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ABSTRACT

NILPOTENT CONJUGACY CLASSES OF REDUCTIVE P -ADIC LIE

ALGEBRAS AND DEFINABILITY IN PAS’S LANGUAGE

Jyotsna Mainkar Diwadkar, PhD

University of Pittsburgh, 2006

We will study the following question: Are nilpotent conjugacy classes of reductive Lie alge-

bras over p-adic fields definable by a formula in Pas’s language. We answer in the affirmative

in three cases: special orthogonal Lie algebras so(n) for n odd, special linear Lie algebra sl(3)

and the exceptional Lie algebra g2 over p-adic fields.

The nilpotent conjugacy classes in these three cases have been parameterized by Wald-

spurger (so(n)) and S. DeBacker (sl(3), g2). For sl(3) and g2 we are required to extend Pas’s

language by a finite number of symbols.
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1.0 INTRODUCTION

1.1 CONTRIBUTIONS

In this thesis I study the question of definability of nilpotent conjugacy classes in reductive

p-adic Lie algebras. The idea of ‘definability’ is dependent on the language of logic in which

the objects are being studied. For p-adic fields, Pas’s language [see Section 2.2] is a good

choice. For the purpose of studying nilpotent conjugacy classes and other representation

theoretic objects; I have created a dictionary of formulae in this language for many p-adic

objects. However, it is a first order language with no notion of sets. We are so accustomed

to a higher order language that we have taken many ideas like taking quotients, letting

quantifiers range over subsets of a structure for granted. I try to find mathematically correct

alternative formulations of these ideas in a way that will allow us to define some of the

commonly occurring objects in p-adic representation theory.

1.2 HISTORICAL BACKGROUND: MOTIVIC REPRESENTATION

THEORY

In a lecture given at Orsay in 1995, M. Kontsevich introduced the concept of motivic inte-

gration. Since then it has become a tool of immense importance for mathematicians working

in algebraic geometry, representation theory and harmonic analysis over p-adic fields. The

theory of motivic integration has been developed and extended by Jan Denef and François

Loeser [12] and presented as arithmetic motivic integration. Their work strengthens the be-

lief that “All natural p-adic integrals are motivic.”
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A construction of Denef and Loeser [12] attaches a virtual Chow motive to every formula

in Pas’s language. These virtual Chow motives are thus independent of the p-adic field. We

give a brief introduction to Pas’s language in the next chapter.

Originally, this theory was designed for varieties defined over algebraically closed fields.

The arithmetic motivic integration developed by Denef and Loeser [12] deals with varieties

over various fields and may be viewed as geometrization of ordinary p-adic integration. The

domain of integration here is restricted to definable sets as described below. In this context,

definability means field independence. Our hope is that, if the objects appearing in this kind

of integration are definable then we could use a computer and a suitable algorithm to do

calculations regardless of the specific value of p.

This thesis is a small part of an effort initiated by T. C. Hales [18] to relate various

objects arising in representation theory of p-adic groups to geometry. It is conjectured that

many basic objects in representation theory should be motivic in nature. If the conjecture

is true, it will enable us to do computations without relying on the specific value of ‘p’

[17, 18]. In his paper, Hales [18] achieves the goal for p-adic orbital integrals by showing

that under general conditions p-adic orbital integrals of definable functions are represented

by virtual Chow motives. In her thesis, J. Gordon [14] proves that character values of a class

of depth-zero representations of symplectic groups (Sp(2n)) and special orthogonal groups

(SO(2n + 1)) over p-adic fields can be represented as virtual Chow motives. Showing that

the concepts of representation theory of p-adic groups are definable is the first step towards

that goal.

‘Definable’ means describable by a formula in a formal language L. Formulae in lan-

guage L are strings of symbols and variables of L, logical connectives and quantifiers. More

precisely, the class of formulae in L contains the following:

• all atomic formulae of the language

• for every formula φ, it should also contain ¬φ

• if ψ is in the language and y is a variable symbol, then ∀y ψ and ∃yψ

2



• if ψ and φ are two formulas in the collection, then it also contains φ ∧ ψ and φ ∨ ψ

We use a first order language in this thesis. In first-order languages, the formulae have

to be finite in length and only individual elements of the language can be quantified. For

example, in the first-order language of groups, we cannot have quantifiers ranging over normal

subgroups of a group G, since a normal subgroup is not an element of G. While definability

is a restrictive condition, it supplies rich and interesting classes of sets and functions. Hence,

definability is highly desirable.

We choose a language of logic due to Pas [27] as will be seen in Section 2.2. Our choice

of language stems from the desire to express objects of p-adic representation theory in a field

independent way. We call a mathematical object definable if it can be described (defined)

by a formula in Pas’s language. As we describe in the next chapter, this language makes no

reference to the specific value of ‘p’ [27]. The objects found in our proofs will be formulae in

this language of (somewhat new entities called) virtual sets. While the language is somewhat

limited, it is small enough to admit a quantifier elimination process [27].

For a finite dimensional semisimple Lie algebra g, its adjoint group G [defined in Section

3.2] acts on it via conjugation giving us adjoint orbits. In order to understand the structure

of reductive Lie groups and algebras, it is often necessary to study the conjugacy classes in

the group and adjoint orbits in the Lie algebra.

Over an algebraically closed field (K), we have the Jordan Decomposition theorem which

allows us to separate adjoint orbits into two extremes: semisimple and nilpotent. Moreover,

the number of nilpotent conjugacy classes is finite. The fact that nilpotent orbits are finite

in number means that the study of nilpotent orbits is in some sense the discrete part of the

study of adjoint orbits. In characteristic zero, these orbits have been classified by Dynkin

and Kostant [8]. The work of Bala and Carter gives a unified treatment of nilpotent orbits

in characteristic zero or in large characteristic, and the Bala-Carter theorem has made a

significant contribution to representation theory [?].

Nilpotent orbital integrals are important for the representation theory and harmonic

analysis of the group G(F), where F is not necessarily closed. An irreducible, smooth repre-

3



sentation of G(F) on a complex vector space determines an invariant distribution on g(F).

In characteristic zero, Harish-Chandra’s local character expansion says that this distribution

has an asymptotic expansion in a neighborhood of 0 in g(K) which coincides with a linear

combination of Fourier transforms of nilpotent orbital integrals. The coefficients in this ex-

pansion are a subject of considerable interest in the representation theory of G(F). In the

study of p-adic groups, they appear prominently in the Shalika Germ expansion [32, 35].

Along with these orbits, if other components of the expansion are shown to be definable,

then it would imply that Shalika germs exist independent of primes.

Over an arbitrary p-adic field (F) the Bala-Carter parameterization of nilpotent orbits is

not sufficient to give all the orbits. The orbits of classical Lie groups have been extensively

studied by Waldspurger. He gives a satisfactory parameterization in those cases [39]. Fur-

thermore, a result of Moy and Prasad establishes a strong connection between the nilpotent

conjugacy classes of G(F) and those of some reductive groups over the corresponding (finite)

residue field f. DeBacker [9, 11] uses their result and a geometric object called an affine

building [32] to count the number of classes. An affine building is a geometric structure

that carries important information about G(F). To various parts of this object are attached

other reductive groups over the corresponding finite residue field. Moy and Prasad’s result

and DeBacker’s use of affine buildings enable us to count the number of orbits over F. This

number depends on the characteristic of the residue field.

In this thesis, we show that nilpotent conjugacy classes of so(n) (n odd), sl(3) and g2 are

indeed definable in (an extension of) Pas’s language. Our treatment of so(n) relies on Wald-

spurger’s parameterization [39]. He gives combinatorial data as parameters for the nilpotent

conjugacy classes of so(n) for odd n but excludes the case where n is even.

Roadmap In Section 2.1 we give a brief introduction to p-adic fields. Although brief,

it is sufficient to justify the choice of Pas’s language. Section 2.2 is devoted to a detailed

description of this language. Sections 3.1 and 3.2 cover some background material provide a

context for the objects discussed in this thesis. Section 3.2 is a summary of various results

on nilpotent conjugacy classes in semisimple Lie algebras over algebraically closed fields.
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Section 3.5.2 contains almost all the formulae (in Pas’s language) developed in course of this

thesis and required for the results. In chapter 4 we prove definability of nilpotent conjugacy

classes in special orthogonal Lie algebras over a p-adic field. In Chapter 5 we present ‘affine

apartments’ which exploit the affine structure of reductive groups. We also present some

well-known results which have motivated this research. Chapter 5 will hopefully be helpful

in understanding Chapters 6 and 7.

With the knowledge of parahorics discussed in chapter 5 we show in chapters 6 and 7

respectively that the nilpotent conjugacy classes of sl(3) and g2 are definable in an extension

of Pas’s language called Lext [see Section 2.2.3].

Notation: By Z, Q and R we mean the integers, rational numbers and real numbers

respectively. Unless stated otherwise K will denote an algebraically closed field. More

importantly, F is always a p-adic field. The (finite) residue field of F is denoted by f. Finally,

g is a finite dimensional Lie algebra (most of the time semisimple) and G is its adjoint group.

5



2.0 PRELIMINARIES

2.1 P-ADIC FIELDS

The underlying field of all the objects appearing in this thesis is a p-adic field. Such fields

were introduced by number theorists to facilitate calculations involving congruences mod-

ulo pn. Just as the reals are obtained by completing rational numbers with respect to an

Archimedean metric, the p-adic numbers are obtained by completing the rationals with re-

spect to a non-Archimedean metric. More precisely:

Definition 1. Let Q denote the field of rational numbers and p a prime integer. Then the

p-adic norm | |p is defined as follows:

Given x ∈ Q×, ∃ unique r,m, n ∈ Z such that (m,n) = 1 and p 6 |m, p 6 |n and x = pr m
n
.

Then |x|p = p−r. Set |0|p = 0.

Definition 2. The completion of Q with respect to the p-adic norm | |p is denoted by Qp.

Qp is called a p-adic field.

Note. Any finite extension of Qp is also called a p-adic field.

Example 3. In Q5 we have the 5-adic norm. Consider the following expansions

37 = 2× 50 + +2× 51 + 1× 52

1945 = 0× 50 + 4× 51 + 2× 52 + 0× 53 + 3× 54

Observe in the examples that the coefficients in the power series expansion were 0, 1,

2, 3 or 4. As seen in the next paragraph, this is not a coincidence. By virtue of the norm,

we get a valuation on p-adic numbers. The valuation v of a p-adic number is the exponent

r appearing in Definition 1. We say v(x) = r. Furthermore, the norm (or the valuation)

allows us to define the following structures:

6



1. o = {a ∈ Qp | |a|p ≤ 1} is called the ring of integers or the valuation ring.

2. p = {a ∈ Qp | |a|p < 1} is a maximal ideal in o called the valuation ideal.

3. The residue class field of Qp is the field o/p = Fp. The residue field f of any p-adic field

is a finite extension of Fp.

4. The valuation group is the set of all exponents of p appearing in definition 1.

Qp is a non-archimedian, topologically non-discrete, totally disconnected, locally compact

field with a finite residue class field. These fields are also called local fields of characteristic

zero. They have a rich structure. Of particular interest is the fact that we can define

pn = {a ∈ Qp | |a|p ≤ p−n}

and use it to get an exhaustive filtration of Qp by compact open subgroups

{0} ( . . . ( p3 ( p2 ( p ( p0 = o ( p−1 ( . . . ( Qp.

When we talk about p-adic fields, we have 3 structures in mind: the p-adic numbers, the

finite residue field and the valuation group. This dictates our choice of language, in the sense

of logic.

We now define valuation v′ on an extension of Qp.

Definition 4. Let F be a p-adic field, i.e an extension of Qp. Let a′ ∈ F. Then the

normalized discrete valuation of a′, called v′ is given by

v′(a′) = 1
f
v(NF/Qp(a

′)).

Here f denotes the degree of extension of the residue field of F over Fp and ’N ’ denotes the

norm of the extension F/Qp.

Definition 5. Let F be a p-adic field. Then, $ is called a uniformiser of the valuation on

F if the valuation of $ is 1.

2.2 PAS’S LANGUAGE

Since we desire a field-independent description, we find it convenient to use Pas’s language

which allows us to exploit the structure of a p-adic field without referring to its individual

7



features such as uniformiser of the valuation [27].

Pas’s language is a first order language with three sorts of variables; variables for the el-

ements of the valued field (F), variables for the elements of the residue field (f) and variables

for elements of the value group (Γ). It contains symbols for standard field operations in the

valued field and in the residue field (i.e. addition and multiplication) along with symbols for

the usual operation (only addition) in the value group (Γ). In addition, both field sorts have

a symbol for equality (=). The value sort has symbols ≤ , ≥ and ≡n for congruence mod-

ulo each non-zero n ∈ N. With Z as a structure for Γ, these symbols have the usual meaning.

Let LF be the language of fields for the field sort (F-sort) and Lf the language of fields

for the residue field sort (f-sort). For the value group sort, let LΓ be the language of ordered

Abelian groups with an element ∞ on top given by

LΓ∞ = {+, 0, 1, ∞, ≤}

Then the following is Pas’s language L:

L = (LF, Lf, LΓ, val, ac)

Note. With Z as a structure for the value group, Qp is a structure for the language L. [See

Section 2.1]

Moreover, in the valued field sort, there are symbols 0 and 1 respectively for the additive

and multiplicative identities. Using these, we formally add symbols denoting other integers

to this language.

Example 6. Let P (t) be a formula in Pas’s language, with t as a free variable. P (−1) is

the abbreviation for

∃x P (x) ∧ (x + 1 = 0)

The language contains symbols for existential (∃) and universal (∀) quantifiers for each

sort. In particular, we have six symbols;

∀F ∀f ∀Γ ∃F ∃f ∃Γ

8



Whether the quantifiers range over the field sort, the residue field sort or the value group

sort will generally be clear from the context. If there is a possibility of confusion, we will

attach the respective sort symbol to the quantifier as shown above. Once the sort of variable

symbols used is clear, we will use them in a way that indicates that meaning.

Pas’s language also has standard symbols for logical disjunction (∨), conjunction (∧)and

negation (¬). In addition, we use the following standard logical abbreviations for implication

(⇒), bi-conditional (⇔), and exclusive or (∨) respectively:

• φ ⇒ ψ for ¬φ ∨ ψ

• φ ⇔ ψ for (φ ⇒ ψ) ∧ (ψ ⇒ φ)

• φ Y ψ for ¬(φ ⇔ ψ)

Pas’s language includes a function symbol ‘val ’ for the valuation map from the valued

field to the value group and another function symbol for an angular component ‘ac’ from

the valued field to the residue field. We will explain the role of these symbols in the next

section after we introduce structures for this language.

2.2.1 Pas’s Structures

We make a distinction between the variable symbols used and their interpretation. Here we

discuss structures (in the model theoretic sense) for Pas’s language L [27]. We will state

explicitly the conditions on these structures.

2.2.1.1 Conditions on Pas’s Structures

Definition 7. An SPL is a structure R for Pas’s language that consists of the following:

1. A structure for the field sort (F, +F, −F, ·F, 0F, 1F), where F is the domain for the field

sort. F is assumed to be a valued field of characteristic 0.

2. A structure for the residue field sort (f, +f, −f, ·f, 0f, 1f). f is assumed to be a finite field.

3. For the value group sort: (Z, +, 0, 1, ∞, ≤)

4. val, valuation function on F. [See Section 2.2.1.2]

9



5. An angular component map ac on F. [See section 2.2.1.2]

An example of an SPL is a p-adic field.

Remark 8. We mention in passing that in his paper [27] Pas places an additional condition

that F be Henselian. It is required for the quantifier elimination proved in that paper. This

condition is not used in this paper.

Let R be the domain of the structure. A structure with domain R attaches a set A(R)

to every virtual set A [defined in Section 2.2.2] and an interpretation θR to every formula θ.

Since the three sorts of this language are fields, finite fields and Abelian groups respec-

tively; the language may be equipped with field and group axioms. Thus we have the theories

of fields and Abelian groups at our disposal. In the following sections we prove some the-

orems where we will need to make use of the theory of fields. We use the notation (even

though R is a structure and not a model)

R |= φ

to indicate that a formula, φ, in Pas’s language holds in SPL R.

2.2.1.2 Function Symbols: ac and val Here we explain the role played by the function

symbols ac and val. Let F be a valued field with valuation

val : F→ Z ∪ {∞}

We write

o = {x ∈ F | val(x) ≥ 0} and p = {x ∈ F | val(x) > 0}

for the valuation ring and valuation (maximal) ideal respectively. Denote the residue field

o/p by F̄. The set of units of o is denoted by u, i.e.

u = {x ∈ o |val(x) = 0}

The valuation map allows passage from the valued field sort to the valuation group sort.

10



Definition 9. An angular component map modulo p on F is a map

ac : F → f x 7→ ac(x)

such that

1. ac(0) = 0

2. the restriction of ac to F∗ is a multiplicative morphism from F∗ to f∗

3. the restriction of ac to u coincides with the canonical projection from o to f.

The angular component map allows passage from the valued field sort to the residue field

sort. To illustrate how the functions val and ac work, consider the following example:

Example 10. Let F be the field Q5. Every non-zero element in Q5 can be written in the

form

∑∞
i=N ai5

i

where N is an integer, ai ∈ {0, 1, 2, 3, 4} and aN 6= 0.

