage (accuracy: 24µm) and translated known distances while the camera tracked the 

position of those markers.  The 2D camera configuration was tested by fixing one marker, and 

translating the other marker known distances of 0.25, 0.5, 1, 3, and 5 mm.  The distance between 

those markers was then calculated based on the known translations of the linear stage, as well as 

the coordinates output by the camera system.  The accuracy was then determined as the largest 

difference between the known translations and the measured translations.   

 The 3D camera configuration was tested in a similar manner; however since it is capable 

of tracking 3D positions, a third dimension was required.  Therefore, the linear translation stage 

was rotated to an oblique angle from the cameras, meaning the markers would now translate in 

the X, Y, and Z directions, with respect to the camera’s coordinate system.  Again, a set of 

known distances (0.5, 1, 3, 5, 10mm) were used to compare the distance that was actually 
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applied to the distance that the camera system measured.  The translations used in the 3D 

configuration were larger, based on the expected motion of markers while using this 

configuration.  The accuracy was again determined as the largest difference between the known 

translations and the measured translations.   

3.4 RESULTS 

3.4.1 Calibration 

Both 2D and 3D camera configurations were successfully calibrated using the custom-made 

calibration frames that were discussed in Section 3.3.3.1.  The 2D camera configuration is 

capable of being calibrated to an accuracy of 0.005% of the field of view of the camera in both 

the X and Y directions.  The field of view that is typically used for this configuration 

(mechanical testing) is approximately 20 cm in the X direction and 20 cm in the Y direction.  

This correlates to a calibrated accuracy of 0.01mm in both the X and Y directions, where the 

calibrated accuracy is the error when comparing the distance between markers determined by the 

camera system to the distance between markers that was input into the system (determined using 

a coordinate measuring machine, Section 3.3.3.1).  The 3D camera configuration is capable of 

being calibrated to an accuracy of 0.03% of the field of view of each camera in the X, Y, and Z 

directions. The field of view that is typically used for this configuration (robotic testing) is 

approximately 1000 mm in all three directions, meaning that the 3D camera configuration can be 

calibrated to an accuracy of approximately 0.3 mm in the X, Y, and Z directions. 
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3.4.2 Accuracy 

The 2D camera configuration was shown to have an overall accuracy of .008 mm.  This was the 

largest difference between the known translations and the measured translations.  (Table 3.1)  

The 3D camera configuration was shown to have an overall accuracy of 0.05 mm.  (Table 3.2)  

Although much larger than that of the 2D camera configuration, it is important to note that this 

accuracy is well within the desired accuracy during robotic testing, where marker translations 

can be as large as 20 mm. 

 
Table 3.1:  Accuracy assessment of the 2D camera configuration 

Prescribed 
motion(mm) 0.25 0.5 1 3 5 
Measured 
motion (mm) 0.2499 0.4997 0.9992 2.9969 4.9918 
Abs. Error 
(mm) 0.0001 0.0003 0.0008 0.0031 0.0082 

% Error 0.0267 0.0576 0.0799 0.1034 0.1634 
 

 

Table 3.2:  Accuracy assessment of the 3D camera configuration 

Prescribed 
motion(mm) 0.5 1 3 5 10 
Measured 
motion (mm) 0.47 0.96 2.95 4.96 9.95 
Abs. Error 
(mm) 0.03 0.04 0.05 0.04 0.05 

% Error 6 4 1.68 0.8 0.5 
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3.5 CONCLUSIONS 

All design criteria have been met with the current motion tracking system.  The desired accuracy 

for both the 2D camera configuration (mechanical testing environment) and the 3D camera 

configuration (robotic testing environment) has been achieved.  Therefore, this system can be 

used with confidence to track the motion of markers and allow the calculation of the strain 

distribution on the surface of the capsule as loads are applied.  In addition, the camera system 

can be used to determine accurate tissue sample geometries during mechanical testing protocols. 
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4.0  CHARACTERIZATION OF THE GLENOHUMERAL CAPSULE 

4.1 INTRODUCTION 

Summarizing the combined experimental and computational methodology described by 

Weiss, et al [67], a total of four non-destructive loading conditions were applied to each tissue 

sample of the axillary pouch and posterior regions.  Specifically, two perpendicular tensile and 

finite simple shear (parallel to the long axis of the AB-IGHL – longitudinal, perpendicular to the 

long axis of the AB-IGHL – transverse) conditions were used; again, allowing for the 

characterization of both isotropic and transversely isotropic materials.   

Tensile elongations were applied to the tissue samples in the vertical direction, 

corresponding to the axis of motion of the materials testing system, while the clamp reaction 

force was measured by a load cell that was mounted to the bottom clamp.  (Figure 4.1A)  While 

the tissue was elongated, markers on the surface of the tissue were tracked using the motion 

tracking system developed in Section 3.0, allowing for the calculation of the Green-Lagrange 

principal strain of the tissue samples. 

The clamp setup for shear elongations was more complex, and had two load cells.  

(Figure 4.1B)  A load cell was mounted in the horizontal direction (perpendicular to applied 

elongations) to allow for the application of a horizontal pre-load.  Once the pre-load was 

established, this load cell was not used for experimentation.  Instead, the load cell mounted 

vertically (same load cell used for tensile elongations) was used to record the clamp reaction 
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force during experimentation.  Again, elongations were applied in the vertical direction, which 

corresponded to the axis of motion of the materials testing system. 
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Figure 4.1:  Tensile (A) and finite simple shear (B) clamp setups 

 

 

The tissue sample geometry from each experimental loading condition was then used to 

create finite element meshes.  These meshes, along with the applied elongation, were input into 

an inverse finite element routine generating a simulated load-elongation curve.  This simulated 

load-elongation curve was then compared to the experimental load-elongation curve using an 

objective function, and the coefficients of the constitutive model were iteratively improved until 

the objective function was minimized, generating optimized coefficients.  (Figure 4.2) 

To assess the appropriateness of the isotropic constitutive model, optimized coefficients 

from one loading direction (longitudinal) were compared to optimized coefficients from the other 

loading direction (transverse), for both shear and tensile loading conditions.  In addition, to 

assess the difference in the mechanical properties between the axillary pouch and posterior 

region of the capsule, the optimized coefficients from each loading condition were directly 
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compared to the same loading condition of the opposite region (i.e. tensile longitudinal of the 

axillary pouch was compared to tensile longitudinal of the posterior region).   
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Figure 4.2:  Flow-chart of combined experimental-computational methodology 

4.2 MECHANICAL TESTING PROTOCOLS 

Prior to the use of the methodology described by Weiss, et al, [69] a series of preliminary studies 

were performed to determine the appropriate conditions for the glenohumeral capsule, including 

both experimental and computational parameters.  The following sections will provide a detailed 

explanation of the methodology, including all preliminary studies that have been performed. 
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4.2.1 Tissue Sample Procurement 

Tissue samples were obtained from the axillary pouch and posterior regions of the glenohumeral 

capsule of fresh-frozen cadaveric shoulders. The superior margin of the AB-IGHL is an easily 

identifiable landmark in most capsules and has been highly characterized. [1, 17]  In addition, it 

is often used as a consistent reference clinically and experimentally.  Therefore, the superior 

margin of the AB-IHGL was chosen as a reference for the transverse (perpendicular to the 

longitudinal axis of the AB-IGHL) and longitudinal (parallel to the longitudinal axis of the AB-

IGHL) loading directions during mechanical testing.   

The two regions of interest (axillary pouch and posterior capsule) were defined by the 

borders of two common landmarks in the glenohumeral capsule, the anterior and posterior bands 

of the inferior glenohumeral ligament.  (Figure 4.3)  To locate these landmarks, the joint was 

abducted, distracted, and internally rotated (posterior band) or externally rotated (anterior band).  

Once the borders of each band were identified, incisions along each border were created.  The 

posterior capsule was then identified by the region above the posterior band of the inferior 

glenohumeral ligament and below the insertion site of the infraspinatus muscle. The axillary 

pouch was identified as the region located between the anterior and posterior bands of the 

inferior glenohumeral ligament.  After identification of each region, they were excised from the 

joint by removing their attachments into the labrum and humerus.  Once removed from the joint, 

each tissue sample was cut again, creating a 25mm x 25mm square sheet of tissue.   The tissue 

was then placed in a set of custom clamps with complimentary grooved surfaces that have been 

used to test soft tissues in the past [69], and a grid of nine (3 x 3) black delrin beads was placed 

on the surface of the capsule using cyanoacrylate. 
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Figure 4.3:   Identification of capsular regions 

 

4.2.1.1 Observations of capsular structure 

Several observations during dissection of specimens are worth noting.  The posterior capsule was 

typically the thinnest region of the capsule, with thicknesses ranging from 0.5mm to 1.5 mm.  In 

addition, specimens with larger muscle mass typically had thinner posterior capsules; sometimes 

even transparent.  The axillary pouch was typically the thickest of the regions, with thicknesses 

ranging from 1 mm to 4 mm.  The axillary pouch also had noticeable layers through the 

thickness of the tissue.  Because of these layers it was difficult to obtain a clean incision, as 

shifting of the layers was common.  In addition to difficulties with cutting the tissue, there were 

also difficulties with clamping the axillary pouch.  In capsules with thicker axillary pouches, it 

was not uncommon for the layers to shift over one another when tightening the clamps on the 

tissue.  (Figure 4.4)   
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Figure 4.4:  Schematic of axillary pouch layers shifting during clamping (solid lines – top layer, 

dashed lines – bottom layer) 

 

4.2.2 Experimental protocol 

Tissue samples from the glenohumeral capsule of ten cadaveric shoulders (51 ± 8 years) were 

obtained to characterize the mechanical properties of the tissue. The superior margin of the AB-

IGHL was utilized as a reference for the transverse (perpendicular to the longitudinal axis of the 

AB-IGHL) and longitudinal (parallel to the longitudinal axis of the AB-IGHL) loading directions 

during mechanical testing.   

A total of four non-destructive loading conditions were used in this protocol: 1) tensile 

elongations applied in the direction parallel to the longitudinal axes of the AB-IGHL – tensile 

longitudinal; 2) shear elongations applied in the direction perpendicular to the longitudinal axes 

of the AB-IGHL – shear transverse; 3) tensile elongations applied in the direction perpendicular 

to the longitudinal axes of the AB-IGHL – tensile transverse; and 4) shear elongations applied in 

the direction parallel to the longitudinal axes of the AB-IGHL – shear longitudinal.  Thus, for 
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each specimen, a total of eight loading conditions were performed:  axillary pouch tensile 

longitudinal (APTL), axillary pouch tensile transverse (APTT), axillary pouch shear longitudinal 

(APSL), axillary pouch shear transverse (APST), posterior tensile longitudinal (PTL), posterior 

tensile transverse (PTT), posterior shear longitudinal (PSL) and posterior shear transverse (PST).  

The order in which each tissue sample was tested was randomized.  (Figure 4.5)  Based on the 

design of the clamp setup, it was possible to perform a tensile test in the longitudinal direction 

and a shear test in the transverse direction (Option A) without the transaction of any material.  

Another option was to perform a tensile test in the transverse direction followed by a shear test in 

the longitudinal direction (Option B).  Once either option was performed, however, it was 

required that the tissue that was previously clamped be transected.  It is important to note that the 

tissue samples were continuously hydrated using a saline spray throughout the duration of this 

protocol.   
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Figure 4.5:  Randomization of experimental testing order 
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For tensile tests of the tissue, pre-loads of 0.5 N were applied.  The purpose of applying a 

pre-load to the tissue sample before loading is to remove slack from the system, while not 

deforming the tissue. In addition, it serves as a consistent starting point across all tissue samples 

being tested.   

To determine the proper pre-load for each region, the tissue samples were clamped using 

a custom set of soft tissue clamps and a small load was applied while using visual inspection to 

determine when the slack in the system was removed.  Once this was achieved, the tissue was 

loaded until failure.  To verify the proper value for the pre-load the load-elongation curve was 

visually inspected.  If the pre-load was too low, the load-elongation curve would remain zero 

while the elongation increased.  (Figure 4.6A)  If the pre-load was too high, the load-elongation 

curve would immediately become linear from the start of elongation.  (Figure 4.6C)  If the pre-

load was appropriate, however, the load would slowly begin to rise as elongation is applied until 

a linear region is finally obtained.  (Figure 4.6B)   

 

 

A) B) C)A) B) C)

 

Figure 4.6:  Load-elongation curves when too little (A), appropriate (B) and too large (C) of pre-loads are 

applied 

  

 

 36 



This same methodology was used to determine the proper pre-loads for the shear loading 

configuration.  As the tissue is elongated in the shear loading configuration, only the vertical 

degree of freedom (corresponding to the direction of the applied elongation) was free to 

translate.  All other degrees of freedom (including the horizontal, or direction perpendicular to 

the applied elongation) were held rigid.  Because the shear loading configuration has two load 

cells, two pre-loads were required.  As in the case of the tensile loading configuration, the 

appropriate pre-loads were those which removed visible slack from the system yet did not 

deform the tissue, and achieved a load-elongation curve as shown in Figure 4.6B.  Again, if 

either pre-load was too high, a load-elongation curve that is depicted in Figure 4.6A would have 

been observed and if either pre-load were too low, the load-elongation curve depicted in Figure 

4.6C would have been observed. 

The proper pre-load for the tensile loading conditions was chosen such that the criteria 

discussed above were met.  For both the axillary pouch and posterior regions, the appropriate 

pre-load was determined to be 0.5 N.  The appropriate pre-loads for the shear loading conditions 

were the same for both the axillary pouch and the posterior regions, and were 0.03 N in the 

horizontal direction (perpendicular to loading axis) and 0.1 N in the vertical direction (parallel to 

loading axis). 

Once the tissue was pre-loaded, the initial width, length, and thickness of the tissue 

samples were determined as the average of three measurements obtained using digital calipers 

and a ruler.  (Figure 4.7)  The tissue sample was then preconditioned via 10 cycles of cyclic 

elongation between 0-1.5 mm at a rate of 10mm/min.  Similar to the pre-load values, a 

preliminary experiment was performed to determine the proper number of cycles of 

preconditioning as well as preconditioning elongations. 
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Figure 4.7:  Locations of tissue sample measurements 

 

 

 

To determine the appropriate preconditioning values for both tensile and shear loading 

conditions, the ultimate load-elongation curves obtained above were again utilized.  In both cases 

the appropriate preconditioning elongation would load the tissue into the upper portion of the toe 

region, allowing the tissue to settle in the clamps.  This reduces the likelihood of slippage of the 

tissue during the final cycle of elongation.  To determine the number of cycles required for 

appropriate preconditioning, the tissue was cyclically loaded until the difference in load-

elongation curves between two consecutive loading cycles was minimized (R2 > 0.99).  

The proper preconditioning levels for the axillary pouch and posterior capsule were 1.5 

mm for tensile loading conditions and 2 mm for shear loading conditions, because these levels 

elongate the tissue into the upper portion of the toe region of the load-elongation curve.   

 The proper number of cycles for preconditioning was determined to be 10 cycles for all 

loading conditions and both regions of the capsule.  This was chosen based on the fact that the 

ninth and tenth loading curves were nearly identical (R2 = 1), as shown in a representative 
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loading condition in Figure 4.8, as well as the hysteresis between the loading and unloading 

phases of the curves being minimized.   
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Figure 4.8:  Loading and unloading phase of the ninth and tenth cycle of preconditioning 

 

 

 

Directly following the preconditioning, a displacement of 2.25 mm was applied at a rate 

of 10mm/min, corresponding to ~20% of the average failure load of the tissue.  Again, a 

preliminary experiment was performed to determine this value. 

Since non-destructive elongations are being used in this protocol, it was imperative to 

verify the elongations that were being applied were not damaging the tissue samples.  To do this, 

the ultimate load-elongation curves were obtained.  A tissue sample was clamped, pre-loaded, 
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and finally elongated until failure at a rate of 10 mm/min, while the clamp reaction force and 

cross-head displacement was recorded.   

The axillary pouch and posterior capsule behaved similarly during tensile load to failure 

tests, and therefore the same elongations of 2.25 mm were chosen for these two regions, which 

elongates the tissue well into the linear region yet far from the yield point of the tissue(indicated 

by repeatable curves following the application of this elongation).  The axillary pouch and 

posterior capsule behaved similarly during shear loading as well, and thus an elongation 

corresponding to a shear κ=tan(θ) of 0.4, where θ is the angle between the top edge of the tissue 

sample and the x-axis (Figure 4.9), was chosen for both of these regions, as it could consistently 

be applied to the tissue without causing damage (indicated by repeatable curves following the 

application of this elongation).  [69] 
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Figure 4.9:  Shear angle θ 
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The clamp reaction force was determined and used along with the known applied 

elongation to estimate the coefficients of the constitutive model.  The tissue samples were then 

allowed to recover for a 30 minute period.   This length of time was chosen based on a 

preliminary experiment. 

Due to viscoelastic properties, soft tissues exhibit a strain history whereby a tissue that is 

loaded and is then immediately reloaded using the same loading condition will exhibit a different 

response.  Therefore, a time of recovery between loading conditions is necessary to ensure all 

effects of strain history are minimal.  Since multiple loads are being applied to each tissue 

sample in the current protocol, it is necessary to allow the tissue samples to recover to their 

undeformed state.  Little has been reported about the recovery period of large sheets of the 

glenohumeral capsule, as being used in this protocol.  Therefore it was necessary to determine 

the appropriate recovery time that allowed the tissue to fully recover to its original state. 

