
 1
 

THE DOPAMINERGIC NETWORK AND GENETIC SUSCEPTIBILITY TO 

SCHIZOPHRENIA 

 
 
 
 
 
 
 
 

by 

Michael E. Talkowski 

B.S., Biology, The Pennsylvania State University 

B.S., Psychology, The Pennsylvania State University 

 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of the 

Graduate School of Public Health in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 

University of Pittsburgh 
 
 

2008 



 2

UNIVERSITY OF PITTSBURGH 

 

Graduate School of Public Health 
 
 
 

This dissertation was presented 

by 

Michael E. Talkowski 
 

It was defended on 

July 24th, 2008 

and approved by 

Thesis Advisor: 
Vishwajit L. Nimgaonkar, M.D., Ph.D.,  

Professor of Psychiatry and Human Genetics 
School of Medicine and Graduate School of Public Health, University of Pittsburgh 

 
Committee Chairperson: 
Eleanor Feingold, Ph.D. 

Associate Professor of Human Genetics and Biostatistics 
Graduate School of Public Health, University of Pittsburgh 

 
Bernard Devlin, Ph.D. 

Associate Professor of Psychiatry and Human Genetics 
School of Medicine and Graduate School of Public Health, University of Pittsburgh 

 
M. Michael Barmada, Ph.D. 

Associate Professor of Human Genetics 
Graduate School of Public Health, University of Pittsburgh 

 
Gonzalo E. Torres, Ph.D. 

 Assistant Professor of Neurobiology 
School of Medicine, University of Pittsburgh



 3

Copyright © by Michael E. Talkowski 

2008 



 4

 

THE DOPAMINERGIC NETWORK AND GENETIC SUSCEPTIBLITY TO 

SCHIZOPHRENIA 

Michael E. Talkowski, Ph.D. 

University of Pittsburgh, 2008 

 

Background: Schizophrenia is a disabling illness with unknown pathogenesis.  Estimates of 

heritability suggest a substantial genetic contribution; however genetic studies to date have been 

equivocal.  Uncovering liability loci may therefore require analyses of functionally related genes.  

Rooted in this assumption, this dissertation describes a series of studies investigating a genetic 

epidemiological foundation for the commonly cited hypothesis suggesting dopaminergic 

dysfunction in schizophrenia pathogenesis, i.e. the ‘dopamine hypothesis’.   

 

Studies: The initial study investigated DRD3 and identified novel associations across the gene.  

The second study considered a larger network of dopaminergic genes in two independent 

Caucasian samples, detecting replicated associations and epistatic interactions.  The study 

proposed a risk model for schizophrenia centered on the dopamine transporter.  Study #3 

investigated a dopamine precursor, phenylalanine hydroxylase, in four independent samples, 

identifying a single SNP (rs1522305) that was significantly replicated in two samples.  Study #4 

was motivated the hypothesis of a shared genetic etiology for schizophrenia and bipolar disorder.  

This study comprehensively evaluated the dopaminergic network, selecting 431 ‘tag’ SNPs from 

40 genes among large schizophrenia and bipolar cohorts contrasted with adult controls.  Across 

all genes 60% of nominally significant schizophrenia risk factors were also associated with 
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bipolar disorder. The results supported DRD3 variations as risk factors for both disorders, 

confirmed several previously reported associations, and proposed new targets for future research.   

 

Conclusion: These results suggest dopaminergic gene variations could play an etiological role in 

the pathogenesis of schizophrenia and possibly bipolar 1 disorder.  Additional replicate studies 

are warranted 

.     

Public Health Significance: 

Schizophrenia (SZ) is devastating.  When the Global Burden of Disease study calculated 

disability adjusted life years, weighted for the severity of disability, they determined active 

psychosis seen in schizophrenia produces disability equal to quadriplegia.  Schizophrenia has 

been estimated to be among the top ten causes of disability worldwide.  As schizophrenia is 

common (roughly 1% point prevalence worldwide), the economic burden to society is 

substantial.  Pathogenesis is unknown and treatment is palliative.  Therefore understanding the 

genetic etiology could facilitate development of promising therapeutics.   
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1.0  INTRODUCTION 

These data describe an ongoing series of studies aimed at evaluating the genetic epidemiological 

evidence for or against the long held hypothesis that alterations in dopamine neurotransmission 

represent a pathogenic mechanism for schizophrenia.  The hypotheses and analyses presented 

here are not novel.  Biological studies have long suggested dopamine dysfunction in 

schizophrenia etiology, and dopamine receptors are primary targets of antipsychotics.  Genetic 

studies have targeted dopamine gene polymorphisms for the better part of the last two decades.  

However, a review of existing data suggests a substantial gap in knowledge between relatively 

small single variant association studies and large scale genome-wide association studies.  The 

purpose of these studies is therefore to comprehensively reconsider an existing hypothesis that 

remains cursorily evaluated.  

1.1 PUBLIC HEALTH SIGNIFICANCE 

Schizophrenia (SZ) is devastating.  When the Global Burden of Disease study calculated 

disability adjusted life years, weighted for the severity of disability, they determined active 

psychosis seen in schizophrenia produces disability equal to quadriplegia (C. J. L. Murray & 

Lopez, 1996).  One study estimated schizophrenia was among the top ten causes of disability 

worldwide (Lopez et al., 1998).  As schizophrenia is common (1% point prevalence), the 
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economic burden to society is substantial.  In 2002, the US healthcare system spent over $62 

billion on schizophrenia patients (Wu et al., 2005) who occupy 30% of all U.S. psychiatric 

hospital beds.  Pathogenesis is unknown and treatment is palliative.  Therefore understanding the 

genetic etiology could facilitate development of promising therapeutics.   

The comprehensive nature of individual gene evaluations conducted herein will also 

impact future studies in other diseases.  Dopaminergic gene variants have been proposed as risk 

factors in diseases such as Alzheimer’s, Parkinson’s, and ADHD, to name a few.  The extensive 

gene mapping, polymorphism discovery, and linkage disequilibrium analyses in these studies 

provide an established set of genetic variants representative of all currently available common 

polymorphisms within the dopaminergic pathway.  Future studies can utilize this resource as a 

source of uniform variations required to test a common variant hypothesis for any spectrum of 

phenotypic traits of interest.   

1.2 SCHIZOPHRENIA 

1.2.1 History 

Schizophrenia is a psychiatric disorder characterized by psychotic phenomena.  Without 

formal definition, observations of ‘diseases of the mind’ stretch as far back as Hippocrates (460 – 

370 B.C.) (Palha & Esteves, 1997).  Clinical pathologies such as mania and melancholia were 

recognized as forms of madness (I. Gottesman, 1991).  The term dementia praecox was first used 

in 1857 by Benedict Morel (I. Gottesman, 1991).  Karl Kahlbaum (1828 – 1899) studied the 

course of dementia praecox and documented clinical psychoses during all stages of the illness, 
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being one of the first to suggest the evolution of psychosis was a measurable symptom.   Based 

on the works of these and others, in 1896 Emil Kraeplin expanded Morel’s model of dementia 

praecox and identified a new nosologic systemization of mental illness.  Although Kraeplin’s 

broad categories of dementia praecox and manic depressive insanity have since been redefined 

(Kraepelin, 1919), the essential features of his concept of dementia praecox are present today in 

the DSM-IV diagnosis of schizophrenia (A.P.A., 1994) (A. Jablensky, 1997) (see (Palha & 

Esteves, 1997) for review). 

1.2.2 Clinical presentation 

Schizophrenia is a highly heterogeneous disorder in which the onset is commonly in late 

adolescence.  The pathogenesis of the disorder is unknown and there is no available biomarker or 

diagnostic test, so diagnoses remain reliant on patient interviews and self-report.  Prior to 1980, 

diagnostic reliability varied widely, particularly across cultures (Cooper & Sartorius, 1977) 

(Kuriansky, Deming, & Gurland, 1974).  The reliability has dramatically improved since 

publication of the third edition of the Diagnostic and Statistical Manual of Mental Disorders, 

Third Edition (DSM-III) (A.P.A., 1980).  Further improvements in the most recent version of the 

DSM (DSM-IV) have established specific diagnostic criteria (A.P.A., 1994).  The first criterion 

state that two or more of the following symptoms must be present for a significant portion of 

time during a one-month period (or less if successfully treated) (Criterion A): delusions, 

hallucinations, disorganized speech, grossly disorganized or catatonic behavior, and can include 

negative symptoms such as flattened affect, alogia (poverty of speech), or avolition (poverty of 

desire or motivation).  Criterion B (social / occupational dysfunction) states that symptoms must 

lead to a disturbance in one or more major areas of functioning (e.g. work, interpersonal 
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relationships, or self care in adults) for a significant portion of time since their onset.  Criterion C 

(duration) requires continuous signs of disturbance that persist for at least six months, including 

one month of ‘active-phase’ symptoms (meeting Criterion A).  Criterion D and E exclude other 

disorders such as schizoaffective and mood disorders with psychotic features, and require the 

disturbance is not a result of direct physiological effects of substance abuse (e.g. drug abuse or 

medication) or a general medical condition.  Criterion F requires that if Autistic Disorder or 

another Pervasive Developmental Disorder were previously diagnosed, schizophrenia can only 

be made as an additional diagnosis if prominent delusions or hallucinations are also present for at 

least a month.  There are subtypes of schizophrenia not discussed in detail here, including 

paranoid, catatonic, disorganized, undifferentiated, and residual type.  Of note for the studies 

presented here, individuals diagnosed with schizoaffective disorder meet Criterion A for 

schizophrenia, but also have a period during which diagnostic criteria of Major Depressive 

Episode, Manic Episode, or Mixed Episode is met concurrently.   

Other symptoms are often seen that lead to chronic impairment, including deficits in 

neurocognitive domains such as executive function, attention, and memory (Carpenter, 1994; 

Peuskens, Demily, & Thibaut, 2005; Sharma & Antonova, 2003).  The course and outcome of 

schizophrenia are as varied as its symptoms.  A series of studies published between 1972 and 

1985 in European and United States Caucasian populations found differing outcomes between 

patients, irrespective of diagnostic criteria used (see (Huber, 1997) for review).  Taken together, 

these studies suggest that full psychopathological remission is seen in about 25% of patients and 

roughly 50% of patients display social remission.  These studies also concluded that course of 

illness could not be reliably predicted at age of onset (Huber, 1997).  Based on the conclusions of 

a series of cross-national World Health Organization (WHO) studies, it has been accepted that 
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patients in developing countries have a better course and outcome (A. Jablensky et al., 1992; 

W.H.O., 1979) (G. Harrison et al., 2001).  However, a recent analysis of 23 longitudinal studies 

of schizophrenia outcomes suggests the data is more complex than originally interpreted and 

those initial findings should be re-examined (A. Cohen, Patel, Thara, & Gureje, 2008).  It has 

also been well accepted that women experience a better outcome than men (R. Z. Cohen, 

Gotowiec, & Seeman, 2000).  The study by Cohen and colleagues found this to be the case in 

some, but not all countries (A. Cohen et al., 2008), further supporting a complex pattern of 

course and outcome of schizophrenia based on a myriad of factors.   

1.2.3 Epidemiology of schizophrenia  

The etiology of schizophrenia is poorly understood, but clearly complex and likely to involve 

major genetic and environmental contributions.  Schizophrenia occurs in all populations studied 

to date.  The lifetime prevalence is often referenced as 1%, and incidence rates have varied from 

0.16 – 0.42 across populations (A. Jablensky, 2000), however there have been significant 

differences in estimates between studies. Although the incidence is often quoted as stable 

worldwide, one systematic review suggested significant variation in incidence rates around the 

world (McGrath, 2006).  Another review suggested the median lifetime prevalence was only 

about 0.4% among studies (Saha, Chant, Welham, & McGrath, 2005).  A recent population 

based survey of more than 8,000 individuals from Finland suggested significant differences 

between psychotic disorders, age groups, and gender within the population studied (Perala et al., 

2007), lending further credence to the need for diagnostic reliability highlighted in section 1.2.2 

above.  Specifically, the authors found a lifetime prevalence of schizophrenia that was slightly 
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lower than 1% (0.83%); however the lifetime prevalence of all psychotic disorders was roughly 

3%.  A summary of these findings are detailed in Table 1.   

 

Table 1 Lifetime Prevalence Estimates of DSM-IV Nonaffective and Affective Psychoses 

Diagnosis N LTP All LTP Men LTP Woman 
Nonaffective psychotic 
disorders 

153 1.94 (1.63-2.29) 1.64 (1.24-2.17) 2.19 (1.78-2.70) 

Schizophrenia 67 0.87 (0.68-1.11) 0.82 (0.56-1.19) 0.91 (0.65-1.27) 
Schizoaffective disorder 24 0.32 (0.21-0.46) 0.14 (0.06-0.34)* 0.47 (0.30-0.72) 
Delusional disorder 15 0.18 (0.11-0.30) 0.16 (0.07-0.34) 0.21 (0.11-0.40) 
Psychotic disorder NOS 38 0.45 (0.33-0.62) 0.33 (0.19-0.56) 0.56 (0.39-0.82) 
All psychotic disorders 249 3.06 (2.66-3.51) 3.11 (2.54-3.57) 3.01 (2.54-3.57) 

This is a summary table of lifetime prevalence estimates based on population based survey of 8,028 
persons 30 years or older screened for psychotic and bipolar I disorders from Perala et al., 2007. LTP = 
lifetime prevalence.  Data are given as percentages and 95% confidence interval provided. Only 
nonaffective psychotic disorders with > 5 affected subjects detected are provided by diagnosis.  ‘All 
psychotic disorders’ includes individuals with nonaffective psychotic disorders as well as those with 
affective psychoses, substance-induced psychotic disorder, and psychotic disorder to to a general 
medical condition.  *Statistically significant difference (p < 0.05) between sexes detected. 

  

The age at onset of the disorder is early adulthood, with estimates ranging from about 18 

– 24 years.  There are detectable gender differences in various aspects of schizophrenia.  The 

Perala et al study opposed the commonly held view that schizophrenia occurs equally frequently 

in males and females, instead documenting a 1.4:1 male:female ratio (Perala et al., 2007).  Males 

have been shown in some studies to have a lower age at onset and more frequent occurrence of 

brain abnormalities whereas females generally have better premorbid functioning and less 

disability (Angermeyer & Kuhn, 1988; A. Jablensky et al., 1992; W.H.O., 1979).  The decreased 

age at onset in seen in males has been replicable, and in some studies dramatic, but results have 

varied across studies (Hambrecht, Maurer, & Hafner, 1992; W.H.O., 1979) (see (A. Jablensky, 

2000) for review).  One plausible case of discrepancies between populations is the finding of a 

marked difference in sex ratio for late-onset schizophrenia (onset after age 40), which has been 

estimated at 1:1.9 male to female ratio after age 40 and up to 1:6 ratio after age 60 (Huber, 
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Gross, & Schuttler, 1979; A. Jablensky, 2000).  It is therefore possible that difference in age at 

onset seen between males and females are a sampling artifact.  For example, analysis of the more 

than 500 schizophrenia cases analyzed in this dissertation from Pittsburgh, PA, U.S. did not 

detect significant differences in age at onset of the disorder (unpublished data).  However, 

subsets of cases were ascertained on the basis of family configurations, requiring both parents to 

participate as a case-parent trio, a sampling bias against ascertainment of late onset cases.  

Ascertainment criteria and study design can therefore have a significant impact on such analyses. 

The environmental risk factors that have been associated with schizophrenia are too 

numerous and speculative to discuss at length here.  Some of the more highly cited and 

replicated results across populations have included season of birth, maternal and / or paternal 

age, substance abuse, prenatal complications, comorbid medical conditions, viral infection, 

immune response, urban birth, urban versus rural residence, and immigration (see (A. Jablensky, 

2000) for review).  That there is an environmental influence in the etiology of schizophrenia 

seems certain based on the currently available data; however the ability to quantify the 

contribution of specific environmental factors on any given individual is limited.  Therefore, to 

reduce the analytic space, the studies conducted herein consider environmental effects as an 

unknown confound and focus only on gender and age at onset of illness as potential covariates in 

the development of schizophrenia.  

1.2.4 Treatment of schizophrenia 

The first meaningful pharmacological success in the treatment of schizophrenia came with the 

introduction of chlorpromazine in the late 1950’s.  The therapy was extremely successful in 

reducing positive symptoms of schizophrenia, but not negative symptoms and cognitive deficits 
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often seen (Crow, 1980a, 1980b; Kane, 1990; Kane, Honigfeld, Singer, & Meltzer, 1988).  

Furthermore, the medication did not reduce symptoms in 5% - 25% of patients (Christison, 

Kirch, & Wyatt, 1991; Meltzer, 1992a, 1992b).  About a decade later came the introduction of 

second generation, or atypical antipsychotics such as clozapine, olanzapine, risperidone, and 

others.  While both generations of antipsychotics exert their influence on the dopaminergic 

system, specifically dopamine D2 receptors, the atypical antipsychotics also affect the 

serotinergic system.  These second generation agents were effective in reducing extrapyramidal 

side effects compared to typical antipsychotics, and were effective in the treatment of negative 

symptoms and cognitive deficits.  The side effects of atypical antipsychotics include weight gain 

and metabolic effects.  Atypical antipsychotics are significantly more expensive than typical 

antipsychotics, and recent clinical trials suggest atypical antipsychotics are not more effective 

than first generation agents and are not associated with better cognitive or social outcomes 

(Swartz et al., 2007).  Nonetheless, the reduced extrapyrimidal side effects and improved 

reduction in negative symptoms still make atypical antipsychotics successful therapeutic agents 

in many cases.  The current availability of first and second generation antipsychotics, as well as 

the newer ‘third generation’ antipsychotics, ‘dopamine-serotonin stabilizers’, give clinicians a 

range of options for patient specific therapy. 

1.2.5 Schizophrenia pathogenesis: dopaminergic neurotransmission 

Despite several decades of research and promising leads suggesting structural and functional 

neurological alterations, the pathogenesis of schizophrenia remains unknown (D. A. Lewis & 

Lieberman, 2000).  The mechanism of antipsychotic agents, exerting their influence by binding 

targets in the central nervous system, suggests neurotransmitter dysfunction is a critical area for 
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study.  Typical antipsychotics significantly reduce positive symptoms of schizophrenia by 

blocking dopamine receptors, whereas atypical antipsychotic include occupancy of serotonin 

receptors with consequent reduction in negative symptoms and cognitive deficits of the disorder.   

Neurotransmitter theories of schizophrenia have suggested multiple pathways, including 

glutamate and GABA alterations (Collier & Li, 2003).  Yet the majority of evidence suggests 

dopamine is the final common pathway underlying psychotic symptoms, as well as negative and 

cognitive symptoms.  

 Dopaminergic neurons in the central nervous system project an extensive network of 

connections throughout the brain.   Substantia nigra dopaminergic neurons project primarily to 

the striatum, and neurons in the ventral tegmental area project primarily to cortical (mesocortical 

pathway) and limbic (mesolimbic pathway) regions of the brain (Sillitoe & Vogel, 2008).  The 

neostriatal dopaminergic pathway is thought to regulate motor control, while the mesocortical 

and mesolimbic pathways mediate many of the behavioral functions influenced by the 

dopaminergic system.  These projections enable dopaminergic neurons to exert their diverse 

influence on a spectrum of behaviors from movement to cognitive function. 

Hyperactivity of dopaminergic transmission was the first proposed ‘dopamine 

hypothesis’ of schizophrenia.  The hypothesis broadly suggests that ‘positive symptoms’ result 

from hyperstimulation of D2 receptors from hyperactive subcortical mesolimbic projections, and 

hypoactive mesocortical projections to the prefrontal cortex induce negative symptoms (Lang, 

Puls, Muller, Strutz-Seebohm, & Gallinat, 2007; Toda & Abi-Dargham, 2007).  The hypothesis 

was initially supported by the correlations between the clinical potency of antipsychotics 

specifically on the D2 receptors (Carlsson & Lindqvist, 1963; Creese, Burt, & Snyder, 1976; 

Crow, 1980a; Seeman, Lee, Chau-Wong, & Wong, 1976).  It remains today that all effective 
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antipsychotics have some affinity for the D2 receptor (Kapur & Mamo, 2003).  Traditional 

antipsychotics bind tightly to the D2 receptor with slow dissociation rates whereas atypical 

antipsycotics display faster dissociation rates, presumably accounting for the reduced 

extrapyramidal side effects (Seeman, 2002; Seeman & Tallerico, 1998, 1999).  To test the 

hypothesis, a large number of variables have been investigated among cases and controls.  They 

include post mortem dopamine receptor density, dopamine metabolite concentrations, in vivo 

measures of dopamine receptor density using PET scans, and the psychotogenic effects of agents 

that increase synaptic dopamine release (Abi-Dargham et al., 1998; Angrist & van Kammen, 

1984; Breier et al., 1997; Davidson et al., 1987; Farde et al., 1987; Hess, Bracha, Kleinman, & 

Creese, 1987; Lieberman et al., 1984; Mackay et al., 1982; Seeman et al., 1987; D. F. Wong et 

al., 1986).  Despite controversies, dopamine antagonism remains a key characteristic evaluated 

when novel agents are designed for schizophrenia (Davis, Kahn, Ko, & Davidson, 1991; D. A. 

Lewis & Lieberman, 2000).  Recent evidence suggests that subtle dopamine dysregulation could 

occur in schizophrenia, rather than overall dopamine hyperactivity (Davis et al., 1991; Greene, 

2006; Laruelle, Abi-Dargham, Gil, Kegeles, & Innis, 1999; Seeman et al., 2006).  These 

subtleties likely reflect the impact of a number of susceptibility factors.   

There is growing evidence for intricate homeostatic mechanisms that regulate dopamine 

homeostasis.  The intensity and duration of dopamine signaling in the brain is determined by the 

amount of vesicular release, dopamine receptor sensitivity and the efficiency of dopamine 

clearance from the extracellular compartment (Gainetdinov, Sotnikova, & Caron, 2002; Torres, 

Gainetdinov, & Caron, 2003).  Dopamine released into the synaptic space can undergo 

enzymatic degradation and dilution by diffusion. Two enzymes metabolize dopamine 

intracellularly, oxidative deamination by monoamine oxidase (MAO) and O-methylation by 
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COMT (Napolitano, Cesura, & Da Prada, 1995).  However, the primary mechanism controlling 

extracellular dopamine levels has proven to be reuptake by presynaptic neurons via the plasma 

membrane dopamine transported (DAT) (Amara & Kuhar, 1993; Cragg & Rice, 2004; Giros & 

Caron, 1993).  Thus, re-uptake through DAT is the most effective way to limit the lifetime of 

dopamine signaling in the brain. 

  

Figure 1 Key genes, localization, and function in the dopaminergic pathway 
Figure from (Youdim, Edmondson, & Tipton, 2006).  This figure shows the localization and action of 
several key dopaminergic genes investigated in this series of studies.   
 

There are potential interactions that influence dopaminergic neurotransmission.  

Degradation of dopamine by COMT can influence the activity of DAT.  The activity of DAT can 

also be regulated by dopamine autoreceptors.  Both the DRD2 and DRD3 subtypes have been 

shown to be involved in the regulation of DAT function (Zahniser & Doolen, 2001).  For 

example, the DRD3 receptor-preferred agonist PD 128907 produced an increase in DAT 

function in striatal slices as measured by rotating disk electrode voltametry (Zapata & 

Shippenberg, 2002) suggesting a cross-talk between the DRD3 and DAT.  The molecular details 

of this cross-talk are not known, however these functional studies suggest important interactions 
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within the dopaminergic pathway could modulate dopamine transmission.  The genes encoding 

dopaminergic proteins are further discussed in Chapter 3.0 below.  One primary motivation for 

the genetic studies conducted herein is to determine if such functional interactions influence 

schizophrenia pathogenesis.   

1.3 SCHIZOPHRENIA: A COMPLEX GENETIC DISORDER 

1.3.1 Genetic epidemiology 

Since its conception it has been observed that schizophrenia tends to cluster in families.  The 

morbid risk in the general population is roughly 1%, however risk to children of schizophrenic 

probands is 13%.  The morbid risk for monozygotic twins and offspring of dual patient mating 

are 48% and 46%, respectively, indicating a substantial genetic contribution (Figure 1) (I. 

Gottesman, 1991).  Adoption studies also suggest a genetic basis for the disorder, finding that the 

familial aggregation cannot be explained solely by environmental influence (Heston, 1966; Kety 

& Ingraham, 1992).  The sibling recurrence risk ratio, λs, is estimated at 8-10 (Risch, 1990).  

Heritability estimates have varied widely, ranging from 41-80% (Kendler & Robinette, ; McGue, 

Gottesman, & Rao, 1983; Rao, Morton, Gottesman, & Lew, 1981). Although controversial, 

particularly due to questions regarding clinical diagnoses (Farmer, McGuffin, & Gottesman, 

1987; McGuffin, Farmer, Gottesman, Murray, & Reveley, 1984), recent review of 224 twin 

probands from the Maudsley Twin Register in London conducted after publication of the DSM-

IV suggests the heritability of the disorder is on the high end of this distribution (Cardno et al., 

2007).  The authors derived estimates of heritability between 82% – 85%, with no significant 
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differences between diagnostic tools or diagnoses themselves in the full range of functional 

psychoses (schizophrenia, schizoaffective disorder, and mania).  Similar estimates were derived 

from an earlier population based twin study in Finland (1180 male pairs and 1315 female pairs), 

which found that 83% of the variance in liability was due to additive genetic factors (Cannon, 

Kaprio, Lonnqvist, Huttunen, & Koskenvuo, 1998).   Mode of inheritance is also unknown.  

Both autosomal dominant and recessive modes of inheritance have been suggested (Hurst, 1972; 

Slater, 1958).  Complex segregation analyses of published family and twin data on the diagnostic 

trait suggest polygenic inheritance, likely including multiple genes of small effect (Carter & 

Chung, 1980; McGue et al., 1983; Rao et al., 1981).  Regarding qualitative and quantitative traits 

associated with the disorder, a study currently in press found significant heritability and 

autosomal dominant inheritance for several endophenotypes (Aukes et al., 2008).  It should be 

noted that the heritability of endophenotypic measures have not been shown to be higher than the 

diagnosis of schizophrenia itself (heritability range from 24% - 55% in various neurocognitive 

endophenotypes) (Greenwood et al., 2007).  Based on these and similar studies over the last 

century, it is now widely accepted that the distribution of the disorder in families and populations 

is consistent with genetic models including multiple interacting loci of modest effect (Risch, 

1990; Schliekelman & Slatkin, 2002).   
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Figure 2 Morbid risks for schizophrenia 

Lifetime risk of developing schizophrenia based on relationship to an affected individual.  Values are 
given in percentages.  Blue arrow shows discrepancy between monozygotic twins and dyzogotic twins.  
Figure adapted from Gottesman, 1991.   

  

1.3.2 Linkage to schizophrenia 

Genetic linkage is a test of the co-segregation within families of a phenotypic trait and a genetic 

locus.  Linkage analyses have been extremely successful in mapping disease genes for many 

human diseases, including Huntington’s disease, breast cancer, and cystic fibrosis, to name a 
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very few.  The general strategy in gene mapping studies has been to first detect significant 

linkage, usually over a broad genomic region, then conduct focused fine mapping analyses to 

identify genes contributing to the linkage signal.  Despite many documented successes of this 

‘positional cloning’ method, the strategy has been relatively ineffective in psychiatric genetics.  

The potential reasons for this lack of success have been well documented and are likely due to 

limitations in power of most studies, presence of multiple disease genes of small effect, low 

penetrance, and a high degree of genetic heterogeneity between families.  A large literature of 

linkage studies exists over the past two decades and putative linkage has been reported on nearly 

all autosomes and the X chromosome across populations, but there has been little consistency 

between studies.  Initial studies were designed using a small number of extended pedigrees, a 

design ideally suited for identifying genes of large effect within families.  One such strategy 

identified a “major susceptibility locus” on chromosome 1q21 – 22, with a reported LOD score 

of 6.50 (Brzustowicz, Hodgkinson, Chow, Honer, & Bassett, 2000).  Yet a subsequent large 

scale, multi-site study with substantial power failed to confirm linkage in this region (Levinson 

et al., 2002).  The more recent trend has been to incorporate large samples of smaller families in 

an effort to increase power to detect loci of small effect.  A meta-analysis of the 20 largest 

linkage scans identified several regions of suggestive, but not significant, linkage to 

schizophrenia (C. M. Lewis et al., 2003).  Subsequent analyses indicate these large studies could 

be more consistent than expected by chance (Zintzaras & Ioannidis, 2005), but it should be noted 

that the three largest sibling pair studies of schizophrenia in those analyses (> 300 sibling pairs 

per study) failed to detect overlapping linkage at a single locus in the genome (Crow, 2007).   
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1.3.3 Genetic association studies of schizohprenia       

Unlike linkage, genetic association relies on linkage disequilibrium between a genetic marker 

and a disease locus over a relatively short genetic distance. When the frequency of a genetic 

marker is observed more / less frequently in a case sample than an unaffected comparison group 

at a level greater than one would expect by chance, the conclusion is genetic association with 

that variant or a correlated variation.  The phenomenon is dependent on the presumption that the 

disease causing mutation occurred relatively recently, meaning the accumulation of 

recombination events within the population was insufficient to restore independence between the 

marker evaluated and the disease causing variant.  There are several advantages of association 

studies compared to linkage; most notably the relative short genetic distance expected between 

actual liability locus and genetic marker, as well as the ability to accumulate large population 

based samples rather than the expense of ascertaining intact families.    

The number of genetic association studies conducted on schizophrenia and related 

phenotypic traits over the last two decades are staggering.  A PubMed search of “schizophrenia” 

“gene” and “association” retrieves 1,973 studies.  According to a systematic meta-analysis and 

field synopsis of genetic association studies in schizophrenia (SzGene database), as of April 

2007, 1,179 genetic association studies have been published worldwide reporting on 3,608 

genetic variants from 516 different genes (Allen et al., 2008).  The results of these studies have 

been largely inconsistent.  Several promising targets, such as DTNBP1 and NRG1 have emerged, 

but in the estimation of this dissertation no robust genetic risk factors have been established from 

any individual genes.  Despite these inconsistencies, reviews have suggested significant success 

in genetic epidemiological studies of schizophrenia, several of which are listed here (Harrison & 

Weinberger, 2005; (P. J. Harrison & Owen, 2003); (Craddock, O'Donovan, & Owen, 2005) 
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(Craddock, O'Donovan, & Owen, 2006) (Shirts & Nimgaonkar, 2004) (Owen, Williams, & 

O'Donovan, 2004), (Owen, Craddock, & O'Donovan, 2005); (Owen, Craddock, & Jablensky, 

2007).  The successes claimed in these reviews have been met with dissenting opinions, as Dr. 

Crow states “Thus this body of work must be regarded as an indicator of the extent to which the 

‘eye of faith’ is able to discern meaning in complex data when none is present” (Crow, 2008b).   

A detailed review of the literature regarding dopaminergic gene polymorphisms and 

schizophrenia pathogenesis are described in chapter two.  The details of the remaining candidate 

genes reviewed in the articles listed above are too numerous and cumbersome to describe here, 

however it should be noted that many of these past genetic association studies followed a similar 

pattern.  An initial study investigated very few variations (usually coding or putatively 

functional) for a single gene in a small sample.  Replicate studies would then analyze only 

associated variants, leaving a sizeable gap in the literature regarding evaluation of representative 

genetic variation.  A good example of this pattern can be seen in the investigative course of 

RGS4, where putative linkage and expression evidence lead to a significant association study 

with differing risk alleles and haplotypes between populations (Brzustowicz et al., 2000; 

Chowdari et al., 2002; Mirnics, Middleton, Stanwood, Lewis, & Levitt, 2001).  No gene of large 

effect has subsequently identified to validate the linkage results, and the associations were 

proven to be false positive findings based on power and technological limitations in the initial 

reports, yet more than 25 samples have been studied to date since those findings.  Nonetheless, 

analysis of over 13,000 individuals could neither support nor reject the null hypothesis of no 

association (Chowdari et al., 2007; Chowdari et al., 2002; Talkowski, Chowdari, Lewis, & 

Nimgaonkar, 2006; Talkowski, Seltman et al., 2006) (Talkowski et al., unpublished data).   
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Ambiguous results such as those at RGS4 permeate the literature of schizophrenia 

association studies.  The hypothesis underlying the series of studies presented in this dissertation 

is that any assumptions regarding these genes as schizophrenia susceptibility factors are 

premature and potentially erroneous.  The empirical evidence obtained to date for most genetic 

association studies is insufficient to enable conclusions for, or against, credible risk factors.  As 

simulations have shown, in the presence of an unmeasured liability locus, patterns of association 

can be complex amongst measured SNPs (Roeder, Bacanu, Sonpar, Zhang, & Devlin, 2005).  

This complexity obviously grows as the ratio of unmeasured SNPs to measured SNPs gets large, 

as is the case with most of these genes.  Recent large scale efforts such as a study of 14 candidate 

genes by Sanders and colleagues (Sanders et al., 2008) and ongoing genomewide studies from 

the genetic analysis and information network (GAIN) initiative have begun to fill the void in the 

current literature and provide more reliable, if unspectacular, estimations of genetic risk 

conferred by susceptibility gene candidates.   
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2.1 ABSTRACT 

The dopamine hypothesis of schizophrenia has motivated a large number of genetic 

association studies, but few if any dopaminergic polymorphisms are accepted as credible risk 

factors at present.  To evaluate whether dopamine related genes have been investigated 

adequately, we surveyed public genetic databases and published schizophrenia association 

studies with regard to fourteen conventional dopaminergic genes and seven selected dopamine 

interacting proteins.  We estimate that 325 polymorphisms would be required to evaluate the 

impact of common variation on schizophrenia risk among Caucasian samples.  To date, 98 

polymorphisms have been analyzed in published association studies.  We estimate that only 19 

of these variations have been evaluated in samples with at least 50% power to detect an 

association of the effect size commonly found in genetically complex disorders. While it is 

possible that dopaminergic genes do not harbor genetic risk factors for schizophrenia, our review 

suggests that satisfactory conclusions for most genes cannot be drawn at present.  Whole genome 

association studies have begun to fill this void, but additional analyses are likely to be needed.  

Recommendations for future association studies include analysis of adequately powered samples, 

judiciously selected polymorphisms, multiple ethnic groups and concurrent evaluation of 

function at associated SNPs.   
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2.2 INTRODUCTION 

Over the past two decades schizophrenia (SZ) mapping studies have grappled with 

several difficulties inherent to all studies of common, genetically complex disorders.  Heritability 

estimates for the disorder vary from 60-70% (McGue et al., 1983; Rao et al., 1981), but complex 

segregation analyses have consistently rejected monogenic models of inheritance in favor of 

polygenic / multi-factorial threshold models (Carter & Chung, 1980; McGue et al., 1983). A 

genetic model including multiple interacting loci of small effect may provide the best fit for the 

available data (Risch, 1990; Schliekelman & Slatkin, 2002; Sha, Zhu, Zuo, Cooper, & Zhang, 

2006), making it difficult to identify individual genetic risk factors.  Some analyses suggest that 

common genetic variants confer risk (also called the ‘common variant common disease’ 

hypothesis, CDCV) but others have argued in favor of rare variants (I. I. Gottesman, 1994; Jorde, 

2000; McClellan, Susser, & King, 2007).  Aided by technological and statistical advances, 

genetic association studies have grown in size and sophistication (Collins, Guyer, & Chakravarti, 

1997; Hirschhorn, 2002).  Thanks to these advances, some promising associations have been 

detected.  For example, studies utilizing extended panels of single nucleotide polymorphisms 

(SNPs) have identified associations with polymorphisms of dysbindin (DTNBP1), neuregulin 1 

(NRG1), disrupted in schizophrenia (DISC1), regulator of G protein signaling (RGS4), G72 and 

D-amino-acid oxidase (Craddock et al., 2005; P. J. Harrison & Weinberger, 2005; Owen et al., 

2005; K. M. Prasad & Nimgaonkar, 2007).  Consistent with the polygenic model, the risk 

conferred by the associated alleles is modest (odds ratios, OR ~1.2) (Shirts & Nimgaonkar, 

2004)  

A sizable fraction of other association studies have focused on dopaminergic genes, but 

few credible genetic risk factors have emerged. Two broad conclusions are thus possible: either 
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there are no significant associations between schizophrenia and dopamine polymorphisms or 

sufficient evidence is not currently available. In this review, we evaluate the possible impact of 

dopaminergic gene polymorphisms on schizophrenia risk.  We summarize the motivation for, 

and details of, prior genetic association studies involving dopamine genes.  We also survey 

public database information to determine the proportion of representative common variants that 

have actually been evaluated at these genes, and the number of SNPs analyzed with adequate 

power to detect an association of the modest effect sizes expected.  We conclude with suggested 

designs for future studies and discuss the relevance of such studies in the context of whole 

genome association studies. 

2.2.1 The dopamine hypothesis 

The dopamine hypothesis suggests hyperactivity of dopamine brain function in 

schizophrenia pathogenesis.  It originated from correlations between the clinical potency of anti-

psychotic drugs and their affinity for dopamine D2 receptors (DRD2) (Carlsson & Lindqvist, 

1963; Creese et al., 1976; Seeman et al., 1976).  Two lines of enquiry have yielded relatively 

consistent results regarding the dopamine hypothesis of schizophrenia.  First, patients with 

schizophrenia display increased sensitivity to the psychotogenic effects of agents that increase 

synaptic dopamine release (Angrist & van Kammen, 1984); Lieberman, 1984 #2673; Davidson, 

1987 #2672; Laruelle, 1999 #2664}.  Second, acute amphetamine challenge to patients leads to 

increased dopamine transmission in vivo, as measured by radioligand binding to dopamine D2 

receptors during positron emission tomography (PET) scans (Abi-Dargham et al., 1998; Breier et 

al., 1997; Laruelle et al., 1996).  However, the dopamine hypothesis has not been supported 

consistently using measures such as post mortem dopamine receptor density or dopamine 
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metabolite concentrations, in vivo measures of dopamine receptor density using PET scans or 

dopamine metabolite concentrations in the cerebrospinal fluid (Bird et al., 1977; Cross, Crow, & 

Owen, 1981; Farde et al., 1987; Hess et al., 1987; Mackay et al., 1982; Seeman et al., 1987; 

Widerlov, 1988; D. F. Wong et al., 1986).  The discrepancies could be due to medication effects 

and sampling variation (Davis et al., 1991; D. A. Lewis & Lieberman, 2000).   

Refining the dopamine hypothesis: Subtle dopamine dysregulation could occur in schizophrenia, 

rather than overall dopamine hyperactivity; e.g., regional variation, selected receptor types, 

temporal sensitization or variations during different phases of illness (Davis et al., 1991; Greene, 

2006; Laruelle et al., 1999; Seeman et al., 2006).  Hypofunction in prefrontal neuronal circuits 

has been documented repeatedly in post-mortem brain studies of schizophrenia; this may also 

lead to disinhibition of the prefrontal drive to the limbic striatum with a resultant 

hyperdopaminergic state in the limbic striatum (D. A. Lewis & Lieberman, 2000; Weinberger, 

1987).  These subtle changes likely reflect a chain of events, so a number of susceptibility factors 

may be present.  This is consistent with the polygenic model of schizophrenia. 

 

2.2.2 Genetic association studies using dopamine polymorphisms   

The extensive interest in the dopamine hypothesis has also motivated numerous 

association studies of dopamine genes under the rationale that credible genetic associations 

would motivate further studies of pathogenesis.  However, most early association studies were 

hampered by significant deficiencies in technology and relatively modest sample sizes available.  

Despite these limitations, the gamut of genes involved in dopamine neurotransmission was 

investigated.  We conducted PubMed searches using the following combinations of terms: (1) 
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“(individual gene name)” and “schizophrenia”; (2) “(gene symbol)” and “schizophrenia”; (3) 

“dopamine” and “schizophrenia”.  Genetic association studies were then extracted from these 

sets.  As discussed below, most studies followed a similar pattern.  An initial study reported on 

one or a few putatively functional polymorphisms and subsequent studies analyzed only those 

variants.  Some study designs, such as mutation detection followed by association tests in 

relatively small samples, are better suited to identify susceptibility loci harboring a substantial 

impact on risk.  Thus, no consistent associations have been detected for a number of key 

dopaminergic genes, potentially leading to the conclusion that susceptibility variants are not 

present in the dopaminergic network.   