Then val(
∑∞

i=N ai5
i) = N and ac(

∑∞
i=N ai5

i) = aN . So, from Example 6 we have;

val(37) = 0 and ac(37) = 2

This language is highly restrictive with no notion of sets. More specifically, the set

membership predicate ∈ is absent. We introduce virtual sets into the language by means of

various logical formulae. The notion of virtual sets is similar to what Quine [28] refers to as

‘virtual classes ’.1

1Quine states,”...classes are freed of any deceptive hint of tangibility, there is no reason to distinguish
them from properties. It matters little whether we read x ∈ y as ’x is a member of the class y’ or ’x has the
property y’.”[28, pg. 120, 2nd paragraph]
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2.2.2 Virtual Sets

A virtual set is a construct of the form

{ x : φ(x) }

where φ is a formula in Pas’s language with free variables x1, x2, . . . , xn and x is a multi-

variable symbol

x = (x1, x2, . . . , xn)

In this case, we say that the variable symbol x has length n.

We write

y ∈ { x : φ(x) } for φ(y) (2.1)

Thus a serviceable ‘∈’ of (ostensible) class membership can be introduced as a purely

notational adjunct [29]. The whole combination y ∈ {x : φ(x)} reduces to φ(y) so there

remains no trace of the existence of a class {x : φ(x)}. We could rephrase y ∈ {x : φ(x)}
by (∃x)

(
(x = y) ∧ φ(x)

)
but we prefer to view ∈ and class abstraction as fragments of the

entire combination of (1).

When we write x ∈ V , we mean V (x). (This is an extension of the notation φ(x).) It is

also to be understood that the length of x is the same as the number of free variables used

in the formula defining V .

The ‘virtual set theory’ shares some aspects of set theory. We note that the usual set

operations union, intersection and a notion of subset are present. If A and B are virtual sets

defined by formulae φ(x) and ψ(x) respectively, then:

• A ∪ B is a virtual set defined by {x : φ(x) ∨ ψ(x)}
• A ∩ B is a virtual set defined by {x : φ(x) ∧ ψ(x)}
• We say that A is a subset of B and denote it by A ⊂ B, where A ⊂ B is an abbreviation

of the formula ∀x(φ(x) ⇒ ψ(x)). Since x is a multi-variable symbol, ∀x is a quantified

n-tuple.

• x 6∈ A means ¬φ(x).
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Note. Although a set can be a member of another set, a virtual set cannot be a member of

another virtual set. Thus A ∈ B is not permissible.

Here are two examples of virtual sets:

• The ring of integers o of any valued field is a virtual set defined thus:

{x : val(x) ≥ 0}

• The maximal ideal p in o is a virtual set defined thus:

{x : val(x) > 0}

We conclude this section with one more definition.

Definition 11. Let Ψ(x, y) be a formula with free variables x = (x1, x2, . . . , xn) and

y = (y1, y2, . . . , ym). We define a virtual set with parameters y by

u ∈ {x : Ψ(x, y)} for Ψ(u, y)

where u = (u1, u2, . . . , un). For an example, see Formula 51 in Section 3.5.2.

One should note that the quantifiers are not allowed to range over virtual sets. Hence,

there is no such expression as ∀V where V is a virtual set.

Remark 12. In Section 3.5.2 we prove some facts in linear algebra using virtual sets defined

by formulae in Pas’s language. Many of the proofs are classical and at times, instead of

giving the entire proof, we say,“ ... the rest of the proof is classical.” However, caution

must be exercised in making such statements. It may not always be possible to ‘lift’ proofs

from classical mathematics and fit them into the Pas’s language. Virtual set theory is more

restrictive than set theory. Concepts and objects of set theory may not always have virtual

set analogues.

Remark 13. In the most recent version of motivic integration, Cluckers and Loeser avoid

some of the aforementioned difficulties by using a category theoretic construct called definable

subassignments [7]. Their setting admits a good dimension theory and makes a general

integration version possible.
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2.2.3 Extension of Pas’s Language

In chapter 6 we will see that the parameterization of nilpotent orbits is closely linked with

the number of cubic residues in the residue field f. This number is clearly dependent on p,

the characteristic of f, in particular on its congruence class modulo 3. We get around this

difficulty by extending Pas’s language to include a finite number of variable symbols of the

residue field sort. More precisely, we consider

Lext = L ∪ {λ1, λ2, . . . , λn}

where λi are constants of the residue field sort.

Let R be a structure for Lext, then the constants are to be interpreted so that they satisfy

the following conditions:

1. 6 ∃f γ, γ 6= 0 such that λi = γ3λj. This ensures that the λi represent distinct cubic classes.

2. ∀ δ ∃f γ such that (δ = γ3λ1) ∨ (δ = γ3λ2) ∨ . . . ∨ (δ = γ3λn). This ensures that we

consider all cubic classes.

Thus we have two different extensions Lext, where n is depends on whether q ≡ 1(mod 3)

or q ≡ 2(mod 3). A structure for L is a p-adic field with q ≡ 2(mod 3). A structure for

Lext = L ∪ {λ1, λ2, λ3} is a p-adic field with q ≡ 1(mod 3), where q is the cardinality of the

residue field.
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3.0 LIE ALGEBRAS AND NILPOTENT CONJUGACY CLASSES

This chapter is a brief review of the theory of Lie Algebras. Section 3.2 provides a discussion

and some results about parameterization of nilpotent conjugacy classes.

3.1 LIE ALGEBRAS

The purpose of this section is to merely provide basic definitions and theorems that will be

used in the subsequent chapters. For a detailed treatment of Lie algebras, see [22]. Let K

be a field.

Definition 14. A Lie Algebra is a vector space L over K, together with an operation

B : L× L → L that satisfies the following axioms:

1. B is bilinear.

2. B(x, x) = 0 for all x ∈ L

3. B(x, (y, z)) + B(y, (z, x)) + B(z, (x, y)) = 0

The binary operation ’B’ is called a bracket operation.

Remark 15. In section 3.5.2 we write a formula for a finite dimensional Lie algebra in Pas’s

language.

We will assume that L is finite dimensional throughout this thesis.

Example 16. The Euclidean space (R3,×) with the standard cross product of vectors as a

bracket operation is a Lie Algebra over R.
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Our interest is only in matrix algebras and we give three examples of Lie algebras that

are of importance for this thesis.

Example 17. The set of all n × n matrices with entries in field K, denoted by gl(n,K)

is a Lie algebra where the bracket operation is given by the commutator, i.e., B(X,Y ) =

[X,Y ] = XY − Y X where juxtaposition denotes the usual matrix multiplication. This Lie

algebra is called the general linear algebra.

Example 18. The set of all n × n matrices with entries in field K with trace zero is a Lie

algebra with respect to the same bracket operation as above. This Lie algebra is denoted by

sl(n,K) and is called the special linear algebra.

Example 19. Let J be a non-zero symmetric matrix. Then the set

{X ∈ gl(n,K) | JX + tXJ = 0}

is a Lie algebra. It is denoted by so(n,K) and is called the special orthogonal algebra.

A subset of a Lie algebra that is also a Lie algebra is called a subalgebra. Of particular

interest are the following subalgebras.

1. The center Z(L) = {X ∈ L |B(X, Y ) = B(Y,X)} (assume that char(K 6= 2).

2. The centralizer of an element X in L is denoted by LX and is given by

{Y ∈ L |B(X, Y ) = 0}.

3. The maximal Abelian subalgebra H is a maximal subalgebra satisfying the condition

∀X,Y ∈ H B(X, Y ) = 0.

4. An ideal I of L is a subspace of L satisfying the property

X ∈ I, Y ∈ L ⇒ B(X, Y ) ∈ I.

Ideals arise naturally as kernels of homomorphisms of Lie algebras and they help us to

analyze the structure of Lie algebras. Their role is summarized in the following definitions.

1. A Lie algebra is called simple if its only ideals are 0 and itself.
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2. The derived series for L is given by

L(0) = L L(1) = B(L,L) . . . L(i) = B(L(i−1), L(i−1))

L is solvable if L(n) = 0 for some n.

3. L is semisimple if 0 is its only maximal solvable ideal. This is one of the most important

classes of Lie algebras. All the Lie algebras discussed in this thesis are semisimple. Note,

however, that gl(n,K) is not semisimple.

A representation of a Lie algebra is a vector space homomorphism (linear transformation)

from L → End(V ) that preserves the bracket operation, where V is a finite dimensional

vector space. A representation of immense importance is:

Definition 20. The adjoint representation of a Lie algebra L is a map ad : L −→ End(L)

taking X 7→ adX given by adX(Y) = [X, Y].

Let V be a vector space over K and X an element of End(V). Recall, from basic linear

algebra that we call X semisimple if every X-invariant subspace has an X-invariant com-

plement. We say that X is nilpotent if ∃n such that Xn = X ◦X ◦ . . . ◦X = 0. The adjoint

representation allows us to lift this terminology to Lie algebras.

Definition 21. We say that X ∈ L is semisimple if adX is semisimple as an endomorphism.

We say that X ∈ L is nilpotent if adX is nilpotent as an endomorphism.

The reason for considering these two extreme cases is that over an algebraically closed

field, we have the following theorem.

Theorem 22 (Jordan Decomposition). : Let X be an endomorphism of a finite dimen-

sional vector space V over K. There exist unique operators Xs, Xn ∈ End(V ) satisfying the

conditions

X = Xs + Xn, Xs semisimple, Xn nilpotent, Xs, Xn commute

From now on we will assume that K is algebraically closed.

We close this section with one more definition.
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Definition 23. Let L be a Lie algebra. We say that H is a Cartan subalgebra if it is a

maximal Abelian subalgebra consisting of only semisimple elements.

For example, in sl(3), a Cartan subalgebra is the set of all matrices of the form



a1 0 0

0 a2 0

0 0 −(a1 + a2)


.

3.2 NILPOTENT CONJUGACY CLASSES

The material in this section is drawn heavily from [8] and [20]. The concept of conjugacy

classes is fundamental to the study of groups. Recall that in finite groups, the class equation

states that a group G is the disjoint union of its center and conjugacy classes that consist

of more than one element. For any group, class functions are constant on conjugacy classes.

There is an analogous notion of ‘conjugacy classes’ in Lie algebras. By conjugation we mean

the adjoint action of the adjoint group of a Lie algebra. Elements of this adjoint group act

on the algebra as automorphisms. Recall that the Lie algebra of GL(n,R) is gl(n,K) and it

acts on gl(n,K) by conjugation, giving the familiar similarity classes of matrices. Now we

will define the ‘adjoint group of a Lie algebra’.

Definition 24. Let g be a semisimple Lie algebra. We define the following two groups

1. The automorphism group is given by:

Aut(g) = {φ ∈ GL(g) |B(φ(x), φ(y)) = φ(B(x, y)), ∀x, y ∈ g}. Aut(g) is an algebraic

group.

2. Gad = Aut(g)◦ where Aut(g)◦ is the identity component of Aut(g). Gad is called the

adjoint group.

Definition 25. Let g be a Lie algebra and G its adjoint group. Let X be any element of g.

Then, the conjugacy class of X is denoted by OX and is given by

{Y ∈ g | ∃h ∈ G (ad(h)Y = X)}
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Note. When we say orbit we mean adjoint orbit. In the context of Lie algebras, we use the

words orbit and conjugacy class interchangeably.

Finally, an adjoint orbit OX is called nilpotent (resp. semisimple), if X is nilpotent (resp.

semisimple). That the orbits should fall naturally into these two categories can be seen by

an example.

Example 26. Suppose X is in sl(2) and is of the form


a b

c d


. Then, over K, its char-

acteristic polynomial is (t − r1)(t − r2). Corresponding to the cases r1 = r2 or r1 6= r2, we

conclude that any X is similar to either


0 1

0 0


 or


a 0

0 −a




for some a. In the former case, X is nilpotent and in the latter, it is semisimple. Clearly,

there are infinitely many semisimple classes.

Thus the semisimple orbits in sl(2) can be parameterized by the set K/(a ∼ −a). Recall

that the Weyl group W = {1, sα} acts on a Cartan subalgebra h by reflecting the origin.

Thus we may identify K/(a ∼ −a) with h/W . This result extends to any semisimple algebra.

Theorem 27 (Classification). : Let g be a semisimple Lie algebra, h a Cartan subalgebra,

and W the associated Weyl group. Then the set of semisimple orbits is in bijective corre-

spondence with h/W. In particular, there are infinitely many semisimple classes. [8, pgs.

25-26]

Although the set of all semisimple orbits is infinite, it has a finite subset of a certain

semisimple orbit called distinguished. The so-called weighted Dynkin diagrams parameterize

them. We will define them later for nilpotent elements. The work of Jacobson-Morozov and

Dynkin-Kostant proves that there is a bijective correspondence between the set of nilpotent

orbits and the set of distinguished semisimple orbits in g. In particular, the nilpotent orbits

in g are finite. Richardson [31] proves the result generally.

Theorem 28 (Richardson’s Finiteness Theorem). : Let H be a closed subgroup of

G = GL(n,K), and h its Lie algebra. Let h satisfy the following condition:
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(*) There exists a subspace m of g, stable under Ad(H), for which g = h⊕m

Then, any G-orbit in g intersects h in only finitely many H-orbits. In particular, h has only

finitely many nilpotent orbits.

Note that condition (*) is satisfied by all reductive (hence semisimple) Lie algebras.

The following theorem in positive characteristic is due to Lusztig [25]

Theorem 29. If g is simple and char K is positive, then g has only finitely many nilpotent

orbits.

In classical cases, the weighted Dynkin diagrams can be replaced by partitions. Now we

quote some parameterization results with examples.

Theorem 30. In sl(n), there is a one-to-one correspondence between the set of nilpotent

orbits and the set of partitions of n. The correspondence sends a nilpotent element X to the

partition determined by the block sizes in its Jordan normal form. [8]

Here is the explicit correspondence:

Let [d1, d2, . . . , dk] be a partition of n satisfying the conditions d1 + d2 + . . . + dk = n and

d1 ≤ d2 ≤ . . . ≤ dk > 0.

Definition 31. Let Ji be the i by i matrix given by




0 1 0 0 . . . 0

0 0 1 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . 0 1

0 0 0 . . . 0 0




. Ji is called a

Jordan block of type i.

Then

X[d1,d2,...,dk] = Jd1 ⊕ Jd2 ⊕ . . . ⊕ Jdk

is a nilpotent element of sl(n,K). Henceforth, we will refer to X[d1,d2,...,dk] as the nilpotent

element associated with the partition [d1, d2, . . . , dk]. Two distinct partitions give disjoint

nilpotent classes.

Example 32. In sl(3), n = 3. The partitions of 3 are: [3], [1 2], [1 1 1]. The corresponding
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nilpotent elements (representatives) are given by,




0 1 0

0 0 1

0 0 0


 ,




0 0 0

0 0 1

0 0 0


 ,




0 0 0

0 0 0

0 0 0




respectively.

Theorem 33. Nilpotent orbits in so(n), n odd are in one-to-one correspondence with the

set of partitions of n in which even parts occur with even multiplicity [8].

Example 34. In so(5), n = 5. The partitions that give nilpotent orbits are

[1 1 1 1 1], [1 1 3], [1 2 2], [5].

As will be seen in Section 3.5.2 and the subsequent chapters, our treatment of many

objects appearing in this thesis is ‘linear algebraic’. Orbits (nilpotent or semisimple) have a

rich topological and algebro-geometric structure but they are not vector spaces. In chapter

5 we will need to refer to the dimension of a nilpotent orbit. This is the dimension of an

orbit as a variety. We do not have a corresponding notion in Pas’s language. We overcome

this difficulty by using the following result:

Lemma 35. Let OX be the orbit containing the element X. Then gX is a subalgebra of g

and dim(OX) = dim(g)− dim(gX)

3.3 THE EXCEPTIONAL LIE ALGEBRA g2

In Section 3.1 we introduced Lie algebras as matrix algebras. However, they have also been

classified according to their rank using abstract root systems. We give a brief review of the

classification. We give definitions of concepts that will be invoked in later chapters and leave

out those that are not directly relevant to our work. Consider E, a finite dimensional vector

space over R. Any non-zero vector α ∈ E determines a reflection σα with reflecting plane

Pα = {β ∈ E | 〈β, α〉 = 0}
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where 〈, 〉 denotes a non-degenerate inner product on E. Then,

σα(β) = β − 2〈β, α〉
〈α, α〉 α

Definition 36. A subset Φ of E is called a (reduced) root system in E if the following

axioms hold

1. Φ is finite, spans E and 0 is not in Φ.

2. α ∈ Φ ⇒ the only multiples of α in Φ are α,−α.

3. α ∈ Φ ⇒ σα(Φ) = Φ

4. α, β ∈ Φ ⇒ 2〈β,α〉
〈α,α〉 ∈ Z

Definition 37. The rank of Φ is given by the dimension of E.

The classification theorem states that corresponding to the rank (= l) we have four fam-

ilies of Lie algebras called classical Lie algebras and 5 others called exceptional Lie algebras.

The subscript in the labels for exceptional Lie algebras denotes the rank of the algebra.

