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David Lee Corcoran, PhD 
 

University of Pittsburgh, 2008 
 
 

MicroRNA genes are short, non-coding RNAs that function as post-transcriptional gene 

regulators.  Although they have been implicated in organismal development as well as a 

variety of human diseases, there is still surprisingly little known about their 

transcriptional regulation.  The understanding of microRNA transcription is very 

important for determining their regulators as well as the specific role they may play in 

signaling cascades.  This dissertation focused on the comparison of mammalian 

microRNA promoters and upstream sequences to those of known protein coding genes.  

This dissertation is also focused on determining potential regulatory networks that 

microRNA genes may participate in, particularly those networks involved in the TGFβ / 

SMAD signaling pathway.   

The comparison of intergenic microRNA upstream sequences to those of protein 

coding genes revealed that the former are up to twice as conserved as the latter, except in 

the first 500 base pairs where the conservation is similar.  Further investigation of the 

upstream sequences by RNA Polymerase II ChIP-chip revealed the transcription start site 

for 35 primary-microRNA transcripts.  The identification of features capable of 

distinguishing core promoter regions from background sequences using a support vector 

machine approach revealed that the transcription start site of primary-microRNA genes 
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share the same sequence features as protein coding genes.  These results suggest that in 

fact microRNA genes are transcribed by the same mechanism by which protein coding 

genes are transcribed. This information allowed us to then identify the regulatory 

elements of microRNA genes in the same manner in which we use for protein coding 

genes.  Identification of a SMAD family transcription factor binding site upstream of the 

human let-7d microRNA revealed a feed-forward regulatory circuit involved in epithelial 

mesenchymal transition.  This provided the first evidence of a direct link between a 

growth factor and the expression of a microRNA gene.   

The understanding of microRNA transcriptional regulation has great public health 

significance.  The ability to understand how these post-transcriptional gene regulators 

function in cellular networks may provide new molecular targets for cures or therapies to 

a variety of human diseases.   
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1.0 INTRODUCTION 
 

1.1 MICRORNA GENES 
 
microRNA (miRNA) genes are small, non-coding RNAs (~22nt) that function as post-

transcriptional gene regulators.  miRNAs were first identified in 1993 by Lee et al. who 

found that, in C. elegans,  the non-coding gene lin-4 contained two short transcripts that 

were capable of post-transcriptional regulation of the gene lin-14 resulting in the proper 

cellular signal timing in larval development (1).    Since the first description of miRNAs a 

wide variety of studies have been published analyzing everything from their biogenesis, 

their regulation, their function and the role that they play in a variety of cellular 

pathways. 

 miRNA genes, or miRNAs, are currently believed to be mostly transcribed by 

RNA Polymerase II (Pol II) (2), although a few may be transcribed by RNA Polymerase 

III (3).  There are two different classes of miRNAs when discussing their transcription 

mechanism, those found within annotated genes (intronic miRNAs) and those found in 

intergenic regions of the genome (intergenic miRNAs).  It is presently believed that all 

intronic miRNAs are co-transcribed along with their host gene; this has been shown in 

both expression correlation studies (4) as well as PCR based biochemical verification (5).  

Intergenic miRNAs have been postulated to come from transcripts of up to 50kb in 

length, allowing for the co-transcription of neighboring miRNAs (polycistronic miRNA 

clusters) (4).  
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 The initial full-length miRNA transcripts are called primary-miRNAs (pri-

miRNAs); these transcripts may contain one or multiple miRNA genes.  The region on 

the transcript surrounding the miRNAs form a hairpin structure which is cleaved out by 

the protein Drosha; these resulting hairpin structures are called preliminary-miRNAs 

(pre-miRNAs).  The pre-miRNAs then leave the nucleus for the cytoplasm where they 

are processed by another protein called Dicer resulting in their final size (~22nt).  The 

short mature miRNA then associates with a protein complex containing, among others, 

the protein Argonaut whereupon it is then able to carry out its function (6).  

 Once the mature miRNAs have become associated with the Argonaut protein 

complex they become free to bind to their target sites through base complementarity on 

the 3’ untranslated region of mRNA transcripts, typically 7 – 8nt in length (6).  This 

binding can result in either the full degradation of the target mRNA transcript or the 

blocking of its translation.  miRNA target prediction methods have shown that each 

miRNA gene may be able to target many mRNAs, while each mRNA may be the target 

of multiple miRNAs (7-9). 

 While the process of miRNA regulation of mRNAs is beginning to be well 

understood, the transcriptional regulation of miRNA genes, specifically intergenic 

miRNAs, is still being intensely studied.  The finding, as stated above, that Pol II may be 

regulating miRNAs led us and others to the hypothesis that the same type of regulatory 

elements that control protein coding gene transcription may as well control miRNA gene 

transcription (10).  Pri-miRNA transcripts have been identified, in some cases, to have 5’ 

caps and Poly(A) tails, both properties of the Pol II transcription of protein coding genes 

(2).  Currently only a handful of pri-miRNA transcription start sites have been identified 
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biochemically (2, 10-12), though computational tools have been used to attempt the 

prediction of many more of them (11, 13).   

 The identification of pri-miRNA transcription start sites is important for the 

identification of their promoter regions, the sequence that contains the transcription factor 

binding sites responsible for their transcriptional regulation.  The identification of these 

biding sites will further help in the understanding of the gene regulatory networks in 

which miRNAs participate.   

1.2 PROMOTER REGIONS 
 
Transcription of protein coding genes as well as some small RNAs, such as microRNAs 

(miRNAs), is carried out by Pol II.  While Pol II binds to the DNA at the transcription 

initiation point, it is not capable of directly recognizing its target (14).  A complex of 

proteins in a region known as the core promoter binds to the DNA whereupon they 

recruit Pol II to the transcription start site (TSS).  Other proteins, called transcription 

factors (TFs), then bind to the proximal promoter or enhancer regions to either initiate 

(activators) or block (repressors) the activation of Pol II.   

 The core promoter region typically consists of the couple hundred base pairs 

surrounding the TSS of a gene.  This region was once thought to contain a handful of 

known features able to be bound by elements of the Pol II protein complex; though it is 

now known that there is a wide diversity of properties that can be identified.  It was 

initially believed that the core promoter regions consisted of a TATA box (~30bp 

upstream of the TSS) and an initiator sequence (Inr; overlaps the TSS).  Recent studies 

have estimated the prevalence of these two sequences in only about 16% of human 
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promoters (15), typically for tissue specific genes (16).  It has been identified that 

approximately half of the human core promoters are located around CpG islands.  CpG 

islands are regions of a high concentration of CG dinucleotides, which are very 

underrepresented across the genome (17). 

For non-CpG island related promoters it was discovered that addition sequences 

such as the down stream promoter element (DPE; ~28bp downstream of the TSS) and the 

TFIIB recognition element (BRE; ~35bp upstream of the TSS) were also targets for 

proteins involved in the recruitment of RNA Pol II to the TSS besides the TATA box and 

the Inr.  While some hypothesized that at least 2 of these 5 elements were necessary for 

the transcriptional initiation complex to bind (18), other researchers have identified gene 

specific elements capable of binding this complex such as the downstream core element 

(DCE) in the human β-globin promoter (19) and the multiple start site downstream 

element (MED-1) in the pgp1 promoter (20).  This suggests that the core promoter 

structure may be more complicated than originally hypothesized.     

CpG islands are found at a low frequency in the genome because methylated CG 

dinucleotides can easily be mutated to TG dinucleotides, a process that is not corrected 

by DNA repair mechanisms (19).  Genes that have CpG islands in their promoters tend to 

be ubiquitously expressed across most tissues and throughout development.  DNA 

methylation is a mechanism for which the cell can block the binding of transcription 

factors to promoters in order to prevent transcription of certain genes; because genes with 

CpG islands tend to be continuously expressed, they have not had as many opportunities 

to be methylated relative to the remainder of the genome (17).  Another feature that 

distinguishes genes with CpG islands is that they are more likely to have multiple TSSs 
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that can span over 100bp whereas TATA-Inr containing promoters tend to have just one 

TSS (16).  The transcription factor Sp1 is capable of binding to CpG islands and 

recruiting Pol II (21).   

1.3 TRANSCRIPTION FACTORS 
 
The regulatory regions outside of the core promoter are the proximal promoter region and 

the enhancer regions.  These regions, which can be located upstream of the gene, 

downstream of the gene, or even in the gene’s introns, are bound by TFs that activate or 

repress the functionality of Pol II (22).  TFs will typically consist of a DNA binding 

domain and in the case of activators, an activation domain.  Each TF usually binds to a 

specific set of sequence motifs 6-15bp in length (23).  The over 2,000 human TFs can be 

broken down into families based upon their structural properties that will typically 

correspond to their preferred binding motif (24, 25).  TFs can function individually, in 

tandem, or in competition with each other (26).   

 The identification of transcription factor binding sites (TFBSs) in the genome is 

an important and highly researched subject.  The advancement of large-scale chromatin 

immunoprecipitation technology (ChIP-chip) has provided biologists with the tools 

necessary to identify many binding sites for a specific factor (27).  The limitations of 

these studies are that the results only provide information on one specific cell type, one 

cellular condition, and only a single TF.   In addition to laboratory procedures that can 

identify TFBSs, computational biologists have taken up the task of locating their motifs 

given the complete sequences of genomes and some external information.   
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 A variety of computational methods have been developed over the years for the 

identification of TFBSs.  The short and often degenerate nature of the sequences makes 

them a challenge to identify over large genomic regions (28).  Algorithms have been 

developed that search for specific strings of sequences that match known TFBSs, called 

library based methods.  Other methods use an IUPAC alphabet in the form of a consensus 

sequence to match the variability in TFBSs (29).  The most common method of 

representing the binding motifs of a TF is a position-specific scoring matrix (PSSM).  A 

PSSM provides a mathematical model that represents all of the known binding sites for a 

given TF (23).  The PSSM can be combined with other features to help in the efficiency 

of identifying TFBSs such as sequence conservation across species or looking for 

common TFBSs in the promoters of genes that appear to be co-regulated given the 

similarity in their expression profiles (28, 30-33). 

The identfication of TFBSs is an essential step in the understanding of gene 

regulatory networks.  The further analysis of miRNA promoters and the transcription 

factors that bind them will be an essential component to the understanding of the 

regulatory networks in which they participate.  

 

1.4 PROJECT OVERVIEW 
 
The purpose of this project is to develop an understanding of the transcriptional 

regulation of microRNA genes.  This knowledge will then be used to determine which 

factors might regulate these genes and therefore which regulatory networks they may be 

involved in.  Previous studies have suggested that microRNA genes may be transcribed 

by either Pol II (2) or RNA Polymerase III (3) .  To identify which is most likely 
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responsible for the transcription of microRNA genes we will compare the features of the 

microRNA upstream regions to those of genes transcribed by Pol II or Pol III.  Once the 

RNA Polymerase found to be the most likely responsible for microRNA transcription is 

identified further analysis into which factors are regulating specific microRNA genes will 

be performed.  With putative regulators identified, we will attempt to identify specific 

regulatory networks in which microRNA genes may participate.    

Chapter 2 of this dissertation will begin with the analysis of the conservation 

across species of the upstream sequences of microRNA genes and how they compare to 

other known classes of genes such as protein coding genes which are transcribed by Pol 

II as well as non-coding RNAs known to be transcribed by Pol III.  From that analysis I 

will show that in fact microRNA upstream sequences are similar to those of protein 

coding genes, which are transcribed by RNA Polymerase II.  Chapter 3 will then 

demonstrate that one of the most common biological methods of transcription factor 

binding site identification, ChIP-chip, can be best modeled by the number of motifs 

recognized by that factor within the probed genomic region.  In Chapter 4 we will 

analyze RNA Polymerase II chromatin immunoprecipitation data to identify where the 

transcription start site is for a variety of microRNA genes.  With the location of the true 

transcription start sites; we will then be able to compare the features of microRNA core 

promoters to those of protein coding genes.  The results of that analysis will further 

confirm that the same transcriptional machinery of protein coding genes in fact 

transcribes microRNA genes.   

 With the knowledge gained in Chapter 4, we will then proceed in Chapter 5 to 

identify any putative feed-forward loops involving microRNA genes by comparing the 
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presence of sites that may be bound by a given transcription factor upstream of both a 

microRNA gene and any of its targets.  The focus of Chapter 5 will be on transcription 

factors and microRNA genes that may be involved in the TGFβ / SMAD signaling 

pathway.  Chapter 6 will then focus on verifying one of the putative feed-forward loops 

and the role that the human microRNA gene let-7d may play in epithelial mesenchymal 

transition, a cellular process seen in development, cancer and idiopathic pulmonary 

fibrosis.  

1.5 PUBLIC HEALTH SIGNIFICANCE 
 
Recent studies have demonstrated that miRNAs may play an important role in a variety 

of human diseases such as cancer (34), fragile X syndrome (35) and heart failure (36).  

As more is learned about these gene regulators we are likely to see the number of human 

diseases that miRNAs are involved in greatly increase.  The understanding of the 

transcriptional regulation of miRNAs is a vital step toward complete deciphering of the 

cellular processes in which they are involved.  The understanding of these pathways 

brings with them the potential for new treatments and therapies for a variety of genetic 

factors that affect public health.  
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2.0 REGULATORY CONSERVATION OF PROTEIN CODING AND 

MICRORNA GENES IN VERTABRATES 

 
David L. Corcoran1, Shaun Mahony2, Eleanor Feingold1, Panayiotis V. Benos2 

 

1Department of Human Genetics, University of Pittsburgh Graduate School of Public 

Health, Pittsburgh, PA, USA; 2Department of Computational Biology, University of 

Pittsburgh School of Medicine, Pittsburgh, PA, USA 

 

This chapter has been published in a modified form by BioMed Central, © Mahony 

et al.  Full Citation: 

 

Mahony S, Corcoran DL, Feingold E, and Benos PV 2007 Regulatory conservation 

of protein coding and microRNA genes in vertebrates: lessons from the opossum 

genome. Genome Biol 8(5):R84 

 

2.1 BACKGROUND 
 
In protein coding genes, gene regulation is primarily controlled by short DNA sequences 

in the vicinity of the gene’s transcription start site (TSS) that are targets for transcription 

factor proteins.  A high degree of evolutionary conservation of these promoter regions 

can be attributed to functional cis-regulatory elements.  The increased conservation in the 

biologically more important parts of the promoter region has been explored by various 
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phylogenetic footprinting algorithms (28, 32, 37, 38) to improve the prediction of 

transcription factor binding sites (TFBSs) in vertebrate genomes.  