The dopaminergic genes investigated in multiple independent samples include tyrosine 

hydroxylase (TH) (Chao & Richardson, 2002; Ishiguro, Arinami et al., 1998; D. Li & He, 2006), 

dopamine decarboxylase (DDC) (Borglum et al., 2001; Zhang et al., 2004), dopamine beta 

hydroxylase (DBH) (Cubells & Zabetian, 2004; Jonsson, Abou Jamra et al., 2003; Tang et al., 

2006; Yamamoto et al., 2003), COMT (see below), MAOA (Jonsson, Norton et al., 2003; Nolan, 

Volavka, Lachman, & Saito, 2000; Norton et al., 2002; Sabol, Hu, & Hamer, 1998; Syagailo et 

al., 2001; Tunbridge, Harrison, & Weinberger, 2006), and one of the two isoforms of the 

vesicular monoamine transporter (SLC18A1, alias VMAT1) (Bly, 2005; S. F. Chen et al., 2007; 

Richards et al., 2006).  The dopamine receptors DRD1, DRD2, DRD3, DRD4, and DRD5 have 

also been investigated (Cichon et al., 1996; Fanous et al., 2004; Glatt & Jonsson, 2006; Jonsson, 

Kaiser, Brockmoller, Nimgaonkar, & Crocq, 2004; Muir et al., 2001; A. H. Wong, Buckle, & 

Van Tol, 2000).  The vesicular monoamine transporter, member 2 (VMAT2, SLC18A2) has only 

been investigated in one study to date (Kunugi, Ishida, Akahane, & Nanko, 2001).   
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Other investigators have reported on dopamine interacting proteins, with similarly 

inconsistent results.  They include Orphan Nuclear Receptor Subunit 4 (NURR, NR4A21); D1 

Receptor Interacting Protein (CALCYON, DRD1IP); Protein Phosphatase 1, Regulatory 

(inhibitory) subunit 1B (dopamineRPP-32, PPP1R1B); Syntaxin 1A (STX1A); Protein Interacting 

with PRKCA 1 (PICK1); Synaptosomal-Associated Protein, 25kDa (SNAP25); and Beta 

Adrenergic Receptor Kinase 2 (GRK3, ADRBK2) (Y. H. Chen, Tsai, Shaw, & Chen, 2001; Fujii 

et al., 2006; Hong, Liao, Shih, & Tsai, 2004; Ishiguro et al., 2007; Iwayama-Shigeno et al., 2003; 

C. H. Li, Liao, Hung, & Chen, 2006; Luo et al., 2004; Tachikawa, Harada, Kawanishi, Okubo, & 

Suzuki, 2001; A. H. Wong et al., 2004; S. Y. Yu et al., 2004).  

Since space restrictions preclude detailed discussion of each gene, we have reviewed four 

of the most extensively analyzed dopamine genes.  While early association studies have been 

inconsistent for all of them, studies published in the past decade have provided intriguing new 

facets.  Each gene thus provides precepts for future association studies. 

2.2.3 Dopamine D2 receptor (DRD2) 

 The dopamine D2 receptor was a logical early target for association studies because of the 

effects of therapeutic agents reviewed above.  Two genetic variants have been the target of most 

studies.  One is a cysteine to serine substitution at codon 311 (Cys311Ser); the other an insertion 

/ deletion 141 bases in the 5’ region of the gene (-141C ins/del).  Two independent meta-analyses 

identified a significant association between the rare Cys311 allele and schizophrenia (Glatt, 

Faraone, & Tsuang, 2003b; Jonsson, Sillen et al., 2003), a result that has since been confirmed 

by a more comprehensive meta-analysis including data from 3,707 cases and 5,363 controls 

(Glatt & Jonsson, 2006).  In contrast, a meta-analysis did not support an association with the 
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insertion / deletion polymorphism.  Other polymorphisms have been investigated more recently 

with significant results from four different studies (Dubertret et al., 2004; Hanninen et al., 2006; 

Kukreti et al., 2006; Parsons et al., 2007) but significant associations were not detected when 5 

SNPs were analyzed among a family cohort of Askhenazi Jewish families (M. D. Fallin et al., 

2005).  It would be instructive if the same set of polymorphisms could be analyzed in all these 

samples, followed by meta-analysis. 

2.2.4 Dopamine D3 receptor (DRD3)  

Over 50 studies have sought associations at DRD3, but most have focused exclusively on rs6280 

(Ser9Gly), a non-synonymous SNP in the first exon with possible functional effects (Jeanneteau 

et al., 2006).  Repeated meta-analyses have suggested a modest association, but all meta-analyses 

have not been consistent (Ioannidis, Ntzani, Trikalinos, & Contopoulos-Ioannidis, 2001; Jonsson 

et al., 2004; Shaikh et al., 1996). Recent studies have evaluated other variations with somewhat 

more consistent results.  Four studies focused on associations with SNPs upstream to exon 1 

(Anney et al., 2002; Ishiguro, Ohtsuki et al., 1998; Sivagnanasundaram et al., 2000; Staddon et 

al., 2005).  Three of these studies detected significant associations, suggesting inconsistencies at 

rs6280 could represent associations with other, correlated SNPs.  However, one large case-

control study and analysis of a family based sample did not reveal any significant associations 

(M. D. Fallin et al., 2005).  Two recent studies evaluated a larger proportion of representative 

variation; both detected significant haplotype based associations.  We found significant 

associations with SNPs and haplotypes spanning the gene in two independent samples 

(Talkowski, Mansour et al., 2006).  Another group reported significant haplotype based 

associations in the 3’ region of DRD3 in a Galician population (Dominguez et al., 2007).  In 
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sum, the numerous association studies conducted at rs6280 appear to be equivocal with respect 

to schizophrenia susceptibility; however more recent results considering a greater proportion of 

common variation within the gene have been more encouraging.  These recent findings may 

represent other liability loci at this gene and might highlight the value of comparative analyses of 

varied ethnic groups.  Such studies lend themselves to evolutionary analyses that may identify 

ancient mutations (Seltman, Roeder, & Devlin, 2003; Templeton, Boerwinkle, & Sing, 1987; 

Templeton, Weiss, Nickerson, Boerwinkle, & Sing, 2000). 

2.2.5 Catechol-o-methyltransferase (COMT)  

COMT is localized to chromosome 22q11, a region implicated in several linkage studies (C. M. 

Lewis et al., 2003).  Deletions in this region also lead to the velocardiofacial syndrome, with an 

increased risk of psychoses (Karayiorgou et al., 1995). Most association studies have 

investigated an exonic Met158Val polymorphism, which appears to influence COMT activity in 

vitro. Two different meta-analyses suggest that an association between this variant and 

schizophrenia, if present, is complex and may be influenced by population substructure (Glatt, 

Faraone, & Tsuang, 2003a; Lohmueller, 2003).  Interest in the Met158Val polymorphism has 

continued because it may be correlated with working memory, a trait known to be impaired in 

schizophrenia (Barnett, Jones, Robbins, & Muller, 2007; Egan et al., 2001; Tunbridge et al., 

2006).   

Recent association studies have investigated a larger set of SNPs.  Li examined eight markers 

in a Chinese sample and detected a significant association with an extended haplotype including 

Met158Val (T. Li et al., 2000).  Another large study of Ashkenazi Jewish patients revealed a 

highly significant association with two COMT SNPs, as well as a haplotype comprising 3 SNPs 
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spanning the 5’ to 3’ region of the gene (rs737865–rs4680–rs165599) (Shifman et al., 2002).  

However, a study among unrelated cases and controls did not replicate this finding (H. J. 

Williams et al., 2005), nor did a study of 274 Ashkenazi families investigating 7 COMT SNPs 

(M. D. Fallin et al., 2005).  Intriguingly, The Met158Val polymorphism was part of this 

haplotype and the association was more prominent among women.  Gender specific associations 

have been detected with a variant within this haplotype (rs737865) in Alzheimer’s disease as 

well (Sweet et al., 2005).  Notably, rs737865 is in proximity to an estrogen response element 

(Sweet et al., 2005).  These associations highlight the need to evaluate valid sub-groups of 

schizophrenia and the need to consider functional impacts of associated alleles. 

2.2.6 Dopamine transporter (DAT, DAT1, SLC6A3)    

Most association studies have focused on a functional tandem repeat (VNTR), 3’ to the stop 

codon in exon 15, but meta-analyses suggest no significant association (Fanous et al., 2004; 

Gamma, Faraone, Glatt, Yeh, & Tsuang, 2005; Mitchell et al., 2000; Vandenbergh et al., 1992).  

An association has been reported with an exonic SNP among Koreans (1389 C>T; rs2270912) 

(Jeong, Joo, Ahn, & Kim, 2004).  A case-control study among Iranians identified a significant 

association with a putative promoter variant (-67A/T; rs2975226; p = 0.0003; OR = 2.25) 

(Khodayari et al., 2004).  The association is particularly intriguing because cis-acting variation in 

the 5’ region of this locus may contribute to differential SLC6A3 expression in vitro and in vivo 

(Drgon et al., 2006; Kelada et al., 2005).  The Korean and Iranian studies need to be evaluated in 

additional samples.  Additional studies using common polymorphisms spanning the gene are also 

required.     
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2.3 PUBLISHED DOPAMINE ASSOCIATION STUDIES 

We examined 14 dopamine genes and 7 dopamine interacting proteins that have been used for 

prior association studies.  Our goal was to identify a representative set of common SNPs that 

should be evaluated to enable a reasonable test of the CDCV hypothesis for each gene.  The 

samples utilized were 60 unrelated Caucasians from the International HapMap project (CEPH 

population) (HapMap, 2003) or 90 unrelated individuals representative of the US population 

from the NIH Polymorphism Discovery Resource 90 individual subset (PDR90) 

(http://egp.gs.washington.edu/).  Data was obtained using the Genome Variation Server resource 

(http://gvs.gs.washington.edu/GVS/) (Carlson et al., 2004).  All SNPs with minor allele 

frequencies over 5% were identified, since currently available samples may lack power to detect 

associations with less frequent polymorphisms.  Since genotypes at many of these SNPs may be 

correlated due to linkage disequilibrium (LD), we selected representative ‘tag’ SNPs using a 

conventional cutoff (r2 < 0.8 between loci).  Based on these analyses, we found that 325 tag 

SNPs would be needed to tag all available common variations from these populations (Table 2).   

These estimates were next compared with the published association studies.  At each 

gene, we listed the number of variations evaluated in previous association studies (SNPs and 

other polymorphisms), as well as the largest individual association study for each gene (defined 

in terms of the number of cases, see Table 2).  If possible, LD between the polymorphisms was 

analyzed.  We also estimated the number of studies that had 50% power to detect associations of 

modest effect size for each of the polymorphisms tested (alpha = 0.05). We assumed an additive 

risk model with a genotype relative risk of 1.5 for homozygous individuals, 1.25 for 

heterozygous individuals, and a disease prevalence of 1%.  We also assumed that the marker 

http://egp.gs.washington.edu/�
http://gvs.gs.washington.edu/GVS/�
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being considered was the actual liability variant and that genotyping errors were negligible.  

Thus, our power estimates are relatively lax.  

Ninety eight different polymorphisms have been investigated in all the association studies 

to date.  We find that only DRD5 has been comprehensively covered when considering the 

proportion of representative variations genotyped and power (Table 2).  If each of the published 

polymorphisms represents a tag SNP, 30.1% of the required tag SNPs may have been evaluated.  

In reality, the proportion of representative SNPs analyzed in the publications is almost certainly 

lower, since we were unable to estimate LD between many of these polymorphisms and several 

rare polymorphisms have been analyzed (data not shown).  We estimate that 19 of the 

polymorphisms studied had greater than 50% power to detect a genotype relative risk expected at 

an alpha threshold of 0.05.  Thus, most of the published studies, including those reporting on the 

genes with extensive numbers of polymorphisms are likely to lack sufficient power, even using 

our relaxed criteria. Under more realistic conditions (D’ = 0.9 between the genotyped marker and 

liability locus, 0.5% error rate, 1:1 case/control ratio, and a risk allele frequency of 0.2), we 

estimate that 595 cases and 595 controls would be required for 50% power under an additive 

model and 275 cases / 275 controls would be required under a dominant model of inheritance 

(1217 cases and 561 cases, respectively, would be required for 80% power under each model) 

(Purcell, Cherny, & Sham, 2003; Sham, Cherny, Purcell, & Hewitt, 2000).  These estimates are 

with regard to single marker analysis.  Additional corrections would be required for multiple 

independent tests.  Since analyses of epistatic interactions would require further corrections for 

multiple comparisons, the sample size requirements for identifying such effects will be even 

larger. 
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2.4 SUGGESTIONS FOR FUTURE ANALYSES 

2.4.1 Are more genetic association studies needed?   

Given the difficulties outlined above, it is worthwhile to weigh the utility of further gene 

mapping studies for schizophrenia.  We believe such studies are needed, primarily because it has 

been difficult to pinpoint environmental risk factors reliably (A. Jablensky, 1997; A. V. 

Jablensky & Kalaydjieva, 2003).  Gene mapping studies have been recommended for such 

disorders, particularly if they have substantial heritability (Merikangas & Risch, 2003). The 

substantial body of evidence pointing to dopamine dysfunction in schizophrenia is a natural 

starting point to re-evaluate available evidence. 

Some may argue against the need for further dopamine genetic studies because dopamine 

function is already an area of intensive research, including drug development efforts.   However, 

genetic association studies may provide additional value for such research.  First, emerging 

evidence suggests that networks of functionally related genes may be involved in pathogenesis of 

many multi-factorial disorders (Vogelstein, Lane, & Levine, 2000).  Carefully designed genetic 

studies might enable the identification of such networks, including key nodes to which novel 

therapeutics can be targeted (Goh et al., 2007).  Second, such analyses might help identify novel 

genes related functionally to ‘conventional’ dopamine genes.   

2.4.2 Which genes should be targeted?   

Apart from the genes involved in dopamine metabolism or those encoding dopamine receptors, a 

definition of ‘dopamine’ genes is difficult, because of the known cross-talk between 
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neurotransmitter systems.  Any list of ‘dopamine genes’ is also unlikely to remain static in the 

face of advances in neuroscience research.  We recommend starting with genes for which prior 

association evidence is available.  If further studies provide credible, consistent associations, 

additional functional interactants of the associated genes can be targeted.  

2.4.3 Which polymorphisms should be investigated? 

 Different types of polymorphisms are known in the human genome, ranging from SNPs to large 

copy number variations (CNVs) (Fanciulli et al., 2007).  SNPs are obvious starting points 

because they have been characterized extensively and because they can be assayed cheaply and 

accurately.  A secondary question is the choice of SNPs.  While it is relatively easy to select 

representative tag SNPs, the allele frequency of the selected SNPs is a more difficult choice.  The 

feasibility of detecting associations for common diseases using ‘common’ SNPs has been 

questioned on the grounds that they may not mirror the primary associations accurately and / or 

because risk may be due to relatively rare alleles (McClellan et al., 2007; Moskvina & 

O'Donovan, 2007; Terwilliger & Goring, 2000; Terwilliger & Hiekkalinna, 2006).   

While the possibility of rare variants predisposing to schizophrenia can not be 

discounted, currently available samples may not enable detection of statistical associations if 

such variants are examined directly.  One practical solution may be to select common tag SNPs, 

and follow up suggestive associations with more dense sets of SNPs, including rare variants.  

Such intensive analyses may enable us to detect causal variants. 
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Table 2 Published dopaminergic gene association studies and estimates of coverage 

Gene Location Gene Name (alias name) Size (kb)4

Publicly Available 
SNP Data1 Published Studies2 Largest Study* Meta-Analyses3 

Common 
SNPs  

(MAF> 5%)
Tag 

SNPs5
# Markers 
Studied6 

Power > 
50%7 

Cases / Controls 
** SNPs Result 

Dopamine Pathway Genes     
TH 11p15.5 Tyrosine hydroxylase 17.9 14 10 2 1 334/391 1 - 
DBH 9q34 Dopamine beta hydroxylase 33 68 39 2 0 178/178   
DDC 7p11 Dopamine decarboxylase 112.6 204 36 2 0 173/204   
DRD1 5q35.1 Dopamine D1 receptor 13.1 12 7 2 1 407/399   
DRD2 11q23* Dopamine D2 receptor 75.6 78 19 7 0 -274 2 +/- 
DRD3 3q13.3 Dopamine D3 receptor 60.2 69 18 17 4 331/280, (291) 1 + 
DRD4 11p15.5 Dopamine D4 receptor 13.4 4 2 5 5 630/520 2 - 
DRD5 4p16.1 Dopamine D5 receptor 12.1 1 1 2 0 158/437   

SLC18A1 8p21.3* 

Vesicular monoamine 
transporter, member 1 
(VMAT1) 48.4 60 20 4 0 354/365   

SLC18A2 10q25 

Vesicular monoamine 
transporter, member 2 
(VMAT2) 45.9 43 15 6 0 50   

SLC6A3 5p15.3 
neurotransmitter transporter, 
dopamine (DAT, DAT1) 62.6 120 49 7 0 252/271 1 - 

COMT 22q11.2* 
Catechol-O-
methyltransferase 37.2 50 30 11 3 1643/3980 1 +/- 

MAOA Xp11.3 Monoamine oxidase A 100.7 38 8 3  346/334   
MAOB Xp11.3 Monoamine oxidase B 125.8 16 12 0 0       
Dopamine Interacting Genes       

NR4A2 2q24.1* 
orphan nuclear receptor 
subunit 4 (NURR1) 18.3 6 3 2 0 180/180     

DRD1IP 10q26.3 
D1 receptor interacting 
protein (CALCYON)  21.5 5 4 1 0 276/253   

PPP1R1B 17q21.2 

protein phosphatase 1, 
regulatory (inhibitory) 
subunit 1B (DARPP-32) 19.7 3 1 3 0 249/273   

STX1A 7q11.23 Syntaxin 1A 30.4 7 3 4  192/192, (238)   
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Table 2.  Continued   
 
 
PICK1 22q13.1 

Protein interacting with 
PRKCA 1 28.4 17 6 3 

 

1765/1851   

SNAP25 20p12-p11.2 
Synaptosomal-associated 
protein, 25kDa 98.5 97 32 1 

0 
87/100   

ADRBK2 22q12.1 
beta adrenergic receptor 
kinase 2 (GRK3) 159.9 10 10 14 

0 
(16) and (97)     

1Publicly available genotype data: HapMap build 36 (www.Hapmap.org) (Thorisson, Smith, Krishnan, & Stein, 2005), and the NIHPDR 90 
screening subset (http://gvs.gs.washington.edu/GVS/index.jsp).  2Data from PubMed searches, see details in the text. 3Number of SNPs at which 
meta-analysis has been conducted is provided.  (+) = significant association detected, (-) = no significant association, (+/-) = conflicting results 
among meta-analyses.  Blank spaces indicate that meta-analyses have not been published. 4Includes sequences 5 kb upstream (5’) and 5 kb 
downstream (3’) of the gene.  5 Tag SNPs selected as described in the text.  Repeat polymorphisms not included. 6 Indicates number of studied 
polymorphisms that were not redundant (r2 < 0.8, where feasible).  7Number of SNPs for which individual study evaluating the SNP had 50% or 
greater power to detect an association; see details in the text. 8Study included samples from the US (151 trios, 331 cases, 274 controls) and India 
(141 trios)  9Study analyzed 16 Japanese families and 97 Chinese families.  *Studies with largest number of cases are included. ** Where family 
based samples were used, the number of families is listed in brackets.                                                                                                                                                   

http://www.hapmap.org/�
http://gvs.gs.washington.edu/GVS/index.jsp�
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2.4.4 Sample Configurations   

The possibility of spurious associations due to ethnic admixture has motivated much 

debate and the espousal of family based association studies (Spielman & Ewens, 1993; 

Wacholder, Rothman, & Caporaso, 2000).  While family based samples detect 

association only in the presence of linkage and are thus particularly valuable, it is now 

feasible to correct for population sub-structure (Bacanu, Devlin, & Roeder, 2000; 

Pritchard & Rosenberg, 1999; Spielman & Ewens, 1993).  Though the choice of controls 

may be dictated by convenience, biased selection of controls has obvious implication for 

detecting associations.  Hence it is important to plan for follow up initial associations in 

other independent samples.   

2.4.4.1  Sample size  

The power analyses reviewed above suggest the need for relatively large samples.  Given 

the possibility of false positive associations, replicate analyses are also recommended 

(Editorial, 1999).  While sample size limitations remain significant hurdles for 

association studies, the availability of public repositories (http://www.nimh.nih.gov/), and 

the feasibility of staged analyses (Skol, Scott, Abecasis, & Boehnke, 2006) may make 

this issue more tractable. 

2.4.4.2 Which ethnic group/s?   

The overwhelming majority of genetic association studies are being conducted among 

individuals of Caucasian ancestry.  Our review suggests ethnic variation in the magnitude 

http://www.nimh.nih.gov/�
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of some of the associations.  Such variation is known in other disorders, for example the 

association between ApoE alleles and Alzheimer disease (Farrer et al., 1997).  Evaluation 

of multiple ethnic groups may also enable us to identify primary associations based on 

ancestral recombinations (Templeton et al., 2000).   

2.4.4.3  Functional Analysis 

The majority of genetic associations for schizophrenia have been reported with non-

coding polymorphisms, making it difficult to attribute function to the associated alleles.  

Nevertheless, such analyses are critical for understanding pathogenesis and may also be 

helpful in determining primary associations.  An interactive design, with genetic 

associations informing functional analyses, and vice versa, is desirable. 

2.4.4.4  Should genomewide associations (GWAS) supplant candidate gene studies?   

Recently, GWAS have come to the fore, thanks to the availability of a comprehensive 

trove of common polymorphisms, rapid and accurate genotyping platforms and 

sophisticated analytic techniques.  By analyzing a representative set of SNPs among 

cases and controls, GWAS studies seek to evaluate the relative impact of common 

polymorphisms.  Judicious analyses may also provide insights into epistatic interactions.  

Remarkable consistencies have recently been attained for a diverse set of common 

diseases, including age related macular degeneration, prostate cancer, Crohn’s disease 

and type I diabetes mellitus (Ennis et al., 2007; Gudmundsson et al., 2007; Libioulle et 

al., 2007; Saxena et al., 2007).  GWAS studies have already been reported for 

schizophrenia (Lencz et al., 2007) and other independent studies are in progress.  These 
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studies are likely to yield important new insights, so it is reasonable to question the need 

for focused candidate gene studies.   

It is important to note that GWAS represent the beginning of a new effort, rather 

than an end point in the gene mapping effort.  For example, GWAS studies will  

undoubtedly require replicate studies, followed by more detailed analysis of prioritized 

genes using more dense sets of polymorphisms.  Thus, ‘candidate gene analyses’ will still 

be needed. Indeed, common polymorphisms are not tagged uniformly across the genome 

in some arrays used for GWAS.  Thus, key associations may remain undetected, even 

with GWAS.  In other diseases, candidate gene analyses have also identified associations 

with SNPs that were not sufficiently large for detection using GWAS; e.g., associations 

between late-onset Alzheimer disease and SORL1 SNPs (Rogaeva et al., 2007).   

2.5 CONCLUSIONS 

Our review of published association studies involving dopaminergic genes highlights the 

lack of adequate analyses of variation at these genes.  Our findings suggest more 

comprehensive analyses are required in sufficiently powered samples, particularly in 

view of some promising recent results.  Replicate analyses, as well as analyses of 

multiple ethnic groups, in conjunction with functional evaluation of associated SNPs 

would be preferable. 



 53

2.6 ACKNOWLEDGEMENTS  

Supported by NIMH grants to VLN (MH56242 , MH63480 and MH66263) and MET 
(MH080582). 



 54

3.0  STUDY #1: NOVEL, REPLICATED ASSOCIATIONS BETWEEN 

DOPAMINE D3 RECEPTOR POLYMORPHISMS AND SCHIZOPHRENIA 

Michael E. Talkowski1,2, Hader Mansour2, Kodavali V. Chowdari2, Joel Wood2, 
Allison Butler, Panchami G. Varma3, Suman Prasad3, Prachi Semwal3, Triptish Bhatia4, 
Smita Deshpande4, Bernie Devlin2,1, B.K. Thelma3, and V.L. Nimgaonkar2,1 

 
1Department of Human Genetics, University of Pittsburgh Graduate School of 

Public Health, 2Department of Psychiatry, University of Pittsburgh School of Medicine, 
Pittsburgh, PA; 3Deparment of Human Genetics, University of Delhi South Campus, New 

Delhi, India; 4Department of Psychiatry, Dr. RML Hospital, New Delhi, India 
 
 

These data have been published in Biological Psychiatry  
Copyright © 2008 Elsevier, Inc.  

 
Novel, replicated associations between dopamine D3 receptor gene polymorphisms and 
schizophrenia in two independent samples. Biol Psychiatry. 2006 Sep 15;60(6):570-7. 

 

 

 

 

 

 

 

 

 

 



 55

3.1 ABSTRACT 

Meta-analyses have suggested an association between schizophrenia and a coding 

polymorphism (rs6280/Ser9Gly) at the dopamine D3 receptor gene (DRD3), but results 

have been inconsistent.  Since most studies have evaluated only rs6280, the 

inconsistencies may reflect associations with other variants.  We analyzed 13 

polymorphisms spanning 109kb in two independent samples (US: 331 cases, 151 trios, 

274 controls; India: 141 trios). In the U.S. samples, significant associations were detected 

with eight SNPs, including rs6280 (p = 0.001, OR:1.5, 95% CI:1.2-1.9).  Consistent 

associations in the case-control and family-based analyses were detected with a common 

haplotype spanning intron 1 to the 3’ region of the gene (rs324029-rs7625282-rs324030-

rs2134655-rs10934254; case-control, p=0.002, TDT, p=0.0009; global p-values = 0.002 

and 0.007, respectively).  In the Indian sample, one SNP was associated (rs10934254, 

p=0.03).  Moreover, over-transmission of the same common haplotype as the U.S. sample 

was observed in this cohort (TDT, p=0.005; global test, p=0.009).  Ser9Gly (rs6280) was 

associated with schizophrenia against this haplotype background, but not other 

haplotypes. 

These data suggest inconsistent findings at rs6280 may result from associations with 

other DRD3 variants.  A liability locus may be in LD with, or carried against, an 

associated haplotype spanning the gene.  Comprehensive SNP evaluation in larger 

samples is needed.  
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3.2 INTRODUCTION 

Dysfunction in the dopamine D3 receptor (DRD3) has long been implicated in the 

pathogenesis of schizophrenia (see (Gingrich & Caron, 1993); (Sokoloff & Schwartz, 

1995) for review).  DRD3 mRNA is predominantly expressed in the limbic system, a 

region thought to be dysfunctional in schizophrenia (Suzuki, Hurd, Sokoloff, Schwartz, 

& Sedvall, 1998).  Indeed, increased DRD3 receptor density has been noted in the 

mesolimbic region of post-mortem brain samples from patients with schizophrenia (A. 

M. Murray, Ryoo, Gurevich, & Joyce, 1994).  Post-mortem studies have also revealed 

decreased levels of DRD3 mRNA in cortical regions (Schmauss, Haroutunian, Davis, & 

Davidson, 1993).  These changes may be pathogenic, since D3 receptors are thought to 

mediate antipsychotic drug action (Sokoloff et al., 1992) (Schwartz, Diaz, Pilon, & 

Sokoloff, 2000).   

 DRD3 maps to chromosome 3q13.3.  Within the gene there is a common, non-

synonymous coding polymorphism in exon 1.  The single base change codes for either 

serine or glycine at the ninth amino acid in the N-terminal extracellular domain (Ser9Gly; 

rs6280) (A. H. Wong et al., 2000).  Genotypes of this variant have been reported to show 

differential affinity for dopamine (Lundstrom & Turpin, 1996), rendering it an intriguing 

functional candidate polymorphism.  Since the initial study reporting an association with 

schizophrenia (Crocq et al., 1992), this polymorphism has been among the most 

extensively investigated variants in psychiatric genetics.   

Consistent associations with schizophrenia have been sought at this locus in over forty 

samples to date, the majority involving case-control designs (see (Jonsson, Flyckt et al., 

2003).  Associations have been reported and replicated with increased homozygosity, as 
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well as the serine allele (rs6280 allele A; often reported as allele 1).  However, a number 

of studies have not replicated these results.  These data have motivated multiple meta-

analyses (Nimgaonkar et al., 1996) (Shaikh et al., 1996) (J. Williams et al., 1998) 

(Dubertret et al., 1998) (Jonsson, Flyckt et al., 2003) (Jonsson et al., 2004).  Meta-

analyses were conducted successively, and in sum they appeared to suggest a significant, 

but modest association with the serine variant (n = 8,761; estimated OR = 1.10, 95% CI = 

1.01 – 1.20) (Jonsson, Flyckt et al., 2003).  However, the most recent and largest effort to 

evaluate this polymorphism did not detect significant associations with schizophrenia (n 

= 11,066; Jonsson et al. 2004).    

Thus, despite an impressive compilation of data across multiple populations, the 

impact of this variant in schizophrenia pathogenesis has remained inconclusive.  There 

are several explanations for inconsistent results apart from stochastic variation.  One 

possibility is that the Ser9Gly variant itself is not associated with schizophrenia, but is in 

modest linkage disequilibrium (LD) with an unidentified liability locus.  Such a scenario 

could produce inconsistent associations similar to those previously reported.  Several 

investigators have attempted to address this hypothesis, focusing primarily on exon 1 and 

the immediate 5’ region of the gene.  Three studies have reported associations with 

polymorphisms spanning approximately 7 kb 5’ to exon 1 (Ishiguro, Ohtsuki et al., 1998) 

(Sivagnanasundaram et al., 2000) (Staddon et al., 2005).  In contrast, Anney and 

colleagues failed to detect associations in this region following mutation screens and 

analysis of 736 Caucasian cases and controls (Anney et al., 2002).  Asherson et al. 

screened all exons and regulatory regions at DRD3 in a small number of cases and 

controls (36 cases, 36 controls) and found two variations, one at exon 3 and a 5 bp 
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deletion in the 3’ intron flanking exon 5.  Neither of these mutations alter the protein 

structure, nor were they associated with schizophrenia in this study (Asherson et al., 

1996).   

Given the considerable number of positive, albeit inconsistent associations reported, 

results of these past studies may be reflecting an association between schizophrenia and 

another variant at DRD3.  As available databases such as the International Hapmap 

Project reveal SNPs within and flanking the gene are not in strong linkage disequilibrium 

with rs6280, it appears that other variants at this locus have not been accounted for in the 

current literature.  We report here analyses of 13 polymorphisms spanning the DRD3 

gene and flanking regions (109 kb) in two independent samples using both case-control 

and family-based designs.  We also evaluate coverage of this and past studies through 

linkage disequilibrium analyses using all publicly available genotype data across this 

region.    

3.3 METHODS 

3.3.1 Clinical 

Recruitment of probands was performed in Pittsburgh and surrounding regions for the 

U.S. sample (n = 331 cases), as well as New Delhi and surrounding regions for the Indian 

sample (n = 141 cases).  In a concerted effort to limit heterogeneity between populations, 

both samples were ascertained using identical criteria.  All participants completed a semi-

structured interview (Diagnostic Interview for Genetic Studies (Nurnberger et al., 1994).  
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In addition, supplemental information was obtained from medical records and relative 

reports as required for consensus diagnosis by board certified psychiatrists / 

psychologists.  All cases were diagnosed with schizophrenia  or schizoaffective disorder 

(DSM-IV criteria).  Cross-site inter-rater reliability for diagnostic measures was 

monitored throughout the study (Deshpande et al., 1998). All cases from the U.S. sample 

were Caucasian, and when available both parents of the probands were recruited (U.S., n 

= 151 families; India, n = 141 families).  Anonymized cord blood samples from 

Caucasian live births at a local Pittsburgh hospital served as unscreened, community 

based controls in the U.S. sample (n = 274).  These samples are completely independent 

of those previously reported by our groups (Nimgaonkar, Zhang, Caldwell, Ganguli, & 

Chakravarti, 1993), (Nimgaonkar et al., 1996), (S. Prasad et al., 1999). 

The study was approved by Institutional Review Boards (IRBs) at the University of 

Pittsburgh and Dr. Ram Manohar Lohia Hospital, New Delhi.  Written informed consent 

was obtained from all participants, but was not required for the anonymous neonate DNA 

according to the University of Pittsburgh IRB regulations.   

3.3.2 Laboratory 

Venous blood was obtained from all participants and genomic DNA extracted using the 

phenol chloroform method.  Using pooled DNA samples from Caucasian SZ/SZA cases 

(n = 100), we sequenced 500 - 700 bp amplicons extending over all DRD3 exons and 

exon-intron boundaries.  We also sequenced amplicons spanning reported database SNPs 

that were available at the time (http://www.ncbi.nlm.nih.gov, NT_005795.5, Hs3_5952, 

chromosome 3 working draft sequence; 2001).  In total, 40 amplicons were surveyed 
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spanning 109 kb genomic region within and flanking DRD3.  Sequencing was performed 

using Big Dye Terminator kit v3.1 (Applied Biosystems, Inc.) and isopropanol 

precipitation followed by centrifugation.  Using this method, we were able to identify 

SNPs with minor allele frequencies over 5-10% (Chowdari et al., in review).  A total of 

20 common SNPs were identified from the 40 amplicons (only rs6280 and a rare SNP in 

LD with rs6280, rs3732783, were detected from the exon screening).  Following SNP 

identification, amplicons spanning polymorphisms were re-sequenced in a panel of 24 

unrelated Caucasian individuals.  Linkage disequilibirum (LD) analysis was then 

evaluated in these individuals. 

3.3.3 SNP Selection 

We found that 9 “tag” SNPs were required to reasonably represent all 20 SNPs identified, 

i.e. the pair-wise correlation of genotypes as assessed by r2 was greater than 0.8 between 

loci and minimal information was gained by analyzing all SNPs independently.  Two 

other SNPs (rs1503670, rs1800828) had been investigated in previous studies and were 

added for replication purposes (Anney et al., 2002) (Ishiguro, Ohtsuki et al., 1998) 

(Sivagnanasundaram et al., 2000) (Staddon et al., 2005).  Two redundant SNPs within 

intron 1 were also included.  13 total SNPs were therefore genotyped in the U.S. sample 

(see Figure 3; Table 3).   

In the Indian sample, we evaluated 141 case-parent trios.  Analyses were initiated 

with all 13 SNPs from the U.S. panel, but two were discarded due to failed genotyping 

assays (rs7625282 and rs7616367).  Of these SNPs, one was a redundant SNP and the 

information loss was minimal (rs7625282).  The second (rs7616367) was only in modest 
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LD (r2 > 0.5) with a successfully assayed SNP (rs2399504) and some information loss 

resulted.    

3.3.4 Genotyping 

A PCR based assay using a single base extension method was used to gentoype all 

samples (SNaPshot; ABI Biosystems Inc.).  Interplate and intraplate duplicate samples, as 

well as water negative controls, were used as quality control measures in all assays.  In 

addition, one SNP (rs2134655) was typed in duplicate on 384 samples to estimate error 

rates.  Two individuals read genotypes independently, blind to clinical status.  In case of 

ambiguous calls, samples were re-assayed or sequenced. 

 

 

Figure 3 DRD3 genomic organization and variants studied in US sample 

Dopamine D3 receptor (DRD3) genomic organization and SNPs investigated in the U.S. sample.  
Known exons are numbered, as well as an additional exon (numbered 0) suggested by Anney et 
al. (Anney et al., 2002).  Chromosome location of each SNP based on dbSNP build 128 provided 
in brackets.  *Denotes associated SNP in U.S. analyses. 
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3.3.5 Statistical Analysis 

We tested for Mendelian inconsistencies (O'Connell & Weeks, 1998) in the family 

samples and Hardy-Weinberg equilibrium in the case-control samples (GENEPOP 

software, version 1.31).  Differences in genotype distributions between cases and controls 

for individual SNPs were assessed using the Armitage Trends test (SAS software).  

Haplotype frequencies were estimated with PHASE software (version 2.0.2) (J. C. 

Stephens et al., 2001) (M. Stephens & Donnelly, 2003).  We tested for haplotype 

associations using SNPEM software (D. Fallin et al., 2001).  Where significant, global 

haplotype results were retested with COCAPHASE from the UNPHASED software suite 

(version 2.403; http://www.rfcgr.mrc.ac.uk/~fdudbrid/software/unphased/).  

COCAPHASE uses a method of standard unconditional logistic regression.  Correction 

for multiple tests was performed using 5,000 permutations.  For these analyses, “case” 

and “control” status are reassigned, and in each replicate all the selected markers are 

analyzed and the most significant p-value stored.  As a result, the permutation procedure 

gives a significance level corrected for the multiple haplotypes and markers tested.  

Permutation test results from COCAPHASE are reported for global analyses. 

Family-based associations were evaluated for individual SNPs / haplotypes using the 

transmission disequilibrium test (TDT; (Kruglyak, Daly, Reeve-Daly, & Lander, 1996)).  

Global tests assessing transmission distortion were performed using TRANSMIT 

software (Clayton, 1999), and significant results were retested with the permutation test 

available through FBAT software (100,000 permutations) 

(http://www.biostat.harvard.edu/~fbat/fbat.htm).  Good agreement in p-values was found 

between tests, and FBAT results are reported here. 

http://www.rfcgr.mrc.ac.uk/~fdudbrid/software/unphased/�
http://www.biostat.harvard.edu/~fbat/fbat.htm�
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Linkage disequilibrium (LD) was evaluated using a clustering algorithm available 

in Hclust software (Rinaldo et al., 2005).  Briefly, Hclust computes a similarlity matrix 

from the square of Pearson’s correlation (r2) between allele counts at pairs of loci, then 

uses hierarchical clustering to group correlated SNPs.  For some analyses, we were 

interested in identifying a subset of SNPs that are reasonably correlated with all other 

SNPs in the dataset, i.e. “tag” SNPs.  Hclust identifies a set of tag SNPs based on the user 

specified minimum correlation between SNPs within a cluster.  We used a conservative 

cutoff in which allele counts between all SNPs in a cluster had a correlation of r2 > 0.8. 

3.3.5.1 Genomic Control 

To control for possible population sub-structure in our case-control sample, we employed 

a variation of the original genomic control method described by Devlin and Roeder 

(Devlin & Roeder, 1999) (Bacanu et al., 2000) (Devlin, Roeder, & Bacanu, 2001).  We 

assessed a pool of 420 SNPs from 63 independent genomic regions that had been 

previously chosen for schizophrenia association studies and genotyped in these samples.  

Since these SNPs were selected on the basis of being either functional or positional 

schizophrenia candidates, these analyses were biased towards an a priori hypothesis of 

association and may represent a more conservative correction than proposed originally by 

Devlin and Roeder.  From this pool, we randomly selected one SNP per region (63 SNPs, 

total) and determined the median chi square test statistic for case-control comparisons 

across these SNPs.  This process was repeated 10,000 times to yield a distribution of 

median chi square test statistics (df = 1).  We then divided the mean of this result by the 

expected median of the chi square distribution with one degree of freedom (0.456) to 
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generate a single correction factor for all of our SNP based case-control analyses 

previously described (Bacanu et al. 2000). 

3.4 RESULTS 

3.4.1 Quality Control 

Sequencing was performed for all SNPs using DNA from 24 unrelated parents from 

among the Caucasian U.S. case-parent trios.  Sequencing traces were compared with 

genotype calls from the SNaPshot assays and no inconsistencies were found.  We 

genotyped one SNP, rs2134655, in duplicate for 384 samples and found no discrepancies.  

Four Caucasian cord samples were also used as positive controls in all genotyping from 

the U.S. and Indian samples (4 per 96-well plate, 56 total duplicate genotypes), and no 

discrepancies were detected.  Genotype failure rates were low for all samples, and rates 

were similar between populations studied (U.S., mean failure rate per SNP = 0.0172, 

standard deviation = .0157, range 0.0 - 0.067; India, mean = 0.0424, standard deviation = 

0.0156, range 0.018 - .070).   We performed checks for Mendelian inheritance 

inconsistencies and found no Mendelian errors in the U.S. sample (13 SNPs, 151 trios) or 

the Indian sample (11 SNPs, 141 trios).  We tested for deviations from HWE among all 

sample groups (controls, parents, cases) for all SNPs.  The U.S. cases deviated from 

HWE at rs6280 (p = 0.025). We found no deviations from HWE in the Caucasian cords 

or parents.  In the Indian sample, we found deviation from HWE in the parents for one 

SNP (p = 0.035), rs905568.       



 65

3.4.2 Comparison of linkage disequilibrium (LD) between samples 

We performed LD analyses for the eleven SNPs genotyped in both samples using the 

community-based controls and parents of probands in the U.S. sample (n = 576), and the 

parents in the Indian sample (n = 282).  Our results suggested similar patterns of LD, 

SNP clusters, and tag SNPs between the two samples (Figure 4). 

 

Figure 4 Linkage disequilibrium between SNPs analyzed in both US and Indian samples 

Cluster dendrogram for SNPs genotyped in both samples shows similar patterns of LD.  “Tag” 
SNPs are denoted by an asterisk (*), and the tag SNP set is identical between samples.  Analysis 
restricted to the 11 SNPs genotyped in both samples.  SNP numbers correspond to Table 3. 
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3.4.3 Association testing in U.S. sample 

3.4.3.1 SNP analyses 

In the U.S. sample, significant differences in genotype distributions between cases and 

controls were detected for three SNPs (rs905568, p < 0.001; rs6280, Ser allele, p = 0.001; 

rs2134655, p = 0.022; see Table 1).  A trend for association was detected at rs10934254 

(p = 0.073).  We did not find a significant increase in homozygosity among cases at 

rs6280 (ser/ser, ser/gly, gly/gly genotype counts: cases 173 / 136 / 12, controls 119 / 127 / 

26, respectively).  Of these SNPs, only rs6280 has been investigated in previous studies.   

Our genomic control analyses of the median χ2 distributions from SNPs within 63 

independent genomic regions sampled 10,000 times yielded a mean of 0.57.  When 

dividing this by 0.456, the expected median of a χ2 distribution with 1 d.f. (see Bacanu et 

al. 2000), we derived a correction factor of 1.25.  All SNP based analyses were re-

analyzed using this correction, and the results are displayed in Table 3. 

Family-based analyses detected significant transmission distortion at six SNPs (p 

< 0.05; see Table 1), including four SNPs confined to the region from intron 1 to 5.9 kb 

downstream of DRD3 (rs324029, rs7625282, rs324030, rs10934254; see Table 1).   