• Al (l ≥ 1) with dimension l(l + 2)

• Bl (l ≥ 2) with dimension l(2l + 1)

• Cl (l ≥ 3)with dimension l(2l + 1)

• Dl (l ≥ 4)with dimension l(2l − 1)

• E6 with dimension 78

• E7 with dimension 133

• E8 with dimension 248

• F4 with dimension 52

• G2 with dimension 14

Example 38. The Lie algebra sl(3) has rank 2 and it corresponds to the root system given

by Φ = {α,−α, β,−β, α + β,−(α + β)}.

Example 39. The Lie algebra g2 has rank 2. In chapter 7, we will realize g2 as a subalgebra

of so(7). It is the Lie algebra corresponding to the root system given by

Φ = {α,−α, β,−β, α+β,−(α+β), 2α+β,−(2α+β), 3α+β,−(3α+β), 3α+2β,−(3α+2β)}.
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β

α

Figure 3.1: Root system for sl(3)

This correspondence can be made precise in terms of a Cartan subalgebra. Let g be a

semisimple Lie algebra. Let h be its Cartan subalgebra. Since h is Abelian, adg h gives a

commuting family of semisimple endomorphisms of g. Thus h has a root space decomposition

h = cg(h)
⊕

α∈Φ gα where:

• for α ∈ h∗, the dual of h, we define: gα = {x ∈ g |B(h, x) = α(h)x ∀h ∈ h}
• Φ = {α ∈ h∗ |α 6= 0 ∧ gα 6= 0}.

The root system Φ determines g up to isomorphism. Every Φ has an associated semisimple

Lie algebra.

For future reference, we introduce, the notion of a co-root.

Definition 40. Let α ∈ Φ. The corresponding co-root α∨ ∈ E∗ is given by

〈λ, α∨〉 = 2〈λ,α〉
〈α,α〉

3.4 NILPOTENT CONJUGACY CLASSES OVER P -ADIC FIELDS

Here we consider nilpotent conjugacy classes of Lie algebras over p-adic fields. Let F be a

p-adic field. Recall example 26. Over F more conjugacy classes are to be expected. It turns

out that the characteristic of the residue field plays a major role in determining the the total
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β

Figure 3.2: Root system for g2

number of conjugacy classes. Indeed, in sl(3) they are found to be related to the number of

cubic classes in the residue field. In g2 the number of orbits is linked with the isomorphism

classes of separable cubic algebras over F.

3.5 A LIST OF FORMULAE IN PAS’S LANGUAGE

3.5.1 Introduction

We wish to speak about linear algebra in this language, so we will start with vectors. By

a vector x we mean an n-tuple (x1, x2, . . . , xn) where the xi are variable symbols of either

the valued field sort or the residue field sort. Hence, when we say

∀x (x ∈ V )

we really mean

∀x1, ∀ x2, . . . , ∀xn

(
(x1, x2, . . . , xn) ∈ V

)
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Example 41. If x is an n-tuple (x1, x2, . . . , xn) of variables of the field sort and y is an

n-tuple (y1, y2, . . . , yn) of variables of the field sort as well, then x + y, too, is an n-tuple

(x1 + y1, x2 + y2, . . . , xn + yn).

Example 42. If the context is an n × n matrix, we will use variable symbols xij, yij, and

so forth rather than labeling the n2 entries in a sequence x1, x2, . . . , xn2

Example 43. If X is an n × n matrix (xij) of variable symbols of the valued field sort;

then ∃FX is an abbreviation of ∃Fx11, ∃Fx12, . . . , ∃Fxnn

And finally, we define an operation on matrices:

Definition 44. If A is an n × n matrix (aij) of variable symbols of the valued field sort

and B is an m × m matrix (bij) of variable symbols of the valued field sort then A
⊕

B is

an (n + m) × (n + m) matrix (a)ij where

(a ⊕ b)ij =





aij if 1 ≤ i, j ≤ n;

bi−n,j−n if n + 1 ≤ i, j ≤ n + m;

0 otherwise.

The following section gives a long list of formulae. While the list seems tedious, it

contains formulae for all the objects needed in the proof of our main result. We hope that

this will allow us to present a short and clean proof.

3.5.2 Formulae

1. If V is a non-empty virtual set, let Lin(V ) be the formula:

0 ∈ V ∧ ∀λ1, ∀λ2 ∀ x1, ∀x2 (x1, x2 ∈ V ⇒ λ1x1 + λ2x2 ∈ V )

Here λ1 and λ2 are variable-symbols of the valued field sort (or residue field sort) and

x1 and x2 are vectors of variable-symbols of the valued field sort (or residue field sort).

We use Lin(V ) to define a virtual vector space over the valued field (or the residue field,

respectively).

Definition 45. Let TR be the theory consisting of sentences that are true for all SPL

R. If TR |= Lin(V ), then we say that V is a virtual vector space.

25



(In the first order language of rings, our structure would be a ring. In that case, Lin(V )

would assert that V is a module.)

2. Let Lin-ind(e1, . . . , en, V ) be the formula:

∀ λ1, λ2, . . . , λn ((
∑n

i=1 λiei = 0) ⇒ (λ1 = . . . = λn = 0) ∧V (e1) ∧ V (e2) ∧ . . . ∧
V (en)

This formula asserts the linear independence of vectors e1, e2, . . . , en in V where V is a

virtual set with M free variables and ei are vectors of length M each consisting of terms.

3. Let Lin-comb(e1, e2, . . . em, u) be the formula:

∃λ1, . . . , λm (u =
∑m

i=1 λiei)

This formula states that u is a linear combination of e1, e2, . . . , em.

4. Let Span(e1, e2, . . . , em, V ) be the formula:

∀ v
(
V (v) ⇔ Lin-comb(e1, e2, . . . em, v)

)

This states that V is the span of vectors (e1, e2, . . . , em).

5. Let Basis(e1, e2, . . . , em, V ) be the formula:

Lin-ind(e1, e2, . . . , em, V ) ∧ Span(e1, e2, . . . , em, V )

This formula states that (e1, e2, . . . , em) is a basis for V .

6. For m, a fixed natural number; let Dim(m,V ) be the formula:

∃ e1, e2, . . . , em Basis(e1, e2, . . . , em, V )

We wish to point out that, here, m is not a variable in Pas’s language.

7. At times we will need to say that a vector space has odd (resp. even) dimension. We

will be dealing with only finite dimensional vector spaces so, a priori, there will be an

upper bound n on the dimension.

• Let Odd-Dim(n, V ) be the formula:

Dim(1, V ) ∨ Dim(3, V ) ∨ . . . ∨ Dim(2k − 1, V ) where n− 1 ≤ 2k − 1 ≤ n

The formula asserts that the virtual set V is a vector space of odd dimension that is less

than or equal to n.

• Let Even-Dim(n, V ) be the formula:

Dim(0, V ) ∨ Dim(2, V ) ∨ . . . ∨ Dim(2k, V ) where n− 1 ≤ 2k ≤ n
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8. Let Int-comb(e1, e2, . . . em, u) be the formula:

∃λ1 . . . λm (val(λi) ≥ 0) ∧ u =
∑m

i=1 λiei

This formula asserts that u is an integral combination of vectors (e1, e2, . . . , em).

9. Let Int-basis(e1, . . . , en, L) be the formula:

Lin-ind(e1, . . . , en) ∧ (∀w ∈ L Int-comb(e1, . . . , en, w))

10. Let V = U ⊕W be the formula:

(W ⊂ V ) ∧ (U ⊂ V ) ∧ (U ∩ W = {0}) ∧ (∀ v ∈ V (∃w ∈ W,u ∈ U v = u + w)
)

The formula states that V is the direct sum of U and W . (The lack of conditions on

U , W and V is intentional. This decomposition allows us to talk about direct sums of

lattices, vector spaces or modules.)

11. Let Q-space(U, V/W ) be the formula:

Lin(V ) ∧ Lin(W ) ∧ Lin(U) ∧ V = U ⊕ W

Observe that the quotient of a vector space by a subspace is identified with its complement

in the decomposition.

Remark 46. Henceforth, objects defined on quotient spaces will be identified with ob-

jects on complements.

12. Let Q-Basis(e1, . . . , en, U, V/W ) be the formula:

Q-space(U, V/W ) ∧ Basis(e1, e2, . . . , en, U)

This says that the vectors e1, . . . , en form a basis for the quotient space V/W = U .

13. A lattice in a linear space V is an integral-span of a basis of V . Let Lattice(L, V ) be the

formula:

Lin(V ) ∧ (L ⊂ V ) ∧
∃ e1, . . . , en

(
Basis(e1, . . . , en, V ) ∧ ∀w (w ∈ L ⇐⇒ Int-comb(e1, . . . , en, w))

)

This asserts that the virtual set L is a lattice in V .
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14. Let lattice(e1, e2, . . . , em) be the virtual set:

{u | ∃Fα1, . . . , αm val(αi) ≥ 0 (u =
m∑

i=1

αiei)}

Remark 47. What is the difference between this formula and the earlier one? In the

previous formula we assert that L, a ‘known’ virtual set, is a lattice; whereas, in this

formula we construct a lattice. It seems as though we are splitting hair here. We are

not! This allows us to use (say) L as an abbreviation for a virtual set. The formula

L = lattice(e1, e2, . . . , em)

will thus mean “Label this particular virtual set as L.”

15. Similarly, let vectorspace(e1, e2, . . . , em) be the virtual set:

{u | ∃Fα1, . . . , αm (u =
m∑

i=1

αiei)}

16. Let L, L̃ and V be virtual sets. Let J be an M by M matrix of terms, where M is the

number of free variables in V .

The formula Dual-lattice(L, L̃, J, V ) is given by:

Lattice(L, V ) ∧ (L̃ ⊂ V ) ∧

∀w ∈ V
(
w ∈ L̃ ⇐⇒ (∀ v (v ∈ L ⇒ val(tvJw) ≥ 0)

))

This asserts that L̃ is the dual of lattice L with respect to matrix J .

17. Let sym-bil-nd(J, V, n) denote the formula

∃ e1, . . . , en

(
Lin(V ) ∧ Basis(e1, . . . , en, V ) ∧ det(A) 6= 0 ∧ (Aij = Aji)

)

where Aij = teiJej.

Here, ei are vectors of variable symbols of length M and J is an M by M matrix of

terms, where M is the number of free variables in V .
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Lemma 48. Under these definitions, a ‘dual-lattice’ is a lattice. More precisely, if R is

an SPL, then:

R |= sym-bil-nd(J, V ) =⇒
(
Dual-lattice(L, L̃, J, V ) ⇒ Lattice(L̃, V ))

)

J is an M × M matrix of terms, V is a virtual set with M free variables, L is a virtual

set with M free variables, and L̃ is a virtual set with M free variables.

Proof. Let R be an SPL. Then,

R |= sym-bil-nd(J, V ) =⇒

∃ e1, . . . , en Lin(V ) ∧ det(A) 6= 0 ∧ Aij = Aji 1 ≤ i ≤ n, 1 ≤ j ≤ n

where Aij =t eiJej.

The proof is constructive in the sense that using the basis {e1, . . . , en} for lattice L, we

will produce a basis {e′1, . . . , e′n} such that L̃ is a lattice with respect to this basis. In

other words, we will show that

R |= ∃ e′1, . . . , e′n such that

Basis(e′1, . . . , e′n, V ) ∧ (∀w(w ∈ L̃ ⇔ Int-comb(e′1, . . . , e′n, w))

Refer to formula (13).

Define e′i as follows:

e′i =
M∑

j=1

αijej such that te′iJej = δij (3.1)

We need to show that

Basis(e′1, e
′
2, . . . , e

′
n, V ) ∧

(
∀w ∈ V

(
w ∈ L̃ ⇔ Int-comb(e′1, . . . , e′n, w)

))

To say that these e′i’s exist and are unique is equivalent to saying that the αij’s exist and

are unique.

For each i, equation (3.1) gives a system of n linear equations in n variables. Since

Aij = teiJej is a square non-degenerate matrix (i.e det(Aij) 6= 0); the αij’s exist and

are unique. Thus the e′i’s are uniquely defined and form a basis of V .

The rest of the proof is classical.
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18. A lattice L is said to be Almost Self Dual if the following hold:

pL̃ ⊂ L ⊂ L̃

While A ⊂ B is a formula in Pas’s language, a comment is needed on the meaning of

pL̃. It is the following virtual set:

{v ∈ V : ∃α ∈ p, ∃w ∈ L̃(v = αw)}

Let ASD(L, J, V ) be the following formula:

Lin(V ) ∧ Lattice(L, V ) ∧ Dual-lattice(L̃, L, V, J) ∧ (L ⊂ L̃) ∧ (pL̃ ⊂ L)

19. We need a formula for lattices of quotient spaces.

Recall that we will identify quotients of vector spaces with orthogonal complements. Let

Q-Lattice(L,U, V/W ) denote the formula:

Q-space(U, V/W ) ∧ Lattice(L,U)

20. Let Gramij(e1, e2, . . . , em, J) be the entry teiJej. Here J is an M by M matrix of terms.

21. Let Gram-det(e1, e2, . . . , em, J) be the determinant of matrix (teiJej).

22. Let Θ(sq, J, V ) be the formula:

∀e1, . . . , en

(
Basis(e1, . . . , en, V ) ⇒

( ∃ ξ ∈ f ξ 6= 0 ∧ ξ2 = ac(Gram-det(e1, . . . , en, J))
))

This states that the Gram-determinant of the quadratic form on V , given by matrix J

is a square class in the residue field.

23. Let Θ(nsq, J, V ) be the formula:

∀e1, . . . , en

(
Basis(e1, . . . , en, V ) ⇒

( 6 ∃ ξ ∈ f ξ 6= 0 ∧ ξ2 = ac(Gram-det(e1, . . . , en, J))
))

This states that the Gram-determinant of the quadratic form on V , given by matrix J

is a non-square class in the residue field.
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24. Let Q-dim(L1, L2, V, k) be the formula:

(L1 ⊂ L2) ∧ Lin(V ) ∧ Lattice(L1, V ) ∧ Lattice(L2, V )∧
∃e1, . . . , en ∈ V
(∃α (val(α) = 1) ∧ (Int-basis(e1, . . . , en, L2)) ∧ Int-basis(αe1, . . . , αek, ek+1, . . . , el, L1)

)

This formula asserts that the dimension of the vector space L2/L1 (over the residue field)

is k.

25. As in 7, we will write formulae stating that the dimension of the aforesaid quotient is

odd (resp. even).

• Let Odd-Qdim(n, L1, L2, V ) be the formula:

Q-dim(L1, L2, V, 1) ∨ Q-dim(L1, L2, V, 3) ∨
. . . ∨ Q-dim(L1, L2, V, 2k − 1) where n− 1 ≤ 2k − 1 ≤ n

• Let Even-Qdim(n, L1, L2, V )

Q-dim(L1, L2, V, 0) ∨ Q-dim(L1, L2, V, 2) ∨
. . . ∨ Q-dim(L1, L2, V, 2k) where n− 1 ≤ 2k ≤ n

26. Let Anisotropic(e1, e2, . . . , em, J, V ) be the formula:

Lin(V ) ∧ Lin-ind(e1, e2, . . . , em, V ) ∧
∀λ1, . . . , λm (t(

∑m
i=1 λiei)J(

∑m
i=1 λiei) = 0) ⇒ (λ1 = . . . = λm = 0)

Recall that in Lin-ind(e1, e2, . . . , em, V ) the ei are vectors of terms, V is a virtual set

with M free variables and J is an M by M matrix of terms.

This formula states that if V is a vector space and if J is the matrix of a quadratic

form on V then the linearly independent vectors {e1, . . . , em} span a subspace of the

anisotropic kernel of V .

27. Let Dim-aniso(m, J, V ) be the formula:

∃ e1, e2, . . . , em Anisotropic(e1, e2, . . . , em, J, V ) ∧
6 ∃ e1, e2, . . . , em+1 Anisotropic(e1, e2, . . . , em+1, J, V ).

This asserts that m is the dimension of the anisotropic kernel of V .

28. Let Iso-aniso(V, JV , W, JW ) be the formula:

∃e1, . . . , em, e′1, . . . , e′m(
Anisotropic(e1, . . . , em, JV , V ) ∧ Anisotropic(e′1, . . . , e′m, JW ,W ) ∧
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(t
eiJV ei = te′iJW e′i ∀ i 1 ≤ i ≤ m

) ∧
Dim-aniso(m, JV , V ) ∧Dim-aniso(m, JW ,W )

This formula asserts that the vector spaces have isomorphic anisotropic kernels under

their respective quadratic forms.

29. Now we would like to be able to talk about direct sums of vector spaces formed by annex-

ing two arbitrary vector spaces. Let e be a vector of terms of length n. Let f be a vector

of terms of length m. We construct a vector of terms of length n + m by concatenating

e with f . We denote this by e ⊕ f . Thus, if e is given by (e1, e2, . . . , en) and f by

(f1, f2, . . . , fm), then e ⊕ f is given by (e1, e2, . . . , en, f1, f2, . . . , fm), where the free

variables ei are distinct from the free variables fj.