 Thus, a non-destructive elongation was applied to each tissue sample and the tissue 

sample was allowed to recover for varying times.  Based on reported times in literature, 15 

minutes, 30 minutes, and 45 minutes were used to test recovery times.  [67]  Following these 

recovery times, the tissue was loaded in the exact same manner and the loading curves were 

compared.  An appropriate recovery time was one in which those loading curves matched with 

an R2 value of at least 0.95 and required the least amount of time. 

The recovery time for a sheet of the axillary pouch and posterior regions of the 

glenohumeral capsule was determined to be 30 minutes.  Thirty minutes was chosen based on 

how well it reproduced the original loading curve (R2 = 1), as well as being the shortest amount 

of time necessary to reproduce that loading curve.  A representative loading curve showing the 
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reference, or initial loading curve and the load-elongation curve following a 15, 30, and 45 

minute recovery period is depicted in Figure 4.10. 
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Figure 4.10:  Load-elongation graph of initial cycle and following different recovery periods 

 

 

 

Following the recovery period, the tissue sample was removed from one clamp and 

reclamped using a custom shear clamp, corresponding to the opposite direction; i.e. if the tensile 

elongation was applied in the longitudinal direction, the following shear elongation was applied 

in the transverse direction.  A preliminary experiment was performed to ensure the reclamping of 

the tissue did not alter the response of the tissue. 

A tissue sample was tested in tension by applying a 2.25 mm elongation and was then 

allowed to recover for 30 minutes.  Following complete recovery, the tissue sample was removed 

from the clamps completely, and then inserted back into the clamps being sure the grooves of the 
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clamps aligned with the grooves on the tissue.  The clamps and tissue sample were then re-

positioned within the testing setup and the experimental protocol was repeated.  The load-

elongation curves from each of these tests were then compared. 

The results showed that removing the tissue from the clamps and then reclamping it has 

no effect on the load-elongation curve of the ensuing test.  As shown in Figure 4.11, the two 

curves had a correlation coefficient of 1, meaning they were nearly identical. 
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Figure 4.11:  Effects of reclamping on ensuing load-elongation curves 

 

 

Once reclamped, the tissue sample was repositioned in the materials testing system and 

pre-loads of 0.03N and 0.1N were applied in the perpendicular and parallel directions (with 

respect to the axis of loading), respectively. Following the application of pre-loads, the initial 
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width, length, and thickness of the tissue samples were determined as the average of three 

measurements obtained using digital calipers and a ruler. Each tissue sample was then 

preconditioned by cyclically applying a displacement of 0-2mm (x10).  Immediately following 

preconditioning, the pre-loads were reestablished and a displacement corresponding to a shear 

κ=tan(θ) of 0.4 (Figure 4.9) was applied at a shear strain rate of 10mm/min based on the 

measured width of each specimen.  This displacement was chosen based on previous work that 

has been performed on the MCL [69] as well as it loaded the tissue into the linear region of the 

load-elongation curve but did not damage the tissue, indicated by reproducible load-elongation 

curves when this displacement was applied.  The clamp reaction force was measured using the 

load cell parallel to loading (Sensotec, Columbus, OH: range 0-223N, accuracy 0.1 N, resolution 

0.05 N).  Following cyclic testing, the tissue samples were again allowed to recover for 30 

minutes.   

The tissue sample was then released from the custom clamps and the tissue that was 

previously held within the clamps was excised from the tissue sample via careful scalpel 

transection.  The opposite edges of the tissue sample were wrapped in gauze, soaked in saline, 

and placed in the custom clamps.  The tensile and shear tests were then reproduced for the 

perpendicular loading conditions of the tissue sample.  It should be noted that the order in which 

the loading configurations are applied to the tissue samples was randomized. 

4.2.2.1 Issues with clamp movement 

During preliminary testing it was noted that for the shear clamp setup undesired motions of the 

clamps were occurring.  The clamps were originally designed to apply shear loads to the medial 

collateral ligament along the length of the ligament (thus along length of collagen fibers), 

however, because the glenohumeral capsule has a collagen fiber architecture such that fibers run 
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in all directions, the forces being exerted on the clamps were much greater.  Both the horizontal 

and vertical clamps had a moment being applied to them, causing them to rotate.  (Figure 4.12) 

 This violated the assumptions that were made during the computational simulations of 

each experiment.  For each simulation, it was assumed that a finite simple shear elongation was 

being applied to the tissue sample, meaning the clamps were only translating in the vertical 

direction (parallel to direction of applied elongation) and that all other displacements were fixed.  

In addition, because the clamps were not moving consistently between tissue samples, the same 

elongations were not being applied to different tissue samples.   

 To alleviate this problem, a redesign of the clamps was necessary.  The redesign had to 

account for the larger loads that were being applied to the clamps and minimize displacements 

and rotations in all directions other than the direction corresponding to the applied elongation.   
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Figure 4.12:  Original shear clamp setup showing clamp rotations 
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Clamp movement as large as 3 mm was noticed during shear loading of the axillary 

pouch and posterior capsule.  The new clamp setup (Figure 4.13) included a brace that was 

positioned below the horizontal load cell, and allowed for free motion when no vertical load was 

applied allowing for a horizontal pre-load to be applied.  Once a vertical load was applied, 

however, the motion of the horizontal load cell was restricted by the brace.  In addition to the 

brace, a new pancake style load cell was used, replacing the original load cell which had two 

small posts on either side.  This new load cell allowed the clamps to be securely tightened, 

preventing any kind of rocking motion during loading.  With this new clamp setup, clamp 

motions were reduced to less than 0.1 mm for all shear loading conditions. 
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Figure 4.13:  New clamp setup 
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4.2.2.2 Data obtained / analysis 

The clamp reaction force obtained from the vertical load cell was used along with the 

known applied displacement to generate load-elongations curves for each loading condition.  

These load-elongation curves were then used in the inverse finite element routine to generate the 

optimized constitutive coefficients. In addition, tissue sample dimensions (width, thickness, 

height) were obtained for all loading conditions applied to each tissue sample and were used to 

generate the finite element meshes for the inverse finite element routine.  Finally, the 

displacements of the markers on the surface of the tissue were used in conjunction with a finite 

element solver (ABAQUS v6.4.2, Providence, RI) to calculate the Green-Lagrange maximum 

principal strain (tensile loading conditions) or the Green-Lagrange maximum shear strain (shear 

loading conditions), where the position of the markers at time step zero were used as the strain 

free configuration, and the position of the markers at the final time step were used as the strained 

configuration.   

4.2.3 Computational protocol 

The clamp reaction forces, tissue elongations, and tissue sample dimensions from each 

experimental loading condition were used as boundary conditions to determine optimal 

constitutive coefficients for the hyperelastic isotropic strain energy (Equation 4.1) via an inverse 

finite element optimization technique [67]. (Figure 4.14) 
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Figure 4.14:  Flowchart of computational material parameter optimization technique 

 

he hyperelastic strain energy that was used in this protocol (Equation 4.1T )[72] 

uncoupled the dilatational and deviatoric behavior of the tissue.  An uncoupled 

deviatoric/dilatational constitutive formulation has numerical advantages for simulating nearly 

incompressible material behavior with the FE method [72], and the formulation is identical to the 

fully coupled strain energy in the limit of incompressibility or for an isochoric deformation (J = 1 

for both cases).  [67]  This function represents the tissue matrix strain energy, where I1 and I2 are 

the deviatoric invariants of the right deformation tensor.  U(J) governs the dilatational response 

of the tissue, where J is the volume ration and K represents effective bulk modulus of the 

material.    Finally, C1 and C2 are the constitutive coefficients that will be determined using the 

inverse finite element optimization routine, where C1 scales the magnitude of the stress-strain 

curve and C2 governs the magnitude and linearity of the stress-strain curve.  This particular form 

of the strain energy was originally developed be Veronda and Westmann [73] to model feline 

skin and then later expanded by Weiss, et. al [67] to model the human MCL. Further, this strain 
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energy is convex and exhibits physically reasonable behavior under tension, compression, and 

shear.   

An image from each loading condition was used to create a finite element mesh by 

adjusting integration points of the mesh until they were aligned with the edges of the tissue 

samples.  (Figure 4.15)  That mesh was then assigned material properties according to the 

hyperelastic isotropic constitutive model [72], creating a finite element model.   This method of 

mesh development was chosen based on preliminary experiments. 

Originally, finite element meshes were created using a custom program wrote by Steve 

Maas, a member of Dr. Jeffrey Weiss’ laboratory in Utah.  This program allowed for the input of 

the geometry of each tissue sample, specifically three sample thicknesses taken across the length 

of the tissue sample (tensile) or width of the sample (shear), and then generated a finite element 

mesh.  In addition, the corners of each tissue sample were obtained from the camera system and 

input into the meshing program.  Because of the phenomenon in which the tissue squeezes from 

the clamps as they are tightened, however, the exact geometry of the tissue samples was not 

being accurately defined.  Therefore, another program was developed by Mr. Maas which 

allowed for the implementation of the exact sample widths across the entire tissue sample.  An 

image of each tissue sample was input into the software, and integration points of the mesh were 

allowed to be manually manipulated to match the geometry of the tissue sample.  (Figure 4.15)   
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Figure 4.15:  Mesh generation accounting for tissue sample geometry 

  

 

 
Using the initial meshing program, a total of three cases were unable to converge to a 

solution during the finite element simulations.  The new program, however, better represented 

the tissue sample geometry, allowing those cases to reach a solution.  In addition, because the 

optimized constitutive coefficients were significantly different between the two meshing 

programs, the new program, which more accurately represented the tissue sample geometry, was 

used for all optimizations.  With the appropriate geometry of the mesh defined, the next decision 

was to define the density of the mesh.  Since few studies using a combined experimental and 

computational approach with the glenohumeral capsule have been performed, it was important to 

perform a parametric analysis of the mesh density of the finite element meshes.   

A mesh with too few elements would average most of the tissue response over large 

areas, and therefore reduce the reliability of the obtained coefficients.  A large number of 

elements would increase the accuracy of the obtained coefficients; however, this would also 

increase the computational time drastically.  An appropriate mesh density would be one that 

accurately describes the tissue response without an excessive number of elements.   

 50 



 A total of five mesh densities were used in this parametric analysis: 6, 600, 1200, 1944, 

and 2400 elements, and were applied to four random loading conditions of one specimen (two 

tensile, two shear).  These numbers were chosen based on the method of creating the mesh 

described previously.  As depicted in Figure 4.15, five integration points exist along each edge of 

the tissue sample.  The program allows the user to input a certain number of elements between 

each set of integration points in the X, Y, and Z directions.  A consistent number (four) of 

elements was used for the Z direction (thickness), based on previous work [67] that modeled the 

MCL.   

The differences in the optimized constitutive coefficients were found between mesh 

densities of 600, 1200, and 1944 elements.  In both cases of shear loading for the 2400 element 

mesh density, the finite element simulations encountered inverting elements, and therefore 

tensile loading conditions were not optimized since it was obvious that this density would not be 

sufficient for the capsule.  In addition, one shear loading condition also had inverting elements 

with the 1944 element mesh density.  The optimized constitutive coefficients for each density 

and loading condition are shown in Table 4.1.   

 Since there was no difference between the optimized coefficients for the 600, 1200, and 

1944 mesh densities, it was determined that the optimal mesh density was 1200 elements.  This 

allowed the mesh density to be adjusted by increasing or decreasing in cases where finite 

element simulations encountered errors.  It should be noted that only shear loading conditions 

caused errors during finite element simulation, thus only meshes of shear loading conditions 

would require an increase or decrease in mesh density to complete a full optimization.   
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Table 4.1:  Optimized coefficients with differing mesh densities 

Elements in mesh C1 C2 C1 C2 C1 C2 C1 C2

6 0.078 9.815 0.422 7.855 0.130 6.566 0.189 8.001
600 0.069 10.589 0.322 11.153 0.118 6.479 0.125 12.445
1200 0.069 10.677 0.320 11.243 0.112 6.590 0.125 12.512
1944 0.069 10.724 0.316 11.341 NA NA 0.100 12.690

APSL APTT PST PTL

 

APSL – axillary pouch shear longitudinal 
APTT – axillary pouch tensile transverse 

PST – posterior shear transverse 
PTL – posterior tensile longitudinal 

 

After creating the finite element mesh, it was necessary to define the material properties 

of the tissue sample.  A starting value of 0.1MPa and 10 for C1 and C2, respectively, was 

consistently used as an initial guess for the model.  These values were then updated by running 

the finite element models and comparing the simulated load-elongation curves to the 

experimental curves until the correlation coefficient between them was at least 0.97.  These 

coefficients were then used to create an input file for the inverse finite element model 

optimization routine. 

The inverse finite element optimization routine iteratively improved the values of C1 and 

C2 using a sequential quadratic programming method in the NAG Fortran77 Library routine 

E04UNF (Numerical Algorithms Group, Oxford, England). The NAG routine minimized a 

smooth objective function (Equation 4.2) subject to a set of constraints on the variables (in this 

case, the constraint is that both constitutive coefficients are greater than 0 but less than 5 MPa 

(C1) or 50 (C2) to ensure physically reasonable behavior and strong ellipticity) [74].  
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                   (4.2) 

Here, F(x) is the objective function 

that is to be minimized, where y is the experimental forces, f(x) is the computational simulated 

forces, i represents a particular clamp displacement level and m is the number of discrete clamp 

displacement levels (11 for this optimization routine, based on previous work performed on the 

MCL [69]).  This function essentially solves the non-linear least squares problem.  The output of 

the overall parameter estimation procedure was the optimal set of constitutive coefficients (C1 

and C2) that minimized the objective function when comparing the experimental and simulated 

forces.  

∑=
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4.2.3.1 Uniqueness of optimized coefficients 

The uniqueness of these coefficients was evaluated using several methods.  First, the initial guess 

for the coefficients of the MCL was altered, and the effect on the corresponding optimized 

coefficients was determined.  Using three different initial guesses for C1 and C2, the 

optimization routine was capable of calculating the optimized coefficients within a standard 

deviation of 24.7 Pa and 0.09 for C1 and C2, respectively. [69] Although the deviation for C1 

appears to be large, it is important to note that the typical optimized values for C1 were two 

orders of magnitude greater than this value. 

 The same method was performed by Mr. Maas for the glenohumeral capsule; however 

two loading conditions were evaluated: tensile longitudinal and shear transverse.  For the first 

loading condition, five values of C1 and C2 were examined and ranged from 0.03 to 0.08 MPa 

and 10 to 40, respectively.  (Table 4.2)  The optimized coefficients from all five cases were 

identical.  For the second loading condition, five values of C1 and C2 were used again; however 
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they ranged from 0.02 to 0.5 MPa and 2 to 10, respectively.   (Table 4.3) The optimized 

coefficients for all five cases were once again identical.   

 

Table 4.2:  Effects of initial guess on optimized coefficients (tensile longitudinal) 

C1 C2 C1 C2

0.05 20 0.05 20.0
0.03 40 0.05 20.0
0.08 40 0.05 20.0
0.03 10 0.05 20.0
0.08 10 0.05 20.0

Initial guess optimized

 

 

Table 4.3:  Effects of initial guess on optimized coefficients (shear transverse) 

C1 C2 C1 C2

0.1 5 0.10 5.0
0.02 10 0.10 5.0
0.5 10 0.10 5.0

0.02 2 0.10 5.0
0.5 2 0.10 5.0

Initial guess optimized

 

  

Finally, the uniqueness of the optimized coefficients was evaluated by defining C1 and C2 

for a random tissue sample, for tensile transverse and shear longitudinal loading conditions.  

Specifically, C1 and C2 were defined to be 0.1 MPa and 10 for both loading conditions.  These 

values were then used to generate a finite element simulated load-elongation curve, based on the 

geometry of that specific tissue sample.  Those load-elongation values were then input into the 

inverse finite element optimization routine as the experimental values, and the optimization 

routine was started.  Ideally, if the optimized coefficients are unique, they would be the same as 

the coefficients that were originally defined.  In addition, because it was assumed that the tissue 
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was isotropic, it was expected that the optimized coefficients for tensile and shear loading 

conditions would be similar.  The resulting optimized coefficients were identical to the initially 

defined coefficients for both loading conditions.  In addition, the tensile and shear optimized 

coefficients were also identical, suggesting the tissue is isotropic.  (Figure 4.16) 

 

C1 C2 C1 C2
0.1 10 0.1 10

displacement force displacement force
0.000 0.000 0.000 0.000
0.600 1.233 0.225 0.652
1.200 2.576 0.450 1.446
1.800 4.133 0.675 2.506
2.400 5.999 0.900 3.995
3.000 8.331 1.125 6.126
3.600 11.253 1.350 9.242
4.200 14.944 1.575 13.857
4.800 19.632 1.800 20.777
5.400 25.610 2.025 31.296
6.000 33.258 2.250 47.459

C1 C2 C1 C2
0.1000 9.9993 0.0999 10.0030

FE predicted valuesFE predicted values

optimized coefficentsoptimized coefficents

Shear LongitudinalTensile Transverse

initial declaration of coefficents initial declaration of coefficents

 

Figure 4.16:  Test of uniqueness of optimized coefficients 

 

4.2.3.2 Sensitivity of simulated load-elongation curves to constitutive coefficients 
 

In order to determine the significance of differing constitutive coefficients, it was necessary to 

determine the effect of changing the constitutive coefficients on the overall structural behavior of 

the entire tissue sample, thus the simulated load-elongation curves.  Therefore, random sample 

geometry and boundary conditions were chosen and the constitutive coefficients were altered.  