Alleles at rs6280 were not significantly over-transmitted in these analyses (p = 0.13). 
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Table 3 DRD3 SNP-based results across samples 

  U.S. Samples India Trios 

# SNP 
Gene 

Region Nuc Strand 
Allele  
Code

aFreq. 
(Case/ 

Control)

bCase-
Control 
p-value

cGC   
p-value

dTDT   
(T/NT) 

TDT    
p-value 

TDT    
(T/NT)

TDT    
p-value

1 rs905568 5’ C + 2 .48/.37 <0.0001 0.0008 78/72 0.62 51/47 0.69 
2 rs2399504 5’ C + 1 .82/.81 0.923 0.933 49/36 0.16 28/27 0.89 
-- rs7616367 5’ A + 2 .74/.74 0.944 0.95 66/43 0.02 --   -- 
3 rs1394016 5’ T* - 2 .37/.33 0.145 0.194 77/62 0.2 64/46 0.07 
4 rs1503670 5’ G + 1 .63/.64 0.72 0.75 83/65 0.14 74/64 0.39 
5 rs1800828 5’ G - 1 .80/.77 0.175 0.23 62/39 0.02 59/45 0.17 
6 rs324026 5’ T* + 2 .69/.68 0.62 0.66 78/59 0.1 70/56 0.21 
7 rs6280 Exon A* - 1 .75/.67 0.001 0.004 71/54 0.13 70/60 0.36 
8 rs324029 Intron C* - 2 .73/.72 0.855 0.87 72/50 0.04 60/42 0.07 
-- rs7625282 Intron T - 2 .77/.76 0.776 0.806 71/45 0.01 -- -- 
9 rs324030 Intron C* + 2 .72/.73 0.813 0.83 72/49 0.04 59/44 0.14 

10 rs2134655 Intron G - 2 .73/.67 0.022 0.075 65/53 0.27 48/42 0.53 
11 rs10934254 3’ C - 1 .44/.39 0.073 0.12 80/57 0.05 71/48 0.03 

 
Single nucleotide polymorphism (SNP) # is given in sequential order according to DRD3 
transcription (5’ to 3’) from the most upstream (telomeric) to downstream (centromeric) SNP.  
SNP# is only given for SNPs assayed in both samples.  Nuc = nucleotide. Strand = genomic 
strand genotyped in this study.  *Nucleotide provided is designated as “other” allele, not 
“reference” allele by HapMap (HapMap, 2003).   aFrequency of the allele provided in cases and 
controls.   bTrends test p-values from genotype distributions.  cGC p-value = p-value after 
genomic control correction applied.  dT = transmitted allele, NT = not transmitted allele 
(transmission disequilibrium test [TDT]). 

3.4.3.2 Haplotype analyses 

Haplotype analyses in the case-control sample suggested significant associations with 

all haplotypes incorporating the significantly associated SNPs.  Global tests (SNPEM 

omnibus likelihiood ratio) supported associations with these haplotypes (data not shown).  

All results remained significant after permutation testing (COCAPHASE global tests, 

1,000 permutations; data not shown).  However, to mitigate against false positives in 

haplotype analyses, we interpreted individual haplotype results as significant only if they 

were also associated in family-based analyses.  Using this criterion, we observed 

significant over-transmission of all 2, 3, and 4 SNP haplotypes comprised of SNPs from 
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intron 1 to the 3’ region of the gene (see Table 4).  Analyses of global transmission 

distortion across these SNPs supported significant associations (see Table 5).  For 

comparison purposes, these data were re-analyzed for the 11 SNPs available in the Indian 

sample and results are shown in Table 2. 

3.4.4 Replication testing in the Indian family sample 

SNP-based analyses of 11 SNPs detected a significant association with rs10934254 in 

the DRD3 downstream region (Table 1).  Significantly increased transmission was 

observed with the same allele as the U.S. sample (rs10934254, transmitted alleles / 

untransmitted alleles: U.S., 80/57; Inidia, 71/48).  Non-significant over-transmission of 

the same alleles significantly associated with schizophrenia in the U.S. sample was 

observed for two additional SNPs within intron 1.  As in the initially tested U.S. sample, 

we found significant over-transmission of a common haplotype spanning intron 1 to the 

3’ region of DRD3 (markers rs324029-rs324030-rs2134655-rs10934254).  The associated 

alleles comprising this common haplotype in the Indian sample were identical to those in 

the U.S. sample (see Table 4).  Global tests of transmission distortion at these SNPs also 

supported associations in this cohort (see Table 5).   

We conducted exploratory analyses in an attempt to explain inconclusive results from 

previous studies.  We investigated whether associations at rs6280 could be attributed to 

differing haplotype backgrounds.  To accomplish this, we separately combined rs6280 

with haplotypes spanning the 5’ region of the gene and haplotypes 3’ to exon 1.  We first 
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explored associations in our U.S. case-control sample, then our U.S. family sample.  If 

results were consistent, we tested for replication in the Indian cohort.   

Similar to inconsistent replications in previous studies, we detected case-control 

differences at rs6280 in the U.S. sample, but neither family sample (Table 1).  Significant 

associations were also not detected with either allele when combined with other SNPs 5’ 

to the gene, as was done in previous studies (Anney et al., 2002) (Ishiguro, Ohtsuki et al., 

1998) (Sivagnanasundaram et al., 2000) (Staddon et al., 2005).  However, when rs6280 

was combined with the associated common haplotype in both samples from our initial 

analyses (SNPs 3’ to exon 1), significant associations were consistently observed with the 

Ser allele (Table 2).  These results were replicated in the Indian sample for the same 

common haplotype, and global tests incorporating these SNPs were significant across 

study designs in both samples (see Table 2).  Associations were not detected with the Ser 

or Gly alleles against any other haplotype backgrounds (see Table 3 for all haplotype 

frequencies).  The allele encoding glycine (G) is rarely carried against this haplotype 

background (frequency of Gly-C-G-G-C = .003; Table 3), and the Ser allele was actually 

under-represented in cases as compared to controls against other haplotype backgrounds 

in the U.S. sample.  Taken together, these results could account inconsistencies in studies 

assessing only rs6280. 
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Table 4 Haplotype results incorporating associated intronic and downstream SNPs 

 
U.S. Samples Indian Samples 

Case-Control Families Families 

aSNPs in 
haplotype bAlleles 

cFreqs 
(Case / 

Control) 
Hap    

dp-value
Global   

ep-value T/NT 
TDT      

fp-value 
Global    

gp-value T/NT 
TDT    

p-value
Global 
p-value 

8-9 2-2 0.72/0.72 0.81 0.81 58/34 0.01 0.03 46/28 0.04 0.08 
9-10 2-2 0.47/0.39 0.03 0.04 69/32 0.0002 0.0002 45/38 0.44 0.34 

10-11 2-1 0.50/0.42 0.01 0.05 60/33 0.005 0.04 57/31 0.005 0.002 
8-9-10 2-2-2 0.46/0.38 0.02 0.01 68/31 0.0002 0.0001 44/35 0.31 0.41 

9-10-11 2-2-1 0.39/0.34 0.039 0.002 53/26 0.002 0.009 35/19 0.03 0.006 
8-9-10-11 2-2-2-1 0.39/0.34 0.039 0.002 52/26 0.003 0.009 36/17 0.009 0.005 

7-8-9-10-11 1-2-2-2-1 0.39/0.32 0.01 0.002 50/24 0.002 0.02 31/14 0.01 0.03 
aSNP numbers correspond to numbers provided in Table 1. bAlleles given correspond to reference allele # given in Table 1. 
cFrequency of the over-transmitted haplotype in the U.S. sample for U.S. cases and controls.  dp-value from individual haplotype case-
control comparisons.  eGlobal p-value  incorporating all haplotypes after correction using 1,000 permutations (Cocaphase).  fTDT p-
value is individual haplotype p-value, and gglobal p-value is whole marker results incorporating all haplotypes after 100,000 
permutations (FBAT).   
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Table 5 Frequency of all common haplotypes spanning exon 1 to the DRD3 3' region 

SNPs Alleles 
Case 
Freq 

Control 
Freq 

8-9-10-11 

2221 0.39 0.34 
2212 0.26 0.31 
1122 0.22 0.23 
2222 0.07 0.06 
1121 0.05 0.05 

7-8-9-10-11             

12221 0.39 0.32 
12212 0.26 0.31 
21122 0.17 0.22 
22222 0.03 0.05 
21121 0.04 0.05 
12222 0.04 0.02 
11122 0.05 0.01 
11121 0.01 0 
12211 0 0.01 
22221 0 0 

All common estimated haplotype frequencies (>1%) for SNPs 3’ to exon 1 (8-9-10-11) 
alone and when combined with rs6280 (7-8-9-10-11).  The associated haplotype is given 
in bold and italicized.  Alleles correspond to the reference allele number given in Table 
1.  The Ser allele at rs6280 (SNP 7) corresponds to allele 1, Gly is allele 2. 

3.4.5 Survey of publicly available variations at DRD3  

As these SNPs were identified and genotyped in the initial U.S. sample prior to the first 

release of the International Hapmap Project (IHP) (HapMap, 2003), additional 

information has become available regarding other SNPs in the region.  Thus, we 

conducted post-hoc LD analyses to evaluate the coverage of this region in the current and 

previous studies.  We genotyped the 13 SNPs from the current study in 90 CEPH (Utah 

residents with ancestry from northern and western Europe) individuals and included 

available SNPs from IHP as of June, 2005.  When combined, data was obtained for 50 

SNPs across the 109 kb, 35 of which had an MAF > 5%.  Our analyses indicated 16 tag 

SNPs would reasonably represent all available SNPs with MAF > 5% (r2 > 0.8), 8 of 
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which were genotyped in the current study (50%), and 22 SNPs would be required to tag 

all variations with MAF greater than 1% (42 total SNPs).  We also find that rs6280 was 

highly correlated with 5 SNPs 5’ to the gene, but did not tag any available SNPs 3’ to 

exon 1.  These results suggest previous studies assessing only rs6280, or SNPs 5’ to exon 

1, have not adequately accounted for variants 3’ to exon. 

To determine whether our haplotype results could be a consequence of the 

observed association with rs6280, we estimated LD (r2) between the associated haplotype 

spanning SNPs rs324029 – rs324030 – rs2134655 – rs10934254 and rs6280 in the 

unrelated US controls (n = 278).  We find that rs6280 is not in substantial LD with the 

associated common haplotype (r2 < 0.212), suggesting some degree of independence 

between the associated haplotype and rs6280.     

3.5 DISCUSSION 

Recent simulations have suggested that in the presence of an unidentified liability 

locus, patterns of associations can be complex, depending on the test statistics used.  

Indeed, the liability locus may not produce the maximum test statistic (Roeder et al., 

2005), which is instead found at SNPs in significant or even modest linkage 

disequilibrium (LD) with the liability locus.  It is often beneficial to therefore analyze a 

large set of polymorphisms for candidate gene association studies.  The rapid 

identification of polymorphisms in the human genome, their availability in the public 

domain, and accompanying LD analyses have enabled such studies.  Thus, it is feasible 

and potentially necessary to revisit earlier association studies that typically investigated 
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only one polymorphism at a gene, such as DRD3.  The initial report by Crocq and 

colleagues in two samples suggested associations between schizophrenia and rs6280 with 

a substantial effect size (pooled relative risk in homozygotes = 2.61) (Crocq et al., 1992). 

Replication was pursued in an enormous number of subsequent studies with inconsistent 

results, and the largest in a series of meta-analyses (Jonsson, Flyckt et al., 2003) has 

suggested this association may not be present across populations.  However, since most 

studies investigated only this SNP, it is uncertain whether there are other, more relevant 

associations at this gene.   

Using rigorous quality control measures, we tested associations at DRD3 with two 

different study designs (case-control and family based) and two independent samples.  

These samples have not been investigated in prior reports on DRD3 by our groups 

(Nimgaonkar et al., 1993), (Nimgaonkar et al., 1996), (S. Prasad et al., 1999).  Our 

primary goal was to seek consistency in associations across differing study designs and 

populations.  We also sought explanations for the inconsistencies reported for rs6280.   

Our initial comparisons in the U.S. Caucasian cases and community based 

controls revealed significant associations for three SNPs and related haplotypes.  We did 

not detect increased rates of homozygosity among the cases at rs6280.  Since the 

associations could be confounded by unknown population substructure, we re-evaluated 

our results using a potentially conservative variation of genomic control.  The results 

from two SNPs remained significant, despite this conservative correction.   

We next evaluated approximately half of the U.S. cases for transmission 

distortion using the TDT.  Even in this smaller sample, we detected associations at four 

SNPs.  However, there was no overlap with the associated SNPs from the case-control 
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comparisons.  Inconsistencies in the pattern of associations with different SNPs between 

case-control and family based analyses, similar to those observed here, can result from 

differing assumptions, power, and properties of these tests (Bacanu et al., 2000).  

Supporting our initial results, we detected association with one of the SNPs that displayed 

transmission distortion in the U.S. families (rs10934254) in a second Indian cohort.  

Consistent with the similar patterns of LD observed between variations from the Indian 

and U.S. populations, the same common haplotype was over-transmitted in both samples.  

This haplotype was also over-represented in the entire sample of U.S. cases when 

compared with the U.S. community-based controls.   

Taken together, our analyses indicate an association with a common haplotype in 

both samples.  The results are intriguing as they were replicated through three different 

sets of analyses and two independent populations.  While it is possible that this haplotype 

itself conveys liability to schizophrenia, given the relatively sparse SNP density evaluated 

in this region, we speculate it is more likely that our analyses are suggestive of a risk 

allele(s) carried against this common background.  As our most significant haplotype 

result in the U.S. sample spanned rs324029 – rs2134655, these findings may implicate a 

polymorphism generating schizophrenia susceptibility in the region spanning intron 1 to 

the exon / intron boundary 3’ to exon 4 at DRD3.   

If true, these findings yield a plausible explanation for the inconsistencies 

observed in the past regarding the association between rs6280 and schizophrenia.  We 

observed increased transmission of the Ser allele against the associated haplotype 

background in both the U.S. and Indian samples, but not other haplotypes.  Our analyses 

suggest rs6280 is in modest LD with the common haplotype associated with 
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schizophrenia in the current study.  Consistent with results of others regarding association 

tests (Roeder et al., 2005), it is possible that rs6280 could produce the maximum test 

statistic in some, but not all, previous studies due to these LD patterns.  Our analyses bear 

this out, as rs6280 was significantly associated in our U.S. case-control analyses, but not 

our family based analyses. 

Though consistent, our results cannot be considered conclusive for several 

reasons.  First, although 1,332 persons have been analyzed, the sizes of the individual 

samples are still modest.  Second, as in most association studies, a relatively large 

number of individual tests were conducted.  Although some SNPs are correlated and tests 

are not completely independent, the results presented here are not corrected for multiple 

comparisons. On the other hand, we interpreted haplotype results as significant only if 

they were supported in both U.S. study designs, and replicated in the Indian sample.  The 

associations detected remained significant after permutation testing, global analyses were 

conducted for haplotypes showing significant associations using two different types of 

analytical software, and a potentially conservative genomic control correction was used 

to evaluate the case-control SNP results.    Nonetheless, further replication is necessary to 

confirm these findings.   

A third concern is the absence of a clear functional basis for the observed 

associations.  Ser9Gly remains the only known polymorphism that alters the protein 

structure at this gene.  Previous studies seeking exonic mutations have found 

synonymous changes at exon 1 (Griffon et al., 1996) and exon 3 (Asherson et al., 1996), 

but these SNPs are uncommon.  Ashershon and colleagues also found an intronic 5 bp 

deletion polymorphism flanking exon 5 of the gene with similar frequency among cases 
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and controls (7-8%) (Asherson et al., 1996).  These results may warrant further 

investigation given our current findings of association with a common haplotype 

spanning this region.  While it is possible that these SNPs, or SNPs against this common 

background, have a functional effect at this gene, at present there is no clear molecular 

explanation for these results.   The lack of a functional implication is an important hurdle 

and plagues many well accepted genetic associations; e.g., RET gene and Hirschsprung’s 

disease (Emison et al., 2005). 

In conclusion, we report novel, replicable associations with schizophrenia at the 

D3 dopamine receptor (DRD3).  Our results indicate that serine allele of Ser9Gly may not 

be the only susceptibility allele at this gene.  Complete polymorphism screening to 

identify all human variation across this region, comprehensive LD mapping, evaluation 

of conserved regions across species, and analyses in a sufficiently powered cohort are 

necessary in order to provide more convincing evidence for this locus as a susceptibility 

factor in schizophrenia pathogenesis.  These efforts are currently ongoing.   
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4.1 ABSTRACT 

We evaluated the hypothesis that dopaminergic polymorphisms are risk factors 

for schizophrenia.    

Stage I (screening):  Eighteen dopamine-related genes were analyzed in two 

independent US Caucasian samples: 150 trios and 328 cases / 501 controls.  The most 

promising associations were detected with SLC6A3 (alias DAT), DRD3, COMT, and 

SLC18A2 (alias VMAT2).   

Stage II (SNP coverage and epistasis):  To comprehensively evaluate these four genes, 

68 SNPs were genotyped in all 478 cases and 501 controls from stage I.  Fifteen (23.1%) 

significant associations were found (p < 0.05).  We tested for epistasis between pairs of 

SNPs providing main effects and observed 17 significant interactions (169 tests); 41.2% 

of significant interactions involved rs3756450 (5’ near promoter) or rs464049 (intron 4) 

at SLC6A3.      

Stage III (confirmation):  Sixty-five SNPs were genotyped in 659 Bulgarian trios.  Both 

SLC6A3 variants implicated in the US interactions were over-transmitted in this cohort 

(rs3756450, p = 0.035; rs464049, p = 0.011).  Joint analyses from stages II and III 

identified associations at all four genes (pjoint< 0.05).  We tested 29 putative interactions 

from stage II and detected replication between 7 locus pairs (p < 0.05).  Simulations 

suggested our stage II and stage III interaction results were unlikely to have occurred by 

chance (p = 0.008 and 0.001, respectively). 
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Stage IV (function): We tested rs464049 and rs3756450 for functional effects and found 

significant allele specific differences at rs3756450 using EMSA and dual-luciferase 

promoter assays.    

Conclusions: Our data suggest a network of dopaminergic polymorphisms increase risk 

for schizophrenia.     

4.2 INTRODUCTION 

The distribution of schizophrenia  in families and populations is consistent with a 

substantial genetic basis for the disorder.  No obvious genetic model can explain the data, 

but models including multiple interacting loci conferring risk provide a good fit (Risch, 

1990; Schliekelman & Slatkin, 2002).  The disorder is common, with an estimated 

lifetime morbid risk of 1%, and concordance estimates for monozygotic twins (48%) is 

significantly higher than that for dizygotic twins (17%) (I. Gottesman, 1991).  There has 

been long-standing research into the hypothesis that dopamine dysfunction contributes to 

schizophrenia pathogenesis (Laruelle et al., 1999; D. A. Lewis & Lieberman, 2000).  The 

hypothesis originated from observed correlations between the clinical potency of anti-

psychotic drugs and their affinity for dopamine D2 receptors (DRD2) (Carlsson & 

Lindqvist, 1963; Creese et al., 1976; Seeman et al., 1976).  Patients with schizophrenia 

display increased sensitivity to the psychotogenic effects of agents that increase synaptic 

dopamine release (Angrist & van Kammen, 1984; Davidson et al., 1987; Laruelle & Abi-

Dargham, 1999; Laruelle et al., 1999; Lieberman et al., 1984).  In addition, acute 

amphetamine challenge to schizophrenia patients leads to increased dopaminergic 
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transmission in vivo, as measured by radioligand binding to dopamine D2 receptors 

during positron emission tomography (PET) scans (Abi-Dargham et al., 1998; Breier et 

al., 1997; Laruelle et al., 1996).  Therefore, dopamine genes have traditionally been 

prime candidates for genetic studies in schizophrenia. 

Despite the substantial biological evidence implicating dopaminergic dysfunction 

in schizophrenia pathogenesis, it is not precisely known whether genetic polymorphisms 

in dopaminergic genes are associated with dopamine abnormalities.  If such a functional 

link exists, the nature of these variations, the number of genes affected, interactions 

amongst them, and their functional importance is poorly understood.  Associations 

between schizophrenia and many dopaminergic gene variations have been reported, but 

most studies evaluated one or at best a handful of polymorphisms, usually based on 

preliminary evidence of a functional impact (e.g. exonic SNPs or functional repeats).  

Most previous studies were better suited to identify risk factors of substantial effect size 

than multiple interacting loci, for which the marginal effect of an individual locus could 

be small.  Therefore, it appears that many genes in the dopamine pathway have not been 

investigated adequately for their impact on schizophrenia risk.  Our recent review of the 

literature estimated that roughly 5% of representative common SNPs currently available 

in public databases have been considered in association studies of dopaminergic genes 

with at least 50% power to detect modest effect sizes expected (odds ratios from 1.2 – 

1.5) (Talkowski, Bamne, Mansour, & Nimgaonkar, 2007).  For example, a large number 

of studies investigated a single coding variant (rs6280) at the dopamine D3 receptor gene 

(DRD3) with largely inconsistent results (Ioannidis et al., 2001; Jonsson, Flyckt et al., 

2003; Jonsson et al., 2004).  Until recently, studies did not consider other variations 
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within the gene.  Two independent studies of 13 SNPs and 17 SNPs now suggest 

associations with other SNPs / haplotypes might account for past inconsistencies at 

rs6280 (Dominguez et al., 2007; Talkowski, Mansour et al., 2006).  Similar associations 

could be present with common variants yet to be investigated at other dopaminergic 

targets, but alternative strategies may be necessary to jointly evaluate these genes.    

Multi-stage studies can be useful in analyses of a functionally related network of 

genes by initially screening a large group of susceptibility targets and subsequently 

evaluating only the most promising candidates in additional samples, thus maximizing 

power with the resources available (Aplenc, Zhao, Rebbeck, & Propert, 2003; Lowe et 

al., 2004; Satagopan & Elston, 2003).  Skol et al. recently showed that an increase in 

power for multi-stage whole genome studies can be attained by evaluating the joint 

distribution of test statistics from both samples versus independent consideration of each 

sample (Skol et al., 2006).  We reasoned a similar approach could be applied to gene-

based association studies that are restricted to a smaller number of loci, since samples 

from individual studies are almost always underpowered to consistently detect 

associations and interactions of modest effect.  In the present study, we revisited the 

genetic basis for the so called ‘dopamine hypothesis’ of schizophrenia by investigating 

eighteen dopaminergic genes in three independent samples.  We hypothesized that key 

susceptibility variants within the dopaminergic network could be identified if results from 

multiple samples were evaluated jointly.  Our multi-stage strategy progressively pruned 

the list of promising susceptibility candidate genes and culminated in functional analyses 

of associated SNPs. 
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4.3 METHODS 

4.3.1 Samples 

Unrelated patients from the US were recruited at Western Psychiatric Institute and Clinic, 

Pittsburgh, Pennsylvania and surrounding regions (n = 478).  Diagnoses were based on 

the Diagnostic Interview for Genetic Studies (Nurnberger et al., 1994), supplemented by 

medical records and informant interviews. Consensus DSM IV diagnoses of 

schizophrenia (schizophrenia; n = 272) or schizoaffective disorder (schizophreniaA; n = 

206) were assigned by board-certified psychiatrists / psychologists following review of 

all these sources of information.  Both parents of 150 patients were ascertained for family 

based analyses (150 trios).  Control DNA samples were collected from the cord blood of 

501 unscreened Caucasian neonates born at Magee-Women’s Hospital, Pittsburgh, PA.  

Ancestry and gender was available for all samples.   

The Bulgarian patients and their parents were recruited in Bulgaria as part of a 

collection of parent – proband trios described previously (Kirov et al., 2004). Diagnoses 

were made according to DSM-IV criteria, following assessment by a psychiatrist using 

the Schedules for Clinical Assessment in Neuropsychiatry (SCAN, Wing et al 1990) 

which has been validated for use in the Bulgarian language by one of the authors of the 

SCAN instrument, and inspection of hospital discharge summaries. In cases where the 

information collected did not allow a confident diagnosis, the patient was re-interviewed 

by Dr. Kirov or the clinical coordinator of the project. All patients and their parents 

received written information on the project and signed an informed consent form.  The 



 83

Bulgarian sample included 659 trios (total n = 1,977).  Probands were diagnosed with 

schizophrenia (n = 576) or schizophreniaA (n = 83). 

The University of Pittsburgh Institutional Review Board approved the study.  

Written informed consent was obtained from all participants, except neonatal controls, in 

accordance with IRB guidelines.  Ethics Committee approval was obtained from Ethics 

Committees in all regions of Bulgaria where families were recruited. 

4.3.2 Polymorphism Selection 

We initially selected SNPs from the Celera database (Celera, 2003), the most 

comprehensive source available when stage I analyses were initiated.  SNPs were 

selected based on physical distance (1 SNP / 5 kb attempted).  A denser set of SNPs were 

then chosen for four genes: SLC6A3, SLC18A2, DRD3, and COMT in stage II.  

Polymorphisms for each gene were obtained by surveying the genomic region spanning 

the gene and at least 5 kb of flanking sequence.  For SLC6A3 and SLC18A2 SNPs were 

identified from available HapMap data (HapMap phase I, October 2005 release for 

SLC6A3 and HapMap phase II, June 2006 release for SLC18A2) (HapMap, 2003) and tag 

SNPs were chosen using Hclust software (Rinaldo et al., 2005).  Hclust computes a 

similarity matrix from the square of Pearson’s correlation (r2) between allele counts at 

pairs of loci, then uses hierarchical clustering to group correlated SNPs (minor allele 

frequency > 5%).  Tag SNPs were chosen if the correlation between loci was below an 

arbitrary threshold (r2 < 0.8).  One redundant SNP (rs456082) was also chosen.  At 

COMT and DRD3, additional SNPs were obtained from in-house sequencing.  For DRD3, 

we sequenced overlapping 600 – 800 bp amplicons across the entire gene and 5 kb of 
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flanking sequence in a pool of 200 Caucasian cases to detect common polymorphisms 

(minor allele frequency > 5%).  When polymorphisms were detected that were not 

available in HapMap, we sequenced the same 60 unrelated CEPH individuals used by 

HapMap to investigate patterns of LD.  Sixty-nine polymorphisms were detected, 15 of 

which were novel, and 18 SNPs were selected (see Supplementary Table 4.1).  The 18 

SNPs included tag SNPs (chosen with Hclust as above) and SNPs associated with 

schizophrenia in our previous study (Talkowski, Mansour et al., 2006).  At COMT, 27 

SNPs were identified from directly sequencing coding regions and flanking intronic 

sequence for exons 2-6 as well as the proximal promoter region for S-COMT within 

intron 3.  Sequencing was performed among 60 Caucasian US subjects (data provided by 

R. Weinshilboum, M.D. and J. Zhang, Ph.D., Mayo Clinic, Rochester, MN; see (Shield, 

Thomae, Eckloff, Wieben, & Weinshilboum, 2004) for details).  Individuals used for 

these analyses were different than those used in HapMap.  In sum, we chose 20 SNPs 

from the combination of HapMap and individual sequencing, realizing redundancy in 

SNP selection could result.  It should be noted that for COMT, some SNPs obtained 

within the pre-determined flanking sequence were localized to other genes (ARVCF or 

TXNRD2), however for clarity these SNPs are still referred to as “COMT” SNPs.  In the 

Bulgarian sample, 65 SNPs were genotyped.  Where possible, identical SNPs to stage II 

were analyzed (n = 59 SNPs).  Four additional SNPs were genotyped as surrogates for 

stage II tag SNPs, and two functional synonymous SNPs at COMT were genotyped based 

on work described by Nackley and colleagues during the course of this study (Nackley et 

al., 2006) (Supplementary Table 2).   
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Since a case-control design was used in stage II, we sought evidence for 

population substructure by implementing genomic control (GC) analyses using 31 SNPs 

(Bacanu et al., 2000; Devlin & Roeder, 1999).  We chose a single common SNP (minor 

allele > 10%) from each of the 31 genomic bins least likely to be linked to schizophrenia 

from a meta-analysis of linkage scans by Lewis and colleagues (C. M. Lewis et al., 

2003).   

4.3.3 Genotyping Assays 

4.3.3.1 Stage I 

The screening SNPs (n = 95) were assayed using multiplexed polymerase chain reaction 

(PCR) amplification followed by single base extension (SNaPshot, ABI Biosystems), as 

described elsewhere (Mansour et al., 2005).   

4.3.3.2 Stage II 

SNPs were genotyped using the hybridization based Illumina Golden Gate assay, as 

described elsewhere (Shen et al., 2005).  In sum, 99 SNPs were assayed, including 31 GC 

SNPs.  The median trends test statistic for genomic control was 0.336 (expected median = 

0.456), yielding no evidence for noteworthy sub-structure.  Hence corrections were not 

applied as it would be anti-conservative (Devlin & Roeder, 1999).  

4.3.3.3 Stage III 

Genotyping in the Bulgarian sample was conducted at both Cardiff University (Cardiff, 

Wales, UK) and the University of Pittsburgh (Pittsburgh, PA, US).  At Cardiff, 33 of the 
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SLC6A3 and DRD3 SNPs were genotyped by the Sequenom MassARRAY™ system 

using iPlexTM chemistries according to the recommendations of the manufacturers 

(Sequenom, San Diego, California, USA, http://www.sequenom.com).  At Pittsburgh, 

SNPlex (Tobler et al., 2005) and SNaPshot assays (ABI Biosystems Inc) were utilized to 

type the remaining 32 SNPs.   

4.3.4 Quality control 

In the stage I family based analyses, we sequenced 8 cases for all SNPs (752 sequenced 

genotypes) and one discrepancy was observed between the sequencing data and the 

SNaPshot data.  In stage I and II case-control analyses, there was complete concordance 

between Illumina genotypes and HapMap genotypes for 11 CEPH individuals.  Among 

3,024 duplicated genotypes from positive controls, no discrepancies were found.  The 

overall genotype call rate for stage II was 99.83%.  In stage III, we assayed 31 CEPH 

individuals (n = 2139 genotypes) and found 5 discrepancies.  In addition, four SNPs 

(rs464049, rs463379, rs324030, rs167771) were genotyped in duplicate for all 1977 

Bulgarian samples at Pittsburgh and Cardiff (15,816 total genotypes) and 24 

discrepancies were found (stage III estimated error rate = 0.0015 - 0.0023).   The mean 

genotype call rate was 95.71%. 

Mendelian inconsistencies and deviations from Hardy Weinberg expectations (HWE) 

for individual SNPs were evaluated using PEDCHECK (O'Connell & Weeks, 1998) and 

GENEPOP (version 1.31) software, respectively.  We detected 9 Mendelian errors among 

the 95 SNPs assayed in stage I, and 74 Mendelian errors from analyses of 65 SNPs in 659 

Bulgarian trios.  In sum, 18 families were removed from Bulgarian analyses due to 

http://www.sequenom.com/�
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multiple Mendelian errors, and remaining sporadic errors were set to null.  Hardy-

Weinberg Equilibrium (HWE) was tested in each population separately (US cases, US 

controls, US parents, Bulgarian parents, Bulgarian cases.   

4.3.5 Electrophoretic Mobility Shift assay (EMSA) 

Non-radioactive EMSA for rs3756450 was performed using DIG Gel Shift Kit (Roche 

Applied Science) according to manufactures protocol with slight modifications.  

Polyacrylamide gel electrophoresis (PAGE) purified 42-base primers (Integrated DNA 

Technologies, Inc.) encompassing rs3756450 were annealed to complementary 

oligonucleotides by incubating them at 95°C for 5 min, followed by gradual cooling to 

room temperature.  Annealed double stranded oligonucleotides were labeled according to 

the manufacturer’s protocol (Roche Applied Science, Inc).  Nuclear extracts were 

prepared from SHSY-5Y cell lines as described (NC Andrews and DV Faller, Nucleic 

Acids Res. 1991 May 11;19(9):2499).  DIG-labeled oligonucleotides were incubated with 

nuclear extracts (5 μg) in 20 μl reaction containing 5X binding buffer, Poly-L-Lysine, 

poly[d(I-C)], for 30 min at room temperature. Competitive binding was performed by 

including 50X unlabelled oligonucleotides in appropriate control reactions.  DIG-labeled 

oligonucleotide-nuclear extract complexes were resolved on 6% non-denaturing 

polyacrylamide gel for 2 hrs at room temperature and transferred on positively charged 

nylon membranes (Boehringer Mannheim -Roche Applied Science) by electro-blotting.  

Blots were visualized by an enzyme chemiluminescent method (Roche Applied Science, 

Inc).  The experiment was replicated, with two fold excess of the nuclear extract added to 
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reactions having the rs3756450C probes (see Figure 8, lanes 4-6).  The primer sequences 

used for generating allele specific probes are listed with altered bases in red.  

rs3756450 T Allele FWD  5’  TAGCAGCAACCACAATGATAATAAAGCCGACTTGGCATTTAG  3’ 
rs3756450 T Allele REV   5’  CTAAATGCCAAGTCGGCTTTATTATCATTGTGGTTGCTGCTA  3’ 
rs3756450 C Allele FWD  5’  TAGCAGCAACCACAATGATAACAAAGCCGACTTGGCATTTAG  3’ 
rs3756450 C Allele REV   5’  CTAAATGCCAAGTCGGCTTTGTTATCATTGTGGTTGCTGCTA  3’ 
 

4.3.6 Dual Luciferase Assay  

A 2.8 kb genomic region encompassing the 5’ UTR of SLC6A3 (-2783 to +63, spanning 

rs3756450) was amplified from two CEPH samples homozygous for alleles of 

rs3756450, using the Expand High Fidelity PCR System (Roche Applied Science, Inc).  

The PCR amplified fragments were cloned between Kpn1 and HindIII restriction sites in 

a pGL3 Basic vector (Promega, Inc).  Sequence homology for all residues was confirmed 

by sequencing.  Transient transfections of constructs into neuroblastoma cell line SHSY-

5Y (ATCC-CRL-2266) were performed in 24-well plates (0.8 × 106 cells/well) using 

LipofectAMINE (Life Technologies, Inc.), according to the manufacturer's instructions. 

The pRL-TK (Promega, Inc) vector expressing Renilla luciferase by a HSV-TK promoter 

was co-transfected with each construct as an internal control, to normalize for firefly 

luciferase expression.  Cells were harvested 30 h after transfection, and luciferase assays 

performed using the dual luciferase reporter assay system (Promega, Inc).  Relative 

luciferase values were normalized from a promoter-less pGL3 BASIC vector.  Six 

readings were taken for each clone and the entire experiment was conducted in triplicate.   
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4.3.7 Statistical Analysis 

Evidence for transmission distortion was assessed using FBAT software (Horvath, Xu, & 

Laird, 2000).  Differences in genotype distributions between cases and controls were 

evaluated with the Armitage Trends test (SAS software) (Devlin & Roeder, 1999).  

Markers localized to the X chromosome (MAOA and MAOB) were analyzed using 

likelihood ratio tests in a loglinear model, as implemented in the UNPHASED software 

suite (see (Cordell & Clayton, 2002) for review) (Dudbridge, 2003).  We tested for 

gender differences at each of the three COMT SNPs previously described by Shifman and 

colleagues (rs4680, rs737865, rs165599) (Shifman et al., 2002) using logistic regression.  

Gender comparisons were only made for these three SNPs.    

To evaluate results from multiple samples, we computed the joint distribution of 

test statistics (Zjoint), based on the methods of Skol and colleagues (Skol et al., 2006).  

Here, when combining our results from stages II and III, the proportion of markers 

genotyped remained the same, and thus Skol et al.’s adjustment for variable number of 

markers genotyped was not applied.  Z-statistics were derived for both case-control and 

family-based association tests.  To calculate Zjoint, let n1 and n2 be the sample sizes from 

which test statistics Z1 and Z2 were calculated.  The formula for Zjoint is then: 

 

Zjoint = SQRT(π1 (z1)) + SQRT(1-π1 (z2)), for which π1 = n1 / (n1 + n2).  

 

 It should be noted that the sign of the test statistic (i.e. Z positive or negative) was 

accounted for in all analyses, meaning the risk allele was required to be the same in both 

samples.  To determine π1, or the proportion of total samples genotyped in the first stage, 
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we treated a complete case-parent trio (n = 3 individuals) as the equivalent of one case 

and one control.  For stage I we therefore had the equivalent of 478 cases and 651 

controls available, of which the 150 trios represented 26.6% of these samples (i.e. πsamples 

= 0.266).  In this staged design we calculated Zjoint twice, once over the case-control and 

family-based association analyses in stage I (US samples only), and again over the case-

control analyses of stage II and the family-based association analyses of stage III (US and 

Bulgarian samples).  Where surrogates were chosen in the Bulgarian sample to represent 

tag SNPs in the US sample, Zjoint was calculated by combining the test statistic from the 

original SNP with that of the surrogate.  In using this procedure, we are confident that the 

size of the test was not likely to be altered (e.g. p = 0.05 was still at least a 5% type I 

error threshold).  However, a lower correlation between SNPs could result in loss of 

power.   

Epistatic interactions were tested in stages II and III.  Pairs of loci, each of which 

provided a p-value less than 0.10 for a main effect on risk for schizophrenia, were 

analyzed for interaction effects using an unconditional logit model for case-control 

analyses and a conditional logit model for trios (Cordell, Barratt, & Clayton, 2004).  In 

both instances, the “interaction p-value” reported represented the likelihood difference 

between a full model including both main effects and an interaction term from a reduced 

model including only main effects.  When interaction results were significant by 

asymptotic approximation, empirical p-values were determined by permutation testing 

(1,000 permutations; Genetic Association and Interaction Analysis software) (Macgregor 

& Khan, 2006).       
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For the functional analyses, we used a paired t-test to determine differences in 

luciferase activity between the C and T alleles at rs3756450.  To determine significant 

differences between constructs, we conducted analysis of variance.  

4.3.7.1 Simulations 

 Interpretation of the interaction results from the staged design is complicated by the 

design itself and by the LD structure of SNPs in each gene. To facilitate interpretation of 

results from interaction tests, we performed a simulation experiment based on the data 

from these cases and controls. Each simulation consisted of three stages.  

Stage (1): permute the case-control status, thus making affection status 

independent of genotypes while retaining the LD structure of the sample. Test all 68 

SNPs individually for association with affection status at two levels of significance (p ≤ 

0.05 and p ≤ 0.10). If eight or more SNPs are associated at p ≤ 0.05, then record all S 

SNPs with p ≤ 0.10 and proceed to Stage 2; else reject this set of data and rerun the 

permutation until eight or more SNPs are associated at p ≤ 0.05.  Rejection sampling 

ensures this stage is comparable to the results obtained in the original experiment in terms 

of the number of SNPs associated with affection status. 

Stage (2): using the Stage 1 dataset and the list of S SNPs, test for all possible 

SNP-SNP interactions, with the condition that each of the two SNPs be in different genes 

(i.e., gene-gene interaction). As per the original experiment, record all I interactions 

having a p ≤ 0.10 for association. 

Stage (3): do a new permutation of case-control data. With these data, test the I 

interactions found in Stage 2, using a significance level of p ≤ 0.05.  Record the number 

of “replicated interactions” R. 
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We performed this Stage 1 – Stage 3 experiment 10,000 times to obtain the 

distribution of R. This is, in essence, the design of the original experiment. It differs in 

the sense that the original experiment used a family-based sample in Stage 3 and had 

slightly different sample sizes, but neither of these features should be important under the 

null hypothesis evaluated here. 

 

 

 

 

Figure 5 Study Desgin 

Overview of multi-stage study design utilized, including all samples and SNPs analyzed in each 
stage.  In stage I, the 328 cases are independent of the 150 probands from the family based 
samples. dopamine = dopamine, GC = genomic control.  
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4.4 RESULTS 

4.4.1 Design Overview 

An overview of the study design is provided in Figure 5.  Briefly, in stage I we screened 

18 dopamine-related genes using two independent samples from the US; a family-based 

sample and a case-control sample.  To improve the power of our screen, we evaluated the 

joint distribution of test statistics from both samples.  In stage II, in-depth analyses of the 

most promising stage I genes were conducted using tag SNPs and all available case-

control samples from stage I.  Pair-wise epistatic interactions were then modeled for a 

limited number of SNPs where evidence for main effects were detected.  In stage III, we 

analyzed a third independent sample from Bulgaria.  In sum, 3,256 participants were 

genotyped.  Finally, functional effects of key SNPs were examined in stage IV.   

4.4.2 Candidate Genes 

Because the list of genes impacting dopaminergic function is potentially long, subjective, 

and continually expanding, we restricted our evaluation to dopaminergic genes analyzed 

in genetic association studies as of 2003.  The selected genes included those required for 

dopamine synthesis (TH, DDC), transport (SLC6A3, SLC6A2, SLC18A1, SLC18A2), 

metabolism (MAOA, MAOB, COMT), conversion of dopamine to norepinephrine (DBH), 

and all dopamine receptors (DRD1, DRD2, DRD3, DRD4, DRD5) (Table 6).  We also 

chose three genes important for dopamine regulation, namely PPP1R1C (alias 

dopamineRPP-32), DRD1IP (alias CALCYON, a dopamine D1 receptor interacting 
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protein), and NR4A2 (alias NURR1, an orphan nuclear receptor and putative transcription 

factor for the dopamine transporter) (Table 1).  One candidate, DRD3, was analyzed in 

our U.S. sample earlier as part of a collaborative study (Talkowski, Mansour et al., 2006).  

Based on the significant associations detected in that study, DRD3 was retained for stage 

II of this study, which included 501 independent controls.   