Moreover, if e and h have length n and f and k have length m; then define

(e ⊕ f) + (h ⊕ k) := (e + h) ⊕ (f + k)

Let Dir-sum(V, W,U) denote the formula:

Lin(V ) ∧ Lin(W ) ∧(
∀ f (f ∈ U) ⇐⇒

(
∃ fv ∈ V ∃ fw ∈ W (f = fv ⊕ fw)

))

Lemma 49. The direct sum of two vector spaces is a vector space. More precisely, let

R be an SPL. Then,

R |= Dir-sum(V,W,U) ⇒ Lin(U)

Proof. Now the symbol λ(e
⊕

f) will denote a vector of terms of length n + m where

the first n terms are that of the vector λe (scalar multiplication by the field constant λ)

and the remaining n terms are those of the vector λf .

R |=
∀ f ∀ e

(
f ∈ U ∧ e ∈ U∧ Dir-sum(V, W,U)

)

⇒ (
(∃ fv ∃ fw fv ∈ V, fw ∈ W (f = fv ⊕ fw)) ∧
(∃ ev ∃ ew ev ∈ V, ew ∈ W (e = ev ⊕ ew))

)

⇒ ∀λ1 ∀λ2

(
λ1f + λ2e = λ1(fv ⊕ fw) + λ2(ev ⊕ ew)
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= λ1fv

⊕
λ1fw + λ2ev ⊕ λ2ew

= (λ1fv + λ2ev) ⊕ (λ1fw + λ2ew)
)

Lin(V ) ⇒ λ1fv + λ2ev ∈ V

Lin(W ) ⇒ λ1fw + λ2ew ∈ W

⇒ λ1f + λ2e ∈ U ⇒ Lin(U)

30. Now we will define a Virtual function as a relation. Let V and W be non empty virtual

sets. Denote by f(V, W ) the virtual set satisfying the following 3 conditions:

a. f(V, W ) ⊂ {(v, w) | v ∈ V, w ∈ W}
b.

(
(v1, w1) ∈ f(V,W ) ∧ (v1, w2) ∈ f(V, W )

) ⇒ w1 = w2

c. ∀v ∈ V ∃w ∈ W ((v, w) ∈ f(V,W ))

Then we say that f is a virtual function from V to W and that V is the domain of f .

Furthermore, the virtual set f(V ) given by

{w ∈ W | ∃ v((v, w) ∈ f(V, W ))}

is the range of f . Naturally, we say, f(v) = w if ((v, w) ∈ f(V, W )).

31. Linear Transformation: We say that α is a linear transformation from V to W if the

following hold:

a. α is a virtual function from V to W .

b. Lin(V ) ∧ Lin(W )

c. ∀v1, v2 ∈ V α(v1 + v2) = α(v1) + α(v2)

d. ∀ a ∀v ∈ V α(av) = aα(v)

32. Linear Functional: We say that α is a linear functional from V to W if α is a linear

transformation and Dim(1,W ) holds.

33. Virtual Binary Operation: Let V be a non empty virtual set. We say that the virtual

set B(V × V, V ) defines a binary operation on V if B(V × V, V ) is a virtual function.

Furthermore, if ((v1, v2), v3) ∈ B(V × V, V ), then we write v1Bv2 = v3.

34. Algebra: Let V be a virtual set. Let Alg(V, B) denote the formula

Lin(V ) ∧B(V × V, V ) ∧ (∀u, v, w ∈ V (∃ 1V ∈ V 1V Bu = uB1V = u) ∧
(∀λ1, λ2 (uB(λ1w+λ2v) = λ1(uBw)+λ2(uBv))∧((λ1w+λ2v)Bu = λ1(wBu)+λ2(vBu)

)
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We use Alg(V, ∗) to define a virtual algebra over the valued field (or the residue field,

respectively).

Definition 50. Let TR be the theory consisting of sentences that are true for all SPL

R. If TR |= Alg(V, ∗), then we say that V is a virtual algebra.

35. Lie Algebra: Let V be a nonempty virtual set. Let Lie-Alg(V,B) denote the formula

Alg(V, B) ∧ (∀x ∈ V xBx = 0) ∧ (∀x, y, z ∈ V xB(yBz))+yB(xBz))+zB(xBy)) = 0
)

Definition 51. Let g be a virtual Lie algebra. Let X = (Xij) ∈ g be a parameter. We say

that gX is a virtual set with parameters X = (Xij) given by {Y ∈ g|XY − Y X = 0}. The

virtual set gX is called the centralizer of X.

Theorem 52. R |= ∀X ∈ g (Lin(gX))

Proof. ∀X (X ∈ gX)

⇒ ∀λ1∀λ2 ∀Y1,∀Y2 (XY1 − Y1X = 0) ∧ (XY2 − Y2X = 0))

⇒ λ1(XY1 − Y1X) = 0 ∧ λ2(XY2 − Y2X) = 0

⇒ X(λ1Y1)− (λ1Y1)X = 0 ∧X(λ2Y2)− (λ2Y2)X = 0

⇒ X(λ1Y1)− (λ1Y1)X + X(λ2Y2)− (λ2Y2)X = 0

⇒ X(λ1Y1 + λ2Y2)− (λ1Y1 + λ2Y2)X = 0

⇒ λ1Y1 + λ2Y2 ∈ gX

This proves that gX is a vector space.
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4.0 SPECIAL ORTHOGONAL ALGEBRA so(r), r ODD

We follow Waldspurger’s treatment of nilpotent orbits in the classical p-adic Lie algebras

[39]. As F changes, so do the characteristic and the cardinality of its residue field. Hence

it is natural that some invariants associated with the residue field should play a role in

determining these parameters. Waldspurger uses the theory of quadratic forms over finite

fields. (In chapter 5 we will see a different parameterization of nilpotent orbits of semisimple

Lie algebras, where a special type of orbits in Lie groups over the residue field is used.) In

the next section we give an introduction to quadratic forms and their invariants. All vector

spaces appearing in this chapter are finite dimensional.

4.1 FUNDAMENTALS OF QUADRATIC FORMS

Definition 53. Let V be a vector space (resp. module) over a field (resp. commutative

ring) F. A function QV : V → F is called a quadratic form on V if

1. QV (αv) = α2QV (v) for all α ∈ F and v ∈ V .

2. The function B : V × V → F given by

B(v, w) = QV (v + w)−QV (v)−QV (w)

is bilinear.

Let F be such that its characteristic is not 2. For all v, w ∈ V define

qV (v, w) = 1
2
(QV (v + w)−QV (v)−QV (w))
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This is a symmetric bilinear form. The factor 1
2

gives qV (v, v) = QV (v). The pair (V, qV ) is

called a quadratic space. Quadratic forms can be represented by matrices.

Definition 54. Matrix of a quadratic form: Let {e1, . . . , en} be a basis of V . The matrix of

qV with respect to this basis is the matrix

A = (aij) where aij = qV (ei, ej)

In this chapter we are concerned with the invariants of quadratic spaces. The dimension

of V is an obvious candidate and is our first invariant. We denote this by d(V ). For the

second invariant, observe that in Definition 54, if we change the basis from {ei} to {e′i}, we

get a new matrix. Let C be the change of basis matrix. Then

A′ = CAtC ⇒ det(A′) = det(C) det(A) det(tC).

Since det(C) = det(tC), we get det(A′) = det(A)(det(C))2. Thus det(A) is invariant up to

multiplication by a non-zero square element of F. In other words, the square class of the

determinant is another invariant. We will discuss this in Section 4.1.1 in the context of finite

fields.

Vectors of a quadratic space can be classified based on the quadratic form.

Definition 55. 1. A vector v in V is called isotropic if qV (v, v) = 0. Otherwise, it is called

anisotropic.

2. A subspace W of V is called isotropic if qV (w,w) = 0 for a non-zero w ∈ W .

3. If (V, qV ) contains no non-zero isotropic vectors, it is called an anisotropic space.

4. A subspace W of V is called totally isotropic if qV (w1, w2) = 0 for all w1, w2 ∈ W .

Theorem 56. All maximal totally isotropic subspaces of (V, qV ) have the same dimension.

This dimension is called the Witt Index.

Proof. See [33, pg.17].

A quadratic space (V, qV ) is called nonsingular or nondegenerate if for x ∈ V there is a

y ∈ V such that qV (x, y) 6= 0. We are interested in decomposing (V, qV ) in terms of isotropy.

Before stating the decomposition theorem, we define an important map between quadratic

spaces.
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Definition 57. Let (V, qV ) and (W, qW ) be two quadratic spaces. A one-to-one linear trans-

formation T from V to W is called an isometry if

for all v1, v2 ∈ V we have qW (Tv1, T v2) = qV (v1, v2)

Theorem 58 (Witt Decomposition). : Let (V, qV ) have Witt Index m. Then

V = H1 ⊥ H2 ⊥ . . . ⊥ Hm ⊥ Va,

where Va is anisotropic, is uniquely determined up to isometry and is called the anisotropic

kernel of (V, qV ) (or if V is fixed, of qV ). The Hi are 2-dimensional nondegenerate isotropic

quadratic spaces. By Hi ⊥ Hj we mean Hi ⊕Hj with the condition that qV (Hi, Hj) = 0 .

Proof. See [33, pg. 17-18].

4.1.1 Quadratic Forms Over Finite Fields

Now suppose that F is the finite field Fq. As discussed earlier, one of the invariants of the

quadratic form is the dimension of the vectorspace V , denoted by d(V ). The other invariant

is the image of (−1)[
d(V )

2
]det(qV ) in F∗q/F∗2q , where [.] denotes the integer part of the quantity

inside. We denote this image by η(qV ). For finite fields, these 2 invariants determine the

quadratic form uniquely. [34, IV.1.7]

We are now ready to discuss the case so(r). The next section is based on the discussion

in [39, I.5, I.6, I.7].

4.2 PARAMETERIZATION OF NILPOTENT ORBITS

Let us fix some notation first.

• F is a p-adic field, $ is any uniformizer of F.

• o is the valuation ideal of F.

• f is the residue field of F.

• g is the Lie Algebra so(r) over F, with r odd. (In this chapter, r will always be odd.)
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• X ∈ g is a nilpotent element.

• (V, qV ) is the underlying vector space of g with qV as the quadratic form in the definition

of g.

• d(V ) is the dimension of V .

• P (r) is the set of partitions of r

• If Λ = (λj) is a partition of r, then ci(Λ) denotes the number of λj that equal i.

• P̃ (r) is the subset of P (r) consisting of partitions Λ of r with the property that for any

even i ≥ 2 , ci(Λ) is even.

Note. For this chapter, a partition Λ will always belong to P̃ (r).

Recall Theorem 33 from Chapter 3 and the subsequent example. Over an algebraically closed

field, the set P̃ (r) completely parameterizes the orbits of so(r). For each partition Λ in P̃ (r),

we get a representative X such that its matrix representation contains ci(Λ) Jordan blocks

of length i. This correspondence is bijective. Two distinct partitions give two distinct orbits.

Obviously, this does not change when we consider g over F. However, Λ alone is no more

sufficient to determine the orbits uniquely and we need more parameters.

4.2.1 Parameters For Nilpotent Conjugacy Classes In so(r,F)

Let X, g, Λ, ci(Λ) be as introduced earlier. The element X acts on V as a linear operator.

Since X is nilpotent, there exists some n such that Xn = 0 and the nullspace of Xn is

the entire space V . We now move to the residue field in two steps. First, we define a new

quadratic space over F that depends on X.

Definition 59. 1. For all i ≥ 1, i odd, let

Vi = ker(X i)/[ker(X i−1) + X ker(X i+1)] (4.1)

2. Let q̃i be the quadratic form on ker(X i) given by

q̃i(v, v′) = (−1)( i−1
2

)qV (X i−1(v), v′) (4.2)

3. Let qi be the quadratic form on Vi given by taking the quotient. This is nondegenerate.
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For each Λ we now have a family (Vi, qi) of quadratic spaces.

Theorem 60. The set {Λ, (qi)} subject to the condition [to be discussed in Section 4.3]:

⊕

i odd

qi ∼a qV

parameterizes the nilpotent conjugacy classes of so(r) completely. The relation ∼a indicates

that the two forms have the same anisotropic kernel.

A quadratic form is uniquely determined by its invariants. In the orthogonal case, di

(the dimension of Vi) is one of them. For the remaining invariants we make a transition to

the residue field f as follows.

For each i, let Li be a lattice (i.e. an o-module) in Vi that generates Vi over F. Its dual is

given by

L̃i = {v ∈ Vi : ∀w ∈ Li, qi(v, w) ∈ o} (4.3)

We choose Li so that it satisfies the property

L̃ ⊃ L ⊃ pL̃ (4.4)

Such a lattice called an almost self-dual lattice. Now define the following quotients:

l′i = Li/pL̃i, l′′i = L̃i/Li (4.5)

These quotients are, in fact, vector spaces over f. They inherit their quadratic forms from

qi and are both of the orthogonal type. More precisely,

ql′i(v, w) = qi(v, w) for v, w ∈ L, (4.6)

ql′′i (v, w) = $qi(v, w) for v, w ∈ L̃, (4.7)

where $ is any uniformizer of the valuation on F.

The invariants of (Vi, qi) are now given by those of (l′i, ql′i) and (l′′i , ql′′i ). Recall our

discussion in Section 4.1.1. Let η′i = η(ql′i), η′′i = η(ql′′i ). The invariants of (l′i, ql′i) and

(l′′i , ql′′i ) are (d(l′i), η′i) and (d(l′′i ), η′′i ) respectively.
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We want invariants of the ‘isometry class’ of (Vi, qVi
), so they should also encode infor-

mation about the anisotropic kernel. We note that, in the orthogonal case, the anisotropic

kernels of ql′ and ql′′ do not depend on L. These kernels together with dimension di (the

dimension of Vi) determine the isomorphism class of (Vi, qVi
). For the anisotropic kernel, we

need to worry about only the reduction of the dimensions of these vector spaces mod 2Z,

since over a finite field of characteristic other than 2, every quadratic space is isotropic [33,

pg. 39]. Let d′i (respectively d′′i ) be the reduction of d(l′) (resp., d(l′′)) in Z/2Z. They satisfy

the condition:

d′i + d′′i ≡ di mod 2Z.

We now state a theorem for the orthogonal case. This has been rephrased for the purpose

of this thesis.

Theorem 61 (J. L. Waldspurger). : [39, I.3 & I.6] Let F be a finite extension of the

field Qp with f as its residue field. Let V be a vector space over F with dim V = d, where d

is odd and

p ≥ 3d + 1

Let J = (Jij) where

Jij =





1 if i+j=d+1;

0 if otherwise.

Let g = Lie algebra (V, J). Let Σ =
(
Λ, (d′i, d

′′
i , η

′
i, η

′′
i )

)
. Then the set of nilpotent con-

jugacy classes are in bijection with the set {Σ} and are denoted by NΣ, where:

• Λ ∈ P (d) is a partition of d satisfying the condition:

∀i ∈ 2Z ci(Λ) ∈ 2Z.

• ∀i 6∈ 2Z, if ci(Λ) 6= 0 we have

d′i ∈ Z/2Z, d′′i ∈ Z/2Z and d′i + d′′i ≡ ci(Λ) mod(2Z)

• η′i ∈ {s, ns}, η′′i ∈ {s, ns} where s and ns denote square classes and non-square classes

in the field f, respectively.
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Furthermore, one imposes the condition:

⊕

i odd

qi ∼a qV (∗, Σ)

The relation ∼a indicates that the two forms have the same anisotropic kernel. For now, we

will refer to this condition as ‘condition (∗, Σ)’.

Proof. See Waldspurger [39].

4.3 THE RELATION
⊕

i odd qi ∼a qv

This is based on J.L. Waldspurger’s personal notes [40]. Let V be a finite dimensional vector

space on a field F equipped with a non-degenerate quadratic form. Then there exists an

orthogonal decomposition due to Witt [see Theorem 58].

V = H1 ⊥ H2 ⊥ . . . ⊥ Hm ⊥ Va,

where Va is anisotropic and is uniquely determined upto isometry. Also, qVa is the restriction

of qV on Va

Definition 62. We say that (V, qV ) ∼a (V ′, qV ′) if (Va, qVa)
∼= (V ′

a, qV ′a)

Let (V, qV ) be a finite dimensional quadratic space over F, where qV is non-degenerate.

Let X be a nilpotent element of the orthogonal Lie Algebra of (V, qV ). Then X acts a linear

operator on V .

Recall that the family (Λ, (qi)) parameterizes the conjugacy class of X. Due to the con-

dition on Λ, if i is even the corresponding Vi is even dimensional. It has a trivial anisotropic

kernel. Whereas, if i is odd, the form qi turns out to be equivalent to the
∑

j∈J ajx
2
j , where

|J | = ci(Λ) and the quadratic form on the anisotropic kernel is of the form ax2 where a is a

non-zero element of the field F. Thus the anisotropic kernel of Vi is non-trivial only when i

is odd.

Hence, qV is ∼a to
⊕

i odd qi.
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4.4 DEFINABILITY OF NILPOTENT CONJUGACY CLASSES IN so(r), r

ODD: THE MAIN THEOREM

We will now show that the conjugacy classes parameterized by the set {Σ} and the condition

(∗, Σ) are definable. Recall that Σ = (Λ, (d′i, d′′i , η′i, η′′i )).

4.4.1 A Brief Outline

What are we trying to do here?