For the first condition, the constitutive coefficient C1 was held constant while C2 was changed in 
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a range of 1 to 10, in increments of 1.  The second condition, C2 was held constant while C1 was 

ranged from 0.1 to 1 MPa, in increments of 0.1 MPa.  These values were chosen based on values 

reported for the optimized constitutive coefficients of the MCL.  [69]   

The effect of changing the constitutive parameter C1 on the simulated load-elongation 

curve is shown in Figure 4.17.  As shown, by increasing the value of C1, the magnitude of the 

curve is increased and by decreasing the value of C1, the magnitude of the curve is decreased.  

The effect of changing constitutive parameter C2 on the simulated load-elongation curve is 

shown in Figure 4.18.  As shown in this figure, C2 affects the curve in two ways.  First, by 

increasing and decreasing the value of C2 the magnitude of the curve is increased and decreased, 

respectively.   Secondly, by increasing and decreasing the value of C2, the linearity of the curve 

is decreased and increased, respectively.  It is important to note, however, that for the curves 

with a C2 value of 8, 9, and 10, the curves have been cutoff in order to allow for comparison of 

the curves with lower magnitudes. 
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Figure 4.17:  Effects of changing C1 on the simulated load-elongation curve 
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Figure 4.18:  Effects of changing C2 on the simulated load-elongation curve 
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4.2.3.3 Sensitivity of stress-stretch curves to constitutive coefficients  
 

Much like the importance of knowing the effect of the constitutive coefficients on the 

overall structural behavior of the tissue, it is also important to know the effect on the stress-

stretch relationship of the material.  Because of the differences in the deformation gradients for 

tensile (Equation 4.3) and simple shear loading (Equation 4.4); different relationships were 

developed, with the assumption of an isochoric deformation. 
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The next step was to calculate the in 2 for both cases.  The same equation 

as used to determine each invariant of shear and tensile deformations (Equation 4.8
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Finally, to determine the stress-stretch relationship for each case, the partial derivativ

the strain energy function (Equation 4.1

e of 

) was taken with respect to I1 and I2 to obtain W1 and W2, 

respectively.  (Equations 4.13 and 4.14, respectively) 

 

     

         (4.14) 

      (4.13) 

 

     

 

With these values known, the Cauchy stresses were calculated using Equation 4.15. 

 

 

 

            (4.15) 

Finally, the stress-stretch relationships for simple finite shear (Equation 4.16) and pure 

nsile (Equation 4.17te ) deformations were determined. 
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Because the constitutive coefficients govern the stress-stretch relationship of the tissue, 

stress-stretch curves are more representative of the mechanical properties of the tissue s

rather than the structural response that is provided by the load-elongation curves.  It is important 

 note, however, that these stress-stretch curves are not representative of what was induced in 
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the tiss

gain, these ranges were chosen based on values that 

have be

curve.  The effect, though, is 

magnif

ue sample during the experiment.  Instead, they represent either pure tensile elongations, 

or pure simple finite shear elongations.  Because the aspect ratio used in this work was so poor 

(~1:1), pure tension assumptions are valid.   

For both tensile and shear loading conditions, the value of C1 was ranged from 0.001 to 1 

MPa while C2 was held constant at three different levels:  8, 10, and 12.  Again, for both tensile 

and shear loading conditions, the value of C2 was ranged from 1 to 20 while the value of C1 was 

held constant at 0.08, 0.10, and 0.12 MPa.  A

en reported for the MCL.  [69]  A stretch value of 0.15 and 0.4 was used for tensile and 

shear loading conditions, respectively.  These values were chosen as an estimate of the stretch 

values that were applied to the tissue samples experimentally. 

The effect of changing the constitutive coefficients on the stress-stretch curve has a 

similar effect as changing constitutive coefficients on the load-elongation curve.  Increasing the 

value of C1 increases the magnitude of the stress-stretch curve for both tensile and shear loading, 

while decreasing the value of C1 decreases the magnitude of the 

ied as the value of C2 is increased from 8 to 12.  (Figures 4.19-4.24 ** Note different 

scales)  Increasing the value of C2 increases both the magnitude and the non-linearity of the 

stress-stretch curve for both tensile and shear loading, while decreasing the value of C2 decreases 

the magnitude and non-linearity of the curve.  Again, the effect is magnified as the value of C1 

was increased from 0.08 to 0.12 MPa.  (Figures 4.25 – 4.30 ** Note different scales)  For 

instance, a value of zero for C2 would correspond to a perfectly linear stress-stretch curve.  This 

information becomes useful when comparing the constitutive coefficients, in that a change in C1 

of less than 0.3 MPa and a change in C2 of less than 3 will not drastically change the stress-

stretch relationship.  Therefore, when the coefficients of two different tissue samples differ by 
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less that 0.3 MPa for C1 and 3 for C2 the mechanical properties of those tissue samples can be 

considered similar. 
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Figure 4.19:  Effect of changing C1 on stress-stretch curve (C2 = 8) 
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Figure 4.20:  Effect of changing C1 on stress-stretch curve (C2 = 10) 
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Figure 4.21:  Effect of changing C1 on stress-stretch curve (C2 = 12) 
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Figure 4.22:  Effect of changing C1 on stress-stretch curve (C2 = 8) 
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Figure 4.23:  Effect of changing C1 on stress-stretch curve (C2 = 10) 
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Figure 4.24:  Effect of changing C1 on stress-stretch curve (C2 = 12) 
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Figure 4.25:  Effect of changing C2 on stress-stretch curve (C1 = 0.08 MPa) 
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Figure 4.26:  Effect of changing C2 on stress-stretch curve (C1 = 0.10 MPa)  
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Figure 4.27:  Effect of changing C2 on stress-stretch curve (C1 = 0.12 MPa) 
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Figure 4.28:  Effect of changing C2 on stress-stretch curve (C1 = 0.08 MPa) 
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Figure 4.29:  Effect of changing C2 on stress-stretch curve (C1 = 0.10 MPa)  

 65 



0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C2=20
C2=15
C2=12
C2=10
C2=9
C2=8
C2=7
C2=6
C2=5
C2=3
C2=1

Stretch (λ11)

C
au

ch
y 

St
re

ss
 (T

11
, M

Pa
)

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

C2=20
C2=15
C2=12
C2=10
C2=9
C2=8
C2=7
C2=6
C2=5
C2=3
C2=1

Stretch (λ11)

C
au

ch
y 

St
re

ss
 (T

11
, M

Pa
)

 

Figure 4.30:  Effect of changing C2 on stress-stretch curve (C1 = 0.12 MPa) 

 

 

4.2.3.4 Stress-stretch curve generation 

Stress-stretch curves were generated for pure tensile and finite simple shear deformations of 

every tissue sample using the optimized constitutive coefficients.  Again, because tensile and 

shear loading configurations have different stress-stretch relationships, the appropriate equations 

were used to generate the corresponding stress-stretch curves.   Stretch values of 0.15 and 0.40 

were used for tensile and shear configurations, respectively, to estimate the amount of stretch 

applied to the tissue sample during experimentation.   

4.2.3.5 Generating average constitutive coefficients 

In order to make comparisons between the axillary pouch and posterior regions of the capsule, 

average coefficients were determined.  Simply taking the average of the optimized coefficients, 

however, would not be representative of the response of each tissue sample because of the non-

linearity in the stress-stretch curves.  Instead, the stress-stretch curves were divided into ten 

increments and the stresses for each step were averaged between specimens.  These averaged 
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stresses were then used to generate an average stress-stretch curve for pure tensile and finite 

simple shear elongations in both the longitudinal and transverse direction.  To obtain an average 

set of constitutive coefficients, the Cauchy stress equations for pure tensile and finite simple 

shear deformations were fit to the average stress-stretch curves using the least squares method, 

where the error between the curves was minimized using the non-linear Levenberg-Marquardt 

algorithm with a tolerance of 0.001.  (Appendix A) 

4.2.3.6 Non-converging finite element meshes 

In some cases the finite element simulations were unable to converge to a solution due to 

inverting elements in the mesh.  This was mostly evident during shear loading conditions of the 

posterior capsule, because the posterior capsule was the thinnest of the regions.  For thin samples 

and as a final effort to make the models converge, a constraint of zero strain in the direction 

corresponding to the thickness of the tissue was applied, with the assumption that if the tissue is 

thin, minimal stress and strain occurred through the thickness.  This was completed by replacing 

the “0” following the node number in the node control deck with a “3”.  (Appendix B) 

4.2.3.7 Constitutive model validation  

There are two aspects to validating the constitutive model – determination of the ability of the 

constitutive model to describe the experimentally measured forces and determination of the 

ability of the constitutive model to predict these quantities. 

To evaluate the ability of the constitutive model to describe each of the four experimental 

datasets, we used standard measures of goodness-of-fit including R2 values.  We assessed the 

ability of the hyperelastic isotropic constitutive model to predict experimental data by comparing 

the coefficients of one loading direction to the coefficients of the perpendicular loading direction. 
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4.2.3.8 Data obtained / analysis 

For each loading condition, a set of optimized C1 and C2 were obtained.  These values were then 

used to generate stress-stretch curves for either pure tension (tensile loading conditions) or 

simple finite shear (shear loading conditions).   

 Several comparisons were made to determine the appropriateness of the isotropic 

constitutive model and difference between the axillary pouch and posterior region.  Specifically, 

when determining the appropriateness of the constitutive model, the stresses of longitudinal and 

transverse loading directions (i.e. tensile longitudinal compared to tensile transverse and shear 

longitudinal compared to shear transverse) were compared at 11 points along the curve using a 

correlation coefficient as well as maximum (max) and average (avg) differences.  In addition, the 

average stress-stretch curves were fit to the stress-stretch relationship described in Equations 

4.16 (shear) and 4.17 (tensile) and an averaged set of coefficients were obtained for each loading 

configuration.  These coefficients could then be compared, and based on the sensitivity analysis 

performed in Section 4.2.3.3 a difference greater then 0.3 MPa for C1 or 3 for C2 was considered 

significant.   

To determine the differences between the two regions, the stress-stretch curves from the 

same loading condition (i.e. tensile longitudinal of the axillary pouch was compared to tensile 

longitudinal of the posterior region) were compared at 11 points along each curve.  The average 

coefficients were also compared between regions, where differences greater then 0.3 MPa for C1 

or 3 for C2 were considered significant. 
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4.3 RESULTS 

4.3.1 Bi-directional Mechanical Tests - experimental 

4.3.1.1 Tissue sample geometries 

Overall, the posterior capsule was the thinnest region of the capsule, with an average thickness of 

1.23 ± 0.43 mm.  (Tables 4.4 – 4.13, where the loading conditions are as follows:  apsl – axillary 

pouch shear longitudinal, apst – axillary pouch shear transverse, aptl – axillary pouch tensile 

longitudinal, aptt – axillary pouch tensile transverse, psl – posterior shear longitudinal, pst – 

posterior shear transverse, ptl – posterior tensile longitudinal, and ptt – posterior tensile 

transverse)  The axillary pouch was the thickest region of the capsule with an average thickness 

of 2.61 ± 3.18 mm.  In addition, a great deal of variability was noticed not only between 

specimens, but also across tissue samples themselves.  For example, the thickness of one tissue 

sample ranged from 1.49 mm to 3.68 mm across its length.   
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Table 4.4:  Tissue sample geometries (mm) of specimen ID:  05-10072L 

APSL APST APTL APTT
Clamp to Clamp 14.00 14.00 15.00 15.00
Width (avg) 16.00 25.67 26.33 15.67
Thickness (avg) 2.72 2.87 2.64 2.06
Cross Sectional Area 43.52 73.75 69.52 32.22

PSL PST PTL PTT
Clamp to Clamp 14.00 15.00 15.00 15.00
Width (avg) 16.00 26.67 27.00 17.00
Thickness (avg) 1.22 1.19 1.31 1.45
Cross Sectional Area 19.47 31.64 35.37 24.71  

 

 

Table 4.5:  Tissue sample geometries (mm) of specimen ID:  05-08016R 

APSL APST APTL APTT
Clamp to Clamp 15.00 15.00 15.00 15.00
Width (avg) 20.00 17.33 16.67 19.67
Thickness (avg) 2.16 1.81 1.28 2.33
Cross Sectional Area 43.13 31.32 21.33 45.76

PSL PST PTL PTT
Clamp to Clamp 16.00 15.00 14.00 16.00
Width (avg) 14.33 23.33 22.67 14.33
Thickness (avg) 0.82 0.83 0.83 0.86
Cross Sectional Area 11.71 19.44 18.89 12.28  
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Table 4.6:  Tissue sample geometries (mm) of specimen ID:  05-10043R 

APSL APST APTL APTT
Clamp to Clamp 17.00 14.00 15.00 16.00
Width (avg) 17.33 24.33 23.67 17.67
Thickness (avg) 1.99 2.52 2.21 2.27
Cross Sectional Area 34.55 61.24 52.22 40.04

PSL PST PTL PTT
Clamp to Clamp 14.00 14.00 15.00 15.00
Width (avg) 13.33 23.00 23.00 13.67
Thickness (avg) 1.41 1.22 1.30 1.40
Cross Sectional Area 18.84 28.14 29.98 19.18  

 

 

Table 4.7:  Tissue sample geometries (mm) of specimen ID:  05-11007R 

APSL APST APTL APTT
Clamp to Clamp 14.00 15.00 16.00 15.00
Width (avg) 22.00 16.00 14.67 2.17
Thickness (avg) 2.96 2.47 3.34 22.00
Cross Sectional Area 65.19 39.57 48.99 47.81

PSL PST PTL PTT
Clamp to Clamp 14.00 15.00 16.00 15.00
Width (avg) 20.67 15.00 15.33 22.67
Thickness (avg) 1.07 0.98 0.62 1.01
Cross Sectional Area 22.18 14.75 9.56 22.89  

 

 

Table 4.8:  Tissue sample geometries (mm) of specimen ID:  05-08038L 

APSL APST APTL APTT
Clamp to Clamp 15.00 15.00 14.00 15.00
Width (avg) 14.33 22.00 22.67 14.33
Thickness (avg) 2.27 2.62 2.24 2.32
Cross Sectional Area 32.49 57.71 50.77 33.25

PSL PST PTL PTT
Clamp to Clamp 14.00 15.00 15.00 14.00
Width (avg) 18.67 16.67 15.33 20.33
Thickness (avg) 0.90 1.26 1.18 0.79
Cross Sectional Area 16.80 21.06 18.04 16.00  
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Table 4.9:  Tissue sample geometries (mm) of specimen ID:  05-08022L 

APSL APST APTL APTT
Clamp to Clamp 16.00 13.00 13.00 15.00
Width (avg) 15.00 14.67 14.33 19.33
Thickness (avg) 2.17 1.83 1.51 2.07
Cross Sectional Area 32.50 26.84 21.64 40.02

PSL PST PTL PTT
Clamp to Clamp 17.00 15.00 15.00 17.00
Width (avg) 16.33 22.33 23.00 15.33
Thickness (avg) 2.35 1.86 0.81 1.99
Cross Sectional Area 38.44 41.61 18.63 30.51  

 

 

Table 4.10:  Tissue sample geometries (mm) of specimen ID:  05-08013L 

APSL APST APTL APTT
Clamp to Clamp 16.00 14.00 15.00 15.00
Width (avg) 13.00 21.00 21.33 14.67
Thickness (avg) 1.66 1.51 1.60 1.80
Cross Sectional Area 21.54 31.78 34.20 26.45

PSL PST PTL PTT
Clamp to Clamp 18.00 13.00 14.00 18.00
Width (avg) 12.67 20.33 20.33 13.00
Thickness (avg) 0.78 1.26 1.16 0.92
Cross Sectional Area 9.84 25.62 23.59 11.92  

 

 

Table 4.11:  Tissue sample geometries (mm) of specimen ID:  05-08041L 

APSL APST APTL APTT
Clamp to Clamp 15.00 13.00 15.00 16.00
Width (avg) 13.00 21.33 23.00 13.67
Thickness (avg) 1.56 1.51 0.89 1.72
Cross Sectional Area 20.24 32.14 20.55 23.55

PSL PST PTL PTT
Clamp to Clamp 14.00 14.00 15.00 16.00
Width (avg) 13.67 18.00 18.33 12.00
Thickness (avg) 1.69 1.83 1.97 1.89
Cross Sectional Area 23.14 32.88 36.06 22.72  
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Table 4.12:  Tissue sample geometries (mm) of specimen ID:  05-08048L 

APSL APST APTL APTT
Clamp to Clamp 13.00 13.00 16.00 13.00
Width (avg) 14.67 20.67 20.67 14.33
Thickness (avg) 2.70 2.11 1.77 2.75
Cross Sectional Area 39.55 43.61 36.51 39.42

PSL PST PTL PTT
Clamp to Clamp 15.00 16.00 15.00 16.00
Width (avg) 20.67 16.33 16.00 20.00
Thickness (avg) 1.44 0.86 1.10 0.59
Cross Sectional Area 29.76 14.05 17.55 11.73  

 

 

Table 4.13:  Tissue sample geometries (mm) of specimen ID:  05-10071R 

APSL APST APTL APTT
Clamp to Clamp 16.00 17.00 16.00 17.00
Width (avg) 18.67 21.00 21.67 18.00
Thickness (avg) 2.28 1.61 1.97 2.13
Cross Sectional Area 42.50 33.88 42.68 38.34

PSL PST PTL PTT
Clamp to Clamp 14.00 15.00 16.00 16.00
Width (avg) 17.33 15.67 15.67 18.67
Thickness (avg) 0.99 0.71 0.58 0.71
Cross Sectional Area 17.10 11.18 9.03 13.25  

 

 

4.3.1.2 Load-elongation curves 

All load-elongation curves exhibited the typical non-linear toe region that progressed into a 

linear region that is expected with soft tissues.  (Figures 4.35 – 4.54)  In addition to the 

experimental load-elongation curves, the simulated load-elongation curves are also plotted to 

show the comparison for each loading condition.  The average R2 value between the 

experimental and simulated load-elongation curve was 0.993, with a range from 0.98 to 0.99.   