Another major mechanism for control of gene expression is provided by 

microRNA (miRNA) genes.  miRNAs are small (22 to 61 bp long), noncoding RNAs that 

downregulate their target genes via base complementarity to their mRNA molecules (1, 

39).  Each miRNA can target multiple genes and each gene can be the target of multiple 

miRNAs (8, 9, 40).  In vertebrates, their expression often is tissue specific (41) and has 

been shown to play an important role during development (42-44).  Although some 

miRNAs are found in the introns of coding genes and therefore are probably regulated by 

the promoters of the genes in which they reside (5), others are located in the intergenic 

parts of the genome.  Little is known about the transcriptional regulation of these 

intergenic miRNAs, although RNA polymerase II appears to be involved in the process 

(2).  This suggests that miRNAs may have active promoter regions that contain cis-

regulator elements similar to coding genes.  In this study we will further explore this 

hypothesis by comparing the conservation of the upstream region of known miRNAs to 

that of promoters for protein coding genes which are regulated by RNA Polymerase II as 

well as non-coding RNAs known to be regulated by RNA Polymerase III.  Identification 

of the method by which miRNA genes are transcribed can lead to the identification of the 

factors that are responsible for their regulation. 
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2.2 RESULTS AND DISCUSSION 
 

2.2.1 Conservation of the Upstream Regions of Protein Coding and Intergenic 

miRNA Genes 

 
We calculated the conservation of the 5 kilboase (kb) upstream regions of all RefSeq 

protein coding genes as well as the known intergenic pre-miRNAs using a sliding 

window approach, as described in Materials and Methods.  Only intergenic miRNAs 

were included in this analysis because intronic miRNAs have been shown to be co-

transcribed with their corresponding host gene (5).  With little known about the 

transcriptional regulation of non-intronic miRNA genes it cannot be assessed whether the 

miRNA upstream regions evolved at the same, slower, or faster rate than those of protein 

coding genes, and whether their conservation pattern across the upstream region indicates 

parts of potential biological importance.  The phylogenetic tree of the species included in 

this analysis is plotted in Figure 2.1.   

 
 
 

 
Figure 2.1  Phylogenetic tree of the species examined in this chapter 

 
 
 



 12

 
 Table 2.1 presents the number of orthologous genes in each species (derived from 

the MULTIZ University of California, Santa Cruz [UCSC] synteny based alignments), 

the average block coverage of their upstream regions, and the average percentage identity 

within these conserved blocks.  For the calculation of the average percentage identity, the 

conservation percentage of each block is multiplied by the total length of the block.  In 

other words, the average block conservation corresponds to the number of bases that are 

identical in all conserved blocks of one promoter over the length of the blocks in this 

promoter.  The human genes were used as reference for all pair-wise comparisons.  

Surprisingly it was found that, with the exception of teleosts and chimp, the conservation 

in the upstream regions of the miRNA genes is 34% to 60% higher on average than that 

in the protein coding genes.  This is independent of the average block identity, which 

remains practically the same between two types of genes in these comparisons (Table 

2.1).  In all non-primate mammals the average block coverage in the miRNA upstream 

sequences is significantly higher than that in the promoters of the protein coding genes 

(Wilcoxon rank-sum test: p = 6x10-4 for opposum and p = 10-14 to 10-16 for rodents and 

dog).   

In all of the pair-wise comparisons (Table 2.1), except human-chimp, the average 

block identity is about the same (72% to 77%), regardless of the evolutionary distance or 

the type of gene (protein coding or miRNA); because the block conservation threshold 

was 65%, this equivalency indicates that a reduction in the number of conserved blocks 

rather than a uniform decrease in the similarity is responsible for the observed 

conservation rates.  Such a pattern of evolution is expected if the cis-regulatory sites are 
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organized in clusters located in these upstream regions.  These clusters might contain 

regulatory elements specific to, for instance, primates only, eitherians only, and so on.   

 
Table 2.1  Conservation in the 5kb upstream sequences in all protein coding and intergenic miRNA genes. 
*Species for which the block coverage of miRNA gene upstream regions is statistically significantly higher 
than that of the promoters of protein coding genes  

 
 
 

2.2.2 Distribuition of Conserved Blocks in the Upstream Sequence of Protein 

Coding and Intergenic miRNA Genes 

 
We plotted sequence conservation as a function of the distance from the transcription 

start site to investigate further the differences in conservation of the upstream regions 

(Figure 2.2).  We found that in the first 500bp the sequence conservation of the miRNA 

genes is almost identical to that of the promoters of the protein coding genes (R values > 

0.9 and usually much higher; regression t-test: p < 10-19).  In protein coding genes this is 

typically the region with the highest concentration of known cis-regulatory elements.  

From all known human and mouse TFBSs in the TRANSFAC database (45), 69.1% and 

65.1% respectively, are annotated as being located in the proximal 500bp region (data not 

shown).  Interestingly, Lee and coworkers (2) showed that this region is sufficient to 

drive expression of the miR-23a~27a~24-2 intergenic miRNA cluster by RNA 
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polymerase II.  These findings were further tested by analysis of the upstream sequence 

conservation of the tRNA genes in the human genome.  It has been long established that 

the cis-regulatory elements of the tRNA genes are located downstream of their 

transcription start site (46).  It was found that the sequence conservation for the tRNA 

genes was constant throughout their 5kb upstream regions (Figure 2.2; green dashed 

line). 

 The conservation rates in both protein coding and miRNA genes declines after the 

first 500bp and becomes almost constant. We also observed that the difference between 

these two types of genes is that, in the case of miRNAs, the constant conservation rate is 

up to twofold higher than that in the protein coding genes for rodents, dog, opposum and 

chicken.  It was found that these differences were statistically significant (data not 

shown).  Similarly high conservation rates are observed in chimp for both types of genes, 

probably reflecting the generally high conservation rate throughout the genome.  By 

contrast, similarly low conservation rates are observed for the fugu fish and tetraodon.  It 

should be noted, however, that the higher conservation rates are statistically significant in 

the (nonprimate) mammals.   

 It is not clear whether this increased upstream sequence conservation is a general 

biologic feature of the miRNA upstream regions or is an artifact of the method used to 

discover miRNA genes.  It is possible, for example, that the known intergenic miRNAs 

happen to fall in more conserved regions of the genome.  This may be related to the way 

in which the miRNAs were originally identified (through high similarity to known 

miRNAs).  However, it is also possible that because miRNAs are involved in highly 

regulated vital cell or organismal processes such as development (42-44), there is a much 



 15

greater selective pressure on their regulatory regions.  To investigate this question further, 

the conservation of the upstream sequences between miRNA genes and those genes 

identified as developmental according to GO classification were compared (Figure 2.2; 

light blue dashed line).  It was observed that the upstream conservation of the 

developmental genes in all mammals is uniformly higher than the overall average and 

similar to the conservation of the miRNA genes, especially the first 2,000bp.  This is true 

for all species examined, although in the non-mammalian vertebrates the overall 

upstream sequence conservation for all types of genes is similarly low (10% lower after 

the first 500bp; Figure 2.2).  The fact that miRNA genes have been implicated in the 

regulation of various developmental processes (47) may partly explain the similar 

conservation rates in their upstream regions and the promoters of developmental genes, 

also indicating that analogous mechanisms and cis-elements may regulate the expression 

of the corresponding gene.   
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Figure 2.2  Upstream sequence conservation of protein coding, tRNA and miRNA genes 
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2.3 CONCLUSION 
 
This study is the first to analyze conservation of the upstream regions of protein coding 

genes in relation to the upstream regions of intergenic miRNA genes.  The latter was 

found to be about twice as conserved as the former beyond the first 500bp.  The reason 

for this conservation is currently unknown.  The first 500bp appears to be equally 

conserved in both types of genes, a feature that is missing from the upstream sequence of 

the tRNA genes.  This indicates that similar mechanisms of gene regulation may be in 

place, which is in agreement with other studies (2, 48).  The difference in conservation 

rates is more apparent in the mammalian lineages and may reflect similarities in 

mammalian gene regulation.   

 

2.4 MATERIALS AND METHODS 
 

2.4.1 microRNA Gene Dataset 
 
Human miRNA genes were retrieved from the miRBase database (7) and the UCSC 

Genome Browser (version hg18, March 2006) (49, 50).  Cross-referencing them with the 

miRNAMap dataset (51) identified 169 putatively intergenic miRNA genes.  The 

sequences of these miRNAs were used in BLAST-like Alignment Tool (BLAT) (52) 

aligned against the latest UCSC human genome and their where there exact locations 

were identified.  Following observations in previous studies (2, 53), two miRNA genes 

were considered to be co-transcribed if their starting points were less than 250 bp apart.  

In this way, 12 clusters containing 31 genes were identified.  Only the 5’-most gene in a 
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cluster was considered in the analysis.  Five miRNA genes were found to reside within 

large introns of protein coding genes, and although they may have their own regulatory 

regions, they were excluded from further analysis.  This resulted in a dataset of 145 

human intergenic miRNA genes.  The coordinates of the BLAT outputs were used to 

retrieve up to 5kb regions upstream of the gene start site. 

2.4.2 Pair-wise Species Comparison 
 
Pair-wise species alignment for both protein coding and miRNA genes were retrieved 

from the 17-species MULTIZ multiple alignments (54), which are available from the 

UCSC web server (50).  The MULTIZ algorithm builds a multiple alignment from local 

pair-wise BLASSTZ alignments of the reference genome with each other genome of 

interest (54, 55).  Each base in the reference genome is aligned to at most one base in the 

other genomes, and the alignment is guided by synteny.  In this study, the results from 

pair-wise comparisons of human (56) with four eutherian mammals (chimpanzee (57), 

mouse (58), rat (59) and dog (60)), the newly sequenced opossum (61), chicken (62), 

fugu (63) and tetradon (64) are presented.  A phylogenetic tree for those species and with 

branch lengths derived from the ENCODE project Multi-Species Sequence Analysis 

group (September 2005) is shown in Figure 2.1.  This tree was generated using the 

phyloGif program (65) from the Threaded Blockset Aligner (TBA) alignments over 23 

vertebrate species and is based on 4D sites (similar to the tree presented by Margulies and 

coworkers (66)).   

 For each pair-wise comparison, the corresponding (aligned) 5kb upstream 

sequence was retrieved directly from the MULTIZ alignments for greater accuracy, using 
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the human genes as a reference.  If other genes were found within this 5kb range, then the 

upstream sequences were shortened accordingly to exclude the additional genes.  65% 

was used as the conserved block threshold in this study, which is similar to that in 

previous studies (31, 67, 68).   

2.4.3 tRNA Dataset 
 
Human tRNA genes and pair-wise alignments were extracted from the UCSC Genome 

Browser Database (50, 65) using the genomic MULTIZ alignments as described 

previously.  Genes that were found to be facing opposite directions in the genome (‘head-

to-head’) and their start were closer than 2.5kb apart were excluded from the analysis.  

This rule excluded 156 genes.  The final human tRNA dataset included 1,795 upstream 

sequences.   

2.4.4 Block Conservation 
 
In this study, sequence conservation is expressed as conserved block coverage.  A sliding 

window of width 50bp and step size 10bp was used to find conserved regions (or blocks) 

of at least 65% identitiy between human and each other species.  Each pair-wise 

alignment was extracted from the MULTIZ multiple alignments.  Sauer and coworkers 

(69) have shown that the 65% identity threshold most effectively separates TFBSs from 

background sequences in human-rodent comparisons.  The percentage of human 5kb 

upstream sequence that is located within conserved blocks is denoted the ‘conserved 

block coverage’.  The ‘average block conservation’ is the percentage of identifcal bases 

in conserved blocks over all bases in conserved blocks.   
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3.0 MODELING CHROMATIN IMMUNOPRECIPITATION DATA WITH 

TRANSCRIPTION FACTOR BINIDING SITE IDENTIFICATION 

METHODS 

 

3.1 BACKGROUND 
 
With high throughput, microarray based chromatin immunoprecipitation (ChIP-chip) 

quickly becoming established as the most effective means of identifying transcription 

factor binding sites (TFBSs) there becomes a need to determine if any genomic features 

can be implemented in silico to effectively model the ChIP-chip outcome.   ChIP-chip 

functions by ‘freezing’ the cellular machinery, resulting in the fixation of the DNA to all 

bound proteins.  The DNA is then sheared into fragments (~1kb in size) with all of the 

proteins still bound.  Specific proteins, often transcription factors (TFs), with the DNA 

still attached can then be precipitated out and the DNA isolated.  The DNA is then 

labeled with a dye and placed on an array that contains probes with complementary 

sequences to regions surrounding the transcription start sites of all annotated genes.  An 

image reading system then identifies the probes with the most DNA bound, providing the 

location of the TFBSs (27).   

 While ChIP-chip is able to biochemically identify the location of TFBSs, it is 

limited in that it only identifies the TFs bound at the instant the cells are ‘frozen.’  The 

recent sequencing of the genomes for a variety of species provides computational 

biologists the opportunity to identify TFBSs in silico across the whole genome.  TFBS 

prediction is a complicated task because of the short (6-18bp), often degenerate, motifs 

that TFs often bind (23).  
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 One type of method others have previously developed to identify putative TFBSs 

is to identify clusters of genes that are co-expressed across a variety of cellular conditions 

or over time in response to a stimulus.  The upstream sequences of the clustered genes are 

then collected and searched for common motifs (30, 33).  If sequences for some binding 

sites are known, a ‘consensus’ sequence can be created using the IUPAC alphabet (29) to 

scan genomic regions for matching sequences.  A more mathematically appropriate 

model, called a position-specific scoring matrix (PSSM), can also be generated from 

known sites and used to scan for matching sequences given a false discovery rate 

threshold cutoff (23). 

 The previously described approaches tend to have a low specificity given the size 

of the background sequence in the genome (70).  To reduce the search space, studies 

began to incorporate the use of sequence conservation assuming that the functional 

elements will be conserved across species in an approach called phylogenetic footprinting 

(28, 31, 32).  The drawback to using phylogenetic footprinting is that its ability to 

increase the specificity and sensitivity of the algorithm relies heavily on the evolutionary 

distance between the species being compared (71).  Another approach to TFBS 

identification involves identifying clusters of low-affinity sites for a TF that may be near 

a true site; these low affinity sites can act either as ‘backup’ sites or as a means of 

keeping the TF in the proximity of the true site (72).  

 The purpose of this study is to test a variety of TFBS identification methods to 

determine which of these methods are able to accurately predict the results of ChIP-chip 

data.  These models will be generated by logistic regression with the TFBS identification 
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method being the independent variable and the outcome variable being the bound or 

unbound status of the TF from the ChIP-chip data.  

3.2 RESULTS AND DISCUSSION 
 

3.2.1 Analysis of Yeast ChIP-chip Data 
 
Saccharomyces cerevisiae is an organism often used to study eukaryotic transcriptional 

regulation because of its relatively small number of TFs as well as its short and well-

defined promoter regions (73).  Due to the relative simplicity of the yeast promoter 

regions, a large number of biochemical studies have been carried out that allow for the 

verification of computational predictions, such as the study of Lee et al. (73) in which 

they have performed genome-wide ChIP-chip experiments for 88% of the 144 known 

TFs.   