In the odd orthogonal case the nilpotent conjugacy classes are uniquely parameterized

by the family (Λ, (Vi, qi)) [refer to equation (4.1) and (4.2) and the subsequent comment in

Section 4.2]. Each (Vi, qi) is uniquely determined by the 4-tuple (d′i, d′′i , η′i, η′′i ) where:

1. d′i = 0 (resp. 1) means that the dimension of the vector space l′i = L/pL̃ (over the residue

field) is even (resp. odd). In our case, L is any almost self dual on the quotient space Vi

given by equation (4.1) in Section 4.2.

2. d′′i = 0 (resp. 1) means that the dimension of the vector space l′′i = L̃/L (over the residue

field) is even (resp. odd).

3. η′i = sq (resp. nsq) means that the Gram-determinant of the quadratic form on l′i given

by equation (4.6) in Section 4.2 is a square (resp. non-square)in the residue field.

4. η′′i = sq (resp. nsq) means that the Gram-determinant of the quadratic form on l′′i given

by equation (4.7) in Section 4.2 is a square (resp. non-square)in the residue field.

In the proof, we fix n = Dim(V,F) and select a partition of n satisfying the condition ∀i ∈ 2Z

ci(Λ) ∈ 2Z. For each i such that ci(Λ) 6= 0, select a 4-tuple for the parameters (d′i, d′′i , η′i, η′′i )

from the set {0, 1} × {0, 1} × {sq, nsq} × {sq, nsq}. We claim that there is a formula in

Pas’s language for each of the aforementioned four statements and for the condition (∗, Σ).

(This condition is satisfied by the quadratic forms and quotient spaces (Vi, qi) and (V, q)

considered here.)
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Finally, the main claim is that the virtual set cut out by these formulae is either empty

or a nilpotent conjugacy class. The definition of the parameters indicates that there are

24 = 16 possible choices for the 4-tuple (d′i, d′′i , η′i, η′′i ). Some of these will be ruled out by

the condition d′i + d′′i ≡ ci(Λ) (mod 2Z) but many options remain. It will be extremely

cumbersome to write out all these options together. Hence, we will state as clearly as pos-

sible how they are to be pieced together instead of presenting a long formula containing

concatenated conjunctions and disjunctions.

Here is the statement of the theorem and its proof:

4.4.2 The Statement

Theorem 63. 1. For Σ = (Λ, (d′i, d′′i , η′i, η′′i )), Sd = {Σ} is a finite, field-independent set,

and there exists a formula φΣ in Pas’s language for each Σ ∈ Sd.

2. The condition (*,Σ) can be expressed by a formula φ∗,Σ in Pas’s language.

3. Let F be a p-adic field [see Section 2.1] and let its finite residue field be f.

Let V be a virtual set such that Lin(V ) ∧ Dim(d, V ) holds.

Let J be a matrix of terms satisfying the condition Jij = Jji. Let g be the virtual set

{Y : tY J + JY = 0}. (Here Y is a matrix of terms of the valued field sort.)

Then

{X ∈ g : φΣ(X) ∧ φ∗,Σ(X)} (4.8)

is either empty or a nilpotent conjugacy class in g.

4. For each F, every nilpotent class appears exactly once in this set.

Proof. :

1. Any integer d has a finite number of partitions and thus, only a finite number of them

appear as Λ in the set {Σ}. The partitions depend only on d and not on the field.

2. Let Λ ∈ P̃ (d), there is a unique JΛ - the Jordan block matrix - associated with the

partition Λ. Let JΛ(X) denote the formula:

∃(gij)1≤ i,j≤ d (gij)X = JΛ(gij) ∧ det(gij) 6= 0

This states that X is conjugate to JΛ.
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Λ is now fixed for the rest of the proof.

3. For each i 6∈ 2Z such that ci(Λ) 6= 0 the following are virtual sets with a parameter X

ranging over n × n matrices.

• Ki:= Ki(X):= Ker(X i) :={v ∈ V |X i(v) = 0} for all i ∈ 2Z with ci(Λ) 6= 0

• Wi:= Wi(X) := {y ∈ V |Φ(y,X)}

where Φ(y,X) is the formula

∃ y1, y2, u2,
(
y = y1 + y2 ∧ X i−1(y1) = 0 ∧ X(u2) = y2 ∧ X i+1(u2) = 0

)

The virtual set Wi replaces the space [ker(X i−1) + X ker(X i+1)] in Section 4.2.

We now fix i till the last step. Thus ci(Λ) is fixed, call it ci.

4. We need a formula for the set of elements in Sd that correspond to (d′i, d′′i , η′i, η′′i ).

This lengthy construction is divided into five steps. To keep us on track, we will give

appropriate parallel references to Waldspurger’s treatment from Section 4.2. In the final

formula, all the quantities will be bound by appropriate quantifiers.

Step 1 First, we need to cut out a formula that gives an ‘almost self-dual’ lattice in

Vi = Ki/Wi. Note that we will use the labels Vi, Ki and Wi in the sense of Formula 14

in Section 3.5.2.

We have

(Q-space(Vi, Ki/Wi) ∧ Basis(ei1 , . . . , eici
, Vi) ∧ ASD(Li,

tX i−1J, Vi))

where:

Ki = Ki(X), Vi = vector space(ei1 , . . . , eici
) and Li = lattice(em1 , . . . , emci

)

Call this formula φ
(1)
i (X, em1 , . . . , emci

).

Note. The i refers to the fixed i and the superscript (1) refers to Step 1.
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Step 2 Now we need to cut out a formula that states that the dimension of the

quotient space l′i is even (odd) respectively. Recall that this number is bounded above

by ci. This would be:

Even-Qdim(ci, pL̃i, Li, Vi) (resp. Odd-Qdim(ci, pL̃i, Li, Vi))

where:

L̃i = {u | val(temj
tX i−1Ju) ≥ 0 for j = 1, . . . , ci} and Li, Vi are as in Step 1.

Call these formulae φ
(2)
i,ε (X, em1 , . . . , emci

). Here ε refers to ’odd’ or ’even’.

Step 3 Now suppose that the value for the parameter η′i is sq (resp. nsq). This is

given be the following formula:

Θ(sq, tX i−1J, Vi) (resp. Θ(nsq, tX i−1J, Vi))

Piecing together one formula each from steps 2 and 3 gives the pair (d′i, η
′
i). Call these

formulae φ
(3)
i,ε (X, em1 , . . . , emci

). Here ε refers to ’square’ or ’non-square’.

Now we need to construct formulae for the pair (d′′i , η
′′
i ). Recall, d′′i is the dimension of

the vector space l′′ = L̃/L modulo 2Z [See Section 4.2(7)].

Step 4 The formula for d′′i = 0 (resp. 1) is given by:

Even-Qdim(ci, Li, L̃i, Vi) (resp. Odd-Qdim(ci, Li, L̃i, Vi)).

where Vi, Li and L̃i are as above.

Call these formuale φ
(4)
i,ε (X). Here ε refers to ‘odd’ or ‘even’.

Step 5 The formula for η′′i = sq (resp. nsq) is given by:

∀e′1, . . . , e′ci

(
Basis(e′1, . . . , e′ci

, Vi) =⇒
∃ η ∈ o ∧ ∃ ξ ∈ f∗ such that

val(η) = ci + val(Gram-det(e′1, . . . , e′ci
,t X i−1J) ∧ ξ2 = ac(η) ∧

ac(η) = ac(Gram-det(e′1, . . . , e′ci
,t X i−1J))

where Vi is as above.

The formula for ‘nsq’ follows similarly.

Call these formulae φ
(4)
i,ε (X). Here ε refers to ‘square’ or ‘non-square’. Piecing together
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one formula each from steps 4 and 5 gives the pair (d′′i , η
′′
i ).

5. Finally, we show that the condition (∗, Σ) is definable. Note that if (∗, Σ) is not satisfied

by the parameters, then the parameters give an empty conjugacy class. Now recall that

⊕

i odd

qi ∼a qV (∗, Σ)

is a concise notation for

((V1

⊕
V3

⊕
. . .

⊕
Vj)a, (q1

⊕
q3

⊕
. . .

⊕
qj)a) ∼= (Va, qa)

where j is the largest odd integer less than or equal to d for which cj(Λ) 6= 0 and the

subscript a refers to the anisotropic part. This given by the formula [refer to formula 28]:

Iso-aniso(V1

⊕
V3

⊕
. . .

⊕
Vj, J

⊕
tX2J

⊕
. . .

⊕
tXj−1J, V, J)

where:

Vi = vectorspace(em1 , . . . , emci
)

6. How do we piece all this together to present a virtual set in the form given by equation

(4.8)?

Recall Σ = (Λ, (d′i, d′′i , η′i, η′′i )). Now, for each Λ ∈ P̃ (d), consider

{X ∈ g | ∃F em1 , . . . , emci
φΣ(X, em1 , . . . , emci

) ∧ φ∗,Σ(X, em1 , . . . , emci
)} (4.9)

where 1 ≤ i ≤ n, and i ranges over all odd numbers appearing in the partition Λ. (For

brevity, we use the notation i ∈ Λ to indicate this condition on i.)

• φΣ(X, em1 , . . . , emci
) is the conjunction

JΛ(X) ∧ (
∧

i∈Λ φi(X))
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where, φi(X, em1 , . . . , emci
) stands for:

φ
(1)
i (X, em1 , . . . , emci

)∧φ
(2)
i,ε (X, em1 , . . . , emci

)∧φ
(3)
i,ε (X, em1 , . . . , emci

)∧φ
(4)
i,ε (X)∧φ

(5)
i,ε (X)

combining the formulae from step 1 and one each (for the choice of ε) from steps 2 to 5.

• φ∗,Σ(X) is the formula

Iso-aniso(V1

⊕
V3

⊕
. . .

⊕
Vj, J

⊕
tX2J

⊕
. . .

⊕
tXj−1J, V, J)

In conclusion, the virtual set given by equation (4.9) is either empty or a nilpotent con-

jugacy class in g.

This gives definability in the orthogonal case.
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5.0 AFFINE APARTMENTS

In Chapter 4 we saw that the orbits of classical semisimple Lie algebras can be parameterized

in terms of invariants of quadratic forms over finite fields. What about exceptional Lie

algebras? They are not defined in terms of a quadratic form and hence, a more general

approach is needed to study their orbits. The technique discussed in this chapter relies on

the structure theory of reductive p-adic Lie algebras.

Buildings were first introduced by J.Tits in 1950s to carry out Felix Klein’s Erlangen

Program for exceptional groups. Tits gave concrete geometric interpretations of exceptional

groups [36]. These have been generalized in various ways. Our interest lies in an interpreta-

tion called Bruhat-Tits Building which is a Euclidean building [5, 6].

Lie (Chevalley) groups have a rich structure that comes from two sources; firstly they are

constructed from the Chevalley data (root system, simple roots). This exists independent

of the underlying field. The geometrization of this data is the spherical building. Secondly,

much of the structure exists due to the fact that p-adic fields possess a non-trivial discrete

valuation. This valuation equips the field F with a filtration by open compact groups

{0} ( . . . ( p3 ( p2 ( p ( p0 = o ( p−1 ( . . . ( F.

Using this, we can define many interesting open, compact subgroups of Chevalley groups.

The geometrization of this data is called Affine Buildings. Apartments are a family of subsets

of buildings satisfying certain conditions. For this thesis we are interested in apartments

rather than buildings and hence, we will define them more carefully for each building in the

subsequent sections.

Locally, an affine apartment looks like a spherical apartment, as will be seen in figures

5.2 and 5.3. First we recall a few facts about the spherical apartment. We will assume
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some familiarity with the structure theory of Lie algebras. As will be seen, both apartments

are Euclidean spaces. A spherical apartment has action by reflections, whereas an affine

apartment has action by reflections and translations. This chapter is based on DeBacker’s

notes [10] and on [9],[30].

5.1 SPHERICAL APARTMENTS

Tits introduced spherical buildings in a series of papers [36, 37, 38]. We fix some notation

for the rest of the chapter.

Notation 64. • Let G be a Chevalley (semisimple Lie) group and g its Lie algebra.

• Let T be a maximal torus in G defined over Z.

• X∗(T ) is the set of characters of T .

• X∗(T ) is the set of co-characters of T .

• Let h be the Cartan subalgebra of g.

• E is a Euclidean space (over R).

• E∗ is its dual, i.e. the space of linear functionals on E.

• Φ is the (reduced) root system of G [see Section 3.3].

• Let 〈 , 〉 be the map X∗(T )×X∗(T ) → Z.

Definition 65. The spherical apartment of G is the Euclidean space As = E∗ i.e. As is the

Euclidean space containing the (abstract) co-root system of G.

Definition 66. The root system Φ endows As with a hyperplane structure given by hyper-

planes Hα = {λ ∈ F | 〈α, λ〉 = 0}, where α ∈ Φ.

Geometrically σα [see Section 3.3, Definition 36] is the reflection about the hyperplane

Hα. These hyperplanes divide E∗ into regions called Weyl chambers. The Weyl group

W = NG(T )/T acts transitively on these chambers.

The spherical apartment of sl(3) is as follows:
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Figure 5.1: Spherical apartment for sl(3)

5.2 AFFINE APARTMENT

Iwahori and Matsumoto introduced a new type of BN pair for a Chevalley group over p-

adic fields, where B and N are its subgroups satisfying some conditions [16]. This leads

to a triangulation of Euclidean spaces. Later Bruhat and Tits [6] constructed a Euclidean

building for reductive linear algebraic groups.

In the subsequent sections and chapters, by G(o) (resp. g(o)), we mean o points of G

(resp. g).

With the notation developed above, we give a simple definition of an affine apartment.

Definition 67. A = X∗(T )
⊗
R is called the affine apartment of G attached to T .

Just as the spherical apartment has a hyperplane structure, so does the affine apartment.

Let Ψ = {γ + n : γ ∈ Φ, n ∈ Z}. Each ψ = γ + n ∈ Ψ defines an affine function on A by

(γ + n)(λ⊗ r) := r〈λ, γ〉+ n.

Thus for each ψ = γ + n ∈ Ψ, we can define a hyperplane
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Hψ = {x ∈ A | (γ + n)(x) = 0}

These hyperplanes give us a polysimplicial decomposition of A. A polysimplex occurring

in this decomposition is called a facet. Let x ∈ A and Φx be the set of roots α for which

α(x) is an integer. Now define

Hn = {x ∈ A | |Φx| = n}.

Then an n-facet is a connected component of Hn. The closure of a 0-facet is called an alcove.

We will refer to any n-facet as a ‘facet’ in this thesis.

We have an extended Weyl group analogous to the Weyl group for spherical chambers.

Definition 68. The group W̃ = NG(T )/T (o) is called the extended or affine Weyl group

and it acts transitively on alcoves.

We close this section with a visualization of the affine apartments of sl(3) and g2.

Figure 5.2: Affine apartment of sl(3)
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Figure 5.3: Affine apartment of g2

5.3 OBJECTS ATTACHED TO AN AFFINE APARTMENT

For each facet F , we will define three types of objects. The first two are over F and are called

parahoric subgroup and pro-unipotent radical. Parahoric subgroups are the affine analogues

of parabolic subgroups. We will define them in this section.

For each γ ∈ Φ, we have a root group Uγ with generator uγ and a root space gγ. Let gγ

be spanned by Xγ. Recall that the discrete valuation on F endows it with a filtration. We

use this to introduce a filtration on G (resp. g). More precisely:

Definition 69. Use the set {γ + n |n ∈ Z} to index the following filtration on G (resp. g).

Uγ+n ( Uγ+n+1 where Uγ+0 := G(o) ∩ Uγ

gγ+n ( gγ+n+1 where gγ+0 := g(o) ∩ gγ and gγ+n := g(on) ∩ gγ

Notation 70. For all n in Z, let pnXγ = {aXγ | a ∈ pn}

Definition 71. Let F be a facet in A. Let Ψ = {γ + n | γ ∈ Φ, n ∈ Z}. For ψ = γ + n,

define the following:

1. Parahoric group: Let GF := Gx := 〈T (o), p−bγ(x)cUγ : ∀γ ∈ Φ〉. Then, GF is called the
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parahoric group attached to F .

2. Pro-unipotent radical: Let G+
F := G+

x := 〈T (p + 1), p1−dγ(x)eUγ : ∀γ ∈ Φ〉. Then, G+
F is

called the pro-unipotent radical group associated with F . It is a normal subgroup of GF .

3. The lattice corresponding to GF is given by gF := 〈h(o), p−bφ(x)cXγ : ∀γ ∈ Φ〉
4. The lattice corresponding to G+

F is given by g+
F := 〈h(p), p1−dφ(x)eXγ : ∀γ ∈ Φ〉.

5. Object over the residue field f: Denote by LF (f) the quotient gF /g+
F .

These definitions will be clearer once we see the example in Section 5.5.

Note. The terms parahoric, pro-unipotent are used for groups. The corresponding Lie

algebras (lattices) do not have separate or special names. For the purpose of this thesis,

when we say parahoric (resp. pro-unipotent), we mean the Lie algebra corresponding to the

parahoric (resp. pro-unipotent) group.

5.4 PARAMETERIZATION OF NILPOTENT CONJUGACY CLASSES

In this section we relate the nilpotent conjugacy classes of g to a special type of orbit in

finite groups of Lie type using the following theorem. These special type of orbits are called

distinguished orbits. An orbit is said to be distinguished if it does not intersect any proper

Levi subalgebra of g.