 

Table 6  Dopaminergic genes and SNPs analyzed 

 SNPs Genotyped 

Gene Location Gene Name               
(alias name) 

Size   
(kb) Stage I Stage II Stage 

III 

COMT 22q11.2 catechol-O-
methyltransferase 27.2 7 18 17 

DBH 9q34 dopamine beta hydroxylase 23 9   
DDC 7p11 dopamine decarboxylase 102.6 5   

DRD1 5q35.1 dopamine D1 receptor 3.1 3   

DRD1IP 10q26.3 D1 receptor interacting protein 
(CALCYON) 11.5 5   

DRD2 11q23 dopamine D2 receptor 65.6 5   
DRD3 3q13.3 dopamine D3 receptor 50.2 13a 18 18 
DRD4 11p15.5 dopamine D4 receptor 3.4 3   
DRD5 4p16.1 dopamine D5 receptor 2.1 3   
MAOA Xp11.3 monoamine oxidase A 90.6 10   
MAOB Xp11.3 monoamine oxidase B 115.8 6   

NR4A2 2q24.1 orphin nuclear receptor 
subunit 4 (NURR1) 8.3 5   

PPP1R1B 17q21.2 
protein phosphatase 1, 

regulatory (inhibitory) subunit 
1B (dopamineRPP-32) 

9.7 4   

SLC18A1 8p21.3 
vessicular monoamine 
transporter, member 1 

(VMAT1) 
38.4 10   

SLC18A2 10q25 
vessicular monoamine 
transporter, member 2 

(VMAT2) 
35.9 3 14 13 

SLC6A2 16q12.2 monoamine transporter, 
noradrenaline (NET) 46 8   

SLC6A3 5p15.3 dopamine transporter (DAT, 
DAT1) 52.6 6 18 17 

TH 11p15.5 tyrosine hydroxylase 7.9 3   
Dopamine genes and SNPs analyzed, given in alphabetical order.  The bolded genes were 
further analyzed in Stages II and III.  aThese SNPs were previously analyzed and results from 
those published analyses suggested significant associations in these samples (Talkowski, 
Mansour et al., 2006). 
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4.4.3 Stage I: SNP Screen among two independent US samples  

We conducted 95 tests of association in the US family based sample (150 trios, SNPs 

selected from Celera, 2003 based on physical distance).  The most significant association 

was detected at SLC6A3 (DAT) (rs403636, p = 0.0004, odds ratio = 2.36).  Transmission 

distortion was noted at two other SLC6A3 SNPs (rs27072, p = 0.0009; rs12516948, p = 

0.07).  All trends for association (p < 0.10; n = 9 SNPs) were genotyped in a replicate US 

case-control sample (328 cases, 501 controls).  In this independent sample, significant 

associations were detected with 4 SNPs, including replication of rs403636 (p = 0.04).  

The joint distribution of test statistics from both samples identified SLC6A3, DRD3, 

COMT, and SLC18A2 as the four most promising candidates (pjoint < 0.05) (see Table 7 

for selected significant results).  These four genes were retained for follow-up analyses. 

Table 7 Significant associations from joint analysis of Stage I 

 
Stage I 

Families 
(150 Trios)

Stage I     
Case-

Control  (n 
= 328/501) 

Stage I Joint 
Analysis 

Chr Gene SNP BP Z1 P1 Z2 P2 Zjoint Pjoint 
3 DRD3 rs324030 115364131 2.25 0.024 1.48 0.139 2.48 0.013 
3 DRD3 rs10934256 115368342 2.62 0.009 1.10 0.271 2.36 0.018 
3 DRD3 rs6280 115373505 2.01 0.044 1.70 0.089 2.52 0.012 
3 DRD3 rs1800828 115374239 1.97 0.049 1.20 0.230 2.08 0.038 
5 SLC6A3 rs27072 1447522 3.26 0.001 1.89 0.059 3.37 0.0007
5 SLC6A3 rs403636 1491354 3.53 4E-04 2.46 0.014 4.00 6E-05 
10 SLC18A2 rs3633343 119004938 1.94 0.052 2.09 0.037 2.81 0.005 
22 COMT rs737865* 18310121 1.31 0.190 2.65 0.008 2.93 0.003 
22 COMT rs165815 18334027 1.68 0.090 1.97 0.050 2.55 0.011 

Only SNPs associated based on the joint distribution of test statistics (pjoint < 0.05) are listed.  Z1, 
Z2:  Z scores from analysis of family-based and case-control samples, respectively.  P1, P2:  
Probability of Z score (p values) from association analyses of family-based and case-control 
samples, respectively.  Zjoint, Pjoint: joint analyses and corresponding p-values when considering 
test statistics and proportion of total samples genotyped in each design.  *analyses in 
females, conducted based on previous findings by Shifman et al. (Shifman et al., 2002). 
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4.4.4 Stage II: Comprehensive coverage and epistasis among US samples 

We assayed 68 SNPs among all available cases and controls from stage I (478 cases, 501 

controls) at SLC6A3, DRD3, COMT, and SLC18A2.  SNPs were obtained from HapMap 

(HapMap, 2003) and in-house sequencing for SNP detection. These analyses were not 

intended to replicate the stage I findings, as the samples overlapped.  Instead, they 

enabled us to conduct in-depth analysis of representative common variants (minor allele 

> 5%) from these four genes, over and above what was possible in our initial screen.   

Overall, the distribution of test statistics from these SNPs was skewed towards 

small p-values (median trends test = 1.07; expected median = 0.456).  Significant 

associations (p < 0.05) were found for 15 SNPs (Supplementary Table 4.1).  At SLC6A3, 

6 of 17 SNPs tested were nominally significant (p < 0.05).  Linkage disequilibrium 

analyses (LD) revealed that these associated SNPs were not part of a single cluster 

(Figure 6).  Associations were also detected with six DRD3 SNPs, three SLC18A2 SNPs, 

and one COMT SNP.   

Gender specific analyses were conducted at three COMT SNPs based on a 

previously reported association by Shifman and colleagues (Shifman et al., 2002). 

Consistent with those findings, logistic regression revealed a significant interaction 

between gender and rs737865 genotype (χ2 = 14.14, 2 d.f., p = 0.0007).  The significant 

effect appeared to be attributable to females, and a trends test comparing female patients 

to female controls for this SNP revealed significant differences in genotype distributions 

between groups (p = 0.008; odds ratio = 1.34).  Of note, the frequency of the G allele at 
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rs737865 among female cases (0.38) was different than all three comparison groups, 

namely: female controls (0.29), male cases (0.29), and male controls (0.28).  Gender 

related differences were not consistent with Shifman et al. at the other two SNPs 

(rs165599 and rs4680).   

We next tested epistatic interactions among pairs of SNPs from different genes 

when a main effect was observed (cutoff set at p < 0.10, n = 22 SNPs including rs6347 

based on stage III, see below; total 169 tests).  We identified significant interactions 

between 17 locus pairs (p < 0.05).  Notably, 7 of 17 significant interactions (41.2%) 

involved either rs3756450 in the 5’ upstream region of SLC6A3 or rs464049 within intron 

4 of SLC6A3 (LD between these SNPs: r2 = 0.04 / D’ = 0.56).  In sum, 29 putative 

interactions were detected at p < 0.10. 

4.4.5 Stage III: Corroboration with an independent Bulgarian family sample 

Based on our findings in stages I and II, we tested our hypotheses in a third independent 

sample composed of 659 case-parent trios from Bulgaria (total n = 1,977) using 65 SNPs.  

Significant associations were again detected in this cohort for both consistently 

interacting dopamine transporter SNPs in the stage II epistatic analyses (SLC6A3: 

rs464049, p = 0.011 and rs3756450, p = 0.035).  Trends for transmission bias (p < 0.10) 

were detected at five SLC6A3 SNPs.  Associations were not detected with other SNPs, 

including the three key exonic polymorphisms recently shown to alter COMT mRNA 

secondary structure (rs4680, rs4633, rs4818).  We tested rs737865 for gender related 

differences based on our stage II results and again noted significant transmission 
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distortion to female probands (p = 0.04, OR = 1.47) but not male probands (p = 0.18), 

however the over-transmitted allele was the A allele, in contrast to the US samples.   

The joint distribution of test statistics for SNP analyses from stages II and III (US case-

control and Bulgarian trios, respectively) found individual SNP associations at all four 

genes (pjoint < 0.05), including 7 SLC6A3 loci (Table 9).  

We next tested the putative epistatic interactions from the US sample in this 

cohort.  Interaction tests were limited to the 29 SNP pairs where epistasis was detected in 

the US sample at p < 0.10 or better using a conditional logit model.  Remarkably, 7 of 

these 29 interactions (24.1%) were significant (p < 0.05) in this independent family-based 

cohort.  Consistent with the patterns observed in the US sample, interactions with 

SLC6A3 loci were replicated with each of the other three genes (e.g. p < 0.05 for the same 

locus pairs in both samples when analyzing SLC6A3*DRD3, SLC6A3*SLC18A2, and 

SLC6A3*COMT).  One DRD3*SLC18A2 interaction was also significant in both samples.  

Table 9 lists all pairs of loci where at least a trend (p < 0.10) was detected in both 

samples (Table 9).    

To interpret the results from our interaction tests we performed simulations of our 

analysis design.  Using permutation and rejection sampling methods, we emulated the 

complicated multi-stage design employed here.  The simulation results suggest it would 

be unusual to obtain 7 or more “replicated interactions”, such as in stage III above.  From 

the simulations we estimate the probability of this event to be roughly one in a thousand 

(0.0013 ± 0.00071).  Similarly, we estimate the results of finding the initial 29 interaction 

“trends” (p < 0.10) in stage II to also be rare, despite the much larger number of tests 

(0.0078 ± 0.0055).   
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Table 8  Associated SNPs at SLC6A3, DRD3, SLC18A2, and COMT:  joint analyses of US and Bulgarian samples 

 

US Cases / 
Controls          

(478 / 501) 
Bulgaria Trios       

(659) 
Joint 

Analyses 

Gene SNP Position Nuc
HapMap Freq 
CEU/JPT/YRI Freq Z1 P1 OR Freq Z2 P2 OR Zjoint Pjoint 

SLC6A3 rs12516948 1444369 A .67/.81/.56* 0.67 -2.5 0.01 0.79 0.65 -1.3 0.21 0.90 -2.6 0.009 
SLC6A3 rs6347 1464412 A .72/.93/.38 0.71 1.1 0.26 1.12 0.75 1.7 0.10 1.17 2.0 0.046 
SLC6A3 rs464049 1476905 C .51/.63/.74 0.52 2.5 0.01 1.25 0.53 2.5 0.01 1.22 3.5 0.0004
SLC6A3 rs456082 1483515 T .70/.51/.46 0.77 2.2 0.03 1.27 0.77 1.7 0.09 1.17 2.7 0.007 
SLC6A3 rs463379 1484164 C .70/NA/.47 0.77 2.1 0.04 1.26 0.77 1.8 0.07 1.20 2.7 0.006 
SLC6A3 rs403636 1491354 G .79/.64/.78 0.85 -2.0 0.05 1.27 0.85 -1.5 0.15 0.85 -2.4 0.017 
SLC6A3 rs3756450 1501148 T .84/.57/.50 0.87 1.7 0.09 1.27 0.85 2.1 0.04 1.27 2.7 0.007 
DRD3 rs7625282 115364217 A .73/.76/.72 0.76 2.5 0.01 1.26 0.74 0.6 0.52 1.06 2.1 0.033 
SLC18A2 rs363393 118995757 A .83/1.0/1.0 0.81 1.1 0.28 1.10 0.84 1.9 0.06 1.22 2.1 0.033 
SLC18A2 rs363338 118999379 T .69/.24/.32 0.66 2.2 0.03 1.26 0.67 0.7 0.46 1.06 2.0 0.043 
SLC18A2 rs363227 119016556 C .89/.71/.68 0.87 1.4 0.17 1.15 0.87 1.5 0.13 1.21 2.0 0.041 
COMT rs174696 18327730 T .81/.54/.34 0.79 2.0 0.05 1.24 0.84 1.3 0.19 1.16 2.3 0.029 
COMT rs165815 18334027 T .88/.65/.41 0.83 1.8 0.07 1.26 0.78 1.4 0.15 1.15 2.3 0.017 

 
SNPs listed if joint distribution of test statistics from stages II and III resulted in pjoint < 0.05.  Nuc = nucleotide of common allele.  Allele frequency 
(freq) of the common allele is given.  Allele frequencies from HapMap data for Caucasians (CEU), Asians (JPT), and Africans (YRI) are given.  
Direction (sign) of the Z score is provided for the common allele (e.g. Z = -2.5 indicates that the less common allele confers risk).  OR = odds ratio 
for common allele. *Reference data from Applied Biosystems AoD submission for Caucasian, Japanese, and African-American populations 
(www.ncbi.nlm.nih.gov/SNP).   

 

 

http://www.ncbi.nlm.nih.gov/SNP�


 100

 

 

Figure 6 Linkage disequilibrium among SLC6A3 SNPs 

Linkage disequilibrium (LD) patterns among all SLC6A3 SNPs genotyped in the US and 
Bulgarian samples (16 SNPs were common to both samples).  LD values between pairs of SNPs 
(r2) are indicated, and associated SNPs (p < 0.10 and p < 0.05) are shown.   
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Table 9 Noteworthy epistatic interactions at SLC6A3, DRD3, SLC18A2, and COMT 

Stage II:           
US Case-Control 

Stage III:  
Bulgarian Trios 

Combined 
Results 

Genes Loci 
Interaction 

P-value† 
Perm.^   
P-value LLDiff

‡ P-value χ2
4
†† P-value

SLC6A3*COMT 

rs464049*rs174696 0.005 0.001 5.2 0.023 18.1 0.001 
rs464049*rs165815 0.001 0.001 2.5 0.101 17.7 0.001 
rs463379*rs174696 0.091 0.013 6.7 0.009 14.1 0.007 
rs456082*rs174696 0.069 0.009 5.9 0.015 13.7 0.008 

SLC6A3*SLC18A2 rs6347*rs363338 0.03 0.023 7.9 0.005 17.6 0.001 

SLC6A3*DRD3 rs463379*rs10934256 0.047 0.063 5.3 0.021 13.8 0.012 
rs12516948*rs6280 0.099 0.005 3.8 0.052 10.5 0.033 

DRD3*SLC18A2 rs1800828*rs363227 0.026 0.017 4.4 0.036 13.9 0.008 
rs1800828*rs929493 0.051 0.021 3.4 0.065 11.4 0.022 

Epistatic interactions results between stages II and III.  The first column lists the pairs of genes at 
which interactions were detected.  The second column lists the corresponding pairs of SNPs.  For 
example, rs464049*rs174696 denotes a SNP at SLC6A3 interacting with a COMT SNP.  Only 
interactions detected from both samples at p < 0.10 are listed.  †P-value for interaction term 
above main effects in logistic regression (see  (Macgregor & Khan, 2006)).  ^Perm. = 
Permutation, p-value from 1,000 iterations permuting case-control status.  ‡Difference in -2* log 
likelihood of full model including an interaction term and a reduced model including only main 
effects (distributed as a χ2

1.).  
††Test statistic from combining p-values from US and Bulgarian 

analyses (χ2
4). 

4.4.6 Stage IV: Functional Analysis 

We selected rs3756450 and rs464049 for further analyses of allele specific 

functional effects as these SLC6A3 SNPs were associated individually with risk for 

schizophrenia in both samples and featured prominently in the epistatic analyses.  

We performed electrophoretic mobility shift assays (EMSA) using nuclear 

extracts from SHSY-5Y cell line (Figure 8).  Both allelic probes at rs3756450 generated 

DNA-protein gel shift bands. Addition of 50X fold unlabeled oligonucleotides probes for 

each allele inhibited formation of the gel shift bands, demonstrating specificity for these 

oligonucleotide sequences.  We observed three distinct DNA-protein gel shift bands for 

the T allelic probe at rs3756450.  In contrast, the C allelic probe at rs3756450 annealed to 
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only two of the three bands, indicating allele specific difference in DNA-protein complex 

formation.  The result was replicated in two additional experiments, including one in 

which two fold excess of nuclear extract was added for assays with the C allele (see 

Figure 8).  In contrast, no allele specific DNA-protein gel shift bands were observed at 

rs464049, though bands common to both alleles were noted (data not 

shown).

 

Figure 7 Epistatic interactions at SLC6A3, DRD3, SLC18A2, and COMT. 

The genomic organization of all four genes retained from stage I analyses is shown.  Boxes 
extending below the horizontal line indicate exons and black tick marks represent all SNPs 
analyzed in the US and Bulgarian samples.  The SNPs retained for epistatic interactions (i.e. 
SNPs where p < 0.10 for main effects) are listed.  Gray lines indicate epistatic interactions at p < 
0.10 in both the US and Bulgarian samples, bolded black lines indicate significant interactions in 
the US as well as the Bulgarian samples at p < 0.05. 

 
Since rs3756450 is localized 5’ to the putative promoter region of SLC6A3, we 

also evaluated its effect on transcription.  Dual-luciferase assays were conducted using 

four clones from CEPH individuals whose genotypes were known (two constructs for 

each allele, see Figure 8).  Significant promoter activity was present in all constructs, 

compared with the promoterless construct.  In addition, promoter activity was 
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significantly different between constructs carrying C and T alleles (Student’s t-test, t = 

10.32, 5 d.f., p < 0.0001; Figure 9).   

 

Figure 8 Electorphoretic mobility shift assays of rs3756450 

Nuclear extracts from SHSY-5Y cells were incubated with labeled probes. The labeled probe for 
the T allele was loaded in the first three lanes, and the labeled probe for the C allele in the next 
three lanes.  Unlabeled competitor oligonucleotides were included in 50-fold molar excess in 
lanes 3 and 6. Lanes 1 and 4 indicate the migration of the labeled probe without the nuclear 
extract . * indicates altered band shift pattern for T-allele of rs3756450 (lane 2) with respect to C-
allele (lane 5), despite two fold excess of nuclear extract added to lanes 5 and 6.  

 

Figure 9.  Promoter assays using rs3756450 

 Promoter activity in a dual-luciferase assay system for constructs containing either the C or T 
allele at rs3756450, but identical at all other bases.   
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4.5 DISCUSSION 

Our systematic multi-stage approach yielded novel SNP associations and 

replicated epistasis between four dopaminergic genes, SLC6A3, DRD3, COMT and 

SLC18A2.  We also noted plausible allele specific functional effects in vitro for one of the 

associated SLC6A3 SNPs (rs3756450).  Three of these genes have been frequent targets 

in previous schizophrenia association studies (DRD3, COMT, SLC6A3), yet prior studies 

have not provided definitive evidence for or against associations.  Overall, the SLC6A3 

associations were most striking.  More than a third of test statistics for stage II analyses 

involving SLC6A3 SNPs were significant.  The median trends test statistic among 18 

SNPs was 2.26, indicating a significant shift towards small p-values compared with 

expectations.  When we sought evidence for epistasis, SNPs at SLC6A3 also dominated 

the list.  Two SLC6A3 SNPs (rs3756450 in the 5’ upstream and rs464049 at intron 4) 

were involved in 41.2% of the interactions in the US samples.  When we evaluated an 

independent Bulgarian sample, both these SNPs were again associated.  Though the 

dopamine transporter has long been a target for genetic association studies of 

schizophrenia (reviewed byBannon, Michelhaugh, Wang, & Sacchetti, 2001), most 

reports have focused on a variable number tandem repeat (VNTR) polymorphism 

localized to 15th exon (Gamma et al., 2005), but meta-analysis does not suggest an 

association (Gamma et al., 2005).  A previous analysis of the SLC6A3 3’ VNTR in a 

subset of the Bulgarian families also was not significant (Georgieva et al., 2002).  

Associations with other SLC6A3 polymorphisms have been reported, including 

significant associations in the 5’ region near the promoter (Keikhaee et al., 2005; 

Khodayari et al., 2004; Stober et al., 2006).     
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At DRD3, the present associations are consistent with our previous report, which 

analyzed a smaller set of US cases and a different group of control samples (Talkowski, 

Mansour et al., 2006).  They follow in a long line of studies that have targeted rs6280, a 

non-synonymous functional polymorphism (Jonsson et al., 2004).  More recent studies 

have shown associations with other variants in both the 5’ and 3’ regions of the gene 

(seeTalkowski et al., 2007).   

A functional exonic SNP (rs4680, Val/Met) has been the focus of numerous 

association studies at COMT, but the results have not been replicated consistently (M. D. 

Fallin et al., 2005; J. B. Fan et al., 2005; Glatt et al., 2003a; Munafo, Bowes, Clark, & 

Flint, 2005; H. J. Williams et al., 2005; reviewed byH. J. Williams, Owen, & O'Donovan, 

2007).  Associations with haplotypes including rs4680 have been reported recently 

among Chinese and Ashkenazi Jewish samples (T. Li et al., 2000; Shifman et al., 2002).  

The latter reported on a haplotype of large effect size comprising three SNPs spanning 

the gene (rs737865–rs4680–rs165599), and the association was more significant among 

women.  This haplotype was later found to be associated with decreased COMT mRNA 

levels in the human brain (Bray et al., 2003).  Gender specific associations have also been 

detected with a SNP in this haplotype (rs737865) in late onset Alzheimer’s disease with 

psychosis (Sweet et al., 2005).  Our US samples revealed a gender related association 

between schizophrenia and rs737865 consistent with the Shifman results (OR = 1.34).  

By contrast, our analyses of the Bulgarian sample found over-transmission of the 

opposite risk allele (A allele), matching the results of Sweet et al. (42).  Unlike the other 

three candidates, to date only one small association study of Japanese families at 

SLC18A2 has been conducted (Kunugi et al., 2001). 
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The epistatic interactions suggest a susceptibility model in which variations at 

SLC6A3 are important determinants of schizophrenia susceptibility, with additional risk 

due to variants at SLC18A2, DRD3, and COMT.   This model is appealing because all 

four proteins regulate synaptic dopamine concentrations, and there are plausible 

functional relationships between these genes.  The dopamine transporter (DAT) controls 

both the intensity and duration of dopamine actions at synapses by modulating reuptake 

into the pre-synaptic nerve terminal (Sotnikova, Beaulieu, Gainetdinov, & Caron, 2006; 

Torres, 2006).  Because DRD3 may function as an autoreceptor (Sokoloff et al., 1992; 

Sokoloff, Giros, Martres, Bouthenet, & Schwartz, 1990), it is reasonable to suggest 

molecular interactions between DRD3 and DAT.  Indeed, DRD3, as well as the dopamine 

D2 (DRD2) receptor subtypes can regulate DAT function (Zahniser & Doolen, 2001; 

Zapata & Shippenberg, 2002).  However, the molecular details of this ‘cross talk’ are not 

known.  Since VMAT2, the protein encoded by SLC18A2, mediates the transport of 

dopamine into synaptic vesicles, molecular interactions between VMAT2 and DAT 

following DAT mediated reuptake of dopamine into pre-synaptic terminals are possible 

and require investigation.  Finally, COMT is a key enzyme regulating synaptic dopamine 

levels through catabolism (Napolitano et al., 1995).  Common homeostatic mechanisms 

may thus regulate COMT and DAT.   

EMSA analyses suggest specific bandshift patterns using rs46049 probes in 

neuroblastoma cell lines.  More intriguing allele specific effects were observed with 

rs3756450, which is localized upstream to the core promoter sequences (Kelada et al., 

2005).   Our results suggest a putative transcription factor that either has differential 

affinity for the rs3756450 alleles or binds to rs3756450T, but not rs3756450C.  
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Furthermore, luciferase promoter assays suggest significant differences in promoter 

activity for alleles of this SNP.  Thus sequences flanking rs3756450 may represent a 

novel promoter domain for SLC6A3. 

There are some limitations to our association analyses.  Though the SNP selection 

in stage I was more extensive than past studies, more comprehensive coverage would 

have been desirable for several genes, particularly MAOA, MAOB, and DDC.  The 

samples available for stage I analyses were also limited.  We estimate only 41.3% power 

to detect an effect size of 1.5, so type II errors were possible and undetected liability loci 

could be present at genes that were not carried forward in stage II.  Similarly, our family 

based US samples had limited power to replicate other reported associations.  Our tests of 

epistasis were relatively conservative as we considered only locus pairs with evidence of 

a main effect.  Evaluation of much larger samples would be required to conduct an 

exhaustive analysis of all potential interactions across a larger network of dopaminergic 

genes.   

Our study design was intended to first identify promising susceptibility targets 

and then test these targets as comprehensively as possible.  Spurious associations arising 

from population substructure are unlikely to account for the SLC6A3 results, as 

significant associations were detected in both of the family-based samples.  Genomic 

control analyses also did not detect meaningful population substructure and no 

corrections were necessary.  To limit false positive results, we employed three 

independent samples, analyzing them independently and jointly.  We also simulated our 

study design and empirically determined the probability of obtaining similar results to the 

epistatic interactions.  These simulations suggest that both our stage II and stage III 
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interaction findings are unlikely under the null hypothesis (about eight in one-thousand 

and one in one-thousand for stages II and III, respectively).      

In conclusion, our analyses of eighteen dopaminergic genes among over 3,000 

participants indicate that variants at SLC6A3, DRD3, COMT, and SLC18A2 individually 

and jointly confer risk for schizophrenia.  Our findings propose a model for schizophrenia 

risk in which risk conferred by SLC6A3 variations could be modified by variants at 

DRD3, COMT, and / or SLC18A2.  
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5.1 ABSTRACT 

Recessive mutations in the Phenylalanine hydroxylase (PAH) gene predispose to 

phenylketonuria (PKU) in conjunction with dietary exposure to phenylalanine (Phe). 

Previous linkage and association studies have suggested PAH variations that could confer 

risk for schizophrenia, but comprehensive follow-up studies have not been reported.  We 

analyzed 15 common PAH “tag” SNPs and 3 rare exonic variations among four 

independent samples (total n = 5,414).  The samples included two US Caucasian cohorts 

(260 trios, 230 independent cases, 474 controls), a Bulgarian sample (659 trios), and an 

African-American sample (464 families, 401 controls).  Analyses of both US Caucasian 

samples revealed significant associations with five SNPs (uncorrected p < 0.05); most 

notably the common allele (G) of rs1522305 from case-control analyses (z = 2.99, p = 

0.006).  This SNP was independently replicated in the Bulgarian cohort (z = 2.39, p = 

0.015).  A non-significant trend was also observed among African-American families (z 

= 1.39, p = 0.165), and combined analyses of all four samples were significant 

(rs1522305: χ2 = 23.28, 8 d.f., p = 0.003); rs10860935 was also nominally significant 

from the combined results (p = 0.05).  Case-control analyses in African-Americans were 

restricted to three exonic variants K274E, L321L, and N426N detected an association 

with the common allele of L321L (p = 0.047, OR = 1.46).  Rare alleles were not different 

between groups at these variants.  Our analyses suggest several associations at PAH, with 

consistent evidence for rs1522305.  Further analyses, including additional variations and 

environmental influences such as phenylalanine exposure are warranted. 
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5.2 INTRODUCTION 

Phenylalanine hydroxylase (PAH) catalyses the conversion of phenylalanine 

(Phe) to tyrosine.  This reaction is the rate limiting step in the synthesis of catecholamines 

and accounts for approximately 75% of the disposal of dietary Phe. The gene encoding 

PAH is localized to chromosome 12q23.2, contains 13 exons, and the genomic sequence 

spans approximately 79.3 kilobases. PAH is expressed in the liver and kidney. 

Mutations in PAH can lead to phenylketonuria (PKU) in the presence of a diet 

that includes Phe.  PKU manifests as mental retardation (MR), associated with 

peculiarities of gait and posture, eczema, epilepsy, light pigmentation, cataracts, brain 

calcification and a 'mousy' odor (Følling, 1934).  These manifestations have been 

attributed to hyperphenylalaninemia resulting from impaired PAH activity.  Early post-

natal and long term use of a low Phe diet enables near normal cognitive development 

(Donlon, Levy, & Scriver, 2004).  PKU is inherited as an autosomal recessive disorder, 

with an average birth incidence of 1 / 10,000 in European populations.  Despite the 

increased frequency of several rare mutations in African-Americans compared to 

Caucasians, the incidence of PKU in U.S. African Americans is about one-third that in 

Caucasians (National Institute of Child Health and Human Development).  The aggregate 

mutant allele frequency in these groups is estimated at 0.01.  There is considerable allelic 

heterogeneity, with over 500 catalogued mutations leading to a spectrum of disease 

ranging from benign hyperphenylalaninemia to classical PKU (www.pahdb.mcgill.ca) 

(Scriver et al., 2003).  Genetic heterogeneity is also present, as PKU can occur due to 

mutations in tetrahydrobiopterin (BH4), an essential PAH co-factor (Thony & Blau, 

2006).   

http://www.pahdb.mcgill.ca/�
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Penrose first suggested co-segregation of psychiatric illnesses and PKU, raising 

the intriguing possibility that PAH mutations may contribute to psychopathology other 

than MR (Penrose, 1935). Studies to explore this hypothesis have been conducted among 

PKU probands and their relatives, as well as psychiatric patients and their relatives, 

particularly schizophrenia patients.  The severe MR observed among individuals with 

untreated PKU would preclude a diagnosis of schizophrenia using current criteria, though 

some case reports with such co-morbidity have been published in the past (Fisch, 

Hosfield, Chang, Barranger, & Hastings, 1979).  More recent case-reports suggesting co-

occurrence of PKU among individuals with psychoses have also been published 

(Shiwach & Sheikha, 1998).  A large scale survey among institutionalized psychotic 

individuals did not detect any individuals with PKU (Cares, 1956).  On the other hand, 

early studies of schizophrenia patients found elevated fasting Phe levels, as well as 

abnormal responses to Phe tolerance tests (Poisner, 1960), suggesting that some 

schizophrenia patients could be carriers of mutant PAH alleles.   

Recent genetic studies have investigated a connection between PAH 

polymorphisms and increased susceptibility to schizophrenia.  Sobell et al. first examined 

two point mutations (R408W and IVS12nt1) known to be associated with PKU in a case-

control study design (190 schizophrenia cases, 336 controls), but did not detect a 

significant association (Sobell, Heston, & Sommer, 1993).  A linkage study of three 

quantitative traits in a sample of European and African-American schizophrenia affected 

siblings identified modest evidence for linkage with a marker at 109.5 cM overlapping 

PAH (LOD = 2.12).  Linkage with negative symptoms bolstered linkage evidence 

somewhat for this sample (LOD score = 2.97 at 104 cM), as well as an association 
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between this marker and schizophrenia (Wilcox, Faraone, Su, Van Eerdewegh, & 

Tsuang, 2002).  A series of studies previously conducted by Dr. Mary Richardson and 

colleagues have suggested associations between several PAH mutations and psychiatric 

illness among African-Americans but not Caucasians (M.A. Richardson et al., 1999a) 

(M.A. Richardson et al., 1999b) (Chao & Richardson, 2002).  Richardson and colleagues 

also reported on 9 exonic variants at PAH among 123 psychiatrically ill individuals and 

34 controls (M. A. Richardson et al., 2003).  One exonic variant (K274E) was noted 

among African-Americans and was over-represented among schizophrenia patients 

(cases: 4/24; controls: 1/13).  The K274E mutation was associated with altered Tyr levels 

following a Phe loading test.  Finally, a recent study detected linkage between short 

tandem repeat polymorphisms near PAH in an island population from Palau when 

mothers of schizophrenia patients were treated as the affected generation (Devlin et al., 

2007). These results are intriguing, because they suggest maternal-fetal interaction in 

schizophrenia genesis.  If true, such a mechanism might account for variability in 

conventional association and linkage analyses. 

Published studies suggest a link between common and / or rare PAH 

polymorphisms and schizophrenia.  To investigate this hypothesis, we evaluated 18 PAH 

variations in four independent samples.  Our analyses included 15 common 

polymorphisms and three additional exonic variations reported on previously (M. A. 

Richardson et al., 2003).     



 114

5.3 METHODS 

5.3.1 Study design 

We tested the hypothesis that common and/or rare PAH variations increase risk 

for schizophrenia (SZ).  We analyzed 15 single nucleotide polymorphisms (SNPs) that 

tagged common variations in Caucasians (Figure 10, details below).  These SNPs were 

evaluated in four independent samples of either European or African-American ancestry.   

We also selected three variations based on published analyses with psychosis that were 

monomorphic in Caucasians but polymorphic in African-Americans (K274E, N426N, 

and L321L, referred to as ‘rare variants’ herein for clarity) (M.A. Richardson et al., 

1999a), (M.A. Richardson et al., 1999b), (Chao & Richardson, 2002).  Our primary study 

included only SNP based analyses, first in each sample individually then combined 

across samples.  Associations with the ‘rare variants’ were conducted next, followed by 

exploratory analyses to evaluate covariates such as gender and maternal genotypes.   

5.3.2 Samples 

US: Unrelated patients were recruited at Western Psychiatric Institute and Clinic, 

Pittsburgh, Pennsylvania and surrounding regions (n = 490).  Diagnoses were based on 

the Diagnostic Interview for Genetic Studies (Nurnberger et al., 1994), supplemented by 

medical records and informant interviews.  Consensus DSM-IV diagnoses of 

schizophrenia or schizoaffective disorder were assigned by board-certified psychiatrists / 

psychologists following review of all these sources of information.  Both parents of 260 
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patients were ascertained for family based analyses, but diagnostic evaluations were not 

conducted for the parents (260 trios).  Control DNA samples were collected from the 

cord blood of 474 unscreened Caucasian neonates born at Magee-Women’s Hospital, 

Pittsburgh, PA.  Only ancestry and gender was available for these samples.   

Bulgaria:  schizophrenia patients and their parents were recruited in Bulgaria as 

described previously (Kirov et al., 2004).  Diagnoses among probands were made 

according to DSM-IV criteria, following assessment by a psychiatrist using the Schedules 

for Clinical Assessment in Neuropsychiatry (Wing JK, 1990 Jun) , which has been 

validated for use in the Bulgarian language, and inspection of hospital discharge 

summaries. All patients and their parents received written information on the project and 

signed an informed consent form.  The Bulgarian sample included 659 trios (total n = 

1,977).  Probands were diagnosed with schizophrenia (n = 576) or schizophreniaA (n = 

83).  

African Americans:  African-American patients and their parents were ascertained as 

part of an ongoing collaborative study to investigate risks for schizophrenia in an 

African-American sample (Aliyu et al., 2006).  Families were chosen for genotyping 

from the overall consortium and analyses were carried out based on phenotype data as of 

January 19th, 2008.  The sample was composed of 464 total families ascertained for both 

linkage and association studies, including 73 complete trios (proband + 2 parents), 181 

“duo + sibs” (proband + 1 parent + unaffected siblings), 122 “case + sibs” (affected 

proband + unaffected siblings, no parents),  53 affected sibling pairs without parents, 27 

affected sibling pairs with 1 parent, 5 affected sibling pairs + both parents, and 3 “duos” 

(affected proband + 1 parent, no siblings).  From these family configurations, most but 
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not all individuals were informative for family-based association tests.  For the three ‘rare 

variants’ (see below), 551 African-American cases were contrasted with 401 adult 

controls.  The cases included one patient with schizophrenia or schizophreniaA randomly 

chosen from each of the 464 families and 87 singleton cases where no parents were 

available.  The controls were screened for absence of psychoses and current substance 

abuse using the same procedures as the cases (Aliyu et al., 2006).  The University of 

Pittsburgh Institutional Review Board (IRB) approved the study.  Approval from 

appropriate IRBs was also obtained at each collaborating US site.  Ethics committee 

approval was obtained from ethics committees in all regions of Bulgaria where families 

were recruited.  Written informed consent was obtained from all participants, except 

neonatal controls, in accordance with IRB guidelines.   

5.3.3 Polymorphism Selection 

We chose tag SNPs to represent all common variations among 60 unrelated 

Caucasians available in release 20 (phase II, January, 2006) of the International HapMap 

Project (HapMap, 2003).  To accomplish this, we selected all available SNPs within PAH 

and 5 kb of flanking sequence 5’ and 3’ to the gene.  Genotypes were obtained from 

CEPH samples (US residents collected in 1980 by the Centre d'Etude du Polymorphisme 

Humain).  These participants have ancestry from Northern and Western Europe.  Tag 

SNPs were identified to represent common variation with a minor allele frequency 

(MAF) greater than 5% in Caucasians using Hclust software (Rinaldo et al., 2005).  

Hclust computes a similarity matrix from the square of Pearson’s correlation (r2) between 

allele counts at pairs of loci then uses hierarchical clustering to group correlated SNPs.  



 117

We selected a SNP as a tag if the correlation between loci was below a threshold of r2 < 

0.9.  Thus, 21 SNPs were identified.   When SNPs were initially rejected by Applied 

Biosystems in the assay design (8 SNPs), surrogates were sought.  If no surrogates were 

available, we re-analyzed the dataset to identify another SNP with a lower LD threshold 

to use as a proxy (r2 > 0.8 between surrogate and failed marker).  Using this procedure, 

only two tag SNPs were not represented at a minimum correlation threshold of r2 = 0.8 in 

our analyses (rs1281013 and rs1851381).  .   

Previous research by Richardson et al. suggested associations between several 

exonic variations and psychosis among African-Americans (M. A. Richardson et al., 

2003).  Those analyses indicated that the SNPs had minor allele frequencies (MAF) 

greater than 1% among African-Americans, but had MAF < 0.01 in European Americans.  

We chose three such variants (K274E, L321L, N426N; referred to in this study as ‘rare 

variants’ for clarity) to be genotyped in all of our family samples.  An additional set of 

case-control analyses were conducted for only these SNPs among African-American 

cases not included in the family based analyses and adult African-American control 

sample typed exclusively for these polymorphisms.   

5.3.4 Genotyping Assays 

All 18 variants were included in assays for all four independent samples using the 

hybridization based SNPlex assay (ABI Biosystems Inc), as described elsewhere (Tobler 

et al., 2005).  The assay utilizes custom designed oligonucleotide pools of up to 48 SNPs, 

which can be genotyped in a single reaction.  The three ‘rare variants’ were genotyped 

among the African-American controls using the ABI SNaPshot assay (Applied 
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Biosystems, Inc).  The assay involves a multiplexed PCR reaction followed by single 

base extension (Mansour et al., 2005).  The genomic organization of PAH and the 

selected polymorphisms are shown in Figure 10.  All molecular genetic analyses were 

conducted at the University of Pittsburgh.   

5.3.5 Quality control 

All genotype assays included duplicated samples and/or CEPH individuals genotyped by 

HapMap (HapMap, 2003).   Negative control samples (water) were also included in each 

assay plate.  A random subset of 34 African-American samples were selected from all 

individuals found to carry at least one copy of the rare alleles of K274E, L321L, and 

N426N and individually sequenced to confirm the SNPlex and SNaPshot genotype calls.   

Tests for Mendelian inconsistencies were conducted in all family-based samples using 

PEDCHECK (O'Connell & Weeks, 1998) and tests of Hardy-Weinberg Equilibrium 

(HWE) were carried out for probands, parents, and controls separately in each population 

using GENEPOP software (version 1.31) (Raymond & Rousset, 1995).   

5.3.6 Statistical Analysis   

Transmission distortion was analyzed using FBAT software (Laird, Horvath, & Xu, 

2000), which can appropriately handle families of mixed configuration such as those in 

the African-American sample analyzed here.  Differences in genotype distributions 

between cases and controls were evaluated with the Armitage Trends test (SAS software) 

(Devlin & Roeder, 1999) or Fisher’s exact test, as appropriate.  Test statistics were 
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converted to z scores for case-control analyses for ease of comparison regarding risk 

alleles (i.e. z positive or negative) across samples.  We estimated the effective number of 

independent tests among these SNPs using the statistical package R based on published 

methods (Conneely & Boehnke, 2007).  We estimated the number of effective tests in the 

Caucasians and African-Americans separately due to the expected differences in LD 

patterns between these populations.  Our analyses suggested 7.9 effective tests in the 

Caucasians and 12.6 effective tests in the African-Americans.  We analyzed each SNP for 

association in each sample individually.  To evaluate evidence against the null hypothesis 

across the four independent samples, we combined results based on Fisher’s combined 

probability test (Fisher, 1948).         

5.3.7 Exploratory analyses 

We conducted exploratory analyses to determine if risk conferred by individual 

polymorphisms was modified by gender.  To carry out these analyses, we analyzed allele 

transmissions to male and female probands separately in family based analyses, and 

performed logistic regression among male cases / controls and female cases / controls 

separately.   

Previous analyses in an island population detected linkage to the maternal 

generation of affected schizophrenia cases at 12q23.2 (Devlin et al., 2007).   To test the 

hypothesis of susceptibility due to genetic liability in the maternal generation, we 

compared allele frequencies for all 15 common SNPs between mothers and fathers in all 

three samples (Armitage trends test).   
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5.3.8 Interpretation of statistical significance 

We considered an association with schizophrenia significant if (1) an individual SNP test 

exceeded an alpha threshold of 0.0063 in any Caucasian sample (0.05 / 7.9 tests) or 

0.0040 (0.05 / 12.6 tests) in the African-American samples, (2) a nominally significant 

replication for an individual SNP (and allele) was detected (p < 0.05 in two or more 

samples), or (3) combined analyses provided evidence of an association.  Exploratory 

analyses were considered significant only if replication was detected (p < 0.05).   

5.4 RESULTS 

5.4.1 Quality Control 

All 18 SNPs were genotyped in the Caucasians, but rs124125434 could not be 

assayed in the African-American samples.  The mean genotype call rate was 95% or 

greater in all four samples for the SNPlex assays and 96.8% in the SNaPshot assays.  

Using duplicated samples and CEPH individuals to compare with HapMap, we estimated 

our genotyping accuracy to range between 99.95% - 99.88% in all 4 samples.  These data 

are comparable to HapMap estimates and our previous analyses in these Caucasian 

samples (Talkowski et al., 2008).  We sequenced 34 African-Americans for the three rare 

variations to confirm their genotype.  We found 100% concordance between the 

sequencing genotypes and SNPlex / SNaPshot genotypes for these individuals. 
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5.4.2 Linkage Disequilibrium 

Linkage disequilibrium (LD) was estimated using Haploview software among 

unrelated Caucasian controls from the US (n = 474), unrelated parents from Bulgaria (n = 

1318), and unrelated African-American parents (n = 367).  As expected, pairwise LD (r2) 

was similar between Caucasian samples, but differed among African-Americans (Figure 

11).   