With ChIP-chip established as one of the most commonly used and reliable 

methods of large-scale identification of TFBSs the question arises as to which TFBS 

prediction method provides the most accurate model for the ChIP-chip results.  To test 

this, we used a variety of TFBS prediction methods were used as a predictor in a logistic 

regression analysis with the ChIP-chip results as the outcome variable.  Logistic 

regression is often used to determine the significant predictors of a binary outcome; in 

this case the binary outcome is the ChIP-chip data as it corresponds to all of the promoter 

regions in the yeast genome (1 = bound, 0 = unbound; see Materials and Methods) and 

the predictor variable is the value obtained from the TFBS prediction algorithms.  
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Table 3.1  p-values representing the significance of the given TFBS identification method  as a predictor  

of ChIP-chip data in Saccharomyces cerevisiae for each TF produced by logistic regression. 
Transcription 

Factor 
PSSM Cutoff 1 

Count 
PSSM Cutoff 2 

Count 
Consensus String 

Count 
Lowest PSSM 

Score 
Lowest Window 

PSSM Score 
SUM1 6x10-18 2x10-26 2x10-9 4x10-19 2x10-19 2x10-17 4x10-19 9x10-20 0.001 0.036 
CAD1 0.525 0.004 0.525 0.004 0.026 4x10-6 0.035 0.195 0.529 0.859 
ZAP1 0.001 0.018 0.037 0.391 2x10-5 3x10-4 2x10-4 0.952 0.216 0.539 
BAS1 5x10-11 4x10-12 5x10-11 5x10-12 8x10-15 8x10-16 0.001 0.018 0.634 0.790 
ACE2 1x10-5 5x10-7 1x10-5 5x10-7 2x10-4 9x10-4 0.020 0.049 0.024 0.014 
SFP1 5x10-6 0.004 3x10-4 0.007 0.005 0.004 2x10-7 0.131 0.003 0.115 
MCM1 2x10-5 3x10-6 9x10-4 1x10-5 2x10-8 2x10-9 7x10-6 4x10-6 0.051 0.009 
STB1 0.003 2x10-5 0.020 0.004 3x10-7 6x10-10 0.037 0.079 0.747 0.534 
ROX1 0.221 0.117 0.090 0.762 0.982 0.985 0.080 0.485 0.019 0.268 
ADR1 0.333 0.993 0.993 0.993 0.247 0.993 0.673 0.436 0.103 0.328 
BAS1 7 x10-12 5 x10-08 5 x10-12 2 x10-08 1 x10-15 5 x10-12 7 x10-4 0.044 0.213 0.395 
CAD1 3 x10-11 1 x10-7 2 x10-13 2 x10-13 7 x10-10 4 x10-9 2 x10-16 3 x10-5 0.079 0.737 
CBF1 1 x10-122 2 x10-84 2x10-126 6 x10-84 5 x10-111 2 x10-58 6 x10-125 7 x10-63 2 x10-14 2 x10-15 
DAL81 0.148 0.074 0.997 0.997 0.998 0.998 0.648 0.244 0.128 0.123 
DAL82 0.102 0.018 0.042 0.050 2 x10-9 6 x10-6 0.704 0.702 0.019 0.017 
FHL1 2 x10-28 1 x10-7 1 x10-68 1 x10-20 6 x10-70 2 x10-29 9 x10-93 1 x10-42 0.176 0.047 
GAT1 0.040 0.259 0.039 0.259 0.358 0.546 0.091 0.715 0.455 0.770 
GCN4 7 x10-54 3 x10-58 9 x10-61 3 x10-62 2 x10-80 1 x10-78 3 x10-46 4 x10-46 0.678 0.957 
GLN3 8 x10-06 9 x10-13 8 x10-5 3 x10-9 2 x10-6 7 x10-8 0.001 3 x10-6 0.077 0.057 
HAP4 0.477 0.086 0.260 0.048 0.254 0.032 0.273 0.116 0.739 0.799 
HAP5 0.006 0.001 0.006 0.001 0.001 7 x10-6 0.066 0.003 0.467 0.896 
LEU3 1 x10-18 4 x10-17 7 x10-20 3 x10-20 1 x10-16 6 x10-19 2 x10-22 8 x10-20 3 x10-9 3 x10-9 
MET31 0.961 0.085 0.004 0.006 0.051 0.008 0.230 0.271 0.934 0.598 
MET32 1 x10-6 8 x10-13 5 x10-9 2 x10-16 5 x10-14 6 x10-19 6 x10-13 1 x10-12 0.594 0.626 
MET4 0.006 5 x10-6 1 x10-4 1 x10-9 0.974 0.974 3 x10-9 2 x10-7 0.015 0.054 
MOT3 3 x10-10 8 x10-5 2 x10-10 1 x10-4 4 x10-9 1 x10-4 0.006 0.003 0.082 0.453 
PHO2 0.075 0.749 0.032 0.247 0.989 0.989 0.052 0.686 0.761 0.798 
PUT3 0.075 0.004 7 x10-4 2 x10-5 0.977 0.984 1 x10-10 2 x10-4 0.069 0.038 
RCS1 0.012 0.005 5 x10-7 3 x10-6 0.032 0.006 3 x10-5 0.002 0.893 0.490 
RPH1 0.965 0.54 0.988 0.992 0.930 0.995 0.225 0.001 0.018 0.030 
RTG3 0.028 0.012 0.028 0.012 0.798 0.213 0.039 0.042 0.005 0.006 
SFP1 7 x10-30 4 x10-17 1 x10-31 6 x10-23 3 x10-37 3 x10-26 3 x10-29 9 x10-15 0.005 0.686 
SIP4 0.005 2 x10-4 5 x10-5 7 x10-6 0.993 0.992 0.006 0.030 0.128 0.146 
STP1 0.064 0.047 0.064 0.047 0.985 0.987 0.013 0.385 0.447 0.096 
UGA3 0.0389 0.987 0.537 0.990 0.993 0.995 0.012 0.013 0.205 0.076 
Cutoff 1: 1 False Positive per 3000bp 
Cutoff 2: 1 False Positive per 6000bp 
Red text indicates statistical significance (p-value <= 0.005) 
 Only sites or values within evolutionary conserved regions were evaluated, therefore taking phylogenetic 

footprinting into account 
 
  

The first type of TFBS identification method we tested was to count the number 

of instances of the factor motif being present in the promoter region of each gene (see 

Materials and Methods).  This approach was accomplished by using the consensus 

sequence and a PSSM with two different score cutoffs for each TF, which allow for 



 24

different ‘noise-to-signal’ ratios.  The next approach analyzed was to take the lowest 

scoring, and therefore highest affinity, site in each promoter and use that as the 

independent variable in the logistic regression.  The final method compared with the 

ChIP-chip data was based upon Zhang et al. (72) study that suggests clusters of low-

affinity sites may be found around the true binding site in an attempt to assist in 

recruiting the TFs to the correct site.  To test this, the cumulative score for all sites within 

a sliding window of 50bp (step size 5bp) was used in the regression analysis.  If a 

window contained a number of semi-optimal sites, the window should have a lower 

cumulative score than a random background window.  The window with the lowest score 

in each promoter region was then used in the analysis. 

 A tool commonly used to filter out background ‘noise’ in TFBS search algorithms 

is phylogenetic footprinting, which operates on the assumption that the biologically 

important features of the genome will be conserved across species.  To incorporate this 

methodology into our analysis, each of the previously described approaches was repeated 

though only allowing putative sites that were found to be evolutionarily conserved across 

yeast species (Table 3.1, shaded boxes; defined by PhastCons average score of 0.5 in the 

7 species alignment for single sites; average PhastCons conservation score of 0.25 in the 

50bp window for the ‘lowest window PSSM score’).   

The results of our analysis show (Table 4.1) that the number of high-affinity sites 

within a promoter is much more predictive of having a site detected positive by ChIP-

chip than either having a single high-affinity (low-scoring) site or having a cluster sites 

(p-value cutoff < 0.005).  With only one exception, all of the factors for which the cutoff 

count value did not function as a significant predictor for ChIP-chip confirmed binding 
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sites were not significant for any of the methods; the lone exception being RTG3 which 

was modeled accurately by the window score approach.  The use of phylogenetic 

footprinting did assist in the predictive ability of the count method in 1 factor, CAD1.  

The most likely reason for the lack of additional significance of the phylogenetic 

footprinting approach, or taking evolutionary conservation into account, is the 

evolutionary distance of the species of yeast being used.  It is estimated that the 

difference between the species may be as much as 300 million years (74); a study of 

TFBSs between mammals of that distance suggests that only 12-22% of the binding sites 

are retained (71).   

 Next, a qualitative assessment of TF binding motifs was compared to the ability 

of the motif counting approaches to model ChIP-chip data (Table 3.2).  The TFs that we 

found for which the method was not able to model the ChIP-chip data included all of the 

relatively longer (10-20bp) binding motifs with very little degeneracy.  Table 3.2 shows 

the binding motifs for the different TFs we used in this study.  The inability of the longer, 

highly constrained motifs to be found as significant predictors may be a product from the 

creation of the motifs in that not enough binding sites were previously identified for truly 

representative PSSMs.  The inability of the presence of other motifs to be a significant 

predictor of the ChIP-chip data may be caused by the requirement of a cofactor to be 

located near the binding site.  In this case, the presence or absence of motifs for both 

cofactors may be a much better predictor. 
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Table 3.2  Binding motif of all yeast transcription factors modeled in this study   
Factors whose name is in red are those we found to be statistically significant predictors of the ChIP-chip 
data using at least one of the motif counting methods (string count, cutoff A count or cutoff B count). 

Transcription 
Factor 

Motif Transcription 
Factor  

Motif 

SUM1 
GCN4  

CAD1 
GLN3  

UGA3 
HAP4  

ZAP1 
HAP5  

BAS1 
LEU3  

ACE2 
MET31  

SFP1 
MET32  

MCM1 
MET4  

STB1 
MOT3  

ROX1 
PHO2  

ADR1  PUT3  

BAS1  RCS1  

CAD1  RPH1  

CBF1  RTG3  

DAL81  SFP1  

DAL82  SIP4  

FHL1  STP1  

GAT1   
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3.2.2 Analysis of Human ChIP-chip Data 
 
To confirm our findings with the yeast data that the count of putative sites is the best 

computational method for modeling ChIP-chip data, a series of methods was also tested 

on human ChIP-chip data (Table 4.3).    In addition to all of the methods tested with the 

yeast ChIP-chip data, we also used 2 different pairwise alignment methods (DBA (75) 

and BlastZ (76); conservation threshold of 65%) as well as Footer, a phylogenetic 

footprinting algorithm optimized for human – mouse sequence comparison (28) (Table 

4.3).  The human dataset had no features that were statistically significant predictors of 

the ChIP-chip data (p-value < 0.001), though the lowest p-values were seen in the PSSM 

cutoff count method for 4 of the TFs, suggesting a similarity to the yeast data.  The 

human – mouse pairwise comparison was chosen because it has previously been shown 

that the use of these two species in identifying TFBSs is very efficient (28, 71).   

 The inability of the human ChIP-chip to be modeled is likely due to the much 

larger size of the promoter region being searched.  The raw data of a promoter-tiling 

array may narrow down the location of the significantly bound region and therefore 

provide a smaller search space to model, resulting in more accurate results.  Unlike the 

yeast ChIP-chip modeling results, there wasn’t any correlation observed between the size 

and degeneracy of the pattern and the p-values recorded for its predictor (data not 

shown).   
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Table 3.3 p-values representing the significance of the given TFBS identification method as a predictor for 

ChIP-chip data in humans for each TF. 
Transcription 

Factor 
Alignment 

Method 
CREB HNF-1 NF-Kb 

(p65) 
HNF6 SRF c-Jun c-Myc OCT.4 

Footer Score  0.652 0.09 0.164 0.104 0.026 0.274 0.986 0.302 
PSSM Cutoff 
Count 1 

 
0.005 0.037 0.046 0.699 0.004 0.552 0.265 0.098 

PSSM Cutoff 
Count 2 

 
0.002 0.004 0.018 0.386 0.009 0.552 0.281 0.112 

PSSM Cutoff 
Count 1 

PhastCons 
0.995 0.996 NA 0.995 0.995 NA NA 0.995 

PSSM Cutoff 
Count 1 

DBA 
0.31 0.076 0.287 0.582 0.015 0.203 0.49 0.168 

PSSM Cutoff 
Count 1 

BlastZ 
0.037 0.5 0.101 0.931 0.172 0.614 0.367 0.374 

PSSM Cutoff 
Count 2 

PhastCons 
NA 0.996 NA 0.994 0.995 NA NA 0.995 

PSSM Cutoff 
Count 2 

DBA 
0.019 0.037 0.131 0.172 0.031 0.203 0.791 0.136 

PSSM Cutoff 
Count 2 

Blastz 
0.061 0.168 0.126 0.939 0.065 0.614 0.527 0.341 

Lowest PSSM 
Score 

 
0.111 0.005 0.047 0.507 0.08 0.025 0.644 0.007 

Lowest PSSM 
Score 

PhastConst 
0.186 0.451 0.992 0.266 0.975 0.308 0.27 0.79 

Lowest PSSM 
Score 

DBA 
0.101 0.086 0.363 0.873 0.089 0.488 0.444 0.151 

Lowest PSSM 
Score 

BlastZ 
0.34 0.122 0.273 0.669 0.455 0.675 0.834 0.652 

Lowest Window 
PSSM Score 

 
0.004 0.373 0.559 0.194 0.963 0.012 0.494 0.132 

Lowest Window 
PSSM Score 

PhastCons 
0.352 0.845 0.669 0.521 0.637 0.253 0.338 0.81 

Lowest Window 
PSSM Score 

DBA 
0.007 0.591 0.544 0.246 0.237 0.006 0.377 0.046 

Lowest Window 
PSSM Score 

BlastZ 
0.021 0.777 0.388 0.967 0.724 0.033 0.91 0.222 

Consensus 
String Count 

 
0.261 0.003 0.996 NA NA 0.119 0.281 0.002 

Consensus 
String Count 

PhastCons 
NA NA 0.997 NA NA NA NA NA 

Consensus 
String Count 

DBA 
0.273 0.011 0.795 NA NA 0.992 0.791 0.992 

Consensus 
String Count 

BlastZ 
0.667 0.254 0.305 NA NA 0.614 0.527 0.993 

Cutoff 1: 1 False Positive per 3000bp 
Cutoff 2: 1 False Positive per 6000bp 
Blue text indicates p-value <= 0.05; not statistical significance 
 Only sites or values within conserved regions were evaluated 
 

3.3 CONCLUSION 
 
This study has demonstrated that the number of instances a TF binding motif is found in a 

genomic region can be very predictive of the region considered bound by the TF 
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according to the ChIP-chip data.  Our finding fits well with the biochemical methodology 

of ChIP-chip, in that a region of DNA that is bound by the factor in multiple locations is 

more likely to be collected and therefore have it’s probe detect a stronger signal.  One 

important fact to keep in mind with our results is that the ChIP-chip data was only 

collected under a certain cellular condition and therefore genes that had binding motifs in 

the promoter and classified as a non-true site may in fact be bound by the factor under 

different conditions or in different cell types.   Overall, it is likely that ChIP-chip will 

show a more significant signal for a region containing multiple binding sites even though 

those sites may exhibit the same amount of function when regulating transcription as a 

promoter containing just a single site  

 

3.4 MATERIALS AND METHODS 
 

3.4.1 ChIP-chip Datasets 
 

Yeast ChIP-chip data was collected from the Lee et al. study (73).  A TF was considered 

bound if the reported p-value for a promoter region was less than 0.001.  Lee and 

colleagues established this cutoff as it incorporated the maximal number of previously 

known interactions while reducing the number of false positives.  Human ChIP-chip data 

was collected from Zhang et al. for CREB (77); Odom et al. for HNF-1 and HNF-6 (78); 

Hong et al. for NF-kB (79, 80); Cooper et al. for SRF (81); Bruce et al. for c-JUN (80, 

82); Kim et al. for c-Myc (80, 83); and Jin et al. for OCT4 (84).  To identify binding a p-

value cutoff of 0.005 was used for factors NF-kB, CREB, HNF-1, HNF-6 and SRF.  The 
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data for c-Myc and c-Jun were only provided as log2 ratios of bound to mock control, so 

the genes with the top 0.5% of log2 ratios were considered bound.   

3.4.2 Transcription Factor Binding Motifs 
 

Yeast transcription factor consensus sequences were collected from the Saccharomyces 

Genome Database (85) and their PSSMs were obtained from Harbison et al. (86).  Human 

consensus sequences and PSSMs were obtained from the Transfac Database (45).  