Theorem 72 (Barbash and Moy [4]). If F is a facet and Ō is a distinguished nilpotent

orbit in LF (f) = gF /g+
F , then there exists a unique nilpotent orbit in g of minimal dimension

which intersects the pre-image of Ō in gF non-trivially.

The theorem does not say that the correspondence between facets and distinguished

orbits in LF (f) is bijective. In deed, it is possible that two different facets may give the same

orbit. DeBacker [9] refines this correspondence by defining an equivalence relation on the

set of facets in two stages. At first, he focusses only on the facets.

Definition 73. Let F be a facet in A. Then A(F ) is the smallest affine space containing F .

Definition 74. Suppose F1 and F2 are two facets in A. If there is w ∈ W̃ such that

A(F1) = A(wF2), then we write F1 ∼ F2.
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Remark 75. Two alcoves are always equivalent by definition. Hence, we consider an alcove

to be a ‘building block’ of the affine apartment.

Now let Id be the set consisting of pairs (F, Ō) where Ō is a distinguished GF (f)-orbit

in LF (f). Define a relation:

Definition 76. Suppose (F1, Ō1) and (F2, Ō2) are two elements of Id. We say that

(F1, Ō1) ∼ (F2, Ō2)

provided that there exists n ∈ NG(T ) such that

1. A(F1) = A(nF2)

2. ı(Ō1) = nŌ2, where ı is the canonical isomorphism LF1(f) ' LnF2(f).

We now state a theorem due to DeBacker.

Theorem 77 (S. Debacker [9]). : Suppose char f = p is sufficiently large. Let F be a

facet in A and Ō a distinguished GF (f)-orbit in LF (f). The map that sends (F, Ō) ∈ Id

to the unique nilpotent G-orbit of minimal dimension which intersects the pre-image of Ō
non-trivially, induces a bijective correspondence

Id/ ∼ ↔ O(0),

where O(0) is the set of all nilpotent orbits in the g.

5.5 A SIMPLE EXAMPLE

Here we will calculate parahorics and pro-unipotent radicals for sl(2,F) in detail. Let char

f 6= 2. Note that sl(2) is rank 1, hence the affine apartment is a one-dimensional affine space.

Its root system Φ consists of only two roots, α and −α. Let us fix an alcove. This alcove

contains three facets; F1, F2 and F3. We will show how to compute the corresponding lattices

for facet F1.

Calculations for Facet F1

We fix a basis for the root spaces:
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F3 F1 F2

Figure 5.4: Affine apartment of sl(2)

F2 F1 F3

Figure 5.5: Alcove for sl(2)

Xα =


0 1

0 0


 X−α =


0 0

1 0




To compute the parahoric and pro-unipotent radical lattices, we observe that x lies between

Hα+0 and Hα−1.

The plane Hα+0 is the same as H−α−0. For y ∈ Hα+0, we have (α + 0)(y) = 0, hence

α(y) = 0 and −α(y) = 0. Similarly, for z ∈ Hα−1, we have (α − 1)(z) = 0, hence α(z) = 1

and −α(z) = −1.

Now, x lies between Hα+0 and Hα−1 means that 0 < α(x) < 1. Thus bα(x)c = 0 and

dα(x)e = 1. This yields the following:

p−bα(x)c = p−0 = o p1−dα(x)e = p1−1 = o

p−b−α(x)c = p−(−1) = p p1−d−α(x)e = p1−0 = p
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Parahoric gF Pro-Unipotent gF LF (f)

gF1 =


o o

p o


 g+

F1
=


p o

p p


 LF1(f) =


f 0

0 f




gF2 =


o p−1

p o


 g+

F2
=


 p 0

p2 p


 LF2(f) =


f f

f f




gF3 =


o o

o o


 g+

F3
=


p p

p p


 LF3(f) =


f f

f f




How does the theorem work? Assume that char(f) is not 2. Here is a list of distinguished

orbits in the respective Lie algebras over f.

• In gl(1, f), there is only one distinguished orbit and it is 0.

• In sl(2, f) there are 2:


0 sq

0 0


, where sq is a square in f and


0 nsq

0 0


, where nsq is

a non-square in f.

The pre-image of


0 0

0 0


 in gF1 is


0 0

0 0


.

The pre-images of


0 sq

0 0


 in gF2 and gF3 are, respectively,


0 $−1

0 0


 and


0 1

0 0


 .

The pre-images of


0 nsq

0 0


 in gF2 and gF3 are given by


0 $−1ε

0 0


 and


0 ε

0 0


 re-

spectively. Here ε is a non-zero element of o\o2.

This gives five representatives for distinct orbits in sl(2,F) as expected.
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5.6 TWO LEMMAS

We saw earlier that affine apartments are Euclidean spaces that capture the p-adic structure

of the underlying field. While affine apartments are not definable in Pas’s language; the

parahorics and pro-unipotent radicals are. This has been verified for each example considered

in this thesis. However, we would like to point out that this is true for any reductive group

and hence we state a lemma to that effect.

Lemma 78. Let F be a p-adic field, let g be a definable reductive Lie algebra with root system

Φ. Let F be a facet in the affine building of g. Let h be a definable Cartan subalgebra of g.

Then its parahoric gF and pro-unipotent radical g+
F (Lie algebras) are definable.

Proof. Let Φ be the root system for g. We will assume that g can be realised as a matrix

algebra and use matrix notation for elements of the algebra. Furtheremore, suppose g has

n× n free variables. Let F be a facet. We will write gF and g+
F as direct sums [See Formula

10 in Section 3.5.2]. Let F be a facet.

• Let h(o) be the virtual subset of h, given by

{h ∈ h | val(hij) ≥ 0}.

• Let h(p) be the virtual subset of h, given by

{h ∈ h | val(hij) ≥ 1}.

• Let Xφ be an n× n matrix of terms such that Basis(Xφ, gφ) holds, where gφ is the root

space corresponding to root φ.

• For any integer m, let Xφp
m be the virtual set get given by

{v ∈ g | ∃a (v = aXφ) ∧ (val(a) = m)}

Then we write:

gF = h(o)
⊕

φ(x)∈ZXφp
−φ(x)

⊕
φ(x)6∈ZXφp

−bφ(x)c

g+
F = h(p)

⊕
φ(x)∈ZXφp

−φ(x)+1
⊕

φ(x)6∈ZXφp
1−dφ(x)e.
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Remark 79. Observe that if φ(x) is not an integer, then there exist integers n1 and n2 such

that

n1 < φ(x) < n2

holds.

⇒ bφ(x)c = n1 and dφ(x)e = n2 ⇒ 1 − dφ(x)e = 1 − n2 = n1. Thus, if φ(x) 6∈ Z, then

Xφp
−bφ(x)c = Xφp

1−dφ(x)e

Hence the quotient gF /g+
F is nothing but

h(o)/h(p)
⊕

φ(x)∈Z (Xφp
−φ(x)/Xφp

1−dφ(x)e)

In the introduction to this chapter, we said that locally an affine apartment looks like

a spherical apartment. By that we mean that the hyperplane structure of the spherical

apartment of gx/g
+
x is the same as the local hyperplane structure in the affine apartment A

at x. This can be seen in both our examples, see Figures 5.2 and 5.3. This is true in general

as the preceeding remark suggests. We have a lemma:

Lemma 80. Let g be a reductive Lie algebra with affine apartment A. Let x ∈ A. Then

Lx(f) is ismorphic to the generalized Levi subalgebra of g(f) corresponding to the root system

Φx. Under this isomorphism, we have the following correspondence between the respective

generators

p−α(x)Xα 7→ Xα

h(o) 7→ h(f)

Proof. See Theorem 3.17 in [30].

Consider Figure 5.2. At each vertex, we see a hyperplane structure of the spherical

apartment of sl(3). In fact, as we see in Chapter 6, we do get sl(3) at each vertex. We will

see many instances of this lemma in the next two chapters.
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6.0 NILPOTENT CONJUGACY CLASSES IN sl(3,F).

We present this case as a prelude to g2. Another reason for choosing this case is that the

orbits of sl(3,F) appear in the parameterization of the orbits of g2(F). We recall two main

ideas from Chapter 5.

Theorem 81 (D.Barbash and A.Moy [4]). If F is a facet and Ō ⊂ LF (f) = gF /g+
F

is a distinguished nilpotent orbit, then there exists a unique nilpotent orbit in g of minimal

dimension which intersects the preimage of Ō nontrivially.

Theorem 82 (DeBacker [9, 11]). Suppose p is sufficiently large. The map that sends

(F,O) ∈ Id to the unique nilpotent G orbit of minimal dimension which intersects the pre-

image of O non-trivially induces a bijective correspondence Id/ ∼→ O(0), where O(0) is

the set of nilpotent G-orbits in g.

Fix an alcove in the affine building of sl(3). We use DeBacker’s equivalence relation in

Theorem 77 to label the corresponding non-equivalent facets. Thus, we have:

sl(3, f)

gl(2, f)

sl(3, f)

gl(1, f)

sl(3, f)

Figure 6.1: An alcove for sl(3)
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F1 : attached object = gl21(f) F2 : attached object = gl2(f),

F3 : attached object = sl3(f), F4 : attached object = sl3(f),

F5 : attached object = sl3(f).

Since the parahorics and pro-unipotent radicals associated with each facet are purely p-adic,

it makes sense to speak of ‘definability’ of these objects. We have already shown in Section

5.6 that they are definable in Pas’s Language. However, here we show explicitly for this

example that they are definable.

Consider the following basis elements for the root spaces. We will assign them our label

and also include the familiar label.

Y1 = Yα =




0 1 0

0 0 0

0 0 0


 Y2 = Y−α =




0 0 0

1 0 0

0 0 0


 Y3 = Yβ =




0 0 0

0 0 0

0 1 0




Y4 = Y−β =




0 0 0

0 0 1

0 0 0


 Y5 = Y(α+β) =




0 0 1

0 0 0

0 0 0


 Y6 = Y−(α+β) =




0 0 0

0 0 0

1 0 0




6.1 PARAHORICS AND PRO-UNIPOTENT RADICAL

Consider the following alcove of sl(3). This diagram will guide us throughout these calcula-

tions.

Let h be the Cartan sub-algebra of sl(3,F) containing matrices of the type




a1 0 0

0 a2 0

0 0 −(a1 + a2)


,

where a1, a2 ∈ F. We will now calculate the parahorics and pro-unipotent radicals for all

facets.
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F4 F3

HβHα
F1

F5

H−(α+β)+1

0 = F2

Figure 6.2: An alcove for sl(3) and its hyperplanes

1. Facet F1

x ∈ F1 means that x lies between the hyperplanes H−(α+β)+1 and Hα+β.

gF1 =




o o o

p o p

p o o


 g+

F1
=




p o o

p p p

p o p


 LF1(f) =




f 0 0

0 f 0

0 0 f




2. Facet F2

x ∈ F2 means that x lies on the hyperplanes Hα, Hβ and Hα+β.

gF2 =




o o o

o o o

o o o


 g+

F2
=




p p p

p p p

p p p


 LF2(f) =




f f f

f f f

f f f



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3. Facet F3

x ∈ F3 means that x lies on the hyperplanes H−(α+β)+1, Hβ and Hα+1.

gF3 =




o p−1 p−1

p o o

p o o


 g+

F3
=




p o o

p2 p p

p2 p p


 LF3(f) =




f f f

f f f

f f f




4. Facet F4

gF4 =




o o p−1

o o p

p p−1 o


 g+

F4
=




p p p

p p p2

p2 o p


 LF4(f) =




f f f

f f f

f f f




5. Facet F5

gF5 =




o o o

p o o

p o o


 g+

F5
=




p o o

p p p

p p p


 LF5(f) =




f 0 0

0 f f

0 f f




Theorem 83. The Lie algebra sl(3,F), the parahorics and pro-unipotent radicals associated

with each facet are definable in Pas’s language.

Proof. They are virtual sets given as follows:

• sl(3,F) is the following virtual set

{
Y |

3∑
i=1

Yii = 0
}

where Y is a 3× 3 matrix of terms of the valued field sort.

• gF1 = {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) ≥ 0, u =
∑6

i=1 bixi

(val(b1), val(b4), val(b5) ≥ 0, val(b2), val(b3), val(b6) ≥ 1)}

• g+
F1

= {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) > 0, u =
∑6

i=1 bixi

(val(b1), val(b4), val(b5) ≥ 0, val(b2), val(b3), val(b6) ≥ 1)}
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• gF2 = {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) ≥ 0 u =
∑6

i=1 bixi

val(b1), val(b2), val(b3), val(b4), val(b5), val(b6) ≥ 0}

• g+
F2

= {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) > 0, u =
∑6

i=1 bixi

val(b1), val(b2), val(b3), val(b4), val(b5), val(b6) ≥ 1}

• gF3 = {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) ≥ 0, u =
∑6

i=1 bixi

val(b3), val(b4) ≥ 0 ∧ val(b2), val(b6) ≥ 1 ∧ val(b1), val(b5) ≥ −1}

• g+
F3

= {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) > 0, u =
∑6

i=1 bixi

(val(b1), val(b5) ≥ 0 ∧ val(b3), val(b4) ≥ 1 val(b2), val(b6) ≥ 2)}

• gF4 = {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) ≥ 0, u =
∑6

i=1 bixi

(val(b1), val(b2) ≥ 0 ∧ val(b3), val(b6) ≥ 1 ∧ val(b4), val(b5) ≥ −1)}

• g+
F4

= {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) > 0, u =
∑6

i=1 bixi

(val(b1), val(b2) ≥ 1 ∧ val(b3), val(b6) ≥ 2 ∧ val(b4), val(b5) ≥ 0)}

• gF5 = {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) ≥ 0, u =
∑6

i=1 bixi

(val(b1), val(b3), val(b4), val(b5) ≥ 0 ∧ val(b2), val(b6) ≥ 1)}

• g+
F5

= {v ∈ V | ∃h ∈ h, u ∈ V (v = h + u) val(hii) > 0, u =
∑6

i=1 bixi

(val(b1), val(b5) ≥ 0 val(b2), val(b3), val(b4), val(b6) ≥ 1)}.
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6.2 DEFINABILITY OF NILPOTENT CONJUGACY CLASSES IN sl(3)

6.2.1 A Brief Outline of the strategy

Theorem 81 gives a convenient way of locating the required orbits. Fix a facet F . We

start with a nilpotent distinguished element in the Lie algebra over the residue field. Then

we consider its pre-image in gF . The orbit we desire intersects this pre-image non-trivially

but there may be more than one orbit intersecting this pre-image. We want the orbit with

minimal dimension, (by dimension, we mean dimension of the orbit as an algebraic variety).

There are many difficulties with this approach as it stands. Firstly, there are no quotients

in Pas’s language. Recall Formula 11 from Section 3.5.2. Secondly, we have no notion of an

algebraic variety or its dimension as yet. Lastly, the number of conjugacy classes is dependent

on the number of cubic classes in the residue field f. We overcome these difficulties as follows:

• We think of a pre-image of the distinguished nilpotent element in LF (f) as the sum of two

elements, one summand lies in the pro-unipotent g+
F and another is an element whose

angular component is this distinguished nilpotent element.

• For the dimension argument we use the result dimO = dim g − dim gX [see Lemma

35 in Section 3.2] and argue that the elements in the orbit of minimal dimension have

centralizers of maximal dimension. Centralizers are vector spaces over the valued field

and we have a formula for the dimension of a vector space. The dimension of the orbit

(hence that of the centralizer) does not change from K to F.

• We extend Pas’s language to include a finite number of variable symbols of the residue

field type, see Section 2.2.3.

Theorem 84. Let F be a p-adic field and f its residue field such that char f 6= 2, 3. Let g be

the virtual set given by

{X |
3∑

i=1

Xii = 0}

where X is a 3×3 matrix of terms of the valued field sort. Let (Fi, ei) be an equivalence class

on the set of facets in the affine apartment of g given by Definition 74, where Fi is a facet

in a fixed alcove of the affine apartment of sl(3) and ei is a representative of a distinguished
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nilpotent orbit in the object LFi
(f). Then,

O(Fi, ei) i = 1, . . . , 5

is a nilpotent conjugacy class of g, where O(Fi, ei) is definable in the extension of Pas’s lan-

guage Lext = L⋃{λ1, . . . , λn}, where Lext coincides with Pas’s langugae L if |f| ≡ 2(mod 3).

If |f| ≡ 1(mod 3), then Lext = L⋃{λ1, λ2, λ3} [See Section 2.2.3].

Proof. ∀x, y ∈ g let x ∼ y be the abbreviation of the formula

∃Z (Z = Zij 1 ≤ i, j ≤ 3) (det(Z) 6= 0) ∧ (ZxZ−1 = y)

1. Facet F1

Let e1 = {0} and let O(F1, e1) be the virtual set 03×3.

• For facets F2 to F5, we write a formula that will allow us to lift ei to its pre-image in

gFi
. Let φ(ei, v) be the formula

∃u, ẽi ∈ gFi
, y ∈ g+

Fi
(u = y + ẽi) ∧ (v ∼ u) ∧ ac(ẽi) = ei

• For facets F2 to F4, we write the following formula: φ(z1, z2, z3, ei, v) is the formula

φ(ei, v) ∧ z1z3 6= 0.