However, in several cases (PSL for specimen ID 05-10072L, PSL for specimen ID 05-08016R, 
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and PST for specimen ID 05-11007R) the fit between the curves showed a visible difference.  

These cases only occurred for the shear loading conditions of the posterior capsule, and may be 

attributed to the minimal thickness of the tissue samples.   

4.3.1.3 Surface strain distributions for shear loading conditions 

The strain distributions of the Green-Lagrange maximum principal strains during shear loading 

conditions (ε12, Figures 4.31 and 4.32) were homogeneous across the entire tissue sample 

ranging from 17% strain in the top right corner of the tissue sample to 21% strain in the bottom 

left portion of the tissue sample, while tensile loading conditions (ε11, Figures 4.33 and 4.34) 

exhibited more of a heterogeneous distribution, and ranged from 7% strain in the top left and 

bottom right corners of the tissue sample to 18% strain in the top right and bottom left corners of 

the tissue sample.  An image of the tissue sample in the reference strain configuration (Ref) and 

the strained configuration (Strained) has been provided for both loading conditions to show 

actual deformation of the markers during the applied elongation. 
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Figure 4.31:  Green-Lagrange principal strain during the application of a shear elongation in the longitudinal 

direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration (Specimen 

ID:  05-10071R) 
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Figure 4.32:  Green-Lagrange principal strain during the application of a shear elongation in the 

transverse direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration 

(Specimen ID:  05-10071R) 
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Figure 4.33:  Green-Lagrange principal strain during the application of a tensile elongation in the 

longitudinal direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration 

(Specimen ID:  05-10072L) 
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Figure 4.34:  Green-Lagrange principal strain during the application of a tensile elongation in the 

transverse direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration 

(Specimen ID:  05-10072L) 
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4.3.2 Bi-directional mechanical properties – computational 

4.3.2.1 Constitutive coefficients 

The optimized constitutive coefficients for each loading condition of all specimens used in this 

study are presented in Table 4.14, where the loading conditions are as follows:  APSL – axillary 

pouch shear longitudinal, APST – axillary pouch shear transverse, APTL – axillary pouch tensile 

longitudinal, APTT – axillary pouch tensile transverse, PSL – posterior shear longitudinal, PST – 

posterior shear transverse, PTL – posterior tensile longitudinal, and PTT – posterior tensile 

transverse.   

Minimal differences were found when comparing the longitudinal loading direction to the 

transverse loading direction for tensile and shear elongations.  For example, the C1 coefficient 

ranged from 0.05 to 1.08 MPa across all shear longitudinal loading conditions of the axillary 

pouch, with an average of 0.30 ± 0.37 MPa; while the C1 coefficient ranged from 0.07 to 1.78 

MPa across all shear transverse loading conditions of the axillary pouch, with an average of 0.47 

± 0.51 MPa.  Additionally, the C2 coefficient for all shear longitudinal loading conditions of the 

axillary pouch ranged from 2.1 to 11.0 with and average of 6.8 ± 3.6; while the C2 coefficient for 

all shear transverse loading conditions of the axillary pouch ranged from 1.9 to 11.5 with and 

average of 6.0 ± 2.9.   Because the C1 and C2 coefficients differed by less than 0.3 MPa and 3, 

respectively, the differences between loading directions were considered non-significant. 

The C1 coefficient ranged from 0.03 to 1.88 MPa across all loading conditions for the 

posterior region, with an average of 0.41 ± 0.40 MPa.  The C2 coefficient for all loading 

conditions of the posterior region ranged from 1.2 to 20.7 with and average of 8.5 ± 4.1.  

Comparing the C1 and C2 coefficients between the longitudinal and transverse directions, 

specifically tensile longitudinal to tensile transverse and shear longitudinal to shear transverse for 
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both the axillary pouch and posterior regions, minimal differences were found.  Again, because 

the differences between the regions was less than 0.3 MPa and 3 for C1 and C2, respectively, the 

differences were considered to be non-significant. 

 

Table 4.14:  Optimized constitutive coefficients for all specimens 

Specimen ID
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

APSL 0.06 10.3 0.83 2.2 0.17 8.4 0.48 3.7 0.09 3.6
APST 0.51 3.8 1.78 1.9 0.07 9.5 0.42 3.8 0.20 4.0
APTL 0.49 8.3 0.52 9.3 0.13 11.7 0.39 5.5 0.06 15.6
APTT 0.30 11.3 0.13 6.5 0.24 7.1 0.16 10.3 0.09 11.1
PSL 0.77 3.3 0.37 2.7 0.14 7.2 0.13 10.1 1.88 1.2
PST 0.11 7.4 0.94 3.2 0.20 6.0 0.30 10.0 0.46 2.7
PTL 0.19 13.7 0.49 5.6 0.03 20.7 0.45 11.9 1.24 7.0
PTT 0.10 13.4 0.78 5.0 0.43 5.3 0.41 5.0 0.22 8.7

Specimen ID
C1 C2 C1 C2 C1 C2 C1 C2 C1 C2

APSL 0.07 9.1 0.06 10.1 0.05 11.0 0.10 9.3 1.08 2.1
APST 0.28 5.6 0.25 5.3 0.11 11.5 0.81 6.3 0.28 7.9
APTL 0.11 14.5 0.31 8.1 0.12 13.4 0.22 11.8 0.13 17.7
APTT 0.12 8.1 0.15 8.8 0.06 8.4 0.13 8.3 0.14 17.2
PSL 0.20 9.3 0.16 5.3 0.30 5.8 0.09 11.7 0.16 7.3
PST 0.07 15.0 0.17 8.8 0.10 12.3 0.05 16.9 1.00 7.9
PTL 0.59 9.1 0.21 10.3 0.33 8.1 0.18 12.2 0.38 7.9
PTT 0.69 6.5 0.21 6.2 0.54 7.0 0.15 10.3 1.35 11.7

05-10043R 05-11007R 05-10071R

05-08038L 05-08022L 05-08013L 05-08041R 05-08048L

05-10072L 05-08016R
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Figure 4.35:  Experimental and computational load-elongation curves for specimen ID: 05-10072L – axillary 

pouch 
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Figure 4.36:  Experimental and computational load-elongation curves for specimen ID: 05-10072L – posterior 

region 

 

 

 

 79 



05-08016R APSL

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

0.00 2.00 4.00 6.00 8.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-08016R APST

0.00

10.00

20.00

30.00

40.00

50.00

0.00 2.00 4.00 6.00 8.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-08016R APTL

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00

0.00 1.00 2.00 3.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-08016R APTT

0.00

10.00

20.00

30.00

40.00

50.00

0.00 1.00 2.00 3.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-08016R APSL

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

0.00 2.00 4.00 6.00 8.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-08016R APST

0.00

10.00

20.00

30.00

40.00

50.00

0.00 2.00 4.00 6.00 8.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-08016R APTL

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00

0.00 1.00 2.00 3.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-08016R APTT

0.00

10.00

20.00

30.00

40.00

50.00

0.00 1.00 2.00 3.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

 

Figure 4.37:  Experimental and computational load-elongation curves for specimen ID: 05-08016R – axillary 

pouch 
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Figure 4.38:  Experimental and computational load-elongation curves for specimen ID: 05-08016R – posterior 

region 
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Figure 4.39:  Experimental and computational load-elongation curves for specimen ID: 05-10043R – axillary 

pouch 
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Figure 4.40:  Experimental and computational load-elongation curves for specimen ID: 05-10043R – posterior 

region 
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Figure 4.41:  Experimental and computational load-elongation curves for specimen ID: 05-11007R – axillary 

pouch 

 

 84 



05-11007R PostSL

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

0.00 2.00 4.00 6.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostST

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 2.00 4.00 6.00 8.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostTL

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00 1.00 2.00 3.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostTT

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

0.00 1.00 2.00 3.00 4.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostSL

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

0.00 2.00 4.00 6.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostST

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 2.00 4.00 6.00 8.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostSL

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00

0.00 2.00 4.00 6.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostST

0.00

5.00

10.00

15.00

20.00

25.00

30.00

0.00 2.00 4.00 6.00 8.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostTL

0.00

10.00

20.00

30.00

40.00

50.00

60.00

0.00 1.00 2.00 3.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

05-11007R PostTT

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00

0.00 1.00 2.00 3.00 4.00

Elongation (mm)

Lo
ad

 (N
)

exp
sim

 

Figure 4.42:  Experimental and computational load-elongation curves for specimen ID: 05-11007R –posterior 

region 
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Figure 4.43:  Experimental and computational load-elongation curves for specimen ID: 05-08038L – axillary 

pouch 
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Figure 4.44:  Experimental and computational load-elongation curves for specimen ID: 05-08038L – posterior 

region 
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Figure 4.45:   Experimental and computational load-elongation curves for specimen ID: 05-08022L – axillary 

pouch 
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Figure 4.46:  Experimental and computational load-elongation curves for specimen ID: 05-08022L – posterior 

region 
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Figure 4.47:  Experimental and computational load-elongation curves for specimen ID: 05-08013L – axillary 

pouch 
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Figure 4.48:  Experimental and computational load-elongation curves for specimen ID: 05-08013L – posterior 

region 
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Figure 4.49:  Experimental and computational load-elongation curves for specimen ID: 05-08041L – axillary 

pouch 
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Figure 4.50:  Experimental and computational load-elongation curves for specimen ID: 05-08041L – posterior 

region 
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Figure 4.51:  Experimental and computational load-elongation curves for specimen ID: 05-08048L – axillary 

pouch 
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Figure 4.52:  Experimental and computational load-elongation curves for specimen ID: 05-08048L – posterior 

region 
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Figure 4.53:  Experimental and computational load-elongation curves for specimen ID: 05-10071R – axillary 

pouch 
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Figure 4.54:  Experimental and computational load-elongation curves for specimen ID: 05-10071R – posterior 

region 
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4.3.2.2 Stress-stretch results 

All stress-stretch curves exhibited the typical soft-tissue non-linear toe region that progressed 

into a linear region.  (Figures 4.55-4.74)  The average difference of stress between pure tension 

in the longitudinal and transverse loading directions of the axillary pouch across all specimens 

was only 0.46 ± 0.53 MPa, and only 0.54 ± 0.58 MPa when comparing shear longitudinal to 

shear transverse loading directions.  The average difference of stress between pure tension in the 

longitudinal and transverse direction of the posterior region across all specimens was 1.42 ± 1.95 

MPa, and 0.99 ± 1.31 MPa when comparing simple finite shear in the longitudinal direction to 

simple finite shear in the transverse direction. (Tables 4.15 – 4.24)  For all cases, the correlation 

coefficient between the stress-stretch curves in the longitudinal and transverse loading directions 

exceeded 0.97.    

In addition, when comparing one loading configuration of the axillary pouch to the same 

loading configuration of the posterior region (i.e. comparing APTL to PTL) the average 

differences were 0.40 ± 0.24, 0.90 ± 1.20, 0.84 ± 0.90, and 1.14 ± 1.82 MPa for shear 

longitudinal, shear transverse, tensile longitudinal and tensile transverse loading configurations, 

respectively.    

After averaging all stress-stretch curves for each loading configuration to obtain one 

curve per loading configuration (Figures 4.75 and 4.76), the maximum differences in stress 

between the tensile loading conditions for the axillary pouch and posterior region were 1.36 and 

0.25 MPa, respectively.   The maximum differences in stress between the shear loading 

conditions for the axillary pouch and posterior region were 1.31 and 3.73 MPa, respectively.  

Based on the preliminary work that determined the sensitivity of the stress-stretch curves to the 
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constitutive coefficients (Section 4.2.3.3), these minimal differences between the curves 

correspond to the mechanical properties of the tissue samples being similar. 

 

Table 4.15:  Stress-stretch data for specimen ID:  05-10072L 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.02 0.08 0.10 0.03 0.19 0.15 0.12 0.06 0.02
0.08 0.05 0.16 0.21 0.07 0.39 0.33 0.26 0.13 0.03
0.12 0.09 0.26 0.34 0.12 0.63 0.53 0.43 0.21 0.05
0.16 0.15 0.37 0.48 0.19 0.91 0.79 0.64 0.32 0.06
0.20 0.24 0.51 0.66 0.28 1.25 1.11 0.92 0.45 0.08
0.24 0.37 0.69 0.87 0.40 1.66 1.52 1.28 0.63 0.09
0.28 0.57 0.92 1.14 0.59 2.17 2.04 1.77 0.87 0.11
0.32 0.89 1.20 1.48 0.85 2.80 2.72 2.42 1.18 0.12
0.36 1.39 1.58 1.91 1.24 3.58 3.61 3.29 1.60 0.14
0.40 2.20 2.06 2.45 1.81 4.55 4.76 4.45 2.16 0.15

max diff
avg diff
correlation

0.72
0.34 0.67 0.21 2.29

stress (MPa) stress (MPa)

0.19 0.37 0.09
0.976 0.987 0.999 1.000

Shear Tensile

 

 

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

APTL
APTT
PTL
PTT

Stretch (λ11)

C
au

ch
y 

St
re

ss
 (T

11
, M

Pa
)

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

APTL
APTT
PTL
PTT

Stretch (λ11)

C
au

ch
y 

St
re

ss
 (T

11
, M

Pa
)

 

Figure 4.55:  Stress-stretch curves for pure tension of specimen ID:  05-10072L 
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Figure 4.56:  Stress-stretch curves for simple finite shear of specimen ID:  05-10072L 

 

 

 
Table 4.16:  Stress-stretch data for specimen ID:  05-08016R 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.07 0.14 0.04 0.12 0.22 0.04 0.13 0.18 0.02
0.08 0.15 0.28 0.08 0.25 0.47 0.08 0.26 0.37 0.03
0.12 0.23 0.44 0.13 0.39 0.75 0.13 0.41 0.57 0.05
0.16 0.33 0.61 0.18 0.56 1.09 0.19 0.58 0.81 0.06
0.20 0.43 0.80 0.24 0.76 1.51 0.25 0.78 1.07 0.08
0.24 0.56 1.02 0.31 1.01 2.03 0.33 1.01 1.38 0.09
0.28 0.70 1.28 0.40 1.32 2.69 0.42 1.28 1.74 0.11
0.32 0.88 1.58 0.51 1.70 3.51 0.53 1.60 2.16 0.12
0.36 1.09 1.94 0.65 2.19 4.54 0.66 1.98 2.65 0.14
0.40 1.35 2.37 0.81 2.80 5.85 0.82 2.43 3.22 0.15

max diff
avg diff
correlation

5.03 0.79
1.75 0.33

1.03 1.99
0.42 0.70

Shear Tensile
stress (MPa) stress (MPa)

1.000 0.999 0.998 1.000  
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Figure 4.57:  Stress-stretch curves for pure tension of specimen ID:  05-08016R 
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Figure 4.58:  Stress-stretch curves for simple finite shear of specimen ID:  05-08016R 
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Table 4.17:  Stress-stretch data for specimen ID:  05-10043R 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.06 0.03 0.04 0.05 0.07 0.08 0.03 0.10 0.02
0.08 0.12 0.06 0.09 0.11 0.15 0.16 0.06 0.22 0.03
0.12 0.21 0.10 0.15 0.17 0.24 0.26 0.11 0.34 0.05
0.16 0.33 0.15 0.23 0.26 0.36 0.36 0.17 0.48 0.06
0.20 0.50 0.24 0.34 0.38 0.50 0.49 0.25 0.64 0.08
0.24 0.75 0.37 0.49 0.54 0.69 0.65 0.37 0.82 0.09
0.28 1.12 0.56 0.71 0.76 0.94 0.84 0.55 1.04 0.11
0.32 1.67 0.85 1.02 1.06 1.25 1.07 0.80 1.30 0.12
0.36 2.48 1.31 1.48 1.48 1.67 1.35 1.17 1.60 0.14
0.40 3.72 2.02 2.14 2.08 2.21 1.69 1.70 1.96 0.15

max diff
avg diff
correlation

0.03 0.11 0.30
1.000 0.999
0.48
1.70 0.53

Shear Tensile
stress (MPa) stress (MPa)

0.996 0.970

0.500.06

 

 

 

 

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

APTL
APTT
PTL
PTT

Stretch (λ11)

C
au

ch
y 

St
re

ss
 (T

11
, M

Pa
)

0

5

10

15

20

25

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

APTL
APTT
PTL
PTT

Stretch (λ11)

C
au

ch
y 

St
re

ss
 (T

11
, M

Pa
)

 

Figure 4.59:  Stress-stretch curves for pure tension of specimen ID:  05-10043R 
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Figure 4.60:  Stress-stretch curves for simple finite shear of specimen ID:  05-10043R 

 

 