Threshold cutoffs for the PSSMs were calculated by the generation of 100,000 random 

sequences based upon a 3rd order hidden markov model trained with the intergenic regions 

of the entire human or yeast genome (87).  The PSSM score that allowed only 1 false 

positive site per 3,000bp or 6,000bp was then established and used in the scanning of the 

promoter regions.   

3.4.3 Promoter Sequence Collection 
 

Promoter sequences for human, mouse and yeast as well as the PhastCons multi-alignment 

scores were collected from the UCSC genome browser (49, 50).  Yeast promoter regions 

were defined as the region between the 5’ region of a gene and either the end of the 

nearest upstream gene or 1kb, whichever was smallest.  Gene’s that share a promoter 

region by the 5’ end of one gene being within 2kb of the 5’ end of a gene transcribed on 

the opposite strand were removed for this analysis.  Human and mouse promoter regions 

were defined as the 3kb immediately upstream of the 5’ end of the gene.  For the yeast 

analysis, all known genes were used in the analysis whereas in the humans only those 

genes bound by the factor as well as an equal number of randomly selected non-bound 

genes were used. 



 31

 

3.4.4 Logistic Regression 
 
We performed logistic regression using the R statistical package (88), glm function with 

family = “binomial”.  The independent variable was the value obtained from the 

given TFBS identification method and the ChIP-chip result was used as the binary 

outcome variable (1 = bound, 0 = unbound).  For the Footer method (28) the score from 

the top-scoring site was used as the independent variable.  The p-value for the 

independent variable was then presented in tables 4.1 and 4.3.  Significance for the p-

value was set at 0.05 and then adjusted with Bonferroni correction for multiple testing 

resulting in cutoffs of 0.005 for the yeast analysis and 0.001 for the human analysis.  
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4.1 BACKGROUND 
 
MicroRNAs (miRNAs) are short, ~22nt, single-stranded RNAs that act as regulators of 

genes’ expression. By virtue of base complementarity, they bind to their target gene 

mRNAs and can block translation or accelerate their degradation (6).  miRNAs have 

recently been implicated in a variety of human diseases (34, 36, 89) as well as their role 

discovered in particular cellular pathways (90). Mature miRNAs are generated by a 

cellular process in which the primary-miRNA (pri-miRNA) transcripts are processed by 

the enzyme Drosha after which the preliminary-miRNA (pre-miRNA) stem-loop 

structures are cleaved by the enzyme Dicer whereupon they become associated with a 

protein complex containing Argonaute that allows them to bind to their target (6).   
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 Although miRNA genes play an important role in many biological processes, we 

still know surprisingly little about their transcription regulation.  Understanding the 

miRNA transcription process is essential for determining which factors regulate them and 

subsequently, the specific role they play in signaling cascades.  Accumulated evidence 

indicates that most miRNA genes are transcribed by RNA polymerase II (Pol II) (2, 5), 

although some exceptions have also been reported (3).  While miRNA genes found 

within introns of other genes are thought to be co-transcribed with their host gene and 

therefore share the same promoter region (5), almost nothing is known about the 

promoter region of intergenic miRNA genes.  A first step toward understanding 

intergenic miRNA regulation is to identify their transcription start sites (TSSs).  

Currently, only a small number of intergenic pri-miRNA transcripts have confirmed TSSs 

(2, 10, 91), which is insufficient for studying the promoter sequence features and 

comparing them to those of protein coding genes.  Due to this lack of information, all 

studies attempting to analyze the miRNA core promoters have focused on the area 

immediately upstream of the computational prediction of the pri-miRNA (13, 92, 93).  

 To create the number of miRNA TSSs needed for feature comparison, we 

performed a high-throughput chromatin immunoprecitiation (ChIP)-chip experiment that 

can identify the areas upstream of the pri-miRNAs bound by Pol II.  A model is then 

needed that is capable of distinguishing random sequences from core promoters and able 

to identify which sequence features are the most important for that classification.  

Existing algorithms for modeling Pol II core promoters vary, both methodologically and 

in terms of performance. One of the first approaches developed made use of the 

comparison of transcription factor binding site frequency between true core promoters 
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and random intergenic sequences (94).  Another method for modeling core promoters 

took into account the size and location of CpG islands as well as their distance to known 

TSSs (95).  A variety of other methods have also been developed that take into account 

physical properties of the DNA and analyze them with neural networks (96), relevance 

vector machines (97), and additive logistic regression with boosting (98).   

 In this chapter, we develop a new highly efficient model for Pol II core promoter 

identification based upon SVM literature that when used with the results from the 

analysis of the high-throughput Pol II ChIP-chip data sheds light on how intergenic and 

intronic miRNA genes are transcribed and how the features in miRNA core promoters 

compare to those of protein coding genes.   

 

4.2 RESULTS AND DISCUSSION 
 

4.2.1 Identification of pri-miRNA TSSs From Pol II ChIP-chip Data 
 
To identify the true TSS for pri-miRNAs we performed a Pol II ChIP-chip on A549 lung 

cells, as described in Materials and Methods.  Statistical analysis (99) was used to 

identify 1000bp regions that exhibit high Pol II signals. The window nearest to the 5’ end 

of each of the 531 known pre-miRNAs was recorded as containing the putative TSS, if it 

was closer than 50kb.  The array that was designed for these experiments only included 

up to 50kb upstream of known miRNA genes (see Materials and Methods); this threshold 

is also based on previous studies that showed high correlation of expression between 

miRNA genes located within 50kb of each other (4). This method resulted in 35 

intergenic pre-miRNAs or polycistronic pri-miRNAs having a statistically significant Pol 
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II signal associated with them (Table 4.1).  Regions with significant Pol II signals that 

overlapped the 5’ end of a gene (as identified by the UCSC table browser (49, 50)) were 

excluded from subsequent analysis.  This was necessary because the ChIP-chip data 

cannot distinguish the shared core promoter regions. An example of the distribution of 

the Pol II binding signals is presented for the identification of the pri-miR-10a TSS 

(Figure 4.1) 

The miR-23a~miR-27a~miR24-2 cluster is probably the best-studied human pri-

miRNA transcript.  Lee et al. (2) have shown that its TSS is located 124 nucleotides 

upstream of miR-23a, which our ChIP-chip data confirmed. Our ChIP-chip data also 

confirmed the previously reported pri-miRNA TSSs listed in Fujita and Iba (11) for miR-

21 and miR-10b genes (Table 4.1). The distance between the Pol II peak and the 

beginning of the pre-miRNA varies significantly between genes, from a minimum of zero 

to a maximum of 40 kb.  The average and median values are 10.5 kb and 6.8 kb, 

respectively. 

 The analysis of our Pol II ChIP-chip data also provided the location of TSSs for 

intronic miRNAs, currently thought to be transcribed along with their host gene (5).   The 

nearest upstream Pol II ChIP-chip significant regions for many of the intronic miRNAs 

overlapped the 5’ region of their host gene (Table 4.3) confirming the previous findings 

for miR-146a (12) and the miR-17~miR-18a~miR-19a~miR-20a~miR-19b-1~miR-92a-1 

cluster (10).  Interestingly, our analysis found that some of the intronic miRNA genes 

may be transcribed by their own promoter (Table 4.2).  The distance between the Pol II 

peak and the beginning of the (intronic) pre-miRNA gene varies between 200bp and 41 

kb, but with more peaks observed at longer distances (avg=18 kb; median=19 kb).  As 
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will be described in section 4.2.6, some of these ChIP-chip peaks were found to contain 

core promoter features as identified by our newly developed model for TSS 

identification, described in the next few sections. 

 
 

 

 
Figure 4.1 Pol II ChIP-chip results for miR-10a  

The blue arrow represents the location and transcriptional direction of hsa-miR-10a.  The red dashes 
represent the location and value of the ChIP-chip probes.  The labeled TSS mark is the 500bp region 
identified by our model as the core promoter and transcription start site of hsa-miR-10a. 
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Table 4.1 Identification of promoters of intergenic miRNA genes 

Cells in light green designate the previously verified TSSs.  miRNA: miRNA gene symbol, multiple 
symbols designate cluster of co-expressed miRNAs; Chromosomal location: the chromosomal position and 
orientation of the miRNA gene; ChIP-chip region: the region with a statistically significant peak; CPPP 
model: CpG (CpG+) or non-CpG (CpG-) model used for the TSS prediction; Predicted TSS: TSS predicted 
by our SVM model; Distance: the distance of the predicted TSS from the most 5’ pre-miRNA transcript. 

miRNA Chromosomal location ChIP-chip 
region 

CPPP 
Model 

Predicted TSS 
(CPPP) 

Distance  

miR-200b~miR-200a~miR-429 Chr1: 1092346 (+) [1082033, 
1083782] 

CpG+ 1083333 8763 

miR-34a Chr1: 9134423 (-) [9162283, 
9166532] 

CpG+ 9165233 30560 

miR-101-1 Chr1: 65296779 (-) [65304283, 
65307532] 

CpG+ 65306008 8979 

miR-181a-1~miR-181b-1 Chr1: 197094905 (-) [197125783, 
197127032] 

CpG- NA NA 

miR-202 Chr10: 134911115 (-) [134919994, 
134925743] 

CpG+ 134925294 13929 

miR-210 Chr11: 558198 (-) [559355, 
560354] 

CpG+ 558988 540 

miR-194-2~miR-192 Chr11: 64415487 (-) [64416605, 
64418104] 

CpG- 64416930 1193 

miR-200c~miR-141 Chr12: 6943122 (+) [6940546, 
6942545] 

CpG+ 6941071 1801 

let-7i Chr12: 61283732 (+) [61279796, 
61291045] 

CpG+ 33705771 461 

miR-379~miR411~…~miR-
410~miR-656 

Chr14: 100558155 (+) [100524119, 
100525868] 

CpG- NA NA 

miR-193b Chr16: 14305324 (+) [14302031, 
14310280] 

CpG+ 14304281 793 

miR-138-2 Chr16: 55449930 (+) [55439531, 
55441030] 

CpG- 55439856 9824 

miR-497~miR-195 Chr17: 6862065 (-) [6863309, 
6865058] 

CpG- 6864759 2444 

miR-10a Chr17: 44012308 (-) [44017059, 
44018808] 

CpG+ 44017609 5051 

miR-196a-1 Chr17: 44064920 (-) [44078809, 
44080558] 

CpG+ 44079134 13964 

miR-21 Chr17: 55273408 (+) [55267309, 
55276558] 

CpG- 55271984 1174 

miR-122 Chr18: 54269285 (+) [54235566, 
54236565] 

CpG- 54235891 33144 

miR-23a~miR-27a~miR-24-2 Chr19: 13808473 (-) [13807348, 
13809097] 

CpG- 13808448 0 

miR-181c~miR-181d Chr19: 13846512 (+) [13832848, 
13834847] 

CpG- NA NA 

miR-99b~let-7e~miR125a Chr19: 56887676 (+) [56882098, 
56886347] 

CpG+ 56884421 3005 

miR-216a~miR-217 Chr2: 56069698 (-) [56072783, 
56074282] 

CpG- 56073933 3985 

miR-10b Chr2: 176723276 (+) [176705033, 
176707032] 

CpG+ 176705608 17418 

miR-301b~miR-130b Chr22: 20337269 (+) [20335283, 
20337282] 

CpG+ 20336383 636 

let-7a-3~let-7b Chr22: 44887292 (+) [44879283, 
44883032] 

CpG+ 44881933 5109 

miR-206~miR-133b Chr6: 52117105 (+) [52096878, 
52098877] 

CpG- 52098453 18402 

miR-30a Chr6: 72170045 (-) [72164628, 
72176377] 

CpG- 72174203 3908 

miR-129-1 Chr7: 127635160 (+) [127593752, 
127595501] 

CpG+ 70094852 40058 

miR-183~miR-96~miR-182 Chr7: 129202090 (-) [129206752, 
129207751] 

CpG+ 129207227 4887 
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Table 4.1 (continued) 
miR-29b-1~miR-29a Chr7: 130212838 (-) [130219002, 

130223501] 
CpG- 130223027 9939 

miR-30d~miR-30b Chr8: 135886370 (-) [135913283, 
135915782] 

CpG+ 135913608 26988 

let-7a-1~let-7f-1~let-7d Chr9: 95978059 (+) [95966631, 
95971380] 

CpG+ 95968506 9303 

miR-181a-2~miR-181b-2 Chr9: 126494541 (+) [126459631, 
126464380] 

CpG- 126460831 33460 

miR-222~miR-221 ChrX: 45491474 (-) [45504862, 
45507861] 

CpG- 89506287 14563 

miR-542~miR-450a-2~miR-450a-
1~miR-450b 

ChrX: 133503133 (-) [133502362, 
133506611] 

CpG+ 133506287 2904 

miR-505 ChrX: 138834056 (-) [138842362, 
138844111] 

CpG+ 76342712 8406 

 
 
 
 

Table 4.2 Identification of promoters for intronic miRNA genes 
Cells in light green designate genes whose expression was found to be anti-correlated with their host genes. 
Column names as in Table 1.  Host gene: the gene whose intron the miRNA was found. 

miRNA Host Gene Chromosomal location ChIP-chip 
region 

CPPP 
Model 

Predicted TSS 
(CPPP) 

Distance 

miR-107 PANK1 Chr10: 91342564  (-) 
[91382494, 
91383493] 

CpG- 91382844 40030 

let-7a-2~ miR-100 AK091713 Chr11: 121522511 (-) 
[121521855, 
121523854] 

CpG- NA NA 

miR-190 TLN2 Chr15: 60903208 (+) 
[60860703, 
60861952] 

CpG- 60861428 41530 

miR-99a~ let-7c C21orf34 Chr21: 16833279  (+) 
[16826951, 
16832700] 

CpG- 16827826 5203 

miR-125b-2 C21orf34 Chr21: 16884427 (+) 
[16880451, 
16883950] 

CpG- 16880951 3226 

miR-26a-1 CTDSPL Chr3: 37985898 (+) 
[37961854, 
37963353] 

CpG- 37962529 23119 

miR-196b HOXA9 Chr7: 27175707 (-) 
[27178752, 
27180251] 

CpG+ 27180227 3770 

miR-489~ miR-653 CALCR Chr7: 92951267 (-) 
[92953002, 
92954251] 

CpG- NA NA 

miR-101-2 RCL1 Chr9: 4840296 (+) 
[4827381, 
4828630] 

CpG- 4828281 11765 

miR-491 KIAA1797 Chr9: 20706103 (+) 
[20673131, 
20677880] 

CpG+ 20674256 31597 

miR-204 TRPM3 Chr9: 72614820 (-) 
[72633881, 
72634880] 

CpG- NA NA 

miR-7-1 HNRPK Chr9: 85774592 (-) 
[85774131, 
85775630] 

CpG- 85775081 239 

mir-23b~ miR-27b~ 
miR-24-1 C9orf3 Chr9: 96887310 (+) 

[96846381, 
96860880] 

CpG+ 96850731 36329 

miR-32 C9orf5 Chr9: 1108483999 (-) 
[110866881, 
110868380] 

CpG- 110867881 19232 

miR-448 HTR2C ChrX: 113964272 (+) 
[113955612, 
113956861] 

CpG- NA NA 
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Table 4.3 Intronic miRNAs whose nearest ChIP-chip peak overlaps host gene TSS 