 

 

 

Figure 10 PAH genomic organization and variants analyzed 

The vertical bars represent exons.  The numbers below the line represent the introns.  The 
polymorphisms analyzed are listed above the line. 

 

5.4.3 Primary association analyses 

Caucasians: In the US case-control sample (230 cases independent of the trios, 474 

controls), two SNPs were associated with schizophrenia (rs1522305, z = 2.74, p = 0.006, 

OR = 1.64, 95% CI = 1.15 – 2.32; rs12312872, z = 1.98, p = 0.050, OR = 1.34, 95% CI = 

1.84 – 0.99; all p-values uncorrected).  In the US family sample (260 trios), transmission 
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distortion was detected with three SNPs, including rs1042503 (z = -2.0, p = 0.05), 

rs12425434 (z = -2.2, p = 0.03), and rs10860935 (z = 2.3, p = 0.02).   

In the Bulgarian families (659 trios), the most significant association in the US 

case-control analyses (common G allele of rs1522305) was replicated in this independent 

cohort (z = 2.4, p = 0.015).  Three other SNPs were nominally significant (uncorrected p 

< 0.05; rs2245360, rs937476, rs152296).  Transmission distortion that did not reach 

statistical significance was noted for two SNPs that was consistent with associations in 

the US sample, namely rs12312872 (Bulgarian p = 0.06, US case-control p = 0.05) and 

rs10860935 (Bulgarian p = 0.09, US family-based analyses p = 0.02) (see Table 10).  The 

‘rare variants’ were monomorphic among all Caucasian samples. 

African-Americans: In the African-American family sample, no SNPs were significantly 

associated with schizophrenia but a trend for over-transmission of the G allele at 

rs1522305 was noted (z = 1.39, p = 0.167).  This is the allele associated in the US and 

Bulgarian samples and its frequency was similar across samples (US cases 0.898, US 

cords 0.843, Bulgarian cases 0.875, African-American cases 0.819).  All three ‘rare 

variants’ (K274E, L321L, N426N) were present at a frequency greater than 1% in the 

African-Americans.  None were significantly over-transmitted to probands, however 

minor allele frequencies for K274E (0.014) did not enable meaningful analyses of 

transmission distortion given the size and configuration of the present sample.  Case-

control comparisons in the African-American samples were therefore conducted for only 

these three SNPs (551 cases, 402 controls).  None of the rare alleles were found to be 

associated with schizophrenia risk, however a nominally significant association was 
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detected with the common allele (non-mutant allele) of L321L (p = 0.047, OR = 1.46, 

95% CI = 2.14 – 1.0) (Table 11).   

5.4.4 Combined analyses 

We combined the observed probabilities for each of the four independent samples 

at each of the 14 SNPs tested across all samples (rs12425434 and each of the three ‘rare 

variants’ were not informative for associations in all four samples).  As expected from the 

initial findings in three of the four samples, combined analyses suggested a significant 

association with the common allele of rs1522305 (χ2 = 23.28, 8 d.f., p = 0.003).  A 

nominally significant association was also detected with rs10860935 (χ2 = 15.47, 8 d.f., p 

= 0.05).  Another SNP, rs12312872, was significant among European samples (χ2 = 

12.76, 6 d.f., p = 0.047), but not when African-Americans were included in combined 

analyses (p = 0.072). 

5.4.5 Exploratory analyses 

Gender specific associations were detected in the Bulgarian trios with nine SNPs.  

None were associated in both males and females.  Over-transmission to affected male 

patients was observed for six SNPs, the most significant being rs937476 (p = 0.004, OR 

= 1.4).  Three SNPs were associated among females, most notably rs1522305 (G allele, p 

= 0.002, OR = 1.84) and rs152296 (G allele, p = 0.007, OR = 1.43) (Supplementary Table 

5.1).     
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Table 10.  Association analyses of PAH variations 

  
US Cases / Controls      

(n = 230 / 474) 
US Families    
(260 Trios) 

Bulgarian Families   
(659 Trios) 

African-
American 
Families        
(n = 464) 

Combined 
Analysis        

(All samples) 

SNP 
Gene 

Location Nuc 
Case 
Freq. 

Cord 
Freq Z1 P1 

Allele 
Freq Z2 P2 

Allele 
Freq Z3 P3 

Allele 
Freq Z4 P4 χ8

2 Pall 
rs1522296 Intron- 1 G 0.707 0.686 0.77 0.450 0.691 1.61 0.11 0.682 2.23 0.025 0.49 0.01 1 13.39 0.0991 
rs10778209 Intron-3 G 0.765 0.751 0.58 0.565 0.740 0.76 0.45 0.716 -0.24 0.813 0.92 -0.58 0.56 4.33 0.8262 
rs10860935 Intron-3 T 0.850 0.868 -0.94 0.371 0.856 2.27 0.02 0.837 1.67 0.094 0.66 -0.63 0.53 15.47 0.0506 
rs1522305 Intron-3 G 0.898 0.843 2.99 0.006 0.855 0.46 0.65 0.875 2.39 0.015 0.82 1.39 0.17 23.28 0.0030 
rs1722392 Intron-3 C 0.539 0.558 -0.67 0.528 0.557 -0.20 0.84 0.521 -1.38 0.167 0.57 0.01 0.99 5.22 0.7338 
rs2037639 Intron-3 G 0.733 0.738 -0.23 0.818 0.739 -1.40 0.16 0.770 0.60 0.550 0.87 -0.27 0.79 5.71 0.6797 
rs937476 Intron-6 A 0.586 0.575 0.38 0.722 0.589 0.57 0.57 0.555 -2.07 0.039 0.55 1.39 0.17 11.88 0.1566 
rs12425434 Intron-5 C 0.716 0.723 -0.30 0.769 0.708 -2.20 0.03 0.727 -0.22 0.829 N/A  
rs1126758 Exon-6 A 0.557 0.582 -0.90 0.376 0.561 -1.36 0.17 0.579 1.23 0.218 0.8 -0.07 0.95 8.61 0.3763 
rs12312872 Intron-6 A 0.858 0.818 1.98 0.050 0.844 0.63 0.53 0.863 1.85 0.064 0.63 -0.77 0.44 14.40 0.0719 
N426N Exon-7 T monomorphic  0.86 0.67 0.5  
rs1042503 Exon-7 G 0.714 0.727 -0.51 0.614 0.716 -2.00 0.05 0.737 0.44 0.664 0.95 -0.72 0.47 9.46 0.3050 
K274E Exon-7 A monomorphic  0.98 0.00 1  
rs1722387 Intron-8 G 0.843 0.855 -0.59 0.572 0.845 0.91 0.37 0.841 1.38 0.167 0.85 0.32 0.75 7.29 0.5057 
rs772897 Intron-8 G 0.843 0.848 -0.23 0.822 0.842 1.08 0.28 0.834 1.11 0.269 0.82 1.25 0.21 8.70 0.3682 
L321L Exon-9 C monomorphic  0.94 0.62 0.54  
rs2245360 Exon-11 G 0.642 0.638 0.17 0.870 0.643 0.72 0.47 0.617 -2.18 0.030 0.81 -0.23 0.82 9.24 0.3225 
rs1801153 Intron-11 G 0.811 0.787 1.06 0.312 0.821 0.18 0.86 0.739 0.84 0.399 0.39 0.53 0.6 5.50 0.7030 

Results from association analyses of 18 PAH variations in four independent samples.  SNPs are provided in the direction of PAH transcription 5’ to 
3’. Nuc = nucleotide for which frequency data are listed.  Freq = allele frequency of allele for which nucleotide is provided (common allele).  Z = 
test statistic for common allele (negative = risk conferred by minor allele).  Combined analysis using Fisher’s method of combining probabilities 
from independent tests of significance (distributed as χ2

2N statistic). 
 
 
 
 



 125

 

 
Figure 11 Linkage disequilibrium between PAH variants across populations 

Linkage disequilibrium (r2) was estimated between SNPs among (a) unrelated US Caucasian individuals, (b) parents of affected Caucasian 
probands from Bulgaria, and (c) parents of affected African-American probands.   
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Replicate analyses in the US and African-American samples detected a significant 

association with the common allele of rs1522305 when US Caucasian female cases were 

compared with female controls (US case-control p = 0.05).  However, an association was 

not detected among the US Caucasian trios or the African-American family sample.  

Consistent replication was also detected between Bulgarian male patients and US male 

patients (p < 0.05 in both samples) with rs1042503, rs12425434, and rs2037639.  None 

were replicated among US Caucasian male probands or African-American males.  

(Supplementary Table 5.1).   

We compared the allele frequencies of the 18 common polymorphisms between 

the mothers and fathers in all three available family samples.  No significant differences 

were found for any of these comparisons (data not shown).   

 

Table 11 Comparison of three PAH variations among African-Americans 

  Case Genotype 
Control 

Genotype 
Allele Frequencies and 

association tests 

SNP Nuc 11 12 22 11 12 22 
Case 
Freq 

Control 
Freq Y 

p-
value 

K274E 
1 = A 
2 = G 523 16 0 369 17 0 0.985 0.978 1.35 0.246 

L321L 
1 = C 
2 = T 483 52 2 326 57 0 0.948 0.926 3.96 0.047 

N426N 
1 = C 
2 = T 9 138 386 9 83 287 0.146 0.133 0.63 0.428 

Case-control analyses of 3 exonic PAH variations (referred to in text as ‘rare variants’) among an 
African-American case-control sample.  Nuc = nucleotide.  Freq = allele frequency.  Y, p-value: 
results of trends test from distribution of genotypes.  *Fisher’s exact test p-value: K274E, p = 
0.207, L321L, p = 0.017. 
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5.4.6 Interpretation of statistical significance 

Our analyses found the equivalent of 7.9 effective tests in each individual 

Caucasian sample and 12.6 effective tests in the African-American samples.  There were 

thus 36.3 effective tests across all four samples for the primary analyses and 132.6 total 

tests across all primary and exploratory analyses.  The associations at rs1522305 fulfilled 

all three pre-established criteria for significance.  The initial analyses in the US case-

control sample exceeded the individual experiment correction for multiple testing 

(uncorrected p = 0.006, corrected p = 0.047) (criterion #1 above).  This SNP was 

significant in two independent samples (US case-control p = 0.006, Bulgarian p = 0.015) 

(criterion #2), and was associated following combined analyses from all four samples (p 

= 0.003) (criterion #3).  No other SNP associations were robust to correction for multiple 

testing in individual samples, nor were any other SNPs replicated in more than one 

sample, although rs10860935 was significant in combined analysis of all samples (p = 

0.05) (Table 10). 

5.5 DISCUSSION 

We tested associations between PAH variants and schizophrenia by evaluating tag 

SNPs to represent all available common PAH SNPs among Caucasians, as well as three 

‘rare variants’ previously suggested as risk factors for schizophrenia.  We detected 

several associations of modest effect size in individual samples, with one replicated 

association in multiple cohorts.  The magnitude of the effects detected here were similar 
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to those reported with other genes in complex disorders (odds ratios 1.10 – 1.50).  

Simulation studies, as well as analyses of the association between apoE variants and 

Alzheimer disease suggest that variable patterns of association can be observed in 

independent samples of varying size, particularly if the primary risk variant is not 

investigated (Bacanu et al., 2002) (C. E. Yu et al., 2007).  Thus, it is often difficult to 

replicate associations with genetically complex disorders consistently across samples, 

especially if the magnitude of the association is modest.  To reduce the probability of 

rejecting associations prematurely, we conducted analyses in four individual samples, 

followed by combined analyses.  Using this approach, a consistent association was 

detected at rs1522305.  The association was nominally significant in two of the three 

Caucasian samples and combining the results across all four samples revealed a 

significant association.  Similarly, exploratory analyses yielded replicable results related 

to gender between European samples at this locus.  Our analytic strategy combined test 

statistics from multiple independent samples (even those with modest power) in an effort 

to identify meaningful schizophrenia risk conferred by the same allele that may not reach 

nominal significance in individual samples.    

Prior studies have suggested that PAH mutations or exonic polymorphisms may 

be risk factors for schizophrenia among African-Americans (M. A. Richardson et al., 

2003).  We evaluated three such variants in all our samples. We detected one nominally 

significant association with L321L, a synonymous substitution among African-

Americans.  The associated allele is the common allele, consistent with the results of 

Richardson et al., however our results failed to support the findings of risk conferred by 

the rare allele of N426N.  These variants appeared to be monomorphic in the Caucasian 
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samples, although it is possible that rare alleles were present in individuals that failed the 

SNPlex assays for these SNPs.  More comprehensive analyses of other known PAH 

mutations and / or deep sequencing of the region are indicated.   

 It is not known if allelic variation at the associated SNPs alters PAH activity, so 

the functional impact of the associations is uncertain.  It is possible that the associated 

SNPs serve as surrogates for unidentified primary risk allele(s).  There is modest LD 

between rs1522305 and two other SNPs, namely rs12312872 and rs1042503 (Figure 11).  

Analysis of available HapMap data also suggested LD with more remote SNPs, e.g., an 

intergenic region 100.2 kb 3’ to rs1522305 (rs1722400, D’ = 0.75, r2 = 0.52).  If the 

associated SNPs have demonstrable effects on transcription, there are plausible 

mechanisms for the genetic associations.  Hyperphenylalaninemia (HPA) following PAH 

deficiency can enhance competition between phenylalanine and tyrosine for transport 

across the blood brain barrier (BBB) (Pardridge & Choi, 1986).  Reduced transport of 

tyrosine across the BBB may decrease catecholamine synthesis (Fernstrom & Fernstrom, 

2007).  The reduced synthesis may lead to altered dopamine function, a well known 

mechanism proposed for schizophrenia genesis (Carlsson, 1988) (Snyder, 1973) (Seeman 

et al., 1976).  HPA may also increase Phe catabolism through alternative pathways, such 

as increased synthesis of phenylethylamine (PEA), a putative psychotogenic compound 

(Jeste et al., 1981).  This hypothesis has been investigated extensively previously, albeit 

with conflicting results (O'Reilly & Davis, 1994).   

Several other lines of investigations may prove helpful in order to further explore 

the present results.  Since current DSM IV criteria preclude a diagnosis of schizophrenia 

in the presence of MR, it would be of interest to estimate the prevalence of psychoses 



 130

among PKU patients who have undergone rigid dietary control.  Unfortunately, most 

published follow-up studies have involved children prior to the modal age at onset for 

schizophrenia (Weglage et al., 2000) (Corcoran et al., 2005).  Interestingly, several 

investigators have  reported that frontal lobe dependent cognitive functions are impaired 

into young adulthood even among PKU patients who were treated early and aggressively 

(Welsh, Pennington, Ozonoff, Rouse, & McCabe, 1990) (Diamond, Ciaramitaro, Donner, 

Djali, & Robinson, 1994) (Corcoran et al., 2005).  Similar cognitive impairment has been 

noted among patients with schizophrenia and their relatives (Gur et al., 2007) 

(Greenwood et al., 2007).  Evaluation of cognitive function among patients with the 

putative risk alleles may prove insightful in this regard. To follow up Penrose’s early 

analyses, re-examination of psychiatric disorders among obligate carriers of PAH 

mutations (e.g., parents of individuals with PKU) may also be informative (Penrose, 

1935).  

 The clinical features of PKU are manifested only when individuals with PAH 

mutations consume a diet that includes Phe.  The present study did not evaluate such 

dietary risk factors.  Confirmation of a link between schizophrenia and PAH mutations or 

polymorphisms opens the possibility of use of one of a growing number of therapeutic 

options for treating PKU (including supplementation with biopterin derivatives and large 

neutral amino acids) to examine their effect on the development of psychiatric disease. A 

prior linkage study suggested a role for maternal PAH variation in pathogenesis (Devlin 

et al., 2007).  We did not find differences in allele frequencies between mothers of 

Caucasian probands and controls or fathers of the probands at the associated SNPs.  This 

hypothesis needs to be explored further.  The mechanism for the gender related 
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associations noted here is unclear.  It is possible that gender serves as a proxy for other 

variables.   

Improvement on the current analyses could be made in future studies by 

considering a denser set of polymorphisms in African-American samples.  The tag SNPs 

analyzed in the present study represented common variations in Caucasian samples only.  

Analysis of the Nigerian sample from HapMap suggests that up to 43 SNPs may have 

been required to comprehensively represent all available SNPs in African-Americans 

sample (HapMap, 2003).  Moreover, the power of our African-American samples was 

relatively low, owing to both a smaller number of samples and incomplete family 

configurations.  Therefore, further analyses of African-American samples are required.  

Despite the decreased power in the African-American and US family samples, our 

combined analyses considered the p-values from each independent sample equally and 

could be conservative.  It is noteworthy that analyses of the joint distribution of test 

statistics across groups weighted by sample size also suggested a significant deviation 

from the null hypothesis at rs1522305 (data not shown).   

Our analyses of four independent samples of Caucasian and African-American 

ancestry identified replicable associations between schizophrenia and an intronic PAH 

polymorphism.  The functional role for the associated polymorphisms is unknown.  It 

remains possible that risk is conferred primarily by as yet unidentified polymorphism(s).  

Further analyses of rare exonic variations, population specific tag SNPs for African-

Americans, and additional ethnic groups are warranted, preferably in conjunction with 

environmental risk factors. 
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6.1 ABSTRACT 

Objective:  To determine if dopaminergic gene variations are shared etiological risk 

factors for schizophrenia (SZ), schizoaffective disorder (SZA) and bipolar disorder 

(BP1).  Prior reports suggest dopaminergic dysfunction in SZ/SZA and BP1, as well as a 

shared genetic etiology between disorders.     

 

Method:  We genotyped 431 ‘tag’ SNPs representing all publicly available common 

SNPs from 40 dopamine genes simultaneously among 526 BP1 cases, 531 SZ/SZA cases, 

and 477 screened adult controls.  Analyses to test for population substructure were 

conducted and corrections for multiple testing applied.  

 

Results:  We found that 60% of all nominally significant SZ/SZA associations and 41% 

of all BP1 associations were shared (p < 0.05).  These shared risk loci were from four 

genes: DRD3, DDC, MAOB, and DRD1IP.  The most pronounced results were at DRD3; 

9 of the top 20 ranked SZ/SZA SNPs and 7 of the 20 most significant BP1 associations 

were DRD3 variants.  Gene-based analyses confirmed the DRD3 results (empirical p-

values: SZ/SZA p = 0.007, BP1 p = 0.013).  Diagnosis specific associations were 

detected with 6 other DA genes in SZ/SZA and 8 other genes in BP1.  Several individual 

SNP tests remained significant after gene-wide correction.  No test statistics were robust 



 135

to experiment-wide Bonferroni correction at the level of individual SNPs or epistatic 

interactions.     

 

Conclusion:  Our results suggest shared dopamine risk factors for BP1 and SZ/SZA, as 

well as disorder related associations.  Adequately powered replicate analyses are required 

to further evaluate these results, as well as possible epistatic interactions. 

6.2 INTRODUCTION 

Since their conception, there has been vigorous debate about the etiological 

relationship between bipolar I disorder (BP1) and schizophrenia (SZ) (see (Crow, 2008a) 

for review).  The arguments for and against a continuum have focused on 

psychopathology and familial aggregation, but the issue is unresolved (Brockington & 

Leff, 1979; Crow, 1990, 2008a; Gershon et al., 1988; Kendell & Brockington, 1980; 

Kendler et al., 1993; Tsuang, Winokur, & Crowe, 1980; Valles et al., 2000).  Recently, 

genetic association studies have been brought to bear on this question (Craddock et al., 

2005, 2006; Craddock & Owen, 2007; Owen et al., 2007).  The proposition that BP1 and 

SZ lie on a phenotypic and etiological continuum, (with schizoaffective disorder, SZA at 

an intermediate position) would be strengthened if variations or identical risk alleles in 

the same genes conferred risk to all three disorders.  Such overlap has been suggested for 

several genes, including dysbindin (DTNBP1), brain derived neurotrophic factor (BDNF), 

catechole-o-methyltransferase (COMT), disrupted in schizophrenia 1 (DISC1), the 

dopamine transporter (SLC6A3), and neuregulin-1 (NRG1), to name a few (Goghari & 
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Sponheim, 2008; Owen et al., 2007; Perlis et al., 2008) (Serretti & Mandelli, 2008).  The 

evidence in support of the shared etiological hypothesis comes from different studies that 

evaluated overlapping sets of polymorphisms in either BP1 or SZ samples compared to 

different control groups.  The hypothesis could be more comprehensively tested if the 

same genetic variants were evaluated systematically and simultaneously among BP1, SZ, 

and SZA cases compared against the same set of control individuals.   

Dysfunction in brain dopaminergic (DA) neurotransmission may have a 

pathogenic role for SZ as well as BP1 (Carlsson, 1988) (Seeman, 1995) (Crow, 1980b) 

(Crow, 1987) (Goldberg et al., 1999) (Berk et al., 2007).  The ‘dopamine hypothesis’ of 

SZ / SZA suggests that ‘positive symptoms’ such as delusions and hallucinations result 

from DA dysfunction in the mesolimbic and striatal regions, while negative symptoms 

are a consequence of DA deficits in the prefrontal regions of the brain (Lang et al., 2007).  

A DA model of BP1 pathogenesis has also been proposed (Berk et al., 2007).  The model 

predicts a cyclical dysregulation of DA transmission, with DA increases during manic 

phases followed by secondary down regulation and consequent decreased DA 

neurotransmission during depressive episodes (Berk et al., 2007).  These models could 

implicate a common pathogenic pathway for both disorders, and thus a possible common 

genetic etiology. 

Numerous DA polymorphisms have been investigated in SZ/SZA, and to a lesser 

extent in BP1, with inconsistent results.  Our recent review of DA gene association 

studies in SZ suggested relatively low power and sparse coverage of common variants in 

most publications (Talkowski et al., 2007).  Since different DA gene variants have 
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typically been evaluated in each study, it has often been difficult to conduct meaningful 

meta-analyses (Allen et al., 2008).   

We recently proposed a model of SZ/SZA susceptibility centered on four 

interacting DA genes, namely SLC6A3 (DAT), DRD3, SLC18A2 (VMAT2), and COMT 

(Talkowski et al., 2008).  The findings were derived from an initial screen of eighteen 

DA genes and the results were replicable in two large Caucasian samples.  To address the 

BP1-SZ continuum hypothesis, it would be necessary to evaluate the same genes for BP1.  

Our initial screen of DA genes did not adequately represent common polymorphisms that 

are currently available in public databases (e.g., HapMap), nor did it investigate the entire 

list of DA genes.  Hence we have extended our analysis from the initial set of 18 DA 

genes to 22 other DA interacting proteins.  To comprehensively consider common 

variants, we selected representative tag SNPs from all publicly available SNPs within 

these 40 genes.  We simultaneously compared BP1 and SZ/SZA samples to an adult 

control sample that was screened for absence of these disorders.   We sought plausible 

individual and overlapping risk loci for each disorder, with appropriate corrections for 

multiple comparisons applied.  

6.3 METHODS 

6.3.1 Samples 

BP1 cases:  We obtained genomic DNA from 526 patients with BP1 recruited through the 

Systematic Treatment Enhancement Program for Bipolar Disorder (STEP-BD), a 
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longitudinal study aimed at improving the treatment for BP1, (Sachs et al., 2003) (Sklar 

et al., 2008).  STEP-BD used a network of eighteen U.S. treatment centers for 

standardized evaluation and treatment of patients including interview schedules based on 

the Structured Clinical Interview for DSM-IV (SCID), as well as the Mini-International 

Neuropsychiatric Interview (MINI) (Sheehan et al., 1998) (Spitzer, Williams, & Gibbon, 

1996).   

 

SZ/SZA cases:  Unrelated patients were recruited at Western Psychiatric Institute and 

Clinic, Pittsburgh, PA and surrounding regions (n = 527).  Diagnoses were based on the 

Diagnostic Interview for Genetic Studies (DIGS)(Nurnberger et al., 1994), supplemented 

by medical records and informant interviews.  All participants met consensus DSM-IV 

diagnosis of SZ or SZA by board-certified psychiatrists / psychologists.  Of these, 213 

(40.4%) met diagnostic criteria for SZA.  Most of these SZ/SZA patients (n = 460) were 

genotyped in our previous analyses of DA SNPs (Talkowski et al., 2008).     

  

Screened adult controls:  An adult control sample, screened for absence of BP1, SZ or 

SZA was selected (n = 477).  As the STEP-BD BP1 sample was recruited across the 

USA, we utilized control individuals from the Pittsburgh region, as well as a national 

sample obtained from the publicly available samples deposited with the National Institute 

of Mental Health Genetics Research Initiative repository (NIMH-GRI). 

Pittsburgh controls (n = 168)  Members of the community were recruited through 

random digit dialing by the Pittsburgh University Center for Social and Urban Research 

(UCSUR), or through web-based advertisements.  All participants were self-identified as 
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Caucasian and screened using DSM IV criteria through the DIGS and other screening 

tools for absence of BP1, SZ, SZA, substance abuse disorder within the past month, 

serious medical or neurological illnesses, and mental retardation as defined in the DSM 

IV.  Individuals who reported a first-degree relative with psychoses or BP1 were also 

excluded.  All participants provided written informed consent, according to the guidelines 

of the University of Pittsburgh Institutional Review Board (IRB). 

NIMH-GRI controls (n = 309) Adult controls were obtained from the ongoing genetic 

analysis and information network (GAIN) initiative project “Linking Genome Wide 

Association Study of Schizophrenia” (Suarez et al., 2006) (Manolio et al., 2007).  Control 

individuals were screened for ancestry and asked a series of questions regarding medical 

history, including any previous treatment and/or diagnosis of schizophrenia and/or 

schizoaffective disorder, any previous treatment and/or diagnosis of bipolar disorder 

and/or manic depression, and any previous treatment and/or presence of auditory 

hallucinations and/or delusions (Sanders et al., 2008).  Complete details are available on 

the study website: (www.ncbi.nlm.nih.gov/projects/gap/cgi-

bin/study.cgi?study_id=phs000021.v2.p1). 

6.3.2 Gene selection 

We previously identified 15 genes important in DA neurotransmission that had also been 

evaluated in SZ association studies, as well as 3 genes known to interact with the DA 

pathway (Talkowski et al., 2007) (Talkowski et al., 2008).   In addition to these genes, 22 

additional genes that interact with the DA pathway were selected (see Supplementary 

Table 6.1 for gene descriptions). 

http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000021.v2.p1�
http://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000021.v2.p1�
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6.3.3 SNP selection 

We considered all available common HapMap phase II SNPs (rel 22) (HapMap, 2003) 

from each of the 40 genes, including 5 kilobases (kb) upstream and downstream of the 

coding sequence (minor allele frequency > 0.05).   Additional SNPs were obtained from 

the SeattleSNPs project where possible (www.pga.gs.washington.edu).  We analyzed 

linkage disequilibrium (LD) among CEPH individuals and selected tag SNPs at a 

minimum correlation threshold of r2 = 0.9 using a combination of Haploview software 

(Barrett, Fry, Maller, & Daly, 2005), Hclust software (Rinaldo et al., 2005), and the 

genome variation server (www.gvs.gs.washington.edu/GVS).  For SNPs did not pass the 

initial Illumina screen for assay design, we identified suitable surrogates, while 

maintaining the 0.9 correlation threshold.  If no such surrogates were available, the 

correlation threshold was lowered to 0.8.  If possible, we chose multiple surrogates for 

SNPs previously associated with SZ/SZA or BP1, allowing for a level of redundancy at 

key genes. 

6.3.4 Genotyping and quality control 

All polymorphisms were genotyped using the hybridization based Illumina GoldenGate 

Assay (www.Illumina.com) (Steemers & Gunderson, 2007).  We included blind 

duplicates, negative controls (distilled water) and positive controls (17 CEPH individuals 

genotyped by HapMap) in all assays.  Additional confirmation about genotype calls was 

obtained from 460 SZ/SZA cases previously genotyped for 64 SNPs (Talkowski et al., 

2008).  Deviations from Hardy-Weinberg Equilibrium (HWE) were evaluated for each 

http://www.illumina.com)/�


 141

SNP using a global significance threshold of p > 0.005, well above what would be 

expected by chance from analysis of all SNPs.   

6.3.5 Statistical analyses 

We tested for individual SNP associations, then obtained a summary statistic for all SNPs 

within a gene, and finally conducted exploratory analyses for epistatic interactions and 

potentially important covariates such as diagnosis, gender, and age at onset of illness.     

We estimated the effective number of independent tests among SNPs within each 

gene using the statistical package R, based on published methods (Conneely & Boehnke, 

2007).  Differences in genotype distributions for individual SNPs among cases and 

controls were evaluated using the Armitage trends test.  Gene based tests were used to 

evaluate all SNPs within each gene simultaneously.  The optimal procedure for 

evaluating multiple single locus tests of association within a gene can vary depending on 

the number of SNPs genotyped and the correlation structure within the gene (Roeder et 

al., 2005).   Our genes differed widely by the number of SNPs genotyped (n = 1 - 47) and 

the correlation structure between SNPs was high.  For these analyses we conducted the 

Hotelling’s T2 multilocus association test (R. Fan & Knapp, 2003).  Both the asymptotic 

p-value and empirical permutation p-values are reported.  Analyses were carried out 

using PLINK, version 0.99r (http://pngu.mgh.harvard.edu/purcell/plink) (Purcell et al., 

2007).  Analysis of epistasis was conducted for all possible gene-gene SNP pairs in each 

disorder using logistic regression, as previously described (Talkowski et al., 2008).  

Exploratory analyses were conducted for each SNP to test for meaningful phenotypic 

covariates of diagnosis (SZ or SZA), gender, and age at onset of illness.   

http://pngu.mgh.harvard.edu/purcell/plink�
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Corrections for multiple tests:  Our analyses included some genes with a strong a priori 

hypothesis (e.g. DRD3, DRD2, COMT, and SLC6A3, among others) and other 

exploratory genes such as the dopamine interacting proteins, many of which have never 

been tested in association studies.  We therefore performed corrections for multiple 

comparisons in our SNP based analyses at two levels: 1) at the gene level, applying 

correction for the effective number of independent tests within each gene and 2) at an 

experiment wide level, correcting for all effective independent tests conducted in both 

disorders (164.5 independent tests per disorder, 329 total tests; uncorrected threshold p < 

0.0003 per disorder, p < 1.5 x 10-4 for all tests).  For gene-based analyses, empirical p-

values for each gene were determined by permutation, and Bonferroni correction for 40 

independent gene-based tests was applied.    Interaction results were also corrected for all 

effective independent interactions tested (26,024 tests per disorder, 52,048 total; 

uncorrected threshold p < 9.6 x 10-7).  All exploratory analyses were corrected for the 

total number of effective tests conducted (164.5 tests x 3 variables x 2 disorders = 987 

tests).   

     

Genomic control:  We tested for population substructure by comparing SZ/SZA cases to 

controls as well as BP1 cases to controls using a variation of the genomic control (GC) 

method (Devlin & Roeder, 1999) (Bacanu et al., 2000) (Devlin, Bacanu, & Roeder, 

2004).  Briefly, these samples were previously genotyped for the current report and 

another study investigating variations from the circadian pathway (Mansour et al., in 

preparation).  In sum 768 SNPs were genotyped from 64 different genes, i.e. 64 
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generally independent genomic regions.  Next, we performed 10,000 iterations of 

randomly choosing a single SNP from each of the 64 genes to compare between cases 

and controls, obtaining a distribution of median chi-square tests.  The mean value of this 

distribution was calculated and was divided by the expected median of a chi-square 

distribution with 1 degree of freedom (0.456).  Since control samples were obtained from 

two different geographic regions, we conducted identical analyses between the two 

control groups to assess within-group substructure.     

 

Power analysis 

We evaluated the power of our sample to detect an odds ratio of 1.5 under a 

dominant model, or the maximum expected effect size based on previous studies of DA 

gene variations using similar sample sizes (Talkowski et al., 2007).  We tested the 

assumptions that the risk allele was actually analyzed in our sample or that a surrogate 

was genotyped at r2 of 0.9 with the risk loci (similar to our primary analyses).  We 

assessed power using risk allele frequencies of 0.15, 0.4, and 0.9 in the population, and 

varied the type I error threshold between 0.05 and 0.00015 (i.e., nominal significance and 

our corrected significance for all tests).   
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6.4 RESULTS 

6.4.1 Quality control 

Of 431 SNPs genotyped, 422 were retained for association analysis (9 SNPs failed QC 

criteria or were rare, i.e. minor allele frequency less than 0.01).  The mean genotype call 

rate was 99.96% across samples.  The discrepancy rate in all positive controls (duplicated 

samples, overlapping samples from previous studies, and CEPH individuals compared 

with HapMap) was less than  0.01%, a rate comparable to HapMap (HapMap, 2003).     

6.4.2 Association tests 

Thirty-seven of the 422 SNPs tested reached nominal significance for BP1 (8.8%, 

uncorrected p < 0.05).  Tweny-five SNPs were associated with SZ/SZA (6.2%).  Of these 

25 nominally significant SZ/SZA associations, 15 SNPs (60%) were also associated with 

BP1.  These shared associations occurred at DRD3 (8 SNPs), DDC (5 SNPs), DRD1IP (1 

SNP), and MAOB (1 SNP).  These shared loci accounted for 44.7% of all nominally 

significant associations observed with BP1.   

The top ranked association signal was the same DRD3 SNP / allele in both 

disorders, rs9868039 (uncorrected p = 0.0017 and 0.0032 in BP1 and SZ/SZA, 

respectively).  Nominally significant associations with BP1 were detected following 

gene-wide correction for the following genes (number of nominally significant 

associations in parentheses): DDC (11 SNPs), DRD3 (8 SNPs), DRD1IP (2 SNPs), 

SLC18A1 (2 SNPs), DRD4 (1 SNP), and PPP1R9B (1 SNP).  Associations with SZ/SZA 



 145

remained significant following gene-wide correction at DRD3 (10 SNPs), DRD1IP (1 

SNP), and SP4 (1 SNP).  Nominally significant associations with SZ/SZA were also 

detected at DDC (6 SNPs) and DRD2 (2 SNPs).  These SNPs were not significant after 

gene-wide correction (40 and 22 SNPs were tested in DDC and DRD2, respectively), 

however both DRD2 associations were direct replications of risk alleles detected by 

Sanders et al. (rs17529477: p = 0.039, rs7131056: p = 0.048; Sanders et al. p = 0.018 and 

0.012, respectively) (Sanders et al., 2008).  No SNPs exceeded our experiment-wide 

significance threshold of p < 1.5 x 10-4.  Gene based tests supported the SNP associations, 

DRD3 was significantly associated with both SZ/SZA (p = 0.007) and BP1 (p = 0.013) 

following permutation when all SNPs were considered.  No other gene based tests were 

significant, nor did the DRD3 results survive Bonferroni correction.  

Our previous analyses suggested associations between SZ/SZA and DRD3, 

SLC6A3 (DAT), SLC18A2 (VMAT2), and COMT.  In the present analysis, individual 

SNPs at DRD3, SLC6A3 and SLC18A2 were nominally significant with SZ/SZA, but not 

COMT.  Only the DRD3 associations remained significant after correction.      

6.4.3 Exploratory analyses 

We tested all possible gene-gene SNP pairs in each disorder separately (i.e., only 

pairs across genes were tested, but not pairs of SNPs within genes).  In sum, 175,818 

interaction tests were conducted for each disorder (351,636 total tests), the equivalent of 

26,024.3 effective tests for each disorder (52,048 total).  No pair-wise interactions were 

significant at this threshold (p < 9.61 x 10-7).  The top ranked shared interactions (p < 

0.001 in each disorder) and disorder specific results (p < 0.001) are found in 
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Supplementary Tables 6.4. and 6.5.  Despite a number of nominally significant results, 

particularly between DRD3 variants, gender, and psychotic symptoms, none of our 

analyses of phenotypic variables exceeded chance expectations (Supplementary Table 

6.6). 

 

 

 

Table 12 Nominally significant gene-based associations 

      SNP Associations Hotelling's T2 

Significant 
Association Gene 

Tag 
SNPs 

Effective 
tests 

# SNPs 
p<0.05 

(SZ) 
Best SZ 
p-value

# SNPs 
p<0.05 
(BP1) 

Best BP1 
p-value 

 
Empiricalp-
value (SZ)

Empiricalp-
value (BP1)

SZ / SZA 
and BP1 

DRD3 20 6.7 10 0.003* 8 0.002* 0.007 0.013 
DDC 40 11.9 6 0.029 11 0.002* 0.391 0.708 

MAOB 8 3.3 2 0.019 2 0.042 0.268 0.296 
DRD1IP 4 1.9 1 0.012* 2 0.008* 0.090 0.063 

SZ / SZA 
Only 

DRD2 22 8.3 3 0.037 0 0.261 0.433 0.813 
SLC6A3 47 16.9 1 0.045 0 0.118 0.479 0.818 

NEF3 8 3.5 1 0.044 0 0.075 0.342 0.286 
Sp4 3 1.1 1 0.016* 0 0.687 0.105 0.963 

SLC18A2 18 7.7 2 0.041 0 0.095 0.420 0.393 
GRB2 8 3.4 1 0.037 0 0.208 0.373 0.715 

BP1 Only 

FREQ 21 8.1 0 0.056 5 0.011 0.776 0.376 
SLC18A1 22 8.7 0 0.233 2 0.005* 0.761 0.113 
SNAP25 34 13.3 0 0.064 2 0.012 0.334 0.375 
COMT 31 10.6 0 0.217 1 0.050 0.804 0.518 
SNCA 12 4.9 0 0.128 1 0.038 0.753 0.614 
DBH 29 11.2 0 0.124 1 0.045 0.617 0.878 

PPP1R9B 5 1.9 0 0.068 1 0.019* 0.396 0.095 
EPB41 15 4.9 0 0.138 1 0.022 0.818 0.109 

Chr = chromosome.  Effective tests = effective number of independent tests.  *Significant 
after Bonferroni correction for 40 gene-based tests.  *Significant after gene-wide 
correction.  No SNPs were significant at a level of experiment-wide correction.    
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6.4.4 Testing for possible confounds  

A series of tests were conducted to see if the overlapping associations described above 

arose from biased control selection or comparison groups.  Based on our genomic control 

analysis, no meaningful inflation in the test statistics was observed between SZ/SZA 

cases and controls (λ = 1.08), nor were differences found between BP1 cases and controls 

(λ = 0.85).  We also compared our SZ cases to our SZA cases to determine if meaningful 

differences existed, which they did not (λ = 0.938).  Since our controls were obtained 

from two different sources, we performed similar genomic control analyses (10,000 

iterations comparing SNPs from 64 different genomic regions, see Methods) between 

controls from Pittsburgh and the NHGRI controls.  Nearly identical results to the case / 

control comparisons were found between the two sets of controls (λ = 1.08).    

Nominally significant associations with both diagnostic groups were detected at 

15 SNPs (p < 0.05, see Table 13).  Two non-significant trends were also observed.  To 

determine if these results were an artifact of the control group, we compared these 17 

SNPs between the two control groups.  No significant differences were detected (p > 0.1 

in all analyses; data not shown).  To further interrogate our control sample, we obtained 

allele frequencies for these SNPs from other sources, where available, including: 1) our 

previously reported association study with SZ/SA using population based neonatal 

control samples (Talkowski et al., 2008), 2) HapMap (ref), and 3) available Caucasian 

populations in dbSNP (build 129).  Allele frequencies are available in Supplementary 

Table 6.7.   In general, we found that our case frequencies comported well with the 

independent control frequencies.  Qualitative differences were obvious between our 

control sample and the independent control samples for some, but not all SNPs.
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Figure 12 Individual SNP association results across 40 dopaminergic genes 

Trends test p-values for individual SNPs across the 40 genes.  The y-axis is -2 x the natural log of the p-value (-2*LN(p)), and the x-
axis contains all genes.  SNP results are provided in genomic order.  **Figure to be updated in color or with different symbols, 
depending on journal specificity.  Dotted line p = 0.05.   
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Table 13 Nominally significant associations between individual SNPs and both diagnostic groups 

Genomic Data SNP Association Results Allele Frequencies 

Gene SNP Position 
SZ/SZAp-

value 
SZ 
OR 

BP1    
p-

value
BP1 
OR N 

SZ 
Case 

BD 
Case Control

DDC rs4947535 50499175 0.036 0.82 0.033 0.82 A 0.296 0.295 0.340 
DDC rs745043 50511449 0.029 0.78 0.004 0.73 A 0.206 0.195 0.248 
DDC rs4470989 50530192 0.029 0.81 0.028 0.81 A 0.297 0.297 0.343 
DDC rs3807558 50538516 0.043 0.80 0.008 0.75 A 0.207 0.198 0.246 
DDC rs3779078 50578412 0.042 0.80 0.004 0.74 A 0.205 0.193 0.244 

DRD1IP rs11101694 134996704 0.012 0.73 0.008 0.72 G 0.129 0.127 0.169 
DRD3 rs2046496 115317621 0.031 1.21 0.017 1.24 G 0.494 0.502 0.448 
DRD3 rs12636133 115322414 0.023 0.81 0.009 0.79 C 0.424 0.416 0.475 
DRD3 rs10934254 115324324 0.035 0.83 0.009 0.79 G 0.428 0.417 0.475 
DRD3 rs9868039 115329232 0.003 1.30 0.002 1.34 A 0.451 0.458 0.387 
DRD3 rs9817063 115329798 0.011 0.79 0.003 0.77 G 0.456 0.447 0.514 
DRD3 rs3732790 115329973 0.033 0.82 0.012 0.79 A 0.383 0.374 0.431 
DRD3 rs2134655 115340891 0.007 1.31 0.005 1.33 A 0.277 0.280 0.226 
DRD3 rs963468 115345577 0.030 0.82 0.008 0.78 A 0.381 0.370 0.429 
DRD3 rs7625282 115364217 0.057 0.83 0.073 0.84 G 0.248 0.250 0.284 
MAOB rs2283729 43562986 0.026 1.26 0.042 1.34 A 0.274 0.286 0.231 
MAOB rs6651806 43573908 0.058 1.23 0.052 1.36 C 0.284 0.304 0.243 

All SNP based associations that were nominally significant in both SZ/SZA and BP1 are 
provided.  P-values are uncorrected results from Armitage trends test.  OR = odds ratio of 
rare allele.  N = nucleotide of rare allele assayed in this study.  Allele frequencies for 
SZ/SZA cases, BP1 cases, and controls provided. 
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6.4.5 Power analysis  

Under a dominant model, the sample had 80.9% power to detect a nominally significant 

association (OR 1.5) for a risk allele with 15% MAF in the population, using a type I 

error threshold of 5%.  For a risk allele with MAF 40%, power declined to 70.3% under 

the same assumptions.  The sample had approximately 12% power to detect a 

significance level of p < 0.00012, the threshold required to exceed correction for all SNP 

based analyses. 