 
Table 4.18:  Stress-stretch data for specimen ID:  05-11007R 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.07 0.06 0.06 0.12 0.10 0.07 0.25 0.09 0.02
0.08 0.15 0.13 0.12 0.27 0.21 0.16 0.53 0.19 0.03
0.12 0.24 0.21 0.21 0.46 0.32 0.25 0.87 0.30 0.05
0.16 0.34 0.31 0.34 0.75 0.46 0.37 1.28 0.43 0.06
0.20 0.47 0.43 0.54 1.17 0.61 0.52 1.82 0.57 0.08
0.24 0.63 0.57 0.83 1.81 0.79 0.71 2.50 0.73 0.09
0.28 0.83 0.76 1.29 2.79 1.00 0.94 3.39 0.92 0.11
0.32 1.09 1.00 1.99 4.31 1.25 1.24 4.55 1.14 0.12
0.36 1.42 1.32 3.10 6.69 1.55 1.63 6.07 1.41 0.14
0.40 1.85 1.72 4.88 10.49 1.90 2.13 8.06 1.71 0.15

max diff
avg diff
correlation

1.98
0.13 5.61 0.23 6.35
0.05 1.41 0.07

0.991

Shear Tensile
stress (MPa) stress (MPa)

1.000 1.000 0.995  
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Figure 4.61:  Stress-stretch curves for pure tension of specimen ID:  05-11007R 
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Figure 4.62:  Stress-stretch curves for simple finite shear of specimen ID:  05-11007R 
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Table 4.19:  Stress-stretch data for specimen ID:  05-08038L 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.03 0.06 0.08 0.04 0.08 0.04 0.25 0.21 0.02
0.08 0.06 0.14 0.16 0.10 0.16 0.09 0.53 0.43 0.03
0.12 0.10 0.22 0.28 0.19 0.27 0.15 0.84 0.68 0.05
0.16 0.15 0.33 0.45 0.32 0.41 0.21 1.22 0.97 0.06
0.20 0.23 0.47 0.70 0.55 0.59 0.29 1.69 1.31 0.08
0.24 0.36 0.67 1.06 0.94 0.83 0.39 2.27 1.72 0.09
0.28 0.54 0.93 1.62 1.61 1.15 0.50 2.99 2.20 0.11
0.32 0.81 1.29 2.46 2.78 1.59 0.65 3.89 2.78 0.12
0.36 1.24 1.78 3.76 4.89 2.18 0.83 5.03 3.49 0.14
0.40 1.89 2.47 5.79 8.82 2.98 1.05 6.47 4.34 0.15

max diff
avg diff
correlation

2.13
0.27 0.46 0.55 0.64
0.58 3.03 1.93

Shear Tensile
stress (MPa) stress (MPa)

0.994 0.992 0.994 0.999  
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Figure 4.63:  Stress-stretch curves for pure tension of specimen ID:  05-08038L 
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Figure 4.64:  Stress-stretch curves for simple finite shear of specimen ID:  05-08038L 

 

 

 
Table 4.20:  Stress-stretch data for specimen ID:  05-08022L 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.03 0.05 0.03 0.06 0.11 0.06 0.10 0.06 0.02
0.08 0.06 0.11 0.07 0.13 0.24 0.13 0.21 0.13 0.03
0.12 0.10 0.18 0.12 0.23 0.38 0.20 0.34 0.20 0.05
0.16 0.16 0.27 0.18 0.36 0.55 0.29 0.50 0.29 0.06
0.20 0.25 0.39 0.25 0.56 0.76 0.40 0.70 0.38 0.08
0.24 0.39 0.54 0.35 0.84 1.00 0.54 0.94 0.50 0.09
0.28 0.60 0.75 0.49 1.26 1.31 0.70 1.26 0.64 0.11
0.32 0.93 1.03 0.67 1.89 1.69 0.91 1.66 0.80 0.12
0.36 1.44 1.41 0.92 2.85 2.15 1.18 2.18 1.00 0.14
0.40 2.27 1.93 1.26 4.31 2.73 1.51 2.84 1.24 0.15

max diff
avg diff
correlation

1.59
0.11 0.74 0.46 0.50

1.220.34 3.05

Shear Tensile
stress (MPa) stress (MPa)

0.989 0.994 1.000 0.997  
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Figure 4.65:  Stress-stretch curves for pure tension of specimen ID:  05-08022L 
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Figure 4.66:  Stress-stretch curves for simple finite shear of specimen ID:  05-08022L 
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Table 4.21:  Stress-stretch data for specimen ID:  05-08013L 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.02 0.05 0.07 0.05 0.08 0.02 0.12 0.17 0.02
0.08 0.05 0.12 0.15 0.11 0.16 0.05 0.26 0.36 0.03
0.12 0.09 0.21 0.24 0.20 0.27 0.08 0.41 0.57 0.05
0.16 0.14 0.34 0.36 0.34 0.40 0.12 0.59 0.81 0.06
0.20 0.23 0.55 0.52 0.55 0.57 0.16 0.81 1.10 0.08
0.24 0.36 0.87 0.74 0.89 0.80 0.22 1.07 1.45 0.09
0.28 0.56 1.39 1.04 1.44 1.10 0.28 1.40 1.86 0.11
0.32 0.89 2.22 1.45 2.35 1.50 0.37 1.80 2.37 0.12
0.36 1.42 3.58 2.01 3.86 2.04 0.47 2.30 2.98 0.14
0.40 2.29 5.85 2.80 6.45 2.75 0.60 2.91 3.73 0.15

max diff
avg diff
correlation

2.15
0.66

0.81
0.34

3.57
0.83

3.65
0.65

1.000 0.984 0.996 1.000

stress (MPa)
Shear Tensile

stress (MPa)
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Figure 4.67:  Stress-stretch curves for pure tension of specimen ID:  05-08013R 
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Figure 4.68:  Stress-stretch curves for simple finite shear of specimen ID:  05-08013R 

 

 

 
Table 4.22:  Stress-stretch data for specimen ID:  05-08041R 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.04 0.21 0.04 0.04 0.12 0.05 0.10 0.07 0.02
0.08 0.08 0.44 0.10 0.09 0.25 0.11 0.21 0.15 0.03
0.12 0.14 0.73 0.17 0.17 0.41 0.17 0.35 0.24 0.05
0.16 0.23 1.11 0.28 0.30 0.60 0.25 0.52 0.35 0.06
0.20 0.35 1.62 0.45 0.52 0.85 0.34 0.73 0.49 0.08
0.24 0.54 2.31 0.72 0.92 1.17 0.45 1.01 0.67 0.09
0.28 0.82 3.28 1.15 1.63 1.58 0.59 1.38 0.89 0.11
0.32 1.24 4.64 1.85 2.94 2.12 0.76 1.85 1.18 0.12
0.36 1.90 6.55 3.00 5.43 2.83 0.98 2.47 1.55 0.14
0.40 2.92 9.26 4.93 10.33 3.75 1.24 3.30 2.02 0.15

max diff
avg diff
correlation

6.35 5.40 2.50
1.99 0.88 0.79

1.28
0.39

0.996 0.994 0.998 1.000

stress (MPa) stress (MPa)
Shear Tensile
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Figure 4.69:  Stress-stretch curves for pure tension of specimen ID:  05-08041R 

 

 

 110 



0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

APSL
APST
PSL
PST

C
au

ch
y 

St
re

ss
 (T

12
, M

Pa
)

Stretch (λ12)

0

5

10

15

20

25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

APSL
APST
PSL
PST

C
au

ch
y 

St
re

ss
 (T

12
, M

Pa
)

Stretch (λ12)
 

Figure 4.70:  Stress-stretch curves for simple finite shear of specimen ID:  05-08041R 

Table 4.23:  Stress-stretch data for specimen ID:  05-08048L 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.09 0.09 0.05 0.32 0.11 0.11 0.14 0.73 0.02
0.08 0.18 0.19 0.10 0.70 0.24 0.24 0.29 1.56 0.03
0.12 0.29 0.33 0.17 1.18 0.40 0.41 0.45 2.53 0.05
0.16 0.40 0.51 0.27 1.83 0.61 0.62 0.65 3.75 0.06
0.20 0.53 0.76 0.40 2.76 0.91 0.92 0.89 5.29 0.08
0.24 0.68 1.13 0.58 4.09 1.32 1.32 1.18 7.27 0.09
0.28 0.85 1.66 0.84 6.02 1.89 1.89 1.54 9.84 0.11
0.32 1.06 2.44 1.22 8.85 2.68 2.67 1.98 13.17 0.12
0.36 1.31 3.59 1.77 13.02 3.80 3.76 2.52 17.52 0.14
0.40 1.61 5.31 2.57 19.26 5.38 5.29 3.19 23.21 0.15

max diff
avg diff
correlation

0.82 4.55 0.02 6.55
3.70 16.69 0.08 20.03

0.968 1.000 1.000

Shear Tensile
stress (MPa) stress (MPa)

0.998  
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Figure 4.71:  Stress-stretch curves for pure tension of specimen ID:  05-08048L 
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Figure 4.72:  Stress-stretch curves for simple finite shear of specimen ID:  05-08048L 
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Table 4.24:  Stress-stretch data for specimen ID:  05-10071R 

stretch stretch
APSL APST PSL PST APTL APTT PTL PTT

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.04 0.01 0.03 0.09 0.05 0.05 0.04 0.40 0.09 0.02
0.08 0.03 0.07 0.18 0.11 0.10 0.09 0.84 0.19 0.03
0.12 0.04 0.11 0.27 0.16 0.16 0.15 1.33 0.30 0.05
0.16 0.06 0.16 0.37 0.23 0.25 0.22 1.89 0.43 0.06
0.20 0.09 0.22 0.48 0.31 0.36 0.31 2.57 0.60 0.08
0.24 0.11 0.30 0.60 0.41 0.51 0.43 3.37 0.80 0.09
0.28 0.15 0.40 0.73 0.53 0.72 0.57 4.34 1.05 0.11
0.32 0.20 0.53 0.87 0.67 1.00 0.76 5.52 1.36 0.12
0.36 0.26 0.70 1.04 0.85 1.39 1.01 6.96 1.75 0.14
0.40 0.34 0.92 1.23 1.07 1.92 1.33 8.71 2.23 0.15

max diff
avg diff
correlation

2.47
0.58 0.20 0.60 6.47

stress (MPa)

0.13 0.14

Shear Tensile
stress (MPa)

1.000 0.993 0.998 0.999
0.19
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Figure 4.73:  Stress-stretch curves for pure tension of specimen ID:  05-10071R 
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Figure 4.74:  Stress-stretch curves for simple finite of specimen ID:  05-10071R 
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Figure 4.75:  Average stress-stretch curves for pure tension 
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Table 4.25:  Average stress-stretch data for pure tension 

stretch APTL APTT PTL PTT
0 0 0 0 0
0.015 0.11 0.07 0.16 0.18
0.03 0.23 0.14 0.34 0.37
0.045 0.38 0.23 0.55 0.60
0.06 0.56 0.34 0.80 0.87
0.075 0.79 0.48 1.11 1.20
0.09 1.08 0.65 1.49 1.61
0.105 1.45 0.87 1.98 2.12
0.12 1.93 1.16 2.60 2.77
0.135 2.56 1.54 3.38 3.59
0.15 3.38 2.02 4.38 4.63
max diff
avg diff
correl

1.36 0.25
0.45 0.10
1.000 1.000  
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Figure 4.76:  Average stress-stretch curves for simple finite shear 
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Table 4.26:  Average stress-stretch data for simple finite shear 

stretch APSL APST PSL PST
0 0 0 0 0
0.04 0.04 0.08 0.05 0.08
0.08 0.09 0.16 0.12 0.17
0.12 0.14 0.27 0.19 0.29
0.16 0.22 0.40 0.30 0.47
0.2 0.33 0.59 0.44 0.74
0.24 0.48 0.84 0.65 1.15
0.28 0.69 1.20 0.94 1.76
0.32 1.00 1.69 1.36 2.72
0.36 1.44 2.39 1.96 4.21
0.4 2.08 3.39 2.85 6.58
max diff
avg diff
correl 1.000 0.997

1.31 3.73
0.41 0.85

 

4.3.2.3 Average coefficients for each loading condition 

 The C1 and C2 coefficients for the averaged stress-stretch curves of pure tension of the axillary 

pouch in the longitudinal direction were 0.21 MPa and 11.3, respectively.  (Table 4.27)  The 

average C1 and C2 coefficients for pure tension in the transverse direction were 0.13 MPa and 

11.1, respectively.  The average C1 and C2 coefficients for simple finite shear of the axillary 

pouch were 0.14 MPa and 7.1, respectively for the longitudinal direction, and 0.29 MPa and 6.4, 

respectively for the transverse direction.  The average coefficients for the posterior capsule 

showed a trend of being more similar across all loading configurations, with the C1 and C2 

coefficients being 0.36 MPa and 9.7 for pure tension in the longitudinal direction and 0.41 MPa 

and 9.3 for pure tension in the transverse direction.  The average C1 and C2 coefficients for 

simple finite shear were 0.18 MPa and 7.3 for the longitudinal direction and 0.19 MPa and 9.9 

for the transverse direction.  Based on the sensitivity of the curves to the constitutive coefficients 

 116 



(Section 4.2.3.3), the differences between the longitudinal and transverse directions, as well as 

between the axillary pouch and posterior regions are considered to be minimal since the 

difference in C1 is less than 0.3 MPa and the difference in C2 is less than 3. 

 When comparing the different loading directions for pure tension and finite simple shear, 

the lowest correlation coefficient was shown for the simple finite shear of the posterior region, at 

0.997.  The correlation coefficients for all other loading conditions were 1.000.  The stress-

stretch curves for pure tension and simple finite shear are shown in Figure 4.75 and Figure 4.76, 

respectively.   
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Table 4.27:  Constitutive coefficients for average stress-stretch curves 

C1 (MPa) C2
APSL 0.14 7.1
APST 0.29 6.4
APTL 0.21 11.3
APTT 0.13 11.1
ASTL 0.08 21.0
PSL 0.18 7.3
PST 0.19 9.9
PTL 0.36 9.7
PTT 0.41 9.3  
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5.0  DISCUSSION 

The axillary pouch and posterior regions of the glenohumeral capsule have been characterized 

using a combined experimental and computational methodology.  A hyperelastic isotropic 

constitutive model was used to model the tissues response to tensile and shear loading conditions 

in two perpendicular directions.  No differences were found when comparing the coefficients of 

the constitutive model between loading directions for both tensile and shear loading conditions.  

In addition, no difference was found when comparing the coefficients between the axillary pouch 

and posterior region.   

5.1 IMPLICATIONS OF FINDINGS 

5.1.1 Engineering 

The data presented in the current work have many implications for experimental and 

computational analyses, thus having relevance for the field of Bioengineering.  Based on the fact 

that no differences could be found when comparing the constitutive coefficients or stresses 

between two perpendicular loading directions, an isotropic constitutive model should be used 

when creating finite element models of the glenohumeral capsule, rather than a transverse 

isotropic model which has been used for many other ligaments in the body.  In addition, because 
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no differences could be found when comparing the constitutive coefficients and stresses of the 

axillary pouch to the posterior region, both these regions of the capsule can be modeled using the 

same constitutive model and constitutive coefficients. 

The data obtained in the current work also have implications for studies that determine 

the mechanical or structural properties of different regions of the capsule at failure by isolating 

them into ligamentous regions with a high aspect ratio.  To determine the biomechanical 

properties at failure, a uniform stress distribution across the cross-section is assumed.  However, 

this may not be a valid assumption when the glenohumeral capsule is isolated into 

capsuloligamentous regions.  To allow for the complex stress and strain distributions observed 

during loading of the capsule, the glenohumeral capsule may be highly heterogenous.   Thus, a 

uniform stress distribution may not be possible. 

The current work clearly suggests that the glenohumeral capsule should be evaluated as 

an isotropic sheet of fibrous tissue, rather than uniaxial ligamentous regions.  However, 

experimentally evaluating the glenohumeral capsule as a sheet of fibrous tissue poses many 

experimental difficulties.  Despite these difficulties, a thorough understanding as to the function 

of the glenohumeral capsule is necessary to improve patient outcomes.  Thus, there exists a need 

to continue to develop and validate constitutive coefficients to determine if an average set of 

coefficients can be used to model groups of the population, i.e. male versus female.  These 

validated coefficients can then be used to develop finite element models that should be utilized to 

evaluate the mechanisms by which the capsuloligamentous regions transmit loads at various joint 

positions to provide joint stability. 
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5.1.2 Clinical 

In addition to engineering relevance, the results presented in the current work also have clinical 

relevance.  Currently surgeons use a plicate and shift method to repair injuries to the 

glenohumeral capsule, whereby they create incisions in both the inferior-superior and medial-

lateral directions, and then shift the leaflets across one another.  The current work has shown that 

the axillary pouch is thicker than the posterior regions of the capsule, yet has similar mechanical 

properties suggesting that the axillary pouch experiences greater loads in-vivo.  Therefore, when 

an injury occurs to the axillary pouch, the uninjured posterior region may be shifted inferiorly to 

help stabilize the joint, or if the posterior region is injured, the axillary pouch may be shifted 

superiorly to help maintain joint stability.   

This theory could also be investigated via multiple validated finite element models 

whereby the obtained constitutive coefficients can be utilized, and the stress and strain 

distribution within the glenohumeral capsule could be determined.  The stress distributions 

would provide a means for identifying locations within the glenohumeral capsule that are at risk 

for injury and could be assessed for various joint positions.  Moreover, the constitutive 

coefficients could be altered, simulating diminishing mechanical properties of the different 

regions due to aging and gender, disease, or surgical repair procedures, such as thermocapsular 

shrinkage. [75, 76] Thus, utilizing these models to simulate the normal, injured, and repaired 

state, would provide scientific rationale to improve clinical exams for diagnosis and surgical 

planning, surgical repair techniques, and would enhance our understanding of normal function. 
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5.2 ADVANCEMENTS AND LIMITATIONS 

5.2.1 Advancements 

In the current work, a comprehensive analysis was performed in which experimental and 

computational methodologies to characterize the glenohumeral capsule were developed.  