Cells in light green designate genes that have been found to be co-transcribed with their host genes. 
Column names as in Table 2. 

miRNA Host Gene Chromosomal location ChIP-chip region 
miR-30e~miR30c-1 NFYC Chr1: 40992613 (+) [40946783, 40950532] 
miR-186 ZRANB2 Chr1: 71305987 (-) [71316783, 71320532] 
miR-130a AK096335 Chr11: 57165246 (+) [57161605, 57163604] 
miR-148b COPZ1 Chr12 53017266 (+) [53004046, 53006295] 
miR-26a-2 CTDSP2 Chr12: 56504742 (-) [56524546, 56528295] 
miR-15a~miR-16-1 DLEU2 Chr13: 49521338 (-) [49551648, 49555397] 
miR-17~miR-18a~miR-19a~miR-20a~miR-19b-1~miR-
92a-1 C13orf25 v_1 Chr13: 90800859 (+) [90798648, 90800647] 
miR-423 CCDC55 Chr17: 25468222 (+) [25467059, 25470058] 
miR-301a~miR-454 FAM33A Chr17: 54583364 (-) [54583809, 54589308] 
miR-330 EML2 Chr19: 50834185 (-) [50833598, 50834597] 
miR-26b CTDSP1 Chr2: 218975612 (+) [218968033, 218974282] 
miR-103-2 PANK2 Chr20: 3846140 (+) [3816001, 3820000] 
miR-185 C22orf25 Chr22: 18400661 (+) [18387533, 18389782] 
miR-191~miR-425 DALRD3 Chr3: 49033146 (-) [49026104, 49038353] 
miR-15b~miR-16-2 SMC4 Chr3: 161605069 (+) [161598354, 161603353] 
miR-378 PPARGC1B Chr5: 149092580 (+) [149089935, 149091684] 
miR-103-1 PANK3 Chr5: 167920556 (-) [167938685, 167940184] 
miR-335 MEST Chr7: 129923187 (+) [129912502, 129914001] 
miR-31 LOC554202 Chr9: 21502184 (-) [21539381, 21557130] 
miR-421 AK125301 ChrX: 73355021 (-) [73377862, 73379611] 
miR-374b~miR-374a~miR-545 AK057701 ChrX: 73355178 (-) [73421362, 73431611] 
miR-361 CHM ChrX: 85045368 (-) [85188362, 85189861] 
miR-503 MGC16121 ChrX: 133508094 (-) [133506612, 133515611] 
miR-452~miR-224 GABRE ChrX: 150878840 (-) [150889112, 150894611] 
miR-22 MGC14376 Chr17: 1564031 (-) [1563059, 1569558] 
miR-636 SFRS2 Chr17: 72244225 (-) [72244059, 72246308] 
miR-146a DQ658414 Chr5: 159844936 (+) [159826435, 159828934] 

 

4.2.2 Modeling Pol II Core Promoter Features With n-mers and Weight Matrices 
 
In the following, we describe the development of a novel SVM-based method for 

prediction of Pol II TSSs.  This model was used for the identification of the miRNA TSSs 

from the ChIP-chip data and most importantly for comparing the features of the miRNA 

core promoters to those of protein coding gene promoters 

It is known that the genomic regions immediately upstream of the TSS of protein 

coding genes exhibit high levels of sequence conservation (24, 100-102), which is 

probably related to the high concentration of cis-regulatory sites in this region (103).  All 

of the existing algorithms for modeling Pol II core promoters have used this property to 

different extent.  Generally one can model DNA target sites using either n-mer 



 40

frequencies or weight matrices, commonly known as position-specific weight matrices 

(PSSMs) (23).  The first class of methods (also termed enumerating or dictionary-based 

methods; e.g., (104-107)) is better suited for representation of the binding preferences of 

those transcription factors that have a restricted set of DNA targets.  n-mer frequencies 

have been used in the past to model Pol II core promoters either alone (13) or in 

conjunction with some promoter entropy measure (108).  The DNA targets of most 

transcription factors are not highly conserved, which is the reason why PSSM models are 

widely used for representing DNA motifs.  However, there are also problems in using 

PSSMs for Pol II core promoter recognition.  First, the currently known DNA motifs are 

redundant.  As a matter of fact, it is known that structurally similar transcription factors 

recognize similar “core” motifs (24, 37).  Second, only a small percent of all transcription 

factors have known binding preferences; TRANSFAC database (45) currently contains 

601 models for 2,113 known mammalian transcription factors.  Third, even if the binding 

preference of a given transcription factor is known, the task of determining whether it 

binds to a given promoter is not trivial, mainly due to the high false positive prediction 

rate (28, 109).  Regardless, in the past PSSM models have been used for Pol II core 

promoter identification (92). 

The problems of PSSM redundancy and the high number of transcription factors with 

yet unknown binding preferences can be diminished if one uses generalized profiles or 

familial binding profiles (FBPs) (37).  FBPs represent an “average” of the binding 

affinities of transcription factors with similar DNA binding preferences.  They are based 

on the fact that transcription factors of the same structural group usually bind to similar 

sets of sequences.  This not only reduces the PSSM redundancy, but since the currently 
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unknown transcription factors will likely belong to one of the known structural groups, it 

is very likely that their binding preferences will be represented in one of the FBPs. 

Sandelin and Wasserman initially built a set of 11 FBPs using a semi-manual method 

(25).  The zinc finger proteins were excluded from these FBPs due to their high degree of 

target promiscuity, which in turn makes them difficult to cluster correctly.  More 

recently, Mahony et al. (24) used an automatic method to construct 17 FBPs. This set of 

FBPs includes all but the C2H2 the zinc finger (sub)family, though for the purposes of 

this study the same method was applied to the C2H2 factors resulting in 31 additional 

FBPs. 

4.2.3 Evaluating Core Promoter Features Using Support Vector Machines 
 
In order to better understand how various features contribute in the characterization of 

Pol II core promoters we compared them under the support vector machine (SVM) 

framework (110, 111).  The SVM methodology was chosen because it can combine 

multiple types of evidence (features) under the same general framework.  In particular we 

tested both the n-mer frequencies (n=3,4) and matches to a set of generalized DNA 

binding profiles alone or in conjunction with GC content, which seems to be a prominent 

feature in a subset of eukaryotic promoters (112).   A Previous study has shown that 

SVMs can model core promoters with hither sensitivity than other methods (108).  While 

our approach is based upon that of Gangal and Sharma (108), there are a few distinct 

differences including the background training data set, length of the core promoter region 

and the use of the presence of absence of CpG islands (see below). 
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In the course of this study, five SVM models were constructed and compared: (1) 

FBPs only (49 features), (2) n-mers only (n=3,4) (320 features), (3) FBPs+GC content, 

(4) n-mers+GC content, and (5) FBPs+n-mers+GC content.  All models were trained on 

the same set of 3,015 verified core promoters of protein coding genes and 3,015 

randomly chosen intergenic sequences (positive and negative examples, respectively; see 

Materials and Methods).  Performance was measured by a 20X cross-validation in which 

75% of the examples in each dataset were used for training and the remaining 25% for 

testing.  Our results, presented in Figure 4.2, indicate that the n-mer-based models 

perform generally better than FBP-based models, both in terms of sensitivity (percent of 

correctly predicted positive examples) and specificity (percent of true positive examples 

among all predictions).  For example, the “n-mer only” SVM model (n=3, 4) exhibited 

SN=74.3% and SP=86.1% compared to SN=70.8% and SP=82.2% of the “FBP only” 

model.  However, none of these differences is statistically different, so one may choose to 

use FBPs for such type of modeling, especially when the training examples are limited. 

All SVM models above were based on the dot plot kernel function (linear 

discriminator).  Tests with polynomial (3rd order) and radial kernels gave the same or 

slightly worse results (data not shown).  Also, all SVM models were constructed using 

random intergenic regions as background (see Materials and Methods) instead of the 

intronic regions previous studies have used (108).  Therefore, the same evaluation with 

intronic background was performed but found to be slightly worse (data not shown).   

We note that some previous studies have reported better performance in some cases 

of predicting Pol II promoters (13, 108).  We believe this is due to the smaller size of the 

datasets they used and the type of promoters they contain.  For example, Gangal and 
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Sharma (108) reported SN>87% and SP>86% but their dataset consisted of 800 promoter 

sequences all taken from EPD (113) in which about 83% of the promoters contain CpG 

islands.  A very powerful separation hyperplane can be created by using these GC-rich 

promoters as positive set and intronic sequences, generally AT-rich, as negative set; 

however this model is expected to perform poorly on non-CpG island promoters.  In our 

case, only half of the promoters in the training/testing dataset used contain CpG islands.  

When the EPD dataset is used for training/testing in this study, the results were similar 

(intronic background) or slightly better (intergenic background) to those reported in 

Gangal and Sharma (108).  Nevertheless, as will be shown next, partition of the 

promoters to those containing CpG islands and those lacking them improve the results 

substantially. 

 

 
Figure 4.2 Performance of the n-mers and FBPs (alone and in combination) in predicting Pol II core 

promoter regions.  
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4.2.4 The Effect of the Presence or Absence of CpG Islands in the Prediction 

Efficiency of Pol II Core Promoters 

In general, the frequency of CG dinucleotides in vertebrate genomes is lower than 

expected by chance (114).  This is probably due to the frequent conversion of 

methylated-CG into TG (115).  Methylation of genomic regions is a method by which the 

cell can repress transcription activity (116, 117).  Typically, promoters of genes 

containing a large frequency of CG dinucleotides in long stretches (CpG islands) are 

found to be expressed across a variety of cell types thus reducing the likelihood of that 

genomic region being methylated (118).  Another feature of CpG island containing 

promoters is that they are strongly associated with having a TSS that spans a short 

window instead of having 1 specific base in which transcription always initiates (118).  

The functional difference in CpG island containing promoters suggests that they should 

be modeled separately as been seen in the study by Ioshikhes and Zhang (95).  The 

prediction efficiency of the “n-mer only” and “FBP only” SVM models in predicting 

mammalian core promoters in the presence of absence of CpG islands was then tested. 

Focus was placed on these two models because they are simpler (fewer features) and they 

perform the same or better than the other models.   

The training set was then partitioned into CpG containing promoters (CpG+) and 

non-CpG promoters (CpG-) whereupon the two n-mer-based and two FBP-based SVM 

models were calculated. The negative dataset in all cases contained equal number of 

randomly selected sequences from the intergenic parts of the genome (see Materials and 

Methods). The results demonstrate that the prediction efficiency differs significantly 

between the two types of promoters.  In particular, the “n-mer only” model trained on 
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CpG island containing promoters exhibits SN=94.8% (sd=1.1%) and SP=97.6% (sd=1%) 

in the cross-validation tests.  By contrast, the “n-mer only” model trained on non-CpG 

island promoters performs worse on the self-validation (SN=73.4%, sd=2.6% and 

SP=73.2%, sd=2.9%) (Figure 4.3). The “FBP only” model gave similar results (Figure 

4.3).  Also, it was found that both n-mer-based models outperform the corresponding 

FBP-based models (Figure 4.3). Furthermore, the results show that n-mer-based models 

trained on CpG+ promoters tend to predict extremely well the CpG+ promoters 

(SN=94.8%, SP=97.6%), which agrees with previous reports (95). Interestingly, 

prediction of non-CpG promoters is significantly worse, even with a model trained on 

non-CpG promoters (SN=73.4%, SP=73.2%).  This finding likely reflects on the lack of 

strong general features in non-CpG promoters. Still, using the two separately trained 

models to predict the CpG and non-CpG promoters individually yields significantly 

better results than a single model trained on all promoters. 

The program ‘gist-fselect’ from the Gist package (110)  was used to evaluate 

the significance of each of the n-mer features of core promoter regions (t-test metric p-

value was used to determine significance, Fisher score metric was used to rank features) 

in CpG and non-CpG promoters (Table 4.4). As expected, the most significant features 

for the CpG model were CG containing n-mers.  We also note that there is no feature 

overlap between the two sets of promoters in the top 20 features listed in Table 4.4. 
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Figure 4.3  Performance of our SVM models in predicting CpG and non-CpG core promoters 

 

4.2.5 Comparison of Core Promoters for Protein Coding Genes and miRNA with 

SVM Models 

The ChIP-chip data showed that 35 of the intergenic miRNA genes had significant Pol II 

signals nearby.  We used our SVM based model trained on protein coding genes to 

identify the region within the ChIP-chip significant peak that contains strong core 

promoter region features and therefore the likely TSSs of these miRNA genes.  Our 

model used two SVMS trained separately on CpG and non-CpG protein coding 

promoters.  For the training and scoring, we used the dot kernel function with intergenic 

sequences as background; the feature space was comprised of n-mer frequencies (n=3,4).  

For identifying the TSSs of the intergenic miRNA genes with Pol II peaks, the 3kb 

regions surrounding the windows with the most significant Pol II peak were collected and 



 47

the presence or absence of CpG islands was determined using the same method as in 

Ioshikhes and Zhang (95).  The corresponding SVM model was then used across the 

significant ChIP-chip region to identify a 500bp window classified as a core promoter by 

our model.  The model was able to identify a TSS in the upstream region of 32 out of the 

35 intergenic miRNA genes (Table 4.1).  The three intergenic miRNAs for which our 

model was unable to identify a true core promoter region did each contain a 500bp region 

that scored just below the threshold cutoff for identifying a core promoter from a 

background sequence (data not shown). 

The number of Pol II associated intergenic miRNA genes is not large enough to 

retrain the SVM models and calculate significant sequence features.  However, we can 

test whether the most significant features in the promoters of the protein coding genes 

(Table 4.4) are also overrepresented in the miRNA promoters.  Comparison of all n-mer 

frequencies of the CpG promoters of protein coding genes with those of the miRNA 

genes resulted in a statistically significant (Wilcoxon signed-rank test; p-value < 0.05 

after Bonferroni correction) difference in 5 n-mers (‘CCGG’, ‘ATA’, ‘GGG’, ‘CAA’, 

and ‘GGGG’).  However, the only 4-mer in the list of the top 50 most important features 

for the model as identified by ‘gist-fselect’ was ‘CCGG’.  For the non-CpG 

promoters, we found no features with a statistically different frequency in the protein 

coding and miRNA core promoters.  
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Table 4.4 The top 20 most significant n-mers for each of the two models and the Fisher score as well as the 

–log10 of the t-test metric p-value  as determined by the Gist package 
non-CpG CpG 

Feature -log10(p-value) Fisher Score Feature -log10(p-value) Fisher Score 

CCCT 29.7925 0.152704 GCG 4.34E+09 2.90813 

AGGG 26.8574 0.136658 CGG 4.34E+09 2.70749 

GCCC 23.9996 0.12122 CGC 4.34E+09 2.67387 

CCC 23.6638 0.119395 CCG 4.34E+09 2.41605 

TGTA 23.7021 0.119389 TCG 4.34E+09 1.79033 

CCCC 23.6248 0.119181 GCGC 4.34E+09 1.74254 

AAT 23.4104 0.117827 CCGG 4.34E+09 1.61845 

GAAG 22.2979 0.111908 CGGC 4.34E+09 1.6182 

AGC 21.1428 0.105734 GGCG 4.34E+09 1.55504 

TAC 20.8754 0.104254 GCGG 4.34E+09 1.55492 

ATT 19.5344 0.0971108 CGA 4.34E+09 1.54674 

TAAT 19.1561 0.0950535 ACG 4.34E+09 1.48203 

ATTA 19.1021 0.0947959 CGCC 4.34E+09 1.44506 

TACA 19.0021 0.0942557 CGCG 4.34E+09 1.44053 

GTA 18.6868 0.0925992 CGT 4.34E+09 1.422 

AATA 18.6051 0.092075 CCGT 4.34E+09 1.42109 

GGG 18.0089 0.0890836 CGCT 4.34E+09 1.36182 

CTGC 18.0034 0.0890473 GCCG 4.34E+09 1.31601 

CAGC 16.8798 0.0831072 TCCG 4.34E+09 1.30007 

CTG 16.3289 0.0801748 AGCG 4.34E+09 1.26542 

 

4.2.6 Computational Analysis of Potential Promoters of Intronic Genes 
 
Intronic miRNA genes are generally believed to be transcribed by their host genes (5). 