6.5 DISCUSSION 

We systematically evaluated associations between representative, common 

dopaminergic (DA) gene variants and bipolar disorder (BP1), schizophrenia (SZ) and 

schizoaffective disorder (SZA).  The catalogue of DA genes is dynamic and likely to 

grow.  We included a core group of genes that unambiguously impact DA function, as 

well as additional DA interacting proteins.  Thus, our analyses provided more intensive 

interrogation of common DA pathway genes and SNPs than previous efforts.  We 

adopted a relatively conservative gene based approach in the present controversy over the 

type of correction needed for multiple comparisons (WTCCC, 2007).   

Our analyses detected multiple associations between dopamine D3 receptor gene 

(DRD3) variants and BP1 as well as SZ/SZA.  Both individual SNP and gene based tests 

were associated with both disorders.  Although no single SNP association exceeded 
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correction for multiple comparisons, 7 of the 20 most significant BP1 associations and 9 

of the top 20 SZ/SZA associations were DRD3 variants.  Among the 20 DRD3 SNPs 

evaluated, 8 SNPs were associated with BP1 and 10 SNPs were associated with SZ/SZA.   

The same allele at rs9868039 of DRD3 was the most significant SNP in both 

diagnostic groups across all 422 SNP tests.  This SNP was part of a cluster of 8 nominally 

significant SNPs in both SZ/SZA and BP1 spanning intron 4 to the 3’ region of the gene.  

Linkage disequilibrium between all 8 SNPs was modest (minimum r2 > 0.2, D’ > 0.65 

between all SNP pairs).  Like several previous DRD3 associations, rs9868039 has 

unidentified biological function but is localized in the 3’ region of the gene 

approximately 1 kb from the transcription stop site in exon 7 (previously named exon 

6)(www.ncbi.nlm.nih.gov).  Two SNPs significantly associated with both SZ/SZA and 

BP1 from this cluster in the current analyses are consistent with our previous findings, 

however rs9868039 is not among them (rs10934254, rs2134655) (Talkowski, Mansour et 

al., 2006) (Talkowski et al., 2008).  Haplotypes spanning this region were also 

significantly associated with SZ in an independent study (Dominguez et al., 2007).  No 

SNPs spanning this region were associated with BP1 in two large GWAS studies; 

however none of our associated SNPs were included in those studies (WTCCC, 2007) 

(Sklar et al., 2008).  Two SNPs within intron 2 (and one additional trend) independent of 

this 8 SNP cluster were nominally significant in SZ/SZA (rs10934256, rs7633291, 

rs7625282), but not BP1, consistent with our previous findings (Figure 13) (Talkowski, 

Mansour et al., 2006) (Talkowski et al., 2008).  The second ranked gene in our analyses 

was dopamine decarboxylase (DDC), in which 6 SNPs were associated with SZ/SZA and 

http://www.ncbi.nlm.nih.gov/�
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11 SNPs were associated with BP1.  These results merit replication, as previous studies 

have not investigated DDC extensively (see (Talkowski et al., 2007) for review).   

In addition to the shared risk factors, there were diagnostic specific associations 

detected with some genes, consistent with the possibility that the different 

psychopathology in these disorders is modulated by some DA genes.  Supporting a 

number of prior reports, we found nominally significant associations between two DRD2 

SNPs and SZ/SZA, but not BP1 (Glatt et al., 2008; Monakhov, Golimbet, Abramova, 

Kaleda, & Karpov, 2008) (Dubertret et al., 2004).  Both associations replicated risk 

alleles detected by Sanders and colleagues (Sanders et al., 2008).  We also detected a 

trend for association with a SNP that was a surrogate for another associated SNP 

(rs4245147) in that study (rs4274224, uncorrected p = 0.09; see supplementary Table 

6.2).  None of these SNPs met significance thresholds in our study or Sanders et al. after 

corrections for multiple testing were applied.  These results highlight the inherent 

difficulty with interpreting nominally significant results in large scale studies, where 

sample sizes are rarely sufficient to detect replicable associations of small effect.  We did 

not find an association with two surrogates for rs6277 (C957T) (Hanninen et al., 2006; 

Hoenicka et al., 2006; Lawford et al., 2005; H. Xu et al., 2007).  Glatt et al. also reported 

associations with SNPs and haplotypes spanning most regions of DRD2 in an Asian 

population.  While a non-significant trend in that study was consistent with our observed 

association (rs7131056), the most significant SNPs did not overlap with our results, 

lending credence to the argument that the primary DRD2 risk alleles remain unidentified 

(Glatt et al., 2008).  In BP1, we detected association with five FREQ SNPs.  A number of 



 153

other strong BP1 candidate such as MAOB and SLC18A1 (VMAT1) were nominally 

significant in BP1 but not SZ/SZA (see Table 12).   

 
 

 
Figure 13 Linkage disequilibrium (r2) between DRD3 SNPs and association statistics 
 
Linkage disequilibrium (r2), SNP locations, and tests of association in both diagnostic groups for 
all DRD3 SNPs provided.  IN = intron, EX = exon.  Genomic locations based on dbSNP build 129, 
which includes an exon 5’ to previously described exon 1.  P-values based on Armitage trends 
test.  All p-values are uncorrected for multiple comparisons. 
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Our results support the null hypothesis for several traditional susceptibility 

candidates.  At COMT previous studies suggested associations with SZ and multiple 

SNPs / haplotypes spanning the gene, including our own (H. J. Williams et al., 2007) 

(Talkowski et al., 2008).  In the current study, we tested 31 variations and found no 

probabilities lower than p = 0.217.  At DBH, we evaluated 29 SNPs with p > 0.12 for all 

tests (refs).  MAOA was similarly negative in SZ, as well as BP1.  As discussed, the 

power of our study was relatively low to detect small effects, but our study provides 

compelling evidence against individual SNPs of major effect within these genes. 

We previously reported on associations between SZ/SZA at four DA genes (DRD3, 

SLC6A3, SLC18A2, COMT).  Nominally significant associations with individual SNPs 

were detected with three these genes (not COMT), an expected result given the overlap 

between SZ/SZA samples in the present and prior studies (Talkowski et al., 2008).  Most 

of the associated SNPs differed between studies, althought non-significant trends were 

noted for some alleles (e.g. rs3756450).  Still, only the DRD3 findings provided 

significant overlap with prior studies, and no results were significant after corrections for 

multiple testing.  Such variation might be expected in view of the different control groups 

utilized, the possibility of over-inflation of the effect size in the initial study, or stochastic 

variation if the primary risk alleles are not analyzed.   

There are limitations to this study.  The associations identified here may not represent 

primary risk alleles, so analysis of additional common and / or rare variants may be 

needed.  Independent samples, preferably large Caucasian cohorts, are critical to 

strengthen support for a shared etiology between BP1 and SZ/SZA.  Additional studies to 

investigate the biological function of the associated SNPs are also required.  Owing to 
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limitations imposed by power in the available samples, rare variants or structural 

variations within DA genes were not investigated.  Such efforts are worthy, in view of 

recent suggestions regarding the role of rare variations in SZ genesis (Walsh et al., 2008; 

B. Xu et al., 2008).   

The present sample was adequately powered to detect associations with odds 

ratios of 1.5 or greater when individual genes were considered independently, but power 

to detect associations when all loci were considered was inadequate.  In addition, our 

analytic strategy was conservative and could limit interpretation of these results.  

Previously investigated DA genes were equally weighted with novel DA interacting 

genes, raising the possibility of type II errors.  For example, DRD2 had strong a priori 

evidence as an SZ/SZA susceptibility candidate, and both our study and Sanders et al. 

(Sanders et al., 2008) identified associations at DRD2, however neither set of associations 

were significant when corrected for all other genes considered.   Similarly, the epistatic 

interactions entailed a considerable number of tests, so our power was limited to detect 

only very large effect sizes after correcting for multiple tests.  None of the interactions 

results were significant after such corrections.   

We previously suggested interactions between four DA genes and SZ/SZA 

(SLC6A3*COMT, SLC6A3*DRD3, SLC6A3*SLC18A2, and DRD3*SLC18A2) 

(Talkowski et al., 2008).  When we evaluated those genes here, we found 198 nominally 

significant interactions for SZ/SZA vs control comparisons, which were present in each 

of gene of the pairs (198 / 1457 tests = 13.59%), consistent with our earlier report using a 

different set of controls.  When BP1 cases were compared with the controls, 188 of these 

SNP pairs were also significantly associated with risk (12.9%).  Despite considerable 
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effect sizes for some of these analyses (Supplementary Table 6.5), none of these results 

exceeded chance expectations when all interactions were considered.   

In conclusion, we conducted a comprehensive evaluation of the DA pathway for 

common variants conferring risk for BP1 and SZ/SZA.  Our analyses identified DRD3 as 

the strongest susceptibility gene for both groups.  We found additional support for other 

overlapping and disease specific risk loci in each disorder (approximately 60% of 

nominally significant SZ/SZA associations were also associated with BP1).  Our analyses 

suggest the overlapping risk loci could not be entirely attributed to population 

substructure or variation due to control selection.  Other associations were significant for 

BP1 or SZ/SZA, suggesting modulatory DA influences that could impact differences in 

psychopathology between these disorders.  Our findings could provide a genetic 

epidemiological basis for a shared etiology between SZ, SZA, and BP1,  
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7.0  SUMMARY AND CONCLUSIONS 

7.1 SUMMARY OF STUDIES 

This series of studies was aimed at evaluating a genetic basis for the commonly cited 

hypothesis that the dopaminergic neurotransmitter pathway is dysregulated in the 

pathogenesis of schizophrenia.  The initial review of the literature suggested a clear 

pattern in which strong claims and subsequent conclusions have been drawn regarding 

dopaminergic gene variations despite a paucity of information for most genes.  

Paralleling the technological advances in molecular genetics that has taken place over a 

remarkably short period of time, each of the studies presented incrementally grew in 

terms of molecular and analytic sophistication, culminating with analysis of a 

considerable portion of representative common variation in the dopaminergic network.   

 The initial study of DRD3 addressed a significant gap in the literature regarding 

this important autoreceptor in the dopaminergic pathway.  Prior to 2006, nearly all 

studies of DRD3 evaluated only a single coding variant, rs6280 (Ser9Gly) in exon 1 (now 

exon2) of the gene.  Our linkage disequilibrium analyses showed that this variant was 

independent of other regions in the gene, and the vast majority of sequence variation 

remained uncovered.  Our study considered SNPs over a 109 kb region and was the first 

to suggest associations between schizophrenia and SNPs / haplotypes 3’ to rs6280.  Our 
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study was also one of the few to seek evidence of replication as part of the initial 

investigation.  Despite the incremental advances of this study over previous efforts, the 

analyses shared many of the limitations of its predecessors.  Representative variations 

spanning the gene were not yet publicly available, power was limited, and a large number 

of tests were conducted without correcting for multiple comparisons.  Nonetheless, 

associations were subsequently replicated in an independent population (Dominguez et 

al., 2007), indicating more comprehensive analyses were warranted. 

Study #2 was motivated by similar logic to study #1.  The majority of genes 

central to the dopaminergic pathway had been previously studied, but usually in small 

samples with no more than one or two putatively functional variations.  This study 

employed a multi-stage design.  The first stage was conducted in a small trio sample just 

prior to availability of the International HapMap Project (HapMap, 2003), so the initial 

screen was limited to detecting test statistics falling on the extreme end of the 

distribution.  Still, an internal replication in the US cohort identified several consistent 

associations.  Follow-up analyses using a more comprehensive set of polymorphisms 

validated the initial screen, and consistencies with a replicate Bulgarian cohort were also 

encouraging.  To our knowledge, this was the first study to report replicated interactions 

between dopaminergic variations and schizophrenia.  Our simulations suggested these 

findings were unlikely under the null hypothesis.  Results at the dopamine transporter 

were particularly consistent, and functional analyses suggested a novel transcription 

factor binding sites and effects on promoter activity with an associated SNP 5’ to the 

transcription start site.  This combination of statistical and functional associations 

suggested the dopamine transporter was a promising target for future studies; however 
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detection of a primary risk allele for the disorder was not obvious as the associations 

spanned several independent genomic regions.    

Study #3 was an effort peripheral to the series of investigations on the 

neurobiological impact of dopaminergic genes on schizophrenia risk.  Phenylalanine 

hydroxylase catalyzes the hydroxylation of phenylalanine to tyrosine, a dopamine 

precursor, in the kidney, liver, and melanocytes (Lichter-Konecki, Hipke, & Konecki, 

1999; S. C. Richardson & Fisher, 1993; Schallreuter et al., 1995; Solstad, Stokka, 

Andersen, & Flatmark, 2003).  Mutations in PAH combined with phenylalanine in the 

diet can cause phenylketunuria (PKU), a severe neurological disorder.  Co-segregation of 

PKU with psychiatric illness has been reported (Fisch et al., 1979; Penrose, 1935), and a 

series of studies suggested association with several PKU causing variants and 

schizophrenia in small cohorts of Caucasian and African-American subjects (M. A. 

Richardson et al., 2003).  Our study extended these previous results to evaluate both the 

common and rare variant hypotheses of schizophrenia in four independent samples of 

Caucasian and African-American ancestry.  One common PAH SNP was associated with 

schizophrenia in two independent samples (rs1522305).  The association was with an 

intronic variant, and functional analyses are necessary in future studies.  

Study #4, was a natural endpoint to these surveys of common dopaminergic 

polymorphisms and their role in schizophrenia etiology.  This study addressed the 

limitations in coverage of studies #1 and #2, as well as the narrow view of the 

dopamienrgic network considered in study #2.  Motivated by an extensive literature 

suggesting shared etiological risk factors for schizophrenia, schizoaffective disorder, and 

bipolar disorder, this study simultaneously evaluated SNPs reporesentative of all publicly 
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available common variation within 40 genes and compared these disorders to a common 

set of screened adult controls.  The results provided strong evidence for DRD3 as a 

shared genetic risk locus for both schizophrenia and bipolar disorder.  Since case samples 

overlapped between studies #2 and 4, the results are not an independent replication.  

However the findings bolster the argument that DRD3 is a credible risk locus since each 

of the three studies in this series evaluating DRD3 detected significant associations 

despite comparisons with independent control subjects in each study.  The results 

pertaining to bipolar disorder are novel.  The overlap in associations included a cluster of 

8 SNPs spanning intron 4 to the 3’ region of the gene.  Replications of previous findings 

at other genes were noted.  None of the results were significant after corrections for 

multiple comparisons were applied.  Although additional associations were observed at 

our at our three other primary schizophrenia targets (SLC18A2, SLC6A3, and COMT), 

none of these results exceeded chance expectations, a result that should raise caution in 

interpretation of study #2 given the overlap in case samples between studies.   In 

summary, these findings support a shared etiological basis for schizophrenia and bipolar 

disorder at DRD3 and several other targets.  Although additional common variations are 

not required in future studies of Caucasians, replication of these findings in additional 

samples is essential.  The absence of replication precludes firm conclusions regarding the 

nominally significant associations and interactions detected.   
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7.2 LIMITATIONS 

Genetic association studies in psychiatric genetics have had considerable limitations, 

many of which hindered more conclusive interpretation of the studies conducted herein.  

Primary among these is the heterogeneous phenotype and individual risk variants of 

presumably very small effect.  Owing to the combination of these two factors, the two 

primary goals of these studies (comprehensive evaluation and statistically conservative 

interpretation) may be fundamentally unrealistic in sample sizes such as these.  This issue 

has been widely debated in the literature regarding genomewide association studies.  The 

primary limitation is power.  As detailed above, these sampled were reasonably powered 

to detect an odds ratio of 1.5 under ideal circumstances (including genotyping the actual 

risk allele).  This effect size is almost certainly inflated based on credible large scale 

studies, and considers only an individual test (i.e. an alpha of 0.05).  If one were to 

consider detection of a true association under the realistic circumstances of these studies 

(maximum OR of 1.31, r2 < 0.9 between risk allele and surrogate marker, 422 SNPs / 

disorder, 339 effective tests), over 8,000 cases would be required to detect statistical 

significance after correction.  The threshold for significance is more stringent in a GWAS 

study, a factor likely contributing to the lack of consistency between such psychiatric 

genetic studies to date.  Statistical weighting may be an optimal strategy, but the nebulous 

nature of determining what constitutes a significant association in the existing literature 

complicates such designs.    

Another limitation was the inability to draw conclusions regarding primary risk 

causing variants.  The functional analyses in study #2 were intriguing but not conclusive.  

The validity of an in vitro assay system to model in vivo effects in the brain is always a 
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concern.  The majority of the associations detected were with intronic variations of yet 

unknown function.  Finally, these results raise the question of statistical thresholds for 

interpreting replication between independent samples.  These studies relied on strategies 

such as joint analyses and summary statistics to identify multiple independent small 

effects in the same direction (i.e. the same risk allele).  This strategy is defensible given 

the power limitations discussed above, but could be interpreted as anti-conservative. 

7.3 ONGOING AND FUTURE STUDIES  

These studies represent a reasonable evaluation of the common variant hypothesis of 

genetic risk to schizophrenia (and bipolar disorder).  If the common variant hypothesis 

were to be evaluated further, comprehensive sequencing for novel SNP detection might 

provide the most benefit in identifying true liability loci.  Our ongoing study has taken 

this approach to exhaustively evaluate the dopamine transporter.  In conjunction with the 

SeattleSNPs project, we have conducted focused sequencing to cover roughly 90% of the 

genomic region spanning the gene, cataloguing all common and rare variations detected.  

To date, 375 variations have been catalogued, 164 of which are common.  We have 

genotyped 88 tag SNPs in both the US and Bulgarian samples.  We find that consistent 

associations persist between samples within introns 3 and 4 of the gene.  In collaboration 

with Dr. Javier Lopez at Carnegie Mellon University, novel splice variants are being 

investigated in this region to determine a plausible functional basis for the associations.   

Replicate studies on substantially powered samples are critically needed to 

validate the associations reported here.  These studies would be particularly useful in 
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interpretation of the most significant interactions detected in study #4.  Alternative 

strategies such as multifactor dimensionality reduction may be of benefit provided 

replicate samples are available.  Additional common variants would be required for 

individuals of African descent, but replicate studies in Caucasian and Asian populations 

would likely choose to focus on the subset of noteworthy SNPs already detected (e.g. the 

top 10% of SNP associations).  Additional studies of diagnostic sub-phenotypes would 

also be of interest given the results of exploratory analyses in study #4.  Parallel studies 

to identify causative rare and structural variations are also desirable.  Finally, functional 

analyses of patient specific cell lines, post-mortem brain tissue, and neuroimaging 

variables could all yield further lines of inquiry into the genetic epidemiological results 

reported here.    

7.4 CONCLUSION 

Taken together, thes analyses failed to conclusively support or reject the null hypothesis 

of no association between dopaminergic variation and schizophrenia.  No obvious 

individual risk loci arose.  The statistical results are compelling that an individual 

common variant of significant effect on schizophrenia risk (odds ratio greater than 1.5) is 

unlikely likely to be present within the dopmaniergic network studied here.  Instead, a 

series of small but consistent effects in several genes, as well as replicable epistatic 

interactions, suggest a plausible genetic basis for the dopamine hypothesis of 

schizophrenia could exist.  The results of these studies require further replication before 

an alternative hypothesis can be confidently accepted.  
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APPENDEX A: SUPPLEMENT TO CHAPTER 4 

Supplementary Table numbers include chapter and table (e.g. 4.1 = supplementary table 

1 from chapter 4). 

Table 14 Supplementary Table 4.1: All SNP association tests 

          
US samples                

(478 cases / 501 controls) 
Bulgaria           (659 

trios) Joint 

Gene BP SNP Group N
Case 
Freq 

Cord 
Freq 

p-
value Z1 Freq Z2 P2 Zjoint

DRD3 115313209 rs7631540 ALL C 0.517 0.520 0.884 -0.14 0.547 -0.80 0.422 -0.70
DRD3 115317621 rs2046496 ALL C 0.507 0.505 0.916 0.10 0.526 -1.04 0.300 -0.71
DRD3 115319654 MT_4* ALL A 0.949 0.954 0.572 -0.56 0.96 0.10 0.922 -0.29
DRD3 115322414 rs12636133 ALL G 0.571 0.564 0.747 0.32 0.549 0.16 0.872 -0.09
DRD3 115324324 rs10934254 ALL A 0.570 0.562 0.694 0.39 0.547 0.41 0.685 0.56
DRD3 115329232 rs9868039 ALL C 0.558 0.550 0.572 0.33 0.572 -0.38 0.707 -0.07
DRD3 115329798 rs9817063 ALL A 0.538 0.547 0.686 -0.41 0.524 0.20 0.839 -0.11
DRD3 115329973 rs3732790 ALL T 0.608 0.625 0.438 -0.77 0.599 0.58 0.564 -0.07
DRD3 115337545 rs13061336 ALL A 0.996 0.997 0.160 -1.41 0.997 1.27 0.206 0.03
DRD3 115340891 rs2134655 ALL G 0.727 0.762 0.066 -1.88 0.74 0.18 0.857 1.32
DRD3 115345577 rs963468 US G 0.612 0.628 0.462 -0.74     
DRD3 115352768 rs3773678 ALL C 0.845 0.848 0.690 -0.60 0.851 0.85 0.393 0.52
DRD3 115358965 rs167771 ALL T 0.818 0.801 0.348 0.94 0.801 -0.54 0.589 0.20
DRD3 115364131 rs324030 ALL C 0.724 0.675 0.016 2.40 0.688 0.75 0.455 2.14
DRD3 115364217 rs7625282 ALL T 0.760 0.710 0.039 2.51 0.744 0.64 0.524 2.13
DRD3 115367825 rs11706283 BGT C     0.883 -0.74 0.459  
DRD3 115368342 rs10934256 ALL G 0.820 0.775 0.014 2.46 0.8 0.68 0.494 -1.10
DRD3 115373505 rs6280 ALL A 0.680 0.627 0.012 2.48 0.667 0.04 0.966 0.08
DRD3 115374239 rs1800828 ALL G 0.775 0.729 0.015 2.39 0.776 -0.48 0.630 1.20

SLC6A3 1436550 rs27074 ALL G 0.908 0.905 0.829 0.21 0.912 0.28 0.782 0.07
SLC6A3 1444369 rs12516948 ALL T 0.619 0.673 0.015 -2.47 0.65 -1.27 0.205 -2.58
SLC6A3 1447522 rs27072 ALL G 0.834 0.808 0.133 1.50 0.82 0.78 0.436 -0.40
SLC6A3 1447815 rs1042098 BGT T     0.687 0.68 0.500  
SLC6A3 1448077 rs40184 ALL C 0.530 0.507 0.289 1.04 0.505 0.00 1.000 0.68
SLC6A3 1457548 rs6869645 ALL C 0.926 0.936 0.392 -0.87 0.922 0.40 0.686 0.88
SLC6A3 1464412 rs6347 ALL A 0.732 0.710 0.257 1.12 0.745 1.67 0.095 1.99
SLC6A3 1465645 rs27048 ALL G 0.582 0.582 0.991 -0.01 0.536 0.86 0.392 0.64
SLC6A3 1468629 rs37022 ALL A 0.833 0.801 0.073 1.81 0.842 0.93 0.354 1.89
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Table 14 Continued 
 
SLC6A3 1469646 rs2042449 US G 0.777 0.763 0.438 0.78     
SLC6A3 1476905 rs464049 ALL A 0.579 0.524 0.013 2.46 0.53 2.55 0.011 3.54
SLC6A3 1483515 rs456082 ALL A 0.806 0.766 0.027 2.16 0.771 1.70 0.090 2.70
SLC6A3 1484164 rs463379 ALL C 0.805 0.767 0.035 2.07 0.772 1.82 0.069 2.73
SLC6A3 1491354 rs403636 ALL G 0.815 0.848 0.045 -1.98 0.846 -1.45 0.146 -2.39
SLC6A3 1495521 rs2617605 ALL HWE Flag_removed   0.685 -0.45 0.655 -0.98
SLC6A3 1496199 rs6350 US G 0.937 0.932 0.636 0.47     
SLC6A3 1501148 rs3756450 ALL A 0.893 0.868 0.080 1.70 0.848 2.12 0.035 2.70
SLC6A3 1503506 rs2550947 ALL C 0.584 0.572 0.570 0.56 0.559 1.07 0.286 0.44
SLC6A3 1505280 rs2078247 ALL G 0.721 0.763 0.030 -2.16 0.769 -0.15 0.882 -1.53
SLC18A2 118995757 rs363393 ALL A 0.812 0.793 0.315 1.09 0.839 1.89 0.059 2.14
SLC18A2 118998861 rs363399 ALL T 0.769 0.749 0.319 1.02 0.773 -0.37 0.713 0.39
SLC18A2 118999379 rs363338 ALL T 0.707 0.660 0.029 2.23 0.666 -0.74 0.458 2.02
SLC18A2 119004938 rs363343 ALL A 0.824 0.786 0.046 2.09 0.799 -0.28 0.782 1.16
SLC18A2 119008669 rs2283138 ALL A 0.892 0.895 0.839 -0.21 0.887 -0.48 0.635 -0.49
SLC18A2 119009116 rs929493 ALL T 0.840 0.808 0.068 1.86 0.815 -0.06 0.956 1.18
SLC18A2 119009680 rs4752045 ALL G 0.603 0.542 0.009 2.72 0.515 0.43 0.665 -1.46
SLC18A2 119011397 rs10082463 ALL A 0.909 0.894 0.260 1.15 0.894 -0.28 0.784 0.54
SLC18A2 119012563 rs363224 ALL A 0.551 0.528 0.341 1.03 0.512 1.62 0.106 1.90
SLC18A2 119015202 rs363226 ALL C 0.668 0.646 0.324 1.03 0.608 0.70 0.486 1.20
SLC18A2 119016556 rs363227 ALL C 0.891 0.868 0.184 1.40 0.87 1.51 0.130 2.02
SLC18A2 119027061 rs14240 US C 0.536 0.523 0.702 0.15     
SLC18A2 119028361 rs363236 ALL T 0.859 0.843 0.352 0.98 0.835 -0.57 0.570 0.21
SLC18A2 119029149 rs363285 ALL A 0.712 0.718 0.800 -0.27 0.678 1.25 0.210 0.77

COMT 18303438 rs2020917 ALL C 0.684 0.712 0.160 -1.18 0.673 1.04 0.296 1.56
COMT 18305961 rs933271 ALL A 0.723 0.723 0.972 0.04 0.775 1.58 0.113 1.22
COMT 18310121 rs737865 ALL A 0.684 0.712 0.163 -1.39 0.679 0.88 0.379 -0.80
COMT 18319731 rs740603 ALL C 0.603 0.584 0.317 0.84 0.547 0.59 0.552 -0.10
COMT 18322680 rs7290221 BGT G     0.53 0.75 0.456  
COMT 18322891 rs4646312 ALL A 0.584 0.613 0.185 -1.31 0.6 -0.45 0.654 -1.19
COMT 18323417 rs165656 ALL C 0.515 0.504 0.634 0.47 0.512 1.48 0.140 1.43
COMT 18324506 rs6269 US T 0.581 0.609 0.198 -1.29     
COMT 18324982 rs2239393 US T 0.582 0.609 0.212 -1.25     
COMT 18325825 rs4680 US A 0.510 0.500 0.642 0.47     
COMT 18326451 rs4646315 ALL G 0.831 0.828 0.898 0.13 0.836 -1.38 0.169 -0.95
COMT 18326686 rs4646316 ALL C 0.756 0.755 0.967 0.04 0.777 0.29 0.775 0.25
COMT 18327115 rs165774 ALL C 0.682 0.689 0.738 -0.33 0.667 -0.79 0.431 -0.81
COMT 18327730 rs174696 ALL T 0.794 0.757 0.048 1.99 0.782 1.43 0.154 2.38
COMT 18330235 rs4633 BGT C     0.501 -0.04 0.965  
COMT 18330246 rs9332377 ALL C 0.836 0.858 0.172 -1.32 0.835 -0.41 0.685 -1.17
COMT 18330763 rs740601 BGT A     0.584 -0.99 0.323  
COMT 18331107 rs9332381 ALL G 0.956 0.954 0.833 0.21 0.986 0.23 0.819 0.31
COMT 18331207 rs4818 BGT C     0.588 -0.88 0.380  
COMT 18331335 rs165599 US T 0.689 0.688 0.943 0.07     
COMT 18333223 rs165849 US A 0.688 0.687 0.936 0.08     
COMT 18334027 rs165815 ALL T 0.862 0.833 0.076 1.81 0.84 1.31 0.189 2.18
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Table 14. BP = genomic location in base pairs.  N = nucleotide of common allele.  Freq = 
frequency of common allele provided. Z scores are test statistics with reference to  common 
allele.  allele.  p-value = p-value obatined from Armitage Trends test comparing case and control 
genotype distributions.  BGT = Bulgarian trios.  Frequency of common allele for parents of 
probands in Bulgarian families provided.  Joint = joint analysis.  Zjoint derived from the joint 
distribution of test statistics from stages II and III, weighted for sample size. *Novel SNP 
discovered from sequencing.           
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APPENDIX B: SUPPLEMENT TO CHAPTER 5 

Table 15 Supplementary Table 5.1: Nominally significant gender based analyses 

  Associations in Females only Associations in Males only 

SNP 
Gene 

Location 
Bulgarian  
p-value 

US C-C  
p-value 

US 
Trio  

p-value
AFAM   
p-value

Bulgarian  
p-value 

US C-C  
p-value 

US 
Trio  p-
value 

AFAM  
p-value

rs2245360 Exon-11         0.02       
rs1042503 Exon-7     0.05  0.01  
rs1126758 Exon-6     0.02  0.07  
rs12425434 Intron-5 0.03    0.07  0.004  
rs937476 Intron-6     0.004    
rs2037639 Intron-3     0.03  0.03  
rs1722392 Intron-3     0.04    
rs1522305 Intron-3 0.002 0.05    0.04   
rs1522296 Intron- 1 0.007               

Nominally significant SNP tests for gender based analyses.  P-values provided for unconditional 
(case-control) or conditional (family based) logistic regression among male or female participants 
separately.. All p-values are uncorrected for multiple comparisons.  C-C = case-control.  AFAM = 
African-American families.  SNPs where nominally significant replication (p < 0.05) was detected 
are highlighted.  No SNPs were significant after correction.  
 



 168

APPENDIX C: SUPPLEMENT TO CHAPTER 6 

Table 16 Supplementary Table 6.1: All gene descriptions 

  
SNP Analyses 
(Trends Test) 

Gene-based test 
(Hotelling's T2) 

Chr Gene Name 
Tag 

SNPs
Effective 

tests 
Best SZ 
p-value

Best BD  
p-value 

 Empirical 
p-value 

(SZ) 

 Empirical 
p-value 
(BP1) 

22 ADRBK2 
adrenergic, beta, receptor kinase 
2 3 1.0 0.516 0.269 0.756 0.700 

22 CACNG2 
calcium channel, voltage-
dependent, gamma subunit 2 6 2.7 0.063 0.175 0.247 0.374 

21 CLIC6 chloride intracellular channel 6 6 2.4 0.280 0.2085 0.881 0.734 
22 COMT catechol-O-methyltransferase 31 10.6 0.217 0.050 0.804 0.518 
7 COPG2 Gamma COP 6 2.7 0.408 0.260 0.801 0.615 

17 DARPP32 
protein phosphatase 1, regulatory 
(inhibitor) subunit 1B 1 1.0 0.144 0.855 0.179 0.849 

9 DBH dopamine beta-hydroxylase 29 11.2 0.124 0.045 0.617 0.878 
7 DDC dopa decarboxylase 40 11.9 0.029 0.002* 0.391 0.708 
5 DRD1 dopamine receptor 1 5 1.8 0.095 0.536 0.400 0.988 

10 DRD1IP 
dopamine receptor D1 interacting 
protein 4 1.9 0.012* 0.008* 0.090 0.063 

11 DRD2 dopamine receptor D2 22 8.3 0.037 0.261 0.433 0.813 
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3 DRD3 dopamine receptor D3 20 6.7 0.003* 0.002* 0.007 0.013 
11 DRD4 dopamine receptor D4 2 1.0 0.613 0.052 0.745 0.095 
4 DRD5 dopamine receptor D5 1 1.0 0.646 0.600 0.597 0.577 

12 DRIP78 
dopamine receptor interacting 
protein  3 1.0 0.428 0.978 0.496 1.000 

1 EPB41 
erythrocyte membrane protein 
band 4.1 15 4.9 0.138 0.022 0.818 0.109 

X FLNA Filamin A 2 1.0 0.396 0.340 0.060 0.208 
9 FREQ frequenin homolog 21 8.1 0.056 0.011 0.776 0.376 
5 GNB2L1 Receptor for activated C kinase1 4 1.9 0.234 0.245 0.150 0.419 

17 GRB2 
growth factor receptor-bound 
protein 2 8 3.4 0.037 0.208 0.373 0.715 

11 GRK2 
adrenergic, beta, receptor kinase 
1 2 1.0 0.467 0.223 0.671 0.447 

8 Hey1 Hesr1/Hey1 7 2.6 0.530 0.083 0.992 0.156 
16 HIC5 Focal adhesion protein 2 1.0 0.657 0.154 0.828 0.360 
X MAOA monoamine oxidase A 8 3.1 0.228 0.318 0.336 0.481 
X MAOB monoamine oxidase B 8 3.3 0.019 0.042 0.268 0.296 
3 NCK1 NCK adaptor protein 6 2.6 0.316 0.565 0.826 0.977 
8 NEF3 Neurofilament M 8 3.5 0.044 0.075 0.342 0.286 

2 NR4A2 
nuclear receptor subfamily 4, 
group A, member 2 2 1.0 0.384 0.431 0.682 0.643 

22 PICK1 
Protein interacting with C 
Kinase1 6 2.6 0.150 0.319 0.697 0.931 

17 PPP1R9B Spinophilin 5 1.9 0.068 0.019* 0.396 0.095 
5 PPP2CA Protein Phosphatase 1 1.0 0.486 0.994 0.566 1.000 

8 SLC18A1 
solute carrier family 18 (vesicular 
monoamine), member 1 22 8.7 0.233 0.005* 0.761 0.113 

10 SLC18A2 
solute carrier family 18 (vesicular 
monoamine), member 2 18 7.7 0.041 0.095 0.420 0.393 

5 SLC6A3 Dopamine Transporter 47 16.9 0.045 0.118 0.479 0.818 
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20 SNAP25 synaptosomal-associated protein 34 13.3 0.064 0.012 0.334 0.375 
4 SNCA Synuclein 12 4.9 0.128 0.038 0.753 0.614 
7 Sp4 Sp4 transcription factor 3 1.1 0.016* 0.687 0.105 0.963 
7 STX1A Syntaxin1A 2 1.0 0.455 0.771 0.572 0.956 
16 SYNGR3 synaptogyrin 3 2 1.0 0.468 0.662 0.650 0.885 
11 TH tyrosine hydroxylase 7 2.7 0.098 0.106 0.247 0.252 

*Significant after gene-wide correction. 
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Table 17 Supplementary Table 6.2: All SNP associations in both diagnostic groups 

Genomic Information Minor Allele Information Test Statistics  
Gene Position SNP Nuc SZ/SZA

Freq 
BP1 
Freq

Control 
Freq 

SZ/SZA
p-value

SZ 
OR 

BP1    
p-value 

BP1 
OR

EPB41 29092857 rs126013 A 0.355 0.347 0.376 0.3185 0.91 0.1734 0.88
EPB41 29101418 rs150093 G 0.138 0.142 0.141 0.8521 0.98 0.9473 1.01
EPB41 29114784 rs203278 G 0.333 0.336 0.363 0.1723 0.88 0.2036 0.89
EPB41 29117993 rs157208 G 0.217 0.231 0.220 0.8791 0.98 0.5486 1.07
EPB41 29131901 rs150089 G 0.303 0.305 0.324 0.3223 0.91 0.3623 0.92
EPB41 29141303 rs12038347 G 0.088 0.105 0.091 0.8187 0.96 0.2951 1.17
EPB41 29182405 rs2762682 A 0.286 0.281 0.278 0.6996 1.04 0.8698 1.02
EPB41 29183661 rs12021667 G 0.409 0.412 0.397 0.6053 1.05 0.5015 1.06
EPB41 29205312 rs11581096 A 0.097 0.094 0.108 0.4145 0.89 0.2889 0.85
EPB41 29207950 rs2985331 G 0.142 0.141 0.132 0.5040 1.09 0.5820 1.08
EPB41 29229250 rs10915216 A 0.498 0.483 0.491 0.7438 1.03 0.2339 0.90
EPB41 29269534 rs12130351 A 0.060 0.049 0.052 0.4781 1.15 0.7094 0.93
EPB41 29316310 rs2249138 A 0.121 0.109 0.133 0.4013 0.89 0.0977 0.80
EPB41 29317814 rs12120422 G 0.168 0.164 0.165 0.8406 1.03 0.9476 0.99
EPB41 29319434 rs575675 G 0.086 0.075 0.104 0.1825 0.82 0.0216 0.70
NR4A2 156890171 rs12803 A 0.474 0.476 0.494 0.3793 0.93 0.4312 0.93
NR4A2 156891881 rs834834 G 0.308 0.316 0.321 0.5524 0.94 0.8362 0.98
DRD3 115317621 rs2046496 G 0.494 0.502 0.448 0.0345 1.21 0.0151 1.24
DRD3 115322414 rs12636133 C 0.424 0.416 0.475 0.0239 0.81 0.0080 0.79
DRD3 115324324 rs10934254 G 0.428 0.417 0.475 0.0367 0.83 0.0091 0.79
DRD3 115329232 rs9868039 A 0.451 0.458 0.387 0.0039 1.30 0.0013 1.34
DRD3 115329798 rs9817063 G 0.456 0.447 0.514 0.0123 0.79 0.0031 0.77
DRD3 115329973 rs3732790 A 0.383 0.374 0.431 0.0334 0.82 0.0094 0.79
DRD3 115340891 rs2134655 A 0.277 0.280 0.226 0.0080 1.31 0.0059 1.33
DRD3 115345577 rs963468 A 0.381 0.370 0.429 0.0302 0.82 0.0074 0.78
DRD3 115351544 rs324035 A 0.210 0.200 0.197 0.4879 1.08 0.8611 1.02
DRD3 115357749 rs2630351 A 0.065 0.070 0.053 0.2630 1.24 0.1304 1.33
DRD3 115358965 rs167771 G 0.187 0.183 0.174 0.4593 1.09 0.6161 1.06
DRD3 115360518 rs324032 G 0.069 0.072 0.053 0.1492 1.32 0.0935 1.37
DRD3 115362252 rs167770 G 0.277 0.277 0.301 0.2323 0.89 0.2448 0.89
DRD3 115363703 rs226082 G 0.278 0.278 0.301 0.2537 0.89 0.2647 0.90
DRD3 115364131 rs324030 G 0.278 0.278 0.301 0.2537 0.89 0.2647 0.90
DRD3 115364217 rs7625282 G 0.248 0.250 0.284 0.0575 0.83 0.0808 0.84
DRD3 115368342 rs10934256 A 0.178 0.188 0.215 0.0355 0.79 0.1389 0.85
DRD3 115369758 rs7633291 C 0.180 0.189 0.215 0.0463 0.80 0.1541 0.85
DRD3 115373505 rs6280 G 0.325 0.329 0.338 0.5569 0.95 0.6817 0.96
DRD3 115374239 rs1800828 G 0.226 0.239 0.252 0.1651 0.87 0.5140 0.93
NCK1 138069807 rs9845460 A 0.222 0.214 0.206 0.3733 1.10 0.6333 1.05
NCK1 138101599 rs9867325 C 0.235 0.229 0.237 0.9338 0.99 0.6938 0.96
NCK1 138102256 rs6783508 A 0.317 0.298 0.296 0.3055 1.11 0.8957 1.01
NCK1 138109387 rs1347209 C 0.397 0.380 0.380 0.4242 1.08 0.9968 1.00
NCK1 138150095 rs1048145 G 0.095 0.084 0.089 0.6538 1.07 0.6930 0.94
NCK1 138154451 rs7648198 C 0.453 0.442 0.441 0.6065 1.05 0.9863 1.00
DRD5 9397033 rs2867383 A 0.323 0.324 0.312 0.5966 1.05 0.5614 1.06
SNCA 90862167 rs168552 G 0.280 0.286 0.253 0.1618 1.15 0.0945 1.18
SNCA 90865909 rs356165 G 0.383 0.369 0.351 0.1284 1.15 0.3935 1.08
SNCA 90910560 rs356188 G 0.221 0.238 0.203 0.3337 1.11 0.0620 1.22
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SNCA 90912499 rs356164 C 0.132 0.146 0.128 0.7939 1.04 0.2330 1.17
SNCA 90924387 rs356186 A 0.206 0.225 0.195 0.5402 1.07 0.1037 1.20
SNCA 90931534 rs10002435 A 0.121 0.108 0.120 0.9454 1.01 0.4194 0.89
SNCA 90950732 rs1866995 G 0.058 0.048 0.055 0.7385 1.07 0.4959 0.87
SNCA 90955540 rs3822095 G 0.377 0.373 0.402 0.2378 0.90 0.1893 0.89
SNCA 90959901 rs2737020 G 0.285 0.298 0.269 0.4449 1.08 0.1527 1.15
SNCA 90964953 rs6532191 G 0.484 0.503 0.457 0.2136 1.11 0.0404 1.20
SNCA 90976758 rs2619361 A 0.262 0.266 0.252 0.5999 1.06 0.4690 1.08
SNCA 90980380 rs17016274 A 0.067 0.061 0.069 0.8587 0.97 0.4611 0.87