Previously, mechanical testing of the glenohumeral capsule has been performed by isolating the 

capsule into ligamentous regions and then applying a tensile load in the direction parallel to their 

longitudinal axes.  [3, 6, 21, 22, 24] However, in the current work, the mechanical response of 

the two regions, evaluated as a sheet of tissue rather than a ligament, were assessed bi-

directionally under the application of both tensile and shear loading conditions, which more 

accurately describe the loading that the capsule experiences as it wraps around the humeral head 

during internal and external rotation.   

In addition to experimental advancements, this work has demonstrated clear 

computational advancements as well.  The constitutive coefficients obtained from the current 

work can be expanded by performing additional tests on more specimens to determine what 

effect of age on the mechanical properties of the glenohumeral capsule.  These coefficients are 

novel and can be used in conjunction with finite element methods to create a powerful tool to 

improve our overall knowledge of the function of the glenohumeral joint. 

5.2.2 Limitations 

Despite the clear advancement to the engineering and clinical field, there are several limitations 

that should be noted.  Only the axillary pouch and posterior regions of the capsule were 
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evaluated in the current work.  Although these regions seem to have the largest role in joint 

stability, contributions from surrounding regions should also be considered. 

The assumption of hyperelasticity is implicit in the current constitutive framework.  It 

was believed that hyperelasticity was an appropriate starting point for the current work that 

provided a framework for elucidating capsular mechanical function.  To determine constitutive 

coefficients, data from the tenth cycle of loading was used to minimize viscoelastic effects, since 

little work has been performed to analyze the viscoelastic effects of the capsule.  Thus the 

constitutive framework described in this work is appropriate given the input data.  

The assumption of uncoupled deviatoric-dilatational response is commonly employed in 

finite deformation elasticity for slightly compressible materials [72, 74, 77] – it greatly decreases 

the complexity of the constitutive model and finite element implementation.  This assumption is 

justified by the fact that the vast majority of strain energy induced in ligaments is deviatoric 

because volumetric confinement of the tissue in physiological loading scenarios is minimal. 

Finally, the current constitutive model requires an update to correctly account for tensile 

and shear elongations.  Currently, the coefficients between two perpendicular loading directions 

compare well, thus an isotropic model is appropriate, however the coefficients should also 

compare well between tensile and shear loading conditions.  Therefore, further work is required 

to revamp the current constitutive model until it can model both tensile and shear loading 

conditions in the same manner.   
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5.3 COMPARISON TO LITERATURE 

Because such a constitutive model has not been developed in the past for the glenohumeral 

capsule, a direct comparison of the coefficients to literature is difficult. Instead, the stresses 

generated using the optimized coefficients were compared to values reported in the literature.  

The magnitude of stress from the tensile loading configuration compare well to ultimate stresses 

previously found for the axillary pouch (5.5 MPa) [3] and the posterior capsule (7.9 MPa) [78], 

even though significantly different experimental protocols were utilized. Previously, dog-bone 

samples were excised from the tissue, cutting inter-fiber connections, and only tensile loading 

conditions were applied. The shear loading condition utilized in the current study provides new 

information regarding the mechanical properties of the capsular tissue, in that it has not been 

reported in the literature.   Therefore, stresses from the shear loading configuration were not 

compared to literature. 

5.4 SUMMARY 

The anatomy of the glenohumeral capsule is extremely complex; thus, researchers have proposed 

using computational methods to evaluate its function. However, the correct constitutive model 

that describes the stress-strain relationship of the tissue of interest is imperative to predicting 

accurate stress and strain distributions in the tissue. Therefore, the objective of this work was to 

characterize sheets of tissue from two different regions of the glenohumeral capsule using a 

combined experimental and computational methodology.  Both experimental and computational 

methodologies for the characterization of the glenohumeral capsule were developed.  These 

methodologies were then used to determine the coefficients of a hyperelastic isotropic 
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constitutive model, and thus the stress-strain relationship of each tissue sample was determined.   

The axillary pouch and posterior capsule have been shown to behave like isotropic materials 

during both tensile and finite simple shear tests.  However, due to the constitutive coefficients 

not comparing well between tensile and shear loading conditions, it is necessary to update the 

current constitutive model.  The axillary pouch and posterior region have also been shown to 

have similar mechanical properties, despite the clear differences in geometry.  The current work 

has developed a methodology to characterize soft tissues in which the appropriate constitutive 

model is unknown.  This methodology can be expanded to develop subject-specific finite 

element models and ultimately improve our understanding of the function of the glenohumeral 

joint. 

 

 125 



APPENDIX A 

MATHCAD PROGRAM TO DETERMINE AVERAGE CONSTITUTIVE 

COEFFICIENTS 

SHEAR LOADING CONDITION 

 

 126 



T

0

0.06

0.127

0.208

0.314

0.457

0.656

0.94

1.352

1.963

2.886

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

:= λ

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

0.32

0.36

0.4

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

:=

i 1 10..:=

Tfit λ c1, c2,( ) λ c1⋅ c2⋅ 2 ec2 λ2⋅⋅ 1−
⎛
⎝

⎞
⎠⋅

⎡
⎣

⎤
⎦

→⎯⎯⎯⎯⎯⎯⎯⎯⎯

:=

SSE c1 c2,( )

i

Ti Tfit λi c1, c2,( )−( )2∑:=

c1 .1:=

c2 10:=

Given

SSE c1 c2,( ) 0

c1 0>

c2 0>

c1

c2
⎛
⎜
⎝

⎞
⎠

Minerr c1 c2,( ):=

c1 0.183=

c2 7.271=  
 

 

 127 



Tfit λ c1, c2,( )

0

0
1

2

3

4

5

6

7

8

9

10

0
0.054

0.117

0.195

0.3

0.446

0.651

0.945

1.366

1.978

2.873

=

0 0.1 0.2 0.3 0.4

1

2

3

Shear Strain

Sh
ea

r S
tre

ss T

Tfit λ c1, c2,( )

λ

 

 128 



TENSILE LOADING CONDITIONS 
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APPENDIX B 

INPUT FILE FOR NIKE3D TO RUN FINITE ELEMENT SIMULATIONS 

*-------------------------- CONTROL CARD #1 ---------------------------* 

SpecimenID_Region_LoadingCondition 
* 
*-------------------------- CONTROL CARD #2 ---------------------------* 
* 
* Input format [1] 
* Number of materials [2] 
* Number of node points [3] 
* Number of brick elements [4] 
* Number of beam elements [5] 
* Number of shell elements [6] 
* Number of 1D slide lines [7] 
* Number of sliding interfaces [8] 
* Number of rigid walls and symmetry planes [9] 
* Discrete element input flag [10] 
* 
FL  3      2320      1680         0         0    0    0    0    0  240 
* 
*-------------------------- CONTROL CARD #3 ---------------------------* 
* 
* Number of time steps [1] 
* Time step size [2] 
* Automatic time step control flag [3] 
* Maximum number of retries allowable per step [4] 
* Optimal number of iterations per step [5] 
* Minimum allowable step size [6] 
* Maximum allowable step size [7] 
* Size of the iteration window [8 
* 
        10 1.000E-01 auto    0   50 1.000E-03 1.000E-01    0 
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* 
*-------------------------- CONTROL CARD #4 ---------------------------* 
* 
* Number of load curves [1] 
* Maximum number of points defining any load curve [2] 
* Number of concentrated nodal loads [3] 
* Number of element surfaces having pressure loads applied [4] 
* Number of displacement boundary condition cards [5] 
* Number of beam elements with aerodynamic drag loads [6] 
* Number of node constraint cards [7] 
* Body force loads due to base acceleration in x-direction [8] 
* Body force loads due to base acceleration in y-direction [9] 
* Body force loads due to base acceleration in z-direction [10] 
* Body force loads due to angular velocity about the x-direction [11] 
* Body force loads due to angular velocity about the y-direction [12] 
* Body force loads due to angular velocity about the z-direction [13] 
* 
    1    5    0    0    0    0    0    0    0    0    0    0    0    0    0 
* 
*-------------------------- CONTROL CARD #5 ---------------------------* 
* 
* Output print interval [1] 
* Output plotting interval [2] 
* Number of node printblocks [3] 
* Number of brick printout blocks [4] 
* Number of beam printout blocks [5] 
* Number of shell printout blocks [6] 
* Number of time steps between restart file generation [7] 
* Shell surface strain dump flag [8] 
* Initial sense switch toggles [9] 
* Acceleration data dump flag [10] 
* 
   -1    1   -1   -1   -1    0  999    0    036000    0    0    0 
* 
*-------------------------- CONTROL CARD #6 ---------------------------* 
* 
* Method of iterating for equilibrium [1] 
* Bandwidth minimization flag [2] 
* Number of steps between stiffness reformations [3] 
* Number of steps between equilibrium iterations [4] 
* Maximum number of equilibrium iterations between stiffness matrix 
*   reformations [5] 
* Maximum number of stiffness matrix reformations per time step [6] 
* Convergence tolerance on displacement [7] 
* Convergence tolerance on energy [8] 
* Convergence tolerance line search [9] 
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* Convergence tolerance for the augmented Lagrangian [10] 
* Convergence tolerance on residuals [11] 
* 
    1    2         1         1   10   50 1.000E-03 1.000E-03       0.0       0.0 
* 
*-------------------------- CONTROL CARD #7 ---------------------------* 
* 
* Analysis type [1] 
* Initial condition parameter [2] 
* Thermal effects option [3] 
* Temperature profile input flag [4] 
* Number of eigenvalues and eigenvectors to be executed [5] 
* Frequency shift, cycles per unit time [6] 
* First Newmark integration parameter [7] 
* Second Newmark integration parameter [8] 
* 
    0    0    0    0    0 0.000E+00 5.000E-01 2.500E-01 
* 
*-------------------------- CONTROL CARD #8 ---------------------------* 
* 
* Percent of memory option [1] 
* Buffer size (words)element I/O [2] 
* Stiffness matrix storage option [3] 
* BFGS update vectors storage option [4] 
* Brick element formulation [5] 
* Brick element geometric stiffness flag [6] 
* Shell element formulation [7] 
* Hourglass control parameter (Belytschko-Tsay shell only) [8] 
* Shell element geometric stiffness flag [9] 
* Beam element formulation [10] 
* Beam element geometric stiffness flag [11] 
* 
    0         0    2    2   10    2    0 0.000E+00    0    0    0 
* 
*-------------------------- CONTROL CARD #9 ---------------------------* 
* 
* Number of unloading steps in modified arc length method (optional) [1] 
* Solution method during arc length unloading [2] 
* Node number for displacement arc length method [3] 
* Direction of displacement at arc length controlling node [4] 
* Desired arc length [5] 
* Arc length constraint method [6] 
* Arc length damping option [7] 
* Number of user-specified integration rules for beams [8] 
* Maximum number of user-specified integration points [9] 
* Number of user-specified integration rules for shells [10] 
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* Maximum number of user-specified integration points [11] 
* 
    0    0    0    0 0.000E+00    0    0    0    0    0    0 
* 
*-------------------------- CONTROL CARD #10---------------------------* 
* 
* Linear equation solver option [1] 
* Iteration limit for linear solver [2] 
* Iteration convergence tolerance [3] 
* Buffer size (element) for out-of-core iterative linear solver [4] 
* Print-out option for linear iterative solver [5] 
* 
    0    0 0.000E+00    0    0    0 
* 
*--------------------------- MATERIAL CARDS ---------------------------* 
* 
    1   187.0000E-04    00.0000E+000.0000E+000.0000E+00 
experimental material type                                                       
 0.100E+00 1.000E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
 1.000E+03 1.000E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E-00 0.000E+00 0.000E+00 

0.000E+00 
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
    2   201.0000E+03    00.0000E+000.0000E+000.0000E+00 
mvn - rigid                                                         
 1.000E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
 3.000E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
-1.000E+00 1.000E+00-1.000E+00-1.000E+00-1.000E+00-1.000E+00 0.000E+00 

0.000E+00 
 1.000E+00 0.000E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 

0.000E+00 
    3   201.0000E+03    00.0000E+000.0000E+000.0000E+00 
fxd - rigid                                                          
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 1.000E+04 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
0.000E+00 

 3.000E-01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
0.000E+00 

-1.000E+00-1.000E+00-1.000E+00-1.000E+00-1.000E+00-1.000E+00 0.000E+00 
0.000E+00 

 1.000E+00 0.000E+01 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
0.000E+00 

 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
0.000E+00 

 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 
0.000E+00 

* 
*-------------------------- NODE DEFINITIONS --------------------------* 
* 
       1    0     -1.353617310524     -4.967348098755    -0.9049999713898    0 
       2    0     -1.353617310524     -4.967348098755    -0.4524999856949    0 
       3    0     -1.353617310524     -4.967348098755                   0    0 
       4    0     -1.353617310524     -4.967348098755     0.4524999856949    0 

(cont’d …) 
 
* 
*---------------------- HEXAHEDRON ELEMENT DECK -----------------------* 
* 
       1    1       1      81      86       6       2      82      87       7 
       2    1       2      82      87       7       3      83      88       8 
       3    1       3      83      88       8       4      84      89       9 
        

(cont’d …) 
* 
*---------------------- RIGID NODES AND FACET DECK ----------------------* 
* 
    2       6      86      81       1 
    2       5      85      90      10 
    2      11      91      86       6 
    2      10      90      95      15 
    2      16      96      91      11 
    2      15      95     100      20 
    2      21     101      96      16 
    2      20     100     105      25 
    2      26     106     101      21 
    2      25     105     110      30 
    2      31     111     106      26 
    2      30     110     115      35 
    2      36     116     111      31 
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    2      35     115     120      40 
    2      41     121     116      36 
    2      40     120     125      45 
    2      46     126     121      41 
    2      45     125     130      50 
    2      51     131     126      46 
    2      50     130     135      55 
    2      56     136     131      51 
    2      55     135     140      60 
    2      61     141     136      56 
    2      60     140     145      65 
    2      66     146     141      61 
    2      65     145     150      70 
    2      71     151     146      66 
    2      70     150     155      75 
    2      76     156     151      71 
    2      75     155     160      80 
    2      86     166     161      81 
    2      85     165     170      90 
    2      91     171     166      86 
    2      90     170     175      95 
    2      96     176     171      91 
    2      95     175     180     100 
    2     101     181     176      96 
    2     100     180     185     105 
    2     106     186     181     101 
    2     105     185     190     110 
    2     111     191     186     106 
    2     110     190     195     115 
    2     116     196     191     111 
    2     115     195     200     120 
    2     121     201     196     116 
    2     120     200     205     125 
    2     126     206     201     121 
    2     125     205     210     130 
    2     131     211     206     126 
    2     130     210     215     135 
    2     136     216     211     131 
    2     135     215     220     140 
    2     141     221     216     136 
    2     140     220     225     145 
    2     146     226     221     141 
    2     145     225     230     150 
    2     151     231     226     146 
    2     150     230     235     155 
    2     156     236     231     151 
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    2     155     235     240     160 
    2     166     246     241     161 
    2     165     245     250     170 
    2     171     251     246     166 
    2     170     250     255     175 
    2     176     256     251     171 
    2     175     255     260     180 
    2     181     261     256     176 
    2     180     260     265     185 
    2     186     266     261     181 
    2     185     265     270     190 
    2     191     271     266     186 
    2     190     270     275     195 
    2     196     276     271     191 
    2     195     275     280     200 
    2     201     281     276     196 
    2     200     280     285     205 
    2     206     286     281     201 
    2     205     285     290     210 
    2     211     291     286     206 
    2     210     290     295     215 
    2     216     296     291     211 
    2     215     295     300     220 
    2     221     301     296     216 
    2     220     300     305     225 
    2     226     306     301     221 
    2     225     305     310     230 
    2     231     311     306     226 
    2     230     310     315     235 
    2     236     316     311     231 
    2     235     315     320     240 
    2     246     326     321     241 
    2     245     325     330     250 
    2     251     331     326     246 
    2     250     330     335     255 
    2     256     336     331     251 
    2     255     335     340     260 
    2     261     341     336     256 
    2     260     340     345     265 
    2     266     346     341     261 
    2     265     345     350     270 
    2     271     351     346     266 
    2     270     350     355     275 
    2     276     356     351     271 
    2     275     355     360     280 
    2     281     361     356     276 
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    2     280     360     365     285 
    2     286     366     361     281 
    2     285     365     370     290 
    2     291     371     366     286 
    2     290     370     375     295 
    2     296     376     371     291 
    2     295     375     380     300 
    2     301     381     376     296 
    2     300     380     385     305 
    2     306     386     381     301 
    2     305     385     390     310 
    2     311     391     386     306 
    2     310     390     395     315 
    2     316     396     391     311 
    2     315     395     400     320 
    3    1926    2006    2001    1921 
    3    1925    2005    2010    1930 
    3    1931    2011    2006    1926 
    3    1930    2010    2015    1935 
    3    1936    2016    2011    1931 
    3    1935    2015    2020    1940 
    3    1941    2021    2016    1936 
    3    1940    2020    2025    1945 
    3    1946    2026    2021    1941 
    3    1945    2025    2030    1950 
    3    1951    2031    2026    1946 
    3    1950    2030    2035    1955 
    3    1956    2036    2031    1951 
    3    1955    2035    2040    1960 
    3    1961    2041    2036    1956 
    3    1960    2040    2045    1965 
    3    1966    2046    2041    1961 
    3    1965    2045    2050    1970 
    3    1971    2051    2046    1966 
    3    1970    2050    2055    1975 
    3    1976    2056    2051    1971 
    3    1975    2055    2060    1980 
    3    1981    2061    2056    1976 
    3    1980    2060    2065    1985 
    3    1986    2066    2061    1981 
    3    1985    2065    2070    1990 
    3    1991    2071    2066    1986 
    3    1990    2070    2075    1995 
    3    1996    2076    2071    1991 
    3    1995    2075    2080    2000 
    3    2006    2086    2081    2001 
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    3    2005    2085    2090    2010 
    3    2011    2091    2086    2006 
    3    2010    2090    2095    2015 
    3    2016    2096    2091    2011 
    3    2015    2095    2100    2020 
    3    2021    2101    2096    2016 
    3    2020    2100    2105    2025 
    3    2026    2106    2101    2021 
    3    2025    2105    2110    2030 
    3    2031    2111    2106    2026 
    3    2030    2110    2115    2035 
    3    2036    2116    2111    2031 
    3    2035    2115    2120    2040 
    3    2041    2121    2116    2036 
    3    2040    2120    2125    2045 
    3    2046    2126    2121    2041 
    3    2045    2125    2130    2050 
    3    2051    2131    2126    2046 
    3    2050    2130    2135    2055 
    3    2056    2136    2131    2051 
    3    2055    2135    2140    2060 
    3    2061    2141    2136    2056 
    3    2060    2140    2145    2065 
    3    2066    2146    2141    2061 
    3    2065    2145    2150    2070 
    3    2071    2151    2146    2066 
    3    2070    2150    2155    2075 
    3    2076    2156    2151    2071 
    3    2075    2155    2160    2080 
    3    2086    2166    2161    2081 
    3    2085    2165    2170    2090 
    3    2091    2171    2166    2086 
    3    2090    2170    2175    2095 
    3    2096    2176    2171    2091 
    3    2095    2175    2180    2100 
    3    2101    2181    2176    2096 
    3    2100    2180    2185    2105 
    3    2106    2186    2181    2101 
    3    2105    2185    2190    2110 
    3    2111    2191    2186    2106 
    3    2110    2190    2195    2115 
    3    2116    2196    2191    2111 
    3    2115    2195    2200    2120 
    3    2121    2201    2196    2116 
    3    2120    2200    2205    2125 
    3    2126    2206    2201    2121 
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    3    2125    2205    2210    2130 
    3    2131    2211    2206    2126 
    3    2130    2210    2215    2135 
    3    2136    2216    2211    2131 
    3    2135    2215    2220    2140 
    3    2141    2221    2216    2136 
    3    2140    2220    2225    2145 
    3    2146    2226    2221    2141 
    3    2145    2225    2230    2150 
    3    2151    2231    2226    2146 
    3    2150    2230    2235    2155 
    3    2156    2236    2231    2151 
    3    2155    2235    2240    2160 
    3    2166    2246    2241    2161 
    3    2165    2245    2250    2170 
    3    2171    2251    2246    2166 
    3    2170    2250    2255    2175 
    3    2176    2256    2251    2171 
    3    2175    2255    2260    2180 
    3    2181    2261    2256    2176 
    3    2180    2260    2265    2185 
    3    2186    2266    2261    2181 
    3    2185    2265    2270    2190 
    3    2191    2271    2266    2186 
    3    2190    2270    2275    2195 
    3    2196    2276    2271    2191 
    3    2195    2275    2280    2200 
    3    2201    2281    2276    2196 
    3    2200    2280    2285    2205 
    3    2206    2286    2281    2201 
    3    2205    2285    2290    2210 
    3    2211    2291    2286    2206 
    3    2210    2290    2295    2215 
    3    2216    2296    2291    2211 
    3    2215    2295    2300    2220 
    3    2221    2301    2296    2216 
    3    2220    2300    2305    2225 
    3    2226    2306    2301    2221 
    3    2225    2305    2310    2230 
    3    2231    2311    2306    2226 
    3    2230    2310    2315    2235 
    3    2236    2316    2311    2231 
    3    2235    2315    2320    2240 
* 
*-------------------------- LOAD CURVE DECK -------------------------* 
* 
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* y-displacement of moving clamp 
    1    2 
 0.000E+00 0.000E+00 
 1.000E+00 5.600E+00 
 