However, the ChIP-chip data indicated that there might be autonomous transcription for 

15 of them (Table 4.2). The ChIP identified regions were scanned with the CpG+ and 

CpG- SVM models and it was found that 11 of the 15 intronic genes contained a 
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significant region, offering additional evidence that these miRNAs may have their own 

internal promoter.  One of the genes that is predict to have its own promoter is miR-32, 

which has been previously shown to have a negative correlation with its host gene, 

C9orf5 (4).  This is an important and interesting finding about the transcriptional 

regulation of miRNAs, although further biochemical validation is required. 

 

4.3 CONCLUSION 
 
The prediction of miRNA TSSs and the understanding of the mechanisms that play a role 

in their transcription is an important step towards deciphering their role in regulatory 

networks.  In this study, high-throughput Pol II ChIP-chip data was collected for first 

time and used to infer the actively transcribed miRNA genes in lung cells. Analysis of 

these data showed that the miRNA TSSs can be located as far as 40 kb from the pre-

miRNA genes, indicating that pri-miRNA transcripts might be much longer than 

originally thought (13, 92, 93, 95) 

In addition, we compared two types of features that are commonly used for the 

identification of Pol II core promoters: n-mer frequencies and PSSM models.  We used 

the SVM framework to compare these types of features.  We found the n-mer frequencies 

to be generally better than the generalized PSSM models, but at the cost of additional 

parameters. Also, in agreement with other studies (95), we found that promoters with 

CpG islands are much easier to predict than those without and that core promoter 

prediction is more efficient when two models are used (CpG+ and CpG- trained models).  

Using the best performing SVM model for core promoter prediction on our ChIP-chip 

data, we found that miRNA Pol II core promoters have the same features as those of the 
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protein coding genes.  Finally, the ChIP-chip data and the SVM predictions together 

indicate that a number of intronic miRNA genes that may be transcribed by their own 

promoter, and that these promoters can be located as far as 40 kb away.  Taken together, 

these observations suggest that the transcription of miRNA genes is more complicated 

than initially thought.  

A tool for large-scale searches for core promoter regions based upon the SVM is 

currently under development.  Further use of the miRNA promoter array in multiple cell 

types should allow for the identification of all pri-miRNA transcription start sites as well 

as verification of those found in this study. 

 

4.4 MATERIALS AND METHODS 
 

4.4.1 Chromatin Immunoprecipitation (ChIP-chip) 
 
Approximately 108  A549 cells (American Type Culture Collection, Manassas, VA) were 

grown in F12K medium (Invitrogen, Carlsbad, CA) with 2 mM L-glutamine and 10% 

fetal bovine serum. Cells were incubated at 37 °C in a humidified chamber supplemented 

with 5% CO2. Once 80% confluent, cells were serum starved overnight. Proteins were 

cross-linked to the DNA using fresh formaldehyde solution (50 mM Hepes-KOH pH 7.5, 

100 mM NaCl, 1 mM EDTA pH 8.0, 0.5 mM EGTA pH 8.0, 11% Formaldehyde) for 10 

min at room temperature. The formaldehyde was quenched with 2.5 M glycine for 5 min 

at room temperature. Cells were washed twice in PBS and harvested using a silicone 

scraper. Cells were centrifuged at 1,350 x g for 5 minutes at 4°C and the pellet washed 

twice with PBS. The pellet was resuspended in 5 ml of lysis buffer 1 (50 mM Hepes-
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KOH pH 7.5, 140 mM NaCl,  1 mM EDTA, 10% glycerol, 0.5% NP-40, 0.25% Triton X-

100) and rocked at 4°C for 10 min. The cells were centrifuged at 1,350 x g for 5 minutes 

at 4°C and the pellet resuspended in 5 ml of lysis buffer 2 (10 mM Tris-HCl, pH 8.0, 200 

mM NaCl, 1 mM EDTA, 0.5 mM EGTA),  rocked at room temperature for 10 min. The 

nuclei were pelleted by centrifuging at 1,350 x g for 5 minutes at 4°C. The pellet was 

resuspended in 5 ml of lysis buffer 3 (10mM Tris-HCl, pH 8.0, 100mM NaCl, 1mM 

EDTA, 0.5mM EGTA, 0.1% Na-deoxycholate, 0.5% N-lauroylsarcosine). The cells were 

sonicated for 7 cycles of 30 seconds ON and 60 seconds OFF at a power 7 using a sonic 

dismembrator Model 100 (Fisher Scientific, Waltham, MA). The cells were centrifuged 

at 20,000 x g for 10 minutes at 4°C and 50μl of the supernatant was set aside as the whole 

cell extract (WCE). The rest of the supernatant was incubated overnight at 4°C with 100 

μl of Dynal Protein G magnetic beads that had been pre-incubated with either 10 μg RNA 

polymerase II antibody (Abcam, Cambridge, MA) or 10 μg E2F-4 antibody (Santa Cruz 

Biotechnology, Santa Cruz, CA). The beads were washed 7 times in RIPA buffer (50 mM 

Hepes-KOH pH 7.6, 500 mM LiCl, 1 mM EDTA pH 8.0, 1% NP-40, 0.7% Na-

deoxycholate) and once in Tris-EDTA containing 50 mM NaCl. Elution was done in 

elution buffer (50 mM Tris-HCl pH 8.0, 10 mM EDTA pH 8.0, 1% SDS) for 15 min at 

65°C. Reversal of crosslinks of the immunoprecipitate (IP) and the WCE was done at 

65°C overnight. Cellular RNA was digested with 0.2 mg/ml RNaseA (Invitrogen) at 

37°C for 2 h followed by protein digestion with 0.2 mg/ml proteinase K (Invitrogen) at 

55°C for 30min. The DNA was purified by phenol:chloroform:isoamyl alcohol extraction 

and ethanol precipitation.  Purified DNA was blunted using T4 DNA polymerase (New 

England Biolabs, Ipswich, MA) and ligated to 2 μM linkers using T4 DNA ligase (New 
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England Biolabs). The IP and the WCE was amplified in two stages of PCR and purified 

by phenol:chloroform:isoamyl alcohol extraction and ethanol precipitation). 2 μg each of 

IP and WCE was labeled with Cy5-dUTP and Cy3-dUTP (Perkin Elmer, Waltham, MA) 

respectively. Labeling was carried out by random-primed Klenow-based extension using 

the CGH Labeling kit (Invitrogen). The samples were cleaned up using Invitrogen’s CGH 

columns included in the kit. 5μg each of IP and WCE were combined with cot-1 DNA 

and the 10x blocking agent and 2x hybridization buffer supplied in the Agilent Oligo 

aCGH/ChIP-on-chip Hybridization Kit (Agilent, Santa Clara, CA). Hybridization was 

carried out in Agilent’s SureHyb chambers at 65°C for 40 h in the DNA Microarray 

Hybridization Oven (Agilent). The slides were washed using Oligo aCGH/ChIP-on-chip 

wash buffer 1 and 2 (Agilent) and scanned in the DNA microarray scanner (Agilent). The 

scanned images were processed using Agilent’s Feature Extraction software version 9.5.3 

4.4.2 miRNA Location Array Design 
 
The miRNA location array was custom-made by Agilent with AMADID (Agilent 

Microarray Design Identifier) 014119. The array is available on the 44K design. The 

probes are 60mers and Tm balanced.  The probe design tiles 50kb (~100 bp spacing) or 

100 kb (~200 bp spacing) regions surrounding each miRNA.  

4.4.3 Analysis of ChIP-chip Data 
 
Median normalization of the log2 values of the ratio of signal to mock was performed 

across the three-ChIP-chip arrays followed by a mean centralization to 0.  Regions of Pol 

II binding were identified by the ChIPOTle sliding window method (99); a window size 

of 1kb was used with a step size of 250bp.  The window was reported as significant if the 
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p-value was below 0.05 after adjustment by the conservative Bonferroni correction 

method for multiple testing; overlapping statistically significant windows were combined.   

4.4.4 Gene Coordinate and Sequence Collection 
 
Pol II core promoters were extracted from two databases: Eukaryotic Promoter Database 

(113) and DBTSS (119).  Between the two databases there were 3,015 unique human 

TSSs (1,744 from Eukaryotic Promoter Database and 1,271 from DBTSS as originally 

collected by Zhao et al (13)).  The core promoter regions were partitioned into 1,445 that 

contained CpG islands and 1,570 that did not according to the method and threshold used 

in Zhao et al (13).  For the training and testing of the various SVM models the area [-450, 

+50] surrounding the TSS was used as the positive dataset.  An equal number of 500bp 

genomic sequences, randomly selected from the intergenic regions of all chromosomes 

were used as the negative dataset.  Special care was given so that the randomly selected 

regions were not located within 3kb from the 5’ end of any annotated gene.   

We collected all genomic coordinates for the mRNA TSSs, mRNA introns and 

pre-miRNAs from the UCSC table browser (49, 50).  Intragenic miRNAs were identified 

as those found within an intron, exon or UTR of a mRNA and transcribed in the same 

orientation.  All other miRNAs were labeled as intergenic.   
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5.1 BACKGROUND 
 

MicroRNA genes (miRNAs) are short non-coding RNAs that function as post-

transcriptional gene regulators (6).  Recent studies have implicated these RNAs in a 

variety of human diseases (34, 36, 89) leaving researchers with the question as to which 

specific cellular pathways miRNAs could be involved.  Previous chapters in this 

dissertation have begun to identify the promoter regions where cis-regulatory elements 

may be able to bind and regulate miRNA expression.  Identification of the specific 

transcription factors that regulate a given miRNA will provide a strong clue as to which 

cellular pathways a given miRNA may be a component. 

 To date, only a few biochemical studies that have been able to identify which 

transcription factors are regulating specific miRNAs (10, 12, 91, 120-122), but any study 
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looking at large scale identification of networks have relied on purely computational 

predictions of the transcription start sites and therefore an incomplete understanding of 

where exactly the promoter regions for these miRNAs may be located (90, 123, 124).  

This is the first study to be able to use biochemically and computationally verified 

promoter regions to identify putative regulatory networks involving miRNAs. 

 The type of network that will be the focus of this study is called the feed-forward 

loop.  The functional properties of this type of network are that a transcription factor is 

responsible for the up-regulation of a given gene as well as repression of all miRNAs that 

targets that gene.  An example of this network has been shown in O’Donnell et al (120) 

in which the TF c-Myc regulates miR-17-5p and miR-20a which both target E2F, a gene 

also regulated at the same time by c-Myc resulting in cell cycle progression. 

 The cellular pathway that will be the focus of this study involves stimulation of 

lung epithelial cells by transforming growth factor beta (TGFβ).   The TGFβ pathway has 

been studied in human diseases such as renal disease and idiopathic pulmonary fibrosis 

(125, 126).  The TGFβ pathway is typically characterized by activation of the SMAD 

family of TFs, which in cooperation with each other or other factors activate or repress 

hundreds of genes (127, 128).      

 The purpose of this chapter is to identify putative feed-forward loops involved in 

the TGFβ signaling pathway.  We will accomplish this task by searching miRNA 

promoters for binding sites of factors known to play a role in the TGFβ, including those 

promoters verified in Chapter 3 of this dissertation by the RNA Polymerase II chromatin 

immunoprecipitation data.  We will then search the promoter regions of all predicted 

targets of those miRNA genes for the same set of transcription factors, hopefully 



 56

identifying protein coding genes that are targets of both a miRNA gene and a 

transcription factor that regulates that targeting miRNA gene.   

  

5.2 RESULTS AND DISCUSSION 
 

5.2.1 Identification of miRNAs that may play a role in TGFβ signaling 
 
The ability of miRNA genes to regulate coding genes at a translation level makes it 

difficult to verify the accuracy of miRNA target prediction methods because the majority 

of high-throughput gene expression data available is for transcripts levels and not protein 

levels.  miRNA target prediction algorithms currently identify hundreds of genes that are 

as targets for each miRNA and identify many genes as being targeted by multiple 

miRNAs, making it difficult to assemble putative regulatory networks (7-9).   

 To identify which miRNAs may play a role in TGFβ signaling we stimulated 

A549 epithelial lung cancer cells with TGFβ and then used a gene expression microarray 

to determine the change in gene expression prior to and 4 hours post-stimulation.  The 

function of the feed-forward loop requires that in order for a gene to be expressed it needs 

to both be activated by a TF as well as have its post-transcriptional regulatory miRNA 

down regulated.  To identify the miRNA genes that may play a role in the TGFβ pathway 

the top 10% of genes that showed the largest increase in expression levels post TGFβ 

stimulation were inputted into the TARGETSCAN algorithm (40) and the most 

overrepresented miRNA genes (see Materials and Methods) that target those up regulated 

protein coding genes were identified (Table 5.1).    
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 From that analysis we identified seventeen miRNA families to be significantly 

over-represented (p-value < 0.01) in the top 10% of genes that showed the highest fold 

change 4 hours post TGFβ stimulation as compared to all protein coding genes.  Of those 

17 miRNA families, 11 were found to have at least 1 member expressed in A549 cells 

prior to TGFβ stimulation, suggesting that if their target genes are to be expressed they 

may need to be down regulated.  All of the 11 families were found to be expressed in 

A549s showed a decrease in expression 2 hours post TGFβ stimulation (see Materials 

and Methods) according to an miRNA expression microarray.  Interestingly, the majority 

of the miRNAs whose targets are up regulated and were expressed prior to stimulation 

show a decrease in expression level after stimulation reaffirming the target prediction 

method.   

 
Table 5.1  miRNAs likely to target coding genes upregulated post TGFβ  stimulation  

p-value corresponds to how likely that miRNA family was in being found in the top 10% of upregulated 
genes post TGFβ stimulation as compared to all genes.  Expression in A549 cell line is determined by 
miRNA microarray at baseline.  Change in expression shows the direction that each miRNA family 
member’a expression changed post stimulation.  

miRNA Family p-value 
(overrepresentation 

in upregulated genes) 

Expressed in 
A549 Cell Line 

Change In Expression Post TGFβ 
Stimulation 

Up-
regulated 

No 
Change 

Down-
regulated 

hsa-let-7a/b/c/d/e/f/g 0.0090 YES (all)  b/c a/d/e/f/g 
hsa-miR-124 0.0078 NO    
hsa-miR-506 0.0023 NO    
hsa-miR-30b/c/d/a-5p/e-5p 0.0008 YES (d)   Yes 
hsa-miR-381 0.0001 NO    
hsa-miR-17-5p 0.0004 YES   Yes 
hsa-miR-519a/b/c/d 0.0003 NO    
hsa-miR-20a/b 0.0001 YES (all)   a/b 
hsa-miR-106a/b 0.0001 YES (all)   a/b 
hsa-miR-27a/b 0.0013 YES (all)   a/b 
hsa-miR-607 0.0016 NO    
hsa-miR-29a/b/c 0.0019 YES (a/b)   a/b 
hsa-miR-181a/b/c/d 0.0017 YES (b/d)  c/d a/b 
hsa-miR-23a/b 0.0015 YES (all)   a/b 
hsa-miR-19a/b 0.0093 YES (all)   a/b 
hsa-miR-496 0.0038 NO    
hsa-miR-301 0.0005 YES   Yes 
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5.2.2 Assembling Putative Feed-Forward Loops Involving miRNAs 
 
While the SMAD family of transcription factors is the most often mentioned TFs when 

discussing TGFβ signaling, other factors have been shown to play a role such as c-JUN/c-

FOS (also known as AP-1) as well as SP1, p53 and NF-kB.  To identify potential feed-

forward loops, the 3kb upstream region of each upregulated gene as well as intergenic 

miRNAs were analyzed with the FOOTER algorithm for putative binding sites for these 

6 factors.  If a miRNA transcription start site had been identified in Chapter 4 of this 

dissertation, the 3kb upstream of that location was analyzed with FOOTER as well.  