2. Facet F2

Let e2 be a matrix of terms of the residue field sort given by




0 z1 z2

0 0 z3

0 0 0


. For each

k = 1, . . . , n, let Ok(F2, e2) with k = 1, . . . , n be the virtual set given by

{v ∈ g | (dim(gv, 2)) ∧ (∃ z1, z2, z3 φ(z1, z2, z3, e2, v) ∧ (z1(z3)
2 = λk))}

3. Facet F3

Let e3 be the same as e2. For each k, let Ok(F3, e3) be the virtual sets given by

{v ∈ g | dim(gv, 2) ∧ (v 6∈ O(F2, e2)) ∧ (∃ z1, z2, z3 φ(z1, z2, z3, e3, v) ∧ z1(z3)
2 = λk)}

4. Facet F4

Let e4 be the same as e2. For each k, let Ok(F4, e4) be the virtual sets given by:

{v ∈ g | v 6∈ (O(F2, e2) ∪ O(F3, e3)) ∧ dim(gv, 2) ∧ (∃ z1, z2, z3 (φ(z1, z2, z3, e4, v) ∧
(z1(z3)

2 = λk))}
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5. Facet F5

Let e5 be a matrix of terms of the residue field sort given by




0 0 0

0 0 1

0 0 0




Let O(F5, e5) be the virtual set given by

{v ∈ g | (v 6∈ (O(F2, e2) ∪ O(F3, e3) ∪ O(F4, e4)) ∧ φ(e5, v)}
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7.0 NILPOTENT CONJUGACY CLASSES IN g2

We now focus our attention on the exceptional Lie algebra g2. It has rank 2. For its affine

apartment, recall Figure 5.3 from Chapter 5. Once again, we consider the group action by

its adjoint group G2. The p-adic fields considered here have residue characteristic 6= 2, 3.

Furthermore, we assume that F is complete and that f is perfect.

7.1 G2 AND g2

Before we can talk about the definability of nilpotent conjugacy classes, we have to prove

that G2 and g2 are definable.

7.1.1 The Lie Algebra g2

Theorem 85. The exceptional Lie algebra g2 is definable.

Proof. We realize g2 as a sub-algebra of so(7), see [22].

Let J be the matrix of terms given by

J =




1 0 0

0 0 I3

0 I3 0




where I3 is the 3 by 3 matrix with 1’s on the diagonal and 0’s elsewhere. Then, so(7) is the

virtual set given by

V = {(aij) ∈ gl(7) | J(aij) + t(aij)J = 0}

67



Definition 86. We define some notation that will be used throughout this chapter.

1. Let eij be a 7 by 7 matrix of terms with 1 as the entry in the ith row and jth column

and 0 elsewhere.

2. Let diag(b1, b2, . . . , bn) be the notation for an n by n diagonal matrix whose diagonal

entries are b1, b2, . . . , bn respectively.

3. Define dn = en+1,n+1 − en+4,n+4, 1 ≤ n ≤ 3.

Let h be the virtual set given by

{(hij ∈ V | ∃Fa1, a2(hij = a1d1 + a2d2 − (a1 + a2)d3)}

This is a Cartan subalgebra. Every element in h is diagonal and of the form

diag(0, a1, a2,−(a1 + a2),−a1,−a2, a1 + a2),

where a1, a2 are variables of the valued field sort.

4. X1 = Xβ = e3,2 − e5,6 X2 = X−β = e2,3 − e6,5 X9 = e2,4 − e7,5

X10 = e4,2 − e5,7 X11 = e3,4 − e7,6 X12 = e4,3 − e6,7

5. Let λ be such that λ2 = 2. The note below makes this more precise.

X3 = Xα = λ(e1,5 − e2,1)− (e6,4 − e7,3) X4 = X−α = λ(e1,2 − e5,1)− (e3,7 − e4,6)

X5 = λ(e1,6 − e3,1) + (e5,4 − e7,2) X6 = λ(e1,3 − e6,1) + (e2,7 − e4,5)

X7 = λ(e1,4 − e7,1)− (e2,6 − e3,5) X8 = λ(e1,7 − e4,1)− (e5,3 − e6,2)

Note. By λ2 = 2 we mean that λ =
√

2, however 2 may not have a square root in F. In other

words, we are considering a quadratic extension as a vector space over F. More precisely, let

v1 = 1 and v2 =
√

2. Then we get
√

2v1 = v2 and
√

2v2 = 2v1.

The matrix representing this linear transformation is


0 2

1 0


. Hence λ =

√
2 is to be treated

as an abbreviation of


0 2

1 0


. In fact, each Xi is a 14 by 14 matrix. With this understanding,

we leave Xi as they are. This affects neither the calculations nor the definability.

We define g2 to be the virtual set given by

{v ∈ V | ∃Fh ∈ h, w ∈ V
(
span(X1, X2, . . . , X12, w) ∧ (v = h + w)

)
(7.1)
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We write the basis elements explicitly since they will be used in the next section fre-

quently. Recall that the roots of g2 are {α,−α, β,−β, α + β − (α + β), 2α + β,−(2α +

β), 3α + β,−(3α + β), 3α + 2β,−(3α + 2β)} and X1, X2, . . . , X12 are the basis elements of

the root spaces corresponding to these roots respectively as can be seen by the commutator

relations at the end. The indices will respect this order the rest of the chapter. We will show

what the first four Xi are. The rest follow from Item 4 in Definition 7.1.

X1 = Xβ =




0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




X2 = X−β =




0 0 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 −1 0 0

0 0 0 0 0 0 0




X3 = Xα =




0 0 0 0 λ 0 0

−λ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 −1 0 0 0

0 0 1 0 0 0 0




X4 = X−α =




0 λ 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 −1

0 0 0 0 0 1 0

−λ 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0




To give a complete list, we have:

X1 = Xα, X2 = X−α, X3 = Xβ, X4 = X−β

X5 = Xα+β, X6 = X−(α+β), X7 = X2α+β, X8 = X−(2α+β)

X9 = X3α+β, X10 = X−(3α+β), X11 = X3α+2β, X12 = X−(3α+2β)
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7.1.2 The group G2

First, we write additional formulae that will enable us to talk about groups in Pas’s Lan-

guage.

7.1.2.1 List of Additional Formulae

1. Let G be a non-empty virtual set. Let Bin-Op(G, ∗) be the abbreviation for ‘* is a binary

operation on G’. In particular, * is a virtual function [Formula 30] from G×G → G and

we have

∀g, h ∈ G
(
g ∗ h ∈ G

)
.

Note: By definition, G is closed under the operation ∗.
2. We say that a binary operation * on G is associative if the following holds

∀g1, g2, g3 ∈ G (g1 ∗ g2) ∗ g3 = g1 ∗ (g2 ∗ g3)

and denote it by Assoc-Bin(G, ∗).
3. Let G be a non-empty virtual set. We say that G is a group with * as a binary operation

if

Bin-op(G, ∗) ∧ Assoc-Bin(G, ∗) ∧ (∃e ∈ G (∀g ∈ G g ∗ e = g = e ∗ g))∧
(∀g ∈ G, ∃g′ ∈ G g ∗ g′ = g′ ∗ g = e)

We denote this formula by Grp(G, ∗).
4. Let H, G be non-empty virtual sets. SubGrp(H, G, ∗) denotes the formula

(H ⊂ G) ∧Grp(G, ∗) ∧Grp(H, ∗)

7.1.2.2 Constructing G2 We construct G2 using a basis for the root spaces of g2 and

the following theorem. We quote this theorem without any background, our interest lies in

choosing generators for G2 that will allow us to construct the group in Pas’s language.

Let G be a reductive group, T its maximal torus. We fix a Borel subgroup B of G

containing T and set N = NG(T ). Let W be the Weyl group of G given by NG(T )/T .
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Theorem 87 (Bruhat Decmposition). : G =
∐

ω∈W BωB with Bω1B = Bω2B iff ω1 =

ω2 in W [21].

Strategy for constructing G2

• The generators for the unipotent radical of Borel group can be calculated by exponenti-

ating Xi(t). Since Xi(t) are nilpotent, we do not have to worry about convergence. We

denote them by xi(t). The xi(t) generate the root-groups Ui.

• We now find generators for the Weyl group. The Weyl group is D12, the Dihedral

group of order 12. It is a Coxeter group with generators σα and σβ (representing simple

reflections). These generators satisfy the relation

(σασα)6 = 1

We denote their matrix represenations by nα and nβ respectively. They are calculated

as follows [21, Section 27 and 28]:

For φ ∈ Φ, let εφ : Ga → Uφ be the natural isomorphism, where Ga is the additive

group (F, +). Then the matrix representation of εφ(t) is xφ(t).

nα = εα(1)ε−α(−1)εα(1) nβ = εβ(1)ε−β(−1)εβ(1) (7.2)

In our notation, nα = n3 = x3(1)x4(−1)x3(1) and nβ = n1 = x1(1)x2(−1)x1(1)

The generators for the root groups are obtained by exponentiating basis elements Xi. We

write

xi(t) = exp(tXi).

Since Xi are nilpotent, we do not have to worry about convergence. In fact, we get X3
i = 0.

So

xi = exp(tXi) = I + tXi +
t2X2

i

2
. (7.3)
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Moreover, if X2
i 6= 0, then the term

t2X2
i

2
contains a λ2. Since λ2 is 2, there are no denomi-

nators in xi. For example, x1(t), x2(t), x3(t) and x4(t) are as follows:

x1(t) =




1 0 0 0 0 0 0

0 1 t 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 −t 1 0

0 0 0 0 0 0 1




x2(t) =




1 0 0 0 0 0 0

0 1 0 t 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 −t 0 1




x3(t) =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 t 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 −t 1




x4(t) =




1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 t 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 −t

0 0 0 0 0 0 1




Since the basis elements Xi are nilpotent, the generators xi(t) are unipotent.

Definition 88. • Let xi, i odd be the generators xi(t) corresponding to the positive roots.

• Let T (a, b) be given by diag(1, a, b, a−1b−1, a−1, b−1, ab).

• Let l1 and l2 take integer values from 1 to 6.

Then, the group G2 is a virtual set given by:

{g ∈ gl(7) | ∨
l1,l2

(∃ a1, b1, a2, b2, t1, t3, . . . , t11,

(g = T (a1, b1)x1(t1)x3(t3)x5(t5)x7(t7)x9(t9)x11(t11)n
l1
1 nl2

2 T (a2, b2)))}
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7.2 PARAHORICS AND PRO-UNIPOTENT RADICALS

This section is devoted to computing lattices corresponding to the parahorics and unipotent

radicals associated with each facet. We follow the steps outlined in the sl(3) case [see 6.1].

Our interest lies in their definability. Since their actual matrix form plays no role in the

proof of the result, we will not show them for all facets. We will describle them as virtual

sets in all cases and give their matrix form, as an example, in one case. Recall the definitions

of parahoric and its pro-unipotent radical from Definition 71.

Parahoric: gF = 〈h(o), p−bφ(x)cXγ : ∀γ ∈ Φ〉
Pro-unipotent: g+

F := 〈h(p), p1−dφ(x)eXγ : ∀γ ∈ Φ〉.
Object over the residue field: LF (f) = gF /g+

F .

Fix an alcove and label the facets as follows.

F4 F3

F6

H2β+3α+1

F2 = Hβ+0

F1

F5 = Hα+0

Figure 7.1: An alcove for g2

1. Facet F1

x ∈ F1 ⇒ (x ∈ Hα, x ∈ Hβ, x ∈ H2β+3α, x ∈ Hα+β, x ∈ H3α+β, x ∈ H2α+β).

Facet F1 is a vertex and all hyperplanes Hφ (where φ ∈ Φ) pass through it. Hence, all the

matrix entries change when we go from gF1 to g+
F1

(except the seven places with zeroes,

of course). We get LF (f) = g2(f)
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2. Facet F2

Observe that x ∈ F2 ⇒ x ∈ Hβ+0 = H−β+0 ⇒ ±β(x) = 0

gF2 =




0 λp λp λo λo λo λp

λo o o o 0 o p

λo o o o o 0 p

λp p p o p p 0

λp 0 p o o o p

λp p 0 o o o p

λo o o 0 o o p




g+
F2

=




0 λp λp λo λo λo λp

λo p p o 0 o p

λo p p o o 0 p

λp p p p p p 0

λp 0 p o p p p

λp p 0 o p p p

λo o o 0 o o p




LF2(f) =




0 0 0 0 0 0 0

0 f f 0 0 0 0

0 f f 0 0 0 0

0 0 0 f 0 0 0

0 0 0 0 f f 0

0 0 0 0 f f 0

0 0 0 0 0 0 f




gF2 =
{
v ∈ g2| ∃h ∈ h (v = h +

∑12
i=1 bixi) val(hii) ≥ 0

val(b1), val(b2), val(b3), val(b5), val(b7), val(b9), val(b11) ≥ 0

val(b4), val(b6), val(b8), val(b10), val(b12) ≥ 1
}

g+
F2

= {{v ∈ g2 | ∃h ∈ h(v = h +
∑12

i=1 bixi) val(hii) ≥ 1

val(b3), val(b5), val(b7), val(b9), val(b11) ≥ 0

val(b1), val(b2), val(b4), val(b6), val(b8), val(b10), val(b12) ≥ 1}

3. Facet F3.
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Observe that x ∈ F3 ⇒ x ∈ Hβ = H−β ⇒ ±β(x) = 0 x ∈ H2β+3α−1, x ∈ H(3α+β)−1

LF3(f) =




0 0 0 0 0 0 0

0 f f f 0 0 0

0 f f f 0 0 0

0 f f f 0 0 0

0 0 0 0 f f f

0 0 0 0 f f f

0 0 0 0 f f f




gF3 =
{
v ∈ g2 | ∃h ∈ h(v = h +

∑1
i=1 2bixi) val(hii) ≥ 0

val(b1), val(b2), val(b3), val(b5), val(b7) ≥ 0 val(b9), val(b11) ≥ −1

val(b4), val(b6), val(b8), val(b10), val(b12) > 0
}

g+
F3

= {v ∈ g2 | ∃h ∈ h(v = h +
∑1

i=1 2bixi) val(hii) ≥ 1

val(b3), val(b5), val(b7), val(b9), val(b11) ≥ 0

val(b1), val(b2), val(b4), val(b6), val(b8) ≥ 1 val(b10), val(b12) ≥ 2

4. Facet F4

x ∈ F4 ⇒ x ∈ H−(2β+3α)+1 = H2β+3α−1, x ∈ Hα+0 = H−α+0

LF4(f) =




0 f 0 0 f 0 0

f f 0 0 0 0 0

0 0 f f 0 0 f

0 0 f f 0 f 0

f 0 0 0 f 0 0

0 0 0 f 0 f f

0 0 f 0 0 f f




Note that gF4 and g+
F4

are calculated as above.

5. Facet F5

x ∈ F5 ⇒ x ∈ Hα+0
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Hence, LF5(f) =




0 f 0 0 f 0 0

f f 0 0 0 0 0

0 0 f 0 0 0 f

0 0 0 f 0 f 0

f 0 0 0 f 0 0

0 0 0 f 0 f 0

0 0 f 0 0 0 f




Again gF5 and g+
F5

are calculated the same way.

6. Facet F6

x ∈ F6 ⇒ (φ+n)(x) 6= 0 for any φ in the root system. Hence, LF6(f) =




0 0 0 0 0 0 0

0 f 0 0 0 0 0

0 0 f 0 0 0 0

0 0 0 f 0 0 0

0 0 0 0 f 0 0

0 0 0 0 0 f 0

0 0 0 0 0 0 f




7.3 DISTINGUISHED NILPOTENT ORBITS IN OBJECTS LF (f)

Here we give a list of representatives of distinguished nilpotent orbits in each Lie algebra

LF (f). We also show how to get their pre-images in the parahoric sub-algebras of g2(F) using

Lemma 80 from Chapter 5. We begin the discussion with g2(f) [20].

1. g2(f) class representatives

Let X1 = ac(X1).
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G2-Class Representative

1 0

A1 X1

Ã1 X3

G2(a1) (subregular) X1 + X7

X1 + ηX7

X1 + µX9 or X1 + X7 + ζX9

G2 (regular) X3 + X1

where η is a fixed non-square in f

µ is a fixed non-cube in f and ζ is such that x3 − 3x− ζ is irreducible.

Note. For the subregular case, the two representatives correspond to the 2 cases where

q ≡ 1(mod 3) or q ≡ 2(mod 3)

Only the regular and subregular orbits are distinguished. Once again, we only give the

matrix representation of e1, a representative of the regular orbit.

Regular: Let e1 be given by X1 + X3 =




0 0 0 0 λ 0 0

−λ 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 −1 0

0 0 0 −1 0 0 0

0 0 1 0 0 0 0




. Here λ is to be

understood the same way λ was in Definition 86.

Notation 89. • e1 = X1 + X3

• e1
1 = X1 + X7

• e2
1(η) = X1 + ηX7

• e3
1(µ) = X1 + µX9

• e4
1(ζ) = X1 + X7 + ζX9
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Remark 90. Notice that the last subregular orbit has two representatives depending

on whether q ≡ 1(mod 3) or q ≡ 2(mod 3). What if, for a particular p-adic field with

q ≡ 1(mod 3), the second representative e4
1(ζ) yields another subregular orbit different

from the intended orbit, that is an orbit which does not intersect the pre-image of e3
1(µ)?