 

 

 

 

 141 



BIBLIOGRAPHY 

1.  DePalma, A.F., Callery, G., Bennett, G.A.: Variational anatomy and degenerative lesions of 
the shoulder joint. American Academy of Orthopaedic Surgery Instructional Course 
Lecture Series 6:225-81, 1949.  

 
2.  O'Brien, S.J., Arnoczsky, S.P., Warren, R.F., Rozbruch, S.R.: Developmental anatomy of the 

shoulder and anatomy of the glenohumeral joint. In: The Shoulder,  ed by Matsen, F.A., 
3rd and Rockwood, C.A., Philadelphia, PA, W. B. Saunders Co., 1990, pp 1-33. 

 
3.  Bigliani, L.U., Pollock, R.G., Soslowsky, L.J., Flatow, E.L., Pawluk, R.J., Mow, V.C.: 

Tensile properties of the inferior glenohumeral ligament. J Orthop Res 10(2):187-97, 
1992.  

 
4.  McMahon, P.J., Dettling, J.R., Sandusky, M.D., Lee, T.Q.: Deformation and strain 

characteristics along the length of the anterior band of the inferior glenohumeral 
ligament. J Shoulder Elbow Surg 10(5):482-8, 2001.  

 
5.  Turkel, S.J., Panio, M.W., Marshall, J.L., Girgis, F.G.: Stabilizing mechanisms preventing 

anterior dislocation of the glenohumeral joint. J Bone Joint Surg Am 63(8):1208-17, 
1981.  

 
6.  Itoi, E., Grabowski, J.J., Morrey, B.F., An, K.N.: Capsular properties of the shoulder. Tohoku 

J Exp Med 171(3):203-10, 1993.  
 
7.  Ferrari, D.A.: Capsular ligaments of the shoulder. Anatomical and functional study of the 

anterior superior capsule. Am J Sports Med 18(1):20-4, 1990.  
 
8.  Flood, V.: Discovery of a new ligament of the shoulder joint. Lancet:671, 1829.  
 
9.  Sarrafian, S.K.: Gross and functional anatomy of the shoulder. Clin Orthop (173):11-9, 1983.  
 
10.  Bost, F.C. and Inman, V.T.: The pathological changes in recurrent dislocation of the 

shoulder. J Bone Joint Surg Am 24A:595, 1942.  
 
11.  Rowe, C.R., Patel, D., Southmayd, W.W.: The Bankart procedure: a long-term end-result 

study. J Bone Joint Surg Am 60(1):1-16, 1978.  
 

 142 



12.  Neer, C.S., 2nd and Foster, C.R.: Inferior capsular shift for involuntary inferior and 
multidirectional instability of the shoulder. A preliminary report. J Bone Joint Surg Am 
62(6):897-908, 1980.  

 
13.  Warner, J.J.P., Caborn, D.N., Berger, R., Fu, F.H., Seel, M.: Dynamic capsuloligamentous 

anatomy of the glenohumeral joint. J Shoulder Elbow Surg 2:115-33, 1993.  
 
14.  Warner, J.J.P., Deng, X.H., Warren, R.F., Torzilli, P.A.: Static capsuloligamentous restraints 

to superior-inferior translation of the glenohumeral joint. Am J Sports Med 20(6):675-85, 
1992.  

 
15.  Schwartz, R.E., O'Brien, S.J., Warren, R.F., Torzilli, P.A.: Capsular restraints to anterior-

posterior motion of the abducted shoulder. A biomechanical study. Orthopaedic 
Transactions 12:727, 1988.  

 
16.  Gohlke, F., Essigkrug, B., Schmitz, F.: The patterns of the collagen fiber bundles of the 

capsule of the glenohumeral joint. J Shoulder Elbow Surg 3(3):111-28, 1994.  
 
17.  O'Brien, S.J., Neves, M.C., Arnoczky, S.P., Rozbruck, S.R., Dicarlo, E.F., Warren, R.F., 

Schwartz, R., Wickiewicz, T.L.: The anatomy and histology of the inferior glenohumeral 
ligament complex of the shoulder. Am J Sports Med 18(5):449-56, 1990.  

 
18.  Clark, J.M. and Harryman, D.T., 2nd: Tendons, ligaments, and capsule of the rotator cuff. 

Gross and microscopic anatomy. J Bone Joint Surg Am 74(5):713-25, 1992.  
 
19.  Cooper, D.E., Arnoczky, S.P., O'Brien, S.J., Warren, R.F., DiCarlo, E., Allen, A.A.: 

Anatomy, histology, and vascularity of the glenoid labrum. An anatomical study. J Bone 
Joint Surg Am 74(1):46-52, 1992.  

 
20.  Debski, R.E., Moore, S.M., Mercer, J.L., Sacks, M.S., McMahon, P.J.: The collagen fibers 

of the anteroinferior capsulolabrum have multi-axial orientation to resist shoulder 
dislocation. J Shoulder Elbow Surg in press2002.  

 
21.  Boardman, N.D., Debski, R.E., Warner, J.J., Taskiran, E., Maddox, L., Imhoff, A.B., Fu, 

F.H., Woo, S.L.-Y.: Tensile properties of the superior glenohumeral and coracohumeral 
ligaments. J Shoulder Elbow Surg 5(4):249-54, 1996.  

 
22.  Ticker, J.B., Bigliani, L.U., Soslowsky, L.J., Pawluk, R.J., Flatow, E.L., Mow, V.C.: Inferior 

glenohumeral ligament: geometric and strain-rate dependent properties. J Shoulder Elbow 
Surg 5(4):269-79, 1996.  

 
23.  McMahon, P.J., Dettling, J., Sandusky, M.D., Tibone, J.E., Lee, T.Q.: The anterior band of 

the inferior glenohumeral ligament. Assessment of its permanent deformation and the 
anatomy of its glenoid attachment. J Bone Joint Surg Br 81(3):406-13, 1999.  

 

 143 



24.  McMahon, P.J., Tibone, J.E., Cawley, P.W., Hamilton, C., Fechter, J.D., Elattrache, N.S., 
Lee, T.Q.: The anterior band of the inferior glenohumeral ligament: biomechanical 
properties from tensile testing in the position of apprehension. J Shoulder Elbow Surg 
7(5):467-71, 1998.  

 
25.  Lee, T.Q., Dettling, J., Sandusky, M.D., McMahon, P.J.: Age related biomechanical 

properties of the glenoid-anterior band of the inferior glenohumeral ligament-humerus 
complex. Clin Biomech (Bristol, Avon) 14(7):471-6, 1999.  

 
26.  Stefko, J.M., Tibone, J.E., Cawley, P.W., ElAttrache, N.E., McMahon, P.J.: Strain of the 

anterior band of the inferior glenohumeral ligament during capsule failure. J Shoulder 
Elbow Surg 6(5):473-9, 1997.  

 
27.  Moore, S.M., McMahon, P.J., Debski, R.E.: Bi-directional Mechanical Properties of the 

Axillary Pouch of the Glenohumeral Capsule:  Implications for Surgical Repair. J 
Biomech Eng 126(2):284-288, 2004.  

 
28.  Debski, R.E., Wong, E.K., Woo, S.L.-Y., Sakane, M., Fu, F.H., Warner, J.J.: In situ force 

distribution in the glenohumeral joint capsule during anterior-posterior loading. J Orthop 
Res 17(5):769-76, 1999.  

 
29.  Ovesen, J. and Nielsen, S.: Stability of the shoulder joint. Cadaver study of stabilizing 

structures. Acta Orthop Scand 56(2):149-51, 1985.  
 
30.  Malicky, D.M., Soslowsky, L.J., Blasier, R.B., Shyr, Y.: Anterior glenohumeral stabilization 

factors: progressive effects in a biomechanical model. J Orthop Res 14(2):282-8, 1996.  
 
31.  Warner, J.J.P., Deng, X.H., Warren, R.F., Torzilli, P.A., O'Brien, S.J.: Superior-inferior 

translation in the intact and vented glenohumeral joint. J Shoulder Elbow Surg 2(2):99-
105, 1993.  

 
32.  Hoffmeyer, P., Browne, A., Korinek, S., Morrey, B.F., An, K.N.: Stabilizing mechanism of 

the glenohumeral ligaments. Biomed Sci Instrum 26:49-52, 1990.  
 
33.  O'Connell, P.W., Nuber, G.W., Mileski, R.A., Lautenschlager, E.: The contribution of the 

glenohumeral ligaments to anterior stability of the shoulder joint. Am J Sports Med 
18(6):579-84, 1990.  

 
34.  Terry, G.C., Hammon, D., France, P., Norwood, L.A.: The stabilizing function of passive 

shoulder restraints. Am J Sports Med 19(1):26-34, 1991.  
 
35.  Miller, M.C., Smolinski, P.J., Bains, P.K., Klein, A.H., Fu, F.H.: A mathematical and 

experimental model of length change in the inferior glenohumeral ligament in the late 
cocking phase of pitching. Transcripts of the Orthopaedic Research Society 16:609, 
1991.  

 

 144 



36.  Malicky, D.M., Soslowsky, L.J., Kuhn, J.E., Bey, M.J., Mouro, C.M., Raz, J.A., Liu, C.A.: 
Total strain fields of the antero-inferior shoulder capsule under subluxation: a 
stereoradiogrammetric study. J Biomech Eng 123(5):425-31, 2001.  

 
37.  Moseley, H. and Overgaard, B.: The anterior capsular mechanism in recurrent anterior 

dislocation of the shoulder: Morphological and clinical studies with special reference to 
the glenoid labrum and glenohumeral ligaments. J Bone Joint Surg Br 44:913-27, 1962.  

 
38.  Peat, M.: Functional anatomy of the shoulder complex. Phys Ther 66(12):1855-65, 1986.  
 
39.  Lew, W.D., Lewis, J.L., Craig, E.V.: Stabilization by capsule, ligaments, and labrum:  

Stability at the extremes of motion. In: The Shoulder: A Balance of Mobility and 
Stability,  ed by Matsen, F.A., 3rd, Fu, F.H., and Hawkins, R.J., Rosemont, IL, American 
Academy of Orthopaedic Surgeons, 1993, pp 69-90. 

 
40.  Debski, R.E., Wong, E.K., Woo, S.L.-Y., Fu, F.H., Warner, J.J.: An analytical approach to 

determine the in situ forces in the glenohumeral ligaments. J Biomech Eng 121(3):311-5, 
1999.  

 
41.  Novotny, J.E., Beynnon, B.D., Nichols, C.E.: Modeling the stability of the human 

glenohumeral joint during external rotation. J Biomech 33(3):345-54, 2000.  
 
42.  Cave, E., Burke, J., Boyd, R., Trauma Management. 1974, Chicago, IL: Year Book Medical 

Publishers. 437. 
 
43.  Hawkins, R.J. and Mohtadi, N.G.: Controversy in anterior shoulder instability. Clin Orthop 

Relat Res (272):152-61, 1991.  
 
44.  Arciero, R.A., Wheeler, J.H., Ryan, J.B., McBride, J.T.: Arthroscopic Bankart repair versus 

nonoperative treatment for acute, initial anterior shoulder dislocations. Am J Sports Med 
22(5):589-94, 1994.  

 
45.  Baker, C.L., Uribe, J.W., Whitman, C.: Arthroscopic evaluation of acute initial anterior 

shoulder dislocations. Am J Sports Med 18(1):25-8, 1990.  
 
46.  Caspari, R.B.: Arthroscopic reconstruction for anterior shoulder instability. Techniques in 

Orthopaedics 3:59-66, 1988.  
 
47.  Field, L.D., Bokor, D.J., Savoie, F.H., 3rd: Humeral and glenoid detachment of the anterior 

inferior glenohumeral ligament: a cause of anterior shoulder instability. J Shoulder Elbow 
Surg 6(1):6-10, 1997.  

 
48.  Morgan, C.D. and Bodenstab, A.B.: Arthroscopic Bankart suture repair: technique and early 

results. Arthroscopy 3(2):111-22, 1987.  
 

 145 



49.  Nelson, B.J. and Arciero, R.A.: Arthroscopic management of glenohumeral instability. Am J 
Sports Med 28(4):602-14, 2000.  

 
50.  Hovelius, L.: Incidence of shoulder dislocation in Sweden. Clin Orthop (166):127-31, 1982.  
 
51.  United States Census 2000. 2000, United States Census Bureau:  
 
52.  Hovelius, L.: Shoulder dislocation in Swedish ice hockey players. Am J Sports Med 

6(6):373-7, 1978.  
 
53.  Zebas, C.J., Loudon, K., Chapman, M., Magee, L., Bowman, S.: Musculoskeletal injuries in 

a college-age population during a 1-semester term. J Am Coll Health 44(1):32-4, 1995.  
 
54.  Mahaffey, B.L. and Smith, P.A.: Shoulder instability in young athletes. American Family 

Physician 59(10):2773-82, 1999.  
 
55.  Henry, J.H. and Genung, J.A.: Natural history of glenohumeral dislocation--revisited. Am J 

Sports Med 10(3):135-7, 1982.  
 
56.  Hovelius, L.: Anterior dislocation of the shoulder in teen-agers and young adults. Five-year 

prognosis. J Bone Joint Surg Am 69(3):393-9, 1987.  
 
57.  McLaughlin, H.L. and MacLellan, D.I.: Recurrent anterior dislocation of the shoulder. II. A 

comparative study. J Trauma 7(2):191-201, 1967.  
 
58.  Rowe, C.R., Zarins, B., Ciullo, J.V.: Recurrent anterior dislocation of the shoulder after 

surgical repair. Apparent causes of failure and treatment. J Bone Joint Surg Am 
66(2):159-68, 1984.  