Previous studies have demonstrated that TFBS can regulate miRNAs from either being 

upstream of the intergenic pre-miRNA or of the pri-miRNA transcription start site (91, 

121). Promoter regions of intronic miRNAs were identified as the 3kb upstream of their 

host gene.  Analysis of the promoter regions for the 23 miRNAs that show a decrease in 

expression post TGFβ stimulation as well as all of their targets identified a variety of 

putative feed-forward loops used by the cell (Table 5.2). 
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Table 5.2  Number of genes in possible feed-forward loops for the given miRNA gne and transcription 

factor 
miRNA Transcription Factors Number of Genes Predicted Targets of 

Both the TFs and miRNA Family 
Upregulated Post TGFβ stimulation 

hsa-let-7a/d/e/f/g SMAD3/4 6 
Sp1 16 
p53 0 
NF-kB 4 

hsa-miR-30d SMAD3/4 8 
Sp1 20 
p53 1 

hsa-miR-17-5p SMAD3/4 5 
AP-1 10 
NF-kB 3 
p53 0 

hsa-miR-20a/b SMAD3/4 5 
AP-1 9 
NF-kB 1 
p53 0 

hsa-miR-106a/b SMAD3/4 4 
AP-1 9 
NF-kB 3 
p53 1 
Sp1 13 

hsa-miR-27a/b SMAD3/4 6 
NF-kB 9 

hsa-miR-29a/b/c NF-kB 4 
Sp1 21 
p53 2 

hsa-miR-181a/b SMAD3/SMAD4 8 
Sp1 26 
p53 1 

hsa-miR-23a/b SMAD3 4 
NF-kB 3 

hsa-miR-19a/b SMAD3/4 3 
AP-1 9 
NF-kB 5 
p53 0 

hsa-miR-301 SMAD3/4 2 
AP-1 7 
NF-kB 4 

 
 

5.3 CONCLUSION 
 
Use of a combination of biochemical experiments and in silico prediction methods allows 

for a first step toward the understanding of the complex regulatory networks involving 

miRNAs during cell signaling pathways.  While the networks we identified in this study 
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are reliant upon the transcription factor binding site prediction algorithm as well as the 

miRNA target prediction algorithm it still provides the best idea of which miRNAs may 

be involved in feed-forward loops post TGFβ stimulation.  The list of putative networks 

should be further explored by experimental study to confirm the findings in this study. 

 
 
 

5.4 MATERIALS AND METHODS 
 

5.4.1 Identification of over-represented miRNA target genes 
 
Gene expression data of A549 cells was collected from Ranganathan et al. (129).  

Duplicate experiments were performed by their group in which transcript levels were 

collected 4 hours post TGFβ stimulation and compared to a non-stimulated control. The 

top 10% of genes, as averaged between both duplicate experiments, that showed up-

regulation post TGFβ stimulation were used to identify miRNA target sites based upon 

‘conserved site’ results from the TARGETSCAN algorithm (40).  Of these up-regulated 

genes, 426 were identified as targets of 433 different miRNAs.   

 To identify which of the miRNAs were over-represented in the set of up regulated 

genes a method was set up in which random sets of genes were chosen from the 

expression array until 426 were found to be targets of miRNAs.  The number of instances 

that a given miRNA was found in that set was counted and recorded to create a 

distribution as to the probability of finding the identified number of instances in the up-

regulated genes by chance.  This procedure was repeated 10,000 times for each miRNA.  

A cutoff of 0.1% was used to determine significance of miRNA over-representation.   
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5.4.2 Cell Culture 
 
A549 cells (CCL-185, American Type Culture Collection, Manassas, VA) were grown in 

F12K medium (Invitrogen, Carlsbad, CA) with 2 mM L-glutamine and 10% fetal bovine 

serum. Cells were incubated at 37 °C in a humidified chamber supplemented with 5% 

CO2. Once 80% confluent, cells were serum starved overnight and stimulated with 10 

ng/ml TGFβ (R&D, Minneapolis, MN) 

5.4.3 RNA Isolation 
 
Total RNA was isolated using the miRNeasy Mini kit (Qiagen, Valencia, CA) according 

to the manufacturer’s instructions. The quantity of the RNA was determined by optical 

density, measured at 260nm by Nanodrop spectrophotometer and its quality was 

measured using Agilent Bioanalyzer 2100. 

5.4.4 miRNA Expression Array  
 
miRNA profiling was carried out using the Agilent Human miRNA Microarray. These 

microarrays have an 8 x 15K design with 470 miRNAs based on Release 9.1 of Sanger 

miRBASE. The manufacturer’s instructions were followed in the labeling and 

hybridization of the RNA. Briefly, 100 ng of total RNA was dephosphorylated using calf 

intestine alkaline phosphatase (GE Healthcare, Piscataway, NJ), denatured with DMSO, 

and labeled with pCp-Cy3 using T4 RNA ligase (New England Biolabs, Ipswich, MA) at 

16°C for 2h. The labeled RNA was purified using Micro Bio-spin 6 columns and 

hybridized onto the Agilent miRNA microarrays at 55°C for 20h. The arrays were 

washed with Gene Expression Wash Buffers 1 and 2 (Agilent) and scanned using the 
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Agilent Microarray Scanner. The scanned images were processed by Agilent’s Feature 

Extraction software version 9.5.3. 

5.4.5 miRNA Expression Array Analysis 
 
miRNAs were identified as expressed if all probes for each of the miRNAs had a value 

greater than 90th percentile of the negative controls on each of the arrays.  The median 

value of the negative controls was used to normalize the data across the arrays; this value 

was used because of the small number of genes being expressed and the inability to 

assume that the majority of those genes are not changing expression post stimulation.  

miRNAs were considered to have a change in expression if all of the probes for a specific 

miRNA showed a change of expression in the same direction.  No statistical significance 

can be derived from the miRNA expression array analysis because of the single replicate 

experiment. 

5.4.6 Identification of Transcription Factor Binding Sites 
 
Genomic coordinates of all miRNAs whose targets were identified to be over-represented 

in the set of up-regulated genes were obtained from the UCSC Genome Browser (49, 50).  

The 3kb upstream sequence of the intergenic human miRNAs as well as the 3kb upstream 

of the transcription start site identified in chapter 3, when applicable, were collected 

along with the as well as the 3kb upstream of the host gene for all intronic miRNAs.  The 

aligned mouse sequence of each of the human 3kb regions was also collected as 

identified by the UCSC genome browser.  The host gene promoter sequence was used for 

intronic miRNAs because previous reports have shown that the miRNA and host gene are 

co-transcribed and share the same promoter region(4).   Genomic coordinates and the 3kb 
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upstream sequence for all human and mouse genes identified as a target of a significant 

miRNA family were collected from the UCSC genome browser.  SMAD3, SMAD4, p53, 

Sp1, AP1 and NF-kB binding site prediction was carried out with the FOOTER algorithm 

using default parameters (28). 
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6.1 BACKGROUND 
 
Transforming growth factor beta (TGFβ) has been identified to induce alveolar epithelial 

cells to undergo epithelial mesenchymal transition (EMT) (130-132). EMT is the 

phenomenon in which polarized epithelial cells are converted to motile mesenchymal 

cells and occurs during embryogenesis and tumor invasion.  EMT has also been described 

to occur in idiopathic pulmonary fibrosis (IPF) during which injured alveolar epithelial 

cells migrate and proliferate to form myofibroblasts in the fibroblast foci (130, 132). 
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Morphologically, the cells acquire an elongated phenotype and are characterized by loss 

of the epithelial cell marker E-cadherin and expression of mesenchymal cell markers 

such as vimentin, N-cadherin and alpha smooth muscle actin (133).  The TGFβ signaling 

cascade is initiated by its binding to TGFβ-RI and TGFβ-RII resulting in phosphorylation 

of the effectors SMAD2 and SMAD3. These molecules form a complex with SMAD4, 

which is translocated to the nucleus whereupon they modulate gene transcription.  

TGFβ mediates EMT by induction of HMGA2 (131), a chromatin-associated 

protein present during embryogenesis and carcinogenesis.  HMGA2 lacks intrinsic 

transcriptional activity but modulates transcription by altering chromatin structure and 

facilitating assembly of transcription factors (134).  HMGA2 regulates snail, slug, twist 

and Id2, the key players in EMT (131). 

Recent studies have identified miRNAs as key components in many complex 

human diseases including Fragile X syndrome (89), B cell lymphoma (34) and chronic 

heart failure (36). Considering that the lung in IPF is characterized by profound changes 

in the phenotype of epithelial cells, as well as drastic changes in gene expression (135, 

136), this study hypothesizes that miRNAs will be differentially expressed during EMT. 

miRNAs are short, ~22nt, RNAs and act as post-transcriptinal gene regulators that 

function by binding to specific sequences in the 3’ untranslated region of the target 

mRNAs.  Once bound, miRNAs are capable of blocking translation or causing the rapid 

degradation of the target transcript (6).  Each miRNA is predicted to target a large 

number of genes and many genes are predicted to be the target of multiple miRNAs 

(137).  It is the focus of this study to identify miRNA genes that are involved in the 

SMAD signaling pathway and therefore potentially play an important role in the 
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induction of EMT.  The previous chapter of this dissertation identified putative feed-

forward loops involving the TGFβ signaling pathway.  One of the loops we identified 

involved the HMGA2 gene, it is this loop involving the SMAD transcription factors, the 

let-7d miRNA gene, and HMGA2 that will be further explored with biochemical 

verification. 

 

6.2 RESULTS AND DISCUSSION 
 

6.2.1 Identification of miRNA genes Regulated by SMAD Transcription Factors 
 
Previous chapters of this dissertation have demonstrated that many miRNAs are likely 

transcribed by RNA polymerase II (Chapters 2 and 4), share a similar sequence 

conservation structure in the immediate upstream region as protein coding genes (Chapter 

2), and have similar sequence features to protein coding genes in their core promoter 

regions (Chapter 4).  These observations suggest that miRNAs have similar 

transcriptional regulatory mechanisms as other RNA polymerase II transcribed genes.  

The previous chapter of this dissertation identified putative feed-forward loops involving 

the SMAD family of transcription factors.  One of our identified loops involved HMGA2, 

a gene known to play a regulatory role in EMT.  The putative binding site in the upstream 

region of hsa-let-7d was further investigated after qRT-PCR analysis in A549 cells 

revealed that the let-7d miRNA did have a change in expression post TGFβ stimulation 

(Figure 6.1), confirming the results of the miRNA expression microarray (see Chapter 5). 
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Figure 6.1  miRNA gene let-7d potentially regulated by SMAD transcription factors 

(A) Putative SMAD3 binding sites identified by the FOOTER algorithm upstream of hsa-let-7d.  HH: 
human sequence, MM: mouse sequence.  (B) A549 cells were treated with 10 ng/ml recombinant TGFβ 
and let-7d expression determined at 0h, 2h and 6h post-stimulation. The results represent an average 
expression of triplicate experiments. 
 

6.2.2 SMAD3 Binds to the Let-7d Promoter 
 
We used EMSA to verify the computational finding of SMAD3 binding at the let-7d 

promoter (Figure 6.2A).  Incubation of target DNA with either recombinant SMAD3 

protein or nuclear extract of A549 cells revealed a distinct band representing the binding 

of SMAD3 to the let-7d promoter sequence.  The intensity of these bands diminished in 

the presence of increasing concentrations of competitor DNA.  We also used a supershift 

assay to ascertain the specificity of the SMAD3 binding site; demonstrated by incubating 

the target DNA and nuclear extract in the presence of antibodies to SMAD3 and 

peroxiredoxin 6. The supershift band representing the DNA-protein-antibody complex 

was visible with SMAD3 antibody but not with the control peroxiredoxin 6 antibody 

(Figure 6.2B).     

We then used chromatin immunoprecipitation (ChIP) to demonstrate the presence 

of SMAD3 on the let-7d promoter in vivo (Figure 6.2C).  Immunoprecipitation with anti-

SMAD3 antibody following TGFβ stimulation yielded a distinct band by gene-specific 

PCR demonstrating the association of SMAD3 with the let-7d promoter. In contrast, 
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immunoprecipitation with an irrelevant antibody resulted in the absence of this band 

confirming the specificity of the interaction. 

 
Figure 6.2  Verification of SMAD binding to the let-7d promoter region 

(A) Electromobility shift assay and (B) supershift assays of recombinant SMAD3 protein and nuclear 
extracts.  (C) SMAD3 ChIP assay revealed in vivo association with let-7d in A549 lung cells. 
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6.2.3 Inhibition of Let-7d Results in EMT 
 
Thuault et al. showed that in mouse mammary epithelial cells TGFβ mediates EMT by 

induction of HMGA2 (131). A similar result is demonstrated in a human lung epithelial 

lung cell line, A549, (Figure 6.3A) where a 2-fold increase in HMGA2 is observed at 2h 

and remains elevated at 6h post-stimulation (p value<0.005) while its post-transcriptional 

regulator, let-7d, is down-regulated (Figure 6.1B).  

We transfected A549 cells with a let-7d inhibitor for 24 and 48 hours to 

demonstrate the involvement of let-7d in EMT.  Let-7d inhibition led to a 3-fold increase 

in HMGA2 at 24h that remained elevated at 48 hrs (data not shown).  qRT-PCR of the 

mesenchymal markers N-cadherin, vimentin and alpha smooth muscle actin revealed an 

increase of 5-fold (p<0.05) , 8-fold (p<0.05) , and 6-fold (p< 0.05) respectively (Figure 

6.3B). Immunofluorescence was performed to confirm the results at the protein level. 