SLC6A3 1436550 rs27074 A 0.091 0.081 0.087 0.7472 1.05 0.6439 0.93
SLC6A3 1443349 rs12516758 G 0.224 0.207 0.207 0.3495 1.11 0.9999 1.00
SLC6A3 1444161 rs11133762 A 0.014 0.023 0.019 0.4105 0.75 0.5254 1.22
SLC6A3 1445711 rs3863145 A 0.262 0.274 0.272 0.6318 0.95 0.8848 1.02
SLC6A3 1447522 rs27072 A 0.160 0.166 0.165 0.7663 0.96 0.9315 1.01
SLC6A3 1447815 rs1042098 G 0.272 0.276 0.275 0.9088 0.99 0.9340 1.01
SLC6A3 1448077 rs40184 A 0.458 0.431 0.457 0.9569 1.01 0.2483 0.90
SLC6A3 1451007 rs11564772 A 0.081 0.071 0.082 0.9278 0.99 0.3532 0.86
SLC6A3 1452431 rs11564769 G 0.083 0.069 0.080 0.8368 1.04 0.3541 0.85
SLC6A3 1457548 rs6869645 A 0.067 0.056 0.066 0.9058 1.02 0.3687 0.85
SLC6A3 1457704 rs11564767 T 0.079 0.065 0.068 0.3653 1.17 0.7794 0.95
SLC6A3 1458694 rs28363119 G 0.065 0.056 0.066 0.9590 0.99 0.3687 0.85
SLC6A3 1458806 rs11564764 A 0.066 0.054 0.064 0.8238 1.04 0.3704 0.84
SLC6A3 1459036 rs6876225 A 0.067 0.056 0.065 0.8317 1.04 0.4212 0.86
SLC6A3 1460129 rs3776511 A 0.205 0.196 0.206 0.9753 1.00 0.5812 0.94
SLC6A3 1461979 rs11133770 C 0.215 0.203 0.211 0.7990 1.03 0.6583 0.95
SLC6A3 1463472 rs2617577 G 0.286 0.266 0.277 0.6577 1.05 0.5999 0.95
SLC6A3 1463613 rs11564762 A 0.207 0.197 0.208 0.9684 1.00 0.5551 0.94
SLC6A3 1464256 rs2550936 C 0.289 0.267 0.281 0.6770 1.04 0.4770 0.93
SLC6A3 1464412 rs6347 G 0.270 0.270 0.274 0.8700 0.98 0.8413 0.98
SLC6A3 1468629 rs37022 A 0.164 0.178 0.174 0.5669 0.93 0.8229 1.03
SLC6A3 1469142 rs40358 C 0.175 0.151 0.147 0.0868 1.23 0.7873 1.04
SLC6A3 1469646 rs2042449 A 0.227 0.240 0.224 0.8971 1.01 0.4081 1.09
SLC6A3 1472932 rs2975292 G 0.370 0.361 0.351 0.3687 1.09 0.6378 1.05
SLC6A3 1473268 rs2735917 A 0.057 0.055 0.056 0.8949 1.03 0.9917 1.00
SLC6A3 1473346 rs28382247 A 0.231 0.237 0.231 0.9976 1.00 0.7322 1.04
SLC6A3 1473476 rs28382245 A 0.390 0.391 0.408 0.4112 0.93 0.4450 0.93
SLC6A3 1473588 rs11564758 G 0.392 0.390 0.414 0.3073 0.91 0.2744 0.91
SLC6A3 1476905 rs464049 G 0.423 0.449 0.431 0.7293 0.97 0.4049 1.08
SLC6A3 1483244 rs464061 A 0.193 0.212 0.200 0.6684 0.95 0.5069 1.08
SLC6A3 1483616 rs11737901 A 0.336 0.348 0.362 0.2202 0.89 0.5241 0.94
SLC6A3 1484164 rs463379 C 0.194 0.212 0.200 0.7218 0.96 0.5265 1.07
SLC6A3 1489408 rs420422 G 0.436 0.450 0.438 0.9379 0.99 0.5855 1.05
SLC6A3 1491354 rs403636 A 0.181 0.158 0.153 0.0924 1.23 0.7719 1.04
SLC6A3 1495732 rs2981359 C 0.432 0.445 0.471 0.0764 0.85 0.2419 0.90
SLC6A3 1495842 rs13189021 A 0.200 0.226 0.237 0.0487 0.81 0.5501 0.94
SLC6A3 1495974 rs2254408 C 0.441 0.440 0.456 0.4952 0.94 0.4573 0.94
SLC6A3 1496498 rs2455391 A 0.269 0.233 0.262 0.7415 1.03 0.1360 0.86
SLC6A3 1496728 rs2937639 A 0.414 0.415 0.405 0.6764 1.04 0.6399 1.04
SLC6A3 1497427 rs2963238 A 0.406 0.405 0.398 0.7153 1.03 0.7487 1.03
SLC6A3 1498616 rs2975226 T 0.413 0.410 0.408 0.8086 1.02 0.9071 1.01
SLC6A3 1499389 rs2652511 A 0.405 0.407 0.401 0.8557 1.02 0.7847 1.03
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SLC6A3 1501148 rs3756450 G 0.107 0.128 0.131 0.0986 0.80 0.8318 0.97
SLC6A3 1505280 rs2078247 G 0.279 0.242 0.268 0.5861 1.06 0.1827 0.87
PPP2CA 133593991 rs4246019 G 0.115 0.124 0.124 0.5266 0.92 0.9679 1.01

DRD1 174800505 rs4867798 G 0.286 0.317 0.321 0.0890 0.85 0.8723 0.98
DRD1 174801306 rs686 G 0.373 0.382 0.371 0.9342 1.01 0.6012 1.05
DRD1 174802802 rs5326 A 0.140 0.153 0.158 0.2380 0.86 0.7431 0.96
DRD1 174811672 rs267416 G 0.425 0.406 0.420 0.8341 1.02 0.5246 0.94
DRD1 174813251 rs267418 C 0.463 0.440 0.450 0.5550 1.06 0.6558 0.96

GNB2L1 180595641 rs2261114 G 0.384 0.383 0.408 0.2880 0.91 0.2651 0.90
GNB2L1 180598539 rs13160776 A 0.076 0.074 0.079 0.8148 0.96 0.6733 0.93
GNB2L1 180598882 rs2287716 G 0.133 0.139 0.152 0.2111 0.85 0.3964 0.90
GNB2L1 180602857 rs1279738 C 0.265 0.261 0.262 0.8773 1.02 0.9753 1.00

Sp4 21429057 rs10245440 A 0.234 0.238 0.245 0.5646 0.94 0.7058 0.96
Sp4 21498416 rs12668354 C 0.328 0.278 0.282 0.0239 1.24 0.8513 0.98
Sp4 21516416 rs1018954 A 0.429 0.455 0.448 0.4068 0.93 0.7371 1.03
DDC 50492617 rs11575564 A 0.050 0.036 0.034 0.0602 1.53 0.7349 1.09
DDC 50492914 rs4947510 A 0.277 0.274 0.298 0.2989 0.90 0.2489 0.89
DDC 50493713 rs11575553 A 0.076 0.093 0.075 0.9700 1.01 0.1656 1.25
DDC 50497803 rs11575548 A 0.094 0.115 0.087 0.5770 1.09 0.0403 1.36
DDC 50498481 rs11575542 A 0.025 0.015 0.019 0.3810 1.32 0.5371 0.81
DDC 50499175 rs4947535 A 0.296 0.295 0.340 0.0339 0.82 0.0337 0.82
DDC 50499488 rs11575535 A 0.033 0.020 0.024 0.2255 1.39 0.5392 0.83
DDC 50503248 rs730092 G 0.416 0.425 0.449 0.1248 0.87 0.2764 0.91
DDC 50504704 rs11575500 A 0.069 0.083 0.061 0.4383 1.15 0.0539 1.40
DDC 50511449 rs745043 A 0.206 0.195 0.248 0.0243 0.78 0.0043 0.73
DDC 50511808 rs4490786 A 0.184 0.213 0.181 0.8721 1.02 0.0742 1.22
DDC 50515359 rs11575453 A 0.089 0.097 0.093 0.7460 0.95 0.8035 1.04
DDC 50520392 rs11575441 T 0.013 0.010 0.012 0.7219 1.15 0.6659 0.83
DDC 50520545 rs1451371 G 0.454 0.457 0.428 0.2400 1.11 0.1876 1.13
DDC 50520718 rs11575438 A 0.089 0.097 0.093 0.7460 0.95 0.8035 1.04
DDC 50521365 rs1451372 G 0.392 0.410 0.432 0.0622 0.85 0.3254 0.91
DDC 50530192 rs4470989 A 0.297 0.297 0.343 0.0275 0.81 0.0294 0.81
DDC 50530315 rs4602840 A 0.096 0.117 0.090 0.6406 1.07 0.0526 1.33
DDC 50531681 rs6957607 G 0.083 0.088 0.085 0.8475 0.97 0.8086 1.04
DDC 50533884 rs3807563 A 0.410 0.425 0.405 0.8091 1.02 0.3679 1.09
DDC 50534165 rs3807562 A 0.476 0.469 0.446 0.1768 1.13 0.3032 1.10
DDC 50534929 rs11575387 C 0.081 0.084 0.084 0.7925 0.96 0.9825 1.00
DDC 50538516 rs3807558 A 0.207 0.198 0.246 0.0365 0.80 0.0091 0.75
DDC 50539273 rs11575375 A 0.338 0.347 0.324 0.5059 1.07 0.2739 1.11
DDC 50540203 rs4947584 A 0.340 0.351 0.325 0.4817 1.07 0.2213 1.12
DDC 50540384 rs6592961 A 0.201 0.217 0.193 0.6377 1.05 0.1820 1.16
DDC 50562006 rs10274275 G 0.238 0.253 0.225 0.4946 1.07 0.1434 1.17
DDC 50563851 rs11575342 A 0.136 0.122 0.124 0.4253 1.11 0.9285 0.99
DDC 50564124 rs3735274 G 0.240 0.255 0.228 0.5039 1.07 0.1472 1.16
DDC 50564358 rs3735273 A 0.232 0.206 0.262 0.1262 0.85 0.0028 0.73
DDC 50572526 rs11575322 A 0.082 0.107 0.080 0.8701 1.03 0.0359 1.39
DDC 50574882 rs998850 C 0.471 0.461 0.491 0.3734 0.92 0.1831 0.89
DDC 50578412 rs3779078 A 0.205 0.193 0.244 0.0357 0.80 0.0056 0.74
DDC 50579382 rs11575288 G 0.025 0.017 0.013 0.0570 1.99 0.3949 1.38
DDC 50579579 rs11575286 A 0.082 0.106 0.080 0.8701 1.03 0.0424 1.37
DDC 50580056 rs2044859 G 0.380 0.339 0.395 0.4794 0.94 0.0097 0.79
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DDC 50580400 rs7786398 G 0.461 0.444 0.475 0.5428 0.95 0.1732 0.88
DDC 50597258 rs3829897 A 0.374 0.371 0.383 0.6724 0.96 0.5831 0.95

STX1A 72752376 rs867500 C 0.347 0.348 0.346 0.9490 1.01 0.9331 1.01
STX1A 72759283 rs3793243 A 0.440 0.429 0.424 0.4422 1.07 0.7943 1.02
COPG2 129947065 rs10954272 G 0.228 0.226 0.215 0.4955 1.08 0.5629 1.07
COPG2 129955068 rs6967801 A 0.233 0.232 0.223 0.5900 1.06 0.6302 1.05
COPG2 129965829 rs13241924 A 0.461 0.462 0.442 0.4162 1.08 0.3837 1.08
COPG2 129984917 rs10954274 A 0.052 0.047 0.059 0.5230 0.88 0.2351 0.79
COPG2 129992573 rs3857855 G 0.158 0.152 0.150 0.6007 1.07 0.8952 1.02
COPG2 129993518 rs11763462 G 0.152 0.147 0.147 0.7554 1.04 0.9760 1.00

SLC18A1 20046706 rs1497020 G 0.319 0.287 0.303 0.4496 1.08 0.4456 0.93
SLC18A1 20049580 rs1018079 G 0.302 0.324 0.295 0.7315 1.04 0.1536 1.15
SLC18A1 20049719 rs10102779 C 0.252 0.263 0.256 0.8630 0.98 0.7159 1.04
SLC18A1 20049834 rs17092104 C 0.103 0.075 0.111 0.5277 0.91 0.0047 0.64
SLC18A1 20049996 rs903997 C 0.231 0.233 0.218 0.5072 1.08 0.4157 1.09
SLC18A1 20050350 rs4921692 G 0.096 0.088 0.111 0.2563 0.85 0.0833 0.77
SLC18A1 20052292 rs2270650 A 0.374 0.385 0.362 0.5712 1.05 0.2751 1.11
SLC18A1 20052435 rs17092107 A 0.100 0.076 0.103 0.8165 0.97 0.0395 0.72
SLC18A1 20063898 rs1390942 A 0.169 0.173 0.168 0.9439 1.01 0.7653 1.04
SLC18A1 20073883 rs13258461 A 0.457 0.461 0.464 0.7547 0.97 0.8735 0.99
SLC18A1 20076383 rs3779672 G 0.194 0.179 0.196 0.8894 0.98 0.3233 0.89
SLC18A1 20076626 rs3779673 A 0.167 0.155 0.177 0.5470 0.93 0.1807 0.85
SLC18A1 20080513 rs2279709 A 0.450 0.439 0.457 0.7478 0.97 0.4134 0.93
SLC18A1 20080993 rs1390938 A 0.248 0.248 0.258 0.6000 0.95 0.5981 0.95
SLC18A1 20081107 rs2270637 C 0.184 0.181 0.187 0.8858 0.98 0.7337 0.96
SLC18A1 20082746 rs2270641 C 0.353 0.374 0.349 0.8663 1.02 0.2500 1.11
SLC18A1 20082870 rs2270642 A 0.349 0.372 0.343 0.7770 1.03 0.1851 1.13
SLC18A1 20084992 rs1390939 A 0.472 0.457 0.476 0.8493 0.98 0.3971 0.93
SLC18A1 20085581 rs988713 G 0.247 0.249 0.256 0.6407 0.95 0.7111 0.96
SLC18A1 20086029 rs7836907 T 0.134 0.137 0.139 0.7410 0.96 0.8611 0.98
SLC18A1 20087205 rs2173114 C 0.497 0.491 0.479 0.4222 1.08 0.5807 1.05
SLC18A1 20088916 rs7820517 A 0.189 0.172 0.204 0.3739 0.91 0.0644 0.81

NEF3 24823733 rs11782211 G 0.073 0.096 0.073 0.9773 1.00 0.0750 1.34
NEF3 24824747 rs10096842 A 0.081 0.064 0.062 0.1077 1.33 0.8391 1.04
NEF3 24825500 rs196868 G 0.122 0.110 0.104 0.1804 1.20 0.6558 1.07
NEF3 24825757 rs1457266 A 0.358 0.366 0.335 0.2945 1.10 0.1506 1.15
NEF3 24830588 rs196864 C 0.068 0.074 0.074 0.6000 0.91 0.9449 0.99
NEF3 24832328 rs12515 A 0.165 0.152 0.159 0.7283 1.04 0.6518 0.95
NEF3 24834861 rs13251967 G 0.370 0.353 0.327 0.0448 1.21 0.2252 1.12
NEF3 24836483 rs2975180 G 0.365 0.361 0.341 0.2500 1.11 0.3327 1.10
Hey1 80836175 rs2461056 A 0.174 0.182 0.177 0.8405 0.98 0.7936 1.03
Hey1 80836720 rs6473177 G 0.092 0.075 0.095 0.7906 0.96 0.0946 0.76
Hey1 80837832 rs6986945 C 0.198 0.205 0.188 0.5451 1.07 0.3404 1.11
Hey1 80839084 rs1046472 A 0.271 0.294 0.264 0.7154 1.04 0.1441 1.16
Hey1 80841420 rs960978 A 0.312 0.316 0.318 0.7925 0.98 0.9188 0.99
Hey1 80845876 rs2467779 A 0.165 0.172 0.166 0.9749 1.00 0.7000 1.05
Hey1 80846477 rs2920950 A 0.255 0.240 0.267 0.5517 0.94 0.1679 0.87
FREQ 131975772 rs3780708 A 0.327 0.299 0.330 0.8921 0.99 0.1363 0.87
FREQ 131976625 rs1017112 G 0.196 0.218 0.194 0.8895 1.02 0.1844 1.16
FREQ 131984366 rs7849345 A 0.495 0.470 0.491 0.8351 1.02 0.3671 0.92
FREQ 131987341 rs4424362 A 0.322 0.340 0.289 0.1164 1.17 0.0142 1.27
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FREQ 131988371 rs3824544 A 0.239 0.259 0.225 0.4441 1.08 0.0742 1.21
FREQ 131995274 rs10819611 G 0.326 0.353 0.301 0.2171 1.13 0.0135 1.27
FREQ 131996050 rs1009502 A 0.310 0.353 0.301 0.6439 1.05 0.0135 1.27
FREQ 132003939 rs11793619 C 0.125 0.127 0.116 0.5408 1.09 0.4611 1.11
FREQ 132008905 rs870811 A 0.427 0.470 0.432 0.8225 0.98 0.0840 1.17
FREQ 132012650 rs947514 A 0.069 0.054 0.058 0.2833 1.22 0.7589 0.94
FREQ 132013809 rs947513 G 0.475 0.473 0.448 0.2260 1.11 0.2668 1.11
FREQ 132014745 rs10819615 A 0.326 0.313 0.335 0.6730 0.96 0.2761 0.90
FREQ 132018298 rs4240447 A 0.302 0.328 0.274 0.1606 1.15 0.0094 1.29
FREQ 132024932 rs3829905 A 0.407 0.420 0.377 0.1659 1.13 0.0535 1.19
FREQ 132028530 rs2277200 C 0.330 0.360 0.315 0.4453 1.08 0.0301 1.23
FREQ 132032983 rs7873936 A 0.211 0.196 0.176 0.0524 1.25 0.2542 1.14
FREQ 132034981 rs7852859 G 0.140 0.142 0.117 0.1335 1.23 0.1096 1.24
FREQ 132035589 rs1054879 A 0.495 0.498 0.503 0.7261 0.97 0.9561 1.01
FREQ 132036468 rs6478954 A 0.311 0.316 0.298 0.5240 1.06 0.3698 1.09
FREQ 132037596 rs13710 G 0.312 0.278 0.299 0.4997 1.07 0.3110 0.90
FREQ 132038378 rs11552451 G 0.146 0.141 0.157 0.4940 0.92 0.2942 0.88
DBH 135486529 rs3025373 G 0.141 0.142 0.148 0.6858 0.95 0.7342 0.96
DBH 135487964 rs1076153 A 0.176 0.200 0.180 0.7954 0.97 0.2581 1.14
DBH 135488582 rs1076150 A 0.468 0.512 0.483 0.4957 0.94 0.2070 1.12
DBH 135490336 rs1611115 A 0.198 0.229 0.217 0.2945 0.89 0.5369 1.07
DBH 135491762 rs2797849 G 0.353 0.327 0.336 0.4338 1.08 0.6635 0.96
DBH 135492142 rs3025382 A 0.131 0.119 0.133 0.8891 0.98 0.3257 0.88
DBH 135493077 rs3025388 G 0.186 0.167 0.177 0.6227 1.06 0.5601 0.93
DBH 135493640 rs2007153 A 0.380 0.393 0.393 0.5419 0.95 0.9975 1.00
DBH 135494744 rs1611118 A 0.053 0.061 0.065 0.2528 0.81 0.7265 0.94
DBH 135494935 rs1108580 A 0.439 0.479 0.442 0.8937 0.99 0.1014 1.16
DBH 135495062 rs1108581 G 0.216 0.205 0.225 0.6335 0.95 0.2582 0.88
DBH 135498795 rs3025399 C 0.044 0.049 0.030 0.1160 1.46 0.0364 1.64
DBH 135498904 rs1611123 A 0.503 0.453 0.489 0.5240 1.06 0.1140 0.87
DBH 135500715 rs2797855 G 0.429 0.392 0.434 0.8203 0.98 0.0567 0.84
DBH 135501206 rs1541333 G 0.438 0.470 0.443 0.8274 0.98 0.2266 1.12
DBH 135501337 rs1541332 A 0.448 0.454 0.428 0.3806 1.09 0.2343 1.11
DBH 135502096 rs2519154 G 0.415 0.425 0.397 0.4514 1.08 0.2170 1.12
DBH 135502336 rs2797853 A 0.324 0.332 0.347 0.2786 0.90 0.4726 0.93
DBH 135504489 rs6479643 G 0.402 0.404 0.382 0.3466 1.09 0.2962 1.10
DBH 135505151 rs2283124 A 0.132 0.115 0.123 0.5348 1.09 0.5842 0.93
DBH 135507918 rs77905 A 0.470 0.491 0.502 0.1484 0.88 0.6326 0.96
DBH 135510103 rs2073833 G 0.436 0.421 0.413 0.3182 1.10 0.7288 1.03
DBH 135512008 rs1611131 G 0.285 0.287 0.281 0.8548 1.02 0.7707 1.03
DBH 135512749 rs2073837 A 0.295 0.305 0.294 0.9393 1.01 0.5759 1.06
DBH 135513490 rs129882 A 0.187 0.201 0.211 0.1765 0.86 0.5898 0.94
DBH 135514632 rs129883 G 0.307 0.311 0.306 0.9500 1.01 0.8229 1.02
DBH 135514739 rs129915 G 0.288 0.292 0.277 0.5690 1.06 0.4659 1.08
DBH 135514907 rs129884 A 0.179 0.192 0.189 0.5592 0.94 0.8608 1.02
DBH 135518542 rs129886 A 0.193 0.205 0.214 0.2280 0.88 0.6114 0.95

SLC18A2 118995757 rs363393 T 0.182 0.186 0.195 0.4670 0.92 0.6270 0.95
SLC18A2 118998861 rs363399 G 0.239 0.243 0.268 0.1313 0.86 0.1997 0.88
SLC18A2 118999379 rs363338 G 0.302 0.319 0.326 0.2262 0.89 0.7494 0.97
SLC18A2 119004013 rs2072362 G 0.090 0.098 0.118 0.0390 0.74 0.1671 0.82
SLC18A2 119004938 rs363343 C 0.171 0.173 0.201 0.0769 0.82 0.1136 0.83
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SLC18A2 119008669 rs2283138 G 0.102 0.108 0.121 0.1606 0.82 0.3791 0.88
SLC18A2 119009116 rs929493 G 0.158 0.169 0.190 0.0578 0.80 0.2320 0.87
SLC18A2 119009457 rs363251 G 0.367 0.398 0.394 0.2120 0.89 0.8703 1.02
SLC18A2 119009648 rs11197936 G 0.393 0.352 0.366 0.2139 1.12 0.5140 0.94
SLC18A2 119011397 rs10082463 C 0.089 0.093 0.091 0.8735 0.98 0.9053 1.02
SLC18A2 119012563 rs363224 C 0.445 0.420 0.432 0.5598 1.06 0.5824 0.95
SLC18A2 119015202 rs363226 G 0.324 0.301 0.315 0.6526 1.04 0.5191 0.94
SLC18A2 119027061 rs14240 A 0.492 0.449 0.486 0.8229 1.02 0.0972 0.86
SLC18A2 119027658 rs363282 G 0.143 0.140 0.146 0.8746 0.98 0.6956 0.95
SLC18A2 119028361 rs363236 G 0.143 0.140 0.145 0.9127 0.99 0.7309 0.96
SLC18A2 119028749 rs363238 A 0.110 0.114 0.103 0.5841 1.08 0.4278 1.12
SLC18A2 119029149 rs363285 C 0.273 0.248 0.268 0.8048 1.03 0.2895 0.90
SLC18A2 119033544 rs363294 A 0.072 0.059 0.072 0.9845 1.00 0.2386 0.81
DRD1IP 134990001 rs7475905 A 0.026 0.023 0.030 0.5044 0.84 0.2963 0.75
DRD1IP 134991562 rs2298122 C 0.189 0.179 0.219 0.1035 0.83 0.0261 0.78
DRD1IP 134996704 rs11101694 G 0.129 0.127 0.169 0.0141 0.73 0.0087 0.72
DRD4 626399 rs3758653 G 0.185 0.194 0.177 0.6412 1.05 0.3482 1.11
DRD4 633568 rs936465 C 0.470 0.500 0.456 0.5338 1.06 0.0487 1.19

TH 2137971 rs3842748 C 0.232 0.240 0.234 0.9260 0.99 0.7841 1.03
TH 2142911 rs2070762 G 0.509 0.487 0.472 0.1105 1.16 0.5048 1.06
TH 2147527 rs6356 A 0.354 0.391 0.354 0.9848 1.00 0.0900 1.17
TH 2150751 rs10743149 A 0.127 0.123 0.106 0.1419 1.23 0.2413 1.18
TH 2150966 rs10840491 A 0.156 0.118 0.134 0.1751 1.19 0.2636 0.86
TH 2151386 rs7119275 A 0.379 0.382 0.381 0.8998 0.99 0.9594 1.01
TH 2154012 rs4929966 C 0.270 0.265 0.277 0.7247 0.97 0.5302 0.94

GRK2 66789652 rs11605263 A 0.045 0.038 0.049 0.6197 0.90 0.2273 0.77
GRK2 66806868 rs2071007 G 0.082 0.077 0.072 0.4372 1.14 0.6647 1.08
DRD2 112783693 rs2234689 G 0.188 0.177 0.178 0.5767 1.07 0.9537 0.99
DRD2 112783974 rs1554929 G 0.474 0.459 0.472 0.9027 1.01 0.5663 0.95
DRD2 112786283 rs6279 G 0.289 0.295 0.298 0.6816 0.96 0.9111 0.99
DRD2 112787485 rs1124492 A 0.101 0.116 0.120 0.1705 0.82 0.7911 0.96
DRD2 112788022 rs1079594 C 0.183 0.160 0.173 0.5487 1.07 0.4246 0.91
DRD2 112792088 rs2440390 A 0.131 0.123 0.121 0.4916 1.10 0.8494 1.03
DRD2 112797422 rs2587548 G 0.419 0.401 0.416 0.8826 1.01 0.4792 0.94
DRD2 112812339 rs4586205 C 0.242 0.250 0.247 0.7768 0.97 0.9118 1.01
DRD2 112814829 rs4620755 A 0.099 0.117 0.122 0.1005 0.79 0.7323 0.95
DRD2 112815079 rs11214606 A 0.058 0.038 0.048 0.3414 1.21 0.2719 0.78
DRD2 112815891 rs7125415 A 0.081 0.089 0.102 0.0986 0.78 0.3308 0.86
DRD2 112822277 rs17529477 A 0.295 0.326 0.337 0.0389 0.83 0.6191 0.95
DRD2 112822955 rs17601612 C 0.347 0.377 0.387 0.0607 0.84 0.6417 0.96
DRD2 112823618 rs4936270 A 0.106 0.099 0.102 0.7343 1.05 0.8672 0.98
DRD2 112824662 rs4274224 G 0.449 0.474 0.486 0.0908 0.86 0.5829 0.95
DRD2 112829684 rs4581480 G 0.103 0.097 0.102 0.8971 1.02 0.7018 0.94
DRD2 112834984 rs7131056 A 0.471 0.428 0.428 0.0476 1.19 0.9775 1.00
DRD2 112836742 rs4648317 A 0.137 0.140 0.128 0.5696 1.08 0.4431 1.11
DRD2 112839419 rs4630328 A 0.344 0.372 0.382 0.0708 0.85 0.6561 0.96
DRD2 112846601 rs4938019 G 0.138 0.141 0.129 0.5731 1.08 0.4481 1.11
DRD2 112852165 rs12364283 G 0.080 0.080 0.067 0.2855 1.20 0.2593 1.21

DRIP78 54502337 rs12308277 A 0.023 0.029 0.028 0.4436 0.80 0.9594 1.01
syngr3 1979309 rs2283476 A 0.147 0.148 0.156 0.5688 0.93 0.6186 0.94
syngr3 1983819 rs3183175 A 0.063 0.071 0.070 0.4954 0.88 0.9642 1.01
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HIC5 31391123 rs11646911 A 0.466 0.436 0.467 0.9430 0.99 0.1577 0.88
HIC5 31396534 rs13143 A 0.259 0.264 0.248 0.5865 1.06 0.4298 1.08

dopamineR
PP32 

35035375 rs879606 A 0.193 0.166 0.169 0.1676 1.18 0.8550 0.98

PPP1R9B 45563273 rs847682 A 0.475 0.479 0.490 0.5250 0.94 0.1591 0.88
PPP1R9B 45571943 rs1569116 A 0.142 0.144 0.136 0.6905 1.05 0.6030 1.07
PPP1R9B 45575583 rs4794103 A 0.180 0.177 0.164 0.3314 1.13 0.4281 1.10
PPP1R9B 45576919 rs12453363 A 0.157 0.179 0.139 0.2768 1.15 0.0156 1.35
PPP1R9B 45579074 rs847680 G 0.147 0.166 0.177 0.0701 0.80 0.4977 0.92

GRB2 70825380 rs17490675 G 0.049 0.061 0.067 0.0935 0.72 0.5902 0.91
GRB2 70826963 rs7219 G 0.239 0.253 0.274 0.0817 0.83 0.3045 0.90
GRB2 70839969 rs12600908 A 0.117 0.126 0.135 0.2113 0.84 0.5495 0.92
GRB2 70853307 rs4789172 G 0.454 0.486 0.491 0.1145 0.86 0.8265 0.98
GRB2 70855674 rs12950752 A 0.230 0.233 0.255 0.1944 0.87 0.2643 0.89
GRB2 70864463 rs4789176 A 0.159 0.165 0.187 0.1123 0.83 0.2134 0.86
GRB2 70867364 rs4350602 G 0.264 0.275 0.287 0.2446 0.89 0.5409 0.94
GRB2 70905054 rs2053158 A 0.169 0.184 0.206 0.0387 0.79 0.2162 0.87

SNAP25 10142678 rs8119844 A 0.293 0.274 0.304 0.5921 0.95 0.1444 0.87
SNAP25 10143433 rs6104567 C 0.263 0.245 0.244 0.3283 1.10 0.9790 1.00
SNAP25 10145086 rs1889189 A 0.323 0.355 0.326 0.8738 0.98 0.1764 1.14
SNAP25 10156748 rs3787303 G 0.174 0.188 0.161 0.4647 1.09 0.1141 1.21
SNAP25 10164902 rs363026 A 0.079 0.065 0.077 0.8665 1.03 0.3090 0.84
SNAP25 10165336 rs363011 G 0.089 0.118 0.083 0.6134 1.08 0.0104 1.47
SNAP25 10167799 rs363012 G 0.345 0.351 0.349 0.8660 0.98 0.9327 1.01
SNAP25 10168496 rs363039 A 0.358 0.317 0.343 0.4698 1.07 0.2280 0.89
SNAP25 10169467 rs363040 A 0.240 0.240 0.256 0.4091 0.92 0.4275 0.92
SNAP25 10174146 rs363043 A 0.288 0.288 0.325 0.0735 0.84 0.0714 0.84
SNAP25 10179174 rs363016 G 0.449 0.426 0.414 0.1067 1.15 0.5803 1.05
SNAP25 10183426 rs363052 A 0.207 0.215 0.214 0.6984 0.96 0.9450 1.01
SNAP25 10183926 rs3025866 A 0.029 0.023 0.024 0.4656 1.23 0.8637 0.95
SNAP25 10189811 rs363021 A 0.435 0.453 0.433 0.9422 1.01 0.3628 1.09
SNAP25 10191251 rs362563 G 0.049 0.064 0.041 0.3513 1.22 0.0209 1.61
SNAP25 10192626 rs362564 G 0.391 0.403 0.398 0.7346 0.97 0.8495 1.02
SNAP25 10193139 rs362547 A 0.422 0.425 0.447 0.2507 0.90 0.3236 0.91
SNAP25 10194091 rs362567 A 0.144 0.115 0.127 0.2493 1.16 0.4060 0.89
SNAP25 10194864 rs362570 A 0.196 0.180 0.166 0.0740 1.23 0.4046 1.10
SNAP25 10202475 rs362584 A 0.277 0.268 0.286 0.6478 0.96 0.3561 0.91
SNAP25 10217040 rs3025873 G 0.205 0.231 0.207 0.9306 0.99 0.1798 1.16
SNAP25 10217890 rs362549 G 0.476 0.495 0.491 0.5189 0.94 0.8347 1.02
SNAP25 10218925 rs362588 C 0.138 0.155 0.153 0.3174 0.88 0.8951 1.02
SNAP25 10224716 rs362993 A 0.089 0.101 0.081 0.4935 1.12 0.1101 1.28
SNAP25 10225621 rs362998 A 0.066 0.075 0.055 0.2659 1.23 0.0691 1.40
SNAP25 10228505 rs6108463 G 0.174 0.165 0.153 0.2033 1.16 0.4511 1.10
SNAP25 10229370 rs362988 A 0.480 0.436 0.451 0.1744 1.13 0.5061 0.94
SNAP25 10231950 rs6108464 G 0.409 0.378 0.380 0.1714 1.13 0.9330 0.99
SNAP25 10232418 rs3787283 G 0.360 0.328 0.348 0.5824 1.05 0.3426 0.91
SNAP25 10235742 rs8636 A 0.323 0.353 0.348 0.2356 0.89 0.8235 1.02
SNAP25 10238703 rs6074121 G 0.374 0.339 0.332 0.0531 1.20 0.7369 1.03
SNAP25 10239487 rs4813927 T 0.271 0.288 0.296 0.2313 0.89 0.7002 0.96
SNAP25 10239812 rs362599 C 0.340 0.352 0.352 0.5560 0.95 0.9856 1.00
SNAP25 10240769 rs6032846 G 0.398 0.413 0.414 0.4469 0.93 0.9622 1.00
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CLIC6 34982538 rs2236610 G 0.186 0.181 0.202 0.3520 0.90 0.2193 0.87
CLIC6 34991708 rs2834590 A 0.167 0.179 0.169 0.9147 0.99 0.5552 1.07
CLIC6 35002160 rs6517254 A 0.379 0.393 0.402 0.3184 0.91 0.6966 0.97
CLIC6 35002268 rs2070368 G 0.405 0.392 0.397 0.7235 1.03 0.8084 0.98
CLIC6 35007972 rs2834600 A 0.140 0.153 0.144 0.8385 0.97 0.5567 1.08
CLIC6 35010924 rs2834601 A 0.060 0.060 0.071 0.2999 0.83 0.3185 0.84
COMT 18307146 rs5748489 A 0.410 0.412 0.413 0.9170 0.99 0.9788 1.00
COMT 18308022 rs1800706 A 0.302 0.298 0.286 0.4392 1.08 0.5374 1.06
COMT 18310002 rs9306231 G 0.232 0.241 0.252 0.3167 0.90 0.5980 0.95
COMT 18310121 rs737865 G 0.304 0.301 0.284 0.3201 1.10 0.3897 1.09
COMT 18311407 rs933271 G 0.285 0.295 0.302 0.3949 0.92 0.7519 0.97
COMT 18313048 rs8185002 C 0.306 0.304 0.285 0.3256 1.10 0.3644 1.09
COMT 18313687 rs9332325 A 0.284 0.293 0.300 0.4262 0.93 0.7229 0.97
COMT 18314051 rs174675 A 0.284 0.293 0.300 0.4421 0.93 0.7229 0.97
COMT 18322484 rs9332347 A 0.121 0.130 0.136 0.2961 0.87 0.6810 0.95
COMT 18322997 rs5746849 A 0.468 0.465 0.464 0.8756 1.01 0.9851 1.00
COMT 18328337 rs4646312 G 0.407 0.396 0.415 0.7212 0.97 0.3845 0.92
COMT 18329644 rs3810595 G 0.411 0.400 0.423 0.5735 0.95 0.2822 0.91
COMT 18329952 rs6269 G 0.410 0.400 0.423 0.5451 0.95 0.2822 0.91
COMT 18330235 rs4633 G 0.485 0.492 0.496 0.6288 0.96 0.8781 0.99
COMT 18330428 rs2239393 G 0.410 0.400 0.423 0.5503 0.95 0.2857 0.91
COMT 18330763 rs740601 C 0.410 0.399 0.424 0.5189 0.94 0.2466 0.90
COMT 18331207 rs4818 C 0.406 0.392 0.416 0.6608 0.96 0.2747 0.91
COMT 18331271 rs4680 G 0.483 0.490 0.497 0.5373 0.95 0.7751 0.97
COMT 18331897 rs4646315 C 0.163 0.165 0.172 0.5967 0.94 0.6818 0.95
COMT 18332132 rs4646316 A 0.245 0.228 0.251 0.7680 0.97 0.2282 0.88
COMT 18332561 rs165774 A 0.332 0.315 0.308 0.2421 1.12 0.7358 1.03
COMT 18333176 rs174696 G 0.203 0.216 0.202 0.9679 1.01 0.4502 1.09
COMT 18333832 rs174697 A 0.054 0.055 0.049 0.6209 1.10 0.5358 1.13
COMT 18334458 rs174699 G 0.054 0.056 0.046 0.4024 1.18 0.2986 1.24
COMT 18335692 rs9332377 A 0.160 0.175 0.179 0.2738 0.88 0.8322 0.98
COMT 18336553 rs9332381 G 0.046 0.046 0.040 0.5238 1.15 0.4991 1.16
COMT 18336781 rs165599 G 0.306 0.340 0.304 0.9501 1.01 0.0847 1.18
COMT 18337023 rs165728 G 0.053 0.055 0.045 0.3924 1.19 0.2899 1.24
COMT 18337631 rs9265 C 0.306 0.339 0.305 0.9658 1.00 0.0969 1.17
COMT 18338669 rs165849 G 0.307 0.339 0.304 0.9046 1.01 0.0907 1.18
COMT 18339473 rs165815 G 0.138 0.156 0.125 0.3841 1.12 0.0441 1.30

ADRBK2 24261580 rs576895 G 0.259 0.252 0.275 0.4288 0.92 0.2591 0.89
ADRBK2 24264721 rs558934 G 0.280 0.290 0.296 0.4373 0.93 0.7712 0.97
ADRBK2 24280750 rs5761116 A 0.166 0.159 0.170 0.8031 0.97 0.4895 0.92
CACNG2 35288854 rs4820239 A 0.247 0.233 0.259 0.5309 0.94 0.1833 0.87
CACNG2 35306921 rs2267341 G 0.315 0.326 0.344 0.1721 0.88 0.3991 0.92
CACNG2 35316038 rs2283981 G 0.325 0.328 0.335 0.6020 0.95 0.7214 0.97
CACNG2 35322433 rs3788521 G 0.100 0.100 0.102 0.8741 0.98 0.9235 0.99
CACNG2 35338874 rs738977 A 0.226 0.227 0.246 0.2791 0.89 0.2987 0.90
CACNG2 35449746 rs738518 G 0.298 0.290 0.262 0.0740 1.20 0.1678 1.15

PICK1 36785415 rs713729 T 0.278 0.248 0.266 0.5575 1.06 0.3404 0.91
PICK1 36786544 rs3952 G 0.317 0.330 0.331 0.4923 0.94 0.9467 0.99
PICK1 36793598 rs2076369 A 0.373 0.394 0.375 0.9126 0.99 0.3927 1.08
PICK1 36803652 rs2012859 A 0.309 0.279 0.293 0.4427 1.08 0.4739 0.93
PICK1 36804642 rs2076371 A 0.256 0.272 0.263 0.7242 0.96 0.6714 1.04
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Table 17 Continued 
PICK1 36806222 rs8135665 A 0.193 0.217 0.219 0.1444 0.85 0.9112 0.99
MAOA 43411492 rs6520894 C 0.296 0.300 0.297 0.6536 0.99 0.9228 1.01
MAOA 43432254 rs5906957 A 0.255 0.255 0.243 0.8485 1.07 0.5921 1.07
MAOA 43436265 rs5906974 G 0.297 0.302 0.297 0.6861 1.00 0.8220 1.03
MAOA 43436344 rs3027392 A 0.045 0.029 0.030 0.2154 1.50 0.9044 0.96
MAOA 43438146 rs909525 G 0.328 0.326 0.324 0.8932 1.02 0.9211 1.01
MAOA 43477666 rs3027399 C 0.058 0.072 0.055 0.7881 1.05 0.1769 1.33
MAOA 43488335 rs1137070 A 0.301 0.302 0.308 0.5271 0.97 0.7863 0.97
MAOA 43489785 rs3027407 A 0.301 0.299 0.307 0.5718 0.97 0.7359 0.96
MAOB 43512943 rs1799836 G 0.455 0.445 0.421 0.0623 1.15 0.3602 1.10
MAOB 43536139 rs3027450 G 0.215 0.242 0.203 0.2903 1.07 0.0707 1.25
MAOB 43536455 rs2311013 A 0.043 0.052 0.044 0.4611 0.98 0.4519 1.20
MAOB 43559979 rs736944 A 0.165 0.151 0.178 0.9332 0.91 0.1593 0.82
MAOB 43562986 rs2283729 A 0.274 0.286 0.231 0.0255 1.26 0.0136 1.34
MAOB 43573908 rs6651806 C 0.284 0.304 0.243 0.0570 1.23 0.0079 1.36
MAOB 43588734 rs4824562 G 0.156 0.140 0.166 0.7147 0.93 0.1634 0.82
MAOB 43611338 rs5905512 G 0.505 0.495 0.475 0.0189 1.13 0.4448 1.08
FLNA 153231493 rs2070819 G 0.090 0.105 0.119 0.5685 0.73 0.3762 0.87
FLNA 153248612 rs2070816 G 0.196 0.211 0.199 0.4019 0.98 0.5663 1.08
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Table 18 Supplementary Table 6.3: Hotellings T2 for all Genes 