 
59.  Simonet, W.T. and Cofield, R.H.: Prognosis in anterior shoulder dislocation. Am J Sports 

Med 12(1):19-24, 1984.  
 
60.  Wheeler, J.H., Ryan, J.B., Arciero, R.A., Molinari, R.N.: Arthroscopic versus nonoperative 

treatment of acute shoulder dislocations in young athletes. Arthroscopy 5(3):213-7, 1989.  
 
61.  Neviaser, R.J., Neviaser, T.J., Neviaser, J.S.: Anterior dislocation of the shoulder and rotator 

cuff rupture. Clin Orthop (291):103-6, 1993.  
 
62.  Bigliani, L.U., Kurzweil, P.R., Schwartzbach, C.C., Wolfe, I.N., Flatow, E.L.: Inferior 

capsular shift procedure for anterior-inferior shoulder instability in athletes. Am J Sports 
Med 22(5):578-84, 1994.  

 
63.  Montgomery, W.H., 3rd and Jobe, F.W.: Functional outcomes in athletes after modified 

anterior capsulolabral reconstruction. Am J Sports Med 22(3):352-8, 1994.  
 

 146 



64.  Sperber, A., Hamberg, P., Karlsson, J., Sward, L., Wredmark, T.: Comparison of an 
arthroscopic and an open procedure for posttraumatic instability of the shoulder: a 
prospective, randomized multicenter study. J Shoulder Elbow Surg 10(2):105-8, 2001.  

 
65.  Moore, S.M., McMahon, P.J., Azemi, E., Debski, R.E.: Bi-directional mechanical properties 

of the posterior region of the glenohumeral capsule. J Biomech 38(6):1365-9, 2005.  
 
66.  Reeves, B.: Experiments on the tensile strength of the anterior capsular structures of the 

shoulder in man. J Bone Joint Surg Br 50(4):858-65, 1968.  
 
67.  Weiss, J.A., Gardiner, J.C., Bonifasi-Lista, C.: Ligament material behavior is nonlinear, 

viscoelastic and rate-independent under shear loading. J Biomech 35(7):943-50, 2002.  
 
68.  Marsden, J.E.a.H., T. J. R.: Mathematical Foundations of Elasticity 1983.  
 
69.  Gardiner, J.C. and Weiss, J.A.: Simple shear testing of parallel-fibered planar soft tissues. 

Journal of Biomechanics 123:1-5, 2001.  
 
70.  Sacks, M.S.: Biaxial mechanical evaluation of planar biological materials. Journal of 

Elasticity 61:199-246, 2000.  
 
71.  Runciman, R.J., Bryant, J.T., Small, C.F., Fujita, N., Cooke, T.D.: Stereoradiogrammetric 

technique for estimating alignment of the joints in the hand and wrist. Journal of 
Biomedical Engineering 15(2):99-105, 1993.  

 
72.  Weiss, J.A., Maker, B.N., Govindjee, S.: Finite element implementation of incompressible, 

transversely isotropic hyperelasticity. Comp Meth Appl Mech Eng 135:107-28, 1996.  
 
73.  Veronda, D.R. and Westmann, R.A.: Mechanical characterization of skin-finite 

deformations. Journal of Biomechanics 3:111-124, 1970.  
 
74.  Marsden, J.E. and Hughes, T.J.R.: Mathematical Foundations of Elasticity. 1994.  
 
75.  Chen, S., Haen, P.S., Walton, J., Murrell, G.A.: The effects of thermal capsular shrinkage on 

the outcomes of arthroscopic stabilization for primary anterior shoulder instability. Am J 
Sports Med 33(5):705-11, 2005.  

 
76.  Levine, W.N., Bigliani, L.U., Ahmad, C.S.: Thermal capsulorrhaphy. Orthopedics 

27(8):823-6, 2004.  
 
77.  Simo, J.C.: On the dynamics in space of rods undergoing large motions: A geometrically 

exact approach. Comp Meth Appl Mech Eng 66:125-161, 1988.  
 
78.  Bey, M.J., Hunter, S.A., Kilambi, N., Butler, D.L., Lindenfeld, T.N.: Structural and 

mechanical properties of the glenohumeral joint posterior capsule. J Shoulder Elbow Surg 
14(2):201-6, 2005.  

 147 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	PREFACE XVII
	NOMENCLATURE XIX
	1.0 INTRODUCTION AND BACKGROUND
	1.1 STRUCTURE OF THE GLENOHUMERAL CAPSULE
	1.2 FUNCTION OF THE GLENOHUMERAL CAPSULE
	1.3 DEMOGRAPHICS
	1.4 CLINICAL TREATMENT
	1.4.1 Diagnosis
	1.4.2 Post-injury management
	1.4.2.1 Conservative rehabilitation
	1.4.2.2 Surgical repair techniques
	2.0 MOTIVATION: RESEARCH QUESTION AND HYPOTHESIS
	2.1 MOTIVATION:  SPECIFIC AIMS
	2.2 RESEARCH QUESTIONS
	2.3 HYPOTHESES
	2.4 SPECIFIC AIMS
	3.0 DEVELOPMENT OF MOTION TRACKING SYSTEM
	3.1 INTRODUCTION
	3.1.1 Experimental environment
	3.1.1.1 Mechanical testing environment
	3.1.1.2 Robotic testing environment
	3.2 EXISTING  OPTICAL TRACKING SYSTEMS
	3.2.1 Vicon-Peak motion tracking system
	3.2.2 Motion Analysis motion tracking system
	3.2.3 Spicatek motion analysis system
	3.3 METHODS OF ASSESSMENT
	3.3.1 Vicon motion tracking system
	3.3.2 Motion Analysis tracking system
	3.3.3 Spicatek motion analysis system
	3.3.3.1 System calibration
	3.3.3.2 Accuracy assessment
	3.4 RESULTS
	3.4.1 Calibration
	3.4.2 Accuracy
	3.5 CONCLUSIONS
	4.0 CHARACTERIZATION OF THE GLENOHUMERAL CAPSULE
	4.1 INTRODUCTION
	4.2 MECHANICAL TESTING PROTOCOLS
	4.2.1 Tissue Sample Procurement
	4.2.1.1 Observations of capsular structure
	4.2.2 Experimental protocol
	4.2.2.1 Issues with clamp movement
	4.2.2.2 Data obtained / analysis
	4.2.3 Computational protocol
	4.2.3.1 Uniqueness of optimized coefficients
	4.2.3.2 Sensitivity of simulated load-elongation curves to constitutive coefficients
	4.2.3.3 Sensitivity of stress-stretch curves to constitutive coefficients
	4.2.3.4 Stress-stretch curve generation
	4.2.3.5 Generating average constitutive coefficients
	4.2.3.6 Non-converging finite element meshes
	4.2.3.7 Constitutive model validation
	4.2.3.8 Data obtained / analysis
	4.3 RESULTS
	4.3.1 Bi-directional Mechanical Tests - experimental
	4.3.1.1 Tissue sample geometries
	4.3.1.2 Load-elongation curves
	4.3.1.3 Surface strain distributions for shear loading conditions
	4.3.2 Bi-directional mechanical properties – computational
	4.3.2.1 Constitutive coefficients
	4.3.2.2 Stress-stretch results
	4.3.2.3 Average coefficients for each loading condition
	5.0 DISCUSSION
	5.1 IMPLICATIONS OF FINDINGS
	5.1.1 Engineering
	5.1.2 Clinical
	5.2 ADVANCEMENTS AND LIMITATIONS
	5.2.1 Advancements
	5.2.2 Limitations
	5.3 COMPARISON TO LITERATURE
	5.4 SUMMARY
	APPENDIX A
	APPENDIX B
	BIBLIOGRAPHY
	Table 3.1:  Accuracy assessment of the 2D camera configuration
	Table 3.2:  Accuracy assessment of the 3D camera configuration
	Table 4.1:  Optimized coefficients with differing mesh density
	Table 4.2:  Effects of initial guess on optimized coefficients (tensile longitudinal)
	Table 4.3:  Effects of initial guess on optimized coefficients (shear transverse)
	Table 4.4:  Tissue sample geometries (mm) of specimen ID:  05-10072L
	Table 4.5:  Tissue sample geometries (mm) of specimen ID:  05-08016R
	Table 4.6:  Tissue sample geometries (mm) of specimen ID:  05-10043R
	Table 4.7:  Tissue sample geometries (mm) of specimen ID:  05-11007R
	Table 4.8:  Tissue sample geometries (mm) of specimen ID:  05-08038L
	Table 4.9:  Tissue sample geometries (mm) of specimen ID:  05-08022L
	Table 4.10:  Tissue sample geometries (mm) of specimen ID:  05-08013L
	Table 4.11:  Tissue sample geometries (mm) of specimen ID:  05-08041L
	Table 4.12:  Tissue sample geometries (mm) of specimen ID:  05-08048L
	Table 4.13:  Tissue sample geometries (mm) of specimen ID:  05-10071R
	Table 4.14:  Optimized constitutive coefficients for all specimens
	Table 4.15:  Stress-stretch data for specimen ID:  05-10072L
	Table 4.16:  Stress-stretch data for specimen ID:  05-08016R
	Table 4.17:  Stress-stretch data for specimen ID:  05-10043R
	Table 4.18:  Stress-stretch data for specimen ID:  05-11007R
	Table 4.19:  Stress-stretch data for specimen ID:  05-08038L
	Table 4.20:  Stress-stretch data for specimen ID:  05-08022L
	Table 4.21:  Stress-stretch data for specimen ID:  05-08013L
	Table 4.22:  Stress-stretch data for specimen ID:  05-08041R
	Table 4.23:  Stress-stretch data for specimen ID:  05-08048L
	Table 4.24:  Stress-stretch data for specimen ID:  05-10071R
	Table 4.25:  Average stress-stretch data for pure tension
	Table 4.26:  Average stress-stretch data for simple finite shear
	Table 4.27:  Constitutive coefficients for average stress-stretch curves
	Figure 1.1:  Lateral view of glenohumeral joint with humerus removed, showing regions of the capsule
	Figure 1.2:  Clinical apprehension test with shoulder abducted and externally rotated
	Figure 1.3:  Plicate and shift surgical repair technique
	Figure 3.1:  Mechanical testing (A) and robotic testing (B) environments
	Figure 3.2: Simulated robotic testing environment
	Figure 3.3:  Calibration frame for 2-D (A) and 3-D (B) camera setups
	Figure 4.1:  Tensile (A) and finite simple shear (B) clamp setups
	Figure 4.2:  Flow-chart of combined experimental-computational methodology
	Figure 4.3:   Identification of capsular regions
	Figure 4.4:  Schematic of axillary pouch layers shifting during clamping (solid lines - top layer, dashed lines - bottom layer)
	Figure 4.5:  Randomization of experimental testing order
	Figure 4.6:  Load-elongation curves when too little (A), appropriate (B) and too large (C) of pre-loads are applied
	Figure 4.7:  Locations of tissue sample measurements
	Figure 4.8:  Loading and unloading phase of the ninth and tenth cycle of preconditioning
	Figure 4.9:  Shear angle θ
	Figure 4.10:  Load-elongation graph of initial cycle and following different recovery periods
	Figure 4.11:  Effects of reclamping on ensuing load-elongation curves
	Figure 4.12:  Original shear clamp setup showing clamp rotations
	Figure 4.13:  New clamp setup
	Figure 4.14:  Flowchart of computational material parameter optimization technique
	Figure 4.15:  Mesh generation accounting for tissue sample geometry
	Figure 4.16:  Test of uniqueness of optimized coefficients
	Figure 4.17:  Effects of changing C1 on the simulated load-elongation curve
	Figure 4.18:  Effects of changing C2 on the simulated load-elongation curve
	Figure 4.19:  Effect of changing C1 on stress-stretch curve (C2=8)
	Figure 4.20:  Effect of changing C1 on stress-stretch curve (C2=10)
	Figure 4.21:  Effect of changing C1 on stress-stretch curve (C2=12)
	Figure 4.22:  Effect of changing C1 on stress-stretch curve (C2=8)
	Figure 4.23:  Effect of changing C1 on stress-stretch curve (C2=10)
	Figure 4.24:  Effect of changing C1 on stress-stretch curve (C2=12)
	Figure 4.25:  Effect of changing C2 on stress-stretch curve (C1=0.08 MPa)
	Figure 4.26:  Effect of changing C2 on stress-stretch curve (C1=0.10 MPa)
	Figure 4.27:  Effect of changing C2 on stress-stretch curve (C1=0.12 MPa)
	Figure 4.28:  Effect of changing C2 on stress-stretch curve (C1=0.08 MPa)
	Figure 4.29:  Effect of changing C2 on stress-stretch curve (C1=0.10 MPa)
	Figure 4.30:  Effect of changing C2 on stress-stretch curve (C1=0.12 MPa)
	Figure 4.31:  Green-Lagrange principal strain during the application of a shear elongation in the longitudinal direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration (Specimen ID: 05-10071R) 
	Figure 4.32:  Green-Lagrange principal strain during the application of a shear elongation in the transverse direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration (Specimen ID: 05-10071R) 
	Figure 4.33:  Green-Lagrange principal strain during the application of a tensile elongation in the longitudinal direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration (Specimen ID: 05-10072L)
	Figure 4.34:  Green-Lagrange principal strain during the application of a tensile elongation in the transverse direction with an image of the tissue in the reference (Ref) and strained (Strained) configuration (Specimen ID: 05-10072L)
	Figure 4.35:  Experimental and computational load-elongation curves for specimen ID:  05-10072L - axillary pouch
	Figure 4.36:  Experimental and computational load-elongation curves for specimen ID:  05-10072L - posterior region
	Figure 4.37:  Experimental and computational load-elongation curves for specimen ID:  05-08016R - axillary pouch
	Figure 4.38:  Experimental and computational load-elongation curves for specimen ID:  05-08016R - posterior region
	Figure 4.39:  Experimental and computational load-elongation curves for specimen ID:  05-10043R - axillary pouch
	Figure 4.40:  Experimental and computational load-elongation curves for specimen ID:  05-10043R - posterior region
	Figure 4.41:  Experimental and computational load-elongation curves for specimen ID:  05-11007R - axillary pouch
	Figure 4.42:  Experimental and computational load-elongation curves for specimen ID:  05-11007R - posterior region
	Figure 4.43:  Experimental and computational load-elongation curves for specimen ID:  05-08038L - axillary pouch
	Figure 4.44:  Experimental and computational load-elongation curves for specimen ID:  05-08038L - posterior region
	Figure 4.45:  Experimental and computational load-elongation curves for specimen ID:  05-08022L - axillary pouch
	Figure 4.46:  Experimental and computational load-elongation curves for specimen ID:  05-08022L - posterior region
	Figure 4.47:  Experimental and computational load-elongation curves for specimen ID:  05-08013L - axillary pouch
	Figure 4.48:  Experimental and computational load-elongation curves for specimen ID:  05-08013L - posterior region
	Figure 4.49:  Experimental and computational load-elongation curves for specimen ID:  05-08041L - axillary pouch
	Figure 4.50:  Experimental and computational load-elongation curves for specimen ID:  05-08041L - posterior region
	Figure 4.51:  Experimental and computational load-elongation curves for specimen ID:  05-08048L - axillary pouch
	Figure 4.52:  Experimental and computational load-elongation curves for specimen ID:  05-08048L - posterior region
	Figure 4.53:  Experimental and computational load-elongation curves for specimen ID:  05-10071R - axillary pouch
	Figure 4.54:  Experimental and computational load-elongation curves for specimen ID:  05-10071R - posterior region
	Figure 4.55:  Stress-stretch curves for pure tension of specimen ID:  05-10072L
	Figure 4.56:  Stress-stretch curves for simple finite shear of specimen ID:  05-10072L
	Figure 4.57:  Stress-stretch curves for pure tension of specimen ID:  05-08016R
	Figure 4.58:  Stress-stretch curves for simple finite shear of specimen ID:  05-08016R 
	Figure 4.59:  Stress-stretch curves for pure tension of specimen ID:  05-10043R
	Figure 4.60:  Stress-stretch curves for simple finite shear of specimen ID:  05-10043R
	Figure 4.61:  Stress-stretch curves for pure tension of specimen ID:  05-11007R
	Figure 4.62:  Stress-stretch curves for simple finite shear of specimen ID:  05-11007R
	Figure 4.63:  Stress-stretch curves for pure tension of specimen ID:  05-08038L
	Figure 4.64:  Stress-stretch curves for simple finite shear of specimen ID:  05-08038L
	Figure 4.65:  Stress-stretch curves for pure tension of specimen ID:  05-08022L
	Figure 4.66:  Stress-stretch curves for simple finite shear of specimen ID:  05-08022L
	Figure 4.67:  Stress-stretch curves for pure tension of specimen ID:  05-08013R
	Figure 4.68:  Stress-stretch curves for simple finite shear of specimen ID:  05-08013R
	Figure 4.69:  Stress-stretch curves for pure tension of specimen ID:  05-08041R
	Figure 4.70:  Stress-stretch curves for simple finite shear of specimen ID:  05-08041R
	Figure 4.71:  Stress-stretch curves for pure tension of specimen ID:  05-08048L
	Figure 4.72:  Stress-stretch curves for simple finite shear of specimen ID:  05-08048L
	Figure 4.73:  Stress-stretch curves for pure tension of specimen ID:  05-10071R
	Figure 4.74:  Stress-stretch curves for simple finite of specimen ID:  05-10071R
	Figure 4.75:  Average stress-stretch curves for pure tension
	Figure 4.76:  Average stress-stretch curves for simple finite shear


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