This problem is avoided as follows. By quadratic reciprocity [see Lemma 95 in the

Appendix], when q ≡ 2(mod 3), all elements of f are cubes. Suppose we were looking at

F such that q ≡ 2(mod 3). Then, the pre-image of e3
1(µ) is empty since no non-cubes

exist, whereas the pre-image of e4
1(ζ) would give the appropriate orbit. Now suppose, we

look at F such that q ≡ 1(mod 3), then the pre-image of e3
1(µ) gives the required orbit,

and the pre-image of e4
1(ζ).

2. sl(3)

Recall, from Chapter 6, that the only distinguished nilpotent orbit in sl(3) is its regular

orbit. Consider




0 z1 z2

0 0 z3

0 0 0


 where z1, z2, and z3 are elements of the residue field with

z1z3 6= 0. This is a representative for the regular orbit. We now need to lift it to g2(F).

We use Lemma 80 to show how sl(3) is embedded in g2. We conclude from Figure 7.1

that sl(3) corresponds to the simple root system {β, 2β + 3α}. However, F3 lies on

H2β+3α−1 and not on H2β+3α. This is reflected in the map sl(3) → g2. Recall the basis

for sl(3) from Chapter 6. Thus we have, sl(3) → gF3 ⊂ g2 by

Yβf → Xβo = X1o

Yαf → X2β+3αp−1 = X11p
−1.

Observe that X1 and X11 are two of the six long roots in g2. The remaining four Yi get

mapped to the remaining four long roots so that they preserve the respective commutator

relations.

We call this map ρ3.

• For each k, let

ek
3(z1, z2, z3) := ek

3 := ρ3(z1Yα + z2Yβ + z3Yα+β). (7.4)
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3. gl(2, f)

A representative of its distinguished nilpotent orbit is given by


0 1

0 0


.

We use Lemma 80 to show how gl(2) is embedded in g2. We see in Figure 7.1 that we

get gl(2) on two different facets F2 and F5; the respective local hyperplane structures

correspond to two different roots. Observe that F2 is contained in Hβ and F5 is contained

in Hα.

Let ρ2 be the map gl(2, f) → gF2 ⊂ g2 given by
0 1

0 0


 7→ X1


0 0

1 0


 7→ X2

Let ρ5 be the map gl(2, f) → gF5 ⊂ g2 given by
0 1

0 0


 7→ X3


0 0

1 0


 7→ X4

4. so(4, f) = A1 × Ã1

This vertex is at the intersection of hyperplanes Hα and H(2β+3α)−1 and so(4, f) is the Lie

algebra corresponding to the root system {α,−α, 2β + 3α,−(2β + 3α)}. Thus so(4, f) is

made of two copies of sl(2, f); one generated by Xα and another by X2β+3α. The fact

that vertex F4 is on the hyperplane H(2β+3α)−1 and not on H(2β+3α) plays a role in the

way so(4, f) embeds into g2(F). More precisely; we have:

Xαf 7→ Xα0

X2β+3αf 7→ X2β+3αp−1

Thus, let ρ4 : so(4, f) −→ g2(F) be the map above.

We realize so(4, f) as the set of 4 by 4 matrices of the form


A B

C −tA


, where A =


a1 a2

a3 a4


 B and C are skew-symmetric and are given by B =


 0 b2

−b2 0


, C =


 0 c2

−c2 0


. In other words, so(4, f) is the Lie algebra preserving the quadratic form

given by


0 I

I 0


 where I is the two by two identity matrix. To see that so(4, f) contains
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two copies of sl(2, f), we define the following Lie algebra isomorphism. For the first copy,

let s1 be the map

0 1

0 0


 7→ Xα.

For the second copy, let s2 be the map

0 1

0 0


 7→ X2β+3α.

Recall, in A1 = sl(2, f) the distinguished orbit has as its representative:


0 ε

0 0


 where

ε is a square class in the residue field f.

Let nsq ∈ so(4) be s1

( 
0 sq

0 0




)
⊕ s2

( 
0 sq

0 0




)
, where sq is a square in f.

Let nnsq ∈ so(4) be s1

( 
0 nsq

0 0




)
⊕ s2

( 
0 nsq

0 0




)
, where nsq is a non-square in f.

Finally, let

e1
4 = ρ4(n) and e2

4 = ρ4(n) (7.5)

7.4 DEFINABILITY OF NILPOTENT CONJUGACY CLASSES IN g2

We are now ready to present the main result of this chapter. Consider the following alcove.

Recall from Section 6.2.1 that, first for each facet Fi, we start with a distinguished nilpotent

element in the Lie algebra LFi
(f). We lift it to its pre-image in the corresponding parahoric

and obtain all orbits intersecting this pre-image. We will now write a formula (rather, a

template) capturing this idea. This formula works for all facets.

Let i = 1, 2, . . . , 6 be the index running over all facets.

Let j =





0, 1, 2, 3, 4 if i = 1;

1, 2 if i = 4;

1, 2, . . . , n if i = 3

0 otherwise.
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g2(f)

sl(3, f)

gl(2, f)gl(2, f)
gl(1, f)

so(4, f)

Figure 7.2: An alcove for g2

Notation 91. 1. Let x ∼ y be the abbreviation of ∃H ∈ G2 (HxH−1 = y).

2. When we write ac(w) = b, we mean ac(wl,m) = bl, where l, m = 1, . . . , 7.

3. By ej
i , we mean a representative of a distinguished nilpotent orbit in LFi

(f) as defined in

Section 7.3.

4. Let φ(ej
i , v) be the formula

∃u, ẽj
i ∈ gFi

, ∃ y ∈ g+
Fi

(u = y + ẽj
i ) ∧ (ac(u) = ej

i ) ∧ (val(ẽj
i ) = 0) (v ∼ u)

5. Let non-sq(γ) be the formula

γ 6= 0 ∧ (6 ∃ξ)(ξ2 = γ).

6. Let non-cb(γ) be the formula

γ 6= 0 ∧ (6 ∃ξ)(ξ3 = γ).

7. Let poly(γ) be the formula

γ 6= 0 ∧ (6 ∃ξ)(ξ3 − 3ξ − γ = 0).
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Theorem 92. Let F be a p-adic field and f its residue field. Let char f be sufficiently large,

set p > 16. Let g2 be the virtual Lie algebra given by Equation 7.1. Let (Fi, ei) be an

equivalence class on the set of facets in the affine apartment of g2 given by Definition 74,

where Fi is a facet in a fixed alcove of the affine apartment of g2 and ei is a representative of

a distinguished nilpotent orbit in the object LFi
(f). Let i and j be as in Notation 91. Then,

O(Fi, e
j
i )

is either empty or a nilpotent conjugacy class of g, where O(Fi, e
j
i ) is definable in the exten-

sion of Pas’s language Lext = L⋃{λ1, . . . , λn}, where Lext coincides with Pas’s langugae L
if |f| ≡ 2(mod 3). If |f| ≡ 1(mod 3), then Lext = L⋃{λ1, λ2, λ3} [See Section 2.2.3].

Proof. Recall that an object is definable if it is of the form

{x | φ(x)}

where φ is a formula in Pas’s language. Also, recall that from Section 7 that g2 and

gF1 , g+
F1

, gF2 , g+
F2

, gF3 , g+
F3

, gF4 , g+
F4

, gF5 , g+
F5

, gF6 , g+
F6

are definable. As before the number

of orbits may be more than the number of facets.

1. Facet F1

The Lie algebra associated with this facet is g2(f). Recall that it has 4 distinguished

orbits: 1 regular and 3 subregular. Let e0
1 be a matrix of terms of the residue field sort

as given by Notation 89 from Section 7.3.

Then O(F1, e
0
1) is the virtual set given by

{
v ∈ g2 |φ(e0

1, v)
}
.

This is the regular orbit in g2. Let e1
1, e

2
1, e

3
1, e

4
1 be matrices of terms of the residue field

sort respectively, given by Notation 89 from Section 7.3.

Let O(F1, e
1
1) be the virtual set given by

{v ∈ g2 |φ(e1
1, v) ∧ (dim(gv, 4))}

Let O(F1, e
2
1) be the virtual set given by

{
v ∈ g2| ∃ η(non-sq(η)) φ(e2

1(η), v) ∧ dim(gv, 4) ∧ (¬φ(e1
1, v))

}
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For the next virtual set, we refer to Remark 90. Let O(F1, e
3
1, e

4
1) be the virtual set given

by{
v ∈ g2 |

((∃µ non-cb(µ) ∧ φ(e3
1(µ), v) ∧ (6 ∃ t. t2 = −3)

) ∨
( 6 ∃µ. non-cb(µ) ∃ ζ poly(ζ) φ(e4

1(ζ), v)
)) ∧ dim(gv, 4) ∧ (¬φ(e1

1, v)) ∧ (¬φ(e2
1, v))

}

2. Facet F2

Recall that the object associated with this facet is gl(2, f). Let e0
2 be a matrix of terms

of the residue field sort as given in Section 7.3.

Then, O(F2, e
0
2) is the virtual set given by

{
v ∈ g2 |φ(e0

2, v) ∧ dim(gv, 8) ∧ (
∧

j′=0,...,4 ¬φ(ej′
1 , v))

}

3. Facet F3

Recall that the object associated with this facet is sl(3, f). Let ek
3 be a matrix of terms

of the residue field sort as given in Equation (7.4) in Section 7.3.

For each k, let O(F3, e
k
3), where k = 1, . . . , n be the virtual sets given by

{
v ∈ g2 | ∃z1, z2, z3 dim(gv, 4) ∧ φ(ek

3(z1, z2, z3), v) ∧ ac(z1z
2
3) = λk)

}

4. Facet F4

Recall that the object associated with this facet is so(4, f). Let e1
4, e2

4 be matrices of

terms of the valued field sort given by Equation (7.5).

Let O(F4, e
1
4) be the virtual set given by

{
v ∈ g2 |φ(e1

4, v) ∧ (dim(gv, 4)) ∧ (¬φ(e0
2, v)) ∧ (

∧
j′=0,...,4 ¬φ(ej′

1 , v))

}

Let O(F4, e
2
4) be the virtual set given by

{
v ∈ g2 |φ(e2

4, v) ∧ (dim(gv, 4)) ∧ (¬φ(e0
2, v)) ∧ (

∧
j′=0,...,4 ¬φ(ej′

1 , v))

}

5. Facet F5

Recall that the object associated with this facet is gl(2, f). Let e0
5 be a matrix of terms

of the residue field sort as given in Section 7.3.

Let O(F5, e
0
5) be the virtual set given by

{
v ∈ g2 |φ(e0

5, v) ∧ (¬φ(e1
4, v) ∧ (¬φ(e2

4, v) ∧ (¬φ(e0
2, v)) ∧ (

∧
j′=0,...,4 ¬φ(ej′

1 , v))

}
.
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6. Facet F6

Recall, that Lie algebra associated with this facet is gl(1, f). The only distinguished orbit

in gl(1) is the 0-orbit. The orbit O(F6, 0) is the virtual containing the zero-element, i.e.,

0. Let

O(F6, e
0
6) = 0

Each O(Fi, e
j
i ) gives a nilpotent conjugacy classes of g2. Thus nilpotent conjugacy classes of

g2 are definable in Lext.
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8.0 CONCLUSION

In this thesis we focussed on so(n), sl(3) and g2 because, while they differ in their treatment,

they have all been already parameterized. What made the definability of their nilpotent

conjugacy classes possible?

The parameterization of the orbits in so(n) was based on the concepts of quadratic forms.

We do not have a theory of quadratic forms in Pas’s language but this difficulty could be

overcome using an appropriate matrix representation of the quadratic form on so(n). Similar

parameterizations exist for sp(2n) and u(n). It is not hard to show that the orbits of sp(2n)

are definable, the proof would be similar to the so(n) case. However, we face a problem with

u(n). Unitary Lie algebras are, in general, not definable in Pas’s language. We would prefer

not to restrict ourselves to only those p-adic fields that have
√−1. For a more universal

approach, we could “define”
√−1 the way we defined

√
2 in Note 86. With this in mind we

hazard a conjecture:

Conjecture 93. With appropriate restrictions on p, the nilpotent conjugacy classes of the

Unitary Lie algebra u(n) are definable in Pas’s language.

Before we discuss the use of affine apartments in the second half of the thesis; we recall

that we realized g2 as a subalgebra of so(7). Since a parameterization and result for so(7)

already exist, we could consider studying how the orbits of so(7) intersect those of g2 and

use the result. (This was a suggestion by Kay Magaard.)

The cases sl(3) and g2 are treated differently. Their orbits are parameterized using affine

apartments, these are not purely p-adic objects but the parahoric and pro-unipotent radical

Lie algebras are p-adic objects. The examples of sl(2) and sl(3) show that the number of

orbits depends on the number of square and cubic classes in the residue field f respectively.
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This leads to a conjecture

Conjecture 94. Let F be a p-adic field with a sufficiently large p. Then, for every n,

there exists an extension of Pas’s language Lext = L ∪ {γ1, . . . , γm} such that the nilpotent

conjugacy classes of sl(n) are definable. Here γi are constant-symbols of the residue field

sort.

The result due to Barbasch and Moy [see Theorem 81] allows us to lift the distinguished

orbits over the residue field to an orbit over the p-adic field. One of the important facts

assisting us in definability of orbits in g2 was that the dimensions of the centralizers of all

orbits were known. From K to F, an orbit may split into more orbits but the dimension of

the centralizer remains the same. We used this knowledge thus by-passing the problem of

constructing a formula that says that the dimension of a vector space is minimal/maximal.

Can this result be extended to other semisimple Lie algebras of higher ranks? The

answer is ‘yes’ for classical Lie algebras. With exceptional Lie algebras F4, E6, E7, E8, over

an algebraically closed field, the orbits have been parameterized in terms of the conjugacy

classes of Levi algebras [3]. However, we are faced with the issue of definability of the

algebras. One way of constructing F4 requires using Octonions and their isometries; another

requires Octonions and its projective plane [1]. In order to define projective planes in Pas’s

language, we need the notion of quotient spaces. We have tackled this issue using orthogonal

complements [see formula 11 in Section 3.5.2]. It appears that we could answer in the

affirmative for F4.

The use of Pas’s language to reformulate p-adic representation theory gives rise to many

important directions for research. Is this language powerful enough to express other repre-

sentation theoretic objects? We take many such objects for granted: the notion of roots is

entrenched in the study of Lie algebras. Roots however are p-adic and real number objects.
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APPENDIX

A LEMMA ABOUT QUADRATIC RESIDUES

Lemma 95. Let p be an odd prime not equal to 3 and let q be a power of p. Then −3 is a

non-square in f = Fq iff q ≡ 2 (mod 3).

Proof. First note that there are two possibilities for the congruence class of p modulo 3,

p ≡ 1 (mod3) or p ≡ 2 (mod 3).

If p ≡ 1 (mod 3), then q = pn ⇒ q ≡ 1n = 1 (mod3). Whereas, if p ≡ 2 (mod3), then

the congruence class of q modulo 3 is determined by the exponent of p. If q is an odd power

of p, we get q = p2n+1 = (p2)np ≡ (22)n2 ≡ 1n2 ≡ 2(mod 3). If q is an even power of p, then

q = p2n = (p2)n ≡ (22)n ≡ 1n ≡ 1(mod 3).

Thus, q ≡ 2 (mod 3) ⇒ p ≡ 2 (mod 3).

Case 1 q ≡ 2 (mod3).

Let
(

a
b

)
be the Legendre symbol, where b is any prime and a any integer.

(−3

p

)
=

(
3

p

)(−1

p

)

=
(p

3

)
(−1)

p−1
2 (−1)

p−1
2

=
(p

3

)
(−1)p−1

=

(
2

3

)
(−1)p−1

=

(
2

3

)
= −1
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This says that −3 is not a square in Fp. Since Fq is an odd-power extension of Fp, we

can conclude that −3 is not a square in Fq.

Case 2 q ≡ 1 (mod3). This can happen in two ways p ≡ 2 (mod3) (with q an even power

of p). Even though, −3 is not a square in Fp, it is a square in Fq, since q = peven.

Another possibility is p ≡ 1 (mod3). Then using our earlier computation, we get

(−3

p

)
=

(p

3

)
(−1)p−1

=

(
1

3

)
= 1

Thus we have −3 is a non-square in f = Fq iff q ≡ 2 (mod3).

88



BIBLIOGRAPHY

[1] John Baez: http://math.ucr.edu/home/baez/octonions/node15.html

[2] P. Bala and R.W. Carter: Classes of Unipotent Elements in Simple Algebraic Groups I,
Math. Proc. Cambdrige. Phil. Soc. 79, 1976

[3] P. Bala and R.W. Carter: Classes of Unipotent Elements in Simple Algebraic Groups II,
Math. Proc. Cambdrige. Phil. Soc. 79, 1976.

[4] D. Barbasch and Moy: Local character expansions. Annales Scientifiques de l’École Nor-
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[39] J.-L. Waldspurger: Intégrales orbitales nilpotentes et endoscopic pour les groupes clas-
siques non ramifiés, Astérisque No. 269 2001.
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