A549 cells transfected with anti-let-7d undergo EMT as evidenced by positive staining to 

N-cadherin, vimentin and alpha smooth muscle actin 48h post-transfection. This staining 

was absent in mock transfected cells (Figure 6.3C).  Our findings demonstrate a new 

component of the TGFβ signaling cascade that results in the induction of EMT.  We have 

shown in this study that for the cell to up regulate expression of HMGA2 it also must 

reduce the amount of let-7d (Figure 6.4). 
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Figure 6.3  Cellular response to changes in let-7d expression 

(A) HMGA2 mRNA levels determined by qRT-PCR in A549 cells at 0h, 2h and 6h post-stimulation with 
10ng/ml recombinant TGFβ. The results represent an average expression of triplicate experiments. (B) 
HMGA2 mRNA levels determined by qRT-PCR in A549 cells at 24h and 48h post-transfection with 50 nM 
of let-7d inhibitor.  (C) Immunofluorescence imaging of A549 cells transfected with 50 nM of let-7d 
inhibitor. The green fluorescent antibody was tagged to cytokeratin, an epithelial marker. The red 
fluorescent antibody was tagged to the mesenchymal markers. Nuclei were counterstained with DAPI. 
While red staining is observed in cells transfected with let-7d inhibitor (right panel), there is no staining in 
cells transfected with a control oligonucleotide (left panel) 
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6.3 CONCLUSION 
 
With recent studies identifying important roles for miRNAs in complex human diseases 

(34, 36, 89) it has been the focus of this study to determine putative roles for miRNAs in 

EMT (131). EMT has previously been shown to be induced by the TGFβ signaling 

pathway in which the SMAD family of transcription factors is activated by 

phosphorylation where upon they enter the nucleus to regulate transcription of their target 

genes.  One specific gene the SMAD factors have been shown to activate is HMGA2, a 

known key regulator of EMT.  We have demonstrated in this study that not only do the 

SMAD factors up-regulate HMGA2 upon TGFβ stimulation, but they also repress its 

post-transcriptional regulator, the miRNA let-7d. Hence, our data indicates that SMAD 

proteins induce the expression of HMGA2 by a feed-forward mechanism. This is the first 

study to demonstrate the direct influence of a growth factor on the transcriptional 

regulation of miRNAs. 

Importance of the let-7d branch of the TGFβ/SMAD/HMGA2 pathway in EMT 

was demonstrated by our study in the A549 lung epithelial cell line by change in let-7d 

and HMGA2 expression upon TGFβ stimulation that resulted in up-regulation of 

mesenchymal proteins.  Inhibition of let-7d alone was sufficient to cause EMT in A549 

cells.  

A previous study has identified the role of the miR-200 family in the direct 

regulation of two transcription factors that regulate E-cadherin, an epithelial cell marker 

(138).  While the current study does not directly overlap the putative pathway that they 
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have identified, there is no doubt that there may be multiple signaling cascades likely to 

be at work in a complex cellular transition such as EMT.  

While this study has demonstrated on a cellular level the importance of let-7d in 

induction of EMT, further research with the use of animal models is required for 

certainty. The advancement in understanding of this TGFβ pathway that may play an 

important role in the complex and chronic disease IPF may better the chances for a new 

therapeutic target.  

 

 
Figure 6.4  Cartoon depiction of the let-7d pathway involved in EMT. 
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6.4 MATERIALS AND METHODS 

6.4.1 miRNA Promoter Analysis 
 
Genomic coordinates of all miRNAs identified to be differentially expressed between IPF 

and control lungs as well as the coordinates of the murine orthologues were obtained 

from the UCSC Genome Browser (49, 50).  The 1kb upstream sequence of the intergenic 

human and mouse miRNAs were collected as well as the 1kb upstream of the host gene 

for all intronic miRNAs.  The host gene promoter sequence was used for intronic 

miRNAs because previous reports have shown that the miRNA and host gene are co-

transcribed and share the same promoter region(4).   SMAD3 and SMAD4 binding site 

prediction was carried out with the FOOTER algorithm using default parameters (28). 

6.4.2 Cell culture 
 
A549 cells (CCL-185, American Type Culture Collection, Manassas, VA) were grown in 

F12K medium (Invitrogen, Carlsbad, CA) with 2 mM L-glutamine and 10% fetal bovine 

serum. Cells were incubated at 37 °C in a humidified chamber supplemented with 5% 

CO2. Once 80% confluent, cells were serum starved overnight and stimulated with 10 

ng/ml TGFβ (R&D, Minneapolis, MN). 

6.4.3 Chromatin Immunoprecipitation (ChIP) 
 
The ChIP protocol (139) was a performed according to the published protocol from the 

Young laboratory (73). A549 cells were grown to 5 × 107–1 × 108 cells per analysis 

condition. Cells were either untreated (control) or stimulated with 2 ng/mL TGFβ for 30 

minutes. Chromatin cross-linking was performed by adding 1/10 volume of freshly 

prepared 11% formaldehyde solution for 15 minutes at room temperature. The cross-
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linking reaction was then quenched by adding 1/20 volume of 2.5M glycine. Cells were 

rinsed twice with PBS, collected with a silicon scraper, flash frozen in liquid nitrogen, 

and stored at −80°C until use. Upon thawing, cells were resuspended in a lysis buffer and 

sonicated at 4°C to solubilize cellular components and shear crosslinked chromatin. The 

cell lysate was incubated overnight at 4°C with 100 μl of Dynal Protein G magnetic 

beads that had been preincubated with 10 μg of either anti-flag (mock IP) or anti-SMAD3 

antibodies (Millipore, Billerica, MA). Protein G magnetic beads were washed five times 

with RIPA buffer and one time with TE buffer containing 50 mM NaCl. Cross-linked 

promoter fragment/transcription factor complexes were eluted from the beads by heating 

at 65°C with vortexing at 2 minute intervals for 15 minutes. Crosslinking was reversed by 

incubation at 65°C overnight. Recovered promoter fragments were treated with RNaseA, 

proteinase K digestion, and purified by phenol:chloroform:isoamyl alcohol 

extraction/ethanol precipitation. Gene-specific PCR was performed on a portion of the 

purified recovered nucleic acid (25 cycles) to verify the presence of the upstream 

sequence of pre-hsa-let-7d.  The primers used for gene-specific PCR are: let-7d forward: 

5' - CAC TTA AAC CCA GGA GGC AGA GGT T - 3' and let-7d reverse: 5' - ACC 

ACG TAT TAC TGG AGT CGC TGA - 3'. 

6.4.4 Electromobility Shift Assay (EMSA) 
 
Cultured A549 lung alveolar epithelial carcinoma cells at 60-70% confluence were 

treated with 2 ng/mL recombinant human TGFβ1 (R&D Systems) for 60 minutes. Nuclear 

proteins were isolated using a standard rapid micropreparation technique described 

previously (140). The supernatant was reserved and snap frozen in liquid nitrogen as the 
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nuclear protein fraction.  Nuclear extracts and recombinant full length SMAD3 protein 

(Santa Cruz Biotechnology, Santa Cruz, CA) were incubated with 5’-end Cyanine-5 

labeled probe and/or non-labeled competitor oligonucleotide for 20 minutes at room 

temperature in a binding buffer consisting of 20% glycerol, 5 mM MgCl2, 2.5 mM 

EDTA, 25 mM DTT, 200 mM NaCl, 50 mM Tris HCl pH 7.6, and 0.25 mg/mL poly(dI-

dC). The complementary oligonucleotides (5' - GATAATTAAATGTTAAAAGTCAGC 

- 3', 5' - GCTGACTTTTAACATTTAATTATC - 3') were synthesized by Integrated 

DNA Technologies (Coralville, IA), and consisted of a sequence upstream of the 

predicted SMAD3/let7d binding site (GGCTGAGTA). Additionally, a supershift assay 

was performed by incubating nuclear extract with 0.1 μl rabbit monoclonal antibody 

[EP568Y] to SMAD3 (Abcam, Cambridge, MA) or 1.0 μl mouse monoclonal [4A3] to 

peroxiredoxin 6 as a control  (Abcam) prior to incubating with the target oligonucleotide. 

The protein/DNA complexes were run on a 6% native polyacrylamide gel and visualized 

on a Typhoon imaging and documentation system using Cyanine-5 dye excitation and 

fluorescence settings. 

6.4.5 RNA Isolation 
 
Total RNA from A549 cells was isolated using the miRNeasy Mini kit (Qiagen, 

Valencia, CA) according to the manufacturer’s instructions. The quantity of the RNA was 

determined by optical density, measured at 260nm by Nanodrop spectrophotometer and 

its quality was measured using Agilent Bioanalyzer 2100.  

6.4.6 Quantitative RT-PCR 
 



 76

TaqMan MicroRNA assays (ABI, Foster City, CA) were used to determine the relative 

expression levels of hsa-let-7d, miR-30c, miR-30d and miR-30e-5p. For RT reactions, 50 

ng of total RNA was used in each 15 µl reaction. The conditions for the RT reaction 

were: 16 °C for 30 min; 42 °C for 30 min; 85 °C for 5 min; and then held on 4 °C. The 

cDNA was diluted 1:14 and 1.33 µl of the diluted cDNA was used with the TaqMan 

primers in the PCR reaction. The conditions for the PCR were: 95 °C for 10 min followed 

by 40 cycles of 95 °C for 15 s and 60 °C for 1 min in the ABI 7300 real-time PCR 

system. The results were analyzed by the ΔΔCt method using RNU43 control RNA to 

normalize the results. Fold change was calculated taking 0h as the baseline.  TaqMan 

gene expression assays (ABI) were used to determine the relative expression levels of 

HMGA2, N-cadherin, vimentin and alpha smooth muscle actin. 500 ng of RNA was 

reverse transcribed using the SuperScript First-Strand Synthesis System for RT-PCR 

(Invitrogen) in a total reaction volume of 20 µl, the cDNA diluted 1:5 and 3 µl of this 

cDNA was used in a total volume of 31 µl for the PCR. PCR conditions were as follows: 

12 min at 95°C, followed by 40 cycles with 15 s at 95°C and 1 min at 60°C in the ABI 

7300 real-time PCR system. The results were analyzed by the ΔΔCt method and GUSB 

was used for normalization. Fold change was calculated taking 0h as the baseline. 

6.4.7 Transfection 
 
A549 cells were plated in 6-well plates at 50% confluence in F12K medium containing 

10% fetal bovine serum. After the cells were adherent, the medium was changed to Opti-

MEM I reduced serum medium (Invitrogen). Transfection of hsa-let-7d inhibitor and the 

negative control (Ambion, Austin, TX) was carried out at 50 nM using Lipofectamine 
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2000 (Invitrogen) according to the manufacturer’s instructions.  RNA was isolated 24h 

and 48h post-transfection. 

6.4.8 Immunofluorescence 
 
A549 cells were plated on cover slips. Cells were starved for 24 hours by the removal of 

serum and transfected with 50 nM anti-let7d for 48 hours. Cover slips were removed, 

washed with PBS three times for 5 minutes each and then fixed in 1% paraformaldehyde 

(Sigma) for 40 minutes. Permeabilization of cells was carried out by using 0.1% Triton X 

in PBS for 15 minutes, air-dried and then dehydrated with three washes in PBS each for 

five minutes followed by three washes each for five minutes with 0.3% BSA and 5% goat 

serum in PBS. Cover slips were blocked with 2% BSA in PBS for 60 minutes, and 

incubated with anti cytokeratin, anti vimentin, anti N-Cadherin, or anti alpha-smooth 

muscle actin (Abcam Inc., Cambridge, MA) in 0.5% BSA in PBS for 60 minutes, 

followed by three washes with 0.5% BSA in PBS (5 minutes each), and incubated with 

rabbit anti mouse conjugated to Alexia 488 (Invitrogen, Carlsbad, CA) for one hour. 

After staining, cover slips were washed with 0.1% Triton in PBS for 2 times 5 minutes 

each followed by three washes with PBS 5 minutes each. Coverslips were inverted onto 

slides and mounted in Vectashield anti-fade medium that contained DAPI for nuclei 

staining (Vector Laboratories, Burlingame, CA) to prevent photobleaching. Slides were 

examined using a Leica TCS-SP2 laser scanning confocal microscope equipped with 

appropriate lasers for simultaneous imaging of up to four fluorophores.  Digital data was 

archived to compact disk or DVD and prepared for publication using Adobe Photoshop 

software (Adobe Systems Inc., MountainView, CA). 
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7.0 CONCLUDING REMARKS 
 

7.1 MOTIVATION 
 
The advancement in the knowledge of miRNA function and their role in human diseases 

have created a large need for the understanding of how the transcription of these small, 

non-coding RNAs are regulated.  Previous studies have demonstrated that miRNAs are 

transcribed by RNA polymerase II (2), suggesting that they will have promoter regions 

similar to those found regulating protein coding genes.  This allows for a similar set of 

biochemical and computational tools to be applied in the study of miRNAs promoters.  

The first step in identifying the regulators of miRNAs is to identify their transcription 

start site, which will then provide for the location of their core promoter and a possible 

location for the proximal promoter and enhancer regions.  The promoter regions can then 

be analyzed with tools for identifying transcription factor binding sites, providing 

potential cellular networks in which miRNAs may participate.   

 

7.2 SUMMARY OF MAJOR FINDINGS 
 
The studies described in this dissertation have helped advance the understanding of the 

transcriptional regulation of miRNAs.  The study began in Chapter 2 in which we were 

able to demonstrate that the upstream region of intergenic miRNA genes share the same 

evolutionary conservation features as protein coding genes, which are transcribed by 

RNA Polymerase II.  This lead us to use an RNA Polymerase II ChIP-chip to identify the 

true transcription start site and therefore core promoter region of 35 intergenic miRNA 
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genes or polycistronic gene clusters.  It is the first study to date to use a high-throughput 

biochemical experiment to identify miRNA transcription start sites.  Analysis of miRNA 

core promoter regions in Chapter 4 with a support vector machine model demonstrated 

that they share the same features as the core promoters of protein coding genes.  That 

same analysis also provided us with evidence to suggest that some intronic miRNA genes 

may be transcribed by their own, unique promoter region.   

 The similarity in core promoters between miRNA and protein coding genes 

provided us incentive in Chapter 5 to search for transcription factor biniding sites 

resulting in the identification of putative feed-forward loops that may be involved in the 

TGFβ signaling pathway.  One of the putative loops identified contained the gene 

HMGA2, which is a known key player in epithelial mesenchymal transition, a cellular 

phenotype known to occur in response to the TGFβ signaling pathway.  In Chapter 6 we 

further investigated this feed-forward loop involving HMGA2, the miRNA let-7d and the 

SMAD family of transcription factors.  We were able to demonstrate that the repression 

of let-7d was required in order for lung to express HMGA2 and allow the epithelial cells 

to undergo mesenchymal transition.  This study is the first to demonstrate a direct link 

between a growth factor and the transcriptional regulation of a miRNA gene. 

7.3 FUTURE CONSIDERATIONS 
 
While the studies in this dissertation have provided a good first step into the 

understanding of the transcriptional regulation of miRNAs and the regulatory networks in 

which they participate, there is still much left to be discovered.  The high throughput 

RNA polymerase II ChIP-chip should be repeated on many different cell types and under 
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a variety of conditions in an attempt to identify transcription start sites for all human 

miRNAs.  Those same arrays can also be useful for performing ChIP-chip with a variety 

of different transcription factors to accumulate a better understanding of just which 

factors may be the main regulators of miRNAs.  The next important step in the 

identification of regulatory networks involving miRNAs is a high throughput method to 

locate all of the mRNA targets of miRNAs.  To date, only a handful of these targets have 

been experimentally verified.  

 

7.4 PUBLIC HEALTH SIGNIFICANCE 
 
The identification of a growth factor directly regulating the transcription of a miRNA 

gene has big implications for public health.  This finding demonstrates that miRNA 

expression should be studied in human diseases just as extensively as protein coding 

genes, if not more extensively because of their ability to post-transcriptionally regulate 

the expression of large numbers of other genes.  The importance of understanding how 

these genes are regulated will likely have a large impact in the health sciences, especially 

as researchers continue to search for regulatory networks in which therapies or treatments 

can be developed for human diseases.   
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