  Schizophrenia Bipolar Disorder 

Gene SNPs T2 DF1 DF2 P_Hotel
EMP-

P T2 DF1 DF2 P_Hotel 
EMP-

P 
ADRBK2 3 0.39 3 1000 0.757 0.756 0.48 3 996 0.694 0.700 
CACNG2 6 1.33 6 997 0.242 0.247 1.07 6 993 0.379 0.374 

CLIC6 6 0.35 5 998 0.879 0.881 0.55 5 994 0.736 0.734 
COMT 31 0.68 15 988 0.804 0.804 0.94 14 985 0.511 0.518 
COPG2 6 0.47 5 998 0.801 0.801 0.72 5 994 0.610 0.615 

DARPP32 1 1.90 1 1002 0.168 0.179 0.03 1 998 0.855 0.849 
DBH 29 0.88 20 983 0.616 0.617 0.65 20 979 0.877 0.878 
DDC 38 0.99 15 988 0.465 0.391 0.77 15 984 0.712 0.708 
DRD1 5 1.02 4 999 0.395 0.400 0.13 5 994 0.985 0.988 

DRD1IP 3 2.20 3 1000 0.086 0.090 2.40 3 996 0.067 0.063 
DRD2 21 1.01 12 991 0.438 0.433 0.63 12 987 0.819 0.813 
DRD3 20 2.35 9 994 0.013 0.007 2.09 10 989 0.023 0.013 
DRD4 2 0.29 2 1001 0.750 0.745 2.36 2 997 0.095 0.095 
DRD5 1 0.28 1 1002 0.596 0.597 0.32 1 998 0.572 0.577 

DRIP78 1 0.59 1 1002 0.444 0.496 0.00 1 998 0.962 1.000 
EPB41 15 0.60 10 993 0.811 0.818 1.55 10 989 0.115 0.109 
FLNA 2 2.93 2 1001 0.054 0.060 1.63 2 997 0.197 0.208 
FREQ 21 0.74 18 985 0.774 0.776 1.08 18 981 0.373 0.376 

GNB2L1 4 1.71 4 999 0.145 0.150 0.99 4 995 0.412 0.419 
GRB2 8 0.92 7 996 0.489 0.373 0.58 5 994 0.715 0.715 
GRK2 2 0.40 2 1001 0.668 0.671 0.80 2 997 0.451 0.447 
Hey1 7 0.16 7 996 0.993 0.992 1.52 7 992 0.158 0.156 
HIC5 2 0.19 2 1001 0.828 0.828 1.03 2 997 0.356 0.360 

MAOA 8 1.17 5 998 0.323 0.336 0.93 5 994 0.463 0.481 
MAOB 8 1.28 6 997 0.266 0.268 1.24 6 993 0.283 0.296 
NCK1 6 0.37 4 999 0.832 0.826 0.11 4 995 0.977 0.977 
NEF3 8 1.14 8 995 0.337 0.342 1.21 8 991 0.288 0.286 

NR4A2 2 0.39 2 1001 0.680 0.682 0.43 2 997 0.649 0.643 
PICK1 6 0.61 5 998 0.694 0.697 0.26 5 994 0.937 0.931 

PPP1R9B 5 1.04 5 998 0.394 0.396 1.89 5 994 0.093 0.095 
PPP2CA 1 0.40 1 1002 0.527 0.566 0.00 1 998 0.967 1.000 
SLC18A1 22 0.72 14 989 0.754 0.761 1.46 14 985 0.119 0.113 
SLC18A2 18 1.03 16 987 0.425 0.420 1.06 16 983 0.388 0.393 
SLC6A3 44 1.00 24 979 0.470 0.479 0.73 23 976 0.820 0.818 
SNAP25 34 1.10 25 978 0.333 0.334 1.06 25 974 0.381 0.375 
SNCA 12 0.62 8 995 0.759 0.753 0.77 7 992 0.615 0.614 
Sp4 3 2.05 3 1000 0.106 0.105 0.09 3 996 0.965 0.963 

STX1A 2 0.57 2 1001 0.564 0.572 0.05 2 997 0.951 0.956 
syngr3 2 0.43 2 1001 0.652 0.650 0.13 2 997 0.881 0.885 

TH 7 1.29 7 996 0.254 0.247 1.28 7 992 0.258 0.252 
Test statistics for all gene-based tests provided.  P_Hotel = asymptotic p-value, EMP_P = 
empirical p-value from permutation. 
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Table 19 Supplementary Table 6.4: Most significant shared interactions 

Gene Pair SNP pair 

SZ/SZA 
Ineraction 

p-value 
SZ/SZA 

OR 

BP1 
Interaction 

p-value 
BP1 
OR 

SLC6A3*COMT rs1042098*rs9332347 0.004102 1.86 0.005004 1.83 
SLC6A3*COMT rs37022*rs5746849 0.008311 0.64 0.004138 0.61 
SLC6A3*COMT rs37022*rs3810595 0.008486 1.60 0.000169 1.95 
SLC6A3*DDC rs27072*rs1451372 0.001076 1.85 0.001355 1.80 
SLC6A3*DDC rs27072*rs730092 0.002693 1.75 0.002664 1.71 
SLC6A3*DDC rs11133770*rs1451372 0.003083 0.60 0.008423 0.64 

SNCA*SLC6A3 rs2737020*rs40184 0.000918 1.68 0.000096 1.81 
SNCA*SLC6A3 rs2737020*rs2963238 0.006455 1.54 0.009120 1.47 
SNCA*SLC6A3 rs2737020*rs2937639 0.006456 1.55 0.005345 1.51 

DDC*DRD2 rs4602840*rs6279 0.000067 0.33 0.002460 0.48 
DDC*DRD2 rs11575548*rs6279 0.000116 0.34 0.001245 0.45 
DDC*DRD2 rs4490786*rs6279 0.000774 0.53 0.001788 0.57 
DDC*DRD2 rs11575500*rs6279 0.000826 0.35 0.008439 0.48 
DDC*DRD2 rs11575500*rs1124492 0.001188 0.23 0.005118 0.36 
DDC*DRD2 rs11575553*rs6279 0.001324 0.39 0.002275 0.43 
DDC*DRD2 rs11575500*rs4620755 0.001455 0.23 0.005583 0.37 
DDC*DRD2 rs11575322*rs6279 0.002127 0.43 0.002607 0.47 
DDC*DRD2 rs11575286*rs6279 0.002127 0.43 0.003174 0.48 
DDC*DRD2 rs4602840*rs4620755 0.002152 0.31 0.000542 0.31 
DDC*DRD2 rs11575548*rs4586205 0.002337 0.42 0.008537 0.52 
DDC*DRD2 rs11575548*rs4620755 0.003006 0.32 0.000272 0.28 
DDC*DRD2 rs4602840*rs1124492 0.003031 0.33 0.000835 0.32 
DDC*DRD2 rs11575548*rs1124492 0.004239 0.34 0.000433 0.29 
DDC*DRD2 rs4602840*rs7125415 0.004374 0.30 0.000870 0.26 
DDC*DRD2 rs11575500*rs7125415 0.005641 0.24 0.007194 0.30 
DDC*DRD2 rs11575548*rs7125415 0.006342 0.31 0.000390 0.21 
DDC*DRD2 rs3807558*rs4274224 0.007916 1.50 0.000106 1.88 
DDC*DRD2 rs745043*rs4274224 0.008410 1.50 0.000082 1.90 
DDC*DRD2 rs2044859*rs4274224 0.008429 1.41 0.009260 1.40 

DRD3*SLC18A1 rs12636133*rs1390939 0.001761 0.67 0.009201 0.72 
DRD3*SLC18A1 rs2046496*rs1390939 0.009455 1.40 0.005784 1.41 

DRD3*SNCA rs324035*rs356165 0.007760 1.59 0.005575 1.60 
COPG2*DBH rs3857855*rs1108580 0.001617 1.73 0.001275 1.81 
COPG2*DBH rs3857855*rs1541333 0.002250 1.70 0.004060 1.69 
COPG2*DBH rs3857855*rs2519154 0.002430 1.69 0.009847 1.62 
COPG2*DBH rs10954272*rs1076150 0.006521 1.53 0.004382 1.59 
COPG2*DBH rs10954272*rs1108580 0.007224 1.50 0.004646 1.55 
COPG2*DBH rs3857855*rs1541332 0.007514 1.59 0.007709 1.61 
COPG2*DBH rs3857855*rs1076150 0.007574 1.61 0.006381 1.70 
COPG2*DBH rs10954272*rs1541333 0.007772 1.49 0.009245 1.50 
DBH*COMT rs129884*rs4633 0.004273 0.62 0.008398 0.64 
DBH*COMT rs129884*rs4680 0.004626 0.62 0.007568 0.64 
DBH*GRK2 rs1108580*rs2071007 0.004761 0.49 0.001629 0.44 

DBH*SNAP25 rs129884*rs362549 0.000790 1.79 0.003504 1.64 
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Table 19 Continued 
DDC*DBH rs1451372*rs77905 0.000458 1.61 0.001339 1.54 
DDC*DBH rs1451372*rs129883 0.000769 1.64 0.005606 1.49 
DDC*DBH rs3807558*rs77905 0.001997 1.63 0.000812 1.72 
DDC*DBH rs3779078*rs77905 0.002108 1.63 0.003823 1.61 
DDC*DBH rs745043*rs77905 0.002535 1.61 0.001556 1.66 
DDC*DBH rs3807558*rs6479643 0.004665 0.63 0.002786 0.62 
DDC*DBH rs4470989*rs77905 0.005641 1.48 0.006906 1.47 
DDC*DBH rs745043*rs6479643 0.006343 0.64 0.005084 0.64 
DDC*DBH rs3735273*rs77905 0.007694 1.50 0.007153 1.52 
DDC*DBH rs3779078*rs6479643 0.008044 0.65 0.008674 0.65 

DRD2*PPP1R9B rs2234689*rs4794103 0.003995 0.54 0.001841 0.50 
DRD2*SNAP25 rs4274224*rs3025873 0.000224 0.56 0.001435 0.61 
DRD2*SNAP25 rs17601612*rs3025873 0.000824 0.56 0.006590 0.64 
DRD2*SNAP25 rs4630328*rs362588 0.001034 0.51 0.006193 0.58 
DRD2*SNAP25 rs4274224*rs362584 0.001533 1.58 0.002642 1.55 
DRD2*SNAP25 rs4630328*rs3025873 0.001698 0.59 0.005333 0.63 
DRD2*SNAP25 rs17529477*rs3025873 0.006320 0.62 0.001273 0.58 
EPB41*COMT rs203278*rs174696 0.001033 0.58 0.000444 0.56 
EPB41*COMT rs150089*rs174696 0.002086 0.59 0.001959 0.60 
EPB41*COMT rs575675*rs4646312 0.007096 1.86 0.003522 2.02 
EPB41*COMT rs575675*rs4818 0.008664 1.83 0.007585 1.89 
EPB41*COPG2 rs150093*rs10954272 0.000775 0.46 0.009857 0.56 
EPB41*COPG2 rs126013*rs10954272 0.004940 0.65 0.000676 0.60 
EPB41*COPG2 rs10915216*rs10954272 0.006974 1.51 0.009130 0.67 

EPB41*DBH rs2762682*rs1611118 0.003655 0.36 0.007147 0.41 
FREQ*TH rs3829905*rs3842748 0.006040 0.65 0.000185 0.56 

GNB2L1*syngr3 rs2261114*rs3183175 0.000727 2.47 0.007557 1.96 
GRK2*COMT rs2071007*rs174696 0.002992 0.43 0.001723 0.41 
HIC5*SNAP25 rs11646911*rs362998 0.005128 2.34 0.000700 2.76 
HIC5*SNAP25 rs11646911*rs362563 0.005143 2.71 0.002875 2.75 

NCK1*SLC18A2 rs9845460*rs363226 0.006039 0.62 0.004956 0.60 
NEF3*SLC18A2 rs196868*rs363238 0.001658 3.82 0.006270 3.13 
NEF3*SLC18A2 rs196868*rs363224 0.007843 1.78 0.003565 1.89 
NR4A2*SNAP25 rs12803*rs8636 0.002733 0.67 0.000473 0.61 

SLC18A1*ADRBK2 rs2270641*rs558934 0.007900 0.67 0.004438 0.65 
SLC18A1*ADRBK2 rs2270642*rs558934 0.008610 0.67 0.002566 0.63 

SLC18A1*DBH rs3779672*rs3025373 0.000273 2.30 0.005648 1.94 
SLC18A1*DRD2 rs2270642*rs12364283 0.004614 2.21 0.007881 2.05 
SLC18A1*FREQ rs3779672*rs4424362 0.000105 2.05 0.002116 1.83 
SLC18A1*FREQ rs17092104*rs2277200 0.005870 1.86 0.008970 1.89 
SLC18A1*FREQ rs3779672*rs3824544 0.006086 1.71 0.004677 1.81 

SNCA*TH rs3822095*rs6356 0.000052 1.84 0.000119 1.70 
SNCA*TH rs3822095*rs7119275 0.000215 0.58 0.001377 0.64 
TH*PICK1 rs3842748*rs3952 0.000271 0.56 0.003976 0.64 

SNP pairs provided where interaction p < 0.001 in both disorders.  OR = odds ratio. No 
interaction tests significant after corrections for multiple comparisons
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Table 20 Supplementary Table 6.5: Most significant diagnosis specific interactions 

SCHIZOPHRENIA 

gene-pair SNP pair 

Main 
Effect 
SNP1 

Main 
Effect 
SNP2 

SZ/SZA 
Ineraction 

p-value 
SZ/SZA 

OR 
SLC18A2*COMT rs11197936*rs5748489 0.249 0.975 0.000234 0.60 
SLC6A3*DBH rs37022*rs129915 0.518 0.610 0.000343 1.92 
SLC6A3*DBH rs37022*rs1611131 0.518 0.901 0.000505 1.92 
SLC6A3*DBH rs11564764*rs1611123 0.729 0.524 0.000593 2.54 
SLC6A3*DBH rs28363119*rs2797855 0.942 0.839 0.000598 2.62 
SLC6A3*DBH rs11564764*rs2797855 0.729 0.839 0.000750 2.59 
SLC6A3*DBH rs11564764*rs1108580 0.729 0.845 0.000786 0.41 
SLC6A3*DBH rs28363119*rs1611123 0.942 0.524 0.000854 2.44 
SLC6A3*DBH rs6869645*rs1611123 0.810 0.524 0.000902 2.43 
SLC6A3*DBH rs6876225*rs1611123 0.738 0.524 0.000918 2.43 
SLC6A3*HIC5 rs2078247*rs13143 0.662 0.657 0.000133 0.52 
SLC6A3*HIC5 rs2455391*rs13143 0.821 0.657 0.000252 0.54 
SLC6A3*TH rs6347*rs10743149 0.826 0.098 0.000537 2.29 
DDC*DRD2 rs4602840*rs6279 0.628 0.705 0.000067 0.33 
DDC*DRD2 rs11575548*rs6279 0.564 0.705 0.000116 0.34 
DDC*DRD2 rs11575453*rs17529477 0.705 0.037 0.000279 0.36 
DDC*DRD2 rs11575438*rs17529477 0.705 0.037 0.000279 0.36 
DDC*DRD2 rs4490786*rs6279 0.893 0.705 0.000774 0.53 
DDC*DRD2 rs11575500*rs6279 0.416 0.705 0.000826 0.35 
DDC*COMT rs2044859*rs9265 0.505 0.981 0.000108 0.57 
DDC*COMT rs2044859*rs165599 0.505 0.997 0.000109 0.57 
DDC*COMT rs2044859*rs165849 0.505 0.957 0.000177 0.58 
DDC*COMT rs3735273*rs9265 0.141 0.981 0.000184 0.52 
DDC*COMT rs3735273*rs165599 0.141 0.997 0.000223 0.53 
DDC*COMT rs3735273*rs165849 0.141 0.957 0.000354 0.54 
DDC*COMT rs7786398*rs9265 0.551 0.981 0.000893 0.62 
DDC*COMT rs7786398*rs165599 0.551 0.997 0.000990 0.62 
DDC*DBH rs11575322*rs2797853 0.911 0.286 0.000239 2.75 
DDC*DBH rs11575286*rs2797853 0.911 0.286 0.000239 2.75 
DDC*DBH rs1451372*rs77905 0.067 0.177 0.000458 1.61 
DDC*DBH rs1451372*rs129883 0.067 0.931 0.000769 1.64 
COPG2*SLC18A2 rs3857855*rs363343 0.652 0.073 0.000631 0.44 
DBH*SNAP25 rs129884*rs362549 0.618 0.496 0.000790 1.79 
DDC*ADRBK2 rs4602840*rs558934 0.628 0.518 0.000346 2.61 
DDC*ADRBK2 rs11575548*rs558934 0.564 0.518 0.000427 2.61 
DRD1*DBH rs5326*rs2007153 0.234 0.541 0.000638 0.51 
DRD1*PICK1 rs267416*rs8135665 0.847 0.150 0.000112 0.53 
DRD1*PICK1 rs4867798*rs2012859 0.095 0.455 0.000838 0.61 
DRD1*TH rs5326*rs2070762 0.234 0.110 0.000166 0.51 
DRD1IP*PICK1 rs11101694*rs2076371 0.012 0.722 0.000250 0.45 
DRD2*SNAP25 rs4274224*rs3025873 0.078 0.987 0.000224 0.56 
DRD2*SNAP25 rs17601612*rs362588 0.055 0.376 0.000640 0.50 
DRD2*SNAP25 rs17601612*rs3025873 0.055 0.987 0.000824 0.56 
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Table 20 Continued 
DRD3*SLC18A1 rs12636133*rs2270642 0.023 0.770 0.000616 1.59 
DRD3*SLC18A1 rs12636133*rs2270641 0.023 0.860 0.000639 1.58 
DRD3*SLC18A1 rs963468*rs2270642 0.030 0.770 0.000783 1.57 
DRD3*SLC18A1 rs963468*rs2270641 0.030 0.860 0.000878 1.56 
DRD3*SLC18A1 rs10934254*rs2270642 0.035 0.770 0.000956 1.56 
DRD3*SLC18A1 rs3732790*rs2270642 0.033 0.770 0.000998 1.55 
DRD3*SLC18A1 rs10934254*rs2270641 0.035 0.860 0.000999 1.56 
EPB41*CACNG2 rs575675*rs2267341 0.165 0.164 0.000805 0.43 
EPB41*CACNG2 rs150089*rs2267341 0.272 0.164 0.000870 0.62 
EPB41*COPG2 rs150093*rs3857855 0.847 0.652 0.000387 0.37 
EPB41*COPG2 rs150093*rs10954272 0.847 0.521 0.000775 0.46 
EPB41*COPG2 rs150093*rs10954274 0.847 0.497 0.000888 0.18 
EPB41*DBH rs10915216*rs129882 0.713 0.203 0.000604 1.74 
EPB41*DBH rs126013*rs129882 0.322 0.203 0.000817 0.56 
FREQ*COMT rs10819611*rs9332377 0.226 0.242 0.000564 1.96 
FREQ*DBH rs4424362*rs1611131 0.122 0.901 0.000174 0.56 
FREQ*DBH rs4424362*rs2073837 0.122 0.989 0.000302 0.58 
FREQ*DBH rs4424362*rs129915 0.122 0.610 0.000620 0.59 
FREQ*PICK1 rs11552451*rs2012859 0.487 0.455 0.000090 0.44 
FREQ*PICK1 rs11552451*rs713729 0.487 0.532 0.000613 0.49 
FREQ*SNAP25 rs3824544*rs4813927 0.440 0.265 0.000605 1.79 
FREQ*SNAP25 rs11552451*rs362549 0.487 0.496 0.000994 1.84 
GNB2L1*syngr3 rs2261114*rs3183175 0.327 0.468 0.000727 2.47 
GNB2L1*TH rs2261114*rs3842748 0.327 0.854 0.000750 1.62 
Hey1*DRD2 rs2461056*rs7131056 0.952 0.037 0.000930 1.82 
SLC18A1*DBH rs3779672*rs3025373 0.824 0.636 0.000273 2.30 
SLC18A1*DBH rs3779673*rs3025373 0.497 0.636 0.000393 2.35 
SLC18A1*FREQ rs17092104*rs4424362 0.490 0.122 0.000076 2.66 
SLC18A1*FREQ rs3779672*rs4424362 0.824 0.122 0.000105 2.05 
SLC18A1*FREQ rs17092104*rs10819611 0.490 0.226 0.000288 2.39 
SLC18A1*FREQ rs3779673*rs4424362 0.497 0.122 0.000335 2.03 
SLC18A1*FREQ rs3779672*rs10819611 0.824 0.226 0.000457 1.89 
SLC18A1*FREQ rs17092107*rs10819611 0.773 0.226 0.000486 2.35 
SLC18A1*FREQ rs17092107*rs4424362 0.773 0.122 0.000604 2.36 
SLC18A1*FREQ rs17092107*rs3829905 0.773 0.156 0.000978 2.15 
SLC18A1*FREQ rs3779673*rs10819611 0.497 0.226 0.000997 1.89 
SLC18A1*PPP1R9B rs903997*rs12453363 0.470 0.235 0.000976 0.48 
SNAP25*CLIC6 rs363043*rs2834590 0.086 0.855 0.000274 2.02 
SNAP25*CLIC6 rs3025873*rs2834590 0.987 0.855 0.000599 2.15 
SNAP25*COMT rs6104567*rs737865 0.330 0.352 0.000042 0.51 
SNAP25*COMT rs6104567*rs1800706 0.330 0.477 0.000114 0.53 
SNAP25*COMT rs6104567*rs8185002 0.330 0.358 0.000139 0.53 
SNAP25*COMT rs8119844*rs737865 0.646 0.352 0.000416 1.77 
SNAP25*COMT rs8119844*rs1800706 0.646 0.477 0.000501 1.75 
SNAP25*COMT rs363016*rs737865 0.111 0.352 0.000642 0.60 
SNAP25*COMT rs363016*rs1800706 0.111 0.477 0.000713 0.60 
SNCA*DRD1IP rs17016274*rs11101694 0.822 0.012 0.000529 3.62 
SNCA*FREQ rs356186*rs870811 0.527 0.842 0.000572 0.56 
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SNCA*FREQ rs356186*rs947513 0.527 0.222 0.000576 0.56 
SNCA*SLC6A3 rs2737020*rs40184 0.424 0.911 0.000918 1.68 
SNCA*TH rs3822095*rs6356 0.255 0.974 0.000052 1.84 
SNCA*TH rs3822095*rs7119275 0.255 0.933 0.000215 0.58 
TH*PICK1 rs3842748*rs3952 0.854 0.505 0.000271 0.56 
TH*PICK1 rs10743149*rs2076369 0.098 0.879 0.000617 0.46 

BIPOLAR DISORDER 

gene-pair SNP pair 

Main 
Effect 
SNP1 

Main 
Effect 
SNP2 

BP1 
Interaction 

p-value 
BP1 
OR 

SLC6A3*COMT rs37022*rs4818 0.827 0.268 0.000051 2.07 
SLC6A3*COMT rs37022*rs4646312 0.827 0.376 0.000065 2.05 
SLC6A3*COMT rs37022*rs3810595 0.827 0.274 0.000169 1.95 
SLC6A3*COMT rs37022*rs6269 0.827 0.274 0.000169 1.95 
SLC6A3*COMT rs37022*rs2239393 0.827 0.278 0.000173 1.95 
SLC6A3*COMT rs37022*rs740601 0.827 0.239 0.000264 1.91 
SLC6A3*COMT rs464061*rs4818 0.510 0.268 0.000929 1.76 
SLC6A3*COMT rs464061*rs4646312 0.510 0.376 0.000936 1.76 
DDC*DRD2 rs745043*rs4274224 0.005 0.583 0.000082 1.90 
DDC*DRD2 rs3807558*rs4274224 0.010 0.583 0.000106 1.88 
DDC*DRD2 rs11575553*rs4620755 0.168 0.733 0.000189 0.22 
DDC*DRD2 rs11575548*rs4620755 0.042 0.733 0.000272 0.28 
DDC*DRD2 rs3735273*rs4274224 0.003 0.583 0.000324 1.76 
DDC*DRD2 rs11575548*rs7125415 0.042 0.325 0.000390 0.21 
DDC*DRD2 rs3779078*rs4274224 0.005 0.583 0.000417 1.78 
DDC*DRD2 rs11575548*rs1124492 0.042 0.793 0.000433 0.29 
DDC*DRD2 rs3779078*rs4630328 0.005 0.652 0.000497 1.78 
DDC*DRD2 rs4602840*rs4620755 0.054 0.733 0.000542 0.31 
DDC*DRD2 rs11575553*rs7125415 0.168 0.325 0.000546 0.19 
DDC*DRD2 rs11575553*rs1124492 0.168 0.793 0.000584 0.25 
DDC*DRD2 rs11575500*rs4936270 0.059 0.867 0.000692 0.24 
DDC*DRD2 rs3807558*rs4630328 0.010 0.652 0.000701 1.74 
DDC*DRD2 rs745043*rs4630328 0.005 0.652 0.000718 1.74 
DDC*DRD2 rs3779078*rs17601612 0.005 0.640 0.000797 1.74 
DDC*DRD2 rs4602840*rs1124492 0.054 0.793 0.000835 0.32 
DDC*DRD2 rs3807558*rs17601612 0.010 0.640 0.000851 1.72 
DDC*DRD2 rs745043*rs17601612 0.005 0.640 0.000856 1.72 
DDC*DRD2 rs4602840*rs7125415 0.054 0.325 0.000870 0.26 
DDC*DRD2 rs11575500*rs4581480 0.059 0.702 0.000945 0.25 
DDC*DRD2 rs3807558*rs17529477 0.010 0.610 0.001000 1.75 
COPG2*DBH rs13241924*rs3025382 0.404 0.331 0.000803 0.53 
DDC*CACNG2 rs3807563*rs2267341 0.358 0.402 0.000239 1.69 
DDC*DBH rs3807558*rs77905 0.010 0.628 0.000812 1.72 
DDC*SLC18A2 rs1451371*rs363399 0.183 0.196 0.000070 0.52 
DDC*SLC18A2 rs1451371*rs363338 0.183 0.747 0.000215 0.58 
DDC*SLC18A2 rs3807562*rs363399 0.298 0.196 0.000825 0.58 
DRD3*DDC rs2046496*rs11575453 0.017 0.799 0.000999 2.16 
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DRD3*DDC rs2046496*rs11575438 0.017 0.799 0.000999 2.16 
EPB41*COMT rs203278*rs174696 0.209 0.460 0.000444 0.56 
EPB41*COMT rs575675*rs174696 0.024 0.460 0.000489 0.36 
EPB41*COPG2 rs126013*rs10954272 0.177 0.574 0.000676 0.60 
EPB41*COPG2 rs126013*rs13241924 0.177 0.404 0.000820 0.65 
NR4A2*Hey1 rs834834*rs6473177 0.836 0.090 0.000465 0.41 
NR4A2*SNAP25 rs12803*rs8636 0.429 0.821 0.000473 0.61 
SLC6A3*NEF3 rs37022*rs196864 0.827 0.944 0.000569 3.54 
SLC6A3*SLC18A1 rs12516758*rs7820517 1.000 0.066 0.000739 0.48 
SNCA*Hey1 rs10002435*rs2461056 0.415 0.791 0.000643 0.34 
SNCA*SLC6A3 rs2737020*rs40184 0.159 0.238 0.000096 1.81 
SNCA*TH rs3822095*rs6356 0.192 0.094 0.000119 1.70 

SNP pairs provided where interaction p < 0.001 in either disorder.  Main effect = result of 
Armitage Trends test for individual SNP.  OR = odds ratio. No interaction tests significant after 
corrections for multiple comparisons
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Table 21 Supplementary Table 6.7: Exploratory analyses for DRD3 and DDC 

  Overall  Gender Specific Analyses Diagnosis specific analyses 

gene SNP 
pval 
(SZ) 

pval 
(BP1) 

Strat     
pval (SZ) 

Strat     
pval 

(BP1) 

Male   
pval 
(SZ) 

 Male 
OR 
(SZ) 

Female 
pval (SZ) 

Female 
OR (SZ)

SZ only   
(pval) 

SZA only 
(pval) 

BP1 + 
psych 

BP1 No 
psych 

DRD3 rs2046496 0.0345 0.0166 0.0423 0.0149 0.3866 1.11 0.0368 1.33 0.0773 0.0904 0.0143 0.5154 
DRD3 rs12636133 0.0239 0.0092 0.0301 0.0083 0.4595 0.91 0.0147 0.71 0.0613 0.0705 0.0137 0.1199 
DRD3 rs10934254 0.0367 0.0092 0.0446 0.0093 0.5532 0.93 0.0182 0.72 0.1048 0.0705 0.0137 0.1528 
DRD3 rs9868039 0.0039 0.0017 0.0032 0.0014 0.1102 1.22 0.0082 1.44 0.0027 0.1175 0.0010 0.4615 
DRD3 rs9817063 0.0123 0.0032 0.0086 0.0035 0.2455 0.87 0.0078 0.69 0.0202 0.0859 0.0042 0.1728 
DRD3 rs3732790 0.0334 0.0117 0.0366 0.0096 0.7359 0.96 0.0054 0.68 0.0375 0.1935 0.0179 0.1304 
DRD3 rs2134655 0.0080 0.0052 0.0065 0.0056 0.3272 1.15 0.0029 1.59 0.0075 0.1100 0.0036 0.8739 
DRD3 rs963468 0.0302 0.0082 0.0336 0.0076 0.6270 0.94 0.0077 0.69 0.0388 0.1645 0.0146 0.1434 
DRD3 rs324035 0.4879 0.8727 0.5898 0.8838 0.5932 1.08 0.8349 1.04 0.7456 0.3745 0.8677 0.1733 
DRD3 rs2630351 0.2630 0.1154 0.3788 0.1557 0.1747 1.41 0.8007 0.93 0.5585 0.1586 0.3912 0.02643
DRD3 rs167771 0.4593 0.6263 0.5956 0.6244 0.5000 1.11 0.9755 1.01 0.5922 0.4784 0.8919 0.1337 
DRD3 rs324032 0.1492 0.0818 0.2351 0.1148 0.1059 1.50 0.9362 0.98 0.3380 0.1156 0.2815 0.02643
DRD3 rs167770 0.2323 0.2301 0.2159 0.2609 0.1336 0.82 0.8689 0.98 0.2698 0.4104 0.2482 0.7912 
DRD3 rs226082 0.2537 0.2489 0.2444 0.2807 0.1200 0.81 0.9952 1.00 0.3374 0.3613 0.2482 0.6827 
DRD3 rs324030 0.2537 0.2489 0.2444 0.2807 0.1200 0.81 0.9952 1.00 0.3374 0.3613 0.2482 0.6827 
DRD3 rs7625282 0.0575 0.0726 0.0527 0.0892 0.0372 0.75 0.5789 0.92 0.0477 0.3092 0.0533 0.6532 
DRD3 rs10934256 0.0355 0.1322 0.0444 0.1470 0.0281 0.72 0.5837 0.91 0.0317 0.2435 0.0948 0.6067 
DRD3 rs7633291 0.0463 0.1467 0.0578 0.1621 0.0331 0.73 0.6525 0.93 0.0470 0.2435 0.0948 0.4985 
DRD3 rs6280 0.5569 0.6806 0.4866 0.6872 0.2817 0.87 0.8619 1.03 0.5934 0.6767 0.5691 0.3388 
DRD3 rs1800828 0.1651 0.5234 0.1601 0.5121 0.1154 0.80 0.7411 0.95 0.1163 0.5581 0.3316 0.271 
DDC rs11575564 0.0602 0.7525 0.0951 0.7327 0.1742 1.51 0.3267 1.41 0.2594 0.0267 0.7739 0.5501 
DDC rs4947510 0.2989 0.2375 0.3197 0.2542 0.2170 0.85 0.9204 0.99 0.4848 0.2925 0.4082 0.6053 
DDC rs11575553 0.9700 0.1576 0.7312 0.1504 0.3335 0.82 0.4630 1.23 0.9412 0.9810 0.0441 0.5413 
DDC rs11575548 0.5770 0.0399 0.8216 0.0342 0.2693 0.80 0.0731 1.58 0.6213 0.6710 0.0031 0.3877 
DDC rs11575542 0.3810 0.5460 0.2749 0.4867 0.6779 1.21 0.2753 1.56 0.3840 0.5847 0.5986 0.4619 
DDC rs4947535 0.0339 0.0325 0.0532 0.0292 0.3043 0.88 0.0792 0.77 0.1027 0.0591 0.0078 0.9468 
DDC rs11575535 0.2255 0.5405 0.1810 0.4892 0.3410 1.46 0.3468 1.42 0.1502 0.6628 0.5066 0.8114 
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DDC rs730092 0.1248 0.2787 0.1528 0.2625 0.1470 0.84 0.6040 0.93 0.2508 0.1564 0.3192 0.5645 
DDC rs11575500 0.4383 0.0637 0.5005 0.0536 0.7402 0.93 0.1475 1.50 0.4517 0.6084 0.0080 0.4719 
DDC rs745043 0.0243 0.0037 0.0448 0.0037 0.1278 0.80 0.1909 0.81 0.0697 0.0594 0.0046 0.5208 
DDC rs4490786 0.8721 0.0592 0.9104 0.0685 0.7111 0.95 0.7893 1.05 0.7379 0.8922 0.0558 0.9236 
DDC rs11575453 0.7460 0.7190 0.6849 0.8167 0.6729 1.09 0.2664 0.76 0.9644 0.4941 0.6079 0.4463 
DDC rs11575441 0.7219 0.6546 0.8978 0.7057 0.7267 1.19 0.7903 0.83 0.4520 0.7216 0.8074 0.9045 
DDC rs1451371 0.2400 0.1927 0.3190 0.1801 0.3243 1.13 0.6972 1.06 0.1379 0.7552 0.1681 0.6151 
DDC rs11575438 0.7460 0.7190 0.6849 0.8167 0.6729 1.09 0.2664 0.76 0.9644 0.4941 0.6079 0.4463 
DDC rs1451372 0.0622 0.3277 0.0671 0.3255 0.1080 0.82 0.3444 0.88 0.1694 0.0783 0.3684 0.5777 
DDC rs4470989 0.0275 0.0284 0.0439 0.0260 0.3300 0.88 0.0526 0.75 0.1063 0.0376 0.0053 0.9016 
DDC rs4602840 0.6406 0.0513 0.9077 0.0443 0.3319 0.83 0.1480 1.44 0.7726 0.6082 0.0063 0.4511 
DDC rs6957607 0.8475 0.7164 0.7338 0.8180 0.5756 1.13 0.2302 0.73 0.8517 0.5336 0.6275 0.3532 
DDC rs3807563 0.8091 0.3693 0.9546 0.3623 0.9336 1.01 0.9931 1.00 0.6131 0.8451 0.2023 0.7971 
DDC rs3807562 0.1768 0.3140 0.2154 0.2991 0.3486 1.12 0.4179 1.12 0.1074 0.6356 0.2616 0.8751 
DDC rs11575387 0.7925 0.8888 0.6855 0.9907 0.6949 1.09 0.2718 0.75 0.8810 0.4778 0.6125 0.6158 
DDC rs3807558 0.0365 0.0079 0.0663 0.0080 0.1506 0.81 0.2505 0.83 0.0997 0.0717 0.0104 0.561 
DDC rs11575375 0.5059 0.2259 0.5016 0.2779 0.8013 1.03 0.4659 1.11 0.9683 0.2297 0.2528 0.9477 
DDC rs4947584 0.4817 0.1799 0.4799 0.2252 0.7234 1.05 0.5055 1.10 0.9503 0.2128 0.2492 0.7485 
DDC rs6592961 0.6377 0.1511 0.8346 0.1737 0.7653 0.96 0.4987 1.13 0.5866 0.8496 0.1205 0.912 
DDC rs10274275 0.4946 0.1270 0.5007 0.1430 0.6051 1.08 0.6658 1.07 0.9719 0.2131 0.1362 0.5077 
DDC rs11575342 0.4253 0.9429 0.3396 0.9030 0.2370 1.25 0.8877 1.03 0.7990 0.0735 0.6266 0.4954 
DDC rs3735274 0.5039 0.1319 0.5177 0.1465 0.5864 1.08 0.7178 1.06 0.9316 0.2483 0.1327 0.5511 
DDC rs3735273 0.1262 0.0024 0.2140 0.0024 0.2016 0.83 0.6569 0.93 0.1876 0.2396 0.0029 0.4721 
DDC rs11575322 0.8701 0.0306 0.8564 0.0303 0.2763 0.80 0.2724 1.34 0.9086 0.8718 0.0093 0.8299 
DDC rs998850 0.3734 0.1608 0.5277 0.1707 0.4798 0.92 0.8770 0.98 0.2342 0.8738 0.1750 0.8719 
DDC rs3779078 0.0357 0.0043 0.0662 0.0051 0.1189 0.80 0.3102 0.85 0.0864 0.0836 0.0057 0.4946 
DDC rs11575288 0.0570 0.4301 0.1062 0.3806 0.0231 3.27 0.9957 1.00 0.0730 0.1501 0.7891 0.1738 
DDC rs11575286 0.8701 0.0365 0.8564 0.0355 0.2763 0.80 0.2724 1.34 0.9086 0.8718 0.0119 0.8299 
DDC rs2044859 0.4794 0.0097 0.7542 0.0081 0.7650 0.96 0.8917 0.98 0.2337 0.8287 0.0051 0.8865 
DDC rs7786398 0.5428 0.1598 0.6897 0.1691 0.3661 0.90 0.6766 1.06 0.2619 0.7674 0.1664 0.977 
DDC rs3829897 0.6724 0.5304 0.8005 0.5649 0.5342 0.93 0.7501 1.05 0.9209 0.5028 0.9031 0.7039 
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Table 22 Supplementary Table 6.7 Allele frequencies of 'alternate controls' for shared risk loci 

Genomic  Association Results Current Study Frequencies 
Frequencies from 

other samples 

Gene SNP Position 

BP1 
Trends 

p-
value 

BP1 
OR 

SZ 
Trends 

p-
value 

SZ 
OR N 

SZ 
Case 

BP1 
Case Control

HapMap 
CEU 

ALT 
Controls

DDC rs4947535 50499175 0.033 0.82 0.036 0.82 A 0.296 0.295 0.340 0.350  
DDC rs745043 50511449 0.004 0.73 0.029 0.78 A 0.206 0.195 0.248 0.207  
DDC rs4470989 50530192 0.028 0.81 0.029 0.81 A 0.297 0.297 0.343  0.350** 
DDC rs3807558 50538516 0.008 0.75 0.043 0.8 A 0.207 0.198 0.246 0.202  
DDC rs3779078 50578412 0.004 0.74 0.042 0.8 A 0.205 0.193 0.244 0.200 0.200** 

DRD1IP rs11101694 134996704 0.008 0.72 0.012 0.73 G 0.129 0.127 0.169 0.150  
DRD3 rs2046496 115317621 0.017 1.24 0.031 1.21 G 0.494 0.502 0.448 0.475 0.480* 
DRD3 rs12636133 115322414 0.009 0.79 0.023 0.81 C 0.424 0.416 0.475  0.436* 
DRD3 rs10934254 115324324 0.009 0.79 0.035 0.83 G 0.428 0.417 0.475  0.438* 
DRD3 rs9868039 115329232 0.002 1.34 0.003 1.30 A 0.451 0.458 0.387  0.450* 
DRD3 rs9817063 115329798 0.003 0.77 0.011 0.79 G 0.456 0.447 0.514 0.475 0.453* 
DRD3 rs3732790 115329973 0.012 0.79 0.033 0.82 A 0.383 0.374 0.431 0.383 0.375* 
DRD3 rs2134655 115340891 0.005 1.33 0.007 1.31 A 0.277 0.280 0.226 0.275 0.238* 
DRD3 rs963468 115345577 0.008 0.78 0.030 0.82 A 0.381 0.370 0.429 0.375 0.372* 
MAOB rs2283729 43562986 0.042 1.34 0.026 1.26 A 0.274 0.286 0.231 0.289  

N = nucleotide of minor allele in these samples.  *Allele frequencies from unscreened neonatal controls, 1020 chromosomes 
(Talkowski et al., 2008).  **CEU_GENO_PANEL (120 Caucasian chromosomes) 
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